Code Quality and

Hotspot Prioritization
USING REPOSITORY{

Student: Archontis E. Kostis | Advi nder Chatzigeo g Q l
—
|

Department of Applied Informatics

TABLE OF CONTENTS

Q INTRODUCTION AND OBJECTIVES

Introduction of the thesis topic and objectives.

@ THEORETICAL BACKGROUND

Theoretical foundations related to software quality.

Q EVALUATION TOOL DEMO

Introduce Codelnspector, the evaluation tool developed.

ARCHITECTURE & IMPLEMENTATION

Details about the technical implementation of the developed tool

INTRODUCTION &
OBJECTIVES

Software Development

The field is characterized by continuous
modifications to produce more efficient,
feature-rich software.

Large-scale software systems are becoming the
norm rather than the exception.

As software systems get more complex,
maintaining high-quality code and identifying
hotspots is necessary.

GitHub repositories are large information
warehouses containing the whole history of <4
a project's life cycle

more than

300 mllllon

repositories are hosted on Github! * - S

Archived from the original on January 25, 2023. Retrieved October 5, 2020.

https://web.archive.org/web/20230125075800/https://github.com/search

GitHub's repository base opens up a world of
possibilities for software engineering research.

All these repositories hold a massive amount of
data, including commit modifications, code
reviews, conversations, and issue tracking.

In software not all components are created
equal and some classes or files tend to be more +
problematic than others.

Identifying and prioritizing such units is
necessary.

Version Control Systems can help us find how
many times a file has been modified (churn).

OBJECTIVES

*. O 2,

CREATE A MINE
TOOL REPOS

O

PRIORITIZE RATE

HOTSPOTS cCOMMITS *
A+)

3

THEORETICAL
BACKGROUND

Software Quality

+ 4 “Quality is hard to define,
N impossible to measure, easy
— to recognize”

—KITCHENHAM

Software Quality

+ “Quality Is generally
transparent when present,

but easily recognized in its

absence”

—GILLES

Software Quality Tools

* 5 SonarQube Findbugs Plugin November 28, 2016 2:00 PM Version 3.4.4

#A Issues Measures Code Administration v

Quality Gate FindBugs is a program that uses static
analysis to look for bugs in Java code. It can
detect a variety of common coding mistakes,
including thread synchronization problems,
misuse of APl methods.

0% 09 0 0 2.4k e

New Lines of Code XML 1 290
Vulnerabilities

Leak Period: last 30 days

Bugs & Vulnerabilities started 2 months ago

Bugs Vulnerabilities New Bugs

Quality Gate
(Default) SonarQube way

Eucemels Quality Profiles
(Java) Sonar way
2d e 73 0 O (XML) Sonar way
New Code & Home
Debt Code Smells New Debt Salia 3 Issues
‘ [Sources
2 : £ Developer connection
Duplications
Key
O 0% O — org.sor irce. i jin:sonar
Duplications Duplicated Blocks Duplications on New Code Events Al =

Version: 3.4.4

November 28, 2016

Quality Gate: Green (was Red)
November 28, 2016

onarQube

https://www.sonarsource.com/products/sonarqube/

Software Quality Tools

sonar-clirr-plugin - ClirrSensor.java

Try-with-resources should be used

Code smell 4 Critical java:52093

SonarLint

https://www.sonarsource.com/products/sonarlint/

Software Quality Tools

Tech Debt Stats

Total Code Smells

Average Project Tech Debt: 250.73 mins
! @ Minor - 3 oG

Min Project Tech Debt: 0€

Major
Max Project Tech Debt: 4839€

D Cnritical
1 40 5 - . Blocker Average Tech Debt per LoC 0.6857242 min
Info

Best Practices

Indent Code Consistently
Total Tech Debt

Maintain consistent and clear indentation for improved code readability

3908 *
. - — - .
D00 19/05/_29‘23 a

2000 MAKCAONIAS

Organization Projects

Uom Quality Dashboard +

https://github.com/SE-UoM/quality-dashboard

Delta
Maintainability
Model +,

Delta Maintainability Model

The Delta Maintainability Model (DMM) is a set of
metrics that assess the maintainability of code
changes in a software system.

It was published by M. di Biase et al. in the 2019
IEEE/ACM International Conference on Technical

Debt.
+

The model is based on determining the impact of +
an individual code change on maintainability.

DMM Calculation

It views changes as the addition or removal of lines
J of code to units and modules implicated in the
change.

A low DMM score indicates a large number of
complex alterations. And all DMM values are
between 0.0 and 1.0

The model utilizes the SIG-MM system properties. +

Each property is defined with a specific description
and criteria for qualifying code as low risk.

DMM Calculation

TABLE II. DESCRIPTIONS OF THE SIG-MM SYSTEM PROPERTIES AND THEIR THRESHOLDS FOR QUALIFYING CODE AS LOW RISK.

‘ System Property Description Low risk code criteria
Duplication The degree of (textual) duplication in the source code of the software product. All non-duplicated code.
A line of code is considered redundant if it is part of a code fragment (larger
than 6 lines of code) repeated literally (modulo white-space) in at least one other
location in the source code.
Unit Size Size of the source code units, based on Lines Of Code (LOC). Size is determined Units with at most 15 LOC.
from the number of lines of code (excluding lines consisting of only white space
or comments).
Unit Complexity The degree of complexity in the units of the source code. The notion of unit Units with at most 5 McCabe complexity.
corresponds to the smallest executable parts of source code, such as methods or
functions. Complexity is measured using McCabe’s cyclomatic complexity [14].

Unit Interfacing The size of the interfaces of the units in terms of the number of interface Units with at most 2 parameters. ’,
parameter declarations (formal parameters).

Module Coupling The coupling between modules, measured by the number of incoming dependen- ~ Modules with at most 10 fan-in. -
cies. The notion of module corresponds to a grouping of related units, typically
a file.

Source: The Delta Maintainability Model: Measuring Maintainability of Fine-Grained Code Changes

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8785997&tag=1

DMM Calculation

1. Risk Profile Mapping

How a code change translates
into a Risk Profile

+ O

2. DMM Score Ceneration

This level combines all Risk Profiles for a
code change to generate a DMM score

DMM Calculation

Commit C
Files modified from commit C 3 25 z
extracted from commit C’ (parent) Files modified from commit C

@ File F1* File F2° File Fn* File F1 File F2 File Fn

Extract Source Code

Measurements per each File
(Unit Size, Duplication, ...)
Categorize System
@ Properties using
Benchmarked Low Medium [} High hi Low Medium High -hi
Risk Thresholds gh [llvery-igh W vigh [Very-nigh

@# LOC per Risk Profile

per Code Property

per File

Risk Profile Deltas
per Risk Profile
per Code Property
per File

O

Risk Profile Delta Increase

(RPDI)

Risk Profile Delta Decrease

(RPDD)

Files modified from commit C
File F1 File F2 File Fn

B =
=]
NV 7

Calculate Commit Risk Profile Delta
per each Risk Profile

B Low High
3
Medium] Very-high

B -6 8
= =) =

Aggregate Commlt Risk Profile Deltas

Risk Profiles
Delta Increases/Decreases
per each System Property
(Unit Size, Duplication, ...)

Commit Risk Profile AL
Delta Increases (CRPDI) —

Commit Risk Profile
Delta Decreases (CRPDD)

Low Risk Profile Delta

(LRPD) =
High Risk Profile Delta _
(HRPD)
Delta Score LPRD defined per
(DS) LPRD + HRPD | each System Property

Delta Maintainability Score DS Unit Size + DS Duplication + ..

(DMM Score) 5

)

Source: The Delta Maintainability Model: Measuring Maintainability of Fine-Grained Code Changes

(A) LEVEL 1: RISK PROFILE DELTAS.

(B) LEVEL 2: DELTA SCORES.

<+

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8785997&tag=1

DMM in PyDriller

PyDiriller provides an implementation of the Open
Source Delta Maintainability Model (OS-DMM) to
assess the maintainability implications of
commits.

The OS-DMM implementation of PyDriller
supports three commit-level metrics related to
risk in size, complexity, and interfacing.

It rewards making things better, and penalizes
making them worse.

DMM metrics have a value from 0.0 to 1.0

2

<

Hotspot Prioritization &

Software Quality +

+

| o

The Eisenhower Matrix

For our Hotspot Prioritization Technique we wiill
implement an approach similar to the
Eisenhower Matrix.

The Eisenhower Matrix is mostly used in Project
Management

It is a time management model that categorizes
tasks into four quadrants based on how urgent
and important they are.

In our implementation we prioritize hotspots
using complexity and churn as the dimensions for
categorizing hotspots.

— A
The Eisenhower Matrix VS Our Approach q

The Eisenhower Matrix Our Approach

U t Not Urgent Files that change rarely Files that change often
rgen -
e
3]
>
L X
- . =
g Decide , £ §
3 Schedule atimetodoit 3
= i
; 1] -
; Del 52
£ delete s LOW PRIORITY
= Eliminate it s =i
2 8
=
am—— '

Source: The Eisenhower matrix — A popular prioritization framework

https://www.spica.com/blog/the-eisenhower-matrix

B codelnspector Horme. HowltWorks m

W

Codelnspector

Analyze Repository

Repo URL:

[

From Date:

o/ yyyy

To Date:

/4 yyyy

OPrioritize Hotspots

OAnalyze Commits

EVALUATION
TOOL DEMO

' ARCHITECTURE &
IMPLEMENTATION

l §Codelnspector

8
W

Codelnspector

Analyze Repository

Codelnspector

Codelnspector is a full-stack application that
provides software quality analysis based on
hotspot prioritization and commits.

) Prioritize Hotspots

<> Codelnspector
{V} Front End

O FastAPI

@ REST API

¥ PyDriller

6 |[O

Hotspot Commit
Prioritization Analysis

Codelncpector Backend

Codelnspector Architecture

Codelnspector follows a
client-server architecture, where
the Frontend acts as the client,
and the Backend acts as the
server.

