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Abstract 

 

Technological advancements have resulted in an unprecedented volume of data, 

prompting the need for effective utilization and extraction of valuable information. The 

internet's evolution, widespread broadband access, and the advent of applications, 

especially in social networks, have amplified data availability across various sectors 

like healthcare, communications, and education. Processing this vast data efficiently 

has led to the emergence of new methods, particularly knowledge mining and machine 

learning. 

 

In this context, the thesis delves into the intersection of machine learning, healthcare, 

and diagnostic tools, particularly focusing on electrocardiograms (ECG or EKG). The 

three main chapters explore machine learning methodologies, their applications in 

healthcare, and a practical application of deep learning in diagnosing arrhythmias using 

ECGs. Notably, the discussion covers deep learning techniques, neural networks, and 

their application to ECG analysis. 

 

The key takeaway from the case study is the comparison of XGBoost and Neural 

Networks algorithms, revealing that the XGBoost algorithm proves more reliable, 

achieving accuracy rates exceeding 90%. The findings emphasize the algorithm's 

effectiveness in healthcare applications, showcasing its potential for automated pattern 

recognition and decision-making processes. The thesis provides valuable insights into 

the symbiotic relationship between machine learning and healthcare, with implications 

for diagnostic tools and algorithmic reliability. 
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1 Introduction 

New technological advancements have led to an abundance of data and the 

computational infrastructure to gather, utilize, and extract useful information. The 

development of the internet and its applications played an important role in this 

development. Access to broadband network connections has become possible for a 

large part of the world's population. Applications were created that addressed a wider 

gap than in the recent past (social networks are a typical example). More people were 

now using web applications and, in many cases, storing their own content on its 

infrastructures. Added to this content was that created by the sensors of the Internet of 

Things (IoT) devices. The amounts of data available on the internet are large. 

Data can be found in various sectors of our society, such as healthcare, 

communications, education, banking, consumer trade amongst others. Thus, the need 

to transform raw data into valuable information grows rapidly. As large volumes of data 

can be produced and reached more easily nowadays, the problem has been moved from 

getting it to exploiting them. Conventional ways for processing data are not able to 

handle efficiently large amounts of data. So new ways for processing data had to be 

emerged in order to manage the high data availability. 

Knowledge mining from large data sets is now one of the most basic research issues. 

Administrators of online IT systems are looking for ways to efficiently exploit the large 

availability of data. The techniques used aim to extract knowledge from large data sets. 

With these techniques, data scientists and analysts seek to extract knowledge structures 

that the data can describe. The structures developed include appropriate semantics and 

are based on common properties of the data under consideration. A typical definition 

for the concept of knowledge mining is: "knowledge mining is the deterministic process 

of identifying valid, innovative, useful and understandable patterns in data". Data 

describes entities or relationships between entities. Prototypes have the ability to define 

subsets of data whose elements exhibit common properties. One of the main challenges 

of knowledge mining processes is to create patterns that are consistent with new data. 

This criterion is also the most important for their evaluation. 

A major role in this issue has been machine learning. The capabilities of machine 

learning exceed the simple notion of extracting and transforming data to automate 

complex procedures or even enhance existing practices. Its algorithms have been made 
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a useful tool for decision making processes. They offer efficient processes for 

manipulating large volumes of data to produce models for automated pattern 

recognition. These patterns are then used for decision orientation. Machine learning 

algorithms have been shortening the data processing time and made able the big data to 

be processed. There are several applications of machine learning processes to a large 

variety of sectors such as economy, education, marketing, and healthcare. These 

techniques give machines artificial intelligence so that they can automatically adjust 

their behavior according to the data they manage.  

The focus of this thesis is centered on the healthcare sector and the implementation of 

machine learning techniques in diagnostic tools, specifically the electrocardiogram 

(ECG or EKG). The main structure of this paper includes three chapters: 

• Chapter 2: The main goal of this chapter is to provide a synopsis about the 

definition and the characteristics of machine learning. The different 

methodologies followed for machine learning and their products are described. 

The applications of these methodologies are mentioned. Special mention is 

made of deep learning and neural networks. 

• Chapter 3: The second chapter’s content focuses on machine learning 

applications for healthcare. There are several healthcare sectors where artificial 

intelligence application has benefit relevant functions. ECG study is one of 

them. A detailed description of ECG features and processes is presented. Then, 

a comprehensive analysis, about how machine learning processes are being 

applied on ECGs, is provided. This chapter’s content is essential for 

constructing basic knowledge about the processes the machine learning 

algorithms must be adapted.  

• Chapter 4: In the third chapter, a practical application of deep learning 

methodologies in healthcare is presented. It examines how electrocardiograms 

can be evaluated to diagnose arrhythmias in heart function. The presentation 

includes the description of ECGs, how they are performed and the information 

they provide. The structures and characteristics of the developed neural 

networks are also described. Python's capabilities for developing machine 

learning mechanisms are reported. Finally, the test results of the developed 

neural networks are shown, as well as the comparison among them. 
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• Chapter 5: The last chapter contains the conclusions derived by the machine 

learning technics, their applications in healthcare and the case study performed. 
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2 Machine and Deep learning 

 

2.1 Artificial Intelligence 

The evolution of computing has been largely based on data processing. In the 1960s 

data was organized into data collections, databases, and related management systems. 

A few years later, the relational data model (RDBMS) was proposed, which evolved 

into special purpose databases (spatial, temporal, scientific, engineering). The increase 

in data availability has led to data mining and data warehousing. Gradually, 

mechanisms were also proposed for associating data with semantics (Linked Data, 

Ontologies). 

Large amounts of data are collected and stored into data warehouses with high 

frequency. These data have complex relationships among them that are difficult to 

detect. The revelation of these relationships leads to knowledge. Knowledge gives an 

advantage over the competition, an opportunity to provide better quality services. With 

knowledge of mining techniques data can be grouped based on specific criteria. 

Knowledge mining contributes to the better formulation of hypotheses and the better 

visualization - presentation of information. 

Knowledge mining techniques are distinguished according to the type of models they 

produce into predictive and descriptive. Predictive techniques are used to produce 

estimates of the outcome of current situations. Descriptive ones identify current states. 

Predictive techniques contain the following mechanisms: 

• Classification: It is defined by a well-defined set of classes as well as a set of 

pre-classified samples. Its purpose is to create a model for the classification of 

new samples whose class is unknown. 

• Regression: It is the process of assigning data to a variable that refers to a future 

state. These variables usually take continuous values. 

• Time Series Analysis: Time series are sequences of numbers each associated 

with a timestamp. Each timestamp is separated from the previous and next by a 

fixed amount of time. The purpose of these mechanisms is to predict future 

values of the series. 
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Descriptive techniques include: 

• Clustering: It is the process of dividing a set of heterogeneous objects into 

groups based on the similarity or difference that the samples have. 

• Summarization: They are feature reduction operations to identify objects. 

• Association rules: They are processes of discovering association rules between 

objects. Associations are based on the values that the objects' specification 

parameters take. 

• Sequence discovery: In these processes, temporal or other sequences are studied 

in order to identify patterns that determine how they are being developed. 

The following chart shows the knowledge mining categorization. 

 

 

Figure 1: Knowledge mining techniques categories 

 

Knowledge mining systems use but are not limited to data warehouses, statistical 

methods. The difficulties that need to be overcome when performing knowledge mining 

processes are: 

• The large size of the data to be processed. 

• The large number of dimensions of the data (the number of attributes that 

describe the entities). 

• The inhomogeneity of the data might be derived by different sources formed in 

many ways. 

 

 



  6 

 

Knowledge mining has many applications. The main ones are: 

• Optimizing search engine performance: Data from past searches – either criteria 

or results – is used to improve the results of future searches. 

• Personalization of content and services based on data related to the use of 

services and goods: Customer behavior is recorded, and its data is used to shape 

the organization's attitude towards them. 

• Determining the strategies of commercial organizations: Customer preferences 

form the basis for decision-making processes. 

• Scientific research: Knowledge mining techniques are used to carry out 

scientific research. The conclusions drawn from these processes contribute to 

the progress of science. 

The concept of knowledge mining relates to efficient techniques for analyzing large 

collections of data to draw useful conclusions from them. The information resulting 

from these procedures is non-trivial, comprehensible, validated and provides useful 

conclusions. The relationships that emerge between the data and are not expected 

provide a greater amount of information. 

The inability of organizations to process the data they have in a timely manner can have 

bad consequences for their viability. These problems are: 

• Reduced productivity: Traditional data processing techniques lead to results at 

a slow pace. This has the effect of reducing the useful time of the workers. 

• Inadequate exploitation of data: The inability of traditional data processing 

techniques to produce timely results deprives the heads of organizations of 

important tools for decision-making processes. 

• Inability to exploit unstructured data: Conventional forms of data processing do 

not have the ability to handle unstructured data. In the modern era when the 

availability of unstructured data is great, the inability to draw conclusions from 

it deprives the organization of possibilities. 

As knowledge mining is important for any kind of organization, artificial intelligence 

adapted to its algorithms. Artificial intelligence (AI) refers to machine-based data 

processing which otherwise would require human cognitive function. Nowadays AI has 

become ubiquitous and there are applications in multiple facets of life ranging from 
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language processing, computer vision, engineering, industrial, gaming, and other 

scientific fields. On daily basis one can detect these applications such as face and 

objects recognition in photographs, language detection and auto-completing words or 

even sentences in written communication, as well as verbal communication with certain 

applications as Alexa or Siri. Marketing also uses AI extensively, in order to suggest 

products and advertisements to users based on their profile and searches through the 

internet. Consequently, the advancement in the speed of computing and the 

development of new algorithms which partly mimic the human brain function have led 

to widespread implementation of AI-based practices. 

Applications of artificial intelligence can bring many benefits to humans. The measures 

taken to deal with the consequences of Covid-19 made research look for ways to 

continue operations in various areas of human activity. AI offered significant solutions. 

In addition, it allows the development of new categories of products and services that 

companies can have in order to create new, innovative production lines. It also 

strengthens the existing production lines through the improvement of production 

mechanisms and the strengthening of its supporting operations. It is estimated that by 

2025 business productivity will increase by 11% to 35%. AI applications can accelerate 

and improve the accuracy of public administration operations and upgrade its 

relationship with citizens. The use of AI in military applications and in general in the 

field of public security contributes to the development of a safe environment for modern 

societies. 

The use of AI also presents several challenges. Organizations should take care to 

monitor and adapt to developments in order to remain competitive. On the other hand, 

excessive and incorrect use of AI applications can lead to problematic situations and 

social issues. The errors of the automated processes of AI applications are difficult to 

attribute as the distinction of responsibility of the producers of the systems and the users 

is not clear. Their operation requires the storage, maintenance, and processing of large 

volumes of data, which in many cases are personally sensitive. In addition, the 

development of AI mechanisms may include the incorporation of bias to produce the 

result, to such an extent that the behavior of critical systems is manipulated. As with 

many modern technological achievements, it can lead to job cuts. Inadequate regulation 

and adaptation of AI systems to their environment and the demands of society can have 

bad results for their users119. 
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2.2 Machine Learning 

Machine learning (ML) is a sector of AI and provides a different approach on how 

scientists use AI traditionally. It is a tool which can learn patterns empirically from data 

and identify nonlinear relationships and interactions between multiple variables that 

may be challenging for traditional statistics. Additionally, instead of needing specific 

rules to input data into the program to generate results, machine learning uses data and 

extracts answers from the data to construct the rules. The rapid growth of Machine 

Learning became apparent during the latest decades due to the availability of large 

datasets (Big Data) and computing power. ML’s place in the technological realm has 

been solidified as one of the most useful and popular subfields of AI. 

The general purpose of machine learning is building models using large volumes of 

data. Its processes aim to generalize the relationships among them. These models need 

to learn how to distinguish certain objects in order to achieve a desired total result or 

come to a useful conclusion. A large variety of techniques and algorithms are being 

used. Machine learning applications learn from data and use fresh data to recognize 

known patterns. Those patterns have been derived from the study of objects 

characteristics that describe the data. They are features that can determine the species 

or the identity of the object to be recognized. Additionally, machine learning can 

determine through the patterns it creates what objects cannot be126. 

A variety of fields have implemented techniques from ML such as mathematical 

statistics, probability, decision theory and information theory. ML has the ability to 

tackle issues often involving extremely large, complex data of various types (like 

images, video which consist of thousands of pixels). As a result, ML has become a more 

engineering-oriented approach1. (and is becoming a growing part of medicine). 

ML systems require training data from which they design and produce certain rules. 

Once the system is trained on the data provided, it proceeds to the testing phase in which 

a different set of data (testing dataset) is used to predict answers from new data based 

on the aforementioned rules. The ability of an ML algorithm to classify or predict, based 

on data which are detached from the training dataset is the central tenet in ML2. One 

additional step required for the training phase is often the preprocessing of data3. For 

instance, when the algorithm’s aim is to classify pictures as dogs or cats, the images 

need be processed in order to have the same size or pixel intensities to a fixed range. 
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Preprocessing methods developed on the training dataset and applied to the test dataset 

improve the model’s generalizability and functionality. In contrast, the traditional ML 

approach to feature extraction has been feature engineering, in which the researcher 

modifies the raw data based on experience to condense information into values to be 

used in ML.  

Machine processes execution depends on the algorithm to be implemented. However, 

each process follows a sequence of general steps. These steps are planning, data 

preparation, model eengineering (train), model evaluation, model deployment, 

monitoring, and maintenance. 

 

2.3 Machine Learning General Steps 

The general process of machine learning projects consists of the stages described below. 

 

 

Figure 2: Machine Learning Process 

 

2.3.1 Planning 

During this stage, the requirements of the project to be developed are defined. The goals 

of the machine learning process are defined based on the purpose for which it will be 

used. The type of procedure that is most suitable is then selected as well as the algorithm 

that is estimated to produce the best results. All implementation details are also defined 

and the tools to be used are selected. The sources of the data to be used in the next 

stages are identified and the way of gathering and processing them is planned. If 

necessary, a schedule of actions is drawn up. The evaluation criteria of the process to 

be developed, the tools and metrics to be used for this purpose are also defined. 
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2.3.2 Data Preparation 

It is a process that begins with the collection of data from various sources and ends 

shortly before training the models. It starts with data collection. After data sources have 

been define, they are accessed and gathered by several mechanisms (depending on data 

forms and sources availability). The validity of collected data must be examined (this 

is mainly depended on source’s reliability. In special case, data labelling might be 

needed (e.g. classification). After that data have to cleaned. Records with outliers 

should be removed (especially if they are a small part of the total), a decision should be 

made on how to use the missing values (usually the corresponding mean, some neutral 

value, or the entire record is removed). Records are also checked for incorrect values 

so that they can be corrected. Subsequently, the data undergoes processing in order: 

• The amount of data to be sufficient for the development of the process 

• The data set should present a quantitative balance in terms of the field values of 

the records. The percentage of field values that are input or output of the 

procedure should be as equal as possible. 

• Data values to be normalized to common scales. 

 

2.3.3 Model Engineering 

It is the most important part of the process as this is when the model is created. The 

algorithms designed in the first stage are implemented and the data prepared in the 

second stage are used. The model is trained and at the end of this process it is ready to 

be evaluated. Usually during the training phase, the model parameters are adjusted in 

multiple steps, at each step its efficiency is checked and re-adjusted. This process is 

repeated until the value of some selected metrics reach a threshold. 

 

2.3.4 Model Evaluation 

The model developed should be evaluated for its ability to produce the desired results 

accurately and in an acceptable time. It mainly evaluates the ability of the model to 

work efficiently with data unrelated to the data used during training. Appropriate 

performance metrics are applied at this stage. 



  11 

 

2.3.5 Model Deployment 

At this stage it has already been decided that the model is capable of producing reliable 

results when fed with data under any conditions. It is developed and now normally used 

for the purpose for which it was designed. 

 

2.3.6 Monitoring and Maintenance 

It is a process that lasts until the end of the model's life cycle. This is constantly checked 

for its performance and whenever required adjustments are made to its parameters and 

it is retrained. At each revision of the model re-evaluations are carried out. 

 

2.4 Machine Learning Processes Categories 

Depending on the purpose served by each machine learning-based process, the 

appropriate procedure and algorithm is chosen. In addition, the appropriate parameter 

values for the selected algorithm are determined. The techniques used in machine 

learning processes fall into three main categories: supervised, unsupervised and 

reinforcement learning. Each of them is described to the following paragraphs126. 

 

2.4.1 Supervised Machine Learning 

The main characteristic of the methodologies belonging to this category is that the set 

is used to train the model, it includes entities described by a set of attributes. The set of 

these attributes includes the one for which the model is developed. Therefore, the model 

is trained based on the values of the parameters that characterize each entity, knowing 

with which value of the target characteristic they are associated. After the model is 

trained, the new data is applied to the trained model and the estimated value of the target 

feature is assigned. These techniques are usually used when the data can predict 

possible events. Algorithms of this kind learn a set of inputs along with corresponding 

correct outputs and learn by comparing their actual outputs with correct outputs to find 

errors. The detection of errors determines the corrective actions in the model120.  

The main procedure included in this category is Classification. It is referred to the 

prediction attempt of output of a specified input. The classification process takes an 

unknown group of entities and upon completion of its operation, places each entity in 
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the most relevant category. In order for these processes to work better, enough data is 

required in a crowd which is evenly distributed among the different categories123. 

The next figure shows how supervised machine learning works. 

 

 

Figure 3: Classification 

 

Built models’ quality are measured by various metrics. The most important and mainly 

used of which are: 

• Classification accuracy: It is described by the ratio of the number of 

correct predictions to the total number of input samples. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

• Logarithmic loss): It is described by the equitation: 

• LL =
−1

𝑁
∑𝑁

𝑖=1 ∑ y𝑖𝑗log (𝑝𝑖𝑗)
𝑁

𝑗=1
 

where yij points if i-th sample belongs to the j-th class, pij is the probability the i-th to 

belong to j-th class. Logarithmic loss values are in the space of [0, ∞). Zero value refers 

to absolute accuracy.  

• Confusion Matrix: It is a two-dimensional table whose cells record the 

forecasts as follows: 
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o True Positives (TP): The cases in which the prediction was A 

and the actual value was A. 

o True Negatives (TN): Cases in which the prediction was not A 

and the actual value was not A. 

o False Positives (FP): The cases in which the prediction was A 

and the actual value was not A. 

o False Negatives (FN): The cases in which the prediction was not 

A and the actual value was A. 

• Confusion Matrix is the base for useful metrics computations: 

o Accuracy: It refers to how close predictions are to the 

corresponding true values. 

▪ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

o Precision: It refers to how close predictions are to each other. It 

is equal to the ratio of the number of true positives values to the 

summary of positive predictions. 

▪ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

o Recall: It measures the model’s ability to recognize the samples 

classes. It is equal to the ratio of the number of true positive 

predictions and the summary of true positive and false negative 

predictions. 

▪ 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

o F1 Score: It is a metric for evaluating the model’s ability for 

predicting both positive and negative samples.  

▪ 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

 

• Mean Absolute Error: It is a metric used when the target attribute takes 

continuous values. The mean absolute error is the average of the 

difference between the original values and the predicted ones. It gives 
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the measure of how far the predictions are from the actual values. Also 

used is the mean squared error (MSE) which calculates the average of 

the square of the difference between the original values and the predicted 

values124. 

 

2.4.2 Unsupervised machine learning 

Learning processes of this kind, manipulate samples the target characteristic values are 

not known during the training of the model. The relevance of the entities to each other 

or lack of relevance is calculated, is estimated depending on the objects’ attributes 

values.  Through suitable processes patterns emerge without having to know any 

previous data or information. A typical case where unsupervised machine learning is 

used is clustering. In such procedures, the elements of a set are placed into the same 

clusters according to the degree they match each other or into different clusters 

according to how different they are from each other. This type of learning works well 

with clustering, which refers to data placing into groups of similar data126. 

The next figure shows an example of samples clustering in two-dimensional space.  

 

Figure 4: Clustering 

 

The most common metric used for evaluating clustering processes quality is silhouette. 

Silhouette coefficient value is in the space of [-1,1]. 
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• 1: Value close to 1 means that clusters have been distinguished perfectly 

and the probability the samples to be placed to other clusters is small.  

• 0: Value close to zero means the samples have been placed to correct 

clusters but they would be placed to other clusters as well.  

• -1: Value close to -1 means that clusters have not been formed correctly.  

The silhouette value is computed by the following equitation: 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =  
𝑏 −  𝑎

max (𝑎, 𝑏)
 

Where: 

• α: is the sample’s mean distance among all pairs of samples in a cluster 

built. 

• b: is the sample’s mean distance among other samples placed on 

different clusters116. 

 

2.4.3 Reinforcement machine learning 

The reinforcement learning approach is based on algorithms interaction the 

environment they are being executed. The environment status is being detected 

periodically or continuously and it is being recognized by appropriate sensors. The 

algorithm adapts this status, and it behaves depending on it. Behavior is a combination 

of selected actions from a set of dispositions. These options as well as their results are 

recorded. The set of entries constitutes the experience of the system on which the 

algorithm is based in order to make decisions. The main idea of such algorithms comes 

from the field of psychology and is related to reinforcing behavior, learning by doing 

and getting relative reward. A machine can approach a result considered ideal through 

successive trial and error. Over time, it learns to choose certain actions that result in the 

desired output. This type of learning is often used in applications such as games and the 

movement of unmanned vehicles and robots126. 

2.5 Training, Testing and Validation phases 

Training and testing phases are the most important ones for model quality. The training 

process is based on a loss function used to determine the distance between the computed 
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and the actual value of target features. It is desired to be as minimized as possible. This 

process of minimizing the loss function is iterative and lasts where its output is less 

than a predefined threshold. Parameters that are considered for building the model are 

called hyperparameters. During the training phase hyperparameters are being regulated 

in order to minimize the loss function output value.  

A portion of the available dataset is being kept for using it for testing purposes (usually 

the 25% - 30% of the entire dataset). This is called test set while the rest is called train 

set. After having constructed the model, the test dataset is used on the model for 

evaluating metrics values. n most cases where machine learning techniques are used, 

the aim is to produce models using more than one algorithm. Each model is evaluated 

with the test dataset in order to select for use the one that appears best based on the 

evaluation metrics used127.  

It is a good practice to choose a portion of train dataset to use it as a validation set. This 

dataset would be used for configuring hyperparameters during the train phase in order 

to decrease the loss function value in each iteration. Checking the model’s behavior 

during the training phase helps the trainer to configure hyperparameters in a manner 

that makes the model better than the one provided by the previous iteration. The most 

common technique used for validating training is the k-fold cross-validation. The 

dataset is being split into a number of folds (subsets). One of them is randomly chosen 

to be the validation dataset while the union of the rest is used as the train dataset. The 

model validation process is being performed repeatedly. The model performance is 

computed as the average value of the validation processes performed. The main 

advantage of this method is that the performance estimation would not be affected by 

the subset chosen for train or validation dataset. Its drawback is the fact that its high 

complexity117. Bootstrap is a popular method too. It uses resample with replacement, 

creating new datasets having the same number of elements with the original ones. That 

means that some records might be more than once in the set. The generalization error 

computed between performance on the bootstrapped set compared to original set is the 

measure for evaluating the derived mode. This method tends to produce overfitted 

models in some cases127.  
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Figure 5:Train, validation and test datasets relationships and use 

 

To sum up, the training phase consists of a repetitive sequence of train – validation 

cycles, resulting to the model testing. Train and test dataset are separated while the 

validation dataset is a portion of the train one. The above image shows schematically 

the train, validation and test set relationship into the model training and test process. 

2.6 Machine Learning Algorithms 

2.6.1 Naïve Bayes 

This method is based on Bayesian statistical theory. The goal is to categorize a sample 

X into one of the classes C1, C2, … Cn, using a probability model defined according 

to Bayesian theory. Each class is characterized by a prior probability of observing the 

class Ci. It is also assumed that the given sample X belongs to a class Ci, with the 

conditional probability density function p(X|Ci) in the interval [0,1]. Then using the 

above definitions, the probability is determined as follows: 

 

𝑝(𝐶𝑖|𝑋) =  
𝑝(𝐶𝑖|𝑋)𝑝(𝑐𝑖)

𝑝(𝑋)
 

 

The simplest classifier is Naïve Bayes which assumes that the effect of a feature on a 

given class is independent of the values of other features. 
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2.6.2 Decision Trees 

A decision tree is a map that shows all the possibilities and outcomes that can occur 

when a particular topic is discussed. It is a sequence of related options and enables 

individuals and groups to weigh possible outcomes against costs, priority, and benefits. 

Decision trees are used to guide informal discussion or create an algorithm that 

mathematically predicts the most important choice. Furthermore, a decision tree starts 

with a root node, which branches out too many possible outcomes. Each possible 

product also comes with additional nodes that result from the results and can be 

branched. When all possible outcomes have been branched, a tree-shaped diagram will 

be created. There are several types of nodes you can see in your decision tree: 

opportunity nodes, decision nodes, and termination nodes. A circle represents an 

opportunity node and shows the probabilities of the outcomes you can get. A square 

shape represents a decision node, indicating the decision to be made. And finally, the 

terminal node represents the result of the decision tree. 

The criterion considered for the quality of decision trees is their height. The smaller the 

height of the tree, the faster it can lead to a decision. The height of the tree depends on 

the choice of characteristics of the samples to be examined first. The most popular 

algorithms of this kind first select those features that yield the greatest informational 

gain. 

It is a useful tool for data interpretation and suitable for handling numerical and non-

numerical data. Decision tree methodologies can be implemented easily and combined 

with other techniques. In the phase of creating the tree, its complexity should be limited 

so as not to lead to overfitting. They cannot be easily used for entities described by 

continuous numeric values. Decision trees produce lower prediction accuracy 

compared to other prediction methods123. 

 

Next figure shows an example of a decision tree. 
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Figure 6: Example of a Decision Tree  

 

2.6.3 Support Vector Machines 

Suppose that n observations are recorded and each of them consists of a pair of the 

form: Χi ∊ Rn , and a label of the target category, yj. Suppose also that there is some 

unknown probability distribution P(x,y) based on which these observations are 

produced. The goal is to compute the set of parameters α of the function f(x,α) such that 

f realizes the mapping xi → yi. A particular choice of α uniquely determines the 

corresponding training engine, f(x,α). 

Unlike traditional methods, which minimize the error, an SVM aims to minimize the 

upper bound of the generalization error. It achieves this goal by learning α of f(x, α) so 

that the training engine satisfies the maximum margin property, i.e. the decision 

boundary that represents the maximum - minimum distance from closest point 

calculated during training. 

  The expected control error for a trained machine is: 

𝑅(𝛼) (½∫ |𝑦 = 𝑓(𝑧, 𝑎)𝑑𝑃(𝑥, 𝑦). 

R(a) is called expected risk, or simple risk. Although it gives a good way of calculating 

and representing the error of the true mean, it requires the estimation of P(x,y). The 

empirical risk Remp(α) is then defined as the error rate measured over the training set: 

𝑅𝑒𝑚𝑝 (𝛼) =  (½ 𝛴|𝑦𝑖 −  𝑓 (𝑥𝑖, 𝛼)|) 
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In addition: 

𝑅(𝑎)  <=  𝑅(𝑎) + 𝐶(ℎ) 

where h is the Vapnik Chervonenkis constant (VC) and describes the measure of the 

machine's ability to learn by any training set without error. The term C(h) is called 

confidence VC. Given a family of functions f(x, α), it is desirable to select the machine 

that gives the lowest upper bound on the risk. The first term, Remp(a), represents the 

accuracy achieved on a particular training set, while the second term, C(h), represents 

the ability of the machine to learn from any training set without error. The terms 

Remp(a) and C(h) define the bias and variance of the generalization error. The best 

generalization error is achieved when a proper balance is achieved between these two 

terms. This property is the basis for a method of selecting a learning machine for a 

particular task in order to minimize the construction error. An SVM engine maps the 

data into a high-dimensional space (feature space) and defines a separating hyper-plane 

in that space. Translating the training set into a high-dimensional space increases the 

overall learning cost. SVMs avoid overfitting by choosing a specific hyper-layer to 

partition the data into the feature space. 

A function, the kernel function, is used to construct the feature vectors, instead of 

explicitly recording them. Therefore, an SVM can detect a cutoff in a feature space and 

categorize the points in that space without always mapping that space uniquely. 

  Additionally, overfitting is avoided by using the maximum margin level, which leads 

to a training algorithm with characteristics of an optimization problem solving method. 

In order to train the SVM the unique minimum of a function must be found. 

Consequently, SVMs do not have the local minima problem that affects many training 

schemes, and unlike the back propagation learning algorithm for neural networks, they 

always converge deterministically to the same solution for a given data set, regardless 

of the initial assumptions. 

  In the simple case of two linearly distinguishable classes, an SVM selects that 

classifier that minimizes the upper bound of the generalization error. It achieves this 

goal by computing the classifier that satisfies the maximum margin property (the one 

whose threshold decision has the maximum minimum distance from the nearest training 

point). If the two classes are indistinguishable, SVM searches for a level that maximizes 
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the margin and minimizes an amount proportional to the number of classification 

errors125. 

 

2.6.4 Nearest Neighbor 

K-Nearest Neighbor is a machine learning technique that operates by measuring 

samples similarity with other nearby ones. For each of the samples for which the class 

to which it belongs is searched, the class to which the k samples closest to it belong is 

examined. The category to which most of these samples belong is the category to which 

the examined sample belongs118. 

 

2.6.5 K-means 

It is an algorithm mainly used in clustering problems. It is initialized by selecting k 

samples to be the centers of k different clusters. Each of the remaining samples is then 

assigned to each of the centers. When the clusters form, their new centers are located. 

This process is repeated until at some step the centers of the clusters do not change118. 

 

2.7 Deep Learning (DL) 

Deep learning is based on multilayered models. Each layer represents a stage of 

abstraction to the learning process. In recent years, scientific research has led to 

important applications of these models, in various and diverse fields, with excellent 

success. Speech recognition, visual object recognition, object detection, drug discovery 

and genomics are some of these applications. Deep learning discovers intricate 

structures in large data sets. It performs backpropagation to indicate how a machine 

should change its internal structure and structure elements relationships through the 

layers of the entire model122.  Deep Learning techniques are processes that tend to 

simulate the functioning of the human brain and the behaviour of the human central 

nervous system. Based on this, a neural network, consisting of artificial neurons, can 

perform machine learning and pattern recognition efficiently. Artificial neurons are 

interconnected and support functions of processing a set of input parameters and 

producing a customized output format. A neural network is an oriented graph. Its edge 

corresponds to dendrites and synapses. Each edge is assigned a weight and connects a 



  22 

 

pair of neurons – nodes. The values that enter each node constitute its input. In it they 

are applied on a predefined activation function115. 

An artificial neural network is a data processing structure that works like the way the 

human brain processes information. The human brain is made up of millions of neurons. 

It sends and processes signals in the form of electrical and chemical signals. These 

neurons are connected by a special structure known as synapses. Synapses allow 

neurons to pass signals. Artificial neural networks include a large number of connected 

processing units that work together to process data. Beyond categorization procedures, 

it is suitable for regression of continuous-valued features114. 

Neural networks are made up of neurons based on the neuronal structure of the brain. 

They process the elements one at a time and "learn" by comparing their categorization 

for a record (which, to begin with, is largely arbitrary) with the known actual 

categorization of the record. The errors from the initial classification of the first record 

are fed back to the network and are used to modify the network-based algorithm again. 

This process continues iteratively. 

The structure of neurons in the artificial neural network contains121: 

• A set of input parameters that take the values of the input (Xi). 

• A set of weights applied to each of the input parameter 

• A function (g) that sums the weights and maps the results to an output (y) 

The following figure shows the typical structure of neurons. 

 

Figure 7: Artificial Neuron Typical Structure: 
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Artificial neural network consists of at least three layers113: 

• Input layer: The purpose of the input layer is to take as input the parameter 

values for each observation. Typically, the number of input nodes is equal to 

the number of independent variables. The input layer is linked to one or more 

hidden layers. Input layer nodes are passive, meaning they do not change data. 

They take a single value on their input and copy the value to their outputs. From 

the input layer the values are sent to nodes of the hidden layers. 

• Hidden Layer: Hidden layers apply given transformations to the input values 

within the network. In them, incoming edges are imported from other hidden 

nodes or from input nodes connected to their nodes. It is connected by outgoing 

edges to output nodes or other hidden nodes. In the hidden layer, the actual 

processing is done through a system of weighted connections. There may be one 

or more hidden layers in the entire network. The values entering a hidden node 

are multiplied by the weights. The weighted inputs are then added to produce a 

single number. 

• Output layer: Hidden layers result in an output layer. It receives connections 

from hidden layers or from the input layer. Returns one or more output values 

corresponding to the prediction of the response variable. In classification 

problems, there is usually only one output node. The active nodes of the output 

layer combine and condition the data to produce the output values. 

 

 

 

 

 

 

 

 

 



  24 

 

The next image shows a typical form of an artificial neural network. 

 

Figure 8: Artificial Neural Network Typical Structure 

 

The ability of the neural network to provide appropriate data handling lies in the correct 

selection of weights. Τhis feature differentiates it from other forms of data processing. 

It includes a weight adjustment mechanism and in conjunction with the structure 

chosen, determines the relationship of the input data to its output. The simplest structure 

is one in which modules are distributed over two layers: An input layer and an output 

layer. Each unit at the input layer has a single input and an output that is equal to the 

input. The output module has all the modules of the input layer connected to its input, 

with a combination function and a transfer function. By adding 1 or more hidden layers 

between the input and output layers and the units in that layer, the predictive power of 

a neural network increases. The number of hidden layers should be as small as possible 

in order for the neural network to avoid overfitting its output to the specific input 

elements of the training set. This can happen when the weights make the system learn 

details of the learning set instead of discovering structures and patterns in it. This may 

also be due to the fact that the size of the training set is too small relative to the 

complexity of the model115. 
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3 AI in Healthcare 

Artificial intelligence and particularly machine and deep learning, subsets of AI, are 

becoming part of medicine in rapid rhythm. With new technology novelties, the 

increase in the availability of biological and clinical data is unprecedented and the 

nature of the data multivariant. Data that represent information at various levels of 

biological complexity such as biomedical imaging, health records, multiomics, and data 

from wearable sensors and implantable electronic devices provide a gold mine for 

researchers to test AI techniques to improve diagnostic and prognostic procedures. This 

task requires close collaboration between several sciences (engineers, computer 

scientists, biologists, healthcare professionals) to achieve results free of limitations and 

to utilize machine and deep learning aspects at its fullest. Providing such tools to 

specialized healthcare professionals promotes precision, efficiency in the daily 

workflow and an effective path into how hospitals operate.  

In recent years cardiovascular medicine is at the forefront of many AI applications and 

several comprehensive reviews1-8,11,12 have been published from 2019 until now. The 

subject attracts researchers since the benefits and potential impacts are high in volume 

– cardiovascular diseases are the leading cause of death worldwide, while in 2015 

caused 18 million deaths85 - but they also detect many challenges. Specifically in the 

field of cardiac electrophysiology, on which this thesis is focused, ML applications 

have seen a rapid growth in popularity. The use of AI in the interpretation of pulse 

irregularities and cardiac arrhythmias through the electrocardiogram, a major 

diagnostic tool, has been approached from various angles which are presented in later 

chapters.  

Even though computer-generated interpretations have been used for many years, they 

are based on predefined rules. However, AI methods in form of deep neural networks 

or other type of deep learning algorithms, which are mimicking human-like 

interpretation of the ECG, provide automated feature, pattern and signature recognition 

and can detect several details on an ECG which are not always visible by the human 

eye. The ECG is a low-cost tool and widely available. Because of their digital format, 

ECGs easy to store and transfer. In conjunction with the advances in computational 

capabilities, the interpretation of the ECG makes an ideal candidate for deep learning 

AI applications.5,17,18 
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The AI-enhanced ECG, an outcome of combining the standard ECG with AI, is 

nowadays the subject of many reviews and studies. While many reviews1,5,8 depict the 

characteristics of machine and deep learning and presenting separate studies and 

novelties in the field, other reviews6,11 focus on the central tasks of AI-ECG and discuss 

the possible solutions to key challenges and deficiencies AI-ECG is facing and provide 

some key insights. 

 

Figure 9 – Overview of artificial intelligence and machine learning in cardiac electrophysiology (source: [8]) 

Overall, the huge influx of electronic health records and various digitalized medical 

data, alongside with new techniques to analyze large amounts of data in an efficient 

way have re-ignited the interest in the field of machine learning in healthcare 

innovation2. Moreover, hardware improvements like the development of GPUs and the 

availability of powerful computing platforms as cloud computing and new algorithms 

for tasks with high complexity have developed new technologies in artificial 

intelligence14-16.  

3.1 ECG and AI-ECG 

The electrocardiogram (ECG) was invented in 190119 by Willem Einthoven and over 

the next years, it has become a vital tool for disease identification, risk stratification, 

and cardiovascular management9,10. It also has an established value in the diagnosis, 

prognosis, and therapeutic monitoring of several cardiovascular diseases. To further 

extent, the ECG is a ubiquitous tool in the healthcare field, and it’s being used by 

cardiologists and non-cardiologists. It is a low-cost, and simple test that is available 

even in the most resource-scarce settings. Although the acquisition of the ECG 

recording is standardized and reproducible in all settings, the manual interpretation of 
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the ECG, when done by a human, depends greatly on the level of experience and 

expertise. 

From a technical point, the test gives access into the structural condition of the heart 

and the overall electrical activity but can also provide valuable diagnostic clues for 

several diseases. Typically, the ECG consists of 12 voltage versus time traces 

(electrodes) which are collected from the body surface over the heart. A normal ECG 

tracing shows the P wave, QRS complex, and T wave continuously and regularly 

repeated in sequence. A sample of a standard 12-lead ECG is illustrated below. 

 

Computer-generated interpretations are limited on predefined rules and manual pattern 

or feature recognition algorithms. However, artificial intelligence (AI) has now the 

ability to analyze the 12-lead ECG and single lead tracings from wearable devices. The 

ECG interpretation supported by AI has proven to have greater diagnostic accuracy and 

efficiency than previous traditional interpretations.  

AI tools have shown promise in automating and assisting disease diagnosis, and tools 

are now being developed to enhance prediction of disease prognosis and response to 

therapeutics and provide novel characterization of health and disease. This advance on 

automated ECG interpretation is often named as AI-ECG. 

Figure 10 - Normal 12-lead ECG (source: ecglibrary.com) 
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Figure 11 – Framework for AI-ECG in clinical practice (source: [5]) 

3.1.1 Types of the ECG  

There are three main types of electrocardiograms (ECGs), the standard 12-lead ECG, 

also known as resting ECG, the exercise ECG and the Holter monitor. The types are  

further discussed on this chapter with the addition of single-lead ECGs which are 

popular in recent studies for several diseases and arrhythmia detection. 

