
UNIVERSITY OF MACEDONIA

SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

EVALUATION OF CODE QUALITY AND HOTSPOT PRIORITIZATION
USING REPOSITORY MINING

Bachelor's thesis

of

Archontis Emmanouil Kostis

Thessaloniki, February 2024

EVALUATION OF CODE QUALITY AND HOTSPOT PRIORITIZATION

USING REPOSITORY MINING

Archontis Emmanouil Kostis

Undergraduate Student of Applied Informatics at University of Macedonia

Bachelor’s Thesis

submitted for the partial fulfillment of its requirements

BACHELOR'S DEGREE IN APPLIED INFORMATICS

Supervisor

Alexander Chatzigeorgiou

Approved by the three-member examination committee on 14/02/2024

Alexander

Chatzigeorgiou

Apostolos

Ampatzoglou

Stylianos

Xinogalos

...................................

Archontis Emmanouil Kostis

...................................
3

Abstract

Software development is characterized by continuous changes and improvements to meet

evolving requirements and address emerging issues. Software repositories contain

historical and valuable information about the overall development of software systems.

To proactively manage code quality and address potential challenges, this thesis presents

a service-based tool that employs repository mining techniques, using the Python

Framework PyDriller, to assess code quality and prioritize hotspots in GitHub

repositories. This thesis proposes a tool, named CodeInspector, the proposed tool aims to

assist software engineers and researchers in identifying critical areas in their codebases

that require immediate attention and understand the impact of individual commits on the

overall maintainability of the software system. We achieve this by analyzing complexity

and churn metrics and employing the Delta Maintainability Model (DMM) to assess code

changes. The thesis emphasizes the importance of code quality in software development,

equipping developers and researchers with a powerful tool that empowers them to create

and maintain high-quality software systems.

Keywords: Python, Java, code quality, static code analysis, multi-metric analysis,

PyDriller, Mining Software Repositories, GitHub, service tool, software development,

software quality assurance

4

Preface

At the end of this remarkable and fascinating journey, I am both humbled and

thrilled to present this thesis, the culmination of hours of dedication, research, and effort.

This thesis would not have been possible without the support, encouragement, and aid of

many people who have stood by me throughout this journey.

First and foremost, I would like to express my profound gratitude to Mr.

Alexander Hatzigeorgiou, whose leadership and mentorship have served as the

foundation of this thesis. His knowledge and assistance have been invaluable in crafting

my work, and I am grateful for his support. Furthermore, I would like to convey my

gratitude to two outstanding individuals, Nikolaos Nikolaidis Theodoros Maikantis, both

Software Engineering Researchers at the University of Macedonia. Their views, and

collaborative attitude is indispensable.

My friends and colleagues, George David Apostolidis and George Fakidis, have

been pillars of strength and support throughout my journey. To my dear friend, Helen

Vagiannopoulou, whose constant emotional and psychological support has been a

guiding light, I am profoundly grateful. My heartfelt thanks go to my parents for their

continuous support and numerous sacrifices, without which none of this would have been

possible.

Last but not least, I'd like to express my gratitude to all my friends, whose

companionship and encouragement have been a source of motivation and inspiration for

me. This thesis is a monument to the power of teamwork, mentorship, and friendship. It

is my goal that the knowledge and thoughts included within these pages will help to

improve both the field and the community as a whole.

5

Table of contents

1 Introduction... 1
1.1 Background and Motivation... 2
1.2 Problem Statement..3
1.3 Purpose – Objectives.. 4
1.4 Contribution..5

2 Bibliographic Review: Theoretical Background.. 7
2.1 Programming Languages..7

2.1.1 Evolution and Impact.. 7
2.1.2 Popularity in the Developer Community...8

2.2 Software quality..10
2.3 Product Quality Model (ISO/IEC 25010)...11
2.4 Software Quality Tools...14

2.4.1 SonarQube... 14
2.4.2 UoM Dashboard.. 15
2.4.3 SonarLint... 17
2.4.4 CodeClimate.. 18
2.4.5 PyLint.. 19

2.4.6 Automating Quality Analysis.. 20
2.4.6.1 Continuous Integration (CI)... 20
2.4.6.2 Quality Gates.. 21

2.5 The Delta Maintainability Model (DMM)... 23
2.5.1 Conceptual Framework... 23
2.5.2 Model Calculation... 24

2.6 Prioritization Techniques in Code Quality Assessment....................................... 26
3 Evaluation Tool - “CodeInspector”..29

3.1 Tech Stack...29
3.1.1 Python (Programming Language)... 29
3.1.2 FastAPI.. 31
3.1.3 React JS... 32
3.1.4 Docker... 33
3.1.5 MySQL.. 33
3.1.6 PyDriller.. 35

3.2 Tool Functionality...36
3.2.1 Home Page (Front End)...36
3.2.2 Tool Page... 37
3.2.3 Results Page (Commit Analysis)..38
3.2.4 Results Page (Hotspot Analysis).. 42

4 Tool Architecture... 44

6

4.1 Source Code Structure..45
4.2 Backend Structure.. 48
4.3 Hotspot Prioritization Analysis Implementation.. 50

4.3.1 API Endpoint (Hotspot Prioritization)...50
4.3.2 The AnalysisService Class (Hotspot Prioritization)....................................52
4.3.3 The CommitProcessor Class (Hotspot Prioritization)................................. 53
4.3.4 The Analyzer Class (Hotspot Prioritization)... 54
4.3.5 The AverageMetricFinder Class (Hotspot Prioritization)........................... 56
4.3.6 The HotspotPriorityCalculator Class (Hotspot Prioritization).................... 57

4.4 Commit Analysis Implementation..60
4.4.1 API Endpoint (Hotspot Prioritization)...61
4.4.2 The AnalysisService Class (Commit Analysis).. 61
4.4.3 The ProjectCommitBuilder Class..63
4.4.4 The ProjectCommit Class..64

5 Future Research...65
6 Conclusions.. 67
7 Bibliography...68

7

List of Figures

Figure 1 - Top Programming Languages (All Respondents) | Statista................................ 8
Figure 2 - Top Programming Languages (Users Learning to Code)................................... 9
Figure 3 - Product Quality Model (ISO/IEC 25010)...12
Figure 4 - SonarLint.. 17
Figure 5 - Code Climate Home Page...18
Figure 6 - PyLint Example.. 19
Figure 7 - Continuous Integration Workflow.. 21
Figure 8 - SonarQube Quality Gates Workflow.. 22
Figure 9 - SIG-MM Properties and Thresholds for qualifying code as Low Risk............ 23
Figure 10 - Overview of the DMM... 24
Figure 11 - PyDriller DMM value calculation.. 25
Figure 12 - The Eisenhower Matrix.. 26
Figure 13 - The Eisenhower Matrix.. 27
Figure 14 - Python Logo..28
Figure 15 - Stack Overflow Developer Survey 2023.. 29
Figure 16 - FastAPI Logo..30
Figure 17 - React.js Logo.. 31
Figure 18 - Docker Logo... 32
Figure 19 - MySQL Logo..32
Figure 20 - CodeInspector Homepage (Tool Presentation)... 36
Figure 21 - CodeInspector Tool Page (Analysis Input Form)... 37
Figure 22 - Commit Analysis (Analysis Info)...38
Figure 23 - Commits Bar Chart (Commits Analysis)..38
Figure 24 - Commit Analysis (Commits Table).. 39
Figure 25 - Hotspot Analysis (General Info)...41
Figure 26 - Hotspot Analysis (Prioritization Matrix).. 42
Figure 27 - Hotspot Analysis (Modified Files).. 42
Figure 28 - CodeInspector Overall Architecture... 43
Figure 29 - CodeInspector Repository Structure...44
Figure 30 - CodeInspector Backend Structure.. 47
Figure 31 - Hotspot Analysis Workflow..49

List of Code Blocks

Code Block 1 - Back End Dockerfile.. 45
Code Block 2 - Front End Dockerfile..45
Code Block 3 - docker-compose.yml.. 46

8

Code Block 4 - Prioritize Hotspots Endpoint (analysis_routers.py)................................. 50
Code Block 5 - Exception Handling Method (__init__.py | ‘routers’ module).................51
Code Block 6 - Analyze Hotspots Method (AnalyzerService.py).................................... 51
Code Block 7 - Process Commit Method (CommitProcessor.py).....................................52
Code Block 8 - Find Max Metric File Method (Analyzer.py)...53
Code Block 9 - Find Max Metric File Method (Analyzer.py)...53
Code Block 10 - Calculate Average Metrics Method (Analyzer.py).................................54
Code Block 11 - Calculate Total LOC (Analyzer.py)..54
Code Block 12 - Prioritize Hotspots Method (Analyzer.py)... 54
Code Block 13 - Calculate Average Metric (AverageMetricFinder.py)............................ 55
Code Block 14 - Convenience Methods (AverageMetricFinder.py)................................. 56
Code Block 15 - Calculate Hotspot Priority (HotspotPriorityCalculator.py)....................56
Code Block 16 - Calculate Priority Method (HotspotPriorityCalculator.py).................... 57
Code Block 17 - Calculate Priority Method (HotspotPriorityCalculator.py).................... 58
Code Block 18 - HotspotFinder Class... 58
Code Block 19 - Commit Analysis Endpoint (analysis_routers.py)................................. 60
Code Block 20 - Analyze Commits Method (AnalyzerService.py).................................. 61
Code Block 21 - Project Commit Builder Class (ProjectCommitBuilder.py)...................62
Code Block 22 - Project Commit Builder Class (ProjectCommitBuilder.py)...................63

List of tables

Table 1 - Most Popular Programming Languages (PYPL Index)....................................... 7
Table 2 - Most Popular Programming Languages (TIOBE Index)..................................... 7

9

1 Introduction

Software development is a dynamic field that adapts to the changing needs and

requirements of the digital world. This fast-paced industry is characterized by a

never-ending cycle of modifications, updates, and enhancements aimed at producing

higher-performing, more efficient, and feature-rich software systems. Understanding and

maintaining code quality has proven critical in assuring the long-term survival and success

of software projects. As a result, The need for effective tools to evaluate and prioritize code

quality has expanded dramatically in today's world, where sophisticated, large-scale

software systems are becoming the rule rather than the exception. As systems become

more complex, maintaining high-quality code becomes increasingly difficult. The

repercussions of inadequate code quality can be extensive both technically and

economically, impacting not only the project's functionality but also its ability to adapt and

endure in the face of future changes and challenges. High-quality code serves as the

foundation for successful software, assuring durability, ease of maintenance, and efficient

resource management. As a result, software engineers and project managers must be able

to identify and prioritize portions of the codebase that require change or immediate

attention.

Moreover, software repositories are massive information storage facilities,

including the entire history of a project's evolution, from its genesis to its current iteration.

This historical repository contains a wealth of data, providing a full view of the amazing

journey of a software system's development history. This plethora of historical material is a

veritable goldmine for researchers and engineers attempting to decipher the perplexing

complexities.

1.1 Background and Motivation

GitHub[1], a well-known web-based hosting service based on the Git[2] version

control system, is a key platform in open-source development and collaborative software

engineering. The importance of GitHub in the modern software development landscape

cannot be overstated. GitHub, holds an impressive repository count exceeding 300

million,[3] and has emerged as one of the most important sources of software artifacts on

the Internet. The platform has permanently changed the nature of how development teams
1

cooperate, share, and manage their codebase. As a result, GitHub has taken a significant

position in both open-source and collaborative software development, leaving an effect on

how projects are managed and maintained. The enormous repository ecosystem provided

by GitHub gives up a world of possibilities for software engineering research.

Each repository is filled with historical data, including commit revisions, code

reviews, conversations, and issue tracking. This plethora of data acts as a valuable source

of knowledge, allowing researchers and engineers to obtain remarkable insights into the

complicated evolution and lifecycle of software repositories. The deposit of code

modifications, version histories, and collaborative development data offers a unique look at

how software projects evolve over time. Mining this treasure trove of data can provide

software experts with insights that allow them to make decisions about quality

enhancements and task prioritization. This historical perspective, which spans a project's

full existence, provides developers with the information required for strategic planning and

the identification of crucial areas.

In software not all components are created equal, and some classes or files tend to

be more problematic than others, leading to difficulties in maintenance, defects, and

delays. Effective resource management and software quality enhancement are dependent

on the ability to identify and prioritize these problem areas. Software quality management

is critical to guaranteeing the long-term performance and maintainability of software

projects and by proactively monitoring software quality, development teams can easily

identify repeating patterns or target portions of their codebase that require improvement.

This strategy eventually results in more profitable projects and the efficient utilization of

resources. This paper presents an approach for prioritizing problematic classes and files

within software repositories based on the ideas encapsulated in the Eisenhower matrix. The

proposed method is based on code complexity and churn (how many times a file has

changed on the version control system), and provides a structured and data-driven strategy

for dealing with “hotspot files”. By incorporating this methodology into the development

process, teams can use these insights to improve their overall code quality, strengthening

the basis of software success in an ever-changing technological context.

2

1.2 Problem Statement

In today's software development landscape, the ever-increasing complexity and

scale of modern software systems pose significant challenges for developers, project

managers and software engineers. Manual code analysis, while necessary for quality

assurance, is labor-intensive and time-consuming, making it impracticable for the massive

codebases like in today’s software systems. Even the most careful human reviewer can be

overwhelmed by the sheer volume of code included within these large-scale software

systems. In recent years, automated code analysis tools have grown to be essential

resources for developers. These tools are designed to quickly and reliably identify quality

issues, expediting the problem-solving process. However, there is a considerable gap in

how well many of these technologies utilize the full potential of repository mining and

historical data. This can limit their ability to provide an in-depth understanding of code

quality and also limit developers' ability to make well-informed decisions. This deficiency

reduces the productivity of development processes and the development of strong and

robust software, stressing the vital need for a more holistic data-driven approach.

In large software systems, some classes and files present more defects than others.

These units, distinguished by their tendency of causing maintenance issues, errors, and

delays, provide challenges throughout the whole development lifecycle. Effective

management of these areas is critical for resource optimization and quality improvement.

The identification of these units is only one step and prioritizing their resolution is equally

important as the durability of software products is rooted in strategic prioritizing.

Development teams can systematically improve the overall quality of their codebase by

allocating focused attention and resources to these critical areas. The end result is not only

more successful projects, but also more efficient and profitable ones.

1.3 Purpose – Objectives

The primary objective of this thesis is to develop a comprehensive and

language-agnostic tool for code quality assessment and hotspot identification, utilizing

mining techniques on software repositories. The proposed tool aims to provide software

engineers and researchers with a solution for maintaining code quality, gaining important

insights into code changes, and strategically prioritizing pivotal regions inside software

3

projects. This multidimensional project aims to address the increasingly complicated and

dynamic landscape of software development, where large-scale, collaborative projects are

the norm and code quality is critical for long-term success.

Specifically, the primary objectives are:

1. Develop a Flexible service-based Tool:

The primary goal is to create a versatile, service-based tool that can analyze

code written in different programming languages. Despite the tool's primary

focus on language-agnostic analysis, it will expand its support to

programming languages compatible with PyDriller[4], assuring its

applicability to a broad range of codebases.

2. Extract Data from GitHub Repositories:

Another essential step is the extraction of comprehensive information from

GitHub repositories. This covers a deep dive into commit history, churn,

complexity, and Delta Maintainability Model (DMM) metrics[5]. This

method will give the tool with the raw materials it needs to conduct a more

in-depth code quality analysis.

3. Implement a Hotspot Identification Mechanism:

The creation of a hotspot identification mechanism is an essential

component of the proposed tool. Our approach will rely on complexity and

churn metrics to identify critical files inside the codebase. This can help

development teams to manage resources effectively and address the most

crucial areas of the project first by prioritizing these areas.

4. Leverage the Delta Maintainability Model (DMM)[5]:

Another important aspect of the thesis is the utilization of the Delta

Maintainability Model (DMM)[5] in the commit analysis process. This

model provides a thorough framework for measuring the impact of

individual code modifications on a system’s maintainability. By

incorporating DMM into the tool's functionality, it will be able to provide

crucial insights into how code changes affect the project's general health

and quality.

4

1.4 Contribution

The primary contribution of this thesis lies in the field of hotspot prioritization in

software engineering. Our approach involves the creation of a tool capable of identifying

and prioritizing problematic files within GitHub repositories, using complexity and churn

metrics as guiding criteria. This methodology tries to identify classes or files contained

inside the codebase that exhibit the simultaneous characteristics of high complexity and

frequent modifications, indicating possible maintainability difficulties. By focusing on

these critical areas, our solution helps to improve resource allocation and enhances the

overall efficiency of software development processes. In essence, this method seeks to

build the groundwork for the development of more maintainable and efficient software

systems, assuring their lifetime and adaptability.

Complementing our holistic approach to improve code quality, we seamlessly

integrate the Delta Maintainability Model (DMM) into the analysis process. This feature

allows for a thorough assessment of individual code changes (commits) while taking into

consideration DMM's comprehensive maintainability criteria. Each commit is evaluated

using a rating system, with four separate levels: "EXCELLENT," "GOOD," "FAIR," and

"BAD." This system provides developers with useful insights into the implication of each

change, acting as a guide for decision-making during code reviews and influencing the

direction of future development phases. The adoption of DMM strengthens the quality

enhancement process, guaranteeing that maintainability remains at the center of software

development activities, hence enriching the system's long-term success.

Finally, the thesis presents a holistic approach to hotspot prioritization and commit

analysis. We hope to empower development teams to address difficult portions of their

codebase proactively by using both static code analysis and repository mining data.

Furthermore, the Delta Maintainability Model integration improves the analysis process by

providing developers with a clear, metric-driven framework for reviewing individual

changes in the codebase. This thesis provides a step forward in the construction of software

systems that are not only efficient and adaptive, but also resilient in the face of changing

requirements and technological breakthroughs. Finally, we hope to build a culture of

data-driven decision-making and continual improvement in the ever-changing world of

software engineering.

5

2 Bibliographic Review: Theoretical Background

2.1 Programming Languages

Programming languages are the fundamental building blocks of the software

development industry. These languages have different features, syntax, and paradigms,

each providing a unique set of tools for programmers to construct and design applications.

They are the foundation of modern technology, allowing the development of a wide range

of applications, from web and mobile apps to complex algorithms and systems.

Java, for example, is a general-purpose object-oriented programming language

created in the 1990s by Sun Microsystems' James Gosling and others[6]. The technology

was essential in revolutionizing the Internet and has greatly influenced the way software is

developed. The language was created with portability in mind and facilitates application

programming in a distributed computing environment. The goal was to create a computing

environment that allows a program to be written once, run anywhere[7]. Platform

independence is achieved by compiling Java code into Java bytecode, which is an

optimized set of instructions that can be executed on a Java Virtual Machine.

2.1.1 Evolution and Impact

Programming languages are marked by a series of milestones and each language

has played its role in redefining the boundaries of what can be achieved. Java, a

general-purpose object-oriented programming language[6], pioneered concepts such as

write once, run anywhere (WORA)[7]. This allows compiled code to transcend

platform-specific limitations[8]. This paradigm-shifting technique greatly decreased

implementation requirements, allowing developers to construct resilient and secure

software solutions that can adapt to a variety of contexts. Programming languages'

adaptability and benefits increase their appeal to a wide range of applications, ranging from

the complexities of client-server web systems to the resilience of enterprise solutions and

the precision of scientific computers.

2.1.2 Popularity in the Developer Community

Programming languages' importance extend beyond their technical aspects and are

represented in their positions within the software developer community. Leading surveys,
6

such as the 2023 Stack Overflow Developer Survey[9] and Statista's 2023 Worldwide

Developer Survey[10], constantly highlight popular languages, demonstrating their

prevalence among respondents. It is worth noting that JavaScript, Python, and Java are

among the most popular languages, suggesting their importance and influence on the

worldwide developer community. Additionally, according to Forbes[11], Java was the

second most popular language in the world in February 2022, and is expected to continue

growing in the future[12].

Figure 1 - Top Programming Languages (All Respondents) | Statista

Figure 2 - Top Programming Languages (Users Learning to Code)

Another ranking system that measures the popularity of programming languages is

the “PYPL PopularitY of Programming Language Index”[13]. PYPL is a system based on

the number of searches for language tutorials on Google. According to the index Python,

Java and Javascript remain the most popular languages among all. More specifically Java
7

is the 2nd most popular programming language, in October 2023. During the years 2021

and 2022, the language has grown by 1.2% and over the past year the language’s

popularity has slowly declined[13]. Despite this, the language is still one of the most

commonly used programming languages in the world.

Rank Language Share 1-year Trend

1 Python 28.05 % + 0.1%

2 Java 15.88 % - 1.0 %

3 Javascript 9.27 % - 0.3%

Table 1 - Most Popular Programming Languages (PYPL Index)

Figure 3 - Java’s popularity throughout the years (PYPL Index)

The “TIOBE Index”[14], another ranking system that measures the popularity of

programming languages based on search results, ranks Java, C/C++ and Python as the most

popular programming languages in the world by October 2023. The index also shows that

Java’s use has declined by 3.92% compared to October 2022[14]. However, the language

still remains one of the most widely used programming languages in the world.

Rank Language Ratings Change

1 Python 14.82 % - 2.25%

2 C 12.08 % - 3.13 %

8

3 C++ 10.67 % + 0.74 %

4 Java 8.92 % - 3.29 %

Table 2 - Most Popular Programming Languages (TIOBE Index)

Figure 4 - Languages popularity throughout the years (TIOBE Index)

2.2 Software quality

Software quality is an important aspect of software engineering since it influences

the overall success and reliability of software products. It includes a variety of factors that

have a direct impact on the development processes as well as the end product's

performance, maintainability, and user satisfaction. Understanding all aspects of software

quality is necessary for building strong and maintainable software systems.

Software quality is a challenging concept to define precisely. As Kitchenham

(1989) put it, quality is "hard to define, impossible to measure, easy to recognize"[15].

Additionally, Gillies states that, "Quality is generally transparent when present, but easily

recognized in its absence"[16]. When software quality is present, it is visible in the

software's performance, and ability to meet the requirements. The absence of software

quality, on the other hand, becomes obvious when the program fails to fulfill expectations,

exhibits bugs, or becomes difficult to maintain.

9

One critical aspect of software quality is maintainability, which refers to “the extent

to which software is capable of being changed after deployment”[17], to fix errors that

were not detected during the testing phase, improve performance, or adapt to changes in

the requirements. Clean Code, a concept proposed by software engineer Robert C. Martin,

encompasses a set of rules and principles aimed at producing understandable,

maintainable, and efficient code. Finally, Technical Debt grows as software systems evolve

over time and writing “clean” new code can be an efficient strategy for reducing TD, and

thus preventing software decay over time[18].

2.3 Product Quality Model (ISO/IEC 25010)

The ISO/IEC 25010 standard, also known as the Software Quality Model[19],

provides a framework for evaluating the characteristics of software products. It serves as

an important tool for understanding and enhancing software quality. The model identifies

the key quality attributes that should be considered during the evaluation process, thereby

helping developers and stakeholders in making decisions about software development and

deployment. Software quality attributes are non-functional requirements that can have an

effect on the overall quality of a software product[20]. Many of these attributes can be

addressed and evaluated during the time the architecture is developed. Software quality

attributes include compatibility, usability, reliability and more[19]. The primary goal of the

ISO/IEC 25010 quality model is to measure “the degree to which the system satisfies the

stated and implied needs of its various stakeholders, and thus provides value”[19].

10

Figure 3 - Product Quality Model (ISO/IEC 25010)1

The product quality model is composed by eight quality attributes:

● Functional Suitability

This attribute represents the degree to which a software product provides functions

that meet stated and implied needs when used under specified conditions. The attribute is

composed of three attributes: Functional completeness, Functional correctness and

Functional appropriateness[19].

● Performance Efficiency

This attribute represents the performance of the system, relative to the amount of

resources used. Performance Efficiency is divided into 3 attributes: Time behavior,

Resource utilization and Capacity[19].

● Compatibility

The degree to which a component can exchange information with other

components, and perform its required functions while sharing the same hardware or

software environment. This category is divided into 2 attributes: Co-existence and

Interoperability[19].

● Usability

The degree to which a product or system can be used by specific users to achieve

specific goals with effectiveness, efficiency and satisfaction in a specific context. The

attribute is composed of the following sub-attributes: Appropriate recognizability,

Learnability, Operability, User error protection, User interface aesthetics and

Accessibility[19].

● Reliability

The degree to which a product performs specific functions under specified

conditions for a specified period of time. Reliability is broken down into four categories:

Recoverability, Fault tolerance, Availability and Maturity[19].

1 Source: https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
11

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

● Security

Security refers to the degree to which a product or system protects information and

data so that persons or other products or systems have the appropriate degree of data access

based on their types and levels of authorization. The attribute can be divided into the

following categories: Authenticity, Accountability, Non-repudiation, Confidentiality and

Integrity[19].

● Maintainability

This characteristic represents the degree of effectiveness and efficiency in which a

product or system can be modified to improve it, correct it or adapt it to changes in

environment, and in requirements. Maintainability is composed of the following attributes:

Testability, Modifiability, Analysability, Reusability and Modularity[19].

● Portability

Portability is the degree of effectiveness and efficiency with which a system,

product or component can be transferred from one hardware, software or other operational

environment to another. The attribute can be broken down into 3 sub-attributes:

Replaceability, Installability and Adaptability[19].

2.4 Software Quality Tools

Software quality tools are critical components of the software development process

because they provide automated tests and insights into code quality, maintainability,

security, and coding standards conformance. These tools give developers crucial insights

into their code, casting light on areas where changes and optimizations can be performed,

thereby boosting the overall quality of the codebase.

The integration of software quality tools into the development process, particularly

in the arena of Continuous Integration (CI) and Quality Gates, is one of the most important

elements of these tools. Automated Analysis guarantees that quality is consistent and

present throughout a project's lifecycle. This allows development teams to not only

discover but also fix potential issues, long before they have the opportunity to become

critical concerns that could jeopardize the system.

12

In essence, software quality tools are more than “just tools”, they are like partners

in the development process. They advise developers in making appropriate decisions, and

protect the codebase's integrity and security. Furthermore, they enable development teams

to use automation to their advantage, reinforcing the development process and

guaranteeing that the quality of their product is maintained from inception to deployment.

2.4.1 SonarQube

SonarQube[21] is an open-source, automatic code review tool that assists

developers in producing clean and code smell free code. It provides a comprehensive set of

quality guidelines for a variety of programming languages, including Java, Python,

JavaScript, and others. SonarQube compares code to these guidelines and flags potential

problems.

Figure 4 - A SonarQube project homepage2

One of the key features of SonarQube is its ability to detect code smells or design

flaws that can lead to maintainability problems, while also identifying security

vulnerabilities to fortify software against potential threats. Additionally, SonarQube

highlights code duplications, enabling developers to eliminate redundant code. The

platform can also integrate with Continuous Integration (CI) and Continuous Deployment

(CD) pipelines to ensure code quality is maintained throughout the whole development

2 Source: https://en.wikipedia.org/wiki/SonarQube
13

https://en.wikipedia.org/wiki/SonarQube

process. Developers can discover bugs early and prevent them from spreading to the final

product by automating code analysis within the CI/CD workflow.

2.4.2 UoM Dashboard

UoM Quality Dashboard3 is a project developed by the University of Macedonia.

implemented by two University teams: OpenSource UoM[23] and Software Engineering

Lab UoM[24]. The primary purpose of the project is to create an all-encompassing

dashboard that efficiently presents data related to numerous projects managed by the

University's Applied Informatics Department. In essence, this dashboard is a sophisticated

visualization tool that has been built to assist organizations in monitoring and examining

the quality of their software activities.

The dashboard acts as a powerful analytical tool while promoting a culture of

healthy competition inside organizations. It encourages a dynamic and motivating

environment where teams can strive for excellence and continuously improve their

software projects by providing means to evaluate and compare the performance of

developers based on their activity and overall code quality. This feature provides value to

the project by encouraging a spirit of creativity and quality in software development. The

tool ingeniously combines software quality data and repository statistics in its analyses,

providing useful insights into the development process. The dashboard delivers a holistic

and uniform analysis of all the repositories examined by effectively integrating data

analysis from multiple third-party services such as SonarQube[21], PyAssess[25], and

3 https://github.com/SE-UoM/quality-dashboard
14

https://github.com/SE-UoM/quality-dashboard

CodeInspector (which is the proposed tool developed in this thesis). The tool is

conveniently divided into numerous displays, each dedicated to a different data category,

providing a wide range of information, from general data such as total projects and files

and insights into the most popular programming languages to various aspects of project

quality, such as code smells and technical debt. While the project is still in its early stages,

it is always evolving to deliver more profound and informative information.

15

2.4.3 SonarLint

SonarLint[26] stands as a cutting-edge, state-of-the-art code analysis tool,

engineered to seamlessly integrate within a wide variety of Integrated Development

Environments (IDEs) It provides real-time code analysis while developers create code,

delivering immediate feedback on potential flaws and making suggestions for changes.

SonarLint works with a variety of IDEs, including Visual Studio Code, IntelliJ IDEA,

Eclipse, and others, making it accessible to developers working in a variety of

environments.

Figure 4 - SonarLint4

The tool employs the same set of static code analysis rules as SonarQube, ensuring

quality assessment consistency throughout the whole development team. SonarLint allows

developers to fix code smells, bugs, and security vulnerabilities as they write code,

minimizing the time and effort necessary for subsequent code reviews. The tool helps

developers adopt better coding habits and maintain a high level of code quality from the

start by integrating smoothly within the development environment. This extraordinary

4 Source: https://www.tatvasoft.com/blog/introduction-to-sonarqube-sonarlint/
16

https://www.tatvasoft.com/blog/introduction-to-sonarqube-sonarlint/

plugin is more than just an addition to the development workflow and is a true defender of

code quality and integrity. As developers write their code, sonarlint is always by their side,

performing real-time analysis, not just as a passive observer but as an active collaborator,

ready to provide quick feedback on problems or ideas for changes.

2.4.4 CodeClimate

CodeClimate[27] is a cloud-based platform that provides automated code review

and analytics for software projects. It supports multiple programming languages, including

Ruby, Python, and more.

Figure 5 - Code Climate Home Page

The tool analyzes code repositories and determines maintainability scores, assisting

programmers and quality assurance analysts in identifying areas for improvement. It

detects code smells, complexity concerns, and duplication, allowing teams to keep their

codebases clean and maintainable. The platform also evaluates test coverage, revealing

information about the effectiveness of test suites. Integrating Code Climate with CI/CD

pipelines enables teams to continuously check code quality and guarantee that each code

change adheres to quality requirements. Teams may maximize code quality, improve code

maintainability, and streamline the development process using Code Climate's insights.

17

2.4.5 PyLint

Pylint[X] is a tool for analyzing Python codebases. It includes a plethora of tools to

assist developers in maintaining clean and efficient Python code.

Figure 6 - PyLint Example

PyLint performs static code analysis to detect code smells, security vulnerabilities,

and potential errors. Using Pylint in the development processes allows developers to obtain

fast feedback on the quality of their code and make changes early in the development

cycle. Pylint's insights and recommendations promote continuous improvement by

encouraging the team to write cleaner, more maintainable code. Moreover, Pylint can also

integrate with CI/CD pipelines, enabling automated code analysis throughout the

development lifecycle. This integration ensures that code quality is continuously

monitored, reducing the risk of introducing new issues into the codebase.

18

2.4.6 Automating Quality Analysis

Automating Quality Analysis has become a vital part of modern software

development practices, influencing quality assurance and the adherence to consistent

standards, both of which are essential for a software project's success. Automation speeds

up the development process, increases team productivity, and reduces the possibility of

human error. In this context, Continuous Integration (CI) and Quality Gates stand out as

two valuable parts of this approach that work together to simplify code analysis and enable

early fault discovery. All things considered, the combination of Quality Gates, Continuous

Integration (CI), and automation not only speeds up the development process but also

establishes a culture of strict quality control from the very beginning of the project. Thus

guaranteeing that the final product is software that is reliable, safe, and compliant with the

highest quality standards.

2.4.6.1 Continuous Integration (CI)

Continuous Integration is a software development practice where members of a

team integrate their work frequently, usually at least daily, resulting in numerous

integrations per day[29]. The primary objective of CI is to enable developers to detect and

address integration issues as early as possible. Every integration initiates a set of automated

builds tests, ensuring the codebase's continuous functionality and reliability. With

automation being the driving force, this approach not only promotes cooperation but also

creates a strict schedule for quality evaluation.

When a code change is submitted to the repository, automated build and testing

procedures are triggered as part of the CI process. These automated methods build the

code, test it, and analyze it to find any problems. CI ensures that the main codebase

remains stable at all times by validating each code change in an isolated environment.

19

Figure 7 - Continuous Integration Workflow5

2.4.6.2 Quality Gates

Quality Gates[30] are a set of predefined criteria that must be met by code changes

before they can be merged into the main codebase or sent to production. These criteria

include a wide range of attributes in terms of the software quality of the product, including

readability, maintainability, security, and performance.

An essential component in ensuring that these standards are met is the Continuous

Integration (CI) system. When a developer submits a code change or a pull request the CI

system initiates a sequence of automated tests and evaluations of the code. These tests

investigate many aspects of quality to make sure the code update satisfies the established

standards. If the code change satisfies all of the Quality Gate requirements it is seamlessly

integrated into the main codebase. However, if any of the Quality Gate criteria are not met

by the change, the CI system rejects it and prevents it from being incorporated into the

main codebase.

As an illustration of Quality Gates in action, let's look at SonarQube. SonarQube

has the feature to establish and enforce Quality Gates and will stop the merge or

deployment process if a code change breaches any of the established quality criteria, thus

preserving the integrity of the codebase. This contributes to the delivery of more

5 Source: https://semaphoreci.com/continuous-integration
20

https://semaphoreci.com/continuous-integration

maintainable software by guaranteeing that only code that satisfies the predetermined

quality requirements is permitted into the main codebase or production environment.

Figure 8 - SonarQube Quality Gates Workflow6

6 Source: https://www.sonarsource.com/blog/clean_coding-quality_profile_quality_gate_guidance/
21

https://www.sonarsource.com/blog/clean_coding-quality_profile_quality_gate_guidance/

2.5 The Delta Maintainability Model (DMM)

The Delta Maintainability Model (DMM)[31] is a software metric that assesses the

maintainability of code changes in a software system. The model was published by M. di

Biase et al. in the 2019 IEEE/ACM International Conference on Technical Debt.

2.5.1 Conceptual Framework

The model is based on determining the impact of an individual code change on

maintainability. It views changes as the addition or removal of lines of code (LOCs) to

units and modules implicated in the change (similar to a diff). A high DMM score indicates

a large number of complex alterations, which may have an negative effect on the system's

overall maintainability[31]. The DMM utilizes the SIG-MM [32] system properties as its

foundation. These properties encompass duplication, unit size, unit complexity, unit

interfacing, module coupling, and file coupling[32] and each property is defined with a

specific description and criteria for qualifying code as low risk.

Figure 9 - SIG-MM Properties and Thresholds for qualifying code as Low

Risk7

7 Source: https://ieeexplore.ieee.org/document/4335232
22

https://ieeexplore.ieee.org/document/4335232

2.5.2 Model Calculation

The calculation of the DMM consists of two levels:

1. Risk Profile Mapping: This level describes how a code change translates

into a Risk Profile - a concept originally derived from SIG-MM but adapted

for DMM [31].

2. DMM Score Generation: This level combines all Risk Profiles for a code

change to generate a DMM score[31].

The model assesses and categorizes the five code properties (Figure 2) into a Risk

Profile (low, medium, high, very-high) for each file changed within a commit and the

original files before the modification. Following that, the model computes various Deltas,

which are the differences in lines of code measured before and after a file update.

To aggregate Deltas at commit level:

● The model sums all the Delta values for each Code Property, resulting in every

commit having two values per Risk Profile (one for Increases, one for Decreases).

● Increases in LOC in low risk profiles are considered good and highly-maintainable

changes, along with decreases in LOC in medium, high and very-high categories.

● On the other hand, decreases in LOC in the low risk category as well as increases in

LOC in medium, high and very-high categories are considered harmful to

maintainability.

Finally, the Delta Score for each Code Property is determined as a fraction of the

total highly maintainable Low Risk Profile Delta. When the five Code Properties are added

together, the result is known as the Delta Maintainability Score (DMM Score). Both Delta

Score and DMM Score have a value between 0.0 and 1.0, with 0.0 representing the lowest

maintainability and 1.0 being the highest[31].

23

Figure 10 - Overview of the DMM8

2.5.3 DMM in PyDriller

In the proposed tool, PyDriller is a key component to extract information from

GitHub repositories, such as complexity and churn and DMM metrics. PyDriller provides

an implementation of the Open Source Delta Maintainability Model (OS-DMM) to assess

the maintainability implications of commits. This implementation provides a solution

suited for research experiments and measurements for systems developed in common

programming languages. While PyDriller's git functionality is language-independent, the

metrics it generates (such as method size and cyclomatic complexity) require

language-specific implementations, on which PyDriller relies on Lizard.[33]

The OS-DMM implementation of PyDriller supports three commit-level metrics

related to risk in size, complexity, and interfacing[33]. In essence, “the

delta-maintainability metric is the proportion of low-risk change in a commit. The

resulting value ranges from 0.0 (all changes are risky) to 1.0 (all changes are low risk). It

rewards making methods better, and penalizes making things worse”[33]. As mentioned in

the previous section the starting point for the DMM is a risk profile. Usually, risk profiles

divide units into four categories: low, medium, high, and very high risk methods. A

class's risk profile is then a quadruple representing the amount of code in each of these four

areas.

8 Source: https://ieeexplore.ieee.org/document/8785997
24

https://ieeexplore.ieee.org/document/8785997

To make things simpler, PyDriller uses only two categories: low risk, and non-low

risk code changes (medium, high, or very high changes). The library uses Delta risk

Profiles to shift risk profiles from the system level to the commit level. This is a pair (dl,

dh), with dl representing an increase/decrease in low risk code and dh representing an

increase/decrease in high risk code[33].

This Delta Risk Profile can be used to identify positive and negative change:

● Increases in low risk code are considered beneficial, whereas increases in high risk

code are considered harmful[33].

● Decreases in high risk code are considered positive, but decreases in low risk code

are negative unless no high risk code is introduced to the codebase[33].

The final DMM values are then calculated using the following formula[33]:

𝑔𝑜𝑜𝑑 𝑐ℎ𝑎𝑛𝑔𝑒
𝑔𝑜𝑜𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑏𝑎𝑑 𝑐ℎ𝑎𝑛𝑔𝑒

Figure 11 - PyDriller DMM value calculation

2.6 Prioritization Techniques in Code Quality Assessment

In software quality assurance, the need for efficient prioritization of tasks and

resources is vital. Various methodologies and tools have been used to streamline the

process of prioritizing tasks, one of the most popular being “The Eisenhower Matrix”[34].

The Eisenhower Matrix, also known as the “Urgent-Important Matrix”, is a time

management model that categorizes tasks into four quadrants based on how urgent and

important they are. This matrix serves as a practical tool for individuals to prioritize their

tasks and make more informed decisions about where to allocate their time and effort. The

essence of the Eisenhower Matrix is to classify tasks in four quadrants:

● Urgent and Important (Quadrant I - DO)

Tasks that demand immediate attention due to their high urgency and

importance.

25

● Important but Not Urgent (Quadrant II - DECIDE)

Tasks that are important for long-term goals and success but may not require

immediate action.

● Urgent but Not Important (Quadrant III - DELEGATE)

Tasks that are pressing but may not contribute significantly to one's overall

goals so they can be delgated.

● Not Urgent and Not Important (Quadrant IV - DELETE)

Tasks that are neither urgent nor important and can often be eliminated.

Figure 12 - The Eisenhower Matrix9

By applying a similar approach for our Hotspot Analysis, we can easily prioritize

"hotspot" files within a codebase using code complexity (cc) and churn (number of

changes) as the dimensions for categorizing the files in a repository. Our proposed code

quality matrix operates as follows:

● High Cyclomatic Complexity and High Churn (High Priority)

Files with both high code complexity and high number of changes are

considered “High Priority” due to their complexity and frequent modifications.

9 Source: https://www.spica.com/blog/the-eisenhower-matrix
26

https://www.spica.com/blog/the-eisenhower-matrix

● Low Cyclomatic Complexity and Low Churn (Low Priority)

Files with low code complexity and few changes are categorized as “Low

Priority”. These files are not pressing issues and probably will not significantly

impact the codebase's quality.

● Low Cyclomatic Complexity and High Churn (Normal Priority)

Files with low code complexity but a high number of changes fall into the

“Normal Priority” category. These files are not inherently complex, but their

frequent modifications suggest that they need regular attention.

● High Cyclomatic Complexity and Low Churn (Medium Priority)

Files with high code complexity but low churn are deemed as medium priority

since, although these files are complex, they are not modified that often.

