
 

Πρόγραμμα Μεταπτυχιακών Σπουδών 

στην Αναλυτική των Επιχειρήσεων και Επιστήμη των Δεδομένων 

Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων 

 

Διπλωματική Εργασία 

 

Traffic Forecasting 

του 

ΚΟΠΡΟΥΤΣΙΔΗ ΠΑΥΛΟΥ 

 

Υποβλήθηκε ως απαιτούμενο για την απόκτηση του μεταπτυχιακού διπλώματος 

στην Αναλυτική των Επιχειρήσεων και Επιστήμη των Δεδομένων 

 

 

 

 

 

Αύγουστος 2022 

 

 



[ii] 
 

Acknowledgements, 

I would like to express my deepest grattitude to Professor Konstantinos Tarabanis and 

Assistant Professor Evangelos Kalampokis for their exceptional mentorship and 

unwavering support throughout my thesis project. Their vast knowledge and expertise 

have been invaluable to me and have greatly contributed to the successful completion of 

my thesis. I am truly grateful for their guidance and assistance, which have been 

instrumental in helping me overcome various challenges. Their significant contributions 

to my work have been a source of inspiration and motivation to me. 

Furthermore, I would like to thank Mr Petros Brimos and  Ms Areti Karamanou for 

their assistance in various stages of my research. Their help and expertise have been 

extremely important in completing my thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[iii] 
 

 

 

 

Abbreviations 

ADS: Atmosphere Data Store 

AI: Artificial Intelligence 

ANN: Shallow Artificial Neural Network  

API: Application programming interface 

AR: auto regressive 

ARIMA: Autoregressive Integrated Moving Average 

CDS: Climate Data Store 

ITS: Intelligence transformation Systems 

KNN: K-Nearest Neighbours 

LIME: Local Interpretable Model-agnostic Explanations 

MAE: Mean Absolute Error 

MA: moving average 

MAPE: Mean Absolute Percentage Error 

ML: Machine Learning 

NETCDF: Network Common Data Form 

RMSE: Root Mean squared error 

SHAP: Shapley Additive Explanations 

SVM: Support Vector Machine 

XAI: Explainable Artificial Intelligence 

 



[iv] 
 

 

Abstract 

Traffic congestion is a growing problem in many urban areas across the world, and Greece 

is no exception. In fact, traffic congestion in Greece's largest cities, Athens and 

Thessaloniki, is a significant issue that affects millions of commuters every day. A 

combination of factors such as high population density, limited transportation 

infrastructure, and a significant number of vehicles on the road all contribute to traffic 

congestion in these areas. Therefore, accurate prediction of the number of cars on a road 

network is crucial for effective traffic management. In recent years, machine learning has 

emerged as a valuable tool for traffic forecasting, providing precise forecasts for traffic 

conditions on a given day. However, there is often a lack of trust in machine learning 

outcomes, which can limit their usefulness in real-world applications. This is where 

Explainable Artificial Intelligence (XAI) comes in. XAI techniques can be used to clarify 

the reasoning behind machine learning models, making their outcomes more 

understandable and trustworthy. In this paper, we aim to forecast and explain the number 

of cars on a specific road in Athens for the next two hours, using machine learning and 

XAI techniques. We present a case study using hourly observations of the number of cars 

and their average speed, sourced from open data platforms like http://data.gov.gr/ and 

weather data from Copernicus, the European Union's Earth observation program. The 

XGBoost algorithm is used to create the forecasting model, and the SHapley Additive 

exPlanations (SHAP) framework is used to explain it. Our model has an MAE value of 

325.12, indicating higher accuracy than the baseline model with an MAE of 542.4. The 

most significant factors affecting the number of cars is the previous two hours mean, the 

cos_seg_hour, the previous_two_hours_max, and the average speed. The SHAP values 

show that these variables have a significant impact on the number of cars on the road. 

The importance of traffic forecasting cannot be overstated, as it plays a critical role in 

various applications such as traffic management systems, intelligent transportation 

systems, and emergency response planning. Effective forecasting can help reduce travel 

times, improve safety, and optimize transportation infrastructure usage, ultimately 

improving the quality of life for citizens and businesses. 

 

 



[v] 
 

 

Table of Contents 

Abstract ........................................................................................................................... vii 

1. Introduction .................................................................................................................. 1 

2. Background ................................................................................................................... 3 

2.1. Machine Learning .................................................................................................. 3 

2.2. Supervised Machine Learning ............................................................................... 4 

2.3. Unsupervised Machine Learning ........................................................................... 4 

2.4. Decision Trees ....................................................................................................... 5 

2.5. Random Forests ..................................................................................................... 6 

2.6. Extreme Gradient Boosting (XGboost) ................................................................. 7 

2.7. Explainable AI ....................................................................................................... 9 

2.7.1. Shapley Additive Explanations (SHAP) ............................................................. 9 

2.7.2. Local Interpretable Model-agnostic Explanations (Lime) ................................ 10 

2.7.3. Feature Importance ........................................................................................... 11 

2.7.4. Traffic explainable AI ....................................................................................... 11 

3. Related Works ............................................................................................................ 13 

3.1. Parametric Models ............................................................................................... 13 

3.2. Non-Parametric Models ....................................................................................... 15 

3.3. Hybrid Models ..................................................................................................... 19 

4. Weather Data from Copernicus AI System ................................................................ 20 

4.1. The Six Sentinels ................................................................................................. 20 

4.2. The Six Copernicus Services ............................................................................... 21 

4.3. CDS Toolbox ....................................................................................................... 22 

4.4. Data Formats ........................................................................................................ 23 

4.5. Copernicus Usage ................................................................................................ 23 

4.6. The ERA-5 Land Hourly Dataset ........................................................................ 27 



[vi] 
 

5. Methodology ............................................................................................................... 29 

6. Data Collection ........................................................................................................... 31 

6.1. Traffic Dataset ..................................................................................................... 31 

6.2. Weather Dataset ................................................................................................... 31 

7. Data Exploration ......................................................................................................... 33 

8. Traffic Forecasting ..................................................................................................... 37 

9. Model Explanation ..................................................................................................... 43 

10 Conclusion ................................................................................................................. 48 

11. Appendix .................................................................................................................. 50 

12. References ................................................................................................................ 64 

12.1. Links ................................................................... Error! Bookmark not defined. 

12.2. Papers .................................................................. Error! Bookmark not defined. 

12.3. Books .................................................................. Error! Bookmark not defined. 

 

 

 

 

 

 

 

 

 

 

 

 



[vii] 
 

List of Figures 

Figure 1 Decision Tree Structure...................................................................................... 5 

Figure 2 Random  Forests Structure ................................................................................. 6 

Figure 3 KNN Algorithm Classification of a new data point (red Colour) depending on 

the value ok K ................................................................................................................. 16 

Figure 4 Support Vector Machine (SVM) Algorithm Illustration .................................. 17 

Figure 5 Basic ANN Architecture [58]........................................................................... 18 

Figure 6 Number of Cars Each Hour of The Day During Six Months ........................... 34 

Figure 7 Variation In The Number Of Cars During Each Month .................................. 35 

Figure 8 Number Of Cars During Each Hour Of The Day ............................................ 35 

Figure 9 Autocorrelation Plot ......................................................................................... 36 

Figure 10 Comparison Plot ............................................................................................. 42 

Figure 11 Summary Plot ................................................................................................. 44 

Figure 12 Local Bar Plot 1 ............................................................................................. 45 

Figure 13 Local Bar Plot 2 ............................................................................................. 46 

Figure 14 Feature Importance Bar Char ......................................................................... 47 

 

List of Tables 

Table 1 Descriptive Statistics of The Number of Cars During Each Month .................. 33 

Table 2 Time-Based Variables ....................................................................................... 37 

Table 3 Lag Variables..................................................................................................... 38 

Table 4 Weather Variables ............................................................................................. 39 

Table 5 Hyperparameters Values ................................................................................... 40 

Table 6 Baseline Evaluation Metrics .............................................................................. 41 

Table 7 Prediction Evaluation Metrics ........................................................................... 41 

 



[1] 
 

1. Introduction 

In recent times, there has been notable growth in the traffic and transportations sector 

considering the number of vehicles on roads. According to the Federal Highway 

Administration, there are over 276 million vehicles using the highways as of 2019 [24]. 

This ever-increasing load of road traffic has caused many serious transportation and 

health problems, rendering the employment of effective traffic control measurements 

necessary. Traffic forecasting, the process of estimating the future traffic state of a 

network given its past and future state, is a promising approach in terms of improving the 

usage and control of the existing road network. Such forecasts can be important for many 

applications in the traffic and transportations sector, for example reliable and highly 

accurate predictions of traffic quantities can contribute to the mitigation of congestion 

and to the reduction of vehicle pollutants that can both harm public health and induce 

climate change due to greenhouse gas emissions. Additionally, government agencies 

engaged in tourism can utilise accurate traffic predictions in order to improve their route 

guidance or alleviate travel congestion. Intelligent Transformation Systems (ITS) offers 

effective and accurate traffic predictions regarding all elements of a traffic network 

several steps ahead in time. Given its high importance, traffic forecasting has been 

extensively studied and a variety of models have been suggested in the relevant literature. 

These models can be either statistically based or machine learning based. A very 

commonly used statistically based technique that has been used for traffic forecasting is 

the autoregressive integrated moving average (ARIMA) model. Even though theoretically 

sound, the model fails to attain satisfactory results, as it cannot handle the nonlinear nature 

of traffic conditions datasets (i.e., peak periods). Considering other machine learning 

algorithms such as support vector machines (SVM) and k-Nearest neighbours, the 

algorithms perform considerably better but they still face difficulties in generating 

accurate results when they deal with enormous amounts of data. During the last few years, 

deep learning approaches are steadily adopted for traffic volume prediction. Despite their 

accuracy and reliability such approaches suffer in interpretability and are computationally 

expensive, restricting their deployment and usefulness in traffic control. In order to find 

a good balance between performance, interpretability and computational efficiency, 

extreme gradient boosting (XGboost) is a good approach for traffic volume prediction. 

XGboost has been employed and shown to be effective for time series prediction 

problems. For instance, XGboost has been used for stock price forecasting [26], as well 



[2] 
 

as daily electricity consumption prediction, since it can capture the nonlinear relationship 

between attributes and achieve better performance when it comes to nonlinear traffic data 

[27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[3] 
 

2. Background 

2.1. Machine Learning 

Machine learning (ML) is a fascinating and rapidly evolving field of Artificial 

Intelligence (AI) that is transforming the way we interact with technology. Through the 

use of complex algorithms and statistical models, ML enables computer systems to learn 

and improve from experience without the need for explicit programming. Unlike 

traditional computer programming, where a programmer writes code that explicitly 

defines how a computer system should perform a task, in machine learning, the computer 

system learns how to perform the task by analyzing and learning from data. The process 

of machine learning usually begins with the collection of relevant data for the task at 

hand, which can range from images and text to numerical data. Once the data has been 

collected, it must be preprocessed and cleaned to remove any noise or errors and 

converted into a suitable format for the machine learning model. The next step is to select 

or extract features from the data that are relevant to the task at hand and can be used to 

train the model. This helps to improve the accuracy of the model and ensure that it can 

predict the desired output. After the above steps, the model is trained using a machine 

learning algorithm, which helps it to learn from the data and create a model that can 

predict the desired output. Model evaluation is an essential step in the machine learning 

process, where the model is tested on a set of data that was not used for training. This 

process helps to measure the accuracy and performance of the model and ensures that it 

is ready to be deployed into a system to make predictions or decisions based on new data. 

Machine learning has a wide range of applications, including image and speech 

recognition, natural language processing, fraud detection, and predictive maintenance. It 

has the potential to revolutionize many industries and improve our lives by making 

systems more efficient, accurate, and intelligent. As technology continues to advance, 

machine learning will undoubtedly become an increasingly important field, driving 

innovation and improving our understanding of the world around us. 

 

 

 

 

 



[4] 
 

2.2. Supervised Machine Learning 

In supervised learning, the model is trained using data that has been accurately labelled. 

The machine learning algorithm operates by giving a portion of the data to be trained on. 

The training dataset includes inputs and correct outputs, which enables the model to learn 

over time. Finally, after the training stage is completed the remaining portion of the 

dataset is used to test our trained model with unseen data and evaluate its performance. 

Supervised learning is separated into two categories of problems, Classification and 

Regression. 

Classification uses an algorithm to accurately assign test data into specific categories. It 

identifies specific entities within the dataset and attempts to draw some conclusion on the 

way that those entities should be labelled or defined. The most common classification 

algorithms are linear classifiers, support vector machine (SVM), decision trees, k-nearest 

neighbours and random forest [61] [62]. 

Regression is used to understand the relationship between dependent and independent 

variables. It is commonly used to make projections, such as for sales revenue for a given 

business. Linear regression, logistic regression, and polynomial regression are popular 

regression algorithms. 

 

2.3. Unsupervised Machine Learning 

In contrast to supervised learning, unsupervised learning can use unlabelled data as input 

and output. This means that computer comprehension of the data does not require human 

interaction. Unsupervised learning cannot process labels since it discovers patterns and 

differences in data by building hidden structures [63]. Clustering is one of the most 

common types of unsupervised learning. Clustering algorithms group similar data points 

together based on their proximity in feature space. Other unsupervised learning 

techniques include principal component analysis (PCA), which is used for dimensionality 

reduction, and association rule mining, which is used to discover relationships between 

variables in a dataset. Some common applications of unsupervised learning include 

anomaly detection, where the algorithm is used to identify unusual or abnormal data 

points, and market segmentation, where the algorithm is used to group customers based 

on their buying behaviour. Unsupervised learning can be a powerful tool for data analysis 

and exploration, but it can also be challenging because there is no clear objective or goal 



[5] 
 

to optimize. The success of an unsupervised learning algorithm often depends on the 

quality of the data and the ability of the algorithm to identify meaningful patterns and 

structures. 

2.4. Decision Trees 

Decision trees is an algorithm commonly used in machine learning, for both classification 

and regression problems, they are easy to use, and they are often a good exploratory 

method if you are interested in getting a better idea about what the influential features are 

in your dataset. The goal when building a decision tree is to find the sequence of questions 

that has the best accuracy at classifying the data in the fewest steps. A decision tree 

contains decision nodes which contain a condition to test the value of an attribute, edges 

which depending on the outcome of the test, connect with the next node, and leaf nodes 

which predicts the outcome, all the above combined consists a complete structure of 

decision tree as shown below fig. 1 [56]. Once a decision tree has been constructed, it can 

be used to make predictions by traversing the tree from the root to a leaf node based on 

the values of the input variables. The decision or prediction associated with the leaf node 

is then returned as the output. However, decision trees can be prone to overfitting if the 

tree is too deep or if the training data is noisy or unbalanced. To overcome this problem, 

various techniques such as pruning, ensemble methods, and random forests can be used 

 

 

Figure 1 Decision Tree Structure 

 

 



[6] 
 

2.5. Random Forests 

Random decision forests are an ensemble method that can be used for both regression and 

classification problems, they operate by constructing a number of decision trees at 

training phase and give as an output the class that is the mode of the classes 

(classification) or the mean (regression) of the individual trees. Random decision forests 

reduce the risk of overfitting to the training set that decision trees tend to deal with [55]. 

Each decision tree in a random forest is trained on a bootstrap sample of the training data, 

meaning that some of the data may be repeated and some may be left out. Additionally, 

at each node of the tree, a random subset of the input features is selected to split the data, 

rather than using all features. This helps to reduce overfitting and improve generalization. 

Once the individual decision trees have been trained, the random forest combines their 

predictions using a majority vote for classification or averaging for regression. The 

resulting prediction is typically more accurate and less prone to overfitting than the 

prediction of a single decision tree. Random forests are a popular choice for classification 

and regression tasks in machine learning because they are easy to use, highly scalable, 

and robust to noise and outliers the data. They can also provide information about the 

importance of each input feature in making predictions, which can be useful for feature 

selection and interpretation. Some common applications of random forests include image 

classification, text classification, and predicting customer churn in business. However, 

random forests can be computationally expensive and may require tuning of 

hyperparameters to achieve optimal performance. 

 

Figure 2 Random Forests Structure 



[7] 
 

2.6. Extreme Gradient Boosting (XGboost) 

The XGboost algorithm, is based on gradient decision trees and utilises a second-order 

Taylor expansion in order to calculate the loss function and it can perform excellently 

regarding both computational speed and model accuracy. It is an ensemble method that 

combines the outputs from individual decision trees, however gradient boosted trees and 

random forests differ in the way the individual trees are built and in the way the results 

are combined. Random forests build independent decision trees and combine them in 

parallel, on the other hand, gradient boosted trees use a method called boosting. Boosting 

combines weak learners sequentially, so that each new tree corrects the errors of the 

previous one, weak learners are usually decision trees with only one split called decision 

stumps. The evaluation of each tree’s performance is done by using a loss function [57].  

XGBoost uses a customized loss function to optimize the performance of the model 

during training. The loss function measures the difference between the predicted values 

and the true values and guides the optimization algorithm to adjust the model parameters 

in a way that minimizes this difference. The default loss function for classification 

problems in XGBoost is the softmax function, which is used to compute the probabilities 

of each class. For regression problems, the default loss function is the mean squared error 

(MSE). In addition to the default loss functions, XGBoost provides several other loss 

functions that can be used depending on the specific problem and the desired performance 

metrics. Some of the popular loss functions used in XGBoost include, binary logistic loss 

which is used for binary classification problems, where the goal is to predict the 

probability of a sample belonging to one of the two classes. Multi-class logistic loss, for 

multi-class classification problems, where the goal is to predict the probability of a sample 

belonging to one of the multiple classes. Poisson regression loss, for regression problems 

where the target variable is counting data and follows a Poisson distribution. Gamma also 

for regression problems where the target variable is continuous and positive and finally 

Huber loss which is a robust loss function that is less sensitive to outliers compared to the 

mean squared error. The choice of the loss function depends on the specific problem and 

the desired performance metrics. XGBoost provides flexibility in choosing the 

appropriate loss function to optimize the performance of the model. Considering binary 

classification problems cross entropy loss is the dominant loss function, mathematically 

is defined as follows: 

 



[8] 
 

L= −∑2
𝑖=1 𝑡𝑖log(pi) 

Where ti is the true value taking a value 0 or 1 and pi is the softmax probability for the ith 

class. 

As for the regression problems the default loss function is mean absolute error (MAE) 

and it is defined as follows: 

MAE= 
1

𝑛
∑𝑛
𝑖=1 |𝑦𝑖 − 𝑥𝑖| 

Where yi is the prediction value, xi is the true value and n is the total number of data 

points. 

2.7. Time Series Forecasting in Machine Learning 

Time series forecasting is a type of machine learning problem that involves predicting 

future values of a time series, based on historical data. A time series is a sequence of data 

points measured over time, such as stock prices, temperature readings, or website traffic. 

The goal of time series forecasting is to build a model that can accurately predict future 

values of the time series, given its past values. This can be used for a variety of 

applications, such as predicting future sales, forecasting weather patterns, or predicting 

website traffic. Time series forecasting is a challenging problem, as it requires handling 

the unique properties of time series data, such as trend, seasonality, and autocorrelation. 

However, it can be a valuable tool for predicting future values of a time series and making 

informed decisions based on that information. The main difference between a time series 

split and a normal data split is the way the data is split and the way the splits are evaluated. 

In a normal data split, the data is randomly divided into training and testing sets, and the 

model is trained on the training set and evaluated on the testing set. The goal is to ensure 

that the model can generalize well to new data, i.e., data that was not used during training. 

In a time, series split, on the other hand, the data is split in a way that preserves the order 

of the time series. This is important because the goal of time series forecasting is to predict 

future values based on past values. Therefore, the training set contains only past data, 

while the testing set contains future data. This ensures that the model is evaluated on data 

that it has not seen during training, but that is still consistent with the problem it is trying 

to solve. Additionally, in time series forecasting, there is often a need to consider the 

temporal dependence between the data points, such as autocorrelation and seasonality. 

This can affect the choice of model and the evaluation metrics used to measure model 



[9] 
 

performance. For example, in time series forecasting, it is common to use metrics such as 

mean absolute percentage error (MAPE) or mean squared error (MSE) that take into 

account the magnitude and direction of errors relative to the true values.  

2.8. Explainable AI 

One of the key benefits of XAI is that it can help to mitigate the potential risks associated 

with the use of AI. For example, XAI can help to identify and prevent bias in AI systems 

by providing explanations for how the system made its decisions. In addition, XAI can 

help to improve the interpretability and explainability of AI systems, which is particularly 

important for domains such as healthcare and finance where the consequences of an 

incorrect decision can be significant. Another important aspect of XAI is that it can 

improve collaboration between humans and machines. By providing clear and transparent 

explanations of their decisions, AI systems can work together more effectively with 

human users. This can lead to more accurate and efficient decision-making, as well as 

improved user satisfaction and trust in the system.as XAI continues to evolve, it is likely 

that new techniques and approaches will be developed to enhance the interpretability and 

transparency of AI systems. For example, research in natural language processing and 

visualization techniques may enable AI systems to provide even more intuitive and 

accessible explanations. Ultimately, the goal of XAI is to build AI systems that are not 

only accurate and reliable but also transparent, trustworthy, and ethical. 

2.8.1. Shapley Additive Explanations (SHAP) 

Lloyd Shapley first suggested the technique for getting Shapley values in 1953 (‘A value 

for n-Person Games L.S. Shapley. 1953’). Shapley values are contributions that are made 

in a situation where ‘n’ players work together to achieve a prize ‘p’ that is meant to be 

equally divided to each of the ‘n’ players according to their individual contributions. To 

put it simply, a Shapley value is the average marginal contribution of a feature instance 

across all potential coalitions. Shapley Additive Explanations (SHAP) is a method 

introduced by Lundberg and Lee (‘A unified approach to interpreting model predictions. 

2017’) for the understanding of machine learning models through Shapley values. SHAP 

(SHapley Additive exPlanations) values are a method for explaining the output of 

machine learning models. They provide a way to understand the contribution of each 

feature to the model's output for a specific prediction. SHAP values can be used to 

understand how a model makes predictions and identify areas where the model may be 



[10] 
 

making incorrect or biased predictions. They can also be used to identify features that are 

important to the model and help identify any potential issues with the data or model. To 

calculate SHAP values, the model's output is decomposed into a sum of the contributions 

of each feature, with each feature's contribution being based on its importance and the 

prediction being made. The contributions are based on the Shapley values from game 

theory, which represent the average marginal contribution of a player to the overall 

outcome of a game. SHAP values have several advantages over other methods for 

interpreting machine learning models. They are model agnostic, meaning they can be used 

with any machine learning model, and they provide a global explanation of the model's 

output, rather than just a local explanation. They also have a strong theoretical foundation 

and have been shown to be really accurate and robust. 

2.8.2. Local Interpretable Model-agnostic Explanations (Lime) 

LIME (Local Interpretable Model-agnostic Explanations) is a method for explaining the 

predictions of any machine learning model. It is model-agnostic, which means that it can 

be used to explain the predictions of any type of machine learning model, regardless of 

the underlying algorithms or techniques used. The basic idea behind LIME is to 

approximate the behavior of the model in a small region around a specific prediction and 

explain that behavior in terms of simple, interpretable features. LIME does this by fitting 

a simple, interpretable model (such as a linear regression or a decision tree) to the model's 

predictions in the vicinity of the target prediction. This simple model is then used to 

explain the prediction, by showing how each feature contributes to the prediction. LIME 

is designed to provide local explanations, which means that it provides an explanation for 

a single prediction, rather than an explanation of the entire model. This allows LIME to 

generate explanations that are easy to understand and interpret, even for complex models. 

LIME is implemented in several programming languages, including Python, and is 

available as an open-source library. It is widely used in a variety of applications, including 

natural language processing, computer vision, and image classification. It is also useful 

for helping to understand the decisions made by black-box models, such as deep neural 

networks, that can be difficult to interpret. 

 

 



[11] 
 

2.8.3. Feature Importance 

Feature importance is a technique used in Artificial Intelligence (AI) to understand the 

relative importance of input features or variables in a model. It helps to identify which 

features or variables have the most significant impact on the model's output or predictions. 

In machine learning models, the algorithm learns patterns and relationships between input 

features and output variables from training data. Some features may be more relevant than 

others in predicting the target variable, and feature importance measures can help to 

identify these important features. There are various techniques to calculate feature 

importance, depending on the type of model used. For example, in decision tree models, 

feature importance is calculated by measuring the decrease in impurity or entropy in the 

model when a particular feature is used for splitting the data. In linear models, feature 

importance can be measured by the magnitude of the coefficients assigned to each feature. 

The interpretation of feature importance can help to gain insights into the model's 

decision-making process and improve the understanding of the relationship between input 

features and output variables. It can also be useful for feature selection, where only the 

most relevant features are used in the model, reducing the model's complexity and 

improving its performance. In summary, feature importance is an important concept in 

AI and machine learning, enabling us to understand the importance of input features and 

improve the interpretability and performance of AI models. 

2.8.4. Traffic explainable AI 

Traffic explainable AI, also known as XAI in the field of traffic management and 

transportation systems, is a rapidly developing area of research that focuses on using 

explainable AI techniques to provide insights and explanations about the decisions made 

by AI systems in traffic-related tasks. While AI systems are widely used in transportation 

systems to make decisions, such as predicting traffic congestion, optimizing traffic flow, 

and managing traffic signals, it is essential to understand how the AI system arrived at a 

particular decision and why it made that decision. Traffic explainable AI provides insights 

into the decision-making process of AI systems in traffic management and transportation 

systems, enabling stakeholders to trust and validate the AI system's decisions. The use of 

XAI techniques in traffic management and transportation systems improves transparency, 

accountability, and trust in AI systems. By understanding the decision-making process of 

AI systems, stakeholders can identify and correct any biases or errors in the system's 



[12] 
 

decision-making process. One of the most significant benefits of traffic explainable AI is 

the ability to identify the most important variables in the AI system's decision-making 

process. Feature importance techniques can be used to identify which variables had the 

most significant impact on the model's output. Furthermore, SHAP additive explanations 

can show how changes to variables affect the AI system's decision. Overall, traffic 

explainable AI is a vital area of research in transportation systems. It can help to improve 

the safety, efficiency, and reliability of traffic management and transportation systems by 

providing stakeholders with insights and explanations about the decisions made by AI 

systems. This increased understanding of the decision-making process can lead to better 

outcomes and help to build trust in AI systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[13] 
 

3. Related Works 

A variety of traffic forecasting models have been proposed in the relevant literature. They 

can be classified into three categories, the parametric, the non-parametric and the hybrid 

models. 

3.1. Parametric Models 

Parametric models were the first to be used for traffic forecasting. They are statistical 

time series models, characterised from their predefined structure and the fact that only the 

values of their parameters have to be estimated from the available traffic data. Most of 

these parametric models are based on the AR (auto regressive) model; this type of model 

tries to predict the variable of interest by using a linear combination of its past values. 

The term autoregression shows that it is a regression of the variable against itself. 

Mathematically, it is defined as follows: 

yt = c + β1yt-1 + β2yt-2 + …+ βpyt-p + εt  

Where c is a constant value, β represents the AR parameters (magnitude of the 

correlation), p represents the number of lags and εt is the error [28] 

The MA (moving average) model is a common approach for modelling time series. It 

basically expresses that the present value is a linear combination of the mean of the series, 

the present error term and past error terms. The formulation of the MA model is defined 

as follows: 

yt= c + θ1εt-1 + θ2εt-2 + … + θqεt-q, 

Where yt, represents a value forecast by lagged values of the residual error (εt), θ 

represents the MA parameter value (autocorrelation of errors), and q is the number of 

lags. 

The Autoregressive Moving Average Models ARMA is a combination of AR and MR 

models and is defined as follows: 

yt = C + φ1yt-1 + φ2yt-2 + … + φpyt-p + et – θ1et-1 – θ2et-2 - …- θqet-q + et 

 AR, MA and ARMA models require the time series to be stationary. This means that the 

time series needs to have a constant mean, constant variance, and no seasonality over 

time. In order to overcome this assumption, we use integration. 



[14] 
 

Integration (I) represents the difference of raw observations to allow the time series to 

become stationary, this can be achieved by replacing the original data values with the 

difference between them and their previous values. For instance, first-order differencing 

has a linear trend and is given as Y`t= yt – yt-1, second order differencing has a quadratic 

trend and is given as Y``t = (yt – yt-1) – (yt-1 – yt-2). For generality purposes it is developed 

using the L lag-operator, which is defined as Lyt – yy-1 so first and second order differencing 

are represented as (1 - L)yt and (1 – L)2yt, respectively. A dth-order differencing order can 

be given as: 

yd
t = (1 – L)dyt 

Where d, represents the degree of difference that is necessary for stationarity (The number 

of times the data are differenced).  

Autoregressive Integrated Moving Average (ARIMA) is a statistical model to forecast 

and analyse time series data, it was introduced by Box and Jenkins (1976). ARIMA is 

developed based on AR and MA models as well as Integration. The formulation of the 

ARIMA model is defined as follows: 

yt= c + φ1yt-1
d + φ2yt-2

d + … + φpyt-p
d + et – θ1et-1 – θ2et-2 - … - θqet-q + et 

The basic parameters of the ARIMA model are p, d, and q. Where p is the number of 

autoregressive terms, d is the number of nonseasonal differences needed in order to 

achieve stationarity, and q is the number of lagged forecast errors in the prediction 

equation [28]. 

Considering the parametric models, Alghamadi, Elgazzar, Bayoumi, Sharaf and Shah 

(2019) [33] proposed an autoregressive integrated moving average (ARIMA) approach 

on traffic forecasting on non-Gaussian traffic data. Diamantopoulos, Kehagias, Konig and 

Tzorvas (2013) [34] developed an ARIMA-based spatiotemporal traffic forecasting 

model that makes use of the Pearson correlation coefficient in order to predict the 

correlations between time series. Considering graph theory on correlation estimation in 

large-traffic scale networks, Salamanis, Kehagias, Filelis-Papadopoulos, Tzovaras, and 

Gravvanis (2016) introduced a technique based on spatial graphs [35]. In the same 

direction Duan, Mao, Liang and Zhang (2018) [36] found the appropriate lag between the 

traffic time series before moving to the estimation of correlations. Furthermore, Guo, 

Huang, and Williams 



[15] 
 

(2014) [37], used Kalman filters to create a combination of ARIMA (SARIMA) and 

generalised autoregressive conditional heteroskedasticity (GARCH) model for short-term 

traffic forecasting. From another point of view, Abadi, Rajabioun, and Ioannou (2015) 

[38] implemented an autoregressive model for short-term traffic forecasting when the 

available data are limited. In addition, Kamarianakis, Shen, and Wynter (2012) [39], 

implemented the least absolute shrinkage and selection operator (LASSO) method for 

both model selection and regularisation. The majority of all these parametric forecasting 

models are based on the classic Autoregressive model (AR). 

3.2. Non-Parametric Models 

The non-parametric models do not have a predefined structure thus both their structure 

and their parameters have to be estimated from the data. The majority of non-parametric 

models are based on traditional machine learning methods, such as k-nearest neighbours 

(KNN), support vector regression (SVR) and shallow artificial neural networks (ANN) 

[22]. 

K-Nearest Neighbours (KNN) is a non-parametric, supervised machine learning 

algorithm that can be used for both classification and regression predictive problems. The 

main KNN algorithm assumption is that similar things exist in close proximity. KNN 

captures this idea of similarity by calculating the distance between points on a graph. 

There are many ways to calculate distance, however the most commonly used is the 

straight-line distance also known as Euclidean distance. The K refers to the number of 

nearest neighbours the classifier will retrieve and use in order to make its prediction [29]. 

The choice of the value of k can have a significant impact on the performance of the 

algorithm. A small value of k can result in overfitting, while a large value of k can result 

in underfitting. The optimal value of k depends on the nature of the data and the specific 

task at hand. 



[16] 
 

 

Figure 3 KNN Algorithm Classification of a new data point (red Colour) depending on 

the value ok K 

 

Support Vector Machine (SVM), is a machine learning method based on statistical 

theory and structural risk minimization theory, proposed by Vapnik’s research team for 

pattern classification and non-linear regression [30]. The application of support vector 

machines to non-linear problems is known as support vector regression (SVR), whose 

main objective is to fit the data points to a suitable hyperplane so that the error distance 

between the data points and the hyperplane is minimised, leading to a description and 

prediction of the non-linear relationship among the data points and the hyperplane [31]. 

SVM can handle both linearly separable and non-linearly separable data by using 

different kernel functions. A kernel function is a function that maps the input data into a 

higher-dimensional space where the data can be separated by a hyperplane. SVM is a 

powerful algorithm that has been widely used in various applications such as text 

classification, image classification, and bioinformatics. However, it can be 

computationally expensive when dealing with large datasets or complex kernel functions. 

In such cases, other algorithms such as neural networks may be more suitable. 



[17] 
 

 

Figure 4 Support Vector Machine (SVM) Algorithm Illustration 

 

Shallow Artificial Neural Network (ANN) is inspired by biological learning processes 

as it occurs in human brains. One of the main goals behind this is to build a highly 

intelligent system like a human brain [32]. Neural networks take in data, train themselves 

to recognize the patterns in this data and finally predict the outputs for a new set with 

similar data. Neural networks are made of layers of neurons, these neurons constitute the 

core processing units of the network, the first layer is called input layer and receives the 

input, the last layer is called the output layer and it’s the one that predicts the final output. 

Between the input and the output layer are the hidden layers which perform most of the 

computations that are required in order to predict the final output. Each neuron is 

connected to another neuron through channels each of these channels is assigned a 

numerical value known as weight, the inputs are multiplied to the corresponding weights 

and the sum is sent as input to the neurons in the hidden layer, each of these neurons is 

associated with a numerical value called the bias, which is then added to the input’s sum 

this value is then passed through a threshold function called the activation function. The 

result of this activation function determines if the particular neuron will get activated or 

not, an activated neuron transmits data to the neurons of the next layer through the 

channels. In the output layer the neuron with the highest value determines the output. 



[18] 
 

 

 

Figure 5 Basic ANN Architecture [58] 

 

As for the non-parametric models, Zheng and Su (2014) [40], developed a kNN model 

for traffic forecasting that integrates novel methods to select the value of k nearest 

neighbours. Cai et al. (2016) [41], presented an improved kNN model that takes into 

consideration the spatiotemporal correlations among the roads of the traffic network to 

predict traffic. Furthermore, Sun, Cheng, Goswami, and Bai (2018) [42] proposed a 

dynamic self-adjustable kNN model for traffic prediction. On the other hand, Guo, Polak 

and Krishman (2018) [43], selected SVR as a machine learning model to predict short-

term traffic by using a fusion-based forecasting. Hu, Yan, Liu, and Wang (2016) [44], 

proposed an SVR model that uses particle swarm optimization (PSO) to optimize the 

hyperparameters of the model, while Cong, Wang, and Li (2016) [45], used least square 

SVR for the prediction and the fruit fly optimization algorithm (FOA) in order to optimize 

the hyperparameters. Additionally, Yao et al (2016) [46], introduced an SVR model for 

short-term traffic forecasting that uses both the spatial and temporal characteristics of the 

traffic network. Moreover, Zhu, Cao, and Zhu (2014) [47], proposed a model that is based 

on a radial basis function network (RBFN) that integrates the traffic information of 



[19] 
 

adjacent intersections, in order to predict traffic at the intersection of interest. In the same 

context, Wang, Tsapakis, and Zhong (2016) [48] utilized a space-time delay neural 

network (SDTNN) that integrates spatiotemporal correlations between different elements 

of the traffic network. Furthermore, Fusco, Colombaroni, and Isaenko (2016) [49], used 

together two ANNs to accurately representing space and time correlations among traffic 

variables, whilst Tang, Liu, Zou, Zhang, and Wang (2017) [50] created and used an 

evolving fuzzy neural network (EFNN), for multi-step traffic forecasting. 

3.3. Hybrid Models 

Hybrid models for traffic forecasting combine different types of models to improve the 

accuracy of traffic predictions. These models often combine traditional statistical models, 

such as ARIMA or exponential smoothing, with machine learning techniques, such as 

neural networks or support vector regression. One example of a hybrid traffic forecasting 

model is the use of an Artificial Neural Network (ANN) to model the underlying 

relationships between the input data and the traffic output, combined with a time series 

model like ARIMA to capture the temporal dependence in the data. Another example is 

the combination of a machine learning model with a traditional statistical model, such as 

the combination of a Random Forest with an ARIMA model. The idea behind hybrid 

models is to take advantage of the strengths of different models and to overcome their 

weaknesses. For example, a machine learning model may be able to handle a large 

number of input variables, but may not be able to account for temporal dependencies in 

the data. A time series model, on the other hand, may be able to capture these 

dependencies, but may not be able to handle a large number of input variables. By 

combining these models, a hybrid model can improve the overall accuracy of traffic 

predictions. Considering the Hybrid models, Ladino, Kibanagou, de Wit, and Fourati 

(2017) [51] firstly clustered the available traffic time series into groups by using the k-

means algorithm, and then formulated a computationally simple predictor for each group. 

Furthermore, Li, Zhai, and Xu (2017) [52], used a combination of an ARIMA model with 

a radial basis function network (RBFN), while Guo, Liu, Huang, Wei, and Gao (2018) 

[53], injected fuzzy traffic information into KNN and ANN models. Additionally, Raza 

and Zhong (2018) [54], combined an ANN and a locally weighted regression model 

(LWR) with genetic algorithms to achieve the best possible accuracy. 

 



[20] 
 

4. Weather Data from Copernicus AI System 

Copernicus is the European Union’s Earth observation program that inspects our planet 

and its environment to constantly be aware of its state and health. Copernicus information 

services are based on data from a constellation of 6 families of satellites, known as the 

Sentinels. These satellites are designed to meet the needs of the Copernicus system and 

its users. They can either operate alone or be combined with sensors placed on the seas, 

land or in the air [1]. Copernicus' main objective is to provide a large amount of reliable 

and up to date open-access data based on satellite information and in situ (on site) 

observations. The program is supervised and coordinated by the European Commission 

(EC) but it is applied through a series of agreements with international organisations. The 

European Centre for Medium Range Weather Forecasts (ECMWF) has been assigned by 

the European Union to implement the Copernicus Climate Change Service C3S and the 

Copernicus Atmosphere Monitoring Service (CAMS). The Copernicus services give 

value to all these satellites and in situ data by processing and analysing them. A variety 

of datasets from many years ago are made comparable and searchable. As a result, 

patterns can be examined and used to improve forecasts. All these value-adding activities 

are streamlined through six Copernicus services. 

4.1. The Six Sentinels 

Sentinel 1  

The first of the Copernicus Sentinels is a constellation of two radar imagery satellites in 

the same orbit, offering supply of images of Earth’s surface throughout the day and night. 

Sentinel 1A was launched on 3 April 2014 whereas Sentinel 1B was launched on 25 April 

2016. Their main applications include monitoring of sea ice and icebergs, as well as land-

use change, agriculture and deforestation.  Furthermore, support to emergency 

management is provided considering for example floods or earthquakes [7]. 

Sentinel 2 

Sentinel 2 is a constellation of two identical satellites in the same orbit. These two 

satellites provide images of land and coastal areas at high spatial resolution. Sentinel 2A 

was launched on 23 June 2015 and Sentinel 2B on 7 March 2017. Their main usage 

includes agriculture, land ecosystems monitoring, inland and coastal water quality 

monitoring, disasters mapping and civil security [7]. 



[21] 
 

Sentinel 3 

The main objective of sentinel-3 mission is to measure sea surface topography, as well as 

sea and land temperature. The data provided is highly accurate and reliable and, 

consequently, support to ocean forecasting systems along with environmental and climate 

monitoring is provided. Sentinel 3A was launched on 16 February 2016 and Sentinel 3B 

on 25 April 2018 [7]. 

Sentinel 4 

Sentinel-4 provides data considering atmospheric composition monitoring. Its main use 

is to control air quality trace gases and aerosols across all Europe at high spatial resolution 

[7].  

Sentinel 5 

Sentinel-5 Precursor’s mission launched on 13 October 2017. Its mission is to provide 

data continuity until the launch of Sentinel-5 which is going to be dedicated to Copernicus 

atmospheric mission. 

Sentinel 6 

Sentinel-6 is also scheduled to be launched during the next few years. Sentinel-6 will 

provide high accuracy altimetry considering global sea surface height measurement, for 

operational oceanography and climate studies.  

4.2. The Six Copernicus Services 

C3S, contains a vast variety of climate observations, measurements, analysis tools and 

methods. The core of the C3S service is the Climate Data Store (CDS). CDS contains 

data about the past, present and future climate data freely available for users to explore.[2] 

The C3S mission is to support adaption and mitigation policies in order to make the 

impacts of climate change less severe, by offering a variety of consistent and reliable 

information. C3S is the first unified network of its kind, developed between agencies 

across all over the world, proving that a data-oriented approach can be used to reduce 

unpredictability and risk. C3S constitutes one of the first attempts to operationalize the 

generation of climate data by taking advantage of the experience of satellite remote 

sensing and the production of weather predictions. 



[22] 
 

CAMS, is the European Copernicus Atmospheric Monitoring Service that monitors the 

Atmospheric composition and offers analysis and forecasts to inform a wide variety of 

users from policymakers to citizens and businesses. CAMS products, mainly support 

planning and monitoring solar energy, gas emissions and air quality. As all Copernicus 

services, CAMS deliver measurements done in situ with the remote sensing imagery done 

by satellites [6]. 

CMEMS, is the Copernicus Marine Environment Monitoring Service, which offers 

systematic information on the physical and biogeochemical state of the ocean and marine 

ecosystems. This service contributes to the protection and the sustainable management of 

living marine resources, as well as, to monitoring water quality and control pollution [9]. 

CLMS, is the Copernicus Land monitoring Service that provides geographical 

information on land cover and its changes. It is applicable in a variety of sectors such as 

spatial and urban planning, forest and water management, as well as agriculture. CLMS 

is implemented by the European Environment Agency and the European Commission 

joint Research Centre (JRC) [10]. 

SECURITY, the Copernicus service regarding security aims to support European Union 

policies, by enhancing crisis prevention, preparedness and response in three different 

areas: Border Surveillance, Maritime Surveillance and EU external action supporting 

[11]. 

EMS, is the Copernicus Emergency Management Service that provides to everyone that 

is related to the management of natural disasters, man-made emergency situations and 

humanitarian crises, timely and accurate information produced by satellite remote sensing 

and completed by available on-site data sources. 

4.3. CDS Toolbox 

The Climate Data (CDS) Toolbox is a way to get access to a vast variety of past and 

feature climate information. Its objective is to link raw data to online computing power 

through a programming interface. Each user can use its own online workspace to create 

applications in Python and execute them on the CDS computers. This procedure gives the 

opportunity to the user to retrieve data, make calculations and display the results. In order 

to use the CDS toolbox, a basic working knowledge of Python is needed as well as having 

access to the internet. Finally, there is no need for a powerful computer or a lot of memory 



[23] 
 

space, as the calculations and the data processing take place online within the CDS 

environment.[8] The two available data formats that data can be retrieved are NETCDF 

and GRIB. 

4.4. Data Formats 

Network Common Data Form (NETCDF) is a set of software libraries and machine-

independent data formats that support the creation, access, and sharing of array shaped 

scientific data. In order to access and manipulate this kind of data into python, the netcdf4-

python is used, which is a Python interface to the netCDF C library. This interface can be 

accessed by running the following command into a python script: ‘!pip install netcdf4’ 

[4]. 

GRIB is a file format that is used for the storage and transport of gridded meteorological 

data. This file format was designed and it is also maintained by the World Meteorological 

Organization [12]. This type of data is mainly used by individuals and businesses that are 

interested in numerical data from weather models in the rawest possible form. By using 

xarray library and the cfgrib engine GRIB, the data can be easily visualised and analysed 

with Python. 

4.5. Copernicus Usage 

The data and the information provided by the six Copernicus services can be used by 

users for a wide range of applications in many different areas: 

Agriculture, which is historically one of the first sectors to exploit Earth observation. 

Agriculture is probably considered the most promising market in terms of the impact of 

Copernicus. The wealth of information that Copernicus is offering helps assessing 

agricultural land use and trends, crop conditions and yield forecasts. It also supports input, 

farm, recording and irrigation management. [14] 

In Austria, because of the shortage of precipitation, the area of Marchfeld is dealing with 

serious water management issues. Farmers have begun to increase crop production by 

irrigation using groundwater, and irrigation water accounts for about 60% of the total 

freshwater production in this area. From the 30 farmers that were interviewed, 50 % 

claimed that further improvements could be achieved if the total amount of water 

requirements and the distribution of individual irrigation events were optimized. 54% of 

the farmers expressed the willingness to pay for a remote sensing service. Stakeholders 



[24] 
 

made a comparison between the irrigation volumes estimated from satellite and the 

irrigation supplied by the farmers to estimate how efficiently the water is currently used. 

The service delivered crop development maps available every 7 to 10 days, with a spatial 

resolution between 10 and 20 metres. In addition, evapotranspiration maps, information 

and weather data as well as forecasts provided daily and finally specific irrigation 

requirements depending on crop types. The addition of Sentinel data in this specific 

irrigation management product will allow a cost reduction considering the images, which 

currently range from 15,000 EUR to 35,000 EUR. The service based on sentinel-2 data 

would have cost 1.25 EUR per hectare per year, comparing to commercial data that would 

range between 2.5 EUR to 4.3 per hectare year, which is a 70% reduction of the cost of a 

precision agriculture service [15]. 

Energy and Natural Resources, the data provided by Copernicus support applications 

such as solar and wind energy production forecasting, renewable energy site selection or 

water and biomass monitoring. As a result, Copernicus can support the efficient 

exploitation of renewable energies, which will contribute to meeting the global energy 

demands without the risk of increasing CO2 emissions. 

Over the past two years the price of oil has been decreasing. This reduction of the oil price 

has negatively affected the penetration rate of earth observation (EO) products in the oil 

and gas (O&G) industry. The main problem that arises is the fact that O&G companies 

are not willing to invest in new products anymore with such a low price of oil. The earth 

observation for oil and gas (EO4OG) project consists of two 4-year projects which have 

produced some very interesting results. Firstly, they have identified needs, requirements 

and challenges faced by the O&G industry and secondly, they suggested a list of products 

that the EO downstream market should try to develop in order to fix these challenges 

covering exploration and drilling activities, transports and logistics, risk and disasters and 

finally environmental monitoring. Recently, ESA, EARSC and the international 

Association of oil and gas producers (IOGP) have developed new collaborations to bring 

together EO and O&G communities and stimulate the use of Copernicus. The 

quantification of Copernicus data contribution was based on a 12 European and Canadian 

firms sample. The value of Copernicus data for this O&G upstream industry sample was 

approximately 8.75 million EUR [16]. 

Health Copernicus supports public health authorities in monitoring health-related 

environmental phenomena and offering relevant information. One of the most critical 

factors affecting public health is air pollution. Copernicus supports pollution monitoring 



[25] 
 

through the provision of daily air quality predictions. Furthermore, Copernicus can also 

help in identifying areas prone to the emergence and spread of epidemics, which are 

heavily dependent on environmental factors such as water, sanitation, food and air quality. 

Another case study refers to Numtech which is a French start-up that specialises in the 

simulation of the atmosphere. One of its main activities is to develop value added services 

considering air quality. They started using Copernicus three years ago for one of their 

products, urban air, which can provide high resolution air quality for cities. CAMS is the 

only initiative providing information on long distance pollutant fluxes free and at a global 

level. Copernicus gave Numtech the chance to reach cities where a limited amount of data 

is available. Copernicus improved the precision of urban air by 60% and we can evaluate 

an improvement of 10% to 20% to more local pollutants. About 10% of the data used in 

urban air stem from Copernicus, to be more specific it represents most of the data used to 

analyse the background pollution. This fact makes Copernicus one of the key inputs of 

urban air. Numtech expects from 1 to 10 million EUR of annual revenues on the 

Env&You project, so Copernicus should generate from 100K EUR to 1M EUR of annual 

revenues for this project [18]. 

Transport represents a really important sector of the European economy, and ensures 

that passenger’s safety is a priority for carriers as well as governments and local 

authorities. Environmental hazards, such as volcanic eruptions or sea-ice can disrupt 

transportations flows with considerable economic effects. In the case of maritime 

transport for example, the data considering currents that Copernicus is providing can 

support ship routing service. Also, safe navigation in Arctic regions can be improved by 

this information [19]. 

Urban planning, Europe’s municipalities and regions deal with diverse planning 

challenges, such as waste management or exploitation of renewable energies, which can 

have a serious impact on citizen’s quality of life. In order to face these challenges, the 

Copernicus program provides information on land use and land cover classification, urban 

growth and green areas. In addition, Copernicus can provide assistance on monitoring the 

stability of infrastructures, assess new construction sites or assess population density. 

Building radar is a German start-up which supplies verified construction sales globally, 

offering information like a construction site location, building size and other data 

considering construction projects. Building radar is based on earth observation data, to be 

more specific Copernicus and internet data processed through their algorithms. Building’s 

radar estimation is that the world market for sales leads in the construction sector at more 



[26] 
 

than 70 billion EUR. Building radar enabled its clients to gain time, improve their 

turnover and their overall sales performance. The building’s radar model is heavily 

dependent on Copernicus (60% of the satellite data they use). In addition, 40% of their 

clients make use of applications that are based on Copernicus data, the other 60% is 

basically data that rely solely on internet data processing. Given their monthly turnover 

is between 10 to 50K, it can be calculated that 4K to 20K EUR is attributable to 

Copernicus. Furthermore, building radar is planning for a turnover growth rate of 30%, 

the share of turnover that is attributable to Copernicus is expected to increase in the future 

with the release of Sentinel-2B data and the usage of Sentinel-1 [20]. 

Insurance and Disaster Management, Copernicus data can be useful to public 

authorities considering all the phases of disaster management, from preparedness and 

prevention to identifying risks and preventing loss of lives. Considering the response 

phase Copernicus supports civil protection operations by offering products such as maps 

that can identify the extent of the disaster (e.g., delineation of the flooded area), as well 

as the level of damage (e.g., number of destroyed buildings during in case of an 

earthquake). Earth observation can also be of great use in the insurance sector by 

validating, updating or calibrating risk models. Agroseguro, is responsible for the 

management of the agricultural insurance on the Spanish market, as representative of the 

shareholding insurance companies, insuring productions, such as crops, livestock, 

aquaculture and forestry. Insurance against lack of pastures was developed in 2001, based 

on the Normalised Difference Vegetation Index (NDVI). This index measures the amount 

and lushness of vegetation. Based on Spanish market size and the share of meadows and 

pastures in Spain with regards to Europe a broad prediction of the future market value for 

livestock index insurance in Europe is around 516M EUR. Copernicus can offer the 

NDVI index through Sentinel-2A, but there remains uncertainty considering the final 

market penetration of the Sentinels. Based on the assumption that the share of sentinels 

will be about 1/3 of the total by 2025, the Copernicus enabled revenues for the European 

index products market that can be estimated around 172M EUR [21]. 

 

 

 

 

 



[27] 
 

4.6. The ERA-5 Land Hourly Dataset 

The dataset we used ‘ERA5-Land hourly data from 1950 to present’ is a reanalysis dataset 

that allows us to observe the evolution of land variables over several decades. Reanalysis 

datasets combine model data with observations from all over the world into an integrated 

and stable dataset based on the laws of physics. ERA5-Land mainly uses atmospheric 

variables such as air temperature and air humidity. The temporal and spatial dimensions 

of this dataset, as well as the fixed grid used for the data distribution at any period of time 

makes it appropriate for forecasting applications [13]. The main variables that Copernicus 

uses are:  

The 10m u-component of wind and 10m v-component of wind, which are the Eastward-

moving and Northward-moving air’s horizontal speed at a height of ten meters above the 

Earth’s surface respectively. 

The 2m dew point temperature, which is the temperature at 2 metres above the earth at 

which the air would have to be cooled for saturation to occur. 

2m temperature, which is the temperature of air at 2m above the surface of land, sea or 

in-land waters. 

Evaporation from bare soil, open water surfaces excluding oceans, the top of canopy 

and vegetation transpiration, these four variables measure the amount of evaporation at 

the top of the land surface. 

Forecast albedo, which measures the reflectivity of Earth’s surface. 

Seven variables related to lakes, which are lake bottom temperature, lake ice depth, 

lake ice temperature, lake mix-layer depth, lake mix layer temperature, lake shape 

factor and lake total layer temperature.  

Leaf area index high and low vegetation. 

Runoff, which measures the amount of water from rainfall, melting snow which stays 

stored in the soil. 

Skin reservoir content, the amount of water in the vegetation canopy. 

Skin temperature, which is the temperature of the surface of the Earth. 



[28] 
 

Nine variables related to snow which are the snow albedo, snow cover, snow density, 

snow depth, snow depth water equivalent, snow evaporation, snowfall, snowmelt and 

temperature of snow layer. 

Soil temperature level 1,2,3 and 4 these variables show the temperature of the soil in 

different layers of the ECMWF integrated forecasting system. 

Surface latent heat flux, which measures the exchange of latent heat with the surface 

through turbulent diffusion. 

Surface net solar radiation, which measures the amount of solar (shortwave) radiation 

reaching the surface of the earth (both direct and diffuse) minus the amount reflected by 

the earth’s surface. 

Surface net thermal radiation at the surface. 

Surface pressure, measures the pressure of the atmosphere on the surface of land 

(atmospheric pressure) 

Surface sensible heat flux, which measures the transfer of heat between the Earth’s 

surface and the atmosphere through the effects of turbulent air motion. 

Total evaporation, which measures the total amount of water that has evaporated from 

the Earth’s surface. 

Total precipitation, which is the accumulated liquid and frozen water, including rain and 

snow that falls to the Earth’s surface. 

Volumetric soil water layer 1,2,3,4, which measures the volume of water in different 

soil layers of the ECMWF integrated forecasting system [13]. 

 

 

 

 

 

 

 



[29] 
 

5. Methodology 

This research follows five steps to achieve its purpose, firstly (1) specify the problem, (2) 

collect the data, (3) data preparation, (4) explore data, (5) create the forecasting model, 

and finally (6) explain the forecasting results. 

(1) Specify the problem. In recent times, there has been notable growth in the traffic sector 

considering the number of vehicles on the roads of Athens, this growth can cause serious 

transportation and health problems, due to this fact we developed a model that can predict 

the number of cars on a specific road in the city of Athens after two hours. As a result, 

we could contribute to the mitigation of congestion as well as to the reduction of vehicle 

pollutants. Furthermore, Shapley additive values (SHAP) was used to explain the results. 

(2) Collect the data. In order to collect our data, we used two open-source datasets. The 

first one was from https://data.gov.gr/, where data published by the central government, 

local authorities and public bodies are available. We downloaded road traffic data for the 

Attica region from a sensor that was placed on a specific road of Athens and was counting 

the average speed and the number of cars that were passing each hour every day for the 

first 6 months of 2022. In order to improve our prediction and see how much traffic can 

be affected by the different weather each day, we downloaded a second dataset from 

https://www.copernicus.eu/en, the European Union’s Earth observation program. From 

the vast variety of variables that Copernicus had to offer we chose the ones that we 

believed were the most relevant with traffic, to be more specific our variables were 

eastward-moving air speed, northward moving air speed, dew point temperature, 

temperature, surface solar radiation and total precipitation. 

(3) Data preparation. After data was possessed, the necessary pre-process was needed. 

Firstly, in order to merge our two datasets, we converted the datetime columns in both 

datasets to the appropriate format and then merged them by using datetime as a key. The 

next step was to clean and transform our merged dataframe from the unnecessary columns 

that gave us no further information about the number of cars that were recorded from our 

sensor. Finally, the remaining columns were renamed to help us better explain our final 

results. 

 

 

https://data.gov.gr/
https://www.copernicus.eu/en


[30] 
 

(4) Explore data. During this step, a variety of visualisations were used to explore and 

understand the type of our time series and also search for underlying trends in our dataset 

that we might need to account for. Furthermore, the autocorrelation function (ACF) was 

used to examine the relationship between the number of cars in an hour and the same 

number during the past hours. The association between data and itself, lagged by a certain 

number of time units is displayed via autocorrelation, for instance lag 1 is a copy of the 

original data that has been time-shifted by one period [60]. 

(5) Create the forecasting model. In order to create our forecasting model, we used the 

Extreme Gradient Boosting (XGboost) algorithm. This algorithm is mainly based on 

gradient decision trees and uses a second-order Taylor expansion in order to calculate the 

loss function. It is an ensemble method that combines the outputs from individual decision 

trees. This algorithm has been applied to a wide range of fields, including health, finance 

and energy. In addition, we used cross-validation to tune our model. To be more specific, 

we used the TimeSeriesSplit method, which is a variation of the k-fold cross-validation. 

In the kth split, it uses the first k folds as a train set and the (k+1)th fold as a test set, while 

ignoring the future values in each split. We used five splits to split our dataset into 75% 

train data and 35% test data. To evaluate the performance of our model we used the mean 

absolute error (MAE), the root mean squared error (RMSE) and the mean absolute 

percentage error (MAPE) metrics. 

(6) Explain the forecasting results. Along with accurately predicting the number of cars, 

it is crucial to understand the factors that affect our prediction. Therefore, we used the 

Shapley additive explanations (SHAP). The main idea behind SHAP is to calculate the 

Shapley values for each feature of the sample that has to be interpreted, where each value 

represents the impact of each feature to the final result. Additionally, to show each 

variable’s contribution to each prediction of the model. More important variables appear 

higher in the summary plot.  

 

 

 

 

 

 



[31] 
 

6. Data Collection  

Two datasets were collected in order to create a model that predicts and explains the 

traffic state for the city of Athens. 

6.1. Traffic Dataset  

The first dataset includes open-source data from https://data.gov.gr/.Governments, 

municipal governments, and other public entities make their Open Government Data 

(OGD) accessible to the general public through their data portals. The official data portals 

of governments frequently post traffic data produced by sensors as OGD. The official 

Greek data portal for OGD is called data.gov.gr. Data produced by the Greek national 

government, local governments, and other public entities are accessible through the data 

portal's new, updated edition, which was introduced in 2020 and is divided into ten topical 

categories (e.g., environment, economy, and transportation). Roadside sensors that 

broadcast information on the quantity and speed of moving vehicles are known as "traffic 

data." Since the data are pooled hourly, they have been sufficiently anonymised to prevent 

privacy concerns. In order to obtain this data, we used the data.gov.gr API (Application 

Programming Interface). An API is a set of rules that dictate how two machines 

communicate with each other, API call is actually the request between the user and the 

web server. Every time we use software to communicate with other software or online 

servers, we are using APIs to request the information we need. In our case we used 

data.gov.gr API to obtain data considering traffic in the roads of Athens, for every hour, 

each day during the first six months of 2022. Each row includes the exact time and date 

of the record, the sensor’s id, the number of cars at this time, the name of the road, and 

the average speed of cars. In order to use the API service that gov.gr offers, users need to 

get a token by creating an account and providing personal information (such as name, 

email address and organisation) as well as the reason that they want to use the API. 

6.2. Weather Dataset 

The second dataset includes open-source data from https://www.copernicus.eu/en, to 

obtain our data we used the climate data store application program interface (CDS API). 

The Climate Data Store (CDS) API is a service that gives permission to the users to 

request data from CDS datasets by using a python script. These scripts contain a number 

of keywords, which can vary depending on the dataset that the user wants to retrieve data 

https://data.gov.gr/
https://www.copernicus.eu/en


[32] 
 

from. The categories that these keywords belong to are product type such as ‘reanalysis’, 

variables of interest like ‘temperature’ or ‘total precipitation’, the year, month, day or 

even time that the data are retrieved for, the format that we want the data to be (‘netCDF’, 

‘grib’) and the area that we want to extract data from [3]. In order to use the CDS API 

service we have to install the CDS API client which is a Python based library, by running 

the following command in a command prompt window: ‘pip install cdsapi ‘. Once the 

CDS API client is installed, it can be used in order to retrieve data from the available 

datasets in the CDS and ADS (Atmosphere Data Store) catalogues. Attached to each 

dataset download form there is the option of ‘Show API Request’ which displays the 

python code to be used [3]. The CDS contains a wealth of observations, climate data and 

seasonal forecasts. The result is a Time series dataset of on-site observations and 

reprocessed climate data records from satellites. To create a more accurate traffic 

forecasting model, from the 50 available variables that Copernicus has to offer, we chose 

2m temperature, total precipitation, snowfall, dewpoint temperature, the Eastward-

moving and Northward-moving air’s horizontal speed at a height of ten metres above the 

Earth’s surface and surface net solar radiation, hence we believe that these specific 

variables can affect the future traffic state of a road network. 

 

 

 

 

 

 

 

 

 

 

 

 



[33] 
 

7. Data Exploration 

In this project we used two datasets, (i) traffic data from a sensor placed near Omonoia 

square, which is a very popular road in the city of Athens as well as, (ii) weather data for 

this specific from Copernicus. Table 1 reports the descriptive statistics of the number of 

cars during each hour for each month near Omonoia square. Our starting period is the 1st 

of January 2022, according to our table we notice that there is not significant variation in 

the mean number of cars during each month, hence our data is stationary. 

 

Table 1 Descriptive Statistics of The Number of Cars During Each Month 

 

 

In addition, Fig. 6 shows the hourly variation of the number of cars during the first six 

months of 2022. The figure doesn’t reveal any kind of a strong trend during the examined 

period. 

Considering the monthly variation of the number of cars during each month (Fig 7), we 

notice that in January we had the fewer number of cars and in February the highest. 

Overall, there is not significant variation to the number of cars during our examined 

period, nor does the boxplot reveal one. 



[34] 
 

Regarding the number of cars during each hour of the day (Fig 8), according to the plot, 

we can clearly see that small numbers are mainly noticed during the early hours of the 

day and after approximately five o’clock whereas, the highest can be noticed from 

approximately ten to four o’clock. 

Finally, we checked our data for autocorrelation. Firstly, we performed a Durbin-Watson 

Test. The test produced a test statistic equal to 0.111, which indicates that there is 

autocorrelation in the data. This means that there is a significant degree of similarity 

between our given time series and a lagged version of itself over successive time intervals. 

In addition, we created the autocorrelation plot (Fig 9). The x-axis illustrates the lag 

values (1=previous hour, 2= 2 previous hours, etc). The y-axis indicates the amount of 

autocorrelation. According to our plot (Fig 9) the previous hour has the strongest impact 

considering the number of cars and as we move to the previous hours the degree of impact 

is decreasing.  

 

 

Figure 6 Number of Cars Each Hour of The Day During Six Months 

 

 

 

 



[35] 
 

 

 

Figure 7 Variation in The Number of Cars During Each Month 

 

 

 

Figure 8 Number of Cars During Each Hour of The Day 

      

 



[36] 
 

 

 

 

Figure 9 Autocorrelation Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[37] 
 

8. Traffic Forecasting 

To create our forecasting model, we used four types of variables (i) date-time variables, 

(ii) lag variables (variables from the past), (iii) weather related variables from and finally 

(iv) function variables. 

Date-time-based variables are numeric features that are components of the time step itself 

for each observation in our dataset. They indicate the day, month, hour, weekend and 

daytime or night time (Table 2).  

Table 2 Time-Based Variables 

Variable Description 

1. Seg_hour  Which hour of the day the number of cars was recorded. Range 

between [0-23]. 

2. Day  Which day of the month the number of cars was recorded. Range 

between [1-31]. 

3. Month Which month of the year the number of cars was recorded. Range 

between [1-6]. 

4. Day/Night 

 

Returns if the number of cars was recorded during day or night. 

Returns 1 if it was recorded during day and 1 during night. 

5. Weekday Which day of the week the number of cars was recorded. Range 

between [0-6]. 

 

 

 

 

 

 



[38] 
 

Lag variables represent values at prior timesteps that are considered useful because they 

are created on the assumption that what happened in the past can have an impact or 

contain a sort of intrinsic information about the future (Table 3). 

Table 3 Lag Variables 

Variable Description 

1. Prev_2hours The number of cars recorded 2 hours ago. 

 

2. Prev_2hours_mean The mean of the number of cars recorded 2 hours ago. 

 

3. Prev_2hours_max The max value of the cars recorded 2 hours ago. 

 

4. Prev_2hours_min The min value of the cars recorded 2 hours ago. 

 

5. Prev_3hours_mean The mean value of the cars recorded 3 hours ago. 

 

6. Prev_3hours_max The max value of the cars recorded 3 hours ago. 

 

7. Prev_3hours_min The min value of the cars recorded 3 hours ago. 

 

 

 

 

 

 

 



[39] 
 

Weather related variables are numeric variables that provide information about the 

temperature, the surface solar radiation and the total precipitation near Omonoia square, 

which is located in the city of Athens where our traffic sensor is placed (Table 4). 

Table 4 Weather Variables 

Variable Description 

1. Eastward-

moving air speed 

 

It is the horizontal speed of air moving towards the east, at a height 

of ten metres above the surface of the Earth, in metres per second. 

2. Northward- 

moving air speed 

  

It is the horizontal speed of air moving towards the north, at a height 

of ten metres above the surface of the Earth, in metres per second. 

3. Temperature  Temperature of air at 2m above the surface of land, sea or in-land 

waters. 

 

4. Surface solar 

radiation 

 

It is the Amount of solar radiation reaching the surface of the Earth 

minus the amount reflected by the earth’s surface. 

5. Total 

precipitation 

It is the accumulated liquid and frozen water, including rain and 

snow, that falls to the earth’s surface. 

 

Finally, function variables are our last two features cos_seg_hour and sin_seg_hour. In 

order for our model to detect the cyclical pattern of the hour during the day, we used cos 

and sin functions. Firstly, we normalised our seg_hour variable to range between 0 and 

2π, afterwards we implemented the cos and sin functions to get our two new features. 

To create our model, we used the XGboost algorithm that predicts the number of cars 

after two hours during each day for six months on the road that we have placed our sensor 

on. In order to improve our algorithm’s accuracy, we used cross validation to tune our 

model. This process is really important in any machine learning implementation, the 

reason is that it helps us select the optimal parameters for our machine learning algorithm 



[40] 
 

and as a result improve our model’s accuracy. Table 5 shows the optimal 

hyperparameters values of our prediction model 

Table 5 Hyperparameters Values 

Parameter Optimal Value 

1. n_estimators 1000 

2. learning rate 0.01 

3. colsample by tree 0.77 

4. gamma 0 

5. max depth 3 

 

To effectively split our time series data, we created a custom class called “Blocking Time 

Series Split” using scikit-learn's GridSearchCV function to perform hyperparameter 

tuning on an XGBoost regressor model. using scikit-learn's GridSearchCV function to 

perform hyperparameter tuning on an XGBoost regressor model. The 

BlockingTimeSeriesSplit class defines a split method that generates indices for each split 

of the dataset. The split method takes in X, y, and groups as arguments, where X 

represents the input features, y represents the target variable, and groups represents a 

grouping variable. However, y and groups are not used in this implementation. The 

n_splits parameter specifies the number of splits to be generated. For each split, the 

method yields two arrays of indices: the first contains the indices for the training set, and 

the second contains the indices for the validation set. The training set consists of the first 

70% of the data in each split, while the validation set consists of the remaining 30%. The 

XGBoost regressor model is instantiated, and GridSearchCV is used to perform 

hyperparameter tuning on the model. paramGrid should contain a dictionary of 

hyperparameters to be searched over. The cv parameter is set to an instance of the 

BlockingTimeSeriesSplit class with n_splits set to 5, indicating that the dataset will be 

split into 5 folds using the blocking time series cross-validation strategy. The scoring 

parameter is set to 'neg_mean_absolute_error', which specifies the scoring metric to be 

used in the cross-validation evaluation. The fit method of the GridSearchCV object is 



[41] 
 

called with the training data, X_train and y_train. After fitting, the best_score_ attribute 

of the fit object is printed to the console, which represents the best mean score achieved 

by the model over all cross-validation folds. The best_params_ attribute is also printed to 

the console, which represents the hyperparameters that achieved the best score.  

To evaluate the accuracy of our prediction, we compared it with a baseline model. 

Specifically, we assumed that as we run our model the number of cars will remain the 

same as it was two hours before. Furthermore, we used three evaluation metrics MAE 

(mean absolute error), RMSE (root mean square error) and MAPE (mean absolute 

percentage error). Table 6 and Table 7 show the evaluation metrics values of our 

prediction and baseline models. 

 

Table 6 Baseline Evaluation Metrics 

 MAE RMSE MAPE (%) 

Baseline 542.4 759.04 4.67 

 

Table 7 Prediction Evaluation Metrics 

 MAE RMSE MAPE (%) 

Train 272.27 396.86 3.15 

Test 325.12 474.77 4.29 

 

 

Figure 10. Shows the difference between actual and predicted values in the test set. 

Based on the plot, it is noticeable that our model is able to accurately predict the number 

of cars near Omonoia square except for peak periods. 

 



[42] 
 

 

Figure 10 Comparison Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[43] 
 

9. Model Explanation 

In order to explain our model, we used the SHAP summary plot. Figure 11 illustrates the 

summary plot. A SHAP (SHapley Additive exPlanations) summary plot is a graphical 

representation of the importance of each feature in a machine learning model. It helps to 

understand how each feature contributes to the model's predictions. The plot displays the 

mean absolute value of the SHAP values for each feature, sorted in descending order. The 

SHAP values represent the impact of a particular feature on the model's output. A positive 

SHAP value means that the feature has a positive impact on the model's output, while a 

negative SHAP value indicates a negative impact. The mean absolute value of the SHAP 

values for a feature is a measure of the feature's overall importance in the model. Each 

observation of our dataset is represented as a dot, in our case each dot represents one hour 

during the day.  The model's input variables are displayed on the y-axis in decreasing 

order of significance (from top to bottom). In the plot, variable ‘prev_two_hours_mean’ 

has the highest impact on the number of cars during each hour, followed by 

‘cos_seg_hour’, which is the hour of the day after we normalised it between 0 and 2π and 

then used the cos function. The third variable that has the highest effect on our result is 

‘prev_two_hours_max’ which is the hour closer to 23:00 o’clock from the previous two 

hours. Furthermore, in a summary plot of SHAP values, the x-axis typically represents 

the feature or variable being explained. A feature with a high SHAP value has a large 

impact on the model's prediction for a particular instance. This means that the model's 

prediction changes significantly when that feature is included or excluded. A feature with 

a high SHAP value is therefore considered to be an important contributor to the model's 

prediction for that instance. The colour of the dots reveals if a variable has high (red), or 

low (blue) value for each observation. According to our plot, if we observe the 

‘cos_seg_hour’ variable we notice that during early hours (blue colour), has higher SHAP 

value meaning that at this hour the probability of having a big number of cars on our road 

is high. On the other hand, during late hours the SHAP value is lower meaning that the 

same probability is low.  

 

 

 

 



[44] 
 

 

Figure 11 Summary Plot  

 

Figure 12, shows a Local bar plot which is an essential visualization tool that plays a 

crucial role in interpreting the feature importance of machine learning models, 

particularly in the context of explaining individual predictions made by the model. The 

plot provides us with a clear representation of the contribution of each feature to the 

predicted output for a specific instance of input data, allowing us to gain deeper insights 

into the behavior of the model. In the Local bar plot, we can see a horizontal bar for each 

feature, with the length of the bar representing the magnitude of the SHAP value. The 

SHAP (Shapley Additive exPlanations) value is a statistical measure that quantifies the 

impact of each feature on the model's output. The colour of the bar indicates whether the 

feature value is high (red) or low (blue) relative to the other instances of data in the 

dataset. This provides us with a clear understanding of how each feature compares to 

other instances in the dataset, making it easier to interpret the results. Upon analyzing our 



[45] 
 

Local bar plot, we can observe that the prev_two_hours_mean and prev_two_hours_max 

features hold the most substantial impact on our target variable, with both of their values 

being relatively low compared to other instances in the dataset. This indicates that the 

model is highly sensitive to these features, and any changes to their values can have a 

significant impact on the predicted output. In contrast, the Sin_seg_hour feature, which 

is the third most important variable in our plot, has a relatively high value compared to 

other instances in the dataset. This suggests that the model is less sensitive to this feature 

and that changes to its value may have a lesser impact on the predicted output.  

 

 

Figure 12 Local Bar Plot 1 

 

 

 

 

 

 



[46] 
 

In Figure 13, we can see another instance of our dataset displayed in a local bar plot. The 

plot reveals that prev_two_hours_mean and cos_seg_hour have the greatest impact on 

our target variable, indicating that any changes made to their values will significantly 

affect the target variable. In comparison to our first example, we can observe that the 

feature values are relatively high (represented in red), unlike other instances in the dataset. 

This indicates that these features have a strong positive impact. Specifically, the variable 

prev_two_hours_mean, which was the most critical variable in our previous example, 

now has a positive impact on our prediction instead of a negative one. This demonstrates 

that different instances in the dataset can have varying feature importance and impact on 

our prediction, highlighting the importance of interpretability and explainability in 

machine learning models. 

 

Figure 13 Local Bar Plot 2 

 

Figure 14, Illustrates the feature importance bar plot which is a critical visualization tool, 

used to evaluate the predictive power of different features on the target variable in a 

model. By analyzing the relative importance of each feature, we can identify which 

variables have the most significant impact on the outcome of our model. In the feature 

importance bar plot, the y-axis represents the names of the most important features of the 

model, while the x-axis indicates the feature importance scores. This bar plot provides a 

quick and easy-to-read visualization of how each feature contributes to the overall 

performance of the model. Upon analyzing the feature importance bar plot for our model, 



[47] 
 

we can observe that the previous three hours mean feature holds the most substantial 

impact in predicting the number of cars after two hours. It is followed by the previous 

two hours min variable, previous two hours max, and cos_seg_hour. These variables hold 

considerable importance in the model and contribute significantly to the prediction of the 

target variable. By leveraging the insights provided by the feature importance bar plot, 

we can optimize our model by focusing on the most important variables and improving 

their predictive power. This will help us build more accurate and reliable models that can 

provide us with valuable insights into the behavior of our target variable. 

 

 

 

 

Figure 14 Feature Importance Bar Char 

 

 

 

 

 

 

 



[48] 
 

10 Conclusion 

The main objective of this study was to use machine learning and XAI (Explainable 

artificial intelligence) to predict and explain the traffic state of a road network. As a result, 

a case study was presented that uses the XGBoost algorithm to predict the amount of 

traffic on a specific road of Athens during the next two hours. Furthermore, the SHAP 

framework was used to explain the model and help the user understand the forecasts that 

were made. Moreover, in order to improve the accuracy of our model weather data was 

added from Copernicus, the European Union’s Earth observation program [23]. 26 

variables were used to create the model, which were divided into three groups: time-based 

factors, weather variables and function variables. The procedure of our model evaluation 

resulted in an RMSE value of 474.77, an MAE value of 325.12, an MAPE value of 4.29. 

The model outperformed the baseline model whose MAE value was 542.4 which is 

significantly more than our model’s. Furthermore, by using the SHAP framework we 

found that the ‘prev_two_hours_mean’, the ‘cos_seg_hour’, the ‘prev_two_hours_max’ 

and the average speed were the variables that had the biggest impact on our prediction for 

the number of cars during the after two hours. In addition, we found out that during the 

early hours of the day there was a greater likelihood of having a lot of cars on our route. 

The implementation of efficient traffic control measures is required due to the numerous 

major transportation and health issues generated by the ever-growing volume of road 

traffic. Traffic forecasting plays a crucial role in improving traffic management by 

providing real-time and accurate predictions of traffic flow on roads and highways. This 

information can then be used by traffic management authorities to make informed 

decisions about traffic control, such as adjusting traffic signals, rerouting traffic, and 

deploying emergency resources. Real-time traffic prediction. By providing real-time 

predictions of traffic flow, traffic management authorities can quickly respond to 

changing traffic conditions and make adjustments to traffic control systems as needed. 

Incident management. By providing early warning of traffic incidents, such as accidents 

or road closures, traffic management authorities can quickly deploy emergency resources 

and minimise the impact on traffic flow. Congestion management. By predicting areas of 

potential congestion, traffic management authorities can take proactive measures to 

prevent or alleviate congestion, such as adjusting traffic signals or rerouting traffic. Long-

term planning. By analysing historical traffic data, traffic management authorities can 



[49] 
 

make informed decisions about long-term infrastructure projects, such as the construction 

of new roads or the expansion of existing ones. Overall, traffic forecasting can play a 

critical role in improving traffic management by providing real-time and accurate 

predictions of traffic flow, enabling traffic management authorities to make informed 

decisions and take proactive measures to improve traffic flow and safety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[50] 
 

11. Appendix 

Importing Libraries 

!pip install shap 

!pip install sklearn metrics 

import pandas as pd 

import numpy as np 

import datetime 

import matplotlib.pyplot as plt 

import seaborn as sns 

import xgboost as xgb 

from sklearn.model_selection import TimeSeriesSplit 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_percentage_error 

import shap 

from statsmodels.graphics import tsaplots 

from statsmodels.stats.stattools import durbin_watson 

import math 

 

First dataset gov.gr sensor ms121 

df=pd.read_csv('/content/drive/MyDrive/data.xls') 

sensore=df.loc[df['deviceid']=='MS121'] 

sensore.head() 

 

 

 

 

 

 

 

 

 

 



[51] 
 

Importing second dataset form Copernicus 

weather_data=pd.read_csv('/content/drive/MyDrive/ms121f.csv') 

weather_data['datetime']=pd.to_datetime(weather_data['time'],utc=True) 

weather_data.head() 

 

 

 

 

Merging the two datasets 

data=pd.merge(sensore,weather_data,on='datetime',how='left') 

data.head() 

 

 

 

 

 

Creating new features seq hour, day, month, weekday, year, 

weekend,day/night, winter/spring 

data['seg_hour']=data['datetime'].dt.hour 

data['day']=data['datetime'].dt.day 

data['month']=data['datetime'].dt.month 

data['weekday']=data['datetime'].dt.weekday 

data['year']=data['datetime'].dt.year 

data['weekend']=[1 if data['weekday'][i] in [5,6] else 0 for i in rang

e(len(data))] 

data['day/night']=[1 if data['seg_hour'][i]<18 and data['seg_hour'][i]

>6 else 0 for i in range(len(data))] # day equals 1 and night equals 0 

data=data.drop(['time','longitude','latitude'],axis=1) 

 

 

 



[52] 
 

cyclical features encoding(cos-sin) 

data['seg_hour_norm']=2 * math.pi * 

data['seg_hour']/data['seg_hour'].max() 

data['cos_seg_hour']=np.cos(data['seg_hour_norm']) 

data['sin_seg_hour']=np.sin(data['seg_hour_norm']) 

 

 

Descriptive statistics each month countedcars 

data_pivot=data.pivot(index='datetime',columns='month',values='counted

cars') 

data_pivot.columns=['january', 'February','March', 

'April','May','June'] 

data_pivot.head() 

data_pivot.describe().applymap('{:,.2f}'.format) 

 

 

 

Number of cars per hour lineplot 

fig=plt.figure(figsize=(13,7)) 

sns.lineplot(data=data,x='datetime',y='countedcars',ci=None) 

plt.xticks(fontsize=18) 

plt.yticks(fontsize=18) 

plt.title('Amount of cars per hour',fontsize=19) 

plt.xlabel('date',fontsize=18) 

plt.ylabel('Number of Cars',fontsize=18) 

plt.tight_layout() 

plt.show() 



[53] 
 

 

 

Countedcars(target variable) distribution  

data['countedcars'].value_counts()\ 

.plot(kind='hist',bins=40) 

 

 

 

Number of cars during each day lineplot 

fig=plt.figure(figsize=(13,7)) 

sns.lineplot(data=data,x='day',y='countedcars',ci=None) 

plt.xticks(fontsize=18) 

plt.yticks(fontsize=18) 

plt.title('Number of cars per day',fontsize=19) 

plt.xlabel('day',fontsize=18) 

plt.ylabel('Number of Cars',fontsize=18) 

plt.tight_layout() 

plt.show() 



[54] 
 

 

 

Number of cars during each hour lineplot 

fig=plt.figure(figsize=(13,7)) 

sns.lineplot(data=data,x='month',y='countedcars',ci=None) 

plt.xticks(fontsize=18) 

plt.yticks(fontsize=18) 

plt.title('Number of cars per month',fontsize=19) 

plt.xlabel('Month',fontsize=18) 

plt.ylabel('Number of Cars',fontsize=18) 

plt.tight_layout() 

plt.show() 

 

 

Number of cars each month boxplot 

fig=plt.figure(figsize=(18,10)) 

sns.boxplot(data=data,x='month',y='countedcars',color='grey') 



[55] 
 

plt.title('Number of Cars Each Month',fontsize=20) 

plt.xlabel('Month',fontsize=19) 

plt.xticks(np.arange(6),labels=['January','February','March','April','

May',"June"],fontsize=18) 

plt.yticks(fontsize=16) 

plt.ylabel('Number of Cars',fontsize=19) 

plt.tight_layout() 

plt.show() 

 

 

 

 

Number of cars during each hour lineplot 

fig=plt.figure(figsize=(13,7)) 

sns.lineplot(data=data,x='seg_hour',y='countedcars',ci=None) 

plt.xticks(fontsize=18) 

plt.yticks(fontsize=18) 

plt.title('Number of cars during each hour',fontsize=19) 

plt.xlabel('Hour',fontsize=18) 

plt.ylabel('Number of Cars',fontsize=18) 

plt.tight_layout() 

plt.show() 

 



[56] 
 

 

 

Autocorrelation Plot 

fig = tsaplots.plot_acf( 

    data["countedcars"], lags=5 

)  

plt.show() 

 

 

 

 

 

 

 



[57] 
 

Creating Lag features  

data['index']=data.index 

def prev_2hours(): 

   data['prev_2hours']=[data['countedcars'][i] if i==0 else data['coun

tedcars'][i-1] if i==1 else data['countedcars'][i-2] 

                                for i in range(len(data))] 

prev_2hours() 

def prev_two_hours_mean(): #mean of previous two  days (window = 2) 

      data['prev_two_hours_mean']=data['index'].apply(lambda x: data['

countedcars'].loc[x-2:x-1].mean()).round() 

     

prev_two_hours_mean() 

     

def prev_two_hours_min(): #minimum of  previous two on  days (window =

 2) 

    data['prev_two_hours_min']=data['index'].apply(lambda x: data['cou

ntedcars'].loc[x-2:x-1].min()) 

prev_two_hours_min() 

     

def prev_two_hours_max(): #maximum of previous two  days (window = 2) 

     data['prev_two_hours_max']=data['index'].apply(lambda x: data['co

untedcars'].loc[x-2:x-1].max()) 

         

prev_two_hours_max() 

     

def prev_three_hours_mean(): #mean of previous three  days (window = 3

) 

     data['prev_three_hours_mean']=data['index'].apply(lambda x: data[

'countedcars'].loc[x-3:x-1].mean()).round() 

         

prev_three_hours_mean() 

     

def prev_three_hours_min(): #minimum of previous three  days (window =

 3) 

     data['prev_three_hours_min']=data['index'].apply(lambda x: data['

countedcars'].loc[x-3:x-1].min()) 

         

prev_three_hours_min() 

     

def prev_three_hours_max(): #maximum of previous three days (window = 

3) 



[58] 
 

     data['prev_three_hours_max']=data['index'].apply(lambda x: data['

countedcars'].loc[x-3:x-1].max()) 

         

prev_three_hours_max() 

 

Train-Test split (75-25) 

train=data.loc[data.datetime < '2022-05-01 00:00:00+00:00'] 

test=data.loc[data.datetime >= '2022-05-01 00:00:00+00:00'] 

print(data.shape) 

print(train.shape) 

print(test.shape) 

 

(3675, 26) 

(2837, 26) 

(838, 26) 

 

Baseline model creation (Evaluation metrics: RMSE, MAE) 

Baseline_pred=[data['countedcars'][i] if i==0 else 

data['countedcars'][i-1] if i==1 else data['countedcars'][i-2] 

for i in range(len(data))] 

data_base=data['countedcars'] 

rmse_base=np.sqrt(mean_squared_error(data_base,Baseline_pred)) 

mae_base=mean_absolute_error(data_base,Baseline_pred) 

mape_base=mean_absolute_percentage_error(data_base,Baseline_pred) 

print("RMSE_base:",rmse_base, 

"MAE_base:",mae_base,"MAPE_base",mape_base 

RMSE_base: 759.0421461235447 MAE_base: 542.4 MAPE_base 4.6714889196017

224e+16 

 

Features-Target Separation 

features=['Eastward-Moving air speed', 'Northward-Moving air speed', 

      'Temperature', 'Surface solar radiation', 

       'Total precipitation', 'average_speed', 

       'cos_seg_hour','sin_seg_hour', 'day', 'month', 'weekday', 'week

end','prev_2hours', 

       'prev_two_hours_mean', 'prev_two_hours_min', 'prev_two_hours_ma

x', 

       'prev_three_hours_mean', 'prev_three_hours_min', 'prev_three_ho

urs_max','day/night'] 

target='countedcars' 



[59] 
 

 

 

X_train,y_Train,X_test,y_test creation 

X_train=train[features] 

y_train=train[target] 

X_test=test[features] 

y_test=test[target] 

 

Parameter Tuning 

paramGrid = {'n_estimators':[998], 

             'learning_rate':[0.01],'max_depth':[2], 

             'colsample_bytree':[0.77], 

             'gamma':[0]         

                } 

 

 

 

Creating class BlockingTimeSeriesSplit to Split Time Series 

Data into Training and Test Sets 

class BlockingTimeSeriesSplit(): 

    def __init__(self, n_splits): 

       self.n_splits = n_splits 

     

    def get_n_splits(self, X, y, groups): 

        return self.n_splits 

     

    def split(self, X, y=None, groups=None): 

        n_samples = len(X) 

        k_fold_size = n_samples // self.n_splits 

        indices = np.arange(n_samples) 

 

        margin = 0 

        for i in range(self.n_splits): 

            start = i * k_fold_size 

            stop = start + k_fold_size 

            mid = int(0.7 * (stop - start)) + start 

            yield indices[start: mid], indices[mid + margin: stop] 

 

btscv = BlockingTimeSeriesSplit(n_splits=5) 

model=xgb.XGBRegressor() 



[60] 
 

 

gridsearch=GridSearchCV(model,paramGrid, cv=btscv, 

scoring='neg_mean_absolute_error', verbose=1) 

 

fit = gridsearch.fit(X_train, y_train) 

 

print(fit.best_score_) 

 

print(fit.best_params_) 

 

Model Training 

model=fit.best_estimator_ 

model.fit(X_train,y_train) 

 

Model Prediction 

y_pred_train=model.predict(X_train).round() 

 

Evaluation Metrics 

mae_train=mean_absolute_error(y_train,y_pred_train) 

mae_train 

272.2717659499471 

 

mae_test=mean_absolute_error(y_test,y_pred) 

mae_test 

325.1252983293556 

 

rmse_test=np.sqrt(mean_squared_error(y_test,y_pred)) 

rmse_test 

474.77241501802996 

 

mape_train=mean_absolute_percentage_error(y_train,y_pred_train) 

mape_train 

3.1512497780377764e+16 

mape_test=mean_absolute_percentage_error(y_test,y_pred) 

mape_test 4.295617162478804e+16 

Shap Explainer Creation 

best=model 

explainer = shap.TreeExplainer(best) 

Fits the explainer 

explainer = shap.Explainer(model.predict, X_test) 



[61] 
 

Shap Values Calculation 

shap_values = explainer(X_test) 

Shap values Plot 

sns.set_style("white") 

shap.summary_plot(shap_values) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[62] 
 

plot feature importance  

x=data[['Eastward-Moving air speed', 

 'Northward-Moving air speed', 

 'Temperature', 

 'Surface solar radiation', 

 'Total precipitation', 

 'average_speed', 

 'cos_seg_hour', 

 'sin_seg_hour', 

 'day', 

 'month', 

 'weekday', 

 'weekend', 

 'prev_two_hours_mean', 

 'prev_two_hours_min', 

 'prev_two_hours_max', 

 'prev_three_hours_mean', 

 'prev_three_hours_min', 

 'prev_three_hours_max', 

 'prev_2hours','day/night']] 

 

(pd.Series(model.feature_importances_, index=x.columns) 

   .nlargest(4) 

   .plot(kind='barh')) 

 

 

 

 

 

 



[63] 
 

Predicted and actual data comparison plot 

data_compare=pd.DataFrame({'real':y_test,'predicted':y_pred}) 

data_compare=data_compare.set_index(test.iloc[:,3]) 

 

fig,ax=plt.subplots(figsize=(17,8)) 

 

sns.lineplot(data=data_compare,x=data_compare.index,y=data_compare.rea

l,color='blue',label='REAL') 

sns.lineplot(data=data_compare,x=data_compare.index,y=data_compare.pre

dicted,color='red',label='PREDICTED') 

plt.legend() 

plt.show() 

fig.savefig('Real-Predicted') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[64] 
 

12. References 

[1]  

Copernicus Information URL: 

 https://www.copernicus.eu/en/about-copernicus 

[2] 

Carlo Buontempo, Ronald Hutjes, Philip Beavis et. al 2019 ‘Fostering the development 

of climate change service (C3S) for agriculture applications 

[3] 

Climate Data Store (CDS) URL: 

https://confluence.ecmwf.int/display/CKB/Climate+Data+Store+%28CDS%29+API+K

eywords 

[4] 

Github netCDF4 data type URL: 

https://unidata.github.io/netcdf4-python/ 

[5]  

Yue Hou, Zhiyuan Deng, and Hanke Cui 2021 ‘Short-term traffic flow prediction with 

weather conditions: Based on deep learning algorithms and data fusion’ 

[6] 

Copernicus Atmosphere Monitoring URL: 

https://insitu.copernicus.eu/state-of-play/copernicus-atmosphere-monitoring-service 

[7] 

Copernicus Satellites URL: 

https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites 

[8] 

Climate Data Store Documentation URL: 

https://cds.climate.copernicus.eu/toolbox/doc/index.html 

[9] 

The Copernicus Marine Service URL: 

https://www.copernicus.eu/en/copernicus-services/marine 

[10] 

The Copernicus Land Service URL: 

https://www.copernicus.eu/en/copernicus-services/land 

 

https://www.copernicus.eu/en/about-copernicus
https://confluence.ecmwf.int/display/CKB/Climate+Data+Store+%28CDS%29+API+Keywords
https://confluence.ecmwf.int/display/CKB/Climate+Data+Store+%28CDS%29+API+Keywords
https://unidata.github.io/netcdf4-python/
https://insitu.copernicus.eu/state-of-play/copernicus-atmosphere-monitoring-service
https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites
https://cds.climate.copernicus.eu/toolbox/doc/index.html
https://www.copernicus.eu/en/copernicus-services/marine
https://www.copernicus.eu/en/copernicus-services/land


[65] 
 

[11] 

The Copernicus Security Service URL: 

https://www.copernicus.eu/en/copernicus-services/security  

[12] 

Grib Data Type URL: 

https://weather.gc.ca/grib/what_is_GRIB_e.html 

[13] 

ERA5-Land hourly data from 1950 to present Dataset URL: 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview 

[14] 

Impact Of Copernicus URL: 

https://www.copernicus.eu/en/about-copernicus/impact-copernicus 

[15] 

Irrigation Management Case Study URL: 

https://www.copernicus.eu/sites/default/files/UseCase_Agriculture_Irrigation.pdf 

[16] 

Energy Case Study URL: 

https://www.copernicus.eu/sites/default/files/UseCase_Energy_OilAndGas.pdf 

[17] 

Solar Power Production Case Study URL: 

https://www.copernicus.eu/sites/default/files/UseCase_Energy_SolarPowerProduction.p

df 

[18] 

Health Case Study URL: 

https://www.copernicus.eu/sites/default/files/UseCase_Health_AirQualityMonitoring.pd

f 

[19] 

Transportation Case Study URL: 

https://www.copernicus.eu/en/about-copernicus/impact-copernicus/transport 

[20] 

Urban Planning Case Study URL: 

https://www.copernicus.eu/en/copernicus-services/security
https://weather.gc.ca/grib/what_is_GRIB_e.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://www.copernicus.eu/en/about-copernicus/impact-copernicus
https://www.copernicus.eu/sites/default/files/UseCase_Agriculture_Irrigation.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Energy_OilAndGas.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Energy_SolarPowerProduction.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Energy_SolarPowerProduction.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Health_AirQualityMonitoring.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Health_AirQualityMonitoring.pdf
https://www.copernicus.eu/en/about-copernicus/impact-copernicus/transport


[66] 
 

https://www.copernicus.eu/sites/default/files/UseCase_UrbanPlanning_ConstructionMo

nitoring.pdf 

[21] 

Agricultural Case Study URL: 

https://www.copernicus.eu/sites/default/files/UseCase_Insurance_AgriculturalInsurance

.pdf 

[22]  

Athanasios I. Salamanis, Anastasia-Dimitra Lipitakis, George A. Gravvanis et. al 2021 

‘An adaptive cluster-based spare autoregressive model for large-scale multi-step traffic 

forecasting’ 

[23] 

Xuexin Bao, Dan Jiang, Xuefeng Yang, Hongmei Wang. 2020 ‘An improved deep belief 

network for traffic prediction considering weather factors’ 

[24] 

Federal Highway Administration  

https://www.fhwa.dot.gov/policyinformation/statistics.cfm 

[25] 

Benjamin Lartey, Abenezer Girma, Abdollah Homaifair et. al 2021 

‘XGBoost: a tree-based approach for traffic volume prediction 

[26] 

Y. Wang, Y. Guo 2020 ‘Forecasting method of stock market volatility in time series data 

based on mixed model of arima and xgboost’ 

[27] 

W. Wang, Y. Shi, G. Lyu, W, Deng 2017 ‘Electricity consumption prediction using 

xgboost based on discrete wavelet transform’ 

[28] 

Misganaw Abebe, Yoojeong Noh, Young-Jin Kang et. al 2021  

‘Ship tranjectory planning for collision avoidance using hybrid ARIMA – LSTM models’  

[29] 

Lei xiong, Ye Yao 2021  

‘Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) 

algorithm.’ 

[30] 

https://www.copernicus.eu/sites/default/files/UseCase_UrbanPlanning_ConstructionMonitoring.pdf
https://www.copernicus.eu/sites/default/files/UseCase_UrbanPlanning_ConstructionMonitoring.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Insurance_AgriculturalInsurance.pdf
https://www.copernicus.eu/sites/default/files/UseCase_Insurance_AgriculturalInsurance.pdf
https://www.fhwa.dot.gov/policyinformation/statistics.cfm


[67] 
 

V. Vapnik, O. Chapelle 2000 

‘Bounds on Error Expectation for Support Vector Machines’. 

[31] 

Shuang Li, Kun Xu, Guangzhe Xue et al. 2022 

‘Prediction of coal spontaneous combustion temperature based on improved grey wolf 

optimizer algorithm and support vector regression’. 

[32] 

Pallabi Saikia, Rashmi Dutta Baruah, Sanjay Kumar Signh, Pradip Kumar Chadhurri 

2020  

‘Artificial Neural Networks in the domain of reservoir characterization: A review from 

shallow to deep models’ 

[33] 

Taghreed Alghamdi, Khalid Elgazzar, Magdi Bayoumi et al. 2019 

‘Forecasting Traffic Congestion Using Arima Modeling’ 

[34] 

Themistoklis Diamantopoulos, Dionysios Kehagias, Felix G. Konig et al. 2013 

‘Investigating the effect of global metrics in travel time forecasting’ 

[35] 

Athanasios Salamanis, Dionysios Kehagias, Christos D. Kehagias, et al. 2016 

‘Managing Spatial Graph Dependencies in Large Volumes of Traffic Data for Travel-

Time Prediction’ 

[36] 

Peibo Duan, Guoquiang Mao, Weifa Liang, Degan Zhang et al. 2019 

‘A Unified Spatio-Temporal Model for Short-Term Traffic Flow Prediction’ 

[37] 

Jianhua Guo, Wei Huang, Billy M. Williams 2014 

‘Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction 

and uncertainty quantification’ 

[38] 

Afhshin Abadi, Tooraj Rajabioum, Petros A. Ioannou 2015 

‘Traffic Flow Prediction for Road Transportation Networks with Limited Traffic Data’ 

[39] 

Kamarianakis, Wei Shen, Laura Wynter 2012 



[68] 
 

‘Real-time road traffic forecasting using regime-switching space-time models and 

adaptive Lasso’ 

[40] 

Jia Zheng Zhu, Jin Xin Cao, Yuan Zhu 2014 

‘Traffic volume forecasting based on radia basis function neural network with the 

consideration of traffic flows at the adjacent intersections’ 

[41] 

Pinlong Cai, Yunpeng Wang, Guangquan Lu et al 2016 

‘A spatiotemporal correlative k-nearest neighbour model for short-term traffic multistep 

forecasting’ 

[42] 

Bin Sun, Wei Cheng, Prashant Goswami, Guohua Bai 2017 

‘Short-term forecasting using self-adjusting k-nearest neighbours’ 

[43] 

Fangce Guo, John W. Polak, Rajesh Krishman 2018 

‘Predictor fusion for short-term traffic forecasting’ 

[44] 

Wenbin Hu, Liping Yan, Kaizeng Liu et al 2016 

‘A short-term Traffic Flow Forecasting Method Based on the Hybrid PSO-SVR’ 

[45] 

Yuliang Cong, Jianwei Wang, Xiaolei Li 2016 

‘Traffic Flow Forecasting by a Least Squares Support Vector Machine with a Fruit Fly 

Optimization Algorithm’ 

[46] 

Baozhen Yao, Chao Chen, Quingda Cao 2016 

‘Short-Term Traffic Speed Prediction for an Urban Corridor’ 

[47] 

Jia Zheng Zhu, Jin Xin Cao, Yuan Zhu 2014 

‘Traffic volume forecasting based on radia basis function neural network with the 

consideration of traffic flows at the adjacent intersections’ 

[48] 

Jiaqiu Wang, Ioannis Tsapatakis, Chen Zhong 2016 

‘A space-time delays neural network model for travel prediction’ 

 



[69] 
 

[49] 

Gaetano Fusco, Chiara Colombaroni, Natalia Isaenko 2016 

‘Short-term speed predictions exploiting big data on large urban road networks’ 

[50] 

Jinjun Tang, Fang Liu, Yajie Zou, et al 2017 

‘An improved fuzzy neural network for traffic speed prediction considering periodic 

characteristics’ 

[51] 

A. Ladino, A.Y Kibangou, C. Canudas de Wit, et al 2017 

‘A real time forecasting tool for dynamic travel time from clustered time series’ 

[52] 

Kui-Lin Li, Chun-Jie Zhai, Jian-Min Xu 2017 

‘Short-term traffic flow prediction using a methodology based on ARIMA and RBFANN’ 

[53] 

Jianhua Guo, Zhao Liu, Wei Huang, et al 2017 

‘Short-term traffic flow prediction using fuzzy information granulation approach under 

different time intervals’ 

[54] 

Raza A., and Zhong M. (2018) 

‘Hybrid artificial neural network and locally weighted regression models for lane-based 

short-term urban traffic flow forecasting’ 

[55] 

Mohammed Amine Naji, Sanaa El Filali, Kawtar Aarika, et al 2021 

‘Machine learning algorithms for breast cancer prediction and diagnosis’ 

[56] 

Jitendra Singh Kushwah, Atul Kumar, Subhash Patel 2021 

‘Comparative study of regressor and classifier with decision tree using modern tools’ 

[57] 

Ruoran Wang, Luping Wang, Jing Zhang, 2022 

‘Xgboos machine learning algorithms performed better than regression models in 

predicting mortality of moderate to severe traumatic brain injury’ 

[58] 



[70] 
 

P. Kulkarni, S. Londhe, M. Deo, 2017  

‘Artificial Neural Networks for Construction Management’ 

[59] 

Yasunobu Nohara, Koutarou Matsumoto, Hidehisa Soejima et al 2022 

‘Explanations of machine learning models using shapley additive explanation and 

application for real data in hospital’ 

[60] 

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: 

Forecasting and Control. Wiley Series in Probability and Statistics. 

[61] 

Goodfellow, I., Bengio, Y. and Courville, A., 2016. Machine learning basics. Deep 

learning, 1(7), pp.98-164. 

[62] 

Saravanan, R. and Sujatha, P., 2018, June. A state of art techniques on machine learning 

algorithms: a perspective of supervised learning approaches in data classification. In 2018 

Second International Conference on Intelligent Computing and Control Systems 

(ICICCS) (pp. 945-949). IEEE. 

[63] 

Wang, D., 2001. Unsupervised learning: foundations of neural computation. Ai 

Magazine, 22(2), pp.101-101. 

 

 

 

 

 

 

 

 

 