, . Codelnspector
O Codelnspector Architectu e

The backend folder and frontend contains
all the server-side logic.

@ docker-compose. ym]
The frontend folder contains the client-side
code and assets responsible for the user
interface and experience.

| |
anngn Both folders have their own dockerfile that
dictates how the component is

containerized.

Front End Back End

A docker-compose.ymil file defines and
configures the services orchestrating the
deployment and management of both
components

Codelnspector +
Tech-Stack

+ React.js FastAP|

d\ *docker

Codelnspector
Tech-Stack

A

+ PyDriller

for repository mining

\
+

Codelnspector
Tech-Stack |

+ My SQRL

<

o~

al Databas

Codelnspector
Backend

The tool’s backend is organized into different
directories, each serving a specific purpose.

Codelnspector Analysis

Analyze

4 T

) H tSDOLS . Visualize Data h
Otspots Hotspots Commits

Repo Url .

Analyze [Ilﬂ.[l.[l.)

Y y, ,
Commits

J
<

Commit Analysis

For the commit analysis, we aim to accomplish 2
things:

Find the DMM Score of a Give a rating to the

[] [)
Commit Commit
‘ DMM score is a value that The Commit Rating should
Q» “aggregates” the values of all reflect how “good” the
the dmm properties we get included change is.

from PyDiriller

<

1. Calculate DMM Score *

To calculate the DMM Score of the commit we will use the
three DMM metrics retrieved from PyDiriller:

- DMM Unit Size
- DMM Complexity
- DMM Interfacing

Then we consider DMM Score to be:

- dmm_cize + dmm_complexity + dmm_interfacing

+
2. Rate the Commit

To rate the commit we will use the DMM Score we calculated.
Since all DMM Metrics have a value between 0.0 and 1.0, and
the DMM Score is the sum of these metrics, we can assume
that DMM Score will always be between 0.0 and 3.0.

0.0 represents the lowest maintainability and 3.0 the highest.

Commit Analysis Workflow

(@ e | (@ | |2 | [s | Qoo

GET
"Analyze Commits"

Forward Commit Analysis
Reguest I

Traverse Commits

Commit Data

Calculate DMM Score —M8M8@ >
|

& Get the DMM Score

Find Commit Rating ——>

& Get the Commit Rating

Return Analysis

Analysis Results

(@ e | (@ e | [| [mos | Qo

Hotspot
Prioritization +

How to prioritize the
Hotspots?

o

STEP 1

Find the “hotspot” files

STEP 2
Find a way to assign g
each hotspot with a *

priority
STEP 3 M

Get the data!

\U

1. Find the Hotspot files

HotspotFinder

is churn or cc more than
the average!

: : ANAN

=]| All Repo Files YES NO

J |

HOTSPOT
NOT HOTSPOT

2. Assign Priority to Hotspots

HotspotPriorityCalculator

0\
Hotspot Files

)

Files that are ve

-

Files that are no

\

OFind cc and churn middle point

@ Prioritize the File

Files that change rarely Files that change often
3 NORMAL HIGH
§ PRIORITY PRIORITY
£ MEDIUM
3 LOW PRIORITY PRIORITY

Hotspot Prioritization Workflow

“Prioritize Hotspots"

Analysis Results

[@ Front End REST API {
GET

Forward Hotspot Analysis

Reguest

Return Analysis

&] [0=-] [2

Analysis . ﬂ Hotspot Hotspot
Service J @ Pyorilier [O\ Anaijze] [Priority Calculator @ Finder
Traverse Commits
Commits Data
Analyze Metrics —88 >
Calculate Hotspot
Priority Find Hotspots
Hotspot Files
Prioritized Files
[&—— Analysis Results
Analysis . . Hotspot Hotspot
4 PyDril Anal ﬁ » ;
Service 1 {é\} L } [Q AYERE L Priority Calculator é> Finder

|

+

Future Steps & Research

@ MORE EXTERNAL SERVICES —

We want to use more external services for the analysis *
process such as Sonar, PyAssess and Quality Dashboard

@ VIEW CODE :more data

We want to be able to add a feature that allows users
to view the code for specific files and changes and
more data related to quality and the repository

@ VALIDATION :BeENCHMARKING

Validation and benchmarking studies
to evaluate the tool’s effectiveness in
real-world scenarios.

THANKS!

Do you have any questions?

ics21044@uom.edu.gr
arxontiskO2@gmail.com
Github Repository

CREDITS: This presentation template was
created by Slidesgo, including icons by +
Flaticon, infographics & images by Freepik

Some infographics and images were modified by me (Archontis K.) to
enhance their alignment with the presentation content. However, all
copyrights of images and media remain the exclusive property of their
respective owners.

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:ics21044@uom.edu.gr
mailto:arxontisk02@gmail.com
https://github.com/ArchontisKostis/CodeInspecto

i slidesgo

http://bit.ly/2PfT4lq

