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Abstract

This thesis presents a critical analysis of machine learning algorithms within the

realm of educational predictive analytics, with a particular emphasis on detecting and

mitigating socio-economic biases. In an era where machine learning profoundly impacts

decision-making processes, this study highlights the imperative of developing fair and

unbiased models. The research employs an analytical framework comprising Bias

Detection techniques to identify inherent biases in algorithms or datasets, Bias

Mitigation models to adjust these elements and reduce socio-economic disparities, and

Explainability methods, particularly LIME and SHAP, to elucidate the decision-making

mechanisms of the algorithms. These methodologies are pivotal in recognizing biases

and assessing the effectiveness of mitigation strategies.

The study emphasises the need for ethical considerations in the application of

machine learning techniques. It advocates for the continuous development and

refinement of predictive models to uphold ethical standards and foster equity. The

findings lay the groundwork for future explorations into more advanced methods for

ensuring fairness and transparency in machine learning across different domains.
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1. Introduction

In the field of data science, this thesis embarks on a critical exploration of biases

in machine learning models, a subject of paramount importance in our increasingly

automated world. The real-world impact of these biases is both far-reaching and

profound, affecting key sectors like finance, healthcare, and employment. These biases,

often subtle and unnoticed, can lead to unfair, unethical outcomes, posing significant

challenges to both individuals and societies.

The central aim of this research is to investigate the nature and extent of biases

present in machine learning models. This involves a deep dive into the mechanisms

through which biases are introduced and perpetuated in these models. The study is

driven by pivotal questions: How can biases within machine learning models be reliably

detected? What are the most effective strategies to mitigate these biases, ensuring the

models' integrity and accuracy? These questions are crucial in navigating the

complexities of ethical AI.

The significance of this research extends beyond the academic sphere, touching

on the crucial aspect of ethical responsibility in technology. By addressing the issue of

bias in machine learning, this thesis aims to contribute to the development of fairer,

more equitable technological solutions, a step forward in responsible AI. This research

holds the potential to influence policy-making, shape ethical guidelines, and drive

innovation in the field, ensuring that technological advancements are aligned with

societal values.

Structured in a comprehensive and systematic manner, the thesis begins by

identifying the various forms of biases in machine learning models, followed by an

exploration of methodologies and strategies to detect and mitigate these biases.

Subsequently, the thesis evaluates the effectiveness of these strategies in real-world

scenarios, providing an understanding of the challenges and potential solutions in this

domain. This structured approach ensures a holistic understanding of the issue, offering

insightful perspectives on the ethical implications and practical solutions for bias in

machine learning, ultimately guiding the field towards a more equitable future.
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2. Exploratory Data Analysis

The dataset that is used through the study, is supported by program SATDAP -

Capacitação da Administração Pública under grant POCI-05-5762-FSE-000191,

Portugal.It is sourced from a higher education institution and is compiled from various

separate databases. It encompasses student records from diverse undergraduate

programs such as agronomy, design, education, nursing, journalism, management, social

service, and technologies.

The dataset includes information available at the point of student enrollment,

including academic trajectory, demographic details, and socio-economic factors.

Additionally, it incorporates data concerning students' academic performance at the

conclusion of their first and second semesters.

The dataset consists of 4.424 rows and 37 variables. The variables of the dataset

are described in Table 1.

In preparing the dataset for analysis, several crucial preprocessing steps were

undertaken. These steps are outlined below.

Firstly, the target variable has three distinct categories: 'Dropout,' 'Graduate,' and

'Enrolled.' However, for the purpose of this analysis, which aims to predict whether a

student will graduate or dropout from the university and identify biases across various

attributes, only 'Dropout' and 'Graduate' values were retained, with the 'Enrolled' value

being excluded. Additionally, these categorical values are replaced with numerical ones,

where 'Dropout' is denoted as 0 and 'Graduate' as 1.

Additionally, every variable in the dataset had its punctuation changed, using

underscores ( _ ). This was done to make sure they work well with the functions of the

libraries it is used.

Furthermore, the 'Admission grade' variable was discretized into five bins to

facilitate analysis. These bins were defined as follows: 1 for grades ranging from 0.0 to

114.0, 2 for grades from 114.0 to 133.0, 3 for grades from 133.0 to 152.0, 4 for grades

from 152.0 to 171.0, and 5 for grades exceeding 171.0. The purpose of this binning was

to investigate potential biases among students in terms of graduation or dropout based

on their admission grades.

Likewise, the variable 'Age at enrollment' was discretized into five bins to aid in

the analysis. The bin boundaries were set as follows: 1 for ages ranging from 0 to 21, 2
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for ages from 21 to 30, 3 for ages from 30 to 45, 4 for ages from 45 to 60, and 5 for ages

exceeding 60. This binning was essential to examine potential biases in students'

likelihood of graduating or dropping out based on their age.

The exploration of the distribution of key variables provides valuable insights

into the characteristics of the student population, their academic background, and the

socio-economic context.

In the analysis of numerical variables as shown in Figure 1, Previous

Qualification (Grade) and Admission Grade both exhibit a right-skewed distribution,

indicating a majority of students with lower to moderate grades and a minority

achieving very high grades, reflecting the diverse academic capabilities and the

institution's admission standards. Additionally, Age at Enrollment is also right-skewed,

typical of higher education populations predominantly comprising younger students

transitioning from secondary schooling. Uniquely, the Unemployment Rate shows a

multimodal distribution, hinting at fluctuating economic conditions over time which

could impact the student community.

The examination of categorical variables reveals distinct patterns. Marital Status

is predominantly unmarried or single students, common in younger demographics.

Gender distribution within the dataset is fairly balanced, showcasing a gender-diverse

student body essential for an inclusive educational environment. Regarding financial

support, a larger portion of students are without scholarships, shedding light on the

socio-economic backgrounds and financial support structures available to them.

Lastly, the Target variable, categorizing student outcomes as "Graduate" or

"Dropout," presents a relatively even split. This balanced distribution offers insight into

the varied academic success rates, emphasizing the need to understand and address the

diverse factors contributing to different student outcomes in the educational journey.
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Figure 1: Distribution of selected continuous and categorical variables

3. Metrics

In the realm of data science, the quantification and assessment of algorithmic

performance and ethical considerations are pivotal. This section delves into two critical

dimensions of this quantification: Evaluation Metrics and Fairness Metrics. Each of

these facets plays a fundamental role in not only guiding the development of machine

learning models but also in ensuring their alignment with ethical standards and societal

needs.

This section captures the dual objectives of achieving high performance in

machine learning models while ensuring that they operate within an ethical framework.

This balance is crucial for the advancement of data science as a discipline that not only

excels in technical proficiency but also in social responsibility.
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3.1 Evaluation Metrics

Evaluation Metrics are a set of performance measures used to assess the overall

quality and effectiveness of machine learning models, particularly in the context of

binary classification tasks. These metrics help quantify how well a model performs at

distinguishing between two classes, typically a positive class and a negative class.

Evaluation metrics provide valuable insights into various aspects of a model's

performance, allowing data scientists and machine learning practitioners to make

informed decisions about model selection, fine-tuning, and deployment.

These metrics are fundamentally grounded in the classification of instances into

primary categories, based on their actual and predicted values.

These categories are:

● P (Positive Cases): This denotes the number of instances where the outcome of

interest (Y=1) is present. These are the 'positive' cases that the model aims to

predict, such as the occurrence of a disease in medical diagnostics or a

successful outcome in other predictive scenarios.

● N (Negative Cases): Contrary to P, N represents the count of 'negative' cases

where the outcome of interest (Y=0) is absent. These instances are those where

the event or condition the model is designed to detect does not occur.

● Total Number of Instances (P + N): This metric is the summation of all

positive (P) and negative (N) instances within the dataset, providing the total

count of instances under evaluation.

● True Positives (TP): This category comprises instances that are correctly

identified as positive by the model, meaning that they are actual positive cases

(Y=1) and the model successfully predicts them as such.

● True Negatives (TN): Analogously, TN represents instances that are both

actually and predictably negative. These are the cases where the outcome is

absent (Y=0), and the model accurately classifies them as negative.

● False Positives (FP): Often referred to as Type I errors, these are instances

where the model incorrectly predicts positive outcomes. In other words, these

are cases that are actually negative (Y=0) but are erroneously classified as

positive.
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● False Negatives (FN): Known as Type II errors, these instances are those where

the model fails to identify positive cases. They represent actual positive cases

(Y=1) that the model mistakenly categorises as negative.

3.1.1 Base rate

The base rate is the prior probability of the event occurring without any

additional information or predictive factors. In this context, the base rate refers to the

probability of the event Y=1 happening in the absence of any specific data or predictive

model.

In many real-world applications, understanding and accounting for the base rate

is important, as it provides a baseline or starting point for evaluating the significance of

predictive models or diagnostic tests. It helps you assess whether a model or test is

adding meaningful information beyond what can be inferred from the base rate alone. If

the base rate is very low, even a highly accurate model may not be very useful, as the

event is rare to begin with.

The equation of base rate is 𝑃𝑟(𝑌 = 1) =  𝑃
𝑃 + 𝑁  .

represents the probability that a particular event or condition Y is𝑃𝑟(𝑌 = 1)

true, specifically Y being equal to 1. In many contexts, Y=1 is used to represent the

presence or occurrence of an event or outcome, while Y=0 would represent the absence

or non-occurrence of that event.

3.1.2 True negative rate

The True Negative Rate (TNR), also known as specificity, is a binary

classification performance metric that measures the proportion of actual negative

instances (Y=0) that were correctly predicted as negative (true negatives) by a machine

learning model.

The formula for the True Negative Rate is: 𝑇𝑁𝑅 = 𝑇𝑁
𝑁  .
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The True Negative Rate quantifies the model's ability to correctly identify

negative instances. It measures how effective the model is at avoiding false alarms or

false positive predictions.

A high TNR indicates that the model is effective at correctly identifying most of

the negative instances, meaning it has high specificity. A low TNR suggests that the

model is failing to correctly identify many of the negative instances, leading to a

significant number of false positive predictions.

3.1.3 True positive rate

The True Positive Rate (TPR), also known as sensitivity, is a binary

classification performance metric that measures the proportion of actual positive

instances (Y=1) that were correctly predicted as positive (true positives) by a machine

learning model.

The formula for the True Positive Rate is: 𝑇𝑃𝑅 = 𝑇𝑃
𝑃  .

The True Positive Rate quantifies the model's ability to correctly identify

positive instances. It measures the model's sensitivity in detecting the positive cases in

the dataset.

A high TPR indicates that the model is effective at correctly identifying most of

the positive instances, meaning it has high sensitivity or recall. A low TPR suggests that

the model is failing to correctly identify many of the positive instances, leading to a

significant number of false negatives.

3.1.4 False negative rate

The False Negative Rate (FNR) is a binary classification performance metric

that measures the proportion of actual positive instances (Y=1) that were incorrectly

predicted as negative (false negatives) by a machine learning model.

The formula for FNR is: 𝐹𝑁𝑅 =  𝐹𝑁
𝑃  .
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The False Negative Rate is a measure of how effective the model is at

identifying positive instances. It quantifies the rate at which the model fails to correctly

identify instances that are actually positive.

A low FNR indicates that the model is effective at correctly identifying most of

the positive instances. A high FNR suggests that the model is missing a significant

portion of the positive instances, leading to a substantial number of false negatives. This

may be undesirable in situations where correctly identifying all positive instances is

crucial.

FNR is particularly relevant in applications where missing positive instances can

have significant implications, such as in medical diagnostics, where failing to detect a

disease can be life-threatening, or in fraud detection, where failing to identify fraudulent

transactions can result in financial losses.

3.1.5 False positive rate

The False Positive Rate (FPR) is a binary classification performance metric that

measures the proportion of actual negative instances (Y=0) that were incorrectly

predicted as positive (false positives) by a machine learning model.

The formula for the False Positive Rate is: 𝐹𝑃𝑅 = 𝐹𝑃
𝑁  .

The False Positive Rate quantifies the rate at which the model incorrectly

identifies instances as positive when they are actually negative.

A low FPR indicates that the model is effective at correctly identifying most of

the negative instances, meaning it has high specificity. A high FPR suggests that the

model is incorrectly classifying a significant portion of negative instances as positive,

leading to a substantial number of false positives. This may be undesirable in situations

where false positives have significant consequences.

FPR is particularly relevant in applications where avoiding false positives is

critical. For example, in spam email detection, a high FPR means that legitimate emails

are incorrectly classified as spam, leading to important emails being missed. Reducing

FPR is often a priority in such cases to improve the model's specificity and reduce the

occurrence of false alarms.
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3.1.6 Error rate

The error rate (ERR) is a binary classification performance metric that measures

the overall rate at which a machine learning model makes errors in its predictions. It is

also known as the classification error rate. The formula for error rate is as follows:

𝐸𝑅𝑅 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

The error rate quantifies the overall proportion of instances that were

misclassified by the model. It takes into account both false positives and false negatives

and provides a general measure of prediction accuracy.

A low error rate indicates that the model is making correct predictions for the

majority of instances, meaning it has high accuracy.A high error rate suggests that the

model is making a significant number of incorrect predictions, which could be due to

various factors such as imbalanced data, model complexity, or the choice of the

threshold for classification.

The error rate is a straightforward metric for understanding the overall quality of

a binary classification model. However, it may not always be the most informative

metric, especially when dealing with imbalanced datasets, where one class is much

more prevalent than the other. In such cases, other metrics like precision, recall,

F1-score, or the area under the ROC curve (AUC-ROC) may provide a more nuanced

evaluation of model performance.

3.1.7 Accuracy

Accuracy is a measure of how many of the total instances were correctly

classified by the model. The formula for accuracy, in general, is:

.𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
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A high accuracy value indicates that the model is making correct predictions for

a large portion of the dataset, while a low accuracy suggests that the model is making

more incorrect predictions.

3.1.8 Balanced Accuracy

Balanced Accuracy is a performance metric used in binary classification tasks,

particularly when dealing with imbalanced datasets where one class significantly

outweighs the other in terms of the number of instances. It provides a balanced

assessment of a model's ability to correctly classify both the positive and negative

classes.

The Balanced Accuracy is calculated as the average of two important metrics:

Sensitivity (True Positive Rate) and Specificity (True Negative Rate). These metrics are

crucial in understanding how well a model performs across different classes and help

account for class imbalances.

Here's a breakdown of Balanced Accuracy and its components:

Sensitivity (True Positive Rate) measures the proportion of actual positive

instances that were correctly predicted as positive by the model. The formula for

Sensitivity is: .𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁  

Specificity (True Negative Rate) measures the proportion of actual negative

instances that were correctly predicted as negative by the model. The formula for

Sensitivity is: .𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑁
𝑇𝑁 + 𝐹𝑃  

Balanced Accuracy is then calculated as the average of Sensitivity and

Specificity: 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)
2  .

The advantage of Balanced Accuracy is that it provides a fair and balanced

assessment of a model's performance, especially in cases where one class is rare, and

the model might be heavily biassed towards the majority class. It helps prevent overly

optimistic evaluations in imbalanced datasets.

A high Balanced Accuracy indicates that the model is effective at classifying

both positive and negative instances, while a low Balanced Accuracy suggests that the
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model may struggle with one or both classes. It is a valuable metric when you want a

comprehensive view of classification performance that considers both the detection of

positive cases and the accurate identification of negative cases, regardless of class

imbalances.

3.1.9 Precision

Precision is a binary classification metric that evaluates the accuracy of a

model's positive predictions, specifically focusing on how many of the instances it

predicted as positive were actually correct. In other words, it measures the proportion of

true positive predictions (correctly identified positive instances) out of all the positive

predictions made by the model.

The precision metric is especially relevant when minimising false positives

(Type I errors) is a priority, such as in applications where the cost of making incorrect

positive predictions are high.

Here's the formula for precision: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃  .

Precision answers the question: "Of all the instances the model predicted as

positive, how many were truly positive?" A high precision value means that the model

is making accurate positive predictions, with fewer false alarms. In other words, it has a

low rate of false positives.

A low precision value suggests that the model makes many positive predictions,

but a significant portion of those predictions are incorrect. This could indicate a high

rate of false positives, which may be undesirable in scenarios where false alarms have

serious consequences.

3.1.10 Recall

Recall, also known as Sensitivity or True Positive Rate, is a binary classification

metric that assesses a model's ability to correctly identify all actual positive instances
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(Y=1) out of the total number of actual positives. In other words, recall quantifies the

model's ability to find and "recall" as many positive instances as possible.

Here's the formula for recall: 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃+𝐹𝑁  .

Recall answers the question: "Of all the actual positive instances, how many did

the model correctly identify?" A high recall value means that the model is effective at

capturing most of the positive instances, minimising false negatives. In other words, it

has a low rate of missing actual positives.

A low recall value suggests that the model is missing a significant portion of the

actual positive instances, leading to a high rate of false negatives. This may be

undesirable in scenarios where correctly identifying all positive instances is crucial,

such as in medical diagnostics or security applications.

3.1.11 F1-score

The F1-Score is a binary classification metric that provides a balanced

assessment of a model's performance by combining precision and recall into a single

value. These two metrics focus on different aspects of classification performance:

precision emphasises the accuracy of positive predictions, while recall emphasises the

model's ability to capture positive instances.

The F1-Score is calculated using the harmonic mean of precision and recall, as

per the formula .𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ·  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

The harmonic mean is utilised because it gives more weight to the lower of the two

values, encouraging a balance between precision and recall. This means that if either

precision or recall is significantly lower than the other, the F1-Score will reflect this

lower value, promoting a balanced approach in which both false positives and false

negatives are minimised.

The F1-Score is particularly valuable when you need to find a trade-off between

the accuracy of positive predictions and the model's ability to capture as many positive

instances as possible. It is often used in situations where the consequences of false

positives and false negatives are approximately equal, such as in medical diagnostics,

where both missing a critical diagnosis and incorrectly diagnosing a healthy patient
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have serious implications. By considering both precision and recall, the F1-Score helps

you evaluate the model's performance from a more comprehensive and balanced

perspective, striking a harmony between these two vital aspects of binary classification

performance.

3.1.12 ROC-AUC score

The ROC-AUC score quantifies the overall quality of the model's predictions

across different classification thresholds, focusing on the trade-off between the True

Positive rate and the False Positive rate.

To calculate the ROC-AUC score, you first construct the ROC curve. The ROC

curve is a graphical representation that illustrates the model's performance at various

classification thresholds. It plots the True Positive Rate (TPR) on the y-axis against the

False Positive Rate (FPR) on the x-axis as the threshold for classifying positive

instances is varied.

Figure 2: ROC AUC curve representation

The ROC-AUC score is calculated by measuring the area under the ROC curve.

It quantifies the model's ability to distinguish between the two classes. The higher the
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ROC-AUC score, the better the model's discriminatory power. A score of 0.5 indicates

that the model's predictions are no better than random chance. A score of 1.0 indicates a

perfect model that can perfectly separate the two classes.

The ROC-AUC score is a valuable metric because it provides an aggregated

measure of the model's ability to rank positive instances higher than negative instances

across various classification thresholds. It is particularly useful in situations where the

class distribution is imbalanced or when you want to evaluate a model's overall

discrimination capability without specifying a single classification threshold.

3.2 Fairness Metrics

The Fairness Metrics shifts the focus towards the ethical aspects of data science.

Here, the discussion centres around the development and implementation of metrics that

ensure models do not perpetuate biases and inequalities present in data. This part

explores various fairness concepts such as demographic parity, equality of opportunity,

and individual fairness, among others.In summary, this section emphasises the

importance of fairness in model development, illustrating how data science can be

leveraged for socially responsible outcomes.

The annotated terms provide a comprehensive framework for understanding the

differential impacts of a predictive model on various groups, typically delineated by

privileged and unprivileged statuses based on certain protected attributes.

● : This metric indicates the probability of a𝑃𝑟(𝑌 = 1| 𝐷 = 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑)

positive outcome (Y=1) for the unprivileged group. In this context,

'unprivileged' refers to a group that may be at a systemic disadvantage or

underrepresented in the dataset. This measure helps in understanding the model's

propensity to predict positive outcomes for those who are typically marginalised.

● : Conversely, this measures the probability of a𝑃𝑟(𝑌 = 1| 𝐷 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑)

positive outcome for the privileged group. Here, 'privileged' refers to individuals
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or groups who, due to systemic advantages or overrepresentation, might have a

higher likelihood of receiving positive predictions from the model.

● : The False Positive Rate for the unprivileged group𝐹𝑃𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

indicates the proportion of instances where the model incorrectly predicts

positive outcomes (false positives) for cases that are actually negative,

specifically for the unprivileged group. This metric is crucial for assessing the

model’s bias in overestimating positive outcomes for this group.

● : This is the False Positive Rate for the privileged group,𝐹𝑃𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

representing the proportion of false positives within this group. A comparison

between the FPR of privileged and unprivileged groups can highlight disparities

in model performance.

● : This metric, the True Positive Rate for the unprivileged𝑇𝑃𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

group, quantifies the proportion of correct positive predictions (true positives)

within this group. It is a measure of the model's ability to accurately identify

positive outcomes for the unprivileged group.

● : Similarly, this represents the True Positive Rate for the𝑇𝑃𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

privileged group, indicating the proportion of true positives within this group.

This metric can be used to assess whether the model favors the privileged group

in correctly identifying positive cases.

● : This metric represents the False Negative Rate for the𝐹𝑁𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

unprivileged group, showing the proportion of actual positive instances

incorrectly predicted as negative. This rate is crucial for understanding the

model’s tendency to overlook positive outcomes in the unprivileged group.

● : Lastly, this is the False Negative Rate for the privileged𝐹𝑁𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

group. It quantifies the proportion of false negatives within this group, helping

to assess whether the model disproportionately misses positive outcomes for the

privileged group.

● : This denotes the overall error rate for the unprivileged𝐸𝑅𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 

group, calculated as the proportion of all misclassified instances (both false

positives and false negatives) in this group. This metric is vital for understanding

the model's overall accuracy in predicting outcomes for the unprivileged group.

20



● : The error rate for the privileged group, similarly,𝐸𝑅𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 

measures the proportion of misclassified instances in this group. Discrepancies

in error rates between privileged and unprivileged groups are indicative of

model bias.

3.2.1 Consistency

Consistency measures how similar the labels are for similar instances. The

equation of consistency is given below:

1 − 1
𝑛⋅𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ·  

𝑖=1

𝑛

∑  𝑦
𝑖

−
𝑗ϵ𝑁

𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥
𝑖
)

∑ 𝑦
𝑗

|
|
|
|
|

|
|
|
|
|

● i is an index ranging from 1 to n, where n is the number of data points in your

dataset.

● represents the predicted value for the data point.𝑦
𝑖

𝑖
𝑡ℎ

● j is an index ranging over the nearest neighbours for each data point.

● represents the features of the data point.𝑥
𝑖

𝑖
𝑡ℎ

● represents the set of nearest neighbours for the data point,𝑁
𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥

𝑖
)

𝑖
𝑡ℎ

typically determined using a distance metric like Euclidean distance.

● represents the predicted value for the j-th nearest neighbour of the data𝑦
𝑗

𝑖
𝑡ℎ

point.

Consistency calculates the absolute difference between the predicted value for a

data point and the average predicted value of its nearest neighbours. This is done for all

data points in the dataset, and the results are summed up.

The expression as a whole computes a consistency measure for the K-NN

regression model. It quantifies how similar the predicted values for each data point are

to the average of the predicted values of its nearest neighbours. If the predictions are
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highly consistent (i.e., they are similar to the averages of their neighbours), this measure

will be closer to 1. If the predictions are inconsistent or widely scattered, the measure

will be closer to 0.

In practice, a higher consistency measure indicates that the model is making

predictions that are more coherent and conform to the local structure of the data, which

is generally desirable in K-NN regression. This measure can be useful for evaluating the

quality of K-NN models and for selecting an appropriate number of neighbours

(n_neighbors) to achieve the desired level of consistency in predictions.

3.2.2 Disparate Impact

Disparate impact measures whether a particular decision or prediction has a

different impact on different groups, especially with regard to protected attributes such

as gender, race, or age.

The equation of disparate impact is given below: 𝑃𝑟(𝑌=1| 𝐷=𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑)
𝑃𝑟(𝑌=1| 𝐷=𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑)

In other words, disparate impact refers to the ratio of the rate of a positive

outcome for the disfavored group to the rate of a positive outcome for the favored

group.

If disparate impact is equal to 1, it indicates equal treatment or no disparate

impact. If ratios are greater than 1, it signifies a higher likelihood of positive outcomes

for unprivileged group compared to privileged group, which could indicate potential

bias in the decision-making process. If ratios are less than 1, it signifies a higher

likelihood of positive outcomes for privileged group compared to unprivileged group,

which could indicate potential bias in the decision-making process.
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3.2.3 Statistical Parity Difference

The Statistical Parity Difference is a fairness metric used to assess and quantify

potential bias in the predictions of a binary classification model with respect to a

protected attribute (denoted as D).

The formula for the Statistical Parity Difference is:

𝑃𝑟(𝑌 = 1|𝐷 = 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑) − 𝑃𝑟(𝑌 = 1|𝐷 = 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑) 

The Statistical Parity Difference quantifies the difference in predicted positive

outcomes between the unprivileged group and the privileged group. It tells you whether

there is a disparity in how the model's predictions are made based on the protected

attribute.

If the Statistical Parity Difference is close to 0, it suggests that the model's

predictions are fairly consistent between the unprivileged and privileged groups. In

other words, the likelihood of a positive outcome does not significantly differ based on

the protected attribute. If the Statistical Parity Difference is significantly greater than 0,

it indicates that the unprivileged group is less likely to receive positive predictions

compared to the privileged group. This suggests potential bias that favours the

privileged group. If the Statistical Parity Difference is significantly less than 0, it

indicates that the unprivileged group is more likely to receive positive predictions

compared to the privileged group. This, too, suggests potential bias, but in favour of the

unprivileged group.

3.2.4 Average Odds Difference

This metric evaluates how the model's false positive and true positive rates differ

between two groups, typically based on a protected attribute.

The formula of Average Odds Difference is:
1
2 [(𝐹𝑃𝑅

𝐷
= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 − 𝐹𝑃𝑅

𝐷
= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑) +

(𝑇𝑃𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 − 𝑇𝑃𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑))]
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The formula calculates the average of the differences between the false positive

rates and the true positive rates for the unprivileged and privileged groups. The metric

measures model's performance in terms of both false positives and true positives differs

between the two groups.

If the value is close to zero, it suggests that there is relatively little difference in

false positive rates and true positive rates between the unprivileged and privileged

groups. In other words, the model is making predictions that are fairly consistent across

both groups in terms of false positives and true positives. If the value is significantly

greater than zero, it indicates that the unprivileged group is experiencing higher false

positive rates and lower true positive rates compared to the privileged group, which

could be indicative of bias in model predictions. If the value is significantly less than

zero, it suggests that the unprivileged group has lower false positive rates and higher

true positive rates compared to the privileged group, which could also indicate a form of

bias.

3.2.5 Average Absolute Odds Difference

This metric measures the absolute differences in False Positive rate and True

Positive rate between two groups based on a protected attribute.

The formula of Absolute Odds Difference is:

1
2 [|𝐹𝑃𝑅

𝐷
= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 − 𝐹𝑃𝑅

𝐷
= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑| +

|𝑇𝑃𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 − 𝑇𝑃𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑|]

If the value is close to zero, it suggests that there is relatively little difference in

false positive rates and true positive rates between the unprivileged and privileged

groups, with any differences being relatively balanced. If the value is significantly

greater than zero, it indicates that there are substantial differences in false positive rates

and true positive rates between the two groups, and these differences are of significant

magnitude. This could be indicative of bias in model predictions.
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3.2.6 Error rate difference

The error rate difference ( ) is a fairness metric used to assess disparities in the𝐸𝑅𝑅
𝐷

error rates of a binary classification model between unprivileged and privileged groups,

typically based on a protected attribute.

The formula for error rate difference is:

𝐸𝑅𝑅
𝐷

= 𝐸𝑅𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 −  𝐸𝑅𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑.

The error rate difference quantifies the difference in error rates between the

unprivileged and privileged groups. It helps evaluate whether there is a disparate impact

in terms of misclassification rates based on the protected attribute.

If the value is close to zero, it suggests that there is relatively little𝐸𝑅𝑅
𝐷

difference in error rates between the unprivileged and privileged groups, indicating that

the model's prediction errors are fairly consistent across both groups. If the value𝐸𝑅𝑅
𝐷

is significantly greater than zero, it indicates that the unprivileged group has a higher

error rate compared to the privileged group, suggesting potential bias or disparities in

model performance. If the value is significantly less than zero, it suggests that𝐸𝑅𝑅
𝐷

the unprivileged group has a lower error rate compared to the privileged group, which

could also indicate disparities in a different direction.

3.2.7 Error rate ratio

The ratio of error rates ( ) is a fairness metric used to assess disparities in the error𝐸𝑅𝑅
𝐷

rates of a binary classification model between unprivileged and privileged groups,

typically based on a protected attribute.

The formula for the ratio of error rates is: 𝐸𝑅𝑅
𝐷

=  
𝐸𝑅𝑅

𝐷
=𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

𝐸𝑅𝑅
𝐷

=𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑  .
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The metric calculates the ratio of the error rate for the unprivileged group𝐸𝑅𝑅
𝐷

to the error rate for the privileged group. It measures the extent to which error rates

differ between these two groups based on the protected attribute.

If the value is close to 1, it suggests that the error rates are roughly the𝐸𝑅𝑅
𝐷

same for both the unprivileged and privileged groups, indicating that the model's

prediction errors are fairly consistent between the two groups. If the value is𝐸𝑅𝑅
𝐷

significantly greater than 1, it indicates that the unprivileged group has a higher error

rate compared to the privileged group, suggesting potential bias in model performance.

In this case, a value of 2, for example, means that the unprivileged group has an error

rate twice as high as the privileged group. If the value is significantly less than 1,𝐸𝑅𝑅
𝐷

it suggests that the unprivileged group has a lower error rate compared to the privileged

group. This, too, could indicate disparities in a different direction.

This metric is particularly useful in cases where you want to understand the

relative magnitude of error rate differences between different groups.

3.2.8 False negative rate difference

The False Negative Rate Difference ( ) is a fairness metric used to assess𝐹𝑁𝑅
𝐷

disparities in the false negative rates of a binary classification model between

unprivileged and privileged groups, typically based on a protected attribute.

The formula for the False Negative Rate Difference is:

𝐹𝑁𝑅
𝐷

=  𝐹𝑁𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 −  𝐹𝑁𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 .  

The metric calculates the difference in false negative rates between the𝐹𝑁𝑅
𝐷

unprivileged and privileged groups. It helps evaluate whether there is a disparate impact

in terms of false negatives based on the protected attribute.

If the value is close to zero, it suggests that there is relatively little𝐹𝑁𝑅
𝐷

difference in false negative rates between the unprivileged and privileged groups,

indicating that the model's ability to correctly identify positive instances is fairly
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consistent between the two groups.If the value is significantly greater than zero,𝐹𝑁𝑅
𝐷

it indicates that the unprivileged group experiences a higher rate of false negatives

compared to the privileged group. This suggests potential bias or disparities in the

model's ability to identify positive instances.If the value is significantly less than𝐹𝑁𝑅
𝐷

zero, it suggests that the unprivileged group has a lower rate of false negatives

compared to the privileged group, which could also indicate disparities, albeit in a

different direction.

3.2.9 False negative rate ratio

The False Negative Rate Ratio ( ) is a fairness metric used to assess𝐹𝑁𝑅
𝐷

disparities in the false negative rates of a binary classification model between

unprivileged and privileged groups, typically based on a protected attribute.

The formula for the False Negative Rate Ratio is:

𝐹𝑁𝑅
𝐷

=  
𝐹𝑁𝑅

𝐷
=𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

𝐹𝑁𝑅
𝐷

=𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑   .

The metric calculates the ratio of the false negative rate for the𝐹𝑁𝑅
𝐷

unprivileged group to the false negative rate for the privileged group. It measures the

extent to which false negative rates differ between these two groups based on the

protected attribute.

If the value is close to 1, it suggests that the false negative rates are𝐹𝑁𝑅
𝐷

roughly the same for both the unprivileged and privileged groups, indicating that the

model's ability to correctly identify positive instances (low false negatives) is fairly

consistent between the two groups. If the value is significantly greater than 1, it𝐹𝑁𝑅
𝐷

indicates that the unprivileged group has a higher false negative rate compared to the

privileged group, suggesting potential bias or disparities in the model's ability to

identify positive instances. In this case, a value of 2, for example, means that the

unprivileged group has a false negative rate twice as high as the privileged group.

27



If the value is significantly less than 1, it suggests that the differences in false𝐹𝑁𝑅
𝐷

negative rates between the unprivileged and privileged groups are substantial, and the

unprivileged group has a lower false negative rate compared to the privileged group.

3.2.10 False positive rate difference

The False Positive Rate Difference ( ) is a fairness metric used to assess disparities𝐹𝑃𝑅
𝐷

in the false positive rates of a binary classification model between unprivileged and

privileged groups, typically based on a protected attribute such as gender, race, or age.

The formula for the False Positive Rate Difference is:

𝐹𝑃𝑅
𝐷

=  𝐹𝑃𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 −  𝐹𝑃𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 .  

The metric calculates the difference in false positive rates between the𝐹𝑃𝑅
𝐷

unprivileged and privileged groups. It helps evaluate whether there is a disparate impact

in terms of false positives based on the protected attribute.

If the value is close to zero, it suggests that there is relatively little𝐹𝑃𝑅
𝐷

difference in false positive rates between the unprivileged and privileged groups,

indicating that the model's ability to correctly identify negative instances (low false

positives) is fairly consistent between the two groups. If the value is significantly𝐹𝑃𝑅
𝐷

greater than zero, it indicates that the unprivileged group experiences a higher rate of

false positives compared to the privileged group, suggesting potential bias or disparities

in the model's ability to identify negative instances. If the value is significantly𝐹𝑃𝑅
𝐷

less than zero, it suggests that the differences in false positive rates between the

unprivileged and privileged groups are substantial, and the unprivileged group has a

lower false positive rate compared to the privileged group, which could also indicate

disparities in a different direction.
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3.2.11False positive rate ratio

The False Positive Rate Ratio ( ) is a fairness metric used to assess𝐹𝑃𝑅
𝐷

disparities in the false positive rates of a binary classification model between

unprivileged and privileged groups, typically based on a protected attribute such as

gender, race, or age.

The formula for the False Positive Rate Ratio is:

𝐹𝑃𝑅
𝐷

=  
𝐹𝑃𝑅

𝐷
=𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

𝐹𝑃𝑅
𝐷

=𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑

The metric calculates the ratio of the false positive rate for the𝐹𝑃𝑅
𝐷

unprivileged group to the false positive rate for the privileged group. It measures the

extent to which false positive rates differ between these two groups based on the

protected attribute.

If the value is close to 1, it suggests that the false positive rates are roughly𝐹𝑃𝑅
𝐷

the same for both the unprivileged and privileged groups, indicating that the model's

ability to correctly identify negative instances (low false positives) is fairly consistent

between the two groups.If the value is significantly greater than 1, it indicates that𝐹𝑃𝑅
𝐷

the unprivileged group has a higher false positive rate compared to the privileged group,

suggesting potential bias or disparities in the model's ability to identify negative

instances. In this case, a value of 2, for example, means that the unprivileged group has

a false positive rate twice as high as the privileged group. If the value is𝐹𝑃𝑅
𝐷

significantly less than 1, it suggests that the differences in false positive rates between

the unprivileged and privileged groups are substantial, and the unprivileged group has a

lower false positive rate compared to the privileged group.
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3.2.12 Equal Opportunity Difference or True positive rate difference

The True Positive Rate Difference ( ) is a fairness metric used to assess𝑇𝑃𝑅
𝐷

disparities in the true positive rates of a binary classification model between

unprivileged and privileged groups, typically based on a protected attribute.

The formula for the True Positive Rate Difference is:

𝑇𝑃𝑅
𝐷

=  𝑇𝑃𝑅
𝐷

= 𝑢𝑛𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 −  𝑇𝑃𝑅
𝐷

= 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑑 .  

The metric calculates the difference in true positive rates between the𝑇𝑃𝑅
𝐷

unprivileged and privileged groups. It helps evaluate whether there is a disparate impact

in terms of true positives based on the protected attribute.

If the value is close to zero, it suggests that there is relatively little𝑇𝑃𝑅
𝐷

 

difference in true positive rates between the unprivileged and privileged groups,

indicating that the model's ability to correctly identify positive instances (high true

positives) is fairly consistent between the two groups. If the value is significantly𝑇𝑃𝑅
𝐷

greater than zero, it indicates that the unprivileged group has a lower true positive rate

compared to the privileged group, suggesting potential bias in the model's ability to

identify positive instances. If the value is significantly less than zero, it suggests𝑇𝑃𝑅
𝐷

that the unprivileged group has a higher true positive rate compared to the privileged

group, which could also indicate disparities in a different direction.

4. Bias Detection

Bias detection is the process of identifying and assessing biases that may exist

within a dataset, algorithm, or decision-making system. Bias, in this context, refers to

systematic and consistent deviations in the data or the processes applied to it, which can

lead to unfair or skewed outcomes. Detecting bias is crucial for ensuring fairness,
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equity, and transparency in various domains, particularly in fields related to machine

learning, artificial intelligence, data analysis, and decision-making.

Bias often originates from the data itself. It can manifest in various forms, such

as underrepresentation or overrepresentation of certain groups, inaccuracies, or

misleading information. Detecting biased data involves analysing the dataset to identify

patterns or discrepancies that could potentially lead to biased outcomes.

In the context of bias detection, we are referring to two types of bias detection,

pre-modeling and post-modeling bias detection. The difference between these two types

is that pre-modelling bias detection involves identifying bias before a model is built. It

primarily focuses on the data and how it's prepared for the model. On the other hand,

post-modeling bias detection involves evaluating and correcting for biases after the

model has been developed. Both pre-modeling and post-modeling bias detection require

a multifaceted approach, involving technical, ethical, and social considerations. They

are essential for building models that are not only effective but also equitable.

4.1 Pre-Modeling Bias Detection

In the realm of pre-modeling bias detection in data analysis, various statistical

methods are employed to uncover and understand the underlying structure and potential

biases within datasets. These methods are critical in ensuring the reliability and fairness

of subsequent machine learning models. Understanding and addressing biases at this

stage helps in developing models that make fair and accurate predictions. Among these

methods, correlation analysis, Kernel Density Estimation (KDE) or hypothesis tests are

particularly noteworthy.

Firstly, Spearman correlation coefficient is a statistical method used to measure

the strength and direction of the relationship between two ranked variables. Unlike the

Pearson correlation coefficient, which requires the data to be normally distributed and

the relationship between variables to be linear, the Spearman correlation is

non-parametric and does not depend on these assumptions. This makes it particularly

useful for analysing relationships between variables when these conditions are not met.

In the Spearman correlation method, data values are first converted to ranks.

When the data is sorted, each value is replaced by its rank, and in cases of tied values,
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the average rank is assigned. This ranking approach is crucial for the Spearman method

as it compares the monotonic relationship between the variables based on these ranks.

The calculation of the Spearman correlation coefficient (ρ) involves assessing the

differences in the ranks of corresponding values in the two variables. The coefficient

can range from -1 to +1. A coefficient of +1 signifies a perfect positive correlation,

indicating that an increase in one variable exactly predicts an increase in the other.

Conversely, a coefficient of -1 indicates a perfect negative correlation, meaning that an

increase in one variable predicts a decrease in the other. A coefficient of 0 implies no

correlation, indicating that the movement in one variable does not predict the movement

in the other in any specific way.

The formula for calculating Spearman’s correlation coefficient (ρ) is centred on

the sum of the squared differences in ranks between the corresponding values of the two

variables, adjusted for the number of observations.

Accompanying the Spearman correlation coefficient is a p-value, which is

crucial for understanding the statistical significance of the correlation. This p-value

represents the probability of observing the given data if the null hypothesis (which

states that there is no association between the two variables) were true. A low p-value

(typically less than 0.05) suggests that the correlation observed is unlikely to have

occurred by random chance, thereby indicating a statistically significant correlation. In

contrast, a high p-value suggests that the observed correlation could be due to random

variation, and there is insufficient evidence to conclude a significant association

between the variables.

In the analysis of the correlation coefficients with the target variable in Figure 3,

several key variables emerge as particularly correlated and thus merit attention for

potential bias. These variables include Debtor (correlation coefficient of -0.27), Gender

(-0.25), Tuition Fees Up to Date (0.44), Previous qualification (-0.15) and Marital Status

(-0.12). The selection of these variables is predicated not only on their statistical

correlation with the target variable but also on their societally significant dimensions.

For instance, age and gender are often regarded as critical attributes in bias detection

analyses due to their potential role as protected characteristics, which may reveal

underlying discrimination in the initial dataset.

The presence of a star symbol on the graph is a notable element, signifying those

correlations that reach statistical significance, where the p-value is less than 0.05. This
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threshold is conventionally used in statistical analyses to denote a low likelihood (less

than 5%) of the observed correlation being a product of random chance.

Figure 3: Correlation coefficient of each variable with the Target variable

Additionally, Kernel Density Estimation (KDE) is a non-parametric technique

used to estimate the probability density function of a random variable. It provides a

smoothed representation of the data's distribution, allowing for a visual assessment of

the underlying density.

The Kernel Density Estimation (KDE) graph in Figure 4 provides an insightful

visualisation of the distribution differences between a given variable and the target

variable. The analysis highlights binary variables such as Debtor, Tuition Fees Up to
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Date, and Gender and categorical variables such as Age at enrollment, Marital Status

and Admission grade. This graphical representation indicates a higher likelihood of

graduation among students who are not debtors to the university, identify as female, or

have their tuition fees paid up to date. Additionally, it indicates a higher likelihood of

graduation among students who are at an age under 21, are single and their admission

grade is between 133 to 152.

Several factors might contribute to this observations, ranging from societal

discrimination to potential sampling errors in the initial dataset. It is crucial to note that

the primary objective of this analysis is to enable fair prediction across various groups,

irrespective of the underlying causes of the observed bias.

Figure 4: Kernel Density Estimation (KDE) plot of selected variables
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4.2 Post-Modeling Bias Detection

Post-modeling bias detection is a critical phase in the model evaluation process,

focusing on identifying and addressing biases that may have been introduced by the

predictive model. This step is essential to ensure fairness and equity in the model's

decisions, particularly when these decisions impact diverse groups of individuals.

Several fairness metrics are commonly used in this context including Statistical Parity

Difference, Disparate Impact Ratio, Equal Opportunity Difference and Average Odds

Difference.

Statistical Parity Difference measures the difference in the probability of

positive outcomes between the privileged and unprivileged groups. A value of zero

indicates perfect parity, meaning both groups have equal chances of receiving positive

outcomes. Values deviating from zero suggest potential bias, with positive or negative

values indicating favouritism towards the privileged or unprivileged group, respectively.

Disparate Impact Ratio compares the proportion of positive outcomes between

the unprivileged and privileged groups. A value of 1 implies no disparate impact,

indicating that both groups are equally likely to receive positive outcomes. Values less

than 1 indicate a bias against the unprivileged group and values more than 1 indicate

bias against the privileged group.

Equal Opportunity Difference focuses specifically on the true positive rate,

measuring the difference in this rate between the unprivileged and privileged groups. It

aims to ensure that both groups have equal chances of being correctly identified for a

positive outcome. A value close to zero suggests fairness in terms of equal opportunity.

Average Odds Difference averages the differences in the false positive rates and

true positive rates between the unprivileged and privileged groups. It provides a more

comprehensive view of bias by considering both types of errors (false positives and

false negatives). Similar to other metrics, a value near zero indicates fairness.

By employing these metrics, post-modeling bias detection endeavours to

quantify and rectify any disparities in model outcomes across different demographic

groups, thereby upholding the principles of fairness and equity in predictive modelling.

During the analysis, it is used XGBoost classifier .XGBoost, short for Extreme Gradient

Boosting, is a popular and efficient implementation of gradient boosting machines, a

type of machine learning algorithm. It is known for its performance and speed in
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classification tasks. XGBoost is particularly favoured for its ability to handle large

datasets and its effectiveness in dealing with a wide range of predictive modelling

problems.

The output metrics in Figure 5 suggest that the classification model is

performing exceptionally well, almost to an ideal level in certain aspects. With True

Negatives (TN) at 359 and True Positives (TP) at 628, the model shows a high

capability in correctly classifying both negative and positive cases. The False Positives

(FP) and False Negatives (FN) are relatively low at 73 and 29, respectively, indicating

that the model makes mistakes but they are not excessive.

The 100% Balanced Accuracy is particularly notable. This implies that the

model is equally proficient at identifying both classes, which is quite rare in real-world

scenarios and often points to an extremely well-tuned model or, in some cases, could

suggest an overfitting issue or an imbalance in the dataset.

The F1-score, at 92%, reflects a strong balance between precision and recall,

meaning the model is reliable in its predictions and misses very few positive cases. This

is further supported by the ROC-AUC score of 95%, indicating a superior ability of the

model to distinguish between the positive and negative classes. Such a high ROC-AUC

score usually signifies that the model has a very good rate of true positive predictions

while maintaining a low rate of false positives.

Figure 5: Confusion matrix, ROC-AUC curve and Evaluation Metrics results of

XGBoost model
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Table 2 provides details of the outcomes for each variable across several key

fairness metrics, such as statistical parity difference, disparate impact ratio, equal

opportunity difference, and average odds difference. Notably, the variables

'Previous_qualification', 'Debtor', and 'Tuition_fees_up_to_date' exhibit the most

substantial biases according to these metrics.

For 'Previous_qualification', the statistical parity of 0.537 and disparate impact

ratio of 5.8333 both suggest a significant bias, indicating that individuals in this group

are more likely to receive positive outcomes compared to others. The equal opportunity

difference of 0.4573 and average odds difference of 0.3145 reinforce this, showing a

substantial disparity in favour of this group, especially in terms of true positive rates.

In the case of 'Debtor', the statistical parity of 0.4667 and disparate impact ratio

of 2.9835 again indicate bias, with this group being more favourably treated. The equal

opportunity difference of 0.2344 and average odds difference of 0.1513, though lower

than in the 'previous_qualification' case, still suggest moderate bias towards debtors in

terms of correctly identifying positive outcomes.

For 'Tuition_fees_up_to_date', the scenario is reversed. The negative statistical

parity (-0.6869) and low disparate impact ratio (0.0657) point towards significant bias

against this group. The negative equal opportunity difference (-0.4601) and average

odds difference (-0.3334) further highlight this bias, indicating that individuals who are

up to date with tuition fees are less likely to receive positive outcomes and face a higher

disparity in false positive and true positive rates.

Overall, these results indicate varying levels of bias in model's predictions based

on the attributes analysed. 'Previous_qualification' and 'Debtor' groups seem to receive

more favourable outcomes, while 'tuition_fees_up_to_date' is disadvantaged.

5. Explainability Methods

Explainability methods in machine learning are essential tools that enable a

deeper understanding of the decisions made by machine learning models. These

techniques are especially important for complex models, often referred to as "black

boxes", like deep learning networks or sophisticated ensemble methods.
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The primary purpose of these methods is to render the outcomes of machine

learning models transparent and comprehensible to humans. This clarity is vital for

several key reasons. Firstly, it builds trust and confidence among users. When people

understand how a model makes its decisions, they are more likely to trust and adopt

these advanced technologies. Secondly, explainability is integral to ensuring ethical

decision-making. It aids in identifying and addressing any biases present in the model,

promoting fairness and the ethical application of artificial intelligence.

Moreover, explainability methods serve as a valuable tool for model

improvement. By unraveling how a model arrives at its decisions, data scientists can

pinpoint weaknesses or areas for refinement, which might include enhancing the model,

choosing more effective features, or reevaluating the problem being addressed. In

industries governed by strict regulations, like finance and healthcare, there's also a

practical necessity for explainability. Regulations often mandate that decisions made by

automated systems must be interpretable, ensuring accountability and transparency.

Debugging and troubleshooting are additional areas where explainability proves

invaluable. It can reveal whether a model’s decisions are based on valid patterns in the

data or on misleading correlations.

Among the various explainability methods, LIME (Local Interpretable

Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) stand out.

LIME provides local explanations for individual predictions, shedding light on how a

model arrived at a specific decision. SHAP, drawing from Shapley values in game

theory, offers a comprehensive means to elucidate the output of any machine learning

model, delivering insights into the importance of features both locally and globally.

In summary, explainability methods like LIME and SHAP are indispensable in

the contemporary landscape of machine learning. They not only foster a deeper

understanding and trust in AI systems but also ensure that these systems are used

responsibly, ethically, and in compliance with regulatory standards. These methods

bridge the gap between advanced machine learning techniques and human-centric

decision-making, ensuring that AI advancements align with societal values and ethical

principles.

38



5.1 LIME

LIME (Local Interpretable Model-agnostic Explanations) technique works by

creating explanations for individual predictions, allowing users to understand how a

model arrived at its decision for a specific instance.

The primary mechanism of LIME involves approximating the complex model

locally. It starts by generating a new dataset composed of perturbed samples around the

instance in question, and then it feeds these samples into the complex model to obtain

predictions. The key here is that these perturbed samples are created to be close to the

original instance, ensuring that the explanations are locally faithful.

Once the new dataset is prepared, LIME trains a simple, interpretable model,

such as a linear regression or a decision tree, on this dataset. The simplicity of this

model is crucial, as it needs to be easily understandable to humans. The model then

provides insights into which features were most influential in the complex model’s

prediction for the specific instance.

One of the key strengths of LIME is its model-agnostic nature, meaning it can be

applied to any machine learning model. This universality makes it a highly versatile tool

for model interpretation. However, it's important to note that LIME's explanations are

local. They are valid for the particular instance being examined and do not necessarily

represent the overall behaviour of the model.

While LIME has been immensely valuable in enhancing the transparency of AI

systems, particularly in critical applications where understanding model decisions is

essential, it is not without limitations. The technique's reliance on local approximations

means that the explanations may not capture the model's behaviour in a broader context.

Additionally, the approach used to create perturbations and the choice of the

interpretable model can significantly influence the explanations, potentially leading to

varying degrees of reliability.

Below, the results are presented for the XGBoost algorithm, which were derived

using the LIME methodology. The plots show the top contributing features to the

model's prediction for the selected instance.Each bar represents a feature, and the length

and direction of the bar indicate the feature's impact on the prediction. Positive

contributions (pushing the prediction towards the positive class) are usually shown in

one colour (e.g., green), and negative contributions (pushing towards the negative class)
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in another (e.g., red).The x-axis represents the weight of each feature, showing how

much each feature pushes the model's output higher or lower.

