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Abstract 

The purpose of this research was to find the best fit model between 

GARCH, GJR , TGARCH , EGARCH models for the log-closing prices 

Monero(XMR) from 09/11/2017 – 31/08/2023. We estimated all the 

models mention above, in the Normal, students t, GED, skewed t and 

skewed GED distributions and using the AIC information criterion we 

tried to select the best model. Then we repeated the same process after 

we split the sample into two sub-samples and the date of the split 

(12/03/2020) was provided by the Bai-Perron Structural Break test. 

 

1.Introduction 

 

In econometrics one of the most used model of the Ordinary Least 

Squares. The model thought cannot actually deal with the matters that 

we can observe in the real-world data. One of the main defaults is that it 

assumes that the expected value of all error terms, when squared, is the 

same at any given point. This assumption is called homoskedasticity but 

what happens when this condition is not met? How can an 

econometrician overcome this problem? While conventional time series 

and econometric models operate under an assumption of constant 

variance, the ARCH (Autoregressive Conditional Heteroskedastic) process 

introduced in Engle (1982) allows the conditional variance to change over 

time as a function bf past errors leaving the unconditional variance 

constant. In the real-world data more times than often the variances of 

the error terms are not equal, when this condition is met the we have to 

deal with the problem of heteroscedasticity. An answer to the question 

above was provided by Eangle (1982) with the ARCH ( Autoregressive 

Conditional Heteroscedasticity) and later generalized by Bolleslev (1986) 

who introduced the GARCH model ( Generalised Autoregressive 

conditional heteroscedasticity). The main point of these models is that the 

regression coefficients for an ordinary least squares regression are still 

unbiased but the variance gets to be modeled. In this way both the 

deficiencies of the least squares are corrected and we can also have a 

prediction of each error term. In the modern era of internet things have 

gone beyond the classical stocks and bonds. Nowadays the financial 



products are several and sometimes very complicated both in 

understanding and in modelling them.  

The introduction of Bitcoin in 2009 by Nakamoto revolutionized the 

financial exchanges. Bitcoin is an open source software which allows 

people to conduct economic transaction without an intermediate 

institution. Prior to Bitcoin there were others digital cash technologies 

although proven to be insufficient or detectable or even susceptible to 

software attacks. The first bitcoin transaction was concluded in 12 January 

2009 after that the rest is history. Unlike fiat currency, Bitcoin is created, 

distributed, traded, and stored using a decentralized ledger system 

known as a blockchain. Bitcoin and its ledger are secured by proof-of-work 

(PoW) consensus, which also secures the system and verifies transactions. 

At the moment bitcoin is the largest cryptocurrency in circulation with 

over 600 billion in market cap and a price of over 30.000 $ per bitcoin with 

all time high $67,566.83 per unit. 

In this paper we focus on another cryptocurrency called Monero(XMR). 

Monero is also a cryptocurrency which uses blockchain technology with 

privacy-enhancing properties in order to achieve anonymity and 

fungibility. The transaction is a Peer – to- Peer process and Observers 

cannot decipher addresses trading Monero, transaction amounts, address 

balances, or transaction histories. Like the Bitcoin Monero is an open 

source software based on the CryptoNote technology. The Monero 

protocol includes various methods to obfuscate transaction details, 

though users can optionally share view keys for third-party 

auditing. Transactions are validated through a miner network running 

RandomX, a prof of work (PoW) algorithm. The algorithm issues new coins 

to miners and was designed to be resistant to Application-specific 

integrated circuit.  (ASIC) mining. An Interesting fact is that Monero 

currently has the Third largest community of developers after Bitcoin and 

Ethereum. 

Although the cryptocurrencies are a form of digital asset they experience 

the same or better say, some of the same properties of the traditional 

financial assets. That menas that in the ways of financial analysis someone 

could say that they have similarities such as volatility clustering or bubbles 

or breaks or phenomena of extreme leverage etc. so an analyst can use 



the same tools to analyze them. Under the term of risk management and 

volatility analysis and forecasting there has been a very big discussion and 

literature of researchers trying to model and forecast these parameters 

using a variety of tools such as MS-GARCH models (ardia et all 2019) 

AR-CGARCH (katsiampa 2017), other asummetrical GARCH models such 

as Egarch, regime switching type, APARCH FIGRCH, IGARCH, TARCH and 

many more (Dyhberg 2016,  Caporale 2019, Panagiotidis 2018,2022, and 

many others). Results that can be drawn from the existing literature that 

we encompassed is that there is not one specific model that is the best to 

analyze the volatility, rather it depends on the kind of the dataset, the 

size, the frequency, the economic shocks and the kind of specification one 

wants to include in his research. 

In this paper our main focus will be to find a model that fits good to our 

dataset. We will estimate a GARCH , a GJR GARCH, a TARCH and EGRCH 

model for our dataset and try to determine which is better based on the 

provided information criteria. The analysis will be done for every 

distribution that is available on the econometric program we will use, 

GRETL. Then we will check for any possible structural breaks if there are 

any we are going to split the sample and repeat the same analysis for each 

given sub-sample. After that we will try to determine which of the 2 types 

analysis gives better results and try to provide the News Impact Curve for 

the best selected models. 

From this point forward section 2 is the literature review, section 3 

presents the data and methodology of our research, the results are 

presented and discussed in section 4 and section 5 concludes. 

 

 

 

2.Literature review  

 

(Caporale & Zekokh, 2019) fitted over 1000 GARCH models for four 

cruptocurrencies ( BTC, ETH, RIPPLE,) in order to estimate the one step 



ahead Value at Risk and the Expected Shortfall using the method of rolling 

stats. The results of their work is that the classical Garch models may lead 

to not good predictions in reguadrs of the VAR and ES and tha of course 

is not a good sign for the risk management of the volatility, instead they 

suggest models that allow the assumetries and the switching of regimes. 

(Ardia, Bluteau, Boudt, & Catania, Forecasting risk with Markov-switching 

GARCH models: A large-scale performance study, 2018) in their empirical 

analysis compare the standard one regime GARCH model to the MS-

GARCH models to see which one responds better in aspects of risk 

management. They used the daily, weekly, and ten-day equity log-returns 
in order to prove that the MS-GARCH models fit better and forecast better 

the Value at Risk while taking into account the left fat tales. This research 

was made with stock data and suggest the use of MS-GARCH models but 

state that the traditional ones have a good forecasting ability if the 

parameter <<uncertainty>> is included. 

(Ardia, Bluteau, & Ruede, Regime changes in Bitcoin Garch volatility 

Dynamics, 2019) used an MS_GARCH modes (MARKOV-SWITCHING) to 

test if the with this regime change the volatility an the Value at risk can be 

better forecasted than the tradition GARCH models. The research was 

done using 2 regimes and the daily log-returns of Bitcoin and proved that 

the models that use this technique are better at forecastin and modellin 

volatility and VaR.  They found that the only in the normal distribution a 3 

regime model overcomes the other that are mentioned before. 

 

In (Katsiampa , 2017) study we find that she used many GARCH-type 

models to measure the conditional heteroscedasticity of Bitcoin. The 

estimated results suggested that the best fit model for the data was an 

AR-CGARCH model and states that it is very important to include both a 

short term and a long-term component for the conditional variance. 

 

(Dyhberg, 2016) classified the Bitcoin as an asset somewhere between 

gold and American dollar he researcheded the vollatitliy of bitcoin using a 

garch model and an asummetrical garch model (egarch) and found that 



there are summilarities in to gold an the American dollar an said that 

bitcoin can be used for hedging for risk averse investors. 

(Trucios & Taylor, 2021)used a thre stage analysis for the Value at Risk and 

Expected shortfall estimation. tin the first stage they find the best model 

to estimetate the Value at Risk and evalueate their out of sample 

performance secondary they extend the use of these models to estimate 

the  Expected shortfall and finally they evaluate the use of forecast 

combination strategies as a way to deal with misspecification. The data 

that they used is the daily closing prices of the four major 

cryptocurrencies Bitcoin, Ethereum, ,Litecoin and Ripple. 

(Mensi, Al-Yahyaee, & Kang, 2019) used the daily spot prices of Ethereum 

(ETH) and Bitcoin (BTC) for over 7 years to determine wether the 

structural breaks impact on the long memory of the volatility of these 

cryptos. They used 4 different Garch models, classic Garch , Fractionally 

Integrated Garch (FIGARCH) , the Fractionally Integrated Assymetric 

Power ARCH (FIAPARCH) and the Hyperbolic GARCH (HYGARCH) and 

found that the dual long memory property of Bitcoin and Ethereum 

contrast the market efficiency and random walk hypothesis,meaning that 

after the structural breaks there is long memory in both the mean and the 

variance. 

(Panagiotidis, Stengos, & Papapanagiotou, On the volatility of 

cryptocurrencies, 2022) take 292 cryptocurrencies and run 27 GARCH-

type models in each of them in an attempt to evaluate in a large-scale the 

performance of the traditional MS-GARCH modles in concerns of the 

volatility modelling. They use a 3-regime analysis and test for goodness of 

fit forecasting capabilities and Value at Risk. They perform an in sample 

and out of sample analysis and come to the conclusion that the biggest 

percentage of the cryptocurrencies (52%) the time varriyng models out 

perform the traditional ones and are a better modelling selection for the 

volatility. 

(Panagiotidis, Stengos, & Papapanagiotou, A Bayesian Approach for the 

Determinants of Bitcoin Returns, 2023) try to determine the factors that 

drive the price of the Bitcoin. More specific 32 factors that affect Bitcoin 

are taken into account and using a Bayesian LASSO with stochastic 

volatility approach examine the potential determinats of Bitcoin returns. 

This model takes into account the time-varying volatility of Bitcoin  and 



also shrinks the coefficients of weakly related variables faster than other 

methods(ML,OLS). The result of this research is that the main 

determinamts of bitcoin returns is the attractiveness and the difficulty of 

mining and that Bitcoin is related to stock market returns and the 

exchange rates. 

In another research (Cicbaric, 2020) tests which type of ARCH/GARCH 

models better fit the cryptos Ethereum, Neo, Ripple, Litecoin, Dash, Zcash, 

Dogecoin. the results claims that the EGARCH model is the best fit for 

Ethereum, Zcash, Neo, PARCH is the best for Ripple while fore the others 

the results are inconclusive and depend on the selected distribution and 

information criteria. 

Our research will be focused on the Monero (XMR) cryptocurrency. 

Monero was first introduced by Ricardo Spagni in 2014 and is based on 

the idea of the Cryptonote tecnology which is a concept first described in 

2013. Monero promotes privacy, decentralization and scalability. For our 

analysis we used the daily closing prices of Monero (XMR) from 

09/11/2017 up to 31/08/2023. We tried to perform a GARCH analysis on 

the sample of 2127 observations and determine using Information criteria 

which Garch fits better for the modelling of volatility and one-step ahead 

forecast. 

 

 

 

3.DATA AND METHOGOLOGY: 

In this point we are going to review the theory of the models used for 

our analysis. 
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GJR-GARCH: 
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EGARCH: 
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TGARCH:  
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Equations provided by (Hansen & Lunde, 2005) 

Analysis: 

 

 

We used the daily closing prices of Monero (XMR) from 09/11/2017-

31/08/2023 which we downloaded from YahooFinance. As a first step we 

take a look at the time series plot and the descriptive statistics (close), 

next we are going to create the logarithmic first differences of our times 

series (Id_close) in order to deal with trend. This is the variable that we 

are going to use for the rest of our analysis. After we check again the 

descriptive stats and  time series and correlogram we are going to test if 

our series is appropriate for GARCH. In order to do so we are going to test 

first the stationarity of our series with an ADF test (Augmented Dickey-

Fuller). If our series is stationary (I(0)) then we will test for volatility 

clustering. This can be examined from the autocorrelation-partial-

autocorelation which we get from the correlogram. Next we are going to 

run an OLS one our series and determine if there are ARCH effects on the 

series.  

If all the previous conditions are met then we can move on to a GARCH 

model.  

As we will see later on the results all the conditions are met, the series is 

stationary we have volatility clustering and ARCH effects so we move one 

to a GARCH. The model we are going to be estimating is going to be a 

GARCH(1,1). This decision was made firstly by looking at the correlogram 

and was later confirmed after we run higher orders of GARCH models and 

came to the find that the coefficients for the ARCH and GARCH terms were 

not statistically significant at 5% level of confidence. For the evaluation of 

the GARCH(1,1) we are going to conclude in our model some dummy 

variables in order to compensate for the most extreme spikes (outliers) in 



our sample. So the dummy variables I1,I2,I3,I4 will be inserted and each 

of them is going to take an value of 1 for the two most extreme positive 

observations( I3,I4) and zero for all the other observations , in the same 

way for the most negative observations (I1,I2).  

The results of the tests portray that when using a single regime sample 

the GARCH(1,1) is produces a better fit model than the other 

asymmetrical, GJR, TARCH, EGARCH, models in every distribution that we 

tested. We test our data and perform our analysis in all the possible 

distribution because we want to take a better grasp of the probability of 

extreme outliers occurring and if so which one can take a better measure 

of them. As the results came back we noticed that most of the 

distributions can incorporate the extreme outliers except the student’s T 

distribution and the skewed version of it, in which significantly larger 

coefficients were produced. 

In the second phase of our analysis we are going to use the same dataset 

but this time with a different approach. We perform a bai-perron test for 

structural breaks. The test reveals three dates of possible structural 

breaks. The date chosen was the 12/03/2020 and is the date of the biggest 

volatility clustering and extreme outlier of the three dates. Next we are 

going to split the sample into two sub-samples the first one starts at 

09/11/2017 and finishes at 12/03/2020 and the second starts at 

13/12/2020 and ends at 31/08/2023. Now we are going to perform the 

same analysis as we did when we treated the sample as a whole. 

 

At this point we present all the descriptive stats, diagrams and test we 

performed in order to verify that the series was appropriate for GARCH 

analysis. 

 

 

 

 

 

 



1.time series plot of close 

 

2.time series plot of ld_close 

 



 

3.time series plot of sub-sample 1 

 

4.time series plot of sub-sample 2 

 



 

 

Corellogram for close and ld_close  

5. correlogram of ld_close 

 



6.correlogram of close 

 

 

7.correlogram of sub-sample 1 

 



8.correlogram of sub-sample 

 

 



9.ld_close frequency Distribution 

 

10.sub-sample 1 frequency Distribution 

 

 



11.sub-sample 2 frequency Distribution 

 

 

 

 

4.Results 

Descriptive stats: 

At this point we present the descriptive statistics for the series of closing 

price of Monero (close), the log differences of this price which we created 

afterwards (ld_close), the log differences of the same price after we spit 

the sample into to two sub-samples, sub-sample 1 represents the log 

differences of the price from 11/09/2017-12/03/2020 and sub-sample 2 

the log differences of the price from 13/03/2020-31/08/2023 

 

Table 1. Descriptive stats 

  close ld_close sub-sample 1 sub-sample 2 

  Mean                           150.10 7.9521e-005  -0.0015189 0.0011569 



  Median                     143.84  0.0019990   -0.0012807  0.0031854 

  Minimum                       33,01 -0.53418   -0.49421 -0.53418 

  Maximum                       
   
483.58  0.34493  0.24824    0.34493 

  Standard deviation            82,334  0.052284   0.058601   0.047549 

  C.V.                    
  
0.54852 657.49 38,581 41,099 

  Skewness                  
 
0.99726   -0.95662 -0.82962   -1.0486 

  Ex. kurtosis               
  
0.96808 11,859 7,367 17,221 

  5% percentile             49,938  -0.083870   -0.10271   -0.072587 

  95% percentile              305.21   0.074749  0.091937  0.065933 

  Interquartile range        111.86   0.048139  0.053347   0.043616 

 

 

 

 

In this point we present the results of the analysis described above. In the 

first stage we present the GARCH tables of every distribution as and the 

News Impact Curve of the selected models of each distribution. 

  



 

 

Full range analusis 

 

NORMAL DISTRIBUTION 

Table 2. Normal-Distribution 

coefficients GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 2.30402e-05 

(0.1370) 

2.05742e-05 

(0.1501) 

4.45975e-05 

(0.0534)* 

-0.290929 

(0.0015)*** 

Alpha 0.0755498 

(0.0014)*** 

0.0718638 

(0.0031)*** 

0.0865865 

(0.0004)*** 

0.201464 

(5.76e-05)*** 

Beta 0.917773 

(2.26e-
281)*** 

0.922665 

(1.10e-289)*** 

0.916597 

(2.25e-
277)*** 

0.976046 

(0.0000)*** 

Gamma  - -0.126844 

(0.0708)* 

-0.0626801 

(0.5482) 

-0.0217485 

(0.4235) 

AIC -7180.33008 -7202.86435 -7207.17038 -7031.09766 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0.0755498𝜀𝑡−1

2 +0.917773𝜎𝑡−1
2  

We chose the GARCH (1,1) model because it’s the only model in this table 

that meets the theoretical condition. In the GARCH (1,1) we can see that 

a+b<1 and are both statistically significant in the 5% confidence band. The 

GJR and TGARCH (EGARCH) models fail to produce a statistical significant 

(in 5% confidence band) and positive (negative) gamma term as the 

theory suggests so the are excluded.  



t-DISTRIBUTION 

Table 3. t-Distriburion 

coefficients GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 9.10613e-06 

(0.2719) 

8.73541e-06 

(0.2321) 

2.21939e-05 

(0.0648)* 

-0.250676 

(0.0013)*** 

Alpha 0.103130 

(2.21e-05)*** 

0.106324 

(3.68e-06)*** 

0.115833 

(4.12e-08)*** 

0.230576 

(3.66e-08)*** 

Beta 0.900081 

(0.0000)*** 

0.908492 

(0.0000)*** 

0.910284 

(0.0000)*** 

0.985081 

(0.0000)*** 

Gamma  - -0.185062 

(0.0002)*** 

-0.162359 

(0.0264)** 

0.0362042 

(0.2307) 

AIC -7446.86505 -7458.14009 -7468.72350 -7421.80518 

Note. P-values are presented in the parenthesis  

 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0.103130 𝜀𝑡−1

2 +0.900081𝜎𝑡−1
2  

 

We chose the GARCH (1,1) model because it’s the only model in this table 

that meets the theoretical condition. In the GARCH (1,1) we can see that 

a+b=1 and are both statistically significant in the 5% confidence band. The 

GJR and the TGARCH models although they have a statistical a,b,g 

coefficients the gamma term is negative which would mean that the 

higher the risk the lower the return which violates the theory that 

suggests that gamma should be positive, so these models are excluded. 

The EGARCH model is also excluded because the gamma term is not 

statistically significant. 

 



GED-DISTRIBUTION 

Table 4. GED-distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 1.36015e-05 

(0.1595) 

1.29838e-05 

(0.1405) 

2.96240e-05 

(0.0424)** 

-0.254048 

(0.003)*** 

Alpha 0.0836388 

(9.76e-05)*** 

0.0852155 

(4.14e-05)*** 

0.0990137 

(3.45e-06)*** 

0.203176 

(3.69e-07)*** 

Beta 0.916080 

(0.0000)*** 

0.915925 

(0.0000)*** 

0.915005 

(0.0000)*** 

0.982683 

(0.0000)*** 

Gamma  - -0.169506 

(0.0014)*** 

-0.127951 

(0.1045) 

0.0162484 

(0.2812) 

AIC -7421.26981 -7429.27447 -7436.58102 -7367.11240 

Note. P-values are presented in the parenthesis  
 

 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0.0836388 𝜀𝑡−1

2 +0.916080𝜎𝑡−1
2  

 

We chose the GARCH (1,1) model because it’s the only model in this table 

that meets the theoretical condition. In the GARCH (1,1) we can see that 

a+b<1 and are both statistically significant in the 5% confidence band. The 

GJR and  (EGARCH) models fail to produce a statistical significant (in 5% 

confidence band) and positive (negative) gamma term as the theory 

suggests so they are excluded. The TGARCH model has statistical 

significant gamma term but it is not positive which is inconsistent with the 

theory so it is also excluded. 

 



Skewed t-DISTRIBUTION 

Table 5. Skewed t-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 8.33632e-06 

(0.3129) 

7.66496e-06 

(0.2852) 

2.14763e-05 

(0.0759)* 

-0.254875 

(3.84e-05)*** 

Alpha 0.103804 

(4.47e-05)*** 

0.106492 

(5.86e-06)*** 

0.118527 

(8.46e-08)*** 

0.235327 

(5.56e-09)*** 

Beta 0.910047 

(0.0000)*** 

0.907739 

(0.0000)*** 

0.908138 

(0.0000)*** 

0.985209 

(0.0000)*** 

Gamma - -0.182926 

(0.0001)* 

-0.158329 

(0.0273)** 

0.0360031 

(0.0239)** 

AIC -7452.48539 -7463.83279 -7474.93136 -7428.64623 

Note. P-values are presented in the parenthesis  
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0.103804𝜀𝑡−1

2 +0.910047𝜎𝑡−1
2  

 

 

 The GJR , the TGARCH and (EGARCH) models although they have a 

statistical a,b,g coefficients the gamma term is negative (positive) which 

would mean that the higher the risk the lower the return which violates 

the theory that suggests that gamma should be positive (negative), so 

these models are excluded. The GARCH(1,1) model has a+b>1 which 

suggests that the model has extreme outliers. The a,b coefficients are 

statistically significant and this is the model chosen. 