Figure 13 - Our Quality Matrix

27

3 Evaluation Tool - “CodeInspector”

The proposed tool, named CodeInspector is a full-stack web application that aims

to analyze code written in multiple programming languages. It extracts information from

GitHub repositories, performs hotspot identification based on complexity and churn

metrics, and uses the Delta Maintainability Model (DMM) to assess the maintainability

impact of individual code changes (commits).

3.1 Tech Stack

3.1.1 Python (Programming Language)

Figure 14 - Python Logo

Python, a high-level, versatile programming language, forms the core of

CodeInspector's backend infrastructure. The language was developed by Guido van

Rossum and first released in 1991[35]. It prioritizes code readability through the use of

indentation[36] and the syntax is quite similar to the English language, thus making it easy

to learn and offering clean, human-readable code. Python's popularity extends beyond its

use as a computer language. According to the 2023 Stack Overflow Developer Survey[9],

Python ranks as the third most popular programming language across all surveyed

developers. Its applications include data analytics, DevOps, web crawling, web server

development, and other areas. Python's ease of use and simple syntax also make it

especially popular among beginning programmers.

28

Figure 15 - Stack Overflow Developer Survey 2023

Python's active community provides a steady supply of updates and improvements.

Python 3.12[37] is the most recent version as of October 2023. The language is a fantastic

choice for a wide range of disciplines, notably data science and machine learning, thanks to

its lively development environment and active community and its vast ecosystem

significantly improves our evaluation tool by providing a diverse set of libraries and tools

for data manipulation and statistical analysis. NumPy[38], VisPy[39] and Pandas[40] are

some examples of popular data analysis libraries. These libraries include comprehensive

data structures and embedded mathematical operations, allowing for fast computations

while accommodating multidimensional data and large matrices.

In conclusion, Python's simplicity, versatility and active community make it a

perfect choice not only for CodeInspector but also for a wide range of applications in data

science and beyond.

3.1.2 FastAPI

29

Figure 16 - FastAPI Logo

FastAPI is a “modern, fast (high-performance), web framework for building APIs

with Python 3.8+ based on standard Python type hints”[41]. The framework brings a

plethora of capabilities to the table such as automatic data validation, serialization, and the

development of API documentation. This combination ensures that incoming requests are

not only appropriately formed but also contain all of the necessary data, considerably

lowering the possibility of data-related errors and increasing the overall durability of our

tool. The asynchronous capabilities of FastAPI make it a good choice for handling

concurrent API requests, which is important when dealing with large data volumes, such as

analyzing GitHub repositories. This capability optimizes response times and guarantees the

tool's responsiveness even when dealing with resource-intensive tasks while the

simultaneous management of multiple requests makes sure that the tool remains efficient,

even under heavy workloads.

Another benefit of FastAPI is its interactive API documentation[42], which is

enabled by Swagger UI[43]. This user-friendly interface allows developers to easily

explore the numerous API endpoints and comprehend their functions. Documentation for

APIs is a useful resource for understanding the system’s capabilities and efficiently

interacting with it, hence speeding the development process. In summary, FastAPI provides

us with the tools and features we need to build a strong, high-performance REST API with

asynchronous capabilities and user-friendly documentation, making it an excellent solution

for our project's requirements.

3.1.3 React JS

30

Figure 17 - React.js Logo

React JS[44], a popular JavaScript library, is responsible for shaping the front-end

user interface of the tool. Through its component-based architecture, the library enables

developers to create a variety of reusable and modular UI components, providing a

streamlined and scalable development process that not only speeds up the creation of

aesthetically pleasing interfaces but also simplifies maintenance and updates.

The library’s versatility extends to its ability to present analytical results for users

with efficiency. React JS ensures that data is delivered to consumers with speed and

fluidity thanks to its powerful rendering engine and state management. Furthermore, its

ability to fluidly manage user interactions raises user experience, making it intuitive and

interactive. React JS enables users to interact with the evaluation tool easily by offering

real-time feedback and dynamic updates, resulting in a more engaging and fulfilling

experience. The tool’s interface is powerful and user-friendly, simplifying complex

processes and promoting rapid decision-making.

3.1.4 Docker

Figure 18 - Docker Logo

Docker[45] plays a big role in the evaluation tool's deployment and portability. It

enables the encapsulation of the application and its dependencies into lightweight, isolated

containers. This approach ensures consistent environments across various systems,

streamlining the deployment process and minimizing compatibility issues. The platform

provides consistency across a wide range of systems. This consistency simplifies and

speeds up the deployment process by ensuring that the application runs consistently across

31

platforms. Docker eliminates the need to deal with compatibility issues by encouraging a

fluid and harmonious experience across multiple environments. Moreover, it allows us to

package our evaluation tool as a standalone container, immune to the complexities of the

host system. When dockerized, our tool becomes a dependable and predictable entity,

ready to perform consistently regardless of the surrounding technical details.

3.1.5 MySQL

Figure 19 - MySQL Logo

To efficiently preserve and manage data within our tool, we have incorporated a

MySQL database, which provides a solid and structured foundation for both the storage

and retrieval of crucial data. MySQL[46] is a popular open-source relational database

management system renowned for its speed, and scalability. Its incorporation into our

system improves data management and maintains data consistency. MySQL allows the

enforcement of restrictions such as primary and foreign keys to preserve data integrity.

With MySQL we can ensure the precision and coherence of stored data while lowering the

chance of mistakes and data corruption.

As our tool grows and handles larger datasets, the scalability characteristics of

MySQL enable us to easily change the database to meet new demands, ensuring that our

tool remains efficient as requirements advance. MySQL is built for speed and efficiency,

using techniques like indexing and caching to deliver fast data retrieval and processing,

resulting in faster response times and better user experiences. It also has strong security

measures, such as user authentication, access control, and encryption choices, to protect

sensitive data and prevent unauthorized access and data breaches.

Furthermore, MySQL is well-known for its fault tolerance and dependability,

including mechanisms for data backup and replication, that ensures data availability even

in the face of hardware failures or other challenges. MySQL supports a variety of data
32

formats, making it interoperable with a large range of applications and tools, allowing for

simple data exchange and interaction with other systems. On top of that, MySQL has a big

and active user community, and provides access to a variety of documentation, tutorials,

and third-party tools, as well as professional support services for enterprise-level

applications. Using MySQL within our evaluation tool not only improves data

management and storage capabilities, but it also establishes a solid foundation for

scalability, performance, security, and data integrity, eventually contributing to a better user

experience and a more secure environment.

3.1.6 PyDriller

PyDriller[47] is a Python framework that simplifies mining software repositories. It

enables easy extraction of various code-related data from Git repositories, including

commits, developers, modifications, diffs, and source codes. PyDriller's capabilities

facilitate the gathering of essential metrics required for evaluating code quality, such as

code churn, complexity, and maintainability. With PyDriller, the evaluation tool can access

the entire history of a software project stored in a Git repository. This allows developers to

analyze the evolution of code quality and hotspots over time, identifying patterns and

trends that can inform decision-making. As of August 21, 2023, the latest version of

PyDriller is 2.5.11, and it can be conveniently installed using the 'pip' package

manager[47], ensuring that users have access to the most up-to-date features and

enhancements offered by this framework. PyDriller's capabilities make it a valuable

resource for those seeking to unlock insights hidden within software repositories and drive

data-informed decision-making processes.

3.2 Tool Functionality

Before we dive into the technical implementation of the tool, it is crucial to

understand its functionalities, which form the backbone of the user experience. The

primary functionality of the tool centers around code analysis and visualization.

Leveraging various metrics, the app examines the repository's codebase, identifying

potential hotspots and assessing the impact of individual commits. In addition to its

functionalities, "Code Inspector" is structured as a well-orchestrated system, divided into

front-end and backend components. These components work together to ensure a smooth

33

user experience. The frontend is responsible for presenting the user interface, allowing

developers to interact with the tool easily while the backend handles the heavy lifting of

data processing and code analysis.

As we get into the technical aspects of its implementation, the following chapters

will shed light on the underlying architecture and techniques, all of which contribute to

delivering a seamless and empowering user experience.

3.2.1 Home Page (Front End)

The home page serves as the gateway to the "CodeInspector" application. It

presents users with a friendly interface and essential sections to introduce and navigate the

tool. At the top of the Home Page (as with all other pages) there is a navigation bar that

allows users to access different pages of the tool with ease. The user is welcomed with the

Tool Presentation section, where the tool is introduced, showcasing its capabilities and

benefits to users. An inviting “Try the Tool” button encourages users to access the Tool

Page. Following the Tool Presentation section we have the Features Section highlighting

the core functionalities that make the Code Inspector stand out.

Figure 20 - CodeInspector Homepage (Tool Presentation)

34

3.2.2 Tool Page

The Tool Page serves as the heart of the Code Inspector, offering a user-friendly

interface for developers to perform analyses. At the core of the page is the Analysis Form

allowing users to input essential data and configure the analysis process.

To initiate the analysis, users must provide a valid, public GitHub repository URL.

For a more targeted analysis, users can optionally set the From Date and To Date fields to

define a custom time range. In case these fields are left blank, the default date range is

automatically set to cover the past year. In order to determine the type of analysis to

perform, users must select between Hotspot Prioritization and Commit Analysis using the

radio buttons. Once the desired options are chosen, users can initiate the analysis process

by clicking the "Inspect" button.

Upon clicking the "Inspect" button, the page initiates the analysis, sending a request

to the back-end and redirecting the user to the Results Page. While the analysis is

underway, a loading bar and the elapsed time are displayed and when the process is

completed the final outcomes will be displayed.

Figure 21 - CodeInspector Tool Page (Analysis Input Form)

In addition to the Analysis Form, the Tool Page provides convenient predefined

analyses buttons for certain repositories. These buttons allow users to perform analysis

tasks for repositories and date ranges without manually inputting data.

35

3.2.3 Results Page (Commit Analysis)

The Commit Analysis Page provides an overview of the repository's commit

history, offering insights into the evolution of code changes over time. The Analysis Info

section [Figure 16] displays essential project details, including the project's name, date

range covered by the analysis, and a link to the corresponding GitHub repository for quick

reference. The page serves as an essential tool for developers and other project

stakeholders who wish to monitor a project's history.

Within the Commit Analysis Page, one of the components that enhance the

understanding of the project's development lifecycle is the “Analysis Info Section”. This

section (Figure 16), contains vital information about the analysis such as the repository url,

the analysis date range and the analyzed project’s name. Understanding the analysis' time

frame is critical for contextualizing code changes. For example, it enables users to spot

activity spikes, periods of intense development, or periods of “quietness”. This data can

help us understand a project's history, development speed, and the context in which

specific code changes were performed.

Figure 22 - Commit Analysis (Analysis Info)

The practice of evaluating the quality of code changes in a repository is critical for

the ongoing maintenance and improvement of software development projects. To aid in

this quest, the tool features a Bar Chart (Figure 17). This chart visually represents the

distribution of “change ratings” for the repository's commits. By using this chart users can

quickly understand the overall quality of code changes in the repository. The visual nature

of the Bar Chart also makes it easier to spot outliers or anomalies. Users can quickly

identify projects with exceptionally high or low commit ratings, which may need closer

inspection. This feature is particularly useful for code review and quality assurance, as it

36

allows for the prioritization of efforts to address code changes that may have a significant

impact on the project's quality.

Figure 23 - Commits Bar Chart (Commits Analysis)

The Commits Table (Figure 18) is at the core of the page, with a dropdown menu

for selecting columns to sort in ascending order and a search box for searching by author.

Each row represents a distinct commit and includes relevant details such as the commit

hash, author, date and more. The table is paginated for simple browsing, and a dropdown

menu lets users choose how many entries are displayed on each page. To help users in

further analysis, the page includes a "Export to CSV" button, allowing users to save the

table into a file for additional analysis. Additionally users can click on the commit hash to

view the individual commit on GitHub.

37

Figure 24 - Commit Analysis (Commits Table)

The Table provides an in-depth look at the repository's individual commits. It

provides features that let users comprehend the evolution of the codebase and the

contributions of specific authors. The table has a dropdown menu that allows users to

select and sort columns in ascending order, making it easy to organize and study commit

data based on specific constraints. This dynamic sorting capability is very useful when

looking for patterns or tracking the progress of code changes in a repository. Furthermore,

the Commits Table has a search field that allows users to easily filter contributions by

author simplifying the process of isolating and analyzing specific team members'

contributions. In addition to its sorting and searching capabilities, the table is created with

user ease in mind including pagination, and allowing users to navigate through long

commit histories by breaking them up into manageable chunks. Users can also modify their

browsing experience by using a dropdown menu to change the number of entries displayed

on each page.

The page's commitment to user-friendly navigation is reinforced by the ability to

click on the commit hash within the table and seamlessly navigate to the individual

commit's GitHub page. All these small features ensure that users can efficiently study and

analyze the commit history at their own pace. The table's versatility and accessibility make

it a vital tool for developers, project managers, and anybody else involved in the software

development process.

38

3.2.4 Results Page (Hotspot Analysis)

As with the Commit Analysis Page, the Hotspot Prioritization Analysis Page

includes the Analysis Info section. The General Metrics section presents metrics that

provide a comprehensive view of the repository's overall health and complexity. These

metrics include Average Cyclomatic Complexity, Average Churn, Average NLOC per file,

Total NLOC, Total Files, and Total Hotspots. Highlighting areas that require immediate

attention, the Max Complexity and Max Churn Files sections showcase the files with the

highest Cyclomatic Complexity (CC) and Churn metrics, along with their respective details

such as Name, CC, Churn, and NLOC. Developers can use these info to identify files that

might pose challenges in terms of maintainability and complexity.

Figure 25 - Hotspot Analysis (General Info)

A visual representation of hotspots, the Hotspot Prioritization Matrix provides a

scatter plot based on churn and CC metrics. Each point on the plot represents a file, and its

color indicates the file's priority. Hovering over a point reveals additional details, including

File Name, Cyclomatic Complexity, Churn, and NLOC. This matrix enables developers to

pinpoint critical areas and gain a deeper understanding of the repository's overall quality.

39

Figure 26 - Hotspot Analysis (Prioritization Matrix)

The Modified Files Table lists the repository's modified files, providing essential

details such as Filename, Cyclomatic Complexity (CC), Number of Lines of Code

(NLOC), Churn, and Priority. Like the Commits Table the Hotspots Table is paginated,

searchable, and a dropdown menu lets users choose how many entries are displayed on

each page. An "Export to CSV" button enables users to export the table data for further

analysis.

Figure 27 - Hotspot Analysis (Modified Files)

40

4 Tool Architecture

CodeInspector follows a client-server architecture, where the Frontend acts as the

client, and the Backend acts as the server. The Front End of the tool provides a

user-friendly interface that directly interacts with the Backend through a RESTful API,

enabling efficient communication and data exchange between the user interface and the

core processing engine. This client-server model enhances CodeInspector's usability and

ensures that users can effortlessly access and leverage its analytical capabilities.

Figure 28 - CodeInspector Overall Architecture

41

4.1 Source Code Structure

The project's source code is divided into two main folders: “frontend” and

“backend”, which are both hosted in the same GitHub repository (CodeInspector

Repository). This structure promotes a unified approach to the project’s codebase

management. The rationale behind this is to maintain a clear separation of concerns,

making it more manageable and comprehensible for contributors, users, and developers.

Figure 29 - CodeInspector Repository Structure

The backend folder is home to all the server-side logic and functionality as well as

the Dockerfile (Code Block 1) that specifies how the backend component should be

encapsulated in a container. The frontend folder contains the client-side code and assets

responsible for the user interface and experience. Just like the backend, this folder also

includes a Dockerfile (Code Block 2) that dictates how the component is

containerized.

42

https://github.com/ArchontisKostis/CodeInspector
https://github.com/ArchontisKostis/CodeInspector

Code Block 1 - Back End Dockerfile

Code Block 2 - Front End Dockerfile

43

To bring these components together and facilitate the deployment of the full-stack

application, the project includes a docker-compose.yml file. This file defines the

services required for the application and configures how they should interact, orchestrating

the deployment and management of both frontend, backend and database containers.

Code Block 3 - docker-compose.yml

44

4.2 Backend Structure

The tool’s backend is organized into different directories, each serving a specific

purpose. This structure helps to ensure a clean and maintainable codebase.

Figure 30 - CodeInspector Backend Structure

On the above figure, we can see the representation of the file structure for the

backend. Let's explore each directory and its role:

1. app

This is the top-level directory. It acts as the root of the backend containing all the

core functionalities. It serves as a container for all other modules and packages,

providing a central location to manage the application.

2. analyzers

This directory hosts modules responsible for analyzing code and calculating various

metrics. These modules collaborate to analyze projects.

3. exceptions

This directory contains custom exception classes. It includes

InvalidDateException and NoCommitsException, which are raised when

encountering invalid dates or no commits during analysis.

45

4. models

This directory defines data the models used throughout the analysis processes.

Classes such as Analysis, CommitAnalysis, PriorityAnalysis,

ProjectCommit, and ProjectCommitBuilder are present here.

5. routers

This directory contains modules defining the API routes and endpoints. It includes

the analysis_router.py module, which defines routes for hotspot prioritization

and commit analysis. These routes serve as endpoints that trigger the respective

analysis tasks when accessed by users through the frontend.

6. services

The services directory contains the core service module AnalysisService. The

module coordinates the entire analysis process, including both hotspot prioritization

and commit analysis.

7. db

This directory contains the database schemas and configuration modules. The

directory is responsible for the database configuration and holds the models related

to the database tables.

46

4.3 Hotspot Prioritization Analysis Implementation

The hotspot prioritization analysis in Code Inspector is responsible for identifying

and prioritizing hotspot files in the codebase based on their Cyclomatic Complexity (CC)

and Churn metrics. We consider a file as a Hotspot if it has higher CC or Churn compared

to the average values of the project. The workflow of the analysis is shown on the

following diagram:

Figure 31 - Hotspot Analysis Workflow

4.3.1 API Endpoint (Hotspot Prioritization)

The hotspot prioritization analysis is triggered by an API endpoint. When a user

initiates this process by making a request to the

/api/analysis/prioritize_hotspots endpoint, it sets in motion a series of

operations within the backend of our system, driven by the AnalysisService class.

When a request is made to this endpoint, the provided repository URL is subjected to a

validation process to ensure it is a valid github url and once the validation is successfully

completed, the system logs a message, indicating that the analysis process is initiated.

47

Code Block 4 - Prioritize Hotspots Endpoint (analysis_routers.py)

The center of the analysis process lies within the analyze_hotspots method of

the AnalysisService Class. The result of this analysis is encapsulated within the

'analysis' variable. The system records the starting time using the start_timer()

function at the beginning of the analysis and ends it with the end_timer() function once

the analysis is complete. This allows for precise measurement and monitoring of the

analysis duration. Upon successful analysis, the results are returned to the user as a JSON

response, with the analysis data encapsulated in the 'analysis' field. This data can be

conveniently converted to a dictionary, making it accessible and consumable for further

processing or presentation.

In the event of an error during any part of this process, the system is equipped to

handle and manage it using the handle_exception_on_endpoint() function. This

ensures that the application remains robust and resilient, even in the face of unexpected

issues.

48

Code Block 5 - Exception Handling Method (__init__.py | ‘routers’ module)

4.3.2 The AnalysisService Class (Hotspot Prioritization)

The AnalysisService class has an “analyze_hotspots'' method that is

responsible for coordinating the hotspot prioritization analysis. It initializes the analysis

with the necessary parameters, such as the repository URL and date range. It uses the

PyDriller library classes to mine essential data from the specified repository and the

Analyzer class to analyze the received data.

Code Block 6 - Analyze Hotspots Method (AnalyzerService.py)

The method begins by validating the provided date range using the validate_date

method of the current class. Then initializes a PyDriller Repository object with the

specified url and date range. Next, it creates a Project object and sets up a
49

CommitProcessor to process each commit. Then an Analyzer object is created to

analyze the project's data and prioritize hotspots. When the analysis is completed, the

method returns the results.

4.3.3 The CommitProcessor Class (Hotspot Prioritization)

This class analyzes and processes commits from a GitHub repository. It takes a

project object as input, which holds information about the project being analyzed. It

contains one method responsible for processing each commit in the repository.

Code Block 7 - Process Commit Method (CommitProcessor.py)

The method takes a commit object from the PyDriller library. The Commit class

represents a single commit in the repository and contains various data, such as modified

files, commit message, committer, and more. Upon processing a commit, the class checks

if the project's name is set. If it is not, the method sets the project name based on the

commit project name. Next, the method iterates through the modified files in the commit

and for each file, a new RepoFile object is created. RepoFile is a model class that

represents a file in the repository. Before adding the file to the project, the method checks

if the file's language is supported. If the language is supported, the method sets the file's

metrics. After this, the language_supported attribute of the RepoFile is set to True,

indicating that the file's language is supported and the metrics are available. Finally, the

processed RepoFile object is added to the project.