For instance, in all three plots in Figure 6 we can see the attribute "Debtor" with

a negative coefficient (red bars), suggesting that being a debtor is a negative contributor

to the prediction of class 1. The magnitude of this feature's coefficient is fairly

consistent across the three plots, indicating that its importance in the prediction of class

1 is stable across these instances.

The consistency in the direction and magnitude of the feature importance for the

"Debtor" attribute implies that regardless of the other features and their values in

different instances, having a debt to the university tends to uniformly decrease the

likelihood of an instance being classified as class 1 by the model. This uniform

behaviour suggests that the "Debtor" feature has a reliably negative influence on the

model's decision for class 1, which can be an interesting insight for those analysing the

model's behaviour.

Additionally, the negative coefficients of features like curricular units approved

and having educational special needs suggest that these attributes may compound the

challenges faced by debtors. Similarly, the scholarship holder attribute also negatively

influences the prediction, which could reflect a nuanced relationship between financial

aid and indebtedness on student outcomes. The unemployment rate's varied direction

across the plots hints at complex external economic influences that might affect

students, potentially making the situation worse for those with financial struggles.

In summary, the persistent negative influence of the "Debtor" attribute across

multiple features suggests a significant weighting of financial status within the model's

predictions, which may mirror larger systemic patterns affecting academic performance

and student welfare. This uniformity in the data verifies that the "Debtor" status could

be a potential axis of bias, systematically impacting certain student groups.
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Figure 6: LIME explanation of students with debtor
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5.2 SHAP

SHAP (SHapley Additive exPlanations) is an advanced method in machine

learning designed to provide clear explanations for the predictions of any machine

learning model. Rooted in cooperative game theory, specifically the Shapley values

concept, SHAP delivers a unified measure of feature importance that is consistent and

locally precise. This method is pivotal in interpreting complex models, offering insights

into how individual features contribute to each prediction.

The fundamental process of SHAP involves assessing the impact of each feature

in a model by computing its contribution to the prediction. This is done by evaluating

every possible combination of features. The Shapley value, central to this approach,

calculates the average impact of a feature across all these combinations. In other words,

for a given prediction, a SHAP value tells you how much each feature in the dataset

contributed to pushing the model's output from the baseline (average) prediction. If the

SHAP value is high, it means that the feature significantly influenced the prediction. A

positive SHAP value indicates that the feature pushed the model's prediction higher,

while a negative value indicates it pushed the prediction lower.

SHAP stands out for its consistency — a key property ensuring that the

importance attributed to a feature reflects its impact on the model's output. This aspect

of SHAP sets it apart from other interpretability methods, which might not always

provide consistent results. SHAP also offers both local and global interpretations. It not

only shows the contribution of each feature to individual predictions (local

interpretation) but can also aggregate these contributions across the dataset to offer a

broader view of feature importance (global interpretation).

However, SHAP's comprehensiveness comes with a computational cost. The

complexity of calculating contributions for each feature across all possible

combinations can be substantial, especially in models with numerous features. This

makes SHAP challenging to implement in scenarios requiring real-time analysis or with

very large datasets.

Below, the results are presented for the XGBoost algorithm, which were derived

using the SHAP methodology. This approach emphasises a detailed and analytical

understanding of the algorithm's performance.
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Firstly, the type of plot below in Figure 7 is a powerful tool for interpreting

complex models and is particularly useful in understanding which features have the

most influence on the model's predictions.

Each bar in the plot represents a feature from the dataset. The length of the bar

corresponds to the average absolute SHAP value of that feature across all the data

points in the dataset. The plot essentially ranks the features by their importance.

The bar length is indicative of the magnitude of impact the feature has on the

model’s output. A longer bar means that the feature significantly changes the model's

prediction. Considering the absolute value ensures that the overall impact of the feature

is reflected, irrespective of the direction of the impact.

This bar plot serves as a global explanation method. It provides a comprehensive

view of feature importance across the entire dataset or the specified subset, making it an

excellent tool for gaining a holistic understanding of the model. For instance, features

with very small bars might have minimal impact and could potentially be removed to

simplify the model. Conversely, features with long bars are crucial to the model’s

decision-making process and warrant closer attention.

For instance, the predictive model seems to prioritise academic progress as a key

determinant of student success, with the number of approved curricular units in the

second semester ('Curricular_units_2nd_sem_approved') being the most influential

factor. This emphasis on second-semester achievements suggests that the model regards

continued academic performance as a critical indicator of a student's potential. On the

financial front, the positive impact of the 'Tuition_fees_up_to_date' feature underscores

the model's consideration of a student's financial standing as integral to their academic

journey, reflecting an implicit connection between financial stability and academic

continuity.

Moreover, the model takes into account the student's initial academic

engagement and performance, as indicated by the approval of first-semester units and

enrollment in these units, highlighting the importance of a strong start to the academic

year. The role of the specific academic program and the presence of financial aid, via

the 'Course' and 'Scholarship_holder' attributes, further demonstrates the model's

nuanced approach to evaluating student profiles. Additionally, the model factors in

grades and the frequency of evaluations during the second semester, suggesting a

comprehensive analysis of ongoing academic achievements.
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Conversely, the 'Debtor' status, while having a smaller positive impact, still

factors into the model, pointing to a subtle acknowledgment of the complexities

surrounding a student's financial obligations. The aggregation of 27 other features,

albeit individually less significant, hints at the model's multifaceted nature, considering

a wide array of variables that collectively contribute to the depiction of a student's

academic landscape.

Figure 7: SHapley bar plot of the mean of SHAP values

On the other hand, the second type of plot below in Figure 8 offers a view of

how different features influence the model's output, combining aspects of both global

and local interpretability.

In a violin plot generated by SHAP, each feature in the dataset is represented by

a row, with the features typically arranged vertically. The violin plot displays the full

distribution of the SHAP values for each feature. This provides a deeper understanding

of how each feature influences the model's predictions across different data points.

The core element of this plot is the "violin" aspect, which is essentially a density plot

that shows where the SHAP values for a particular feature are most concentrated. The
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thicker parts of the violin indicate a higher concentration of SHAP values, suggesting

that the feature more frequently has a high impact on the model's output in that range.

Conversely, thinner parts indicate that fewer data points have SHAP values in that range

for the feature.

Furthermore, the colour coding within each violin plot typically indicates the

value of the feature: higher values in one colour and lower values in another. This aspect

helps in understanding not just the magnitude of the feature's impact but also the

direction. For example, higher values of a feature might consistently lead to higher

predictions from the model, which would be visible in the plot.

The SHAP violin plot is a powerful tool because it provides a comprehensive

overview of how the features in a model contribute to its predictions. It goes beyond

merely ranking features by importance (as in a bar plot) by illustrating the distribution

and direction of their effects. This makes it highly useful for diagnosing model

behaviour, understanding feature interactions, and communicating complex model

dynamics in a more intuitive manner. It is particularly beneficial when it is important to

understand not just which features are important, but how their values influence

predictions in different ways.

At the top of the impact scale, we have features related to the approval of

curricular units in both the first and second semesters

(Curricular_units_1st_sem_approved and Curricular_units_2nd_sem_approved). The

approval of second-semester curricular units has a notably positive impact, suggesting a

strong correlation between academic progression and the model's predictions. This is

closely followed by whether tuition fees are up-to-date (Tuition_fees_up_to_date),

indicating the financial status of students as a significant predictor.

Enrollment in curricular units during the first semester

(Curricular_units_1st_sem_enrolled) also plays a role, though its impact is more varied,

hinting at a complex interaction with other factors. The specific course (Course) a

student is enrolled in and whether they are a scholarship holder (Scholarship_holder)

are also influential, but with a wider spread in SHAP values, reflecting a more nuanced

effect on the model's output. Evaluations and grades for second-semester units

(Curricular_units_2nd_sem_evaluations,Curricular_units_2nd_sem_grad) are critical

too, with the plot showing that both high and low grades can significantly influence

predictions, possibly affecting decisions related to the likelihood of student success.
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The debt status of students ( 'Debtor'), generally tends to lower the model's

output, which could be indicative of financial challenges affecting academic

performance. Age at enrollment and the grades from previous qualifications

(Age_at_enrollment, Previous_qualification_grade) introduce demographic and past

performance elements into the predictive equation, each with their own spectrum of

impact.
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Figure 8: SHapley violin plot

Finally, in a SHapley waterfall plot, the focus is on how the input features of a

single data point contribute to the model’s output for that specific instance.

Each bar in the waterfall plot represents the contribution of a single feature to

the shift from the baseline prediction to the actual model prediction for that specific data

point. The length and direction of the bar indicate the magnitude and direction of the

feature’s impact. If a bar extends to the right, it means the feature increased the

47



prediction value; if it extends to the left, the feature decreased the prediction value. The

features are typically sorted by their impact magnitude, making it easy to see which

features had the most significant positive or negative contributions to the prediction.

The plot ends with the final prediction, showing how the cumulative effect of all the

features transformed the baseline prediction into the model’s final output for that

particular instance.

Waterfall plots are extremely useful for detailed, case-specific analysis. They

provide a clear and intuitive way to understand how each feature of a specific data point

contributes to the model’s prediction. By analysing a waterfall plot, one can discern

which features were most influential for a particular prediction and how they interacted

to produce the final outcome.

Across all three plots in Figure 9, the 'Tuition_fees_up_to_date' feature

consistently shows a positive impact on the model's predictions. This indicates that

students who are current with their tuition payments are more likely to be predicted to

graduate. The positive SHAP value for this feature suggests that financial regularity is

an essential determinant of academic success according to the model, implying that

students without financial delinquencies are seen as more likely to succeed.

Other common features across the plots include

'Curricular_units_1st_sem_approved', 'Curricular_units_2nd_sem_approved', and

'Curricular_units_1st_sem_enrolled', are possibly influenced by

'Tuition_fees_up_to_date'.They have positive SHAP values, although they vary in

magnitude. These features relate to a student's academic engagement and achievements,

reinforcing the model's prioritisation of academic performance as a significant predictor

of graduation outcomes.

Given the strong influence of the 'Tuition_fees_up_to_date' feature, it is a prime

candidate for fairness analysis. This is because it directly ties a student's financial status

to their predicted academic success, which could introduce bias against students from

less affluent backgrounds or those facing temporary financial hardships. If the model

overly relies on this feature, it may unfairly disadvantage students who, for various

reasons, are not able to keep their tuition fees up to date, despite their academic

potential or effort.
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Figure 9: SHAP explanation of student with their tuition fees up to date

The provided plots above depict SHAP values for a predictive model focused on

students whose tuition fees are not up to date in Figure 10 .'Tuition_fees_up_to_date'

protective attribute shows a substantial negative SHAP value in each case. The same

picture appears for the rest of the feature which again shows similar SHAP values. This

indicates that not being current with tuition payments is a strong predictor for not

graduating, according to the model. The magnitude of its impact is significant and

suggests that financial delinquency is considered by the model as a key barrier to

academic success.

As previously mentioned, other common features such as

'Curricular_units_2nd_sem_approved', 'Curricular_units_1st_sem_approved', and

'Curricular_units_2nd_sem_enrolled' also appear across the plots with negative SHAP

values. This reinforces the idea that academic performance and engagement, as well as

financial regularity, are tightly interwoven in the model's predictions.

The recurring prominence of 'Tuition_fees_up_to_date' with a negative impact

verifies its importance for a fairness analysis. This feature's influence on the prediction

of graduation outcomes signifies a potential area of bias, as it may disproportionately

affect students from lower socioeconomic backgrounds or those experiencing temporary

financial hardship.
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Figure 10: SHAP explanation of students with their tuition fees delayed.
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6. Bias Mitigation Models

In the quickly growing fields of machine learning (ML) and artificial

intelligence (AI), dealing with bias is a major challenge. As these technologies

increasingly influence various aspects of society, from job recruitment to healthcare

decision-making, the importance of addressing and mitigating bias in ML systems has

become paramount. Biases in machine learning often arise due to skewed data,

assumptions in how algorithms are made, or the socio-cultural context in which these

models are deployed.

Bias mitigation models are specialised algorithms designed to identify and

eliminate biases in ML systems. They aim to ensure that ML systems make decisions

that are fair, equitable, and devoid of discriminatory undertones. The development and

implementation of bias mitigation models involve a multifaceted approach,

encompassing data preprocessing, in-processing techniques during model training, and

post-processing adjustments after a model's predictions are made.

In preprocessing, the focus is on creating balanced datasets or transforming data

in a way that neutralises biases. This could involve oversampling underrepresented

groups or adjusting features that are disproportionately associated with certain

outcomes. In-processing techniques incorporate fairness directly into the model training

process, often by modifying the learning algorithms to penalise biassed predictions.

Post-processing methods, on the other hand, adjust the model’s output to achieve

fairness objectives, typically by calibrating the results across different groups defined by

sensitive attributes.

In this section, a clear and structured approach is used to explore bias mitigation

models in machine learning. The discussion begins by explaining the chosen algorithm

in detail, covering its theoretical basis and how it functions in reducing bias. This is

followed by an examination of the algorithm's strengths and weaknesses, providing an

objective perspective on its capabilities and areas for improvement. Then it is presented

as a practical illustration of how the algorithm operates in a real-world context. After

this, an evaluation is conducted using various metrics to assess both the performance of

the model and its effectiveness in mitigating bias. The final part of this approach

involves a comparison of the results obtained from the bias-mitigated model with those

from the original algorithm before any bias mitigation was applied. This comparison
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helps to highlight the impact of the bias mitigation techniques and gives insight into the

improvements achieved.

6.1 Fairness Pre-Processing

Pre-processing fairness techniques focus on preparing the data before it enters

the machine learning pipeline. The first step in this approach is often identifying and

understanding the potential sources of bias within the dataset. This could involve

analysing historical trends, demographic imbalances, or societal biases that might be

reflected in the data. Once these biases are identified, the next step is to modify the

dataset to mitigate these biases. This can include techniques like balancing the dataset

by either oversampling underrepresented groups or undersampling overrepresented

ones, ensuring that the model is not skewed towards the majority group.

The second aspect of pre-processing fairness involves careful feature selection

and transformation. This means either removing sensitive attributes that could directly

lead to bias, such as race or gender, or transforming these attributes in a way that they

do not disproportionately influence the model's outcome. It also involves engineering

new features that could help in reducing bias. For example, instead of using direct

demographic attributes, proxy variables that are less directly correlated with sensitive

attributes can be created.

Finally, pre-processing may also involve the use of statistical techniques to

identify and correct for biases. This could mean applying transformations to the data to

reduce the correlation between sensitive attributes and the target variable, or employing

statistical methods to assess and ensure that the data distribution is fair across different

groups. These techniques aim to create a dataset that, when fed into a machine learning

model, reduces the likelihood of perpetuating existing biases.
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6.1.1 Learning Fair Representation

Learning Fair Representation is a pre-processing technique in machine learning

that aims to mitigate unfair bias in the predictions made by an algorithm. It involves

learning a representation of the data by minimising the amount of information regarding

membership in a protected category that is present in the transformed representation

while maximising all of the information which is present on the original data.

This learning algorithm aims for a middle ground between group fairness and

individual fairness. Group fairness, also known as statistical parity, is meant that the

proportion of members in a protected group receiving positive classification is identical

to the proportion in the population as a whole. The goal of group fairness is to achieve

similar predictions for different groups, regardless of their sensitive attributes. On the

other hand, individual fairness means that similar individuals should be treated

similarly. The goal of individual fairness is to provide similar outcomes or predictions

for individuals who are similar in terms of their non-sensitive attributes, regardless of

their group membership or sensitive attributes.

This method turns fairness pre-processing into an optimization problem where

different terms in the optimization relate to group fairness and individual fairness. More

specifically, this optimization problem preserves as much information about the

individual’s attributes as possible while simultaneously removing any information about

membership with respect to the protected subgroup. In other words, this algorithm is

designed to ensure that the proportion of members in a protected group receiving

positive classification is identical to the proportion in the overall population (group

fairness) and that similar individuals are treated similarly (individual fairness).

Regarding the mathematical formulation of this optimization problem, as X

denotes the entire data set of individuals, Y is the binary random variable representing

the classification decision for an individual and Z is a multinomial random variable

where each of the K values represents one of the intermediate sets of “prototypes”.

Prototypes have the definition of points on the input space here. Our purpose it to

minimizes the following objective: where 𝐿 = 𝐴
𝑧 

· 𝐿
𝑧   

+ 𝐴
𝑥 

· 𝐿
𝑥   

+ 𝐴
𝑦 

· 𝐿
𝑦  

are hyperparameters governing the trade-off between the system desiderata.𝐴
𝑥 

,  𝐴
𝑦 

,  𝐴
𝑧 
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The first item in the objective is 𝐿
𝑧

=
𝑘=1

𝐾

∑ | 𝑀
𝑘
+ − 𝑀

𝑘
−|

where As 𝑀
𝑘
+ = 𝑃(𝑍 = 𝑘|𝑥+ϵ 𝑋+) 𝑎𝑛𝑑  𝑀

𝑘
− = 𝑃(𝑍 = 𝑘|𝑥−ϵ 𝑋−) ∀𝑘ϵ𝐾.  𝑋+

denotes the subset of individuals that are members of the protected set while denotes 𝑋− 

the subsets that are not members of the protected set. Our learning algorithm attempts to

drive to zero in order to ensure statistical parity which requires the probability that a𝐿
𝑧

random element from from a particular prototype is equal to the probability of a𝑋+

random element of from the same prototype.𝑋−

The second item in the objective is where are the𝐿
𝑥

=
𝑛=1

𝑁

∑ (𝑥
𝑛

− 𝑥
𝑛
)2 𝑥

𝑛

reconstruction of from Z. The second item is a squared-error measure that constraints𝑥
𝑛

the mapping to Z to be a good description of X.