  



 

 

Skewed GED-DISTRIBUTION 

Table 6. Skewed GED-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 1.24035e-05 

(0.0472)** 

1.16756e-05 

(0.0381)** 

2.81481e-05 

(8.30e-
010)*** 

-0.251134 

(1.34e-010)*** 

Alpha 0.0826707 

(1.03e-041)*** 

0.0838383 

(1.37e-035)*** 

0.0996497 

(1.48e-
042)*** 

0.202881 

(1.32e-019)*** 

Beta 0.917498 

(0.0000)*** 

0.916597 

(0.0000)*** 

0.914629 

(0.0000)*** 

0.983325 

(0.0000)*** 

Gamma - -0.168260 

(3.97e-010)*** 

-0.131237 

(0.0444)** 

0.0168428 

(0.2423) 

AIC -7427.72285 -7435.86554 -7444.16861 -7376.33359 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 1.24035𝑒 − 05 + 0.0826707𝜀𝑡−1

2 +0.917498𝜎𝑡−1
2  

 

 

In this distribution we choose the GARCH(1,1) model, a+b<1 and both 

statistically significant. GJR and TGARCH once again have the same 

problem with the non positive gamma coefficient and the EGARCH model 

doesn’t have a statistically significant gamma term so they are excluded. 

 



➢ The results of these GARCH tables for the 5 distributions tested are 

that the best fit according to this dataset and research is the 

GARCH(1,1) model. As we can see above the main problem with the 

othe models are that the TARCH and GJR model although they 

produce some statistically significant leverage coefficients in some 

distributions those coefficients are not positive as the theory a 

priori demands. The negative “gamma” coefficients would suggest 

that the higher the risk the lower the return which is not compatible 

we the theory. As for the EGARCH model no stastistically significant 

and negative leverage terms (gamma) were conducted from these 

tests. so the results conclude that the best – fit model is the GARCH 

(1,1) model because all the alpha and betas are positive and the 

sum a+b<1 in most distribution an equal to 1 in the t-ditribution 

which makes this an Integrated Garch model and is probably caused 

by extreme volatility clustering and outliers. 

 

 

 

 

 

 

 



12.News Impact Curve normal distribution GARCH(1,1) 

 

13.News Impact Curve t-distribution GARCH(1,1) 

 



14.News Impact Curve GED-distribution GARCH(1,1) 

 

15.News Impact Curve skewed t-distribution GARCH(1,1) 

 



16.News Impact Curve skewed ged-distribution GARCH(1,1) 

 

 

 

 

 

Structural break analysis: 

 

We performed a bai-perron test for structural breaks and the results 

suggested that there are 3 possible breaks in our series. We are going to 

split our sample at the date of the biggest outlier. So the sub-sample 1 is 

from 11/09/2017-12/03/2020 and the second from 13/03/2020- 

31/08/2023. The date of the break is 12/03/202. In each sub-sample we 

are going to deploy the use of two dummy variables in order to 

compensate for any extreme outliers. So in sub sample I1 is the dummy 

which takes 1 at the minimum lowest observation (12/03/2020) and I2 

takes 1 for the maximum observation (15/12/2017). The results from the 

GARCH tables for each distribution are demonstrated below.  



Sub-sample 1: 

Date: 11/09/2017-12/03/2020 

 

NORMAL DISTRIBUTION 

Table 7. Normal Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 7.57722e-05 

(0.4588) 

8.39958e-05 

(0.1900) 

0.000118650 

(0.1507) 

-0.329257 

(0.0289)** 

Alpha 0.0617474 

(0.0510)* 

0.0658477 

(0.0613)* 

0.0785107 

(0.0297)** 

 

0.168387 

(0.0095)*** 

Beta 0.912438 

(1.10e-092)*** 

0.905463 

(6.58e-070)*** 

0.902356 

(5.26e-072)*** 

0.963711 

(0.0000)*** 

Gamma - -0.112929 

(0.3019) 

-0.126628 

(0.4500) 

-0.0294060 

(0.5005) 

AIC -2603.73128 -2603.64843 -2600.46662 -2521.76954 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,0617474𝜀𝑡−1

2 +0.912438𝜎𝑡−1
2  

The selected model here is GARCH(1,1) with a+b<1 and are statistically 

significant in the 10% confidence band (for less the alpha is statistically 

not significant). The GJR, TGARCH, EGARCH do not have a statistically 

significant leverage term (gamma) so they are excluded. 