50

4.3.4 The Analyzer Class (Hotspot Prioritization)

This class is a central part of the hotspot prioritization analysis. It receives the

Project object, which contains information about the modified files in the repository. The

class performs several essential tasks, including finding the files with the highest CC and

Churn metrics and prioritizing hotspots based on these metrics. Let's examine each method

in detail:

Code Block 8 - Find Max Metric File Method (Analyzer.py)

The find_max_metric_file method is responsible for finding the file with the

highest value for a specified metric (CC or Churn) in the project. The method iterates

through all the files in the project, compares their metric values with the current maximum

value, and updates the max_metric_file variable accordingly. At the end of the iteration,

the method returns the file with the highest metric value.

Code Block 9 - Find Max Metric File Method (Analyzer.py)

These two methods are responsible for identifying the files with the highest

Cyclomatic Complexity (CC) and Churn metrics in the project, respectively. The methods

set the max_complexity_file or max_churn_file attribute of the project_analysis object by

calling the find_max_metric_file method.

51

Code Block 10 - Calculate Average Metrics Method (Analyzer.py)

This method is used to calculate the average values of CC, NLOC, and Churn for

the project. The method creates an AverageMetricFinder object that performs the

calculation process.

Code Block 11 - Calculate Total LOC (Analyzer.py)

This method calculates the total number of lines of code (NLOC) in the project. It

iterates through all the files and sums up their NLOC metric values, storing the result in the

total_nloc attribute of the project_analysis object.

Code Block 12 - Prioritize Hotspots Method (Analyzer.py)

This method initiates the hotspot prioritization calculation. The method creates an

instance of the HotspotPriorityCalculator class, passing the required objects as

parameters. Then it calls the calculate_hotspot_priority method of

HotspotPriorityCalculator to perform the actual prioritization.

52

4.3.5 The AverageMetricFinder Class (Hotspot Prioritization)

The class is responsible for analyzing and calculating average metrics (Cyclomatic

Complexity - CC, Number of Lines of Code - NLOC, and Code Churn - CHURN) for a

given project. The class has four methods:

Code Block 13 - Calculate Average Metric (AverageMetricFinder.py)

This method contains the core functionality of the class. The method takes the

name of the metric to be calculated as an argument and calculates the average value (CC,

NLOC, or CHURN) across all the modified files in the project.

The calculation is quite straightforward. The method initializes the total_metric

and count variables to zero (0). Then the method iterates through the files in the project.

For each file, it calls the get_metric method of the ProjectFile to retrieve the

corresponding metric value. After verifying the metric value, it adds the value to the

total_metric variable, and count is incremented by 1. The process continues until all

the files have been processed.

After iterating through all files, the method calculates the average metric value by

dividing total_metric by count. If there are no valid metric values (count is 0), the average

is set to 0.0 to avoid division by zero errors. The method then returns the calculated value.

The other three methods in the class are convenience methods that call the

calculate_average_metric method with a specific metric name.

53

Code Block 14 - Convenience Methods (AverageMetricFinder.py)

4.3.6 The HotspotPriorityCalculator Class (Hotspot Prioritization)

The HotspotPriorityCalculator class is responsible for calculating the

priority of hotspot files based on their Cyclomatic Complexity and Churn metrics. The

class collaborates with the HotspotFinder class, which identifies hotspots based on the

project’s average values of the metrics. Let’s dive deeper into the implementation of the

class.

Code Block 15 - Calculate Hotspot Priority (HotspotPriorityCalculator.py)

The above method is calculate_hotspot_priority, which is the main part of

the class and triggers the entire prioritization process. It first calls the find_hotspots

method to identify the hotspot files in the codebase. The identified files are then prioritized

using the calculate_priority method, and their priority levels are set accordingly.

54

Code Block 16 - Calculate Priority Method (HotspotPriorityCalculator.py)

The calculate_priority method determines the priority of each hotspot by

utilizing a technique similar to the Eisenhower Matrix based on their Cyclomatic

Complexity and Churn metrics (for more details see Chapter 2.6). It calculates the middle

points between the highest CC and Churn values and uses them to determine the priority of

each file.

● If the CC and Churn values are both higher than their middle points, the file

is assigned a high priority.

● If the CC is higher but the Churn is lower than their middle points, the file

is assigned a normal priority.

● If the CC is lower but the Churn is higher than their middle points, the file

is given a medium priority.

● If both CC and Churn are lower than their middle points, the file is assigned

a low priority.

● If the file does not fall into any of these categories, it is labeled with an

unknown (also referred as NOT SET) priority.

55

Code Block 17 - Calculate Priority Method (HotspotPriorityCalculator.py)

The find_hotspots method utilizes the HotspotFinder class to identify the

hotspots based on the average CC and Churn of the entire project. It initializes a

HotspotFinder object and passes it a of all files in the project and the average CC and

Churn values. HotspotFinder then iterates through the files and checks if their CC and

Churn values are higher than the corresponding average values. Based on this comparison,

the method categorizes each file as a hotspot or an outlier.

Code Block 18 - HotspotFinder Class

56

4.4 Commit Analysis Implementation

The commit analysis in Code Inspector is responsible for analyzing and processing

commits from a GitHub repository. The analysis is triggered by an API endpoint where a

user makes a request to the /api/analysis/commits endpoint. The backend starts the

analysis process using the AnalysisService class. The workflow of the analysis is

shown on the following diagram:

Figure 32 - Commit Analysis Workflow

57

4.4.1 API Endpoint (Hotspot Prioritization)

The API endpoint for commit analysis is also defined in analysis_router.py.

When a GET request is made to this endpoint with the repository URL and optional date

range, it validates the repository URL and initiates the commit analysis process. The result

of the analysis is returned as a dictionary containing the commit analysis data.

Code Block 19 - Commit Analysis Endpoint (analysis_routers.py)

4.4.2 The AnalysisService Class (Commit Analysis)

The AnalysisService class in AnalysisService.py has an

analyze_commits method that coordinates the commit analysis. It initializes the analysis

with necessary parameters such as the repository URL and date range. It uses the PyDriller

library to mine essential data from the specified repository.

The method begins by validating the provided date range. Then, it initializes a

PyDriller Repository object with the specified URL and date range. Next, it creates a

CommitAnalysis object and processes each commit using a ProjectCommitBuilder.

After the commit object is created, the AnalysisService class creates an instance of the

DmmAnalyzer and calls the corresponding methods of the class to calculate the DMM

Score and categorize the commit.

58

Code Block 20 - Analyze Commits Method (AnalyzerService.py)

59

4.4.3 The ProjectCommitBuilder Class

The ProjectCommitBuilder class, defined in the ProjectCommitBuilder.py file,

serves as a tool for constructing ProjectCommit instances with ease and precision. The

class is an implementation of the builder pattern, making the construction of

ProjectCommit objects straightforward and adaptable, ultimately enhancing the

development experience. The ProjectCommitBuilder class has methods to set various

attributes of a commit such as hash, author, committer, author date, committer date,

number of added lines, number of deleted lines, number of files changed, DMM unit size,

DMM unit complexity, DMM unit interfacing, author email, and committer email.

Once all attributes are set, calling the build method returns a ProjectCommit

object. This object is then categorized based on the “quality” of the included change and

added to the commit_analysis.

Code Block 21 - Project Commit Builder Class (ProjectCommitBuilder.py)

60

4.4.4 The ProjectCommit Class

The ProjectCommit class in ProjectCommit.py represents a single

commit in the repository. It contains various data such as hash, author, committer, author

date, committer date, number of added lines, number of deleted lines, number of files

changed, DMM unit size, DMM unit complexity, DMM unit interfacing, and change

category.

Code Block 22 - Project Commit Builder Class (ProjectCommitBuilder.py)

The categorize method is responsible for categorizing the commit based on its

DMM complexity. The method checks if the DMM unit complexity falls within certain

thresholds. Depending on which range the DMM unit complexity falls into, the commit is

categorized as ‘EXCELLENT’, ‘GOOD’, ‘FAIR’, ‘POOR’, or ‘UNKNOWN’.

61

The to_dict method converts the commit object to a dictionary for easier data

manipulation and processing. This implementation allows for efficient categorization of

commits based on their complexity. It provides valuable insights into the quality of

changes made in each commit. This can be particularly useful for identifying problematic

commits that may require further investigation or remediation.

5 Future Research

As the software development industry evolves, it is critical that CodeInspector stays

flexible and adaptable to new challenges. In this section, we identify significant topics for

future research and development that will expand CodeInspector's capabilities, making it

more useful to software developers, engineers and researchers.

5.1 Data Enhancement
One of the key research areas is to broaden the scope of data analysis within the

tool. This can be accomplished by adding new data sources and improving existing data

analysis tools. Some potential approaches include:

● Incorporate More Data Sources

Integrate data from various development platforms other than GitHub, such as

GitLab, Bitbucket, and more. This will give a more complete picture of the

software development process and quality.

● Leverage External Services

Use external services such as Sonar and PyAssess to improve the analysis process.

These services can offer specialized insights and analytics on code quality,

performance, and security.

5.2 Granularity of Information
Future research can also focus on enhancing the granularity of data and insights

given by CodeInspector to provide more specific and useful information to software

developers and researchers. One way would be to extend the tool to provide

comprehensive code snippets and changes for the analyzed project. This feature will allow

developers to view the nature of code and commits helping them to further track the

progress of code quality over time.

62

5.3 Improve Data Mining & Analysis
Advanced data mining and machine learning techniques can be combined to

improve the precision and efficiency of the analytical process. We can improve the

accuracy of hotspot discovery and quality assessment by implementing specific algorithms

to identify complex patterns and relations inside repositories.

5.4 Integrate UoM Quality Dashboard & Validation
The seamless integration of CodeInspector with the Quality Dashboard at the

University of Macedonia (UoM) can be a big step for future research:

● Improve CodeInspector and QualityDashboard Compatibility:

Work on enhancing the compatibility and interaction between CodeInspector and

UoM Quality Dashboard. This will streamline the workflow for software

development teams and researchers by providing a unified platform for code

quality assessment and project management.

