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Abstract

This work assesses the power and size properties of the wild bootstrap implementation of

Johansen’s test for cointegration for a variety of realistic data generating processes using

simulations on systems with random coefficients. A VAR(2) is used, with parameters

generated randomly (but under some restrictions). We construct innovations processes with

GARCH(1,1), EGARCH(1,1) and SARV(1,1) variances, as well as with outliers and regime

shifts in the variance. We find that the wild bootstrap test significantly outperforms

Johansen’s test when innovations exhibit conditional heteroskedasticity or stochastic volatility

but not when innovations have outliers or regime shifts. Also, we find a significant tendency

for both tests to underestimate the cointegrating rank, which somewhat contradicts current

literature (probably associated to our choice of intervals from which parameters are drawn).
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Notation

Symbol Description

p Number of variables/dimension of a system

T Number of realisations of a series/system

r Cointegrating rank of a system

VECM(k) Vector Error Correction model of lag length k

VAR(k) Vector Autoregression/Autoregressive model of lag length k

B(ν) Standard Brownian motion (defined on C[0, 1])

∆ First difference operator

Table 1: Notation



1 Introduction

1.1 Motivation & Contributions

In recent years, cointegration has become a most important tool for applied econometrics,

especially in macroeconomic and financial applications. Despite the multitude of both

single and multi-equation tests for cointegrating relations found throughout the literature,

the Engle and Granger (1987) two step method and Johansen (1988, 1991) tests have

dominated the applied landscape. An inherent advantage of Johansen’s approach is

the capability of identifying all possible cointegrating relations without speculating causal

relations between variables. On the other hand, Johansen’s approach produces two test

statistics which converge to Brownian motion functionals, and therefore follow non-standard

distributions. Thus proper critical values for Johansen’s tests can be obtained through

Monte Carlo methods. However, complicated Data Generating Processes1 can introduce

unknown parameters in Johansen’s statistics, thus making them non-pivotal as they would

depend on unknown quantities. A case where non-pivatility is likely to occur is when the

innovations process driving a cointegrating system has special traits, such as conditional

heteroskedasticity, which effectively introduces parameters and reshapes the specification of

the model. Given that many real world time series do exhibit such traits, assessing their

impact on inference procedures is important since their validity can make the difference

between drawing insightful inferences and producing spurious results.

Bootstrapping the statistics is an effective method for bypassing non-pivotalities and

certain cases of misspecification, as well as for handling small-sample cases, where the

asymptotic results of Johansen’s tests are challenged. The presence of dependent data

following underlying processes slightly complicates producing bootstrapped versions of stan-

dard statistics, as is typically the case with dependent data. However, the literature has

so far managed to pull through and provide bootstrapped versions of Johansen’s test for

cointegration. Its popularity with applied economists, as well as the fact that the testing

procedure is straightforwardly based on the likelihood ratio format of statistical testing of

nested models, are probably driving factors that motivated researchers to undertake boot-

strapping this specific test(s) instead of other univariate/multivariate tests for cointegration.

The most well-known bootstrap implementations of Johansen’s test(s) are the block

bootstrap method (Giersbergen (1996)), the IID bootstrap method (Swensen (2006)) and

the wild bootstrap method (Cavaliere et al. (2010a,b)). Each test has its merits and

drawbacks, and each is fit for tackling different forms of issues that might arise in a

cointegrated system. The block bootstrap mitigates autocorrelation and the presence of

MA terms in a VECM, the IID bootstrap can provide robustness and bias reduction

1Henceforth abbreviated to DGPs.
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against specific observations (much like the jackknife which it was inspired from, see Efron

(1992)), and the wild bootstrap allows for overcoming heteroskedasticity, and time-dependent

variance in general. Therefore, bootstrap methods can be used to resolve a wide variety

of issues that could violate the assumptions of Johansen’s test or compromise its effectiveness.

Of course, these methods have theoretical justifications and proofs verifying their limiting

validity, however, putting these methods to the test is a necessary step before widely

adopting them. As is usual with statistical hypothesis tests, we can evaluate the performance

of bootstrap cointegration testing through simulations. There, we can run sort of ”controlled

experiments” where we can modify the DGPs accordingly to examine the robustness of

these methods against the issues they are designed to resolve. Given that cointegration

is typically applied in macroeconomic and financial time series, we consider features such

systems’ innovations processes are likely to exhibit. More specifically, we examine the power

and size of bootstrap tests against:

- Conditional heteroskedasticity

- Stochastic volatility

- Outliers in variance

- Regime shifts in variance

The first two cases are a perfect match for the wild bootstrap test, while the last two

are likely to pose a challenge, even though they concern anomalies in the variance of the

model, while its deterministic specification remains intact. Each of these cases typically

corresponds to real world situations and series such as:

- Risky assets prices

- Macroeconomic control variables (consumption, employment etc.) during periods of high

uncertainty

- Price levels of countries that enter a monetary union

- Exchange rates after critical elections

- Agricultural commodity prices during natural disasters

- Companies’ stock prices when launching a new product/service

- CDS spreads during financial crises

In the present work, we aspire to make three distinct contributions: First, we aim at

verifying the findings of the existing literature regarding the performance (power and size)

of cointegration testing and bootstrap cointegration testing methods, with a focus on the

2



wild bootstrap implementation of Johansen’s test. Second, we attempt to extend the reach

of simulations-based assessments of Johansen’s and wild bootstrap tests by considering

DGPs with random coefficients. This approach, despite being much more computationally

demanding than the fixed coefficients approach, allows us to address not a specific model but

a class of models, which expands the universality of any results regarding the performance of

the statistical methods we consider. Third, we wish to examine whether the wild bootstrap,

despite its structure and purpose, can actually alleviate any issues past time-dependent

variance, since real world time series may exhibit more that one anomalies that must be

accounted for.

1.2 Organisation

In this work our focus is inference on the number of long-run relations between a collection

of variables (with a unit root), therefore, albeit important and useful, estimation of the

models’ coefficients, as well as inference on these coefficients, will not be discussed here.

Also, we restrain our study to models with no deterministic components, for reasons that

will be discussed in section 4.

Our study is organised as follows. First, we trek through the relevant literature

and discuss landmark publications and important results, with a focus on simulation results.

Then, we review Johansen’s test and discuss where and how issues of non-pivotality may

manifest. We also discuss the three major bootstrap implementations of Johansen’s trace

test, their procedures and properties. An extensive exposition of our methodology follows,

including data generation procedures we test performance for, testing procedures algorithms,

as well as computational details. Then we move to discuss our results. Ultimately, we

summarize and consider directions for further studies.
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2 Literature

Our discussion taps into the intersection of multiple parts of the cointegration analysis

literature, namely, the bootstrap cointegration testing literature and the non-pivotal

cointegration literature, as well as the simulations-based evaluation of statistical tests’

performance.

2.1 Cointegration Testing

Besides the test introduced in Johansen (1988) which is probably the most frequently used

for studies involving more than two series (where where it is possible for more than one

cointegrating relations to exist), a great variety of methodologies have been constructed to

assess the presence and number of long-run relations between random walks, as well as

estimate the relations themselves. Pioneering contributions by Granger (1981) and Engle

and Granger (1987) established a straightforward testing procedure based on retrieving the

residuals of a regression among the collection of variables under investigation and testing

for a unit root. Another single-equation test proposed by Shin (1994) uses an unobserved

components setting to test whether the residual series has a random walk component,

similar to the methodology implemented in Kwiatkowski et al. (1992). Tests based on

residuals of linear models between unit root variables (both single and multi-equation)

where proposed in Phillips and Ouliaris (1990) to trace the presence of cointegrating relations.