  



 

T-DISTRIBUTION 

Table 8. T-distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 5.44344e-05 

(0.2476) 

5.25513e-05 

(0.2600) 

7.64567e-05 

(0.1733) 

-0.285242 

(0.0342)** 

Alpha 0.109574 

(0.0231)** 

0.112929 

(0.0175)** 

0.131253 

(0.0035)*** 

0.245632 

(0.0008)*** 

Beta 0.891850 

(4.93e-082)*** 

0.890231 

(2.81e-086)*** 

0.886306 
 (7.44e-093)*** 

0.979148 

(0.000)*** 

Gamma - -0.146499 

(0.0755)* 

-0.154464 

(0.2056) 

0.0321613 

(0.2573) 

AIC -2684.27218 -2685.13162 -2689.11159 -2673.78249 

Note. P-values are presented in the parenthesis 
 

 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,109674𝜀𝑡−1

2 +0.891850𝜎𝑡−1
2  

 

 

In this distribution we choose the GARCH(1,1) with a+b<1 and are 

statistically significant in the 5% confidence band. The GJR, TGARCH, 

EGARCH do not have a statistically significant leverage term (gamma) so 

they are excluded. 

  



 

 

 

GED-DISTRIBURION 

 

Table 9. Ged-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 6.17640e-05 

(0.1749) 

6.54198e-05 

(0.1855) 

 9.46807e-05 

 (0.1318) 

-0.285242 

 (0.0342)** 

Alpha 0.0802347 

(0.0222)** 

0.0842506 

(0.0212)** 

0.100883 

 (0.0081)*** 

0.245632 

 (0.0008)*** 

Beta 0.901617 

(2.96e-096)*** 

0.896460 

(2.77e-085)*** 

0.894631 

(8.92e-089)*** 

0.979148 

 (0.0000)*** 

Gamma  - -0.0456473 

(0.1253) 

-0.142906  

(0.2783) 

0.0321613 

 (0.2573) 

AIC -2683.03389 -2683.08472 -2683.80005 -2673.78249 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,109674𝜀𝑡−1

2 +0.891850𝜎𝑡−1
2  

 

In the GED distribution we choose the GARCH(1,1) with a+b<1 and are 

statistically significant in the 5% confidence band. The GJR, TGARCH, 

EGARCH do not have a statistically significant leverage term (gamma) so 

they are excluded. 

  



 

 

 

SKEWED T-DISTRIBUTION 

 

Table 10. Skewed t-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 5.61171e-05 

(0.2425) 

5.34765e-05 

(0.2553) 

7.66733e-05 

(0.1740) 

-0.285548 

(0.0333)** 

Alpha 0.110420 

(0.0237)** 

0.112721 

(0.0176)** 

0.130917 

(0.0037)*** 

0.244354 

(0.0008)*** 

Beta 0.890409 

(2.61e-079)*** 

0.889305 

(1.21e-084)*** 

0.886168 

(9.87e-092)*** 

0.979082 

(0.0000)*** 

Gamma - -0.142373 

(0.0884)* 

-0.151373 

(0.2207) 

0.0308951 

(0.2769) 

AIC -2682.85308 -2683.54697 -2687.25818 -2672.03298 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,110420𝜀𝑡−1

2 +0.890409𝜎𝑡−1
2  

We chose the GARCH (1,1) model because it’s the only model in this table 

that meets the theoretical condition. In the GARCH (1,1) we can see that 

a+b=1 and are both statistically significant in the 5% confidence band the 

fact that a+b=1 is because of the extreme outliers and the ability of the 

distribution to encompass them. The GJR, TGARCH, EGARCH do not have 

a statistically significant leverage term (gamma) so they are excluded. 

  



 

 

SKEWED GED-DITRIBUTION 

 

Table 11. Skewed GED-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 6.20529e-05 

(0.0270)** 

6.54808e-05 

(0.0517)* 

9.50115e-05 

(0.0657)* 

-0.302520 

(0.0001)*** 

Alpha 0.0802102 

(3.62e-05)*** 

0.0840613 

(0.0003)*** 

0.101265 

(0.0023)*** 

0.197236 

(6.27e-
07)*** 

Beta 0.901404 

(0.0000)*** 

0.896407 

(8.09e-226)*** 

0.894333 

(2.55e-127)*** 

0.972313 

(0.0000)*** 

Gamma - -0.134705 

(0.0584)* 

-0.144855 

(0.2320) 

0.00669235 

(0.7481) 

AIC -2681.05762 -2681.11453 -2681.80905 -2654.39008 

Note. P-values are presented in the parenthesis 
 

 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 =6.20529e-05 + 0,0802102𝜀𝑡−1

2 +0.901404𝜎𝑡−1
2  

 

In this distribution we choose the GARCH(1,1) with a+b<1 and are 

statistically significant in the 5% confidence band. The GJR, TGARCH, 

EGARCH do not have a statistically significant leverage term (gamma) so 

they are excluded. 



➢ In the first sub-sample we examined we found the following results. 

First the GARCH(1,1) is still the best fit model for our data. Second 

the asymmetrical models still cannot produce a significant leverage 

coefficient. Third the smaller sample with the dummies seems to 

compensate better for the extreme outliers since all the 

GARCH(1,1) coefficients are smaller and last we still observe that 

the problem with the a+b=1 coefficients is still present only in the 

T and skewed T distributions. 

 

 

 

Next we present all the News Impact Curves of the selected models. 

