Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorΠαντελίδης, Θεολόγοςel
dc.contributor.advisorPantelidis, Theologosen
dc.contributor.authorΠαπαδόπουλος, Κωνσταντίνοςel
dc.contributor.authorPapadopoulos, Konstantinosen
dc.descriptionΔιπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2015.el
dc.description.abstractThe aim of this study is twofold. First, we investigate the predictive role of some economic and financial variables for the U.S. economic activity at short-term forecast horizons. We do this by generating recursively out-of-sample forecasts in the context of simple autoregressive models. Second, the main goal is to compare two forecasting methods, namely the iterated and the direct approach, regarding their forecasting ability for the U.S. GDP growth rate. We initially review the voluminous literature on this topic. We then set the theoretical framework for our empirical analysis. Afterwards, we undertake an empirical analysis using quarterly data for a span of up to 41 years (1973-2013). Empirical results indicate that none of the candidate variables is systematically an efficient predictor of the U.S output growth. Finally, we find that direct forecasts are superior to iterated forecasts at all forecast horizons.en
dc.format.extent720928 bytes-
dc.publisherΠανεπιστήμιο Μακεδονίαςel
dc.subjectDirect iterated forecastsen
dc.titleDirect vs. iterated forecasts for the U.S. GDP growth rate.en
dc.typeElectronic Thesis or Dissertationen
dc.contributor.departmentΔιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στην Οικονομική Επιστήμηel
Appears in Collections:ΔΠΜΣ Οικονομική Επιστήμη (M)

Files in This Item:
File Description SizeFormat 
PapadopoulosKonstantinosMsc2015.pdf669.99 kBAdobe PDFView/Open

Items in Psepheda are protected by copyright, with all rights reserved, unless otherwise indicated.