The final item in the objective is . 𝐿
𝑦

=
𝑛=1

𝑁

∑ − 𝑦
𝑛
𝑙𝑜𝑔𝑦

𝑛
− (1 − 𝑦

𝑛
)𝑙𝑜𝑔(1 − 𝑦

𝑛
)

Here is the prediction of constrained by each prototype’s prediction for Y,𝑦
𝑛

𝑦
𝑛

weighted by their respective probabilities. The values of the weights can be between 0

and 1. This item controls the predictions of y to be as accurate as possible.

As a result, the goal of learning fair representations is to optimize an equation

with hyperparameters for the relative weightings for expressions corresponding to group

fairness, individual fairness and accuracy.

Advantages of learned fair representations are numerous. First, by removing or

minimising the impact of sensitive attributes, LFR techniques aim to retain the relevant

information needed for the task at hand. This helps ensure that the predictions remain

accurate and useful. Second, it generalize well to new, unseen data. This means that the

fairness achieved during training can extend to future predictions, enhancing the

system's long-term fairness. Third, it is flexible and can be adapted to different domains

and contexts.

Considering the disadvantages, achieving perfect fairness often comes at the

cost of decreased accuracy or performance in the task being performed. There is a

trade-off between fairness and other metrics, such as predictive accuracy. Striking the
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right balance between fairness and accuracy can be challenging and it depends on the

fairness decision of the operator. Moreover, learning fair representations can be

computationally expensive, especially when using complex models or large datasets.

The training process may require more time and computational resources compared to

traditional models, making it less practical in certain scenarios. Finally, removing or

reducing the influence of sensitive attributes in the representation may lead to some

information loss. In some cases, the sensitive attributes might contain valuable

information that is relevant to the decision-making process. Striking a balance between

removing bias and preserving useful information is crucial.

Analysing the performance of Learning Fair Representations (LFR) and

XGBoost algorithms through various evaluation and fairness metrics paints a detailed

picture of their respective strengths and limitations.

For the evaluation metrics, XGBoost emerges as the superior model. It achieves

a perfect Balanced Accuracy of 1, compared to LFR's 0.8476, indicating its impeccable

ability in classifying each class accurately. In terms of the F1-score, XGBoost again

leads with 0.9249 against LFR's 0.8972. Furthermore, the ROC-AUC score stands at

0.9518 for XGBoost, surpassing LFR's 0.8913. These scores collectively suggest that

XGBoost is more adept in general predictive accuracy.

However, when it comes to fairness metrics, the narrative shifts. For the

‘Previous_qualification’, LFR records a Statistical Parity Difference of 0.5676, a

Disparate Impact Ratio of 6.1083, an Equal Opportunity Difference of 0.4511, and an

Average Odds Difference of 0.3550. In contrast, XGBoost shows slightly lower fairness

with a Statistical Parity Difference of 0.537, a Disparate Impact Ratio of 5.8333, an

Equal Opportunity Difference of 0.4573, and an Average Odds Difference of 0.3145.

This trend continues in the ‘Debtor’, where LFR demonstrates lesser bias with a

Statistical Parity Difference of 0.056, a Disparate Impact Ratio of 1.0896, an Equal

Opportunity Difference of -0.0523, and an Average Odds Difference of -0.2151, as

opposed to XGBoost's values of 0.4667, 2.9835, 0.2344, and 0.1513, respectively.

Finally, in the ‘Tuition_fees_up_to_date’, LFR again appears to be fairer with a

Statistical Parity Difference of -0.507, a Disparate Impact Ratio of 0.3162, an Equal

Opportunity Difference of 0.0507, and an Average Odds Difference of -0.0139,

compared to XGBoost -0.6869, 0.0657, -0.4601, and -0.3334.
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In summary, while XGBoost stands out in terms of overall predictive

performance, LFR displays a consistent edge in fairness across different demographic

groups.

Figure 11: Evaluation and Fairness Metrics results of LFR algorithm
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6.1.2 Reweighing

Reweighing refers to a technique that assigns different weights to samples in a

dataset based on their attributes, particularly sensitive attributes. The goal of reweighing

is to modify the sample weights in a way that reduces the influence of bias in the data

during model training.

The process of reweighing involves adjusting the weights assigned to individual

samples to account for the biases present in the dataset, such as sensitive attributes and

their desired fairness objectives. The reweighting technique aims to give more emphasis

to samples that are underrepresented, while reducing the impact of overrepresented or

privileged samples.

To formalize the approach we first introduce some notation and assumptions. We

assume a set of attributes and their respective domains𝐴 = {𝐴
1
 ,  .  .  .  ,  𝐴

𝑛
}

have been given. A tuple X over the schema𝑑𝑜𝑚(𝐴
𝑖
),  𝑖 = 1,  .  .  .  ,  𝑛 (𝐴

1
 ,  .  .  .  ,  𝐴

𝑛
)

is an element of . We denote the value of X for attribute𝑑𝑜𝑚(𝐴
1
) ×  .  .  .  × 𝑑𝑜𝑚(𝐴

𝑛
)

by A labelled dataset D is a finite set of tuples over the schema𝐴
𝑖

𝑋(𝐴
𝑖
).

, with We assume that a special(𝐴
1
 ,  .  .  .  ,  𝐴

𝑛
,  𝐶𝑙𝑎𝑠𝑠) 𝑑𝑜𝑚(𝐶𝑙𝑎𝑠𝑠) = {−, +}.

attribute , called the sensitive attribute, and a special value , called the𝑆ϵ𝐴 𝑏ϵ 𝑑𝑜𝑚(𝑆)

deprived community have been given. The semantics of the pair S, b is that it defines

the discriminated community; for example, S could be “ethnicity” and b “Black”.

Additionally, we transform the dataset with multiple attribute values for S into a binary

one by replacing all values with a new dedicated value w.υϵ 𝑑𝑜𝑚(𝑆)\ {𝑏}

Considering the previous notations and assumptions, our goals is objects with

and will get higher weights than objects with and𝑋(𝑆) = 𝑏 𝑋(𝐶𝑙𝑎𝑠𝑠) =+ 𝑋(𝑆) = 𝑏

and objects with and will get lower weights𝑋(𝐶𝑙𝑎𝑠𝑠) =− 𝑋(𝑆) = 𝑤 𝑋(𝐶𝑙𝑎𝑠𝑠) =+

than objects with and𝑋(𝑆) = 𝑤 𝑋(𝐶𝑙𝑎𝑠𝑠) =−  .

If the dataset D is unbiased then S and Class are statistically independent. As a

result, the expected probability is :

.𝑃
𝑒𝑥𝑝

(𝑆 = 𝑏 ∧ 𝐶𝑙𝑎𝑠𝑠 =+) : =  |{𝑋ϵ𝐷|𝑋(𝑆)=𝑏}|
|𝐷| × |{𝑋ϵ𝐷|𝑋(𝐶𝑙𝑎𝑠𝑠)=+}|

|𝐷|  

In reality, the observed probability is:

.𝑃
𝑜𝑏𝑠

(𝑆 = 𝑏 ∧ 𝐶𝑙𝑎𝑠𝑠 =+) : =  |{𝑋ϵ𝐷|𝑋(𝑆)=𝑏 ∧ 𝑋(𝐶𝑙𝑎𝑠𝑠)=+}|
|𝐷|
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If the expected probability is higher than the observed probability value, it shows the

bias towards class - for those objects X with X(S)=b.

Every object X will be assigned weights:

.𝑊(𝑋) : =  
𝑃

𝑒𝑥𝑝
(𝑆=𝑋(𝑆) ∧ 𝐶𝑙𝑎𝑠𝑠=𝑋(𝐶𝑙𝑎𝑠𝑠))

𝑃
𝑜𝑏𝑠

(𝑆=𝑋(𝑆) ∧ 𝐶𝑙𝑎𝑠𝑠=𝑋(𝐶𝑙𝑎𝑠𝑠))

In this way, we assign a weight to every tuple according to its S and

Class-values. We will call the dataset D with the added weights, On the new𝐷
𝑊

 .

dataset we multiply the frequency of every object by its weight and as a result, we

end-up with a discrimination-free balanced dataset.

This technique offers several advantages, primarily due to its nature as a

pre-processing method. One of its key strengths is its model-agnostic approach,

allowing it to be applied across various machine learning algorithms without requiring

specific algorithmic adjustments. This method is particularly adept at handling class

imbalances by altering the weights of instances in the training dataset, which ensures

that underrepresented groups are given greater importance during model training. Such

an approach is beneficial in reducing training bias, leading to fairer and more equitable

predictions. Additionally, the simplicity and ease of implementation make reweighing

an accessible option for many practitioners. Unlike some other techniques that might

alter or remove data points, Reweighing maintains the integrity of the original data

distribution, merely adjusting the significance of certain instances during the learning

process.

However, the technique comes with its own set of limitations. Its effectiveness is

heavily dependent on the quality of the initial data; in cases where the data is highly

biassed or contains significant errors, Reweighing may not be adequate for

comprehensive bias mitigation. It addresses biases primarily related to class imbalance

and might not be effective against biases introduced during data collection or through

feature selection. There is also a risk of overfitting to the minority class if weights are

not correctly balanced, particularly in scenarios with extreme class imbalance.

Moreover, while Reweighing can reduce bias, it may not eliminate it entirely, especially

in cases of complex biases. Finally, there is often a trade-off between bias mitigation

and predictive accuracy; reducing bias through Reweighing might lead to a decrease in

overall model accuracy, particularly impacting the model's sensitivity to the majority

class.
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In comparing the Reweighing and XGBoost algorithms across various

evaluation and fairness metrics, we observe distinct trade-offs between performance and

fairness.

In terms of evaluation metrics, XGBoost demonstrates superior performance,

achieving a perfect Balanced Accuracy score of 1.0 compared to Reweighing's 0.8785.

This trend continues with the F1-score (XGBoost 0.9249 over Reweighing's 0.914) and

ROC-AUC (XGBoost 0.9518 over Reweighing's 0.9388), where XGBoost marginally

outperforms Reweighing, indicating a better balance between precision and recall, as

well as a stronger capability in distinguishing between classes.

However, when assessing fairness metrics, the picture changes. In the context of

'Previous_qualification', XGBoost exhibits significantly higher disparities across all

fairness metrics, including Statistical Parity Difference (XGBoost 0.537 over

Reweighing's 0.4278), Disparate Impact Ratio (XGBoost 5.8333 over Reweighing's

2.925), Equal Opportunity Difference (XGBoost 0.4573 over Reweighing's 0.4481) and

Average Odds Difference (XGBoost 0.3145 over Reweighing's 0.2479), compared to

Reweighing. This pattern is consistent in the 'Debtor' category, where XGBoost again

shows higher bias across all fairness metrics, including Statistical Parity Difference

(XGBoost 0.4667 over Reweighing's 0.3438), Disparate Impact Ratio (XGBoost 2.9835

over Reweighing's 1.9949), Equal Opportunity Difference (XGBoost 0.2344 over

Reweighing's 0.1448) and Average Odds Difference (XGBoost 0.1513 over

Reweighing's 0.0412).

The most stark contrast is observed in the 'Tuition_fees_up_to_date' category.

Here, both algorithms demonstrate biases, but XGBoost's bias is markedly more

pronounced, as evidenced by its lower values in Statistical Parity Difference (XGBoost

-0.6869 over Reweighing's -0.5389) and Disparate Impact Ratio (XGBoost 0.0657 over

Reweighing's 0.2497) , and higher negative values in Equal Opportunity Difference

(XGBoost -0.4601 over Reweighing's -0.1144) and Average Odds Difference

(XGBoost -0.3334 over Reweighing's -0.0858).

In summary, while XGBoost might be the preferred choice for pure

performance, Reweighing aligns better with the goal of reducing bias in predictions.

This demonstrates a strategic decision-making point in model selection: opting for

slightly reduced accuracy with Reweighing in exchange for more equitable and fair

outcomes.
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Figure 12: Evaluation and Fairness Metrics results of Reweighing algorithm

6.2 Fairness In-Processing

In-processing fairness techniques involve integrating fairness directly into the

model training process. The first approach in this method is to modify the learning

algorithms to be sensitive to fairness considerations. This could involve tweaking the

model's objective function to not only optimize for accuracy but also for fairness

metrics, ensuring that the model does not favor one group over another.
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The second approach in in-processing fairness is to incorporate constraints into

the model that directly address fairness. These constraints can enforce equal treatment

across different groups defined by sensitive attributes. This might mean ensuring that

the model has similar false positive rates across different races in a criminal justice

application, or similar loan approval rates across genders in a financial application.

The third aspect of in-processing fairness is the use of ensemble methods. These

methods involve training multiple models, each focusing on different aspects of the

data, and then combining their outputs. This approach can ensure that various

perspectives are considered, and no single group's characteristics dominate the final

model's decision-making process. Ensemble methods can be particularly effective in

complex datasets where a single model might struggle to balance accuracy and fairness.

6.2.1 Adversarial debiasing

The Adversarial Debiasing algorithm is a novel approach designed to mitigate

unwanted biases in machine learning models. The core objective of this algorithm is to

create a model that accurately predicts an outcome without being influenced by

protected attributes. This is achieved through a unique method known as adversarial

training, which involves the simultaneous training of two distinct models with

competing objectives.

The first model, known as the Predictor, is responsible for predicting the desired

output based on the input data. The primary focus during the training of the Predictor is

to enhance its accuracy in making these predictions. However, this is where the second

model, the Adversary, comes into play. The Adversary's role is to predict the protected

attribute (like gender or race) from the outputs of the Predictor. As the Adversary trains

to better predict this protected attribute, it forces the Predictor to adjust its outputs to

minimise the information about the protected attribute, thereby reducing bias.

The adversarial model is motivated by a fairness intuition, which is that the

outputs from the model should not include or leak information about the sensitive

attribute. Ideally, in a situation without bias, this adversarial model should not be able to

predict well the sensitive attribute.
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The process is iterative:

a. Train the target model to predict the variable of interest.

b. Train the adversary model to use outputs from the target model to predict the

protected attributes.

c. Iterate.

Figure 13: Adversarial Debiasing iteration process representation

In other words, a classifier network is trained to predict the target variable (Y)

using the input features (X) while ignoring the sensitive attribute (Z). This step focuses

on maximising the predictive accuracy of the classifier without considering fairness or

biases. Then, an adversary network is trained to predict the sensitive attribute (Z). Its

objective is to minimise the adversary’s ability to predict the sensitive attribute (Z).

The classifier and adversary networks are trained in an iterative process. The

models are updated to minimise their respective objectives. At each iteration, the

gradients from the adversary network are back propagated through the classifier,

encouraging the classifier to generate features that are less informative about the

sensitive attribute. The classifier, in turn, updates its weights to make accurate

predictions while being invariant to the sensitive attribute.

The joint optimization process continues until convergence, where the classifier

becomes more robust to the influence of the sensitive attribute, and the adversary

becomes less accurate in predicting it. The result is a classifier that makes predictions

based on the features while being less biassed by the sensitive attribute.

One of the key strengths of Adversarial Debiasing is its ability to effectively

mitigate bias. By employing an adversarial network specifically focused on predicting

protected attributes, it ensures that these attributes do not influence the main predictive
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outcomes. This leads to more equitable and fair results. The algorithm's flexibility in

enforcing various definitions of fairness, including demographic parity and equality of

odds, allows it to be adapted for diverse scenarios and requirements. Furthermore, its

versatility in application across different data types and predictive tasks, including both

classification and regression problems, marks it as a valuable tool against bias in

various domains.

However, the approach is not without its challenges. Training adversarial

networks is known for its complexity, often requiring meticulous tuning of parameters

and understanding of training dynamics to achieve stability and effectiveness. A

significant limitation of this technique is the potential trade-off between accuracy and

fairness. Striving for unbiased predictions with respect to certain attributes can

sometimes lead to a reduction in the overall accuracy of the model.

Additionally, the effectiveness of Adversarial Debiasing largely depends on the

representation of different groups in the training data. If certain groups are

underrepresented, the algorithm may not effectively reduce biases against those groups.

There's also a risk of reverse discrimination, where the model, in its attempt to debias,

could become biassed against previously privileged groups.

Regarding the comparison between Adversarial Debiasing and XGBoost

algorithms presents a nuanced picture when considering both evaluation metrics and

fairness metrics.

In evaluation metrics, XGBoost demonstrates superior performance. It achieves

a perfect score of 1 in Balanced Accuracy, compared to Adversarial Debiasing's 0.8711.

