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Abstract 

This thesis tackles the problem of finding time optimal routes for trains 

over a railway network. The problem is defined as follows: A train has a known 

length. The position of the train is defined over parts of one or more consecutive 

track segments. There are a maximum speed, a maximum acceleration and a 

maximum deceleration capability for the train. Each track segment has a 

maximum allowed speed for any train being over it. A problem instance is defined 

by an initial and a goal state, which are two positions accompanied with desired 

speeds (being usually, but not necessarily, zero). In this study we are interested in 

minimizing the total duration of reaching the goal state from the initial one; other 

metrics such as fuel consumption could be considered. 

We solve this problem using basic kinematics and A*. We present two 

algorithms: The first one computes analytically in continuous space the optimal 

speed profile of the train for a problem defined over a given path. The second 

algorithm extends the first one over arbitrary graphs. A* empowered with a 

simple admissible heuristic is employed to find the optimal combination of speed 

profile and path. 
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Περίληψη 

Η παρούσα διατριβή ασχολείται με το πρόβλημα της εύρεσης χρονικά 

βέλτιστων διαδρομών για τρένα σε ένα σιδηροδρομικό δίκτυο. Το πρόβλημα 

ορίζεται ως εξής: Ένα τρένο χαρακτηρίζεται από το μήκος του. Η θέση του 

τρένου ορίζεται σε τμήματα ενός ή περισσότερων διαδοχικών τμημάτων της 

διαδρομής. Υπάρχει μια μέγιστη ταχύτητα, μια μέγιστη επιτάχυνση και μια 

μέγιστη επιβράδυνση για το τρένο. Κάθε τμήμα της διαδρομής έχει μια 

μέγιστη επιτρεπόμενη ταχύτητα για τις αμαξοστοιχίες που βρίσκονται πάνω 

σε αυτό. Ένα πρόβλημα ορίζεται από μια αρχική και μια κατάσταση-στόχο, οι 

οποίες είναι δύο θέσεις που συνοδεύονται από επιθυμητές ταχύτητες (που 

συνήθως, αλλά όχι απαραίτητα, είναι μηδενικές). Στην παρούσα εργασία μας 

ενδιαφέρει η ελαχιστοποίηση της συνολικής διάρκειας για την επίτευξη της 

κατάστασης στόχου από την αρχική. Θα μπορούσαν να εξεταστούν και άλλες 

μετρήσεις, όπως η κατανάλωση καυσίμων. 

Επιλύουμε αυτό το πρόβλημα χρησιμοποιώντας βασική κινηματική και 

τον αλγόριθμο Α*. Παρουσιάζουμε δύο αλγορίθμους: Ο πρώτος υπολογίζει 

αναλυτικά σε συνεχή χώρο το βέλτιστο προφίλ ταχύτητας του τρένου για ένα 

πρόβλημα που ορίζεται σε μια δεδομένη διαδρομή. Ο δεύτερος αλγόριθμος 

επεκτείνει τον πρώτο πάνω σε γραφήματα. Για την εύρεση του βέλτιστου 

συνδυασμού προφίλ ταχύτητας και διαδρομής, χρησιμοποιείται ο αλγόριθμος 

A* ενισχυμένος με μια απλή αποδεκτή ευρετική μέθοδος. 

 

Keywords: Χρονοπρογραμματισμός, Ευρετική αναζήτηση, Κινηματική 
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 1 Introduction 

 1.1  Problem – Importance of the topic 

Railways are key components in the transportation systems of many 

countries around the world, with many European development economists 

considering a modern rail infrastructure as a significant indicator of a country's 

economic advancement [1]. Moreover, the European Commission aims for rail 

networks to absorb the majority of medium-distance passenger transport by 2050 

[2]. Increasing the efficiency of transport in the railway infrastructure can greatly 

improve speed and reliability, reduce costs and energy consumption. 

In recent years, research on train scheduling has grown significantly. 

Companies such as the Swiss Federal Railways invest in research through the 

Flatland challenge, on tasks which include train schedule optimization (railway 

timetable generation) [3], as well as applications of multi-agent reinforcement 

learning on the re-scheduling problem (RSP) [4]. 

 1.2  Αim – Objectives 

In this study, we present algorithms to generate time-optimal routes for 

single trains over arbitrary railway networks, using basic kinematics. The main 

contribution of this paper is a realistic approach to compute the amount of time a 

train needs to traverse a certain path, making use of a variety of train and path 

characteristics, particularly train max speed, acceleration and deceleration; train 

length; and maximum allowed speed per railway segment, while aiming at 

minimizing journey duration. Our approach employs continuous domains (a train 

can be anywhere in the railway network and have any speed and acceleration or 

deceleration, while satisfying the physical constraints), whereas it uses basic 

kinematic equations to compute the state of a train over time. The aim is to 

approximate real-world conditions on railway networks, which, in turn, will 
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improve the optimization of the train-scheduling problem and contribute to the 

development of an application that can be effectively used on real-world railway 

networks. The project’s structure and originality allows a lot of possible 

extensions, including more features of a train (e.g., load; engine power; variable 

maximum acceleration/deceleration depending on speed) or the environment 

(e.g., slopes of the ground), as well as alternative optimization criteria (e.g., fuel 

consumption).  

 1.3  Contribution 

This study contributes in two directions: First, we present an algorithm to 

compute the precise duration needed for the train to arrive at any position over a 

given path, while respecting the physical constraints of the train and the 

maximum allowed speed for any segment of the network. Second, we empower 

the first algorithm with A* search and a common straight line distance admissible 

heuristic function in order to find the optimal route between a source and a target 

state over any given railway network. 

 1.4  Structure of the study 

The rest of the dissertation is organized as follows. Section 2 presents a 

review of the background literature, whereas Section 3 provides the problem 

formulation. Sections 4 and 5 present the algorithms which are used, in order to 

compute the optimal speed profile over a given path and the shortest (in terms of 

time) combination of path and speed profile over a railway network, respectively. 

Finally, Section 6 concludes the dissertation and poses future challenges. 
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 2 Literature review 

In this section, the literature review is presented, organized into three 

distinct parts. The first part delves into Optimization techniques, while the second 

section focuses on Heuristic search approaches. Finally, Reinforcement learning 

techniques in combination with Deep Learning are examined in the third part. 

 2.1  Optimization techniques 

A great amount of effort has been invested in solving the train-scheduling 

problem for multiple trains on a single or multiple railway tracks, with an 

emphasis on conflict resolution in the planning phase. Optimization is used in 

order to generate timetables, with many works [5] [6] [7] [8] [9] [10] presenting 

surveys on the subject. Specifically, Assad [5] published one of the first surveys on 

rail transportation including optimization, queuing and simulation approaches. 

In [6], the authors focused on various optimization models for the most commonly 

studied railway routing and scheduling problems. Finally, Tornquist [10] 

examined a total of 48 approaches published between 1973 and 2005, classifying 

them with respect to problem type, solution mechanism, and type of evaluation. 

The train scheduling problem on a single track line has been modeled as a 

job shop scheduling problem and solved with a branch and bound algorithm [11], 

while the same algorithm has also been used on railway networks [12]. The patent 

US20110046827A1 [13] showcases a method for controlling speed in an automatic 

train operation, making use of kinematic equations in order to estimate and 

control speed. However, the train's length is not included in the problem 

formulation reducing the complexity significantly since for example, a train 

cannot be in multiple segments with overlapping speed limits. In [14], the authors 

worked on the simultaneous train routing and timetabling problem on the rail 

network, applying a train-based Lagrangian relaxation decomposition. Finally, 
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linear programming formulations on timetable rescheduling were used in [15], 

testing on instances from Netherlands Railways. 

 2.2  Heuristic search approaches 

Above all, the train scheduling problem is considered an NP-complete 

problem [14], rendering mathematical optimization approaches unrealistic in 

terms of computation times, especially for a large-scale problem. For that reason, 

many researchers have proposed and evaluated many heuristic search approaches 

and artificial intelligence techniques. Genetic algorithms (GA) were used in order 

to further reduce the number of trains (previously assigned individually on 

routes) on a network basis [15], while in [16] a GA was designed for application 

on railway scheduling problems, achieving a good performance on real-world 

instances from the Spanish Manager of Railway Infrastructure (ADIF). Authors of 

[19] developed a GA-based Particle Swarm Optimization method in order to 

reschedule high-speed railway timetables while considering delays. The 

implementation was applied and tested in the Chinese Beijing-Shanghai high-

speed railway corridor, managing to produce objective functions values which are 

at least 15% lower than other methods. Samà et al. [17] formulated the routing 

selection problem as a linear programming model and solved via an ant colony 

optimization algorithm. Ant colony optimization algorithms were also attempted 

to solve a simulated dynamic multiobjective railway rescheduling problem [21]. 

Bożejko et al. [18] applied the Dijkstra algorithm on railway networks in order to 

determine the fastest routes for rail freight transportation. In [19], the authors 

implemented a tabu search scheme for rerouting trains in their real-time traffic 

management system ROMA, generating solutions in 20 s and in 180 s for small 

and big instances respectively, a 15% improvement compared to previous 

versions of the system. 
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 2.3  Reinforcement learning techniques in combination with Deep 

Learning 

The resurgence of neural networks in the modern era of artificial 

intelligence gave way to the application of deep learning and learning methods in 

general, on the train-scheduling problem. Reinforcement learning is applied in 

[20] where deep neural networks are used in order to approximate Q-values, 

formulating the problem as a Markov decision process. Šemrov et al. [21] 

proposed a Q-learning algorithm for train rescheduling and compared the 

implementation with the rescheduling methods that do not rely on learning, 

showing that the solutions are at least equivalent or superior. In [26], a Q-learning 

based method was used for bidirectional railway lines (both single- and multi-

track), achieving efficient scaling by making the size of the action and the state 

space indepent of the problem instance size. The applicability of the algorithm was 

demonstrated on two lines from the Indian railway network, showing the RL 

algorithm leads to higher solution quality than two prior heuristic-based 

approaches. Two deep Q-learning methods (a decentralized and a centralized 

approach) were applied and evaluated on the train dispatching problem [22], 

showcasing their supremacy over the classical linear Q-learning method. Authors 

in [23] developed artificial neural networks (ANN) which were trained and tested 

on real data from the Turkish State Railway, and reproduce the conflict resolutions 

of train dispatchers. The model was then used in comparison with a GA on the 

task of train re-scheduling, with the GA outperforming the ANN.  
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 3 Problem Formulation 

A railway network graph is modeled as a directed graph 𝐺 = (𝑉, 𝐸), where 

𝑉 is the set of the vertices and E the set of the edges. A track segment, 𝑠 = (𝑢, 𝑣), is 

an edge of 𝐸. Each track segment s is labeled with its length 𝑙(𝑠) ∈ 𝑅+, and the 

maximum allowed speed 𝑣𝑚𝑎𝑥(𝑠) ∈ 𝑅+ a train can reach while traversing it. A 

track segment can be connected at its ends with any number of other track 

segments; no inner connections are allowed. A 𝑝𝑎𝑡ℎ is a list of consecutive 

segments (𝑠1, 𝑠2, … , 𝑠𝑘), 𝑘 ≥ 1, such that 𝑠𝑖 = (𝑢𝑖, 𝑣𝑖) and for each 𝑖 in {1 . . 𝑘 − 1} 

we have 𝑣𝑖 =  𝑢𝑖+1. Furthermore, for every 1 ≤ 𝑖 <  𝑗 ≤  𝑘, 𝑢𝑖  ≠ 𝑢𝑗, that is the 

sequence of segments do not cross (but potentially, 𝑢𝑖  ≠ 𝑢𝑗 , 𝑘 > 1, in which case 

we have a cycle). 

A train 𝑇 is described by its length 𝑙(𝑇) ∈ 𝑅+, its maximum speed 

𝑣𝑚𝑎𝑥(𝑇) ∈ 𝑅+, its maximum acceleration 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) ∈ 𝑅+, and its maximum 

deceleration 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇) ∈ 𝑅+. We use the functions ℎ𝑒𝑎𝑑(𝑇) to denote the head 

point of 𝑇, and 𝑡𝑎𝑖𝑙(𝑇) to denote the tail point of 𝑇. 

The position of a train 𝑇, denoted by 𝑝𝑜𝑠(𝑇), is defined as a pair (𝑆, 𝑥), 

where 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑘), with 𝑘 ≥ 1, is a path (that is, the train may span over 

multiple consecutive segments). Furthermore, 𝑡𝑎𝑖𝑙(𝑇) ∈  𝑠1 but 𝑡𝑎𝑖𝑙(𝑇) ≠  𝑣1, and 

ℎ𝑒𝑎𝑑(𝑇) ∈  𝑠𝑘 but ℎ𝑒𝑎𝑑(𝑇) ≠  𝑢𝑘. 𝑥 is the distance of ℎ𝑒𝑎𝑑(𝑇) from 𝑣𝑘 across 𝑠𝑘. In 

case 𝑘 = 1, ℎ𝑒𝑎𝑑(𝑇) is considered to be closer to 𝑣1 than 𝑡𝑎𝑖𝑙(𝑇). 

The state of a train 𝑇, denoted by 𝑠𝑡𝑎𝑡𝑒(𝑇), is the pair (𝑝𝑜𝑠(𝑇), 𝑠𝑝𝑒𝑒𝑑(𝑇)), 

where 𝑠𝑝𝑒𝑒𝑑(𝑇) is its current speed. We assume that 𝑠𝑝𝑒𝑒𝑑(𝑇) ≥ 0, meaning that 

the train can move only forwards. We use also the notation 𝑠𝑝𝑒𝑒𝑑(𝑇, 𝑡) to denote 

the speed of train 𝑇 at a particular time point 𝑡. A valid state is a state that satisfies 

the following constraints: 

0 ≤ 𝑠𝑝𝑒𝑒𝑑(𝑇)  ≤ 𝑣𝑚𝑎𝑥(𝑇) 
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and for each 𝑖 ∈ [1. . 𝑘], where (𝑠1, 𝑠2, … , 𝑠𝑘) is the list of segments over 

which the train spans,  

𝑠𝑝𝑒𝑒𝑑(𝑇) ≤ 𝑣𝑚𝑎𝑥(𝑠𝑖) 

A 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 is defined by a tuple (𝑇, 𝐺, 𝑖𝑛𝑖𝑡, 𝑔𝑜𝑎𝑙), where 𝑇 is a train, with its 

given attributes, 𝐺 is a directed graph with speed limits on its segments, 𝑖𝑛𝑖𝑡 is the 

initial state and 𝑔𝑜𝑎𝑙 is the goal state. 

A speed profile 𝑆𝑃𝑡1:𝑡2
, or simply 𝑆𝑃, is an infinite set of pairs {(𝑠𝑡𝑎𝑡𝑒, 𝑡) ∶

 for every  𝑡 such that  𝑡1 ≤ 𝑡 ≤ 𝑡2}, for some time points 𝑡1 and 𝑡2, such that 𝑡1 ≤

𝑡2. A speed profile 𝑆𝑃𝑡1:𝑡2
 is valid if and only if (a) it consists of valid states for 

every 𝑡 in [𝑡1, 𝑡2]; (b) for every pair (𝑠𝑡𝑎𝑡𝑒′, 𝑡′) and (𝑠𝑡𝑎𝑡𝑒′′, 𝑡′′) in 𝑆𝑃𝑡1:𝑡2
, if 𝑡′ → 𝑡′′ 

then 𝑠𝑡𝑎𝑡𝑒′ → 𝑠𝑡𝑎𝑡𝑒′′, where convergence between states is defined in the obvious 

way, that is, the difference in train position and speed between the two states tends 

to zero; and (c) for every pair (𝑠𝑡𝑎𝑡𝑒′, 𝑡′) and (𝑠𝑡𝑎𝑡𝑒′′, 𝑡′′) in 𝑆𝑃𝑡1:𝑡2
, such that 𝑡′ <

𝑡′′, if 𝑠𝑝𝑒𝑒𝑑(𝑇, 𝑡′) < 𝑠𝑝𝑒𝑒𝑑(𝑇, 𝑡′′) then 
𝑠𝑝𝑒𝑒𝑑(𝑇,𝑡′′)−𝑠𝑝𝑒𝑒𝑑(𝑇,𝑡′)

𝑡′′−𝑡′ 
  ≤ 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇), whereas 

if 𝑠𝑝𝑒𝑒𝑑(𝑇, 𝑡′) > 𝑠𝑝𝑒𝑒𝑑(𝑇, 𝑡′′) then 
𝑠𝑝𝑒𝑒𝑑(𝑇,𝑡′)−𝑠𝑝𝑒𝑒𝑑(𝑇,𝑡′′)

𝑡′′−𝑡′ 
  ≤ 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇). Note that 

the third constraint subsumes the second one. 

The duration of 𝑆𝑃𝑡1:𝑡2
 is defined as 𝑡2 −  𝑡1. Moreover, we define three 

functions: 𝑚𝑖𝑛𝑡(𝑆𝑃𝑡1:𝑡2
) that returns the minimum time label (𝑡1) in the speed 

profile; 𝑚𝑎𝑥𝑡(𝑆𝑃𝑡1:𝑡2
)  that returns the maximum time label (𝑡2) in the speed 

profile; and 𝑠𝑡𝑎𝑡𝑒𝐴𝑡(𝑆𝑃𝑡1:𝑡2
, 𝑡) that returns the state 𝑠𝑡𝑎𝑡𝑒(𝑇) of 𝑇 at time 𝑡, where 

𝑡1 ≤ 𝑡 ≤ 𝑡2. 

Given a 𝑃𝑟𝑜𝑏𝑙𝑒𝑚, a pair (𝑝𝑎𝑡ℎ, 𝑆𝑃) is a solution to the 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 if (a) the 

segments in 𝑖𝑛𝑖𝑡 comprise the prefix of 𝑝𝑎𝑡ℎ; (b) the segments in 𝑔𝑜𝑎𝑙 comprise 

the suffix of 𝑝𝑎𝑡ℎ; (c) the speed profile is valid; (d) 𝑖𝑛𝑖𝑡 = 𝑠𝑡𝑎𝑡𝑒𝐴𝑡(𝑚𝑖𝑛𝑡𝑖𝑚𝑒(𝑆𝑃)); 

and (e) 𝑔𝑜𝑎𝑙 = 𝑠𝑡𝑎𝑡𝑒𝐴𝑡(𝑚𝑎𝑥𝑡𝑖𝑚𝑒(𝑆𝑃)). The optimal solution to 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 is the pair 

(𝑝𝑎𝑡ℎ, 𝑆𝑃) with the minimum duration. 
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Moving on, we will make use of two simple examples with the aim of 

showcasing the operation of the algorithms. It is important to note that our 

approach makes use of algorithms of low complexity. In more detail, finding an 

optimal speed profile can be done in time linear in the length of the path, while 

the process of finding the optimal path has the same worst case algorithmic 

complexity as the Dijkstra algorithm. For that reason, an extensive experimental 

study was deemed to be unnecessary. 

Example 1. We present an example of an optimal speed profile between an 

initial and a goal state over a given path (so, we do not have to search over 

alternative paths). Since the path is given, we are interested only in the speed 

profile. Table 1 details the path, while Table 2 gives the train 𝑇 characteristics, as 

well as the initial and the goal states for this example. 

Table 1. Path layout (Example 1) 

Segment 𝒔 Length 𝒍𝒔 (m) 𝒗𝒎𝒂𝒙(𝒔) (m/s) 

𝒔𝟎 150 20 

𝒔𝟏 150 40 

𝒔𝟐 700 50 

𝒔𝟑 800 80 

𝒔𝟒 1000 85 

𝒔𝟓 200 40 

𝒔𝟔 300 60 

𝒔𝟕 700 50 

𝒔𝒇 150 30 
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Table 2. Train 𝑇 characteristics; 𝑖𝑛𝑖𝑡 and 𝑔𝑜𝑎𝑙 states for Example 1 

Parameters Value 

Length 𝑙(𝑇) 150 m 

Maximum speed 𝑣𝑚𝑎𝑥(𝑇)  75 m/s 

Acceleration 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇)  1.5 m/𝑠2 

Deceleration 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇)  1 m/𝑠2 

𝑖𝑛𝑖𝑡 ((𝑠0, 150), 0) 

𝑔𝑜𝑎𝑙 ((𝑠𝑓, 0), 0) 

 

 

Figure 1. Speed and Positions vs. time graph 

Figure 1 presents the optimal speed profile for the particular problem. Note 

that there are two vertical axes in the figure, the left (red) denoting the speed and 

the right (green) denoting the distance travelled by the train for any particular 

time. The distance in this diagram is measured in length units from the initial 

position of ℎ𝑒𝑎𝑑(𝑇), which (in this example) is at the start of 𝑠0 (ℎ𝑒𝑎𝑑(𝑇) = 𝑢0) and 

is considered the 0 in the green axis. The vertical dotted lines show the time point 

in which ℎ𝑒𝑎𝑑(𝑇) enters each segment (of course the tail of the train is still in 

previous segments). 
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It is worth noting that whenever the train leaves a segment with a speed 

limit that is lower than the speed limits of the segments of its new position, it starts 

accelerating (if not already accelerating). On the other hand, before the train enters 

a segment with a speed limit that is lower than its current speed, the train starts 

decelerating earlier enough, even several segments before the low speed limit 

segment. The same happens with the goal state, where (in the current example) 

the train should be idle: the train may start decelerating early enough. 

Furthermore, in order for the speed profile to minimize the duration of the 

journey, the train must continuously maintain the maximum possible speed. This 

implies that whenever the train accelerates or decelerates, it does so at the 

maximum possible acceleration and deceleration rates. Thus why in Figure 1 the 

periods of acceleration have the same ascending slope, and the same happens with 

the periods of deceleration, which all have the same descending slope. 

 

Figure 2. Calculating the shortest path from A to H 

Example 2. Figure 2 presents an example railway network, consisting of 10 

vertices and 12 edges. Each edge 𝑠 is labeled with 𝑙(𝑠) and 𝑣𝑚𝑎𝑥(𝑠). The train 𝑇 

characteristics, as well as the goal state, remain the same as in Table 2, while 𝑖𝑛𝑖𝑡 =

((𝑠0 , 0), 0). 
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The nodes marked with a green colour form the optimal solution path, with 

the corresponding optimal speed profile having a total duration of about 91 

seconds. In this case, the solution path is not the shortest one in terms of length; 

indeed, path (𝑆, 𝐴, 𝐶, 𝐸, 𝐻, 𝑇) is 200 meters shorter than the solution path 

(𝑆, 𝐴, 𝐶, 𝐹, 𝐻, 𝑇). We will return to this example in Section 5 . 
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 4 Methodology 

This section presents the algorithms that were developed, in order to 

calculate the optimal speed profile along a designated route and the shortest path 

(in terms of time) throughout a railway network. Additionally, examples of use 

cases for both scenarios are provided, demonstrating in detail how each algorithm 

operates in basic problems. 

 4.1  Computing optimal speed profile over a given path 

In this section, the computation of the optimal speed profile between 𝑖𝑛𝑖𝑡 

and 𝑔𝑜𝑎𝑙 is presented, assuming that there is a single path that can be used to 

reach the goal state, with no junctions across it. Before presenting the details of the 

computation, we give an overview of it.  

There are three possible modes for a train: (a) Maintaining a steady speed; 

(b) accelerating; and, (c) decelerating. The train maintains a steady speed if it 

cannot accelerate and there is no need to decelerate. The need for deceleration 

arises from a subsequent segment (not necessarily the immediate next one) with a 

lower speed limit than the current speed of the train, or a goal state with a smaller 

goal speed (usually zero) than the current train speed. Acceleration occurs 

whenever the train is in a list of segments having all of them higher speed limits 

that its current speed, provided that there is no need to decelerate. Deceleration 

has priority over acceleration, which in turn has priority over maintaining steady 

speed. The computation's crucial part is to determine the point where deceleration 

should start.  

The computation proceeds forwards. For each segment over the given path, 

it computes the optimum speed profile until ℎ𝑒𝑎𝑑(𝑇) reaches the end of the 

segment, taking into account the already computed speed profiles over the 

previous segments of the given path. In case the new segment has a lower speed 
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limit than the train speed when entering the segment, it is assumed that the train 

enters the new segment with a speed equal to its speed limit and, then, the 

algorithm computes where and when the train should have started decelerating, 

in order to satisfy the lower speed limit. This computation has as result changing 

the speed profile(s) of the previous segment(s). 

Example 3. We present an example of the event in which the speed profile 

is recalculated, since the train reached a segment that has a speed limit lower than 

its current speed. Table 3 and Table 4 provide the path and the train 𝑇 

characteristics, as well as the 𝑖𝑛𝑖𝑡 and the 𝑔𝑜𝑎𝑙 states for this example. 

Table 3. Path layout (Example 3) 

Segment 𝒔 Length 𝒍𝒔 (m) 𝒗𝒎𝒂𝒙(𝒔) (m/s) 

𝒔𝟎 150 20 

𝒔𝟏 150 20 

𝒔𝟐 800 50 

𝒔𝟑 700 65 

𝒔𝟒 600 85 

𝒔𝒇 150 10 

 

Table 4. Train 𝑇 characteristics; 𝑖𝑛𝑖𝑡 and 𝑔𝑜𝑎𝑙 states for Example 3 

Parameters Value 

Length 𝑙(𝑇) 150 m 

Maximum speed 𝑣𝑚𝑎𝑥(𝑇)  78 m/s 

Acceleration 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇)  1.5 m/𝑠2 

Deceleration 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇)  0.5 m/𝑠2 

𝑖𝑛𝑖𝑡 ((𝑠0, 0), 0) 

𝑔𝑜𝑎𝑙 ((𝑠𝑓, 0), 0) 
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Figure 3. Speed Profile until reaching the end of 𝑠4 (before backtrack) 

 

Figure 4. Speed Profile until reaching the end of 𝑠4 (after backtrack) 

Figure 3 presents the speed profile at the end of segment 𝑠4; till that point 

the train mostly accelerates or maintains a steady speed due to the high speed 

limits of the previous segments. Therefore, according to Figure 3, the train is ready 

to exit 𝑠4 with a speed over 70 m/s. However, the speed limit for the next segment 

is 10 m/s hence, the train needs to decelerate significantly. Considering that 𝑇 

enters 𝑠4 with a speed of about 64 m/s, as well as 𝑙(𝑠4) and 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇),  

deceleration must start earlier enough. Hence, the process is backtracked at 
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previous segments until the deceleration line crosses the speed profile. The result 

of this procedure is shown in Figure 4. The train's deceleration starts at 𝑠2 in order 

to reach the speed limit of 𝑠𝑓 at the time it enters it, resulting in a slower speed 

profile. As a result, time expands from the deceleration starting point and 

onwards. 

 

Algorithm 1. Finding the optimal speed profile 
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Algorithm 1 details the main procedure that iteratively detects events 

during the train's journey. An event happens in three cases: (a) ℎ𝑒𝑎𝑑(𝑇) enters a 

new segment; (b) 𝑡𝑎𝑖𝑙(𝑇) exits a segment; and (c) the train reaches the effective 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 (which is the trains's speed limit or the minimum speed limit of the 

segments where the train spans). The input to this algorithm includes the train 

attributes, the given path with its segments' attributes as well as, the 𝑖𝑛𝑖𝑡 and 𝑔𝑜𝑎𝑙 

states. The position of train 𝑇 in 𝑖𝑛𝑖𝑡 comprises a prefix of the path, whereas the 

position of train in 𝑔𝑜𝑎𝑙 comprises a suffix of the path. The output of the algorithm 

is the optimal speed profile 𝑆𝑃, in terms of journey duration. A speed profile is 

represented as a finite list of pairs (𝑠𝑡𝑎𝑡𝑒(𝑇), 𝑡), with the train being in the same 

mode between subsequent states. Time at 𝑖𝑛𝑖𝑡 is considered 0. 𝑆𝑃[𝑖] denotes the 

𝑖th node of 𝑆𝑃, with 𝑆𝑃[0] = (𝑖𝑛𝑖𝑡, 0) and the last node of 𝑆𝑃, denoted as 𝑆𝑃[−1], 

being of the form (𝑔𝑜𝑎𝑙, 𝑡𝑡𝑜𝑡𝑎𝑙) where 𝑡𝑡𝑜𝑡𝑎𝑙 is the duration of the journey. Between 

𝑆𝑃[𝑖] and 𝑆𝑃[𝑖 + 1] the train remains in the same mode (acceleration, deceleration 

or steady speed), which is determined from the difference between the train 

speeds in the two subsequent nodes. 

Concerning 𝑔𝑜𝑎𝑙, the ℎ𝑒𝑎𝑑(𝑇) position can be at any point of the last 

segment. Without loss of generality, we assume that in 𝑔𝑜𝑎𝑙 the train must reach 

the end of the last segment (if this is not the case, we can split the last segment in 

two ones). Furthermore, we assume an additional segment, after the last one, with 

a speed limit equal to the desired speed of the train in 𝑔𝑜𝑎𝑙. In this way, the 𝑔𝑜𝑎𝑙 

can be restated as having the train ready to enter this additional segment with a 

speed equal to its speed limit.  

Note that in general the problem may not have a solution. This may happen 

in two cases: The first one is when the goal speed is too high and the train cannot 

accelerate early enough (because of either a low initial state speed or low speed 

limits in the segments before the goal) in order to reach it. The second scenario is 

when the initial speed is very high and the train cannot decelerate early enough, 
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in order to enter a segment with a low speed limit or to reach the goal state with 

the desired slow speed. 

 

Function 1. Get the current speed limit of 𝑇 based on the segments it spans 

 

Function 2. Compute the time needed for 𝑇 to reach each event 

 

Function 3. Compute the positive root of a quadratic equation 

Algorithm 1 begins with initiliazing all the necessary variables. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 

tracks the train's current speed and is initialized to be equal to the starting speed 

𝑖𝑛𝑖𝑡𝑉 of the 𝑖𝑛𝑖𝑡 state. ℎ𝑆𝑔𝑚 and 𝑡𝑆𝑔𝑚 represent the indices of the segments in 

which ℎ𝑒𝑎𝑑(𝑇) and 𝑡𝑎𝑖𝑙(𝑇) reside respectively. At the 𝑖𝑛𝑖𝑡 state the train is in 

(𝑠0, . . , 𝑠𝑘) hence, ℎ𝑆𝑔𝑚 = 𝑘 and 𝑡𝑆𝑔𝑚 = 0. ℎ𝐸𝑥𝑖𝑡 and 𝑡𝐸𝑥𝑖𝑡 concern the distance of 

ℎ𝑒𝑎𝑑(𝑇) and 𝑡𝑎𝑖𝑙(𝑇) from the end of segments ℎ𝑆𝑔𝑚 and 𝑡𝑆𝑔𝑚 respectively. The 
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initial values for ℎ𝐸𝑥𝑖𝑡 is 𝑖𝑛𝑖𝑡𝑋 which are provided by 𝑖𝑛𝑖𝑡. If ℎ𝐸𝑥𝑖𝑡 = 0, ℎ𝑆𝑔𝑚 is 

incremented by one and ℎ𝐸𝑥𝑖𝑡 is set to be equal to the length of next segment 

𝑙(𝑠ℎ𝑆𝑔𝑚). 𝑡𝐸𝑥𝑖𝑡 is initialized using the following equation: 

𝑡𝐸𝑥𝑖𝑡 = 𝑙(𝑠0) − (∑ 𝑙(𝑠𝑖) − ℎ𝐸𝑥𝑖𝑡 − 𝑙(𝑇)

𝑘

𝑖=0

) 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 keeps the train's acceleration and is initialized to be equal to 

𝑚𝑎𝑥𝑎𝑐𝑐(𝑇). The 𝑖𝑛𝑖𝑡 state is stored in 𝑆𝑃[0]. 𝑡𝑡𝑜𝑡𝑎𝑙 is used to keep track of the 

duration so far and is initialized with 0. For the initialization of the 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 

that is in effect for the first event, the 𝑔𝑒𝑡𝑆𝑙() function (Function 1) is used, that 

takes as input the train characteristics and the segments it is currently in. In case 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is equal to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 is set to 0.  

Having initialized all variables, 𝑔𝑒𝑡𝑀𝑖𝑛𝑇() (Function 2) is called to detect 

which type of event is upcoming, by computing the time 𝑡𝑚𝑖𝑛 = min(𝑡1, 𝑡2, 𝑡3) 

needed to reach each one of them. 𝑡1 is the time needed for the tail to exit its 

segment; 𝑡2 is the time needed for the head to enter a new segment; and 𝑡3 is the 

time needed for the train to reach the 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡, provided that it is in accelerating 

mode. When the train is accelerating, 𝑡1 and 𝑡2 are computed as the roots of the 

quadratic equation:  

(
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0 

 

𝑚𝑎𝑥𝑅𝑜𝑜𝑡() (Function 3) returns the positive root (there is always one). 𝑡3 is 

computed as the time needed in order to accelerate from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 to the 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 with an acceleration of 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇).  

Having completed the preliminary computations, the while-loop updates 

all the relevant variables such as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, the distance travelled 𝑝 that is used to 

update 𝑡𝐸𝑥𝑖𝑡 and ℎ𝐸𝑥𝑖𝑡. Based on the type of the event that occurred, either ℎ𝑆𝑔𝑚 

and ℎ𝐸𝑥𝑖𝑡 or 𝑡𝑆𝑔𝑚 and 𝑡𝐸𝑥𝑖𝑡 or none of them are updated. The train's 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 
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is also updated accordingly; to 0 if the train reached the 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 and to 

𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 is lower than the 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡. 

 

Algorithm 2. Finding the deceleration point 

The most complicated case occurs when ℎ𝑒𝑎𝑑(𝑇) is about to enter a new 

segment (𝑡2 =  𝑡𝑚𝑖𝑛) with 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 higher than the new segment's speed limit 

𝑣𝑚𝑎𝑥(𝑠ℎ𝑆𝑔𝑚), that is the new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡. In this case the speed profile must be 



 

 20 

recomputed by adding a deceleration point at the latest possible time, when the 

train should start decelerating in order to reach the new segment with a speed 

equal to 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 (denoted as 𝑣0 in Algorithm 2). Intermediate speed profile 

entries are removed from 𝑆𝑃. Algorithm 2 handles this case, by backtracking in 

previous states stored in 𝑆𝑃, searching for the optimal point to decelerate. In order 

to access information stored in an entry 𝑖 of 𝑆𝑃, we use 𝑑𝑖𝑠𝑡(𝑆𝑃[𝑖]) for the total 

travelled distance, 𝑠𝑝𝑒𝑒𝑑(𝑆𝑃[𝑖]) for the train's current speed. Finally, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑃)  

denotes the total number of entries in 𝑆𝑃. 

The algorithm searches for previous speed profile segments during which 

the train was either accelerating or maintaining its speed, starting from the most 

recent one. Two consecutive speed profile nodes define a speed profile segment. 

The train's mode in a speed profile segment is determined by comparing its speed 

at the two defining speed profile nodes, (denoted by 𝑣1 and 𝑣2). If 𝑣1 >  𝑣2,  

meaning that at this segment the train was already decelerating, the for-loop 

continues to the previous speed profile segment (deceleration cannot start at a 

speed profile segment where the train was already decelerating) until an 

appropriate segment of the speed profile is found. If 𝑣2 ≥  𝑣1, 𝑑1 becomes the 

cumulative travelled distance till 𝑆𝑃[𝑗], while 𝑑 represents the cumulative 

travelled distance at 𝑆𝑃[−1]. The next step is to find whether the optimal 

deceleration point 𝑥𝑑𝑒𝑐 lies between these two positions, as well as computing the 

train's speed 𝑣# at that point, with 𝑑1 ≤  𝑥𝑑𝑒𝑐 ≤ 𝑑 and 𝑣1 ≤  𝑣# ≤  𝑣2. There are two 

modes for the train's motion in this segment, since it will accelerate or keep steady 

until it reaches 𝑥𝑑𝑒𝑐 at time 𝑡1
# with a speed of 𝑣1 and then decelerate until 𝑑 at time 

𝑡2
#  with a speed of 𝑣0.  

If 𝑣# > 𝑣1, this means that the deceleration point lies between 𝑑1 and 𝑑. 

Existing 𝑆𝑃 nodes after 𝑆𝑃[𝑗] are removed, while two new 𝑆𝑃 nodes are added, 

𝑆𝑃[𝑗 + 1] at the beginning of deceleration and 𝑆𝑃[𝑗 + 2] at the end of it. In case 𝑣# 

= 𝑣1, the train maintains steady speed between 𝑆𝑃[𝑗] and 𝑆𝑃[𝑗 + 1]. In case 𝑥𝑑𝑒𝑐 =
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𝑑1, 𝑆𝑃[𝑗 + 1]  is removed, so 𝑆𝑃[𝑗 + 2] becomes 𝑆𝑃[𝑗 + 1]. Finally, execution 

returns from Algorithm 2 on Algorithm 1 with the train at the start of the new 

segment having  a speed equal to the new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 and and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0. If 

Algorithm 2 returns False, Algorithm 1 terminates since the train started the path 

with a speed high enough that a deceleration to 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is not possible. 

Algorithm 1 ends by saving the new state in 𝑆𝑃, proceeding by 𝑡𝑚𝑖𝑛. It is 

also checked whether the train has arrived at the position of the 𝑔𝑜𝑎𝑙 state but 

with a speed different than 𝑔𝑜𝑎𝑙𝑉, which means that it is impossible to reach it 

thus, the algorithm terminates. 

 4.1.1 Use case: Computing the speed profile of Example 3 

This section demonstrates the operation of Algorithm 1 and Algorithm 2, 

displaying the various calculations done as the train is progressing through the 

segments of the path. Table 3 and Table 4 provide the path and the train 𝑇 

characteristics, as well as the 𝑖𝑛𝑖𝑡 and the 𝑔𝑜𝑎𝑙 states for this example. 

Algorithm 1 employs an iterative while-loop mechanism to continuously 

detect events as the train moves through the segments of the path. For that reason, 

the computational analysis is presented for each iteration of the algorithm in order 

to simulate its operation. 

Initialization. Before the iterative procedure of detecting events, it is 

necessary to initialize all the necessary variables. Since the train is idle in the 𝑖𝑛𝑖𝑡 

state, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 = 𝑖𝑛𝑖𝑡𝑉 = 0. Additionally, all parts of the train reside at 𝑠0, hence 

ℎ𝑆𝑔𝑚 = 𝑡𝑆𝑔𝑚 = 0. Due to the fact that the train is initially at the end of 𝑠0, 𝑖𝑛𝑖𝑡 = 

((𝑠0, 0), 0) is converted to an equal state (((𝑠0, 𝑠1), 150), 0) that places the train at the 

start of 𝑠1. ℎ𝑆𝑔𝑚 is incremented by one and ℎ𝐸𝑥𝑖𝑡 is set to be equal to the length 

of 𝑠1. 𝑡𝐸𝑥𝑖𝑡 is initialized using the following equation: 
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𝑡𝐸𝑥𝑖𝑡 = 𝑙(𝑠0) − (∑ 𝑙(𝑠𝑖) − ℎ𝐸𝑥𝑖𝑡 − 𝑙(𝑇)

1

𝑖=0

) =  150 − ((150 + 150) − 150 − 150)

= 150 𝑚 

𝑆𝑃 is initialized using the converted 𝑖𝑛𝑖𝑡 state and 𝑡𝑡𝑜𝑡𝑎𝑙 is set to 0. Since 

𝑣𝑚𝑎𝑥(𝑠0) = 𝑣𝑚𝑎𝑥(𝑠1) < 𝑣𝑚𝑎𝑥(𝑇), 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is set to 𝑣𝑚𝑎𝑥(𝑠1), while 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇), because 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 < 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡. The subsequent step 

involves identifying which one of the three types of events will occur next, by 

computing 𝑡𝑚𝑖𝑛 = min (𝑡1, 𝑡2, 𝑡3). 

𝑡1 and 𝑡2 concern the time needed for 𝑡𝑎𝑖𝑙(𝑇) to reach the end of 𝑠0 and 

ℎ𝑒𝑎𝑑(𝑇) to reach the end of 𝑠1, respectively. They are computed as the roots of the 

quadratic equations: 

𝑡1 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

𝑡2 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − ℎ𝐸𝑥𝑖𝑡 = 0 

Since 𝑡𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 = 150: 

𝑡1 = 𝑡2 ∶  (
1

2
) ∗ 1.5 ∗ 𝑡2 + 0 ∗ 𝑡 − 150 = 0 =>

3𝑡2

4
= 150 => 𝑡1,2 =  √200

=  14.14 𝑠 1 

𝑡3 is the time needed for the train to reach 𝑚𝑎𝑥𝑣(𝑇) and is calculated as 

such: 

𝑡3 =  
𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐
=  

20 − 0

1.5
=  13.33 𝑠 

 

 

 

                                                 
1 Note that for the sake of clarity in presentation, all arithmetic values are rounded to two decimal 

places.  
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Iteration 1.   

Table 5. Values of the parameters at the beginning of Iteration 1 

Parameters Value 

𝑆𝑃[−1] (((𝑠0, 𝑠1), 150), 0) 

ℎ𝐸𝑥𝑖𝑡 150 m 

𝑡𝐸𝑥𝑖𝑡 150 m 

ℎ𝑆𝑔𝑚 1 

𝑡𝑆𝑔𝑚 0 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 0 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  1.5 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 20 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 0 s 

𝑡𝑚𝑖𝑛 (𝑡3) 13.33 𝑠 

 

Table 5 lists all the variable values utilized by Algorithm 1 throughout its 

operation. Since 𝑡𝑚𝑖𝑛 =  𝑡3, the algorithm detects that the next event will occur 

when the train reaches 𝑚𝑎𝑥𝑣(𝑇). The distance 𝑝 until this event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 0 ∗ 13.33 + (
1

2
) ∗ 1.5 ∗ 13.332

=   133.33 𝑚 

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 is set to be equal to 𝑚𝑎𝑥𝑣(𝑇), while ℎ𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 =

150 − 133.33 = 16.66 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡3 = 0 + 13.33 = 13.33 𝑠. The 

algorithm updates the train’s mode since it reached its 𝑚𝑎𝑥𝑣(𝑇), by setting 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0. 𝑆𝑃 is updated with the new state: (((𝑠0, 𝑠1), 16.66), 20). 

 Moving on, in order to detect the next event, 𝑡1, 𝑡2 and 𝑡3 are calculated. 

Because 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0, 𝑡1 = 𝑡2 =  
𝑡𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=

ℎ𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

16.66

20
=  0.83 𝑠 , while 𝑡3 =

𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑒. 
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Iteration 2.   

Table 6. Values of the parameters at the beginning of Iteration 2 

Parameters Value 

𝑆𝑃[−1] (((𝑠0, 𝑠1), 16.66), 20) 

ℎ𝐸𝑥𝑖𝑡 16.66 m 

𝑡𝐸𝑥𝑖𝑡 16.66 m 

ℎ𝑆𝑔𝑚 1 

𝑡𝑆𝑔𝑚 0 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 20 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  0 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 20 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 13.33 𝑠 

𝑡𝑚𝑖𝑛 (𝑡1,2) 0.83 𝑠 

 

Table 6 contains the values for the updated parameters at the start of 

Iteration 2. Considering that 𝑡1 = 𝑡2, the next event concerns both 𝑡𝑎𝑖𝑙(𝑇) reaching 

the end of 𝑠0 and ℎ𝑒𝑎𝑑(𝑇) reaching the end of 𝑠1. The distance 𝑝 until this event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 20 ∗ 0.83 + (
1

2
) ∗ 0 ∗ 0.832

=   16.66 𝑚 

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 remains the same (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0), while ℎ𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 =

𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 16.66 − 16.66 = 0 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡1,2 = 13.33 +  0.83 =

14.16 𝑠.  

Because of the first event (𝑡2 = 𝑡𝑚𝑖𝑛), ℎ𝑆𝑔𝑚 is incremented to 2 (the train is 

about to enter 𝑠2) and ℎ𝐸𝑥𝑖𝑡 is set to 𝑙(𝑠2) = 800 𝑚. At this point, due to the rare 

cooccurance of two events, 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is updated (line 12, Algorithm 1) even 

though t𝑆𝑔𝑚 is not yet updated. However, this issue is later resolved by re-
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updating 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 after updating t𝑆𝑔𝑚 (line 22, Algorithm 1). Finally, since 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 = 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡, Algorithm 2 is not applied. 

 Moving on, 𝑡𝑎𝑖𝑙(𝑇) is about to exit 𝑠0 hence, 𝑡𝑆𝑔𝑚 is set to 1 and 𝑡𝐸𝑥𝑖𝑡 is set 

to 𝑙(𝑠1) = 150. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is min(𝑣𝑚𝑎𝑥(𝑠1), 𝑣𝑚𝑎𝑥(𝑠2), 𝑣𝑚𝑎𝑥(𝑇)) =

min (20, 50, 78) = 20 𝑚/𝑠, that is equal to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 remains 0. 

Finally, 𝑆𝑃 is updated with the new state: (((𝑠1, 𝑠2), 800), 20). 

 As regards the detection of the next event, considering that 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 =

0, 𝑡3 is set to 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒, while 𝑡1 and 𝑡2 are calculated as such: 

𝑡1 =  
𝑡𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

150

20
= 7.5 𝑠 , 𝑡2 =  

ℎ𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

800

20
= 40 𝑠 

Iteration 3.   

Table 7. Entries of SP at the beginning of Iteration 3 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

Table 8. Values of the parameters at the beginning of Iteration 3 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 800 m 

𝑡𝐸𝑥𝑖𝑡 150 m 

ℎ𝑆𝑔𝑚 2 

𝑡𝑆𝑔𝑚 1 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 20 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  0 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 20 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 14.16 𝑠 

𝑡𝑚𝑖𝑛 (𝑡1) 7.5 𝑠 
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Table 7 includes all the entries of SP and Table 8 contains all the values for 

the updated parameters at the start of Iteration 3. Since 𝑡𝑚𝑖𝑛 = 𝑡1, the next event 

occurs when 𝑡𝑎𝑖𝑙(𝑇) exits 𝑠1. The distance 𝑝 until this event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 20 ∗ 7.5 + (
1

2
) ∗ 0 ∗ 7.52

=   150 𝑚 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 remains the same (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0), while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 − 𝑝 =

800 − 150 = 650 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 150 − 150 = 0 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 +

𝑡1 = 14.16 +  7.5 = 21.66 𝑠. 

𝑡𝑎𝑖𝑙(𝑇) is about to exit 𝑠1, hence 𝑡𝑆𝑔𝑚 is incremented to 2 and 𝑡𝐸𝑥𝑖𝑡 is set 

to 𝑙(𝑠2) = 800 𝑚. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is min( 𝑣𝑚𝑎𝑥(𝑠2), 𝑣𝑚𝑎𝑥(𝑇)) =

min(50 , 78) = 50
𝑚

𝑠
> 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) = 1.5 𝑚/𝑠2. 

Finally, 𝑆𝑃 is updated with the new state: ((𝑠2, 650), 20). 

The next step concerns the detection of the next event, with 𝑡1, 𝑡2 and 

𝑡3 calculated as such: 

𝑡1 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 20 ∗ 𝑡 − 800 = 0 =>

3

4
𝑡2 + 20𝑡 − 800 = 0  

𝛥 =  202 − 4 ∗
3

4
∗ (−800) = 2800  

𝑡1 =  
−20 +  √2800

6/4
= 21.94 𝑠 

𝑡2 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − ℎ𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 20 ∗ 𝑡 − 650 = 0 =>

3

4
𝑡2 + 20𝑡 − 650 = 0  

𝛥 =  202 − 4 ∗
3

4
∗ (−650) = 2350 

𝑡2 =  
−20 +  √2350

6/4
= 18.98 𝑠 

𝑡3 =  
𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐
=  

50 − 20

1.5
= 20 𝑠 
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Iteration 4.   

Table 9. Entries of SP at the beginning of Iteration 4 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

Table 10. Values of the parameters at the beginning of Iteration 4 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 650 m 

𝑡𝐸𝑥𝑖𝑡 800 m 

ℎ𝑆𝑔𝑚 2 

𝑡𝑆𝑔𝑚 2 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 20 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  1.5 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 50 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 21.66 𝑠  

𝑡𝑚𝑖𝑛 (𝑡2) 18.98 𝑠 

 

Table 9 includes all the entries of SP and Table 10 contains all the values for 

the updated parameters at the start of Iteration 4. The next event concerns ℎ𝑒𝑎𝑑(𝑇) 

entering 𝑠3. The distance 𝑝 until this event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 20 ∗ 18.98 + (
1

2
) ∗ 1.5 ∗ 18.982

=   650 𝑚 

Since the train is accelerating, the updated 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 +  𝑡𝑚𝑖𝑛 ∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 20 + 18.98 ∗ 1.5 =  48.47 𝑚/𝑠, while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 − 𝑝 = 650 −
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650 = 0 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 800 − 650 = 150 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡2 =

21.66 + 18.98 = 40.65 𝑠. 

ℎ𝑒𝑎𝑑(𝑇) is about to enter 𝑠3, hence ℎ𝑆𝑔𝑚 is incremented to 3 and ℎ𝐸𝑥𝑖𝑡 is 

set to 𝑙(𝑠3) = 700 𝑚. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is min(𝑣𝑚𝑎𝑥(𝑠2), 𝑣𝑚𝑎𝑥(𝑠3), 𝑣𝑚𝑎𝑥(𝑇)) =

min(50, 65, 78) = 50
𝑚

𝑠
> 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) = 1.5 𝑚/𝑠2. 

Finally, 𝑆𝑃 is updated with the new state: (((𝑠2, 𝑠3), 700), 48.47). 

In the final step of Iteration 4, the next event is detected by calculating 𝑡1, 𝑡2 

and 𝑡3 as such: 

𝑡1 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 48.47 ∗ 𝑡 − 150 = 0 =>

3

4
𝑡2 + 48.47𝑡 − 150 = 0  

𝛥 =  48.472 − 4 ∗
3

4
∗ (−150) = 2799.34 

𝑡1 =  
−48.47 +  √2799.34

6/4
= 2.95 𝑠 

𝑡2 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − ℎ𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 48.47 ∗ 𝑡 − 700 = 0 =>

3

4
𝑡2 + 48.47𝑡 − 700 = 0  

𝛥 =  48.472 − 4 ∗
3

4
∗ (−700) = 4449.34 

𝑡2 =  
−48.47 +  √4449.34

6/4
= 12.15 𝑠 

𝑡3 =  
𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐
=  

50 − 48.47

1.5
= 1.02 𝑠 
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Iteration 5.   

Table 11. Entries of SP at the beginning of Iteration 5 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

5 (((𝑠2, 𝑠3), 700), 48.47) 

Table 12. Values of the parameters at the beginning of Iteration 5 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 700 m 

𝑡𝐸𝑥𝑖𝑡 150 m 

ℎ𝑆𝑔𝑚 3 

𝑡𝑆𝑔𝑚 2 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 48.47 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  1.5 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 50 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 40.65 𝑠  

𝑡𝑚𝑖𝑛 (𝑡3) 1.02 𝑠 

 

The next event occurs when the train reaches 𝑚𝑎𝑥𝑣(𝑇). The distance 𝑝 until 

this event is: 𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 48.47 ∗ 1.02 +

(
1

2
) ∗ 1.5 ∗ 1.022 =   50 𝑚. 

Since the train is accelerating, the updated 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 +  𝑡𝑚𝑖𝑛 ∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 48.47 + 1.02 ∗ 1.5 =  50 𝑚/𝑠, while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 − 𝑝 = 700 −
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50 = 650 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 150 − 50 = 100 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡3 =

40.65 + 1.02 = 41.67 𝑠. 

Since the train reached its maximum speed, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0. Additionally, 

𝑆𝑃 is updated with the new state: (((𝑠2, 𝑠3), 650), 50). The final step of Iteration 5 

concerns the detection of the next step by calculating 𝑡1 and 𝑡2 (𝑡3 is set to 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒) 

as such: 𝑡1 =  
𝑡𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

100

50
= 2 𝑠 , 𝑡2 =  

ℎ𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

650

50
= 13 𝑠. 

Iteration 6.   

Table 13. Entries of SP at the beginning of Iteration 6 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

5 (((𝑠2, 𝑠3), 700), 48.47) 

6 (((𝑠2, 𝑠3), 650), 50) 

Table 14. Values of the parameters at the beginning of Iteration 6 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 650 m 

𝑡𝐸𝑥𝑖𝑡 100 m 

ℎ𝑆𝑔𝑚 3 

𝑡𝑆𝑔𝑚 2 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 50 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  0 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 50 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 41.67 𝑠  

𝑡𝑚𝑖𝑛 (𝑡1) 2 𝑠 
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Since  𝑡𝑚𝑖𝑛 =  𝑡1, the next event concerns 𝑡𝑎𝑖𝑙(𝑇) exiting 𝑠2. The distance 𝑝 

until this event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 50 ∗ 2 + (
1

2
) ∗ 1.5 ∗ 22

=   100 𝑚 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 remains the same, while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 −

𝑝 = 650 − 100 = 550 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 100 − 100 =  0 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =

 𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡1 = 41.67 + 2 = 43.67 𝑠. 

𝑡𝑎𝑖𝑙(𝑇) is about to exit 𝑠2, hence 𝑡𝑆𝑔𝑚 is incremented to 3 and 𝑡𝐸𝑥𝑖𝑡 is set 

to 𝑙(𝑠3) = 700 𝑚. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is min(𝑣𝑚𝑎𝑥(𝑠3), 𝑣𝑚𝑎𝑥(𝑇)) =

min(65 , 78) = 65
𝑚

𝑠
> 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) = 1.5 𝑚/𝑠2. 

Finally, 𝑆𝑃 is updated with the new state: ((𝑠3, 550), 50). 

In the final step of Iteration 6, the next event is detected by calculating 𝑡1, 𝑡2 

and 𝑡3 as such: 

𝑡1 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 50 ∗ 𝑡 − 700 = 0 =>

3

4
𝑡2 + 50𝑡 − 700 = 0  

𝛥 =  502 − 4 ∗
3

4
∗ (−700) = 4600 

𝑡1 =  
−50 +  √4600

6/4
= 11.88 𝑠 

𝑡2 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − ℎ𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 50 ∗ 𝑡 − 550 = 0 =>

3

4
𝑡2 + 50𝑡 − 550 = 0  

𝛥 =  502 − 4 ∗
3

4
∗ (−550) = 4150 

𝑡2 =  
−50 +  √4150

6/4
= 9.61 𝑠 

𝑡3 =  
𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐
=  

65 − 50

1.5
= 10 𝑠 
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Iteration 7.   

Table 15. Entries of SP at the beginning of Iteration 7 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

5 (((𝑠2, 𝑠3), 700), 48.47) 

6 (((𝑠2, 𝑠3), 650), 50) 

7 ((𝑠3, 550), 50) 

Table 16. Values of the parameters at the beginning of Iteration 7 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 550 m 

𝑡𝐸𝑥𝑖𝑡 700 m 

ℎ𝑆𝑔𝑚 3 

𝑡𝑆𝑔𝑚 3 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 50 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  1.5 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 65 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 43.67 𝑠  

𝑡𝑚𝑖𝑛 (𝑡2) 9.61 𝑠 

 

The next event occurs when ℎ𝑒𝑎𝑑(𝑇) enters 𝑠4. The distance 𝑝 until this 

event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 50 ∗ 9.61 + (
1

2
) ∗ 1.5 ∗ 9.612

=   550 𝑚 
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Since the train is in accelerating mode, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 +  𝑡𝑚𝑖𝑛 ∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 50 + 9.61 ∗ 1.5 =  64.42 𝑚/𝑠, while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 − 𝑝 = 550 −

550 = 0 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 700 − 550 =  150 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡2 =

43.67 + 9.61 = 53.28 𝑠. 

ℎ𝑒𝑎𝑑(𝑇) is about to enter 𝑠4, hence ℎ𝑆𝑔𝑚 is incremented to 4 and ℎ𝐸𝑥𝑖𝑡 is 

set to 𝑙(𝑠4) = 600 𝑚. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is min(𝑣𝑚𝑎𝑥(𝑠3), 𝑣𝑚𝑎𝑥(𝑠4), 𝑣𝑚𝑎𝑥(𝑇)) =

min(65, 85, 78) = 65
𝑚

𝑠
> 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) = 1.5 𝑚/𝑠2. 

Finally, 𝑆𝑃 is updated with the new state: (((𝑠3, 𝑠4), 600), 64.42). 

Iteration 7 concludes by calculating 𝑡1, 𝑡2 and 𝑡3 as such: 

𝑡1 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 64.42 ∗ 𝑡 − 150 = 0 =>

3

4
𝑡2 + 64.42𝑡 − 150 = 0  

𝛥 =  64.422 − 4 ∗
3

4
∗ (−150) = 4599.93 

𝑡1 =  
−64.42 +  √4599.93

6/4
= 2.26 𝑠 

𝑡2 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 64.42 ∗ 𝑡 − 600 = 0 =>

3

4
𝑡2 + 64.42𝑡 − 600 = 0  

𝛥 =  64.422 − 4 ∗
3

4
∗ (−600) = 5949.93 

𝑡2 =  
−64.42 +  √5949.93

6/4
= 8.47 𝑠 

𝑡3 =  
𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐
=  

65 − 64.42

1.5
= 0.38 𝑠 
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Iteration 8.   

Table 17. Entries of SP at the beginning of Iteration 8 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

5 (((𝑠2, 𝑠3), 700), 48.47) 

6 (((𝑠2, 𝑠3), 650), 50) 

7 ((𝑠3, 550), 50) 

8 (((𝑠3, 𝑠4), 600), 64.42) 

Table 18. Values of the parameters at the beginning of Iteration 8 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 600 m 

𝑡𝐸𝑥𝑖𝑡 150 m 

ℎ𝑆𝑔𝑚 4 

𝑡𝑆𝑔𝑚 3 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 64.42 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  1.5 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 65 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 53.28 𝑠  

𝑡𝑚𝑖𝑛 (𝑡3) 0.38 𝑠 

 

The next event occurs when the train reaches 𝑚𝑎𝑥𝑣(𝑇). The distance 𝑝 until 

this event is: 
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𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 64.42 ∗ 0.38 + (
1

2
) ∗ 1.5 ∗ 0.382

=   25 𝑚 

Since the train is in accelerating mode, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 +  𝑡𝑚𝑖𝑛 ∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 64.42 + 0.38 ∗ 1.5 =  65 𝑚/𝑠, while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 − 𝑝 = 600 −

25 = 575 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 150 − 25 =  125 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡3 =

53.28 + 0.38 = 53.66 𝑠. The algorithm updates the train’s mode since it reached 

its 𝑚𝑎𝑥𝑣(𝑇), by setting 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0. 𝑆𝑃 is updated with the new state: (((𝑠3, 𝑠4), 

575), 65). 

 As regards the detection of the next event, considering that 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 =

0, 𝑡3 is set to 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒, while 𝑡1 and 𝑡2 are calculated as such: 

𝑡1 =  
𝑡𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

125

65
= 1.92 𝑠  

𝑡2 =  
ℎ𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

575

65
= 8.84 𝑠 

Iteration 9.   

Table 19. Entries of SP at the beginning of Iteration 9 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

5 (((𝑠2, 𝑠3), 700), 48.47) 

6 (((𝑠2, 𝑠3), 650), 50) 

7 ((𝑠3, 550), 50) 

8 (((𝑠3, 𝑠4), 600), 64.42) 

9 (((𝑠3, 𝑠4), 575), 65) 
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Table 20. Values of the parameters at the beginning of Iteration 9 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 575 m 

𝑡𝐸𝑥𝑖𝑡 125 m 

ℎ𝑆𝑔𝑚 4 

𝑡𝑆𝑔𝑚 3 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 65 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  0 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 65 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 53.66 𝑠  

𝑡𝑚𝑖𝑛 (𝑡1) 1.92 𝑠 

 

The next event occurs when 𝑡𝑎𝑖𝑙(𝑇) exits 𝑠3. The distance 𝑝 until this event 

is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 65 ∗ 1.92 + (
1

2
) ∗ 0 ∗ 1.922

=   125 𝑚 

The train is not accelerating, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 remains steady, while ℎ𝐸𝑥𝑖𝑡 =

ℎ𝐸𝑥𝑖𝑡 − 𝑝 = 575 − 125 = 450 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 125 − 125 =  0 𝑚 and 

𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡1 = 53.66 + 1.92 = 55.58 𝑠. 

𝑡𝑎𝑖𝑙(𝑇) is about to exit 𝑠3, hence 𝑡𝑆𝑔𝑚 is incremented to 4 and t𝐸𝑥𝑖𝑡 is set to 

𝑙(𝑠4) = 600 𝑚. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is min(𝑣𝑚𝑎𝑥(𝑠4), 𝑣𝑚𝑎𝑥(𝑇)) = min(85, 78) =

78
𝑚

𝑠
> 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉, hence 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑇) = 1.5 𝑚/𝑠2. Finally, 𝑆𝑃 is 

updated with the new state: ((𝑠4, 450), 65). 

Iteration 9 concludes by calculating 𝑡1, 𝑡2 and 𝑡3 as such: 

𝑡1 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 
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=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 65 ∗ 𝑡 − 600 = 0 =>

3

4
𝑡2 + 65𝑡 − 600 = 0  

𝛥 =  652 − 4 ∗
3

4
∗ (−600) = 6025 

𝑡1 =  
−65 +  √6025

6/4
= 8.41 𝑠 

𝑡2 : (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡2 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡 − 𝑡𝐸𝑥𝑖𝑡 = 0 

=> (
1

2
) ∗ 1.5 ∗ 𝑡2 + 65 ∗ 𝑡 − 450 = 0 =>

3

4
𝑡2 + 65𝑡 − 450 = 0  

𝛥 =  652 − 4 ∗
3

4
∗ (−450) = 5575 

𝑡2 =  
−65 +  √5575

6/4
= 6.44 𝑠 

𝑡3 =  
𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐
=  

78 − 65

1.5
= 8.66 𝑠 

Iteration 10.   

Table 21. Entries of SP at the beginning of Iteration 10 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

5 (((𝑠2, 𝑠3), 700), 48.47) 

6 (((𝑠2, 𝑠3), 650), 50) 

7 ((𝑠3, 550), 50) 

8 (((𝑠3, 𝑠4), 600), 64.42) 

9 (((𝑠3, 𝑠4), 575), 65) 

10 ((𝑠4, 450), 65) 
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Table 22. Values of the parameters at the beginning of Iteration 10 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 450 m 

𝑡𝐸𝑥𝑖𝑡 600 m 

ℎ𝑆𝑔𝑚 4 

𝑡𝑆𝑔𝑚 4 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 65 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  1.5 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 78 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 55.58 𝑠  

𝑡𝑚𝑖𝑛 (𝑡2) 6.44 𝑠 

 

The next event occurs when ℎ𝑒𝑎𝑑(𝑇) enters 𝑠𝑓. The distance 𝑝 until this 

event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 65 ∗ 6.44 + (
1

2
) ∗ 1.5 ∗ 6.44 2

=   450 𝑚 

Since the train is in accelerating mode, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 +  𝑡𝑚𝑖𝑛 ∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 65 + 6.44 ∗ 1.5 =  74.66 𝑚/𝑠, while ℎ𝐸𝑥𝑖𝑡 = ℎ𝐸𝑥𝑖𝑡 − 𝑝 = 450 −

450 = 575 𝑚, 𝑡𝐸𝑥𝑖𝑡 = 𝑡𝐸𝑥𝑖𝑡 − 𝑝 = 600 − 450 =  150 𝑚 and 𝑡𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡2 =

55.58 + 6.44 = 62.03 𝑠. 

ℎ𝑒𝑎𝑑(𝑇) is about to enter 𝑠𝑓, hence ℎ𝑆𝑔𝑚 is incremented to 5 and h𝐸𝑥𝑖𝑡 is 

set to 𝑙(𝑠5) = 150 𝑚. The new 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 is 

min (𝑣𝑚𝑎𝑥(𝑠4), 𝑣𝑚𝑎𝑥(𝑠𝑓), 𝑣𝑚𝑎𝑥(𝑇)) = min(85, 10, 78) = 10
𝑚

𝑠
. 𝑆𝑃 is updated with 

the new state: ((𝑠𝑓, 150), 74.66). At this point, it is checked whether Algorithm 2 

must be applied or not, by comparing the effective 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉. Due 
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to the fact that 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 is higher than the 𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 (the train is about to enter 

a segment with a speed limit of 10 m/s having a speed of 74.66 m/s), Algorithm 2 

is applied. 

Algorithm 2 starts searching through previous speed profile segments 

(defined by two consecutive speed profile nodes), in order to find the optimal 

point to decelerate. 𝑣0 represents the desired speed for the train at the start of 𝑠𝑓, 

that is 𝑣𝑚𝑎𝑥(𝑠𝑓) = 10 𝑚/𝑠. Finally, j is used as an index of the 𝑆𝑃 list, initialized 

as 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑃) − 2 = 11 − 2 = 9. 

Algorithm 2 Iteration 1. The process begins by examining the last two 

entries of 𝑆𝑃: 𝑆𝑃[𝑗] =  ((𝑠4, 450), 65), 𝑆𝑃[𝑗 + 1] =  ((𝑠𝑓 , 150), 74.66). 𝑣1 and 𝑣2 are 

set to 65 and 74.66 𝑚/𝑠, respectively. Since 𝑣2 > 𝑣1, the train was in accelerating 

mode and the algorithm continues, by setting 𝑑1 (cumulative travelled distance 

until 𝑆𝑃[𝑗]) to 1950 m and 𝑑 (cumulative travelled distance at 𝑆𝑃[𝑗 + 1]) to 2400 m. 

Next, based on the train’s mode in the current speed profile 

segment, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 𝑚𝑎𝑥𝑎𝑐𝑐(𝑡) and the deceleration point 𝑥𝑑𝑒𝑐 is computed as 

such: 

𝑥𝑑𝑒𝑐 =  
𝑣0

2 − 𝑣1
2 + 2 ∗ (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑑1 + 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇) ∗ 𝑑)

2 ∗ (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 + 𝑚𝑎𝑥𝑑𝑒𝑐(𝑇))
 

=
102 − 652 + 2 ∗ (1.5 ∗ 1950 + 0.5 ∗ 2400)

2 ∗ (1.5 + 0.5)
=  

4125

4
=  1031.25 𝑚 

 The speed of the train at 𝑥𝑑𝑒𝑐, that is 𝑣#, is computed as such: 

𝑣# =  √𝑣1
2 + 2 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ (𝑥𝑑𝑒𝑐 − 𝑑1) = √652 + 2 ∗ 1.5 ∗ (1031.25 − 1950)

=  38.32 𝑚/𝑠 

Since 𝑣# < 𝑣1, the train’s deceleration should have started at previous speed 

profile segments, hence Algorithm 2 continues its iteration. Table 23 contains the 

calculations of Algorithm 2 for all previous speed profile segments until the 

optimal deceleration point is found. The procedure lasted a total of 7 iterations, 

the algorithm found the optimal deceleration point at 𝑠2, thus completing the 
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backtracking procedure. In that speed profile segment, instead of accelerating 

until reaching a speed of 48.47 m/s, the train will now accelerate to a speed of 40.46 

m/s and then immediately start decelerating, until it reaches the start of 𝑠𝑓, with 

the desired speed of 10 m/s. As mentioned previously, Figure 3 presents the speed 

profile at the end of segment 𝑠4, as the train is about to enter 𝑠𝑓 and violate its 

speed limit. The result of the backtracking procedure is shown in Figure 4. 

Table 23. Values of the backtracking variables computed by Algorithm 2 

Iteration j 𝑺𝑷[𝒋] 𝑺𝑷[𝒋 + 𝟏] 𝒅𝟏 𝒙𝒅𝒆𝒄 𝒗# 

2 8 (((𝑠3, 𝑠4), 575), 65) ((𝑠4, 450), 65) 1825 -1725 65 

3 7 (((𝑠3, 𝑠4), 600), 64.42) (((𝑠3, 𝑠4), 575), 65) 1800 937.5 39.52 

4 6 ((𝑠3, 550), 50) (((𝑠3, 𝑠4), 600), 64.42) 1250 937.5 39.52 

5 5 (((𝑠2, 𝑠3), 650), 50) ((𝑠3, 550), 50) 1150 0 50 

6 4 (((𝑠2, 𝑠3), 700), 48.47) (((𝑠2, 𝑠3), 650), 50) 1100 862.5 40.46 

7 3 ((𝒔𝟐, 650), 20) (((𝒔𝟐, 𝒔𝟑), 700), 48.47) 450 862.5 40.46 

 

The final step of Algorithm 2 concerns updating 𝑆𝑃 with the changes 

produced by the backtracking procedure. Firstly, all entries of 𝑆𝑃 after 𝑗 are 

removed. Similarly, 𝑡𝑡𝑜𝑡𝑎𝑙 is reverted back to the value it had at state 𝑆𝑃[3], that is 

21.66 𝑠. Moving on, since 𝑣# >  𝑣1, two new states will be added to 𝑆𝑃, one after 

the train’s acceleration until reaching 𝑥𝑑𝑒𝑐 and one after the train’s deceleration 

until the start of 𝑠𝑓. The train accelerates for 𝑡1
# =  

𝑣#−𝑣1

𝑚𝑎𝑥𝑎𝑐𝑐(𝑇)
=  

40.46−20

1.5
= 13.64 𝑠, 

travelling 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡1
# +

1

2
∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ (𝑡1

#)2 = 20 ∗ 13.64 +
1

2
∗ 1.5 ∗ 13.642 =

412.5 𝑚, which means that at the deceleration point, ℎ𝐸𝑥𝑖𝑡 = 650 − 412.5 =

237.5 𝑚, leading to the first new state: ((𝑠2, 237.5), 40.46). Afterwards, the train 

decelerates for 𝑡2
# =  

𝑣#−𝑣0

𝑚𝑎𝑥𝑑𝑒𝑐(𝑇)
=  

40.46−10

0.5
= 60.93 𝑠, travelling 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡2

# −
1

2
∗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ (𝑡2
#)2 = 40.46 ∗ 60.93 −

1

2
∗ 0.5 ∗ 60.932 = 1537.5 𝑚, until it reaches 
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the start of 𝑠𝑓, leading to the second new state: (((𝑠4, 𝑠𝑓),  150), 10). Finally,  𝑡𝑡𝑜𝑡𝑎𝑙 =

𝑡𝑡𝑜𝑡𝑎𝑙 + 𝑡1
# +  𝑡2

# = 21.66 + 13.64 + 60.93 = 96.23 𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 takes the value of 

𝑣0, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0 and execution returns from Algorithm 2 to Algorithm 1. 

As regards the detection of the next event, considering that 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 =

0, 𝑡3 is set to 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒, while 𝑡1 and 𝑡2 are calculated as such: 

𝑡1 =  
𝑡𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

150

10
= 15 𝑠 , 𝑡2 =  

ℎ𝐸𝑥𝑖𝑡

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

150

10
= 15 𝑠 

Iteration 11.   

Table 24. Entries of SP at the beginning of Iteration 11 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

10 ((𝑠2, 237.5), 40.46). 

10 (((𝑠4, 𝑠𝑓),  150), 10) 

Table 25. Values of the parameters at the beginning of Iteration 11 

Parameters Value 

ℎ𝐸𝑥𝑖𝑡 150 m 

𝑡𝐸𝑥𝑖𝑡 300 m 

ℎ𝑆𝑔𝑚 5 

𝑡𝑆𝑔𝑚 4 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 10 m/s 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐  0 m/𝑠2 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 10 m/s 

𝑡𝑡𝑜𝑡𝑎𝑙 96.23 𝑠  

𝑡𝑚𝑖𝑛 (𝑡1,2) 15 𝑠 
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The next events occur simultaneously when ℎ𝑒𝑎𝑑(𝑇) reaches the end of 𝑠𝑓 

and 𝑡𝑎𝑖𝑙(𝑇) reaches the start of 𝑠𝑓. The distance 𝑝 until this event is: 

𝑝 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡𝑚𝑖𝑛 + (
1

2
) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ 𝑡𝑚𝑖𝑛

2 = 10 ∗ 15 + (
1

2
) ∗ 0 ∗ 15 2

=   150 𝑚 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 remains at 10 m/s since 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0, while the new 

𝑠𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡 = 𝑔𝑜𝑎𝑙𝑉 = 0
𝑚

𝑠
< 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉. Hence, Algorithm 2 is applied once again 

since the train is about to reach the 𝑔𝑜𝑎𝑙 state with a speed of 10 m/s, that is higher 

than 𝑔𝑜𝑎𝑙𝑉 = 0 𝑚/𝑠.  

At this case, the first speed profile segment examined by Algorithm 2 can 

accommodate the train’s deceleration.  Table 26 contains the result of Algorithm 

2. 𝑣# =  𝑣1 and 𝑥𝑑𝑒𝑐 > 𝑑1, hence after removing 𝑆𝑃[𝑗 + 1], two new states are 

added, one after the train reaches 𝑥𝑑𝑒𝑐 with a steady speed and another when it 

finishes its deceleration at the end of 𝑠𝑓. Similarly, 𝑡𝑡𝑜𝑡𝑎𝑙 is reverted back to the 

value it had at the state 𝑆𝑃[𝑗], that is 96.23 𝑠. 

Table 26. Values of the backtracking variables computed by Algorithm 2 

Iteration j 𝑺𝑷[𝒋] 𝑺𝑷[𝒋 + 𝟏] 𝒅𝟏 𝒙𝒅𝒆𝒄 𝒗# 

1 4 (((𝑠4, 𝑠𝑓),  150), 10) (((𝑠𝑓),  0), 10) 2400 2450 10 

 

The train will maintain its speed until 𝑥𝑑𝑒𝑐, for 𝑡1
# = 

𝑥𝑑𝑒𝑐−𝑑1

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉
=  

2450−2400

10
=

5 𝑠, travelling 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡1
# = 50 m and leading to the first new state: ((𝑠𝑓, 100), 

10). Moving on, the train will start decelerating for 𝑡2
# =

𝑣#−𝑣0

𝑚𝑎𝑥𝑑𝑒𝑐(𝑇)
=  

10−0

0.5
= 20 𝑠 , 

travelling 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 ∗ 𝑡2
# −

1

2
∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 ∗ (𝑡2

#)2 = 10 ∗ 20 −
1

2
∗ 0.5 ∗ 202 =

100 𝑚, until it reaches the start of 𝑠𝑓, leading to the second new state: ((𝑠𝑓,  0), 0), 

that is the 𝑔𝑜𝑎𝑙 state. Finally,  𝑡𝑡𝑜𝑡𝑎𝑙 = 96.23 + 5 + 20 = 121.24 𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 takes 

the value of 𝑣0, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐 = 0 and execution returns from Algorithm 2 to 

Algorithm 1. Since 𝑆𝑃[−1] = 𝑔𝑜𝑎𝑙, the while-loop of Algorithm 1 terminates. 
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Table 27 includes the result of Algorithm 1, that is the optimal speed profile for 

Example 3. 

Table 27. The final entries of SP at the end of Algorithm 1 

Iteration State 

1 (((𝑠0, 𝑠1), 150), 0) 

2 (((𝑠0, 𝑠1), 16.66), 20) 

3 (((𝑠1, 𝑠2), 800), 20) 

4 ((𝑠2, 650), 20) 

10 ((𝑠2, 237.5), 40.46). 

10 (((𝑠4, 𝑠𝑓),  150), 10) 

11 ((𝑠𝑓, 100), 10) 

11 ((𝑠𝑓,  0), 0) 
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 4.2  Shortest Path Finding 

 

Algorithm 3. Shortest path with A* 

In this section we employ the A* algorithm to compute the shortest path in 

terms of time for the general form of the problem, that is over an arbitrary graph. 

Algorithm 3 takes as input a 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 (T, G, init, goal) and outputs the solution, 

that is the pair (𝑝𝑎𝑡ℎ, 𝑆𝑃) (if it exists). 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 contains all the discovered paths 

and is initialized to include only the 𝑠𝑡𝑎𝑟𝑡 path, that is a sequence of nodes 

(𝑢0, 𝑢1, … , 𝑢𝑘, 𝑠𝑘), defined by the segments (𝑠0,.., 𝑠𝑘) in 𝑖𝑛𝑖𝑡. For each path in 

𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑡ℎ𝑠() (Function 4) iterates through the outgoing edges (of 

the last vertex of the path), generating new paths (which are extensions of the 

current path, with a single or more segments added to it) that are stored 

temporarily in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, before entering 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡. In the example of Figure 2, 

𝑠𝑘 =  𝑠0 with 𝑠0 = (𝑆, 𝐴) hence, the 𝑠𝑡𝑎𝑟𝑡 path is (𝑆, 𝐴). Using the neighboring 

nodes 𝐵 and 𝐶, extended paths (𝑆, 𝐴, 𝐵) and (𝑆, 𝐴, 𝐶) are created. 
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Function 4. Connect the last vertex of 𝑝𝑎𝑡ℎ with its neighboring nodes 

 

Function 5. Expand all paths in 𝑝𝑎𝑡ℎ𝑠 until the first junction 

In the next step, these paths are further expanded until the first junction, by 

applying the 𝑒𝑥𝑝𝑎𝑛𝑑𝑃𝑎𝑡ℎ𝑠() function (Function 5). This function takes as input a 

list of 𝑝𝑎𝑡ℎ𝑠 and for each 𝑝𝑎𝑡ℎ (saved as a sequence), it iteratevily expands it by 

applying the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑡ℎ𝑠() function on its last node 𝑣. If 𝑣 has a single outgoing 

edge, it  has a single neighbor and the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑡ℎ𝑠()   function returns only one 

path (of two nodes) that is stored in the set 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛. The last element of 

𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 is the new node, that is added to the 𝑝𝑎𝑡ℎ. Moreover, if 𝑣 has multiple 

outgoing edges or it is the 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 node (the end of segment 𝑠𝑓, that is 𝑣𝑓), the 

path is not expanded. The 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝑃𝑎𝑡ℎ𝑠 are stored in 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡. In our example 

this means that the path (𝑆, 𝐴, 𝐵) is expanded into (𝑆, 𝐴, 𝐵, 𝐷, 𝐺) while path (𝑆, 𝐴, 𝐶) 

remains unchanged, since node 𝐶 has more than one outgoing edges. 
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As mentioned previously, Algorithm 1 stores train states in the list 𝑆𝑃. In 

contrast, Algorithm 3 handles multiple paths, each one having its own 𝑆𝑃 list. 

Whenever a path is expanded, its 𝑆𝑃 is used as the starting point. This 

functionality is implemented by using the dictionary 𝑆𝑃𝑑𝑖𝑐𝑡 that stores the 𝑆𝑃 

arraylist for each path. 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 is a another dictionary as well; the keys identify 

all the discovered paths, while the values concern the 𝑓 values for a particular 

path. 

A* scores all paths in 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 with their 𝑓 value. The 𝑔 function makes 

use of Algorithm 1, in order to calculate the traversal time for each path, reaching 

the end of the path with the maximum possible speed, irrelevant to the next 

segments. In our example, the 𝑔 values for paths (𝑆, 𝐴, 𝐵, 𝐷, 𝐺)  and (𝑆, 𝐴, 𝐶)  are 

59.16 and 33.15 seconds respectively. The 𝑓 function values for each path are 

computed in the usual way using an admissible heuristic function ℎ that computes 

the time needed to travel the straight line distance between the last node of a path 

and the 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 node using 𝑚𝑎𝑥𝑣(𝑇).  

The 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 dictionary contains the expansions of the current path with 

neighboring nodes. In our example this means that path (𝑆, 𝐴, 𝐶) generates the 

paths (𝑆, 𝐴, 𝐶, 𝐸) and (𝑆, 𝐴, 𝐶, 𝐹). Path (𝑆, 𝐴, 𝐶, 𝐹) is expanded to path (𝑆, 𝐴, 𝐶, 𝐹, 𝐻) 

and path (𝑆, 𝐴, 𝐶, 𝐸) is expanded to path (𝑆, 𝐴, 𝐶, 𝐸, 𝐻) since there is no junction at 

nodes 𝐹 and 𝐸. After the calculations of the 𝑓, 𝑔 and ℎ values, 𝑆𝑃𝑑𝑖𝑐𝑡 is updated 

with the new paths and their 𝑆𝑃 arraylists, while 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 are 

merged. Note that min(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠) denotes the key of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 with the lowest 

𝑓 value.  Moving on, the shortest path in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 is selected, setting its final 

state as 𝑙𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒. If 𝑙𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒 = 𝑔𝑜𝑎𝑙, a solution is found, the algorithm 

terminates and returns the speed profile of the solution path as well as, the optimal 

𝑝𝑎𝑡ℎ. 
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Figure 5. Speed and Position vs. time graph for the optimal path 

Figure 5 presents the optimal speed profile for the shortest path (𝑆, 𝐴, 𝐶, 𝐹, 𝐻) that 

has a duration of 91.02 seconds. 

 4.2.1 Use case: Finding the shortest path of Example 2 

In this section, the operation of Algorithm 3 is showcased, when computing 

the shortest path in terms of time in a railway network graph, specifically that of 

Example 2. Figure 2 presents the railway network, consisting of 10 vertices and 12 

edges. Each edge 𝑠 is labeled with 𝑙(𝑠) and 𝑣𝑚𝑎𝑥(𝑠). The train 𝑇 characteristics, as 

well as the goal state are included in Table 2, while 𝑖𝑛𝑖𝑡 = ((𝑠0 , 0), 0). Algorithm 

3 employs an iterative while-loop mechanism to examine and evaluate nodes of 

the network graph. For that reason, the computational analysis is presented for 

each iteration of the algorithm in order to simulate its operation. 

Initialization. Τhe 𝑠𝑡𝑎𝑟𝑡 path is defined by the segments (𝑠0,.., 𝑠𝑘) in 𝑖𝑛𝑖𝑡. 

For this example, 𝑠𝑘=𝑠0 with 𝑠0 = (𝑆, 𝐴) hence, the 𝑠𝑡𝑎𝑟𝑡 path is (𝑆, 𝐴). 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 is 

initialized using the 𝑠𝑡𝑎𝑟𝑡 path: 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 =  {(𝑆, 𝐴): 0}. 

Moving on, the first path is generated by connecting the last node of 𝑠𝑡𝑎𝑟𝑡, 

that is 𝐴, with its neighboring nodes, which are 𝐵 and C, using the 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑡ℎ𝑠() function. The paths generated by this function are stored in 
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𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 =  {(𝑆, 𝐴, 𝐵): 0, (𝑆, 𝐴, 𝐶): 0}. Next, each generated path is extended by 

adding the neighbor of its final node until a junction node (leads to multiple 

nodes) is met. For the current example, this means that path (𝑆, 𝐴, 𝐶) is not 

extended since 𝐶 is already a junction node, while path (𝑆, 𝐴, 𝐵) is extended into 

path (𝑆, 𝐴, 𝐵, 𝐷, 𝐺).  𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 is updated with the extended paths: 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 =

 {(𝑆, 𝐴, 𝐵, 𝐷, 𝐺): 0, (𝑆, 𝐴, 𝐶): 0}. Figure 6 illustrates the first available paths detected 

by Algorithm 3, with their nodes marked with a blue color. 

 

Figure 6. The first available paths of Example 2 

At this point, for every path in 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡, the 𝑓 values are calculated. Firstly, 

the 𝑔 values for each path are computed using Algorithm 1, which calculates the 

traversal time, reaching the end of the path with 𝑚𝑎𝑥𝑣(𝑇) (75 m/s for Example 2), 

irrelevant to the next segments. These values are stored in 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 =

 {(𝑆, 𝐴, 𝐵, 𝐷, 𝐺): 59.16, (𝑆, 𝐴, 𝐶): 33.15}. Next, the 𝑓 values are computed, by adding 

the heuristic function values of each path to their corresponding 𝑔 values. Each 

node in the railway network  𝐺 is given a straight-line distance estimation with 

respect to the 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 node 𝑇, the values of which are included in Table 28.  
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Table 28. Straight-line distance estimations for Example 2 

Node Straight-line distance 

𝐴 2000 

𝐵 1400 

𝐶 1200 

𝐷 900 

𝐸 900 

𝐹 500 

𝐺 500 

𝐻 50 

𝑇 0 

 

The ℎ and 𝑓 values for each path are calculated as such: 

ℎ(𝑆, 𝐴, 𝐵, 𝐷, 𝐺) =  
𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝐺

𝑚𝑎𝑥𝑣(𝑇)
=  

500

75
=  6.66 

ℎ(𝑆, 𝐴, 𝐶) =  
𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝐶

𝑚𝑎𝑥𝑣(𝑇)
=  

1200

75
=  16 

𝑓(𝑆, 𝐴, 𝐵, 𝐷, 𝐺) =  𝑔(𝑆, 𝐴, 𝐵, 𝐷, 𝐺) + ℎ(𝑆, 𝐴, 𝐵, 𝐷, 𝐺) = 59.16 + 6.66 = 65.82  

𝑓(𝑆, 𝐴, 𝐶) =  𝑔(𝑆, 𝐴, 𝐶) + ℎ(𝑆, 𝐴, 𝐶) = 33.15 + 16 =  49.15 

𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 is updated with the 𝑓 values, while the computed speed profiles 

for each path  are stored in 𝑆𝑃𝑑𝑖𝑐𝑡. Table 29 includes the entries of 𝑆𝑃𝑑𝑖𝑐𝑡 after the 

computation of the speed profiles. 

Table 29. Speed profiles stored in 𝑆𝑃𝑑𝑖𝑐𝑡  for each discovered path 

Path Speed Profile 

 

(𝑆, 𝐴, 𝐶) = (𝑠0, 𝑠2) 

(((𝑠0, 𝑠2), 800), 0), 

(((𝑠0, 𝑠2), 666.66), 20.0), 

(((𝑠2, 650.0), 20.0), 

(((𝑠2, 0), 48.47) 
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(𝑆, 𝐴, 𝐵, 𝐷, 𝐺) = (𝑠0, 𝑠1, 𝑠3, 𝑠6) 

(((𝑠0, 𝑠1), 500), 0), 

(((𝑠0, 𝑠1), 366.66), 20.0), 

((𝑠1, 350.0), 20.0), 

((𝑠1, 183.33), 30.0), 

(((𝑠1, 𝑠3), 500), 30.0), 

((𝑠3, 350.0), 30.0), 

((𝑠3, 116.66), 40.0), 

(((𝑠3, 𝑠6), 850), 40.0), 

((𝑠6, 700.0), 40.0), 

((𝑠6, 0), 60.82) 

 

Iteration 1. The first step concerns selecting the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 path, that is the 

path with lowest 𝑓 value in 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 hence, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  (𝑆, 𝐴, 𝐶). The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 path 

is removed from 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡. Moving on, the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑎𝑡ℎ𝑠() is applied on the 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 path, connecting node 𝐶 with its neighbors. In that way, paths (𝑆, 𝐴, 𝐶, 𝐸) 

and (𝑆, 𝐴, 𝐶, 𝐹) are created and then extended using the 𝑒𝑥𝑡𝑒𝑛𝑑𝑃𝑎𝑡ℎ𝑠() function, 

leading to paths (𝑆, 𝐴, 𝐶, 𝐸, 𝐻, 𝑇) and (𝑆, 𝐴, 𝐶, 𝐹, 𝐻, 𝑇), that are stored in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠.  

In the next step, the 𝑔 values are calculated for each path in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠. 

Note that since the speed profile is already computed for path (𝑆, 𝐴, 𝐶), Algorithm 

1 is only applied exclusively on the extensions of the path, which are (𝐶, 𝐸, 𝐻, 𝑇) 

and (𝐶, 𝐹, 𝐻, 𝑇). This is possible because the speed profiles for each path are stored 

in 𝑆𝑃𝑑𝑖𝑐𝑡, hence speed profile computations for path extensions can continue from 

the final state of each path. However, instead of using the final state, the 

penultimate one is used in order to allow for Algorithm 1 to check whether a 

deceleration is needed before starting the computation of the speed profile of the 

path's extension. The reason behind is the fact that the speed limit of the 

extension’s first segment is not known beforehand. Hence, it is quite possible that 

the train is not in a state (in terms of its current speed) to enter the new segment 
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and a deceleration is needed in earlier points of the path's speed profile. For 

example, in the final state of the (𝑆, 𝐴, 𝐶) speed profile, the train has a speed of 

48.47 m/s. When the path is extended to (𝑆, 𝐴, 𝐶, 𝐸, 𝐻, 𝑇), the speed limit of the 

esxtension’s first segment is 𝑣𝑚𝑎𝑥(𝑠4) = 45
𝑚

𝑠
, that is lower than the train’s current 

speed. For this reason, the speed profile computation begins from ((𝑠2, 650.0), 

20.0), allowing the train to accelerate for 585 meters, leading to the new state (((𝑠2, 

65), 46.42), and then immediately start decelerating, in order to reach 𝑠4 with a 

speed of 45 m/s, creating the new state (((𝑠2, 𝑠4), 700), 45.0). 

As regards the 𝑔 values for paths (𝑆, 𝐴, 𝐶, 𝐸, 𝐻, 𝑇) and (𝑆, 𝐴, 𝐶, 𝐹, 𝐻, 𝑇), they 

are 91.28 and 91.02 seconds, respectively. Since 𝑇 is the destination node, the ℎ 

values are 0 and the 𝑓 values are equal to the 𝑔 values, for both paths. Table 30 

includes the 𝑓 values for all discovered paths up until this point. 𝑜𝑝𝑒𝑛𝐷𝑖𝑐𝑡 and 

𝑆𝑃𝑑𝑖𝑐𝑡 are updated with the new 𝑓 values and speed profiles, respectively. Path 

(𝑆, 𝐴, 𝐶, 𝐹, 𝐻, 𝑇) has the lowest 𝑓 value in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠, hence the final state of its 

speed profile ((𝑠𝑓 , 0), 0) is the new 𝑙𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒. Due to the fact that 𝑙𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒 =

𝑔𝑜𝑎𝑙, the A* algorithm terminates. 

Table 30. 𝑓 values of all discovered paths at the end of Iteration 1 

Path 𝒇 value 

(𝑆, 𝐴, 𝐵, 𝐷, 𝐺) 65.82 

(𝑆, 𝐴, 𝐶, 𝐸, 𝐻, 𝑇) 91.28 

(𝑆, 𝐴, 𝐶, 𝐹, 𝐻, 𝑇) 91.02 
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 5 Conclusion 

At this section, the main points of the dissertation are summarized.  

 5.1  Summary and conclusions 

  Our work resulted in the development and the implementation of two 

algorithms for the tasks of computing the optimal speed profile over a given path, 

as well as, that of computing the shortest path in terms of journey duration, over 

arbitrary directed graphs. We provided a realistic problem formulation that makes 

use of train characteristics, including its length, maximum speed, acceleration and 

deceleration capabilities, while also including path characteristics, such as the 

speed limits that apply in the path segments. 

 5.2  Future extensions 

Future challenges include the extension of our work in order to handle 

more physical characteristics of the problem, such as railway machine power 

profile, train load, ground slopes, optimizing other metrics, like fuel consumption. 

Offline and online scheduling of multiple trains, in order to satisfy particular 

transportation needs, is another significant, while optimizing the aforementioned 

metrics, is another significant future challenge. Finally, integrating our work with 

an information system with real data about railway networks, such as 

openrailwaymap.org, is needed to have a fully functional product. 
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Annex A – Executing the source code 

This section provides information regarding the execution of the 

application that implements the source code, as well as the formatting of the input 

data. The code was implemented using Python 3.8.10. The source code and the 

input files of various problems can be found at GitHub2. The code is organized 

into two separate files: 

 File OptimalPathSpeedProfile.py can be used to compute the speed 

profile of any provided path. It includes the implementations of 

Algorithm 1 and Algorithm 2, as well as the necessary functions 

needed for the algorithms’ operation and for parsing the input data.  

 File ShortestPath.py extends the functionality of the first file, since it 

import its code, in order to apply Algorithm 1 and Algorithm 2 on 

the paths of a railway network graph through Algorithm 3. 

A.1. Computing the optimal speed profile of a path  

 The OptimalPathSpeedProfile.py script utilizes three Python modules to 

perform its functions, which are presented in Table 31. These modules are 

included in the Python Standard Library and it should not be necessary to install 

them. 

Table 31. Libraries used in the OptimalPathSpeedProfile.py script 

Library Description 

math A Python build-in module that is used for mathematical 

computations. 

                                                 
2 Link for the GitHub repository: https://github.com/Dimimano/Finding-Time-Optimal-Routes-

for-Trains-Using-Basic-Kinematics-and-A- 

https://github.com/Dimimano/Finding-Time-Optimal-Routes-for-Trains-Using-Basic-Kinematics-and-A-
https://github.com/Dimimano/Finding-Time-Optimal-Routes-for-Trains-Using-Basic-Kinematics-and-A-
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argparse A Python build-in module, essential for the script's 

command-line interface (CLI), enabling it to accept and 

process input parameters from users. 

ast A Python build-in module that is used in order for the 

program to parse input data from text files into Python 

data structures. 

 

 The input data necessary for the execution of the script concern the path 

and train characteristics, as well as the 𝑖𝑛𝑖𝑡 and the 𝑔𝑜𝑎𝑙 states, which are provided 

to the application through a text file. Figure 7 illustrates the appropriate format of 

the input data in the text file of Example 2. The list of segments in which the train 

spans in the 𝑖𝑛𝑖𝑡 and 𝑔𝑜𝑎𝑙 states must be provided a list of integers. In Example 2, 

the train in 𝑖𝑛𝑖𝑡 is at the end of 𝑠0, that is the first segment of the path, while in 

𝑔𝑜𝑎𝑙, the train is at the end of 𝑠𝑓 , that is the sixth segment of the path. Hence, the 

lists of integers are [1] and [6] for 𝑖𝑛𝑖𝑡 and 𝑔𝑜𝑎𝑙, respectively.  

 

Figure 7. Input data format in a text file for Example 2 

All input data are validated before the script’s execution. For instance, all 

train characteristics must be non-negative float numbers. Similarly, all entries of 

the maxSpeeds and positions lists must be positive float numbers. Additionally, the 

train’s length, as well as the acceleration and deceleration capabilities are limited 
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from the global variables TRAIN_LENGTH_LIMIT, MAX_ACC_LIMIT and 

MIN_ACC_LIMIT, which are defined in the first lines of the script. Table 32 

includes the values of these parameters for all the examples presented in this 

study. 

Table 32. Default values for the global variables 

Global Variable Value 

TRAIN_LENGTH_LIMIT 4000 

MAX_ACC_LIMIT 5 

MIN_ACC_LIMIT 5 

 

Moving on, the code can be executed using the command-line interface and 

more specifically, using the command: py OptimalPathSpeedProfile.py 

<path_to_the_file.txt>. Figure 8 showcases the script’s execution for Example 2. 

The script provides information regarding the validation of the input data and 

then, it computes the optimal speed profile, printing the total time it takes for the 

train to traverse it, as well as the states of the speed profile. 

 

Figure 8. Execution of the OptimalPathSpeedProfile.py script in the CLI 

 In case the user prefers a more detailed output regarding the program’s 

execution, the –debug parameter can be added to the execution command. Figure 

9 illustrates the output of the program for the first iteration of Algorithm 1, while 
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Figure 10 shows the program’s output when Algorithm 2 is applied, if the debug 

parameter is used. 

 

Figure 9. Output of Algorithm 1 when the debug parameter is used 

 

Figure 10. Output of Algorithm 2 when the debug parameter is used 

 Finally, as mentioned in section 4.1 it is possible that no solutions are found, 

in cases where the train cannot decelerate early enough until the speed limit of a 

segment it is about to enter (or 𝑔𝑜𝑎𝑙𝑉) or the train cannot accelerate enough, in 

order to reach 𝑔𝑜𝑎𝑙𝑉. Figure 11 shows the script’s execution and output on two 

example paths, in which a solution cannot be found. 

 

Figure 11. Output of the script when a solution cannot be found 
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A.2. Finding the shortest path of a railway network 

The ShortestPath.py script utilizes all the Python modules presented in the 

previous section, as well as another two Python modules, which are presented in 

Table 33. Module copy is included in the Python Standard Library and it is not 

necessary to install, while module networkx and numpy must be installed. Note that 

in order for this script to run, it must be in the same folder as the 

OptimalPathSpeedProfile.py script. 

Table 33. Libraries used in the ShortestPath.py script 

Library Description 

copy A Python build-in module that is used in order to create 

(deep) copies of Python data structures. 

networkx A Python module, essential for creating and processing 

network graphs. 

numpy A Python library that is primarily used for working with 

arrays. 

 

 

Figure 12. Format of the states and characteristics in a text file for Example 3 

In the case of ShortestPath.py, the input data concern the train characteristics, the 

𝑖𝑛𝑖𝑡 and the 𝑔𝑜𝑎𝑙 states (as before), as well as, the railway network graph G 

edgelist. Two separate text files are used; the first one includes the train 
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characteristics, the 𝑖𝑛𝑖𝑡 and the 𝑔𝑜𝑎𝑙 states (as in Figure 12 for Example 3), while 

the second one contains the network data, as illustrated in Figure 13.  

 

Figure 13. Format of the network data in a text file for Example 3 

Each line of the network data concern a specific edge of the network, with 

the first two elements defining the nodes. Additionally, each edge has four 

attributes; label concerns the index of each edge (for instance, segment 𝑠0 is given 

the label 0), while maxspeed and length define the segment characteristics. The 

attribute straight_line characterizes the ending node of each segment and is used 

for the computation of ℎ values for paths, having that node as the final one.  

As mentioned previously, the list of segments in which the train spans in 

the 𝑖𝑛𝑖𝑡 and 𝑔𝑜𝑎𝑙 states must be provided as list of integers. The labels of each 

segment must be used, in order to index the starting and the ending segments. 

Note that in Example 3, the labels are numbered from 0 to 11, while the indices 

from 1 to 12. Finally, it is important to note that the train can start from any point 

of the network, but at the 𝑔𝑜𝑎𝑙 state, it must span inside of one segment only, that 

is the destination segment. 

Moving on, the code can be executed using the command-line interface and 

more specifically, using the command: py ShortestPath.py 

<path_to_the_network_data_file.txt> <path_to_the_characteristics_file.txt>. 
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Figure 14 showcases the script’s execution for Example 3. The scripts prints the 

nodes of the shortest path, the total time the train needs to traverse it, as well as, 

the states of the speed profile for the shortest path. 

 

Figure 14. Execution of the ShortestPath.py script in the CLI 

 In case the user prefers a more detailed output regarding the program’s 

execution, the –debug parameter can be added to the execution command, which 

will enable all algorithms to print information as they are executed. Figure 15 

illustrates the output of the program for the first iteration of Algorithm 3, while it 

is calculating the 𝑔 value of path (𝑆, 𝐴, 𝐶, 𝐸, 𝐻, 𝑇).  

 

Figure 15. Output of Algorithm 3 when the debug parameter is used 

 Moving on, in cases where Algorithm 1 cannot find a solution for a 

particular path, the path is converted to a ‘dead end’ by setting its 𝑔 value to 

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒. In that way the path will not be expanded upon in future iterations of 

Algorithm 3. Additionally, it is possible that all the available paths of network 

have no solution. Figure 16 showcases the output of the script is such cases (files 

No_solution_Network.txt and No_solution_Characteristics). Note that the 𝑔 values of 

all discovered paths in this example are 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒. 
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Figure 16. Output of the script when no solution can be found in a network 
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Annex B – Source code of the implementation 

In this section, a significant portion of the source code is presented, 

particularly focusing on the algorithms and functions discussed in previous 

sections. As mentioned previously, all of the code can be found at dissertation’s 

GitHub repository3. 

B.1. Computing the optimal speed profile of a path 

Implementation of Algorithm 1: 

def computeOptimalSP(goal,pathChar,trainChar,variables,debug,intermediate): 

     '''ALGORITHM1: Computation of the optimal speed profile between an initial state init and a 

goal state goal, assuming that there is a single path that can be used to reach the goal state, 

with no junctions across it. Iteratively detects events during the train's journey.''' 

     

    #Extract train characteristics. 

    trainLength, Acc, Dec, trainMaxSpeed = trainChar 

     

    #Extract path characteristics. 

    maxSpeeds, positions, lengths, segmentIndices = pathChar 

     

    #Extract variables. 

    currentV,currentAcc,time,tSgm,hSgm,hExit,tExit,SP,flag,init,speedLimit,tMin,t1,t2,t3 = 

    variables 

 

    goalV = speed(goal) 

     

    iterationCounter = 0 

     

    while(not equalStates(SP[-1],goal)): #while current state != goal 

         

        iterationCounter += 1 

         

        p = currentV*tMin + (1/2)*currentAcc*math.pow(tMin,2) #Update position. 

        currentV = currentV + tMin*currentAcc #Update speed. 

        tExit, hExit = tExit - p, hExit - p #Update tExit, hExit. 

        time.append(time[-1] + tMin) #Update total time. 

 

 

                                                 
3 Link for the GitHub repository: https://github.com/Dimimano/Finding-Time-Optimal-Routes-

for-Trains-Using-Basic-Kinematics-and-A- 

https://github.com/Dimimano/Finding-Time-Optimal-Routes-for-Trains-Using-Basic-Kinematics-and-A-
https://github.com/Dimimano/Finding-Time-Optimal-Routes-for-Trains-Using-Basic-Kinematics-and-A-
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        #The train's head is about to enter a new segment. 

        #Deceleration might be needed.  

        if equals(t2, tMin):  

             

            hSgm += 1 #The train's head is in the new segment. 

             

            try:  

                #Set hExit equal to the length of the new segment. 

                hExit = lengths[hSgm-1]  

                #Calculate the new speed limit. 

                speedLimit = getSpeedLimit(trainMaxSpeed, maxSpeeds, tSgm, hSgm)  

 

            #This covers the case when the train is about to finish the last segment. 

            except: 

                t2Flag, t1Flag = True, False 

                hExit, hSgm, t2Flag, t1Flag, speedLimit = 

 finalSegment(pathChar, trainChar, tSgm, hSgm, t2Flag, t1Flag, speedLimit) 

 

            if currentV > speedLimit: #The train will need to decelerate. 

                 

               #Store the achieved state before backtracking. 

               SP.append((([indexforindexinrange(tSgm,hSgm+1)],hExit),currentV)) 

 

               #Apply the algorithm that handles deceleration. 

                decFlag, SP, time, currentV, currentAcc = 

                decelerate(trainChar, pathChar, SP, time, currentV, currentAcc, speedLimit, debug) 

                 

                if not decFlag: 

                    print('\nNo deceleration point could be found. There is no solution!') 

                    return None, None 

             

        #The train's tail is about to exit a previous segment. Acceleration might be needed.  

        if equals(t1, tMin): 

             

            tSgm += 1 #The train's tail exited the previous segment. 

             

            try: 

                #Set hExit equal to the length of the next segment. 

                tExit = lengths[tSgm-1] 

                #Calculate the new speed limit. 

                speedLimit = getSpeedLimit(trainMaxSpeed, maxSpeeds, tSgm, hSgm)  

            #This covers the case when the train is about to finish the last segment. 

            except: 

                t2Flag, t1Flag = False, True 

                tExit, tSgm, t2Flag, t1Flag = 

                finalSegment(pathChar, trainChar, tSgm, hSgm, t2Flag, t1Flag, speedLimit) 

            if currentV < speedLimit: currentAcc = Acc #Acceleration 
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        #The train reached the speed limit. A steady speed must be maintained. 

        if equals(t3, tMin) and currentV == speedLimit: currentAcc = 0 

         

   #Update SP 

          SP.append((([index for index in range(tSgm,hSgm+1)],hExit),currentV))  

         

        #At this point it is checked whether the train reached the goal state. 

        #Note that in the case of a network, the algorithm might work on smaller/intermediate paths 

        #that do not include the goal state. In that case, the train does not need to have a speed 

        #equal to goalV when reaching the end of the path. 

        if not intermediate: 

        #If the train reaches the goal position with a lower speed than goalV, 

        #then there is no solution. 

          if pos(SP[-1]) == pos(goal) 

          AND abs(distance(SP[-1],positions)-distance(goal,positions))<=MIN_DIFFERENCE 

          AND currentV != goalV: 

                print('\nIt is impossible to accelerate to goalV!') 

                return None, None 

        #If the path is an intermediate one, the train does not need to have a speed equal to goalV. 

        else: 

          if pos(SP[-1]) == pos(goal) 

          AND abs(distance(SP[-1],positions)-distance(goal,positions))<=MIN_DIFFERENCE: 

                break 

         

        if speedLimit == currentV: currentAcc = 0 #Update train's mode. 

        #Calculate tMin. 

         if currentV != 0: tMin, t1, t2, t3 = getMinT(currentAcc, currentV, tExit, hExit, speedLimit)  

     

    return SP, time 

 

Implementation of Algorithm 2: 

def decelerate(trainChar, pathChar, SP, time, currentV, currentAcc, speedLimit, debug): 

    '''ALGORITHM2: Backtracks in previous states stored in SP, searching for the optimal point to 

decelerate. The most complicated case occurs when head(T) is about to enter a new segment (t2 = 

tmin) with currentV higher than the new segment's speed limit. In this case the speed profile 

must be recomputed by adding a deceleration point at the latest possible time, when the train 

should start decelerating in order to reach the new segment with a speed equal to speedLimit.''' 

         

    #Extract train characteristics. 

    trainLength, Acc, Dec, trainMaxSpeed = trainChar 

     

    #Extract path characteristics. 

    maxSpeeds, positions, lengths, segmentIndices = pathChar 

     

    #If ALGORITHM2 can not find a deceleration point, the problem has no solution. 

    decFlag = False 
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    #Total distance at the start of the new segment (last state). 

    d = distance(SP[-1],positions) 

     

    #Iteratively backtrack to previous states (starting from the second to last).     

    for i in range(len(SP)-2,-1,-1):  

         

        #The algorithm searches for previous parts of the speed profile during which the train 

        #was either accelerating or maintaining its speed, starting from the most recent on. 

         

        #v0 is the max speed of the new segment (speed limit). 

        #v1 is the speed of the train at the start of the SP part. 

        #v2 is the speed of the train at the end of the SP part. 

        v0, v1, v2 = speedLimit, speed(SP[i]), speed(SP[i+1]) 

         

        #Extract hExit for this part. 

        hExit = pos(SP[i])[1] 

         

        #We are interested only in SP parts with a mode of acceleration or steady speed. 

        if v2 >= v1:             

            #Determine the train's mode during the SP part. 

            if v2==v1: currentAcc = 0 

            else: currentAcc = Acc 

             

            #Total distance at the start of the SP part. 

            d1 = distance(SP[i],positions) 

            #Calculate the optimal deceleration point between d1 and d. 

            xDec = 

            (math.pow(v0,2) - math.pow(v1,2) + 2*(currentAcc*d1 + Dec*d))/(2*(currentAcc + Dec)) 

             

            #Calculate the speed at that point. 

            v1Hash = math.sqrt(math.pow(v1,2) + 2*currentAcc*(xDec - d1)) 

             

            if v1Hash > v1: #The train can accelerate until xDec. 

                 

                #Add two states. One before and one after the deceleration. 

                i, SP, time, v1Hash, trainChar, pathChar, xDec, hExit, v0, Dec, currentV, 

                currentAcc, decFlag, t1Hash, t2Hash = 

                addTwoStates(i, SP, time, v1Hash, currentAcc, trainChar, pathChar, xDec, hExit,  

                v0, v1, Dec, d1) 

                 

                return decFlag, SP, time, currentV, currentAcc 

               

            #The train must have steady speed until xDec (or decelerate immediately).   

            if v1Hash == v1:  

                     

                if xDec > d1: #The train must have steady speed until xDec. 
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                    #Add two states. One before and one after the deceleration. 

                    i, SP, time, v1Hash, trainChar, pathChar, xDec, hExit, v0, Dec, currentV, 

                    currentAcc, decFlag, t1Hash, t2Hash = 

                    addTwoStates(i, SP, time, v1Hash, currentAcc, trainChar, pathChar,xDec,hExit,  

                    v0, v1, Dec, d1) 

                                   

                    return decFlag, SP, time, currentV, currentAcc 

                     

                elif xDec == d1: #The train must decelerate immediately. 

                     

                    #Add one state. One after the deceleration. 

                    i, SP, time, v1Hash, v0, Dec, currentV, currentAcc, decFlag, tHash = 

                    addOneState(i, SP, time, v1Hash, v0, Dec) 

                     

                    return decFlag, SP, time, currentV, currentAcc 

                 

    return decFlag, SP, time, currentV, currentAcc 

 

Implementation of Function 1: 

def getSpeedLimit(trainMaxSpeed, maxSpeeds, tSgm, hSgm): 

    '''Takes as input the train characteristics and the segments it is currently in, in order to 

calculate the speed limit.''' 

     

    lowestVmax = min(maxSpeeds[tSgm-1:hSgm]) 

     

    return min(trainMaxSpeed,lowestVmax) 

 

Implementation of Function 2: 

def getMinT(currentAcc, currentV, tExit, hExit, speedLimit): 

    '''Detects which type of event is upcoming, by computing the time tMin = min(t1, t2, t3) 

needed to reach each one of them.''' 

 

    #Time needed for the tail to exit its segment. 

    if currentAcc>0: t1 = MaxRoot((1/2)*currentAcc, currentV, -tExit) 

    else: t1 = tExit/currentV  

    #Time needed for the head to enter a new segment. 

    if currentAcc>0: t2 = MaxRoot((1/2)*currentAcc, currentV, -hExit) 

    else: t2 = hExit/currentV 

    #Time needed for the train to reach the speedLimit, provided that it is in accelerating mode. 

    if currentAcc > 0 and speedLimit > currentV: t3 = (speedLimit - currentV)/currentAcc 

    else: t3 = float("inf") 

 

    return min(t1,t2,t3), t1, t2, t3 
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Implementation of Function 3: 

def MaxRoot(a,b,c): 

    '''Returns the positive root.''' 

     

    Delta = math.pow(b,2) - 4*a*c #discriminant 

    t = (-b + math.sqrt(Delta))/(2*a) #positive root 

     

    return t 

 

B.2. Finding the shortest path of a railway network 

Implementation of Algorithm 3: 

def computeShortestPath(G, variables, debug): 

    '''ALGORITHM3: Using the problem's description provided by the createInputData function, as 

well as the network G, this algorithm provides the shortest path (time-wise) and its speed 

profile.''' 

 

    #Initialization 

    SPDict, timeDict = {}, {} 

    mapDict = createMap(G) 

 

    #Extract init and goal states, as well as the trainChar (trainLength etc.). 

    _, initPos, init, goalV, goalPos, _, trainChar, _ = storeVariables(variables) 

 

        #Extract train max speed. 

    _, _, _, trainMaxSpeed = trainChar 

 

    #Set the hyperparameter maxStraightLineSpeed. 

    maxStraightLineSpeed = trainMaxSpeed 

 

    #Initiliaze openDict and start path, find the final node. 

    openDict, destinationNode, start = extractStartDestination(G, initPos, goalPos) 

 

    #Generate the first paths using the start path. 

    neighbors = generatePaths(G, start) 

 

    #Update openDict using the generated paths in neighbors. 

    openDict = updateOpenDict(neighbors, openDict, start) 

 

    #Expand the paths of openDict. 

    openDict, finalPath = expandPaths(G, destinationNode, openDict) 

 

    #Compute g values for all paths in openDict. 
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    openDict, SPDict, timeDict = computeGValues(openDict, init, initPos, trainChar, SPDict,  

    timeDict, destinationNode, goalV, goalPos, finalPath, False, debug) 

 

    #Compute f values for all paths in openDict. 

    openDict_fValues = computeFValues(openDict, mapDict, maxStraightLineSpeed, debug) 

 

    while(openDict): #while openDict not empty 

         

#Find the path with lowest f value. 

        current = min(openDict_fValues, key=openDict_fValues.get)  

 

        oldPath = current #Store it before expanding it. 

 

        #Generate new paths using the neighbors of its final nodes. 

        current = generatePaths(G, current) 

 

        #Create the successors dictionary. 

successors = createSuccessors(current, openDict, oldPath)    

 

        #Expand the paths in successors. 

        successors, finalPath = expandPaths(G, destinationNode, successors) 

 

        #Compute g values for all paths in successors. 

        successors, SPDict, timeDict = computeGValues(successors, init, initPos, trainChar, 

        SPDict, timeDict, destinationNode, goalV, goalPos, finalPath, True, debug, oldPath) 

 

        #Update openDict, SPDict and timeDict using successors. 

        openDict = updateOpenDict(successors, openDict, oldPath, timeDict) 

        SPDict, timeDict = updateSPandTimeDict(SPDict, timeDict, oldPath) 

 

        #Compute f values for all paths in openDict. 

        openDict_fValues = computeFValues(openDict, mapDict, maxStraightLineSpeed, debug) 

 

        #If a path containing the destination node is found, return the solution. 

        if finalPath: 

            current = min(successors, key=successors.get) 

            return openDict, SPDict, current, timeDict 
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Implementation of Function 4: 

def generatePaths(G, path): 

    '''generatePaths() iterates through the outgoing edges (of the last vertex of the path), 

generating new paths (which are extensions of the current path, with a single or more segments 

added to it) that are stored temporarily in neighbors, before entering openDict. 

     

    :param G: A networkx Graph in which the problem is defined on. 

    :param path: List, contains the nodes of the path. 

    :return: neighbors: List, containts the nodes of each path that was generated through the 

outgoing edges.''' 

     

    neighbors = [] 

    node = path[-1] #last vertex of the path 

 

    for u,v,e in G.edges(data=True): 

        #Iterate through the outgoing edges and generate paths 

        if u == node: neighbors.append(path + (v,))  

 

    return neighbors 

 

Implementation of Function 5: 

def expandPaths(G, destinationNode, dict): 

    '''After a path is generated (its last node is connected with each one of its N neighbors 

creating N paths), it is expanded by adding the neighbor of its final node until a junction node 

(leads to multiple nodes) is met. 

     

    :param G: A networkx Graph in which the problem is defined on. 

    :param destinationNode: Char, the name of the final node (at the end of final segment). 

    :param dict: Dictionary (openDict or successors) (key -> list of characters/nodes, value -> 

float), contains the path of openDict which will be expanded. 

    :return: dict: Dictionary (key -> list of characters/nodes, value -> float), contains the 

expanded versions of paths in dict. 

    :return: finalPath: Boolean, is True when one of the paths in paths is final (contains 

destinationNode). 

    ''' 

 

    paths = list(dict.keys()) #Extract the list of paths from dict. 

 

    finalPath = False #Initialize 

 

    for path in paths: 

 

        oldPath = path #Store the path before expansion, in order to update openDict. 

 

        while(1): #Expand paths until a junction node is found 
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            junctions = 0 

            #Iterate through the network, searching for nodes (v) to expand the path (u) 

            for u,v,e in G.edges(data=True): 

               #If u and v are connected, u is not the final node and v is not already in the 

               #path (cycle)... 

                if path[-1]==u and path[-1]!=destinationNode and v not in path:   

                  nextNode = v #Store v as the nextNode. 

                  junctions += 1 #Increment the junction counter. 

            #If u is connected to many nodes, it is junction and the process terminates. 

            if junctions != 1:  

                break 

            else: #Else update the path. 

                path = path + (nextNode,) 

                 

        dict[path] = dict.pop(oldPath) #Update dict with the expanded path. 

 

        if destinationNode in path: finalPath = True #If path is final set finalPath to True. 

 

    return dict, finalPath 

 


