Train-scheduling for railway networks using basic kinematics and A^{*}

A dissertation
by

Dimitris Manolakis

Train-scheduling for railway networks using basic kinematics and A^{*}

Dimitris Manolakis
Bachelor's Degree, University of Macedonia, 2020

Dissertation

Submitted in partial fulfilment of the requirements for THE MSC IN ARTIFICIAL INTELLIGENCE AND DATA ANALYTICS

Supervisor Professor
Refanidis Ioannis

Approved by the three-member Examination Committee on 29/02/2024

Refanidis Ioannis Angelos Sifaleras Ilias Sakellariou

Professor
Professor
Assistant Professor

Dimitris Manolakis

Abstract

This thesis tackles the problem of finding time optimal routes for trains over a railway network. The problem is defined as follows: A train has a known length. The position of the train is defined over parts of one or more consecutive track segments. There are a maximum speed, a maximum acceleration and a maximum deceleration capability for the train. Each track segment has a maximum allowed speed for any train being over it. A problem instance is defined by an initial and a goal state, which are two positions accompanied with desired speeds (being usually, but not necessarily, zero). In this study we are interested in minimizing the total duration of reaching the goal state from the initial one; other metrics such as fuel consumption could be considered.

We solve this problem using basic kinematics and A^{*}. We present two algorithms: The first one computes analytically in continuous space the optimal speed profile of the train for a problem defined over a given path. The second algorithm extends the first one over arbitrary graphs. A* empowered with a simple admissible heuristic is employed to find the optimal combination of speed profile and path.

Keywords: Scheduling, Heuristic search, Kinematics

$\Pi \varepsilon \varrho i ́ \lambda \eta \psi \eta$

 $\mu \varepsilon \tau \varrho \eta ́ \sigma \varepsilon \iota \varsigma$, о́ $\tau \omega \varsigma ~ \eta \kappa \alpha \tau \alpha v \alpha ́ \lambda \omega \sigma \eta$ к $\alpha v \sigma \dot{\mu} \mu \omega v$.

 A* $\varepsilon v เ \sigma \chi \cup \mu \varepsilon ́ v o s ~ \mu \varepsilon \mu \iota \alpha \alpha \pi \lambda \eta ́ \alpha \pi о \delta \varepsilon \kappa \tau \eta ́ ~ \varepsilon \cup \varrho \varepsilon \tau เ к \eta ́ ~ \mu \varepsilon ́ \theta o \delta o \varsigma . ~$

Acknowledgements

I would like to express my graditute to my advisor, Professor Ioannis Refanidis for providing me with the opportunity to work on this thesis, as well as, for his support and patience throughout my research. Finally, my appreciation extends to my family and friends, whose consistent support, love, and patience have been a source of strength throughout this educational journey.

Contents

1 Introduction 1
1.1 Problem - Importance of the topic 1
1.2 Aim - Objectives 1
1.3 Contribution 2
1.4 Structure of the study 2
2 Literature review 3
2.1 Optimization techniques 3
2.2 Heuristic search approaches 4
2.3 Reinforcement learning techniques in combination with Deep Learning 5
3 Problem Formulation 6
4 Methodology 12
4.1 Computing optimal speed profile over a given path 12
4.1.1 Use case: Computing the speed profile of Example 3 21
4.2 Shortest Path Finding 44
4.2.1 Use case: Finding the shortest path of Example 2 47
5 Conclusion 52
5.1 Summary and conclusions 52
5.2 Future extensions 52
6 References 53
Annex A - Executing the source code 56
A.1. Computing the optimal speed profile of a path 56
A.2. Finding the shortest path of a railway network 60
Annex B - Source code of the implementation 64
B.1. Computing the optimal speed profile of a path 64
B.2. Finding the shortest path of a railway network 69

List of Figures

Figure 1. Speed and Positions vs. time graph 9
Figure 2. Calculating the shortest path from A to H. 10
Figure 3. Speed Profile until reaching the end of $s 4$ (before backtrack) 14
Figure 4. Speed Profile until reaching the end of $s 4$ (after backtrack) 14
Figure 5. Speed and Position vs. time graph for the optimal path 47
Figure 6. The first available paths of Example 2 48
Figure 7. Input data format in a text file for Example 2 57
Figure 8. Execution of the OptimalPathSpeedProfile.py script in the CLI 58
Figure 9. Output of Algorithm 1 when the debug parameter is used 59
Figure 10. Output of Algorithm 2 when the debug parameter is used 59
Figure 11. Output of the script when a solution cannot be found 59
Figure 12. Format of the states and characteristics in a text file for Example 3 60
Figure 13. Format of the network data in a text file for Example 3 61
Figure 14. Execution of the ShortestPath.py script in the CLI 62
Figure 15. Output of Algorithm 3 when the debug parameter is used 62
Figure 16. Output of the script when no solution can be found in a network 63

List of Tables

Table 1. Path layout (Example 1) 8
Table 2. Train T characteristics; init and goal states for Example 1 9
Table 3. Path layout (Example 3) 13
Table 4. Train T characteristics; init and goal states for Example 3 13
Table 5. Values of the parameters at the beginning of Iteration 1 23
Table 6. Values of the parameters at the beginning of Iteration 2 24
Table 7. Entries of SP at the beginning of Iteration 3 25
Table 8. Values of the parameters at the beginning of Iteration 3 25
Table 9. Entries of SP at the beginning of Iteration 4 27
Table 10. Values of the parameters at the beginning of Iteration 4 27
Table 11. Entries of SP at the beginning of Iteration 5 29
Table 12. Values of the parameters at the beginning of Iteration 5 29
Table 13. Entries of SP at the beginning of Iteration 6 30
Table 14. Values of the parameters at the beginning of Iteration 6 30
Table 15. Entries of SP at the beginning of Iteration 7 32
Table 16. Values of the parameters at the beginning of Iteration 7 32
Table 17. Entries of SP at the beginning of Iteration 8 34
Table 18. Values of the parameters at the beginning of Iteration 8 34
Table 19. Entries of SP at the beginning of Iteration 9 35
Table 20. Values of the parameters at the beginning of Iteration 9 36
Table 21. Entries of SP at the beginning of Iteration 10 37
Table 22. Values of the parameters at the beginning of Iteration 10 38
Table 23. Values of the backtracking variables computed by Algorithm 2 40
Table 24. Entries of SP at the beginning of Iteration 11 41
Table 25. Values of the parameters at the beginning of Iteration 11 41
Table 26. Values of the backtracking variables computed by Algorithm 2 42
Table 27. The final entries of SP at the end of Algorithm 1 43
Table 28. Straight-line distance estimations for Example 2 49
Table 29. Speed profiles stored in SPdict for each discovered path 49
Table 30. f values of all discovered paths at the end of Iteration 1 51
Table 31. Libraries used in the OptimalPathSpeedProfile.py script 56
Table 32. Default values for the global variables 58
Table 33. Libraries used in the ShortestPath.py script 60

List of Algorithms

Algorithm 1. Finding the optimal speed profile 15
Algorithm 2. Finding the deceleration point 19
Algorithm 3. Shortest path with A^{*} 44
List of Functions
Function 1. Get the current speed limit of T based on the segments it spans 17
Function 2. Compute the time needed for T to reach each event 17
Function 3. Compute the positive root of a quadratic equation 17
Function 4. Connect the last vertex of path with its neighboring nodes 45
Function 5. Expand all paths in paths until the first junction 45

1 Introduction

1.1 Problem - Importance of the topic

Railways are key components in the transportation systems of many countries around the world, with many European development economists considering a modern rail infrastructure as a significant indicator of a country's economic advancement [1]. Moreover, the European Commission aims for rail networks to absorb the majority of medium-distance passenger transport by 2050 [2]. Increasing the efficiency of transport in the railway infrastructure can greatly improve speed and reliability, reduce costs and energy consumption.

In recent years, research on train scheduling has grown significantly. Companies such as the Swiss Federal Railways invest in research through the Flatland challenge, on tasks which include train schedule optimization (railway timetable generation) [3], as well as applications of multi-agent reinforcement learning on the re-scheduling problem (RSP) [4].

1.2 Aim - Objectives

In this study, we present algorithms to generate time-optimal routes for single trains over arbitrary railway networks, using basic kinematics. The main contribution of this paper is a realistic approach to compute the amount of time a train needs to traverse a certain path, making use of a variety of train and path characteristics, particularly train max speed, acceleration and deceleration; train length; and maximum allowed speed per railway segment, while aiming at minimizing journey duration. Our approach employs continuous domains (a train can be anywhere in the railway network and have any speed and acceleration or deceleration, while satisfying the physical constraints), whereas it uses basic kinematic equations to compute the state of a train over time. The aim is to approximate real-world conditions on railway networks, which, in turn, will
improve the optimization of the train-scheduling problem and contribute to the development of an application that can be effectively used on real-world railway networks. The project's structure and originality allows a lot of possible extensions, including more features of a train (e.g., load; engine power; variable maximum acceleration/deceleration depending on speed) or the environment (e.g., slopes of the ground), as well as alternative optimization criteria (e.g., fuel consumption).

1.3 Contribution

This study contributes in two directions: First, we present an algorithm to compute the precise duration needed for the train to arrive at any position over a given path, while respecting the physical constraints of the train and the maximum allowed speed for any segment of the network. Second, we empower the first algorithm with A^{*} search and a common straight line distance admissible heuristic function in order to find the optimal route between a source and a target state over any given railway network.

1.4 Structure of the study

The rest of the dissertation is organized as follows. Section 2 presents a review of the background literature, whereas Section 3 provides the problem formulation. Sections 4 and 5 present the algorithms which are used, in order to compute the optimal speed profile over a given path and the shortest (in terms of time) combination of path and speed profile over a railway network, respectively. Finally, Section 6 concludes the dissertation and poses future challenges.

2 Literature review

In this section, the literature review is presented, organized into three distinct parts. The first part delves into Optimization techniques, while the second section focuses on Heuristic search approaches. Finally, Reinforcement learning techniques in combination with Deep Learning are examined in the third part.

2.1 Optimization techniques

A great amount of effort has been invested in solving the train-scheduling problem for multiple trains on a single or multiple railway tracks, with an emphasis on conflict resolution in the planning phase. Optimization is used in order to generate timetables, with many works [5] [6] [7] [8] [9] [10] presenting surveys on the subject. Specifically, Assad [5] published one of the first surveys on rail transportation including optimization, queuing and simulation approaches. In [6], the authors focused on various optimization models for the most commonly studied railway routing and scheduling problems. Finally, Tornquist [10] examined a total of 48 approaches published between 1973 and 2005, classifying them with respect to problem type, solution mechanism, and type of evaluation.

The train scheduling problem on a single track line has been modeled as a job shop scheduling problem and solved with a branch and bound algorithm [11], while the same algorithm has also been used on railway networks [12]. The patent US20110046827A1 [13] showcases a method for controlling speed in an automatic train operation, making use of kinematic equations in order to estimate and control speed. However, the train's length is not included in the problem formulation reducing the complexity significantly since for example, a train cannot be in multiple segments with overlapping speed limits. In [14], the authors worked on the simultaneous train routing and timetabling problem on the rail network, applying a train-based Lagrangian relaxation decomposition. Finally,
linear programming formulations on timetable rescheduling were used in [15], testing on instances from Netherlands Railways.

2.2 Heuristic search approaches

Above all, the train scheduling problem is considered an NP-complete problem [14], rendering mathematical optimization approaches unrealistic in terms of computation times, especially for a large-scale problem. For that reason, many researchers have proposed and evaluated many heuristic search approaches and artificial intelligence techniques. Genetic algorithms (GA) were used in order to further reduce the number of trains (previously assigned individually on routes) on a network basis [15], while in [16] a GA was designed for application on railway scheduling problems, achieving a good performance on real-world instances from the Spanish Manager of Railway Infrastructure (ADIF). Authors of [19] developed a GA-based Particle Swarm Optimization method in order to reschedule high-speed railway timetables while considering delays. The implementation was applied and tested in the Chinese Beijing-Shanghai highspeed railway corridor, managing to produce objective functions values which are at least 15% lower than other methods. Samà et al. [17] formulated the routing selection problem as a linear programming model and solved via an ant colony optimization algorithm. Ant colony optimization algorithms were also attempted to solve a simulated dynamic multiobjective railway rescheduling problem [21]. Bożejko et al. [18] applied the Dijkstra algorithm on railway networks in order to determine the fastest routes for rail freight transportation. In [19], the authors implemented a tabu search scheme for rerouting trains in their real-time traffic management system ROMA, generating solutions in 20 s and in 180 s for small and big instances respectively, a 15% improvement compared to previous versions of the system.

2.3 Reinforcement learning techniques in combination with Deep

Learning

The resurgence of neural networks in the modern era of artificial intelligence gave way to the application of deep learning and learning methods in general, on the train-scheduling problem. Reinforcement learning is applied in [20] where deep neural networks are used in order to approximate Q-values, formulating the problem as a Markov decision process. Šemrov et al. [21] proposed a Q-learning algorithm for train rescheduling and compared the implementation with the rescheduling methods that do not rely on learning, showing that the solutions are at least equivalent or superior. In [26], a Q-learning based method was used for bidirectional railway lines (both single- and multitrack), achieving efficient scaling by making the size of the action and the state space indepent of the problem instance size. The applicability of the algorithm was demonstrated on two lines from the Indian railway network, showing the RL algorithm leads to higher solution quality than two prior heuristic-based approaches. Two deep Q-learning methods (a decentralized and a centralized approach) were applied and evaluated on the train dispatching problem [22], showcasing their supremacy over the classical linear Q-learning method. Authors in [23] developed artificial neural networks (ANN) which were trained and tested on real data from the Turkish State Railway, and reproduce the conflict resolutions of train dispatchers. The model was then used in comparison with a GA on the task of train re-scheduling, with the GA outperforming the ANN.

3 Problem Formulation

A railway network graph is modeled as a directed graph $G=(V, E)$, where V is the set of the vertices and E the set of the edges. A track segment, $s=(u, v)$, is an edge of E. Each track segment s is labeled with its length $l(s) \in R^{+}$, and the maximum allowed speed $\operatorname{vmax}(s) \in R^{+}$a train can reach while traversing it. A track segment can be connected at its ends with any number of other track segments; no inner connections are allowed. A path is a list of consecutive segments $\left(s_{1}, s_{2}, \ldots, s_{k}\right), k \geq 1$, such that $s_{i}=\left(u_{i}, v_{i}\right)$ and for each i in $\{1 \ldots k-1\}$ we have $v_{i}=u_{i+1}$. Furthermore, for every $1 \leq i<j \leq k, u_{i} \neq u_{j}$, that is the sequence of segments do not cross (but potentially, $u_{i} \neq u_{j}, k>1$, in which case we have a cycle).

A train T is described by its length $l(T) \in R^{+}$, its maximum speed $\operatorname{vmax}(T) \in R^{+}$, its maximum acceleration $\operatorname{maxacc}(T) \in R^{+}$, and its maximum deceleration maxdec $(T) \in R^{+}$. We use the functions head (T) to denote the head point of T, and $\operatorname{tail}(T)$ to denote the tail point of T.

The position of a train T, denoted by $\operatorname{pos}(T)$, is defined as a pair (S, x), where $S=\left(s_{1}, s_{2}, \ldots, s_{k}\right)$, with $k \geq 1$, is a path (that is, the train may span over multiple consecutive segments). Furthermore, $\operatorname{tail}(T) \in s_{1}$ but $\operatorname{tail}(T) \neq v_{1}$, and $\operatorname{head}(T) \in s_{k}$ but head $(T) \neq u_{k} \cdot x$ is the distance of head (T) from v_{k} across s_{k}. In case $k=1$, $\operatorname{head}(T)$ is considered to be closer to v_{1} than $\operatorname{tail}(T)$.

The state of a train T, denoted by state (T), is the pair $(\operatorname{pos}(T)$, $\operatorname{speed}(T))$, where $\operatorname{speed}(T)$ is its current speed. We assume that speed $(T) \geq 0$, meaning that the train can move only forwards. We use also the notation speed (T, t) to denote the speed of train T at a particular time point t. A valid state is a state that satisfies the following constraints:

$$
0 \leq \operatorname{speed}(T) \leq \operatorname{vmax}(T)
$$

and for each $i \in[1 . . k]$, where $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is the list of segments over which the train spans,

$$
\operatorname{speed}(T) \leq \operatorname{vmax}\left(s_{i}\right)
$$

A Problem is defined by a tuple (T, G, init, goal), where T is a train, with its given attributes, G is a directed graph with speed limits on its segments, init is the initial state and goal is the goal state.

A speed profile $S P_{t_{1}: t_{2}}$, or simply $S P$, is an infinite set of pairs \{(state, t): for every t such that $\left.t_{1} \leq t \leq t_{2}\right\}$, for some time points t_{1} and t_{2}, such that $t_{1} \leq$ t_{2}. A speed profile $S P_{t_{1}: t_{2}}$ is valid if and only if (a) it consists of valid states for every t in $\left[t_{1}, t_{2}\right]$; (b) for every pair (state ${ }^{\prime}, t^{\prime}$) and (state ${ }^{\prime \prime}, t^{\prime \prime}$) in $S P_{t_{1}: t_{2}}$, if $t^{\prime} \rightarrow t^{\prime \prime}$ then state ${ }^{\prime} \rightarrow$ state $^{\prime \prime}$, where convergence between states is defined in the obvious way, that is, the difference in train position and speed between the two states tends to zero; and (c) for every pair (state ${ }^{\prime}, t^{\prime}$) and (state $\left.{ }^{\prime \prime}, t^{\prime \prime}\right)$ in $S P_{t_{1}: t_{2}}$, such that $t^{\prime}<$ $t^{\prime \prime}$, if $\operatorname{speed}\left(T, t^{\prime}\right)<\operatorname{speed}\left(T, t^{\prime \prime}\right)$ then $\frac{\operatorname{speed}\left(T, t^{\prime \prime}\right)-\text { speed }\left(T, t^{\prime}\right)}{t^{\prime \prime}-t^{\prime}} \leq \operatorname{maxacc}(T)$, whereas if $\operatorname{speed}\left(T, t^{\prime}\right)>\operatorname{speed}\left(T, t^{\prime \prime}\right)$ then $\frac{\operatorname{speed}\left(T, t^{\prime}\right)-\text { speed }\left(T, t^{\prime \prime}\right)}{t^{\prime \prime}-t^{\prime}} \leq \operatorname{maxdec}(T)$. Note that the third constraint subsumes the second one.

The duration of $S P_{t_{1}: t_{2}}$ is defined as $t_{2}-t_{1}$. Moreover, we define three functions: $\operatorname{mint}\left(S P_{t_{1}: t_{2}}\right)$ that returns the minimum time label $\left(t_{1}\right)$ in the speed profile; $\operatorname{maxt}\left(S P_{t_{1}: t_{2}}\right)$ that returns the maximum time label $\left(t_{2}\right)$ in the speed profile; and stateAt $\left(S P_{t_{1}: t_{2}}, t\right)$ that returns the state state (T) of T at time t, where $t_{1} \leq t \leq t_{2}$.

Given a Problem, a pair (path, SP) is a solution to the Problem if (a) the segments in init comprise the prefix of path; (b) the segments in goal comprise the suffix of path; (c) the speed profile is valid; (d) init = stateAt(mintime (SP)); and (e) goal $=$ stateAt $($ maxtime $(S P))$. The optimal solution to Problem is the pair (path,$S P$) with the minimum duration.

Moving on, we will make use of two simple examples with the aim of showcasing the operation of the algorithms. It is important to note that our approach makes use of algorithms of low complexity. In more detail, finding an optimal speed profile can be done in time linear in the length of the path, while the process of finding the optimal path has the same worst case algorithmic complexity as the Dijkstra algorithm. For that reason, an extensive experimental study was deemed to be unnecessary.

Example 1. We present an example of an optimal speed profile between an initial and a goal state over a given path (so, we do not have to search over alternative paths). Since the path is given, we are interested only in the speed profile. Table 1 details the path, while Table 2 gives the train T characteristics, as well as the initial and the goal states for this example.

Table 1. Path layout (Example 1)

Segment \boldsymbol{s}	Length $\boldsymbol{l}_{\boldsymbol{s}}(\mathrm{m})$	$\boldsymbol{v m a x}(\boldsymbol{s})(\mathrm{m} / \mathrm{s})$
$\boldsymbol{s}_{\mathbf{0}}$	150	20
$\boldsymbol{s}_{\mathbf{1}}$	150	40
$\boldsymbol{s}_{\mathbf{2}}$	700	50
$\boldsymbol{s}_{\mathbf{3}}$	800	80
$\boldsymbol{s}_{\mathbf{4}}$	1000	85
$\boldsymbol{s}_{\mathbf{5}}$	200	40
$\boldsymbol{s}_{\mathbf{6}}$	300	60
$\boldsymbol{s}_{\mathbf{7}}$	700	50
$\boldsymbol{s}_{\boldsymbol{f}}$	150	30

Table 2. Train T characteristics; init and goal states for Example 1

Parameters	Value
Length $l(T)$	150 m
Maximum speed $\operatorname{v\operatorname {max}(T)}$	$75 \mathrm{~m} / \mathrm{s}$
Acceleration $\operatorname{maxacc}(T)$	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
Deceleration $\operatorname{maxdec}(T)$	$1 \mathrm{~m} / \mathrm{s}^{2}$
init	$\left(\left(s_{0}, 150\right), 0\right)$
goal	$\left(\left(s_{f}, 0\right), 0\right)$

Figure 1. Speed and Positions vs. time graph
Figure 1 presents the optimal speed profile for the particular problem. Note that there are two vertical axes in the figure, the left (red) denoting the speed and the right (green) denoting the distance travelled by the train for any particular time. The distance in this diagram is measured in length units from the initial position of head (T), which (in this example) is at the start of $s_{0}\left(\operatorname{head}(T)=u_{0}\right)$ and is considered the 0 in the green axis. The vertical dotted lines show the time point in which head (T) enters each segment (of course the tail of the train is still in previous segments).

It is worth noting that whenever the train leaves a segment with a speed limit that is lower than the speed limits of the segments of its new position, it starts accelerating (if not already accelerating). On the other hand, before the train enters a segment with a speed limit that is lower than its current speed, the train starts decelerating earlier enough, even several segments before the low speed limit segment. The same happens with the goal state, where (in the current example) the train should be idle: the train may start decelerating early enough.

Furthermore, in order for the speed profile to minimize the duration of the journey, the train must continuously maintain the maximum possible speed. This implies that whenever the train accelerates or decelerates, it does so at the maximum possible acceleration and deceleration rates. Thus why in Figure 1 the periods of acceleration have the same ascending slope, and the same happens with the periods of deceleration, which all have the same descending slope.

Figure 2. Calculating the shortest path from A to H
Example 2. Figure 2 presents an example railway network, consisting of 10 vertices and 12 edges. Each edge s is labeled with $l(s)$ and $\operatorname{vmax}(s)$. The train T characteristics, as well as the goal state, remain the same as in Table 2, while init $=$ $\left(\left(s_{0}, 0\right), 0\right)$.

The nodes marked with a green colour form the optimal solution path, with the corresponding optimal speed profile having a total duration of about 91 seconds. In this case, the solution path is not the shortest one in terms of length; indeed, path (S, A, C, E, H, T) is 200 meters shorter than the solution path (S, A, C, F, H, T). We will return to this example in Section 5 .

4 Methodology

This section presents the algorithms that were developed, in order to calculate the optimal speed profile along a designated route and the shortest path (in terms of time) throughout a railway network. Additionally, examples of use cases for both scenarios are provided, demonstrating in detail how each algorithm operates in basic problems.

4.1 Computing optimal speed profile over a given path

In this section, the computation of the optimal speed profile between init and goal is presented, assuming that there is a single path that can be used to reach the goal state, with no junctions across it. Before presenting the details of the computation, we give an overview of it.

There are three possible modes for a train: (a) Maintaining a steady speed; (b) accelerating; and, (c) decelerating. The train maintains a steady speed if it cannot accelerate and there is no need to decelerate. The need for deceleration arises from a subsequent segment (not necessarily the immediate next one) with a lower speed limit than the current speed of the train, or a goal state with a smaller goal speed (usually zero) than the current train speed. Acceleration occurs whenever the train is in a list of segments having all of them higher speed limits that its current speed, provided that there is no need to decelerate. Deceleration has priority over acceleration, which in turn has priority over maintaining steady speed. The computation's crucial part is to determine the point where deceleration should start.

The computation proceeds forwards. For each segment over the given path, it computes the optimum speed profile until head (T) reaches the end of the segment, taking into account the already computed speed profiles over the previous segments of the given path. In case the new segment has a lower speed

Methodology

limit than the train speed when entering the segment, it is assumed that the train enters the new segment with a speed equal to its speed limit and, then, the algorithm computes where and when the train should have started decelerating, in order to satisfy the lower speed limit. This computation has as result changing the speed profile(s) of the previous segment(s).

Example 3. We present an example of the event in which the speed profile is recalculated, since the train reached a segment that has a speed limit lower than its current speed. Table 3 and Table 4 provide the path and the train T characteristics, as well as the init and the goal states for this example.

Table 3. Path layout (Example 3)

Segment \boldsymbol{s}	Length $\boldsymbol{l}_{\boldsymbol{s}}(\mathrm{m})$	$\boldsymbol{v m a x}(\boldsymbol{s})(\mathrm{m} / \mathrm{s})$
$\boldsymbol{s}_{\mathbf{0}}$	150	20
$\boldsymbol{s}_{\mathbf{1}}$	150	20
$\boldsymbol{s}_{\mathbf{2}}$	800	50
$\boldsymbol{s}_{\mathbf{3}}$	700	65
$\boldsymbol{s}_{\mathbf{4}}$	600	85
$\boldsymbol{s}_{\boldsymbol{f}}$	150	10

Table 4. Train T characteristics; init and goal states for Example 3

Parameters	Value
Length $l(T)$	150 m
Maximum speed $\operatorname{v\operatorname {max}(T)}$	$78 \mathrm{~m} / \mathrm{s}$
Acceleration $\operatorname{maxacc}(T)$	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
Deceleration $\operatorname{maxdec}(T)$	$0.5 \mathrm{~m} / \mathrm{s}^{2}$
init	$\left(\left(s_{0}, 0\right), 0\right)$
goal	$\left(\left(s_{f}, 0\right), 0\right)$

Figure 3. Speed Profile until reaching the end of s_{4} (before backtrack)

Figure 4. Speed Profile until reaching the end of s_{4} (after backtrack)
Figure 3 presents the speed profile at the end of segment s_{4}; till that point the train mostly accelerates or maintains a steady speed due to the high speed limits of the previous segments. Therefore, according to Figure 3, the train is ready to exit s_{4} with a speed over $70 \mathrm{~m} / \mathrm{s}$. However, the speed limit for the next segment is $10 \mathrm{~m} / \mathrm{s}$ hence, the train needs to decelerate significantly. Considering that T enters s_{4} with a speed of about $64 \mathrm{~m} / \mathrm{s}$, as well as $l\left(s_{4}\right)$ and $\operatorname{maxdec}(T)$, deceleration must start earlier enough. Hence, the process is backtracked at
previous segments until the deceleration line crosses the speed profile. The result of this procedure is shown in Figure 4. The train's deceleration starts at s_{2} in order to reach the speed limit of s_{f} at the time it enters it, resulting in a slower speed profile. As a result, time expands from the deceleration starting point and onwards.

```
Algorithm 1. Finding the optimal speed profile
Input: Path \(=\left(s_{0}, . ., s_{f}\right), T\),
init \(=\left(\left(s_{0}, . ., s_{k}\right)\right.\), init \(\left.X\right)\), init \(\left.V\right)\),
goal \(=\left(\left(s_{m}, . ., s_{f}\right)\right.\), goal \(\left.X\right)\), goal \(\left.V\right)\)
Output: \(S P\)
    Initialize currentV,hSgm,tSgm,
    hExit, tExit, currentAcc, \(S P, t_{\text {total }}\)
    speedLimit \(\leftarrow \operatorname{getSL}\left(T,\left(s_{t S g m}, \ldots, s_{h S g m}\right)\right)\)
    \(\left(t_{\min }, t_{1}, t_{2}, t_{3}\right) \leftarrow \operatorname{getMinT}(\) currentAcc, currentV,
    tExit,hExit, speedLimit)
    while \(S P[-1] \neq\) goal do
        Proceed by \(t_{\text {min }}\)
        \(p \leftarrow\) current \(V * t_{\text {min }}+(1 / 2) *\) currentAcc \(* t_{\text {min }}^{2}\)
        current \(V \leftarrow\) current \(V+t_{\min } *\) current \(A c c\)
        \(h\) Exit \(\leftarrow h\) Exit \(-p\), Exit \(\leftarrow t\) Exit \(-p\)
        \(t_{\text {total }} \leftarrow t_{\text {total }}+t_{\text {min }}\)
        if \(t_{2}=t_{\text {min }}\) then
            \(h S g m \quad \leftarrow h S g m+1, h\) Exit \(\leftarrow l\left(s_{h S g m}\right)\)
            speedLimit \(\leftarrow \operatorname{getSL}\left(T,\left(s_{t S g m}, \ldots, s_{h S g m}\right)\right)\)
            if current \(V>\) speedLimit then
                Apply Algorithm 2
                    if Algorithm 2 returns False then
                    EXIT
                    end if
            end if
        end if
        if \(t_{1}=t_{\text {min }}\) then
            \(t S g m \leftarrow t S g m+1, t E x i t \leftarrow l\left(s_{t S g m}\right)\)
            speedLimit \(\leftarrow \operatorname{getSL}\left(T,\left(s_{t S g m}, \ldots, s_{h S g m}\right)\right)\)
            if currentV < speedLimit then
                    currentAcc \(=\operatorname{maxacc}(T)\)
            end if
        end if
        if \(t_{3}=t_{\text {min }}\) AND current \(V=\) speedLimit then
            currentAcc \(=0\)
        end if
        SP.append \(\left(\left(\right.\right.\) Path \(_{t S g m: h S g m}\), Exit \()\), currentV,\(\left._{\text {total }}\right)\)
        if \(\operatorname{dist}(S P[-1])=\operatorname{dist}(\) goal \()\) AND current \(V \neq\) goalV then
            EXIT
        end if
        \(\left(t_{\text {min }}, t_{1}, t_{2}, t_{3}\right) \leftarrow \operatorname{getMinT}(\) currentAcc,
    currentV, tExit,hExit, speedLimit)
    end while
    return \(S P\)
```

Algorithm 1. Finding the optimal speed profile

Algorithm 1 details the main procedure that iteratively detects events during the train's journey. An event happens in three cases: (a) head (T) enters a new segment; (b) tail(T) exits a segment; and (c) the train reaches the effective speedLimit (which is the trains's speed limit or the minimum speed limit of the segments where the train spans). The input to this algorithm includes the train attributes, the given path with its segments' attributes as well as, the init and goal states. The position of train T in init comprises a prefix of the path, whereas the position of train in goal comprises a suffix of the path. The output of the algorithm is the optimal speed profile $S P$, in terms of journey duration. A speed profile is represented as a finite list of pairs (state $(T), t$), with the train being in the same mode between subsequent states. Time at init is considered $0 . S P[i]$ denotes the i th node of $S P$, with $S P[0]=($ init, 0$)$ and the last node of $S P$, denoted as $S P[-1]$, being of the form (goal, $t_{\text {total }}$) where $t_{\text {total }}$ is the duration of the journey. Between $S P[i]$ and $S P[i+1]$ the train remains in the same mode (acceleration, deceleration or steady speed), which is determined from the difference between the train speeds in the two subsequent nodes.

Concerning goal, the head (T) position can be at any point of the last segment. Without loss of generality, we assume that in goal the train must reach the end of the last segment (if this is not the case, we can split the last segment in two ones). Furthermore, we assume an additional segment, after the last one, with a speed limit equal to the desired speed of the train in goal. In this way, the goal can be restated as having the train ready to enter this additional segment with a speed equal to its speed limit.

Note that in general the problem may not have a solution. This may happen in two cases: The first one is when the goal speed is too high and the train cannot accelerate early enough (because of either a low initial state speed or low speed limits in the segments before the goal) in order to reach it. The second scenario is when the initial speed is very high and the train cannot decelerate early enough,
in order to enter a segment with a low speed limit or to reach the goal state with the desired slow speed.

```
function GETSL( \(\left.T,\left(s_{t S g m}, \ldots, s_{h S g m}\right)\right)\)
    lowestVmax \(\leftarrow \min \left(s_{i}\right), i \in[t S g m . . h S g m]\)
return \(\min (\) lowest \(V \max , v \max (T))\)
end function
```

Function 1. Get the current speed limit of T based on the segments it spans

```
function GETMINT(currentAcc, currentV,
tExit,hExit,speedLimit)
    if currentAcc>0 then
            t}\leftarrow\mp@code{MaxRoot((1/2)* currentAcc,currentV,
-tExit)
            t2}\leftarrowMaxRoot((1/2)*currentAcc,currentV,
-hExit)
        else
            t}\leftarrow\leftarrowtExit/currentV
            t
        end if
        if currentAcc > 0 AND speedLimit > currentV then
            t3}\leftarrow\frac{\mathrm{ speedLimit-currentV}}{\mathrm{ currentAcc}
        else
            t3}\leftarrow\mathrm{ Infinite
        end if
return min}(\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}),\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\mp@subsup{t}{3}{
end function
```

Function 2. Compute the time needed for T to reach each event

```
function MAXROOT \((a, b, c)\)
        \(\Delta \leftarrow b^{2}-4 a c\)
    \(t \leftarrow \frac{-b+\sqrt{\Delta}}{2 a}\)
return \(t\)
end function
```

Function 3. Compute the positive root of a quadratic equation
Algorithm 1 begins with initiliazing all the necessary variables. currentV tracks the train's current speed and is initialized to be equal to the starting speed initV of the init state. $h S g m$ and $t S g m$ represent the indices of the segments in which head (T) and $\operatorname{tail}(T)$ reside respectively. At the init state the train is in $\left(s_{0}, . ., s_{k}\right)$ hence, h Sgm $=k$ and $t S g m=0$. hExit and tExit concern the distance of $h e a d(T)$ and tail(T) from the end of segments $h S g m$ and $t S g m$ respectively. The
initial values for hExit is init X which are provided by init. If $h E x i t=0, h S g m$ is incremented by one and hExit is set to be equal to the length of next segment $l\left(s_{h S g m}\right)$.tExit is initialized using the following equation:

$$
t \text { Exit }=l\left(s_{0}\right)-\left(\sum_{i=0}^{k} l\left(s_{i}\right)-h E x i t-l(T)\right)
$$

currentAcc keeps the train's acceleration and is initialized to be equal to $\operatorname{maxacc}(T)$. The init state is stored in $S P[0] . t_{\text {total }}$ is used to keep track of the duration so far and is initialized with 0 . For the initialization of the speedLimit that is in effect for the first event, the $\operatorname{getSl}()$ function (Function 1) is used, that takes as input the train characteristics and the segments it is currently in. In case speedLimit is equal to current V, currentAcc is set to 0 .

Having initialized all variables, getMinT() (Function 2) is called to detect which type of event is upcoming, by computing the time $t_{\min }=\min \left(t_{1}, t_{2}, t_{3}\right)$ needed to reach each one of them. t_{1} is the time needed for the tail to exit its segment; t_{2} is the time needed for the head to enter a new segment; and t_{3} is the time needed for the train to reach the speedLimit, provided that it is in accelerating mode. When the train is accelerating, t_{1} and t_{2} are computed as the roots of the quadratic equation:

$$
\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV } * t-\text { distance }=0
$$

$\operatorname{maxRoot}()$ (Function 3) returns the positive root (there is always one). t_{3} is computed as the time needed in order to accelerate from currentV to the speedLimit with an acceleration of $\operatorname{maxacc}(T)$.

Having completed the preliminary computations, the while-loop updates all the relevant variables such as current V, the distance travelled p that is used to update t Exit and hExit. Based on the type of the event that occurred, either hSgm and hExit or $t S g m$ and $t E x i t$ or none of them are updated. The train's currentAcc
is also updated accordingly; to 0 if the train reached the speedLimit and to $\operatorname{maxacc}(T)$ if currentV is lower than the speedLimit.

```
Algorithm 2 Finding the deceleration point
    for \(j \leftarrow\) length \((S P)-2\) to 0 do
        \(v_{0} \leftarrow\) speedLimit
        \(v_{1} \leftarrow \operatorname{speed}(S P[j]), v_{2} \leftarrow \operatorname{speed}(S P[j+1])\)
        if \(v_{2} \geq v_{1}\) then
            if \(v_{2}=v_{1}\) then
                \(a=0\)
            else
                \(a=\operatorname{maxacc}(T)\)
            end if
            \(d_{1} \leftarrow \operatorname{dist}(S P[j]), d \leftarrow \operatorname{dist}(S P[-1])\)
            \(x_{d e c} \leftarrow \frac{v_{0}^{2}-v_{1}^{2}+2\left(a d_{1}+b d\right)}{2(a+b)}\)
            \(v^{\#} \leftarrow \sqrt{v_{1}^{2}+2 a\left(x_{d e c}-d_{1}\right)}\)
            if \(v^{\#}>v_{1}\) then
                \(S P \leftarrow S P[0: j]\)
                \(t_{1}^{\#} \leftarrow \frac{v^{\#}-v_{1}}{a}, t_{2}^{\#} \leftarrow \frac{v^{\#}-v_{0}}{b}\)
                Add two new states in \(S P\)
                current \(V \leftarrow v_{0}\), currentAcc \(\leftarrow 0\)
                    Return True
            end if
            if \(v^{\#}=v_{1}\) then
                \(S P \leftarrow S P[0: j]\)
                if \(x_{d e c}>d_{1}\) then
                    \(t_{1}^{\#} \leftarrow \frac{x_{d e c}-d_{1}}{v \#}, t_{2}^{\#} \leftarrow \frac{v^{\#}-v_{0}}{b}\)
                    Add two new states in \(S P\)
                    else
                            \(t^{\#} \leftarrow \frac{v^{\#}-v_{0}}{b}\)
                            Add one new state in \(S P\)
                    end if
                        current \(V \leftarrow v_{0}\), currentAcc \(\leftarrow 0\)
                        Return True
            end if
        end if
    end for
    return False
```

Algorithm 2. Finding the deceleration point
The most complicated case occurs when $\operatorname{head}(T)$ is about to enter a new segment $\left(t_{2}=t_{\text {min }}\right)$ with currentV higher than the new segment's speed limit $\operatorname{vmax}\left(s_{h S g m}\right)$, that is the new speedLimit. In this case the speed profile must be
recomputed by adding a deceleration point at the latest possible time, when the train should start decelerating in order to reach the new segment with a speed equal to speedLimit (denoted as v_{0} in Algorithm 2). Intermediate speed profile entries are removed from $S P$. Algorithm 2 handles this case, by backtracking in previous states stored in $S P$, searching for the optimal point to decelerate. In order to access information stored in an entry i of $S P$, we use $\operatorname{dist}(S P[i])$ for the total travelled distance, speed $(S P[i])$ for the train's current speed. Finally, length($S P$) denotes the total number of entries in $S P$.

The algorithm searches for previous speed profile segments during which the train was either accelerating or maintaining its speed, starting from the most recent one. Two consecutive speed profile nodes define a speed profile segment. The train's mode in a speed profile segment is determined by comparing its speed at the two defining speed profile nodes, (denoted by v_{1} and v_{2}). If $v_{1}>v_{2}$, meaning that at this segment the train was already decelerating, the for-loop continues to the previous speed profile segment (deceleration cannot start at a speed profile segment where the train was already decelerating) until an appropriate segment of the speed profile is found. If $v_{2} \geq v_{1}, d_{1}$ becomes the cumulative travelled distance till $S P[j]$, while d represents the cumulative travelled distance at $S P[-1]$. The next step is to find whether the optimal deceleration point $x_{d e c}$ lies between these two positions, as well as computing the train's speed $v^{\#}$ at that point, with $d_{1} \leq x_{d e c} \leq d$ and $v_{1} \leq v^{\#} \leq v_{2}$. There are two modes for the train's motion in this segment, since it will accelerate or keep steady until it reaches $x_{d e c}$ at time $t_{1}^{\#}$ with a speed of v_{1} and then decelerate until d at time $t_{2}^{\#}$ with a speed of v_{0}.

If $v^{\#}>v_{1}$, this means that the deceleration point lies between d_{1} and d. Existing $S P$ nodes after $S P[j]$ are removed, while two new $S P$ nodes are added, $S P[j+1]$ at the beginning of deceleration and $S P[j+2]$ at the end of it. In case $v^{\#}$ $=v_{1}$, the train maintains steady speed between $S P[j]$ and $S P[j+1]$. In case $x_{d e c}=$
$d_{1}, S P[j+1]$ is removed, so $S P[j+2]$ becomes $S P[j+1]$. Finally, execution returns from Algorithm 2 on Algorithm 1 with the train at the start of the new segment having a speed equal to the new speedLimit and and currentAcc $=0$. If Algorithm 2 returns False, Algorithm 1 terminates since the train started the path with a speed high enough that a deceleration to speedLimit is not possible.

Algorithm 1 ends by saving the new state in $S P$, proceeding by $t_{\text {min }}$. It is also checked whether the train has arrived at the position of the goal state but with a speed different than goalV, which means that it is impossible to reach it thus, the algorithm terminates.

4.1.1 Use case: Computing the speed profile of Example 3

This section demonstrates the operation of Algorithm 1 and Algorithm 2, displaying the various calculations done as the train is progressing through the segments of the path. Table 3 and Table 4 provide the path and the train T characteristics, as well as the init and the goal states for this example.

Algorithm 1 employs an iterative while-loop mechanism to continuously detect events as the train moves through the segments of the path. For that reason, the computational analysis is presented for each iteration of the algorithm in order to simulate its operation.

Initialization. Before the iterative procedure of detecting events, it is necessary to initialize all the necessary variables. Since the train is idle in the init state, current $V=$ initV $=0$. Additionally, all parts of the train reside at s_{0}, hence $h S g m=t S g m=0$. Due to the fact that the train is initially at the end of s_{0}, init $=$ $\left(\left(s_{0}, 0\right), 0\right)$ is converted to an equal state $\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$ that places the train at the start of $s_{1} . h S g m$ is incremented by one and hExit is set to be equal to the length of s_{1}.tExit is initialized using the following equation:

$$
\begin{aligned}
t \text { Exit }=l\left(s_{0}\right) & -\left(\sum_{i=0}^{1} l\left(s_{i}\right)-h E x i t-l(T)\right)=150-((150+150)-150-150) \\
& =150 \mathrm{~m}
\end{aligned}
$$

$S P$ is initialized using the converted init state and $t_{\text {total }}$ is set to 0 . Since $\operatorname{vmax}\left(s_{0}\right)=\operatorname{vaxax}\left(s_{1}\right)<\operatorname{vamax}(T)$, speedLimit is set to $\operatorname{vmax}\left(s_{1}\right)$, while currentAcc $=\operatorname{maxacc}(T)$, because currentV $<$ speedLimit. The subsequent step involves identifying which one of the three types of events will occur next, by computing $t_{\text {min }}=\min \left(t_{1}, t_{2}, t_{3}\right)$.
t_{1} and t_{2} concern the time needed for $\operatorname{tail}(T)$ to reach the end of s_{0} and head (T) to reach the end of s_{1}, respectively. They are computed as the roots of the quadratic equations:

$$
\begin{aligned}
& t_{1}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { current } V * t-t \text { Exit }=0 \\
& t_{2}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { current } V * t-h E x i t=0
\end{aligned}
$$

Since t Exit $=h$ Exit $=150$:

$$
\begin{aligned}
t_{1}=t_{2}:\left(\frac{1}{2}\right) & * 1.5 * t^{2}+0 * t-150=0=>\frac{3 t^{2}}{4}=150=>t_{1,2}=\sqrt{200} \\
& =14.14 \mathrm{~s}^{1}
\end{aligned}
$$

t_{3} is the time needed for the train to reach $\operatorname{maxv}(T)$ and is calculated as such:

$$
t_{3}=\frac{\text { speedLimit }- \text { currentV }}{\text { currentAcc }}=\frac{20-0}{1.5}=13.33 \mathrm{~s}
$$

[^0]
Iteration 1.

Table 5. Values of the parameters at the beginning of Iteration 1

Parameters	Value
SP $[-1]$	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
hExit	150 m
tExit	150 m
hSgm	1
tSgm	0
currentV	$0 \mathrm{~m} / \mathrm{s}$
currentAcc	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$20 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	0 s
$t_{\text {min }}\left(t_{3}\right)$	13.33 s

Table 5 lists all the variable values utilized by Algorithm 1 throughout its operation. Since $t_{\text {min }}=t_{3}$, the algorithm detects that the next event will occur when the train reaches $\operatorname{maxv}(T)$. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } *{t_{\min }}^{2}=0 * 13.33+\left(\frac{1}{2}\right) * 1.5 * 13.33^{2} \\
& =133.33 \mathrm{~m}
\end{aligned}
$$

currentV is set to be equal to $\operatorname{maxv}(T)$, while hExit $=t$ Exit $=t$ Exit $-p=$ 150-133.33 $=16.66 \mathrm{~m}$ and $t_{\text {total }}=t_{\text {total }}+t_{3}=0+13.33=13.33 \mathrm{~s}$. The algorithm updates the train's mode since it reached its $\operatorname{maxv}(T)$, by setting currentAcc $=0 . S P$ is updated with the new state: $\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$.

Moving on, in order to detect the next event, t_{1}, t_{2} and t_{3} are calculated. Because currentAcc $=0, t_{1}=t_{2}=\frac{\text { tExit }}{\text { currentV }}=\frac{\text { hExit }}{\text { currentV }}=\frac{16.66}{20}=0.83 \mathrm{~s}$, while $t_{3}=$ Infinite.

Iteration 2.

Table 6. Values of the parameters at the beginning of Iteration 2

Parameters	Value
SP $[-1]$	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
hExit	16.66 m
tExit	16.66 m
hSgm	1
tSgm	0
currentV	$20 \mathrm{~m} / \mathrm{s}$
currentAcc	$0 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$20 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	13.33 s
$t_{\text {min }}\left(t_{1,2}\right)$	0.83 s

Table 6 contains the values for the updated parameters at the start of Iteration 2. Considering that $t_{1}=t_{2}$, the next event concerns both $\operatorname{tail}(T)$ reaching the end of s_{0} and $\operatorname{head}(T)$ reaching the end of s_{1}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\min ^{2}}^{2}=20 * 0.83+\left(\frac{1}{2}\right) * 0 * 0.83^{2} \\
& =16.66 \mathrm{~m}
\end{aligned}
$$

currentV remains the same (currentAcc $=0)$, while h Exit $=t$ Exit $=$ tExit $-p=16.66-16.66=0 \mathrm{~m} \quad$ and $\quad t_{\text {total }}=t_{\text {total }}+t_{1,2}=13.33+0.83=$ 14.16 s .

Because of the first event $\left(t_{2}=t_{\text {min }}\right), h S g m$ is incremented to 2 (the train is about to enter s_{2}) and h Exit is set to $l\left(s_{2}\right)=800 \mathrm{~m}$. At this point, due to the rare cooccurance of two events, speedLimit is updated (line 12, Algorithm 1) even though tSgm is not yet updated. However, this issue is later resolved by re-
updating speedLimit after updating tSgm (line 22, Algorithm 1). Finally, since currentV $=$ speedLimit, Algorithm 2 is not applied.

Moving on, $\operatorname{tail}(T)$ is about to exit s_{0} hence, $t S g m$ is set to 1 and t Exit is set to $l\left(s_{1}\right)=150$. The new speedLimit is $\min \left(v \max \left(s_{1}\right), v \max \left(s_{2}\right), v \max (T)\right)=$ $\min (20,50,78)=20 \mathrm{~m} / \mathrm{s}$, that is equal to currentV, hence currentAcc remains 0. Finally, $S P$ is updated with the new state: $\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$.

As regards the detection of the next event, considering that currentAcc $=$ $0, t_{3}$ is set to infinite, while t_{1} and t_{2} are calculated as such:

$$
t_{1}=\frac{\text { tExit }}{\text { currentV }}=\frac{150}{20}=7.5 \mathrm{~s}, t_{2}=\frac{\text { hExit }}{\text { currentV }}=\frac{800}{20}=40 \mathrm{~s}
$$

Iteration 3.

Table 7. Entries of SP at the beginning of Iteration 3

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$

Table 8. Values of the parameters at the beginning of Iteration 3

Parameters	Value
hExit	800 m
tExit	150 m
hSgm	2
tSgm	1
currentV	$20 \mathrm{~m} / \mathrm{s}$
currentAcc	$0 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$20 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	14.16 s
$t_{\text {min }}\left(t_{1}\right)$	7.5 s

Table 7 includes all the entries of SP and Table 8 contains all the values for the updated parameters at the start of Iteration 3. Since $t_{\min }=t_{1}$, the next event occurs when $\operatorname{tail}(T)$ exits s_{1}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\min }{ }^{2}=20 * 7.5+\left(\frac{1}{2}\right) * 0 * 7.5^{2} \\
& =150 \mathrm{~m}
\end{aligned}
$$

currentV remains the same (currentAcc $=0$), while hExit $=h$ Exit $-p=$ $800-150=650 m, t$ Exit $=t$ Exit $-p=150-150=0 \mathrm{~m}$ and $t_{\text {total }}=t_{\text {total }}+$ $t_{1}=14.16+7.5=21.66 \mathrm{~s}$.
$\operatorname{tail}(T)$ is about to exit s_{1}, hence $t S g m$ is incremented to 2 and $t E x i t$ is set to $l\left(s_{2}\right)=800 \mathrm{~m}$. The new speedLimit is $\min \left(\operatorname{vanax}\left(s_{2}\right), v \max (T)\right)=$ $\min (50,78)=50 \frac{\mathrm{~m}}{\mathrm{~s}}>$ current V, hence currentAcc $=\operatorname{maxacc}(T)=1.5 \mathrm{~m} / \mathrm{s}^{2}$. Finally, $S P$ is updated with the new state: $\left(\left(s_{2}, 650\right), 20\right)$.

The next step concerns the detection of the next event, with t_{1}, t_{2} and t_{3} calculated as such:

$$
\begin{gathered}
t_{1}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV } * t-t \text { Exit }=0 \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+20 * t-800=0=>\frac{3}{4} t^{2}+20 t-800=0 \\
\Delta=20^{2}-4 * \frac{3}{4} *(-800)=2800 \\
t_{1}=\frac{-20+\sqrt{2800}}{6 / 4}=21.94 \mathrm{~s} \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+20 * t-650=0=>\frac{3}{4} t^{2}+20 t-650=0 \\
t_{2}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { current } V * t-h \text { Exit }=0 \\
\Delta=20^{2}-4 * \frac{3}{4} *(-650)=2350 \\
t_{2}=\frac{-20+\sqrt{2350}}{6 / 4}=18.98 \mathrm{~s} \\
t_{3}=\frac{\text { speedLimit }- \text { currentV }}{\text { currentAcc }}=\frac{50-20}{1.5}=20 \mathrm{~s}
\end{gathered}
$$

Iteration 4.

Table 9. Entries of SP at the beginning of Iteration 4

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$

Table 10. Values of the parameters at the beginning of Iteration 4

Parameters	Value
hExit	650 m
tExit	800 m
hSgm	2
tSgm	2
currentV	$20 \mathrm{~m} / \mathrm{s}$
currentAcc	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$50 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	21.66 s
$t_{\text {min }}\left(t_{2}\right)$	18.98 s

Table 9 includes all the entries of SP and Table 10 contains all the values for the updated parameters at the start of Iteration 4. The next event concerns head(T) entering s_{3}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\text {min }}+\left(\frac{1}{2}\right) * \text { currentAcc } *{t_{\text {min }}^{2}}^{2}=20 * 18.98+\left(\frac{1}{2}\right) * 1.5 * 18.98^{2} \\
& =650 \mathrm{~m}
\end{aligned}
$$

Since the train is accelerating, the updated currentV $=$ current $V+t_{\min } *$ currentAcc $=20+18.98 * 1.5=48.47 \mathrm{~m} / \mathrm{s}$, while hExit $=h$ Exit $-p=650-$
$650=0 \mathrm{~m}, \quad$ tExit $=t$ Exit $-p=800-650=150 \mathrm{~m}$ and $t_{\text {total }}=t_{\text {total }}+t_{2}=$ $21.66+18.98=40.65 \mathrm{~s}$.
$\operatorname{head}(T)$ is about to enter s_{3}, hence $h S g m$ is incremented to 3 and $h E x i t$ is set to $l\left(s_{3}\right)=700 \mathrm{~m}$. The new speedLimit is $\min \left(v \max \left(s_{2}\right), v \max \left(s_{3}\right), v \max (T)\right)=$ $\min (50,65,78)=50 \frac{\mathrm{~m}}{\mathrm{~s}}>\operatorname{current} V$, hence currentAcc $=\operatorname{maxacc}(T)=1.5 \mathrm{~m} / \mathrm{s}^{2}$. Finally, $S P$ is updated with the new state: $\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$.

In the final step of Iteration 4, the next event is detected by calculating t_{1}, t_{2} and t_{3} as such:

$$
\begin{gathered}
t_{1}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV } * t-t \text { Exit }=0 \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+48.47 * t-150=0=>\frac{3}{4} t^{2}+48.47 t-150=0 \\
\Delta=48.47^{2}-4 * \frac{3}{4} *(-150)=2799.34 \\
t_{1}=\frac{-48.47+\sqrt{2799.34}}{6 / 4}=2.95 \mathrm{~s} \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+48.47 * t-700=0=>\frac{3}{4} t^{2}+48.47 t-700=0 \\
t_{2}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { current } V * t-\text { hExit }=0 \\
\Delta=48.47^{2}-4 * \frac{3}{4} *(-700)=4449.34 \\
t_{2}=\frac{-48.47+\sqrt{4449.34}}{6 / 4}=12.15 \mathrm{~s} \\
t_{3}=\frac{\text { speedLimit }- \text { currentV }}{\text { currentAcc }}=\frac{50-48.47}{1.5}=1.02 \mathrm{~s}
\end{gathered}
$$

Iteration 5.

Table 11. Entries of SP at the beginning of Iteration 5

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
5	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$

Table 12. Values of the parameters at the beginning of Iteration 5

Parameters	Value
hExit	700 m
tExit	150 m
hSgm	3
tSgm	2
currentV	$48.47 \mathrm{~m} / \mathrm{s}$
currentAcc	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$50 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	40.65 s
$t_{\text {min }}\left(t_{3}\right)$	1.02 s

The next event occurs when the train reaches $\operatorname{maxv}(T)$. The distance p until this event is: $\quad p=$ currentV $* t_{\text {min }}+\left(\frac{1}{2}\right) *$ currentAcc $* t_{\text {min }}{ }^{2}=48.47 * 1.02+$ $\left(\frac{1}{2}\right) * 1.5 * 1.02^{2}=50 \mathrm{~m}$.

Since the train is accelerating, the updated currentV $=$ current $V+t_{\text {min }} *$ currentAcc $=48.47+1.02 * 1.5=50 \mathrm{~m} / \mathrm{s}, \quad$ while $\quad h$ Exit $=h E x i t-p=700-$
$50=650 m, \quad t$ Exit $=t$ Exit $-p=150-50=100 m$ and $t_{\text {total }}=t_{\text {total }}+t_{3}=$ $40.65+1.02=41.67 \mathrm{~s}$.

Since the train reached its maximum speed, currentAcc $=0$. Additionally, $S P$ is updated with the new state: $\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$. The final step of Iteration 5 concerns the detection of the next step by calculating t_{1} and t_{2} (t_{3} is set to infinite) as such: $t_{1}=\frac{\text { tExit }}{\text { current } V}=\frac{100}{50}=2 \mathrm{~s}, t_{2}=\frac{\text { hExit }}{\text { currentV }}=\frac{650}{50}=13 \mathrm{~s}$.

Iteration 6.

Table 13. Entries of SP at the beginning of Iteration 6

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
5	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$
6	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$

Table 14. Values of the parameters at the beginning of Iteration 6

Parameters	Value
hExit	650 m
tExit	100 m
hSgm	3
tSgm	2
currentV	$50 \mathrm{~m} / \mathrm{s}$
currentAcc	$0 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$50 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	41.67 s
$t_{\text {min }}\left(t_{1}\right)$	2 s

Since $t_{\text {min }}=t_{1}$, the next event concerns $\operatorname{tail}(T)$ exiting s_{2}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\min }^{2}=50 * 2+\left(\frac{1}{2}\right) * 1.5 * 2^{2} \\
& =100 \mathrm{~m}
\end{aligned}
$$

currentAcc $=0$, hence currentV remains the same, while hExit $=h$ Exit -$p=650-100=550 m, \quad$ tExit $=t$ Exit $-p=100-100=0 \mathrm{~m}$ and $t_{\text {total }}=$ $t_{\text {total }}+t_{1}=41.67+2=43.67 \mathrm{~s}$.
$\operatorname{tail}(T)$ is about to exit s_{2}, hence $t S g m$ is incremented to 3 and $t E x i t$ is set to $l\left(s_{3}\right)=700 \mathrm{~m}$. The new speedLimit is $\min \left(\operatorname{vanax}\left(s_{3}\right), v \max (T)\right)=$ $\min (65,78)=65 \frac{\mathrm{~m}}{\mathrm{~s}}>\operatorname{current} V$, hence $\operatorname{currentAcc}=\operatorname{maxacc}(T)=1.5 \mathrm{~m} / \mathrm{s}^{2}$. Finally, $S P$ is updated with the new state: $\left(\left(s_{3}, 550\right), 50\right)$.

In the final step of Iteration 6, the next event is detected by calculating t_{1}, t_{2} and t_{3} as such:

$$
\begin{gathered}
t_{1}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV } * t-t \text { Exit }=0 \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+50 * t-700=0=>\frac{3}{4} t^{2}+50 t-700=0 \\
\Delta=50^{2}-4 * \frac{3}{4} *(-700)=4600 \\
t_{1}=\frac{-50+\sqrt{4600}}{6 / 4}=11.88 \mathrm{~s} \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+50 * t-550=0=>\frac{3}{4} t^{2}+50 t-550=0 \\
t_{2}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { current } V * t-h E x i t=0 \\
\Delta=50^{2}-4 * \frac{3}{4} *(-550)=4150 \\
t_{2}=\frac{-50+\sqrt{4150}}{6 / 4}=9.61 \mathrm{~s} \\
t_{3}=\frac{\text { speedLimit }- \text { currentV }}{\text { currentAcc }}=\frac{65-50}{1.5}=10 \mathrm{~s}
\end{gathered}
$$

Iteration 7.

Table 15. Entries of SP at the beginning of Iteration 7

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
5	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$
6	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$
7	$\left(\left(s_{3}, 550\right), 50\right)$

Table 16. Values of the parameters at the beginning of Iteration 7

Parameters	Value
hExit	550 m
tExit	700 m
hSgm	3
tSgm	3
currentV	$50 \mathrm{~m} / \mathrm{s}$
currentAcc	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$65 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	43.67 s
$t_{\text {min }}\left(t_{2}\right)$	9.61 s

The next event occurs when $\operatorname{head}(T)$ enters s_{4}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\text {min }}+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\text {min }^{2}}=50 * 9.61+\left(\frac{1}{2}\right) * 1.5 * 9.61^{2} \\
& =550 \mathrm{~m}
\end{aligned}
$$

Since the train is in accelerating mode, currentV $=$ currentV $+t_{\text {min }} *$ currentAcc $=50+9.61 * 1.5=64.42 \mathrm{~m} / \mathrm{s}$, while hExit $=$ hExit $-p=550-$ $550=0 \mathrm{~m}, \quad$ EExit $=t$ Exit $-p=700-550=150 \mathrm{~m}$ and $t_{\text {total }}=t_{\text {total }}+t_{2}=$ $43.67+9.61=53.28 \mathrm{~s}$.
$\operatorname{head}(T)$ is about to enter s_{4}, hence $h S g m$ is incremented to 4 and $h E x i t$ is set to $l\left(s_{4}\right)=600 \mathrm{~m}$. The new speedLimit is $\min \left(v \max \left(s_{3}\right), v \max \left(s_{4}\right), v \max (T)\right)=$ $\min (65,85,78)=65 \frac{\mathrm{~m}}{\mathrm{~s}}>\operatorname{current} V$, hence currentAcc $=\operatorname{maxacc}(T)=1.5 \mathrm{~m} / \mathrm{s}^{2}$. Finally, $S P$ is updated with the new state: $\left(\left(\left(s_{3}, s_{4}\right), 600\right), 64.42\right)$.

Iteration 7 concludes by calculating t_{1}, t_{2} and t_{3} as such:

$$
\begin{gathered}
t_{1}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV } * t-\text { tExit }=0 \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+64.42 * t-150=0=>\frac{3}{4} t^{2}+64.42 t-150=0 \\
\Delta=64.42^{2}-4 * \frac{3}{4} *(-150)=4599.93 \\
t_{1}=\frac{-64.42+\sqrt{4599.93}}{6 / 4}=2.26 \mathrm{~s} \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+64.42 * t-600=0=>\frac{3}{4} t^{2}+64.42 t-600=0 \\
t_{2}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV }^{2} * t-\text { tExit }=0 \\
\Delta=64.42^{2}-4 * \frac{3}{4} *(-600)=5949.93 \\
t_{2}=\frac{-64.42+\sqrt{5949.93}}{6 / 4}=8.47 \mathrm{~s} \\
t_{3}=\frac{\text { speedLimit }- \text { currentV }}{\text { currentAcc }}=\frac{65-64.42}{1.5}=0.38 \mathrm{~s}
\end{gathered}
$$

Iteration 8.

Table 17. Entries of SP at the beginning of Iteration 8

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
5	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$
6	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$
7	$\left(\left(s_{3}, 550\right), 50\right)$
8	$\left(\left(\left(s_{3}, s_{4}\right), 600\right), 64.42\right)$

Table 18. Values of the parameters at the beginning of Iteration 8

Parameters	Value
hExit	600 m
tExit	150 m
hSgm	4
tSgm	3
currentV	$64.42 \mathrm{~m} / \mathrm{s}$
currentAcc	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$65 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	53.28 s
$t_{\text {min }}\left(t_{3}\right)$	0.38 s

The next event occurs when the train reaches $\operatorname{maxv}(T)$. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\text {min }^{2}}=64.42 * 0.38+\left(\frac{1}{2}\right) * 1.5 * 0.38^{2} \\
& =25 \mathrm{~m}
\end{aligned}
$$

Since the train is in accelerating mode, currentV $=$ current $V+t_{\text {min }} *$ currentAcc $=64.42+0.38 * 1.5=65 \mathrm{~m} / \mathrm{s}, \quad$ while \quad hExit $=h E x i t-p=600-$ $25=575 m, \quad$ tExit $=t$ Exit $-p=150-25=125 \mathrm{~m}$ and $t_{\text {total }}=t_{\text {total }}+t_{3}=$ $53.28+0.38=53.66 \mathrm{~s}$. The algorithm updates the train's mode since it reached its $\operatorname{maxv}(T)$, by setting currentAcc $=0 . S P$ is updated with the new state: $\left(\left(\left(s_{3}, s_{4}\right)\right.\right.$, 575), 65).

As regards the detection of the next event, considering that currentAcc $=$ $0, t_{3}$ is set to infinite, while t_{1} and t_{2} are calculated as such:

$$
\begin{aligned}
& t_{1}=\frac{\text { tExit }}{\text { currentV }}=\frac{125}{65}=1.92 \mathrm{~s} \\
& t_{2}=\frac{h \text { Exit }}{\text { currentV }}=\frac{575}{65}=8.84 \mathrm{~s}
\end{aligned}
$$

Iteration 9.

Table 19. Entries of SP at the beginning of Iteration 9

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
5	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$
6	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$
7	$\left(\left(s_{3}, 550\right), 50\right)$
8	$\left(\left(\left(s_{3}, s_{4}\right), 600\right), 64.42\right)$
9	$\left(\left(\left(s_{3}, s_{4}\right), 575\right), 65\right)$

Table 20. Values of the parameters at the beginning of Iteration 9

Parameters	Value
hExit	575 m
tExit	125 m
hSgm	4
tSgm	3
currentV	$65 \mathrm{~m} / \mathrm{s}$
currentAcc	$0 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$65 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	53.66 s
$t_{\text {min }}\left(t_{1}\right)$	1.92 s

The next event occurs when $\operatorname{tail}(T)$ exits s_{3}. The distance p until this event is:

$$
\begin{aligned}
& p=\text { currentV } * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\min }^{2}=65 * 1.92+\left(\frac{1}{2}\right) * 0 * 1.92^{2} \\
& \\
& =125 \mathrm{~m}
\end{aligned}
$$

The train is not accelerating, hence currentV remains steady, while $h E x i t=$ hExit $-p=575-125=450 m, \quad t$ Exit $=t$ Exit $-p=125-125=0 m \quad$ and $t_{\text {total }}=t_{\text {total }}+t_{1}=53.66+1.92=55.58 \mathrm{~s}$.
$\operatorname{tail}(T)$ is about to exit s_{3}, hence $t S g m$ is incremented to 4 and t Exit is set to $l\left(s_{4}\right)=600 \mathrm{~m}$. The new speedLimit is $\min \left(v \max \left(s_{4}\right), v \max (T)\right)=\min (85,78)=$ $78 \frac{\mathrm{~m}}{\mathrm{~s}}>\operatorname{current} V$, hence $\operatorname{currentAcc}=\operatorname{maxacc}(T)=1.5 \mathrm{~m} / \mathrm{s}^{2}$. Finally, $S P$ is updated with the new state: $\left(\left(s_{4}, 450\right), 65\right)$.

Iteration 9 concludes by calculating t_{1}, t_{2} and t_{3} as such:

$$
t_{1}:\left(\frac{1}{2}\right) * \operatorname{currentAcc} * t^{2}+\text { current } V * t-t \text { Exit }=0
$$

$$
\begin{gathered}
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+65 * t-600=0=>\frac{3}{4} t^{2}+65 t-600=0 \\
\Delta=65^{2}-4 * \frac{3}{4} *(-600)=6025 \\
t_{1}=\frac{-65+\sqrt{6025}}{6 / 4}=8.41 \mathrm{~s} \\
t_{2}:\left(\frac{1}{2}\right) * \text { currentAcc } * t^{2}+\text { currentV } * t-\text { tExit }=0 \\
=>\left(\frac{1}{2}\right) * 1.5 * t^{2}+65 * t-450=0=>\frac{3}{4} t^{2}+65 t-450=0 \\
\Delta=65^{2}-4 * \frac{3}{4} *(-450)=5575 \\
t_{2}=\frac{-65+\sqrt{5575}}{6 / 4}=6.44 \mathrm{~s} \\
t_{3}=\frac{\text { speedLimit }- \text { currentV }}{\text { currentAcc }}=\frac{78-65}{1.5}=8.66 \mathrm{~s}
\end{gathered}
$$

Iteration 10.

Table 21. Entries of SP at the beginning of Iteration 10

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
5	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$
6	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$
7	$\left(\left(s_{3}, 550\right), 50\right)$
8	$\left(\left(\left(s_{3}, s_{4}\right), 600\right), 64.42\right)$
9	$\left(\left(\left(s_{3}, s_{4}\right), 575\right), 65\right)$
10	$\left(\left(s_{4}, 450\right), 65\right)$

Table 22. Values of the parameters at the beginning of Iteration 10

Parameters	Value
hExit	450 m
tExit	600 m
hSgm	4
tSgm	4
currentV	$65 \mathrm{~m} / \mathrm{s}$
currentAcc	$1.5 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$78 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	55.58 s
$t_{\text {min }}\left(t_{2}\right)$	6.44 s

The next event occurs when head(T) enters s_{f}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\min }^{2}=65 * 6.44+\left(\frac{1}{2}\right) * 1.5 * 6.44^{2} \\
& =450 \mathrm{~m}
\end{aligned}
$$

Since the train is in accelerating mode, currentV $=$ currentV $+t_{\text {min }} *$ currentAcc $=65+6.44 * 1.5=74.66 \mathrm{~m} / \mathrm{s}$, while hExit $=$ hExit $-p=450-$ $450=575 \mathrm{~m}$, tExit $=t$ Exit $-p=600-450=150 \mathrm{~m}$ and $t_{\text {total }}=t_{\text {total }}+t_{2}=$ $55.58+6.44=62.03 s$.
$\operatorname{head}(T)$ is about to enter s_{f}, hence $h S g m$ is incremented to 5 and hExit is set to $l\left(s_{5}\right)=150 \mathrm{~m}$. The new speedLimit is $\min \left(v \max \left(s_{4}\right), v \max \left(s_{f}\right), v \max (T)\right)=\min (85,10,78)=10 \frac{\mathrm{~m}}{\mathrm{~s}} . S P$ is updated with the new state: $\left(\left(s_{f}, 150\right), 74.66\right)$. At this point, it is checked whether Algorithm 2 must be applied or not, by comparing the effective speedLimit and currentV. Due

Methodology

to the fact that currentV is higher than the speedLimit (the train is about to enter a segment with a speed limit of $10 \mathrm{~m} / \mathrm{s}$ having a speed of $74.66 \mathrm{~m} / \mathrm{s}$), Algorithm 2 is applied.

Algorithm 2 starts searching through previous speed profile segments (defined by two consecutive speed profile nodes), in order to find the optimal point to decelerate. v_{0} represents the desired speed for the train at the start of s_{f}, that is $v \max \left(s_{f}\right)=10 \mathrm{~m} / \mathrm{s}$. Finally, j is used as an index of the $S P$ list, initialized as length $(S P)-2=11-2=9$.

Algorithm 2 Iteration 1. The process begins by examining the last two entries of $S P: S P[j]=\left(\left(s_{4}, 450\right), 65\right), S P[j+1]=\left(\left(s_{f}, 150\right), 74.66\right) . v_{1}$ and v_{2} are set to 65 and $74.66 \mathrm{~m} / \mathrm{s}$, respectively. Since $v_{2}>v_{1}$, the train was in accelerating mode and the algorithm continues, by setting d_{1} (cumulative travelled distance until $S P[j]$) to 1950 m and d (cumulative travelled distance at $S P[j+1]$) to 2400 m . Next, based on the train's mode in the current speed profile segment, currentAcc $=\operatorname{maxacc}(t)$ and the deceleration point $x_{d e c}$ is computed as such:

$$
\begin{gathered}
x_{\text {dec }}=\frac{v_{0}^{2}-v_{1}^{2}+2 *\left(\text { currentAcc } * d_{1}+\operatorname{maxdec}(T) * d\right)}{2 *(\operatorname{currentAcc}+\operatorname{maxdec}(T))} \\
= \\
\frac{10^{2}-65^{2}+2 *(1.5 * 1950+0.5 * 2400)}{2 *(1.5+0.5)}=\frac{4125}{4}=1031.25 \mathrm{~m}
\end{gathered}
$$

The speed of the train at $x_{d e c}$, that is $v^{\#}$, is computed as such:

$$
\begin{gathered}
v^{\#}=\sqrt{v_{1}^{2}+2 * \text { currentAcc } *\left(x_{\text {dec }}-d_{1}\right)}=\sqrt{65^{2}+2 * 1.5 *(1031.25-1950)} \\
=38.32 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Since $v^{\#}<v_{1}$, the train's deceleration should have started at previous speed profile segments, hence Algorithm 2 continues its iteration. Table 23 contains the calculations of Algorithm 2 for all previous speed profile segments until the optimal deceleration point is found. The procedure lasted a total of 7 iterations, the algorithm found the optimal deceleration point at s_{2}, thus completing the
backtracking procedure. In that speed profile segment, instead of accelerating until reaching a speed of $48.47 \mathrm{~m} / \mathrm{s}$, the train will now accelerate to a speed of 40.46 m / s and then immediately start decelerating, until it reaches the start of s_{f}, with the desired speed of $10 \mathrm{~m} / \mathrm{s}$. As mentioned previously, Figure 3 presents the speed profile at the end of segment s_{4}, as the train is about to enter s_{f} and violate its speed limit. The result of the backtracking procedure is shown in Figure 4.

Table 23. Values of the backtracking variables computed by Algorithm 2

Iteration	\mathbf{j}	$\boldsymbol{S P}[\boldsymbol{j}]$	$\boldsymbol{S P}[\boldsymbol{j}+\mathbf{1}]$	$\boldsymbol{d}_{\mathbf{1}}$	$\boldsymbol{x}_{\boldsymbol{d e c}}$	$\boldsymbol{v}^{\#}$
2	8	$\left(\left(\left(s_{3}, s_{4}\right), 575\right), 65\right)$	$\left(\left(s_{4}, 450\right), 65\right)$	1825	-1725	65
3	7	$\left(\left(\left(s_{3}, s_{4}\right), 600\right), 64.42\right)$	$\left(\left(\left(s_{3}, s_{4}\right), 575\right), 65\right)$	1800	937.5	39.52
4	6	$\left(\left(s_{3}, 550\right), 50\right)$	$\left(\left(\left(s_{3}, s_{4}\right), 600\right), 64.42\right)$	1250	937.5	39.52
5	5	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$	$\left(\left(s_{3}, 550\right), 50\right)$	1150	0	50
6	4	$\left(\left(\left(s_{2}, s_{3}\right), 700\right), 48.47\right)$	$\left(\left(\left(s_{2}, s_{3}\right), 650\right), 50\right)$	1100	862.5	40.46
$\mathbf{7}$	$\mathbf{3}$	$\mathbf{((\boldsymbol { s } _ { \mathbf { 2 } } , \mathbf { 6 5 0 }) , \mathbf { 2 0) }}$	$\mathbf{((\boldsymbol { s } _ { \mathbf { 2 } } , \boldsymbol { s } _ { \mathbf { 3 } }) , \mathbf { 7 0 0 }) , \mathbf { 4 8 . 4 7) }}$	$\mathbf{4 5 0}$	$\mathbf{8 6 2 . 5}$	$\mathbf{4 0 . 4 6}$

The final step of Algorithm 2 concerns updating $S P$ with the changes produced by the backtracking procedure. Firstly, all entries of $S P$ after j are removed. Similarly, $t_{\text {total }}$ is reverted back to the value it had at state $S P$ [3], that is 21.66 s . Moving on, since $v^{\#}>v_{1}$, two new states will be added to $S P$, one after the train's acceleration until reaching $x_{d e c}$ and one after the train's deceleration until the start of s_{f}. The train accelerates for $t_{1}^{\#}=\frac{v^{\#}-v_{1}}{\operatorname{maxacc}(T)}=\frac{40.46-20}{1.5}=13.64 \mathrm{~s}$, travelling currentV $* t_{1}^{\#}+\frac{1}{2} *$ currentAcc $*\left(t_{1}^{\#}\right)^{2}=20 * 13.64+\frac{1}{2} * 1.5 * 13.64^{2}=$ 412.5 m , which means that at the deceleration point, hExit $=650-412.5=$ 237.5 m , leading to the first new state: $\left(\left(s_{2}, 237.5\right), 40.46\right)$. Afterwards, the train decelerates for $t_{2}^{\#}=\frac{v^{\#}-v_{0}}{\operatorname{maxdec}(T)}=\frac{40.46-10}{0.5}=60.93 \mathrm{~s}$, travelling currentV $* t_{2}^{\#}-\frac{1}{2} *$ currentAcc $*\left(t_{2}^{\#}\right)^{2}=40.46 * 60.93-\frac{1}{2} * 0.5 * 60.93^{2}=1537.5 \mathrm{~m}$, until it reaches

Methodology

the start of s_{f}, leading to the second new state: $\left(\left(\left(s_{4}, s_{f}\right), 150\right), 10\right)$. Finally, $t_{\text {total }}=$ $t_{\text {total }}+t_{1}^{\#}+t_{2}^{\#}=21.66+13.64+60.93=96.23 \mathrm{~s}$, currentV takes the value of v_{0}, currentAcc $=0$ and execution returns from Algorithm 2 to Algorithm 1.

As regards the detection of the next event, considering that currentAcc $=$ $0, t_{3}$ is set to infinite, while t_{1} and t_{2} are calculated as such:

$$
t_{1}=\frac{\text { tExit }}{\text { current } V}=\frac{150}{10}=15 \mathrm{~s}, t_{2}=\frac{\text { hExit }}{\text { current } V}=\frac{150}{10}=15 \mathrm{~s}
$$

Iteration 11.

Table 24. Entries of SP at the beginning of Iteration 11

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
10	$\left(\left(s_{2}, 237.5\right), 40.46\right)$.
10	$\left.\left(\left(s_{4}, s_{f}\right), 150\right), 10\right)$

Table 25. Values of the parameters at the beginning of Iteration 11

Parameters	Value
hExit	150 m
tExit	300 m
hSgm	5
tSgm	4
currentV	$10 \mathrm{~m} / \mathrm{s}$
currentAcc	$0 \mathrm{~m} / \mathrm{s}^{2}$
speedLimit	$10 \mathrm{~m} / \mathrm{s}$
$t_{\text {total }}$	96.23 s
$t_{\text {min }}\left(t_{1,2}\right)$	15 s

The next events occur simultaneously when head (T) reaches the end of s_{f} and $\operatorname{tail}(T)$ reaches the start of s_{f}. The distance p until this event is:

$$
\begin{aligned}
p=\text { currentV } & * t_{\min }+\left(\frac{1}{2}\right) * \text { currentAcc } * t_{\text {min }^{2}}^{2}=10 * 15+\left(\frac{1}{2}\right) * 0 * 15^{2} \\
& =150 \mathrm{~m}
\end{aligned}
$$

currentV remains at $10 \mathrm{~m} / \mathrm{s}$ since currentAcc $=0$, while the new speedLimit $=$ goalV $=0 \frac{\mathrm{~m}}{\mathrm{~s}}<$ current V. Hence, Algorithm 2 is applied once again since the train is about to reach the goal state with a speed of $10 \mathrm{~m} / \mathrm{s}$, that is higher than goalV $=0 \mathrm{~m} / \mathrm{s}$.

At this case, the first speed profile segment examined by Algorithm 2 can accommodate the train's deceleration. Table 26 contains the result of Algorithm 2. $v^{\#}=v_{1}$ and $x_{d e c}>d_{1}$, hence after removing $S P[j+1]$, two new states are added, one after the train reaches $x_{\text {dec }}$ with a steady speed and another when it finishes its deceleration at the end of s_{f}. Similarly, $t_{\text {total }}$ is reverted back to the value it had at the state $S P[j]$, that is $96.23 s$.

Table 26. Values of the backtracking variables computed by Algorithm 2

Iteration	\mathbf{j}	$\boldsymbol{S P}[\boldsymbol{j}]$	$\boldsymbol{S P}[\boldsymbol{j}+\mathbf{1}]$	$\boldsymbol{d}_{\mathbf{1}}$	$\boldsymbol{x}_{\boldsymbol{d e c}}$	$\boldsymbol{v}^{\#}$
1	4	$\left(\left(\left(s_{4}, s_{f}\right), 150\right), 10\right)$	$\left(\left(\left(s_{f}\right), 0\right), 10\right)$	2400	2450	10

The train will maintain its speed until $x_{\text {dec }}$, for $t_{1}^{\#}=\frac{x_{\text {dec }}-d_{1}}{\text { currentV }}=\frac{2450-2400}{10}=$ 5 s , travelling current $V * t_{1}^{\#}=50 \mathrm{~m}$ and leading to the first new state: ($\left(s_{f}, 100\right)$, 10). Moving on, the train will start decelerating for $t_{2}^{\#}=\frac{v^{\#}-v_{0}}{\operatorname{maxdec}(T)}=\frac{10-0}{0.5}=20 \mathrm{~s}$, travelling currentV $* t_{2}^{\#}-\frac{1}{2} * \operatorname{currentAcc} *\left(t_{2}^{\#}\right)^{2}=10 * 20-\frac{1}{2} * 0.5 * 20^{2}=$ 100 m , until it reaches the start of s_{f}, leading to the second new state: $\left(\left(s_{f}, 0\right), 0\right)$, that is the goal state. Finally, $t_{\text {total }}=96.23+5+20=121.24 \mathrm{~s}$, currentV takes the value of v_{0}, currentAcc $=0$ and execution returns from Algorithm 2 to Algorithm 1. Since $S P[-1]=$ goal, the while-loop of Algorithm 1 terminates.

Table 27 includes the result of Algorithm 1, that is the optimal speed profile for Example 3.

Table 27. The final entries of SP at the end of Algorithm 1

Iteration	State
1	$\left(\left(\left(s_{0}, s_{1}\right), 150\right), 0\right)$
2	$\left(\left(\left(s_{0}, s_{1}\right), 16.66\right), 20\right)$
3	$\left(\left(\left(s_{1}, s_{2}\right), 800\right), 20\right)$
4	$\left(\left(s_{2}, 650\right), 20\right)$
10	$\left(\left(s_{2}, 237.5\right), 40.46\right)$.
10	$\left(\left(\left(s_{4}, s_{f}\right), 150\right), 10\right)$
11	$\left(\left(s_{f}, 100\right), 10\right)$
11	$\left(\left(s_{f}, 0\right), 0\right)$

4.2 Shortest Path Finding

```
Algorithm 3 Shortest path with A*
Input: \(T, G\), init \(=\left(\left(s_{0}, . ., s_{k}\right)\right.\), init \(\left.X\right)\), init \(\left.V\right)\),
goal \(=\left(\left(s_{m}, . ., s_{f}\right)\right.\), goal \(\left.X\right)\), goalV \()\)
Output: \(S P_{\text {dict }}[\min (\) openDict \()]\), min(openDict)
    Initialize start, openDict.
    openDict \(\leftarrow\) generatePaths \((G\), start \()\)
    openDict \(\leftarrow\) expandPaths \((G\), openDict \()\)
    For path \(\in\) openDict, openDict \([\) path \(]=f(\) path \()\)
    Update \(S P_{\text {dict }}\).
    while openDict is not empty do
        current \(\leftarrow \min (\) openDict \()\).
        openDict \(\leftarrow\) openDict - current
        current \(\leftarrow\) generatePaths \((G\), current \()\)
        successors \(\leftarrow\) expandPaths(G, current)
        For path \(\in\) successors, successors \([\) path \(]=f(\) path \()\)
        Update \(S P_{\text {dict }}\).
        openDict \(\leftarrow\) openDict \(\cup\) successors
        lastState \(\leftarrow\left(S P_{\text {dict }}[\min (\right.\) successors \(\left.)]\right)[-1]\)
        if lastState \(=\) goal then
            return \(S P_{\text {dict }}[\min (\) successors \()], \min (\) successors \()\).
        end if
    end while
```

Algorithm 3. Shortest path with A^{*}
In this section we employ the A^{*} algorithm to compute the shortest path in terms of time for the general form of the problem, that is over an arbitrary graph. Algorithm 3 takes as input a Problem (T, G, init, goal) and outputs the solution, that is the pair (path, SP) (if it exists). openDict contains all the discovered paths and is initialized to include only the start path, that is a sequence of nodes $\left(u_{0}, u_{1}, \ldots, u_{k}, s_{k}\right)$, defined by the segments $\left(s_{0}, . ., s_{k}\right)$ in init. For each path in openDict, generatePaths() (Function 4) iterates through the outgoing edges (of the last vertex of the path), generating new paths (which are extensions of the current path, with a single or more segments added to it) that are stored temporarily in neighbors, before entering openDict. In the example of Figure 2, $s_{k}=s_{0}$ with $s_{0}=(S, A)$ hence, the start path is (S, A). Using the neighboring nodes B and C, extended paths (S, A, B) and (S, A, C) are created.

```
function GENERATEPATHS ( \(G\), path)
    node \(\leftarrow\) path \([-1]\)
    for \((u, v)\) in G.edges do
            if \(u=\) node then
                path \(\leftarrow(\) node,\(v)\)
                neighbors.insert(path)
            end if
        end for
return neighbors
end function
```

Function 4. Connect the last vertex of path with its neighboring nodes

```
function EXPANDPATHS(G, paths)
    for path in paths do
            v\leftarrowpath[-1]
            while}v\mathrm{ not a junction AND }v\not=\mp@subsup{v}{f}{}\mathrm{ do
                extension }\leftarrow\mathrm{ generatePaths (G,v)
                v\leftarrowextension[-1]
                path}\leftarrow\mathrm{ path }\cup
            end while
            expandedPaths.insert(path)
    end for
return expandedPaths
end function
```

Function 5. Expand all paths in paths until the first junction
In the next step, these paths are further expanded until the first junction, by applying the expandPaths() function (Function 5). This function takes as input a list of paths and for each path (saved as a sequence), it iteratevily expands it by applying the generatePaths() function on its last node v. If v has a single outgoing edge, it has a single neighbor and the generatePaths() function returns only one path (of two nodes) that is stored in the set extension. The last element of extension is the new node, that is added to the path. Moreover, if v has multiple outgoing edges or it is the destination node (the end of segment s_{f}, that is v_{f}), the path is not expanded. The expandedPaths are stored in openDict. In our example this means that the path (S, A, B) is expanded into (S, A, B, D, G) while path (S, A, C) remains unchanged, since node C has more than one outgoing edges.

As mentioned previously, Algorithm 1 stores train states in the list $S P$. In contrast, Algorithm 3 handles multiple paths, each one having its own $S P$ list. Whenever a path is expanded, its $S P$ is used as the starting point. This functionality is implemented by using the dictionary $S P_{\text {dict }}$ that stores the $S P$ arraylist for each path. openDict is a another dictionary as well; the keys identify all the discovered paths, while the values concern the f values for a particular path.

A* scores all paths in openDict with their f value. The g function makes use of Algorithm 1, in order to calculate the traversal time for each path, reaching the end of the path with the maximum possible speed, irrelevant to the next segments. In our example, the g values for paths (S, A, B, D, G) and (S, A, C) are 59.16 and 33.15 seconds respectively. The f function values for each path are computed in the usual way using an admissible heuristic function h that computes the time needed to travel the straight line distance between the last node of a path and the destination node using $\operatorname{maxv}(T)$.

The successors dictionary contains the expansions of the current path with neighboring nodes. In our example this means that path (S, A, C) generates the paths (S, A, C, E) and (S, A, C, F). Path (S, A, C, F) is expanded to path (S, A, C, F, H) and path (S, A, C, E) is expanded to path (S, A, C, E, H) since there is no junction at nodes F and E. After the calculations of the f, g and h values, $S P_{\text {dict }}$ is updated with the new paths and their $S P$ arraylists, while openDict and successors are merged. Note that \min (successors) denotes the key of successors with the lowest f value. Moving on, the shortest path in successors is selected, setting its final state as lastState. If lastState = goal, a solution is found, the algorithm terminates and returns the speed profile of the solution path as well as, the optimal path.

Figure 5. Speed and Position vs. time graph for the optimal path
Figure 5 presents the optimal speed profile for the shortest path (S, A, C, F, H) that has a duration of 91.02 seconds.

4.2.1 Use case: Finding the shortest path of Example 2

In this section, the operation of Algorithm 3 is showcased, when computing the shortest path in terms of time in a railway network graph, specifically that of Example 2. Figure 2 presents the railway network, consisting of 10 vertices and 12 edges. Each edge s is labeled with $l(s)$ and $v \max (s)$. The train T characteristics, as well as the goal state are included in Table 2, while init $=\left(\left(s_{0}, 0\right), 0\right)$. Algorithm 3 employs an iterative while-loop mechanism to examine and evaluate nodes of the network graph. For that reason, the computational analysis is presented for each iteration of the algorithm in order to simulate its operation.

Initialization. The start path is defined by the segments $\left(s_{0}, . ., s_{k}\right)$ in init. For this example, $s_{k}=s_{0}$ with $s_{0}=(S, A)$ hence, the start path is (S, A). openDict is initialized using the start path: openDict $=\{(S, A): 0\}$.

Moving on, the first path is generated by connecting the last node of start, that is A, with its neighboring nodes, which are B and C, using the generatePaths () function. The paths generated by this function are stored in
openDict $=\{(S, A, B): 0,(S, A, C): 0\}$. Next, each generated path is extended by adding the neighbor of its final node until a junction node (leads to multiple nodes) is met. For the current example, this means that path (S, A, C) is not extended since C is already a junction node, while path (S, A, B) is extended into path (S, A, B, D, G). openDict is updated with the extended paths: openDict $=$ $\{(S, A, B, D, G): 0,(S, A, C): 0\}$. Figure 6 illustrates the first available paths detected by Algorithm 3, with their nodes marked with a blue color.

Figure 6. The first available paths of Example 2
At this point, for every path in openDict, the f values are calculated. Firstly, the g values for each path are computed using Algorithm 1, which calculates the traversal time, reaching the end of the path with $\operatorname{maxv}(T)(75 \mathrm{~m} / \mathrm{s}$ for Example 2), irrelevant to the next segments. These values are stored in openDict $=$ $\{(S, A, B, D, G): 59.16,(S, A, C): 33.15\}$. Next, the f values are computed, by adding the heuristic function values of each path to their corresponding g values. Each node in the railway network G is given a straight-line distance estimation with respect to the destination node T, the values of which are included in Table 28.

Table 28. Straight-line distance estimations for Example 2

Node	Straight-line distance
A	2000
B	1400
C	1200
D	900
E	900
F	500
G	500
H	50
T	0

The h and f values for each path are calculated as such:

$$
\begin{gathered}
h(S, A, B, D, G)=\frac{\text { Straight line distance of node } G}{\operatorname{maxv}(T)}=\frac{500}{75}=6.66 \\
h(S, A, C)=\frac{\text { Straight line distance of node } C}{\operatorname{maxv}(T)}=\frac{1200}{75}=16 \\
f(S, A, B, D, G)=g(S, A, B, D, G)+h(S, A, B, D, G)=59.16+6.66=65.82 \\
f(S, A, C)=g(S, A, C)+h(S, A, C)=33.15+16=49.15
\end{gathered}
$$

openDict is updated with the f values, while the computed speed profiles for each path are stored in $S P_{\text {dict }}$. Table 29 includes the entries of $S P_{\text {dict }}$ after the computation of the speed profiles.

Table 29. Speed profiles stored in $S P_{\text {dict }}$ for each discovered path

Path	Speed Profile
	$\left(\left(\left(s_{0}, s_{2}\right), 800\right), 0\right)$,
$(S, A, C)=\left(s_{0}, s_{2}\right)$	$\left(\left(\left(s_{0}, s_{2}\right), 666.66\right), 20.0\right)$,
	$\left(\left(\left(s_{2}, 650.0\right), 20.0\right)\right.$,
	$\left(\left(\left(s_{2}, 0\right), 48.47\right)\right.$

	$\left(\left(\left(s_{0}, s_{1}\right), 500\right), 0\right)$,
	$\left(\left(\left(s_{0}, s_{1}\right), 366.66\right), 20.0\right)$,
	$\left(\left(s_{1}, 350.0\right), 20.0\right)$,
$(S, A, B, D, G)=\left(s_{0}, s_{1}, s_{3}, s_{6}\right)$	$\left(\left(s_{1}, 183.33\right), 30.0\right)$,
	$\left(\left(\left(s_{1}, s_{3}\right), 500\right), 30.0\right)$,
	$\left(\left(s_{3}, 350.0\right), 30.0\right)$,
	$\left(\left(s_{3}, 116.66\right), 40.0\right)$,
	$\left(\left(\left(s_{3}, s_{6}\right), 850\right), 40.0\right)$,
	$\left(\left(s_{6}, 700.0\right), 40.0\right)$,
	$\left(\left(s_{6}, 0\right), 60.82\right)$

Iteration 1. The first step concerns selecting the current path, that is the path with lowest f value in openDict hence, current $=(S, A, C)$. The current path is removed from openDict. Moving on, the generatePaths() is applied on the current path, connecting node C with its neighbors. In that way, paths (S, A, C, E) and (S, A, C, F) are created and then extended using the extendPaths() function, leading to paths (S, A, C, E, H, T) and (S, A, C, F, H, T), that are stored in successors.

In the next step, the g values are calculated for each path in successors. Note that since the speed profile is already computed for path (S, A, C), Algorithm 1 is only applied exclusively on the extensions of the path, which are (C, E, H, T) and (C, F, H, T). This is possible because the speed profiles for each path are stored in $S P_{\text {dict }}$, hence speed profile computations for path extensions can continue from the final state of each path. However, instead of using the final state, the penultimate one is used in order to allow for Algorithm 1 to check whether a deceleration is needed before starting the computation of the speed profile of the path's extension. The reason behind is the fact that the speed limit of the extension's first segment is not known beforehand. Hence, it is quite possible that the train is not in a state (in terms of its current speed) to enter the new segment

Methodology

and a deceleration is needed in earlier points of the path's speed profile. For example, in the final state of the (S, A, C) speed profile, the train has a speed of $48.47 \mathrm{~m} / \mathrm{s}$. When the path is extended to (S, A, C, E, H, T), the speed limit of the esxtension's first segment is $v \max \left(s_{4}\right)=45 \frac{\mathrm{~m}}{\mathrm{~s}}$, that is lower than the train's current speed. For this reason, the speed profile computation begins from $\left(\left(s_{2}, 650.0\right)\right.$, 20.0), allowing the train to accelerate for 585 meters, leading to the new state (($\left(s_{2}\right.$, 65), 46.42), and then immediately start decelerating, in order to reach s_{4} with a speed of $45 \mathrm{~m} / \mathrm{s}$, creating the new state $\left(\left(\left(s_{2}, s_{4}\right), 700\right), 45.0\right)$.

As regards the g values for paths (S, A, C, E, H, T) and (S, A, C, F, H, T), they are 91.28 and 91.02 seconds, respectively. Since T is the destination node, the h values are 0 and the f values are equal to the g values, for both paths. Table 30 includes the f values for all discovered paths up until this point. openDict and $S P_{\text {dict }}$ are updated with the new f values and speed profiles, respectively. Path (S, A, C, F, H, T) has the lowest f value in successors, hence the final state of its speed profile $\left(\left(s_{f}, 0\right), 0\right)$ is the new lastState. Due to the fact that lastState $=$ goal, the A^{*} algorithm terminates.

Table 30. f values of all discovered paths at the end of Iteration 1

Path	\boldsymbol{f} value
(S, A, B, D, G)	65.82
(S, A, C, E, H, T)	91.28
(S, A, C, F, H, T)	91.02

5 Conclusion

At this section, the main points of the dissertation are summarized.

5.1 Summary and conclusions

Our work resulted in the development and the implementation of two algorithms for the tasks of computing the optimal speed profile over a given path, as well as, that of computing the shortest path in terms of journey duration, over arbitrary directed graphs. We provided a realistic problem formulation that makes use of train characteristics, including its length, maximum speed, acceleration and deceleration capabilities, while also including path characteristics, such as the speed limits that apply in the path segments.

5.2 Future extensions

Future challenges include the extension of our work in order to handle more physical characteristics of the problem, such as railway machine power profile, train load, ground slopes, optimizing other metrics, like fuel consumption. Offline and online scheduling of multiple trains, in order to satisfy particular transportation needs, is another significant, while optimizing the aforementioned metrics, is another significant future challenge. Finally, integrating our work with an information system with real data about railway networks, such as openrailwaymap.org, is needed to have a fully functional product.

6 References

[1] Nicolas J. Firzli, 'Transportation infrastructure and country attractiveness', Revue Analyse Financière, (Jul 2013).
[2] European-Comission, White paper on transport : Roadmap to a Single European transport area - Towards a competitive and resourceefficient transport system, Publications Office of the European Union, Luxembourg, 2011.
[3] AIcrowd. Train schedule optimisation challenge, 2018.
[4] AIcrowd. Flatland 3, 2021.
[5] Arjang A. Assad, 'Models for rail transportation', Transportation Research Part A: General, 14(3), 205-220, (Jun 1980).
[6] Jean-François Cordeau, Paolo Toth, and Daniele Vigo, 'A survey of optimization models for train routing and scheduling', Transportation Scence, 32(4), 380-404, (Nov 1998).
[7] Wei Fang, Shengxiang Yang, and Xin Yao, 'A survey on problem models and solution approaches to rescheduling in railway networks', IEEE Transactions on Intelligent Transportation Systems, 16(6), 2997-3016, (Dec 2015).
[8] Dennis Huisman, Leo G. Kroon, Ramon M. Lentink, and Michiel J. C. M. Vromans, 'Operations research in passenger railway transportation', Statistica Neerlandica, 59(4), 467-497, (Oct 2005).
[9] Richard M. Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan,'Railway track allocation: models and methods', OR Spectrum, 33(4),843-883, (Dec 2009).
[10] Johanna Törnquist. Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms, 2006.
[11] B Szpigel, 'Optimal train scheduling on a single line railway', Operations research, 72, 343-352, (1973).
[12] Andrea D'Ariano, Dario Pacciarelli, and Marco Pranzo, 'A branch and bound algorithm for scheduling trains in a railway network', European Journal of Operational Research, 183(2), 643-657, (Dec 2007).
[13] Young Hwan Yoon and Yung Bang. Apparatus and method for controlling speed in automatic train operation, Jul 2010.
[14] Zhou, Wenliang, and Hualiang Teng. "Simultaneous Passenger Train Routing and Timetabling Using an Efficient Train-Based Lagrangian Relaxation Decomposition." Transportation Research Part B: Methodological, vol. 94, Dec. 2016, pp. 409-439,, https://doi.org/10.1016/j.trb.2016.10.010.
[15] Louwerse, Ilse, and Dennis Huisman. "Adjusting a Railway Timetable in Case of Partial or Complete Blockades." European Journal of Operational Research, vol. 235, no. 3, 16 June 2014, pp. 583-593, www.sciencedirect.com/science/article/pii/S0377221713010047.
[16] Alessandro Mascis and Dario Pacciarelli, 'Job-shop scheduling with blocking and no-wait constraints', European Journal of Operational Research, 143(3), 498-517, (Dec 2002).
[17] G Nirmala and D Ramprasad, 'A genetic algorithm based railway scheduling model', International Journal of Science and Research (IJSR), (2014).
[18] P. Tormos, A. Lova, F. Barber, L. Ingolotti, M. Abril, and M. A. Salido, 'A genetic algorithm for railway scheduling problems', Metaheuristics for Scheduling in Industrial and Manufacturing Applications, 255276, (2008).
[19] Wang, Mingming, et al. "Genetic Algorithm-Based Particle Swarm Optimization Approach to Reschedule High-Speed Railway Timetables: A Case Study in China." Journal of Advanced Transportation, vol. 2019, 20 Mar. 2019, pp. 1-12, https://doi.org/10.1155/2019/6090742..
[20] Marcella Samà, Paola Pellegrini, Andrea D'Ariano, Joaquin Rodriguez, and Dario Pacciarelli, 'Ant colony optimization for the real-time train routing selection problem', Transportation Research Part B: Methodological, 85, 89-108, (2016).
[21] Eaton, Jayne, et al. "Ant Colony Optimization for Simulated Dynamic MultiObjective Railway Junction Rescheduling." IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 11, 1 Nov. 2017, pp. 2980-2992, https://doi.org/10.1109/TITS.2017.2665042. .
[22] Wojciech Bo zejko, Radosław Grymin, and Jarosław Pempera, ‘Scheduling and routing algorithms for rail freight transportation', Procedia Engineering, 178, 206-212, (2017). RelStat-2016 9-22, 2016. Transport and Telecommunication Institute, Riga, Latvia.
[23] Francesco Corman, Andrea D'Ariano, Dario Pacciarelli, and Marco Pranzo, 'A tabu search algorithm for rerouting trains during rail operations', Transportation Research Part B: Methodological, 44(1), 175-192, (2010).
[24] Intaek Gong, Sukmun Oh, and Yunhong Min, 'Train scheduling with deep q-network: A feasibility test', Applied Sciences, 10(23), 8367, (Nov 2020).
[25] D. Šemrov, R. Marsetǐc, M. Žura, L. Todorovski, and A. Srdic, 'Reinforcement learning approach for train rescheduling on a singletrack railway', Transportation Research Part B: Methodological, 86, 250-267, (2016).
[26] Khadilkar, Harshad. "A Scalable Reinforcement Learning Algorithm for Scheduling Railway Lines." IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 2, 1 Feb. 2019, pp. 727-736, ieeexplore.ieee.org/abstract/document/8357909/, https://doi.org/10.1109/TITS.2018.2829165.
[27] Valerio Agasucci, Giorgio Grani, and Leonardo Lamorgese. Solving the single-track train scheduling problem via deep reinforcement learning, 2020.
[28] Selim Dündar and Ismail Sahin, 'Train re-scheduling with genetic algorithms and artificial neural networks for single-track railways', Transportation Research Part C: Emerging Technologies, 27, 1-15, (2013).

Annex A - Executing the source code

This section provides information regarding the execution of the application that implements the source code, as well as the formatting of the input data. The code was implemented using Python 3.8.10. The source code and the input files of various problems can be found at GitHub². The code is organized into two separate files:

- File OptimalPathSpeedProfile.py can be used to compute the speed profile of any provided path. It includes the implementations of Algorithm 1 and Algorithm 2, as well as the necessary functions needed for the algorithms' operation and for parsing the input data.
- File ShortestPath.py extends the functionality of the first file, since it import its code, in order to apply Algorithm 1 and Algorithm 2 on the paths of a railway network graph through Algorithm 3.

A.1. Computing the optimal speed profile of a path

The OptimalPathSpeedProfile.py script utilizes three Python modules to perform its functions, which are presented in Table 31. These modules are included in the Python Standard Library and it should not be necessary to install them.

Table 31. Libraries used in the OptimalPathSpeedProfile.py script

Library	Description
math	A Python build-in module that is used for mathematical
computations.	

[^1]Annex A-Executing the source code

argparse	A Python build-in module, essential for the script's command-line interface (CLI), enabling it to accept and process input parameters from users.
ast	A Python build-in module that is used in order for the program to parse input data from text files into Python data structures.

The input data necessary for the execution of the script concern the path and train characteristics, as well as the init and the goal states, which are provided to the application through a text file. Figure 7 illustrates the appropriate format of the input data in the text file of Example 2. The list of segments in which the train spans in the init and goal states must be provided a list of integers. In Example 2, the train in init is at the end of s_{0}, that is the first segment of the path, while in goal, the train is at the end of s_{f}, that is the sixth segment of the path. Hence, the lists of integers are [1] and [6] for init and goal, respectively.

```
M Paper_Example_2-Notepad 
```

Figure 7. Input data format in a text file for Example 2
All input data are validated before the script's execution. For instance, all train characteristics must be non-negative float numbers. Similarly, all entries of the maxSpeeds and positions lists must be positive float numbers. Additionally, the train's length, as well as the acceleration and deceleration capabilities are limited
from the global variables TRAIN_LENGTH_LIMIT, MAX_ACC_LIMIT and MIN_ACC_LIMIT, which are defined in the first lines of the script. Table 32 includes the values of these parameters for all the examples presented in this study.

Table 32. Default values for the global variables

Global Variable	Value
TRAIN_LENGTH_LIMIT	4000
MAX_ACC_LIMIT	5
MIN_ACC_LIMIT	5

Moving on, the code can be executed using the command-line interface and more specifically, using the command: py OptimalPathSpeedProfile.py <path_to_the_file.txt>. Figure 8 showcases the script's execution for Example 2. The script provides information regarding the validation of the input data and then, it computes the optimal speed profile, printing the total time it takes for the train to traverse it, as well as the states of the speed profile.

Figure 8. Execution of the OptimalPathSpeedProfile.py script in the CLI
In case the user prefers a more detailed output regarding the program's execution, the -debug parameter can be added to the execution command. Figure 9 illustrates the output of the program for the first iteration of Algorithm 1, while

Figure 10 shows the program's output when Algorithm 2 is applied, if the debug parameter is used.

```
D:\Dissertation>py OptimalPathSpeedProfile.py D:\Dissertation\Paths\Paper_Example_2.txt --debug
Train characteristics are valid.
Path characteristics are valid.
Init and Goal states are valid.
iterationCounter: 1
speedLimit: 20, currentAcc: 1.5, t1, t2, t3: (14.142135623730951, 14.142135623730951, 13.333333333333334)
current State: (([1, 2], 150), 0)
current time: 13.333333333333334
hExit: 16.666666666666657, tExit: 16.666666666666657
Train moved 133.33333333333334 meters in 13.333333333333334 seconds, CurrentV: 20.0, currentAcc: 1.5
New state: (([1, 2], 16.666666666666657), 20.0)
```

Figure 9. Output of Algorithm 1 when the debug parameter is used
speedLimit: 78, currentAcc: 1.5, t1, t2, t3: (8.413915654200082, $6.443948410226928,8.666666666666666$)
current State: (([5], 450.0), 65.0)
urrent time: 62.033691999970515
hexit: $5.684341886080802 \mathrm{e}-14$, tExit: 150.00000000000006
Train moved 449.99999999999994 meters in 6.44394841022693 seconds, CurrentV: 74.66592261534039 , currentAcc: 1.5
New state: (([5], 5.684341886080802e-14), 74.66592261534039)
Irain reached a segment with speed limit 10 with a speed equal to 74.66592261534039 .
: 9, v0: 10, v1: 65.0, v2: 74.66592261534039, hExit: 450.0
: 2400, d1: 1950.0, xDec: 1031.25, v1Hash: 38.32427429188973
8, v0: 10, v1: 65.0, v2: 65.0, hExit: 574.9999999999999
2400, d1: 1825.0, xDec: -1725.0, v1Hash: 65.0
7, v0: 10, v1: 64.42049363362563, v2: 65.0, hExit: 600
2400, d1: 1800, xDec: 937.5, v1Hash: 39.528470752104745
6, v0: 10, v1: 50.0, v2: 64.42049363362563, hExit: 550.0
2400, d1: 1250.0, xDec: 937.5, v1Hash: 39.528470752104745
5, ve: 10, v1: 50.0, v2: 50.0, hExit: 650.0
2400, d1: 1150.0, xDec: 0.0, v1Hash: 50.0
: 4 , v0: 10, v1: 48.47679857416329, v2: 50.0, hExit: 700
: 4, ve: 10, v1: 48.47679857416329, v2: 50.0, hexit: 700
: 2400, d1: 1100, xDec: 862.5, v1Hash: 40.46603514059662
: 2400, d1: 1100, xDec: 862.5, v1Hash: 40.46603514059662 , v0: 10, v1: 20.0, v2: 48.47679857416329, hExit: 650.0
: 3, v0: 10, v1: 20.0, v2: 48.47679857416329, hexit: 650.0

Figure 10. Output of Algorithm 2 when the debug parameter is used
Finally, as mentioned in section 4.1 it is possible that no solutions are found, in cases where the train cannot decelerate early enough until the speed limit of a segment it is about to enter (or goalV) or the train cannot accelerate enough, in order to reach goalV. Figure 11 shows the script's execution and output on two example paths, in which a solution cannot be found.

```
D:\Dissertation>py OptimalPathSpeedProfile.py D:\Dissertation\Paths\Impossible_to_decelerate.txt
Train characteristics are valid.
Path characteristics are valid.
Init and Goal states are valid.
No deceleration point could be found. There is no solution!
D:\Dissertation>py OptimalPathSpeedProfile.py D:\Dissertation\Paths\Impossible_to_accelerate.txt
Train characteristics are valid.
Path characteristics are valid.
Init and Goal states are valid.
It is impossible to accelerate to goalV!
```

Figure 11. Output of the script when a solution cannot be found

A.2. Finding the shortest path of a railway network

The ShortestPath.py script utilizes all the Python modules presented in the previous section, as well as another two Python modules, which are presented in Table 33. Module copy is included in the Python Standard Library and it is not necessary to install, while module networkx and numpy must be installed. Note that in order for this script to run, it must be in the same folder as the OptimalPathSpeedProfile.py script.

Table 33. Libraries used in the ShortestPath.py script

Library	Description
copy	A Python build-in module that is used in order to create (deep) copies of Python data structures.
networkx	A Python module, essential for creating and processing network graphs.
numpy	A Python library that is primarily used for working with
arrays.	

```
\square Paper_Example_3_Characteristics - N... - 
File Edit Format View Help
linit = (([1],0),0)
goal = (([12],0),0)
trainLength = 150
maxAcc = 1.5
maxDec = 1
trainMaxSpeed = 75
Ln 1, Col 1 100% Windows (CRLF) UTF-8
```

Figure 12. Format of the states and characteristics in a text file for Example 3
In the case of ShortestPath.py, the input data concern the train characteristics, the init and the goal states (as before), as well as, the railway network graph G edgelist. Two separate text files are used; the first one includes the train
characteristics, the init and the goal states (as in Figure 12 for Example 3), while the second one contains the network data, as illustrated in Figure 13.

- Paper_Example_3_Network - Notepad			-	\square	\times
File Edit Format View Help					
\| ${ }^{\text {A }}$ ['label':0, 'maxspeed': 20,	ength	150, 'stra)
A B \{'label':1,'maxspeed': 30,	length	:500, 'strai			
A C \{'label':2,'maxspeed': 50,	length	:800, 'straig	-11		
B D \{'label':3,'maxspeed': 40,	length	:500, 'strai			
C E \{'label':4, 'maxspeed': 45,	length	:700, 'straig	_li		
C F \{'label':5,'maxspeed': 65,	length	:1000, 'strai			
D G \{'label':6, 'maxspeed': 75,	length	:850, 'straig	li		
E H \{'label':7,'maxspeed': 30,	length	:600, 'strai			
F H \{'label':8, 'maxspeed': 55,	length	:500, 'straig			
G E \{'label':9,'maxspeed': 35,	length	:200, 'straig	1 i		
G H \{'label':10, 'maxspeed': 40,	'lengt	':450, 'strai			
H T \{'label':11, 'maxspeed': 20,	'lengt	':150, 'strai	_1		
<					>
Ln 1, Col 1	100\%	Windows (CRLF)			

Figure 13. Format of the network data in a text file for Example 3
Each line of the network data concern a specific edge of the network, with the first two elements defining the nodes. Additionally, each edge has four attributes; label concerns the index of each edge (for instance, segment s_{0} is given the label 0), while maxspeed and length define the segment characteristics. The attribute straight_line characterizes the ending node of each segment and is used for the computation of h values for paths, having that node as the final one.

As mentioned previously, the list of segments in which the train spans in the init and goal states must be provided as list of integers. The labels of each segment must be used, in order to index the starting and the ending segments. Note that in Example 3, the labels are numbered from 0 to 11, while the indices from 1 to 12. Finally, it is important to note that the train can start from any point of the network, but at the goal state, it must span inside of one segment only, that is the destination segment.

Moving on, the code can be executed using the command-line interface and more specifically, using the command: py ShortestPath.py <path_to_the_network_data_file.txt> <path_to_the_characteristics_file.txt>.

Figure 14 showcases the script's execution for Example 3. The scripts prints the nodes of the shortest path, the total time the train needs to traverse it, as well as, the states of the speed profile for the shortest path.

Figure 14. Execution of the ShortestPath.py script in the CLI
In case the user prefers a more detailed output regarding the program's execution, the -debug parameter can be added to the execution command, which will enable all algorithms to print information as they are executed. Figure 15 illustrates the output of the program for the first iteration of Algorithm 3, while it is calculating the g value of path (S, A, C, E, H, T).