This indicates that XGBoost is more effective in balancing accuracy between different

classes. In the F1-Score, XGBoost again leads with a score of 0.9249 against

Adversarial Debiasing's 0.8982, suggesting better precision and recall. Similarly, for the

ROC-AUC metric, XGBoost's score of 0.9518 surpasses Adversarial Debiasing's

0.9354, indicating a better ability to distinguish between classes.

The scenario shifts when assessing fairness metrics. In ‘Previous_qualification’,

Adversarial Debiasing demonstrates a trend towards reduced bias compared to

XGBoost. Looking at the Statistical Parity Difference, Adversarial Debiasing scores

0.4981, which is slightly lower than XGBoost's 0.537. For the Disparate Impact Ratio,

Adversarial Debiasing's score of 5.4833 is closer to the ideal value of 1 compared to

XGBoost's higher 5.8333, indicating a reduction in disparity of impact across different

groups. Regarding the Equal Opportunity Difference, Adversarial Debiasing scores
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0.4008, which is notably lower than XGBoost's 0.4573. Lastly, in terms of the Average

Odds Difference, Adversarial Debiasing's score of 0.2804 is lower than XGBoost's

0.3145.

In the 'Debtor' Adversarial Debiasing exhibits significantly lower bias. It scores

0.3302 in Statistical Parity Difference, much lower than XGBoost's 0.4667, implying a

more equitable distribution of opportunities irrespective of Previous_qualification. For

Disparate Impact Ratio, Adversarial Debiasing's score of 2.0444 is closer to 1 compared

to XGBoost's 2.9835. In Equal Opportunity Difference, Adversarial Debiasing scores

0.0556, considerably lower than XGBoost's 0.2344, showing less bias in providing

positive outcomes across different groups. Additionally, Adversarial Debiasing's

Average Odds Difference score of 0.0053 is much lower than XGBoost's 0.1513, again

indicating a more balanced rate of positive outcomes.

When considering 'Tuition_fees_up_to_date', Adversarial Debiasing maintains

its advantage in reducing bias. It scores -0.531 in Statistical Parity Difference compared

to XGBoost's -0.6869, both indicating some bias but with Adversarial Debiasing being

less so. In Disparate Impact Ratio, Adversarial Debiasing scores 0.2143 against

XGBoost's 0.0657; although both scores deviate significantly from 1, Adversarial

Debiasing is relatively closer. For Equal Opportunity Difference, Adversarial

Debiasing's score of -0.0668 is less biased compared to XGBoost's -0.4601, indicating

fairer treatment of different debtor groups. Finally, in Average Odds Difference,

Adversarial Debiasing scores -0.0646, which is significant less biased than XGBoost's

-0.3334, suggesting a more balanced approach in delivering favourable outcomes.

In summary, while XGBoost shows a clear advantage in standard evaluation

metrics, Adversarial Debiasing consistently shows less bias across various fairness

metrics , particularly in contexts sensitive to fairness like 'Debtor' or

'Tuition_fees_up_to_date'.
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Figure 14: Evaluation and Fairness Metrics results of Adversarial Debiasing algorithm

6.2.2 Exponentiated Gradient Reduction

The study introduces a methodical way to achieve fairness in situations where

we categorise things into two groups, known as binary classification. The researchers

aim to solve fairness issues by suggesting a method that covers a wide range of fairness

ideas, like demographic parity and equalized odds, which can be defined using

straight-line formulas based on certain statistical conditions.

The preprocessing methods being used today are made for specific fairness rules

and usually try to change the dataset so it works well with all types of learning models.
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However, this often results in classifiers that still have biases. Meanwhile,

post-processing methods, used after the model is trained, allow for a wider

understanding of fairness and can show they are fair. But, these methods might not

always find the most accurate fair classifier and they often need sensitive information

during tests, which might not be always available.

The main part of the study is creating a new 'reductions approach'. This method

looks at the basic classification method as something unknown, or a 'black box', and can

handle many fairness standards. It makes sure to find the most accurate fair classifier

without needing sensitive information during tests. The study shows how under these

conditions, binary classification can be broken down into a series of smaller,

cost-focused classification tasks. This method just needs the basic ability to use a

cost-focused classification algorithm, which doesn’t have to know the specific fairness

rule or sensitive information. It shows that solving these smaller tasks leads to a random

classifier that is fine-tuned for the least amount of errors while still meeting the chosen

fairness standards.

The method examines a binary classification environment where the training

samples consist of triples (X, A, Y), with X being a feature vector, A a protected

attribute, and Y a label. The feature vector X may include the protected attribute A or

other features that might indirectly suggest A.The aim is to create an accurate classifier

from a set of potential classifiers while meeting a certain fairness criterion. It’s

important to note that the classifiers do not explicitly rely on A.

The first definition—demographic parity— can be achieved if its predictions are

statistically independent of the protected attribute A.

𝑃[ℎ(𝑋) = 𝑦 | 𝐴 = 𝑎] = 𝑃[ℎ(𝑋) = 𝑦] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑦.  

The second definition—equalised odds—addresses the shortcomings of

demographic parity by ensuring that the classifier’s predictions are conditionally

independent of the protected attribute A, given the actual label Y.

𝑃[ℎ(𝑋) = 𝑦 | 𝐴 = 𝑎,  𝑌 = 𝑦] = 𝑃[ℎ(𝑋) = 𝑦 | 𝑌 = 𝑦] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑦 𝑎𝑛𝑑 𝑦.  

Both definitions can be incorporated into a general framework of linear

constraints :
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, where matrix and vector described the linear𝑀µ(ℎ) ≤  𝑐  𝑀ϵℜ|𝐾|×|𝐽| 𝑐ϵℜ|𝐾|

constraints.

In typical binary classification, the goal is to identify the classifier with the least

classification error, . However, the objective here is to find𝑒𝑟𝑟(ℎ) : =  𝑃[ℎ(𝑋) ≠  𝑌]

the most accurate classifier that also meets fairness constraints. This involves solving a

constrained optimization problem to minimise the error while satisfying a set of linear

constraints.

subject to𝑚𝑖𝑛
ℎϵ𝐻

 𝑒𝑟𝑟(ℎ)  𝑀µ(ℎ) ≤ 𝑐.

The method extends the search beyond fixed classifiers to randomised

classifiers, which offer better accuracy-fairness compromises. A randomised classifier

makes predictions by first choosing a classifier from a distribution over the classifier set

and then using it to make the prediction. Thus, it aims to solve a minimization problem

that finds the optimal distribution over classifiers that minimises error while adhering to

the fairness constraints.

The algorithm allows for achieving a desired accuracy-fairness tradeoff and

supports a wider range of fairness definitions. This flexibility makes it suitable for

various applications and scenarios where fairness needs may differ. It performs

comparably or better than other approaches, especially in settings where the protected

attribute is binary. The algorithm solves for the optimal points on the Pareto frontier for

all classifiers in each considered class, indicating its effectiveness in balancing fairness

and accuracy. Unlike some post-processing algorithms, the Exponentiated Gradient

Reduction does not require access to protected attributes during testing, which is a

significant advantage in scenarios where such data may not be available or its use is

restricted.

However, the algorithm relies on empirical rather than true quantities,

introducing an unavoidable source of statistical error. This reliance might affect the

accuracy of the fairness adjustments, especially in cases where the empirical data

significantly deviates from the true underlying distribution. The method involves certain

constraints in its optimization algorithm, such as a bound on the magnitude of the

Lagrange multipliers (λ) and a fixed number of iterations for the optimization process.

These constraints can introduce errors, although they can be reduced with additional

iterations, potentially at the cost of increased computational resources.
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The comparison between the Exponentiated Gradient Reduction (EGR)

algorithm and the XGBoost algorithm across various metrics offers insightful contrasts,

particularly in balancing performance with fairness, a key goal in algorithm selection.

In terms of evaluation metrics, the EGR algorithm shows a Balanced Accuracy

of 0.8858, which, while commendable, falls short of XGBoost's perfect score of 1.0.

This trend continues with the F1-score, where EGR's 0.9169 is slightly lower than

XGBoost's 0.9249. The ROC-AUC score is 0.8858 for EGR, again below XGBoost's

superior 0.9518.

When assessing fairness metrics for 'Previous_qualification', the EGR algorithm

demonstrates a Statistical Parity Difference of 0.4157 compared to XGBoost's higher

0.537, indicating less bias in the EGR algorithm. The Disparate Impact Ratio is 2.8708

for EGR, substantially lower than XGBoost's 5.8333, suggesting a more balanced

outcome distribution. The Equal Opportunity Difference is 0.442 for EGR and 0.4573

for XGBoost. Similarly, the Average Odds Difference is lower for EGR (0.2343)

compared to XGBoost (0.3145).

In the 'Debtor' category, EGR's Statistical Parity Difference of 0.3134 is notably

lower than XGBoost's 0.4667, showing less disparity in positive outcomes. The

Disparate Impact Ratio is 1.8698 for EGR versus 2.9835 for XGBoost, highlighting less

bias in EGR. Interestingly, the Equal Opportunity Difference for EGR is -0.0218,

compared to 0.2344 for XGBoost, suggesting EGR's more equitable treatment of

positive cases. The Average Odds Difference also reflects this trend, with EGR at

-0.0439 and XGBoost at 0.1513.

For 'Tuition_fees_up_to_date', EGR's Statistical Parity Difference of -0.5172 is

less negative than XGBoost's -0.6869, indicating less bias against specific groups. The

Disparate Impact Ratio for EGR is 0.2647, significantly less biassed than XGBoost's

0.0657. The Equal Opportunity Difference for EGR is -0.0218, less biassed than

XGBoost’s -0.4601. Similarly, Average Odds Difference for EGR is 0.0168 and -0.3334

for XGBoost, indicating less bias in EGR.

In summary, while XGBoost excels in performance metrics, its fairness metrics

suggest a higher bias across various attributes compared to the EGR algorithm. The

EGR algorithm, despite slightly lower accuracy and predictive power, achieves more

equitable outcomes, aligning better with the goal of minimising bias.
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Figure 15: Evaluation and Fairness Metrics results of Exponentiated Gradient

Reduction algorithm

6.3 Fairness Post-processing

Post-processing fairness techniques in machine learning come into play after a

model has been trained and has made its predictions. This approach is particularly

relevant in scenarios where altering the training process or the dataset itself is either not
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possible or insufficient to address biases. Post-processing involves a thorough

examination of the model's outputs to identify and correct biases that might lead to

unfair outcomes. This stage is crucial for ensuring that the final decisions made by the

model are equitable across various groups, especially those defined by sensitive

attributes.

One common method in post-processing is to adjust the decision thresholds for

different groups. For example, if a model is found to be less accurate for a particular

demographic group, the decision threshold can be altered for that group to compensate

for this disparity. This method aims to equalize the performance of the model across

different groups, thereby reducing unfair biases. Another approach involves

recalibrating the model's outputs to ensure that the probabilities of outcomes are fair and

balanced. This recalibration is often based on statistical techniques that aim to make the

model's predictions more just and less biased towards any particular group.

It's important to note that while post-processing techniques are essential for

mitigating biases in model outputs, they are often seen as a last resort. This is because

they do not address the root cause of the bias, which might lie in the data or the model

itself. However, in many practical applications, post-processing provides a crucial

checkpoint to ensure fairness. It acts as a safeguard where biased decisions can have

significant consequences. Thus, post-processing is a vital component in the suite of

techniques used to ensure fairness in machine learning, offering a means to adjust and

refine model outputs to uphold ethical standards and societal values.

6.3.1 Calibrated Equalized Odds

Calibrated Equalized Odds research explores the challenge of striking a balance

between reducing differences in error rates across various population groups while

keeping the probability estimates calibrated.

In order to provide clarity within the context of the study, it is necessary to begin

by explaining some essential metrics that are employed in it.
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Error rates across various population groups refer to the differences in how a

machine learning model's predictions perform when applied to different subgroups or

demographic categories within a dataset. These error rates are typically associated with

binary classification tasks, where the model is tasked with categorising data points into

one of two classes.

FPR (False Positive Rate) and FNR (False Negative Rate) are key error rates for

the study of Calibrated Equalized Odds. False positive rate calculates the proportion of

actual negative instances that the model incorrectly predicts as positive. It is also known

as the Type I error rate. The formula of false positive rate is , where FP𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁

(False Positive) is the number of negative instances incorrectly classified as positive and

TN (True Negative) is the number of negative instances correctly classified as negative.

On the other hand, false negative rate measures the proportion of actual positive

instances that the model incorrectly predicts as negative. It is also known as the Type II

error rate. The formula of false negative rate is where FN (False𝐹𝑁𝑅 = 𝐹𝑁
𝐹𝑁+𝑇𝑃

Negative) is the number of positive instances incorrectly classified as negative and TN

(True Negative) is the number of positive instances correctly classified as positive.

Equalized Odds is a fairness concept in machine learning, particularly in binary

classification, that aims to ensure that the false positive and false negative rates are

roughly equal across different demographic groups or population subsets. In the context

of Equalized Odds for each subgroup, the FPR and FNR should be approximately the

same. The goal of Equalized Odds is to ensure that the model doesn't disproportionately

affect any particular group, leading to more equitable treatment. It helps prevent

scenarios where, for example, one group experiences a higher false positive rate,

potentially leading to unjust outcomes, while another group might have a higher false

negative rate, causing missed opportunities.

Calibrated probabilities, also known as calibrated probability estimates, refer to

the predicted probabilities produced by a machine learning model that have been scaled

to align with the actual probabilities in the real world. In other words, these probabilities

are carefully calibrated to be accurate representations of the true likelihood of an event

or outcome occurring. Furthermore, calibration ensures that the model's predictions are

not only accurate but also reliable. When probabilities are not well-calibrated, users may

not trust the model's predictions, leading to potentially incorrect decisions.
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The primary goal of this investigation is to delve deeper into the relationship

between calibration and error rates. Furthermore, the research introduces a simple

post-processing algorithm, involving withholding predictive information for randomly

selected inputs, to achieve fairness and maintain calibration.

The research framework focuses on a binary classification task with an input

space represented by . In our dataset example, (x, y) ∼ P represents𝑃 ⊂ 𝑅
𝑘
 ×  {0, 1}

an individual's history and the likelihood of them to graduate from the university. Two

distinct groups, and , represent population subsets (e.g., different races) with𝐺
1

𝐺
2

varying base rates, and , signifying the probabilities of belonging to the positiveµ
1

µ
2

class.

The study also involves two binary classifiers, and , classifying samplesℎ
1

ℎ
2

from and , respectively. These classifiers output the probability of a sample𝐺
1

𝐺
2

belonging to the positive class.

To ensure fairness and calibration, the study introduces a cost function

dependent on false-positive and false-negative rates, with variations based on the

group's base rate.The formula of the cost function is:

where and are the false positive𝑔
𝑡
(ℎ

𝑡
) = α

𝑡
· 𝑐

𝑓
𝑝
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𝑡
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𝑡
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for groups and if both classifiers are calibrated and satisfy the constraint =𝐺
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𝐺
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The research assumes access to "optimal" calibrated classifiers and , whichℎ
1

ℎ
2

may be discriminatory but are the best available given the predictability constraints. It

explores the challenge of finding a classifier, , for group that matches the cost ofℎ
2

𝐺
2

. This is achieved through an algorithm that occasionally withholds predictiveℎ
1

information, preserving calibration while ensuring fairness.

One of the primary challenges with the Calibrated Equalized Odds algorithm is

that it inherently involves trade-offs. For instance, maintaining calibration can increase

disparities in false positive rates between groups. This trade-off suggests that the
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algorithm might be improving one aspect of fairness at the expense of another. The

algorithm is found to be infeasible in situations where the best classifiers are close to

being trivial, leaving little room for effective adjustment. This indicates a limitation in

its applicability, particularly in settings where the classifiers are already performing at a

near-optimal level without considering fairness. A significant downside is that the

algorithm might involve randomly withholding predictive information to achieve

fairness. This approach can be problematic, especially in critical applications, as it

means that important decisions might be made based on chance rather than a

comprehensive evaluation of the individual's features.

The comparison between the Calibrated Equalized Odds (CEO) algorithm and

XGBoost in the context of machine learning algorithms involves a detailed assessment

through both evaluation metrics and fairness metrics. These metrics provide insights

into their overall predictive capabilities and their fairness across different demographic

groups.

In the evaluation metrics domain, XGBoost shows a notable edge. It achieves a

perfect Balanced Accuracy of 1, clearly outperforming the CEO algorithm's 0.8946.

This suggests XGBoost's superior ability in accurately classifying each class. Regarding

the F1-score, the CEO algorithm has a slight advantage with a score of 0.9256, slightly

higher than XGBoost's 0.9249. In the ROC-AUC metric, XGBoost with a score of

0.9518 and CEO with 0.9486. These scores collectively indicate that while XGBoost is

more accurate in balanced accuracy, CEO and XGBoost are nearly comparable in

f1-score and ROC-AUC, demonstrating similar overall predictive performances.