An early multivariate testing procedure proposed by Stock and Watson (1988) uses

the common trends representation (roughly the ”number of unit roots”, which is equal

to the dimension of the model minus the cointegrating rank) and principal components

analysis. The systems testing procedure introduced in Johansen (1988) and elaborated

in Johansen (1991) uses sequential likelihood ratio testing of nested reduced-rank-specified

vector autoregressions in error correction form. Another multivariate test which determines

the number of common trends is proposed by Nyblom and Harvey (2000), based on a

variance ratio scheme. A non-parametric common trends test, based on variance ratios

is derived in Breitung (2002). Cheng and Phillips (2009) propose estimating the number

of cointegrating relations by comparing information criteria scores of different cointegrating

rank specifications on a model similar to that of Johansen’s. Later, they put their method

to the test against systems with time-varying variance (Cheng and Phillips (2012)).

Hansen (1992) derived asymptotics on a single-equation cointegration model with the

errors’ standard deviation modelled as a random walk. He demonstrated that a large

part of standard single-equation asymptotics for cointegration remain unchanged under

time-varying (and possibly unbounded) variance. Using simulations of a bivariate coin-

tegrated fixed coefficients system with GARCH(1,1) and EGARCH(1,1)-varying errors and
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a variety of cointegration tests, Lee and Tse (1996) concluded that the size and power

of Johansen’s tests is not significantly affected by the presence of heteroskedasticity in

the error terms, however the size increases as the GARCH coefficients’ sum reaches 1,

especially in small samples. Höglund and Östermark (2003) extended the discussion by

adding structural breaks in the simulations’ DGPs and examining the size and power of

various cointegration tests. Using a bivariate DGP with one lag and fixed coefficients,

they concluded that single-equation tests perform better and face lower size distortions.

Additional simulations on a three-variable system of fixed coefficients by Silvapulle and

Podivinsky (2000) showed that ARCH and GARCH-varying innovations are likely to

challenge the robustness of Johansen’s tests as the variance processes approximate a unit

root shape. Also, they demonstrated the sensitivity of Johansen’s test when innovations

come from different distributions (other than the normal). The combination of non-normal

distributions and ARCH/GARCH innovations led to significant size distortions. Maki (2013)

runs simulations on a bivariate system of independent series (true rank is always 0)

with MGARCH, FIGARCH and BEKK innovations, as well as variance breaks, for a

variety of both single and multi-equation tests. Conditional heteroskedasticity is found to

affect the power of Johansen’s maximum eigenvalue test, and the author proposes using

the Breitung (2002) test instead when data are likely to exhibit conditional heteroskedasticity.

Paper p Model Innovations T Reps

Lee and Tse (1996) 2 VAR(1) GARCH(1,1), EGARCH(1,1) 100,
1,000

10,000

Haug (1996) 2 VAR(2) ARCH(1) 40,
100

5,000

Silvapulle and Podi-
vinsky (2000)

3 VAR(1) with
intercept

ARCH(2), GARCH(1,1) 50,
100,
500

20,000

Maki (2013) 2 VAR(1) MGARCH, FIGARCH, BEKK,
break

200,
400

10,000

Table 2: Current literature cointegration testing simulations with p variables, T realisations

2.2 Bootstrap Cointegration Testing

An early bootstrap implementation of Johansen’s trace test was developed by Giersbergen

(1996), where, for bootstrap sample generation, a random-length block sampling scheme

(over estimated residuals) was proposed, aiming to account for power loss due to correlation

between adjacent innovations. The test statistic’s distribution was approximated through the

empirical CDF of the bootstrap sample. Using simulations with two bivariate DGPs (with
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and without MA terms), he demonstrated a remarkable success rate in correctly accepting

and rejecting the null of no cointegration when pseudo-samples are generated using small

blocks (close to an IID sampling case).

The performance of an IID sampling bootstrap version of both Johansen’s trace and

maximum eigenvalue tests in small samples was discussed through simulations in Harris and

Judge (1998). Using a three-variable constant coefficient DGP, the authors demonstrated

the capacity of bootstrap-based testing in correctly rejecting the null, however they noticed

a power loss with cases of large cointegrating rank. Swensen (2006) provided proof for

the consistency of the IID bootstrap in approximating the actual distribution of Johansen’s

trace statistic when the roots of the characteristic polynomial are either equal to one or

lie outside the unit circle. This condition effectively means that the systems must exhibit

neither explosiveness nor seasonality. Leveraging this condition (which allowed invoking other

results such as the Granger representation theorem) along with some additional conditions

(innovations with zero mean and constant variance matrix), he has managed to provide

asymptotics for the convergence of the IID bootstrap empirical CDF. Swensen reinforced

the asymptotic results with simulations on a four-variable fixed coefficients DGP.

Cavaliere and Taylor (2006) studied an unobserved components model with the null

of stationary errors, based on the test by Shin (1994), with a time-varying ”system”-

variance matrix exhibiting structural breaks. They provided proof of the non-pivotality of

Shin’s statistic under this variance scheme and proposed a bootstrap version of the statistic

to resolve that. Cavaliere et al. (2010a) considered a Johansen-based cointegration model

with non-stationary unconditional volatility and proved that Johansen’s tests are distributed

as volatility matrix-dependent martingale functionals, and therefore are non-pivotal. Authors

proposed a wild bootstrap scheme for estimating the trace test’s distribution and obtaining

p-values, using similar conditions regarding the roots of the characteristic equation of

the VECM as those in Swensen (2006), in order to take advantage of their convenient

asymptotic consequences. They proved the validity of the wild bootstrap and its robustness

against a generic volatility process. The authors put their method to the test with a

5-variable fixed coefficients model without lags and at most one cointegrating relation ++++

A similar model with stationary conditionaly heterskedastic innovations is discussed in

Cavaliere et al. (2010b), where it is proven that Johansen’s statistic is asymptotically

pivotal under such innovations processes. After properly formatting assumptions to allow

for the wild bootstrap to be implemented and for asymptotics similar to Swensen (2006)

to hold, the authors put their model to the test with a 5-variable fixed coefficients

VAR(1) specification and a variety of innovations processes (GARCH, EGARCH etc.). The

wild bootstrap test is found to significantly alleviate size distortions. The wild bootstrap
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cointegration test is also discussed in Cavaliere et al. (2012), where additional asymptotics on

the validity of the method, as well as its asymptotic correctness are provided. The authors

reinforce their results with simulations on a 4-variable fixed coefficients VAR(2). Cavaliere

et al. (2015) compare the statistical properties and performance of sequential inference

and information criteria inference for cointegrated VECMs with conditionally heteroskedastic

innovations. They run simulations with a VAR(2) model with rank no more than 2 and

innovations with GARCH, SARV and regime shift variance, as well as IID innovations. They

find that the Bayesian information criterion and wild bootstrap test have outperform the rest.

Paper p Model Innovations T B Reps

Giersbergen (1996) 2 VAR(1), VAR(2),
VARMA(2,1)

IID 100 99 1,000

Harris and Judge
(1998)

3 VAR(1) IID 50 5,000 5,000

Swensen (2006) 5 VAR(1) IID 100 5,000 10,000

Cavaliere et al.
(2010a)

5 VAR(1) random break 100,
200,
400

399 10,000

Cavaliere et al.
(2010b)

5 VAR(1) GARCH,
EGARCH,GJR-
GARCH

100,
200,
400

399 10,000

Cavaliere et al.
(2012)

4 VAR(2) IID 50,
100,
200

399 10,000

Cavaliere et al.
(2015)

4 VAR(2) GARCH, break,
EGARCH, SARV,
IID

50,
100,
200,
400

399 10,000

Table 3: Current literature bootstrap cointegration testing simulations with p variables, T realisations
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3 Theoretical Framework

3.1 Review of Cointegration

Consider a collection of p time series {Yt = (Y1t, . . . , Ypt)
′}t=1...T , with Yt ∼ I(1), i.e. each

series has a unit root. A cointegrating relation between Y1t, . . . , Ypt is a p× 1 vector β such

that β′Yt ∼ I(0). Intuitively, the presence of a cointegrating relation among a collection of

I(1) variables is a linear combination that keeps non-stationary series from drifting too far

apart over time.

Such relationships are often found in macroeconomic and financial series, where vari-

ous factors might influence different series but they are still linked in the long term

by some underlying equilibrium which corresponds to some sort of economic, financial or

structural relationship between them. Such relations can be used to make informed policy

or investment decisions. Examples include evaluating the possibility of a successful monetary

union (Haug et al. (2000)), assessing the optimal taxation strategy for energy-related goods

(Vücel and Guo (1994)), and finding suitable stocks to apply pairs trading strategies

(Caldeira and Moura (2013)).

It is possible for up to p − 1 such relations to exist (p relations would imply Yt

is the sum of stationary series, hence also stationary). Therefore, in general, a full-rank

p× r matrix β holds r cointegrating relations if β′Yt = (U1t, . . . , Urt) ∼ I(0).

3.2 Johansen’s test

Johansen (1988) introduced a procedure for inferring r through reduced rank ML estimation

of a VECM model. Assume a VECM(k) of the form

∆Yt = ΠYt−1 +
k∑

i=1

Γi∆Yt−i + ΦDt + ϵt (1)

Here, the innovations terms are assumed to be Gaussian ϵt ∼ NIID(0,Ω) but the model

may be generalised to a variety of zero-mean stationary processes (see Boswijk et al.

(2015)). Also, any deterministic terms are suppressed (intercept, trend, dummies etc.) in Dt.

Johansen’s method depends on assuming a reduced rank specification, i.e. Hr : Π = αrβ
′
r,

where the full-rank p × r matrices βr and αr hold cointegrating vectors and long-run

adjustment parameters respectively. Two tests proposed by Johansen have the alternatives

Hr+1 : Π = αr+1β
′
r+1 and Hp : Π = αpβ

′
p, the so called maximum eigenvalue and trace

tests respectively. We shall focus on the trace test, aligning with most of the bootstrap

cointegration testing literature.
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Inference on the rank of αr and βr is done through sequential likelihood ratio test-

ing, starting with r = 0, where Π is a p× p matrix of zeros. Under the null, the model is

reduced to its concentrated form R0t = αβ′R1t + ϵt, where R0t and R1t are the residuals of

regressing ∆Yt and Yt−1 to ∆Yt−1, . . . ,∆Yt−k, Dt. Maximizing the likelihood function under

the null, first with respect to α and Ω and then with respect to β yields:

(L∗
r)

−T/2 = |S00|
r∏

i=1

(1− λi) (2)

Here λ1, . . . , λr are the r largest eigenvalues of the problem |λS11 − S10S
−1
00 S01| = 0 with

Sij =
1
T

∑T
t=k+1 RitR

′
jt, i, j = 0, 1. Thus, we can easily construct the likelihood ratio of every

null. The trace test is formulated as the difference between the maximized log-likelihoods

of the two hypotheses, which with the eigenvalues ordered as λ1 ≥ · · · ≥ λp becomes:

−2 log(LR(H(r)|H(p))) = −T
p∑

j=r+1

log(1− λj) (3)

Therefore, the test statistic will involve all of the eigenvalues if H0 : r = 0, all but

the first if H0 : r = 1, and so on, until H0 : r = p − 1, where only the last eigenvalue

will be involved. This is directly related to the nested nature of cointegrating relations

(the presence of r+1 cointegrating relations implies the presence of r cointegrating relations).

As is evident, we need the eigenvalues of the model to lie within the [0, 1) inter-

val in order for the statistic to not diverge to infinity or take negative values. As usual

with one-sided hypothesis testing, we reject the null if the value of the test statistic

exceeds the corresponding critical value. Unfortunately, the trace test statistic’s asymptotic

distribution converges to the rather complicated Brownian motion functional:

−2 log(LR(H(r)|H(p)))
w−−−→ tr

{∫ 1

0

dBF ′

(∫ 1

0

FF ′

)−1 ∫ 1

0

FdB′

}
(4)

Here, B(u) is a p − r standard Brownian motion defined on C[0, 1] and F (u) is a

functional that depends on B and the deterministic specification (constant, trend etc.)

of the model. In our case, where deterministic terms are neglected to allow for the

generation of suitable systems in a computationally reasonable timespan, F is simply

defined as Fi(u) = Bi(u), with i = 1, . . . , p− r. It is worth noting that two different types

of misspecification will lead to issues in two different parts of the inference procedure.

Estimation with the wrong number of lags will result in incorrect eigenvalues, while in-

correct specification of the deterministic term will lead to the use of improper critical values.

The limiting distribution of the trace test is a non-standard one, therefore critical
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values can only be obtained through Monte Carlo simulations. A table of critical values

is given in Johansen (1995), while improved approximations are available in MacKinnon

et al. (1999). Nevertheless, the lack of definitive critical values, along with issues of

misspecification and non-pivotality do invite the use of alternative methods such as the

bootstrap to assess the cointegrating rank.

3.3 Bootstrap Implementations of Johansen’s Test

As is usual in bootstrap-based inference, the aim of all bootstrap implementations of

Johansen’s trace test is to attempt to construct the sampling distribution of the test

statistic out of the given sample, by producing a bootstrap sample of the statistic. This

method typically depends on calculating the value of the statistic for a number of pseudo-

samples, produced with replacement sampling or some other method, out of the original data.

Besides IID sampling, there are a few bootstrap methodologies suitable for dependent

data, including the wild bootstrap (Cavaliere et al. (2020) provide an extensive discussion

for single series cases) and the block bootstrap. The core idea of bootstrap implementations

of parametric statistical tests in time series models can be summed up in the following

algorithm:

Steps

Estimate the parameters and residuals of the relevant model.

Repeat B times:

a. Use a suitable method to generate a pseudo-sample of residuals series.

b. Create a series pseudo-sample by recursively constructing the series using estimates
and the residuals pseudo-sample.

c. Calculate and save the desired statistic of the series pseudo-sample.

Construct the empirical CDF of the statistic using the collected pseudo-sample statistics.

Calculate the p-value at the original sample’s statistic using the empirical CDF.

Table 4: Parametric bootstrap inference process

As B approaches infinity, the empirical CDF should approximate the CDF of the statistic.

This procedure does not depend on critical values, therefore inference with time series

(where statistics typically converge to Brownian motion functionals) can simply be done

by comparing the calculated p-values with the desired significance level. However, the

problem transfers from critical values to proper sampling implementations and computational
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feasibility. One should keep in mind that any results regarding the sampling distribution

of the statistic of interest are relevant to the sample only, and discussing the distribution

of the statistic for the whole population requires that we actually have a representative sample.

Regarding Johansen’s test, the sequential testing procedure remains exactly the same,

but with p-values and significance levels instead of statistics and critical values. With

the bootstrap approach, the presence of deterministic terms does not affect the procedure,

unlike the actual critical values of the test, where the functional F (ν) takes different forms

depending on the structure of the deterministic terms. The same goes for many cases of

non-pivotality, since (given proper estimation) the asymptotic distribution of the statistic

will not affect inference.

However, one should proceed with caution as incorrect specification does translate to

incorrect trace statistic evaluation which is possible to compromise bootstrap-based inference.

Our discussion focuses on the three best known bootstrap implementations of Johansen’s

test, the block bootstrap of Giersbergen (1996), the IID bootstrap of Swensen (2006) and

the wild bootstrap of Cavaliere et al. (2010a).

3.3.1 Block Bootstrap

The bootstrap implementation introduced in Giersbergen (1996) depends on constructing

pseudo-sample innovations through binding blocks of adjacent estimated innovations. This

ensures that despite building the innovations out of random sampling, the structure of

adjacent innovations will be maintained, and therefore any effects involved will also manifest

in the bootstrap pseudo-samples. Due to this advantage, block-based sampling is quite

frequent in statistics with dependent data.

Giersbergen suggests the use of a moving, random-length block sampling. Each block’s

starting point is randomly drawn from the discrete uniform distribution, while the block’s

length is randomly chosen from the geometric distribution, with the distribution’s parameter

value (probability of ”success”) decided by the researcher (it is found that smaller blocks

function better in correctly rejecting the null). Once enough blocks are sampled to build

T innovations, the innovation pseudo-sample can be used to recursively construct the

pseudo-sample series and estimate the trace statistic for the replication.

Once a sufficient number of replications is assembled, the null should be rejected if

the trace statistic for the actual sample exceeds the 1 − a quantile2 of the empirical

cumulative distribution of the pseudo-sample statistics.

2a being the chosen statistical significance level.
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The algorithm for Giersbergen’s block bootstrap implementation is:

Steps

Calculate estimates α, β,Φ,Γ1, . . . ,Γk, {ϵ̂t}Tt=1 at null r.

For b = 1, . . . , B

a. Sample blocks of random length (geometric) and starting point (uniform) from {ϵ̂t}Tt=1

until a pseudo sample ({ϵ̂∗t }Tt=1)b of T realisations is amassed.

b. Generate series pseudo-sample ({Y ∗
t }Tt=1)b recursively from ∆Y ∗

t = α̂β̂′Y ∗
t−1+

∑k
i=1 Γ̂i∆Y ∗

t−i+

Φ̂Dt + ϵ̂∗b,t.

c. Calculate and save the bootstrap realisation trace statistic LR∗
b with ({Y ∗

t }Tt=1)b.

Construct the empirical CDF of the trace statistic using pseudo-samples values.

Calculate the p value for the null of cointegrating rank r at the original sample statistic
using the empirical CDF as p = 1− ĜB(LR).

Table 5: Giersbergen (1996) block bootstrap test algorithm

Despite yielding promising results, this procedure has not yet been tested against more

demanding DGPs than the constant variance IID innovations cases and, as far as the

author has searched, there is no decisive mathematical proof of consistency in large samples

(although for unit-length blocks, Swensen’s proof may also cover this sampling scheme).

3.3.2 IID Bootstrap

The main point of the IID bootstrap is that pseudo-samples of innovations are constructed

by picking out innovation estimates using independent draws from the uniform distribution

over the number of realisations. As was discussed in the literature section, using random

sampling for recreating a sample was initially examined by Harris and Judge (1998), with

no definitive proof of the consistency of the statistic.

A more rigorous treatment of the IID bootstrap, as well as the proof of its validity in ap-

proximating the cumulative distribution of the trace statistic was provided in Swensen (2006).

Swensen focused on systems where the roots of the characteristic equation of the VECM,

det(A(z)) = 0, with A(z) = (1− z)Ip−αβ′z−
∑k

i=1 Γi(1− z)zi are either equal to 1 or outside

the unit circle. This excludes explosiveness (roots in the unit circle) and seasonality (roots

equal to −1). Also, together with the condition that det(α′
⊥(Ip−

∑k
i=1 Γi)β⊥) ̸= 0, these two

ensure that the Granger representation theorem (as given in Johansen (1995)) holds, which

allows expressing the cointegrated system as a collection of sums of innovation terms. This

opens the model and its statistics up to many of the asymptotic results around partial sums.
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Swensen’s approach does not significantly depart from the initial intention of the bootstrap

method, which is to reduce bias introduced by specific observations (Efron (1992)). Despite

not being designed with dependent data in mind, like the wild or block bootstrap methods,

the IID bootstrap is most likely effective in addressing a variety of specification and small

sample issues, and should provide some level of robustness against tail events such as outliers.

The algorithm proposed by Swensen depends on generating bootstrap samples of inno-

vations through random sampling with replacement of the centered estimated residuals series.

Steps

Calculate estimates Φ̂, Γ̂1, . . . , Γ̂k at null p and estimates α̂, β̂ and {ϵ̂t}Tt=1 at null r.

Ensure det(Âr∗(z)) = 0⇒ z ∈ R \ [−1, 1) and det(α′
⊥(Ip −

∑k
i=1 Γi)β⊥) ̸= 0

For b = 1, . . . B

a. Sample randomly from centered innovations {ϵ̂t − 1
T

∑T
j=1 ϵ̂j}Tt=1 to build a bootstrap

pseudo-sample of innovations, ({ϵ̂∗t }Tt=1)b.

b. Generate series pseudo-sample {Y ∗
t }Tt=1 recursively from ∆Y ∗

t = α̂β̂′Y ∗
t−1+

∑k
i=1 Γ̂i∆Y ∗

t−i+

Φ̂Dt + ϵ̂∗b,t, with actual series values as initial values.

c. Calculate and save the bootstrap realisation trace statistic LR∗
b with ({Y ∗

t }Tt=1)b.

Construct the empirical CDF of the trace statistic, ĜB(·), using pseudo-samples values
{LR∗

b}Bb=1.

Calculate the p value for the null of cointegrating rank r at the original sample statistic
using the empirical CDF as p = 1− ĜB(LR).

Table 6: Swensen (2006) IID bootstrap test algorithm

This procedure, despite being quite successful in estimating the cointegrating rank, is

somewhat restricting, since it is inapplicable to systems the (estimated) characteristic

equations of which yield roots that either lie inside the unit circle (explosiveness) or are

equal to -1 (seasonality).

3.3.3 Wild Bootstrap

The wild bootstrap implementation is somewhat different than the IID case, since generating

pseudo-samples does not depend on resampling but on multiplication with another series,

typically scalar, IID with mean 0 and variance 1. Unlike the IID bootstrap, WB only

requires that the innovations process is a martingale difference sequence with respect to

past data, with finite 4th order moments and the variance process converging to a constant
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matrix, establishing a sort of global homoskedasticity. The wild bootstrap also requires

that the roots of the characteristic equation are not inside of the unit circle or equal to

-1, which, along with a few more conditions, suffices to provide room for partial sums

asymptotics, much like Swensen’s test. The main advantage of the wild bootstrap method

for pseudo-sample generation is that the ordering of the innovations, and consequently the

underlying structure of the (time-dependent) variance process, are directly relayed into the

bootstrap innovations pseudo-sample, without any violations of the assumptions constituting

the innovations process of the model. Also, it is worth noting that the actual variance

process of the initial model is also relayed into the pseudo-samples due to the specification

of the pseudo-innovations.

The following algorithm, introduced in Cavaliere et al. (2010a,b) encapsulates the procedure

of the wild bootstrap implementation of Johansen’s test.

Steps

Calculate estimates Φ̂, Γ̂1, . . . , Γ̂k at null p and estimates α̂, β̂ and {ϵ̂t}Tt=1 at null r.

Ensure det(Âr∗(z)) = 0⇒ z ∈ R \ [−1, 1) and det(α′
⊥(Ip −

∑k
i=1 Γi)β⊥) ̸= 0

For b = 1, . . . B

a. Build a bootstrap pseudo-sample of innovations, ({ϵ̂∗t }Tt=1)b as ϵ̂∗b,t = ϵ̂twt, where
wt ∼ N(0, 1)

b. Generate series pseudo-sample {Y ∗
t }Tt=1 recursively from ∆Y ∗

t = α̂β̂′Y ∗
t−1+

∑k
i=1 Γ̂i∆Y ∗

t−i+

Φ̂Dt + ϵ̂∗b,t, with actual series values as initial values.

c. Calculate and save the bootstrap realisation trace statistic LR∗
b with ({Y ∗

t }Tt=1)b.

Construct the empirical CDF of the trace statistic, ĜB(·), using pseudo-samples values
{LR∗

b}Bb=1.

Calculate the p value for the null of cointegrating rank r at the original sample statistic
using the empirical CDF as p = 1− ĜB(LR).

Table 7: Cavaliere et al. (2010a,b) wild bootstrap test algorithm

The wild bootstrap is the only method capable of accounting for time-dependent variance

in the VECM’s innovations, which is a trait met most frequently (if not almost certainly)

in financial and macroeconomic time series. The drawback of the method is that it does

not account for observation-specific bias and therefore has robustness limitations against tail

events.
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4 Methodology

4.1 Data Generating Process

For our experiments, we follow Cavaliere et al. (2012), Cavaliere et al. (2014) and Cavaliere

et al. (2015), and implement the following DGP:

∆Yt = αβ′Yt−1 + Γ∆Yt−1 + ϵt (5)

This DGP can address a wide variety of economic systems as it contains a relatively

versatile structure with respect to cointegrating rank and also contains a lagged term,

thus introducing memory in the process. The innovation term ϵt is key for inducing

”complications” which match real world time series, such as heteroskedasticity or stochastic

volatility.

4.1.1 Coefficients

Unfortunately, implementing this DGP directly (i.e. with randomly drawn matrices)

can be quite difficult, since large or inappropriate values of the α, β and Γ matrices

are likely to produce explosive or stationary systems, therefore most studies fix either

some or all the values of α, β and Γ. In this study we make an attempt towards

additional robustness through covering a large number of cases by ensuring that all of

the coefficients, while still subjected to some restrictions, remain randomly generated,

therefore each replication corresponds to a different system where only properties concerning

the cointegrating rank and innovations remain the same. Unfortunately, even with the

application of restrictions, the possibility of producing explosive or stationary series still

remains, therefore we look for properties that will minimize the number of discarded systems.

After running various experiments with combinations of constraints on the matrices

we have arrived at some relatively functional DGP constraints:

1. α and β composed of the first r rows of two different orthonormal matrices.

2. α, β, composed of the first r rows of the same orthonormal matrix (and thus equal).

3. α, β, composed of the first r rows of the same orthonormal matrix but with

perturbations applied to β (by adding uniform draws from small intervals) so that the

two matrices are not equal.

4. α composed of uniform random draws from a small interval (say the [−0.3, 0.3] interval)
and β composed of the first r rows of an orthonormal matrix.

These specifications minimize the number of discarded systems we need to go through to

reach the desired number of replications for our simulations to bear any meaning. The
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second specification has the best results in terms of time and computational feasibility,

however it only yields symmetric VECMs, therefore its utility in addressing a wide variety

of systems is limited. Hence, we choose the third specification which, despite not having

the generality of the first one, still manages to produce asymmetric systems for our 10, 000

replications. It is worth noting that the presence of orthonormal matrices has significant

effect in generating appropriate systems.

The following matrices addressing the p = 3, r = 2 case are indicative of the possi-

ble generality our suggested DGP can reach

α =



0.7733767 −0.6147086

0.5470272 0.7706482

−0.3203899 −0.1680319


β =



1.0812370 −1.1726272

1.0012929 0.4369205

−0.1059243 −0.5604168


Evidently, this method can reach any suitable combinations of values, however departing

the [−2, 2] interval is unlikely, at least without jeopardizing the success rate of generated

systems. On the other hand, when using totally random coefficients (i.e. simply drawn

from a uniform distribution), even after applying techniques to normalise the magnitude

of the product’s eigenvalues, generated systems only fall marginally within our require-

ments (I(1) with specific cointegrating rank), and reaching 10, 000 valid systems can take

even ten times longer. It is likely that the diagonal elements of the reverted product

of (the first r rows of) an orthonormal matrix with itself are responsible for this improvement.

In the general reduced-rank VECM, the presence of lagged terms coefficients should

only minimally affect cointegration and indeed, the values of the Γ parameter do not seem

to disrupt the generation of systems with the desired cointegrating rank. However, they

do seem to complicate the generation of strictly I(1) series as large values tend to result

in series with either a second unit root or in explosiveness (at least when verified with

the augmented Dickey-Fuller test), therefore useful systems are much harder to come by

and computation becomes infeasible. Ultimately, experimentation with multiple values has

shown that explosiveness and additional unit roots are much more likely to avoid if the

eigenvalues of Γ are of magnitude smaller than the unit (and preferably not close to it).

Thus, the eigenvalues matrix is generated by drawing values from the uniform distribution

over small intervals. The magnitude of the eigenvectors matrix seems to have less of an

effect, therefore drawing from larger intervals is also feasible. The Γ matrix is simply

constructed by composing eigenvalues and eigenvectors matrices.
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4.2 Deterministic Terms

Deterministic terms such as an intercept or a trend polynomial are not unlikely to be met

in a VECM and accounting for their presence is important. However, including deterministic

components of non-negligible magnitude in the model has proven to produce manageable

systems at a very slow rate. Therefore, we align with the majority of the cointegration

testing simulations literature and do not include them in our experiments.

4.3 Innovations Processes

Now, let our concentration shifts towards the innovations process, which, except for the

zero-mean and stationarity assumptions, can be modified to incorporate a variety of

phenomena without compromising computational feasibility. First, we assume that the

innovations series ϵt has a variance process Σt, and the specification

ϵt = σtzt (6)

where σt are p× p matrices of non-negative elements such that σtσ
′
t = Σt, and zt ∼ N(0, Ip).

Therefore the innovations process is linearly distributed, with zero mean and the desired

variance. Also, the resulting innovation series ϵt is normally distributed, therefore no

complications arise from using the Gaussian likelihood function. From here on, there is

significant flexibility in defining σt so that our systems exhibit interesting traits. The trivial

constant variance case would only require σt to be a matrix of positive constants such that

the product σtσ
′
t is positive-definite.

4.3.1 Conditional Heteroskedasticity

The presence of conditional heteroskedasticity in the series’ innovations effectively implies

that not every innovation comes from the exact same distribution, nor are the values

of current innovations independent of past innovations, therefore the IID assumption of

Johansen’s model is violated. In this case, σt would be a matrix comprised of (the square

roots of) the variance and covariance series of each variable. Autoregressive conditional

heteroskedasticity is a common trait of financial and macroeconomic time series and likely

to manifest in high frequencies. Since the paper by Engle (1982), a large variety of

specifications for conditional heteroskedasticity have emerged (some with the possibility for

covariance between the series). In this work, we focus on the specifications introduced in

Bollerslev (1986) and Nelson (1991). Thus we set σt to be a diagonal matrix with entries√
hi,t , where hi,t are defined as

hi,t = ω +

q1∑
j=1

ajϵ
2
i,t−j +

q2∑
j=1

bjhi,t−j (7)
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and

hi,t = exp
(
ω +

q1∑
j=1

[ajθi,t−j + gj(|θi,t−j| − E|θi,t−j|)] +
q2∑
j=1

bj log(hi,t−j)
)

(8)

Typically, θit =
ϵi,t√
hi,t

, and for Gaussian ϵi,t, the term E|θi,t| converges to
√

π
2
. The GARCH

specification is a standard measure of conditional heteroskedasticity, while the EGARCH

specification can be used to capture asymmetric effects of the innovations process. It is

worth noting that when the sum of the coefficients of the GARCH model approaches the

unit, the long-run variance of ϵt becomes near-singular, which is the case we focus on.

The EGARCH model maintains stability for any real parameters. In order to maintain the

generality promised in the coefficients sub-section, we draw parameters from the uniform

distribution, ai and bi from a positive interval (for GARCH we fix intervals so that their

sum is close to one) and gi from a negative interval (so that negative excess innovations

increase variance, much like what frequently holds for financial time series). We choose

single lags specifications for both models of heteroskedasticity (q1 = q2 = 1) since, as pointed

out in Malmsten and Teräsvirta (2010), they are the specifications most frequently met

in the literature and because addition of further lag terms will, at least for the GARCH

model, complicate the proper setting of parameters.

4.3.2 Stochastic Volatility

In order to implement stochastic volatility, we incorporate a variant of the SARV(1,1)

model, similar to those of Asai et al. (2006) and Cavaliere et al. (2014). This model uses

an exponentiated autoregressive structure to capture the time-varying nature of volatility

in economic and financial time series data. Unlike the deterministic process observed

in conditional heteroskedasticity, stochastic volatility reflects the inherent uncertainty and

unpredictability of market dynamics.

The ”standard deviation” process (σt) is represented as a diagonal matrix with en-

tries given by the exponential of half of the volatility level (hi,t/2), where hi,t follows the

SARV(1,1) structure:

hi,t = ahi,t−1 + bvi,t (9)

Here, a and b are parameters governing the persistence and impact of past and present

volatility shocks, while vi,t ∼ N(0, 1) represents the innovation process driving volatility

dynamics. Unlike traditional GARCH specifications, stochastic volatility models allow for

a more flexible representation of volatility dynamics, capturing the complicated interactions

between past and current shocks without imposing strong structural assumptions.

18



4.3.3 Outliers

Tail events, such as outliers, can significantly impact the dynamics of economic and

financial time series data, potentially leading to distorted estimations and misleading

conclusions in cointegration analysis (Nielsen (2004)). These anomalies can manifest in both

the deterministic and stochastic components of the data generating process (DGP), with

high-magnitude fluctuations occurring sporadically due to unexpected events or extreme

market conditions. While outliers in the deterministic part of the model can be represented

as dummies with unknown dates of high magnitude, we focus on inducing special features

through the innovations process to ensure computational feasibility.

In our simulation framework, we introduce outliers into the variance-covariance matrix

(Σt) of the innovations process. We adopt a specification where Σt = CGt, with C

representing a positive definite matrix of nonnegative entries and Gt = Ip +
∑k

i=1Gi1{t=ti}

being a matrix that augments the constant variance with high-magnitude perturbations

at specific points in time. These perturbations are represented by positive definite

matrices Gi, i = 1, . . . , k, of nonnegative entries, applied at outlier occurrence dates

t1, t2, . . . , tk. The choice of high-magnitude perturbations challenges the performance of

the test procedures by introducing significant deviations from the standard variance structure.

Outliers are likely to occur in real-world macroeconomic and financial data, corre-

sponding to rare events or sudden shocks that disrupt the underlying dynamics of the

system. By incorporating outliers into our simulation model, we aim to capture these

irregularities and assess their impact on the performance of the test pocedures we consider.

To maintain realism, we consider a case of three outliers scattered randomly across the

system’s realizations, each acting as approximately 10× magnifications of the variances and

covariances of the variables.

4.3.4 Variance with Structural Breaks

Structural breaks, often associated with significant events or changes in economic conditions,

can have a lasting impact on financial and macroeconomic time series data. These breaks

signify a shift in the underlying dynamics of the system, potentially leading to changes

in long-term relationships and volatility patterns. For our simulations, we consider the

scenario where structural changes occur in the variance of the model, akin to the approach

discussed in Cavaliere et al. (2006).

To incorporate structural breaks into the variance process of the innovations, we model the

covariance matrix Σt as a sum of step functions representing regime shifts. Formally, we
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express Σt as:

Σt = Ω0 +
k∑

i=1

1{t∈Ti}

(
Ωi − Ω0

)
(10)

Here, Ti, i = 1, . . . , k denotes the periods during which the regime shifts occur, with

Ωi representing the variance levels associated with each regime. To ensure the positive

definiteness of Σt, we ensure that the periods Ti do not intersect.

In our simulations, we focus on the case of a single structural break, randomly oc-

curring past the first 30 and before the last 30 realizations. We restrict the period the

break can occur in in order to ensure two distict ”eras” within each sample and avoid cases

where the break will act as an outlier affecting a few realisations sequentially. The break is

specified as an increase in variance by k standard deviation units, with k randomly drawn

from the interval [1.5, 2.5]. This setup mimics the potential impact of a significant event,

such as a stock market collapse or a natural disaster, leading to a permanent negative

effect on the system.

4.4 Simulations Methodology & Structure

Overall, our DGP for cointegrating rank r can be expressed as∆Yt = Ar(Ar +Rr)
′Yt−1 +DΛD−1∆Yt−1 + ϵt

ϵt = σtzt
(11)

where Ar is a p × r matrix composed of the first r rows of an orthonormal matrix, Rr

is a p × r matrix with random draws from the [−0.7, 0.7] interval. D is a non-singular

p × p matrix and Λ is a p × p diagonal matrix, filled with elements drawn uniformly

from the [−1, 1] and [−0.5, 0.5] intervals accordingly (simulations also produce satisfactory

results in reasonable time with Rr, D and Λ constructed from other subsets of the

[−1, 1] interval). Special features such as conditonal heteroskedasticity are introduced

in the model from the structure of σt. For the cases of no cointegration (r = 0),

we simply use the model ∆Yt = DΛD−1∆Yt−1 + σtzt. We fill the initial values of the

generated systems with draws from the standard normal distribution, and use them as initial

values for the bootstrap replications of the systems as well (following Cavaliere et al. (2010a)).

For our simulations, we follow the latest literature standards and use 10, 000 replica-

tions to examine the T = 100 realisations case. The reasoning is that large-sample results

of the involved tests include some sort of convergence of the tests’ power towards unity,

therefore only small-sample cases are likely to pose a challenge regarding performance. In

order to catch any phenomena occurring as both the rank and dimension of the system

change, we examine the cases of p = 2, 3 and 4 variables and all the corresponding possible
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nulls for each case (i.e., r = 0, 1 for p = 2, r = 0, 1, 2 for p = 3 and so on). We measure the

power of the tests as the probability of correctly rejecting or accepting a null hypothesis

and the size as the probability of incorrectly rejecting a null hypothesis. The probability

of incorrectly accepting a null is trivial to retrieve. Therefore, we have

power =
# of correct rank estimations

10000
(12)

size =
# of over-rejections

10000
(13)

Our simulations method for evaluating the performance of the tests for rank r and

innovations p can be summed up with the following algorithm

Steps

While successful replications ≤ 10, 000

1. Generate innovations {ϵt}100t=1, parameters Ar, Rr, D, Λ, initial values Y1, Y2.

2. Construct system {Yt}100t=1 recursively following (11).

3. If Yt ∼ I(1)

a. Run test (LR/WB) sequentially for r = 0, . . . , p− 1 and save estimated rank (number
of rejection of nulls).

b. If results available (e.g. not NULL due to explosiveness/seasonality).

i. Save estimated rank.

ii. successful replications ← successful replications + 1

Power = correct rank estimations/10,000 , Size = rank over-estimations/10,000.

Table 8: Simulations methodology algorithm

For the bootstrap simulations, we use a 5% significance level and 500 bootstrap

replications. Also, as discussed in section 2, we neglect deterministic terms such as constants

or trends in order to ensure the feasibility of our simulations.

Unfortunately, despite applying restrictions to achieve computational feasibility, most

of the systems generated in order to obtain 10, 000 replications (probably somewhere close

to 50, 000) are discarded due to stationarity or explosiveness. To establish whether a system

is suitable to apply our tests, we run the augmented Dickey-Fuller test and require that

the statistic lies between zero and the critical value. For assessing whether a system is

proper for applying bootstrap implementations of Johansen’s test, we use the coefficients

estimates of Johansen’s test to formulate the coefficient matrix of the corresponding VECM’s
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companion form. We comply with Swensen (2006) and Cavaliere et al. (2010a,b) and

require that the eigenvalues of the companion coefficient matrix either lie outside the unit

circle or are equal to one, therefore there is no explosiveness or seasonality in the system.

4.5 Computational Details

All simulations are carried out with the R programming language, which combines an

easy syntax, optimized procedures for statistical analysis (including vectorized operations,

recursions, applications of functions etc.) and indispensable flexibility regarding functional

programming. The code for simulation procedures was greatly enhanced and optimized with

the invaluable help of Dr. Georgios Papapanagiotou, whose assistance has been critical in

carrying out the present work. For Johansen’s test, the code was produced by the author

in accord with the extensive review of the test and its procedures given in Johansen (1995)

and is, in part, inspired by the code of the ca.jo function of the urca time series analysis

R package (see Pfaff (2008)). The code for the IID and wild bootstrap cointegration tests

is also produced by the author, based on Swensen (2006), Cavaliere et al. (2010a), Cavaliere

et al. (2010b), Cavaliere et al. (2012), Cavaliere et al. (2014) and Cavaliere et al. (2015).

The bootstrap tests code has been enriched with elements of the code used in Cavaliere

et al. (2015), kindly provided by Prof. Giuseppe Cavaliere.