Figure 15. Output of Algorithm 3 when the debug parameter is used
Moving on, in cases where Algorithm 1 cannot find a solution for a particular path, the path is converted to a 'dead end' by setting its g value to infinite. In that way the path will not be expanded upon in future iterations of Algorithm 3. Additionally, it is possible that all the available paths of network have no solution. Figure 16 showcases the output of the script is such cases (files No_solution_Network.txt and No_solution_Characteristics). Note that the g values of all discovered paths in this example are infinite.

Annex A-Executing the source code

Figure 16. Output of the script when no solution can be found in a network

Annex B - Source code of the implementation

In this section, a significant portion of the source code is presented, particularly focusing on the algorithms and functions discussed in previous sections. As mentioned previously, all of the code can be found at dissertation's GitHub repository ${ }^{3}$.

B.1. Computing the optimal speed profile of a path

Implementation of Algorithm 1:

```
def computeOptimalSP(goal, pathChar,trainChar, variables, debug,intermediate):
    'ALGORITHM1: Computation of the optimal speed profile between an initial state init and a
goal state goal, assuming that there is a single path that can be used to reach the goal state,
with no junctions across it. Iteratively detects events during the train's journey.
    #Extract train characteristics.
    trainLength, Acc, Dec, trainMaxSpeed = trainChar
    #Extract path characteristics.
    maxSpeeds, positions, lengths, segmentIndices = pathChar
    #Extract variables.
    currentV, currentAcc, time, tSgm, hSgm, hExit, tExit, SP, flag, init, speedLimit, tMin, t1, t2, t3 =
    variables
    goalV = speed(goal)
    iterationCounter = 0
    while(not equalStates(SP[-1],goal)): #while current state != goal
    iterationCounter += 1
    p = currentV*tMin + (1/2)*currentAcc*math.pow(tMin,2) #Update position.
    currentV = currentV + tMin*currentAcc #Update speed.
    tExit, hExit = tExit - p, hExit - p #Update tExit, hExit.
    time.append(time[-1] + tMin) #Update total time.
```

[^2]```
#The train's head is about to enter a new segment.
#Deceleration might be needed.
if equals(t2, tMin):
 hSgm += 1 #The train's head is in the new segment.
 try:
 #Set hExit equal to the length of the new segment.
 hExit = lengths[hSgm-1]
 #Calculate the new speed limit.
 speedLimit = getSpeedLimit(trainMaxSpeed, maxSpeeds, tSgm, hSgm)
 #This covers the case when the train is about to finish the last segment.
 except:
 t2Flag, t1Flag = True, False
 hExit, hSgm, t2Flag, t1Flag, speedLimit =
 finalSegment(pathChar, trainChar, tSgm, hSgm, t2Flag, t1Flag, speedLimit)
 if currentV > speedLimit: #The train will need to decelerate.
 #Store the achieved state before backtracking.
 SP.append((([indexforindexinrange(tSgm, hSgm+1)], hExit), currentV))
 #Apply the algorithm that handles deceleration.
 decFlag, SP, time, currentV, currentAcc =
 decelerate(trainChar, pathChar, SP, time, currentV, currentAcc, speedLimit, debug)
 if not decFlag:
 print('\nNo deceleration point could be found. There is no solution!')
 return None, None
#The train's tail is about to exit a previous segment. Acceleration might be needed.
if equals(t1, tMin):
tSgm += 1 #The train's tail exited the previous segment.
try:
 #Set hExit equal to the length of the next segment.
 tExit = lengths[tSgm-1]
 #Calculate the new speed limit.
 speedLimit = getSpeedLimit(trainMaxSpeed, maxSpeeds, tSgm, hSgm)
#This covers the case when the train is about to finish the last segment.
except:
 t2Flag, t1Flag = False, True
 tExit, tSgm, t2Flag, t1Flag =
 finalSegment(pathChar, trainChar, tSgm, hSgm, t2Flag, t1Flag, speedLimit)
if currentV < speedLimit: currentAcc = Acc #Acceleration
```

```
#The train reached the speed limit. A steady speed must be maintained.
if equals(t3, tMin) and currentV == speedLimit: currentAcc = 0
 #Update SP
 SP.append((([index for index in range(tSgm,hSgm+1)],hExit), currentV))
#At this point it is checked whether the train reached the goal state.
#Note that in the case of a network, the algorithm might work on smaller/intermediate paths
#that do not include the goal state. In that case, the train does not need to have a speed
#equal to goalV when reaching the end of the path.
if not intermediate:
#If the train reaches the goal position with a lower speed than goalV,
#then there is no solution.
 if pos(SP[-1]) == pos(goal)
 AND abs(distance(SP[-1],positions)-distance(goal,positions))<=MIN_DIFFERENCE
 AND currentV != goalV:
 print('\nIt is impossible to accelerate to goalV!')
 return None, None
#If the path is an intermediate one, the train does not need to have a speed equal to goalV.
else:
 if pos(SP[-1]) == pos(goal)
 AND abs(distance(SP[-1],positions)-distance(goal,positions))<=MIN_DIFFERENCE:
 break
if speedLimit == currentV: currentAcc = 0 #Update train's mode.
#Calculate tMin.
if currentV != 0: tMin, t1, t2, t3 = getMinT(currentAcc, currentV, tExit, hExit, speedLimit)
```

return SP, time

## Implementation of Algorithm 2:

```
def decelerate(trainChar, pathChar, SP, time, currentV, currentAcc, speedLimit, debug):
 '''ALGORITHM2: Backtracks in previous states stored in SP, searching for the optimal point to
decelerate. The most complicated case occurs when head(T) is about to enter a new segment (t2 =
tmin) with currentV higher than the new segment's speed limit. In this case the speed profile
must be recomputed by adding a deceleration point at the latest possible time, when the train
should start decelerating in order to reach the new segment with a speed equal to speedLimit.'''
 #Extract train characteristics.
 trainLength, Acc, Dec, trainMaxSpeed = trainChar
 #Extract path characteristics.
 maxSpeeds, positions, lengths, segmentIndices = pathChar
 #If ALGORITHM2 can not find a deceleration point, the problem has no solution.
 decFlag = False
```

\#Total distance at the start of the new segment (last state).
d = distance(SP[-1], positions)
\#Iteratively backtrack to previous states (starting from the second to last).
for $i$ in range(len(SP)-2,-1,-1):
\#The algorithm searches for previous parts of the speed profile during which the train \#was either accelerating or maintaining its speed, starting from the most recent on.
\#v0 is the max speed of the new segment (speed limit).
\#v1 is the speed of the train at the start of the SP part.
\#v2 is the speed of the train at the end of the SP part.
v0, $v 1$, v2 $=$ speedLimit, speed(SP[i]), speed(SP[i+1])
\#Extract hExit for this part.
hExit $=\operatorname{pos}(S P[i])[1]$
\#We are interested only in SP parts with a mode of acceleration or steady speed. if v2 >= v1:
\#Determine the train's mode during the SP part.
if v2==v1: currentAcc = 0
else: currentAcc = Acc
\#Total distance at the start of the SP part.
d1 = distance(SP[i],positions)
\#Calculate the optimal deceleration point between d1 and d .
xDec =
(math.pow(v0,2) - math.pow $(v 1,2)+2 *(c u r r e n t A c c * d 1+\operatorname{Dec*})) /\left(2^{*}(\right.$ currentAcc + Dec $\left.)\right)$
\#Calculate the speed at that point.
v1Hash $=$ math.sqrt(math. $\operatorname{pow}(v 1,2)+2 *$ currentAcc*(xDec $-\mathrm{d} 1))$
if v1Hash > v1: \#The train can accelerate until xDec.
\#Add two states. One before and one after the deceleration.
i, SP, time, v1Hash, trainChar, pathChar, xDec, hExit, v0, Dec, currentV, currentAcc, decFlag, t1Hash, t2Hash =
addTwoStates(i, SP, time, v1Hash, currentAcc, trainChar, pathChar, xDec, hExit, v0, v1, Dec, d1)
return decFlag, SP, time, currentV, currentAcc
\#The train must have steady speed until xDec (or decelerate immediately).
if v1Hash == v1:

```
 #Add two states. One before and one after the deceleration.
 i, SP, time, v1Hash, trainChar, pathChar, xDec, hExit, v0, Dec, currentV,
 currentAcc, decFlag, t1Hash, t2Hash =
 addTwoStates(i, SP, time, v1Hash, currentAcc, trainChar, pathChar,xDec,hExit,
 v0, v1, Dec, d1)
 return decFlag, SP, time, currentV, currentAcc
 elif xDec == d1: #The train must decelerate immediately.
 #Add one state. One after the deceleration.
 i, SP, time, v1Hash, v0, Dec, currentV, currentAcc, decFlag, tHash =
 addOneState(i, SP, time, v1Hash, v0, Dec)
 return decFlag, SP, time, currentV, currentAcc
 return decFlag, SP, time, currentV, currentAcc
```


## Implementation of Function 1:

def getSpeedLimit(trainMaxSpeed, maxSpeeds, tSgm, hSgm):
'''Takes as input the train characteristics and the segments it is currently in, in order to calculate the speed limit.'''
lowestVmax $=\min (\operatorname{maxSpeeds}[t S g m-1: h S g m])$
return min(trainMaxSpeed,lowestVmax)

## Implementation of Function 2:

```
def getMinT(currentAcc, currentV, tExit, hExit, speedLimit):
 '''Detects which type of event is upcoming, by computing the time tMin = min(t1, t2, t3)
needed to reach each one of them.'''
 #Time needed for the tail to exit its segment.
 if currentAcc>0: t1 = MaxRoot((1/2)*currentAcc, currentV, -tExit)
 else: t1 = tExit/currentV
 #Time needed for the head to enter a new segment.
 if currentAcc>0: t2 = MaxRoot((1/2)*currentAcc, currentV, -hExit)
 else: t2 = hExit/currentV
 #Time needed for the train to reach the speedLimit, provided that it is in accelerating mode.
 if currentAcc > 0 and speedLimit > currentV: t3 = (speedLimit - currentV)/currentAcc
 else: t3 = float("inf")
 return min(t1,t2,t3), t1, t2, t3
```


## Implementation of Function 3:

```
def MaxRoot(a,b,c):
 '''Returns the positive root.'''
 Delta = math.pow(b,2) - 4*a*c #discriminant
 t = (-b + math.sqrt(Delta))/(2*a) #positive root
 return t
```


## B.2. Finding the shortest path of a railway network

## Implementation of Algorithm 3:

```
def computeShortestPath(G, variables, debug):
 '''ALGORITHM3: Using the problem's description provided by the createInputData function, as
well as the network G, this algorithm provides the shortest path (time-wise) and its speed
profile.'''
 #Initialization
 SPDict, timeDict = {}, {}
 mapDict = createMap(G)
 #Extract init and goal states, as well as the trainChar (trainLength etc.).
 _, initPos, init, goalV, goalPos, _, trainChar, _ = storeVariables(variables)
 #Extract train max speed.
 _, _, _, trainMaxSpeed = trainChar
 #Set the hyperparameter maxStraightLineSpeed.
 maxStraightLineSpeed = trainMaxSpeed
 #Initiliaze openDict and start path, find the final node.
 openDict, destinationNode, start = extractStartDestination(G, initPos, goalPos)
 #Generate the first paths using the start path.
 neighbors = generatePaths(G, start)
 #Update openDict using the generated paths in neighbors.
 openDict = updateOpenDict(neighbors, openDict, start)
 #Expand the paths of openDict.
 openDict, finalPath = expandPaths(G, destinationNode, openDict)
 #Compute g values for all paths in openDict
```

```
openDict, SPDict, timeDict = computeGValues(openDict, init, initPos, trainChar, SPDict,
timeDict, destinationNode, goalV, goalPos, finalPath, False, debug)
#Compute f values for all paths in openDict.
openDict_fValues = computeFValues(openDict, mapDict, maxStraightLineSpeed, debug)
while(openDict): #while openDict not empty
 #Find the path with lowest f value.
 current = min(openDict_fValues, key=openDict_fValues.get)
 oldPath = current #Store it before expanding it.
 #Generate new paths using the neighbors of its final nodes.
 current = generatePaths(G, current)
 #Create the successors dictionary.
 successors = createSuccessors(current, openDict, oldPath)
 #Expand the paths in successors.
 successors, finalPath = expandPaths(G, destinationNode, successors)
 #Compute g values for all paths in successors.
 successors, SPDict, timeDict = computeGValues(successors, init, initPos, trainChar,
 SPDict, timeDict, destinationNode, goalV, goalPos, finalPath, True, debug, oldPath)
 #Update openDict, SPDict and timeDict using successors.
 openDict = updateOpenDict(successors, openDict, oldPath, timeDict)
 SPDict, timeDict = updateSPandTimeDict(SPDict, timeDict, oldPath)
 #Compute f values for all paths in openDict.
 openDict_fValues = computeFValues(openDict, mapDict, maxStraightLineSpeed, debug)
 #If a path containing the destination node is found, return the solution.
 if finalPath:
 current = min(successors, key=successors.get)
 return openDict, SPDict, current, timeDict
```


## Annex $B$ - Source code of the implementation

## Implementation of Function 4:

```
def generatePaths(G, path):
 '''generatePaths() iterates through the outgoing edges (of the last vertex of the path),
generating new paths (which are extensions of the current path, with a single or more segments
added to it) that are stored temporarily in neighbors, before entering openDict.
:param G: A networkx Graph in which the problem is defined on.
:param path: List, contains the nodes of the path.
:return: neighbors: List, containts the nodes of each path that was generated through the
outgoing edges.'''
```

```
neighbors = []
node = path[-1] #last vertex of the path
for u,v,e in G.edges(data=True):
 #Iterate through the outgoing edges and generate paths
 if u == node: neighbors.append(path + (v,))
```

return neighbors

## Implementation of Function 5:

```
def expandPaths(G, destinationNode, dict):
 '''After a path is generated (its last node is connected with each one of its \(N\) neighbors
creating \(N\) paths), it is expanded by adding the neighbor of its final node until a junction node
(leads to multiple nodes) is met.
 :param G: A networkx Graph in which the problem is defined on.
 :param destinationNode: Char, the name of the final node (at the end of final segment).
 :param dict: Dictionary (openDict or successors) (key -> list of characters/nodes, value ->
float), contains the path of openDict which will be expanded.
 :return: dict: Dictionary (key -> list of characters/nodes, value -> float), contains the
expanded versions of paths in dict.
 :return: finalPath: Boolean, is True when one of the paths in paths is final (contains
destinationNode).
' ' '
paths = list(dict.keys()) \#Extract the list of paths from dict.
finalPath = False \#Initialize
for path in paths:
 oldPath = path \#Store the path before expansion, in order to update openDict.
 while(1): \#Expand paths until a junction node is found
```

[^3]return dict, finalPath


[^0]:    ${ }^{1}$ Note that for the sake of clarity in presentation, all arithmetic values are rounded to two decimal places.

[^1]:    ${ }^{2}$ Link for the GitHub repository: https://github.com/Dimimano/Finding-Time-Optimal-Routes-for-Trains-Using-Basic-Kinematics-and-A-

[^2]:    ${ }^{3}$ Link for the GitHub repository: https://github.com/Dimimano/Finding-Time-Optimal-Routes-for-Trains-Using-Basic-Kinematics-and-A-

[^3]:    junctions $=0$
    \#Iterate through the network, searching for nodes (v) to expand the path (u)
    for $u, v, e$ in G.edges(data=True):
    \#If $u$ and $v$ are connected, $u$ is not the final node and $v$ is not already in the \#path (cycle).
    if path[-1]==u and path[-1]!=destinationNode and $v$ not in path: nextNode $=v$ \#Store $v$ as the nextNode.
    junctions += 1 \#Increment the junction counter.
    \#If $u$ is connected to many nodes, it is junction and the process terminates.
    if junctions != 1:
    break
    else: \#Else update the path.
    path $=$ path $+($ nextNode, $)$
    dict[path] = dict. $\operatorname{pop}(o l d P a t h)$ \#Update dict with the expanded path.
    if destinationNode in path: finalPath = True \#If path is final set finalPath to True.