 

 

 

 

 

 

 



17.News Impact Curve normal distribution GARCH (1,1) 

 

18.News Impact Curve t-distribution GARCH(1,1) 

 

 



19.News Impact Curve GED-distribution GARCH(1,1) 

 

20.News Impact Curve skewed t-distribution GARCH(1,1) 

 



21.News Impact Curve skewed GED-distribution GARCH(1,1) 

 

 

 

 

 

 

In the second sample following the same logic we use the dummies I3=1 

at minimum observation (19/05/2021) and I4=1 at maximum 

(20/05/2021) 

  



 

Sub-sample 2 

Date : 13/03/2020-31/08/2023 

 

NORMAL-DISTRIBUTION 

Table 12. Normal Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 2.10158e-05 

(0.1245) 

1.95692e-05 

(0.1222) 

3.46783e-05 

(0.1057) 

-0.334142 

(0.0081)*** 

Alpha 0.105118 

(0.0008)*** 

  0.100263 

(0.0008)*** 

0.105959 

(0.0007)*** 

  0.238646 

(9.54e-05)*** 

Beta 0.892348 

(6.48e-214)*** 

0.897025 

(1.79e-
243)*** 

0.902532 

(1.66e-187)***  

0.974879 

(0.0000)*** 

Gamma  - -0.138238 

(0.1112) 

-0.0250561 

(0.8640) 

-0.0284478 

(0.4791)   

AIC 0.892348 -4559.91749 -4570.82600 -4500.98480 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,105118𝜀𝑡−1

2 +0.892348𝜎𝑡−1
2  

 

First we test the normal distribution and choose the GARCH(1,1) with 

a+b<1 and are statistically significant in the 5% confidence band. The GJR, 

TGARCH, EGARCH do not have a statistically significant leverage term 

(gamma) so they are excluded. 



T-DISTRIBUTION 

 

Table 13. t-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 1.15803e-05 

(0.2246) 

1.08848e-05 

(0.1900) 

2.20688e-05 

(0.1027) 

-0.322010 

(0.0007)*** 

Alpha 0.129640 

(0.0001)*** 

0.126664 

(2.85e-05)*** 

0.123220 

(1.23e-05)*** 

0.256155 

(1.52e-06)*** 

Beta 0.883026 

(3.02e-243)*** 

0.886323 

(0.0000)*** 

0.899395 

(6.00e-299)*** 

0.978625 

(0.0000)*** 

Gamma - -0.196473 

(0.0047)*** 

-0.198301 

(0.0902)* 

0.0452233 

(0.0467)** 

AIC -4694.47039 -4700.47204 -4708.87091 -4689.60605 

Note. P-values are presented in the parenthesis 

 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,129640𝜀𝑡−1

2 +0.883026𝜎𝑡−1
2  

Again, in the T-distribution we have the same problem of a+b=1 and 

statistically significant in the 5% confidence interval because of the 

extreme outliers. The GJR model has a statistically significant but negative 

gamma coefficient so it is excluded for the reasons we have explained 

before. The TGARCH model does not have a statistically significant gamma 

coefficient in the 5% confidence interval and therefore is excluded. And 

last but not least the EGARCH model meets the statistical significant 

condition but not the negativity of the coefficient so it is also excluded. 

  



 

 

GED-DISTRIBUTION 

 

Table 14. GED-Distribition 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 1.61483e-05 

(0.1364) 

1.53938e-05 

(0.1162) 

2.79764e-05 

(0.0824)* 

-0.321427 

(0.0023)*** 

Alpha 0.117046 

(0.0001)*** 

0.114034 

(4.42e-
05)*** 

0.114149 

(4.50e-05)*** 

0.242271 

(4.42e-06)*** 

Beta 0.884868 

(6.90e-240)*** 

0.888715 

(5.80e-
303)*** 

0.900609 

(3.56e-258)*** 

0.977764 

(0.0000)*** 

Gamma - -0.187236 

(0.0106)** 

-0.152194 

(0.2250) 

0.0218453 

(0.3702) 

AIC -4670.80499 -4675.27301 -4682.23600 -4651.65885 

Note. P-values are presented in the parenthesis 
The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,117046𝜀𝑡−1

2 +0.884868𝜎𝑡−1
2  

 

In the GED distribution we choose the GARCH(1,1) with a+b<1 and are 

statistically significant in the 5% confidence band. The GJR has a 

significant but non negative coefficient and is excluded and the TGARCH, 

EGARCH do not have a statistically significant leverage term (gamma) so 

they are excluded. 

  



 

SKEWED T-DISTRIBUTION 

 

Table 15. Skewed t-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 1.00528e-05 

(0.2896) 

8.65205e-06 

(0.2803) 

2.10470e-05 

(0.1400) 

-0.335112 

(0.0008)*** 

Alpha 0.135651 

(0.0005)*** 

0.129691 

(0.0001)*** 

0.133026 

(3.16e-05)*** 

0.274358 

(1.42e-06)*** 

Beta 0.882601 

(4.50e-199)*** 

0.886057 

(8.50e-280)*** 

0.892976 

(2.47e-242)*** 

 

0.978637 

(0.0000)*** 

Gamma - -0.179834 

(0.0086)*** 

-0.160194 

(0.1585) 

0.0363171 

(0.1246) 

AIC -4707.47167 -4712.50031 -4723.75970 -4704.51725 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,135651𝜀𝑡−1

2 +0.882601𝜎𝑡−1
2  

In the skewed T-distribution we find the biggest sum of a+b we have 

encountered this far. Althouth they both are statistically significant at the 

5% confidence interval their sum is above 1 (a+b>1). The GJR model has 

all three coefficients a,b,g statistically significant but gamma is not 

negative so the model is excluded. The TGARCH model is excluded due to 

gamma being not significant and so is the EGARCH model. 

