Please use this identifier to cite or link to this item:
http://dspace.lib.uom.gr/handle/2159/30853
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Πρωτοπαπαδάκης, Ευτύχιος | el |
dc.contributor.author | Πασβάντης, Κωνσταντίνος | el |
dc.date.accessioned | 2024-07-04T09:42:54Z | - |
dc.date.available | 2024-07-04T09:42:54Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | http://dspace.lib.uom.gr/handle/2159/30853 | - |
dc.description | Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024. | el |
dc.description.abstract | The application of deep learning models in medical diagnosis has showcased considerable efficacy in recent years. Nevertheless, a notable limitation involves the inherent lack of explainability during decision-making processes. This study addresses such a constraint, by enhancing the interpretability robustness. The primary focus is directed towards refining the explanations generated by the LIME Library and LIME image explainer. This is achieved throuhg post-processing mechanisms, based on scenario-specific rules. Multiple experiments have been conducted using publicly accessible datasets related to brain tumor detection. Our proposed post-heuristic approach demonstrates significant advancements, yielding more robust and concrete results, in the context of medical diagnosis. | en |
dc.format.extent | 42 | el |
dc.language.iso | en | en |
dc.publisher | Πανεπιστήμιο Μακεδονίας | el |
dc.rights | Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 Διεθνές | el |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | en |
dc.subject | Computer Vision | en |
dc.subject | Health Informatics | en |
dc.title | Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches | en |
dc.type | Electronic Thesis or Dissertation | en |
dc.type | Text | en |
dc.contributor.department | Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων | el |
Appears in Collections: | ΠΜΣ στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (Μ) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PasvantisKonstantinosMsc2024.pdf | 4.96 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License