Analysing the fairness metrics for the attribute 'Previous_qualification',

Statistical Parity for XGBoost registers a value of 0.537, while CEO is slightly lower at

0.5361. Statistical Parity suggesting that both algorithms are almost equally fair in this

regard, with a negligible advantage for CEO. In terms of Disparate Impact, both models

again exhibit similar values, with XGBoost at 5.8333 and CEO marginally lower at

5.825. The Equal Opportunity Difference metric shows an identical performance for

both algorithms, recorded at 0.4573. The identical scores for XGBoost and CEO suggest

that both algorithms offer a similar level of fairness in correctly identifying positive

outcomes for different groups. Lastly, the Average Odds Difference is another closely

contested metric, with XGBoost presenting a value of 0.3145, and CEO slightly lower

at 0.3133 indicating a near-equivalent performance in fairness from both algorithms.
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Turning to the fairness metrics, the CEO algorithm shows a Statistical Parity

Difference of 0.4488, a Disparate Impact Ratio of 2.7954, an Equal Opportunity

Difference of 0.1543, and an Average Odds Difference of 0.1097 in the context of

‘Debtor’ attribute. In comparison, XGBoost records slightly higher values with a

Statistical Parity Difference of 0.4667, a Disparate Impact Ratio of 2.9835, an Equal

Opportunity Difference of 0.2344, and an Average Odds Difference of 0.1513. This

suggests that CEO is marginally fairer in its predictions regarding ‘Debtor’.

For ‘Tuition_fees_up_to_date’, the CEO algorithm demonstrates lesser bias,

evidenced by a Statistical Parity Difference of -0.6779, a Disparate Impact Ratio of

0.0753, an Equal Opportunity Difference of -0.4601, and an Average Odds Difference

of -0.3264. XGBoost, however, shows very similar values: a Statistical Parity

Difference of -0.6869, a Disparate Impact Ratio of 0.0657, an Equal Opportunity

Difference of -0.4601, and an Average Odds Difference of -0.3334. These figures

suggest that both algorithms exhibit a comparable level of fairness in terms of

‘Tuition_fees_up_to_date’.

In summary, XGBoost exhibits superior performance in terms of balanced

accuracy, but CEO and XGBoost are nearly on par in f1-score and ROC-AUC metrics,

indicating similar overall predictive effectiveness. In terms of fairness, especially in the

context of ‘Debtor’, the CEO algorithm shows slightly better results, though the

differences are not substantial. For 'Previous_qualification' and

‘Tuition_fees_up_to_date’ attribute, both models demonstrate similar levels of fairness.
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Figure 16: Evaluation and Fairness Metrics results of Calibrated Equalized Odds

algorithm

6.3.2 Reject Option based Classification

To begin with, the research highlights the constraints of prior investigations and

the void addressed by this study. Firstly, prior methods often necessitate preprocessing

the data to remove discriminatory patterns or modifying the learning algorithm of a

classifier to make it aware of discrimination. Secondly, they lack the flexibility to

control discrimination effectively. An immediate consequence of the first limitation is
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that whenever discrimination concerning a different sensitive attribute or set of

attributes requires attention, one must reprocess the historical data or classifier.

Additionally, being constrained to a specific discrimination-aware classifier, such as

naive Bayes or decision tree, is problematic because such a classifier may not be the

most suitable choice for a given dataset.

This study introduces one user-friendly and versatile solution for

discrimination-aware classification, based on the hypothesis that discriminatory

decisions often cluster near the decision boundary due to inherent biases in the

decision-making process.

The Reject Option based Classification (ROC) method is designed to reduce

discrimination by targeting the low-confidence region of one or an ensemble of

probabilistic classifiers. More specifically, ROC employs a "reject option" to label

instances belonging to deprived and favoured groups in a manner that actively reduces

discrimination.

These proposed solution offer several advantages over existing discrimination-aware

classification methods:

1. They are not limited to a specific classifier: the solution is compatible with any

probabilistic classifier.

2. The proposed methods do not require altering the learning algorithm or

preprocessing the historical data. Pre-trained classifiers can be made

discrimination-aware during prediction, simplifying the handling of changes in

sensitive attributes.

3. These solutions grant decision makers superior control and interpretability over

discrimination-aware classification.

The study focuses on a two-class problem with labels ( and ) assigned to𝐶+ 𝐶−

instances described by a fixed number of attributes. A discriminatory dataset ( ) is𝐷

provided, where the labels may exhibit bias concerning sensitive attributes.

It is assumed that represents the desirable label, and instances can be𝐶+

categorised as belonging to either a deprived group ( ) or a favoured group ( ), with𝑋𝑑 𝑋𝑓

these groups being mutually exclusive. All instances in the deprived group share

specific values for certain attributes, which are referred to as sensitive attributes.

The primary objective is to develop a classifier (F) that does not make

discriminatory decisions based on the sensitive attribute(s) due to legal constraints.
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Performance evaluation of discrimination-aware classification methods involves

reporting accuracy and discrimination metrics, with the ideal scenario being minimal

accuracy loss as discrimination is reduced to zero.

In the traditional approach to classification, a learned classifier assigns an

instance to a class based on the highest posterior probability, meaning the class with the

greatest likelihood of being correct.

More specifically, consider a single classifier, and let be the posterior𝑝(𝐶+|𝑋)

probability of instance X produced by this classifier.

1. When is close to 1 or 0 then the label for instance X is specified𝑝(𝐶+|𝑋)

with a high degree of certainty.

2. When is close to 0.5 then the label of instance X is more𝑝(𝐶+|𝑋)

uncertain.

However, ROC introduces a departure from this conventional decision-making

rule and introduces the concept of a critical region. The critical region is defined for all

the instances for which 𝑚𝑎𝑥[𝑝(𝐶+|𝑋),  1 − 𝑝(𝐶+|𝑋)] ≤ θ,  0. 5 < θ < 1.

Instances in this critical region are marked as "reject," indicating ambiguity and

bias influence. To mitigate discrimination, these rejected instances are labelled as

below:

1. instances from the deprived group ( ) are labelled and𝑋𝑑 𝐶+

2. instances from the favoured group ( ) are labelled𝑋𝑓 𝐶−.

while those outside the critical region are classified based on the standard decision rule.

In the case of multiple classifiers, classifier ensembles offer increased

robustness. A classifier ensemble, in this context, functions as a collection of experts

with diverse characteristics and biases, expected to yield more reliable results in terms

of both accuracy and discrimination. The study considers the posterior probabilities

produced by individual classifiers in the ensemble and combines them to make a

classification decision, factoring in the accuracy of each classifier. This method

leverages the strengths of multiple classifiers to provide an effective control over the

accuracy-discrimination trade-off in future classifications.

However, a key challenge is its dependence on accurately identifying the

decision boundary in complex datasets. This process is critical as ROC uses uncertainty
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around these boundaries to mitigate bias. However, achieving a balance between

reducing discrimination and maintaining classification accuracy can be difficult.

Overuse or inaccurate application of the reject option may lead to a decline in overall

classifier performance. Additionally, implementing and integrating ROC into existing

systems not originally designed with discrimination-awareness can present hurdles. The

algorithm's effectiveness also varies depending on dataset characteristics and the nature

of sensitive attributes involved, making it necessary to tailor the ROC approach to

specific contexts.

The comparison of Reject Option based Classification and the XGBoost

algorithm is essential in understanding the trade-offs between predictive accuracy and

fairness in algorithmic decision-making.

In terms of evaluation metrics, which include Balanced Accuracy, f1-score, and

ROC-AUC, a distinct contrast is observed between the two algorithms. The XGBoost

algorithm demonstrates superior performance with a perfect score in Balanced Accuracy

and significantly higher scores in F1-score and ROC-AUC. This indicates a strong

ability in accurately predicting outcomes and distinguishing between classes. On the

other hand, the Reject Option based Classification algorithm shows moderate

performance with scores of 0.5969 in Balanced Accuracy, 0.7896 in F1-score, and

0.9448 in ROC-AUC. While these scores are commendable, especially in ROC-AUC,

they are noticeably lower than those of the XGBoost algorithm.

Fairness metrics are pivotal in evaluating how equitably algorithms treat

different groups. For the attribute 'Previous_qualification', the Reject Option based

Classification algorithm demonstrates a significantly lower Statistical Parity Difference

of 0.0315 compared to XGBoost's 0.537. This indicates a substantially more balanced

treatment of different groups in terms of outcome rates by the Reject Option algorithm.

In terms of Disparate Impact Ratio, the Reject Option algorithm shows a score of

1.0354, much closer to the ideal ratio of 1, and considerably lower than XGBoost's high

score of 5.8333. This suggests that the Reject Option algorithm produces far less

Disparate Impact compared to XGBoost. Regarding Equal Opportunity Difference, the

Reject Option algorithm again shows an advantage with a score of -0.0031, indicating

almost no disparity. This is in stark contrast to XGBoost's higher score of 0.4573,

suggesting greater disparity in accurately identifying positive outcomes for different

groups. Finally, the Average Odds Difference, is -0.0289 for the Reject Option
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algorithm, reflecting a more equitable treatment across groups. This is again a more

favourable outcome compared to XGBoost's score of 0.3145.

For ‘Debtor’, the Reject Option based Classification algorithm shows a

Statistical Parity Difference of 0.6397 and a Disparate Impact Ratio of 2.7755,

suggesting some degree of bias. Its Equal Opportunity Difference and Average Odds

Difference scores are lower, at 0.0769 and 0.4248, respectively, indicating relatively

fairer treatment in these aspects. In comparison, the XGBoost Algorithm, while

achieving lower bias in Statistical Parity Difference (0.4667) and a slightly higher

Disparate Impact Ratio (2.9835), shows more significant disparities in Equal

Opportunity Difference (0.2344) and Average Odds Difference (0.1513).

For 'Tuition_fees_up_to_date' fairness metrics, both algorithms display

significant biases, but in different ways. The Reject Option based Classification

algorithm demonstrates less disparity in comparison to XGBoost in certain metrics. It

records a Statistical Parity Difference of -0.4409, an Equal Opportunity Difference of

-0.3333 and a Disparate Impact Ratio of 0.5496, both lower than XGBoost's respective

scores of -0.6869,-0.4601, 0.0657. Conversely, when examining the and Average Odds

Difference, the Reject Option based Classification shows more bias. Its scores of

-0.3663 for Average Odds Difference are higher compared to XGBoost's scores of

-0.3334.

Overall, the comparison reveals a significant trade-off between accuracy and

fairness. The XGBoost Algorithm excels in predictive performance but tends to show

more bias in fairness metrics. In contrast, the Reject Option based Classification

algorithm, while not as accurate, appears to be fairer in its predictions, particularly in

the context of 'Previous_qualification.'
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Figure 17: Evaluation and Fairness Metrics results of Reject Option based

Classification algorithm

6.4 Results

The analysis of seven machine learning algorithms based on evaluation metrics

and fairness metrics across various protective attributes reveals nuanced strengths and

weaknesses in both performance and fairness. The summary metrics provided in Table

3, Table 4, Table 5 and Table 6.
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The bar plot in Figure 18 appears to compare the algorithms across three

evaluation metrics: Balanced Accuracy, F1-score, and ROC-AUC. Reject Option-based

Classification is the least performing algorithm with the lowest scores across most of

the metrics (Balanced Accuracy: 0.5969, F1-score: 0.7896, ROC-AUC: 0.9448).

Learning Fair Representation improves significantly on Balanced Accuracy (0.8476)

but still has low F1-score and ROC-AUC scores (0.8972 and 0.8913 respectively).

Exponentiated Gradient Reduction is lower than the first two in ROC-AUC (0.8858) but

has a higher Balanced Accuracy and ROC-AUC score(0.8858 and 0.9169 respectively).

Adversarial Debiasing shows some improvement in Balanced Accuracy (0.8711) and

maintains a F1-score of 0.8982, indicating it is better than the previous algorithms but

still not the top performer. Reweighing, matches the Balanced Accuracy of the

better-performing algorithms (0.8785), placing it higher in the rank. Calibrated

Equalized Odds exhibits consistent performance across all metrics (Balanced Accuracy:

1, F1-score: 0.9256, ROC-AUC: 0.9486), suggesting a better balance than Reweighing.

Finally, XGBoost stands out as the best performer with the highest Balanced Accuracy

(0.85), the best F1-score (0.9312), and a strong ROC-AUC (0.9518), making it the top

algorithm in this evaluation.

Figure 18: Evaluation metrics results of each algorithm
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The bar plot in Figure 19 appears to compare the algorithms across the fairness

metrics of ‘Previous_qualification’ protective attribute. Starting from the algorithm with

the most potential for improvement according to the fairness metrics, Learning Fair

Representation has the higher Statistical Parity Difference (0.5676), Disparate Impact

Ratio (6.1089) is significantly above 1, indicating potential over-adjustment. Calibrated

Equalized Odds and XGBoost both have a Disparate Impact Ratio closer to 1 (5.8250

and 5.8333 respectively), which indicates disparity. The same picture appears in their

Statistical Parity Differences (0.5361 and 0.537 respectively) and Average Odds

Differences (0.3133 and 0.3145 respectively) indicate that there is still disparity to be

addressed. Adversarial Debiasing with a slightly better Average Odds Difference

(0.2804) and Statistical Parity Difference (0.4981). Reweighing shows a much better

score in Disparate Impact Ratio (2.925), yet its other metrics suggest imbalance.

Reweighing shows a similar pattern to Exponentiated Gradient Reduction that has high

Statistical Parity Difference and Equal Opportunity Difference (0.4157 and 0.4420

respectively), but its relatively low Disparate Impact Ratio (2.8708). Finally, Reject

Option-based Classification, has the lowest disparity across all the metrics with

Statistical Parity Difference (0.0315), Disparate Impact Ratio (1.0354), Equal

Opportunity Difference (-0.0031) and Average Odds Difference (-0.0289), implying it is

the most fair algorithm.
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Figure 19: Fairness metrics of Previous_qualification

The bar plot in Figure 20 appears to compare the algorithms across the fairness

metrics of the ‘Debtor’ protective attribute. XGBoost shows the highest Disparate

Impact Ratio (2.9835). It also has a high Statistical Parity Difference (0.4667). Reject

Option-based Classification has a higher Statistical Parity Difference (0.6397), but its

Disparate Impact Ratio (2.7755) is lower than XGBoost, but still signifying potential

over-adjustment. Calibrated Equalized Odds, with a Disparate Impact Ratio (2.7954)

still distant from 1, shows it is moderately fair with Statistical Parity Difference

(0.4488) and Average Odds Difference (0.1097). Reweighing follows with a better

Disparate Impact Ratio (1.9949) and a lower Equal Opportunity Difference (0.1448),

indicating less bias in terms of favourable outcomes across groups. Adversarial

Debiasing shows the best Average Odds Difference (0.0053), very close to the ideal,

and very low Equal Opportunity Difference (0.0556). Exponentiated Gradient

Reduction further improves with a Disparate Impact Ratio closer to 1 (1.8698) and the

smallest Equal Opportunity Difference (-0.0218), suggesting greater fairness in positive

outcome rates. Lastly, Learning Fair Representation has the smallest Statistical Parity
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Difference (0.0560) and the lowest Equal Opportunity Difference (-0.0523), making it

the best algorithm in terms of fairness metrics provided in this plot.

Figure 20: Fairness metrics results of Debtor

The bar plot in Figure 21 appears to compare the algorithms across the fairness

metrics of the ‘Tuition_fees_up_to_date’ protective attribute. XGBoost exhibits the

most significant challenges. With a Disparate Impact Ratio of only 0.0657, it indicates a

substantial imbalance. Its Statistical Parity Difference is the highest at 0.6869, further

underscoring the concerns. Calibrated Equalized Odds follows closely in terms of

disparity, with a Disparate Impact Ratio of 0.0753 and a high Statistical Parity

Difference of 0.6779, suggesting notable imbalances in its outcomes.Conversely,

Learning Fair Representation, though ranked lowest in overall performance, shows a

more balanced approach with a moderate Disparate Impact Ratio of 0.3162 and a

Statistical Parity Difference of 0.507. Exponentiated Gradient Reduction demonstrates

improvement, with a Disparate Impact Ratio closer to a balanced state at 0.2647 and a

lower Equal Opportunity Difference of 0.0599, indicating a more equitable treatment of

outcomes. Adversarial Debiasing also shows commendable performance with a

Disparate Impact Ratio of 0.2143, coupled with a low Equal Opportunity Difference of
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0.0668. It achieves better fairness in outcome distribution than Reweighing, which,

despite a better Disparate Impact Ratio of 0.2497, has a slightly higher Equal

Opportunity Difference of 0.1144. Reject Option-based Classification emerges as more

balanced with a Disparate Impact Ratio of 0.5496 and the lowest Statistical Parity

Difference among all algorithms at 0.4409. This suggests a more nuanced adjustment in

balancing fairness metrics, although there's still room for improvement.

Figure 21: Fairness metrics of Tuition_fees_up_to_date

Finally, selecting the most efficient algorithm for machine learning tasks is

contingent on the specific goals of the prediction model. If the primary concern is high

accuracy, such as in predicting equipment failures where the costs of false negatives are

substantial, XGBoost may be the algorithm of choice due to its strong performance in

accuracy-related metrics. Conversely, if the aim is to balance accuracy with fairness,

which is critical in applications like credit scoring to prevent discriminatory practices,

then algorithms like Exponentiated Gradient Reduction, Adversarial Debiasing, or

Reweighing come to the fore. These algorithms have shown the best performances in

balancing both fairness and accuracy. The choice among them would be influenced by
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factors such as the desired fairness metric, the extent and nature of existing biases in the

data and the specific trade-offs between different types of predictive errors that one is

willing to accept. An optimal algorithm would thus be one that not only meets the

performance criteria but also aligns with ethical standards, legal compliance, and the

operational context of the application.