 



 

SKEWED GED-DISTRIBUTION 

Table 16. Skewed GED-Distribution 

 GARCH (1,1) GJR(1,1) TGARCH(1,1) EGARCH(1,1) 

Omega 1.32018e-05 

(0.1013) 

1.21256e-05 

(0.1090) 

2.47539e-05 

(0.0031)*** 

-0.325822 

(7.41e-
026)*** 

Alpha 0.121476 

(3.77e-029)*** 

0.115422 

(2.35e-034)*** 

0.123560 

(2.53e-010)*** 

0.256987 

(1.29e-
016)*** 

Beta 0.885464 

(0.0000)*** 

0.889633 

(0.0000)*** 

0.895445 

(0.0000)*** 

0.978814 

(0.0000)*** 

Gamma - -0.158333 

(8.80e-09)*** 

-0.0885117 

(0.3999) 

0.00963100 

(0.2716) 

AIC -4686.93373 -4689.75542 -4699.54740 -4672.35846 

Note. P-values are presented in the parenthesis 
 

The variance equation of the selected GARCH(1,1) model is : 

𝜎𝑡
2 = 0,121476𝜀𝑡−1

2 +0.885464𝜎𝑡−1
2  

 

The GARCH(1,1) here is once again the best choice. The a+b are sliglty 

above 1 and are statistically significant in the 5% confidence interval.The 

GJR model has all three coefficients a,b,g statistically significant but 

gamma is not negative so the model is excluded. The TGARCH model is 

excluded due to gamma being not significant and so is the EGARCH model. 

  



 

 

➢ In the second sub-sample the GARCH(1,1) prevails one more time. 

The coefficient components of the GARCH(1,1) are slightly 

amplified in comparison to the first sub-sample especially in the t-

distribution. The asymmetrical models fail to produce a good fit for 

this data set also. 

 

 

Next we present all the News Impact Curves of the selected models. 

 

22.News Impact Curve normal distribution GARCH(1,1) 

 



23.News Impact Curve t-distribution GARCH(1,1) 

 

 

24.News Impact Curve GED-distribution GARCH(1,1) 

 



25.News Impact Curve skewed t-distribution GARCH(1,1) 

 
26.News Impact Curve skewed GED-distribution GARCH(1,1) 

 

 



 

 

As we could see we also added the News Impact Curve for every GARCH 

model that was selected optimal for every distribution throughout the 

course of this research. The News Impact Curve is a helpful tool to 

visualize the response of the variance to the surprise in returns. 

 

 

➢ In this stage we can argue that from the empirical results we 

presented above we had some very good GARCH(1,1) models that 

met all the theoretical conditions and some less good models 

especially in the T, skewed T-distributions were we encountered 

the a+b=1 or a+b>1 problem which was due to extreme outliers and 

the ability of the distribution to encompass them. This result would 

mean the selected model is not a mean reverting process, in other 

words it is not stationary, and probably are measures to adjust this 

not stationarity problem would lead to a better model 

specification. 

  



5.Conclusions 

 

 

We performed 60 GARCH-type models for every distribution in 

order to find the best fit model for the dataset we analyzed. We 

performed a two style analysis, in the first stage we tested the 

entire range of our sample if its fit for GARCH analysis and then 

estimated the GARCH , GJR, TARCH and EGARCH models for the 

normal, student’s T , GED , skewed T and skewed GED distributions. 

Based on the information criterion AIC we tried to decide on which 

model is a best fit for our sample. In order to thought to have a 

better model specification we deployed four dummy variables (two 

for the most positive outliers and two for the most negative) I1, I2, 

I3, I4 . The results suggested that the asymmetrical models GJR, 

TARCH, EGARCH are not a good fit because the coefficients 

produced by the test didn’t met the conditions of either statistical 

importance or positivity (negativity) for the leverage coefficient in 

the GJR , TARCH (EGARCH) models. The selected model for the full 

range analysis was the GARCH(1,1) because it met these criteria 

and was only in the student’s T distribution that a+b=1 which was 

due to extreme outliers and the distributions ability to encompass 

those. 

The second stage of our analysis began with a bai perron test which 

indicated 3 possible date of structural breaks. The one chosen 

(12/03/2020) was the one of the three which had the most extreme 

outliers in the time series plot. After we split the sample into to two 

sub-samples we performed the same analysis as in the full range 

sample in order to verify if this split would make any difference in 

the results. We again used 4 dummy variables, two for each sub-

sample (one for the lowest and one for the highest observation in 

each sample) I1, I2, I3, I4. Once again the GARCH(1,1) was selected 

and in fact it had slighter better smaller coefficients for each term 

so the split gave a better fit to the data set while the other models 

had the same outcome not being able to meet the criteria that we 

established above. In each distribution we also provided the News 

Impact Curve of the model that was selected which is a very useful 



tool in order for someone to understand the impact that 

information(news) have on the expected returns. 

Overall all we would argue that the GARCH(1,1) model is a useful 

and powerful tool when it comes to modelling the variance. 

Although the market is constantly changing and new financial 

products emerge very often such us the cryptocurrencies we can 

still rely on the traditional models in order to analyze them. 
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