Please use this identifier to cite or link to this item: http://dspace.lib.uom.gr/handle/2159/30853
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorΠρωτοπαπαδάκης, Ευτύχιοςel
dc.contributor.authorΠασβάντης, Κωνσταντίνοςel
dc.date.accessioned2024-07-04T09:42:54Z-
dc.date.available2024-07-04T09:42:54Z-
dc.date.issued2024-
dc.identifier.urihttp://dspace.lib.uom.gr/handle/2159/30853-
dc.descriptionΔιπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024.el
dc.description.abstractThe application of deep learning models in medical diagnosis has showcased considerable efficacy in recent years. Nevertheless, a notable limitation involves the inherent lack of explainability during decision-making processes. This study addresses such a constraint, by enhancing the interpretability robustness. The primary focus is directed towards refining the explanations generated by the LIME Library and LIME image explainer. This is achieved throuhg post-processing mechanisms, based on scenario-specific rules. Multiple experiments have been conducted using publicly accessible datasets related to brain tumor detection. Our proposed post-heuristic approach demonstrates significant advancements, yielding more robust and concrete results, in the context of medical diagnosis.en
dc.format.extent42el
dc.language.isoenen
dc.publisherΠανεπιστήμιο Μακεδονίαςel
dc.rightsΑναφορά Δημιουργού - Παρόμοια Διανομή 4.0 Διεθνέςel
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/en
dc.subjectComputer Visionen
dc.subjectHealth Informaticsen
dc.titleEnhancing deep learning model explainability in brain tumor datasets using post-heuristic approachesen
dc.typeElectronic Thesis or Dissertationen
dc.typeTexten
dc.contributor.departmentΠρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένωνel
Appears in Collections:ΠΜΣ στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (Μ)

Files in This Item:
File Description SizeFormat 
PasvantisKonstantinosMsc2024.pdf4.96 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons