

UNIVERSITY OF MACEDONIA

DEPARTMENT OF APPLIED INFORMATICS

GRADUATE PROGRAM

The role and functionality of Choreography diagrams for process-

driven applications

M.Sc. THESIS

of

Eleni Itsou

Thessaloniki, October 2023

The role and functionality of Choreography diagrams for process-

driven applications

Eleni Itsou

Integrated Msc of Rural and Surveying Engineering, 2019

M.Sc. Thesis

submitted as a partial fulfillment of the requirements for

THE DEGREE OF MASTER OF SCIENCE IN APPLIED INFORMATICS

Supervisor: Dr Konstantinos Vergidis

Approved by examining board on 31 October 2023

Prof Efthimios Tambouris Dr Michael Mandas Dr Konstantinos Vergidis

...................................

Eleni Itsou

...................................

1

Abstract

The focus of this thesis is the journey of choreography diagrams in the context of BPMN.

Collaboration diagrams show how various participants interact within a business process. On the

other hand, choreography diagrams focus on the interactions between participants and act as

contracts that specify the messages exchanged and flow of interactions, while removing the focus

from the internal processes of an individual participant. A real-world reservation process inspired

by Airbnb is used to demonstrate these ideas. This helps to clarify the complex web interactions

that occur between hosts and guests and improves understanding through collaboration and

choreography diagrams. The research highlights the critical role that REST APIs play in

application development before highlighting how important it is to include RESTful interactions

in BPMN choreography diagrams. A practical layer is added to the research with building a

Reservation REST API using the Model-View-Controller (MVC) design pattern. It elaborates on

the four fundamental layers of the API and offers thorough insights into the project setup,

documentation, and testing procedures. An in-depth analysis of three reservation scenarios shows

how different API methods interact in a dynamic way. The report provides a thorough manual for

developers and business analysts and emphasizes the value of automating API request workflows

with Postman for effective issue identification and system functionality verification.

Keywords: Business Process Management, BPMN, Business Process Modeling, Choreography

Diagrams, Collaboration Diagrams, REST APIs, REST Annotations, Workflow Management

2

Acknowledgments

I want to express my gratitude to everyone who has helped me along the way as I finish my thesis.

I want to start by sincerely thanking Dr. Konstantinos Vergidis, my supervisor, for believing in me

right from the start of our work together. His kind and encouraging approach was invaluable in

helping me accomplish our final objective and acting as a guiding light during challenging times.

In addition, I would like to thank my good friends and colleagues for their unwavering support of

in this long research journey. In addition to the knowledge, I acquired in my field of study, their

influence and support had a major impact in my substantial personal growth.

3

Table of Contents

Chapter 1 : Introduction .. 10

1.1 Background and motivation for the study .. 10

1.2 Overview of the thesis structure ... 10

Chapter 2 : Theoretical Background ... 13

2.1 Business Process Definition ... 13

2.2 The rise of Business Process Management .. 15

2.3 Business Process Management Lifecycle .. 17

2.4 Process Driven Applications .. 20

2.5 Chapter Summary ... 23

Chapter 3 : Business Process Modeling with BPMN ... 24

3.1 Introduction to Business Process Modeling Notation (BPMN) 24

3.2 BPMN Elements ... 25

3.2.1 BPMN activities .. 26

3.2.2 BPMN gateways ... 30

3.2.3 BPMN events .. 33

3.3 BPMN Collaboration Diagrams ... 37

3.4 BPMN Choreography Diagrams .. 38

3.5 Motivating Example - Airbnb booking process ... 42

3.5.1 Reservation app booking process collaboration diagram 44

3.5.2 Reservation app booking process choreography diagram 47

3.6 Chapter Summary ... 50

Chapter 4 : REST and BPMN ... 52

4.1 Application Programming Interface evolution ... 52

4.2 Representational State Transfer (REST) Architectural Style ... 55

4.3 RESTful Conversations Modelling with Extended BPMN Choreography Diagrams ... 58

4.4 Reservation app booking process choreography diagram extended with REST

annotations. ... 60

4.5 Chapter Summary ... 63

Chapter 5 : From Modeling to Implementation level ... 64

5.1 MVC Architecture and Dependency Management in RESTful API development 64

4

5.2 Building a Reservation RESTful API with Spring Boot, Mongo DB and Swagger: A

comprehensive implementation guide ... 66

5.2.1 Create a new Reservation Operation... 71

5.2.2 Update the Reservation Status .. 75

5.2.3 Confirm or Reject a Reservation Request ... 79

5.2.4 Place a new Reservation Operation .. 84

5.2.5 Delete a Reservation Operation .. 87

5.2.6 Get reservation by identification number. .. 89

5.2.7 Send a notification email via Java Mail API and SMTP protocol. 91

5.3 Chapter Summary ... 94

Chapter 6 : Business process orchestration using Postman .. 96

6.1 Reservation confirmation process scenario .. 96

6.2 Reservation non-availability process scenario ... 106

6.3 Reservation rejection process scenario .. 109

6.4 Chapter Summary ... 113

Chapter 7 : Discussions and Conclusions ... 115

7.1 Thesis Overview ... 115

7.2 Research Contribution .. 117

7.3 Research Limitations and Future Work ... 117

7.4 Conclusions .. 118

Bibliography ... 119

List of Figures

Figure 1: The ingredients of a business process [1] .. 14

Figure 2: Maturity model based on OMG [17]. .. 18

Figure 3: The BPM Lifecycle [1].. 19

Figure 4: Process oriented application composition [20] ... 21

Figure 5: Process automation with a workflow engine [18] ... 22

Figure 6: Business Process Standards timeline [24] ... 25

Figure 7: BPMN basic elements [26].. 26

Figure 8:Task marker representation examples .. 27

5

Figure 9: Example 1- Enrollment in Highschool BPMN diagram retrieved from mitos.gov.gr .. 28

Figure 10: Travel method decision business process .. 29

Figure 11: Transportation Decision, decision diagram ... 29

Figure 12: Business process of an online order .. 30

Figure 13: Split and Join XOR gateways. ... 30

Figure 14: Parallel gateway example .. 31

Figure 15: Inclusive gateway example ... 32

Figure 16: Event-based gateway example .. 32

Figure 17: Complec gateway example .. 33

Figure 18: BPMN events and subtypes [18] ... 34

Figure 19: Example 2- Airplane Ticket purchase business process ... 36

Figure 20: Example 3 -Order processing example ... 36

Figure 21: Recruitment process collaboration diagram [18] .. 38

Figure 22: Comparison of collaboration and choreography diagrams [31] 39

Figure 23: The definition of a choreographic task [32] .. 39

Figure 24: Recruitment process as a choreography diagram [18] .. 41

Figure 25: Airbnb simplified business model [33] ... 42

Figure 26: Airbnb high level strategic booking process. .. 43

Figure 27: Collaboration diagram of a reservation app example .. 46

Figure 28: Reservation app choreography diagram .. 49

Figure 29: APIs popularity in google trends. .. 53

Figure 30: Example of a SOAP request [36]. ... 54

Figure 31: Twitter API example ... 55

Figure 32: RESTful API example [38] ... 56

Figure 33: REST annotations in a choreography diagram .. 58

Figure 34 : Choreography diagram example .. 60

Figure 35: Choreography diagram of reservation app with REST annotations 62

Figure 36: The Controller-Service-Repository layers [41] ... 64

Figure 37: Maven directory structure [43] .. 65

Figure 38: Java and Maven version installed. ... 66

Figure 39: Springboot Initializer and the dependencies added. .. 67

file:///C:/Users/eitsou/Downloads/thesis_latest.docx%23_Toc149295827
file:///C:/Users/eitsou/Downloads/thesis_latest.docx%23_Toc149295837
file:///C:/Users/eitsou/Downloads/thesis_latest.docx%23_Toc149295845

6

Figure 40: Project structure generated via Spring Boot initializer. .. 68

Figure 41: pom.xml and Spring boot dependencies.. 68

Figure 42: springfox dependency in the pom.xml file .. 69

Figure 43: API documentation of the Reservation API in the Swagger UI 69

Figure 44: MongoDB database connection credentials in JAVA application properties 70

Figure 45: Database connection via MongoDB Compass .. 71

Figure 46: Methods defined in the service interface. .. 72

Figure 47: Create method implemented in the service layer. ... 72

Figure 48: POST method as defined in the Reservation Controller class. 73

Figure 49: Test of the POST create reservation method. .. 74

Figure 50: Test of the POST create reservation method using Swagger UI- Check response status

code and response body. ... 74

Figure 51: Test of the POST create reservation method using Swagger UI- The reservation

request is placed successfully in the database. .. 75

Figure 52: UpdateReservationStatus Method in ServiceImpl class .. 76

Figure 53: Check Availability method in Reservation object ... 76

Figure 54: PUT update reservation status method as defined in the Reservation Controller class.

... 77

Figure 55: Test of the PUT update reservation status method using Swagger UI-Provide input

JSON data. .. 77

Figure 56: Test of the PUT update reservation status method using Swagger UI- Check response

status code and response body. ... 78

Figure 57: Test of the PUT update reservation status method using Swagger UI- The reservation

request has been updated in the database. ... 78

Figure 58: Confirm and reject methods in the reservation object. .. 79

Figure 59: Reject and Confirm reservation methods in ServiceImpl class 80

Figure 60: PUT reject and confirm reservation methods as defined in the ReservationController

class. .. 81

Figure 61: Test of the PUT confirm reservation method using Swagger UI-Provide input JSON

data. ... 81

7

Figure 62: Test of the PUT confirm reservation method using Swagger UI- Check response

status code and response body. ... 82

Figure 63:Test of the PUT confirm reservation status method using Swagger UI- The reservation

request has been updated in the .. 82

Figure 64: Test of the PUT reject reservation method using Swagger UI-Provide input JSON

data. ... 83

Figure 65: Test of the PUT reject reservation method using Swagger UI- Check response status

code and response body. ... 83

Figure 66: Test of the PUT reject reservation status method using Swagger UI- The reservation

request has been updated in the database. ... 84

Figure 67: Place reservation method in ServiceImpl class ... 84

Figure 68: Place Reservation method in Reservation object .. 85

Figure 69: POST place reservation method as defined in the ReservationController class. 85

Figure 70: Test of the POST place reservation method using Swagger UI-Provide input JSON

data. ... 86

Figure 71: Test of the POST place reservation method using Swagger UI- Check response status

code and response body. ... 86

Figure 72: Test of the POST place reservation method using Swagger UI- The reservation status

is updated successfully in the database. .. 87

Figure 73: Delete reservation method in ServiceImpl class. .. 87

Figure 74: DELETE, delete reservation method as defined in the Reservation Controller class. 88

Figure 75: Test of the DELETE reservation method using Swagger UI-Provide input JSON data.

... 88

Figure 76: Test of the DELETE reservation method using Swagger UI- Check response status

code and response body. ... 89

Figure 77: getReservationById method implemented in service implementation class 89

Figure 78: getReservationById in the Repository layer. .. 90

Figure 79: Test of the GET reservation by id ... 90

Figure 80:Test of the GET reservation by id method using Swagger UI- Check response status

code and response body. ... 91

Figure 81: Dependencies needed for using the JavaMail API .. 92

8

Figure 82: EmailMessage class ... 92

Figure 83:Email Service Implementation class .. 93

Figure 84: Reservation confirmation business process scenario- test the create reservation POST

method using Postman. ... 97

Figure 85: Reservation confirmation business process scenario- test scripts in Create a new

reservation post method. ... 98

Figure 86: Reservation confirmation business process scenario- test the reservation by id GET

method using Postman. ... 99

Figure 87: Reservation confirmation business process scenario- variable assignment in get

reservation id GET method. .. 100

Figure 88: Reservation confirmation business process scenario- Test the Update Reservation

status request. .. 101

Figure 89: Reservation confirmation business process scenario- test the email notification API.

... 102

Figure 90: Email sent to guest. ... 102

Figure 91: Email sent to host. ... 103

Figure 92: Reservation confirmation business process scenario- test the confirmation PUT

method... 103

Figure 93: Reservation confirmation business process scenario- test the get reservation id

confirmed status. ... 104

Figure 94: Confirmation email sent to guest... 104

Figure 95: Reservation confirmation business process scenario- test the place reservation POST

method... 105

Figure 96: Reservation confirmation business process scenario- test the get reservation id

completed status. ... 105

Figure 97: Reservation non-availability business process scenario- Create a new reservation

request. .. 107

Figure 98: Reservation non-availability business process scenario- Get reservation by id. 108

Figure 99: Email sent when the reservation is not available. ... 108

Figure 100: Reservation non-availability business process scenario- Cancel reservation request

method... 109

9

Figure 101: Reservation rejection business process scenario- test the create reservation POST

method using Postman. ... 110

Figure 102: Reservation rejection business process scenario- test reservation rejection PUT

method using Postman. ... 111

Figure 103: Reservation rejection business process scenario- test reservation by id rejected

status. .. 112

Figure 104: Reservation rejection email to guest. .. 113

Figure 105: Run collection summary. ... 114

List of Tables

Table 5.1-1: Maven project structure .. 66

Table 5.2-1: Swagger annotation explanation .. 70

Table 5.3-1: Reservation API endpoint summary ... 95

Locations of projects included in this master thesis:

Reservation API https://github.com/itsoueleni/reservation/

Postman collection https://blue-rocket-

780039.postman.co/workspace/Reservation-

API~5e74902e-08a2-41ff-8b46-

b9e9f968385c/overview

10

Chapter 1 : Introduction

1.1 Background and motivation for the study

The study is motivated by the need to comprehensively explore the visualization and representation

of participant interactions within the BPMN framework. The goal of this study is to better

understand the different functions of choreographic diagrams, which highlight participant

interactions and message exchanges, and collaboration diagrams, which explore each participant's

internal operations (white-box collaboration diagrams). These ideas are demonstrated with a real-

world example, modeled after Airbnb, featuring a reservation service that acts as a coordinator

between hosts and guests.

The growing importance of Representational State Transfer (REST) Application Programming

Interfaces (APIs) in application development is also a driving force behind the study. More

specifically REST and how can be combined with BPMN choreography diagrams acted as

motivation for this thesis. Consequently, the study aims to introduce the idea of REST annotations

within a business process.

In conclusion, the context and inspiration for this research stem from the field of BPM, where

participant interaction visualization, the complementary roles of collaboration and choreography

diagrams, and the increasing significance of RESTful APIs in application development all come

together. Business analysts, application developers, and BPM practitioners may all benefit from

the practical insights that this research project is prepared to offer and expand upon.

1.2 Overview of the thesis structure

This thesis is organized to offer a methodical and thorough investigation of different aspects of

Business Process Management (BPM) and the incorporation of REST Application Programming

Interfaces (APIs) into the BPMN framework. It is broken up into multiple chapters, each of which

adds to the overall objective of improving our comprehension of BPM and its real-world uses. An

outline of the thesis structure is given below:

11

Chapter 2: BPM's Historical Development

This chapter examines the historical development of BPM. It traces the origins of business process

management (BPM) back to Six Sigma techniques, Total Quality Management, Business Process

Reengineering (BPR), and continuous improvement tactics. It looks at how Process-Driven

Applications (PDAs) came about because of the introduction of IT systems, such as Workflow

Management Systems and Enterprise Resource Planning (ERP) systems.

Chapter 3: BPMN Collaboration and Choreography

The chapter explores the fundamental ideas of BPMN. It breaks down the separate roles that

choreography and collaboration diagrams play in displaying participant interactions. Collaboration

diagrams clarify the relationships between numerous entities involved in a business process.

Conversely, choreography diagrams focus more on the logical flow of interactions and message

exchanges. These ideas are demonstrated in action using a real-world scenario that draws

inspiration from Airbnb's reservation service.

Chapter 4: Utilizing RESTful APIs with BPMN Choreographies Integration

In this chapter, the importance of RESTful APIs for application development is highlighted. It

discusses how to incorporate REST annotations into BPMN choreography diagrams and presents

the idea of doing so inside a business process. Using a reservation application as an example, the

practical implementation of RESTful interactions is shown, highlighting the significance of HTTP

request/response exchanges and email notifications. This chapter demonstrates how RESTful

interactions help close the gap between process modeling and API implementation, resulting in

the creation of dependable, interoperable, and efficient systems.

Chapter 5: Using MVC to Create a Reservation REST API

This chapter focuses on the Model-View-Controller (MVC) design pattern and how it is used to

build a Reservation REST API. The Repository layer, the Service layer (which handles business

logic), and the Model layer (which depicts the entities and structure of the application) are the four

fundamental layers of the API. In-depth instructions on configuring the REST API, connecting to

the database with Spring Web and Spring Data MongoDB requirements, and generating API

12

documentation using Spring Fox Swagger UI are all included in this chapter. Additionally, it

provides an overview of the Reservation REST API's endpoints and features.

Chapter 6: Postman Scenarios and Automation

In Chapter 6, several reservation scenarios are covered, each of which illustrates how distinct API

methods interact with one another. It highlights how important it is to use Postman, an automation

tool, to make API request operations more efficient. Postman's features are demonstrated,

including response validation, script integration, status code verification, and test reporting. The

workflow is guaranteed to function as intended by the automatic execution of API collections,

which generates a report with test results.

Chapter 7: The Role of Research, Its Limitations, and Upcoming Projects

The main contributions of this research are outlined in Chapter 7. It draws attention to the creative

way that REST-specific annotations can enhance BPMN choreography diagrams, making the shift

from choreography models to RESTful HTTP conversations easier. The chapter also recognizes

the value of REST APIs in application development as well as the insights obtained from

choreography diagrams and cooperation. It highlights how important Postman is as an API

operation testing and automation tool. The chapter ends with a summary of the study's

shortcomings and recommendations for further investigation.

13

Chapter 2 : Theoretical Background

2.1 Business Process Definition

In the current business landscape, organizations are facing fierce global competition, customers

with fluctuating needs, and faster product lifecycles. To succeed in this challenging environment,

organizations need to become faster and more flexible. They should adopt a horizontal or process-

centric model with the aim of staying efficient and responsive to the changing marketing demands.

Improvement goals within an organization are interrelated with business objectives. Cost

reduction, shorter execution times, and lower error rates are common examples of improvement

goals. Business process Management (BPM) is about managing a complete series of events,

decisions and actions that provide value to the business and its customers. These series of events

activities and decisions is referred to as a business process [1].

Every organization from a nonprofit to an enterprise must manage a series of business processes.

Typical business processes that can be encountered in any organization are listed below:

• Order to pay: This process is carried out when a customer places an order to acquire a

service or product, and it is completed when the product in question has been shipped and

the payment is made. This type of business process can be encountered in everyday life

from conventional food delivery services to e-commerce orders.

• Procure to pay: This process refers to an organization getting supplies. It is initiated by a

person in charge who makes a quote for the purchase, and it gets approved by the

administration. Other steps include selecting a vendor, issuing an order, receiving the

products, and checking the invoice.

• Issue to resolution: This process begins when a customer raises a complaint while using a

service. This process proceeds until the parties-customer and client agree that the problem

has been successfully resolved.

• Application for approval: This process is initiated by the petition of a benefit and ends

when the outcome of the petition is made as approved or rejected. One of these types of

processes is student applications for a master’s degree program. The process begins when

the student applies to the program and ends with the approval or denial of the application.

14

Many business process definitions have been mentioned in literature over the years. According to

Hammer & Champy (1993), a business process involves a collection of activities with a set of

inputs that create outputs aiming at providing value to the customer. Davenport, (1993), also stated

that a business process is a chain of activities whose primary objective is producing a specific

outcome for a given market or customer. In addition, Jacobson et al. (1994) defines a business

process as ‘the set of internal value-adding activities to serve a costumer.’ A business process was

later defined, incorporating the concept of business operation, as ‘a collective set of tasks that are

properly connected and sequenced’ [2]. The primary objective of a business process is to execute

a business operation aiming at delivering value to the organization. In addition, a business process

must have discreet inputs and outputs as well as a purpose inside or between businesses [3].

As the former definitions indicate, the quality of business processes has an impact not only on the

business efficiency in internal processes but also on customer satisfaction as better processes lead

to a better quality of service. The ingredients of a business process might be activities or tasks as

the basic elements that use the inputs or the resources (e.g., equipment or material) to achieve the

intended outcomes that give value to the intended customers. These activities refer to different

decision points and events (Figure 1). Actors (organizations or human actors) can also be perceived

as a structural element of a business process or as an external entity that executes the business

process [2] and they may be responsible to perform different activities.

Figure 1: The ingredients of a business process [1]

15

2.2 The rise of Business Process Management

According to the European Association of BPM, Business process Management (BPM) is defined

as a systematic approach aiming at capturing, documenting, executing, measuring, and monitoring

automated and non-automated business processes within an organization, in order to satisfy a

business’s objective. It is a body of methods techniques and tools, dedicated to analyzing,

designing, implementing, and continuously improving end-to-end or value-chain organizational

processes [1]. By leveraging BPM, a business can enhance operational efficiency as well as

customer satisfaction.

BPM has its roots in the birth of scientific management when Friedrich W. Taylor highlighted the

importance of standardized processes and work procedures. This is when the role of managers was

introduced, and laborers specialized and focused on a specific part of the production process.

Before the BPM definition, many different management philosophies emerged and played a

significant role in the process-thinking introduction. According to Hammer, BPM genesis was

mostly characterized by two paths of development: process improvement and process development

[4].

Earlier research in the field was centered around the improvement of established business

processes. One of the first process improvement initiatives as a management practice was with

Total Quality Management (TQM). According to the TQM philosophy, the cost of poor quality is

higher in the long run than the cost of putting in place processes to produce high-quality products

and services in the first place [5]. In addition to quality-focused processes, the Six Sigma strategy

was developed by Motorola during the 1980s implementing TQM principles as well as a more

analytical approach. The purpose of Six Sigma methodology is used in improving the predictable

quality of developed products and services through the removal of normally distributed errors [6].

In business process improvement, the Six Sigma application can be used in reducing and

eliminating defects in a business process [7].

At the start of the 1990’s Business Process Redesign (BPR) emerged aiming at radically

transforming business processes. Business Process Reengineering was aiming at initiating a

comprehensive transformation, not limited to the business process itself, but also extending to all

its associated elements, such as the organizational structure [8]. Businesses were challenged to

16

rethink their functions in a process-centered, customer-focused way, taking advantage of

information technology innovation [9]. The concept where an organization reshapes completely

the way it functions was famous during the 1990s and later abandoned due to many factors such

as rigid infrastructure issues which impeded radical changes as most businesses needed a more

incremental approach. In addition, BPR lacked the aspect of quality improvement and did not have

as disciplined an approach to metrics [10].

During the latter part of the 1990s, a more moderate approach that focused on continuous process

improvement rather than process reconstruction was proposed, aiming at improving

interdepartmental and inter-functional performance [11]. Business process orientation (BPO) is a

management approach, that focuses on integrating different areas of expertise in process creation

and delivering value to customers [12]. Enhancing BPO in an organization entails the introduction

of process jobs, where employees are organized in cross-functional process teams and take full

responsibility of delivering services while obtaining a full process view [13]. Michael Hammer

also introduced the term process enterprise, mentioning that a whole enterprise could gain

efficiency when is coordinated around standardized core processes that exceed the division's

boundaries. Companies shifted their focus on process performance, by changing their

measurement systems from unit to process goals [14].

The emergence of IT systems such as ERPs (Enterprise Resource Planning) and WfMSs

(Workflow Management Systems) supported the existence of process-oriented operations.

Although WfMSs initially focused on the distribution of work between human actors, after the rise

of Service-oriented Architecture (SOA), were able to connect with other systems and they

progressively embedded mechanisms for monitoring and analyzing a process execution. In

conclusion, different methodologies and standards have appeared over recent history, to quantify

and improve a business process. The disconnect between the IT and Business Management point

of view led to the idea of the BPM unified approach. BPM is not only focused on the organization

and planning of the process itself but also provides a more holistic approach, combining process

management and process automation. BPM entails the entire business process lifecycle.

17

2.3 Business Process Management Lifecycle

Each business process initiative should start with the use of BPM to identify which processes need

improvement, redesign or step removal that may have caused the largest number of errors or the

biggest cost waste. If no BPM initiative has been applied in the past, process identification can be

initiated by a high-level description of the organization’s major processes and their current state

[15].

Object Management Group (OMG) has defined a scale to classify the maturity of a business

process, comprised of 5 different levels. According to the OMG’s maturity model, a process can

be ranked from an initial state where it is performed in an ad-hoc way, to an optimizing state where

it can be continuously improved (Figure 2). Business processes can also be identified, delimited,

and prioritized based on attributes such as their strategic importance, cross-functionality, and

customer impact. Process architecture is the output of the process identification phase and

represents a collection of core business processes within the organization and their interrelation.

Having understood, designed, and delimited the as-is processes which are the outcomes of process

discovery, the next step is to evaluate their performance. KPIs should be determined aiming at

examining process efficiency and effectiveness. Values measured can be time-related (e.g.,

intervals between activities), cost-related (e.g., money spent per month), or quality related (e.g.,

rate of defective products produced). Identifying and assessing issues and opportunities for process

improvement is part of the process analysis phase [1]. Via process analysis, weaknesses are

identified, and the impact of every possible change is evaluated. In this step an organization can

decide which processes need to be redesigned.

In the redesign step, the as-is process is transformed into a to-be version based on informed

decisions considered, and the available optimization options derived from the previous step

analysis. There might be multiple redesign options that need to be analyzed and evaluated. This

is why business process analysis and redesign are interdependent. Business process simulation can

be used for model-based and data-driven analysis where different paths are evaluated, and potential

bottlenecks are identified whereas suitable metrics are considered.

18

At the end of the redesign phase, the changes are about to be implemented and the model

transforms into a running system [16]. In the process implementation step, organizational change

management plays a significant role in synchronizing activities such as change planning, change

introduction, and training of the participants to support the new processes. During the new process

running, in the monitoring and control phase, process performance is evaluated. Execution data

are constantly collected and assessed for conformance to objectives and performance goals. A new

BPM lifecycle may be triggered by changed corporate goals and the business environment.

Figure 2: Maturity model based on OMG [17].

19

Figure 3: The BPM Lifecycle [1]

BPM lifecycle was refined in an empirical study (Figure 3) comprised of the following activities:

• The cycle is triggered when an existing process needs to be documented or improved or a

new process needs to be introduced. Process discovery reveals the output generated by the

process and its importance for the client.

• Items of process discovery are documented in the as-is or current state process model, and

a systematic examination of its state can identify weak points.

• Process analysis reveals a weakness in the process and is the starting point of process

design. Different process analysis approaches can be evaluated via process simulation.

• Process implementation involves both IT implementation and change management. The

result of it is the to-be process.

• Process control involves the continuous monitoring of the process instances, which can

lead to identification of new weaknesses that can trigger a new systematic process analysis.

20

The BPM lifecycle outlines a straightforward approach for achieving continuous improvement. Its

implementation requires coordination of the responsible parties, the methodologies used and the

supporting software tools. That is the responsibility of the process governance [18].

2.4 Process Driven Applications

Nowadays, due to global availability of knowledge, differentiation from competition through

services and products is becoming less important. Internal processes on the other hand, create a

sustained competitive advantage providing better quality services and products and lower costs.

Furthermore, when products functionality is transparent through marketing, internal processes can

be confidential and more difficult to copy, thus efficient process automation can provide strategic

advantages [19]. Despite the growing relevance of data continuity and consistency, in the

engineering area rigid monolithic software programs that are difficult to integrate are still

prevalent.

Innovation can be provided via process driven applications (PDA) that offer business-oriented

solutions and help identifying end-to-end business process workflows that include system and

organizational constraints by reusing data and functionality from other applications and platforms

[20]. More specifically, PDA is based on the BPMN 2.0 (Business Process Model Language and

Notation) where the semantic addition permits to model and execute business processes but also

to perform integration with different systems. As a result, PDA enables the orchestration of various

processes as well as the integration of tools such as custom microservices via standardized

interfaces such as REST API. In this way business processes can be more transparent and

monitored [19].

Process Driven applications are user-centric and collaborative in nature, with a sense of engaging

users in the processes. Ideal candidates for process-centric applications are processes inside a

company that require optimization like cross-functional operations. PDA are also recommended

in cases where processes are extended across many systems and changes are expected [19]. As

discussed in the previous section, optimization can be achieved when a process is executable and

as a result, constantly monitored [19].

21

Process-oriented applications are divided into the following layers.

• The (F-S) layer contains the user interfaces of the applications that are task oriented, and

precisely customized in the role of the process participant. They can be implemented using

web-services and communicate with the process engine via REST [21].

• The business processes are modeled inside the (PDA-L) layer.

• The service contract implementation layer (SCI-L) that focuses on service contract

implementation is responsible for backend communication.

Communication can be stateless where the interaction is autonomous and no information is

retained, or stateful where a component needs a response to proceed with the conversation. In the

following example (Figure 4) a stateful case is shown where a message triggers a simulation

microservice, and the process waits for the simulation outcome. Although stateful communication

is optional, stateless addresses technical connectivity and data transfer via REST or SOAP

services. To limit data transformations, it is recommended that a canonical data model is agreed

[21]. As a result, data transformation is performed only during system integration. Data exchange

with third party applications can be performed via REST API pre-defined JSON and XML

structure.

Figure 4: Process oriented application composition [20]

22

A process-driven application can be implemented in collaboration with the following roles:

• A business expert designs the process using a BPMN model, without implementing

technical information.

• In collaboration with the business expert, process analyst can modify the existing model

implementing information about the data structure and defining the service calls for data

transferring inside the current system.

• Once the services and interfaces get associated with the BPMN activities within the

business model it can be executable. Having consulted the previous roles a developer can

make the final modifications in the model which now can be executed via a process engine.

Within the process engine human workflow management as well as service orchestration is being

achieved [18]. More specifically, a process engine handles user task assignment to process

participants via human workflow management whereas, communication with internal and external

IT systems is part of service orchestration (Figure 5). In summary, the design and implementation

of process-driven applications prioritize adaptability and self-sufficiency, resulting in traits like

agility and scalability within complex IT environments. The implementation of a process driven

application entails a step-by-step collaboration, that ensures alignment with the business

requirements as well as the technical capabilities.

Figure 5: Process automation with a workflow engine [18]

23

2.5 Chapter Summary

Organizations in today’s competitive business landscape face problems such as global

competition, versatile client needs and shorter product lifecycles. For staying efficient and

responsive, businesses adopt a process centric approach, focused on Business Process

Management (BPM). BPM entails managing a series of events, decisions and activities that add

value to the company and its customers.

BPM has historically progressed from Total Quality Management and Six Sigma Techniques to

BPR and continuous improvement strategy. BPM gained in popularity with the development of IT

systems such as ERPs and Workflow Management Systems, giving rise to Process Driven

Applications. PDAs are collaborative user-centric applications that employ BPMN 2.0 to

orchestrate processes. These applications enable organizations to be agile, transparent, and

competitive by enabling continuously monitored and optimized business processes.

Collaboration between developers, business analysts and business experts are required for process

driven application deployment. A process engine is also critical when it comes to human workflow

as well as service orchestration. All in all, because BPM is iterative, organizations can constantly

analyze, optimize, and adjust processes to align with business requirements and technology

capabilities.

In conclusion, the transition from traditional procedures to more sophisticated techniques

including BPMN and Process Driven Applications, helped firms in adapting to today’s complex

business landscape. Via the combined effort of different experts and with the use of process

engines, BPM helped companies to provide additional value by optimizing their operations.

24

Chapter 3 : Business Process Modeling with BPMN

3.1 Introduction to Business Process Modeling Notation (BPMN)

The need for a common modeling language for business processes representation that could be

sufficiently expressive and formal and easily understandable by users emerged over recent years.

Converting a business process diagram into a machine-readable standard language is important for

both sharing and execution purposes. BPMN (Business Process Model and Notation) is the

primary standard for modelling workflows and business processes. On the one hand, a BPMN

diagram can be editable in different domains and with the use of different tools. On the other hand,

business process execution in distributed environments with the use of web services is widely used

in many fields such as supply chain management and e-commerce [22]. For all the above reasons,

BPMN is the primary standard for modelling workflows and business processes.

BPMN which is an open standard for business process modeling, was first introduced in 2004,

aiming at reducing the fragmentation between the existing process modeling tools and notations

[23], by offering graphical notation for representing a process in a form of a business process

diagram [24]. It was initially developed by Business Process Management Initiative (BPMI) and

later by Object Management Group (OMG) which is responsible for the BPMN standard

maintenance [25]. The first BPMN versions until 2.0 lacked both well-defined semantics as well

as a native serialization format. BPMN 2.0 which was introduced in 2011 had impeded a native

XML serialization for BPMN diagrams that made it independent for languages like WS-BPEL and

XPDL which are also XML based languages and were used in older BPMN versions (Figure 6).

By establishing a strategic BPMN model, all stakeholders can gain knowledge of the process logic.

By using BPMN elements, process analysts can precisely record the business logic, while technical

specifications required for process automation are hidden in background as XML code. As a result,

BPMN process models are easily understandable as any technical information required for its

execution is not exposed to the business users.

25

Figure 6: Business Process Standards timeline [24]

3.2 BPMN Elements

The elements of BPMN notation are organized into key categories that highlight different aspects

of business activities, ranging from fundamental to more complex modeling. The main graphical

elements of BPMN are the flow objects, connecting objects, swim lanes, data objects and artifacts

(Figure 7). Flow objects are the major components of BPMN. They consist of activities or tasks,

events, and gateways. Flow objects, including the sequence flows, are the main functional elements

of BPMN. Tasks happen during a process and represent a unit of work inside the business process,

without it being distinguished between human or automated work. Moreover, gateways indicate

in what condition these tasks may happen, whereas events represent crucial incidents that may

occur during the process.

Swim lanes, or pools and lanes associate a collection of tasks with a specific participant [24].

Sequence connecting flows define the connection and sequence between the flow objects within a

pool, when message connecting flows refer to cross pool boundary connections. Artifacts that are

linked with the tasks via the connecting object of association provide additional cosmetic

26

information to the diagrams and do not affect the process flow. Lastly, data objects can also be

employed as artifacts to indicate communication exchange between participants, as well as input

and output parameters. In conclusion, flow objects as well as sequence flows that connect them,

constitute the backbone of a well-structured BPMN diagram, whereas artifacts and data objects

pools and lanes, provide additional implementation information without influencing the process

flow. An overview of the flow objects is carried out in the following sections.

Figure 7: BPMN basic elements [26]

3.2.1 BPMN activities

BPMN activities are the heart of BPMN notation, since they represent an action that must occur

[1]. Business modelers can use a range of tasks, each of those having their own label, describing

the activity that must be completed. BPMN tasks enable both human and automated intervention,

and they are represented as rectangles, with various symbols annotated in the upper left corner. By

being labeled with task markers, activities can also entail additional business logic. Loop symbols,

parallel and sequential multi-instance markers are task markers holding the cardinality concept in

different ways (Figure 8): A Loop symbol indicates that an activity is repeated for a certain number

27

of times. A parallel instance marker on the other hand, symbolizes that an activity is being done in

parallel several times whereas, a sequential instance marker is depicting a repeating activity with

a sequence (Figure 8).

Figure 8:Task marker representation examples

The below process retrieved from National Registry of Administrative Public Services-Mitos [27]

is displaying the process of a student enrollment in High school where the below task labels are

identified:

• Service task: These activities are done via the assistance of a particular software or

webservice entailing the execution of some code. The first step of the process below, which

is the submission for enrollment, is carried out via an online application. The second step

of the process concerns the spatial distribution of students and is conducted by a specific

software belonging to the Ministry of education.

https://en.mitos.gov.gr/

28

• Manual task: This type of activity is carried out by human actors without the use of an IT

system. In the following process, the relevant supporting documents are submitted

personally by the student’s guardians, accomplished through physical contact at school.

• User task: Is the activity carried out by a human actor, with the assistance of an IT system.

In the below example the principal of its school is obliged to verify the correctness of the

submitted documents, compared to the digital documents retrieved from a digital archive.

The data objects represent the required documents that must be submitted.

Figure 9: Example 1- Enrollment in Highschool BPMN diagram retrieved from mitos.gov.gr

More BPMN task subtypes are indicated in the following examples:

• Business rule task: This activity subtype is additionally linked to the DMN (Decision model

and Notation) which can be used to model a decision flow and evaluate rules. In the

following example (Figure 10), the most appropriate transportation method is calculated

based on a decision diagram. Distance for determining the best mode of transportation is

considered in the Transportation decision diagram (Figure 11).

29

Figure 10: Travel method decision business process

Figure 11: Transportation Decision, decision diagram

• Script task: This type of activity represents a task that may be automatically executed in a

workflow engine. In the following example, an online order business process (Figure 12),

a discount calculation is performed automatically with the use of a script.

• Send task: This type of activity symbolizes the receipt of a particular message notification,

and it cannot be continued until the message is received. In online order business process,

a message notification is sent by the user after order submission.

• Receive task: This activity task sends a message to a particular recipient. As seen below, a

notification is sent by the e-shop to the user, confirming the order.

30

Figure 12: Business process of an online order

3.2.2 BPMN gateways

When a business process model is being executed, a new process instance is created. A process

instance is interrelated with the concept of token. A token is a fictitious concept representing where

we are inside the business process model at any given time during its execution [18]. The token

‘lives’ inside the business process until it gets consumed. However, depending on the business

logic, a process instance may conclude differently, if the tokens generated follow a different path.

In this regard, BPMN employs a unique element, namely the gateway element, that represents

different routing points in a business process. Depending on the subtype of the gateways a

cardinality of tokens is being generated.

Regardless of the gateway subtypes employed, gateway elements can be divided into two types:

split gateways and join gateways. When a condition is met, a split gateway accepts a sequence

flow and generates two or more outgoing sequence flows. As a result, when a token arrives at a

split gateway, one or more sequence flows may be activated, resulting in the production of a token.

A join gateway, on the other hand, receives two or more incoming flows and generates an outbound

flow as the flow routes intersect (Figure 13).

Figure 13: Split and Join XOR gateways.

31

Gateway subtypes:

• Data-based exclusive gateway, also known as XOR Gateway, is used when a condition

needs to be evaluated so only one path can be chosen. In join XOR gateways no evaluation

is being done and are used mostly for explicit modeling and readability purposes, ensuring

that the token is going to follow just one path.

• Parallel gateways allow two or more different paths to be executed concurrently in a

process instance. The split gateway generates a token for each sequence flow coming out

of it. These tokens run in parallel, while the join gateway is used to synchronize all flows,

by waiting for all the tokens to arrive, before moving forward with only one token. In the

following example all the activities that need to be arranged are being executed

concurrently, and the process is completed once all of them have arrived at the join parallel

gateway.

Figure 14: Parallel gateway example

• Data-based inclusive gateway also known as OR Gateway is a combination of XOR and

parallel gateway. In other words, depending on the context of each scenario, it can act as a

simple XOR gateway where only a path can be chosen or as parallel gateway where more

32

paths can be followed, and more tokens are generated. In the following scenario, only one

or more paths can be followed as the preferred activities at the beach can be more than one.

Figure 15: Inclusive gateway example

• Complex gateway is rarely used as a join node, indicating a complex behavior of

synchronization. In the following process example, the token can only be consumed if all

the criteria in accommodation booking are being met.

• Event-based gateway is mostly used as a split gateway. It leads to exclusive paths that

indicate the outcome of possible events, that are not the result of process data evaluation.

In the following process example where an item is ordered, the event-based gateway is

displaying two different outgoing paths, resulting in a successful and an unsuccessful order.

Figure 16: Event-based gateway example

33

3.2.3 BPMN events

Another element of BPMN is events. It is considered a bridge between real word events and

processes that react or trigger them. Hence, they play an important role in process modeling. They

are classified into three essential groups based on the position on the process model, namely start,

intermediate and end events.

• Start events identify the trigger and the beginning of a process execution.

• End events represent the completion of a process.

• Intermediate events represent the richness of a milestone within a process.

Events can be further categorized into catching and throwing events. A catching intermediate event

is represented with a white envelope, stating that a particular message is required to be received.

The token of the process instance cannot move forward until this message is received. On the other

hand, a throwing intermediate event is represented with a bold and dark envelope and are initiated

Figure 17: Complec gateway example

34

by the process rather than a wait for a response. Events can also have subtypes. Message, timer,

and conditional events are the most common event subtypes (Figure 18).

Figure 18: BPMN events and subtypes [18]

Various events may occur, while a task is being performed prompting its suspension or exceptional

execution [18]. Depending on whether an event interrupts the occurrence of the task, these events

can be categorized into interrupting and non-interrupting boundary events. Furthermore, non-

interrupting and interrupting boundary events, as well error event subtypes in BPMN introduce the

concept of error handling in BPMN notation.

Throwing and catching intermediate events are most displayed between different pools of a BPMN

diagram. As mentioned in the beginning of the chapter, its pool represents the greatest level of

autonomy in a business process and sets the limits of actions for a specific participant. The

exchange of messages is shown via message flows which are displayed as a dotted line.

In the example below (Figure 19), an airplane ticket purchase business process is being displayed.

There are two pools depicting two different participants, the customer, and the airline. The

customer initiates the process while the airline handles the payment verification, the seat

allocation, and the flight cancellation. The customer selects the destination and the date of the

35

flight which is depicted via a user task. Flights are being searched when a flight booking system

API is being triggered which is displayed using a script task.

Then the customer chooses a flight based on the options retrieved. The next tasks include the

entrance of the passenger information as well as the choice of the payment method, which is

followed by the payment data insertion by the customer. Then the payment is script triggers the

airline pool, where the airline is notified that a new order is being initiated. If the payment fails,

then the process is terminated precociously with the use of a terminate event.

Otherwise, the airline verifies the payment, and the customer is being informed which is indicating

with the use of an intermediate catching message event. Then the airline allocates the customer

seat and sends the ticket to the customer which is shown with the use of a throwing and catching

intermediate message event respectively. If the customer wants to cancel the flight, then the airline

is being informed and cancellation management is initiated. When the flight is successfully

cancelled, the customer is informed, and the process ends.

In the following example (Figure 20), the process starts with a message catching event indicating

that an order has been received. The following BPMN element is an XOR gateway, evaluating the

condition of the order items availability. If the items are available, then they are directly

dispatched, and the process ends. However, when the other condition is being met, the item

procurement task is being marked with two events. An error interrupting event as well as a non-

interrupting escalating event, are both attached to the respective task.

The item procurement task indicates the existence of a subprocess. A subprocess defines a

thorough sequence, although it occupies no place in the parent process rather than a task that is

marked with a plus sign. The item procurement subprocess is displayed in a separate process inside

the diagram. While the item procurement task is being executed, both events in the parent process

are being triggered from the events occurring in the subprocess. More specifically, the interrupting

event attached to the item procurement task terminates the subprocess that has been triggered from

the item procurement task. Consequently, in the parent process the customer is being informed and

the item is deleted from the catalog. Moreover, the escalation non-interrupting event in the parent

process, is being triggered from subprocess when the delivery of a product is being delayed.

36

Figure 19: Example 2- Airplane Ticket purchase business process

Figure 20: Example 3 -Order processing example

37

3.3 BPMN Collaboration Diagrams

A BPMN collaboration diagram indicates the visualization of the interaction between participants

within a business process. More specifically, collaboration diagrams are composed of a collection

of different participants represented as pools. They may represent a role or an entire business

entity. Depending on the diagram context and the level of detail that is desired to be shown in the

diagram, pools can be black-box or white-box that can also be separated into different lanes.

Pool interactions are represented as a message exchange modeled with message flows connecting

two pools. The message flows are easily identifiable since they are depicted by dashed arrows. In

addition, messages associated with the message flows can also be shown. Interaction between

black box pools is shown with message flows that connect the boarders between different pools,

whereas in white box processes the connection of the message flows is displayed between the

corresponding process elements of the communicating pools.

The following collaboration diagram (Figure 21) is a high-level representation of a recruiting

business process. In other words, the process is simplified as no cardinality of instances (many

applicants and one job position) is displayed and the interview process has been omitted.

Furthermore, different conductors that are not orchestrated by a process engine participate in the

business process. Hence, there is no process instance, and the message must be transferred using

a message flow.

To elucidate further, the process conditionally starts when a vacancy arises. This is when the Hiring

department, which is represented as a separate pool, reports this vacancy to the Human Resources

department, which is notified via an intermediate catching message event. Then the forenamed

department is responsible for advertising the job position. Having notified the applicant who is

also represented in a separate pool, apply an application to the human resources department. When

the application is received, and checked by human resources, the vacancy is filled, and the hiring

department is notified when the contract is signed.

38

Figure 21: Recruitment process collaboration diagram [18]

3.4 BPMN Choreography Diagrams

BPMN’s second version was expanded with the addition of choreography diagrams. Choreography

diagrams show the interactions between two different participants of a business process rather than

internal activities or activities performed by individual participants [28]. In comparison to

collaboration diagrams which simply display that some form of communication occurs,

chorography diagrams represent very precisely the time and logical order of the message flows

[20]. They show which messages are received and sent and under what conditions.

The term choreography refers to the absence of a central agent controlling the actions in the

business processes involved [29]. As a result, choreography diagrams can act as a contract between

the different parties as they interact by receiving and sending messages. In this way, they abstract

from each participant’s own processes and individual work done by the participant, delivering a

global perspective without any favoritism [30]. Choreography diagrams can be used to map out

important points in collaborations, and lead to more comprehensive collaboration diagrams if

39

necessary [18]. In comparison to the collaboration diagrams, they can bisect message flows

between the communicating participants and as they provide more information for the message

exchange (Figure 22).

Figure 22: Comparison of collaboration and choreography diagrams [31]

A choreography process includes a series of activities as a sequence flow, that represent an

interaction between two or more parties. A choreography task is the fundamental composing

element of a choreography diagram. Every choreographic task represents a two-party message

exchange. The initiator is the one that transmits the message. The second participant is the receiver

who may optionally send a response to the initiator [30]. The participants are tied to the

choreography task with a participant band, which is differentiated in color for the initiator and the

receiver. Messages can also be connected to tasks using the envelope element [32] (Figure 23). In

a choreography process, the sender of the second activity must be involved in the first activity,

otherwise not every party can be aware of the message recipient.

Figure 23: The definition of a choreographic task [32]

40

The benefit of choreography diagram is the illustration of a participant’s involvement in the

process. As a result, it helps process analysts to get started. On the other hand, some steps that

cannot involve communication between participants, but are important for the business process

can be omitted.

The same recruiting process constructed with a collaboration diagram can also be displayed as a

choreography diagram (Figure 24) including the following steps:

• Upon the vacancy arises, the first choreography task includes the Hiring department as the

message initiator and the HR Department as the message receiver of the vacancy report.

The vacancy notification is sent as a message via email to the recipient.

• Having received the vacancy report, the HR Department initiates the job advertisement

process, which is represented as a collapsed subprocess. The possible ways of notification

as displayed in the message of the choreography task, are the company’s site as well as

other job finding websites. The recipients of the job advertisement are several applicants.

The cardinality is represented with the parallel instance marker which symbolizes that the

job advertisement is accessible in parallel to several applicants.

• Subsequently each Applicant follows the application’s submission process, which is also

presented as a collapsed subprocess, and sends the application via an email message to the

HR Department. The cardinality of application submission initiated by each applicant is

also represented by parallel instance marker.

• Following this, the HR Department initiates the application checking process for the

multiple submitted applications. The result of each application checking has two separate

message recipients the HR Department as well as the applicant.

• After the applicant is selected which is displayed as an intermediate event, the next

choreography task shows the vacancy filling process where the two communicating parties

are the HR department the selected applicant.

41

Figure 24: Recruitment process as a choreography diagram [18]

All in all, a choreography diagram displays the order of communication between various actors of

a business process, and it is ideal for displaying conversation intense processes and can be a useful

addition to operational level collaboration diagrams. In addition, a choreography diagram can

integrate business process elements allowing a thorough examination of cardinalities. More

specifically, the diagram displays that the job advertisement is viewed by multiple participants

when a submission is also performed by different participants and the application checking is

performed for all the submissions.

Furthermore, a choreography task can involve more than two participants as seen in the

Application checking choreography task. Lastly, sequence of the sender’s and receiver’s

participant bands in the same choreography task does not affect the process, given that the

choreography task sequence is correct. This is the case of the Application submission

choreography task, where the process is initiated by the applicants, but the conversation task is

reversed showing the HR department which is the receiver participant at top of the choreography

task.

42

3.5 Motivating Example - Airbnb booking process

The motivating example of the following approach is a booking accommodation process inspired

by Airbnb. Airbnb is a platform that acts as an intermediary for hosts that can be property owners

or renters and possible guests that seek short-term accommodations without owning any property.

All activities of the booking process are managed by the Airbnb platform. Airbnb earns revenue

by charging hosts a booking cost percentage and visitors a service fee (Figure 25).

Figure 25: Airbnb simplified business model [33]

For describing the Airbnb booking process a BPMN diagram is used, containing a pool

representing the Airbnb platform and two separate lanes that represent the platform users, the

guest, and the host. More specifically the Airbnb booking process can be described in a BPMN

diagram with the use of the following steps:

• When a guest searches for accommodation on Airbnb the booking process begins which is

displayed as a start event.

• ‘Search accommodation’ is the guest activity where a place that meets their criteria, such

as location, dates, number of guests and budget is being searched.

43

• As a result of the previous search activity, ‘Select accommodation’ is the activity where

the guest makes the final selection of an accommodation.

• After the accommodation is selected the guest initiates the booking request, where more

details such as special requests to the guest are specified.

• Following this, via the Airbnb platform the host receives the booking requests and decides

whether the request should be accepted or declined.

• When the condition is being evaluated and the host accepts the booking request the

payment process is being initiated. The payment process task is linked interrupting

boundary event, and the process ends unexpectedly if the payment fails. If the booking

request is declined by the host, a notification of declination is sent to the guest by the

Airbnb platform and the process ends.

• When the payment process is completed successfully, a confirmation message is sent to

the guest, and when the guest is notified, the process ends.

Figure 26: Airbnb high level strategic booking process.

44

As a strategic process model the above example of the Airbnb booking process that contains pools

and lanes serves its purpose of being easily comprehensible by stakeholders as the two participants

are Airbnb users. However, the guests and hosts need to be orchestrated by a conductor that has

control over both the users. For the above reason, Airbnb platform can act as an orchestrator for

coordinating the reservation process. In summary, a collaboration diagram can be used where the

reservation application is presented as a separate entity that acts as a virtual conductor, managing

interactions and communication between guests and hosts.

3.5.1 Reservation app booking process collaboration diagram

In the below collaboration BPMN diagram a reservation application business process inspired by

the Airbnb booking process is displayed. The three pools represent the roles and their activities

within the application process. In this case, the reservation application acts as a coordinator

between the two separate users. The business process collaboration diagram includes the following

steps:

• The guest initiates the reservation process: The process starts when a guest user initiates a

reservation request via a service task. This request is forwarded to the reservation

application for further processing.

• The reservation app is checking the accommodation availability: The update reservation

status task within the reservation application pool that acts as a coordinator, is triggered by

the reservation request. This is where the availability of the requested accommodation

reservation is being checked within the database. Two critical conditions are evaluated:

o If the accommodation is not available in the database an error message email is sent

to the guest and the reservation request is cancelled.

o If accommodation is available, the process advances to a parallel gateway.

• The parallel gateway splits the flow into two separate branches indicating that both the host

and the guest of the accommodation are notified simultaneously via a throwing message

event. This coordination in the notification results in more efficient communication among

participants.

45

• After the host is notified via email about the new reservation request, an exclusive gateway

splits the flow into two separate branches. Subsequently, the host can choose between to

alternative paths: Confirming or rejecting the request.

o In case the request is confirmed by the host, the application notifies the guest and

then the application places the reservation in the system.

o In case the request is rejected by the host, the user is notified and consequently the

application cancels the reservation request.

• Within the guest pool an event-based gateway shows the alternative paths of the process

ending depending on the precedent events. Subsequently, based on the host’s decision to

confirm or reject the request the process may result in a reservation confirmation or

rejection.

In conclusion, collaboration diagrams like the one shown below are useful tools for describing

complicated interactions in a business process. They promote interaction clarity as they display

the sequence of messages simplifying the comprehension of the activity flow. Moreover, they aid

in the simplification of complicated processes that involve many participants and can improve

interaction management efficiency. Finally, they can encourage business process transparency,

ensuring that all participants can have a comprehensive picture of each process activity which can

boost trust and accountability.

46
 Figure 27: Collaboration diagram of a reservation app example

47

3.5.2 Reservation app booking process choreography diagram

The Reservation booking process can also be displayed as a choreography diagram which is mainly

focused on the different participant interaction. Starting with a collaboration process model where

each participant is separated as a separate pool, the choreography diagram will abstract from the

work done in the individual pools, portraying only the message exchanges. As a result, a respective

choreography diagram entails the following tasks:

• The first choreography task is displaying the interaction between the guest user (initiator)

and the reservation application (receiver). More specifically, the guest triggers the

reservation application by sending as a message the accommodation request.

• Following this, an exclusive gateway is introduced to evaluate the availability condition

which is performed internally within the reservation application database. Depending on

the condition evaluation result, the following choreography tasks are introduced:

o In case accommodation is available, a parallel gateway splits the flow into two

separate branches, resulting in two different choreography tasks running

concurrently. More specifically in both cases, the reservation application sends an

email message to the host and guest recipients participating in the process.

o In case the accommodation is not available, the exclusive gateway leads to a

choreography task in which the reservation task sends an email to the guest with

the context of the accommodation non availability.

• Subsequently, another exclusive gateway splits the based on the host’s decision to accept

or to reject the reservation request. Both choreography tasks involve the host (initiator) and

the reservation application (receiver) where the host is delivering a confirmation or

rejection request.

• Finally, an event-based gateway is introduced which leads to two separate chorography

tasks based on the request approval. More specifically:

o In case the host confirms the reservation, the reservation application interacts with

the guests by sending a confirmation email message.

o In case the host confirms the reservation, the reservation application interacts with

the guests by sending a rejection email message.

48

Overall, the choreography diagram emphasizes message exchanges and not internal processing.

This is why specific internal actions within the Reservation application such as updating the

reservation status, which is an internal database related operation, are abstracted from the

choreography diagram. For the above reason the choreography diagram implements the

collaboration diagram as it excludes the representation of additional activities and decision logic

that the collaboration diagram includes.

49

Figure 28: Reservation app choreography diagram

50

3.6 Chapter Summary

The chapter explores the need for standard modeling language for Business processes which led

to the creation of BPMN and its broad usage. The open standard created in 2004 and improved in

version 2.0 in 2011, offers a graphical depiction of business processes. Flow objects, connecting

objects, data objects and artifacts are the essential categories in which essential components are

grouped. These components are illustrating a range of business processes from simple tasks to

more complex business process scenarios.

In fact, the foundation of process modelling is BPMN activities. Activities include a variety of

tasks which involve user interactions and decision-making that can be both manual and automated.

Conversely, gateways serve as processes decision making points. BPMN events are also essential

for displaying incidents that trigger or respond to tasks within a business process. Events can be

catching (waiting for a trigger) or throwing (started by the process). Finally, message flows can

improve the collaborative aspect of BPMN diagrams by facilitating communication exchanges

among different participants.

In BPMN context, collaboration and choreography diagrams are essential tools for displaying

interactions among participants. First, collaboration diagrams concentrate on how different

participants of a business process connect with each other and more specifically white-box

collaboration diagrams give insights in each participant’s internal activities. Meanwhile,

choreography diagrams display participant interactions without focusing on its participant internal

process. Therefore, they primarily focus on the message exchange between participants and the

logical flow of these interactions. They also act as contracts, defining the messages to be

transmitted and received and under what circumstances. All in all, choreography diagrams and can

are useful in illustrating conversation intensive processes and can act as supplementary to

collaboration diagrams as they abstract from the individual processes.

These concepts are examined via the Airbnb business process motivating example where an

Airbnb inspired booking process is displayed via BPMN diagrams. To be precise, a reservation

application can serve as a coordinator between the visitors and hosts is presented in a collaboration

diagram. All interactions are displayed in detail starting from visitor requests for a reservation,

moving on to availability checking, host and guest alerts and concluding for a reservation

51

confirmation or rejection. This diagram considerably improves the comprehension of the booking

process by outlining the precise flow of communications sent and received by all parties. In

contrast to the collaboration reservation process diagram, the choreography diagram concentrates

on message exchange between participants which is displayed via the choreography tasks rather

than delving into each participant internal processing.

In summary, both collaboration and choreography diagrams have important functions for depicting

business processes. Collaboration diagrams provide in-depth insights and provide a rich

visualization of how each entity inside a business process interacts, communicates and shares

information inside a business process. On the other hand, choreography diagrams abstract from

internal mechanisms and complexities and focus entirely on the precise sequence and timing of

message exchange between the process participants. By doing so, they highlight essential

interactions, however they don’t get into detail about internal mechanisms.

52

Chapter 4 : REST and BPMN

4.1 Application Programming Interface evolution

An API (Application Programming Interface) is a collection of features and rules that are built

inside an application, enabling computer-to-computer communication rather than relying on a user

interface screen [34]. It can act as an interface between the application that offers it and items such

as third-party software and hardware. APIs that enable communication and interaction via the web

are also called web services. REST is rapidly becoming one the most preferable architectural style

of choice for developing web services, resulting in the widespread development of RESTful APIs.

Representational State Transfer (REST) is one of the most widely used architectural approaches

for Web interaction [35].

The REST API History shows a dramatic shift in the way developers use APIs to communicate

between the servers. Prior to REST, the dominant protocol was SOAP, which was noted for its

complexity and the requirement for handcraft XML-based documents for executing remote process

calls (RPC). REST, however, was created in 2000 providing a set of limitations that made APIs

more accessible and easier to integrate. REST, like SOAP, increased in popularity and became the

de facto means of developing web-based APIs over time.

In 2015, Facebook announces GraphQL, an API query language that introduces a new approach

of constructing web-based APIs in comparison to REST. When it comes to web-based APIs, we

can see from a Google trends diagram (Figure 29) that REST APIs are the most popular type of

APIs used currently, however GraphQL is gaining ground. On the other hand, the SOAP protocol

is quickly losing favor.

53

Figure 29: APIs popularity in google trends.

SOAP and REST are two different techniques for developing APIs. SOAP is a protocol whereas

REST is an architecture style with a set of protocols. REST enables more flexible development

using mostly JSON format in message exchange. In contrast, SOAP sends data using XML format.

SOAP are XML-based messages with a certain structure, that include an envelope, header, and a

body. More specifically, the body entails the entire message while defining its start and end. If

present the header includes the metadata such as security information and other credentials when

the body includes the main content of the message (Figure 30).

54

Figure 30: Example of a SOAP request [36].

All in all, SOAP gives more specific information about what API performs, but it may not be

appropriate for newer applications. However, SOAP is a robust trustworthy style of webservices

in business-to-business communication and government systems where security plays an

important role, and when REST is not required.

However, REST outperforms SOAP in various ways. Scalability is a crucial feature, as REST

allows separation between the client and the server permitting their independent expansion without

any difficulties. Furthermore, REST APIs are more flexible and portable, easing server migration

and permitting database modifications. Moreover, REST is lightweight and quick by taking

advantage of HTTP standard and by supporting various formats such as XML, HTML and JSON.

REST are suitable for IoT devices and mobile applications and other projects that require

efficiency and speed due to their lightweight nature.

RESTful APIs are used by numerous elite companies, in a variety of industries:

• Amazon S3 offered by Amazon web services (AWS) is an API that allows developers to

obtain access to Amazon S3 functionality, with features like retrieving any amount of data

anywhere on the web. It incorporates API with AI technology, enabling adaptive

interactions and improving data security.

• Twitter (recently renamed to X) provides an API for developers, allowing smooth

integration with applications, easing registration process, and displaying tweets based on

55

location enabling marketing. For example, it can be used to retrieve data from a user's

twitter accounts, for example, to display their latest tweets on a web page (Figure 31).

• Google APIs are a set of application programming interfaces created by google for

developers, enabling them to interact with google services and products. These APIs allow

developers to connect with google services, access user data, and take activities on user’s

behalf by using google services.

Figure 31: Twitter API example

4.2 Representational State Transfer (REST) Architectural Style

When it comes to building newer applications, REST is critical for enabling communication of

various systems via the internet. Any item of information or capability accessed by the API is seen

as a resource and can be represented in JSON. The resources resting on a server are globally and

uniquely identified via a URL. RESTful architecture is based on a client-server model enabling

request and response message exchange. A client-API contract may enable the creation and

deletion of the API resources, or the update and the retrieval of their representation. Each

56

communication is stateless. Therefore, the server does not remember the previous interactions with

the client. As a result, the state of the conversation is managed as well as maintained by the client

[37].

REST can use HTTP protocol as a means of interactions between a client and a server. REST

architecture’s standardized interface provides the communication primitives utilized in a

conversation [37]. In the case of HTTP-based APIs, each communication is started by the client

and takes the form of a request to the server, followed by a response message. The interactions are

achieved by using the standard HTTP verbs (GET, POST, PUT, DELETE) on resources.

Subsequently, there are four HTTP verbs GET, POST, PUT and DELETE respectively. POST will

create a new resource with an identifier specified by the server, whereas GET returns the status of

the resource. PUT will update a resource with the client’s state and identifier while DELETE

removes it [28].

An API flow can be initiated by a ‘Client app’ that can be any type of system with or without a

user interface, requesting information for a unique user. The REST API recognizes the data source

of the requesting resource, reads its content, and returns a response in JSON or XML format.

Figure 32: RESTful API example [38]

57

Overall, according to [39], the main principals of RESTful API can be summarized as follows:

• Statelessness is the first core principle of RESTful APIs. The client is responsible for

consuming the returned data while the server is responsible for processing the resource

data. The server stores no client-specific state, which simplifies deployment and increases

scalability.

• Client and Server are separate entities, which means the client is responsible for using the

data retrieved when the server is responsible for processing the resource data. As a result,

they can evolve and scale independently.

• REST APIs ought to employ a uniform interface, which means that they should follow a

consistent set of standards when interacting with resources. This includes performing

activities called with the acronym CRUD for creating a resource, reading a resource,

updating, and deleting a resource respectively while using HTTP methods. Furthermore,

APIs should employ HTTP headers and status codes, to communicate the metadata of the

requests.

• Each resource should have its own unique URL. The API should offer consistent and

intuitive structures for exploring resources.

• HATEOAS (Hypermedia as the Engine of Application State) signifies that an API response

should provide links to similar resources. These connections provide discoverability and

allow clients to dynamically browse through the APIs.

• Data for each resource can be provided with a variety of data formats. A consumer for

instance should be able to request product information in XML or JSON format.

By conforming to the above standards, a RESTful API can achieve traits like scalability, flexibility,

and interoperability. The use of REST APIs provides loose coupling, making the system easier to

evolve and maintain overtime. However, REST APIs may be vulnerable to security issues such as

lack of proper authentication and failure to encrypt payload data. Despite these problems, careful

design and execution is critical for ensuring that RESTful APIs are used effectively and securely.

58

4.3 RESTful Conversations Modelling with Extended BPMN Choreography

Diagrams

Choreography tasks are used in representing specific participant interactions inside a business

process. In addition, communication between different parties can be done via REST services. In

this context, and by incorporating REST annotations, choreography tasks can be utilized in

modeling HTTP request/response interaction, and email notifications between different roles

engaged in the process. Messages in a choreography task can be employed with annotations,

containing REST metadata. This metadata can contain information such as HTTP methods and

REST service endpoints, and any required headers or parameters.

Moreover, hyperlinks can be provided to the request and response to guide participants in

following the RESTful choreography. Subsequently, a choreography diagram can be implemented

with REST annotations, where the requested message can be specialized to HTTP requests and

HTTP responses (

Figure 33). For example, inside a choreography task an HTTP request message can entail, the

HTTP method and the API endpoint and any request data (e.g., JSON payload). Following this

information, the HTTP response would comprise information such as status code, response header

and body, including hyperlinks for continuing the business flow. Furthermore, an email

notification may include an email as an initiating message which may conclude in resuming the

process.

59

Figure 33: REST annotations in a choreography diagram

By incorporating these elements into the choreography diagram, a visual representation of how

different participants interact with different REST services can be presented. This method not only

aids in the documentation of the HTTP request and response flow, but it also provides a clear

picture of the process as it comes to RESTful interactions. According to [40] modeling with REST

annotations is preferable to developing new graphical features or metamodels, as it enables

RESTful choreographies to be integrated into the existing modeling ecosystem. However, if

necessary, a choreography metamodel can be built by parsing the REST messages to extract

specific information.

Links are also important in REST interactions, as different patterns can access and alter shared

resources. Link patterns have been observed and categorized based on the number of links

conveyed in a choreography task. These patterns are useful in understanding how they can

influence choreography task interaction dynamics [28].

• No link pattern: In the no link pattern, a choreography task may include an HTTP message

or an email but no links. This is often a notification message, giving brief information on

the resource such as each deletion. This pattern may be followed by a conclusion or activity

involving other participants.

• Single link pattern: A choreography task with a single link pattern involves only a single

link. This link serves as a handler for subsequent exchanges, allowing the recipient to gain

more information. For instance, an email can contain a link leading to a subsequent action.

• Multi-link pattern: A choreography task that includes many links, is usually followed by

an exclusive or an event-based gateway. By having conditional sequence flows, this pattern

can be utilized, when alternative resources can result in different results.

In the below choreography example, the Single link pattern reflects the creation of the customer’s

order. A 201 created status code is returned along with the link of the order details. Subsequently,

in the next choreography task, the customer receives an email notification where the multi-link

pattern is followed, and the response contains multiple links. When a customer wishes to make a

return request the links can be utilized in proceeding with this action. Exchange or refund can be

carried out depending on the customer’s link selection and accompanied by a confirmation email.

60

This example highlights the importance of links as it comes to interactions in a choreography

diagram.

Figure 34 : Choreography diagram example

In general, RESTful choreography diagrams are aiming at displaying all valid interactions that will

lead to many different outcomes. These will permit the prediction of all possible interactions based

on its shared resources.

4.4 Reservation app booking process choreography diagram extended with REST

annotations.

The first choreography task is initiated by the guest with a RESTful POST request representing

the reservation accommodation request. The choreography task follows in the single link pattern

as the guest receives a hyperlink containing the location of the reservation details. The reservation

request task is followed by an exclusive gateway, for evaluating the availability condition inside

61

the reservation database via a RESTful GET request. The following choreography task is

introduced depending on the condition evaluation.

• In case accommodation is available, a parallel gateway splits the flow into two separate

branches resulting in two different choreography tasks happening concurrently. In both

cases, an email notification request is sent to the host and guest involved in the business

process. The ‘Notify the host’ the multi-link pattern as the email entails the hyperlinks that

need to be followed for confirming or rejecting the request.

• In case the accommodation is not available, the exclusive gateway initiates a choreography

task, in which a reservation notification email is sent to the guest informing of the

accommodation’s non availability. The process is terminated, and the reservation

application is deleting the reservation request with an internal RESTful DELETE request

operation.

Another exclusive gateway is introduced depending on the host acceptance or rejection of the

reservation request. The host (initiator) may confirm or reject the reservation request via two

separately defined RESTful POST requests to the reservation application (recipient). More

specifically, in case the host wants to accept the request, the host performs the POST accept request

operation, whereas in case of denial the host performs the POST reject operation.

Finally, an event-based gateway is established, which results in two distinct choreography tasks

based on the request approval.

• If the host confirms the reservation the reservation application communicates with the

guest, by sending a confirmation email. The process ends with the reservation application

changing the reservation status to complete with an internal RESTful POST request

operation.

• If the host rejects the reservation the reservation application is sending a refusal email

message to the guest. The process ends with the reservation application deleting the

reservation request with an internal RESTful DELETE request operation.

All in all, the choreography diagram points out the RESTful interactions inside the reservation

process with emphasis on external participant interactions from internal operations inside the

reservation application.

62

63

Figure 35: Choreography diagram of reservation app with REST annotations

64

4.5 Chapter Summary

This chapter explores how to incorporate REST APIs into choreography diagrams. First, it

examines how API technologies have changed over time, and focuses on the switch from SOAP

to REST and the birth of GraphQL. The importance of REST APIs in modern application

development is emphasized in the first part of this chapter, particularly in terms of scalability,

flexibility and portability.

Next, the integration of REST APIs and BPMN choreographies which introduces the idea of REST

annotations within a business process is analyzed. The reservation application business process is

showcased for modeling how HTTP request/response exchange and email notification can be

modeled. In order to emphasize the importance of links in these interactions, the chapter further

divides RESTful interactions into types like no link, single link, and multi-link. Overall, this

chapter offers a thorough grasp of how to incorporate RESTful APIs into BPMN choreography

diagrams, facilitating seamless communication between various business actors.

All in all, this chapter emphasizes that businesses can efficiently describe and visualize interactions

by incorporating RESTful interactions into BPMN choreography diagrams. It serves the purpose

of closing the gap between RESTful APIs implementation and process modeling and make it

possible to construct reliable, interoperable and effective applications, which can be a helpful guide

for developers and business analysts.

65

Chapter 5 : From Modeling to Implementation level

5.1 MVC Architecture and Dependency Management in RESTful API

development

For building the Reservation API the Model-View-Controller (MVC) pattern used in Spring-boot-

applications has been utilized.

More specifically the Reservation REST API is implemented in four different layers:

• Model Layer: The model represents the application structure and the entities involved in

the application.

• Controller Layer: Which is the initial layer responsible for receiving and sending HTTP

requests. As it is the top layer, it calls the service layer after receiving input or a request

from the client. After processing the service layer's output, the client receives the response.

• Service Layer: It is the middle layer where all business logic is being executed.

• Repository Layer: Is the layer where database communication is performed.

Figure 36: The Controller-Service-Repository layers [41]

The tool for managing dependencies used with Spring Boot is Maven. Although it may be used

for other programming languages, Apache Maven is a popular build automation tool used for java

66

applications. It facilitates project development, as it gives structure to the project through a set of

conventions. More specifically, it provides the Project Object Model (POM) file, which is the main

control file in Maven and defines the project [42].

The pom file is described as an XML file where project structure, dependencies and configurations

of the project are specified. In addition, the dependencies declared in the pom.xml file, are

downloaded in remote dependencies automatically, which makes it easier to ensure that all

necessary libraries and dependencies are available [42]. As a result, when executing a task, Maven

searches its directory in the POM file.

Maven also provides a standard way of building a new project, as it provides a project directory

layout which simplifies the project’s set up and maintenance. The standard layout makes it easier

for Maven to identify and manage project elements. Maven project structure can also be

customized however, the default pattern is suggested, as it helps maintaining consistency. All in

all, Maven simplifies the process of building a java-based project, as the task of downloading Jar

files and other dependencies is not done manually.

Figure 37: Maven directory structure [43]

The standard structure of a Maven project is presented in the following table:

67

Table 5.1-1: Maven project structure

5.2 Building a Reservation RESTful API with Spring Boot, Mongo DB and

Swagger: A comprehensive implementation guide

Before building the project, Maven and Java were installed locally with 3.8.8 Maven and Java

19.0.2 versions respectively.

Figure 38: Java and Maven version installed.

Directory Description

src/main/java This directory includes your project's primary Java source code.

src/main/resources
This directory contains configuration files, property files, and other
non-Java resources needed by your program.

src/main/webapp (optional)
This directory contains web-related resources for web applications,
such as HTML files, JSPs, CSS, JavaScript, and web.xml

src/test/java

This directory includes the source code for your test cases, which
are commonly written in Java and run using testing frameworks
such as JUnit.

src/test/resources
This directory, like src/main/resources, contains test-specific
resources.

target

During the build process, Maven generates compiled bytecode,
JARs, WARs, and other build artifacts in this directory. It is the
output directory for build results.
Maven generates compiled bytecode, JARs, WARs, and other build
artefacts in this directory during the build process.

pom.xml

The Project Object Model (POM) file, which is the central
configuration file for your Maven project. It includes project
metadata, dependencies, and other project-specific settings.

68

The skeleton of the application was generated in spring boot initializer website. The project type

selected is Maven and the preferred language is Java. In addition, project metadata are generated

like the group and the artifact name. Moreover, the preferred packaging type and the java version

are selected. Spring Web is the dependency that provides the spring boot framework and enables

building Restful applications and provides default configuration for MVC (Model-View-

Controller) design pattern.

Spring Web entails spring-boot-starter-web dependency and a mixture of other components needed

to start a web application. Spring web starter also entails a default JSON marshaller responsible

for automatically converting data objects to JSON format. In addition, Apache Tomcat is a default

embedded server which is responsible for building an executable JAR Application. Furthermore,

spring-boot-starter-test testing dependency is also included in the spring web application

dependency.

More dependencies were also added in the Spring boot initializer:

o Lombok java annotation library for reducing boilerplate code.

o Spring Data Mongo DB dependency for communicating with a Mongo DB

database.

Figure 39: Springboot Initializer and the dependencies added.

69

Figure 40: Project structure generated via Spring Boot initializer.

Figure 41: pom.xml and Spring boot dependencies

70

The file is downloaded and imported in the IntelliJ IDE having the structure of a Springboot Maven

project. In addition, it contains the above pom.xml file where all the dependencies can be found

(Figure 41). In the pom.xml file springfox-swagger-ui dependency was also added (Figure 42).

This indicates that we can use Springfox Swagger UI for generating API documentation. When

included in the spring boot application, documentation including information about API endpoints

is immediately generated and accessible via Swagger UI (Figure 43).

Figure 42: springfox dependency in the pom.xml file

Figure 43: API documentation of the Reservation API in the Swagger UI

71

Table 5.2-1: Swagger annotation explanation

MongoDB is the database utilized in the Reservation API implementation. MongoDB Atlas, a

cloud-based database service supplied upon creating an account, was used to create a new database.

The configuration of a cluster that will act as a database repository is being done using Mongo DB

Atlas. The database may be accessed using MongoDB compass, which is the UI interface where

the database credentials are entered. These credentials are also required for connecting to the

database via the java application.

Figure 44: MongoDB database connection credentials in JAVA application properties

Swagger Annotations Definition

@Api

Provides metadata about the API,

including its name or tags. This

can be used by API

documentation tools like

Swagger.

@ApiOperation

Describes an API operation. In this

case, it describes the purpose of

the save method, which is to

create a new reservation.

@ApiResponse

Defines specific responses with

details such as HTTP status code

and message.

72

Figure 45: Database connection via MongoDB Compass

5.2.1 Create a new Reservation Operation

For creating a new reservation, the endpoint /reservation is specified, where clients can send a

POST request using JSON data that represents a reservation. The creation method in ServiceImpl

class in the service package oversees saving a new reservation in the Mongo DB database with the

use of the Reservation repository. More specifically, by using the save method, the reservation

object is saved inside the reservation repository. @Override annotation, specifies that a method is

being overwritten from the Service interface (Figure 46), (

Figure 47)

73

Figure 46: Methods defined in the service interface.

Figure 47: Create method implemented in the service layer.

The Controller layer handles the reservation creation using the Reservation service. As a result, an

instance of the ReservationService is injected into the controller using @Autowired dependency

injection, allowing the save method to persist the receiving reservation.

ServletUriComponentsBuilder.fromCurrentRequest() is used to generate a URI for the reservation

74

id generated. Finally, the Response entity is returned, having a 201-response status (created), with

the newly created URI included in the response headers.

Figure 48: POST method as defined in the Reservation Controller class.

We can test the POST /reservation endpoint by using the Swagger UI and send a request. This is

done by clicking the ‘Trying it out’ button. At this point, we can provide input data in the request

body and then click the ‘Execute’ button Additionally, Swagger UI retrieves the response sent

from the server and we can verify that the anticipated status code ‘201’ is returned as well as the

expected response body. In the response headers the URI of the reservation id is retrieved.

After the response is retrieved, we can also check that the reservation request is created

successfully in the MongoDB database.

75

Figure 49: Test of the POST create reservation method.

Figure 50: Test of the POST create reservation method using Swagger UI- Check response status code and response body.

76

Figure 51: Test of the POST create reservation method using Swagger UI- The reservation request is placed successfully in the
database.

5.2.2 Update the Reservation Status

The updateReservationStatus method determines whether a reservation with the provided ID exists

in the database. Depending on the availability of the ID, the update operation can change the status

to ‘PENDING’ or if not available to ‘CANCELLED’. This function is mapped to a URL with the

use of @PutMapping annotation which allows the update of the reservation status using an HTTP

PUT request.

UpdateReservationStatus method is critical in handling reservation statuses in the

ReservationService implementation class (Figure 52). This method expects the reservationId, and

it starts when attempting to find the corresponding id in the repository layer. When a reservation

is discovered, it is stored as a variable. Following that, the method invokes check availability

method from the reservation object. This includes the logic of determining the availability of the

reservation and updating the reservation status accordingly. By using the

reservationRepository.save(reservation) method, amended reservation object is saved to the

repository after the reservation status has been suitably adjusted.

77

Figure 52: UpdateReservationStatus Method in ServiceImpl class

Figure 53: Check Availability method in Reservation object

This functionality is available in the controller using the @PutMapping annotation waiting for

PUT HTTP requests at /id/updateReservationStatus. The id variable which is a component of the

URL represents the reservation id of the reservation object. When a PUT request is received then

the updateReservation method is called for each specific reservation id. Then with the

reservationService.updateReservationStatus(id) the service layer logic is activated.

The Boolean variable statusUpdated is utilized within the method to determine whether the status

of the reservation is updated. If the update id successful, then a response entity is returned with

HTTP status 200. Else, a bad request HTTP status is retrieved, and the reservation is not updated.

To handle exceptions, a try-catch block is used. The exception is handled by an HTTP status 500

response and an appropriate error message is displayed.

78

Figure 54: PUT update reservation status method as defined in the Reservation Controller class.

Figure 55: Test of the PUT update reservation status method using Swagger UI-Provide input JSON data.

We can test the PUT /reservation/id/updateReservationStatus endpoint by using the Swagger UI

and send a request. This is done by clicking the ‘Trying it out’ button. At this point, we can provide

the reservationId and click the ‘Execute’ button (Figure 55). Additionally, Swagger UI retrieves

79

the response sent from the server and we can verify that the anticipated status code ‘200’ is returned

as well as the expected response body (Figure 56).

After the response is retrieved, we can also check that the reservation status of this specific

reservation id has been updated successfully in the MongoDB database.

Figure 56: Test of the PUT update reservation status method using Swagger UI- Check response status code and response body.

Figure 57: Test of the PUT update reservation status method using Swagger UI- The reservation request has been updated in the
database.

80

5.2.3 Confirm or Reject a Reservation Request

Two methods are described in the ReservationService interface, the rejectReservation and the

confirmReservation, that handle rejection and confirmation of a reservation by the host

respectively. By taking the reservationId, these methods fetch the reservation from the repository

and update the status if the conditions are met (Figure 59). More specifically, if a reservation is

found in state ‘PENDING’ ‘reject’ or ‘confirm’ methods are called from the reservation object and

update the status in ‘CONFIRMED’ or ‘REJECTED’ (Figure 58). Then the object is again saved

in the repository.

Figure 58: Confirm and reject methods in the reservation object.

The rejectReservation and confirmReservation annotated PUT methods on the controller handle

the routes, /id/rejectReservation and /id/confirmReservation respectively (Figure 60). Like the

update of the reservation status PUT method, the id variable which is a component of both URLs

represents the reservation id of the reservation object, and the reservationServices’s relevant

functions are called. If the operation is successful, then a HTTP 200 OK status code is retrieved or

else a 400-error response is delivered. Error handling is also used for catching unexpected issues

and an HTTP 500 status is returned. This ensures that reservation rejection and confirmation

actions are provided via RESTful APIs allowing the host to update the reservation status with

suitable replies and indicating whether the operations were successful or unsuccessful.

We can test the PUT /reservation/id/confirmReservation endpoint by using the Swagger UI and

sending a request. This is done by clicking the ‘Trying it out’ button. At this point, we can provide

the reservationId and click the ‘Execute’ button (Figure 61). Additionally, Swagger UI retrieves

81

the response sent from the server and we can verify that the anticipated status code ‘200’ is returned

as well as the expected response body (Figure 62).

After the response is retrieved, we can also check that the reservation status of this specific

reservationId has been updated successfully in the MongoDB database (Figure 63).

Figure 59: Reject and Confirm reservation methods in ServiceImpl class

82

Figure 60: PUT reject and confirm reservation methods as defined in the ReservationController class.

Figure 61: Test of the PUT confirm reservation method using Swagger UI-Provide input JSON data.

83

Figure 62:Test of the PUT confirm reservation method using Swagger UI- Check response status code and response body.

Figure 63:Test of the PUT confirm reservation status method using Swagger UI- The reservation request has been updated in the

database.

Subsequently we can test the PUT /reservation/id/rejectReservation endpoint by using the Swagger

UI and sending a request. This is done by clicking the ‘Trying it out’ button. At this point, we can

provide the reservationId and click the ‘Execute’ button (Figure 64). Additionally, Swagger UI

retrieves the response sent from the server and we can verify that the anticipated status code ‘200’

is returned as well as the expected response body (Figure 65).

After the response is retrieved, we can also check that the reservation status of this specific

reservationId has been updated successfully in the MongoDB database (Figure 66).

84

Figure 64: Test of the PUT reject reservation method using Swagger UI-Provide input JSON data.

Figure 65: Test of the PUT reject reservation method using Swagger UI- Check response status code and response body.

85

Figure 66: Test of the PUT reject reservation status method using Swagger UI- The reservation request has been updated in the
database.

5.2.4 Place a new Reservation Operation

For placing a reservation method in the database, the placeReservation method is constructed in

the service layer. More specifically, it is utilized to update the status of a reservation found (Figure

67). If the reservation status is ‘CONFIRMED’ the placeReservation method is called from the

reservation object (Figure 68) and the status changes to ‘COMPLETED. After that the object is

saved again in the repository.

Figure 67: Place reservation method in ServiceImpl class

86

In the controller, HTTP POST requests to the path /id/plcaeReservation are handled. The id is

taken from the URL and the reservationService’s placeReservationMethod is called. Then the

reservation is successfully placed, HTTP 201 response code is returned. Else a 400-error response

is delivered. There is also an exception handling for unforeseen errors where a HTTP 500 error

response is returned.

Figure 68: Place Reservation method in Reservation object

Figure 69: POST place reservation method as defined in the ReservationController class.

We can test the PUT /reservation/id/placeReservation endpoint by using the Swagger UI and

sending a request. This is done by clicking the ‘Trying it out’ button. At this point, we can provide

the reservationId and click the ‘Execute’ button (Figure 70) Additionally, Swagger UI retrieves

87

the response sent from the server and we can verify that the anticipated status code ‘201’ is returned

as well as the expected response body (Figure 71).

Figure 70: Test of the POST place reservation method using Swagger UI-Provide input JSON data.

Figure 71: Test of the POST place reservation method using Swagger UI- Check response status code and response body.

After the response is retrieved, we can also check that the reservation status of this specific

reservationId has been updated successfully in the MongoDB database (Figure 72).

88

Figure 72: Test of the POST place reservation method using Swagger UI- The reservation status is updated successfully in the
database.

5.2.5 Delete a Reservation Operation

For deleting a reservation method in the database, the deleteReservation method is constructed in

the service layer and corresponds to the @DeleteMApping function in the Controller. The

deletedById method of the reservationRepository is used to remove the reservation from the

specified id. The method returns the id of the reservation after the deletion (Figure 73).

Figure 73: Delete reservation method in ServiceImpl class.

HTTP delete requests are handled by the controller method. The id is taken by the UR and the

reservationServices’s delete function is invoked to remove the reservation from the database.

Following the deletion, a response object with the HTTP status no content is returned, indicating

that the reservation was successfully deleted. These methods enable customers to erase

reservations by sending HTTP erase requests and receiving an appropriate response that indicates

the operation’s success.

89

Figure 74: DELETE, delete reservation method as defined in the Reservation Controller class.

We can test the DELETE/reservation/id endpoint by using the Swagger UI and sending a request.

This is done by clicking the ‘Trying it out’ button. At this point, we can provide the reservationId

and click the ‘Execute’ button. Additionally, Swagger UI retrieves the response sent from the

server and we can verify that the anticipated status code ‘204’ is returned.

Figure 75: Test of the DELETE reservation method using Swagger UI-Provide input JSON data.

90

Figure 76: Test of the DELETE reservation method using Swagger UI- Check response status code and response body.

5.2.6 Get reservation by identification number.

To get a reservation by its id, @GetMapping("/id"), is specified in the controller, which maps the

incoming GET requests to path a variable supplied with the specific id. This controller function

delegated the operation to the service layer method encapsulating the business logic. More

specifically in the service implementation layer, getReservationById method has a return type of

List and only accepts one parameter, String id.

Figure 77: getReservationById method implemented in service implementation class

Its purpose is to fetch reservations using the specified id. For the above reason, the

getReservationById method implemented in the repository layer is invoked, with the id as an input.

Reservation Repository extends Mongo Repository by allowing it to communicate with a

MongoDB database. Within the repository, the getReservationById(String id) function provides

the query for retrieving reservations by their ID from the database (Figure 78).

91

Figure 78: getReservationById in the Repository layer.

We can test the GET /reservation/id/ endpoint by using the Swagger UI and sending a request by

using the reservation id Additionally, Swagger UI retrieves the response sent from the server and

we can verify that the anticipated status code ‘200’ is returned as well as the expected response

body.

Figure 79: Test of the GET reservation by id

92

Figure 80:Test of the GET reservation by id method using Swagger UI- Check response status code and response body.

5.2.7 Send a notification email via Java Mail API and SMTP protocol.

Oracle Corporation, the firm that produces Java technology, is the provider of JavaMail API. The

JavaMail API is available on the Java platform for developing email and messaging applications.

It includes classes for sending, receiving, and modifying email messages over SMTP (Simple Mail

Transfer Protocol), IMAP (Internet Message Access Protocol), and POP3 (Post Office Protocol)

[44]. Developers can utilize the JavaMail API in their projects by adding the JavaMail library. The

library is available for download from the Oracle website or as a dependency in build management

systems such as Maven. Dependencies needed for using JavaMail are the JavaMail API

dependency, spring-boot-starter-mail and as well as the con.sun.mail implementation provider.

93

Figure 81: Dependencies needed for using the JavaMail API

The EmailMessage class was used to structure the email message, that has the to, subject and

message email properties (Figure 82).

Figure 82: EmailMessage class

The EmailService interface is implemented by EmailServiceImpl class (Figure 83). To send

emails, it employs JavaMailSender. The sendEmail method constructs a SimpleMailMessage, sets

94

the sender, recipient, topic, and message, and then uses the mailSender to send the email. JavaMail

API provides the SimpleMaiMessage class for creating plain text messages in SpringBoot

framework. It enables developers to configure fundamental email attributes like in this case, as it

is used for simple email purposes.

SimpleMailMessage is used for simple email communication without dealing with MIME

messages complexity. SimpleMailMessage is often used in conjunction with SMPT (Simple Mail

Transfer Protocol) to deliver simple messages. SMPT provides email transmission, while the basic

content is produced by SimpleMailMessage.

Figure 83:Email Service Implementation class

An email Controller class was used to handle post requests with the /send-email endpoint. When

a POST request is made to this endpoint including to subject and message as message attributes,

an Email Message object is created, and passed in the EmailServices sendEmail method. To set up

95

the SMTP server in gmail a two-step verification code needs to be set up for the google account.

Then the security key generated can be used as password connecting the java application.

5.3 Chapter Summary

In this chapter, the Model-View-Controller (MVC) design pattern is used to create the Reservation

REST API. The API is divided into 4 layers: The Repository layer, which handles the database

communication, the service layer, which contains the business logic, and the Model layer which

represents the application structure and entities. As a build automation tool, Apache Maven is used

to streamline project development and dependency management.

The set-up procedure including how to create a project skeleton with the necessary dependencies

in Spring initializer is thoroughly covered in the chapter. Building the REST API and connecting

to the database require the Spring Web and Spring Data MongoDB dependencies respectively.

Using Spring fox Swagger UI, the API documentation is implemented making it simple to test and

view the endpoints.

In addition, the creation, update and confirmation, rejection, placement and deletion of

reservations, as well as other API functions, is thoroughly discussed. Each endpoint is tested using

the Swagger UI to ensure the correct operation. The chapter also shows how to send email

notifications for various reservation related events using the JavaMail API and SMTP protocol.

Overall, the chapter offers a thorough tutorial for creating a reservation API, covering key ideas,

implementation specifics and testing techniques.

To sum up all the endpoints and their operations of the Reservation REST API are summarized

in the following table:

96

HTTP
Method Endpoint Operation

Success
Response

Error
Response

POST /reservation
Create a new
reservation.

201 Created
(with
reservation
URI in
header)

400 Bad
Request, 500
Internal
Server Error

GET /reservation/{id}
Get
reservation
details by ID.

200 OK (with
reservation
details)

404 Not
Found

PUT /reservation/{id}/updateReservationStatus
Update
reservation
status by ID.

200 OK (with
success
message)

400 Bad
Request, 500
Internal
Server Error

PUT /reservation/{id}/rejectReservation
Reject a
reservation
by ID.

200 OK (with
success
message)

400 Bad
Request, 500
Internal
Server Error

PUT /reservation/{id}/confirmReservation
Confirm a
reservation
by ID.

200 OK (with
success
message)

400 Bad
Request, 500
Internal
Server Error

POST /reservation/{id}/placeReservation
Place a
reservation
by ID.

201 Created
(with success
message)

400 Bad
Request, 500
Internal
Server Error

DELETE /reservation/{id}
Delete a
reservation
by ID.

204 No
Content

404 Not
Found

Table 5.3-1: Reservation API endpoint summary

97

Chapter 6 : Business process orchestration using Postman

In the word of API development, Postman is a well-regarded tool for testing as well as automating

HTTP requests. It gives developers the ability to carefully evaluate API endpoints, manage API

requests and keep track of the responses. In addition, Postman can manage API request by using

collections where is classifying and organizing the API requests resulting in accelerating the

testing process. Moreover, process orchestration, can be achieved when API requests are created

for each step of the reservation process and are chained together by using Postman variables and

scripts features.

By leveraging Postman, complex inner working of three different reservation scenarios can be

verified. These scenarios can act as performance indicators under different conditions, as well as

illustrating the interactions of the different API methods. The first scenario which concludes in the

‘Reservation confirmation’ is the ‘happy path’ in which the reservation is successfully created and

confirmed by the host. The second scenario is the ‘Availability check’ scenario which records the

system handling of the reservations found as occupied in the system. Lastly, the ‘Reservation

rejection’ records the host’s rejection of a reservation.

These three examples, cover a wide range of real word scenarios that a reservation system can run

into, from simple operations to more complex ones that call for a particular error handling or

require precise communication. By using these three scenarios the reservation system functionality

can be verified efficiently, resulting in a good user experience.

6.1 Reservation confirmation process scenario

In the following detailed breakdown of the reservation confirmation, the intricate steps and

interactions that occur within the system to achieve a reservation confirmation are displayed. The

reservation confirmation process is a multi-step journey, involving several API requests that serve

a specific purpose in the overall workflow. In the reservation confirmation scenario the API

requests encompass a series of actions that signify that a guest reservation has been successfully

created and confirmed by the host.

98

The structure of the collection that result in a Reservation confirmation, can be broken down as

follows:

Create a new reservation method is the first API request, having the purpose of creating a new

reservation. The request is a POST request, where the required data are presented in the JSON

payload (Figure 84). In the ‘Tests’ section, a test script is used to determine if the correct response

status is returned. This test serves to confirm that the API request was successful in creating, having

a 201 created status code. The test will succeed if the status code is in fact 201 and will fail in any

other case. Furthermore, the URL included in the header response can be saved as location variable

(Figure 85). Get reservation id method is retrieved several times in the flow for verifying that the

reservation status has been changed successfully.

Figure 84: Reservation confirmation business process scenario- test the create reservation POST method using Postman.

99

Figure 85: Reservation confirmation business process scenario- test scripts in Create a new reservation post method.

Get reservation by id method is the second method used in the process scenario and is used to

obtain the reservation details by its reservation id. The URL is for initiating the request and is

retrieved by using the Location variable that was saved in the previous request (Figure 86). In the

test section of Postman, a test script is used to test that the correct status code is returned, and

several variable assignments are specified. More specifically, by using pm.response.json()

JavaScript function, the JSON response is parsed and saved in a variable. Next, various variables

extracted from the Json data object are assigned as variables, and then stored as Postman

environment variables.

100

Figure 86: Reservation confirmation business process scenario- test the reservation by id GET method using Postman.

Update the Reservation status method is later consequently used for updating the reservation status

to ‘Pending’ if the accommodation availability has been verified. A test script has also been

initiated checking that the expected status code is returned. The connection with the previous

request is achieved as the reservation id previously saved is utilized in the request URL (Figure

88).

101

Figure 87: Reservation confirmation business process scenario- variable assignment in get reservation id GET method.

In the upcoming requests, email notifications are being tested, where the recipient's email address,

the message, and the subject are provided as query parameters to "http://localhost:8080/send-

email" in the form of a POST request. More specifically, using the Java mail API post request, the

guest as well as the host receive an email notification about the reservation upon submitting this

request. In both cases the pre-request script section of Postman has been utilized for creating the

email content, where variables declared in previous requests of the flow are included in the text

body (Figure 89). Like in the previously submitted methods test scripts have been utilized for

testing the expected status code. Both emails have been sent successfully to the applied user

(Figure 90),(Figure 91).

102

Confirm reservation is the next method used utilizing the t reservation ID from the previous request

to create a URL and sends a PUT request to that URL. Moreover 200 is the expected status code

for the response which is tested with a test script (Figure 92).Get reservation by id is followed to

confirm that the reservation status is updated to ‘Confirmed’, followed by the test script confirming

the expected reservation status (Figure 93).

Send reservation confirmation to guest is followed, which is sent in the same way the notification

of the availability has been sent. The request method is subsequently followed by the test script

confirming the expected reservation status (Figure 94). Place reservation is the next method after

the host confirms the reservation. The reservation ID from the previous request is used to generate

a URL to which a POST request is sent. A successful response is anticipated to have a status code

of 201 which is also tested with test script (Figure 95). Get reservation by id is followed to the

reservation placement, confirming that the reservation has been placed in the system (Figure 96).

Figure 88: Reservation confirmation business process scenario- Test the Update Reservation status request.

103

Figure 89: Reservation confirmation business process scenario- test the email notification API.

Figure 90: Email sent to guest.

104

Figure 91: Email sent to host.

Figure 92: Reservation confirmation business process scenario- test the confirmation PUT method.

105

Figure 93: Reservation confirmation business process scenario- test the get reservation id confirmed status.

Figure 94: Confirmation email sent to guest.

106

Figure 95: Reservation confirmation business process scenario- test the place reservation POST method.

Figure 96: Reservation confirmation business process scenario- test the get reservation id completed status.

107

6.2 Reservation non-availability process scenario

This section highlights the scenario of booking an accommodation that is already defined as non-

available in the reservation application due to simultaneous booking or delay in updating the

availability status. This reservation request is handled by setting a rejection email to the guest and

deleting the reservation request from the reservation system.

The structure of the collection that result in a Reservation confirmation non-availability, is broken

down as follows:

• Create a reservation: A post request is created with the body entailing details about the

reservation with an accommodation that is not available. The status code is also confirmed

with a test script. Furthermore, the location of the reservation id URL is assigned to an

environment variable (Figure 97).

• Get reservation by id (Reservation Status-Created): Like in previous scenario, the

reservation id URL was retrieved from the previous request, and all information parsed

from the JSON object are defined as environment variables (Figure 98).

• Update reservation status: In this method, the reservation status that is retrieved from the

previous request, is updated to as the accommodation is not available for the type of period

requested, with the testing confirming that the response status code is 200.

• Get reservation by id (Reservation Status-Pending): The method is retrieved again for

verifying that the reservation status is of the reservation id retrieved from the previous

request is updated to cancelled.

• Send non-availability email: The POST request method of the email message is used for

sending a non-availability message to the guest. In the upcoming request, the recipient's

email address, the message, and the subject are provided as query parameters to the request

method. In the pre-request script section of Postman has been utilized for creating the email

content, where variables declared in previous requests of the flow are included in the text

body (Figure 99).

• Cancel reservation: The delete request method for removing a canceled reservation from

the database of the reservation application is sent, containing the reservation id from the

108

previous request. With this method the operation of a reservation cancelation is verified

successfully as well as 204 expected status code (Figure 100).

Figure 97: Reservation non-availability business process scenario- Create a new reservation request.

109

Figure 98: Reservation non-availability business process scenario- Get reservation by id.

Figure 99: Email sent when the reservation is not available.

110

Figure 100: Reservation non-availability business process scenario- Cancel reservation request method.

6.3 Reservation rejection process scenario

In this section, the scenario of reservation rejection is being explored. Rejection handling can be

crucial in maintaining customer satisfaction. The steps of the workflow in the rejection process

can be broken down as follows:

• Create a new reservation: Like previously the POST request method is used to initiating

the reservation process. Request body includes all the necessary booking details. Similarly

with the previous scenarios, the response status is tested and the location header of the

response including the reservation id URL is stored as an environment variable (Figure

101).

111

Figure 101: Reservation rejection business process scenario- test the create reservation POST method using Postman.

• Get reservation by id (Reservation status- Created): Following the reservation request

creation, the new reservation id URL location is tested. This request retrieves information

by the request initiated. Like in previous scenarios, the location variable is used as the

request URL, and the response status is tested with the use of a test script.

• Update the reservation status: Similarly, to the happy path scenario by using the update

request the availability is verified and the status of the request changes.

• Get reservation by id (Reservation status- Pending): Consequently, the updated status is

verified by sending the get reservation id request and all the information about the

reservation are retrieved.

• Send email of availability Guest/Host: The request method of sending an email is sent

simultaneously to the guest and the host involved in the process. In both cases, the

guestMessage, guestSubject, and guestEmail environment variables are used as request

variables to the URL to construct the email, and the response status is tested. In the pre-

request scripts of both the emails, the environment variables are being utilized for

constructing the email message.

112

• Reject a reservation: Rejecting a reservation request is done with the following

http://localhost:8080/reservation/{{reservationId}}/rejectReservation endpoint, that

receives a PUT request. The reservation id request parameter is retrieved from the previous

requests and the expected status code is verified via a test script (Figure 102).

Figure 102: Reservation rejection business process scenario- test reservation rejection PUT method using Postman.

• Get reservation by id (Reservation status- Rejected): Following the previous request, the

updated status is verified by sending the get reservation id request and all the information

about the reservation are retrieved (Figure 103).

113

Figure 103: Reservation rejection business process scenario- test reservation by id rejected status.

• Send email of rejection to guest: Via this request method an email is informing the guest

that their reservation has been declined. In the pre-request script section, the Message,

subject, and recipient query parameters which are included in the request URL are defined

as well as the environment variables are used to create the email content (Figure 104).

• Cancel reservation: The http://localhost:8080/reservation/{{reservationId}} endpoint

receives a DELETE request. A testing script is used to verify that the 204 (No Content) is

returned.

114

Figure 104: Reservation rejection email to guest.

6.4 Chapter Summary

The chapter explores three separate reservation scenarios, each of which clarifies interactions

between various API methods and acts as a performance indicator under different settings. The

Reservation Confirmation Process Scenario (Happy Path) is a multi-step process that begins with

utilizing a POST request to create a new reservation. The next stages are to confirm the reservation,

update the reservation status, send email notifications to the guest and host, and enter the

reservation into the system. Every step is verified by test scripts.

The following scenario is the Reservation Non-Availability Process. This example shows how a

reservation request for an unavailable accommodation is handled by the system. The process

involves establishing a reservation, monitoring its progress, making necessary updates, notifying

the guest via email about non-availability, and ultimately canceling the reservation. To make sure

the anticipated results occur, each step is evaluated.

Subsequently the reservation rejection process scenario focuses on the steps involved when a

reservation request has been turned down. Making a new reservation and checking its status comes

first. Email notifications are sent to both the host and the guest, and the reservation status is

updated. Following the cancellation of the reservation, the updated status is verified, and the guest

receives a refusal email.

115

In addition, API request workflow included in each scenario can run automatically using postman.

This functionality can be vital in finding problems and verifying system functionality, due to

extensive test reporting, script integration, status code verification, and response validation

features that are presented. As a result, when a collection is automatically run, a report with the

test results is presenting verifying that the API workflow works as expected.

Figure 105: Run collection summary.

In conclusion, Postman is a priceless instrument for fully testing and automating API procedures.

In order to ensure the effective testing of the reservation system's operation and a favorable user

experience, these three scenarios depict real-world cases, ranging from successful reservations to

handling non-availability and rejection.

116

Chapter 7 : Discussions and Conclusions

7.1 Thesis Overview

Starting with an historical analysis, this research project follows the development of business

process management (BPM) from Total Quality Management and Six Sigma Techniques to

Business Process Reengineering (BPR) and continuous improvement strategies. Moreover, it

demonstrates how the rise of BPM, particularly with the introduction of IT systems such as

Workflow Management Systems and Enterprise Resource Planning (ERP) systems, led to the

development of Process-Driven Applications (PDAs). This thesis also emphasizes how crucial it

is for developers, business analysts, and domain experts to work together while implementing

process-driven applications. It draws attention to how process engines are used to manage service

orchestration and human workflow.

Moving forward, the importance of collaboration and choreography diagrams is explored to

illustrate participant interactions within a BPMN framework. Collaboration diagrams clarify the

relationships between various parties in a business process. White-box collaboration diagrams

shed light on each participant's internal operations. On the other hand, choreography diagrams

concentrate on participant interactions. They function as contracts that specify the messages to be

sent and received, focusing mainly on the message exchange and the logical progression of these

interactions.

The booking procedure, which is inspired by Airbnb, serves as a real-world example to

demonstrate these ideas. Through both collaboration and choreography diagrams, the research

demonstrates how a reservation application serves as a coordinator between guests and hosts. The

choreography diagram focuses on message exchanges between participants without digging into

their underlying processes, but the collaboration diagram clarifies the specific flow of interactions

between parties.

This thesis also investigates how crucial REST APIs are to the application creation, especially in

terms of scalability, flexibility, and portability. The study introduces the idea of REST annotations

inside a business process and goes on to examine how REST APIs might be integrated into BPMN

choreographies. In addition, HTTP request/response exchanges and email notifications can be

117

represented using an example involving a reservation application, emphasizing the importance of

links in these interactions. It is also highlighted that RESTful interactions into BPMN

choreography diagrams facilitate efficient description and visualization of interactions, bridging

the gap between RESTful API implementation and process modeling. The result is the construction

of reliable, interoperable, and effective applications, offering valuable guidance to developers and

business analysts.

The Model-View-Controller (MVC) design pattern is used in a separate chapter to construct a

Reservation REST API. The API is divided into four layers: the Repository layer, the Service

layer, which handles business logic, and the Model layer, which represents the organization and

entities of the application. As a build automation tool, Apache Maven is used to streamline

dependency management and project development. The chapter offers in-depth explanations of

how to create a project skeleton with the required dependencies, set up a REST API, use Spring

Web and Spring Data MongoDB requirements to connect to the database, and use Spring Fox

Swagger UI to build API documentation.

The Reservation REST API's endpoints and their functions are all summarized in a summary table.

The study examines three reservation scenarios, each depicting interactions between different API

operations. The thesis emphasizes how important it is to use Postman to automate API request

workflows. This tool, which makes use of comprehensive test reporting, script integration, status

code verification, and response validation features, is extremely helpful in locating problems and

confirming system functionality. The automatic execution of a collection ensures that the API

workflow operates as intended by producing a report with test results.

This study's findings emphasize the importance of Postman as a tool for thoroughly testing and

automating API operations, which ultimately helps to ensure the smooth operation of the

reservation API in conjunction with email notifications provided by JavaMail API. The

investigation covers everything from the fundamental ideas of business process management

(BPM) to collaboration and choreography diagrams utilization in the reservation REST API

development and documentation.

118

7.2 Research Contribution

The current work has presented an innovative method for augmenting BPMN choreography

diagrams with REST-specific annotations, which facilitates the transfer from choreography

models to RESTful HTTP conversations. This method ensures compatibility with current

modeling tools, and adherence to the formal specification of the BPMN standard by employing

annotations to capture additional information.

In addition, important insights are gained from the representation of participant interactions using

collaboration and choreographic diagrams. The study also emphasizes the value of REST APIs for

developing applications and provides helpful advice on how to integrate them with BPMN

choreographies. The usage of Postman automation and the Model-View-Controller (MVC)

paradigm are examples of best practices for developing APIs.

Moreover, the integration of email notifications further enhances the understanding of application

communication. These contributions collectively advance knowledge and practices in BPM and

modern application development.

7.3 Research Limitations and Future Work

Even though it offers insightful information this study has a few limitations. To begin with, the

example study used in the research is a reservation application, which might not accurately reflect

the complexity of other business processes. Furthermore, although being a crucial factor in

practical applications, the study does not go into detail about API security and the possible privacy

issues related to REST API integration.

Future research could focus on several areas to expand on this study. First of all, the scope of the

case studies can be broadened to more sectors as this approach can be expanded to various

scenarios such as e-commerce where HTTP requests and email notification play a vital role.

Specifically, research can focus on identifying the stakeholders involved in the transition from

choreography models to executable REST-based implementations. Understanding the roles and

responsibilities of various stakeholders will further facilitate this transition process, offering a

119

more comprehensive framework for the integration of RESTful interactions within BPMN

choreography diagrams.

Furthermore, given the growing significance of privacy and data protection laws, investigating the

security implications, and creating best practices for safe REST API integration in BPM are

essential. Additionally, to make sure that BPM and REST API integration methods stay current

and useful, it's critical to stay up to date on developing technologies and market trends.

7.4 Conclusions

This study explored the integration of REST APIs with BPMN choreographies and introduced

REST annotations into a business process. It also demonstrated the critical function of links in

email notifications and HTTP request/response exchanges using a real-world scenario involving a

reservation application.

Moreover, this study showcased how RESTful interactions might be used to bridge the gap

between process modeling and RESTful API implementation by enabling the efficient description

and visualization of interactions when incorporated into BPMN choreography diagrams.

Furthermore, a whole chapter was devoted to building a Reservation REST API using the Model-

View-Controller (MVC) design pattern. The four layers of this API were the Model layer, which

represented the entities and structure of the application, the Service layer, which managed business

logic, and the Repository layer, which handled database communication. Apache Maven, a

powerful build automation tool, to expedite project development and dependency management.

The overview of the Reservation REST API's endpoints and features, as demonstrated by three

reservation scenarios, is the study's product. The focus was on leveraging Postman, a program

praised for its extensive testing and validation features, to automate API request workflows. The

API operated flawlessly thanks to the automated test collection execution, which also produced

insightful test reports for validation.

In conclusion, this study tour has illuminated the complex domain of BPM, choreography and

collaboration diagrams, RESTful APIs, and how they can be incorporated into application

development.

120

Bibliography

[1] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of Business Process Management. Springer

Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-33143-5.

[2] K. Vergidis, ‘Business process optimisation using an evolutionary multi-objective framework’, Cranfield

University, 2008.

[3] E. A. Stohr and J. L. Zhao, ‘Workflow Automation: Overview and Research Issues’, Information Systems

Frontiers, vol. 3, no. 3, pp. 281–296, 2001, doi: 10.1023/A:1011457324641.

[4] M. Hammer, J. Vom Brocke, and M. Rosemann, ‘What is business process management? Handbook on

business process management 1’, are J. v. Brocke and M. Rosemann. Berlin, published in Springer, 2010.

[5] J. F. Chang, Business Process Management Systems: Strategy and Implementation, 1st ed. Auerbach Publications, 2005.

doi: 10.1201/9781420031362.

[6] S. Conger, ‘Six Sigma and Business Process Management’, in Handbook on Business Process Management 1,

Springer Berlin Heidelberg, 2010, pp. 127–148. doi: 10.1007/978-3-642-00416-2_6.

[7] S. I. Chang, D. C. Yen, C. C. Chou, H. C. Wu, and H. P. Lee, ‘Applying six sigma to the management and

improvement of production planning procedure’s performance’, Total Quality Management and Business

Excellence, vol. 23, no. 3–4, pp. 291–308, 2012, doi: 10.1080/14783363.2012.657387.

[8] M. Hammer, ‘Reengineering work: Don’t automate, obliterate’, Harv Bus Rev, vol. 68, no. 4, pp. 104–112, Jul.

1990.

[9] M. Hammer and J. Champy, Reengineering the Corporation: A Manifesto for Business Revolution. New York: Harper

Collins, 1993.

[10] J. vom Brocke and M. Rosemann, ‘Business Process Management’, in Wiley Encyclopedia of Management, 2015,

pp. 1–9. doi: https://doi.org/10.1002/9781118785317.weom070213.

[11] K. P. McCormack, ‘The development of a measure of business process orientation and its link to the

interdepartmental dynamics construct of market orientation’, Nova Southeastern University ProQuest Dissertations

Publishing, 1999.

[12] T. H. Davenport and J. E. Short, ‘The New Industrial Engineering: Information Technology and Business

Process Redesign’, Sloan Manage Rev, vol. 31, no. 4, pp. 11–27, 1990.

[13] K. P. McCormack, Business process maturity: theory and application. North Carolina , 2007.

[14] M. Hammer and S. Steve, ‘How Process Enterprises Really Work’, Harv Bus Rev, vol. 77, no. 6, pp. 108–118,

Nov. 1999.

[15] J. vom Brocke and J. Mendling, Business Process Management Cases. Springer International Publishing, 2018. doi:

10.007/978-3-319-58307-5.

121

[16] W. M. P. van der Aalst, ‘Business Process Management: A Comprehensive Survey’, ISRN Software Engineering,

vol. 2013, pp. 1–37, Feb. 2013, doi: 10.1155/2013/507984.

[17] A. Keller and J. Moormann, ‘The challenge to determine a company’s process maturity: a case study from the

financial services industry’, European Journal of Management Issues, vol. 25, no. 2, pp. 85–91, Jun. 2017, doi:

10.15421/191712.

[18] B. Rücker and J. Freund, Real-Life BPMN , (4th edition). 2019.

[19] E. Schäffer, V. Stiehl, P. K. Schwab, A. Mayr, J. Lierhammer, and J. Franke, ‘Process-Driven Approach

within the Engineering Domain by Combining Business Process Model and Notation (BPMN) with Process

Engines’, Procedia CIRP, vol. 96, pp. 207–212, Jan. 2021, doi: 10.1016/J.PROCIR.2021.01.076.

[20] V. Stiehl, R. Raw, and P. Smith, Process-driven applications with BPMN. 2014. doi: 10.1007/978-3-319-07218-0.

[21] E. ; Schäffer, S. ; Shafiee, T. ; Frühwald, and J. Franke, ‘General rights A development approach towards user-

centered front-ends for knowledge-based engineering configurators: a study within planning of robot-based

automation solutions’.

[22] M. Chen, D. Zhang, and L. Zhou, ‘Empowering collaborative commerce with Web services enabled business

process management systems’, Decis Support Syst, vol. 43, no. 2, pp. 530–546, Mar. 2007, doi:

10.1016/J.DSS.2005.05.014.

[23] G. Aagesen and J. Krogstie, ‘BPMN 2.0 for Modeling Business Processes’, Handbook on Business Process

Management 1: Introduction, Methods, and Information Systems, pp. 219–250, Mar. 2015, doi: 10.1007/978-3-642-

45100-3_10.

[24] M. Chinosi and A. Trombetta, ‘BPMN: An introduction to the standard’, Comput Stand Interfaces, vol. 34, no. 1,

pp. 124–134, Jan. 2012, doi: 10.1016/J.CSI.2011.06.002.

[25] P. and A. D. Genon Nicolas and Heymans, ‘Analysing the Cognitive Effectiveness

of the BPMN 2.0 Visual Notation’, in Software Language Engineering, S. and van den B. M. Malloy Brian and

Staab, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 377–396.

[26] ‘Camunda Academy BPMN 2.0 course’. Accessed: Apr. 10, 2023. [Online]. Available:

https://academy.camunda.com/camunda-bpmn

[27] GRNET, ‘National Registry of Administrative Public Services MITOS’, Hellenic Republic Ministry of

Interior.

[28] A. Nikaj, S. Mandal, C. Pautasso, and M. Weske, ‘From Choreography Diagrams to RESTful Interactions’,

May 2016, pp. 3–14. doi: 10.1007/978-3-662-50539-7_1.

[29] M. Weske, Business Process Management Concepts,Languages,Architectures. Berlin: Springer, 2007. Accessed: May 14,

2023. [Online]. Available: http://www.untag-

smd.ac.id/files/Perpustakaan_Digital_1/BUSINESS%20Business%20Process%20Management%20Concepts

,%20Languages,%20Architectures.pdf

[30] A. Nikaj, M. Weske, and J. Mendling, ‘Semi-automatic derivation of RESTful choreographies from business

process choreographies’, Softw Syst Model, vol. 18, no. 2, 2019, doi: 10.1007/s10270-017-0653-2.

[31] Orbus Software, ‘BPMN Diagrams: Collaboration’. Accessed: Sep. 09, 2023. [Online]. Available:

https://www.youtube.com/watch?v=lotrvHYtGhk

122

[32] J. Ladleif, A. Von Weltzien, and M. Weske, ‘chor-js: A Modeling Framework for BPMN 2.0 Choreography

Diagrams’, 2019. [Online]. Available: https://github.com/bpmn-io/bpmn-js

[33] Amit Rana, ‘Airbnb – Hospitality & Accommodation Redefined’, Code Brew Labs. Accessed: Oct. 15, 2023.

[Online]. Available: https://www.code-brew.com/airbnb-hospitality-accommodation-redefined/

[34] ‘MDN Web Docs Glossary: Definitions of Web-related terms ’, MDN Web Docs. Accessed: May 15, 2023.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Glossary/API

[35] R. Fielding, ‘Architectural Styles and the Design of Network-based Software Architectures’, 2000.

[36] W3 Schools, ‘XML SOAP’. Accessed: Oct. 07, 2023. [Online]. Available:

https://www.w3schools.com/xml/xml_soap.asp#:~:text=A%20SOAP%20Example,example.org%2Fstock

%22.

[37] F. Haupt, F. Leymann, and C. Pautasso, ‘A Conversation Based Approach for Modeling REST APIs’, in

Proceedings - 12th Working IEEE/IFIP Conference on Software Architecture, WICSA 2015, Institute of Electrical and

Electronics Engineers Inc., Jul. 2015, pp. 165–174. doi: 10.1109/WICSA.2015.20.

[38] Camunda blog, ‘What is REST API in Java? Guide with Examples’, Camunda Organization. Accessed: Sep.

10, 2023. [Online]. Available: https://camunda.com/blog/2023/09/what-is-rest-api-in-java-guide-with-

examples/

[39] T. Barton and C. Seel, ‘Business process as a service-status and architecture’, Enterprise modelling and information

systems architectures-EMISA 2014, 2014.

[40] A. Nikaj, ‘RESTful Choreographies’, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany,

2019.

[41] Tom Collings, ‘Controller-Service-Repository’. Accessed: Sep. 25, 2023. [Online]. Available: https://tom-

collings.medium.com/controller-service-repository-16e29a4684e5

[42] ‘Apache Maven- Feature Summary’. Accessed: Sep. 28, 2023. [Online]. Available:

https://maven.apache.org/maven-features.html

[43] ‘Maven Directory Structure’. Accessed: Sep. 28, 2023. [Online]. Available:

https://www.dineshonjava.com/maven-directory-structure/

[44] Oracle, ‘JavaMail’. Accessed: Oct. 10, 2023. [Online]. Available:

https://www.oracle.com/java/technologies/javamail.html

