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Abstract  
This study proposes a methodological framework for the construction of composite 

sustainability indicators. To be more specific, it suggests the application of an operations 

research technique, namely Data Envelopment Analysis (DEA), to weigh and aggregate 

economic, environmental, and social indicators into composite indices in such a way that 

diminishes the contingent bias that is linked with assigning weights. These indices are 

used to assess the intricate notion of sustainability efficiency of 20 Eurozone members 

comparatively, aiming to share valuable information for policymakers and governing 

bodies, helping them to make more informed decisions and eventually enhance the 

sustainability performance of the countries under assessment. A literature review of 25 

papers about DEA and sustainability for the years 2021 to 2023 was carried out to select 

the indicators that were used in the study. The data used were retrieved from Eurostat and 

the World Bank databases. Afterwards, the chosen indicators were implemented under 

two DEA variations (classic and SBM) and 10 different scenarios, which generated 10 

final indices. Those indices are separated into three sustainability indices, six eco-

efficiency indices, and one socio-economic index. Ireland, Luxembourg, and Malta 

attained maximum efficiency scores across all sustainability scenarios, while Ireland and 

Luxembourg were deemed efficient under all of the eco-efficiency variations. Finally, the 

results of the sustainability scenarios may indicate that most of the Eurozone members do 

not get close to their potential output levels (GDP and Overall Life Satisfaction) in terms 

of their available labor force.   
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1. Introduction 

1.1 General Background  

In the current era marked by economic transformation, there is a pressing need to 

comprehend how these changes impact the environment and society. To address this 

requirement, the European Union, via Eurostat, and researchers in the field have 

developed a multitude of indicators to gauge the sustainability efficiency of countries and 

regions. 

These indicators are critical in understanding the interplay between economic 

development, environmental preservation, and social welfare, which constitute essential 

components of sustainable development. Analyzing these indicators can provide insights 

into policy formulation and implementation and facilitate comparisons between regions 

and countries, thereby contributing to a more comprehensive understanding of sustainable 

development. 

Sustainability constitutes a big challenge in today’s era (Sachs, 2015). By aiming to obtain 

dynamic and continuous harmony among ecological subsystems (environmental 

sustainability), social subsystems (social sustainability), and economic subsystems 

(economic sustainability), sustainability is by nature complex, multi-dimensional, and 

embedded with trade-offs among multiple sustainability dimensions (Wu, 2013). 

According to Eurostat (2023), an indicator constitutes a statistical and possibly logical 

order of magnitude, which is naturally or arbitrarily connected with the measurement of 

policy activities in the broader sense of governance. The primary advantage of indicators 

is that they provide information in a summary form, are easy to communicate, and are 

subject to relative unanimity. As a rule, an indicator can be defined by its function, the 

means of obtaining it, its quality, and the limits on its use. (Eurostat, 2023) 

Governments and corporations have utilized the indicators because of their ability to 

concentrate and tabulate the enormous intricacy of the contemporary dynamic 

environment to an easy-to-handle amount of meaningful information. (Godfrey & Todd, 

2001). Indicators simplify, quantify, and share complex information by conceptualizing 

various phenomena, assessing the trends, and identifying the key spots (Warhurst, 2002). 
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According to KEI (2005, p. 1), “Indicators and composite indicators are increasingly 

recognized as a useful tool for policy making and public communication in conveying 

information on countries’ performance in fields such as environment, economy, society, 

or technological development”. 

Numerous sustainability indices are more and more employed by policymakers, aiming 

to make informed policy decisions (Oras, 2005; Hezri & Dovers, 2006), and it is crucial 

to recognize the strengths, weaknesses, biases, and scale-dependence of these indices in 

order to use them effectively. (Parris & Kates, 2003; Morse & Fraser, 2005; Ness et al., 

2007). 

Although sustainability indices possess significant merits, they do not come without their 

respective demerits and limitations. For instance, numerous methodological issues should 

be taken into consideration in order to evaluate sustainability index performance. Some 

of them are the predetermined limits of the system, the quality of the data, which are 

included in the analysis, the normalization method, the weighting method, the aggregation 

method, and the comparability of the outcomes across systems. (Mayer, 2008) 

With regard to weighting methods, the literature offers various approaches. Based mainly 

on Nardo et al. (2005), OECD (2008), Hermans et al. (2008), and Mikulić et al. (2015), 

these methods include equal weighting, which assigns equal importance to all variables; 

statistical-based methods, such as principal component analysis and regression analysis; 

and participatory-based methods, such as public opinion and budget allocation, which 

involve stakeholders in the weighting process to ensure that their perceptions are taken 

into account. 

According to Nardo et al. (2005), equal weighting can be employed when all indicators 

are considered equally important or when no statistical or empirical evidence supports a 

different plan. However, in the complex case of sustainability, the assumption that all 

factors are equally important may lead to unfavorable outcomes.  

Moreover, while statistical methods try to weigh each index's importance objectively, 

they do not come without their drawbacks. For example, according to Gan et al. (2017), 

in regression analysis, either multi-collinearity among indicators or an inappropriate 

dependent variable may lead to incorrect results. Additionally, despite the fact that they 

give weights on the index variables, participatory-based methods do so subjectively, and 
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hence, the results are directly affected by the raters' opinions (Kuosmanen & Kortelainen, 

2005).  

Furthermore, in the context of aggregation methods, common approaches, according to 

Munda and Nardo (2009), Beliakov et al. (2007), OECD (2008), and Pollesch and Dale 

(2015) are the additive aggregation, such as the weighted arithmetic mean, the geometric 

aggregation, such as the weighted geometric mean and the non-compensatory aggregation 

methods. The non-compensatory aggregation methods are based on the properties of the 

aggregation functions (Pollesch & Dale, 2015) and the perspective of multi-criteria 

decision-making (MCDM) (Guitouni & Martel, 1998; Munda, 2005). However, the first 

two methods require strict and specific conditions, such as mutually preferential 

independence (Keeney, 1973; Keeney, 1974). Finally, concerning the third method, it is 

important to note that the loss of information relevant to the intensity of sustainability 

constitutes a potential demerit (Munda & Nardo, 2009). 

Regarding the above limitations, this study aims to explore how the different 

sustainability indicators can be managed in order to construct a composite sustainability 

index that measures country sustainability in such a way that reduces the contingent bias 

that is generally associated with assigning weights. 

In an effort to address some of these problems, numerous researchers in the field have 

adopted a mathematical programming technique called Data envelopment analysis 

(DEA). DEA is a non-parametric approach for evaluating the performance of a set of peer 

entities called Decision Making Units (DMUs), which transform multiple inputs into 

multiple outputs (Cooper et al., 2010), and hence it is particularly useful in order to 

aggregate indicators and assess complex notions like sustainability. 

Furthermore, DEA is employed to measure the technical efficiency of those DMUs 

(Førsund & Sarafoglou, 2002), where technical efficiency can be seen as the capability 

of a DMU to convert its inputs into outputs and its prescribed as the ratio of the sum of 

its weighted outputs over the sum of its weighted inputs (Ishizaka & Nemery, 2013; 

Thanassoulis, 2001) as it is indicated in the following expression: 

𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = !"!"#$"#∗$
!"%&$"#∗%

 , 

where x = input level and y = output level 
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The fundamental bases of DEA originate from the papers of Debreu (1951), Farrell 

(1957), and Diewert (1973), whereas the method became well-established through the 

influential works of Charnes et al. (1978) and Banker et al. (1984). The use of DEA with 

the purpose of gauging the sustainability performance of countries or regions constitutes 

an increasing trend in the recent literature. Zhou et al. (2018) identified that trend and 

wrote a literature review about DEA and regional sustainability assessment, where they 

concluded that DEA constitutes an appropriate method for this purpose. 

DEA, through linear programming, determines the weights of the indicators used in the 

model in order to produce the final index. Hence, it can weigh the indicators in such a 

manner that decreases the bias that is commonly connected with assigning weights. 

Furthermore, DEA's ability to convert multiple inputs into multiple outputs makes it 

particularly suitable for aggregating sustainability indicators into a composite index. This 

capability allows for a more reliable and robust measure of country sustainability, as it 

considers the complex interrelationships between different dimensions of sustainability. 

Another advantage of DEA is that it does not need to identify the process of how inputs 

transform into outputs, while it only needs information about output and input quantities, 

not prices (Papathanasiou et al., 2021). It also needs less information compared to 

parametric methods. For instance, it does not require information about the statistical 

distribution of the data. (Hajiagha et al., (2016) ; He et al., (2016)). The abovementioned 

constitute significant advantages of DEA, as they enable its application in situations 

where such information is not available or where the relationships between inputs and 

outputs are complex or non-linear. 

1.2 Thesis Purpose and Objectives  

The purpose of the current thesis is to suggest a methodological framework, more 

specifically to propose the implementation of Data Envelopment Analysis in order to 

aggregate and weigh various sustainability sub-indicators that have been applied in the 

literature and eventually develop  composite sustainability indices and gain insights from 

their comparisons. More precisely, these sustainability indices will be created with the 

aim of measuring the relative sustainability efficiency of 20 countries of the Eurozone 

and simultaneously discovering and sharing valuable information for governments, 

policymakers, and other researchers. 

The objectives of this study are : 
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1. To create different sustainability indices using DEA, taking into consideration 

several economic, environmental, and social indicators, in order to measure the 

intricate and multidimensional concept of sustainability. 

2. To use these indices to assess the sustainability efficiency of 20 European 

countries that use the euro as their official currency comparatively.  

3. To utilize the results of the final indices in order to identify the countries that are 

relatively efficient, which afterwards can be used as role models for the less 

efficient countries. 

All of the above eventually aim to help governments and policymakers make more 

informed decisions, apply more successful policies, and finally enhance the sustainability 

efficiency of the Eurozone countries. 

1.3 Thesis Structure 
The rest of the thesis is structured as follows. 

Section 2 of the study is dedicated to a literature review on the use of Data Envelopment 

Analysis (DEA) for sustainability assessment. The focus is on exploring how authors 

have utilized DEA methodology for aggregating sustainability indicators into composite 

sustainability indices. 

In section 3, the methodology of Data envelopment analysis is described theoretically 

and mathematically. 

In section 4, the DEA variations that will be utilized are chosen, formulated 

mathematically, and employed with the twofold purpose of creating several composite 

sustainability indices and evaluating the relative sustainability efficiency of 20 Eurozone 

countries. 

In section 5, the findings obtained through the implementation of the proposed models 

are further analyzed and discussed. 

Finally, in section 6, conclusions, lessons learned from the research, and propositions for 

further research are presented and discussed.   
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2. Literature Review 

2.1 Sustainability, Sustainable Development and European 

Union 

The concept of sustainable development was first introduced by the United Nations 

Conference on the Human Environment in 1972 (Marta Negri et al., 2021), but it became 

well-known in 1987 in the report of the World Commission for the Environment and 

Development (WCED) also known as Brutland. This report was the turning point globally 

in an approach to issues relevant to the socio-economic and environmental dimensions of 

development processes. 

The WCED’s report (1987) became the first proposition of a complete approach to 

subjects of social and economic development from an environmental point of view. The 

term sustainable development, as prescribed in the Brutland report, is defined as meeting 

the needs of present generations without jeopardizing the ability of future generations to 

meet their own needs. 

This specific definition focuses on two fundamental principles. The first is meeting the 

basic needs of the people below the line of poverty, while the second emphasizes the need 

to maintain the ability of the environment to meet both present and future needs through 

the use of technology and social organization.(WCED, 1987) 

Wu & Wu (2012) support the fact that sustainability concerns the ability to retain a paired 

human-nature system at a covetable state for multiple generations in front of 

anthropogenetic and environmental perturbations and uncertainties. Bearing in mind the 

complexity arising from the multiplicity of components and their intricate interactions,  it 

becomes challenging to find a clear definition of sustainability in specific terms without 

controversy. (Wu & Wu, 2012, chapter 4) 

The phenomenon of sustainable development is quite complex, thus making the 

comparison and the valuation of advances of European Union member states in the 

implementation of its objectives specifically tricky. Mariola Grzebyk and Małgorzata 

Stec (2015) tried to establish a synthetic measure of the level of sustainable development, 

taking into consideration concurrently the economic, social, and environmental factors. 

There is a large number of authors in the literature who accept that these three pillars can 
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effectively describe sustainability or sustainable development, such as Elkington (1998), 

Trianni et al. (2017), and Nikolaou et al. (2021). 

Regarding economic and social development, a political scientist called Robert Gibson 

(2001) argues that it should not be measured solely by material gains since they do not 

guarantee human well-being. He also suggests that, except for the three dimensions that 

reflect the disciplines of those who study sustainability, it would have been helpful to 

include cultural and political dimensions as well. In addition to the above, the author does 

not accept the general idea of pillars; instead, he develops seven principles on which 

sustainability could be based. 

Another definition of sustainability is given by Kuhlman and Farrington (2010), who 

describe it as the ability to maintain well-being for a long or even indefinite period. This 

sentence covers mainly the environmental factor of the three-dimensional model, but 

despite that, sustainability and the environment are not synonymous. 

On the one hand, some forms of environmental degradation are relatively easily reversed 

but are highly harmful in the present, like many forms of air and water pollution, for 

example. These have a vital aspect of well-being, and, indeed, they are included under 

both social and environmental dimensions in the European Union guidelines for impact 

assessment (European Commission, 2005). On the other hand, what we bestow on future 

generations, except the aforementioned, also encompasses cultural heritage, namely, art 

and cultural landscapes, as well as technology and institutions. 

As Gieryn (1999) mentions, sustainability has become a “boundary term” where science 

meets politics and politics meets science. The boundary work relevant to the sustainability 

of building epistemic communities of shared understanding and joint commitment to 

connecting environmental and economic development subjects has become a central 

concern all over the world. 

Ecologists have been concerned for a long time about how ecosystems react to shocks 

and stresses. Mathematical ecology thrived through the 1970s and 1980s, with the vital 

work of scientists like Buzz Holling and Bob May on the stability and resilience 

properties of both models and actual biological systems (Holling 1973; May 1977). From 

this point of view, sustainability can be characterized as the ability of a system to bounce 

back from such shocks and stresses and adopt stable states. (Scoones, 2007) 
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In an era where social and economic inequalities, climate change, and environmental 

abasement have become vital challenges worldwide, the international community has 

committed itself to the 2030 agenda for sustainable development (Banerjee & Duflo, 

2011). The sustainable development goals are categorized into five groups, called the 

“five P’s”: People, Planet, Prosperity, Peace, and Partnership. Each of those goals 

constitutes a global challenge that needs a global response. (Brzyska & Szamrej-Baran, 

2023) Additionally, the SDGs are common to every UN member state, although each 

country can adjust them to its own context and specified needs. (Un Summit, 2015) 

The European Union is strongly committed to promoting sustainable development while 

adopting a comprehensive approach to integrating the SDGs into its policies. 

Furthermore, it financially supports an extensive range of projects and initiatives that 

support sustainable development goals, regularly reviews its progress on them, reports to 

its citizens, and makes a contribution to the global review process at the UN’s high-level 

political forum on sustainable development. (Brzyka & Szamrei-baran, 2023)  

Sustainability indicators constitute a beneficial tool in people’s attempts to measure 

sustainability and sustainable development. These indicators provide information about 

the state, dynamics, and underlying drivers of human-environmental systems (Wu & Wu, 

2012). Sustainable development indicators must be developed to create stable bases for 

decision-making at all levels and to contribute to the self-regulating sustainability of 

integrated environment and development systems (UN, 1992). Moreover, Meadows 

(1998) mentions that indicators become sustainable or unsustainable when time, limits, 

or targets are linked with them. 

Generally, sustainability indicators are composite indicators (CI). Namely, they are 

mathematical aggregations of a set of individual indicators that measure multidimensional 

concepts but usually have no common units of measurement (Nardo et al., 2005). 

Composite indicators have also been widely established as valuable tools for monitoring 

performance, benchmarking, policy analysis, and public communication in the field of 

sustainability. (Zhou et al., 2018)  

After analyzing this section, it becomes clear that various definitions of sustainability 

exist. Although the three-pillar approach (economic, environmental, and social) is widely 

acknowledged, the existence of diverse approaches can result in different interpretations 

of sustainability. This fact, in turn, can lead to communication problems. Consequently, 
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it is essential to set a universally accepted definition to guarantee that all parties involved 

comprehend the term in the same way. 

2.2 DEA and Sustainability  

Data envelopment analysis (DEA) is a mathematical programming technique for 

evaluating the performance of a set of peer entities called Decision Making Units 

(DMUs), which transform multiple inputs into multiple outputs (Cooper et al., 2010). In 

the original article of Charnes et al. (1978) DEA was described as a “mathematical 

programming model applied to observational data [that] provides a new way of obtaining 

empirical estimates of relations – such as the production functions and/or efficient 

production possibility surfaces – that are cornerstones of modern economics.” (Cook & 

Zhu, 2005, p. 2; Cooper et al., 2010, p. 2; Macedo et al., 2023, p. 39) 

According to Emrouznejad et al. (2023), DEA is a mathematical tool for assessing the 

relative efficiencies of decision-making units (DMUs) with multiple inputs and multiple 

outputs. Thus, it has been established as an appropriate method to measure sustainability, 

and as Karadayi and Ekinci (2018) mention, it has become the most widely employed 

model in the relevant literature. 

There are some crucial features of DEA that make it a suitable method for assessing the 

relative sustainability efficiency of different countries as well as the relative efficiency of 

different kinds of DMUs generally. Firstly, it can use the data from observed operating 

units to create other feasible, in principle, operating units even if not observed in practice, 

and secondly, it is a boundary method that, out of the units observed or created,  can 

identify the most “efficient” ones. (Georgiou et al., 2021) 

Adler (2011), as well as Førsund and Sarafoglou (2002), delineate DEA as a non-

parametric method that is used for the evaluation of the technical efficiency of Decision 

Making Units relative to one another, where technical efficiency can be defined as a 

measure of how well a DMU converts its inputs into outputs (Tsaples & Papathanasiou, 

2021). 

According to Thanassoulis (2001), technical efficiency can be viewed as the ability of a 

DMU to convert its inputs into outputs, and it is defined as the ratio of the sum of its 

weighted outputs over the sum of its weighted inputs as represented in the 

undermentioned expression: 
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𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = !"!"#$"#∗$
!"%&$"#∗%

 , 

where x = input level and y = output level 

DEA was created in the influential papers of Charnes, Cooper and Rhodes (1978) and  

Banker, Charnes and Cooper (1984), who developed the Constant Returns to Scale model 

and the Variable Returns to Scale model correspondingly. In the general-purpose linear 

programming model, it is assumed that there are N DMUs (j= 1…N) using m inputs to 

secure s outputs. It is also denoted that Xij and Yrj are the level of the ith input and rth 

output that observed at DMU j. 

Now it is possible to compute the technical efficiency 𝑘! for the input oriented model by 

solving the following linear program (LP) : 

min 𝑘! − 𝜀[(𝑆"#
$

"%&

+(𝑆'(]
)

'%&

 

Subject to constraints: 

∑ 𝜆*+
,%& 𝑥"* = 𝑘!𝑥"*! − 𝑆"

#
      i = 1 . . . m 

∑ 𝜆*+
,%& 𝑦'* = 𝑆'( + 𝑦'*!              r = 1 . . . s 

𝜆* ≥ 0, 𝑗 = 1…𝑁, 𝑆"#, 𝑆'( ≥ 0	∀ i and r, k0  free.  

ε is a non-Archimedean infinitesimal. 

The variable λj is the weight calculated from the above model for DMU j whilst the 

variables 𝑆'(, 𝑆"#are the slack variables that are used in linear programming. These slacks 

represent any further output increase or input decrease that can be achieved by the DMU. 

Once k0 has been minimized, the model tries to obtain the maximum sum of the slack 

values 𝑆'(, 𝑆"#. If at least one of those values is greater than zero at the optimal solution 

of the model, it entails that the equivalent input or output of the DMU j0 can be further 

improved after its input levels have been contracted to the proportion k0*, which is the 

technical efficiency of the model. 

If k0* = 1 and 𝑆'( = 0, r = 1…s, 𝑆"# = 0, i = 1… m then DMU is Pareto-efficient because 

the model was unable to  decrease the input level without decreasing the output level or 
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increasing the output level without correspondingly increasing the input level of the 

specific DMU. 

In summary, the technical efficiency of the above problem for DMUj0 is the variable k0 

and can take values from 0 to 1 (or from 0 to 100%). The mathematical program indicated 

by the above equations is solved individually for every DMU, and its solution leads to 

three possible cases: 

1. DMUj0 is Pareto-efficient if and only if k0* = 1 and 𝑆'( = 0, r = 1…s, 𝑆"# = 0, i = 

1… m 

2. If the value of one of the slacks 𝑆'(, 𝑆"# is greater than zero at the optimal solution, 

the related input (or output) can additionally be improved 

3. If none of the aforementioned happens, DMUj0 has technical efficiency equal to 

k0*. In this case, the technical efficiency at the optimal solution k0* < 1 reflects 

the maximum radial contraction of the input levels without deteriorating the level 

of outputs in order for the DMUj0 to be considered efficient. (Thanassoulis, 2001) 

The above program constitutes a  classical DEA model. These models have several 

advantages, so they have been utilized a lot in the recent literature. Nevertheless, classic 

DEA models do not come without their drawbacks. For instance, they treat the stage of 

converting inputs into outputs as a “black box” and, as a result, the robustness of the 

method is decreased. 

With the goal of getting over this limitation, a new area of development in the context of 

DEA has  appeared, where the authors develop DEA models with internal structures (or 

network DEA models). One subcategory of those models are the two-stage DEA models, 

whose structure is illustrated in the figure below. 
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DMUj, j = 1, 2, …, n 

 

 

 

 

xij, i = 1, 2, …, m                            zdj, d = 1, 2, …, D                           yrj, r = 1, 2, …, s 

 

Utilizing the notation of Chen and Zhou (2004), denote that every DMUj has m inputs xij, 

(i = 1, 2, …, m) and D outputs zdj, (d = 1, 2, …, D) in the first stage. Afterwards, those 

outputs D become inputs of the second stage, they will be referred to as intermediates, 

while the outputs of the same stage are yrj, (r = 1, 2, …, s). 

Denote also the efficiency of the first stage as 𝑒*& and the efficiency of the second stage 

as 𝑒*-, for every DMUj. By utilizing the constant returns to scale (CRS) DEA model of 

Charnes et al. (1978), the aforementioned efficiencies can be defined as indicated by the 

following equations: 

𝑒*& =
∑ 𝑤. ∗ 𝑧.*/
.%&

∑ 𝑣" ∗ 𝑥"*$
"%&

 

and 

𝑒*- =
∑ 𝑢' ∗ 𝑦'*/
.%&

∑ 𝑤@. ∗ 𝑧.*/
.%&

 

where 𝑣", 𝑤., 𝑤@., 𝑢' are unknown and non-negative weights. Note also that 𝑤. and 𝑤@. 

can be equal. 

Tsaples and Papathanasiou (2021) contributed to the growing body of literature on Data 

Envelopment Analysis (DEA) by conducting a comprehensive literature review for the 

years 2016-2020, with a specific focus on the use of DEA to measure sustainability and 

related notions of efficiency. Building upon the earlier review by Zhou et al. (2018), the 

Stage 1 Stage 2 

Figure 1 Standard two stage model structure 
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authors aimed to provide an up-to-date and detailed overview of the current state of 

research in this area. 

Both of the studies acknowledged that even in the context of DEA, there is no generally 

accepted definition of sustainability, while the authors, over the years, used terms like 

efficiency or eco-efficiency to describe it. They also pointed out in their efforts the lack 

of use of social indicators as inputs and outputs in the existing DEA models, resulting in 

an incomplete measure of sustainability that neglects the social dimension. 

This omission can lead to incorrect assessments of sustainability performance, as it fails 

to consider the impact of social factors on overall sustainability. Therefore, there is a need 

for further research to apply more comprehensive models that incorporate social 

indicators and provide a more holistic assessment of sustainability. 

For the current work, a search in bibliographic databases like Google Scholar was carried 

out, using key phrases such as “DEA and country/regional efficiency”, “DEA and 

efficiency indicators” and “DEA and sustainability”. This review includes papers 

published between 2021 and 2023 and intends to extend the work of the above-mentioned 

authors. 

Summarizing the findings of this section, it becomes evident that the nature of DEA, as 

well as its merits, make it a valuable method for evaluating complex notions such as 

sustainability efficiency. Nevertheless, the classic models possess their own demerits, and 

hence, researchers in the field have developed new models with internal structures 

(network models) aiming to overcome them. Finally, in the case of sustainability 

measurement using DEA, it is highlighted that there is a requirement for a widely 

accepted definition and that the social dimension is underrepresented. 

 The following tables summarize the findings from the recent literature, grouped by 

geographical region of application. 
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Table 1 Summary of the new research about DEA and sustainability – Applications in Europe 

Work Input Intermediate Output Index DEA variation Combination with 

other method 

Area of 

application 

Kiani Mavi, Kiani 

Mavi                 

(2021) 

Researchers in R&D (per 

million people),  R&D 

expenditure(% OF GDP) 

Eco patents High-technology exports, 

Energy Productivity, 

Resource productivity 

Eco-

innovation 

dynamic DEA goal programming Eu countries 

Lącka, Brzezicki    

(2022) 

Labor force, energy 

consumption 

GDP, GHG emissions Clean water and sanitation, 

affordable and clean 

energy 

Eco-

Efficiency, 

eco-

innovation, 

SDGs 

Dynamic 

network slack 

based measure 

DEA 

Malmquist index EU countries 

Lubsanova, 

Maksanova, Eremko, 

Bardakhanova, 

Mikheeva 

(2022) 

Total annual emissions of 

pollutants into the atmospheric 

air from stationary sources, 

Total annual emissions of 

pollutants into the atmospheric 

air from mobile 

sources,Volumes of non-

treated or non-sufficiently 

treated wastewaters that were 

discharged into water bodies, 

 Gross regional product in 

current prices, resident 

population 

Eco-efficiency Slack based 

measure DEA 

 Russian regions 
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amount of land field waste, 

volume of fresh water 

abstraction 

Moutinho, Madaleno 

(2021) 

 

Gross fixed capital formation 

(formerly gross domestic fixed 

investment), Labor per capita, 

Energy use/area, 

electricity/area, Deviations 

temp 

 GDP pc/(GHG/area) 

 

Eco-efficiency Classic dea FRM Eu countries 

Stanković, 

Marjanović, 

Stojković 

(2021) 

  Employment rate, Medium 

equivalized net income, 

Gdp per capita, people at 

risk of poverty or social 

exclusion 

Socio-

economic 

Efficiency 

Classic DEA  European 

countries 

Tsaples, 

Papathanasiou, 

Georgiou 

(2022) 

Gross fixed capital at current 

prices, Total Labor force, 

population, gross electricity 

production, GDP per capita in 

PPS Index 

 

 

GDP per capita in PPS 

Index, final energy 

consumption, Total 

expenditure per euro 

habitant 

 

Median equivalized net 

income, final consumption 

expenditure of households, 

Terrestrial protected area 

(km2), Share of renewable 

energy in gross final 

energy consumption (%), 

Greenhouse gas emissions 

Sustainability 

index 

Two-stage 

DEA 

Machine learning Eu countries 
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 (in CO2 equivalent), Patent 

applications to the 

European patent office 

(EPO) by priority year, 

Overall life satisfaction, 

Satisfaction with living 

environment, Percentage 

of females in total labor 

population 

 

Table 2 Summary of the new research about DEA and sustainability – Applications in Asia 

Work Input Intermediate Output Index DEA variation Combination with 

other method 

Area of 

application 

 Chen, Kourtzidis, 

Tzeremes, 

Tzeremes (2022) 

Capital, labor, energy GDP CO2; SO2 Environmental 

Sustainability 

index 

multiplicative 

relational 

network  DEA 

Window analysis, 

Wilcoxon–Mann–

Whitney rank-sum 

test  

Chinese regions 

Qu, Wang, Capital, Labor, Energy, 

environmental investment, 

health investment 

Waste water, solid waste, 

untreated waste water, 

untreated solid waste 

GDP, mortality rate, 

survival rate 

Sustainability Super 

efficiency 

network DEA 

 Chinese regions 



 17 

Liu                 

(2022) 

 Shah, Hao, Yan, 

Yasmeen, Lu 

(2022) 

Capital, labor, energy  CO2 emissions, GDP Energy 

efficiency 

Slack based 

measure 

undesirable 

output DEA 

Malmquist index, 

Mann Whitney U 

and Kruskal–Wallis 

test 

South Asian 

countries 

 Sun, Wang 

(2021) 

Labor force, capital  GDP, industrial SO2 

emissions, industrial soot 

emissions, total waste 

water volume 

Eco efficiency DEA super-

efficient slack-

based measure 

Malmquist 

productivity index, 

Tobit regression 

Chinese cities 

 Sun, Wang, Ortiz, 

Huang, Zhao, Wang 

(2022) 

Investment, population, 

electricity, land,  water  

GDP, industrial dust 

production, industrial SO2 

production 

Number of middle school 

students, Insurance 

covered, Social welfare, 

industrial dust emission, 

industrial SO2 production 

Eco-efficiency Slack based 

measure 

network DEA 

 Chinese cities 

Wang, Nguyen, 

Chang               

(2021) 

Energy consumption from 

coal, oil, gas sources Volume 

of Vehicles 

 GDP, CO2 Emissions,CH4 

Emissions 

Environmental 

Efficiency, 

eco-efficiency 

SBM bad-

output model 

 Asian countries 
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 Wang, Wang, Yao       

(2021) 

Labor, capital, energy  Real GDP, SO2, CO2 energy 

efficiency 

Super 

efficiency 

DEA 

Theil index Chinese regions 

Zhang, Zhao, Zha 

(2021) 

Labor, Investment of fixed 

assets, energy 

Volume of pollutants 

generated in industrial waste 

gas, treatment investment of 

industrial waste gas, 

capacity of industrial waste 

gas treatment(previous year) 

Industrial value added, 

capacity of industrial 

waste gas 

treatment(current year), 

volume of pollutants 

emission in industrial 

waste gas 

Efficiency Sbm Two 

stage DEA 

 Chinese regions 

Zuo, Guo, Li, 

Cheng              

(2022) 

 

Full time equivalent of r&d 

personell, R&D internal 

expenditures 

Number of patent 

application authorizations, 

number of scientific papers 

published, Labor, Fixed 

investment, energy 

Total industrial output 

value of mining industry, 

solid waste discharge, 

exhaust emissions, waste 

water discharge 

mining 

Technological 

innovation 

efficiency, 

mining eco-

efficiency, 

mining 

comprehensiv

e efficiency 

Two stage 

DEA 

 Chinese regions 
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Table 3 Summary of the new research about DEA and sustainability – Applications in various countries or regions 

Work Input Intermediate Output Index DEA variation Combination with 

other method 

Area of 

application 

Afzalinejad 

(2021) 

Capital, labor  GDP, life satisfaction, 

Greenhouse gases: Total 

emissions excluding 

LULUCF 

Efficiency modified 

Radial DEA 

 various countries 

Alidrisi  

(2021) 

 

CO2, unemployment level  Manufacturing value 

added to GDP, charges for 

the use of intellectual 

property in terms of 

payments, charges for the 

use of intellectual property 

in terms of receipts, Value 

of high tech exports, 

number of R&D 

researchers, number of 

scientific and technical 

journal articles published, 

the number of patent 

applications filed, the 

Efficiency-

Based Global 

Green 

Manufacturing 

Innovation 

Index 

 

Classic DEA  Various countries 
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number of trademark 

applications filed 

Camioto, Pulita 

(2022) 

CO2 emissions, energy use, 

percentage of unemployed 

 GDP, life expectancy at 

birth 

SD Efficiency Slack based 

measure DEA 

 Various countries 

da Silva, Ribeiro, 

Rego 

(2023) 

Levelized cost of energy, 

socio-economic 

vulnerability index 

 Number of direct 

employees, GDP, avoided 

CO2 

Socio-

economic 

efficiency 

Non 

decreasing 

returns to 

scale dea 

 Brazilian regions 

Fathi, Ashena, Anisi     

(2022) 

Capital inventory, labor 

force, energy consumption 

GDP, CO2  emissions, CO2 

emission intensity index 

equity index 

 

E4 Efficiency two-stage 

DEA 

A nash bargaining 

game 

Various countries 

Goto,and 

Sueyoshi           

(2023) 

Capital, Labor, Energy  GDP, CO2-solid 

emissions, CO2-gas 

emissions, CO2-other 

emissions, CO2-liquid 

emissions 

Efficiency Dea-ea  Various countries 

Lu, Chiu, Chiu, 

Chang               

(2022) 

Agricultural labor, 

Agricultural land use, 

nitrogen fertilizer, industrial 

employment, industrial 

energy use  

Agricultural output, Industrial 

output, Agricultural methane 

CH4, Industry CO2 emissions        

Average temperature 

change, Average rainfall 

amount, Disaster 

occurrence 

sustainability 

efficiency 

Dynamic 

parallel three-

stage network 

DEA model 

 Worldwide 

countries 
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Sarpong, Wang, 

Cobbinah, Makwetta, 

Chen (2022) 

Capital, Labor, Energy  GDP, CO2 emissions Energy 

efficiency 

Dynamic 

SBM DEA 

Malmquist 

productivity 

index, Tobit 

regression 

African countries 

Yousefi, 

Hassanzadeh,Saen, 

Mousavi Kashi    

(2021) 

Import of goods and 

services, Fossil fuel 

consumption 

 

 

Gdp per capita, 

Compulsory education 

duration, CO2emissions 

Sustainability Inverse RAM 

DEA 

 Islamic countries 

Zhou & Xu 

(2022) 

Capital, labor, energy GDP, CO2 emissions Re-adjusted GDP, Re-

adjusted CO2 emissions 

Energy 

efficiency 

three-stage 

Undesirable-

SBM-DEA 

Malmquist index, 

SFA 

RCEP member 

states 
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2.2.1 Sustainability Indicators 

The tables above concern papers that were published from 2021 to 2023. One of the most 

intriguing aspects of the recent literature is the variety of indicators employed by 

researchers to measure sustainability, sustainable development, and related notions of 

efficiency. As already mentioned, sustainability includes three interconnected pillars, 

namely economic, environmental, and social. Therefore, it is imperative for researchers 

to utilize indicators that are pertinent to each of these dimensions in order to produce the 

best possible results. 

Upon reviewing the extant literature, it becomes apparent that the most commonly 

employed economic indicators are capital and labor force, serving as inputs or 

intermediates, and gross domestic product (GDP) as an output or intermediate. 

Specifically, capital has been identified as an economic variable in 10 out of the 25 

analyzed papers (40%), while the labor force indicator has been featured in 14 of them 

(56%). This fact highlights the significant role that these economic variables play in 

shaping economic outcomes. 

It is unsurprising that capital and labor, as fundamental factors of production in economic 

theory, are frequently used in the reviewed literature. Moreover, indicators such as GDP, 

Real GDP, and Gross Regional Product appeared 18 times (72%) in the reviewed papers, 

highlighting their widespread acceptance among researchers as a means of measuring 

economic efficiency at the national or regional level. This finding underscores the 

significance of these indicators in evaluating economic performance. 

It is noteworthy that while the classic indicators of labor, capital, and GDP are not always 

employed directly in the reviewed studies, authors frequently utilize related indicators. 

Specifically, variables such as investment, gross fixed capital formation, employment 

rate, and unemployment level are commonly employed. These indicators are closely 

related to the three fundamental indices and provide insight into economic performance 

from alternative perspectives (Zhou et al., 2018). 

In addition to economic indicators, environmental variables have also been widely 

employed by researchers in their efforts to measure sustainability, both in older and more 

recent literature. Specifically, indicators such as energy use or consumption, and 

industrial energy use, are frequently utilized. Similarly, carbon dioxide (CO2) emissions 

or industrial CO2 emissions are commonly employed. These environmental variables 
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provide insight into the environmental impact of economic activity and are crucial for 

assessing sustainability. 

In particular, in the 25 studies analyzed, these variables have appeared 16 (64%) and 13 

(52%) times correspondingly, and as a result, it is inferred that they constitute two of the 

most significant environmental indicators in order to assess the environmental efficiency 

of a country or a region. 

Apart from the environmental indicators contained in the recent literature of studies that 

use DEA to measure efficiency, eco-efficiency, or sustainable efficiency, there is a need 

to recognize the indicators used to express the social dimension of sustainability. As 

mentioned before, Tsaples and Papathanasiou (2021) pointed out in their literature review 

the lack of social indicators in the DEA models that were applied in the period from 2016 

to 2020 and tried to measure regional or country efficiency in terms of sustainability. 

This research gap has prompted several researchers to incorporate more social indicators 

in their studies, recognizing the importance of addressing all three pillars of sustainability. 

In both the reviewed articles and older literature, there are indicators that combine social 

and economic information, such as gross fixed capital at current prices in purchase power 

standards (PPS), GDP per capita in PPS index, the employment rate, and the medium 

equivalized net income. However, purely social indicators such as life satisfaction and 

social welfare remain underrepresented in these studies. 

The analysis of DEA models employed for measuring sustainability efficiency during the 

years 2021-2023 has led to the observation that an increasing number of social indicators 

have been integrated into these models in an attempt to assess sustainability accurately. 

To achieve this objective, all researchers in this domain must support this approach and 

broaden the range of social indicators incorporated into the relevant literature. 

Regarding the papers under review, only 40 percent of them, namely 10 out of 25, 

included social indicators, while the others neglected the social dimension of 

sustainability by using only economic and/ or environmental variables. 

The last group of indicators that appears in the studies under review with the purpose of 

measuring sustainability are the research and development (R&D) indicators. The 

emergence of research and development (R&D) indicators as a group of metrics for 

measuring sustainability in recent literature can be attributed to several factors. One 

possible explanation is that these indices are increasingly used in contemporary studies 
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due to the belief that R&D can contribute to both economic growth and social welfare 

while minimizing environmental degradation.  

This perspective is grounded in the notion that technological advancements and 

innovation can facilitate the attainment of sustainable development goals by promoting 

resource efficiency, reducing waste, and mitigating environmental risks. Consequently, 

the incorporation of R&D indicators into sustainability assessments is a promising avenue 

for advancing the understanding of sustainable development pathways and informing 

policy decisions. 

Although the current body of literature on sustainability efficiency measurement 

primarily employs a limited number of research and development (R&D) indicators, with 

only four out of 25 analyzed articles incorporating such metrics, this trend is expected to 

evolve in the coming years. As researchers continue to explore the role of R&D, 

technology, and innovation in sustainable development, it is likely that an increasing 

number of variables relevant to these domains will be incorporated into regional and 

country-level sustainability efficiency assessments. This development is significant as it 

underscores the growing recognition of the critical role that R&D plays in promoting 

sustainable development pathways and highlights the need for more comprehensive and 

nuanced approaches to measuring sustainability efficiency. 

In this part of the literature review, each of the 25 selected articles that utilize data 

envelopment analysis (DEA) for measuring sustainability or similar notions of efficiency 

will be subjected to a detailed analysis. The objective of this analysis is to identify the 

specific sustainability indicators employed by the authors to construct their final 

efficiency index, which is typically used to evaluate the performance of countries or 

regions. 

Starting with the paper of Tsaples et al. (2022), the authors proposed a two-stage DEA 

model with deviational variables in the objective function. They employed that model to 

create three sub-indicators, one for each dimension of sustainability. Afterwards, these 

sub-indicators are aggregated into a final sustainability index, which is eventually used to 

measure the relative sustainability efficiency of the 28 European Union countries. The 

authors used as inputs in their model the gross fixed capital at current prices, the total 

labor force, the population, the gross electricity production, and the GDP per capita in 

purchasing power standards (PPS) index. The GDP per capita in PPS index, the final 

energy consumption, and the total expenditure per euro habitant were used as the 
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intermediate variables of the study. Regarding the output variables of the model, the 

authors used the following: 

1. The medium equivalized net income 

2. The final consumption expenditure of households 

3. The Terrestrial protected area 

4. Share of renewable energy in gross final energy consumption 

5. The Greenhouse gas emissions (in CO2 equivalent) 

6. The Patent applications to the European Patent Office (EPO) by priority year 

7. The overall life satisfaction 

8. Satisfaction with living environment 

9. And the percentage of females in the total labor population. 

In addition to the traditional DEA approach, this study also explores the application of 

machine learning techniques, specifically Classification and Regression Trees (CART) 

and boosting regression, to the results of DEA computations. The aim of this exercise is 

to investigate how the sustainability efficiency of countries behaves under different 

scenarios.  

This innovative approach is significant as it enables a more nuanced and dynamic 

understanding of sustainability efficiency beyond a simple ranking or classification of 

countries based on their overall efficiency scores. By utilizing machine learning 

techniques, this study seeks to uncover the underlying relationships and patterns that 

govern sustainability efficiency and provide insights into the factors that drive or hinder 

sustainable development pathways. 

Moreover, Moutinho and Madaleno (2021) applied a classical constant return to scale 

(CRS) DEA model to create an eco-efficiency index and concurrently assess the 

efficiency of 27 European countries. The authors included several economic and social 

indicators in their study. More specifically, they used Gross fixed capital formation 

(formerly gross domestic fixed investment) and labor per capita as economic inputs, while 

their environmental inputs were energy use/area, electricity/area, and the Deviation temp.  

Finally, the composite index of the ratio of the value of gross domestic product per capita 

and the value of the volume of the GHG emissions by area of a given European country 

(GDP pc/(GHG/area)) was the output variable of their model. The researchers also used 

a Fractional Regression Model to analyze the relationship between the scores of their 
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DEA model and some possible influencing factors, in particular, eight different types of 

pollutants. 

Kiani Mavi and Kiani Mavi (2021) developed a dynamic DEA common set of weights 

model, which includes a novel goal programming technique in order to avoid weight 

flexibility. This model is used to aggregate various indicators into an eco-innovation 

index, which aims to evaluate comparatively the efficiency of the EU-27 countries. The 

number of researchers in R&D (per million people) and the R&D expenditure expressed 

as a percentage of GDP were the input variables of this study. The patents in environment-

related technologies served as a proxy for eco patents and were used as the intermediate 

variable, while the corresponding outputs of the model were the high-technology exports, 

the energy productivity, and the resource productivity. 

Furthermore, Stanković et al. (2021) applied a classic variable returns to scale (VRS) 

DEA model with the purpose of creating a composite socio-economic index, which aims 

to measure the socio-economic efficiency of EU28 countries. The variables contained in 

the model entailed both economic and social information and were comprised of the 

following indicators: 

1. The employment rate  

2. The medium equivalized net income 

3. The GDP per capita and 

4. The number of people at risk of poverty or social exclusion, which is described as 

the percentage of people who are either at risk of poverty or severely materially 

deprived or living in a very low work intensity household.  

Lacka and Brzezicki (2022) employed a Dynamic network slack-based measure DEA 

model, aiming to create an eco-efficiency index, an eco-innovation index, and an SDGs 

index to assess the corresponding efficiencies of European Union countries. They also 

employed a Dynamic division Malmquist productivity index (DDMI), which was first 

proposed by Tone and Tsutsui (2017), with the aim of explaining the productivity changes 

in divisions. The indicators that were included by the authors in order to produce the 

indices mentioned above were labor force and energy consumption as input variables, 

which produce the eco-efficiency index; GDP and GHG emissions as intermediate 

variables, which produce the eco-innovation index and as output variables the clean water 

and sanitation alongside affordable and clean energy, which constitute Europe’s SDG 6 

and SD7 respectively (Eurostat, 2023) and produce the SDGs index. 
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Lubsanova et al. (2022) applied a non-radial and non-oriented slack-based measure DEA 

model in order to develop an eco-efficiency index and eventually evaluate the relative 

eco-efficiency of some north Russian regions. In their attempt to create this index, the 

authors aggregate numerous indicators representing economic,  environmental, and social 

dimensions. More precisely, the following indicators were utilized as inputs into the 

model: 

1. The total annual emissions of pollutants into the atmospheric air from a stationary 

source 

2. The total annual emissions of pollutants into the atmospheric air from mobile 

sources 

3. The volumes of non-treated or non-sufficiently treated wastewater that were 

discharged into water bodies 

4. The amount of land field waste 

5. And the volume of freshwater abstraction 

Simultaneously, they included the gross regional product at current prices alongside the 

resident population as output variables. 

Wang et al. (2021) proposed an extended SBM bad-output DEA model with the aim of 

developing an environmental efficiency/ eco-efficiency index and eventually evaluating 

the corresponding relative efficiency of the top 20 Asian economies. In order to create 

that index, the authors included as input variables: 

1. The energy consumption from coal 

2. The indicator of oil, as well as 

3. Gas sources volume of vehicles. 

Finally, GDP, CO2 emissions, and CH4 emissions were used as output variables in the 

model. 

Moreover, Qu et al. (2022) developed a modified super-efficiency radial network DEA 

model without infeasibility. The authors applied this model with the purpose of 

constructing a composite sustainability index in order to assess the regional sustainability 

performance in China. Capital, labor, energy, environmental investment, and health 
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investment were contained as inputs in the model. Furthermore, wastewater, solid waste, 

untreated wastewater, and untreated solid waste constitute the intermediate variables of 

the study, while GDP, mortality rate, and survival rate constitute the respective outputs. 

Concerning the work of Sun et al. (2022), the authors aim to measure the urban 

sustainable development in 284 cities in China. In order to do so, they propose a SBM 

network DEA model. In the first stage, which is referred to as the production stage, 

investment, population, electricity, land, and water constitute the input variables, while 

the last three serve as proxies for the natural resources used in urban development. The 

output variables of this stage, which are simultaneously the inputs of the second stage, 

are the GDP as undesirable output and the industrial dust production alongside industrial 

SO2 production as undesirable outputs. 

In addition, the authors used three desirable outputs in the second stage, namely the 

number of middle school students, the insurance covered, which is calculated as the 

average of the number of pension and unemployment insurance covered, and the social 

welfare, which is computed by the aggregation of three sub-indicators, namely, the public 

transit, the number of doctors and the green area. Eventually, industrial dust emission and 

industrial SO2 production were the undesirable outputs of the model. 

Furthermore, Chen et al. (2022) applied a multiplicative relational network DEA model 

with the aim of producing a composite sustainability index, which consists of a 

Production Efficiency index and an Eco-efficiency index, and eventually evaluating the 

regional efficiency in China for the years between 2000 and 2012. They also employed a 

window analysis of the multiplicative efficiency decomposition approach as well as a 

Wilcoxon–Mann–Whitney rank-sum test to discover additional results. The specific 

variables used in the model in order to create the sustainability index are the indicators of 

capital, labor, and energy as inputs, the GDP as an intermediate variable, and the CO2 

emissions with the SO2 emissions as the undesirable outputs of the final stage. 

Sun and Wang (2021) employed a super-efficient  DEA model with a slack-based 

measure aiming to develop an eco-efficiency index and to assess the efficiency of China’s 

Loss Plateau Region relatively. The authors also used, alongside DEA, a Malmquist 

productivity index to measure productivity change and the entropy-weighted TOPSIS 

model to weigh the variables objectively. 
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Furthermore, they employed a Tobit regression model to discover factors outside of those 

included in the model that influence eco-efficiency. The authors employed the indicators 

of labor force and capital as input variables in their work, while the respective outputs 

were the GDP, the industrial SO2 emissions, the industrial soot emissions, and the total 

wastewater volume of the cities under assessment. 

Wang et al. (2021) applied a super-efficiency DEA Model to create an energy efficiency 

index and assess the level of the corresponding regional efficiency in China. They also 

used the Theil index for the purpose of dividing the regional energy efficiency differences 

of the assessed regions into differences within the region and differences between the 

regions. The authors included as input variables in their model the most common set of 

indicators among the under-review studies, namely the indicators of labor, capital, and 

energy, while the real GDP was the desirable output and the SO2 emissions together with 

the CO2 emissions constitute the undesirable outputs. 

Moreover, Zhang et al. (2021) aggregate several indicators into a final efficiency index 

with the purpose of evaluating comparatively the efficiency of numerous Chinese regions. 

In order to achieve that, the authors applied a two-stage DEA model with a slack-based 

measure that consists of several variables. More precisely, labor, investment of fixed 

assets, and energy are the inputs of the first stage, while industrial value added is the 

desirable output variable of the same stage. 

The volume of pollutants generated in industrial waste gas constitutes the undesirable 

output and simultaneously the input of the next stage. Furthermore, treatment investment 

of industrial waste gas and the capacity of industrial waste gas treatment in the previous 

year are the other inputs of the second stage. Finally, the capacity of industrial waste gas 

treatment in the current year is the desirable output, and the volume of pollutants emission 

in industrial waste gas is the undesirable output of the last stage. 

In the paper of Zuo et al. (2022), the authors applied a two-stage DEA model in order to 

create three different indicators to evaluate the efficiency of 30 Chinese provinces. The 

first stage of the model calculates the mining technological innovation efficiency, and the 

second stage calculates the mining eco-efficiency. Finally, the mining comprehensive 

efficiency is defined as the square geometric mean of the efficiency in each stage. 

The indicators included in their model were the full-time equivalent of R&D personnel 

alongside the R&D internal expenditures as input variables, and the number of patent 
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applications authorizations, the number of scientific papers published, labor, energy, and 

fixed investment were used as intermediates. Ultimately, the following four indicators are 

used as outputs: 

1. The total industrial output value of the mining industry  

2. The solid waste discharge 

3. The exhaust emissions and 

4. The wastewater discharge. 

Yousefi et al. (2021) developed an inverse RAM DEA model in order to measure the 

sustainability efficiency of several Islamic countries and to suggest strategies to improve 

it. The modified model determines the optimal inputs and outputs under managerial 

disposability and natural disposability so that the efficiency scores of the DMUs will 

remain the same. The authors contained in their model the imports of goods and services 

as managerial input and the fossil fuel consumption as natural input, while  GDP  per 

capita, together with compulsory education, were the desirable outputs and the indicator 

of the CO2 emissions, served as the respective undesirable output. 

Additionally, Lu et al. (2022) employed a modified dynamic parallel three-stage network 

DEA model to construct a sustainability index and evaluate the corresponding efficiency 

of several countries around the world. The authors included agricultural labor, 

agricultural land use, nitrogen fertilizer, industrial employment, and energy use as inputs 

in the first stage of the models. The intermediate variables of the model were the 

agricultural output, the industrial output, the agricultural methane CH4, and the industry 

CO2 emissions, while the average temperature change, the average rainfall amount, and 

the disaster occurrence were the outputs. Finally, the indicator of the agricultural fixed 

assets constitutes the carry-over variable of t to the t+1 period. 

Aldirisi (2021) applied a classic input-oriented constant returns to scale (CRS) DEA 

model to construct a global green manufacturing innovation index and measure the 

respective comparative efficiency of the top 15 manufacturing countries worldwide. In 

order to do so, the author used as input variables in his model the indicators of CO2 

emissions alongside the unemployment level, while the outputs contained in his study are 

the following: 

1. The Manufacturing value added to GDP 

2. The charges for the use of intellectual property in terms of payments 
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3. The value of high-tech exports 

4. The number of R&D researchers 

5. The number of scientific and technical journal articles published 

6. The number of patent applications filed and 

7. The number of trademark applications filed 

Regarding the paper of Camioto and Pulita (2022), the authors created a composite 

sustainable development index by employing a variant SBM DEA model. They generated 

relative sustainable development efficiency rankings for BRICS and G7 countries. The 

CO2 emissions, energy use, and the percentage of unemployed were used as inputs. At 

the same time, the two output variables of the study consist of the GDP and the life 

expectancy at birth. 

Goto and Sueyoshi (2023) utilized a DEA-EA model to evaluate the relative efficiency 

of numerous countries worldwide. More specifically, their work measures the degree of 

unified index and that of unified efficiency, both under managerial disposability and 

constant damages to scale (DTS). The authors used the indicators of capital, labor, and 

energy as input variables in their model. At the same time, they used GDP as desirable 

output alongside four different undesirable outputs, namely CO2 emissions from solid 

fuel consumption (mainly from coal), CO2 emissions from liquid fuel consumption 

(mainly from petroleum-derived fuels, CO2 emissions from gaseous fuel consumption 

(mainly from natural gas) and CO2 emissions from the other sources. 

Moreover, Sarpong et al. (2022) applied a dynamic non-oriented SBM DEA model to 

develop a composite index and simultaneously assess the relative energy efficiency of 9 

West African countries. The authors also utilized the Malmquist productivity index in 

order to measure the technology change improvement from 2007 to 2020, as well as a 

Tobit regression model to ascertain the relationship between the dependent variable, 

namely the respective DEA efficiency score, and the independent variables (or the 

influencing factors), such as the gross national income, the population, the final 

consumption expenditure, the human development index, the foreign direct investment, 

and the urbanization population. Finally, the indicators included in this work were capital, 

labor, and energy as inputs,  the GDP as desirable output, and the CO2 emissions as 

undesirable output. 

Da Silva et al. (2023) applied an output-oriented Non-Decreasing Returns to Scale 

(NDRS) DEA model to measure the socio-economic efficiency of several Brazilian 
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mesoregions where electricity generation facilities are installed. In order to do so, the 

authors utilized numerous socio-economic and environmental indicators in their paper. 

More precisely, the levelized cost of energy, which is computed as the sum of a facility’s 

Capital Expenditure (CAPEX), the Operational costs to operate it (OPEX), and 

decommissioning costs, discounted to present-day value, divided by the electricity 

supplied to the grid throughout the operational life of the technology, together with the 

socio-economic vulnerability index constitute the inputs of the DEA model. Finally, the 

output variables consist of the number of direct employees, the GDP, and the avoided 

CO2 emissions. 

Furthermore, Shah et al. (2022) utilized an undesirable output SBM DEA model to 

evaluate the comparative energy efficiency of 6 South Asian countries, while they also 

employed a Malmquist productivity index to calculate the energy efficiency change from 

2001 to 2019. In addition, in their attempt to estimate the impact of the energy policy of 

2010 over the study period, the statistical significance of the difference in mean scores 

for energy efficiency and productivity over two time periods (2001–2010 and 2011–2019) 

and six countries were examined, utilizing the Mann–Whitney U and Kruskal–Wallis 

tests. Concerning the indicators of this study, capital, labor, and energy constitute the 

input variables, while the CO2 emissions and the GDP were the undesirable output and 

the desirable output, respectively. 

Afzalinejad (2021) developed in his paper a new modified radial DEA model, which takes 

into consideration undesirable outputs by separating the assessment of operational and 

environmental efficiency, aiming to develop a final efficiency index and to measure the 

relative efficiency of 28 countries around the world in economic, social and 

environmental dimensions. In order for this composite efficiency index to be constructed, 

the author used the capital alongside the labor force as input variables, while the indicators 

of the GDP, life satisfaction, and greenhouse gas emissions excluding emissions from 

land-use, land-use change and forestry (LULUCF) constitute the set of output variables. 

Zhou and Xu (2022) proposed a modified three-stage undesirable output SBM DEA 

model to measure the comparative energy efficiency of the Regional Economic 

Comprehensive Partnership (RCEP) members. In the first stage, the undesirable SBM 

DEA model is employed to estimate the value of energy efficiency and the slack variables 

in the case of original input and output. Input variables consist of capital stock, labor, and 

primary energy consumption, while GDP alongside CO2 emissions constitute the 
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desirable and the undesirable output, respectively. In the second stage, a stochastic 

frontier analysis regression (SFA) model is applied to expunge the effect of exterior 

differences, while in the third stage, the re-adjusted data that arise from the SFA were 

used in the radial undesirable SBM DEA model to produce the final efficiency scores. In 

addition, the authors utilized the Malmquist productivity index model to investigate 

further the dynamic changes in the energy efficiency of the countries under assessment. 

The last of the papers under review is that of Fathi et al. (2022). In this study, the authors 

applied a network two-stage DEA model to evaluate the E4 efficiency of various countries 

worldwide, where E4 stands for the connection between energy, environment, economy, 

and equity. Capital inventory, labor force, and energy consumption constitute the inputs 

of the first stage, while GDP and CO2 emissions are the output variables of the same 

stage. Moreover, the CO2 emission intensity index, which equals the CO2 emissions 

divided by energy consumption, is the input of the second stage, while the equity index, 

for which economic welfare is used as a proxy, constitutes the respective output variable. 

Finally, the authors utilized a Nash bargaining game model, based on the work of Nobelist 

Mathematician John Nash (1950, 1953), to measure the efficiency of the network 

structure and simultaneously accomplish a fair efficiency decomposition for both stages. 

To summarize, the articles reviewed in this analysis utilized indicators to assess 

sustainable development, which can be categorized into four main groups: economic, 

social, environmental, and research and development. However, the majority of the 

studies focused primarily on economic and environmental variables, leading to an 

inadequate representation of the social dimension of sustainability. Nevertheless, some 

authors have attempted to address this issue by introducing additional social indicators in 

recent literature. Lastly, it can be inferred that the number of R&D, technology, and 

innovation indicators is on the rise as researchers aim to incorporate new perceptions of 

sustainability. 

2.2.2 Notions of Efficiency 

In the literature that is currently under review, the primary objective of the studies is to 

utilize DEA methodology to aggregate various indicators and measure the efficiency of 

different countries or regions. However, it is noteworthy that each author has a distinct 

interpretation of efficiency. The table below summarizes the different notions of 

efficiency that are used in recent studies.  
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Table 4 Frequency of appearance of different notions of efficiency 

Index  Frequency 

Sustainability  4 

Environmental sustainability 1 

SD Efficiency 1 

Eco-efficiency 4 

E4 Efficiency 1 

Eco-Efficiency, eco-innovation, SDGs 1 

Environmental Efficiency, eco-efficiency 1 

Efficiency 3 

Socio-economic Efficiency 2 

Eco-innovation 1 

Efficiency-Based Global Green Manufacturing Innovation Index  1 

Mining Technological innovation efficiency, mining eco-efficiency, 

mining comprehensive efficiency 

1 

Energy efficiency 4 

 

Upon examining the table above, it is clearly noticed that the authors use numerous terms 

to describe sustainability or sustainable development. In comparison with earlier studies, 

there has been an upward trend in the frequency of appearance of sustainability indices. 

More specifically, 7 out of the 25 above papers measure efficiency in terms of 

sustainability, environmental sustainability, Sustainable Development, or SDGs. 

Moreover, another index that has appeared multiple times in the recent literature is the 

eco-efficiency index. In particular, it appears four times on its own and three times 
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alongside other indices such as eco-innovation, environmental efficiency, and mining 

technological innovation index, among others. 

According to Schaltegger & Muller (1996), eco-efficiency is a concept of economic and 

ecological efficiency, which first appeared in the nineties as a practical approach to the 

more encompassing notion of sustainability, while Zhang et al. (2008) refer to eco-

efficiency as an instrument for sustainability analysis. 

The World Business Council for Sustainable Development (WBCSD) described eco-

efficiency as: “The delivery of competitively priced goods and services that satisfy human 

needs and bring quality of life, while progressively reducing ecological impacts and 

resource intensity throughout the life-cycle to a level at least in line with the Earth’s 

estimated carrying capacity” (WBCSD, 1992, p. 3). 

The indicators developed to represent the notion of eco-efficiency are based on ratios that 

relate the economic value of goods and services produced to the environmental pressures 

or impacts caused by production processes. The larger the ratio, the higher the level of 

eco-efficiency. (see Schmidheiny & Zorraquin (1996), Figge & Hahn (2004), Huppes & 

Ishikawa (2005). 

Furthermore, according to Huppes and Ishikawa (2005), the term eco-efficiency can be 

calculated in real life in four different ways: 

1. As the ratio of economic output to environmental pollution, which is called 

environmental productivity 

2. As the ratio of environmental pollution to economic activity, which is called 

environmental intensity 

3. As the ratio of improvement cost to environmental improvement, which is called 

environmental improvement cost 

4. As the ratio of environmental improvement to improvement cost, which is called 

environmental cost effectiveness. 

Although the eco-efficiency concept does not contain the economic dimension of 

sustainability, its efforts could improve financial, environmental, and social performance 

(Alves & Dumke De Medeiros, 2015) for businesses and for countries or regions. For that 
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reason, researchers of the older and the newer literature have adopted it as a proxy for the 

sustainability index. 

Another common index in the reviewed papers is energy efficiency, which can be found 

in 4 out of 25 studies. Energy efficiency constitutes a generic term, and so there is no 

strictly defined quantitative way to calculate it. 

According to Patterson (1996), energy efficiency refers to using less energy to produce 

the same amount of services or valuable output. For instance, in the industrial sector, 

energy efficiency can be computed by the amount of energy required to produce a tonne 

of product. Thus, it can be defined by the following ratio : 

𝑢𝑠𝑒𝑓𝑢𝑙	𝑜𝑢𝑡𝑝𝑢𝑡	𝑜𝑓	𝑎	𝑝𝑟𝑜𝑐𝑒𝑠𝑠
𝑒𝑛𝑒𝑟𝑔𝑦	𝑖𝑛𝑝𝑢𝑡	𝑖𝑛𝑡𝑜	𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 

Although energy efficiency is not exactly used as a proxy for sustainability by the authors, 

and hence, these studies could be excluded from the review, the two terms are closely 

related to each other. In their study, Zakari et al. (2022) aimed to investigate the 

connection between energy efficiency and sustainable development goals for 20 Αsian 

and Pacific countries using DEA. The authors found through the Panel Correction 

Standard Error (PCSE) estimates that sustainable economic development and sustainable 

financial development are both closely related to energy efficiency. 

Another reason to encompass these studies in the current review is the set of indicators 

that they use to measure energy efficiency. More specifically, all of these studies include 

economic, environmental, and socioeconomic indices similar to the rest of the studies, 

such as labor, capital, GDP, and real GDP, to express the economic as well as the 

socioeconomic dimension, whereas energy, CO2 emissions, and SO2 emissions are used 

to express the environmental dimension. 

One more notion that has appeared multiple times in recent literature is the eco-

innovation. The eco-innovation index appears in one study on its own and one time 

alongside other indices. In addition, two studies use similar indices, namely mining 

Technological innovation efficiency and the Efficiency-Based Global Green 

Manufacturing Innovation Index. 

Oltra and Saint Jean (2009) focus on the effect of eco-innovation and define it as 

innovations that consist of new or modified processes, practices, systems, and products 
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that benefit the environment and thus make a contribution to environmental sustainability. 

Rennings (2000) gives a definition focused on the motivation of eco-innovation and 

describes it as the innovation processes towards sustainable development. 

European Commission (2007) mentions that eco-innovation is any form of innovation 

that aims to make significant and provable progress toward the goal of sustainable 

development through reducing negative impacts on the environment or achieving more 

efficient and responsible use of natural resources, including energy. 

The above definition implies that the goal of eco-innovation is to create new goods, 

processes, and practices with the purpose of promoting sustainable development. Hence, 

it is a closely related term to sustainability. Moreover, in order for somebody to innovate, 

the existence of Research and Development activities is a necessary condition. This fact 

could be one more explanation of why the authors in the recent literature encompass more 

and more R&D indicators in their attempt to measure efficiency in terms of sustainability. 

Other indices that are found are the more general efficiency index in three studies, the 

socio-economic efficiency, which takes into account the social and economic dimensions 

in two studies, and the E4 efficiency in one study. The term E4, as explained by Fathi et 

al. (2022) in their paper, stands for the relationship of energy, environment, economy, 

and equity. 

Upon examining this section, it becomes clear that the authors utilize several diverse 

definitions of sustainability in the context of DEA. This phenomenon leads to the use of 

different sets of indicators in each study and consequently decreases the robustness of the 

obtained results. Hence, this fact highlights the requirement to set a commonly accepted 

definition of sustainability (and a widely accepted set of indicators) in the field of DEA, 

aiming to improve the reliability of the outcomes. 

2.2.3 DEA variations employed 

After the identification of the various notions of efficiency that are used in the reviewed 

papers, it would be interesting to explore which different DEA variations are employed 

by the authors of the recent literature in order to measure sustainability. 

The following table establishes the frequency of appearance of every DEA variation in 

the under-review studies. 
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Table 5 Frequency of appearance of different DEA variations employed 

DEA VARIATION FREQUENCY 

CLASSIC DEA 3 

TWO-STAGE DEA  3 

SBM TWO STAGE/NETWORK DEA 2 

SBM BAD/UNDESIRABLE OUTPUT MODEL 2 

SBM DEA 2 

DYNAMIC DEA 1 

DYNAMIC NETWORK SBM DEA 1 

SUPER EFFICIENCY NETWORK DEA 1 

A MULTIPLICATIVE RELATIONAL 

NETWORK DEA 

1 

DEA SUPER-EFFICIENT SBM 1 

SUPER EFFICIENCY DEA 1 

INVERSE RAM DEA 1 

PARALLEL THREE-STAGE NETWORK DEA 

MODEL 

1 

DEA-EA  1 

DYNAMIC SBM DEA 1 

NDRS DEA 1 

MODIFIED RADIAL DEA  1 

THREE-STAGE UNDESIRABLE-SBM-DEA 1 

From the above table, it is easily observed that the authors use a lot of different DEA 

variations. The most-employed variations are the classic DEA model, the two-stage DEA 

model, the slack-based measure (SBM) DEA model, the SBM two-stage/network DEA, 

and the SBM undesirable/BAD  output DEA model from which the first two appear three 

times, while the others appear two times each, in the under-review literature. In addition, 



 39 

some variations in the reviewed papers are similar to the above but slightly modified, 

such as super efficiency DEA, super efficiency network DEA, SBM two-stage DEA, and 

dynamic SBM DEA. 

Even though classic DEA models have been found appropriate for measuring efficiency 

by both older and recent literature, an effort is made from the newer studies to employ 

different, more sophisticated models. This phenomenon has led to the increasing use of 

models, such as slack-based measure models and network models, in the last few years. 

Network models are trying to explain the stage where inputs convert into outputs, which 

is considered as a black box for the classic DEA models. For instance, in the current 

review, Tsaples et al. (2022) proposed a two-stage DEA model, which first calculates 

three sub-indicators to express the three dimensions of sustainability and then uses the 

benefit of the doubt model to calculate the overall sustainability index. 

Another network model that has been employed is the parallel three-stage network DEA 

model by Lu et al. (2022). In that model, every DMU is composed of two sub-DMUs in 

parallel, which constitute the outputs of the initial stage and the inputs of the following 

stage simultaneously. 

Regarding the slack-based measure models, Lubsanova et al. (2022) applied a non-radial 

and non-oriented SBM model developed by Tone (2001), aiming to measure the eco-

efficiency of northern Russian regions. The authors support that, unlike the classical CCR 

and BBC models, the slack variables of the SBM model can better solve the relationship 

between inputs and undesirable outputs. Hence, the SBM model is particularly useful in 

measuring sustainability, sustainable development, or similar notions of efficiency that 

deal with undesirable outputs. 

Moreover, Wang et al. (2021) in their study applied an undesirable output model proposed 

by Cooper et al. (2006), which modified SBM to account for undesirable outputs. The 

authors employed this model, which constitutes a modified version of Tone’s model that 

was mentioned above, in order to measure the environmental efficiency and the eco-

efficiency of the top 20 Asian economies. 

Regarding the abovementioned, it is inferred that the authors of the recent literature use 

numerous variations of DEA aiming to measure sustainability, and as a result, there is a 

lack of a unified methodological framework. This phenomenon could decrease the 



 40 

reliability of the obtained results and consequently affect the policymaking that arises 

from them. 

2.3 Information entailed from the literature 

In this section, a synthesis of the reviewed literature on sustainability and Data 

Envelopment Analysis (DEA) will be presented, with a focus on highlighting the key 

findings and identifying any research gaps that emerged. 

In the initial stages of this investigation, it became apparent that the concept of 

sustainability, or sustainable development, is subject to varying interpretations among 

scholars. The three-dimensional approach, which emphasizes the economic, 

environmental, and social pillars, has gained widespread acceptance. However, this lack 

of a universally accepted definition poses a challenge, as it can lead to confusion and 

miscommunication. Therefore, it is imperative to set a well-established and widely 

accepted definition of sustainability to ensure that all the parties involved understand the 

term in the same way. 

In addition, even sustainability in the context of data envelopment analysis appears to 

have different definitions. The majority of studies focus on economic indicators such as 

labor force, capital, and gross domestic product (GDP), as well as environmental 

indicators like energy consumption and carbon dioxide (CO2) emissions. This 

phenomenon has led to the underrepresentation of the social dimension and inaccurate 

outcomes in DEA studies. Recently, researchers have attempted to address this 

shortcoming by incorporating social indicators such as social welfare and life satisfaction 

into their models in order to achieve more comprehensive results. 

Furthermore, another trend in the recent literature is the growing number of indicators 

related to R&D, technology, and innovation. This fact may be attributed to two possible 

reasons. Firstly, some researchers may argue that these factors play a crucial role in 

promoting sustainable development. This perspective is grounded in the notion that 

technological advancements and innovative solutions can facilitate the transition towards 

more sustainable practices and reduce environmental degradation.  

Secondly, others may have attempted to incorporate new perceptions into the topic of 

sustainability by incorporating R&D, technology, and innovation indicators. The 
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increasing number of those indices in the literature highlights the growing recognition of 

their significance in gauging sustainable development. 

Moreover, in the current study, it was observed that a multitude of terms were used in 

various investigations in order to describe sustainability or sustainable development. 

While numerous studies utilize the terms sustainability or sustainable development, 

others utilize proxies such as eco-efficiency or eco-innovation. This fact has resulted in 

the use of disparate sets of input and output variables in these studies, which ultimately 

impact their final outcomes. This finding underscores the need for a widely acknowledged 

definition of sustainability and sustainable development in academic research and public 

policy fields. 

Ultimately, in the under-review papers, numerous different DEA variations were 

identified. On the one hand, this phenomenon adds new perceptions to the subject, while 

it also helps to overcome some limitations of the classic DEA models, such as the 

treatment of undesirable outputs or the “black box” of the conversion process. On the 

other hand, it reveals the lack of existence of a standardized, widely accepted DEA 

framework for gauging sustainability efficiency. These differences in the DEA variations 

employed decrease the validity of the research outcomes and simultaneously affect the 

policymaking that is based on them. 

3. Theoretical framework 

3.1 Data Envelopment Analysis 

Data envelopment analysis (DEA) is a data-oriented, non-parametric, mathematical 

programming technique that is used for the evaluation of the relative efficiency of a group 

of homogeneous entities. These entities, which are called Decision Making Units  

(DMUs), transform multiple inputs into multiple outputs. All the input-output 

correspondences that can be achieved by a DMU (regardless of whether these 

correspondences are observed in practice or not ) constitute the Production Possibility Set 

(PPS). The term input stands for what every DMU consumes in order to produce the 

corresponding output, as can be seen in the figure below: 
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(Thanassoulis, 2001) 

The corresponding technical efficiency of any DMU is computed by forming the ratio of 

a weighted sum of outputs to a weighted sum of inputs, as indicated in the following 

expression: 

𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = !"!"#$"#∗$
!"%&$"#∗%

  

The weights  (multipliers) of the outputs, as well as the inputs, have to be chosen in a way 

that computes the Pareto efficiency measure of each homogeneous entity subject to the 

constraint that none of these DMUs can have a relative efficiency rating bigger than 1 

(technical efficiency ≤ 1). (Charnes et al., 2010) 

There are two definitions that describe Pareto efficiency. One of them is considered 

output orientation, and it is suitable when outputs are controllable, while the other is 

labelled as input orientation, and it is suitable when inputs are controllable. 

Let a set of homogeneous DMUs use one or more outputs to secure one or more inputs 

then: 

Output orientation definition: A DMU is considered Pareto efficient if it is not feasible 

to increase any of its observed output levels without simultaneously decreasing at least 

another one of its output levels and/or without raising at least one of its input levels. 

Input orientation definition: A DMU is considered Pareto efficient if it is not feasible 

to decrease any of its observed input levels without simultaneously increasing at least 

another one of its input levels and/or without lowering at least one of its output levels. 

There are two more notions of efficiency relevant to the DEA method, and these are the 

input overall efficiency and the input allocative efficiency. 

CONVERT 
BY THE 

DMU 
INPUTS OUTPUTS 

Figure 2 Classic DEA structure  



 43 

Input allocative efficiency: For given input prices, let Cmin represent the minimum cost 

at which a DMU could secure its outputs and Cte the cost of its technically efficient input 

levels for its input mix. Then, the input allocative efficiency of the DMU is Cmin / Cte 

Input overall efficiency: With Cmin being the same as above  and Cob representing the 

cost of the DMU’s observed input levels, the input overall efficiency of the DMU is Cmin 

/ Cob 

If the ratio input overall efficiency / input allocative efficiency will be formed, then from 

the above definitions: 

 (Cmin / Cob) / (Cmin / Cte) =  Cte / Cob that equals Technical Input Efficiency. 

Thus: Input Overall Efficiency / Input Allocative Efficiency = Technical Input Efficiency 

 or 

Input overall efficiency = Technical Input Efficiency x Input Allocative Efficiency 

(Thanassoulis, 2001) 

DEA as a methodology offers some serious advantages versus parametric methods, like 

regression analysis or stochastic frontier analysis: 

1. Firstly, it does not need to identify the process of how inputs convert to outputs. 

It can calculate the technical efficiency of a DMU with multiple inputs and 

outputs, requiring only information about output and input quantities (not prices). 

2. It requires less information than parametric methods; for example, it does not 

require a specific functional form that relates the independent variables to the 

dependent variable(s) or specific assumptions about the distribution of the error 

terms. 

3. It can showcase why an entity (DMU) is inefficient and suggest plans to improve 

its efficiency. (He et al., 2016; Shi et al., 2010) 

4. Possible sources of inefficiency can be determined, as well as efficiency 

levels. It gives a means of “dividing” economic inefficiency into technical 

and allocative inefficiency. Moreover, it also lets technical inefficiency be 
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decomposed into scale effects, the effects of unwanted inputs that the 

agency cannot dispose of, and a residual component. 

5. By discovering the DMUs (in the current thesis, the countries or regions) that are 

not observed to be efficient, it provides a set of possible role models that a country 

or region can look to, in the first instance, for ways of improving its operations. 

This fact makes DEA a potentially helpful tool for benchmarking among those 

homogeneous entities. 

The above Advantages of DEA are primarily based on the works of Papathanasiou et al. 
(2021), SCRCSSP (1997), Nunamaker (1985), and Tsaples (2022) 

Nevertheless, DEA has its own disadvantages. Just like other empirical techniques, DEA 

is based on several simplifying assumptions that need to be taken into consideration in 

order to interpret its results precisely. Some of its main limitations, which are mainly 

based on Tsaples (2022), SCRCSSP (1997), and Nunamaker (1985), comprise the 

following: 

1. Being more a deterministic rather than statistical technique, DEA generates scores 

that are especially sensitive to measurement error. If the inputs of a DMU are 

understated or its corresponding outputs are overstated, then this specific unit can 

become an outlier, which notably twists the shape of the frontier and 

simultaneously deteriorates the efficiency score of nearby entities. 

2. DEA only measures efficiency compared to the best practice within the particular 

set of DMUs under assessment. Hence, the final outcomes concern only this 

particular study, and they cannot be generalized or compared with scores that have 

arisen from other studies. For instance, in the current thesis, a DEA study that 

contains 20 EU countries as DMUs cannot tell how these countries are compared 

with other countries around the world.  

3. DEA results are sensitive both to the size of the sample as well as to the total 

number of input and output variables. Increasing the number of countries in the 

current study’s case will lead to the reduction of the average efficiency score 

because encompassing more DMUs provides greater scope for DEA to find 

similar comparison partners. In contrast, containing too few DMUs compared to 

the number of outputs and inputs can artificially inflate the efficiency scores. 

Finally, increasing the total number of outputs and inputs included without 

simultaneously increasing the number of DMUs will lead to the raising of the 
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efficiency scores on average. A general rule about the number of DMUs, outputs, 

and inputs in DEA is that the number of DMUs in the sample should be at least 

three times greater than the sum of outputs and inputs used in the model. 

4. Efficient DMUs cannot be ranked absolutely since all of them have an efficiency 

score equal to unity 

5. The classical DEA methods cannot aggregate different dimensions of efficiency. 

Furthermore, as it was mentioned before, the influential papers that well-established the 

basic DEA models are those of Charnes, Cooper and Rhodes (1978) and Banker, Charnes 

and Cooper (1984). The first study assumes that the homogeneous entities operate under 

Constant Returns to Scale (CRS) in a perfectly competitive environment, while the 

second makes an attempt to relax those assumptions and assumes that the DMUs operate 

under Variable Returns to Scale (VRS). 

The term returns to scale originates from the field of microeconomics and explains what 

happens in production when inputs are increased by a factor α, where α > 0. Formally, 

according to economic theory: 

1. If a radial increase in the level of factors of production (inputs) leads 

simultaneously to a larger proportionate radial increase in the level of production 

(outputs), then a production correspondence is said to exhibit Increasing Returns 

to Scale (IRS). 

2. If a radial increase in the level of factors of production (inputs) leads 

simultaneously to a smaller proportionate radial increase in the level of production 

(outputs), then a production correspondence is said to exhibit Decreasing Returns 

to Scale (DRS). 

3. Finally, If a radial increase in the level of factors of production (inputs) leads 

simultaneously to the same proportionate radial increase in the level of production 

(outputs), then a production correspondence is said to exhibit Constant Returns to 

Scale (CRS). 

In the case of a DEA model with multiple inputs and outputs, the definitions of IRS, DRS, 

and CRS in terms of the connection between the percentage radial changes in input and 

output levels can be generalized as follows. 
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Let a DMU j have input levels x = {xij, i = 1…m} and output level y = {yrj, r = 1…s}. 

Scale its input levels to αx = {αxij, i = 1…m} and its output levels βy = {βyrj, r = 1…s}. 

Ultimately, let: 

𝜌 = lim
0→&

(
b − 1
𝑎 − 1) 

Then, the following three scenarios are possible: 

1.  ρ > 1. In this scenario, an increase in the level of inputs by a small percentage 

leads the level of output to expand by a larger percentage, and hence IRS are 

observed at (x, y) 

2.  ρ < 1. In this scenario, an increase in the level of inputs will lead the level of 

outputs to expand by a smaller percentage, and hence DRS are observed at (x, y)  

3.  ρ = 1. In this scenario, an increase in the level of outputs will lead to an increase 

in the level of outputs by the same percentage, and hence CRS are observed at (x, 

y)  

Finally, note that in scaling input levels by α and output levels by β, the mix of inputs and 

outputs of a DMU j needs to be kept constant. (Thanassoulis, 2001) 

Moreover, DEA models can be either input-oriented or output-oriented. An input-oriented 

model is a model that makes an attempt to minimize its input levels while simultaneously 

trying to produce the given output levels. Thus, it shows how a DMU can reduce its level 

of inputs and still produce the same level of outputs. In contrast, an output-oriented model 

is a model that tries to maximize its output levels for a given level of inputs. Thus, it 

shows how much a DMU can increase its output levels while it keeps its input levels 

constant. 

In every case, DEA identifies an efficient boundary or a boundary of ‘‘best practices’’  

that envelops all the DMUs. All of those DMUs that recline on the boundary are said to 

be the most efficient or ‘‘best practice units’’, while those that are underneath the 

boundary are characterized as inefficient. In the inefficient units, a number is given that 

represents their radial distance from the efficient boundary. Its difference from the 

maximum value points out: 

1. The level of input(s) decrease that the DMU needs to achieve for its given level 

of outputs (input-oriented DEA model) in order to be characterized as efficient. 
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2. The level of output(s) increase that the DMU needs to achieve for its given level 

of inputs (output-oriented DEA model) in order to be characterized as efficient. 

3.1.1 DEA and Constant Returns to Scale 

One of the most basic DEA models is the CCR or CRS model, which was originally 

developed by Charnes, Cooper and Rhodes in 1978, as mentioned earlier. There, for every 

DMU, the virtual input and output by weights (vi) and (ur), which are yet unknown, are 

formed. 

𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑖𝑛𝑝𝑢𝑡 = 𝑣&𝑥&2 +⋯+ 𝑣$𝑥$2 

𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑢&𝑦&2 +⋯+ 𝑢)𝑥)2 

Then, an attempt  is made to determine the weights using Linear programming so as to 

maximize the ratio that is indicated below: 

𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑜𝑢𝑡𝑝𝑢𝑡
𝑣𝑖𝑟𝑡𝑢𝑎𝑙	𝑖𝑛𝑝𝑢𝑡  

The optimal weights that will be given to the DMU may (and generally will) differ from 

one DMU to another, and hence, the weights in DEA arise from the data instead of being 

fixed in advance.  

Furthermore, the evaluation of the performance of a DMU by DEA contains two basic 

steps. More specific: 

1. The construction of the Production Probability set (PPS), which is described as  

was mentioned before, as a set that encompasses all the input-output 

correspondences that are feasible in principle, containing those observed in the 

DMUs that are under evaluation 

2. The estimation of the size of the maximum expansion of the output levels or the 

respective maximum contraction of the input levels of the DMUs within the 

boundaries that are determined by the PPS 

In order to formulate the CRS model, an assumption is made that there are N DMUs, 

which are using m inputs to secure s outputs. It is also stated that xij (x = 1…m, j = 1…N) 

and yrj (y = 1…s, j = 1…N) are the ith input and rth output correspondingly. 
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Then, the technical efficiency, concerning the input-oriented fractional model, can be 

computed by solving the following  fractional program (FP). 

ℎ*! = 𝑀𝑎𝑥
∑ 𝑈' ∗ 𝑦'*!
)
'%&

∑ 𝑉" ∗ 𝑥"*!
$
"%&

 

Subject to: 

∑ ''∗$'()
'*+

∑ (%∗%%(,
%*+

≤ 1            j = 1…j0…N 

Ur ≥ ε                              r = 1…s 

Vi ≥ ε                              i = 1…m 

ε is a non-Archimedean infinitesimal. 

The goal of the program is to determine the weights Vi and Ur  that maximize the ratio of 

the DMU under assessment. As it entails from the first constraint, the optimal value 

cannot be greater than unity. Thus, the technical efficiency which is calculated by the 

ratio 
∑ 4"∗6"#!
$
"%&
∑ 7'∗8'#!
(
'%&

 cannot take values greater than unity. Finally, if  
∑ 4"∗6"#!
$
"%&
∑ 7'∗8'#!
(
'%&

 = 1, then 

the DMUs under evaluation is said to be efficient. 

Now, the above FP can be converted to the following linear program (LP) using the 

Charnes and Cooper transformation (1962): 

𝑀𝑎𝑥(𝑢' ∗ 𝑦'*!

)

'%&

 

Subject to constraints: 

(𝑣" ∗ 𝑥"*!

$

"%&

= 1 

																																																																∑ 𝑢' ∗ 𝑦'*)
'%& −∑ 𝑣" ∗ 𝑥"*$

"%& ≤ 0, j = 1…j0…N 

                                                         ur ≥ ε                              r = 1…s 

                                                         vi ≥ ε                              i = 1…m 
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                                                         ε is a non-Archimedean infinitesimal. 

The first constraint ∑ 𝑣" ∗ 𝑥"*!
$
"%& = 1 is called normalization constraint, while together 

with the constraint ∑ 𝑢' ∗ 𝑦'*)
'%& − ∑ 𝑣" ∗ 𝑥"*$

"%& ≤ 0, they denote that the technical 

efficiency, which is estimated by the ∑ 𝑢' ∗ 𝑦'*!
)
'%& , cannot be greater than one. Of 

course, if ∑ 𝑢' ∗ 𝑦'*!
)
'%&   equals 1, then the equivalent DMU is considered efficient. 

Note that the technical efficiency of the above program, which is called value-based  DEA 

model, is approximately but not exactly equal to the true technical efficiency, which can 

be computed by its dual envelopment model. Its equivalent envelopment model can be 

solved as follows: 

min 𝑘! − 𝜀[(𝑆"#
$

"%&

+(𝑆'(]
)

'%&

 

Subject to constraints: 

∑ 𝜆* ∗+
,%& 𝑥"* = 𝑘!𝑥"*! − 𝑆"

#
      i = 1 . . . m  

∑ 𝜆* ∗+
,%& 𝑦'* = 𝑆'( + 𝑦'*!            r = 1 . . . s   

𝜆* ≥ 0, 𝑗 = 1…𝑁, 𝑆"#, 𝑆'( ≥ 0	∀ i and r, k0  free.  

ε is a non-Archimedean infinitesimal. 

As it is already mentioned, the variable λj is the weight calculated from the above model 

for DMUj whilst the variables 𝑆'(, 𝑆"#are the slack variables that are used in linear 

programming. These slacks represent any further output expansion or input contraction 

that is feasible to be achieved by the evaluated DMU. 

This linear program is solved in two stages: 

1. Firstly, the model makes an attempt to minimize the technical efficiency k0, 

without taking into consideration the slack variables 𝑆'(, 𝑆"#. The minimized k0 

constitutes the optimal value k*0 

2. The technical efficiency k0 is replaced in the LP, and it is solved with the purpose 

of maximizing the slacks ∑ 𝑆"#$
"%&  , ∑ 𝑆'()

'%& . The outcomes of the second stage 
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constitute the optimal values of the slack variables when it is secured that the 

optimal technical efficiency has been used in the computation. 

If at least one of those values is greater than zero at the optimal solution of the model, it 

entails that the respective input or output of the DMU j0 can be further improved after its 

input levels have been contracted to the proportion k0*, which is the technical efficiency 

of the model. 

If k0* = 1 and 𝑆'( = 0, r = 1…s, 𝑆"# = 0, i = 1… m then DMU is Pareto-efficient because 

the model was unable to decrease the input level without decreasing the output level or 

increasing the output level without correspondingly increasing the input level of the 

specific DMU. 

In summary, the technical efficiency of the above problem for DMUj0 is the variable k0 

and can take values from 0 to 1 (or from 0 to 100%). The mathematical program indicated 

with the above equations is solved individually for every DMU, and its solution can lead 

to three different scenarios: 

1. DMUj0 is Pareto-efficient if and only if k0* = 1 and 𝑆'( = 0, r = 1…s, 𝑆"# = 0, i = 

1… m 

2. If the value of one of the slacks 𝑆'(, 𝑆"# is greater than zero at the optimal solution, 

the related input (or output) can additionally be improved 

3. If none of the above mentioned happens, DMUj0 has technical efficiency equal to 

k0*. In this case, the technical efficiency at the optimal solution k0* < 1 represents 

the maximum radial contraction of the input levels without deteriorating the level 

of outputs in order for the DMUj0 to be considered efficient. 

 

Every DEA model that has been described so far has been formulated under input 

orientation. Nevertheless, there are cases where the equivalent output-oriented DEA 

models need to be utilized. In order to formulate the respective output-oriented 

envelopment DEA model, assume that there are N DMUs, which use m inputs to produce 

s outputs. Assume also that xij (x = 1…m, j = 1…N) constitutes the level of ith input of 

DMU j and yrj (y = 1…s, j = 1…N) the level of rth output of the DMU j correspondingly. 
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The technical efficiency under output orientation of DMU j0 equals 1/ℎ*!
∗ , where ℎ*!

∗
 

constitute the optimal value of ℎ*!  in: 

	Max ℎ*! − 𝜀[(𝐼"

$

"%&

+(𝑂']
)

'%&

 

Subject to constraints: 

														(𝑎* ∗ 𝑥"* = 𝑥"*!

	+

*%&

− 𝐼" 										𝑖 = 1…𝑚 

																(𝑎* ∗ 𝑦'* = 𝑂'+ℎ*! ∗ 𝑦'*!

+

*%&

			𝑟 = 1…𝑚 

                                             𝑎* ≥	0, j=1…N, 𝐼", 𝑂' ≥ 0 ∀ i and r, ℎ*! free. 

                                             ε is a non-Archimedean infinitesimal 

The first objective of the above model is to maximize the ℎ*!. The model recognizes a 

point within the boundaries of the PPS that offers output levels that reflect the maximum 

feasible radial expansion of the output levels of the DMU j0 without any increase to its 

input levels. Hence, by definition, the variable 1 / ℎ*!
∗ is the technical output efficiency of 

the DMU j0. 

Concerning the slack variables 𝐼" and 𝑂', they are interpreted in a similar way as the slack 

variables 𝑆"# and 𝑆"( of the equivalent input-oriented model. More specifically, they 

mirror any additional output augmentation and/or input reduction that may be 

indispensable in order for the DMU j0 to be regarded as efficient. 

If ℎ*!
∗

 = 1 and 𝑂'∗ = 0, r = 1…s, 𝐼"∗ = 0, i=1…m then the DMU j0 is considered to be pareto 

efficient. Hence, the model has not been able to recognize a point within the feasible area 

that can improve on any of the output levels of the DMU j0 without simultaneously 

increasing some other input levels. The above LP model is solved in two stages in a 

similar way as the DEA CRS model under input orientation. More precisely: 
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1. In the first stage, the model seeks to maximize the variable ℎ*!, ignoring the slack 

variables 𝐼" and 𝑂'. This yields the maximum value ℎ*!
∗

 of ℎ*! 

2. In the second stage, ℎ*!  has been replaced by ℎ*!∗ , and the model is solved with 

the aim of maximizing	 ∑ 𝐼"$
"%& + ∑ 𝑂')

'%& . 

Summarizing, the solution of the above model shares the following information: 

1. A DMU j0 is considered Pareto-efficient if ℎ*!
∗ , = 1 and O*r = 0, r = 1…s, I*i = 0, i 

=1…m 

2. The technical output efficiency of the DMU j0 is equal to 1 / ℎ*!
∗ . It is necessary to 

note that the technical input efficiency and the technical output efficiency are 

equal when it is assumed that the DMUs operate under Constant Returns to Scale. 

(Cooper et al, 2010) 

Ultimately, the above envelopment model has its dual, in terms of linear programming, 

value-based model under output orientation, which can be computed by the equations 

below: 

𝑀𝑖𝑛	(𝑣" ∗ 𝑥"*!

$

"%&

 

Subject to constraints: 

(𝑢'

)

"

∗ 𝑦'*! = 1 

																																																															∑ 𝑢')
" ∗ 𝑦'* − ∑ 𝑣" ∗ 𝑥"*$

"%& ≤ 0, j = 1…j0…N 

																																																																𝑢' ≥ ε, r = 1…s 

																																																																𝑣" ≥ ε, i = 1…m 

                                                        ε is non-Archimedean infinitesimal. 
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The technical efficiency of the above model equals &
∑ :'

∗∗8'#!
(
'%&

 , which is approximately, 

but not exactly, equal to the true technical efficiency &
;#!
∗  of the equivalent envelopment 

model. Of course, if &
∑ :'

∗∗8'#!
(
'%&

 equals one, the equivalent DMU j0 regarded as Pareto 

efficient. 

The solutions of the above basic CRS and VRS DEA models can share directly some 

useful information. More precisely, the DEA envelopment model yields the following 

information: 

1. It notes a measure of the efficiency of each DMU 

2. When a DMU is regarded as Pareto-efficient, it can be utilized as a role model for  

inefficient DMUs 

3. When a DMU is not pareto-efficient: Firstly, it can identify efficient peers whose 

practices may attempt to imitate in order to enhance its performance, and 

secondly, it can estimate target input-output levels, which the DMU should, in 

principle, be able to reach under efficient operation. 

Regarding its dual value-based DEA model, outside of the above, it can also take a view 

on the robustness of the efficiency measure of a DMU. (Thanassoulis, 2001) 

3.1.2 DEA and Variable Returns to Scale 

In many real-life situations, the assumption that the DMUs operate under Constant return 

to Scales is not proper. In those cases, it is preferable to utilize the model that was first 

developed by Banker, Charnes and Cooper in 1984, who made an attempt to relax those 

assumptions by assuming that the DMUs under evaluation operate under Variable 

Returns to Scale. 

It is quite simple to reform the DEA models that were constructed with the aim of 

assessing DMUs under CRS so that they can be utilized to evaluate efficiency under VRS. 

More precisely, assume that there are N DMUs (j=1…N) that use m inputs to generate s 

outputs. Let also state that 𝑥"*  (i=1…m, j =1…N) is the level of ith input of the DMU j 

and 𝑦'*  (r=1…s, j =1…N) is the level of rth output of the DMU j. 
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Then, the technical efficiency of the input-oriented envelopment model under VRS 

(which is called pure technical efficiency) can be measured by solving the following LP: 

min ℎ! − 𝜀[(𝑆"#
$

"%&

+(𝑆'(]
)

'%&

 

Subject to constraints: 

∑ 𝜆* ∗+
,%& 𝑥"* = 𝑘!𝑥"*! − 𝑆"

#
      i = 1 . . . m  

∑ 𝜆* ∗+
,%& 𝑦'* = 𝑆'( + 𝑦'*!              r = 1 . . . s 

(𝜆* = 1
+

,%&

 

𝜆* ≥ 0, 𝑗 = 1…𝑁, 𝑆"#, 𝑆'( ≥ 0	∀	𝑖	𝑎𝑛𝑑	𝑟, 𝑘0	free.																																																															       

ε is a non-Archimedean infinitesimal. 

As it is easily observed, the only difference between the above LP model and its 

equivalent CRS model is the addition of the third constraint ∑ 𝜆* = 1+
,%& , which is called 

convexity constraint, and it is useless under CRS. 

Similar to the respective CRS envelopment model, the solution of the above model shares 

the following information: 

1. If ℎ!∗  equals 1 and the slack variables 𝑆"#	= 0, i =1…m, 𝑆'( = 0,   r = 1…s, then the 

DMU j0 is considered to be Pareto-efficient. 

2. The pure technical efficiency of the DMU j0  equals ℎ!∗  

Note that the pure technical input efficiency of the DMU j0  is always greater than its 

respective technical input efficiency. 

 

The equivalent input oriented value-based DEA model under Variable Returns to Scale 

is: 
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𝑀𝑎𝑥	(𝑢' ∗ 𝑦'*! + 𝜔
)

'%&

 

Subject to constraints: 

(𝑣" ∗ 𝑥"*!

$

"%&

= 1 

	∑ 𝑢' ∗ 𝑦'*)
'%& − ∑ 𝑣" ∗ 𝑥"*$

"%& + 𝜔 ≤ 0,  j = 1…j0…N 

 ur ≥ ε                              r = 1…s 

 vi ≥ ε                              i = 1…m 

ω free. 

For the above model, if the pure technical efficiency ∑ 𝑢' ∗ 𝑦'*! + 𝜔
)
'%& = 1, then the 

DMU j0 is regarded to be efficient. 

Likewise, the VRS envelopment model under output orientation can be solved as follows: 

 

Max			 𝑧 − 𝜀[(𝐼"

$

"%&

+(𝑂']
)

'%&

 

Subject to constraints: 

(𝑎* ∗ 𝑥"* = 𝑥"*!

+

*%&

− 𝐼" 									𝑖 = 1…𝑚 

			(𝑎* ∗ 𝑦'* = 𝑂'+𝑧 ∗ 𝑦'*!

+

*%&

		𝑟 = 1…𝑠			 

                                        𝑎* ≥	0, j=1…N, 𝐼", 𝑂' ≥ 0 ∀ i and r, ℎ*! free. 

                                        ε is a non-Archimedean infinitesimal. 
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The solution of the above model  shares the following information: 

1. If &
<*!
∗   equals 1 and the slack variables 𝑆"#	= 0, i =1…m, 𝑆'( = 0,   r = 1…s, then 

the DMU j0 is considered to be Pareto-efficient. 

2. The pure technical efficiency of the DMU j0  equals &
<*!
∗  

Note that the pure technical output efficiency of the DMU j0  is always greater than its 

respective technical output efficiency 

Finally, the respective VRS value-based model under output orientation can be solved as 

follows: 

𝑀𝑖𝑛	(𝑣" ∗ 𝑥"*! + 𝜔
$

"%&

 

Subject to constraints: 

(𝑢' ∗ 𝑦'*!

)

'%&

= 1 

	∑ 𝑢' ∗ 𝑦'*)
'%& − ∑ 𝑣" ∗ 𝑥"*$

"%& − 𝜔 ≤ 0,  j = 1…j0…N 

 ur ≥ ε                              r = 1…s 

 vi ≥ ε                              i = 1…m 

ω free. 

The pure technical efficiency equals &
∑ :'

∗∗8'#!(=
$
'%&

 . If &
∑ :'

∗∗8'#!(=
$
'%&

= 1, then the DMU j0 

is regarded to be efficient. 

As it is already stated, the efficiency as computed by the CRS models is referred to as 

technical efficiency. This term can further be analyzed to pure technical efficiency 

(emerges as a result of the VRS-BCC models) and scale efficiency. Denote: 
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𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑇𝐸 

𝑃𝑢𝑟𝑒	𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑃𝑇𝐸 

𝑆𝑐𝑎𝑙𝑒	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	 = 𝑆𝐸 

Then, the different terms of efficiency are related by the equation below: 

𝑇𝐸 = 𝑃𝑇𝐸 ∗ 𝑆𝐸 

4. Data, Models’ formulation and Application 

4.1 Research’s Data 

As it is already mentioned, the complex notion of sustainability consists of three different 

pillars: the economic, the environmental, and the social. Hence, in order to create a 

composite sustainability index, it is imperative to encompass and aggregate indicators 

that express all of the abovementioned dimensions.  

In order to select the appropriate data for this research's scenarios, the frequency of 

occurrence of each indicator used in the years 2021 to 2023 is taken into consideration. 

The indicators utilized in previous studies on DEA and sustainability by other scholars 

are listed below in a tabular format. 

 
Table 6 Frequency of appearance of different indicators contained in the studies about DEA and 

sustainability for the years 2021-2023 

Inputs Frequency Intermediates  Frequency Outputs  Frequency 
Labor force 13 GDP 6 GDP 9 
Energy 
consumption/use 11 GHG emmissions 1 CO2 emissions 6 

Capital 10 Eco patents 1 
Medium equivalised 
net income 2 

Population 2 
GDP per capita in PPS 
Index 1 SO2 emissions 2 

CO2 emissions 2 Final energy consumption 1 Gdp per capita 2 
Unemployment 
level/percentage of 
unemployed 2 

Total expenditure per euro 
habitant 1 

Clean water and 
sanitation 1 

Researchers in R&D  1 Waste water 1 
Affordable and clean 
energy 1 

R&D expenditure 1 Solid waste 1 Resident population 1 
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Total annual 
emissions of 
pollutants into the 
atmospheric air from 
stationary sources  1 Untreated waste water 1 

GDP pc/(GHG/area) 

1 
Total annual 
emissions of 
pollutants into the 
atmospheric air from 
mobile sources 1 Untreated solid waste  1 Employment rate 1 
Volumes of non-
treated or non-
sufficiently treated 
wastewaters that 
were discharged into 
water bodies 1 Industrial dust production 1 

High-technology 
exports 1 

Amount of land 
field waste 1 Industrial SO2 production 1 

People at risk of 
poverty or social 
exclusion 1 

Volume of fresh 
water abstraction 1 

Volume of pollutants 
generated in industrial 
waste gas 1 

Final consumption 
expenditure of 
households 1 

Gross fixed capital 
formation  1 

Treatment investment of 
industrial waste gas 1 

Terrestrial protected 
area  1 

Labor per capita 1 

Capacity of industrial 
waste gas 
treatment(previous year) 1 

Share of renewable 
energy in gross final 
energy consumption  1 

Energy use/area 1 
Number of patent 
application authorizations 1 

Greenhouse gas 
emissions (in CO2 
equivalent) 1 

Electricity/area 

1 
Number of scientific 
papers published  1 

Patent applications to 
the European patent 
office (EPO) by 
priority year 1 

Deviations temp 1 Labor force 1 
Overall life 
satisfaction 1 

Gross fixed capital 
at current prices 1 Fixed investment 1 

Satisfaction with 
living environment 1 

GDP per capita in 
PPS Index 1 Energy 1 

Percentage of females 
in total labor 
population 1 

Environmental 
investment 1 CO2 emissions 2 Energy Productivity 1 

Health investment 1 
CO2 emission intensity 
index 1 Resource productivity 1 

Investment 1 Agricultural output 1 
Gross regional product 
in current prices 1 

Electricity  1 Industrial output 1 Mortality rate 1 
Land 1 Agricultural methane CH4 1 Survival rate 1 

Water 1 Industry CO2 emissions        1 
Industrial SO2 
emissions 1 
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Energy consumption 
from coal 1   

Industrial soot 
emissions  1 

Oil 1   
Total waste water 
volume 1 

Gas sources Volume 
of Vehicles 1   

Number of middle 
school students  1 

Investment of fixed 
assets 1   Insurance covered 1 
Full time equivalent 
of R&D personnel 1   Social welfare 1 
R&D internal 
expenditures 1   

Industrial dust 
emmisions 1 

Levelized cost of 
energy 1   

Industrial SO2 
production 1 

Socio-economic 
vulnerability index 1   CH4 emissions 1 
Capital inventory 1   REAL GDP 1 

Agricultural labor 1   

Industrial value added, 
capacity of industrial 
waste gas 
treatment(current year) 1 

Agricultural land 
use 1   

Volume of pollutants 
emission in industrial 
waste gas 1 

Nitrogen fertilizer 1   

Total industrial output 
value of mining 
industry 1 

Industrial 
employment 1   Solid waste discharge 1 
Industrial energy use  1   Exhaust emissions 1 
Import of goods and 
services 1   Waste water discharge 1 
Fossil fuel 
consumption 1   Life satisfaction 1 

    

Greenhouse gases: 
Total emissions 
excluding LULUCF 1 

    
Manufacturing value 
added to GDP 1 

    

Charges for the use of 
intellectual property in 
terms of payments 1 

    

Charges for the use of 
intellectual property in 
terms of receipts  1 

    
Value of high tech 
exports 1 

    
Number of R&D 
researchers 1 
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Number of scientific 
and technical journal 
articles published 1 

    
The number of patent 
applications filed  1 

    

The number of 
trademark applications 
filed 1 

    
Life expectancy at 
birth 1 

    
Number of direct 
employees 1 

    Avoided CO2 1 
    Equity index 1 
    CO2-solid emissions 1 
    CO2-gas emissions 1 
    CO2-liquid emissions 1 
    CO2-other emissions 1 

    
Average temperature 
change 1 

    
Average rainfall 
amount 1 

    Disaster occurrence 1 

    
Compulsory education 
duration 1 

 

The analysis of the literature reveals a prevalent reliance on certain indicators as inputs 

in empirical studies. Specifically, the labor force, energy consumption, and capital were 

utilized in 13, 11, and 10 studies, respectively. The GDP has emerged as the most 

frequently employed intermediate variable, appearing in six instances. Finally, both the 

GDP and CO2 emissions were utilized as output variables in nine and six investigations, 

respectively. This pattern highlights the significance of these indicators in examining 

environmental sustainability and economic growth. 

In accordance with the aforementioned considerations and data availability, the following 

indicators were selected for this study, as presented in the ensuing table. 
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Table 7 Indicators contained in the study 

Indicator  Sustainability 

dimension  

Source  Year 

Final energy 

consumption 

Environmental Eurostat 2021 

Total labor force Economic World Bank 2021 

Gross fixed capital 

formation (Investments) 

Economic Eurostat 2021 

Overall life satisfaction Social Eurostat 2021 

GDP Economic World Bank 2021 

GHG emissions Environmental Eurostat 2021 

Note that Gross fixed capital formation (GFCF) will be used as a proxy for capital and 

GHG emissions as a proxy for CO2 emissions. Additionally, all data were retrieved from 

either Eurostat or World Bank for the year 2021, which was the last common year with 

all of the above data available for all countries under assessment. Ultimately, the DMUs 

of the research’s models will be 20 countries from the Eurozone. More specifically, the 

countries which use the euro as their official currency. 

4.2 Models’ formulation 

4.2.1 Scenarios 1a, 1b 

Aiming to select the indicators that will be employed in the first scenario, the frequency 

of appearance of the indicators used in relevant studies, as can be seen in table 6, will be 

taken into account. Based on this criterion, the inputs will include the labor force, energy 

consumption, and gross fixed capital formation (GFCF), which serves as a proxy for 

capital. Finally, the single output variable will be the gross domestic product (GDP). 
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With the purpose of constructing a composite index, the output-oriented value-based CRS 

DEA model, which is represented by the following linear program, will be employed: 

𝑀𝑖𝑛	(𝑣" ∗ 𝑥"*!

$

"%&

 

Subject to constraints: 

(𝑢'

)

'

∗ 𝑦'*! = 1 

																																																															∑ 𝑢')
' ∗ 𝑦'* − ∑ 𝑣" ∗ 𝑥"*$

"%& ≤ 0, j = 1…j0…N 

																																																																𝑢' ≥ ε, r = 1…s 

																																																																𝑣" ≥ ε, i = 1…m 

                                                        ε is non-Archimedean infinitesimal. 

In addition, except the CRS model, the  output oriented value-based VRS DEA model 

will be utilized too. The VRS model is expressed as follows: 

𝑀𝑖𝑛(𝑣" ∗ 𝑥"*! + 𝜔
$

"%&

 

Subject to constraints: 

																																																												(𝑢' ∗ 𝑦'*!

)

'%&

= 1 

																																																												∑ 𝑢' ∗ 𝑦'*)
'%& −∑ 𝑣" ∗ 𝑥"*$

"%& − 𝜔 ≤ 0,  j = 1…j0…N 

LABOR 

GFCF 

ENERGY 
DMU GDP 

Figure 3 Indicators used in scenario 1a and scenario 1b 
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                                                     ur ≥ ε                              r = 1…s 

                                                     vi ≥ ε                              i = 1…m 

                                                     ω free. 

The output-oriented models aim to maximize the output variables without increasing any 

of the inputs. In the current case, the goal of the model is to maximize the GDP of the 

countries under assessment without simultaneously increasing any of the input variables, 

namely the labor force, energy consumption, and capital.  

In contrast, the target of the input-oriented models is to decrease the input variables as 

much as possible without simultaneously decreasing the output. In the current case, those 

models aim to minimize the labor force, energy consumption, and capital without 

decreasing the GDP. 

In practical applications, governing bodies and policymakers strive to attain a dual 

objective of maximizing gross domestic product (GDP) while minimizing environmental 

pollution by reducing energy consumption. This pursuit is driven by the belief that 

economic growth, as measured by GDP, is a primary indicator of societal well-being, and 

that minimizing pollution is essential for preserving the environment.  

Regarding capital, governments aim to increase it as a means of fostering economic 

development and prosperity. Hence, the goal of the input-oriented model, which is to 

minimize it, is considered to be the opposite of the real goal. In contrast to capital and 

GDP, the labor force is a relatively stable measure that cannot be changed dramatically 

by policy implications. Therefore, the goal of the input-oriented models to minimize the 

labor force is not either meaningful or realistic. 

In light of the aforementioned analysis, the output-oriented variation was selected for this 

scenario, as well as for the remaining applications presented in this research, due to its 

greater realism compared to the input-oriented approach that aims to minimize inputs 

such as capital and labor. This variation is deemed more realistic because maximizing 

economic output without increasing inputs is a more practical objective than decreasing 

inputs without simultaneously decreasing output. 

With the goal of solving the above models, the software tool deaR - shiny was utilized. 

DeaR - shiny constitutes an interactive, user-friendly software (Benítez et al., 2021), that 
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serves as a frontend for the functions that exist in the deaR package of R (Coll-Serrano et 

al., 2023). This software tool provides a convenient and intuitive interface for 

implementing and solving various DEA models. 

The solution yielded the following results.  

 

Table 8 Results of the efficiency scores - scenario 1a and scenario 1b 

Country Efficiency CRS Rank CRS Efficiency VRS Rank VRS 

Estonia 0,633489 20 0,66028 20 

Latvia 0,682505 19 0,791653 15 

Finland 0,697725 18 0,821558 13 

Slovakia 0,72372 17 0,723736 19 

Austria 0,726322 16 0,817488 14 

Slovenia 0,735073 15 0,760237 17 

Croatia 0,737463 14 0,783098 16 

Lithuania 0,746536 13 0,755219 18 

Belgium 0,750593 12 0,877362 11 

France 0,751755 11 0,965326 10 

Malta 0,796039 10 1 1 

Italy 0,807885 9 0,975239 9 

Portugal 0,817809 8 0,843946 12 

Cyprus 0,824552 7 1 1 

Germany 0,82715 6 1 1 

Spain 0,850058 5 1 1 

Netherlands 0,898061 4 1 1 

Greece 1 1 1 1 

Ireland 1 1 1 1 

Luxembourg 1 1 1 1 
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Figure 4 Efficiency scores -  scenario 1a and scenario 1b 

Moreover, some descriptive statistics of the efficiency scores were computed. 

Table 9 Descriptive statistics of the efficiency scores - scenario 1a and scenario 1b 

Mean  Standard Deviation Minimum Maximum 

CRS VRS CRS VRS CRS VRS CRS VRS 

0,80033675 0,8887571 0,10584152 0,11663061 0,633489 0,66028 1 1 

In the context of the classical Constant Returns to Scale (CRS) model, three countries, 

namely Greece, Ireland, and Luxembourg, achieved maximum comparative efficiency. 

The remaining seventeen countries in the sample of 20 Eurozone countries obtained 

efficiency scores below the maximum level. Specifically, Cyprus, Germany, Italy, 

Netherlands, Portugal, and Spain have attained efficiency levels lower than one but 

greater than the overall mean value of 0.80033675. The remaining countries have 

obtained efficiency scores below this average value. The countries with the lower 

efficiency scores are Estonia, Latvia, and Finland, which have obtained scores of 

0.633489, 0.682505, and 0.697725, respectively. 

In the context of the classical Variable Returns to Scale (VRS) model, it is noteworthy 

that all the countries under assessment achieved higher efficiency scores compared to 

those obtained through the Constant Returns to Scale (CRS) model, as evidenced by the 

results presented in the third column. This outcome was anticipated since pure technical 
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efficiency is always equal to or greater than equivalent technical efficiency. Specifically, 

Cyprus, Germany, Malta, Netherlands, and Spain reached the efficient frontier, joining 

Greece, Ireland, and Luxembourg in the group of relatively efficient countries.  

Moreover, Italy and France were the only inefficient countries with a score greater than 

the significantly high average of 0,8887571. The remaining countries attained scores 

greater than 0,70, except Estonia,  which obtained a score of 0,66028 and exhibited the 

worst efficiency score among the 20 Eurozone countries under assessment. It is also worth 

noting that Slovakia had almost identical scores in both DEA variations, suggesting that 

it exhibits Constant Returns to Scale even under the assumption of Variable Returns to 

Scale. 

Of course, it must be stated that the above results are not robust on their own since DEA 

is an empirical technique, which is sensitive in the selection of the variables used in the 

model. Hence, in order to increase the validity of the obtained outcomes, different sets of 

indicators must be taken into consideration. 

4.2.2 Scenario 2 

As already stated, the indicators used in the first application are the most common in the 

relevant literature. Nevertheless, it seems that this group of indicators pays more attention 

to the economic and the environmental dimensions without taking into account the third 

pillar of sustainability, namely the social. Thus, in order to overcome this problem and 

simultaneously apply a form of sensitivity analysis to the model’s results, it is imperative 

to add a social variable to the existing set of indicators contained in the study. 

Upon reviewing Table 5, it becomes apparent that none of the social indicators employed 

in recent literature on DEA and sustainability have been consistently utilized. While 

indicators such as social welfare, overall life satisfaction, and people at risk of poverty or 

social exclusion have appeared in recent studies, none of them have been repeatedly 

selected. In light of this, the current research will incorporate the indicator of overall life 

satisfaction as an output variable in order to represent the social dimension of 

sustainability. Thus, the measures that are contained in scenario b as inputs are the 

following: 

1. Labor force 

2. Energy consumption and 
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3. Gross Fixed Capital Formation 

The measures that are used in scenario b as outputs are the following: 

1. GDP 

2. Overall life satisfaction 

 

 

 

 

In order to aggregate the above indicators into a composite sustainability index, the 

classical output-oriented value-based CRS DEA model will be applied again. It must be 

noted that the VRS model will not be considered since its results are not meaningful, 

given that it identifies an excessive number of countries as efficient. 

The results of the model are illustrated below. 

Table 10 Results of the efficiency scores - scenario 2 

Country Efficiency Rank 

Finland 0,697725 20 

Estonia 0,708602 19 

Austria 0,726322 18 

Slovakia 0,745746 17 

Belgium 0,750593 16 

France 0,751755 15 

Lithuania 0,77403 14 

Slovenia 0,804195 13 

Croatia 0,807591 12 

Italy 0,807885 11 

Portugal 0,817809 10 

Latvia 0,825989 9 

Germany 0,82715 8 

Spain 0,850058 7 

LABOR 

GFCF 

ENERGY 
DMU 

GDP 

LIFE 
SATISFACTION 

Figure 5 Indicators used in scenario 2 
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Netherlands 0,898061 6 

Cyprus 0,990776 5 

Greece 1 1 

Ireland 1 1 

Luxembourg 1 1 

Malta 1 1 

 

 

Figure 6 Efficiency results – scenario 2 

Furthermore, some descriptive statistics of the efficiency scores were calculated. 

Table 11 Descriptive statistics of the efficiency scores - scenario 2 

Mean  Standard Deviation Minimum Maximum 

0,839214 0,105695208 0,697725 1 

Upon analyzing the results table of scenario 2, it is evident that four countries are 

considered to be comparatively efficient. More specifically, Malta joined Greece, Ireland, 

and Luxembourg, which were efficient considering the previous scenarios, in the group 

of relatively efficient countries. Moreover, Cyprus almost reached the efficient frontier 

by obtaining a score of 0,990776, while Spain was the last country to attain a 

sustainability score above the mean value of 0,839214.  

The 12 remaining countries had a score between the average value and 0,70, except 

Finland, which obtained a score of 0,697725. Finally, Estonia and Austria, with scores of 
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0,708602 and 0,726322 correspondingly, complete the group of the worst three 

performances, according to scenario 2. 

It is noteworthy that the efficiency results obtained under scenario 2 are either equivalent 

to or exceed those obtained under scenario 1a. Specifically, the results of twelve countries 

have remained unchanged, while the remaining eight have experienced some degree of 

improvement. The most significant advancements were observed in Malta and Cyprus, 

with increases in performance scores of approximately 20 and 16 percentage units, 

respectively. 

4.2.3 Scenarios 3a, 3b, 3c 

In scenarios 1a and 1b, the efficiency of the Eurozone countries was measured, taking 

into account the most common set of indicators in the literature, while in scenario 2, the 

overall life satisfaction was added to the set with the goal of expressing the social 

dimension of sustainability. Nevertheless, both scenarios ignored a measure that has 

appeared many times in recent studies, namely  CO2 emissions. 

The problem with this measure is that it constitutes an undesirable output variable, while 

the goal of the classical output-oriented models is to maximize those variables. Hence, 

those models cannot manage that kind of indicators without the appropriate 

modifications. 

In order to face this problem, the researchers of the topic applied several approaches to 

treat the undesirable outputs. The most common ways to overcome this limitation, 

according to the works of Halkos and Petrou (2018) and Halkos and Petrou (2019), are 

summarized below: 

1. Neglecting them: Not encompassing undesirable outputs in the production 

function 

2. Employ them as input variables 

3. Utilization of non-linear models 

4. Transformation in the data of the undesirable output such as: 

a. Set (U) = -U, which was proposed by Koopmans (1951) 

b. Set (U) = -U+β (Ali and Seiford, 1990; Scheel, 2001; Seiford and Zhu, 

2001) 

c. Set f(U) = 1/U (Golany and Roll, 1989; Lovell et al., 1995).  
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5. Developing new models 

It needs to be stated that the assumption of variable returns to scale (VRS) is taken into 

consideration in all cases where the above transformations are utilized (Wojcik et al., 

2017).  

Considering the abovementioned and the data availability, the set of indicators that were 

used in scenario 3a are the following: 

The input variables of scenario 3a are: 

1. The labor force and 

2. The energy consumption 

The output variables of scenario 3a are: 

1. The GDP and 

2. The GHG emissions 

 

 

 

 

 

It is worth noting that the measures of the GFCF and the overall life satisfaction were 

excluded in scenario 3a because, together with the above variables, they resulted in most 

of the countries under assessment being considered comparatively efficient. Hence, the 

results of the model weren’t particularly useful or meaningful. Ultimately, in order to treat 

GHG emissions, which is an undesirable output, the transformation proposed by 

Koopmans (1951) will be applied, while VRS are assumed. 

The results of the output-oriented value-based VRS DEA model are the following: 

 

LABOR 

ENERGY DMU 
GDP 

GHG 

Figure 7 Indicators contained in scenario 3a 
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Table 12 Efficiency results - scenario 3a 

Country Efficiency Rank 

Croatia 0,238111 20 

Slovakia 0,241326 19 

Latvia 0,247806 18 

Lithuania 0,305483 17 

Slovenia 0,315937 16 

Estonia 0,336965 15 

Greece 0,357106 14 

Portugal 0,41132 13 

Cyprus 0,428519 12 

Finland 0,520592 11 

Austria 0,775964 10 

Spain 0,839955 9 

Italy 0,889838 8 

Belgium 0,910548 7 

Netherlands 0,923591 6 

France 1 1 

Germany 1 1 

Ireland 1 1 

Luxembourg 1 1 

Malta 1 1 
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Figure 8 Efficiency results - scenario 3a 

Some descriptive statistics of the efficiency scores are presented below. 

Table 13 Descriptive statistics of the efficiency scores – scenario 3a 
Mean  Standard 

Deviation 

Minimum Maximum 

0,637153 0,315951 0,238111 1 

As it is clearly noticed, the range of the efficiency scores has been significantly increased 

compared to the previous scenarios. Their average value is 0,637153, while their 

minimum value is 0,238111. Furthermore, five countries obtained an efficiency score 

equal to 1. Ireland and Luxembourg are the only countries that remain efficient in all 

scenarios so far, while Malta, which was efficient in scenario 2, together with France and 

Germany, complete the group of countries that reached the efficient frontier according to 

scenario 3. 

Worth mentioning is the difference in the scores of the 10th and the 11th countries, which 

are Austria and Finland, respectively. More precisely, Austria attained a score of 

0,775964, while Finland had a score of 0,520592. In addition, the three worst 

performances belong to Latvia, Slovakia, and Croatia, which obtained scores of 0,247806, 

0,241326, and 0,238111, correspondingly. Ultimately, another interesting finding of the 

above results is the worsening of  Greece’s performance, which was efficient in the 

previous scenarios, while in scenario 3, it attained a score of 0,357106. 

As already mentioned, DEA is highly sensitive to the selection of variables included in 

the model. This fact becomes apparent, considering the results of the first three scenarios, 
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where countries like Greece and Cyprus exhibited high scores in the first two, while their 

performances worsened a lot with the change of the variables that were utilized in 

scenario 3 (even under the assumption of variable returns to scale). On the contrary, with 

the new set of variables, countries such as France and Germany improved their 

performance compared to the previous scenarios and became efficient. 

Moreover, the GHG emissions will be treated as an input variable to explore how the 

scores of scenario 3a will react. Therefore, the CRS model and the VRS model under 

output orientation will be employed. The following measures are used as inputs in 

scenarios 3b and 3c: 

1. Labor force 

2. Energy consumption 

3. GHG emissions 

Lastly, Gross domestic product constitutes the only output variable. 

 

 

 

 

The solutions of the models under the scenarios 3b and 3c yielded the following results. 

 
Table 14 Results - scenario 3b, 3c 

Country Efficiency CRS Rank CRS Efficiency VRS Rank VRS 

Latvia 0,230326 20 0,291663 20 

Croatia 0,274901 19 0,39653 15 

Slovenia 0,287642 18 0,327298 18 

Lithuania 0,295834 17 0,305483 19 

Slovakia 0,304173 16 0,359073 16 

Estonia 0,306278 15 0,336965 17 

Cyprus 0,365764 14 0,428519 14 
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GHG 
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Figure 9 Indicators used in scenarios 3b and 3c 
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Greece 0,423747 13 0,46017 13 

Portugal 0,567479 12 0,678017 11 

Malta 0,582819 11 1 1 

Finland 0,612625 10 0,674463 12 

Austria 0,795982 9 0,8878 9 

Spain 0,841092 8 0,858539 10 

Belgium 0,881018 7 0,953598 6 

Italy 0,895023 6 0,900479 8 

Netherlands 0,940875 5 0,948911 7 

France 1 1 1 1 

Germany 1 1 1 1 

Ireland 1 1 1 1 

Luxembourg 1 1 1 1 

 

 
Figure 10 Results - scenarios 3b, 3c 

In addition, some descriptive statistics of the efficiency scores were computed. 
Table 15 Descriptive statistics of the scores - scenarios 3b,3c 

Mean  Standard Deviation Minimum Maximum 

CRS VRS CRS VRS CRS VRS CRS VRS 

0,630279 0,690375 0,298599 0,290985 0,230326 0,291663 1 1 
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Upon analyzing the results of scenarios 3b and 3c, it is evident that they are highly similar 

to those of scenario 3a. This conclusion is also corroborated by the correlation table 

below, which indicates a very strong positive correlation between their scores.  

Table 16 Correlation coefficients - scenarios 3a, 3b, 3c 

  Scenario 3a Scenario 3b Scenario 3c 
Scenario 3a  1 

  

Scenario 3b  0,93928802 1 
 

Scenario 3c 0,97326406 0,9514532 1 
 

Furthermore, Luxembourg, Ireland, Germany, and France reached the efficient boundary 

in all three scenarios, while Malta joined this group in scenarios 3a and 3c under the 

assumption of variable returns to scale. In addition, despite being inefficient, the 

Netherlands, Italy, Belgium, Spain, and Austria demonstrate high scores compared to the 

remaining countries. Lastly, Latvia, Slovenia, Slovakia, Croatia, and Lithuania exhibited 

the five worst performances across all three variations. 

It is noteworthy that Malta achieved a score of 0.582819 in scenario 3b under the 

assumption of constant returns to scale, while according to the VRS variations of 

scenarios 3a and 3c, it was deemed efficient. Finally, the similarity in scores and rankings 

across all three scenarios increases the robustness of the obtained results. 

4.2.4 Scenario 4 

An attempt was made to apply a form of sensitivity analysis to the results of scenario 1 

by changing the variables that are contained in the DEA model, using models under 

scenarios 2, 3a, 3b, and 3c. In order to add even more perspectives and test the reliability 

of the obtained outcomes, a change in the variation of the DEA model would be valuable. 

The classical models that were used above are radial. These models deal with proportional 

changes in inputs and outputs, meaning that they reflect the proportional maximum output 

(input) extension (depletion) rate, which is mutual to all outputs (inputs). Nevertheless, 

in real-life situations, not all inputs and outputs behave in a proportional manner. (Tone, 

2017) 

For instance, some of the variables that are included in the current study are substitutional 

and do not change proportionally. Finally, another demerit of the classical radial DEA 

models is that they neglect the slacks. Hence, if the remaining non-radial slacks have a 
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significant role in the estimation of efficiency, the classical approaches may lead to poor 

and inaccurate results.  

With the aim of overcoming those limitations, non-radial approaches will be utilized in 

the current study. Non-radial approaches in DEA are the slack-based measure (SBM) 

models, first proposed by Tone (2001), which deal directly with slacks. The SBM model 

has three different variations, namely input, output, and non-oriented, while the current 

study will utilize the non-oriented approach, which combines the other two models (Zhou 

et al., 2014; Chang et al., 2013; Tone, 2010). 

The non-oriented SBM DEA model is represented by the following program: 

 

𝜌!>?@(𝑥!, 𝑦!) = 𝑚𝑖𝑛A,)+,),
1 − (1𝑚)∑ (𝑠"#/𝑥"!)$

"%&

1 − (1𝑠)∑ (𝑠'(/𝑦'!))
'%&

 

Subject to constraints 

																																													𝑥"! = ∑ 𝑥"*C
*%& ∗ 𝜆* + 𝑠"#      i = 1, …, m 

																																													𝑦'! = ∑ 𝑦'*C
*%& ∗ 𝜆* − 𝑠'(     r = 1, …, s 

																																													𝜆* ≥ 0	∀𝑗, 𝑠"# ≥ 0	∀𝑖, 𝑠'( ≥ 0	∀𝑟. 

The indicators that are used in scenario 4, are the same as those of scenario 1: 

 

 

 

 

 

The results of the model are presented below. 
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Figure 11 Indicators contained in scenario 4 
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Table 17 Efficiency results - scenario 4 

Country Efficiency Rank 

Estonia 0,45302 20 

Latvia 0,47972 19 

Slovakia 0,50844 18 

Croatia 0,51139 17 

Lithuania 0,51598 16 

Slovenia 0,52508 15 

Finland 0,55833 14 

Cyprus 0,56238 13 

Portugal 0,56746 12 

Malta 0,58371 11 

France 0,58521 10 

Austria 0,58607 9 

Italy 0,60165 8 

Spain 0,60823 7 

Belgium 0,61674 6 

Germany 0,63278 5 

Netherlands 0,70781 4 

Greece 1 1 

Ireland 1 1 

Luxembourg 1 1 
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Figure 12 Efficiency results - scenario 4 

In addition, some descriptive statistics of the efficiency scores were calculated. 

Table 18 Descriptive statistics of the efficiency scores - scenario 4 

Mean Standard 

deviation  

Minimum Maximum 

0,6302 0,169313 0,45302 1 

The correlation coefficient between the efficiency scores obtained in scenarios 1a and 4 

is 0.9278097, indicating a strong positive correlation between their outcomes. This 

finding implies that the SBM DEA model, applied in scenario 4, provides similar 

efficiency rankings to the CCR DEA model, applied in scenario 1a. This similarity in 

ranking may provide policymakers and governing bodies with greater confidence in the 

accuracy and reliability of the efficiency rankings obtained from either model. 

In both scenarios 1a and 4, Greece, Luxembourg, and Ireland were identified as efficient 

countries, indicating that they are utilizing their resources optimally with no identifiable 

inefficiencies. Conversely, Latvia and Estonia were found to have the two worst 

performances in both scenarios. This consistency in efficiency rankings between the two 

scenarios for these countries suggests that they are consistently underperforming in terms 

of resource utilization. Additionally, other countries, such as the Netherlands and 

Slovenia, have identical efficiency rankings in both models. 

Nevertheless, of course, there are significant differences between those scenarios. For 

example, comparing the efficiency scores obtained in scenarios 1a and 4 reveals that 
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scenario 4 exhibits a greater range of scores. Furthermore, the mean and minimum values 

of scenario 4 are significantly lower than the corresponding values of scenario 1a. This 

finding suggests that the SBM DEA model, employed in scenario 4, generates a broader 

distribution of efficiency scores and lower overall efficiency scores compared to the CCR  

DEA model, employed by scenario 1a.  

Moreover, as already mentioned, the SBM DEA model deals directly with slacks, namely 

the input excess and output shortfall. Hence, a DMU is considered efficient if and only if 

its ρ value is equal to 1. This condition is equivalent to the slack variables associated with 

both inputs and outputs being equal to zero in the optimal solution of the program. If a 

DMU has remaining non-radial slacks in its optimal solution, then it is deemed SBM 

inefficient. 

In the context of the current case study, the countries of Greece, Luxemburg, and Ireland 

lie on the efficient frontier, indicating that these nations are optimally utilizing their 

“resources”. In contrast, the remaining countries exhibit input and/or output 

inefficiencies. This fact implies that these inefficient countries may potentially achieve 

lower GDP than what is theoretically possible or attain a GDP value with greater energy 

consumption, GFCF, or labor force than necessary. 

4.2.5 Scenario 5 

Given that only scenario 2 encompasses all three pillars of sustainability indicators, there 

arises a necessity to consider an additional scenario that incorporates the social dimension 

of sustainability. The primary objective is to assess the reliability and robustness of the 

results. To conduct a sensitivity analysis on the outcomes of scenario 2, a specific input 

variable, precisely the labor force, will be excluded. Consequently, the inputs for scenario 

5 are the subsequent measures: 

1. Energy consumption and 

2. Gross Fixed Capital Formation 

The outputs for scenario 5 include the subsequent measures: 

1. Gross domestic product and  

2. Overall life satisfaction 
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The same value-based CRS DEA model utilized in scenario 2 will be employed in 

scenario 5 to maintain consistency and facilitate a direct comparison of the results. It must 

be stated that the VRS variation will not be employed because it leads to many countries 

achieving maximum efficiencies. Hence, its results are meaningless. 

The obtained results of the model are the following: 
Table 19 Results - scenario 5 

Country Efficiency Rank 

Finland 0,669537 20 

Estonia 0,705811 19 

Austria 0,726322 18 

Slovakia 0,738531 17 

Belgium 0,750593 16 

France 0,751755 15 

Lithuania 0,77403 14 

Slovenia 0,785867 13 

Croatia 0,802118 12 

Italy 0,807885 11 

Portugal 0,817809 10 

Latvia 0,825989 9 

Germany 0,82715 8 

Spain 0,850058 7 

Netherlands 0,898061 6 

Cyprus 0,990776 5 

Greece 1 1 

Ireland 1 1 

Luxembourg 1 1 

Malta 1 1 
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Figure 13 Indicators employed in scenario 5 
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Figure 14 Results - scenario 5 

Moreover, some descriptive statistics of the efficiency scores were computed 

Table 20 Descriptive statistics - scenario 5 

Mean Standard 
deviation 

Minimum Maximum 

0,836115 0,108814 0,669537 1 

Upon examination of the results table and descriptive statistics table of scenario 5 and in 

comparison to those of scenario 2, it becomes apparent that the two scenarios exhibit 

highly similar results. This observation is further substantiated by calculating the 

correlation coefficient between scenarios 2 and 5, which yields a value of 0.99807049. 

Consequently, it can be inferred that although scenario 5 omits the indicator of labor 

force, it still produces almost identical efficiency scores to those obtained in scenario 2. 

This finding indicates that the variable of labor could be unnecessary for constructing the 

index of scenario 2. 

More precisely, 14 countries obtained the same outcomes in both scenarios. Furthermore, 

Croatia, Estonia, Finland, Slovakia, and Slovenia experienced only minor reductions in 

their scores when the indicator of the labor force was omitted from scenario 2. The 

rankings derived from both scenarios are also identical, as demonstrated in Table 21 

below. This similarity in results and rankings between scenarios 2 and 5 is indicative of 

the robustness and reliability of the obtained sustainability scores. 
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Table 21 Rankings - scenario 2 and scenario 5 

Country Rank 2 Rank 5 

Austria 18 18 

Belgium 16 16 

Croatia 12 12 

Cyprus 5 5 

Estonia 19 19 

Finland 20 20 

France 15 15 

Germany 8 8 

Greece 1 1 

Ireland 1 1 

Italy 11 11 

Latvia 9 9 

Lithuania 14 14 

Luxembourg 1 1 

Malta 1 1 

Netherlands 6 6 

Portugal 10 10 

Slovakia 17 17 

Slovenia 13 13 

Spain 7 7 

 

4.2.6 Scenario 6 
Building upon the concept introduced in scenario 5, scenario 6 aims to investigate the 

potential impact of a second transformation of variables on the outcomes of scenario 2. 

The objective is to examine whether altering the underlying structure of the data will 

significantly alter the results obtained in scenario 2. This analysis will provide insights 

into the sensitivity of the model employed in scenario 2 to changes in variables and will 

help in assessing its findings' robustness. 

Within the context of scenario 6, the following set of input variables will be used: 

1. The Energy consumption and 
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2. The labor force 

As outputs, the following set of indicators will be used. 

1. The gross domestic product and  

2. The overall life satisfaction 

 

 

 

 

 

Furthermore, the  value-based CRS DEA model was employed once more, and the 

ensuing results were acquired. 
Table 22 Efficiency results - scenario 6 

Country Efficiency Rank 

Slovakia 0,263626 20 

Croatia 0,293382 19 

Greece 0,314298 18 

Lithuania 0,351167 17 

Portugal 0,352899 16 

Latvia 0,358055 15 

Spain 0,393006 14 

Italy 0,411926 13 

Slovenia 0,419678 12 

Finland 0,4492 11 

France 0,452294 10 

Germany 0,464197 9 

Austria 0,482323 8 

Estonia 0,483124 7 

Cyprus 0,51729 6 

Belgium 0,519915 5 

Netherlands 0,523494 4 

Ireland 1 1 
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DMU 
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SATISFACTION 

Figure 15 Indicators utilized in scenario 6 
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Luxembourg 1 1 

Malta 1 1 

It must be noted that the VRS variation will not be applied because it leads to many 

countries attaining very high or maximum efficiency scores. Hence, its results are 

meaningless.  

 
Figure 16 Efficiency rankings -  scenario 6 

Moreover, some descriptive statistics of the efficiency scores were computed. 

Table 23 Descriptive statistics of the efficiency scores - scenario 6 

Mean Standard deviation Minimum Maximum 

0,502494 0,227168 0,263626 1 

Upon examination of the results of scenario 6, it is evident that its efficiency scores differ 

significantly from those of scenarios 2 and 5, which are identical. This fact highlights the 

sensitivity of efficiency scores in response to variable changes. Specifically, 17 countries 

exhibited notably lower efficiency scores when compared to scenarios 2 and 5. 

The above outcome suggests that although Eurozone countries may achieve favorable 

outputs in terms of the level of their available gross fixed capital formation (GFCF), they 

do not get close to their potential output in terms of their available labor force. This fact 

implies a potential misallocation of resources or inefficiencies in the utilization of labor, 

which could hinder countries' economic growth and competitiveness. Further analysis is 
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required to determine the underlying causes and potential policy interventions to address 

this issue. 

Although the majority of countries achieved lower efficiencies in scenario 6, Ireland, 

Luxembourg, and Malta remained at the efficient frontier. This finding increases the 

robustness of the results of the previous scenarios and suggests that these countries could 

employed as role models for the rest of the countries. 

In the context of the disparity in rankings between scenarios 2, 5, and scenario 6, a 

redistribution is evident, which can be attributed to the fact that certain countries 

experienced larger decreases than others.  

4.2.7 Scenario 7 
In an attempt to further evaluate the sensitivity of scenario 2 results, the input variables 

will be altered again in scenario 7. More specifically, the following indicators will be 

incorporated as inputs: 

1. Labor force and 

2. Gross fixed capital formation 

The following measures were used as outputs in scenario 7: 

1. Gross domestic product and 

2. Overall life satisfaction 

 

 

 

 

It is noteworthy that scenario 7 does not incorporate environmental variables following 

the subtraction of energy consumption, thereby indicating that this index primarily 

measures socio-economic efficiency rather than sustainability among the members of the 

Eurozone under assessment. 
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Figure 17 Indicators used in scenario 7 
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Furthermore, the same output-oriented classic CRS was employed and yielded the 

following results. 
 

Table 24 Efficiency results - scenario 7 

Country Efficiency Rank 

France 0,664814 20 

Austria 0,669169 19 

Finland 0,697725 18 

Estonia 0,708602 17 

Belgium 0,710676 16 

Slovakia 0,745746 15 

Italy 0,746079 14 

Portugal 0,746269 13 

Germany 0,752451 12 

Lithuania 0,763435 11 

Spain 0,774323 10 

Netherlands 0,800506 9 

Slovenia 0,804195 8 

Croatia 0,807591 7 

Ireland 0,817882 6 

Latvia 0,825989 5 

Cyprus 0,990776 4 

Greece 1 1 

Luxembourg 1 1 

Malta 1 1 

The VRS variation was not applied because it resulted in many countries being deemed 

efficient. Hence, its results are not meaningful. 
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Figure 18 Efficiency results of scenario 7 

Moreover, some descriptive statistics of the efficiency scores were computed. 

 
Table 25 descriptive statistics - scenario 7 

Mean Standard deviation Minimum Maximum 

0,801311 0,110647 1 0,664814 

Upon analyzing the results of scenario 7, it is evident that there is a similarity with those 

of scenarios 2 and 5. The high correlation coefficients between their scores support this 

similarity. To be more specific, the results of scenario 7 exhibit correlation coefficients 

of 0,89588353 and 0,88546982 with those of scenarios 2 and 5, respectively, revealing a 

strong positive correlation between them. Despite that, as already mentioned, scenario 7 

measures socio-economic efficiency and not sustainability. Hence, the results of those 

scenarios must not be compared further. 

Regarding the scenario’s 7 scores, Malta, Luxembourg, and Greece reached the efficient 

boundary, while Cyprus was the best inefficient country with a score of 0,990776. 

Furthermore, Latvia, Ireland, Croatia, and Slovenia exhibited scores higher than the 

average value of 0,801311. The rest of the countries obtained scores above 0,70, except 

Finland, Austria, and France, which attained scores of 0,697725, 0,669169, and 0,664814, 

respectively.  

Finally, it is worth noting that despite Ireland being efficient in all variations so far, it is 

deemed inefficient according to the scores of scenario 7  
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5. Discussion 

In the preceding section, two DEA variations under 10 different scenarios were 

implemented, aiming to produce composite efficiency indicators and conduct a 

comparative assessment of the performances of Eurozone countries. These scenarios can 

be classified into three distinct groups. The first group, consisting of scenarios 1a, 1b, 3a, 

3b, 3c, and 4, includes economic and environmental variables, whereas scenarios 2, 5, 

and 6 integrate variables representing all three dimensions of sustainability. Finally, 

scenario 7 uses economic and social indicators. 

Consequently, the composite indices constructed under the scenarios of the first group 

serve to quantify the eco-efficiency of 20 members of the Eurozone. In contrast, the 

scenarios belonging to the second group provide a gauge of the sustainability efficiency 

of those members. Of course, scenario 7 measures the socio-economic efficiency of the 

countries under assessment. 

All scenarios of the study are summarized in table 26 below. 
Table 26 Scenarios of the study  

Scenario Inputs Outputs  Index RTS Orientation DEA variation 

1a labor, energy, GFCF GDP Eco-efficiency CRS output classic 

1b labor, energy, GFCF GDP Eco-efficiency VRS output classic 

2 labor, energy, GFCF GDP, life satisfaction Sustainability CRS output classic 

3a labor, energy GDP, GHG Eco-efficiency VRS output classic 

3b labor, energy, GHG GDP Eco-efficiency CRS output classic 

3c labor, energy, GHG GDP Eco-efficiency VRS output classic 

4 labor, energy, GFCF GDP Eco-efficiency CRS output SBM 

5 energy, GFCF GDP, life satisfaction Sustainability CRS output classic 

6 labor, energy GDP, life satisfaction Sustainability CRS output classic 

7 labor , GFCF GDP, life satisfaction Socio-economic CRS output classic 

A thorough and holistic analysis of each category of indices is necessary to determine the 

efficient and inefficient countries and to acquire further information. More specifically, 

the scores obtained in each scenario will be scrutinized and correlated to identify any 

significant relationships. The following tables summarize the results of the scores of the 

eco-efficiency scenarios and their respective correlation coefficients. 
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Table 27 Scores obtained in the eco-efficiency scenarios 

Country Scenario 1a Scenario 1b Scenario 3a Scenario 3b Scenario 3c Scenario 4 

Austria 0,726322 0,817488 0,775964 0,795982 0,8878 0,58607 

Belgium 0,750593 0,877362 0,910548 0,881018 0,953598 0,61674 

Croatia 0,737463 0,783098 0,238111 0,274901 0,39653 0,51139 

Cyprus 0,824552 1 0,428519 0,365764 0,428519 0,56238 

Estonia 0,633489 0,66028 0,336965 0,306278 0,336965 0,45302 

Finland 0,697725 0,821558 0,520592 0,612625 0,674463 0,55833 

France 0,751755 0,965326 1 1 1 0,58521 

Germany 0,82715 1 1 1 1 0,63278 

Greece 1 1 0,357106 0,423747 0,46017 1 

Ireland 1 1 1 1 1 1 

Italy 0,807885 0,975239 0,889838 0,895023 0,900479 0,60165 

Latvia 0,682505 0,791653 0,247806 0,230326 0,291663 0,47972 

Lithuania 0,746536 0,755219 0,305483 0,295834 0,305483 0,51598 

Luxembourg 1 1 1 1 1 1 

Malta 0,796039 1 1 0,582819 1 0,58371 

Netherlands 0,898061 1 0,923591 0,940875 0,948911 0,70781 

Portugal 0,817809 0,843946 0,41132 0,567479 0,678017 0,56746 

Slovakia 0,72372 0,723736 0,241326 0,304173 0,359073 0,50844 

Slovenia 0,735073 0,760237 0,315937 0,287642 0,327298 0,52508 

Spain 0,850058 1 0,839955 0,841092 0,858539 0,60823 

 
Table 28 Correlation coefficients -  eco-efficiency scenarios 

  Scenario 1a Scenario 1b Scenario 3a Scenario 3b Scenario 3c Scenario 4 
Scenario 1a 1      
Scenario 1b 0,77402841 1     
Scenario 3a 0,45450475 0,73634803 1    
Scenario 3b 0,4993233 0,69091547 0,93928802 1   
Scenario 3c 0,45524996 0,71365375 0,97326406 0,9514532 1  
Scenario 4 0,92780972 0,63620642 0,44178086 0,50148007 0,44240911 1 

 In addition, the rankings of every eco-efficiency scenario are summarized in table 29 

below. 
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Table 29 Rankings - eco-efficiency scenarios 

Country Rank 1a Rank 1b Rank 3a Rank 3b Rank 3c Rank 4 
Austria 16 14 10 9 9 9 

Belgium 12 11 7 7 6 6 

Croatia 14 16 20 19 15 17 

Cyprus 7 1 12 14 14 13 

Estonia 20 20 15 15 17 20 

Finland 18 13 11 10 12 14 

France 11 10 1 1 1 10 

Germany 6 1 1 1 1 5 

Greece 1 1 14 13 13 1 

Ireland 1 1 1 1 1 1 

Italy 9 9 8 6 8 8 

Latvia 19 15 18 20 20 19 

Lithuania 13 18 17 17 19 16 

Luxembourg 1 1 1 1 1 1 

Malta 10 1 1 11 1 11 

Netherlands 4 1 6 5 7 4 

Portugal 8 12 13 12 11 12 

Slovakia 17 19 19 16 16 18 

Slovenia 15 17 16 18 18 15 

Spain 5 1 9 8 10 7 

In summary, the results of the correlation analysis of the eco-efficiency scenarios reveal 

that their scores exhibit either moderate or high correlation with one another. Hence, it 

could be concluded that their results are robust. Nevertheless, aiming to increase the 

validity and reliability of the findings, the scores obtained by all scenarios will be taken 

into account simultaneously. 

In light of the tables above, it is observed that the countries of Luxembourg and Ireland 

attained the maximum efficiency score across all scenarios despite the changes in 

indicator sets and DEA variations employed. This fact suggests that these countries may 

be considered relatively efficient in terms of eco-efficiency. As a result, they could serve 

as exemplary models for other Eurozone countries seeking to enhance their eco-efficiency 

performance. 
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The implications of this finding are significant, as it highlights the potential benefits that 

can be derived from adopting best practices and strategies employed by these countries 

in their pursuit of sustainable development. Policymakers and governing bodies in other 

Eurozone countries may benefit from studying the experiences of Luxembourg and 

Ireland in order to identify opportunities for improvement and optimization in their own 

policies and operations. 

Furthermore, countries such as Germany and the Netherlands obtained relatively high 

scores across all scenarios. Hence, even though they are not efficient, they still exhibit 

decent sustainability performance compared to the rest of the Eurozone members. 

Ultimately, countries such as Croatia, Finland, Latvia, Lithuania, Slovakia, and Slovenia 

exhibited the poorest performances across all eco-efficiency scenarios. These results 

suggest that these countries require significant improvements in their policies to enhance 

their overall eco-efficiency. 

Following the assessment of the eco-efficiency performance of the Eurozone members 

under evaluation, it is also imperative to evaluate their sustainability performance, which 

was the initial goal of the current research. Hence, in order to do so, the sustainability 

indicators generated in scenarios 2, 5, and 6 must be analyzed thoroughly. The following 

tables present a summary of the scores obtained from the sustainability indicators and 

their respective correlation coefficients.  
Table 30 Scores obtained by the sustainability scenarios 

Country Scenario 2  Scenario 5 Scenario 6 

Austria 0,726322 0,726321906 0,482322867 

Belgium 0,750593 0,750592968 0,519915358 

Croatia 0,807591 0,80211759 0,293382465 

Cyprus 0,990776 0,990775877 0,517290433 

Estonia 0,708602 0,705810941 0,483124463 

Finland 0,697725 0,669536748 0,449199975 

France 0,751755 0,751755349 0,452294263 

Germany 0,82715 0,827150384 0,464196522 

Greece 1 1 0,314298376 

Ireland 1 1 1 

Italy 0,807885 0,807884957 0,411926084 

Latvia 0,825989 0,825988915 0,358054618 
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Lithuania 0,77403 0,774029754 0,351166752 

Luxembourg 1 1 1 

Malta 1 1 1 

Netherlands 0,898061 0,898061086 0,52349443 

Portugal 0,817809 0,8178086 0,352899244 

Slovakia 0,745746 0,738530619 0,263626178 

Slovenia 0,804195 0,785866968 0,419677855 

Spain 0,850058 0,850058229 0,393006064 

 

Table 31 Correlations coefficients between the scores of the sustainability scenarios. 

  Scenario 2 Scenario 5 Scenario 6 
Scenario 2 1   
Scenario 5 0,99807049 1  
Scenario 6 0,60788387 0,60311134 1 

In addition, the rankings of the sustainability scenarios are presented below. 
Table 32 Rankings of the sustainability indices. 

Country Rank 2 Rank 5 Rank 6 
Austria 18 18 8 

Belgium 16 16 5 

Croatia 12 12 19 

Cyprus 5 5 6 

Estonia 19 19 7 

Finland 20 20 11 

France 15 15 10 

Germany 8 8 9 

Greece 1 1 18 

Ireland 1 1 1 

Italy 11 11 13 

Latvia 9 9 15 

Lithuania 14 14 17 

Luxembourg 1 1 1 

Malta 1 1 1 

Netherlands 6 6 4 

Portugal 10 10 16 
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Slovakia 17 17 20 

Slovenia 13 13 12 

Spain 7 7 14 

The correlation analysis reveals that the results of the different sustainability scenarios 

exhibit either medium or high correlation, thus enhancing the robustness of the outcomes. 

As already mentioned, the divergence observed in the outcomes of scenario 6 compared 

to those of scenarios 2 and 5 could be attributed to the inability of certain countries to get 

close to their potential output levels with regard to their available labor force. 

Moreover, to further enhance the validity of the current analysis, the Eurozone members 

will be evaluated, taking into account the results of all scenarios simultaneously. The 

countries that consistently attain maximum scores across all scenarios can be considered 

exemplary in terms of sustainability. Based on this criterion, Ireland, Luxembourg, and 

Malta emerged as the most efficient countries in the current study.  

Therefore, these nations could serve as role models for other Eurozone members striving 

to improve their sustainability performance. This fact highlights the potential for 

knowledge transfer and best practice sharing among Eurozone countries to promote 

sustainable development. These results suggest that these countries' experiences and 

strategies could provide valuable insights for other Eurozone members seeking to 

enhance their sustainability performance. 

In addition, it is noteworthy that Greece reached the efficient frontier in the first two 

variations but ranked third worst according to scenario 6. This finding could indicate that 

Greece does not use its labor force resources effectively. Furthermore, countries such as 

Cyprus and the Netherlands, although they were deemed inefficient, attained high 

performances across all scenarios compared to the rest of the Eurozone members. 

Finally, it is evident that certain countries, such as Austria, Estonia, Finland, and Slovakia, 

exhibited poor results across all variations. This fact suggests that these nations require a 

comprehensive review of their policies in order to improve their sustainability outcomes. 

6. Conclusions 

As was already mentioned in the introduction, the twofold purpose of the current study  

is: 



 94 

1. To propose the use of a mathematical programming technique, namely data 

envelopment analysis, with the aim of aggregating and weighting a multitude of 

economic, environmental, and social indicators into composite sustainability 

indices in such a way that reduces the potential biases that may arise from 

assigning weights to them, considering different sets of sub-indicators and 

different DEA variations 

2. To utilize the acquired results of the DEA models to evaluate the sustainability 

efficiency of 20 Eurozone members comparatively and eventually share valuable 

information for analysts, policymakers, and governing bodies that aim to enhance 

the sustainability performance of those countries  

In order to accomplish this goal, a series of steps was developed and implemented. More 

specifically, a literature review about DEA and sustainability for the years 2021 to 2023 

was performed, aiming to identify the key indicators employed by the authors to gauge 

sustainability performance. This review discovers several significant findings from the 

recent literature. Firstly, it highlighted the absence of a unified definition of sustainability, 

which decreases the robustness of the obtained results and consequently affects the 

policymaking that arises from them. Nevertheless, the three-dimensional approach 

(economic, environmental, and social), which the authors have widely accepted, was 

adopted in the current study. 

Despite the acceptance of the three-pillar approach, a multitude of different sustainability 

indicators were found in the literature. This phenomenon can be attributed to the fact that 

each author incorporates individual perceptions about economic, environmental, and 

social variables. In addition, several authors tried to encompass R&D, technology, and 

innovation indicators in their models, increasing further the variety of indicators 

employed in the relevant literature. All of the above eventually decrease the robustness 

of the obtained results since every author measures sustainability or sustainable 

development in a slightly different way.  

The next step was the implementation of DEA to construct composite sustainability 

indices. In order to choose the variables of the study, the frequency of appearance of the 

indicators used in the literature about DEA and sustainability for the years 2021 to 2023 

was taken into consideration. Eventually, 2 DEA models (under 10 different scenarios) 

that generated 10 composite indices were implemented. Afterwards, those indices were 
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divided into six eco-efficiency, three sustainability indicators, and one socio-economic 

indicator. 

After the presentation and interpretation of the acquired results, all of the sustainability 

scenarios were taken into account simultaneously to assess the relative efficiency of 

Eurozone members. The main results yielded from this analysis are summarized below: 

1. Ireland, Luxembourg, and Malta reached the efficient boundary across all three 

sustainability scenarios despite the changes in indicators. Thus, it could be said 

that these countries are comparatively efficient, and so they could act as 

exemplary models to the rest of the Eurozone members. 

2. In light of the worsening in sustainability scores of 17 countries in scenario 6 

compared to the previous sustainability scenarios, it could be concluded that most 

of the Eurozone members do not get close to their potential output levels (GDP 

and Overall Life Satisfaction) proportional to their available labor force. 

3. Finally, countries such as Austria, Estonia, Finland, and Slovakia exhibited low 

sustainability efficiency scores across all variations. This finding indicates an 

urgent need for them to reconsider their policies aiming to enhance their 

sustainability performance. 

Considering and analyzing the six eco-efficiency scenarios in a similar manner, the 

following main results are acquired: 

1. Ireland and Luxembourg obtained the maximum efficiency across all six 

variations that used different sets of indicators and different DEA variations 

(classic and slack-based measure approaches). Thus, it could be concluded that 

these countries are relatively efficient, and so they could act as exemplary models 

to the rest of the Eurozone members. 

2. Moreover, the countries of Croatia, Finland, Latvia, Lithuania, Slovakia, and 

Slovenia obtained low eco-efficiency scores across all scenarios. This finding 

suggests that there is an imperative need for these countries to reevaluate, replan, 

and eventually improve their eco-efficiency policies. 

Although efforts were made to increase the conclusions’ robustness, this study possesses 

certain limitations. To be more specific, DEA weighs the indicators objectively. 

However, under the variations used, it does so in a way that assigns different weights to 

each country. In addition, the number of parameters used in this study’s models is 
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constrained by the number of countries under assessment. If the number of inputs and 

outputs were increased further, it would result in more DMUs being deemed as efficient, 

and the obtained scores would not be meaningful. This constraint makes it challenging to 

include indicators that represent all dimensions of sustainability, resulting in using only 

one social variable (overall life satisfaction) and zero R&D variables.  

Furthermore, treating the transformation process as a black box is another demerit of the 

current research. Moreover, the study concerns data for the year 2021. It would be 

beneficial to apply a dynamic DEA model that takes into account several years to provide 

a comprehensive evaluation of the countries under assessment. All of the above 

eventually decrease the validity of the research’s outcomes. 

One potential direction for further research that would help to overcome some of the 

above limitations is the implementation of two-stage DEA models. This approach would 

not only provide a more detailed explanation of the transformation process but also allow 

for the inclusion of additional parameters without artificially inflating the scores of the 

DMUs. Moreover, the integration of machine learning, game theory or other quantitative 

techniques alongside DEA could enhance the results’ validity and simultaneously provide 

additional essential information. 

In summary, the current thesis proposes a methodological framework for developing 

composite sustainability indicators, which can have several practical applications in 

various contexts. For example, this framework could serve as a supplementary instrument 

for evaluating the sustainability performance of countries that are going to adopt the euro 

currency by incorporating them into the set of DMUs. In addition, the outcomes of this 

approach could also identify efficient countries and enable less efficient countries to 

analyze their policies with the aim of improving their performances. Finally, in light of 

the above, DEA and the indicators that it generates constitute beneficial quantitative tools 

in the arsenal of policymakers and governing bodies that can assist them in making more 

informed decisions and creating more sustainable policies. 
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