● Validation and Benchmarking:

The rich repository base of UoM Quality Dashboard will enable us to conduct

extensive validation and benchmarking studies to evaluate the tool’s effectiveness

and impact in real-world scenarios. Case studies with software development teams

and experts, as well as benchmarking against industry standards and best practices,

can be used to examine the success of code quality assessment.

63

6 Conclusions
This thesis addresses the need for high code quality and hotspot priority in the

context of GitHub repositories. As software engineering evolves, the development of more

complex systems becomes the norm. As a result the importance of maintaining

high-quality code is increasingly important. This centers around creating a tool that

automates the process of prioritizing essential areas within codebases, hence contributing

to the overall success of software projects. The proposed tool is capable of analyzing

repositories written in various programming languages and extracts valuable information

from repositories providing insights into the evolution and health of the codebase. A

mechanism for identifying code files as "hotspots" and assigning them a priority was

implemented to help development teams focus their efforts on the most critical areas of the

codebase, where improvements are needed most urgently. The evaluation tool was created

as a full-stack application that performs comprehensive software quality analysis. It

combines hotspot prioritization, commit analysis, and data visualization to effectively

display data. CodeInspector assists project managers and developers in making informed

decisions by identifying hotspot files and distinguishing between good and bad commits.

In conclusion, this thesis not only promotes the discipline of software engineering

by increasing code quality and hotspot prioritization methodologies, but also equips

software engineers with a practical tool for assessing software quality. As the complexity

and scope of software projects increase, the demand for effective and data-driven quality

analysis tools becomes more important than ever. This study seeks to make a valuable

contribution in addressing this need by ensuring that software stays adaptive, maintainable,

and capable of efficiently serving its original function.

64

7 Bibliography
1. GitHub: Let’s build from here. (n.d.). GitHub. Retrieved 1 November 2023, from

https://github.com/
2. Git. (n.d.). Retrieved 1 November 2023, from https://git-scm.com/
3. Code search github. (2023, January 25).

https://web.archive.org/web/20230125075800/https://github.com/search
4. ishepard/pydriller: Python Framework to analyse Git repositories. Retrieved 1

November 2023, from https://github.com/ishepard/pydriller
5. di Biase, M., Rastogi, A., Bruntink, M., & van Deursen, A. (2019). The delta

maintainability model: Measuring maintainability of fine-grained code changes.
2019 IEEE/ACM International Conference on Technical Debt (TechDebt),
113–122. https://doi.org/10.1109/TechDebt.2019.0003

6. O’Regan, G. (2018). Java programming language. In G. O’Regan (Ed.), The
Innovation in Computing Companion: A Compendium of Select, Pivotal Inventions
(pp. 171–174). Springer International Publishing.
https://doi.org/10.1007/978-3-030-02619-6_35

7. Arnold, K., Gosling, J., & Holmes, D. (2006). The Java programming language
(4th ed). Addison-Wesley.

8. Gosling, J. (2000). The java language specification. Addison-Wesley Professional.
9. Stack overflow developer survey 2023. (n.d.). Stack Overflow. Retrieved 1

November 2023, from
https://survey.stackoverflow.co/2023/?utm_source=social-share&utm_medium=soc
ial&utm_campaign=dev-survey-2023

10. Most used languages among software developers globally 2023. (n.d.). Statista.
Retrieved 1 November 2023, from
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-
languages/

11. Forbes. (n.d.). Forbes. Retrieved 1 November 2023, from https://www.forbes.com/
12. Belokrylov, A. (n.d.). Council post: Why and how java continues to be one of the

most popular enterprise coding languages. Forbes. Retrieved 12 November 2023,
from
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-con
tinues-to-be-one-of-the-most-popular-enterprise-coding-languages/

13. Pypl popularity of programming language index. (n.d.). Retrieved 13 October
2023, from https://pypl.github.io/PYPL.html

14. Tiobe index. (n.d.). TIOBE. Retrieved 13 October 2023, from
https://www.tiobe.com/tiobe-index/

15. Software tech news 6:2—Lessons learned in software quality assurance. (n.d.).
Retrieved 13 October 2023, from
https://www.eng.auburn.edu/~kchang/comp6710/readings/lessons.learned.in.SQA.h
tm

16. Gillies, A. (2011). Software quality: Theory and management.
17. Gomaa, H. (Ed.). (2011). Software quality attributes. In Software Modeling and

Design: UML, Use Cases, Patterns, and Software Architectures (pp. 357–368).
Cambridge University Press. https://doi.org/10.1017/CBO9780511779183.022

18. Digkas, G., Chatzigeorgiou, A., Ampatzoglou, A., & Avgeriou, P. (2022). Can
clean new code reduce technical debt density? IEEE Transactions on Software
Engineering, 48(5), 1705–1721. https://doi.org/10.1109/TSE.2020.3032557

65

https://github.com/
https://git-scm.com/
https://web.archive.org/web/20230125075800/https://github.com/search
https://github.com/ishepard/pydriller
https://doi.org/10.1109/TechDebt.2019.00030
https://doi.org/10.1007/978-3-030-02619-6_35
https://survey.stackoverflow.co/2023/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2023
https://survey.stackoverflow.co/2023/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2023
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.forbes.com/
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages/
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages/
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://www.eng.auburn.edu/~kchang/comp6710/readings/lessons.learned.in.SQA.htm
https://www.eng.auburn.edu/~kchang/comp6710/readings/lessons.learned.in.SQA.htm
https://doi.org/10.1017/CBO9780511779183.022
https://doi.org/10.1109/TSE.2020.3032557

19. ISO 25010. (n.d.). Retrieved 12 November 2023, from
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

20. Quality attributes in software architecture | hackernoon. (n.d.). Retrieved 12
November 2023, from
https://hackernoon.com/quality-attributes-in-software-architecture-3844ea482732

21. Code quality tool & secure analysis with sonarqube. (n.d.). Retrieved 12 November
2023, from https://www.sonarsource.com/products/sonarqube/

22. s
23. Open Source UoM (n.d.). Retrieved 12 November 2023, from

https://opensource.uom.gr/
24. Software engineering group – software and data engineering lab. (n.d.). Retrieved

12 November 2023, from
https://sde.uom.gr/index.php/research-groups/software-engineering-group/

25. Apostolidis, G. D. (2023). Evaluation of Python code quality using multiple source
code analyzers. http://dspace.lib.uom.gr/handle/2159/29041

26. Linter ide tool & real-time software for code | sonar. (n.d.). Retrieved 12 November
2023, from https://www.sonarsource.com/products/sonarlint/

27. Software engineering intelligence. (n.d.). Code Climate. Retrieved 12 November
2023, from https://codeclimate.com/

28. Pylint—Code analysis for Python | www.pylint.org. (n.d.). Retrieved 12 November
2023, from https://www.pylint.org/

29. Continuous integration. (n.d.). Martinfowler.Com. Retrieved 12 November 2023,
from https://martinfowler.com/articles/continuousIntegration.html

30. The importance of pipeline quality gates and how to implement them. (n.d.). InfoQ.
Retrieved 12 November 2023, from
https://www.infoq.com/articles/pipeline-quality-gates/

31. di Biase, M., Rastogi, A., Bruntink, M., & van Deursen, A. (2019). The delta
maintainability model: Measuring maintainability of fine-grained code changes.
2019 IEEE/ACM International Conference on Technical Debt (TechDebt),
113–122. https://doi.org/10.1109/TechDebt.2019.00030

32. Heitlager, I., Kuipers, T., & Visser, J. (2007). A practical model for measuring
maintainability. 6th International Conference on the Quality of Information and
Communications Technology (QUATIC 2007), 30–39.
https://doi.org/10.1109/QUATIC.2007.8

33. PyDriller Docs, Delta Maintainability (n.d.). Retrieved 12 November 2023, from
https://pydriller.readthedocs.io/en/latest/deltamaintainability.html

34. Introducing the Eisenhower Matrix (n.d.). Retrieved 12 November 2023, from
https://www.eisenhower.me/eisenhower-matrix/

35. Rossum, G. V. (2009, January 20). The history of python: A brief timeline of
python. The History of Python.
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html

36. Beginning python, advanced python, and python exercises. (2012, June 23).
https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/py
thon_book_01.html

37. Download python. (n.d.). Python.Org. Retrieved 12 November 2023, from
https://www.python.org/downloads/

38. Numpy. (n.d.). Retrieved 12 November 2023, from https://numpy.org/
39. Home—Vispy. (n.d.). Retrieved 12 November 2023, from https://vispy.org/

66

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://hackernoon.com/quality-attributes-in-software-architecture-3844ea482732
https://www.sonarsource.com/products/sonarqube/
https://opensource.uom.gr/
https://sde.uom.gr/index.php/research-groups/software-engineering-group/
http://dspace.lib.uom.gr/handle/2159/29041
https://www.sonarsource.com/products/sonarlint/
https://codeclimate.com/
https://www.pylint.org/
https://martinfowler.com/articles/continuousIntegration.html
https://www.infoq.com/articles/pipeline-quality-gates/
https://doi.org/10.1109/TechDebt.2019.00030
https://doi.org/10.1109/QUATIC.2007.8
https://pydriller.readthedocs.io/en/latest/deltamaintainability.html
https://www.eisenhower.me/eisenhower-matrix/
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/python_book_01.html
https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/python_book_01.html
https://www.python.org/downloads/
https://numpy.org/
https://vispy.org/

40. Pandas—Python data analysis library. (n.d.). Retrieved 12 November 2023, from
https://pandas.pydata.org/

41. Fastapi. (n.d.). Retrieved 12 November 2023, from https://fastapi.tiangolo.com/
42. Features—Fastapi. (n.d.). Retrieved 12 November 2023, from

https://fastapi.tiangolo.com/features/
43. Rest api documentation tool | swagger ui. (n.d.). Retrieved 12 November 2023,

from https://swagger.io/tools/swagger-ui/
44. React. (n.d.). Retrieved 12 November 2023, from https://react.dev/
45. Docker: Accelerated container application development. (2022, May 10).

https://www.docker.com/
46. MySQL 8.0 Reference Manual. Oracle Corporation. Retrieved 12 November 2023

from https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
47. Spadini, D. (n.d.). Pydriller: Framework for Mining Software Repositories.

Retrieved 12 November 2023, from https://github.com/ishepard/pydriller

67

https://pandas.pydata.org/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/features/
https://swagger.io/tools/swagger-ui/
https://react.dev/
https://www.docker.com/
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://github.com/ishepard/pydriller

