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Abstract

Evangelia Karageorgou
FORECASTING SPAIN’S ELECTRICITY LOAD: A COMPARATIVE ANALYSIS

OF CLASSICAL TIME SERIES, NEURAL NETWORKS, AND DEEP
LEARNING MODELS

2022-2023
Dr. Konstantinos Tarabanis

Master in Business Analytics and Data Science

The objective of this research is to implement and analyze various forecasting

models, including statistical, machine learning, and deep learning approaches, to

forecast the electricity load in Spain from 2015 to 2020. Utilizing time-series data

sourced from the Open Power System Data (OPSD) project, the study leverages the

historical forecast feature of the Darts library, highlighting its retrain functionality

for enhanced accuracy.

The study involved setting up and testing different models in four distinct config-

urations to investigate the role of past covariates and encoders on the accuracy of the

forecasts. The research focused on the MSTL and AutoARIMA models for statistical

analysis, while exploring the capabilities of XGBoost, LightGBM, and RandomForest

models in the machine learning segment. In the realm of deep learning, NHiTS and

NBEATS models were used. A detailed evaluation process was carried out, mainly

using the RMSE metric to assess the performance of the various models. The results

showed that deep learning models performed the best, followed by certain machine

learning models, especially the LightGBM, and then the AutoARIMA model. No-

tably, the non-retrained versions of the models performed better than their retrained

counterparts, showcasing a subtle trend in model performance. The effectiveness of

including past covariates and encoders varied greatly, depending on the specific model

being analyzed.

The study highlights the complex nature of electricity load forecasting and em-

v



phasizes the need for sophisticated methods in selecting and setting up models. It

also suggests potential directions for future research, focusing on a deeper under-

standing of the retraining process, incorporating different covariates and encoders,

and exploring the effects of hyperparameter tuning on model performance.
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Chapter 1

Introduction

1.1 Background and the Importance of Forecasting in the Energy Sector

In recent decades, electricity markets have seen significant changes, mainly

due to the shift from conventional to renewable energy sources. Electric power sys-

tems, intrinsically, display attributes that are time-variant, nonlinear, and dynamic.

The addition of renewable energy vectors, specifically solar and wind energy, has ush-

ered in a set of multifaceted challenges. These renewable sources, while indispensable

for advancing environmental sustainability, are unpredictable. Such variability, gov-

erned by meteorological fluctuations and diurnal rhythms, superimposes an enhanced

degree of unpredictability onto the electrical grid. This makes accurate electricity

load forecasting even more important, as it’s essential for managing the grid, making

informed energy trading decisions, and planning infrastructure.

1.1.1 Background

Electricity load forecasting refers to the prediction of future electrical power

demand over various time horizons. These time horizons can range from short-term

(hours or days ahead) to medium-term (weeks or months ahead) to long-term (years

ahead). Load forecasting plays a vital role in power system planning, operation, and

control. Various methods are used for forecasting, including statistical techniques,

time-series analysis, and machine learning models, each with its unique strengths and

applications ([1], [2], [3]).
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1.1.2 Importance in the Energy Sector

Accurate load forecasting enables utility companies to make informed deci-

sions about power generation, transmission, and distribution. By predicting demand,

utilities can optimize their generation schedules, reduce fuel consumption, and mini-

mize operating costs. Inaccurate forecasts can lead to either underproduction, risking

supply shortages, or overproduction, resulting in wasted resources.

1.1.2.1 Reliability and Stability Electricity supply must meet demand

at all times to ensure the stability of the grid. Accurate forecasting helps in main-

taining the balance between supply and demand, thus preventing potential blackouts

or unreliability. It also aids in the effective integration of renewable energy sources,

which often exhibit variable output.

1.1.2.2 Environmental Sustainability With the global push towards re-

ducing carbon emissions, electricity load forecasting supports the integration of re-

newable energy into the grid. By accurately predicting demand, utilities can better

harness solar, wind, and other renewable sources, reducing dependence on fossil fuels

and without compromising grid stability.

1.1.2.3 Economic Benefits By predicting electricity demand, utilities can

optimize generation schedules, reducing the need to run expensive peaking plants

or purchase energy on the spot market. This efficiency lowers the overall cost of

electricity for both providers and consumers.

1.2 Problem Statement

With the integration of renewable energy sources into the power grid, the

dynamics of electricity prices and demand have become increasingly complex. [4] The
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variability introduced by sources like wind and solar necessitates advanced forecasting

models that can capture intricate patterns and relationships. This research aims to

address the challenges associated with predicting electricity prices and demand in

modern electricity markets.

1.3 Objectives of the Study

The core objectives of this research are as follows:

• To develop accurate forecasting models for electricity load using advanced time

series analytical methods.

• To compare the efficacy of classical time series forecasting methods with modern

machine learning and deep learning techniques.

• To test the effectiveness of these models using real-world data sourced from the

Open Power Systems Data of European Union countries.

• To include data on solar and wind energy generation in the models, evaluating

their impact on forecasting accuracy and understanding their role within the

overall system.

1.4 Scope of the Thesis

This research concentrates on the electricity load forecasting for EU countries,

particularly Spain. Drawing from the Open Power Systems Data, the study evaluates

forecasting models based on historical electricity load data, along with associated

solar and wind generation statistics.

1.5 Methodology

The research methodology incorporates the following steps, including:
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1. Data collection and preprocessing to ensure quality and consistency.

2. Exploratory data analysis to discern inherent patterns, trends, and relationships

in the data.

3. Development of forecasting models using both classical, machine learning and

deep learning techniques.

4. Evaluation of model performance using standard metrics and validation tech-

niques.
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Chapter 2

Literature Review

2.1 History and Evolution of Electricity Markets

The early history of electricity markets is both fascinating and complex. It

is a story of technological innovation, economic transformation, and societal change

[5]. The story of electricity begins with the scientific discoveries of the 18th and 19th

centuries. Pioneers like Alessandro Volta, who invented the first true battery [6], and

Michael Faraday (and Joseph Henry [7]), who discovered electromagnetic induction,

laid the groundwork for the practical use of electricity. Thomas Edison’s invention

of the incandescent light bulb in 1879 marked a turning point. His work, along with

that of contemporaries like Nikola Tesla and George Westinghouse, lead to the age

of electric lighting [6]. The need to supply electricity to homes and businesses led to

the creation of the first electric utility companies.

2.1.1 Early Beginnings

Electricity load forecasting began as a necessity to match electricity genera-

tion with consumption. During the initial stages of electrification in the late 19th and

early 20th centuries, the management of electricity was a relatively simple task. The

demand was predictable, and the supply was managed manually. However, as the

industrial revolution progressed and electricity became more widespread, the com-

plexity of managing electrical loads increased significantly.
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2.1.2 Vertically Integrated Utilities

Throughout the larger part of the 20th century, many regions relied on ver-

tically integrated utilities. In this structure, utilities were responsible for all facets

of power supply, from generation to transmission and distribution. These utilities

operated under rates often regulated by government entities, ensuring that electricity

prices remained fair and accessible.

2.1.3 Deregulation and Liberalization

As the 20th century approached its

latter stages, a wave of deregulation

swept across many nations. This in-

volved dismantling the existing ver-

tical integration, thereby permitting

distinct companies to oversee genera-

tion, transmission, and distribution in-

dividually. The overarching ambition

was to instill competition within the

sector, aspiring for enhanced service

quality and more competitive pricing

structures.

Figure 1

Liberalization across continents

S. America:

Chile’s reforms [8]
1982

Europe: UK[9] and

Nordic countries [10]
1990

Asia: Singapore[11]

Oceania: Australia
1995

N. America:

California[12]
1996

2.1.4 Introduction of Wholesale Markets

The evolution of electricity markets continued with the development of whole-

sale markets. These markets play a crucial role in the modern electricity landscape,

enabling the buying and selling of electricity in bulk quantities. These platforms fa-

cilitated bulk trading of electricity, predominantly through competitive auctions or

bidding. Key features of wholesale markets are spot markets, foward markets and
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ancillary services.

2.1.5 Renewable Energy and 21st century

At the start of the 21st century, there was a noticeable shift toward the use

of renewable energy sources, primarily solar and wind energy. This shift arose from

concerns over escalating CO2 emissions and their role in global warming ([13], [14],

[15], [16]). The rise of renewable energy was also supported by various government

policies and incentives. These policies were aimed at reducing dependence on fossil

fuels and promoting the use of clean energy sources [17]. Also, international treaties

like the Paris agreement further emphasized the global shift towards renewable energy

with the main goal of reduing emissions. However, because of their unpredictable

nature, harnessing and integrating these energy sources presented complications in

their seamless integration with power grids. Solar and wind energy, unlike fossil fuels,

are dependent on environmental factors such as diurnal and weather patterns [18],

[19]. As the push for cleaner energy grows, accurately predicting power needs becomes

crucial, highlighting the need for further research in this domain.

2.2 Traditional Time-Series Methods and the Advent of Machine Learn-

ing

The challenge of forecasting electricity load has been approached through var-

ious methodologies. These methodologies can be broadly categorized into traditional

time-series methods and modern machine learning techniques. This section delves

into both, exploring their evolution, underlying mathematical concepts, and their

application in electricity load forecasting.
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2.2.1 Traditional Time Series Methods

2.2.1.1 Early Methods In the early days of electricity markets, load fore-

casting was primarily done through basic statistical methods and past trends. Tech-

niques such as moving averages, exponential smoothing, and regression analysis were

used to project future demand. These early methods, while providing a starting point,

couldn’t account for complex patterns, seasonal variations, and sudden changes in

demand. Lack of real-time data and computational constraints further hindered the

accuracy of these forecasts

2.2.1.2 Time Series Analysis With the advancement of computational

power and data availability, it was possible to move on to more sophisticated forecast-

ing techniques. Time series methodologies such as ARIMA (Autoregressive Integrated

Moving Average) [20], which identifies autocorrelations in sequential data, and Ex-

ponential smoothing ([21], [20]), which focuses on trend and seasonality description,

gained traction. Both models proved effective in complex intricate load patterns and

addressing seasonal shifts in electricity usage [22] and are still being used today .

2.2.1.3 The Evolution of Electricity Load Forecasting With the ad-

vent of big data and machine learning, the field of electricity load forecasting has

experienced a revolution in recent decades. The traditional statistical methods have

been complemented, replaced by more advanced techniques, or even ensembled by

machine learning models.

2.2.2 Neural Networks and Machine Learning

The emergence of neural networks and machine learning techniques marked a

significant shift in load forecasting. Artificial Neural Networks (ANNs), Support Vec-

tor Machines (SVMs), and other machine learning models provided powerful tools to
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model non-linear relationships and complex interactions ([23],[24],[25],[26],[27],[28],[29]).

Hybrid models emerged to capitalize on the complementary strengths of different fore-

casting paradigms ([30], [31]).

2.2.3 Hybrid Models

Recognizing the merits and constraints of different forecasting paradigms, hy-

brid models emerged as a sought-after alternative. The duality of traditional statis-

tical methods and machine learning techniques, which its have its merits and con-

staints, has paved the way for innovative hybrid models in electricity load forecasting

as a sought-after alternative. These models, built on the premise of combining the

strengths of diverse forecasting techniques, have risen in prominence. By weaving to-

gether the deterministic patterns recognized by statistical methods with the intricate

non-linear relationships captured by machine learning, hybrid models offer a robust

and versatile approach. For example, by mixing an ARIMA method, which is good at

identying regular patterns and seasonal trends with a neural network, which is good

at capturing non-linear relationships, a hybrid model can be created that is more

accurate than either of its components ([32], [33]).
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Chapter 3

Theoretical Background

Before proceeding, Appendix section .4 contains a lot of useful descriptive

statistics and statistical tests that are used throughout this chapter.

3.1 Introduction to Time Series Data

Time series data is a sequence of observations collected or recorded at specific

time intervals.

3.1.1 Components of Time Series Data

Time series data can be decomposed into four primary components:

1. Trend Component: The underlying pattern in the series.

Tt = f(t)

2. Seasonal Component: The regular changes at fixed intervals.

St = g(t mod p)

3. Cyclic Component: Fluctuations due to economic or other broad cycles.

4. Random Component: Irregular or stochastic fluctuations.

εt ∼WN(0,σ2)
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3.2 Time Series Decomposition

Time series decomposition involves separating a time series into its main ele-

ments: trend, seasonality, and residuals.

3.2.1 Additive Model

• In an additive model, the time series is expressed as:

Yt = Tt +St +Rt

• In a multiplicative model, the components are multiplied together:

Yt = Tt ·St ·Rt

3.2.2 STL Decomposition

STL (Seasonal-Trend decomposition using LOESS) is essential in time series

analysis, as it breaks down a series into trend, seasonal, and residual components.

3.2.2.1 STL using LOESS (Locally Estimated Scatterplot Smooth-

ing) LOESS is a method that uses multiple regression models to create a smooth

curve for the time series. The LOESS estimation at point xi is:

ŷi =
n∑

j=1
wijyj

where:

• ŷi: Estimated value at xi.

• yj : Observed value at xj .
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• wij : Weight for observation j when estimating i, based on the distance between

xi and xj .

The weights are typically determined using a tricubic function, and a local polynomial

is fit to the weighted observations.

3.2.2.2 STL using Moving Averages Moving averages calculate the av-

erage of data points within a specific window for the time series Xt. The simple

moving average with window size k is:

SMAt = 1
k

t∑
i=t−k+1

Xi

Variations such as the exponential moving average (EMA) give more weight to recent

observations:

EMAt = (1−α) ·EMAt−1 +α ·Xt

where α is the smoothing factor, determining the weight for the most recent observa-

tion.

These methods illuminate the patterns in a time series, with STL decomposi-

tion being a vital analytical tool for insightful analysis and accurate future predictions.

3.3 Statistical Forecasting Methods

3.3.1 Autoregressive Integrated Moving Average Models

3.3.1.1 Introduction to ARIMA Autoregressive Integrated Moving Av-

erage (ARIMA) models [[34],[20]] are denoted by ARIMA(p,d,q)× (P,D,Q)S , where

p,d,q are the orders of the non-seasonal components, and P,D,Q are the orders of

the seasonal components with a seasonal period S.

3.3.1.2 Components of ARIMA
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3.3.1.2.1 Autoregressive (AR) Model An AR(p) model:

Yt = c+ϕ1Yt−1 +ϕ2Yt−2 + . . .+ϕpYt−p + εt

3.3.1.2.2 Moving Average (MA) Model An MA(q) model:

Yt = c+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

3.3.1.2.3 Integrated (I) Part The differencing operator:

∇dXt = (1−L)dXt

3.3.1.3 Mathematical Representation of ARIMA The ARIMA model

is defined as:

(1−
p∑

i=1
ϕiL

i)(1−L)dXt = (1+
q∑

i=1
θiL

i)εt

3.3.1.4 Seasonal ARIMA (SARIMA) Models The SARIMA model

includes seasonal components:

(1−
p∑

i=1
ϕiL

i)(1−L)d(1−
P∑

i=1
ΦiL

iS)(1−LS)DXt = (1)

(1+
q∑

i=1
θiL

i)(1+
Q∑

i=1
ΘiL

iS)εt

3.3.1.5 Parameter Estimation and Model Selection

3.3.1.5.1 Parameter Estimation Parameters in ARIMA models are

typically estimated through various methods:

• Maximum Likelihood Estimation (MLE): MLE is widely used for esti-

mating the ARIMA model parameters by maximizing the likelihood function,
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considering the Gaussian distribution of the residuals.

• Yule-Walker Equations: Especially for AR models, the Yule-Walker equa-

tions provide a method to estimate parameters based on the sample autocorre-

lations.

• Least Squares Estimation: In some cases, the method of least squares is

used to minimize the sum of squared residuals, providing estimations for the

AR and MA parameters.

3.3.1.5.2 Model Selection Choosing the best-fitting model is an essen-

tial step:

• Akaike Information Criterion (AIC) [35]: AIC is a commonly used crite-

rion that balances the goodness of fit and model complexity, favoring models

that achieve a good fit with fewer parameters. The AIC for a model is defined

as:

AIC = 2k−2ln(L̂)

where:

– L̂ is the maximized value of the likelihood function of the model.

– k is the number of parameters estimated by the model.

• Bayesian Information Criterion (BIC) [1978 paper by Gideon E. Schwarz]:

BIC is similar to AIC but puts a higher penalty on models with more param-

eters, often leading to more parsimonious models. The Bayesian Information

Criterion (BIC) for a model is given by:

BIC = k ln(n)−2ln(L̂)

where:
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– L̂ is the maximized value of the likelihood function for the model M, i.e.

L̂ = p(x | θ̂,M) with parameter values θ̂ that maximize the likelihood.

– x represents the observed data.

– n is the number of observations or sample size.

– k is the number of parameters estimated by the model.

• Grid Search: This technique, a brute force approach, involves systematically

exploring a range of values for p,d,q,P,D,Q, fitting an ARIMA model for each

combination, and selecting the one with the best performance according to a

chosen criterion like AIC or BIC.

• Cross-Validation: Time series cross-validation can be used to assess the pre-

dictive performance of different models on a validation set, providing a more

direct measure of forecasting accuracy.

• Bayesian Optimization: This method uses a probabilistic model to predict

the objective function’s value and applies an acquisition function to decide where

to sample next. It aims to balance the exploration of the parameter space with

the exploitation of current knowledge.

3.3.2 Exponential Smoothing Models

3.3.2.1 Introduction to Exponential Smoothing Exponential smooth-

ing models [[36], [37], [20],[38], [39], [40], [41]] are a popular family of time series fore-

casting methods that use weighted averages of past observations, where the weights

decrease exponentially as the observations get older. These models are especially

useful for short-term forecasts.

3.3.2.2 Simple Exponential Smoothing (SES) Simple Exponential Smooth-

ing is suitable for univariate time series without trend and seasonality. The forecast
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equation is given by:

Ŷt+1 = αYt +(1−α)Ŷt

where α is the smoothing parameter, Yt is the observation at time t, and Ŷt is the

forecast for time t.

3.3.2.3 Holt’s Linear Exponential Smoothing Holt’s method extends

SES to include a trend component. It introduces two smoothing equations, one for

the level and another for the trend:

ℓt = αYt +(1−α)(ℓt−1 +Tt−1)

Tt = β(ℓt− ℓt−1)+(1−β)Tt−1

where α and β are smoothing parameters, ℓt is the level, and Tt is the trend.

3.3.2.4 Holt-Winters Exponential Smoothing The Holt-Winters method

further extends Holt’s method to handle seasonality. It involves three smoothing

equations:
ℓt = α(Yt−St−m)+(1−α)(ℓt−1 +Tt−1)

Tt = β(ℓt− ℓt−1)+(1−β)Tt−1

St = γ(Yt− ℓt)+(1−γ)St−m

where γ is the smoothing parameter for the seasonal component, and St is the seasonal

factor.

3.3.3 Complex Exponential Smoothing

Complex Exponential Smoothing [42] extends the traditional exponential smooth-

ing methods by incorporating multiple seasonal components, nonlinear trends, or

other complex structures. These models can be tailored to capture intricate patterns

in the data. T
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3.3.3.1 Mathematical Representation The complex exponential smooth-

ing model might include multiple equations, similar to Holt-Winters, but with addi-

tional terms to capture the complex structures:

ℓt = αf(Yt, ℓt−1,Tt−1,St−m, . . .)+(1−α)g(ℓt−1,Tt−1,St−m, . . .)

Tt = βh(Yt, ℓt−1,Tt−1,St−m, . . .)+(1−β)i(ℓt−1,Tt−1,St−m, . . .)
...

where f,g,h, i, . . . are functions that define the relationships between the components.

3.3.4 Theta Method

3.3.4.1 Introduction to the Theta Method The Theta method ([43],

[44]) is a univariate forecasting approach that combines forecasts from different ”θ

lines.” It was introduced as a simple yet effective method for forecasting seasonal and

non-seasonal time series.

3.3.4.2 Theta Lines A θ line is a linear function fitted to a transformed

time series. The transformation can be a difference, a moving average, or other

techniques. The most common Theta method uses two Theta lines, one for the

original series and one for a differenced series.

3.3.4.3 Mathematical Representation Given a time series Xt, the two

Theta lines might be represented as:

Θ0 : Yt = α0 +β0t+ ε0t

Θ1 : ∇Yt = α1 +β1t+ ε1t

where ∇Yt is the differenced series.
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3.3.4.4 Combining Forecasts The final forecast is a weighted average of

the forecasts from the Theta lines:

Ŷt+1 = w0Ŷ0,t+1 +w1Ŷ1,t+1

where w0 and w1 are the weights, and Ŷ0,t+1 and Ŷ1,t+1 are the forecasts from the

Theta lines.

3.4 Machine Learning in Time Series

3.4.1 Linear Regression Models in Time Series Forecasting

3.4.1.1 Linear Regression Linear regression is a straightforward approach

to modeling the relationship between the time series and its lagged values. The equa-

tion of a linear regression model can be represented as:

y = β0 +β1x1 +β2x2 + . . .+βpxp + ϵ

where:

• y: Dependent variable (output/response).

• β0: Y-intercept (bias term).

• β1,β2, . . . ,βp: Coefficients for the predictors.

• x1,x2, . . . ,xp: Predictor variables (features).

• ϵ: Error term.

3.4.1.2 Polynomial and Nonlinear Regression Polynomial regression

is an extension of the linear regression model that allows for a nonlinear relationship

between the predictors and the dependent variable. Instead of fitting a straight line,
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polynomial regression models the data using a polynomial function. The generic

equation for a polynomial regression can be represented as:

Yt = β0 +β1Yt−1 +β2Y 2
t−2 + . . .+βnY n

t−n + εt (2)

where:

• Yt: Dependent variable (output/response) at time t.

• β0,β1, . . . ,βn: Coefficients for the predictors.

• Yt−1,Yt−2, . . . ,Yt−n: Lagged values of the time series up to n lags.

• εt: Error term at time t.

• n: Degree of the polynomial.

While polynomial regression can model curvilinear patterns in the data, it’s

crucial to choose the right polynomial degree to prevent overfitting.

Nonlinear regression, on the other hand, is a more general form that allows for

a wide range of relationships between the predictors and the response variable. This

flexibility comes from incorporating nonlinear mathematical functions such as expo-

nential, logarithmic, or trigonometric functions into the regression equation. Nonlin-

ear regression can capture intricate patterns in the data, making it especially useful

when the underlying data-generating process is inherently nonlinear.

The form of a nonlinear regression model can vary widely based on the specific

nonlinear function used. An example using an exponential function might be:

Yt = β0eβ1Yt−1 + εt (3)

The primary challenge with nonlinear regression is the complexity of estimat-

ing the model parameters. Often, iterative numerical methods, like gradient descent

or Newton’s method, are required to find the best-fitting parameters.
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3.4.1.3 Ordinary Least Squares (OLS) and Mean Squared Error

(MSE) Ordinary Least Squares (OLS) is a method used to fit a linear regression

model by minimizing the sum of the squared differences between the observed and

predicted values. In other words, OLS aims to find the coefficients that minimize the

Mean Squared Error (MSE).

J(β) = 1
2n

n∑
i=1

(
y(i)−

(
β0 +β1x

(i)
1 +β2x

(i)
2 + . . .+βpx(i)

p

))2
(4)

where:

• n is the number of observations.

• y(i) is the actual output for the i-th observation.

• β0,β1, . . . ,βp are the coefficients to be estimated.

The goal in linear regression is to find the parameters β that minimize the

MSE, as this would imply the model’s predictions are close to the true data points,

on average. An important characteristic of the MSE is that it penalizes larger errors

more heavily than smaller ones due to the squaring of each difference, making it

sensitive to outliers.

The OLS method estimates the parameters by finding the values that minimize

the cost function, providing a quantifiable measure of how far away the predictions

are from the actual data points. This makes OLS a foundational method for linear

regression analysis.

3.4.1.4 Gradient Descent Gradient Descent is an iterative optimization

algorithm used to find the values of parameters that minimize a given cost function. In

the context of machine learning, and particularly linear regression, the cost function

is often the MSE, which we aim to minimize.
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For a cost function J(β) (for instance, the MSE), the idea behind gradient

descent is to update the parameters β iteratively in the direction of steepest decrease

of J . The gradient (or the vector of first partial derivatives) of J with respect to β

points in the direction of the steepest ascent. Hence, to minimize J , we move in the

opposite direction of the gradient.

The update formula for the parameters at each iteration is given by:

β← β−α∇J(β) (5)

Where:

• ∇J(β) is the gradient of J with respect to β.

• α is the learning rate, which determines the step size in the direction of the

gradient. A smaller α can lead to slower convergence, while a larger α can lead

to overshooting and potential divergence.

The gradient descent algorithm stops when the change in the cost function

between iterations is below a predefined threshold, or after a predefined number of

iterations.

In the specific case of linear regression with the MSE as the cost function, the

gradient is given by:

∇J(β) = 2
n

XT (Xβ−y) (6)

Here, X is the matrix of predictors with each row being a data point, and y

is the vector of true output values.

3.4.1.5 Regularization Techniques Regularization techniques add penalty

terms to the OLS loss function. The aim is to constrain the magnitude of coefficients,

thereby preventing overfitting and providing more generalized models ([45], [46]).
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3.4.1.5.1 Ridge Regression (L2 Regularization) Ridge regression,

also known as Tikhonov regularization, combats overfitting by adding an L2 penalty

term to the OLS objective function. This penalty discourages large coefficients but

doesn’t force them to be zero. The objective function for Ridge regression is:

J(β) = OLS term +λ
p∑

j=1
β2

j

Here, λ is a hyperparameter that controls the strength of the penalty. When λ = 0,

Ridge regression becomes equivalent to OLS regression. As λ increases, the penalty

has more influence, and the coefficients tend to shrink.

3.4.1.5.2 Lasso Regression (L1 Regularization) Lasso regression,

short for Least Absolute Shrinkage and Selection Operator, is another regularization

technique that adds an L1 penalty to the OLS objective function. Unlike Ridge, Lasso

can force some coefficients to be exactly zero, effectively selecting a simpler model

that doesn’t include those coefficients. The objective function for Lasso regression is:

J(β) = OLS term +λ
p∑

j=1
|βj |

Again, λ is a hyperparameter controlling the penalty’s strength. As with Ridge

regression, when λ = 0, Lasso reduces to OLS. As λ increases, more coefficients become

zero, leading to a sparser model. Both Ridge and Lasso regressions help in handling

multicollinearity, reducing model complexity, and preventing overfitting. The choice

between them depends on the specific problem and the nature of the dataset.

3.4.2 Tree-based Models

3.4.2.1 Decision Trees Decision Trees are a non-parametric supervised

learning method that can be used for both classification and regression tasks. They
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are particularly useful in capturing complex, non-linear relationships in the data

without having to make many of the assumptions that linear models (e.g. ARIMA)

require.

3.4.2.1.1 Structure of a Decision Tree A Decision Tree is depicted

as a binary tree structure. Each internal node of this tree corresponds to a decision

rule that partitions the data based on certain criteria, while each leaf node provides

a prediction. These decision rules are established by choosing an attribute and a

corresponding threshold value that optimally divides the data into distinct classes or

ranges. The goal is to create a model that predicts the value of a target variable

by learning simple decision rules inferred from the data features. A tree can be

seen as a piecewise constant approximation. While decision trees are intuitive and

easily visualized, they’re prone to overfitting (requires mechanisms like pruning to

counteract) and biased towards dominant classes (balancing the dataset is necessary

prior to fitting)

In essence, Decision Tree predictions are derived from the means of particular

subsets of the training data. These subsets are identified by segmenting the input

data space into axis-parallel hyperrectangles. For each of these hyperrectangles, the

model computes the average of all observed outputs contained within and uses this

average as its prediction.

However, there’s an inherent limitation: for forecasting purposes, the model

invariably predicts the mean of the final training interval, rendering it ineffective.

This is because Decision Trees inherently struggle with out-of-distribution data. In

time series regression, every future point is, by definition, out-of-distribution, making

traditional Decision Trees ill-suited for such tasks. In this section, we also present a

decision tree used for evaluating a series of criteria based on variables x1, x2, and x3.

The decision tree helps in making decisions based on multiple conditions and provides
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an intuitive way to visualize the decision-making process.

Figure 2

A decision tree illustrating conditions based on features x1, x2, and x3. Each node
represents a condition on a feature, guiding the decision-making process.
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The tree starts at the root with a decision based on the variable x2. If the

condition for x2 is satisfied (Yes), it further evaluates x1. Depending on the values

of x1 and x2, the final decision is either 1 or 0. If the condition for x2 is not satisfied

(No), the tree evaluates x3 and subsequently x1 if necessary. Each leaf node of the tree

represents a final decision outcome. However, something to notice, is that tree-based

models aren’t the best at extrapolation. Decision trees

3.4.2.2 Random Forests in Time Series Forecasting Random Forests

are an ensemble learning method that builds multiple Decision Trees and merges their

predictions ([47], [48]). As the name indicates, a random forest entails a set of trees.

The building blocks are still single trees, but instead of fitting just one tree, there

are multiple trees. By leveraging the power of the ensemble, Random Forests often

achieve higher accuracy and robustness compared to a single Decision Tree.

3.4.2.2.1 Building a Random Forest The process of building a Ran-

dom Forest involves the following steps:

1. Bootstrap Sampling: Draw B bootstrap samples from the original dataset
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Figure 3

A schematic illustration comparing the algorithm and complexity of decision trees and
random forests. Source for image: [49]

with replacement. Each bootstrap sample forms a separate dataset used to

build an individual Decision Tree.

2. Building Decision Trees: For each bootstrap sample, build a Decision Tree.

While splitting a node, select a k random subset of features to consider for the

split. This randomization helps to decorrelate the trees.

3. Combining Predictions: The final prediction of the Random Forest is ob-

tained by averaging the predictions of the individual trees (for regression) or by

majority voting (for classification).

Random Feature Selection k is a tuning parameter. At each split, a

random subset of k features is selected out of the total p features. A typical choice is

k =√p for classification or k = p
3 for regression [47].

Prediction Aggregation For regression, the final prediction is the average

of the individual trees’ predictions:
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Figure 4

A schematic representation of the Random Forest algorithm. It illustrates the bagging
of training data and subsequent creation of multiple decision trees. The final prediction
is either the mean (in regression) or majority vote (in classification) of individual tree
predictions. Source for the image code: [50]

Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction

ŷ = 1
B

B∑
b=1

ŷb

For classification, the final prediction is the class with the majority vote:

ŷ = argmax
c

B∑
b=1

I(ŷb = c)

3.4.2.2.2 Advantages and Limitations of Random Forests

Advantages

• Reduces Overfitting: Unlike individual Decision Trees, which can easily over-
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fit to the training data, Random Forests average the predictions of multiple

trees. This ensemble approach reduces the variance and the tendency to over-

fit, leading to more robust predictions.

• Handles Non-linear Relationships and Complex Interactions: Random

Forests can capture complex non-linear relationships and feature interactions,

that a single Decision Tree might miss by considering random subsets of features

at each split.

• Provides Feature Importance Scores: Random Forests provide a natu-

ral way to evaluate feature importance by calculating how much each feature

contributes to overall prediction accuracy. This can be extremely useful in

understanding key forecast drivers and focusing on influential variables.

• Improved Accuracy: Random Forests frequently achieve higher accuracy by

aggregating the predictions of multiple Decision Trees. They utilize the wisdom

of the crowd - or ”forest”- to compensate for individual tree errors and usually

outperform a single Decision Tree.

Limitations

• Computationally More Expensive: A Random Forest requires more com-

putational resources to build and predict than a single Decision Tree. Longer

training and prediction times may result from the need to train multiple trees

and combine their predictions.

• Less Interpretable than a Single Decision Tree: While a single Decision

Tree provides a clear and easily interpretable decision-making process, the en-

semble nature of a Random Forest makes it more difficult to interpret. The

insights from individual trees might be obscured in the aggregated predictions.
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• Hyperparameter Tuning Complexity: Random Forests introduce addi-

tional hyperparameters like the number of trees and the number of features

considered at each split.

Random Forests extend the capabilities of Decision Trees by building an en-

semble that leverages the strength of multiple trees. Through techniques like boot-

strap sampling, random feature selection, and prediction aggregation, they provide a

robust and often more accurate approach to time series forecasting.

3.4.3 XGBoost

XGBoost, an acronym for “Extreme Gradient Boosting,” represents an ad-

vanced gradient boosting library designed for optimal performance across distributed

systems. The fundamental principle of XGBoost revolves around the gradient boost-

ing technique, which aims to iteratively combine weak learners (commonly shallow

Decision Trees) to formulate a robust learner. The library’s inception can be at-

tributed to Tianqi Chen, as detailed in the paper ”XGBoost: A Scalable Tree Boost-

ing System” [51].

3.4.3.1 Introduction to XGBoost Famed for its efficiency, flexibility,

and adaptability, XGBoost has been pivotal in clinching victories in various machine

learning challenges. One of its most celebrated attributes is its unparalleled speed

and performance, making it a preferred choice among data scientists [51].

3.4.3.2 Mathematical Formulation In XGBoost, the objective function

amalgamates a loss function (quantifying the model’s data fit) with a regularization

term (penalizing model complexity) [51]:

Obj(Θ) =
n∑

i=1
ℓ(yi, ŷi)+

K∑
k=1

Ω(fk)

28



where:

• ℓ(yi, ŷi) denotes the loss function, contrasting the actual value yi with its pre-

dicted counterpart ŷi.

• Ω(fk) signifies the regularization term, which introduces penalties for the com-

plexity within individual trees fk.

• K represents the cumulative number of trees.

Further, the regularization term is expressed as:

Ω(fk) = γT + 1
2λ∥w∥2

where:

• T corresponds to the number of tree leaves.

• w is indicative of the leaf weights vector.

• Both γ and λ serve as hyperparameters, modulating the model’s complexity.

3.4.3.3 Training Algorithm The gradient boosting technique employed

by XGBoost [51] is characterized by the sequential addition of trees, wherein each

new tree is tasked with rectifying the predecessor’s errors. The steps involved in the

training process are:

1. Initialization: Establish an initial prediction, typically the target variable’s

mean.

2. Tree Building: Iterate through the following steps:

(a) Compute the loss function’s negative gradients, often termed as pseudo-

residuals.
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(b) Incorporate a new Decision Tree tailored to the negative gradients.

(c) Refine predictions by integrating the new tree’s weighted outcomes.

3. Regularization: Introduce regularization to temper the model’s complexity.

3.4.4 LightGBM

LightGBM, as detailed in [52] and [53], is an open-source, distributed, high-

performance gradient boosting framework. Originally associated with the Distributed

Machine Learning Toolkit (DMLC) community and with significant contributions

from Microsoft, it is renowned for its efficiency, speed, and capability to process large

datasets with ease.

3.4.4.1 Introduction to LightGBM The term ”LightGBM” stands for

”Light Gradient Boosting Machine.” It achieves its efficiency over other gradient

boosting algorithms by employing a histogram-based learning method. This not only

accelerates the training process but also speeds up prediction tasks.

3.4.4.2 Mathematical Formulation The objective function in LightGBM,

similar to other gradient boosting frameworks, is given by:

Obj(Θ) =
n∑

i=1
ℓ(yi, ŷi)+

K∑
k=1

Ω(fk)

where:

• ℓ(yi, ŷi) represents the loss function, which can vary depending on the specific

task, such as regression or classification.

• Ω(fk) denotes the regularization term.

• K signifies the number of trees.
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The regularization term is typically represented as:

Ω(fk) = γT + 1
2λ∥w∥2

3.4.4.3 Key Features

3.4.4.3.1 Histogram-based Learning By converting continuous fea-

ture values into discrete bins or histograms, LightGBM optimizes memory usage

and accelerates the training process. Such an approach enables faster computations

as the algorithm primarily deals with bin edges instead of unique values.

3.4.4.3.2 Gradient-based One-Side Sampling (GOSS) GOSS re-

tains all instances with significant gradients and conducts random sampling on a

fraction of instances with smaller gradients. This approach not only expedites the

computation but also addresses the potential skewed distribution of residuals, often

resulting in enhanced model accuracy.

3.4.4.3.3 Exclusive Feature Bundling (EFB) EFB aggregates mutu-

ally exclusive features—those that are rarely non-zero simultaneously—into singular

features, effectively reducing the data’s dimensionality without significant information

loss.

3.5 Deep Learning in Time Series Forecasting

3.5.1 Introduction to Deep Learning for Time Series

Deep learning, a subset of machine learning, involves the use of artificial neural

networks with multiple layers (known as deep networks) to model complex relation-

ships in data. In the context of time series forecasting, deep learning offers several

advantages:
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3.5.1.0.1 Automatic Feature Learning Traditional time series models

often require manual feature engineering and selection. Deep learning models, on

the other hand, are capable of automatically learning relevant features from raw

time series data. This ability to learn temporal dependencies, recognize underlying

trends, and adapt to seasonality without explicit programming renders deep learning

particularly invaluable for time series forecasting.

3.5.1.0.2 Modeling Complex Patterns Deep learning models can cap-

ture complex non-linear relationships and interactions that might be challenging for

traditional models. They are well-suited for handling multivariate time series and

can model intricate dependencies between different time series variables.

3.5.1.0.3 Flexibility and Scalability With various architectures such

as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and

Transformer models, deep learning provides a flexible and scalable approach to time

series forecasting. These architectures can be tailored to diverse forecasting require-

ments, whether they pertain to short-term predictions or long-range projections, vary-

ing data frequencies, or differing magnitudes of data scales.

3.5.1.0.4 Mathematical Foundations The core of deep learning lies

in the optimization of a loss function through the iterative adjustment of model

parameters (weights and biases). Given a set of input features x and corresponding

target values y, a typical deep learning model aims to minimize a loss function L(y, ŷ),

where ŷ is the model’s prediction:

min
Θ
L(y, ŷ)

The optimization is often performed using algorithms like Stochastic Gradient
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Descent (SGD) or its variants, updating the parameters Θ based on the gradients of

the loss function:

Θt+1 = Θt−α∇L(Θt)

where α is the learning rate, and ∇L(Θt) represents the gradient of the loss

function with respect to the parameters at iteration t.

The iterative nature of these optimization algorithms enables the model to

refine its predictions over time, honing its forecasting capabilities. Regularization

techniques, dropout layers, and batch normalization are often incorporated to prevent

overfitting and improve generalization to unseen data.

3.5.2 Introduction to RNNs

3.5.2.1 The Limitations of Traditional Neural Networks Sequential

processing of information is ingrained in many tasks, from natural language under-

standing to time series forecasting. This limitation in traditional neural networks is

particularly pronounced when processing sequential data, which is abundant in tasks

such as natural language understanding and time series forecasting.

This is where recurrent neural networks come into play, to address this issue.

3.5.2.1.1 Introduction to RNNs Recurrent Neural Networks (RNNs)

address the limitations of traditional neural networks by introducing a loop mecha-

nism, allowing information to persist and thereby capture time-related relationships

in sequential data. This looped or recurrent structure is what gives them their name

and the ability to remember.

3.5.2.1.2 Vanilla RNNs The foundational architecture of RNNs, often

termed ’Vanilla RNN’, maintains a hidden state that captures information over time.
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This state is crucial for the RNN’s ability as it is the reason it remembers past

information. The hidden state at time t, denoted ht, is computed as:

ht = σ(Whht−1 +Wxxt + bh)

where

• ht−1 is the hidden state at the previous time step.

• xt is the input at time t.

• Wh,Wx are the weight matrices.

• bh is the bias term.

• σ is an activation function, such as the hyperbolic tangent.

The hidden state ht acts as a form of memory, keeping past information. As the

network processes new data, this state is updated, ensuring that past context is

considered in upcoming computations.

While Vanilla RNNs provide a foundation for sequence modeling, they can

struggle with learning long-term dependencies due to the vanishing gradient problem

[54] [55], leading to the development of more advanced RNN variants like LSTMs.

The vanishing gradient problem arises when training traditional RNNs, espe-

cially during backpropagation through time (BPTT). As the RNN processes sequen-

tial data over extended periods, it employs chained activations. If these activations

involve functions like the Sigmoid, whose derivative’s maximum value is less than 0.3,

the gradients can diminish rapidly. When this happens, the network’s weights and

biases don’t update significantly, making it challenging for the RNN to learn from

long sequences. This concept is depicted in a simplified manner in Figure 6.
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Figure 5

Unfolded architecture of an RNN across various time steps. A detailed breakdown of
the RNN architecture is provided in Appendix section .4.
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3.5.2.1.3 LSTM Networks ”LSTMs”, or Long Short-Term Memory net-

works, were pioneered by Hochreiter & Schmidhuber in (1997) [56]. They are an

advanced RNN variant, adept at learning long-term dependencies. They were de-

signed to circumvent the long-term dependency and vanishing gradient challenges.

The LSTM introduces specialized gates that optimize its memory, retaining only per-

tinent information. [57] They introduce memory cells and gates to control the flow

of information:

• Forget Gate: Controls what information to discard from the cell state.

ft = σ(Wf [ht−1,xt]+ bf )

• Input Gate: Decides what information to store in the cell state.

it = σ(Wi[ht−1,xt]+ bi)
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Figure 6

The illustration depicts the vanishing gradient challenge in RNNs. The gradient of the
nodes in the unfolded network, indicated by the shading, represents their sensitivity
to initial inputs. Darker shades signify greater sensitivity. As the RNN processes
subsequent inputs, the sensitivity diminishes, illustrating the network’s tendency to
’forget’ earlier inputs.
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• Update Gate: Creates a candidate update for the cell state.

C̃t = tanh(WC [ht−1,xt]+ bC)

• Cell State: Combines the forget gate, input gate, and update gate to create

the new cell state.

Ct = ft⊙Ct−1 + it⊙ C̃t

• Output Gate: Decides what part of the cell state to output.

ot = σ(Wo[ht−1,xt]+ bo)

• Hidden State: Computes the final hidden state based on the output gate and

cell state.

ht = ot⊙ tanh(Ct)
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3.5.2.1.4 Gated Recurrent Units (GRU) Gated Recurrent Units (GRUs)

were introduced in 2014 [58] as a variant of recurrent neural networks. While they

share similarities with Long Short-Term Memory (LSTM) units, particularly in using

a gating mechanism, GRUs simplify the model by combining the forget and input

gates into a single ”update gate” and lack an output gate. This results in fewer

parameters, making them computationally more efficient. The key equations are:

• Update Gate:

zt = σ(Wz[ht−1,xt]+ bz)

• Reset Gate:

rt = σ(Wr[ht−1,xt]+ br)

• Candidate Hidden State:

h̃t = tanh(Wh[rt⊙ht−1,xt]+ bh)

• Hidden State:

ht = (1− zt)⊙ht−1 + zt⊙ h̃t

Figure 7

Comparison of RNN, LSTM, and GRU cells. Source: [59]

BlockRNN, as used in the Darts library, leverages RNN architectures to encode

fixed-length input chunks and employs a fully connected network for producing fixed-

length outputs. It supports past covariates known for a specific duration before

prediction time. The library provides three primary variants of RNNs for this purpose:

Vanilla RNN, LSTM, and GRU. Such a modular approach ensures flexibility and

adaptability across various sequence modeling tasks [60].
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3.5.3 N-BEATS Model Overview

N-BEATS [61], standing for Neural Basis Expansion Analysis for Interpretable

Time Series, is a deep neural network built on a deep stack of fully-connected layers

with backward and forward residual links. It uses basis expansion to improve data

representation, enhancing its capability to model non-linear relationships in time

series.

Figure 8

N-BEATS architecture highlighting its stacks and blocks. Each block connects feedfor-
ward networks with forecast and backcast links, focusing on residual errors unaddressed
by prior blocks. The cumulative partial forecasts yield a comprehensive global forecast.
Source: [61]
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3.5.3.1 Basis Expansion Basis expansion amplifies data to model non-

linear relationships by extending the feature set. A prevalent form, polynomial basis

expansion, alters features (like squaring) to fit non-linear patterns more aptly.

3.5.3.2 N-BEATS Architecture N-BEATS, with its layered design, pri-

oritizes simplicity, adaptability, and extensibility. It comprises multiple stacks, with

each stack containing blocks that generate both forecast and backcast outputs. The

model’s design ensures that unaddressed residuals are forwarded for subsequent pro-

cessing, guaranteeing a thorough forecast.
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Figure 9

N-BEATS Basic Block, using a lookback window based on forecasting horizon H.
After processing through a neural network, it estimates expansion coefficients which
undergo a ”neural basis expansion” to generate backcast and forecast signals. Source:
[61]

Figure 10

N-BEATS’ stacking mechanism. Beginning with the true input sequence, subsequent
blocks process the backcast signal from their predecessors. This doubly residual stack-
ing culminates in an aggregated forecast. Source: [61]
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3.5.4 Introduction to N-HiTS

The Neural Hierarchical Interpolation for Time Series (N-HiTS) forecasting

model [62] builds upon the foundation of the N-BEATS model. It promises enhanced

prediction accuracy while optimizing computational efficiency. The model’s standout

feature is hierarchical interpolation, which capitalizes on multi-rate signal sampling

to account for both immediate and extended effects in a time series.

Figure 11

The N-HiTS architecture, evolving from the N-BEATS approach, showcases a hierar-
chical design. Central to its structure are blocks, furnished with multilayer perceptron
(MLP) layers, that produce backcast and forecast coefficients. These blocks are assem-
bled into stacks, each fine-tuned to discern distinct data features through tailored basis
functions. The model’s potency is further augmented by a multi-rate sampling tech-
nique and multi-scale synthesis, bolstering its long-term forecasting efficiency. [62]
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3.5.4.1 Architecture of N-HiTS Similar to N-BEATS, N-HiTS com-

prises an array of blocks and stacks that handle both forecast and backcast oper-

ations. A salient innovation in N-HiTS is the MaxPool layer integrated at the block

level, facilitating multi-rate sampling. This mechanism adjusts the kernel size to

concentrate on varying temporal series effects, markedly boosting its proficiency in

long-range forecasting.

3.5.4.2 Mechanism of Hierarchical Interpolation Hierarchical inter-

polation, pivotal to N-HiTS, fuses forecasts from diverse time scales, streamlining
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prediction cardinality. Each stack is governed by a unique ratio that determines the

frequency of predictions, setting apart the cardinality across the board. Such an ar-

rangement enhances computational efficiency and sharpens accuracy, particularly for

expansive forecast scopes.

3.5.4.3 Fully Connected Networks and Data Propagation After the

MaxPool layer, N-HiTS harnesses fully connected networks to derive forecast and

backcast outputs. The backcast elucidates the block’s insights and, once deducted

from the input, is channeled to the succeeding block through residual links. This

structure ensures comprehensive data capture, refining the model’s precision.

3.5.4.4 Conclusion N-HiTS elevates the N-BEATS architecture by incor-

porating a MaxPool layer, enabling diverse time scale analyses for each stack. This

addition empowers the model to discern both immediate and extended time series

nuances. By consolidating predictions via hierarchical interpolation, N-HiTS emerges

as a lightweight yet high-accuracy model, marking it as a vanguard in time series

forecasting.
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Chapter 4

Data Collection and Pre-processing

4.1 Data Sources

The dataset utilized in this study encompasses electricity consumption (or

load), wind generation, and solar generation, sourced from the Open Power System

Data (OPSD) project [63]. This comprehensive dataset is a product of the ENTSO-

E Transparency platform, an initiative by the European Network of Transmission

System Operators for Electricity. The data, which spans from 2015 to mid-2020,

is instrumental in understanding the energy landscape and consumption patterns in

Europe, particularly Spain.

The specific file extracted for analysis is time series 60min singleindex.csv.

The columns of focus for the country of Spain include:

• utc timestamp: Represents the Universal Time Coordinated timestamp for

each data entry.

• ES load actual entsoe transparency: Refers to the actual electricity load or

consumption for Spain.

• ES wind generation actual: Denotes the actual wind energy generated within

Spain.

• ES solar generation actual: Signifies the actual solar energy generated in

Spain.

Preliminary data analysis revealed the presence of some missing values within

the dataset. To address this, a two-step imputation method was applied:
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• First, missing values were forward filled, replacing any ‘NaN‘ with the previous

non-missing value in the column.

• For entries where the initial values were missing, a backward fill was applied,

replacing the ‘NaN‘ with the subsequent non-missing value.

This approach ensures a comprehensive dataset, leveraging actual data points to fill

gaps, thereby maintaining the integrity and continuity of the data.

4.2 Data Cleaning and Transformation

Preliminary data analysis revealed the presence of some missing values within

the dataset. To ensure data completeness and maintain its integrity, the following

cleaning and imputation methods were applied:

• Handling Missing Values: A two-step imputation method was employed:

– Missing values were forward filled, replacing any ‘NaN‘ with the previous

non-missing value in the column.

– For entries where the initial values were missing, a backward fill was ap-

plied, replacing the ‘NaN‘ with the subsequent non-missing value.

• Data Scaling: The data was scaled to ensure uniformity and to facilitate better

model convergence. Two types of scalers were experimented with:

– MinMaxScaler: This scales the data by transforming it to a range be-

tween 0 and 1.

– MaxAbsScaler: This scales the data such that the maximum absolute

value of each feature is scaled to unit size.

This approach ensures a comprehensive dataset, leveraging actual data points

to fill gaps, thereby maintaining the integrity and continuity of the data.
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4.3 Encoding and Feature Engineering

To enhance the predictive capabilities of the models and capture underlying

patterns in the data, several encoding techniques and feature engineering steps were

employed:

• Cyclic Encoding: To capture the seasonality inherent in time series data,

Fourier transformations were used to create cyclic features. These are repre-

sented mathematically as:

– Yearly Fourier Cosine: cos
(

2π×day of year
365

)
– Yearly Fourier Sine: sin

(
2π×day of year

365

)
– Daily Fourier Cosine: cos

(
2π×hour of day

24

)
– Daily Fourier Sine: sin

(
2π×hour of day

24

)
• Datetime Attributes: Extracted temporal features from timestamps to cap-

ture potential cyclical patterns and trends at different granularities.

• Holiday Indicator: A binary feature using the python library [64], h(t), where:

h(t) =


1 if t is a holiday in Spain

0 otherwise

• Rolling Statistics: To capture short and long term fluctuations in the data,

several rolling statistics were computed:

– 24-hour Rolling Mean:

µ24(t) = 1
24

23∑
i=0

x(t− i)
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– 24-hour Rolling Standard Deviation:

σ24(t) =

√√√√ 1
24

23∑
i=0

(x(t− i)−µ24(t))2

– 24x7-hour (Weekly) Rolling Mean:

µ168(t) = 1
168

167∑
i=0

x(t− i)

– 24x7-hour (Weekly) Rolling Standard Deviation:

σ168(t) =

√√√√ 1
168

167∑
i=0

(x(t− i)−µ168(t))2

– 24x7x4-hour (Monthly) Rolling Mean:

µ672(t) = 1
672

671∑
i=0

x(t− i)

– 24x7x4-hour (Monthly) Rolling Standard Deviation:

σ672(t) =

√√√√ 1
672

671∑
i=0

(x(t− i)−µ672(t))2

• Lags:

– For models such as XGBoost and LightGBM, lag features were used to

provide historical context. For a given time t and lag k, the lag feature is

represented as x(t−k). Values used were from 1 hour to 3 days (72 hours)
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Chapter 5

Exploratory Data Analysis

5.1 Statistical Test Analysis

5.1.1 Overview of Time-Series Test Analysis

This section examines the properties of three time series: ES load, ES solar,

and ES wind. Various statistical methods are employed to investigate their station-

arity, mean, variance, autocorrelation, cointegration, and Granger causality.

5.1.2 Stationarity of the Time-Series: Augmented Dickey-Fuller (ADF)

Test

The Augmented Dickey-Fuller (ADF) test was applied to determine the sta-

tionarity of each series. The test results strongly suggest the series are stationary,

with all p-values below 0.001.

Table 1

ADF test results for stationarity of time series

Time Series ADF Statistic p-value

ES load actual -17.61 3.86×10−30

ES solar -9.61 1.80×10−16

ES wind -16.88 1.06×10−29
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5.1.3 Cointegration in the Time-Series - Johansen Test

The Johansen test was employed to assess cointegration among the series. The

results, as presented in the table below, strongly indicate the presence of long-term

equilibrium relationships among the series.

The trace statistics are significantly larger than the critical values at all con-

fidence levels (90%, 95%, and 99%), suggesting rejection of the null hypothesis of

no cointegration. This implies the presence of cointegrating relationships among the

series.

Furthermore, the eigenvalues, which measure the strength of the cointegration

relationships, show decreasing magnitudes, which is expected. The associated eigen-

vectors can be used to form the cointegrating vectors, which represent the long-term

relationships among the series.

Table 2

Johansen Test Results

Metric ES load ES solar ES wind

Trace Statistic 35587.34 16347.89 7236.05

Critical Values (90%) 27.07 13.43 2.71

Critical Values (95%) 29.80 15.49 3.84

Critical Values (99%) 35.46 19.93 6.63

Eigenvalues 0.318 0.165 0.134

Eigenvector 1 6.16×10−4 5.65×10−5 −5.56×10−4

Eigenvector 2 −1.58×10−3 1.39×10−4 −1.04×10−3

Eigenvector 3 −3.42×10−4 2.95×10−3 5.94×10−5

Eigen Statistics 19239.44 9111.84 7236.05
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5.1.4 Granger Causality Test

The Granger causality test was conducted to ascertain the potential causal

relationships between the variables. The tests revealed significant results that indicate

predictive causality among the series.

Table 3

Granger Causality Test Results for Lags 1 and 2

ES load ES solar ES wind

ES load -

Lag 1:

F : 1.71
p : 1.91×10−1

Lag 2:

F : 877.71
p : < 1×10−3

Lag 1:

F : 189.50
p : < 1×10−3

Lag 2:

F : 65.44
p : < 1×10−3

ES solar

Lag 1:

F : 86.95
p : < 1×10−3

Lag 2:

F : 3599.82
p : < 1×10−3

-

Lag 1:

F : 826.19
p : < 1×10−3

Lag 2:

F : 505.70
p : < 1×10−3

ES wind

Lag 1:

F : 1725.62
p : < 1×10−3

Lag 2:

F : 262.95
p : < 1×10−3

Lag 1:

F : 4227.09
p : < 1×10−3

Lag 2:

F : 579.56
p : < 1×10−3

-

The results show that ES load and ES solar series exhibit bidirectional causal-

ity. Similarly, bidirectional causality is observed between ES load and ES wind. A
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significant causal relationship is also noted between the ES solar and ES wind series.
5.1.5 Variance Inflation Factor

(VIF)

The Variance Inflation Factor (VIF) was

computed to evaluate multicollinearity

among the predictor variables in the

model. VIF quantifies how much a vari-

able is inflating the standard errors due to

multicollinearity. Generally, a VIF above

5-10 indicates a problematic amount of

collinearity. The VIF values for the series

suggest no significant multicollinearity is-

sues among the variables.

Variable Value

ES load 5.50

ES solar 1.93

ES wind 3.94

Table 4

VIF values assessing
multicollinearity

5.1.6 Statistical Properties of the Time Series

The Durbin-Watson statistic was utilized

to detect serial autocorrelation. The re-

sults suggest a positive autocorrelation for

all series. The Durbin-Watson values close

to zero indicate strong positive autocorre-

lation in all time series. The presence of

autocorrelation indicates that future sta-

tistical modeling should account for this

aspect, possibly through differencing the

series or using ARIMA models.

Series Mean Var. D-W

ES load 28441.60 2.14×107 0.002

ES solar 1613.87 3.86×106 0.056

ES wind 5559.90 1.07×107 0.004

Table 5

Statistical properties of
time series
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5.2 Visualizing the Data

5.2.1 Line Plots

Figure 12

Line Plots of ES load, ES solar generation, and ES wind generation
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The line plots in Figure 12 provide an initial visual representation of the data’s

evolution over a five-year span.

Table 6

Observations from Figure 12

Characteristic ES Load ES Solar Genera-
tion

ES Wind Genera-
tion

Description Visual Analysis Visual Analysis Visual Analysis
Overall Trend Stationary Rising Trend Stationary
Seasonality Monthly Patterns Yearly Seasonality Winter Peaks
Anomalies (2020) Decline (COVID-

19)
Surge (COVID-19) Not Observed

Correlations Yearly Lows Seasonal Variations Not Specified
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5.2.2 Box Plots
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Figure 13

Box Plots

Metric ES load ES solar ES wind

Median 28522.0 633.0 4922.0

Mean 28441.0 1613.7 5560.6

IQR 7413.0 2813.0 4533.0

Range 24440.0 9338.0 17436.0

Skewness 0.0722 1.277 0.799

Table 7

Box Plot Metrics

Figure 13 shows box plots, which provide information about the distribution and

variability of the data. The box represents the interquartile range, and the whiskers

extend to the minimum and maximum values.
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5.2.3 Correlation Heatmap Analysis

Figure 14

Correlation Heatmap

The heatmap in Figure 14 visualizes the correlation matrix among various variables.

Brighter colors represent stronger correlations, while darker hues indicate weaker

associations. Key observations include:

• ES load and ES solar: A coefficient of 0.36 signifies a moderate positive cor-

relation. This suggests a tendency for higher ES load values to coincide with

increased ES solar values, although the relationship isn’t robust.

• ES load and ES wind: With a coefficient of 0.047, there’s a negligible positive

correlation, indicating a minimal relationship between the two variables.

52



• ES solar and ES wind: A coefficient of -0.17 points to a weak negative cor-

relation, implying that higher ES solar values generally correspond to lower

ES wind values.

The correlation data suggests that while solar energy production aligns somewhat

with energy demand, wind energy might not consistently match the load require-

ments.

5.2.4 Moving Average Plots in Multiple Window Size

Figure 15

Moving Averages with Multiple Window Size
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The moving average plot, as depicted in Figure 15, serves as an instrumental tool for

discerning the overarching trends or patterns in time series data. By calculating the

average for a designated window of observations and plotting it against the associated

time points, this plot effectively mitigates short-term fluctuations and accentuates the

long-term trend or pattern inherent in the dataset. Evident trends can be observed

for ES actual, ES solar, and ES wind.

5.2.5 Autocorrelation and Partial Autocorrelation Plots

Figure 16

Autocorrelation and Partial Autocorrelation Plots
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Autocorrelation and partial autocorrelation plots serve as instrumental tools in dis-

cerning patterns and relationships in time series data across different lags.

Autocorrelation Plot:

• Positive coefficients: Denote a direct relationship between observations.

• Negative coefficients: Indicate an inverse relationship.

• Slow decay: Suggests a potential trend or long-term dependency.

• Alternating coefficients: Signify seasonality.

• Rapid decay: Highlights limited correlation between observations.

Partial Autocorrelation Plot:

• Significant coefficient at lag k: Implies a direct relationship at that specific lag,

independent of other lags.

• Rapid decay: Points to minimal direct relationships across multiple lags.

5.2.6 Hourly, Daily and Weekly Cycle Plots

5.2.6.1 Cycle Plots for Load

5.2.6.1.1 Hourly and Daily Cycle Plots for Load The hourly and

daily cycle plots, shown in Figure 17, depict the variation in load over a 24-hour period

and across different days of the week. The load demonstrates a bimodal distribution,

with peaks observed typically in the morning and evening. These peaks coincide

with the commencement and conclusion of standard work hours. During nighttime,

there is a noticeable decrease in load, which can be attributed to the closure of

most businesses and a reduction in residential consumption. This pattern remains

consistent throughout the weekdays. However, during weekends, the load pattern
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Figure 17

Hourly and Daily Cycle Plots for Load
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shifts slightly, rising later in the morning and remaining relatively steady throughout

the day. This suggests a consistent residential demand and a decline in commercial

or industrial activity during weekends.

Figure 18

Weekly Cycle Plots for Load
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5.2.6.1.2 Weekly Cycle Plots for Load The weekly cycle plot Fig-

ure 18 illustrates the fluctuations in load across various weeks within a month and

throughout the year. A consistent pattern in the weekly behavior of the load can

be discerned from the graph. Similar to the daily cycles, weekdays tend to have
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elevated electricity demand, largely driven by commercial and industrial activities.

Conversely, weekends experience a reduced demand. Variations in load based on the

week of the month or the year likely indicate typical business cycles or the influence

of holidays and other significant events over the course of the year.

5.2.6.2 Cycle Plots for Solar Generation

Figure 19

Hourly and Daily Cycle Plots for Solar Generation
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5.2.6.2.1 Hourly and Daily Cycle Plots for Solar Generation

The hourly and daily cycle plots, as depicted in Figure 19, demonstrate the fluc-

tuations in solar generation throughout a 24-hour period and across varying days of

the week. The graphical representation reveals a distinct pattern with heightened val-

ues during daylight hours and an absence of generation at nighttime. This pattern is

indicative of the diurnal variation inherent to solar energy production. Additionally,

the daily cycle underscores that solar generation remains relatively consistent between

weekdays and weekends. This consistency is attributed primarily to meteorological

factors rather than human activity.
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Figure 20

Weekly Cycle Plots for Solar Generation
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5.2.6.2.2 Weekly Cycle Plots for Solar Generation The weekly

cycle plot, illustrated in Figure 20, delineates the fluctuations in solar generation

throughout different weeks of both the month and year. The representation exhibits

seasonal variations in solar generation, characterized by amplified values during the

summer and diminished values in the winter. Such a trend is indicative of the sea-

sonal shifts in solar irradiation. Solar panels are typically more productive during the

sunnier and extended daylight hours of summer, in contrast to the shorter and less

sunny days of winter.

5.2.6.3 Cycle Plots for Wind Generation

5.2.6.3.1 Hourly and Daily Cycle Plots for Wind Generation

The hourly and daily cycle plots, represented in Figure 21, depict the fluctuations in

wind generation over a 24-hour period and throughout the various days of the week.

The illustrations reveal a consistent level of wind generation, without substantial di-

urnal variations or pronounced fluctuations in wind speed. Wind generation levels

predominantly remain stable throughout the day, suggesting a consistent wind energy

supply. A slight decline during midday might be attributed to elevated temperatures.
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Figure 21

Hourly and Daily Cycle Plots for Wind Generation
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Notably, the consistency in wind generation between weekdays and weekends implies

that such generation is more so influenced by meteorological factors than by human

activities.

Figure 22

Weekly Cycle Plots for Wind Generation
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5.2.6.3.2 Weekly Cycle Plots for Wind Generation The weekly

cycle plot showcased in Figure 22 elucidates the fluctuations in wind generation

throughout different weeks of the month and the year. Distinct seasonal patterns

emerge, with elevated values predominantly observed during the autumn and winter
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months. The surge in average wind speed during these colder periods is less about

the temperature itself and more about the temperature differential between polar and

equatorial regions. This heightened temperature gradient fosters the development of

more significant weather systems, culminating in increased wind generation.

5.2.6.4 Seasonal Plots

5.2.6.5 Daily and Weekly Seasonality Analysis for Actual Load Fig-

ure 23 delineates the daily and weekly seasonalities observed in January, July, and

October, providing insights into the cyclical nature of the actual load data.

Figure 23

Daily and Weekly Seasonality Analysis for Actual load
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Weekly seasonality in October

ES load - Daily and Weekly Seasonality

In January (specifically, January 1, 2015, which was a Thursday), the daily seasonal-

ity is characterized by a bimodal distribution, signifying heightened demand during

specific hours. The weekly seasonality underscores the contrasts in electricity con-

sumption across the weekdays.
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July’s seasonality, taken from July 1, 2015 (a Wednesday), varies from January’s.

The daily load demand manifests a steady escalation towards midday. In contrast,

the weekly fluctuations echo those discerned in January.

October’s pattern (October 1, 2015 - Thursday) diverges again, with daily seasonality

indicating a modest midday surge followed by a pronounced afternoon peak. Such

patterns encapsulate the variations in daily electricity consumption across diverse

months. Analogous to the earlier months, October’s weekly seasonality outlines the

disparities in demand throughout the week.

Figure 24

Daily and Weekly Seasonality Analysis for Solar Generation
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5.2.6.6 Daily and Weekly Seasonality Analysis for Solar Generation

Figure 24 depicts the daily and weekly seasonal trends associated with solar energy

generation. The diurnal patterns are unmistakably evident, with solar generation

reaching its zenith around noon and plummeting to nil during nocturnal hours.

On a weekly basis, a slight elevation in generation can be discerned during weekdays
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compared to weekends. This could be attributed to varying electricity demand and

consumption behaviors during these intervals.

Figure 25

Daily and Weekly Seasonality Analysis for Wind Generation
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5.2.6.7 Daily and Weekly Seasonality Analysis for Wind Genera-

tion Figure 25 elucidates the daily and weekly seasonal patterns inherent to wind

power generation.

For the daily cycles in both July and October, peaks are discernible around 13:00,

signaling optimum wind generation during these timeframes. July experiences a more

extensive range in variation, implying a pronounced presence of wind during the

summer months.

Conversely, January’s diurnal seasonality showcases troughs slightly earlier, around

midnight, with zeniths occurring concurrently. The oscillation range, extending from

-1000 to 1000, indicates reduced fluctuations in the winter season.

Regarding weekly patterns, January and July exhibit analogous trends, although
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a one-day lag is observable for July, likely stemming from the chosen days being

Wednesday for July and Thursday for January. October’s weekly trends, however,

deviate from the prior months, showcasing a consistent 7-day cycle, possibly reflecting

stable wind patterns characteristic of the autumn season.
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Chapter 6

Model Development and Validation

6.1 Statistical Model Implementation

6.1.1 Introduction

In this chapter, we delve into the application of classical statistical models for fore-

casting electricity load. Our exploration utilizes the statsforecast [65] and Darts

library [60] in Python. The statsforecast was used for non-retrain predictions while

Darts was used for re-training forecasating. The primary aim is to assess the perfor-

mance of these models and identify an optimal approach. This analysis not only pro-

vides insights into the efficacy of classical models but also establishes a benchmark for

subsequent methods. We have considered several models, including ARIMA, MSTL,

Dynamic Optimized Theta, AutoETS, and AutoCES, among others.

6.1.2 Data Preparation

Data is the cornerstone of any forecasting model. As such, the initial phase of our

work centered on data preparation, predominantly facilitated by the pandas library

[66]. We ensured the integrity of our time series data by addressing any missing values

through techniques such as backward and forward filling, provided by the bfill and

ffill methods of the pandas library.

For the purpose of model training and evaluation, we partitioned the dataset into

distinct sets:

• Training set: 96%

• Test set: 4%
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This partitioning aligns with the sets used in our machine learning and deep learning

models. Notably, while machine learning and deep learning models necessitated a

separate validation set, we incorporated this set into the training data for our classical

methods. The test set spans a duration of three months, equivalent to 2,106 hours,

providing a substantial window for rigorous model assessment.

6.1.3 Model Configuration

To ensure the precision and reliability of our forecasts, a careful configuration of the

models was paramount. The chosen models and their respective configurations are

detailed below: Regarding statsforecast library:

• MSTL (Multiple Seasonal Decomposition of Time Series): The model

was set to recognize two seasonalities, with lengths of 11 and 24. The trend

component of the time series was forecasted using the AutoARIMA model.

• AutoARIMA: Two variants were employed. The first had a season length of

11 , while the second was set with a season length of 1.

• Dynamic Optimized Theta (DOT): Configured with a season length of 11.

• AutoETS: Set with a season length of 11.

• AutoCES: Operated with a season length of 11.

• AutoTheta: Utilized a season length of 11.

• HoltWinters: Configured for a season length of 11.

Regarding Darts library, the defaults values were used. The models were:

• AutoARIMA

• AutoCES
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• AutoETS

• AutoTheta

6.1.4 Forecasting

Our tools were historical_forecast method from darts library, and predict from

statsforecast library. The forecasts were conducted under two distinct scenarios: one

where the model was retrained at each stride and another where it wasn’t retrained.

6.1.5 Forecasting

For the forecasting phase, we utilized two primary tools: the historical_forecast

method from the Darts library and the predict method from the Statsforecast library.

These tools were instrumental in generating forecasts using our statistical models,

with the retraining process being an essential component to ensure accuracy and

reliability over time.

6.1.5.1 Forecast Methodology Initially, our statistical models were con-

figured as described in earlier sections. We employed the historical_forecast

method from the Darts library and the predict method from the Statsforecast li-

brary to conduct the forecasting. Given the nature of statistical models, retraining at

each stride is integral to achieving precise and reliable forecasts, which is why darts

library was used for retraining. Retraining the Auto models is only supported from

darts library and not natively in statsforecast library.

6.1.5.2 Forecast Settings and Parameters To commence the forecast-

ing, we determined the starting point, denoted as ‘start‘, using the following formula:

start = split train× (2− split val)
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Here, both ‘split train‘ and ‘split val‘ are assigned a value of 0.8, resulting in a ’start’

value of 0.96. We allocated 80% of the data for training, subdividing the remaining

20% into validation (16

The forecast settings were carefully chosen to facilitate a rigorous evaluation of the

forecasting process, detailed as follows:

• Forecast Horizon: A forecast horizon of 2 units was designated to define the

period covered by the forecasts.

• Stride: A stride of 2 units was selected to dictate the step size during the

forecasting process.

• Training Length: The training length was fixed at 336 hours, equivalent to

two weeks, establishing the timeframe for the training data utilization in the

forecasts.

6.1.5.3 Retraining Scenarios Considering the statistical models, retrain-

ing at each stride is a prerequisite, allowing the models to adapt continually to new

data, thereby potentially enhancing forecast accuracy.

6.1.5.4 Evaluation and Analysis Upon completion of the forecasting

process, we conducted a detailed analysis of the results, assessing performance through

various metrics and visualizations.

6.2 Machine Learning Model Implementation

6.2.1 Introduction

In this section, we explore the use of machine learning models to forecast electricity

load utilizing the Darts library [60]. This library stands out for its user-friendly and
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efficient approach to time series analysis [67]. Our objective is to analyze different

model configurations to identify the most effective one for precise forecasting.

6.2.2 Data Preparation

The first phase of our implementation involves preparing the data, primarily using

the pandas library [66]. We loaded the dataset and filled in missing values using

the bfill and ffill methods from pandas library, ensuring a consistent time series

dataset. Next, we converted the data from a DataFrame to a TimeSeries object to

comply with the Darts library’s requirements. Additionally, we changed the data type

to np.float32 to speed up the computational processes.

To build and assess the models, we divided the dataset into training, validation, and

test sets with the following proportions:

• Training set: 80%

• Validation set: 16%

• Test set: 4%

We defined the forecast horizon to coincide with the length of the test set, covering

a period of 3 months or 2106 hours.

6.2.3 Feature Engineering and Scaling

Before incorporating the data into the models, we performed necessary feature en-

gineering steps. When past covariates were included in the model, we scaled them

using the MinMaxScaler from the sklearn.preprocessing module [68], preventing

any past covariate from having an improper influence due to a larger magnitude.

For more details on the use of encoders in the models, please refer to section 4.3.
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6.2.4 Model Configuration

In this study, we utilized three prominent machine learning models: XGBoost, Light-

GBM, and RandomForest. Each model was tested with four different configurations

to evaluate the effect of encoders and covariates on forecast accuracy. The configura-

tions were:

• With encoders and past covariates

• With encoders but without past covariates

• Without encoders but with past covariates

• Without encoders and without past covariates

Next, the configuration details for each model:

6.2.4.1 XGBoost The XGBoost model, from the XGBoost library [51],

was set up with specific lag values ranging from 1 to 72 hours to account for daily

seasonal patterns. Other settings include defining the objective as reg:squarederror

and choosing gbtree as the booster type to employ tree-based models.

6.2.4.2 LightGBM The LightGBM model, sourced from the LightGBM

library [52], was configured similarly to the XGBoost model with lag values between

1 and 72 hours. The objective was set to optimize regression tasks using the L2 loss

function, and the boosting type was defined as gbdt, which utilizes gradient boosting

decision trees.

6.2.4.3 RandomForest The RandomForest model, part of the scikit-learn

library, was aligned with specific lag values ranging from 1 to 72 hours to capture daily

patterns in the data. The remaining parameters were kept at their default values.
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6.2.5 Forecasting

Our primary tool for this endeavor is the historical_forecast method available

in the Darts library. This method facilitates the computation of historical forecasts,

offering a detailed analysis of the model’s performance. Here, we detail the procedures

and settings employed in this stage:

6.2.5.1 Forecast Methodology We first fit the our model using its con-

figration, mentioned above. Next, We employed the historical_forecast method

from the Darts library to conduct the forecasting. The forecasts were conducted

under two distinct scenarios: one where the model was retrained at each stride and

another where it wasn’t retrained.

6.2.5.2 Forecast Settings and Parameters To initiate the historical

forecasting, we calculate the starting point, denoted as ‘start‘, using the formula:

start = split train× (2− split val)

Here, ‘split train‘ and ‘split val‘ represent the proportions of the data allocated for

training and validation, respectively. Both are assigned a value of 0.8. Consequently,

the ’start’ is calculated as:

start = 0.8× (2−0.8) = 0.8×1.2 = 0.96

Initially, 80% of the data is reserved for training, with the remaining 20% temporarily

held for further splitting. This 20% is then divided into validation and test datasets,

with 80% going to the validation set and 20% to the test set, making up 16% and

4% of the total dataset, respectively. The forecast settings were meticulously chosen

to evaluate the potential advantages of retraining the model at each stride. These
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settings are as follows:

• Forecast Horizon: We set a forecast horizon of 2 units to specify the time

period covered by the forecasts.

• Stride: We used a stride of 2 units to determine the step size as the model

makes predictions step-by-step.

• Training Length: The training length was fixed at 336 hours, or two weeks,

defining the time span for the training data used in the forecasts.

6.2.5.3 Retraining Scenarios We conducted the forecasting under two

different scenarios to ascertain the potential benefits of retraining the model at each

stride:

1. With Retraining: In this scenario, the models were retrained at each stride,

allowing for continual adaptation to new data and potentially enhancing forecast

accuracy.

2. Without Retraining: In contrast, this scenario maintained a static model

throughout the forecasting process, relying solely on the initial training phase

for predictions.

6.2.5.4 Evaluation and Analysis Following the forecasting process, we

embarked on a detailed analysis of the results, evaluating the performance based

on various metrics and visual representations. This step aims to discern the most

effective configurations and approaches.
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6.3 Deep Learning Model Implementation

6.3.1 Introduction

In this segment, we delve into the implementation of the NHiTS and NBEATS models

for forecasting the electricity load. These models are recognized for their robustness

and efficiency in time series forecasting. Our goal in this section is to describe various

configurations of these models and the methodology used.

6.3.2 Data Preparation

Similar to the machine learning models, the initial phase revolves around data prepa-

ration, primarily utilizing the pandas library. The dataset is loaded and any missing

values are addressed using appropriate methods from the pandas library to maintain

a uniform time series dataset. Subsequently, the data is transformed into a compat-

ible format to meet the requirements of the Darts library, enhancing computational

efficiency in the process.

The dataset is partitioned into training, validation, and test sets in the following

proportions:

• Training set: 80%

• Validation set: 16%

• Test set: 4%

The forecast horizon is aligned with the test set duration, spanning a time frame of

3 months or 2106 hours.

6.3.3 Feature Engineering and Scaling

Before feeding the data into the models, requisite feature engineering steps are un-

dertaken. Whenever past covariates are incorporated in the model, they are scaled
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using appropriate methods to prevent undue influence from larger magnitudes.

For a deeper understanding of encoder utilization in the models, please refer to section

section 4.3.

6.3.4 Model Configuration

In this investigation, we focus on two primary models: NHiTS and NBEATS. Both

models are experimented with different configurations to assess the influence of en-

coders and covariates on the accuracy of the forecasts. The configurations being

tested are delineated as follows:

• Incorporating encoders and past covariates

• Utilizing encoders but omitting past covariates

• Excluding encoders but including past covariates

• Neither using encoders nor past covariates

Following are the specific configurations for each model:

6.3.4.1 NHiTS The NHiTS model is configured with the following opti-

mized parameters to enhance its forecasting accuracy:

• Input Chunk Length: 168 units, which specifies the amount of input data

fed into the model at each step.

• Output Chunk Length: 24 units, defining the duration covered by each

forecast the model generates.

• Number of Stacks: 3, indicating the number of stacks in the model, a pa-

rameter that influences the model’s complexity and depth.

• Number of Blocks: 1, representing the number of blocks in each stack
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• Number of Layers: 2, determining the layers within each block

• Layer Widths: 512, which sets the width of the layers,

• Dropout: A rate of 0.1, utilized to prevent overfitting by intermittently dis-

abling a portion of the neurons during the training process.

• Activation Function: ’ReLU’, a function introduced to incorporate non-

linearity into the model.

• Max Pooling: Enabled (True), a technique employed in the convolutional

layers to simplify computation and reduce the training duration by decreasing

the spatial dimensions.

6.3.4.2 NBEATS Similarly, the NBEATS model is setup with a 168-unit

input chunk length and a 24-unit output chunk length. It employs a generic archi-

tecture and other values are kept at their default settings.

6.3.5 Forecasting

The primary tool leveraged in this stage is the historical_forecast method avail-

able in the Darts library. This method enables the calculation of historical forecasts,

providing an extensive analysis of the model’s performance over time. Here, we out-

line the methodologies and settings utilized in this phase:

6.3.5.1 Forecast Methodology Initially, the models are fitted using the

above-mentioned configurations. Following this, the historical_forecast method

is employed to carry out the forecasting, where different scenarios involving retraining

at each stride are explored to ascertain the potential advantages.

6.3.5.2 Forecast Settings and Parameters The initiation of historical

forecasting involves the calculation of the ‘start‘ variable, which is computed using
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the equation:

start = split train× (2− split val)

Further details regarding the computation and subdivision of the dataset into training,

validation, and test sets are analogous to the machine learning model section.

The forecast settings adopted here are formulated to critically assess the benefits of

retraining the model at each stride, comprising of the following elements:

• Forecast Horizon: A horizon of 2 units is established to delineate the forecast

period.

• Stride: A 2-unit stride is chosen to dictate the step size during the forecasting

progression.

• Training Length: The training duration is pegged at 336 hours, equivalent to

a fortnight, which sets the time window for training data usage in the forecasts.

6.3.5.3 Non Retraining and Retraining The forecasting is conducted

under different scenarios to gauge the potential benefits of retraining the model at

successive strides, detailed as follows:

1. With Retraining: This scenario entails retraining the models at every stride,

facilitating ongoing adaptation to new data, and possibly enhancing the accu-

racy of the forecasts.

2. Without Retraining: Conversely, this scenario maintains a stationary model

throughout the forecasting phase, relying exclusively on the initial training data

for predictions.

6.3.5.4 Evaluation and Analysis Upon the completion of the forecasting

process, an in-depth analysis of the results is undertaken, evaluating the performance

through various metrics and graphical illustrations.
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6.4 Model Validation and Performance Metrics

6.4.0.1 Selection of Performance Metrics The validation of predictive

models in forecasting research necessitates the implementation of precise performance

metrics. These metrics are instrumental in assessing the predictive accuracy of the

different forecasting models deployed in this study.

Among various metrics, the Root Mean Squared Error (RMSE) has been chosen as

the primary metric for several substantial reasons, which are detailed below:

• Mathematical Foundation: RMSE is calculated using the formula

RMSE =
√√√√ 1

n

n∑
i=1

(yi− ŷi)2

where yi represents the actual values, ŷi denotes the predicted values, and n

is the number of observations. This formula essentially computes the square

root of the average of the squared differences between the actual and predicted

values, thus offering a robust measure of model accuracy.

• Penalization of Larger Errors: RMSE inherently penalizes larger errors

more severely, as the errors are squared before being averaged. This, however,

prioritizes minimizing significant deviations from actual values.

• Interpretability: The RMSE value is expressed in the same units as the target

variable, thereby offering an intuitive understanding of the model’s performance

and facilitating the comprehension of the real-world implications of forecast

errors.

• Comprehensive Evaluation: Using RMSE alongside other metrics presents

an entire view of the models’ performance and averts any potential bias towards

specific performance facets.
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• Widespread Acceptance: RMSE is widely used in the research community

as a metric.

To complement the RMSE, other metrics are also employed. The mathematical ex-

pressions for these metrics are given as:

• MAE:

MAE = 1
n

n∑
i=1
|yi− ŷi|

MAE calculates the average of the absolute errors between the actual and pre-

dicted values, offering a linear error penalty.

• MAPE:

MAPE = 100%
n

n∑
i=1

∣∣∣∣∣yi− ŷi

yi

∣∣∣∣∣
MAPE computes the average of the percentage errors, thus providing an error

measurement in terms of percentage, which is particularly useful in understand-

ing the relative magnitude of the error.

• MSE:

MSE = 1
n

n∑
i=1

(yi− ŷi)2

MSE represents the average of the squared differences between the actual and

predicted values, giving a raw measure of the error magnitude.

• RMSLE:

RMSLE =
√√√√ 1

n

n∑
i=1

(log(yi +1)− log(ŷi +1))2

RMSLE is similar to RMSE but operates on the logarithm of the predictions

and actual values plus one, thereby being sensitive to relative errors instead of

absolute errors.
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• R-Squared (Coefficient of Determination):

R2 = 1−
∑n

i=1(yi− ŷi)2∑n
i=1(yi− ȳ)2

where ȳ is the mean of the actual values. R2 quantifies the proportion of the

variance in the dependent variable that is predictable from the independent

variable(s), offering a measure of the model’s explanatory power.

In conclusion, the choice of RMSE as the primary metric is rooted in its mathematical

properties and its alignment with the goals of this research.
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Chapter 7

Results and Discussion

7.1 Comparative Analysis of Models

In this section, we conduct an in-depth analysis to compare the performance of various

models in forecasting electricity loads. This analysis is crucial in identifying the most

effective model for predicting electricity demand with high accuracy. The metric that

will be used to compare across metrics is RMSE.

7.1.1 Statistical Forecasing Models

In this subsection, we evaluate the performance metrics of different configurations

used in forecasting electricity loads. We specifically focus on the ARIMA, MSTL,

Dynamic Optimized Theta, AutoETS, and AutoCES models. A detailed analysis of

these models is presented next, however, graphical representations can also be be

found in the appendices: For statsforecast library:

• ARIMA Plots: Appendix subsection .10.1

• MSTL Plots: Appendix subsection .10.2

• DOT Plots: Appendix subsection .10.3

• AutoETS Plots: Appendix subsection .10.4

• AutoCES Plots: Appendix subsection .10.5

• AutoTheta Plots: Appendix subsection .10.6

• HoltWinters Plots: Appendix subsection .10.7

For darts library:
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• AutoARIMA Plots: Appendix subsection .11.1

• AutoCES Plots: Appendix subsection .11.2

• AutoETS Plots: Appendix subsection .11.3

• AutoTheta Plots: Appendix subsection .11.4

7.1.1.1 Analysis of Statistical Model Forecasts This section is dedi-

cated to analyzing the forecast performance of various statistical models. Two types

of forecasts are presented: retrain and non-retrain. A detailed visual depiction of the

forecast outcomes is available in appendix section .10.

7.1.1.1.1 Predictions without Retraining The subsequent table

showcases the performance indicators of predictions generated using the statsfore-

cast python library. The models under consideration include MSTL, AutoARIMA,

Dynamic Optimized Theta, AutoETS, AutoCES, AutoTheta, and HoltWinters. Eval-

uation metrics encompass MAPE, MAE, MSE, RMSLE, R, and RMSE. The highest-

performing model for each metric is distinctly highlighted.

7.1.1.1.2 Overall Performance Analysis Upon analyzing both the

graphical representations and the statistical metrics, it is evident that several models

are underperforming, particularly highlighted by their negative R2 values. These neg-

ative values signify that the models are far from accurately predicting the variations

in the data, in fact, performing worse than a model that would predict the mean

value at every point.

Notwithstanding, the Dynamic Optimized Theta together with MSTL model seems

to be a leading contender, securing the lowest Mean Squared Error (MSE), indicating

a lower average error per prediction. Unfortunately, its negative R2 value indicates a

lack of effectiveness in capturing the underlying trends in the data.
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Conversely, the MSTL model performs similary to DOT. Similar to the Dynamic

Optimized Theta model, its negative R2 value highlights a limitation in understanding

the intrinsic patterns in the data effectively.

Regrettably, the CES model seems to be the worst perfomant of all, evident from its

high error metrics and substantially negative R2 value.

In summary, while the Dynamic Optimized Theta and MSTL models exhibit strengths

in certain areas, their negative R2 values underline a central limitation in their pre-

dictive accuracy. This can be also seen in the figures in the Appendix section .10.

Table 8

Performance Metrics for the different classical models we have used

Model MAPE MAE MSE RMSLE R2 RMSE
MSTL 13.24 3447.61 1.86×107 0.15 -0.01 4309.76
AutoARIMA 11 14.13 3694.36 1.95×107 0.16 -0.06 4415.07
AutoARIMA 1 14.74 3792.85 2.10×107 0.17 -0.15 4586.00
Dynamic Opti-
mized Theta

13.37 3667.26 1.84×107 0.15 -0.01 4293.13

AutoETS 13.32 3692.42 1.87×107 0.15 -0.02 4325.11
CES 83.47 23454.50 6.02×108 3.38 -31.84 24537.18
AutoTheta 13.36 3667.20 1.84×107 0.15 -0.01 4292.28
HoltWinters 13.32 3692.42 1.87×107 0.15 -0.02 4325.11

7.1.1.1.3 Predictions with Retraining It’s worth noting that the ini-

tial performance of the models above seemed unsatisfactory, largely due to the in-

herent limitations of statistical models in forecasting over extended horizons. For-

tunately, the incorporation of retraining methodologies significantly minimized this

performance gap. This improvement underscores the utility of the darts library, which

facilitates retraining capabilities, thereby enhancing the effectiveness of the statsfore-

cast library in long-term forecasting.

As we can see from the table above, the retraining procedure has a significant impact
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Table 9

Model Performance Metrics (Retrain)

Model MAPE MAE MSE RMSLE R2 RMSE
Auto
ARIMA

4.164 1149.901 2.283×106 0.0548 0.87 1511.005

Auto
CES

7.018 1930.168 5.464×106 0.086 0.699 2337.590

Auto
ETS

6.338 1738.864 4.424×106 0.078 0.756 2103.274

Auto
Theta

6.447 1769.403 4.566×106 0.079 0.749 2136.824

on the performance of the models. Models actually are able to forecast close to the

actual values, as seen in the figures in the Appendix section .11. The AutoARIMA

model seems to be the best performing model, while AutoCES model is the worst

performing model.

7.1.2 Machine Learning Models

In this subsection, we evaluate the performance metrics of different configurations

used in forecasting electricity loads. We specifically focus on the LightGBM, Ran-

domForest, and XGBoost models. A detailed analysis of these models is presented

next, however, graphical representations can also be be found in the appendices:

• RandomForest Predictions: Appendix section .5

• XGBoost Predictions: Appendix section .6

• LightGBM Predictions: Appendix section .7

7.1.2.1 Random Forest Model Predictions In this section of the analy-

sis, we focus on the Random Forest model. Different setups were examined, including

variations with or without encoders, and with or without covariates. A summary
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Table 10

Analyzing Random Forest Model Configurations: The table examines metric
variations across Random Forest configurations, considering the inclusion or exclu-
sion of encoders (E) and covariates (C). Color and Formatting Guide: Cells
in Melrose and Alto colors highlight the best performers for non-retrain and retrain
setups, respectively. Bolded values pinpoint the optimal performance in each metric
category.

MAPE MAE MSE RMSLE R2 RMSE
RF
NE
NC

R 2.902 814.6 1086148.633 0.038 0.942 1042.185

NR 1.236 355.527 219497.089 0.017 0.988 468.505

RF
NE
WC

R 3.058 849.178 1172335.736 0.04 0.937 1082.745

NR 1.216 350.216 202597.83 0.016 0.989 450.109

RF
WE
NC

R 2.864 803.97 1065965.75 0.038 0.943 1032.456

NR 1.228 354.068 216223.193 0.016 0.988 464.998

RF
WE
WC

R 2.866 792.81 1081110.558 0.039 0.942 1039.765

NR 1.232 354.168 241999.316 0.017 0.987 491.934

table highlights key performance metrics such as Mean Absolute Percentage Error

(MAPE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the

coefficient of determination (R2).

7.1.2.1.1 No-retrain model The data from the table shows that the

Random Forest model without retraining performs best when encoders are excluded

and covariates are included (RF NE WC), yielding the lowest values for MAPE, MAE,

MSE, and RMSE. It is notable that the R2 value is the same in two setups (RF NE

NC and RF WE NC), indicating a stable predictive power in these cases. Not using

encoders suggests that the initial features are strongly predictive, and adding encoders

might bring unnecessary complexity or noise, possibly lowering the performance. The

worst performance is seen when both encoders and covariates are used, which might

make the model too complex and unable to generalize well.
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7.1.2.1.2 Retrain model In contrast, the retrained Random Forest

model performs optimally when encoders are included and covariates are excluded.

This setup might help the model to identify complex patterns in the data that were

not captured initially, enhancing performance. Leaving out covariates during the

retraining might help the model to focus more on the primary features, avoiding

potential noise and the risk of overfitting.

7.1.2.1.3 Conclusion In conclusion, it appears that the Random Forest

model does not benefit greatly from using both encoders and covariates at the same

time. The best outcomes are observed when either covariates are included and en-

coders are excluded, or the other way around, depending on whether the model is

being retrained or not.

7.1.2.2 XGBoost Model Predictions This section shifts the focus to the

XGBoost model, evaluated under similar conditions as those applied to the Random

Forest model, concerning the use or non-use of encoders and the inclusion or exclusion

of past covariates. In addition to numerical data, the appendix section .6 contains

visual representations that ease a comprehensive understanding of the model’s per-

formance over different periods, including a detailed view of a one-month segment.

The forthcoming table defines the key metrics indicative of the model’s performance.

7.1.2.2.1 Analysis of Results Analyzing the table, we can observe var-

ious performance levels across different configurations of the XGBoost model. The

metrics such as MAPE, MAE, MSE, RMSLE, R2, and RMSE provide a clear insight

into the effectiveness of each configuration.
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Table 11

Analyzing XGB Model Configurations: This table examines metric variations
across XGB configurations, considering the inclusion or exclusion of encoders (E)
and covariates (C). Color and Formatting Guide: Cells in Melrose and Alto
spotlight the best performers for non-retrain and retrain setups, respectively. Bolded
values denote the best performance in each metric category.

MAPE MAE MSE RMSLE R2 RMSE
XGB
NE
NC

R 2.973 836.783 1246142.9 0.041 0.933 1116.308

NR 1.438 406.844 288498.66 0.019 0.985 537.121

XGB
NE
WC

R 2.943 826.011 1165365.0 0.039 0.938 1079.521

NR 1.338 378.53 247748.16 0.018 0.987 497.743

XGB
WE
NC

R 2.973 836.783 1246142.9 0.041 0.933 1116.308

NR 1.438 406.844 288498.66 0.019 0.985 537.121

XGB
WE
WC

R 2.813 783.709 1071577.2 0.038 0.943 1035.17

NR 1.207 344.812 203175.66 0.016 0.989 450.75

7.1.2.2.2 No-retrain Model For the no-retrain model, the configuration

XGB WE WC NR exhibits the best performance, yielding the lowest values across

most metrics including MAPE, MAE, MSE, and RMSE, indicating a more accurate

and reliable model. This suggests that including both encoders and covariates without

retraining the model seems to capture the underlying patterns in the data more

effectively.

7.1.2.2.3 Retrain Model On the other hand, the retrained model shines

in the XGB WE WC R configuration, where it again achieves the lowest values in

several metrics, signaling the potential optimal setup when considering a retraining

strategy. This pattern suggests a consistency in the performance of the configuration

that includes both encoders and covariates, even when the model is retrained.
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7.1.2.2.4 Conclusion To conclude, the analysis indicates that the XG-

Boost model generally performs better with the inclusion of both encoders and co-

variates, irrespective of the retraining state. This might be due to the model’s pro-

ficiency in mitigating overfitting and adeptly recognizing underlying patterns in the

data. However, it is notable that the retraining approach seems to slightly reduce

the model’s performance. Additionally, the identical performance of the XGB WE

NC and XGB NE NC configurations is because the model disregards future encoders

during the evaluation, maintaining a consistent output.

7.1.2.3 LightGBM Model Predictions In this section, we turn our fo-

cus to the analysis of the LightGBM model. Just like the previous models, the

LightGBM is analyzed based on different setups: with or without encoders and in-

cluding or excluding covariates. To enhance the numerical analysis, detailed graphical

representations are also provided, presenting a broader view as well as a one-month

detailed snapshot to closely examine the model’s predictions in comparison to the

actual outcomes. Please refer to appendix section .7 for the visual insights.

The ensuing table delineates the crucial metrics that serve as benchmarks to evaluate

the model’s performance.

7.1.2.3.1 No-retrain Model In the scenario without retraining, the

LGBM WE WC configuration emerges as the most promising, demonstrating the

lowest values in several metrics including MAPE, MAE, and MSE, and exhibiting

the highest R2 value. This hints at a better adaptability of this configuration in rec-

ognizing and adapting to the underlying patterns in the data without the necessity

of retraining.

7.1.2.3.2 Retrain Model Conversely, for the retrained models, the

LGBM WE WC configuration maintains its superior performance, registering the
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Table 12

Analyzing LGBM Model Configurations: The table examines metric variations
across LGBM configurations, taking into account the presence or absence of encoders
(E) and covariates (C). Color and Formatting Guide: Cells in Melrose and Alto
denote the best performance for non-retrain and retrain setups, respectively. Bolded
values mark the optimal performance in each metric category.

MAPE MAE MSE RMSLE R2 RMSE
LGBM

NE
NC

R 2.539 712.001 898639.425 0.035 0.952 947.966

NR 1.436 405.194 277965.596 0.019 0.985 527.224

LGBM
NE
WC

R 2.646 733.76 944908.22 0.036 0.949 972.064

NR 1.319 371.454 224922.193 0.017 0.988 474.26

LGBM
WE
NC

R 2.539 712.001 898639.425 0.035 0.952 947.966

NR 1.436 405.194 277965.596 0.019 0.985 527.224

LGBM
WE
WC

R 2.494 691.271 893631.363 0.036 0.952 945.321

NR 1.192 338.852 188418.129 0.015 0.99 434.072

lowest values in numerous metrics once again. This indicates a consistent robustness

in this configuration, which seems to hold even when the model undergoes retraining,

possibly suggesting a generally more reliable setup.

7.1.2.3.3 Conclusion In conclusion, the data strongly suggests that the

LightGBM model showcases optimal performance when both encoders and covariates

are utilized, unaffected by the retraining process. Moreover, the identical results

observed in the LGBM WE NC and LGBM NE NC configurations indicate that the

model does not differentiate based on the use of future encoders in these cases, leading

to uniform outputs.

7.1.2.4 Summary of Machine Learning results It’s worth noting that

the retraining process didn’t benefit any machine learning model. That could be

because the retraining was done very frequently (every 2 hours) or because the training
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length was relatively small (2 weeks).

7.1.3 Deep Learning Models

In this subsection, we extend our analysis to encompass deep learning models, which

offer a different approach to forecasting compared to traditional machine learning

models. The detailed analysis of these models is presented next, however, graphical

representations can be found in the appendices:

• N-BEATS Predictions: Appendix section .9

• NHITS Predictions: Appendix section .8

7.1.3.1 Analysis of NBEATS Model Configurations This segment

elucidates the performance of the NBEATS model across various configurations. Sim-

ilar to previous evaluations, the model has been assessed based on different setups,

which include or exclude encoders and covariates. The subsequent analysis, derived

from the data presented in the table, seeks to offer a concise interpretation of the

model’s performance across different metrics such as MAPE, MAE, MSE, RMSLE,

R2 , and RMSE. To facilitate a visual analysis, refer to the appendix section .9 for

graphical illustrations of the model’s performance across, including an in-depth anal-

ysis of a one-month segment.

7.1.3.1.1 Analysis of Results The table delineates the variations in

metric values across various NBEATS configurations, paving the way for a nuanced

understanding of the model’s efficacy under different circumstances. The Melrose

and Alto color codings pinpoint the configurations that have outshone in the non-

retrain and retrain setups, respectively. Moreover, the bolded figures emphasize the

configurations exhibiting supreme performance in each metric category.
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Table 13

Analyzing NBEATS Model Configurations: The table scrutinizes metric vari-
ations across NBEATS configurations, considering the inclusion or exclusion of en-
coders (E) and covariates (C). Color and Formatting Guide: Cells in Melrose
and Alto spotlight the best performers for non-retrain and retrain setups, respectively.
Bolded values indicate the superior performance in each metric category.

MAPE MAE MSE RMSLE R2 RMSE

NBEATS
NE NC

R 3.692 1039.86 1969413.6 0.049 0.894 1403.358
NR 1.715 501.24 336508.8 0.02 0.982 580.094

NBEATS
NE WC

R 4.292 1209.311 2555396.0 0.056 0.863 1598.561
NR 0.893 256.742 107181.22 0.011 0.994 327.385

NBEATS
WE NC

R 4.586 1296.343 2987447.2 0.06 0.84 1728.423
NR 1.657 472.278 342157.1 0.02 0.982 584.942

NBEATS
WE WC

R 4.495 1270.429 2872229.0 0.059 0.846 1694.765
NR 1.287 374.223 219082.95 0.016 0.988 468.063

7.1.3.1.2 Non-retrain Model Analysis In the non-retrain scenario,

the NBEATS NE WC NR configuration emerges as the frontrunner, showcasing the

best values across all metrics. These values, which indicate higher accuracy and

reliability, suggest that the setup - which incorporates both encoders and covariates

without retraining - is adept at identifying the intrinsic patterns in the data.

7.1.3.1.3 Retrain Model Analysis Contrastingly, when the focus shifts

to the retrained models, the NBEATS NE NC R configuration performs the best. As

with the non-retrain scenario, this setup not only reports the best values across the

metrics,for this strategy.

7.1.3.1.4 Conclusion To wrap up, the NBEATS model tends to deliver

a superior performance when both encoders and covariates are integrated, regardless

of whether retraining is applied or not. This trend might be a reflection of the model’s

capability to curb overfitting effectively while proficiently detecting the underlying

patterns in the data set. It’s worth noting that the retraining approach seems to have
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a marginal impact on diminishing the model’s performance. Furthermore, it performs

better than all machine learning algorithms, which is a testament to its efficacy in

forecasting electricity loads.

7.1.3.2 Detailed Analysis of NHITS Model Configurations This sec-

tion delineates a thorough analysis of the NHITS model configurations, emphasizing

the influence of encoders (E) and covariates (C) on the model’s performance. The

marked cells in Melrose and Alto colors spotlight optimal performance in non-retrain

and retrain setups, respectively, while bolded figures pinpoint peak performance in

each metric category. Further visual representations can be found in appendix sec-

tion .8.

Table 14

Analyzing NHITS Model Configurations: This table scrutinizes metric varia-
tions across NHITS configurations, considering the inclusion or exclusion of encoders
(E) and covariates (C). Color and Formatting Guide: Cells in Melrose and Alto
highlight the best performers for non-retrain and retrain setups, respectively. Bolded
values pinpoint the optimal performance in each metric category.

MAPE MAE MSE RMSLE R2 RMSE
NHITS
NE NC

R 4.086 1166.386 2314193.2 0.053 0.876 1521.247

NR 0.759 220.120 84015.6 0.010 0.995 289.854

NHITS
NE WC

R 4.061 1154.943 2282733.8 0.053 0.878 1510.872
NR 1.098 306.576 148839.7 0.014 0.992 385.798

NHITS
WE NC

R 3.947 1121.042
2079310.6

0.051 0.889
1441.981

NR 0.750 214.853 81541.3 0.010 0.996 285.554

NHITS
WE WC

R 3.966
1114.452

2252650.8 0.053 0.879 1500.883

NR 1.603 447.193 289075.3 0.019 0.985 537.657

7.1.3.2.1 Metric Analysis The table illustrates marked variations in

performance metrics across different NHITS model configurations. The color-coded
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cells guide the reader to the configurations with superior performance in non-retrain

and retrain categories, and bold text highlights the top performance in individual

metrics, simplifying the evaluation process.

7.1.3.2.2 Non-retrain Configurations Analysis In the non-retrain

configurations, the NHITS WE NC NR setup emerges as highly efficient, exhibiting

the lowest values in critical metrics such as MAPE, MAE, and MSE. This configura-

tion also demonstrates a really high R2 value, indicating a strong correlation between

the predicted and actual values, and a minimized RMSLE score, reflecting its profi-

ciency in reducing the logarithmic error between predicted and observed values.

7.1.3.2.3 Retrain Configurations Analysis For retrain configura-

tions, the NHITS WE NC R setup stands out, showcasing minimal values across

most metrics, implying high predictive accuracy. This setup illustrates a notable

performance, particularly in the reduced MSE values and higher R2 coefficients, indi-

cators of substantial predictive accuracy and a close correlation between the observed

and predicted values.

7.1.3.2.4 Conclusion In summary, the analysis reveals that configura-

tions integrating solely the encoders encoders and yields better performance, a trend

evident in both retrain and non-retrain setups. The difference between the two setups

is perceptible, with the non-retrain setup exhibiting a better performance.
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Chapter 8

Conclusion

8.1 Summary of Findings

In this section, we delve into an analysis of the performance of the various forecasting

models we analyzed in the previous sections. We compare the performance of each

model based on their respective best-performing variants, considering the influence

of retraining on the RMSE metric.

Table 15

Comparison of Best Model Variants Based on RMSE

Model Best Variant (Retraining Status) RMSE
NHITS NHITS WE NC (NR) 285.554

N-BEATS NBEATS NE WC (NR) 327.385
LightGBM LGBM WE WC (NR) 434.072

Random Forest RF NE WC (NR) 450.109
XGBoost XGB WE WC (NR) 450.75

Classical Series Auto ARIMA (R) 1511.005

As depicted in Table 15, the NHITS model with the ”WE NC” variant and not re-

trained (NR) showcases the superior performance with the lowest RMSE of 285.554,

indicating its high predictive accuracy. Here, ”WE” stands for ”With Encoders”,

signifying that the model incorporates encoder mechanisms to enhance the repre-

sentation of the input data, and ”NC” denotes ”Not past covariates”, indicating the

model does not utilize past covariate information in the forecasting process. The high

accuracy of this model hints at the effectiveness of utilizing encoders without relying

on past covariates, possibly facilitating the learning of more generalized patterns in

the data.
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This is closely followed by the N-BEATS model, another deep learning model, with

the ”NE WC” variant (NR), which exhibits an RMSE of 327.385. The notable per-

formance of this variant suggests that the inclusion of past covariate information can

compensate for the absence of encoders, still enabling the model to achieve a high

level of accuracy in predictions.

On the machine learning front, the LightGBM model, with the ”WE WC” variant

(NR), outperforms both the Random Forest and XGBoost models, posting an RMSE

of 434.072. This variant, which incorporates both encoders and past covariate data,

demonstrates the synergistic benefits of combining these two features, potentially

offering a rich representation of the input data and thus facilitating more accurate

predictions.

In contrast, the Classical Series model employing the Auto ARIMA variant and re-

trained (R) demonstrates a significantly higher RMSE value of 1511.005, indicative

of a larger deviation from the actual values in its predictions. This suggests that

statistical methods, although foundational in time series analysis, may not hold the

same predictive prowess as modern machine learning and deep learning approaches

in certain contexts.

In summation, deep learning models emerge as the front-runners in predictive accu-

racy, followed by machine learning models, and then statistical models. The analysis

also sheds light on the nuanced influences of encoder mechanisms and past covariate

data on model performance, with different combinations of these features yielding

varying levels of accuracy. It is evident that the LightGBM models hold a slight ad-

vantage over the Random Forest and XGBoost models, with the latter two showcasing

very close performance metrics.

Interestingly, a noteworthy observation from the analysis is the generally superior per-

formance exhibited by models that were not retrained, as opposed to their retrained

counterparts. This counterintuitive phenomenon warrants a deeper exploration to
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uncover potential underlying factors.

One plausible explanation could be the introduction of noise during the retraining

phase. If the additional data incorporated during retraining contains anomalies or

patterns not present in the initial dataset, it might inadvertently increase the noise

level in the model, thereby hampering its ability to generalize well to unseen data

Secondly, it is conceivable that the initial training phase already encapsulated a rep-

resentative subset of the data, capturing the essential underlying patterns and trends

proficiently. In such scenarios, further retraining may not necessarily enhance the

model’s predictive capacity, and might even degrade performance by fitting to the

noise or inconsistencies present in the new data.

Lastly, it is possible that the retraining process may not have been optimized to its

full potential, resulting in suboptimal performance. Possibly increasing the training

length could have help the model to learn more effectively, thereby improving its

predictive accuracy. Also, from the plots, it’s noticeable that the retrained model

predicts the data with a lag, overestimating the values.
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.1 Descriptive Statistics

.1.0.1 Central Tendency Central tendency measures provide insights into

the central or typical value of a distribution. They summarize the data by identifying a

single value that represents the entire dataset. The main measures of central tendency

are:

1. Mean: The arithmetic mean, or simply the mean, is the sum of all values

divided by the number of values. Mathematically:

µ =
∑n

i=1 xi

n

where xi are the individual observations, and n is the total number of observa-

tions.

2. Median: The median is the middle value of a sorted dataset. If the dataset has

an odd number of values, the median is the middle value. For an even number

of values, it’s the average of the two middle values.

3. Mode: The mode is the value that appears most frequently in the dataset. A

distribution can have more than one mode, known as bimodal or multimodal,

depending on the number of values that appear most frequently. The mode can

be found using:

Mode = max
xi

(frequency(xi))

where frequency(xi) is the count of occurrences of the value xi in the dataset.

Understanding the central tendency helps in identifying the typical behavior in time

series data such as electricity load patterns. For instance, the mean might represent

the average daily electricity consumption, while the mode might indicate the most

common hourly demand level.
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.1.0.2 Dispersion Dispersion measures provide insights into how spread

out the values are in a dataset. They reveal the variability and give a sense of how

much the data deviates from the central value.

1. Range: The range is calculated as the difference between the maximum and

minimum values.

Range = max(x)−min(x)

2. Variance: The variance measures the average of the squared differences from

the mean.

σ2 =
∑n

i=1(xi−µ)2

n

3. Standard Deviation: The standard deviation gives a measure of how much

individual data points deviate from the mean.

σ =
√

σ2 =
√∑n

i=1(xi−µ)2

n

4. Interquartile Range (IQR): The IQR measures the statistical spread be-

tween the first quartile (Q1) and the third quartile (Q3).

IQR = Q3−Q1

Dispersion measures are vital for the variability data. Understanding dispersion is

beneficial for modeling, since it could help in tuning model parameters.

.1.0.3 Shape Shape measures help describe the distribution’s form, includ-

ing its symmetry and the nature of its tails.

1. Skewness: Skewness measures the asymmetry of a distribution. The mathe-
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matical formula for sample skewness is:

Skewness = n
√

n−1
(n−2) ·

∑n
i=1(xi−µ)3

σ3

2. Kurtosis: Kurtosis measures the ”tailedness” of the distribution. The mathe-

matical formula for sample kurtosis is:

Kurtosis =
∑n

i=1(xi−µ)4

nσ4

Analyzing the skewness and kurtosis can guide the transformation or preprocessing

steps required to make the data more suitable for modeling.

.1.0.4 Moving Average Plots Moving average plots are an essential tool

for smoothing time series data and revealing underlying trends, patterns and even

possible baseline predictions.

Simple Moving Average (SMA): The SMA calculates the average of the last k

observations.

SMA(t) =
∑t

i=t−k+1 xi

k

.1.0.5 Rolling Statistics Rolling statistics apply statistical measures over

a rolling window of a fixed size across a time series. They’re used to reveal local

trends and to analyze volatility of a time series.

1. Rolling Mean: The rolling mean is the average of the observations within the

window.

Rolling Mean(t) =
∑t

i=t−k+1 xi

k

2. Rolling Standard Deviation: The rolling standard deviation measures the
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local variability.

Rolling Std Dev(t) =
√∑t

i=t−k+1(xi−µt)2

k

Rolling statistics are crucial in electricity load forecasting for revealing local trends,

analyzing volatility, and possibly enhancing modeling.

.1.1 Statistical Tests

Statistical tests play a vital role in validating assumptions about the data and in

model selection.

.1.1.1 Durbin-Watson Statistic The Durbin-Watson statistic serves as

a diagnostic tool used to detect the presence of autocorrelation in the residuals of

a regression model. Autocorrelation in residuals can violate the OLS assumptions,

potentially leading to biased or misleading results.

Mathematical Formula:

Durbin-Watson =
∑n

t=2(et− et−1)2∑n
t=1 e2

t

In this formula, et represents the residual at time t, and n is the number of observa-

tions.

Interpretation:

• Value close to 2: Indicates that there is no autocorrelation in the residuals,

meaning that the model satisfies one of the key OLS assumptions.

• Value close to 0: Suggests positive autocorrelation, which could mean that

the model is missing some explanatory variables related to time or other factors.
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• Value close to 4: Implies negative autocorrelation, which is relatively rare

but could indicate an overly complicated model.

The Durbin-Watson statistic is used to detect linear autocorrelation and only can

work in equally spaced observations. For multiple lags or non linear relations, other

tests like Ljung-Box test should be used.

.1.1.2 Augmented Dickey-Fuller Test The Augmented Dickey-Fuller

(ADF) test is used to determine if a time series is stationary. It’s application could

guide transformations to achieve stationarity. Stationary data can be likened to a car

traveling on a straight, level highway. While the car may occasionally need to pull

over for brief stops or detours, it always returns to the main road and continues its

straight journey.

Nonstationary data, on the other hand, is similar to a car trying to navigate a wind-

ing, unpredictable path. The car might occasionally veer off course due to various

obstructions or distractions, making its path appear erratic and without a consistent

direction. To an observer, it might seem as though the car is moving without a clear,

linear trend.

In time series analysis, ensuring data stationarity is crucial as most forecasting models

rely on the assumption that the statistical properties (like mean and variance) of the

series are constant over time. Nonstationary data can lead to unreliable and spurious

results. Thus, transforming nonstationary data into a stationary form often becomes

a necessary preprocessing step in time series forecasting.

Mathematical Formula:

∆yt = α +βt+γyt−1 + δ1∆yt−1 + . . .+ δp∆yt−p + εt

Interpretation: In the unit root test, we aim to evaluate two scenarios: the null

hypothesis γ = 0 and the alternative hypothesis γ < 0. To make this assessment, a
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test statistic, denoted as DFτ , is calculated using the formula:

DFτ = γ̂

SE(γ̂)

Here, γ̂ is the estimated value of γ, and SE(γ̂) is the standard error associated with

γ̂.

Next, DFτ is compared to a Dickey-Fuller specific critical value. Importantly, this

test is one-sided and only negative values of DFτ are considered. If DFτ is more

negative than the critical value, the null hypothesis (γ = 0) is rejected, leading to the

conclusion that the data series does not contain a unit root.

• Fail to Reject Null Hypothesis (γ = 0): Non-stationary.

• Reject Null Hypothesis (γ ̸= 0): Stationary.

.1.1.3 Johansen Test The Johansen test serves as a statistical tool for

determining the number of cointegrating relationships in a multivariate time series

system. Essentially, cointegration refers to a long-term equilibrium relationship be-

tween multiple time series variables, even if the individual series themselves are non-

stationary.

Mathematical Formula:

∆Yt = ΠYt−1 +
p−1∑
i=1

Γi∆Yt−i +ut

Here, ∆Yt represents the change in the vector of observed variables at time t. Π is

the long-run impact matrix, while Γi captures the short-run dynamics. ut is the error

term.

Interpretation:

• Rank = 0: This implies that there is no cointegration among the variables,

meaning that any long-term equilibrium relationship is absent.
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• Rank = 1: Indicates the presence of a single cointegrating relationship among

the variables. In this case, all the variables are linked by one long-term equilib-

rium condition.

• Rank > 1: Suggests that multiple cointegrating relationships exist. This sce-

nario is more complex, as it implies that there are several long-term equilibrium

conditions that tie the variables together.

The rank of cointegration helps to clarify the underlying structure of the system,

providing insights into the long-term adjustments that the variables make towards

equilibrium. However, it’s important to note that multiple cointegrating relatioship

may require addiotional analysis to decipher any implications.

.2 Data Normalization

Data normalization, at its core, is an essential preprocessing step in various machine

learning and deep learning applications. Its primary purpose is to adjust the scales of

different features to a unified range or distribution, ensuring the algorithm’s stable and

efficient convergence. Mathematically, the normalization process can be represented

as:

Xnormalized = X−µ

σ

where X is the original feature, µ is the mean, and σ is the standard deviation.

.2.0.1 Why is Normalization Important?

1. Convergence Rate: Most machine learning algorithms, especially those de-

pendent on gradient-based optimization methods, are sensitive to the scale of

input features. When features are on disparate scales, the gradients can either
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vanish (become too small) or explode (become too large), leading to unsta-

ble training. Mathematically, this can be seen in the update rule of gradient

descent:

θt+1 = θt−α∇J(θ)

Here, ∇J(θ) is the gradient of the loss function with respect to the parameters θ.

When features are not normalized, the magnitude and direction of this gradient

can be largely influenced by the feature with the highest scale, leading to slow

or unstable convergence.

2. Avoiding Dominance: In algorithms that compute distances or similarities,

like k-means clustering or k-nearest neighbors, features with larger scales can

dominate the objective function. This means the algorithm is more sensitive to

changes in that particular feature, possibly leading to suboptimal models.

3. Preserving Patterns: In time series data, trends, cycles, and seasonality are

crucial. Proper normalization ensures that these patterns are retained. For

instance, a sudden spike in electricity demand due to an event will still be

noticeable post-normalization, allowing models to capture such anomalies.

.3 Common Techniques

1. Min-Max Scaling: This technique scales the data based on the minimum and

maximum values to a specific range, typically [0, 1]. Mathematically, this can

be represented as:

Xscaled = X−Xmin
Xmax−Xmin

2. Z-Score or Standard Scaling: Here, the data is scaled based on its mean and
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standard deviation, resulting in a distribution with a mean of 0 and a standard

deviation of 1. This is the formula we introduced at the beginning.

3. Max Absolute Scaling: Particularly useful for data that spans both positive

and negative values, this scaler adjusts data such that the absolute maximum

value corresponds to 1 (or another chosen value). Mathematically:

Xscaled = X

max(|X|)

.4 Appendix B: Detailed RNN Architecture

Figure A1

Unfolded architecture of an RNN across various time steps.
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The figure illustrates the architecture of an unfolded Recurrent Neural Network

(RNN) across various time steps:

1. Hidden States: The nodes hindex
time denote the hidden states at different time

steps and layers.
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2. Inputs/Outputs: The gray-filled nodes, y and v, represent outputs and inputs

at specific time steps, respectively.

3. Layers: The RNN consists of multiple layers, as indicated by varying indices

from 1 to n.

4. Connections:

• Horizontal arrows signify memory transition between time steps.

• Vertical arrows within a time step convey information flow between layers.

5. Bounding Boxes: These encapsulate hidden states at certain time steps, show-

casing them as unified entities.

6. Ellipses: These on the edges suggest the sequence’s continuity beyond the

displayed time steps.

This visual representation underscores the recurrent nature of RNNs, emphasizing

the sequential flow of information across layers and time steps.
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.5 Random Forest plots
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Figure A2

Random Forest model predictions with encoders and covariates - Full-scale and zoomed
views
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Figure A3

Random Forest model predictions without encoders but with covariates - Full-scale
and zoomed views
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Figure A4

Random Forest model predictions with encoders but without covariates - Full-scale
and zoomed views
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Figure A5

Random Forest model predictions without encoders and without covariates - Full-scale
and zoomed views
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.6 XGBoost plots
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Figure A6

XGBoost model predictions with encoders and covariates - Full-scale and zoomed views
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Figure A7

XGBoost model predictions without encoders but with covariates - Full-scale and
zoomed views
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Figure A8

XGBoost model predictions with encoders but without covariates - Full-scale and
zoomed views
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Figure A9

XGBoost model predictions without encoders and without covariates - Full-scale and
zoomed views
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.7 LightGBM plots
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Figure A10

LightGBM model predictions with encoders and covariates - Full-scale and zoomed
views
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Figure A11

LightGBM model predictions without encoders but with covariates - Full-scale and
zoomed views
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Figure A12

LightGBM model predictions with encoders but without covariates - Full-scale and
zoomed views
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Figure A13

LightGBM model predictions without encoders and without covariates - Full-scale and
zoomed views
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.8 NHITS Model Predictions
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Figure A14

NHITS model predictions with encoders and covariates - Full-scale and zoomed views

2020−07−15

2020−08−01

2020−08−15

2020−09−01

2020−09−15

2020−10−01

Time

20000

25000

30000

35000

E
le

ct
ri

ci
ty

L
oa

d

Full View

Test Data

Retrain Predictions

No Retrain Predictions

2020−07−09

2020−07−13

2020−07−17

2020−07−21

2020−07−25

2020−07−29

2020−08−01

2020−08−05

Time

20000

25000

30000

35000

E
le

ct
ri

ci
ty

L
oa

d

Zoomed View

Test Data

Retrain Predictions

No Retrain Predictions

NHITS Model Predictions (Without Encoders, With Covariates)

Figure A15

NHITS model predictions without encoders but with covariates - Full-scale and zoomed
views
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Figure A16

NHITS model predictions with encoders but without covariates - Full-scale and zoomed
views
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Figure A17

NHITS model predictions without encoders and without covariates - Full-scale and
zoomed views
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.9 NBEATS Model Predictions
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Figure A18

NBEATS model predictions with encoders and covariates - Full-scale and zoomed
views
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Figure A19

NBEATS model predictions without encoders but with covariates - Full-scale and
zoomed views
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Figure A20

NBEATS model predictions with encoders but without covariates - Full-scale and
zoomed views
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Figure A21

NBEATS model predictions without encoders and without covariates - Full-scale and
zoomed views
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.10 Non-retrain statistical models (statsforecast library)

.10.1 ARIMA Plots
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Figure A22

ARIMA model predictions with season length 11
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.10.2 MSTL Plots
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Figure A23

MSTL model predictions with season lengths 11 and 24

.10.3 DOT Plots
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Figure A24

Dynamic Optimized Theta model predictions with season length 11
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.10.4 AutoETS Plots
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Figure A25

AutoETS model predictions with season length 11

.10.5 AutoCES Plots
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Figure A26

AutoCES model Plots
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.10.6 AutoTheta Plots
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Figure A27

AutoTheta model predictions with season length 11

.10.7 HoltWinters Plots
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Figure A28

HoltWinters model predictions with season length 11
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.11 Retrain statistical models (Darts library)

.11.1 AutoARIMA Retrain Plots
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Figure A29

AutoARIMA Retrain Model Predictions
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.11.2 AutoCES Retrain Plots
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Figure A30

AutoCES Retrain Model Predictions

.11.3 AutoETS Retrain Plots
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Figure A31

AutoETS Retrain Model Predictions
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.11.4 AutoTheta Retrain Plots
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Figure A32

AutoTheta Retrain Model Predictions
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