
14/02/2024

Code Quality and 
Hotspot Prioritization
USING REPOSITORY
MINING
Student: Archontis E. Kostis    |    Advisor: Alexander Chatzigeorgiou
Department of Applied Informatics



INTRODUCTION AND OBJECTIVES01
Introduction of the thesis topic and objectives.

THEORETICAL BACKGROUND02
Theoretical foundations related to software quality.

EVALUATION TOOL DEMO03
Introduce CodeInspector, the evaluation tool developed. 

TABLE OF CONTENTS

ARCHITECTURE & IMPLEMENTATION04
Details about the technical implementation of the developed tool



01
INTRODUCTION & 

OBJECTIVES



Software Development
● The field is characterized by continuous 

modifications to produce more efficient, 
feature-rich software.

● Large-scale software systems are becoming the 
norm rather than the exception.

● As software systems get more complex, 
maintaining high-quality code and identifying 
hotspots is necessary.

● GitHub repositories are large information 
warehouses containing the whole history of
a project's life cycle



300 million
repositories are hosted on Github!

more than

Archived from the original on January 25, 2023. Retrieved October 5, 2020.

https://web.archive.org/web/20230125075800/https://github.com/search


Github & Software Quality
● GitHub’s repository base opens up a world of 

possibilities for software engineering research.

● All these repositories hold a massive amount of 
data, including commit modifications, code 
reviews, conversations, and issue tracking.

● In software not all components are created 
equal and some classes or files tend to be more 
problematic than others. 

● Identifying and prioritizing such units is 
necessary.

● Version Control Systems can help us find how 
many times a file has been modified (churn).



CREATE A 
TOOL

OBJECTIVES

1
MINE 

REPOS

2

PRIORITIZE 
HOTSPOTS

3
RATE 

COMMITS

4



02
THEORETICAL 
BACKGROUND



—KITCHENHAM

“Quality is hard to define, 
impossible to measure, easy 

to recognize”

Software Quality



—GILLES

“Quality is generally 
transparent when present, 
but easily recognized in its 

absence”

Software Quality



SonarQube

Software Quality Tools

https://www.sonarsource.com/products/sonarqube/


SonarLint

Software Quality Tools

https://www.sonarsource.com/products/sonarlint/


Software Quality Tools

Uom Quality Dashboard

https://github.com/SE-UoM/quality-dashboard


Delta 
Maintainability 

Model



Delta Maintainability Model
● The Delta Maintainability Model (DMM) is a set of 

metrics that assess the maintainability of code 
changes in a software system.

● It was published by M. di Biase et al. in the 2019 
IEEE/ACM International Conference on Technical 
Debt.

● The model is based on determining the impact of 
an individual code change on maintainability.



DMM Calculation
● It views changes as the addition or removal of lines 

of code to units and modules implicated in the 
change.

● A low DMM score indicates a large number of 
complex alterations. And all DMM values are 
between 0.0 and 1.0

● The model utilizes the SIG-MM system properties. 

● Each property is defined with a specific description 
and criteria for qualifying code as low risk.



DMM Calculation

Source: The Delta Maintainability Model: Measuring Maintainability of Fine-Grained Code Changes

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8785997&tag=1


DMM Calculation

2. DMM Score Generation
This level combines all Risk Profiles for a 
code change to generate a DMM score

1. Risk Profile Mapping
How a code change translates 

into a Risk Profile



DMM Calculation

Source: The Delta Maintainability Model: Measuring Maintainability of Fine-Grained Code Changes

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8785997&tag=1


DMM in PyDriller
● PyDriller provides an implementation of the Open 

Source Delta Maintainability Model (OS-DMM) to 
assess the maintainability implications of 
commits.

● The OS-DMM implementation of PyDriller 
supports three commit-level metrics related to 
risk in size, complexity, and interfacing.

● It rewards making things better, and penalizes 
making them worse. 