Resting 12-lead ECG 

An ECG test is typically performed using 12-lead ECG, which is standard for hospital 

usage. Also called as “the standard 12-lead ECG”, this system simultaneously records 

12 different signals. The standard 12-lead ECG system simultaneously captures the 

electrical signals of the heart from frontal plane (Limb leads), horizontal plane 

(precordial leads), respectively, from different vectors, so 12 different shapes of P-

wave, QRS complex, and T-wave are observed. Further analysis of the innerworkings 

of a 12-lead ECG will be provided on chapter 3.1.2. 

Figure 12 - Illustration of the spatial angles of the 12 single-lead ECG system (source: [21]) 
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Single-Lead ECG 

In recent years, wearable devices such as the Apple Watch22 and Zio Patch cardiac 

monitor17,23 have been introduced in the market to detect irregular heartbeats. The main 

difference is that these types of devices utilize only one single-lead ECG (like lead II) 

data instead of employing the conventional standard 12-lead ECG system. Thus, in 

most cases, rather than using all the ECG information, newer systems are being 

developed to perform ECG signal classification based on single-lead ECG output. 

Exercise ECG 

Also called a stress test, this ECG monitors the heart’s capabilities and activity under 

physically demanding conditions, such as exercise. Usually, this test is done in 

controlled environments with the patient hooked up to an ECG and asked to walk or 

pedal in training equipment (treadmill, stationary bike). For about 10 to 20 minutes, the 

intensity of the exercise is gradually increased. In order for this test to provide clear and 

unbiased results, patients may be asked to alter their medication routine beforehand. 

This allows the ECG to record the heart without any external factors that may otherwise 

impede or improve its base performance. 

Holter Monitor 

Holter monitoring is a non-invasive means of continuously recording an 

electrocardiogram. Using adhesive-backed electrodes connected to a monitor 

(illustrated in figure 5), the device will record any irregularities that may not be picked 

up during shorter ECG tests, since the symptoms of a cardiac patient are often transient. 

Holter monitors are capable of disseminating any heat built up and can continuously 

record ECG, allowing the assessment of the heart rate and rhythm during normal 

activities such as rest or exercise. Indications for its use include the detection and 

assessment of arrhythmias, investigation of intermittent collapse and exercise 

intolerance, while helping cardiologists to determine the efficacy of medicines on 

patients. Since Holter monitoring requires ECG recording for 12 hours to 48 hours 

continuously, the issue of efficient storage and transmission of ECG data is of great 

concern25,26. An issue which was tackled in a 2021 study27. 
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3.1.2 Annotation, Modern Tools, and Formats 

To systematically approach a 12-lead ECG which a common ECG type used in the 

research papers and in diagnostics, it’s crucial to understand the parts of an ECG and 

what each segment refers to. In figure 6, there is a visualization of the basic structure 

of the heart and alongside the figure 2 (ECG sample), this chapter will be a guide into 

understanding how the annotation procedure works and the meaning behind which 

segment in the ECG. 

 

 

Figure 13 - Holter monitor (source: hopkinsmedicine.org) 

Figure 14 – Internal structure of the Heart (source: https://training.seer.cancer.gov) 



  31 

 

An ECG strip is a waveform which consists of different components and together reveal 

the electrical activity of the heart. The figure 7 is a short example of a normal waveform. 

The components are the p-wave, pr segment, QRS complex, T-wave and the ST-

segment.  

 

P-wave is the first positive deflection in the ECG. The P-wave is indicative of atrial 

depolarization. The structure in figure 8 called the SA node in the upper part of the atria 

intrinsically depolarizes and generates action potentials that spread throughout the atria, 

that electrical activity that's spreading throughout the atrium from the SA node is 

represented by the P-wave. 

The next part is at the end of the P-wave until the QRS complex, a flat line that's called 

the PR segment which is the time period where all the electrical activity that is coming 

from the SA node throughout the atria all converge and come on to the AV node. The 

AV node gets hit with that depolarizing wave and holds on to the electrical activity. 

Thus, PR segment is indicative of AV node depolarization.  

P-wave which is indicative of atrial depolarization in conjunction with the PR segment 

which is indicative of av node depolarization form the pr interval which is the time span 

from which the SA node fires depolarizes the atria, depolarizes the av node and it's just 

getting ready to send those action potentials down to the ventricles.  

Figure 15 – Sinus Rhythm Waveform  

(source: https://www.wikipedia.org/) 
Figure 16 – Parts of the electrical system of the Heart 

(source: https://www.hopkinsmedicine.org/) 
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Following the PR interval is the QRS complex that is indicative of ventricular 

depolarization. In this case the ventricles receive the electrical activity then depolarize, 

forming the QRS complex.  

The ST segment is still indicative of ventricular depolarization but there's no electrical 

activity in a particular net direction. The ventricles are depolarized and they're holding 

on to that positive charge getting ready to repolarize. 

The next positive deflection is called the T-wave. The T-wave is indicative of 

ventricular repolarization so finally the ventricles go from positive to a negative charge 

and they create the upward deflection shown in figure 7. 

The last part of this sample is the QT interval. The QT interval starts right before Q 

wave and is indicative of the time period where the ventricles are depolarized and 

repolarized, an important factor for prolonged qt intervals.  

3.1.2.1 Annotation procedure 

In order to register the electrical activity of the heart, physicians utilize electrodes 

placed in different parts of the body, which focus on a particular electrical activity in a 

very specific portion of the heart. 

Overall, a 12-lead ECG has three (3) bipolar leads (I, II and III), three (3) augmented 

unipolar limb leads (aVF, aVL and aVR) and six (6) precordial chest leads (V1, V2, V3, 

V4, V5 and V6). These leads are categorized and used to determine the electrical activity 

for portions of the heart, which are visualized on figure 9. 

 

Figure 17 – Illustrated areas of the Heart and the leads which are used to determine the electrical activity of the area 

    

Anteroseptal Inferior Wall Left Ventricle Right Ventricle 

Lead V1/V2/V3/V4 Lead II/II/aVF Lead I/aVL/V5/V6 Lead aVR/V1/V2 
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Another crucial part for physicians to make a diagnosis from ECG strips is the grid. 

The grid refers to the background surface of the strip which consists of square boxes. 

A large box has 5 mm of height and 5 mm of width, containing 25 small square boxes 

with 1 mm height and 1 mm width. This is crucial because the height refers to amplitude 

(5 mm = 0.50 mV), meaning the volume in voltage of the detected electrical activity 

and the width refers to the time (5 mm = 0.20 sec) this electrical activity takes to go 

through different portions of the heart. 

A sample of an ECG with sinus rhythm is depicted in figure 2. The 12-lead ECG 

consists of all the aforementioned leads. An important exception is the lead II in the 

bottom of the ECG strip which continues through the duration of the ECG strip. The 

procedure of the annotation is based on five (5) checkpoints; rate, rhythm, QRS 

complex, sinus P-waves and P-R interval. The physician examines each point as 

follows: 

1. Rate | Too fast, too slow or normal 

• Beats per minute over 100 means tachycardia 

• Beats per minute under 100 means bradycardia 

• Beats per minute in range of 60-100 means normal  

The rate is calculated by the ECG machine, box method or/and R-waves (x6). 

2. Rhythm | Regular or irregular 

• If the R-R interval is constant, then rhythm is regular 

• If the R-R interval is not constant, then rhythm is irregular 

 

Figure 18 - Grid boxes on an ECG strip 
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3. QRS Complex | Narrow or wide 

• If the duration of the QRS is over 0.12 seconds then is labelled as wide 

• If the duration of the QRS is under 0.12 seconds then is labelled as narrow  

4. Sinus P-waves | Present or not present 

• Upright P-wave in lead II 

• Inverted P-wave in aVR 

• Every P-wave followed by QRS in lead II (rhythm strip) 

If all of the above conditions are met, then the rhythm is labelled as sinus.  

5. P-R interval | Labelled as: 

• Normal 

• Prolonged 

• Constant 

• Variable 

• Progressively longer 

Based on the above systematic approach, the physician will label the ECG strip and 

determine the diagnosis. 

3.1.2.2 Modern tools for ECG annotation 

Modern ambulatory ECG monitors allow for up to 30 days of continuous monitoring, 

producing far too much data for physicians to comprehensively analyze. For this reason, 

service providers are commonly used to annotate ECG recordings and create reports 

that summarize and highlight ectopic activity. These reports provide clinical decision 

support for prescribing physicians. Service providers rely on certified technicians and 

supporting algorithms to process and annotate the data from ECG monitoring studies. 

Historically, supporting algorithms have achieved levels of performance well below 

that of humans29 but high enough to be used for prioritization and conservative filtering 

of ECG as it is queued for human interpretation.30  

BeatLogic platform 

The Preventice BeatLogic platform is a comprehensive ECG annotation platform that 

leverages Deep Learning for beat and rhythm detection and classification. Annotations 

were made in accordance with standard practice by a dedicated team of Certified 
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Cardiographic Technician (CCT)-certified ECG technicians having experience ranging 

from 9–30 years. 

Human-machine integration ECG intelligent annotation system  

A group of researchers in 2021 developed an intelligent ECG-assisted annotation 

system, that not only supplements labelled data, but also significantly reduces the 

workload compared with manual annotation. Since beat annotation is the most basic 

and important part, a GAN-based generation model that can generate 14 types of 

simulation beats and a CNN-based beat pre-annotation model were proposed. The 

experimental results showed that the simulation beat has high similarity to real beat and 

the accuracy of the pre-annotation model on the test set of 14 classes of beats is 99.28%. 

The proposed ECG intelligent annotation system’s self-learning mechanism could 

improve pre-annotation performance and annotation efficiency by generating more 

labelled data. 

Figure 20 – Annotation interface of the annotation system developed by this research paper (source: [31]) 

Figure 19 – BeatLogic platform flowchart (source: [28]) 



  36 

 

WaveformECG 

In a study originated from the Johns Hopkins University published a research paper32 

in 2016, researchers developed an open source platform as a tool for analyzing, 

visualizing and annotating the ECGs.  At that time, researchers detected a lack of open, 

noncommercial platforms for managing and analysis ECG data.  As an outcome, they 

developed the WaveformECG platform. WaveformECG is a Web-based tool developed 

as part of the CardioVascular Research Grid (CVRG).86 The platform can import ECG 

data in several different formats, including Philips XML 1.03/1.04, HL7aECG, Schiller 

XML, GE Muse/Muse XML 7+, Norav Raw Data (RDT), and the WaveForm DataBase 

(WFDB) format used in the Physionet Project.87  

3.1.2.3 ECG Formats 

In many cases, the ECGs are presented and saved as an ECG file with .ecg extension. 

Opening this type of file, requires specialized software to visualize the context of the 

file and many of those provide the tools to annotate the ECG with markers. The markers 

are then saved in json format which includes, ECG_ID, win_start_time, reviewer_id, 

start_time, episodes with number of each episode, rhythm_name and rhythm_code and 

Figure 21 – Waveform’s architecture (source: [32]) 
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lastly the onset and offset of the annotated rhythm. Files may vary based on the software 

which the cardiologists or specialized technicians use. 

3.1.3 Available datasets 

Researchers, while developing studies and testing their methods on applying AI on the 

ECG, often use public datasets or closed ones from organizations who ultimately fund 

the studies. Some of the datasets are presented below and can be referenced in two 

important reviews from Nature Reviews (Cardiology)5 and the Journal of 

Electrocardiology (2019)11. 

Public datasets: 

1 – MIT-BIH Arrhythmia (MITDB)40,41: this dataset includes 48 half-hour excerpts of 

two-channel ambulatory ECG recordings (sampling frequency: 360 samples per 

second) that was annotated by two or more cardiologist 

2 – Creighton University Ventricular Tachyarrhythmia (CUDB)40,42: eight-minute ECG 

recordings of 35 patients who experienced episodes of sustained ventricular flutter, 

ventricular tachycardia, and ventricular fibrillation are provided in this dataset 

(sampling frequency: 250 samples per second). 

3 – MIT-BIH Atrial Fibrillation (AFDB)40,43: this database contains 25 long-term two-

channel ECG recordings (10 h) of patients with atrial fibrillation (sampling frequency: 

250 samples per second). 

4 – PhysioNet/CinC Challenge 201740,44: single-channel short ECG recording and 

associate human annotations for 8528 and 3658 human subjects in public training set 

and blind test set is available for this dataset (sampling frequency: 300 samples per 

second) 

Additional major contemporary ECG databases: 

5 – Telehealth Network of Minas Gerais45: this database contains 12-lead ECGs from 

1,676,384 patients from Brazil (2010-2018), aiming at automated ECG interpretation  

6 – Mayo Clinic18,46-50,52: this database contains 12-lead ECGs from 449,380 patients 

from USA (1994-2017), aiming at automated ECG interpretation with studies on 

hypertrophic cardiomyopathy, silent atrial fibrillation, left ventricular dysfunction, age, 

sex, and race/ethnicity and serum potassium level detection 
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7 – Geisinger53: this database contains 12-lead ECGs from 253,397 patients from USA 

(1984-2019), aiming at overall survival  

8 – Huazhong University, Wuhan54: this database contains 12-lead ECGs from 71,520 

patients from China (2012-2019), aiming at automated ECG interpretation 

9 – iRhythm Technologies/Stanford University17,23: this database contains single-lead, 

ambulatory ECG monitoring using a device called Zio Patch from 53,549 patients from 

USA (2013-2017), aiming at classification of 12 rhythm types 

10 – University of California, San Francisco55: this database contains 36,186 12-lead 

ECGs from USA (2010-2017), aiming at detecting early diastolic mitral annulus 

velocity, pulmonary arterial hypertension, left ventricular mass, left atrial volume, 

amyloidosis, hypertrophic cardiomyopathy, and mitral valve prolapse 

11 – Health eHeart Study56: this database contains single-lead, smartwatch-based ECGs 

from 9,750 patients with multinational background (2016-2017), aiming at detection of 

atrial fibrillation 

12 – China Physiological Signal Challenge 201857: this database contains 12-lead ECGs 

from 6,877 patients from China (2018), aiming at classification of 9 rhythm types 

13 – Cleveland Clinic58: this database contains 12-lead ECGs from 946 patients from 

USA (2003-2012 and 2017-2018), aiming at the response to cardiac resynchronization 

therapy 
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3.1.4 AI applications using ECG 

Hyperkalemia and hypokalemia are clinically silent, common in patients with renal 

or cardiac disease and are life threatening. Even though treatments for hyperkalemia 

are effective and available25, the diagnosis particularly outside hospitals or clinic, 

proves to be challenging because patients are often asymptomatic. Moreover, guideline-

directed blood potassium monitoring which can detect hyperkalemia is severely 

underperformed. In this chapter there are studies which tackle the issue by developing 

a noninvasive method for tracking potassium through the interpretation of ECG, an 

important step into clinical advance. A sample of hyperkalemia kai hypokalemia are 

illustrated in figures 14 and 15. 

 

For this issue, a study which was published in 201659, developed a novel bloodless 

potassium determination using single-lead ECGs. The researchers utilized two groups 

of hemodialysis patients (development group, n=26; validation group, n=19) and 

collected processed single-channel ECGs from each patient, based on which they made 

accurate predictions (absolute error of 0.44±0.47 mmol/L for the training group and 

0.5±0.42 for the validation set) on potassium levels for each patient.   

 

 

 

Figure 22 - Sample of hyperkalemia (source: https://ecglibrary.com/) 
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Figure 23 - Sample of Hypokalemia (source: https:/ecglibrary.com) 

In 2019 another study50 on hyperkalemia was published in connection to patients with 

Chronic Kidney Disease (CKD)60,61. With more than 1.6 million ECG tracings, the 

researchers developed a deep learning model with a high AUC of 0.853 to 0.901 for 

identifying hyperkalemia among patients with CKD from 2 or 4 ECG leads.  

In 2018 researchers published a study63 aiming to test the application of a convolutional 

neural network (CNN) to assess morphological changes on the ECG in relation to 

dofetilide plasma concentrations. Dofetilide is an antiarrhythmic medication for 

rhythm control in atrial fibrillation but can potentially lead to significant risk of pro-

arrhythmia and requires meticulous dosing and monitoring. To achieve their goal, 

researchers utilized publicly available ECGs and plasma drug concentrations from 42 

healthy subjects who received dofetilide or placebo in a controlled-setting clinical trial. 

Furthermore, the CNN was developed to predict dofetilide plasma concentration in 30 

subjects and then tested the model in the remaining 12 subjects. On the last stage of the 

study, they compared the deep learning approach to a linear model based only on QTc, 

which resulted in the deep learning model to achieve better correlation to dofetilide 

levels (r = 0.85), proving how valuable deep learning techniques can be.  

AI models can also prove to be a tool for predicting age and sex of patients, using 

exclusively 12-lead ECGs. Age and sex are known to affect the ECG64-66, and prior 

work was mainly based on statistical analysis and on specific feature extraction66. In a 
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published study51 in 2019, researchers trained a CNN using 10-second samples of 12-

lead ECG signals from 499,727 patients and then tested on a separate cohort of 275,056 

patients. For sex classification, the model showed 90.4% accuracy with an area under 

the curve of 0.97 in the independent test data. Moreover, age was estimated as a 

continuous variable with an average error of 6.9±5.6 years (R-squared = 0.7). 

A different approach, free of the concept of Neural Networks (NNs), is a method to 

automate ECG analysis for similar ECGs that already have a physician interpretation, 

a study67 which was published in 2019. The method and the process are presented at 

Journal of Electrocardiology (2019)67 and illustrate on the figure 16 below. The 

researchers developed an algorithm to automatically interpretate 12-lead ECGs by 

database comparison.  

 

Figure 24 - Block diagram of algorithm for ECG interpretation by similar ECG (source: [X5]) 

Hypertrophic cardiomyopathy (HCM) is among the leading causes of sudden cardiac 

death among adolescents and young adults and is associated with significant morbidity 

in all age groups68. Over 90% of patients with HCM have electrocardiographic 

abnormalities69 and 12-lead ECG may offer a noninvasive, low-cost, and rapid means 

of screening for the condition. During a study49 in 2020, researchers trained and 

validated a CNN using digital 12-lead ECG from 2,448 patients with verified HCM 

diagnosis and 51,153 non-HCM control subjects. For testing the ability of the network 

to detect HCM a different dataset of 612 HCM and 12,788 control subjects was used. 
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The results are depicted in figure 17, proving that it’s feasible for an AI-based network 

to detect HCM based on the standard, 12-lead ECG with high diagnostic performance.  

 

Figure 25 – Training, Validation, and Testing of an AI-Based Electrocardiography Screen for Hypertrophic 

Cardiomyopathy developed on study ‘Detection of Hypertrophic Cardiomyopathy using a CNN-enabled ECG [49]  

For cardiac amyloidosis (CA) – a life threatening disease - detection, researchers 

developed an AI-based tool to screen standard 12-lead electrocardiograms (ECGs), in 

a recent study70 (2021). They collected 12-lead ECG data from 2,541 patients at Mayo 

Clinic between 2000 and 2019. After training a developed deep neural network to 

predict the presence of CA they also experimented using single-lead and 6-lead ECG 

subsets. Among other metrics, the AUC was 0.91 (CI, 0.90 to 0.93), with a positive 

predictive value for detecting either type of CA of 0.86. This also proves that the 

developed AI-driven ECG model can effectively detect CA leading to an early 

diagnosis. 

In 2021 a study71 on Left Ventricular Systolic Dysfunction (LVSD) was presented by 

Mayo Foundation researchers, who randomly selected a cohort of 2,041 subjects from 

Olmsted County, Minnesota. They acquired ECGs from the patients and assessed the 

performance of the AI-ECG to identify LVSD, which resulted in AUC = 0.97 

(sensitivity 90%, specificity 92%) while proving that AI-augmented ECG can identify 

preclinical LVSD and warrants further study as a screening tool. 
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Studying the economic advantages of AI-driven ECG for detecting Asymptomatic 

Left Ventricular Dysfunction (ALVD), researchers at Mayo Foundation, evaluated an 

algorithm under various clinical and cost scenarios when used for screening patients at 

the age of 65.72 They concluded that the novel AI-ECG which was developed appears 

to be cost-effective under most of the clinical scenarios but the study needs further 

examination and external validation of the AI-ECG. 

In 2021 researchers tested a developed AI-ECG as a tool for screening patients with 

dilated cardiomyopathy (DC),73 which can be asymptomatic or present as sudden 

cardiac death. They used standard 12-lead ECGs as input data from 421 DC cases and 

16,025 control subjects. As an outcome, the AI-ECG demonstrated high sensitivity and 

negative predictive value for detection of DC, resulting in a simple and cost-effective 

screening tool. 

In 2021 another study74 was published focused on detecting aortic stenosis using an AI-

ECG developed on a convolutional neural network. The aortic valve stenosis (AS) 

occurs when the heart’s aortic valve narrows, which then limits or blocks blood flow 

from the heart into aorta and to the rest of the body, which may lead to heart failure. 

During the study, 258,607 adults underwent through examination specifically with an 

echocardiography and an ECG performed within 180 days and stored in the Mayo 

Clinic database (1989-2019). Ultimately, the researchers underlined the usefulness of 

an AI-ECG as a screening tool for identifying patients with moderate or severe AS. 

Figure 26 - ECG from an 83 year old man with aortic stenosis (source: https://ecglibrary.com) 



  44 

 

3.2 Arrhythmia 

Cardiac arrhythmias refer to an irregular or abnormal heartbeat. Heart rhythm issues, 

heart/cardiac arrhythmias, occur when the electrical signals that coordinate the heart’s 

beats have irregular behavior. The faulty signaling causes the heart to beat too fast 

(tachycardia), too slow (bradycardia) or irregularly. Although cardiac arrhythmias 

fluctuations are recorded daily due to exercise or during sleep, some cardiac 

arrhythmias may cause life-threatening symptoms or be linked to life-threatening 

diseases.  

In US alone, more than four million people are affected by cardiac arrhythmias 

summing up an annual healthcare cost of up to $67.4 billion, a substantial economic 

burden88.  

3.2.1 Types of arrhythmias  

In general, cardiac arrhythmias are grouped by the speed of the heart rate: 

• Tachycardia is a fast heartbeat, with resting heart rate greater than 100 beats a 

minute. A sample of sinus tachycardia is illustrated in figure 19. 

• Bradycardia is a slow heartbeat, with resting heart rate less than 60 beats a 

minute. Despite that, a low resting heart rate doesn’t always signal a problem. 

Factors like physical condition, slow heart rate and how much blood is the heart 

pumping through the body in combination can lead to bradycardia. A sample of 

sinus bradycardia is illustrated in figure 20. 

Figure 27 - Sinus tachycardia (source: https://ecglibrary.com) 
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Tachycardias include: 

Atrial Fibrillation (AF or A-Fib) 

AF refers to a chaotic heart signaling which causes a rapid and uncoordinated heart rate. 

AF is a common, frequently asymptomatic, and thus undetected arrhythmia or even 

clinically silent34. It is associated with an increased risk of stroke35, heart failure, and 

mortality34,35. In the United States alone, AF is the most diagnosed clinically significant 

cardiac arrhythmia36, with a lifetime risk as high as 1 in 337. It has become one of the 

most important public health problems and a significant factor in increasing healthcare 

costs worldwide38. Detecting this cardiac arrhythmia is a challenge since it is often 

fleeting while the existing screening methods require prolonged monitoring. The 

monitoring is mostly relied on the electrocardiogram (ECG) as it offers a simple and 

low cost solution, but due to its nature there are diagnostic delays since the ECG can 

appear normal between episodes. As a result, predicting AF has been a longstanding 

research and clinical priority.  

Atrial Flutter 

A cardiac arrhythmia similar to AF, but the heartbeats are more organized and similarly 

to AF is also linked to risk of stroke. 

Figure 28 - Sinus bradycardia (source: https://ecglibrary.com) 
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Supraventricular tachycardia (ST) 

According to Mayo ClinicS1, ST refers to arrhythmias that start above the lower heart 

chambers (ventricles) and causes episodes of a pounding heartbeat (palpitations) that 

begin and end abruptly. 

Ventricular Fibrillation (VF) 

According to Mayo ClinicS1, this type of arrhythmia occurs when rapid, chaotic 

electrical signals cause the lower heart chambers (ventricles) to quiver instead of 

contacting in a coordinated way that pumps blood to the rest of the body. This serious 

issue can potentially lead to death if a normal heart rhythm isn’t restored within 

minutes. Most people who have VF have an underlying heart disease or have 

experienced serious trauma. 

 

Figure 30 - Ventricular Fibrillation (source: https://ecglibrary.com) 

Ventricular tachycardia (VT) 

According to Mayo ClinicS1, this rapid, regular heart rate starts with faulty electrical 

signals in the lower heart chambers (ventricles). The rapid heart rate doesn’t allow the 

ventricles to properly fill with blood. As a result, the heart can’t pump enough blood to 

Figure 29 - Atrial Flutter (source: https://ecglibrary.com) 
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the body. VT may not cause serious problems in people with an otherwise healthy heart. 

In those with heart disease, ventricular tachycardia can be a medical emergency that 

requires immediate medical treatment. 

Long QT 

While this is not an arrhythmia, it can predispose someone to have one. According to 

Cleveland ClinicS2, the QT interval is the area on the ECG that represents the time it 

takes for the heart muscle to contract and then recover, or for the electrical impulse to 

fire and then recharge. When the QT interval is longer than normal, it increases the risk 

for ‘torsade de pointes’, a life-threating form of ventricular tachycardia. In addition, a 

linked disease which is the subject of several research papers is Long QT syndrome 

(LQTS), which is characterized by prolongation of the QT interval 1 and is associated 

with an increased risk of sudden cardiac death. However, although QT interval 

prolongation is the disease’s  hallmark feature, approximately 40% of patients with 

genetically confirmed LQTS have a normal QTc at rest (concealed LQTS)39. A sample 

of Long QT interval is illustrated in figure 23. 

 

Figure 31 - Long QT interval (source: https://ecglibrary.com) 

Bradycardias include: 

Sick sinus syndrome  

According to Mayo ClinicS1, this sinus node is responsible for setting the pace of the 

heart. If it doesn’t work properly, the heart rate may alternate between too slow 

(bradycardia) and too fast (tachycardia). Sick sinus syndrome can be caused by scarring 
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near the sinus node that’s slowing, disrupting or block the travel of impulses. Sick sinus 

syndrome is most common among older adults. 

Conduction block  

According to Mayo ClinicS1, a block of the heart’s electrical pathways can cause the 

signals that trigger the heartbeats to slow down or stop. Some blocks may cause no 

signs or symptoms, and others may cause skipped beats or bradycardia. 

3.2.2 AI applications on arrhythmia detection 

In 2019 a team of researchers developed an AI–enabled electrocardiograph (AI-ECG) 

using a deep learning model to detect the electrocardiographic signature of atrial 

fibrillation present during normal sinus rhythm, using standard 10-second, 12-lead 

ECG.48 The dataset consisted of a large cohort of patients (180,922 patients with 

649,931 normal sinus rhythm ECGs and atrial fibrillation detected by trained personnel 

under cardiologists’ supervision) from the Mayo Clinic Digital Data Vault, while the 

researchers allocated ECGs to the training, internal validation, and testing datasets in a 

7:1:2 ratio. The AI model was based on a convolutional neural network (CNN) using 

the Keras Framework with a TensorFlow backend and Python89. This study resulted in 

the ability of the AI-enhanced ECG to identify patients with atrial fibrillation with 

success based on metrics, which were used to mathematically assess the performance 

of the model, area under the curve (AUC=0.90) of the receiver operating characteristic 

(ROC) curve, and other metrics like sensitivity (82.3%), specificity (83.4%), F1 score 

(45.4%) and overall accuracy (83.3%).  

Main analysis 

AUC Sensitivity Specificity F1 score Accuracy 

0.87  

(0.86-0.88) 

79.0%  

(79.0-79.9) 

79.5% 

(79.0-79.9) 

39.2% 

(38.1-40.3) 

79.4% 

(79.0-79.9) 

Table 1 - Model performance (source: [48]) 

A study75 in 2019 was focused on participants who used the smartwatch device which 

is produced by Apple. The purpose was to show that a non-on site study can provide a 

foundation for large-scale studies in which outcomes can be reliably assessed with user-

owned devices. The participants consented to monitoring by using their smartphone 

(Apple iPhone) and then if the smartwatch-based irregular pulse notification algorithm 

identified possible atrial fibrillation, the researchers would send an 

electrocardiography (ECG) patch to be worn for up to 7 days. The number of 
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participants mounted up to 419,297 people over 8 months. As an outcome, over a 

median of 117 days of monitoring, of the 419,297 participants enrolled, only 0.52% 

received notifications of irregular pulse, and among those with an initial notification 

who returned an ECG patch, 84% of their subsequent notifications were confirmed to 

be atrial fibrillation. Overall, 34% among patients who received notifications were 

diagnosed with atrial fibrillation.  

 

Figure 32 - Participant Selection (source: [75]) 
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In this study76, researchers developed a deep learning algorithm to identify atrial 

fibrillation during normal sinus rhythm (NSR) using 2,412 12-lead ECG findings 

(from Inha University Hospital, South Korea). The deep learning algorithm was 

structured on a recurrent neural network (RNN) using as training, validation, and test 

datasets normal sinus rhythm (NSR) ECGs in paroxysmal atrial fibrillation (PAF), as 

well as ECGs from healthy individuals. The developed AI model developed to estimate 

the probability of PAF during NSR was characterized as ‘excellent’ for identifying PAF 

(recall of 82%, specificity of 78%, F1 score of 75% and overall accuracy of 72.8%), 

while showing that the optimal interval to detect subtle changes of PAF was within 0.24 

seconds before the QRS complex in a 12-lead ECG. 

A 2021 study’s77 main purpose was to determine whether AI-based deep neural 

networks are better than the QTc alone in detecting patients with concealed LQTS 

from those with a normal QTc using a 10 seconds 12-lead ECG. The dataset consisted 

of 967 patients who had a definitive clinical and/or genetic diagnosis of type 1, 2 or 3 

LQTS and 1092 patients who were seen because of an initial suspicion for LQTS but 

were discharged without this diagnosis. The patients were classified, based on a 

multilayer convolutional neural network while the dataset was parted in 60% training, 

10% validating and 30% testing set. Generally, once the patient is fully evaluated and 

treated, the risk of cardiac events is low. Nevertheless, a small percentage of patients 

might experience potentially lethal, LQTS-triggered cardiac events78. The developed 

Deep Neural Network was able to distinguish the ECG of a patient with LQTS from 

the ECG of a patient who was evaluated for LQTS but discharged without this diagnosis 

with AUC equal to 0.900. It was also able to distinguish the three (3) main genotypic 

subgroups (LQT1, LQT2, and LQT3) with an AUC of 0.921 (95% Confidence interval, 

0.890-0.951) for LQT1 compared with LQT2 and 3, 0.944 (95% CI, 0.918-0.970) for 

LQT2 compared with LQT1 and 3, and 0.863 (95% CI, 0.792-0.934) for LQT3 

compared with LQT1 and 2. 

During a study79 published also in 2021, the researchers developed an algorithm using 

ECG tracings acquired from a mobile ECG (mECG) prototype device equivalent to the 

commercially-available AliveCor KardiaMobile 6L, to determine the QTc. Heart rate-

corrected QT interval (QTc) prolongation can predispose to ventricular arrhythmias and 

sudden cardiac death80. QTc can be triggered by drugs, genetics including congenital 

long QT and/or systemic diseases including SARS-CoV-2 (COVID-19). The utilized 
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data were 12-lead ECGs (>1.6  million) from 538,200 patients, which were partitioned 

in 250,767 patients for training, 107,920 patients for testing and 179,513 patients for 

validation. The data were applied on a Deep Neural Network loosely based on concepts 

from ResNet81. Overall, researchers concluded that QTc estimation from an AI-enabled 

mECG device may provide a cost-effective method of screening for congenital long QT 

syndrome in a variety of clinical settings where standard 12-lead electrocardiography 

is not accessible or cost-effective.  

The application of deep learning techniques on the ECGs for arrhythmia detection was 

mentioned early in 201882, in which the researchers contemplated on if there is a need 

for the raw samples. The researchers describe the procedure of applying raw tracings 

on a Deep Neural Network to automate the interpretation of the ambulatory ECG. The 

dataset used, was originated from the 2017 PhysioNet AF Challenge (PAFC) as the 

training data and results from several approaches were publicly available. As a model 

they also used the at that time state-of-the-art arrhythmia detection 34-layer 

convolutional neural network (CNN) with residual connections between layers, 

developed by researchers at Stanford University17, a novelty in the field which will be 

mentioned later on. 

The main hypothesis of a study90 in 2019, was to test a deep neural network on 

predicting an important future clinical event, one-year all-cause mortality, from ECG 

traces. The performance of the algorithm on that event showed an average AUC of 0.85 

from a model cross-validated on 1,775,927 12-lead resting ECGs, collected from 

~400,000 patients over a period of 34 years. To further evaluate the results of the 

algorithm, the researchers conducted a blinded survey given to three cardiologists, who 

after examining 240 paired examples of labeled true positives (dead) and true negatives 

Figure 33 - Summary of data used in the study (source: [90]) 
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(alive) suggested that the patterns captured by the model were generally not visually 

apparent. Overall, the study concluded that deep learning can add prognostic value to 

the interpretation of 12-lead resting ECGs, even in cases that are labeled as ‘normal’ by 

physicians. 

The main purpose of this study83 was to compare an already existing process called 

CHARGE-AF (Cohorts for Heart and Aging Research in Genomic Epidemiology 

model for atrial fibrillation) with another method developed by the researchers using 

AI-ECG. The sample which was used originated from the population-based Mayo 

Clinic Study of Aging with patients who had no history of AF at the time of the study 

visit.  

To further the knowledge on AF, scientists examined the use of AI-enabled ECG, which 

already has the ability to identify patients with unrecognized AF, for determining if the 

model differentiates between patients with embolic strokes of unknown source (ESUS) 

and those with known causes of stroke.84 ESUS are common and often caused by 

unrecognized paroxysmal atrial fibrillation. The study concludes with evidence that AI-

ECG may become a useful tool in monitoring patients with ESUS to identify those who 

might benefit from anticoagulation. 
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4 Application and comparison of algorithms on case study 

4.1 ECG Description 

An electrocardiogram is the medium for recording the electrical activity of the 

heart. In order to perform an ECG session, a set of electrodes are placed on human chest 

and limps, from different angles. Electrical signals are collected and processed to 

identify the way the heart works.  

An electrocardiogram consists of the following parts: 

• P waves: This kind of wave corresponds to atrial depolarization. ECG derived 

from healthy humans contains a P wave before each QRS complex. 

• PR interval: It is the time segment from the beginning of the P wave to the 

beginning of a Q wave. It corresponds to the time interval required for a full 

electrical activity between the atria and the ventricles. 

• QRS complex: The QRS complex corresponds to the ventricle’s depolarization. 

On the ECG it is represented as three related waves on the ECG (the Q, R and 

S wave). 

• ST segment: The ST segment is the time interval between the end the S wave 

and the beginning of the T wave. It consists of an isoelectric line representing 

the time needed to pass from depolarization to repolarization of the ventricles. 

• T wave: Each T wave corresponds to ventricular repolarization. It is formed as 

a small wave after the QRS complex.  

• RR interval: It is the time interval between the peak of two consequent R waves. 

It also corresponds to time elapsed between two QRS complexes. 

• QT interval: It is the time interval between the beginning of the QRS complex 

and the end of the T wave. It corresponds to the time needed for the ventricles 

to depolarize and then repolarize. 

The following picture shows schematically the different parts of an ECG and their 

relationship. 
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Figure 34: ECG's parts 

The ECG is recorded on a special form with the following characteristics: 

• It is divided into small and large squares 

• Each small square represents 0.04 seconds 

• Each large square represents 0.2 seconds (it contains 25 small squares) 

The following picture shows an ECG sample paper. 

 

Figure 35: ECG paper 

 

Each electrode used to produce the ECG is attached to the person's skin and records 

electrical activity. The collected data is used to calculate 12-lead ECG. By the term 

ECG lead, a graphical representation of the heart’s electrical activity is described. Data 

needed for this representation is derived by ECG electrodes. Each ECG lead creates a 

graph on a piece of ECG paper. 10 physical electrodes are used for producing 12 leads. 
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The electrodes used and the area they collect data from are listed in the table below. 

No Electrode Position Lead 

1 V1 4th intercostal space at the 

right sternal edge 

Lead V1 

2 V2 4th intercostal space at the left 

sternal edge 

Lead V2 

3 V3 Midway between the V2 and 

V4 electrodes 

Lead V3 

4 V4 5th intercostal space in the 

midclavicular line 

Lead V4 

5 V5 Left anterior axillary line at 

the same horizontal level as 

V4 

Lead V5 

6 V6 Left mid-axillary line at the 

same horizontal level as V4 

and V5 

Lead V6 

7 Red (RA) Ulnar styloid process of the 

right arm 

Lead I, Lead II, aVR, AVL, 

aVF 

8 Yellow (LA) Ulnar styloid process of the 

left arm 

Lead I, Lead III, aVR, 

AVL, aVF 

9 Green (LL) Medial or lateral malleolus of 

the left leg 

Lead II, Lead III, aVR, 

AVL, aVF 

10 Black (RL) Medial or lateral malleolus of 

the right leg 

 

 

Leads description is listed below. 

Lead View of the heart 

V1 Septal view of the heart 

V2 Septal view of the heart 

V3 Anterior view of the heart 

V4 Anterior view of the heart 

V5 Lateral view of the heart  
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Lead View of the heart 

V6 Lateral view of the heart 

Lead I  Lateral view  

(calculated by analysing activity between the RA and LA 

electrodes) 

Lead II  Inferior view  

(calculated by analysing activity between the RA and LL 

electrodes) 

Lead III  Inferior view  

(calculated by analysing activity between the LA and LL 

electrodes) 

aVR  Lateral view  

(calculated by analysing activity between LA+LL -> RA) 

AVL  Lateral view  

(calculated by analysing activity between RA+LL -> LA) 

aVF  Inferior view  

(calculated by analysing activity between RA+LA -> LL) 

 

Each lead is of different shape because data used are derived from a different heart 

view. Electrical activity from heart to electrode is recorded as a positive deflection, 

while electrical activity from electrodes is recorded as negative reflection. As in fact 

electrical activity flows to many directions, each deflection represents the average 

orientation of it. The lead that has the maximum positive deflection value is supposed 

to be closer to the direction of hearts electrical activity. A 12-lead ECG consists of 3 

limb leads (leads I, II, and III), 3 augmented limb leads (leads aVR, aVL, and aVF), 

and 6 atrial leads (V1 to V6). The data obtained from each lead corresponds to the 

electrical activity of the heart from views at different angles108.  

The following schema shows the angle of heart view that each lead corresponds. 
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Figure 36: Leads and heart view angle correspondence. 

 

Depending on the type of electrical activity, located in specific areas of the heart, 

pathologies can be determined in specific parts of it110.  

 

Figure 37: Α 12 lead ECG example 

 

An ECG corresponding to a healthy person shows P-waves, QRS-complexes, and 

T-waves continuously and repeatedly in a sequence. The pattern of this sequence is 
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referred to as sinus rhythm*. Abnormal heart functions are identified with the help of 

ECGs and are referred to as arrhythmia. A key role in the study to identify these cases 

is played by the rhythm and form of the P-wave, the rhythm of the QRS-complex and 

the correlation between the P-wave and the QRS-complex. The images below show a 

comparison of an ECG of a healthy person and a person with a form of arrhythmia. In 

the second case, the P-wave and T-wave are not clearly distinguishable, and the rhythm 

of the QRS-complex is not stable112. 

 

Figure 38: Sinus-rhythm and arrythmia comparison 

For the automated detection of arrhythmia in an ECG it is necessary to recognize 

the distinct types of waves and to decode the relationships between them. The difficulty 

of this process has to do with the variability of the wave morphology between samples. 

 

4.2 ECG Data  

The data used for the present study comes from the MIT-BIH Arrythmia. It is a 

collection of 48 fatigue test sessions, lasting 30 minutes. ECGs were performed on 47 

subjects and examined between 1975 and 1979. 23 of these sessions were randomly 

selected from a total of 4000 one-hour recordings, from a mixed population of 

inpatients (approximately 60%) and outpatients (approximately 40%) at Beth Israel 

Hospital, Boston. The remaining 25 records were selected from the same set to 

correspond to arrhythmias to ensure that rare forms of arrhythmia would also be 

included in the data set under consideration. Recordings were digitized at 360 samples 

per second per channel with 11-bit resolution at 10 mV range. More than one 

cardiologist was used to characterize each sample (if it was normal cardiac function or 

 

* It is defined as a normal rhythm that includes a P-wave with a stable form, followed by a QRS 
complex and a positive vector.   
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to determine pathological function). The people to whom the ECGs are matched are 25 

men aged 32 to 89 and 22 women aged 23 to 89. In most records, the upper signal is a 

modified limb lead II (derived by electrodes placed on the chest), while the lower one 

is a modified lead V1 or V2 or V5 or V4 (derived from electrodes also placed on the 

chest). Normal QRS complexes are presented in the upper signal and the lead axis for 

the lower signal may be nearly orthogonal to the mean cardiac electrical axis. It is 

difficult to discern normal beat in the lower signal109.  

 

4.3 ECG Annotations 

Initially all detected events annotated as normal beats. Two different cardiologists 

added additional beat labels where they were missing, or false and changed the labels 

for all abnormal beats. They also added rhythm labels, signal quality labels, and 

comments. All disagreements were resolved by consensus. The annotations were 

analysed by an auditing program, which checked them for consistency, and which 

located the ten longest and shortest R-R intervals in each record, to identify possible 

missing or falsely detected beats111. Annotations are mainly located accurately at the 

R-wave peak. Thus, dataset is suitable for scientific studies. The database contains 

approximately 109,000 beat labels.  

The following table shows the symbols used to annotate the signals103. 

Symbol Meaning Description 

· or N  Normal beat Normal Beat—N 

L  Left bundle branch block beat Normal Beat—N 

R  Right bundle branch block beat Normal Beat—N 

A  Atrial premature beat Supraventricular— 

SVEB 

a  Aberrated atrial premature beat Supraventricular— 

SVEB 

J  Nodal (junctional) premature beat Supraventricular— 

SVEB 

S  Supraventricular premature beat Supraventricular— 

SVEB 
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V  Premature ventricular contraction Ventricular—VEB 

F  Fusion of ventricular and normal beat Fusion Beat—F 

[  Start of ventricular flutter/fibrillation Fibrillation 

!  Ventricular flutter wave Fibrillation 

]  End of ventricular flutter/fibrillation Fibrillation 

e  Atrial escape beat Normal Beat—N 

j  Nodal (junctional) escape beat Normal Beat—N 

E  Ventricular escape beat Ventricular—VEB 

/  Paced beat Unknown—Q 

f  Fusion of paced and normal beat Unknown—Q 

x  Non-conducted P-wave (blocked APB) Unknown—Q 

Q  Unclassifiable beat Unknown—Q 

| Isolated QRS-like artifact Unknown—Q 

 

4.4 Methodology 

For this case study, the main purpose is the comparison of the performance of different 

algorithms on ECG data from Physionet challenge 2017. Specifically, in this case study, 

machine learning algorithm XGBoost and deep learning algorithm Neural Network 

with different types of structures will be compared based on accuracy with the same 

training dataset.  

4.4.1 Getting data 

Although 12-lead ECGs are the most commonly used for the diagnosis of heart-related 

diseases, single-lead ECGs are also used in various methodologies today, which show 

high yields. These methodologies usually involve deep learning techniques. Single lead 

ECGs from the relevant MIT database were used in the present study. Dataset is 

available for downloading from Physionet archives†. Four files correspond to each 

patient. The main one is the MIT Signal files (.dat) are binary files containing samples 

of digitized signals (waveforms).  MIT Header files (.hea) are needed to describe signal 

files. There are also MIT Annotation files which are binary files containing annotations 

(.atr). Files having .xws extension contains records position url109.  

 

† https://www.physionet.org/content/mitdb/1.0.0/ 
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4.4.2 Data Analysis 

The data was read, and the characterizations assigned to the pulses recorded by the 

cardiologists were examined. The pulse peaks and their characterizations were 

examined. Each of these peaks was examined in time windows of 2 and 6 seconds (in 

the first case it was examined 1 sec before and 1 sec after the peak and in the second 

case 3 and 3 sec respectively).  

The table below shows the number of pulses by type. 

Symbol frequency Description 

N     75052 Normal Beat—N 

L      8075 Normal Beat—N 

R     7259 
Normal Beat—N 

V      7130 Ventricular—VEB 

/      7028 Unknown—Q 

A      2546 Supraventricular—SVEB 

+      1291   

f       982 Unknown—Q 

F       803 Fusion Beat—F 

~       616   

!       472 Fibrillation 

"       437   

j       229 Normal Beat—N 

x       193 Unknown—Q 

a       150 Supraventricular—SVEB 

|       132 Unknown—Q 

E       106 Ventricular—VEB 

J        83 Supraventricular—SVEB 

Q        33 Unknown—Q 

e        16 Normal Beat—N 

[         6 Fibrillation 

]         6 Fibrillation 

S         2 Supraventricular—SVEB 
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Those records that could not be characterized were removed from the data set. 

The pulse occurrence frequencies corresponding to each of the arrhythmia types are 

shown in the table below. 

DESCRIPTION OCCURENCES 

NORMAL    90730 

VEB         7240 

SVEB        2781 

F            803 

FIB          484 

 

 

 

From the statistical analysis of the samples, it emerged that the number of those 

corresponding to normal cardiac function is much greater than the number of samples 

corresponding to arrhythmias. For this reason, virtual samples corresponding to 

arrhythmia were created. After arranging the number and type of samples a set of 

models were developed using dense neural networks. Convolutional neural networks 

were then developed. The models of the two classes were compared based on 

performance metrics. 
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4.4.3 Preprocess 

The data had to go through a pre-processing stage in order to get an editable 

form. In order to read the files containing the ECG data, it was necessary to install the 

wfdb library. By using the library functions, binary files containing the descriptions and 

annotations of the ECGs were read. Descriptions corresponding to normal heart 

operation as well as heart operation associated with arrhythmias had to be retained. For 

this purpose, records whose annotations did not correspond to normal cardiac function 

or arrhythmia were removed. 

4.4.4 Process 

Although various methods have been proposed for ECGs processing in order to 

detect arrhythmia states (logistic regression, support vector machines, random forests, 

k-nearest neighbours, decision trees), the performance of deep learning techniques 

seems to be at much higher levels in relation to the rest. In the present study, the 

performances of different neural networks with different parameters were examined. 

Dense Neural Networks and Convolutional Neural Networks were examined. The aim 

of experiments carried out is defining the possible arrythmia type by the ECG format 1 

or 3 seconds before and after beat peaks.  

The following table shows the data of the experiments carried out. 

Νο Neural Network Type Details 

1 Dense Window Size: 6 seconds 

Classes: 5 

Layers: 3 

2 Dense Window Size: 6 seconds 

Classes: 5 

Layers: 2 (initial size 1/36 of input size) 

3 Dense Window Size: 6 seconds 

Classes: 5 

Layers: 3 (initial size 36) 

4 Dense Window Size: 2 seconds 

Classes: 5 

Layers: 3 

5 Dense Window Size: 2 seconds 
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Νο Neural Network Type Details 

Classes: 5 

Layers: 2 (initial size 1/36 of input size) 

6 Dense Window Size: 2 seconds 

Classes: 5 

Layers: 3 (initial size 36) 

7 Dense Window Size: 6 seconds 

Classes: 2 

Layers: 3 

8 Dense Window Size: 6 seconds 

Classes: 2 

Layers: 2 (initial size 1/36 of input size) 

9 Dense Window Size: 6 seconds 

Classes: 2 

Layers: 3 (initial size36) 

10 Dense Window Size: 2 seconds 

Classes: 2 

Layers: 3 

11 Dense Window Size: 2 seconds 

Classes: 2 

Layers: 2 (initial size 1/36 of input size) 

12 Dense Window Size: 2 seconds 

Classes: 2 

Layers: 3 (initial size 36) 

13 Convolutional Window Size: 6 seconds 

Classes: 5 

Layers: 2 

14 Convolutional Window Size: 6 seconds 

Classes: 5 

Layers: 4 

15 Convolutional Window Size: 2 seconds 

Classes: 5 

Layers: 2 
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Νο Neural Network Type Details 

16 Convolutional Window Size: 2 seconds 

Classes: 5 

Layers: 4 

17 XGBoost Window Size: 3 seconds 

Classes: 5 

18 XGBoost Window Size: 3 seconds 

Classes: 2 

19 XGBoost Window Size: 1 seconds 

Classes: 5 

20 XGBoost Window Size: 1 seconds 

Classes: 2 
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4.5 Convolutional Neural Networks 

Patrick Haffner and researchers from AT&T introduced the first Convolutional 

Neural Network (CNN) in 1996. It was the key component in a large-scale application 

for testing image recognition. This technology was positively evaluated 10 years later, 

when it was renamed deep learning and machine learning researchers began to focus 

on another technique developed by the same group: Support Vector Machines (SVM). 

Convolutional Neural Networks (ConvNet) consist of neurons with inputs that 

include weights. These weights are related to the learning process and biases. Each 

neuron receives a set of inputs and generates a dot product. The entire network 

expresses a single differentiable score function. At the input of this network, the data 

enters in the form of a vector, and at its output, the estimate of the category to which 

you belong is obtained. Often convolutional neural networks are used in image 

categorization tasks, however they are also suitable for inputs that are in the form of 

large vectors. They also include a loss function at the last - fully connected - level. This 

allows certain properties to be encoded into their architecture, which make the 

forwarding function more efficient in implementation and significantly reduce the 

number of parameters in the network101. 

Neural networks take an input (a single vector) and transform it through a series 

of hidden layers. Each hidden layer consists of a set of neurons, where each neuron is 

fully connected to all neurons in the previous layer. Neurons in a single layer operate 

completely independently and do not share any connections. The last fully connected 

layer is called the output layer and in the classification settings it represents the scores 

of the available classes. The input data is described by vectors of large size100. 

Convolutional Neural Networks, unlike regular neural networks, are structured 

having on their layer’s neurons arranged in 3 dimensions: width, height, and depth. 

Neurons in each conv layer are connected to only a small region of the layer before it, 

rather than all neurons in a fully connected manner. Additionally, the final output layer 

has dimensions that can be adjusted to the number of categories. Links between neurons 

of neighbouring layers can be represented by sparse graphs.  The following image 

shows the difference between neurons linkage on dense and convolutional neural 

networks106. 
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Figure 39: Comparison between Fully Connected and Convolutional Layers 

ConvNets consist of a sequence of layers. Each layer transforms one set of 

activations into another through a differentiable function. Three types of layers are used 

to build ConvNet architectures: 

• Convolutional Layer 

• Pooling Layer 

• Fully Connected Layer 

The composition of such a neural network usually includes the following levels: 

• Input level: In this level, the original raw vectors will be entered. 

• Convolutional Layer (Conv): In this layer the computations performed for the 

output of the neurons connected to local regions at the input. Each computation 

calculates a dot factor between their weights and a small region they are 

connected to input vectors. This leads to a number of computations involved in 

the input vectors and the filters selected. 

• Relu level: In this level an activation function of the form max(0,x) is applied 

which rejects negative values. 

• Pooling Level (Pooling): At this level a subsampling operation is performed 

along the dimensions of the generated vectors resulting in the limitation of the 

output limitations. 
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• Fully Connected Level: This level calculates the compatibility evaluation of the 

generated vector with the classes. A characteristic of this level is the fact that 

each neuron is connected to all the neurons of the previous level. 

The image below shows their architecture, schematically: 

 

Figure 40: Typical Convolutional Neural Network Architecture 

 

In this way, Convolutional NN transform the level corresponding to the original 

vector into the final class scores. Some levels contain parameters and some do not. 

Specifically, the Convolutional – Fully Connected Layers perform transformations that 

are depended to both the activations in the input and the parameters used (neuron 

weights and biases). On the other hand, the Relu – Pooling layers perform fixed 

functions. Parameters at Convolutional – Fully Connected Layers are being trained by 

gradient descent methodology‡ so that the class scores computed by the Convolutional 

Network are consistent with the labels in the training set for each vector. 

The differentiation of convolutional networks are: 

• In the functions used 

• In the parameters of the structure of each level 

 

4.5.1 Convolutional Layers 

The Conv layer is the basic building block of a Convolutional Network, as it 

performs most of the neurons' function weights calculations. The parameters of the this 

layer consist of a set of learnable filters. Each filter spans the entire depth. During the 

forward pass, each filter is dragged by entire input and the dot factors between the filter 

 

‡ This is the convergence algorithm that runs by decreasing the derivative. The downscaling algorithm 
is initialized with values θ0 and θ1. Changing these values causes the convergence to values that 
minimize the cost function J(θ0,θ1) 
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inputs and the input at any position are calculated. As the filter is dragged across the 

input vector, an activation map is created that gives the responses of that filter at each 

location. Intuitively, the network will learn filters that are activated when they detect 

some feature, such as entire patterns in higher layers of the network. In this way, a set 

of filters is created at each convolutional layer and each of them will produce a separate 

activation map. These are stacked along the depth dimension to produce the output. 

Each entry of the output can also be interpreted as the result of operations on a neuron 

corresponding to a limited region of the input as well as its correlation with its 

neighbouring neurons (corresponding to neighbouring regions). 

As the inputs of the initial layer are high dimensional, it is preferred to connect 

each neuron to a limited area. The extent of this region is a hyperparameter of the neural 

network and is of the same size as the filter applied. The extent of connectivity along 

the depth axis is always equal to the depth of the input. If the input size is 32x32x1 and 

filter size id 5X5, then each neuron in the Pooling layer would weight in an area of 

5X5X1.  

The size of the output is determined by three hyperparameters, as described 

below: 

• The depth of the output: It is a hyperparameter corresponding to the 

number of filters used. Sometimes each filter may be used for different 

purposes (e.g. recognising different objects in an image). 

• The step at which the filter is dragged: This value determines how far 

the filter is moved each time. The smaller this value, the larger outputs 

are produced. 

• Padding: This is the application of a technique in which the edges of the 

image are filled with zeros. The size of this zero padding is a 

hyperparameter. The advantage of using zero padding is that it allows 

control over the spatial size of the output volumes. Used to maintain the 

spatial size of input size by height and width. The size of the output is 

calculated as a function of the size of input size W, the size of the 

receptive field of the neurons in the Pooling layer F, the step with which 

S is applied and the size of the zero padding P. Under these conditions, 

the number of neurons is done based on the formula (W+F+2P)/(S+1) 
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4.5.2 Pooling Layer 

Pooling Layers are placed between successive Convolutional layers. They are 

used for progressively reduce the size of the spatial representation and the elimination 

of parameters used for the calculations performed in the neural network. 

They operate independently on each depth section of input size and resize them 

spatially, using mainly the max or the average function (the max or the average value 

of a number of values are being replaced). In general, the Pooling level accepts input 

of size WXYXD, requiring hyperparameters: the spatial expansion (F) and the shift (S). 

The result is the output of size W'XH'XD, where: 

W'=(W-F)/(S+1), H'=(H-F)/(S+1) 

 

4.5.3 Fully Connected Layer 

A Convolutional architecture includes near the output one or more Fully 

Connected Layers. Neurons in a fully connected layer have full connections to all 

activations in the previous layer. They are mainly used to adapt the output results of 

Convolutional Layers to the requirements of the class scores. 

 

4.5.4 General Operation 

ConvNet architectures make the explicit assumption that for inputs, their 

neighbouring features are strongly correlated with each other. This fact makes the 

forwarding function more efficient, as the number of parameters in the network is 

considerably reduced. Deep convolutional neural networks have greatly improved the 

classification processes of unstructured and large-volume data, such as images, objects 

within images, or texts. Because of this complexity, conventional machine learning 

approaches are generally slow to process this kind of data. The complexity arises as 

their encoding usually produces large-volume vectors. Processing them requires a lot 

of time and processing power. Convolutional Neural Networks have the ability to 

produce highly accurate results by performing a relatively small number of calculations, 

exploiting the correlation of neighbouring regions of the input. 
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4.6 XGBoost Algorithm 

The XGBoost algorithm is based on the operation of decision trees. Its 

characteristic is that it produces reliable prediction models in a short time. It is actually 

an implementation of gradient-boosting decision trees. Gradient boosting algorithm 

aims to minimizing the loss function (mean squared error, cross-entropy etc) of the 

previous model using gradient descent. At every step computes the gradient of the loss 

function in combination with the predictions of the current sample. After that it trains a 

weak model, trying to minimize this gradient. The predictions of the derived model are 

added to the sample. This process is being repeated since a criterion to be met107. 

Gradient boosted trees are a kind of gradient boosting algorithm where the learning 

process is based on classification, and regression trees. Each sample contains a set of 

trees. At each algorithm step (let be the i-th), a model (tree) is being trained using a set 

of features X and a set of labels yi. The model is being used to predict the labels of X 

(yi+1). The distance between yi and yi+1 is the loss value. At the next step X and yi+1 is 

being used for constructing the new model (tree). The process is being repeated while 

loss value is below a threshold. The next figure shows these gradient boosted trees 

algorithm schematically104.  

 

Figure 41:Gradient boosted trees algorithm 

Its main advantage is that it can provide reliable results without the need to 

optimize its parameters. This fact makes it easy to use and quick to deliver results. The 

algorithm’s main elements are: 
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• It handles overfitting problem by introducing L1/L2 penalties on the 

weights and biases of developed decision trees.  

• It uses weighted quantile sketch algorithm for handling sparse data sets.  

• It can perform parallel execution as it is block structured. 

• It uses cache awareness for eliminating memory requirements 

(especially for cases of training large datasets). 

• It can perform out-of-core computing using disk-based data structures 

as well as in-memory, during the computation phase102. 

Τhe XGBoost weak learner basic model, might be decision tree, linear model, 

or DART model. Concerning trees, the most important hyperparameters considered are:  

• Learning rate which describes the threshold in loss values for stopping 

the learning process (in order to prevent overfitting) 

• Gamma which is the desired loss difference value for stopping learning 

process. 

• Lasso – L1 and Ridge - L2 regularization term on weights: Increasing 

L1 value makes the model more conservative and less likely to overfit. 

Increasing L2 value makes the model more conservative and less likely 

to overfit. These parameters’ objective is to control overfitting by 

lowering variance and increasing some bias. L1 adds the sum of the 

absolute beta coefficients while Ridge(L2) adds the sum of the beta 

coefficients squared. The loss equitation from the above form 

𝑙𝑜𝑠𝑠 =  ∑(𝑦𝑖−𝑦)̃
2 = ∑(𝑦𝑖−𝑋𝑖𝑏)

2

𝑛

𝑖=0

𝑛

𝑖=0

 

Transformed to the next ones: 
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𝑤ℎ𝑒𝑟𝑒 �̌� 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝑦 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑎𝑛𝑑 𝑋 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

 

• Maximum number of basic models (trees). Increasing this value makes 

the model more complex and more likely to overfit.  
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• Objective function used. 

• The maximum depth of each tree produced at each step102. 
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4.7 Results 

 

Experiment 1  

 

Confusion Matrix 

 

28565 957 120 81 120 

380 29271 17 5  

217 79 29561 42 11 

64 6 0 29540 0 

114 0 1 0 29887 

 

Accuracy: 0.985 

Experiment 2  

 

Confusion Matrix 

 

28338 726 448 181 150 

677 28902 78 13 5 

354 83 29404 59 10 

151 0 13 29446 0 

106 1 21 0 29874 

 

Accuracy: 0.979 

Experiment 3  

 

Confusion Matrix 

 

27385 1424 432 335 267 

740 28825 50 11 49 

436 235 28993 184 62 

168 30 34 29378 0 

143 4 33 5 29817 

 

Accuracy: 0.968 
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Experiment 4  

 

Confusion Matrix 

 

28685 511 159 459 48 

818 28993 54 9 0 

358 98 29248 333 2 

292 0 5 29448 0 

192 0 9 0 29649 

 

Accuracy: 0.977 

Experiment 5  

 

Confusion Matrix 

 

26088 1664 811 972 327 

1327 28307 176 42 22 

468 279 28859 377 56 

1183 107 382 28051 22 

324 17 63 0 29446 

 

Accuracy: 0.942 

Experiment 6  

 

Confusion Matrix 

 

26898 1551 419 693 301 

769 28939 107 48 11 

321 309 28906 448 55 

803 11 145 28777 9 

141 3 31 5 29670 

 

Accuracy: 0.958 
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Experiment 7 

 

Confusion Matrix 

 

24387 390 

1163 23425 

 

Accuracy: 0.968 

Experiment 8  

 

Confusion Matrix 

 

24249 528 

1141 23447 

Accuracy: 0.966 

Experiment 9  

 

Confusion Matrix 

 

24202 575 

1340 23248 

 

Accuracy: 0.961 

Experiment 10  

 

Confusion Matrix 

 

24514 262 

1070 23631 

 

Accuracy: 0.973 

 

 

 

 



  77 

 

Experiment 11 

 

Confusion Matrix 

 

23368 1408 

963 23738 

 

Accuracy: 0.952 

Experiment 12  

 

Confusion Matrix 

 

24396 380 

1404 23297 

 

Accuracy: 0.963 

Experiment 13  

 

Confusion Matrix 

 

28578 510 227 425 103 

534 29032 85 22 2 

251 188 29259 198 1 

214 0 8 29388 0 

140 0 30 0 29832 

 

Accuracy: 0.980 

Experiment 14  

 

Confusion Matrix 

 

28901 444 148 264 86 

326 29264 75 10 0 

239 130 29381 145 15 

186 0 16 29408 0 

66 0 6 0 29930 
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Accuracy: 0.985 

Experiment 15  

 

Confusion Matrix 

 

28306 789 278 357 132 

1032 28574 225 40 3 

281 269 29131 296 62 

1240 18 246 28241 0 

 [273 3 24 0 29550 

 

Accuracy: 0.962 

Experiment 16  

 

Confusion Matrix 

 

28867 374 139 424 58 

985 28659 170 60 0 

222 89 29441 275 12 

551 0 137 29057 0 

73 1 12 0 29764 

 

Accuracy: 0.976 

Experiment 17 XGBoost 

 

Confusion Matrix 

29683 87 38 27 8 

150 29525 0 0 0 

122 7 29779 2 0 

12 0 0 29598 0 

42 0 0 0 29960 

 

Accuracy: 0.997 
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Experiment 18 XGBoost 

 

Confusion Matrix 

 

24573 204 

488 24100 

 

Accuracy: 0.985 

Experiment 19  

 

Confusion Matrix 

 

29698 117 19 23 5 

225 29649 0 0 0 

135 5 29889 10 0 

15 0 0  29730 0 

31 0 0 0 29819 

 

Accuracy: 0.996 

Experiment 20 

 

 

Confusion Matrix 

 

24543 233 

429 24272 

 

Accuracy: 0.987 

 

 

The diagram below shows the comparison of the effectiveness of each experiment in 

relation to all the others. 
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Figure 42: All experiments comparison diagram 

 

The diagram below compares the efficiency of the classification in 5 or 2 

classes, for dense neural networks. 

 

 

Figure 43: DNN 5 and 2 classes classification 
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The following plots show the comparison of the efficiency for a training data 

window of 6 or 2 sec and for 5 or 2 classes. 

 

 

Figure 44: DNN 5 classes classification 6 and 2 secs window comparison 

 

 

Figure 45: DNN 2 classes classification 6 and 2 secs window comparison 
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The next diagram compares the efficiency of Convolutional and Dense Neural 

Networks. 

 

Figure 46: 5 classes DNN (blue) and CNN (red) comparison 

 

XGBoost algorithm’s results are being compared to the following diagram. 

 

Figure 47: XGBoost Algorithm results 
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4.8 Discussion and Conclusions 

The general conclusion derived by the current case study is that XGBoost 

algorithm is more reliable than the ones based on Neural Networks. Both categories of 

algorithms construct accurate models as their accuracy is more than 90%.  

In general, this thesis explores the potential of applying machine-learning and deep-

learning AI to the 12-lead ECG, highlighting its use in interpreting ECGs 

comprehensively and phenotyping cardiac health and diseases. While still in early 

stages, ongoing clinical investigations will determine the value and deployment of AI-

ECG tools. Collaboration across fields is crucial for seamless integration, and proper 

vetting and clinician training are necessary for effective use5.  

Machine-Learning algorithms require substantial data for training and validation, 

posing challenges in data availability, quality, and organization. Specifically, 

supervised ML algorithms require labelled data, which can be labor-intensive and prone 

to biases. Deep learning models, while adept at analyzing complex data, lack 

transparency and interpretability (often called “black boxes”), making it susceptible to 

adversarial attacks1.  

In chapter 3.2.2 one can realize, that researchers despite the advantages and challenges 

of deep learning in analyzing complex medical data, recognise its potential in advancing 

cardiac electrophysiology research and clinical decision-making. Overall, it is 

important to comprehend and utilize the rich physiological information encoded in the 

ECG and the potential of AI to enhance its diagnostic capabilities, particularly, as a 

future-not-that-distant step, in enabling scalable point-of-care testing when integrated 

with smartphones7. 
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