7. Conclusion

This thesis embarked on an in-depth exploration of balancing accuracy and

fairness in machine learning algorithms, with a particular emphasis on educational data.

It meticulously evaluated seven different algorithms, revealing that XGBoost excelled

in accuracy but showed biases in fairness metrics. In contrast, other algorithms such as

Exponentiated Gradient Reduction, Reweighing or Adversarial Debiasing, while not as

accurate, demonstrated a higher degree of fairness. This difference highlights the

complexity and trade-offs involved in developing fair machine learning models, making

it a central theme of the research.

Therefore, the necessity of future research should aim to develop new

algorithms that better balance accuracy with fairness, investigate the impact of diverse

data preprocessing methods, and incorporate a broader array of fairness metrics. Such

advancements are crucial in sectors where fairness is paramount, such as education and

employment, underlining the significant practical applications of this research.

Reflecting on this thesis, it becomes evident that pursuing fairness in machine

learning is both challenging and crucial. As algorithms increasingly influence various

aspects of our lives, ensuring they operate with not just efficiency and accuracy but also

fairness and justice becomes imperative.
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List of Tables

Table 1: Variables types and values description

Variable Name Type Description

Marital Status Integer 1 – single
2 – married
3 – widower
4 – divorced
5 – facto union
6 – legally separated

Application mode Integer 1 - 1st phase - general contingent
2 - Ordinance No. 612/93 5 - 1st phase - special
contingent (Azores Island)
7 - Holders of other higher courses
10 - Ordinance No. 854-B/99
15 - International student (bachelor)
16 - 1st phase - special contingent (Madeira Island)
17 - 2nd phase - general contingent
18 - 3rd phase - general contingent
26 - Ordinance No. 533-A/99, item b2) (Different
Plan)
27 - Ordinance No. 533-A/99, item b3 (Other
Institution)
39 - Over 23 years old
42 - Transfer 43 - Change of course
44 - Technological specialisation diploma holders
51 - Change of institution/course
53 - Short cycle diploma holders
57 - Change of institution/course (International)

Application order Integer Application order (between 0 - first choice; and 9
last choice)

Course Integer 33 - Biofuel Production Technologies
171 - Animation and Multimedia Design 8014 -
Social Service (evening attendance) 9003 -
Agronomy
9070 - Communication Design
9085 - Veterinary Nursing
9119 - Informatics Engineering
9130 - Equinculture
9147 - Management
9238 - Social Service
9254 - Tourism
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9500 - Nursing
9556 - Oral Hygiene
9670 - Advertising and Marketing Management
9773 - Journalism and Communication 9853 -
Basic Education
9991 - Management (evening attendance)

Daytime/evening attendance Integer 1 – daytime
0 - evening

Previous qualification Integer 1 - Secondary education
2 - Higher education - bachelor's degree
3 - Higher education - degree
4 - Higher education - master's
5 - Higher education - doctorate
6 - Frequency of higher education
9 - 12th year of schooling - not completed 10 - 11th
year of schooling - not completed 12 - Other - 11th
year of schooling
14 - 10th year of schooling
15 - 10th year of schooling - not completed 19 -
Basic education 3rd cycle (9th/10th/11th year) or
equiv.
38 - Basic education 2nd cycle (6th/7th/8th year) or
equiv.
39 - Technological specialisation course 40 -
Higher education - degree (1st cycle) 42 -
Professional higher technical course 43 - Higher
education - master (2nd cycle)

Previous qualification (grade) Continuous Grade of previous qualification (between 0 and
200)

Nationality Integer 1 - Portuguese
2 - German
6 - Spanish
11 - Italian
13 - Dutch
14 - English
17 - Lithuanian
21 - Angolan
22 - Cape Verdean
24 - Guinean
25 - Mozambican
26 - Santomean
32 - Turkish
41 - Brazilian
62 - Romanian
100 - Moldova (Republic of)
101 - Mexican
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103 - Ukrainian
105 - Russian
108 - Cuban
109 - Colombian

Mother's qualification Integer 1 - Secondary Education- 12th Year of Schooling or
Eq.
2 - Higher Education - Bachelor's Degree
3 - Higher Education - Degree
4 - Higher Education - Master's
5 - Higher Education - Doctorate
6 - Frequency of Higher Education
9 - 12th Year of Schooling - Not Completed
10 - 11th Year of Schooling - Not Completed 11 -
7th Year (Old)
12 - Other - 11th Year of Schooling
14 - 10th Year of Schooling
18 - General commerce course
19 - Basic Education 3rd Cycle (9th/10th/11th
Year) or Equiv.
22 - Technical-professional course
26 - 7th year of schooling
27 - 2nd cycle of the general high school course
29 - 9th Year of Schooling - Not Completed 30 -
8th year of schooling
34 - Unknown
35 - Can't read or write
36 - Can read without having a 4th year of
schooling
37 - Basic education 1st cycle (4th/5th year) or
equiv.
38 - Basic Education 2nd Cycle (6th/7th/8th Year)
or Equiv.
39 - Technological specialisation course 40 -
Higher education - degree (1st cycle) 41 -
Specialised higher studies course
42 - Professional higher technical course 43 -
Higher Education - Master (2nd cycle) 44 - Higher
Education - Doctorate (3rd cycle)

Father’s qualification Integer 1 - Secondary Education - 12th Year of Schooling
or Eq.
2 - Higher Education - Bachelor's Degree
3 - Higher Education - Degree
4 - Higher Education - Master's
5 - Higher Education - Doctorate
6 - Frequency of Higher Education
9 - 12th Year of Schooling - Not Completed 10 -
11th Year of Schooling - Not Completed 11 - 7th
Year (Old)
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12 - Other - 11th Year of Schooling
13 - 2nd year complementary high school course
14 - 10th Year of Schooling
18 - General commerce course
19 - Basic Education 3rd Cycle (9th/10th/11th
Year) or Equiv.
20 - Complementary High School Course 22 -
Technical-professional course
25 - Complementary High School Course - not
concluded
26 - 7th year of schooling
27 - 2nd cycle of the general high school course
29 - 9th Year of Schooling - Not Completed 30 -
8th year of schooling
31 - General Course of Administration and
Commerce
33 - Supplementary Accounting and Administration
34 - Unknown
35 - Can't read or write
36 - Can read without having a 4th year of
schooling
37 - Basic education 1st cycle (4th/5th year) or
equiv.
38 - Basic Education 2nd Cycle (6th/7th/8th Year)
or Equiv.
39 - Technological specialisation course 40 -
Higher education - degree (1st cycle) 41 -
Specialised higher studies course
42 - Professional higher technical course 43 -
Higher Education - Master (2nd cycle) 44 - Higher
Education - Doctorate (3rd cycle)

Mother's occupation Integer 0 - Student
1 - Representatives of the Legislative Power and
Executive Bodies, Directors, Directors and
Executive Managers
2 - Specialists in Intellectual and Scientific
Activities
3 - Intermediate Level Technicians and Professions
4 - Administrative staff
5 - Personal Services, Security and Safety Workers
and Sellers
6 - Farmers and Skilled Workers in Agriculture,
Fisheries and Forestry
7 - Skilled Workers in Industry, Construction and
Craftsmen
8 - Installation and Machine Operators and
Assembly Workers
9 - Unskilled Workers
10 - Armed Forces Professions
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90 - Other Situation 99 - (blank)
122 - Health professionals
123 - teachers
125 - Specialists in information and communication
technologies (ICT)
131 - Intermediate level science and engineering
technicians and professions
132 - Technicians and professionals, of
intermediate level of health
134 - Intermediate level technicians from legal,
social, sports, cultural and similar services
141 - Office workers, secretaries in general and
data processing operators
143 - Data, accounting, statistical, financial
services and registry-related operators
144 - Other administrative support staff
151 - personal service workers
152 - sellers
153 - Personal care workers and the like
171 - Skilled construction workers and the like,
except electricians
173 - Skilled workers in printing, precision
instrument manufacturing, jewellers, artisans and
the like
175 - Workers in food processing, woodworking,
clothing and other industries and crafts
191 - cleaning workers
192 - Unskilled workers in agriculture, animal
production, fisheries and forestry
193 - Unskilled workers in extractive industry,
construction, manufacturing and transport
194 - Meal preparation assistants

Father's occupation Integer 0 - Student
1 - Representatives of the Legislative Power and
Executive Bodies, Directors, Directors and
Executive Managers
2 - Specialists in Intellectual and Scientific
Activities
3 - Intermediate Level Technicians and Professions
4 - Administrative staff
5 - Personal Services, Security and Safety Workers
and Sellers
6 - Farmers and Skilled Workers in Agriculture,
Fisheries and Forestry
7 - Skilled Workers in Industry, Construction and
Craftsmen 8 - Installation and Machine Operators
and Assembly Workers
9 - Unskilled Workers
10 - Armed Forces Professions
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90 - Other Situation
99 - (blank)
101 - Armed Forces Officers
102 - Armed Forces Sergeants
103 - Other Armed Forces personnel
112 - Directors of administrative and commercial
services 114 - Hotel, catering, trade and other
services directors
121 - Specialists in the physical sciences,
mathematics, engineering and related techniques
122 - Health professionals
123 - teachers
124 - Specialists in finance, accounting,
administrative organisation, public and commercial
relations
131 - Intermediate level science and engineering
technicians and professions
132 - Technicians and professionals, of
intermediate level of health 134 - Intermediate level
technicians from legal, social, sports, cultural and
similar services
135 - Information and communication technology
technicians
141 - Office workers, secretaries in general and
data processing operators
143 - Data, accounting, statistical, financial
services and registry-related operators
144 - Other administrative support staff
151 - personal service workers
152 - sellers
153 - Personal care workers and the like
154 - Protection and security services personnel
161 - Market-oriented farmers and skilled
agricultural and animal production workers
163 - Farmers, livestock keepers, fishermen,
hunters and gatherers, subsistence
171 - Skilled construction workers and the like,
except electricians
172 - Skilled workers in metallurgy, metalworking
and similar
174 - Skilled workers in electricity and electronics
175 - Workers in food processing, woodworking,
clothing and other industries and crafts
181 - Fixed plant and machine operators
182 - assembly workers
183 - Vehicle drivers and mobile equipment
operators
192 - Unskilled workers in agriculture, animal
production, fisheries and forestry
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193 - Unskilled workers in extractive industry,
construction, manufacturing and transport
194 - Meal preparation assistants
195 - Street vendors (except food) and street
service providers

Admission grade Continuous Admission grade (between 0 and 200)

Displaced Integer 1 – yes
0 – no

Educational special needs Integer 1 – yes
0 – no

Debtor Integer 1 – yes
0 – no

Tuition fees up to date Integer 1 – yes
0 – no

Gender Integer 1 – male
0 – female

Scholarship holder Integer 1 – yes
0 – no

Age at enrollment Integer Age of student at enrollment

International Integer 1 – yes
0 – no

Curricular units 1st sem
(credited)

Integer Number of curricular units credited in the 1st
semester

Curricular units 1st sem
(enrolled)

Integer Number of curricular units enrolled in the 1st
semester

Curricular units 1st sem
(evaluations)

Integer Number of evaluations to curricular units in the 1st
semester

Curricular units 1st sem
(approved)

Integer Number of curricular units approved in the 1st
semester

Curricular units 1st sem
(grade)

Integer Grade average in the 1st semester (between 0 and
20)

Curricular units 1st sem
(without evaluations)

Integer Number of curricular units without evaluations in
the 1st semester

Curricular units 2nd sem
(credited)

Integer Number of curricular units credited in the 2nd
semester

Curricular units 2nd sem Integer Number of curricular units enrolled in the 2nd
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(enrolled) semester

Curricular units 2nd sem
(evaluations)

Integer Number of evaluations to curricular units in the 2nd
semester

Curricular units 2nd sem
(approved)

Integer Number of curricular units approved in the 2nd
semester

Curricular units 2nd sem
(grade)

Integer Grade average in the 2nd semester (between 0 and
20)

Curricular units 2nd sem
(without evaluations)

Integer Number of curricular units without evaluations in
the 1st semester

Unemployment rate Continuous Unemployment rate (%)

Inflation rate Continuous Inflation rate (%)

GDP Continuous GDP

Target Categorical Target. The problem is formulated as a three
category classification task (dropout, enrolled, and
graduate) at the end of the normal duration of the
course
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Table 2: Farness metrics of each variable of XGBoost algorithm

Attribute Privileged Group
Statistical Parity

Difference
Disparate

Impact Ratio

Equal
Opportunity
Difference

Average Odds
Difference

Marital_status 1 0.1456 1.2852 0.0198 0.068

Application_mode 1 0.3112 1.9337 -0.0442 0.0628

Application_order 1 0.1537 1.2591 0.0304 0.0837

Course 9500 0.0762 1.1333 0.1777 -0.0117

Daytime_evening_attendanc
e 1 -0.0706 0.8915 -0.0203 -0.0466

Previous_qualification 1 0.537 5.8333 0.4573 0.3145

Previous_qualification_grade 130 - - 0.9559 0.0624

Nationality 1 - - 0.9559 0.0624

Mother_s_qualification 1 -0.0234 0.9649 0.0279 0.0272

Father_s_qualification 37 0.0732 1.1281 0.2442 -0.0098

Mother_s_occupation 9 0.1842 1.3967 0.1009 0.1008

Father_s_occupation 9 -0.0104 0.9841 -0.0452 0.0127

Admission_grade 2 -0.063 0.9063 0.0109 -0.0247

Displaced 1 -0.1727 0.76 -0.0042 -0.0971

Educational_special_needs 0 -0.1071 0.8572 -0.0445 0.0626

Debtor 0 0.4667 2.9835 0.2344 0.1513

Tuition_fees_up_to_date 1 -0.6869 0.0657 -0.4601 -0.3334

Gender 0 0.2553 1.5387 0.0699 0.0845

Scholarship_holder 0 -0.3444 0.6179 -0.0414 -0.1851

Age_at_enrollment 1 0.2348 1.4963 0.057 0.0713

International 0 0.0358 1.0588 0.1248 -0.0375

Unemployment_rate 10.8 -0.1042 0.859 0.0022 -0.0273

Inflation_rate 1.4 -0.0037 0.9943 -0.0484 -0.0314

GDP 1.74 -0.0085 0.987 -0.0206 -0.0126
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Table 3: Evaluation metrics of each algorithm

Algorithm Balanced Accuracy f1-score ROC-AUC

Learning Fair Representation 0.8476 0.8972 0.8913

Reweighing 0.8785 0.9140 0.9388

Adversarial Debiasing 0.8711 0.8982 0.9354

Exponentiated Gradient

Reduction 0.8858 0.9169 0.8858

Calibrated Equalized Odds 0.8946 0.9256 0.9486

Reject Option based Classification 0.5969 0.7896 0.9448

Table 4: Fairness metrics of ‘Previous_qualifications’ variable

Algorithm

Statistical Parity

Difference

Disparate Impact

Ratio

Equal Opportunity

Difference

Average Odds

Difference

Learning Fair

Representation 0.5676 6.1083 0.4511 0.3550

Reweighing 0.4278 2.925 0.4481 0.2479

Adversarial Debiasing 0.4981 5.4833 0.4008 0.2804

Exponentiated Gradient

Reduction 0.4157 2.8708 0.4420 0.2343

Calibrated Equalized Odds 0.5361 5.8250 0.4573 0.3133

Reject Option based

Classification 0.0315 1.0354 -0.0031 -0.0289
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Table 5: Fairness metrics of ‘Debtor’ variable

Algorithm

Statistical Parity

Difference

Disparate Impact

Ratio

Equal Opportunity

Difference

Average Odds

Difference

Learning Fair

Representation 0.0560 1.0896 -0.0523 -0.2151

Reweighing 0.3438 1.9949 0.1448 0.0412

Adversarial Debiasing 0.3302 2.0444 0.0556 0.0053

Exponentiated Gradient

Reduction 0.3134 1.8698 -0.0218 -0.0439

Calibrated Equalized Odds 0.4488 2.7954 0.1543 0.1097

Reject Option based

Classification 0.6397 2.7755 0.0769 0.4248

Table 6: Fairness metrics of ‘Tuition_fees_up_to_date’ variable

Algorithm

Statistical Parity

Difference

Disparate Impact

Ratio

Equal Opportunity

Difference

Average Odds

Difference

Learning Fair

Representation -0.5070 0.3162 0.0507 -0.0139

Reweighing -0.5389 0.2497 -0.1144 -0.0858

Adversarial Debiasing -0.5310 0.2143 -0.0668 -0.0646

Exponentiated Gradient

Reduction -0.5172 0.2647 -0.0218 0.0168

Calibrated Equalized Odds -0.6779 0.0753 -0.4601 -0.3264

Reject Option based

Classification -0.4409 0.5496 -0.3333 -0.3663
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