● DMM metrics have a value from 0.0 to 1.0



Hotspot Prioritization & 
Software Quality



The Eisenhower Matrix
● For our Hotspot Prioritization Technique we will 

implement an approach similar to the 
Eisenhower Matrix.

● The Eisenhower Matrix is mostly used in Project 
Management

● It is a time management model that categorizes 
tasks into four quadrants based on how urgent 
and important they are.

● In our implementation we prioritize hotspots 
using complexity and churn as the dimensions for 
categorizing hotspots.



Source: The Eisenhower matrix – A popular prioritization framework

The Eisenhower Matrix Our Approach

The Eisenhower Matrix VS Our Approach

https://www.spica.com/blog/the-eisenhower-matrix


03
EVALUATION 
TOOL DEMO



04
ARCHITECTURE & 
IMPLEMENTATION



CodeInspector
CodeInspector is a full-stack application that 
provides software quality analysis based on 

hotspot prioritization and commits.



CodeInspector follows a 
client-server architecture, where 
the Frontend acts as the client, 
and the Backend acts as the 
server.

CodeInspector Architecture



CodeInspector
Architecture
● The backend folder and frontend contains 

all the server-side logic.

● The frontend folder contains the client-side 
code and assets responsible for the user 
interface and experience.

● Both folders have their own dockerfile that 
dictates how the component is 
containerized.

● A docker-compose.yml file defines and 
configures the services orchestrating the 
deployment and management of both 
components



CodeInspector
Tech-Stack

React.js FastAPI



CodeInspector
Tech-Stack

PyDriller
for repository mining



CodeInspector
Tech-Stack

as a Relational Database



CodeInspector
Backend

The tool’s backend is organized into different 
directories, each serving a specific purpose.



CodeInspector Analysis



Find the DMM Score of a 
Commit

DMM score is a value that 
“aggregates” the values of all 
the dmm properties we get 

from PyDriller

Commit Analysis

Give a rating to the
Commit

The Commit Rating should 
reflect how “good” the 

included change is.

1 2

For the commit analysis, we aim to accomplish 2 
things:



1. Calculate DMM Score
To calculate the DMM Score of the commit we will use the 
three DMM metrics retrieved from PyDriller:

- DMM Unit Size
- DMM Complexity
- DMM Interfacing

Then we consider DMM Score to be:

dmm_size + dmm_complexity + dmm_interfacing



2. Rate the Commit

To rate the commit we will use the DMM Score we calculated.

Since all DMM Metrics have a value between 0.0 and 1.0, and 
the DMM Score is the sum of these metrics, we can assume 
that DMM Score will always be between 0.0 and 3.0.

0.0 represents the lowest maintainability and 3.0 the highest.



Commit Analysis Workflow



Hotspot 
Prioritization



How to prioritize the 
Hotspots?

STEP 3
Get the data!

STEP 1
Find the “hotspot” files

STEP 2
Find a way to assign 
each hotspot with a 

priority



1. Find the Hotspot files



2. Assign Priority to Hotspots



Hotspot Prioritization Workflow



Future Steps & Research

MORE EXTERNAL SERVICES
We want to use more external services for the analysis 
process such as Sonar, PyAssess and Quality Dashboard

VALIDATION +BENCHMARKING

Validation and benchmarking studies 
to evaluate the tool’s effectiveness in 
real-world scenarios.

VIEW CODE +more data

We want to be able to add a feature that allows users 
to view the code for specific files and changes and 
more data related to quality and the repository

STEP 1

STEP 2

STEP 3



CREDITS: This presentation template was 
created by Slidesgo, including icons by 

Flaticon, infographics & images by Freepik

THANKS!
Do you have any questions?

ics21044@uom.edu.gr
arxontisk02@gmail.com

Github Repository

Some infographics and images were modified by me (Archontis K.) to 
enhance their alignment with the presentation content. However, all 

copyrights of images and media remain the exclusive property of their 
respective owners.

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:ics21044@uom.edu.gr
mailto:arxontisk02@gmail.com
https://github.com/ArchontisKostis/CodeInspecto


http://bit.ly/2PfT4lq