At the culmination (and hopefully successful defence of) the present thesis, the au-

thor aspires to combine and refine the tools developed for this work, as well as some past

independent ventures on cointegration testing, and produce an R package to complement

the existing tools available in R for cointegration analysis.
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5 Results

The following discussion summarises the outcomes of our simulations for the performance

of Johansen’s likelihood ratio test (LR) as well as its wild bootstrap (WB) implementation

(Cavaliere et al. (2010a,b)). As stated above, we move from p = 2 to p = 4 catching all

the in-between cases of cointegrating ranks, starting from r = 0 up to r = p − 1, hoping

to reveal any trends or patterns that may emerge from this ”continuous” assessment. We

consider the case of 100 realisations and use 500 replications for the WB assessment.

Before examining the results, let us first discuss how we can properly evaluate them. As

is the standard procedure in statistical hypothesis testing, the critical values for Johansen’s

test are chosen so that the test’s size (probability of committing type I error) is equal to

the chosen significance level (in this study 0.05). If the empirical size of the test exceeds

0.05, we can roughly declare that the test tends to over-reject the null hypothesis and

therefore is less likely to correctly assess the number of long-run relations with our desired

level of accuracy. For the power of the test, no such threshold past or below which

statistical inference is compromised exists (since power is not directly connected to the

statistical decision problem), therefore we simply desire that it is as high as possible. The

following tables hold the results of our Monte Carlo simulations for assessing the power

and size of Johansen’s test, in accord to the methodology discussed in section 4.

5.1 Simulation Results

The results of table 9 hint towards some interesting conclusions regarding the performance

of Johansen’s likelihood ratio test. First, notice that, unlike the majority of the literature,

our simulations have very small size distortions, with only the p = 4, r = 0 case exceeding

the 5% significance level, where statistical decision making is compromised. On the other

hand, there seems a tendency for type II errors to occur. Therefore, for the class of

systems discussed here, Johansen’s trace test has the tendency to sub-reject the null of the

actual cointegrating rank.

The author speculates that this may be caused by the magnitude of the eigen-decomposition

components of the memory coefficient of the VECM (Γ), since simulations with models of

”weaker” memory (values that compose Γ drawn from smaller symmetric sub-intervals of

[−1, 1]) yield much higher size distortions (results not reported here)3. The random choice

of parameters, as well as the overall specification of the model are likely the cause for any

inconsitency with the results of Lee and Tse (1996), Haug (1996) and others.

3Smaller memory coefficients also appear to have an effect on the performance of the wild bootstrap test (results
not reported here).
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Likelihood Ratio test

Power Size

p r = 0 r = 1 r = 2 r = 3 r = 0 r = 1 r = 2 r = 3

GARCH(1,1) Variance

2 0.9775 0.8856 NA NA 0.0225 0.0005 NA NA

3 0.9512 0.8517 0.7410 NA 0.0488 0.0113 0.0014 NA

4 0.8908 0.8395 0.7043 0.6286 0.1092 0.0285 0.0115 0.0028

EGARCH(1,1) Variance

2 0.9992 0.9805 NA NA 0.0008 0.0000 NA NA

3 0.9981 0.9834 0.9331 NA 0.0019 0.0003 0.0001 NA

4 0.9979 0.9868 0.9579 0.8944 0.0021 0.0011 0.0005 0.0002

Stochastic Volatility

2 0.9997 0.9740 NA NA 0.0003 0.0000 NA NA

3 0.9995 0.9781 0.9204 NA 0.0005 0.0003 0.0000 NA

4 0.9991 0.9793 0.9456 0.8791 0.0009 0.0006 0.0004 0.0000

Outliers (3)

2 0.9970 0.9958 NA NA 0.0030 0.0000 NA NA

3 0.9922 0.9971 0.9806 NA 0.0078 0.0021 0.0000 NA

4 0.9806 0.9964 0.9920 0.9694 0.0194 0.0025 0.0013 0.0001

Regime Shifts (1)

2 0.9991 0.9968 NA NA 0.0009 0.0000 NA NA

3 0.9978 0.9976 0.9832 NA 0.0022 0.0011 0.0002 NA

4 0.9965 0.9974 0.9927 0.9671 0.0035 0.0022 0.0013 0.0007

Table 9: LR test performance, p variables, coint. rank r, 100 realisations

Notice that for cases of both high rank and a large number of variables (r = 3, p = 4),

the power of the LR test decreases significantly. Also, the size of the test appears

to increase with the number of variables but decrease with the number of long-run

relations. The consistent presence of this phenomenon in our results leads to the

conclusion that, at least for the class of models considered here, size will be higher
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in larger cointegrated systems, and that the smaller the difference between cointegrating

rank and dimesnion, the smaller the size of Johansen’s LR test. It is worth comment-

ing that the size of the test reaches 0.0000 on multiple occasions. This means that,

for these cases, the test has not once in 10, 000 replications over-rejected the null hypothesis.

The resilience of the LR test’s size against a variety of cointegrating ranks and di-

mensions does justify its wide acceptance and frequent use in applied econometrics, as,

evidently, it is quite unlikely for the statistical decision process to fail. Of course, we

should keep in mind that these results refer to a specific class of models, and the presence

of additional factors such as an intercept, as well as the alteration of the intervals we use

to draw values for our parameters could possibly lead to different results regarding power

and size.

Let us now move to table 10, which holds the performance evaluation of the wild

bootstrap test4. Here, we have no instance of the size ever exceeding the nominal

significance level. Also, although not shown here, p-values produced by the WB test are

”strict”, in the sense that, for most cases, they appeared to not exceed to 0 unless the

null was to be accepted. Also, neither the conclusion that size decreases with the number

of long-run relations nor the result that it increases with the number of variables seem to

hold consistently. Notice that the empirical size of the WB test is overall higher than that

of the LR test, however sub-rejections of the null hypotheses (and therefore type II errors)

appear to persist, and there are much fewer instances where size is estimated to be 0.0000.

Tendency for type II errors does contradict the literature on WB cointegration test-

ing. However, this might also be attributed to the values of the Γ coefficient, as, for

example, in Cavaliere et al. (2012), the lagged term coefficient matrix is almost diagonal

and filled with small values. Simulations (run by the author, results not reported here)

have shown that decreasing the magnitude of the coefficients of Γ shifts the error from

type II to type I (over-sizing), where the possibility of compromising of statistical decision

making is higher. Nevertheless, additional simulations ought to be carried out to determine

whether this phenomenon occurs consistently or is simply circumstantial.

4Which was by far the hardest to run and complete.
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Wild Bootstrap test

Power Size

p r = 0 r = 1 r = 2 r = 3 r = 0 r = 1 r = 2 r = 3

GARCH(1,1) Variance

2 0.9904 0.9888 NA NA 0.0096 0.0000 NA NA

3 0.9924 0.9817 0.9512 NA 0.0076 0.0061 0.0010 NA

4 0.9869 0.9860 0.9544 0.9193 0.0131 0.0063 0.0101 0.0045

EGARCH(1,1) Variance

2 0.9907 0.9930 NA NA 0.0093 0.0000 NA NA

3 0.9896 0.9854 0.9598 NA 0.0104 0.0074 0.0007 NA

4 0.9885 0.9872 0.9681 0.9327 0.0115 0.0059 0.0075 0.0031

Stochastic Volatility

2 0.9947 0.9895 NA NA 0.0053 0.0002 NA NA

3 0.9934 0.9852 0.9586 NA 0.0066 0.0044 0.0003 NA

4 0.9954 0.9885 0.9564 0.9231 0.0046 0.0028 0.0063 0.0036

Outliers (3)

2 0.9867 0.9988 NA NA 0.0133 0.0002 NA NA

3 0.9918 0.9896 0.9885 NA 0.0082 0.0096 0.0003 NA

4 0.9700 0.9823 0.9828 0.9794 0.0300 0.0176 0.0130 0.0013

Regime Shifts (1)

2 0.9895 0.9969 NA NA 0.0105 0.0010 NA NA

3 0.9892 0.9856 0.9871 NA 0.0108 0.0132 0.0020 NA

4 0.9846 0.9826 0.9776 0.9735 0.0154 0.0173 0.0181 0.0061

Table 10: WB test performance, p variables, coint. rank r, 100 realisations

The results depicted in the following figures hold special interest. First, holding the number

of variables constant at p = 4 and examining the path performance follows as r increases

allows us to capture the effect of increasing number of cointegrating relations on the power

of the likelihood ratio and wild bootstrap tests (figure 1). In that front, the WB test

does seem to outperform the LR in all of the cases where the variance of innovations is
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time dependent. The GARCH(1,1) innovations exhibit the largest performance differential,

with WB consistently and significantly outperforming LR, while EGARCH(1,1) innovations

and stochastic volatility seem to follow a similar path, where WB outperforms LR for all

cointegrating ranks except for the r = 0 case. For the rest of the cases, applying the wild

bootstrap test instead of the LR test does not seem to yield any significant benefit. In

fact, for the cases of outliers and regime shifts, the LR test seems to have an overall better

performance than the WB test. Also, both tests’ power appears to monotonically decrease

as the number of long-run relations increases. The only exceptions are LR - regime shift

case and both WB and LR outlier cases. Strangely enough, the power of the WB test

seems to initially increase as the cointegrating rank increases and only starts dropping at

r = 3.

The difference in performance due to outliers in the variance may be caused by

the lack of bias correction against specific observations, which is tied to the structure of the

wild bootstrap. The author speculates that the IID and/or the block resampling schemes

are likely to yield better results in such DGPs.

The second result emerges from holding the number of long-run relations constant

and examining the power of the tests as the dimension of the model increases. Graphs in

figure 2 show how power changes with respect to the number of variables when there are

no cointegrating relations and when there exists one cointegrating relation5. First, notice

that power distortions due to dimension never actually drop below 95%, therefore the

validity of the statistical decision rule is not threatened. A tendency for power to decrease

with dimension is present, but not consistent, as, for example, the power of the LR test

seems to increase with dimension under r = 1. Also, in some instances, power seems to

increase and then decrease, or the opposite. Notice that the LR test strictly outperforms

the WB test in the case of a single regime shift for both r = 0 and r = 1 and in the

EGARCH(1,1) case for r = 0. The only case where WB is strictly dominant, both with

respect to rank and dimension, is the GARCH(1.1) case, despite our choice of GARCH

coefficients summing up close to unity.

The results of our simulations indicate that, at least for the class of systems con-

sidered here, the WB test can mitigate the presence of conditional heteroskedasticity,

mainly in its GARCH form, and also alleviate, to some extent, power loss due to other

time-dependent specifications (EGARCH, stochastic volatility), but does not significantly

improve inference in the presence of regime shifts or outliers. Examination with more regime

shifts and outliers of varying magnitude could possibly result in a better understanding of

both tests’ behaviour under such instances.

5We avoid the rest since no patterns can emerge from one or two datapoints.
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Figure 1: Power of likelihood ratio and wild bootstrap tests, p = 4, 100 realisations
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Figure 2: Power of likelihood ratio and wild bootstrap tests, r = 0, r = 1, 100 realisations
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5.2 Empirical Application

Before moving to conclusions, it is worth applying both tests to a real world system

that is likely to exhibit some of the traits our discussion revolved around. We use daily

observations of futures prices for crude oil and natural gas6 for the year 2023. The ARCH

test strongly indicates the presence of conditional heteroskedasticity, making both series

promising candidates for the empirical exhibition of the difference in results we identified

throughout this section. Also, both series are unit roots, which ensures all the nice

large-sample results for I(1) systems. The following table contains the LR and WB test

results for the nulls r = 0 and r = 1.

H0 WB p-values LR trace stat LR c.v (10%, 5%, 1%)

r = 0 0.020 25.2544 15.66 17.95 23.52

r ≤ 1 0.698 4.3537 6.50 8.18 11.65

Table 11: LR and WB tests for crude oil and natural gas prices, 1/1/2023-1/1/2024

Evidently, at 5% statistical significance, both tests reject the null of no long-run relations

and do not reject the null of at most one long-run relation. However, with a more

”strict” approach of 1% statistical significance, the WB test does not actually reject the

null of r = 0. Unfortunately, knowledge of the true cointegrating rank of the system

is impossible. Nevertheless, this application demonstrates the possibility of the two tests

leading to different inferences, which, in more intense datasets (e.g. cryptocurrencies, stocks

etc.), could lead to significantly different estimates of the number of long-run relations.

6Traded at the New York Mercantile from 1/1/2023 to 1/1/2024, data from Yahoo finance.
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6 Conclusions

6.1 Summary and Discussion

In this study, we attempted to evaluate the performance of the wild bootstrap implementation

of Johansen’s test of Cavaliere et al. (2010a,b) and compare it to the performance of

Johansen’s test. results from tables 9 and 10 show that the WB test is largely robust

against conditional heteroskedasticity and stochastic volatility (at least for the specifications

considered here) and may significantly out-perform the LR test, but also that the classical

LR test outperforms the WB test in the presence of outliers and regime shifts. These results

hold for the class of processes we have so far considered. Also, most failed estimations

seem to be type II errors, since both tests exhibit an intense tendency to underestimate

the number of long-run relations in the model. This may be the result of the chosen sets

parameters are randomly drawn from. Overall, we can claim that the use of the wild

bootstrap cointegration test is likely to yield more accurate results than the Johansen’s

likelihood ratio test when the series exhibit heteroskedasticity, especially as the number of

variables grows, where the presence of more than one long-run relations is a possibility.

6.2 Directions for Further Study

A large number of cases that concern realistic models have not been discussed here.

Misspecification with respect to lag length or the deterministic terms could have a

significant effect on the performance of the WB test. Furthermore, especially in highly

volatile series, one could expect the system to exhibit a Markov switching structure in

either the deterministic part and/or the variance of the model. Of course, acknowledging all

these factors in a single study would be nearly impossible, both in terms of computational

feasibility and in terms of DGP generality. However, investigating these cases is likely to

yield important results and let us map the suitability of each cointegration testing procedure

under each of these traits.

There is also room for extensions in the innovations processes considered. The au-

thor has produced (but not yet run extensively) code for innovations with a dynamic

conditional correlation structure (DCC) which would be useful for examining models con-

nected not only equation-wise but also through correlation. In fact, a DCC approach with

a specification similar to that of Maki (2013) would hold special interest for applications

in finance. Multivariate GARCH structures, Markov-switching variance, as well as the

incorporation of any number of regime shifts and outliers are also worth examining. Finally,

combinations of these traits in DGPs’ innovations would get us as close as one can be

to actual, real-world systems. Such specifications would probably challenge our testing

procedures (as well as the capacity of our computers’ processors).
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Given that our discussion revolves around bootstrap methods, it would be interesting

and useful to investigate the performance of bootstrap cointegration tests under problematic

sampling, which is frequently the case with macroeconomic data. Frequency reduction,

impartial sampling and missing values are some pretty realistic instances in time series

analysis, and are certainly worth exploring to evaluate the robustness of cointegration tests

against improper samples, which constitute a sort of ”natural enemy” for the bootstrap

method. Additionally, since, under the general reduced rank specification of Johansen’s

model, cointegrating rank is essentially a model selection problem, it would be worth trying

all of the above issues and factors of distortion against inference based on information

criteria. Some important steps are made in Cheng and Phillips (2009), Cheng and Phillips

(2012) and Cavaliere et al. (2015), however there is still room for testing with simulations

against a variety of DGPs.

Another, relatively unexplored case where running simulations may yield fruitful re-

sults is that of changing cointegrating ranks throughout the timespan of the model. This

form of structural breaks would possibly correspond to changes in preferences, changes

in demographics, policy changes or intense market shocks, therefore appropriate inerene

as well as robustness against temporal changes in the cointegrating rank are definitely

worth exploring. Additionally, situations where not all variables are of the same order

of integration should be considered since, as Johansen himself notes in Johansen (1995),

econometric techniques should not govern what questions we ask or enforce us to re-shape

our questions to fit their requirements.
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