Please use this identifier to cite or link to this item: http://dspace.lib.uom.gr/handle/2159/31540
Author: Γεμενετζής, Άρης-Ιανός
Title: Using temporal node embeddings for community detection
Date Issued: 2024
Department: Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων
Supervisor: Κολωνιάρη, Γεωργία
Abstract: The application of machine learning methodologies in networks requires an appropriate representation of network data in vector form. Several embedding methods already facilitate the representation of network information at graph, node, and community levels. However, the majority of research focuses on static graph snapshots, largely ignoring any temporal network dynamics. As a result, the outcome of network analysis tasks -such as graph visualisation or community detection- is informed by overly reduced data. In response, this work attempts to model temporal dependencies in graphs by introducing ComE+, a dynamic graph embedding and community detection framework which extends the standard ComE clustering algorithm by employing CTDNE’s temporal embedding approach. The proposed model is tested in a variety of datasets compared to several established baselines, proving its capacity for yielding more meaningful network community estimates by relying on time-sensitive node representations.
Keywords: Graph embedding
Community detection
Dynamic networks
Information: Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024.
Rights: Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές
Appears in Collections:ΠΜΣ στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (Μ)

Files in This Item:
File Description SizeFormat 
GemenetzisArisMsc2024.pdf1.96 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons