
 

 

 

 

UNIVERSITY OF MACEDONIA 

POSTGRADUATE STUDIES PROGRAMME 

DEPARTMENT OF APPLIED INFORMATICS 

 

 

 

 

 

GUIDELINES ON THE SELECTION OF OPEN-SOURCE SOFTWARE 

COLLECTIONS IN AN EMPIRICAL STUDY 

 

 

Diploma Thesis 

 

of 

 

Kazantzidis Dimitrios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thessaloniki, October 2023  



 

 



 

v 

 

 

 

GUIDELINES ON THE SELECTION OF OPEN-SOURCE SOFTWARE 

COLLECTIONS IN AN EMPIRICAL STUDY 

 

 

 

 

Kazantzidis Dimitrios 

 

Bachelor’s Degree in Mathematics, Ioannina, 2016 

 

 

 

 

Diploma Thesis 

 

 

submitted in partial fulfilment of the requirements of the 

 

 

POSTGRADUATE DEGREE IN APPLIED INFORMATICS 

 

 

 

 

Supervising Professor 

Ονοματεπώνυμο Καθηγητή/τριας 

 

 

 

 

 

Approved by the three-member committee on ηη/μμ/εεεε 

 

Ονοματεπώνυμο 1 Ονοματεπώνυμο 2 Ονοματεπώνυμο 3 

   

   

................................... ................................... ................................... 

 

 

 

 

 

Kazantzidis Dimitrios 

 

 

................................... 



 

vi 

Summary 

The purpose of this thesis is to conduct a systematic mapping study on empirical 

researches in the field of software technology and to record the open-source software that 

have been used by researchers to verify the methodology they proposed in their papers. 

To achieve this, a systematic literature review has been carried out on scientific articles 

and papers published during the last years in specific conferences and journals aiming at 

the collection of open-source software that have been used in empirical studies. The aim 

of this research is to create a set of data which may well be reused in future research and 

to categorize open-source software so that they are easily available for future use by 

researchers. This thesis is divided into the following main sections. The first section is 

the introduction of this thesis. The second section refers to relevant articles and papers on 

the topic discussed in this thesis.  The third section deals with the process and 

methodology used to complete the thesis. The fourth section presents the results of the 

systematic mapping study in the software technology industry. The fifth section presents 

a tool that we created so future researchers can access our data and finally the sixth 

section is the summary of the paper, the conclusions that have been drawn and 

suggestions for further research on this topic are presented. 

 

Keywords: empirical study, software technology, open-source software (OSS), 

systematic mapping study (SMS), mining software repository (MSR), free and open-

source software (FOSS) 
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Abstract 

Background: In the field of software engineering, there has been an increasing 

trend of using empirical studies, as a method of verifying the particular methodology 

proposed by the researcher. However, to verify the proposed methodology it is quite 

common to use various collections of open-source software to verify the proposed 

methodology. However, no attempt has been made to record open-source software (OSS) 

used and their categorization, which can be considered as important and quite useful for 

the researchers and their future empirical studies. 

Objective: The aim of this research is to record the OSS that have been used in 

papers in recent years in specific journals, identify research goals that were set, find the 

most used projects and the criteria that led in that choice and provide the link to the data 

(if available). Finally, we created a webpage with all the information that we collected so 

it can be used in future research. 

Methodology: In this thesis we will conduct a systematic mapping study 

according to international standards. Initially we will retrieve articles of the last few 

years from different sources (e.g., JSS, ESE, etc.). Then we will select the papers which 

are empirical studies and use open-source software. In total 1492 papers were studied and 

according to the selection criteria we extracted the data we want to analyze from a total 

of 394 papers. Finally, we created a webpage that future researchers can consult and find 

the appropriate open-source software (from the articles we collected previously) 

according to the goals they have defined in their work. 

Results and conclusion: Our comprehensive analysis of over 1400 papers 

revealed that the most common project selection criteria encompassed size, language, and 

popularity of the projects. Frequently used subjects in these studies included prominent 

projects like Apache and Eclipse highlighting the importance of mature development 

processes and large contributor communities. We found that the main goals of Mining 

Software Repositories (MSR) studies were to understand software development 

practices, identify defect patterns and their fixes, and predict software quality and 

maintenance effort. We used our findings to create an informative webpage that 

synthesizes these results and provides a data-driven guide to selecting open-source 

software for empirical research. This work underscores the need for a nuanced approach 
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to project selection and opens avenues for further research into potential biases and the 

evolving nature of selection criteria. 
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 1 Introduction 

 1.1  Background Information 

Software development is a complex and demanding process involving many 

variables, including technological developments, evolving user requirements and 

organizational constraints. As a result, both researchers and practitioners have recognized 

the need for empirical studies to gain insights into software engineering practices and 

improve software development outcomes.  

Empirical research provides a systematic approach to investigate phenomena in 

software engineering, allowing researchers to understand, evaluate, and improve software 

development processes. 

According to Wohlin et al. (2003) empirical studies fall under four categories: 

controlled experiments, case studies, surveys, and post hoc analysis. 

Controlled experiments are carefully designed investigations where researchers 

supervise the study progression. Often conducted in laboratories, these experiments aim 

to compare techniques, methods, or processes. They typically involve planning the study 

design, conducting the operation with participant engagement, preparing measurement 

tools, and executing data analysis and result interpretation. However, they may lack a 

broad experimental range. 

Case studies delve into specific phenomena or sets. They collect detailed 

information via multiple techniques and are particularly useful for monitoring software 

engineering tasks. Case studies involve defining objectives, preparing for data collection, 

gathering data, analyzing the information, and drawing conclusions (Runeson et al., 

2009). While they can effectively evaluate phenomena, their results may not be 

universally applicable. 

Surveys provide a snapshot of a present situation and are employed when a tool 

or technique is complete or nearing completion (Wohlin et al., 2003). They collect data 

through questionnaires or interviews from a representative population to understand 

various attributes or characteristics. Surveys typically involve identifying objectives and 

participants, selecting the survey type, designing questions, conducting a pilot study, 

distributing the survey, and analyzing results. 

Post-mortem analysis reviews past studies, focusing on specific situations. This 

method, resembling a case study but differing in the chronological investigation, aims to 
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learn from past experiences. Two types exist: a general review collecting all available 

information and a specific review targeting particular activities. 

These empirical study methods can be grouped into qualitative and quantitative 

research paradigms. Qualitative research examines phenomena within their natural 

environment, interpreting events based on human understanding. Conversely, 

quantitative research focuses on quantifying relationships or comparisons, aiming to 

identify cause-effect connections. Controlled experiments and case studies are common 

methods for this research, providing an opportunity for comparison and statistical 

analysis. 

Open-source software (OSS) is deeply entrenched in the history of computing, 

with roots dating back to the computing community's early shared ethos in the 1960s and 

70s (Levy, 1984). The free sharing of software and its source code was a common 

practice. However, the rising commercialization of software in the late 70s and early 80s 

led to companies choosing to protect their intellectual property and profits by keeping 

source code private (Wayner, 2000). 

Distressed by this trend, Richard Stallman catalyzed the OSS movement in 1983. 

Through the establishment of the Free Software Foundation and the initiation of the 

GNU project, Stallman strived to create an entirely open and free operating system. He 

also proposed the notion of "copyleft," a distinct variation of copyright designed to 

ensure that modified program versions retain their open-source nature (Stallman, 1985). 

The actual phrase "open source" came into being only in 1998, coined by 

Christine Peterson considering Netscape's decision to make their Navigator web 

browser's source code freely available. This moment served as a critical turning point for 

OSS, marking the first instance of open-source development receiving backing from a 

large-scale corporation (Raymond, 1999). 

The end of the 20th century and the dawn of the 21st saw OSS momentum 

accelerating. Several substantial projects such as the Apache web server, the Linux 

kernel, and the MySQL database came to life during this period. This era also witnessed 

technology giants like IBM starting to place substantial investments in OSS development 

(Weber, 2004). 

The advent of platforms such as GitHub in the mid to late 2000s brought about a 

significant shift in the OSS landscape, facilitating easier contribution from developers 
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worldwide. This platform evolution resulted in a more community-driven and diversified 

development within OSS (Dabbish et al., 2012). 

In recent years, the use of open-source software (OSS) has received attention in 

empirical research studies in various disciplines. Open-source software refers to 

computer software that is distributed with its source code openly available for users to 

view, modify and distribute. The adoption of OSS in empirical research offers several 

advantages, such as cost-effectiveness, transparency, and the ability to leverage collective 

intelligence (Steinmacher et al., 2016). However, the wide variety of open-source 

software options available presents a unique challenge for researchers when selecting the 

most appropriate tools for their studies (Steinmacher et al., 2016). 

However, the need to optimize results and find suitable tools has given rise to a 

new field, Mining Software Repositories (MSR). 

Mining Software Repositories (MSR) is an emerging field of empirical software 

engineering that focuses on extracting valuable information from software repositories. 

Kalliamvakou et al. (2016) present the mining capabilities of GitHub, a popular platform 

for hosting open-source projects, with the goal of uncovering valuable information. 

Software repositories contain a wealth of information such as source code, version 

control history, bug reports, mailing list discussions, and more. By analyzing this data, 

researchers can gain a deeper understanding of software development processes, identify 

patterns, and improve software engineering practices. 

 

 1.2  Research Problem 

The importance of choosing open-source software in empirical research cannot be 

ignored. The selection of appropriate software plays a key role in ensuring the validity, 

reproducibility and reliability of research findings (Steinmacher et al., 2016). Open-

source software offers researchers the ability to examine the underlying code, ensuring 

transparency and facilitating the reproducibility of results, which are fundamental 

principles in empirical research. 

And although empirical research methods have gained prominence in software 

engineering, the lack of standardization and consistency in the conduct and reporting of 

studies has created challenges. The absence of clear guidelines can cause inconsistencies 

in study designs, data collection, analysis, and reporting, which can undermine the 
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reliability and comparability of research findings. In addition, the complexity of some 

empirical studies, particularly those involving multiple related websites and open-source 

projects, presents unique challenges that require specific guidelines to ensure rigor and 

reliability.  

Therefore, the development and adoption of well-defined guidelines for empirical 

research in software engineering is essential to ensure robustness, reproducibility, and 

reliability. Moreover, the existence of guidelines will facilitate the comparability of 

research findings and promote knowledge accumulation. 

 

 1.3  Research Goals 

Despite the advantages of using open-source software, choosing the most suitable 

software for empirical research can be a difficult task. The sheer number of options 

available, combined with varying quality, compatibility, and support, presents a 

formidable challenge for researchers. In addition, the dynamic nature of open-source 

software development introduces further complexities as new tools emerge and existing 

ones evolve rapidly. 

Therefore, the primary objective of this thesis is to propose a set of guidelines for 

conducting and reporting empirical research in software engineering with respect to the 

selection of open-source projects. The guidelines aim to provide researchers with a 

systematic framework for effectively designing and conducting their empirical studies on 

software engineering. 

In the following, we aim to create a repository of all empirical studies that have 

been studied, present the open-source projects that have been used, the criteria based on 

which they were selected and finally the goals of each study. Our aim is to provide a 

catalogue of open-source projects in the form of a web page, which will be a valuable 

resource for future researchers. 

Overall, this thesis seeks to contribute to the field of empirical research by 

providing researchers with a set of guidelines for selecting open-source software. By 

offering a structured approach to software selection, researchers can overcome the 

challenges posed by the plethora of available options and harness the potential of open-

source software to enhance the validity and reproducibility of their empirical studies. 
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However, it is important to recognize that the guidelines presented in this thesis 

may not cover every possible scenario when it comes to empirical studies in the software 

engineering field. The proposed guidelines are intended to provide a fundamental 

framework for conducting empirical studies, but individual researchers may need to 

adapt and refine the guidelines to fit their specific research contexts. 

 

 1.4  Study Structure 

The remainder of this thesis is organized as follows: 

Chapter 2: In this chapter we discuss related work on mining software 

repositories and empirical studies in the field of software engineering. 

Chapter 3: In this chapter, we present the systematic mapping model we 

followed for our data mining. 

Chapter 4: While in chapter 4, we will present the results of our research. 

Chapter 5: In this chapter, we will present the website we created with the aim of 

creating a directory of open-source projects, hoping to help future researchers. 

Chapter 6: The final chapter will summarize the contributions of this thesis, 

discuss its limitations, and suggest possible directions for future research. 

By developing and promoting standardized guidelines, this thesis aims to 

contribute to the advancement of empirical software engineering and facilitate the 

generation of high-quality and reliable empirical evidence in the field. 
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 2 Related Work 

Empirical methods are central to software engineering. They are not only 

essential for developing technical solutions, but also for understanding organizational 

issues, project management, and human behavior. Indeed, the use of empirical methods 

allows human behavior to be incorporated into the research approach, a critical aspect of 

a discipline such as software engineering. The use of empirical methods, which is 

common practice in many other disciplines, helps to understand the complex dynamics 

within software engineering processes, such as the interaction between team members, 

decision-making processes, and the impact of management practices on software 

development outcomes. (Wohlin et al., 2003) 

An empirical study conducted interviews with developers from 16 Norwegian 

software companies that integrate Open-Source Software (OSS) components into their 

systems. The study found that the selection of OSS components is situational in nature, 

with project-specific characteristics significantly constraining the outcome of the 

selection, and that developers use a 'first fit' rather than a 'best fit' approach when 

selecting OSS components. This may explain the limited adoption of normative selection 

approaches and generic evaluation schemes. The findings motivate a shift from 

developing such methods and schemas to understanding the situational nature of software 

selection. (Oyvind Hauge et al., 2009) 

In another study, researchers analyzed up to 21 years of activity in 1314 

individual FOSS projects and 1.4 billion lines of code. The study found that there is less 

activity now than there was a decade ago, especially in large and well-established FOSS 

organizations. The findings suggest that as technologies and business strategies around 

FOSS mature, the role of large formal FOSS organizations as intermediaries between 

developers is diminishing. (Chełkowski T et al., 2021) 

In the context of Open-Source Software (OSS), Mining Software Repositories 

(MSR) has emerged as an important area of research. Software repositories contain a 

wealth of data, including the history of software changes throughout its evolution. By 

effectively mining this data, researchers and practitioners can extract valuable 

information and draw meaningful conclusions about the history or current state of the 

software. MSR approaches have been used with various goals in mind, such as 

understanding defects, analyzing developer contribution and behavior, and gaining 
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insight into software evolution. However, despite the wide application of MSR, there are 

still gaps in the goals, focus, and types of data sources used in MSR. For example, code 

comments are often under-utilized to identify code smells, refactoring opportunities, and 

software quality issues. (Mário André de F. Farias et al., 2016). 

The literature review in "A Mining Software Repository Extended Cookbook: 

Lessons learned from a literature review" provides a comprehensive overview of the 

MSR field. The review analyzed 276 primary studies from the proceedings of the 

Working Conference on Mining Software Repositories (MSR). The findings suggest that 

the MSR field is gradually maturing, as evidenced by the increasing use of software 

artifacts, the shift towards more empirical studies using data from software repositories, 

and a greater focus on the context in which these studies are conducted. In addition, the 

review highlights the need for future research to pay greater attention to the validity of 

findings and the needs of practitioners. (D'Angelo R. Barros et al., 2021) 

Another study, "A survey and taxonomy of approaches for mining software 

repositories in the context of software evolution", provides a comprehensive overview of 

the techniques and tools used in MSR. The study categorizes these techniques into three 

main groups: change-based, human-based, and defect prediction techniques. This 

categorization provides valuable insights into the range of approaches available for MSR 

and the different contexts in which they can be applied. (Kagdi et al., 2007) 

Both empirical research methods and MSR are critical components of software 

engineering research. Their combined use enables a deeper understanding of software 

development practices, developer behavior, and software evolution. Despite this, the 

literature suggests that there are still areas that require further exploration and study, 

particularly in relation to the aims, focus, and data sources used in MSR, as well as the 

context in which empirical studies are conducted. As the field of MSR continues to 

mature, it is anticipated that future research will aim to fill these gaps and explore new 

areas of application. 

It's also worth noting the ethical implications of mining software repositories. 

Researchers should consider privacy and confidentiality issues when extracting and using 

data from these repositories. In addition, the increasing use of machine learning 

techniques in MSR presents both opportunities and challenges. These techniques can 

help to automate and improve the accuracy of analysis, but they also raise questions 

about the interpretability and fairness of the results. 
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Finally, the interplay between MSR and other areas of software engineering, such 

as software maintenance and evolution, software quality assurance, and software 

analytics, deserves attention. Understanding how MSR can contribute to these areas, and 

vice versa, can promote a more integrated and comprehensive approach to software 

engineering research and practice. 
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 3 Methodology 

In this chapter, we present the study design that was used. The research design is 

crucial in conducting empirical research and plays an important role in ensuring the 

validity and reliability of the results. To guide our study design, we follow the guidelines 

suggested by Petersen et al. (2008) on conducting mapping studies. 

 

 3.1   Study Objectives  

The goal of the thesis, articulated using the Goal-Question-Metrics format (Basili 

et al., 1994) is: 

To analyze existing empirical research studies in the field of software engineering 

related to the use of open-source software for the purpose of characterization and 

evaluation, with respect to: (a) the goals of each primary study; (b) the selection criteria 

for the open-source projects; and (c) the project selection, from the point of view of 

researchers. 

 

 3.2   Research Questions 

Research questions guide the entire research process and provide a clear focus for 

the study. Based on the goal, we define the following research questions: 

RQ1: What are the goals of MSR studies that use collections of projects 

mined from open repositories? 

RQ1 delves into the primary goals of MSR (Mining Software Repositories) 

studies that utilize collections of works sourced from open repositories. This sheds light 

on their significance in enhancing software development practices and facilitating 

empirical research. The essential aims are derived from the research inquiries posed in 

the primary studies, such as testing, version control, and refactoring. 

RQ2: What are the most common project selection criteria? 

RQ2 examines the prevailing factors utilized for the selection of open-source 

projects, emphasizing their crucial role in guaranteeing project success. To delve deeper 

into this inquiry, we investigated to identify the most frequently encountered criteria for 

selecting open-source software projects, based on the objectives established in the 

primary studies. 
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RQ3: What are the most used projects as subjects? 

RQ3 focuses on the frequently chosen projects that serve as subjects in open-

source research, emphasizing their significance in gaining insights into software 

development and uncovering valuable information. Additionally, as part of our further 

investigation, we examined the most prevalent open-source projects based on the 

objectives outlined in the primary studies. 

 

 3.3  Bibliography research 

According to the study of (Wong et al. 2021) we came up with the journals on 

which this thesis will be based. Having decided to search literature only from reputable 

journals over a two-year period, a manual literature review had then been conducted. 

Initially the search strategy included the combination of keywords related to 

open-source software and empirical research (refer to the following frame). The initial 

search resulted in many papers (1492 papers). Below in table 3.1 you can see the number 

of papers studied per journal and the steps that were needed until we resulted in the 

papers that met all the criteria we had set. 

 

{«open source» || «open-source» || «open projects»} && {«empirical study» || 

«experimental study» || «case study»} 

 

 3.4  Study selection criteria 

To ensure the relevance and reliability of the papers selected for our study, we 

defined specific inclusion criteria (IC) and exclusion criteria (EC). The criteria for the 

selection of papers are as follows: 

 

Inclusion Criteria of our mapping study are: 

IC1. The paper must be an empirical study. (e.g., case study, research, experiment) 

IC2. The research must have used open-source software to draw conclusions.  

IC3. The paper must have been published within the last 2 years (2021 and 2022). 

The exclusion Criteria of our mapping study are: 

EC1. The language of the paper should be English. 
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EC2. The study is an editorial, keynote, biography, opinion, tutorial, workshop summary 

report, progress report, poster, or panel. 

 

 

Table 3.1: Number of journals by stage 

Venue 
Total number of 

journals (1st round) 

Total number of 

journals (2nd 

round) 

Journals meeting 

all the criteria 

JSS 343 69 60 

IEEE-TSE 364 138 115 

ESE 189 66 50 

IST 319 100 80 

EMSE 134 48 40 

TOSEM 143 54 49 

Total 1492 475 394 

 

 

 3.5  Study selection process 

The study selection process involved multiple stages to ensure the relevance and 

quality of the papers and a simplified version of the voting method, proposed by 

Farhoodi et al., 2013, was used. First, we screened the papers based on their titles and 

abstracts. Papers that did not meet the inclusion criteria were excluded. In the second 

stage, we performed a full-text review of the remaining papers and assigned an inclusion 

value (vote) on a 4-point Likert scale (4: strong inclusion, 1: strong exclusion) - with a 

maximum score of 8 points. Studies with values greater than 6 were included in the 

study. Again, papers that did not meet the inclusion criteria were excluded.  

Any disagreements regarding the inclusion of papers were resolved through 

discussion and consensus among the research team. The above description of the process 

is evident if we also look at Figure 3.1. 
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Figure 3.1: Selection process 

 

 

 3.6  Data analysis 

For the selected papers, we extracted the relevant data using a predefined data 

mining template. The proposed procedure is largely based on synthesis and meta-analysis 

methods applied in the field of software engineering, as presented by Cruzes et al., 2011, 

dos Santos et al., 2020 and Kitchenham et al, 2020. Initially, we recorded all research 

questions from articles we studied in the corresponding research (e.g., "How frequent are 

code smells in Android applications?", "To what extent do corrective actions 

(refactoring) applied to smelly classes remove code smells?"). Here it should be 

emphasized that the research questions were recorded exactly as they appear in the 

studied articles, without any interference from us. In case an article has no research 

questions formulated, the field remains empty. At this point it is important to emphasize 

that in this work based on the systematic mapping study process, no quality assessment 

has been performed. For example, the use of DARE would have excluded studies without 
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research questions (Kitchenham et al., 2004). Next, we applied thematic analysis aiming 

to unify the research questions. To achieve this, we applied the Open Card Sorting 

methodology as proposed by Spencer (Spencer 2009). By studying the research 

questions, we extracted high-level objectives in the form of super-categories (for 

example, from the objective 'versions' we created the high-level objective 'version 

control'). Next, we identified high-level objectives with similar concepts which we 

unified (e.g., we unified the concepts "bug", "defect" and "fault"). Finally, we assigned a 

name to the unified categories (in the above example we gave the name 

"bug/fault/defect"). This methodology was also applied to other fields that were collected 

(selection criteria and open-source project name) and was particularly important since in 

open-source project names the list of names for the same software was very extensive 

(e.g., for Apache-camel there were references such as camel, camel-1.4, Apache/camel, 

camel-core etc.).  

Therefore, for all the projects that participated in our mapping study we collected 

the following variables: 

 

• [V1] Title: Title of the article 

• [V2] Author(s): Authors list 

• [V3] Year: Year of publication of article 

• [V4] Type of Paper: Article type 

• [V5] Publication Venue: Name of the journal published. 

• [V6] Goal(s): The goals of each article (unified by the research questions) 

• [V7] Open-source Project(s): List of open-source software projects 

• [V8] Selection Criteria: List of selection criteria for open-source projects 

• [V9] Open Dataset (Y/N): Data collection availability 

 

 

From the very beginning of the research, the way in which the data would be 

collected and stored was decided between the researchers. For example, it had been 

decided that in case of multiple projects, goals, and selection criteria the separation of 

them would be done using the hash symbol (#). The purpose of this decision was to 

ensure consistency and to simplify the analysis of the data. 
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The variables [V1] - [V4] were collected primarily for their use in the website 

that we built and will be discussed in the next chapter. The remaining variables were 

used to answer the research questions. Table 3.2 shows the mapping between the 

research questions, the selected variables, and the data analysis methodologies. 

To minimize any threat to the validity of the data collected, the supervising 

professor involved in the research always checked the data. Any ambiguities in the data 

were reviewed and resolved. 

 

Table 3.2: Matching questions, variables, and data analysis methods 

Research Question Variable Analysis method 

RQ1 [V6], [V8]          Frequency tables, 

         Crosstab Tables 

RQ2 [V6], [V7]          Frequency tables, 

 Crosstab Tables 

RQ3 [V6]   Frequency tables 
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 4 Results 

 4.1  Introduction 

This chapter presents the results of the empirical study conducted to investigate 

the guidelines on the selection of open-source software collections in empirical studies.  

In 4.2 we will discuss the goals of MSR studies that use open-source projects 

(RQ1), next in 4.3 we will present the most common project selection criteria (RQ2) and 

finally in 4.4 the most commonly used open-source projects (RQ3). 

 

 4.2  Goals of empirical studies (RQ1) 

Table 4.1 shows the frequency of the occurrence of the goals in the empirical 

studies that were studied. We will report on the 5 most common targets that appeared in 

our data. 

• "Bugs/Defects/Faults": with the highest frequency of 84, this indicates that 

addressing and minimizing bugs, defects and errors remains a primary 

concern in software engineering. It underlines the importance of quality 

assurance and testing processes. 

• "Testing": with a frequency of 70, testing is a critical aspect of software 

engineering. It includes various testing methodologies, such as unit testing, 

integration testing and system testing, which are necessary to ensure software 

quality. 

• "Security": security, with a frequency of 37, is an important concern in 

software engineering. It emphasizes the need to address vulnerabilities and 

protect against potential threats such as unauthorized access and data breach. 

• "Localization": Localization, with a frequency of 28, indicates the importance 

of adapting software for specific languages, regions, and cultural contexts. 

This objective is particularly important for global software products. 

• "Vulnerabilities": a frequency of 26 indicates the focus on identifying and 

addressing vulnerabilities in software systems. This includes potential 

vulnerabilities that could be exploited to compromise system security. 
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The data extracted reflects the diverse and multifaceted nature of software 

engineering. They encompass a wide range of goals and focus areas, including bug 

fixing, testing, security, tracing, program debugging, version control, reconfiguration, 

requirements, and more. These objectives highlight the challenges and complexity 

involved in developing software systems of high quality, reliability, and safety. 

The high frequency of objectives related to bugs, testing, security, and 

localization underscores their importance in software development. The importance of 

identifying and resolving defects, ensuring robust testing procedures, addressing security 

vulnerabilities and adapting software for different languages and regions is emphasized. 

In addition, objectives such as program patching, version control and re-

engineering point to ongoing efforts to improve code quality, maintainability, and 

collaboration within software projects. These objectives reflect the continuous evolution 

and improvement of software engineering practices as it is particularly important for 

industries to reduce maintenance costs which amount to 75% of total software 

development costs. (H. van Vliet, 1993) 

In addition, the presence of objectives related to requirements, business models 

and documentation highlights the importance of aligning software development with 

customer needs, business objectives and effective communication. 

Overall, the dataset demonstrates the broad scope of software engineering and the 

various dimensions that practitioners and researchers need to consider. It reinforces the 

need for an integrated approach to software development, which includes testing, 

security, localization, code quality, requirements management, and other critical aspects 

to ensure successful software systems. 

 

Table 4.1: Frequency of goals 

Goal Freq. 

Bugs / Defects / Faults 84 

Testing 70 

Security 37 

Localization 28 

Vulnerabilities 26 

Program Repair 20 
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Goal Freq. 

Version Control 18 

Refactoring 18 

Features / Requirements / Business Models 18 

Bad Smells 17 

Code/Test Generation 15 

Dependency Analysis 15 

Performance / Resource Management / Time Behaviour 15 

Human Factors 14 

Code Review 14 

Application Programming Interfaces (APIs) 14 

Technical Debt 13 

Software Change 12 

Documentation 12 

Quality Metrics 11 

Architecture 11 

Static Analysis 11 

Data / Information 10 

Management 8 

Cost Analysis 8 

Code Clones 8 

Execution Traces 8 

Software Libraries 7 

Traceability 7 

Logs 7 

Debugging / Bug Fixing 6 

Comments 6 

Software Product Lines (SPL) / Reconfigurable Systems 6 

Software Design 5 

Maintenance 5 

GUI 4 

Search Based Software Engineering (SBSE) 4 
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Goal Freq. 

Software Quality Assurance Processes 4 

Change Impact Analysis (CIA) 5 

Software Patterns 4 

Component Based Software Engineering (CBSE) 4 

Software Crashes 4 

Effort Estimation 4 

Complexity 4 

Network 4 

Software Build 3 

User Reviews 3 

Privacy 3 

Modularity 3 

Code Transformation / Compilers 3 

CI/CD 3 

Team Management 3 

Service Oriented Architectures (SOA) 3 

User Experience 3 

Aesthetics 2 

Slicing 2 

Agile Methodologies 2 

Reuse 2 

Dynamic Analysis 2 

Testability 2 

Program Comprehension 2 

Exception Handling 2 

Parallelization 2 

Cloud-Based Software 2 

Business Parameters 2 

Domain Specific Languages (DSL) 1 

Software Analytics 1 

Software Anomalies 1 
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Goal Freq. 

Deployment 1 

Code Annotations 1 

Application Domain Analysis 1 

Reliability 1 

User Behaviour 1 

 

 4.3  Criteria for selecting open-source projects (RQ2) 

Table 4.2 presents the criteria for project selection, along with their respective 

frequencies, as derived from our mapping study. The findings reveal that researchers 

commonly consider certain criteria when selecting projects. Among them, the use of 

"Java" as a programming language ranks the highest with a frequency of 78 (10.17%). 

This is followed by the criterion of "Widely Used/Popular" with a frequency of 67 

(8.74%). The choice of Java as a language is in line with expectations due to the plethora 

of tools available for Java code analysis. The emphasis on popularity stems from the 

researchers' desire to select projects that are familiar to readers and provide assurance 

that the projects are actively developed and embraced by the community. On the other 

hand, "Inactive Projects" and projects with "Random Selection" were found to be used 

less frequently as project selection criteria, with a frequency of 4 times (0.52%). It is 

important to note that the term 'random selection' should not be confused with the 

concept of diversity, which involves a systematic (rather than random) selection of 

projects based on factors such as size and history.  

When examining programming languages, "Java" emerged as the most frequently 

cited language with a frequency of 78 (10.17%). This was followed by the "C-Family 

(C/C++/C#)" with a frequency of (2.74%), "Python" with a frequency of 7 and 

"JS/JavaScript" with a frequency of 5. In total, programming languages accounted for 

15.91% of the total. 

Criteria related to project management features accounted for a total frequency of 

14.73%. These criteria are particularly important in studies that aim to extract automated 

information using tools already used by the project development team. In particular, the 

criterion "Version Control Information" had a frequency of 43 (5.61%), while the 



 

20 

criterion "Development Community Information" appeared with a frequency of 22 

(2.87%). The "Issue Tracker Information" appeared 13 times (1.69%). 

Criteria related to project size and activity were also considered important. 

Project size serves as a critical criterion for empirical studies, ensuring the exclusion of 

very small projects that may not be comparable to industrial projects. The level of 

activity is important for articles studying software development, requiring a sufficient 

number of software versions for statistical analysis. "Size Information (In Other Metric)" 

was the most frequently mentioned criterion, appearing 41 times (5.35%). Specific 

criteria such as "Size Information (In Loc)" and "Size Information (In Modules)" 

appeared in 29 and 18 studies, respectively. Information on "Project Age/Maturity" 

appeared in 39 studies (5.08%), followed by "Intensity Of Development Activity" with 28 

studies. In contrast, "Inactive Projects" had the lowest frequency with 4 occurrences 

(0.52%), as it does not prove to be a useful criterion for selecting open-source projects. 

This group represented the highest overall frequency, with a percentage of 23.99%. 

A selection criterion based on previous literature had an overall frequency of 

15.78%. Sub-criteria such as "Widely used/Popular" and "Used In Previous Studies" had 

frequencies of 67 (8.74%) and 54 (7.04%), respectively. This criterion aims to replicate 

empirical studies and allows comparisons of results.  

In addition, criteria such as "Various Domains" had a frequency of 39 (5.08%), 

followed by "Diversity In Size" with a frequency of 25. "Random Selection" had a 

frequency of 4 (0.52%). The diversity group, in contrast to the literature-based group, 

had the lowest overall frequency of 5.60%. Nevertheless, it is considered vital for 

generalizability/external validity as it helps to mitigate the influence of confounding 

factors. 

In terms of technologies, the most frequent criterion was "Use Of Best Practices" 

with a frequency of 54 (7.04%), followed by "Specific Application Domain or 

Technology" with a frequency of 45 (5.87%). The criterion related to 

"Feature/Functionality/Requirements Criteria" had the lowest frequency among the 

technologies as it appeared only 11 times (1.43%). The overall frequency for the 

technology-related criteria was 16.04%. Researchers take these criteria into account 

when targeting specific technologies (e.g., design standards, code smells) or application 

domains (e.g., web, services, cloud). 
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Finally, criteria related to testability, such as "Tested Systems" and "Buildable 

Systems", had a frequency of 7.95%. These criteria find relevance in studies related to 

software testing or when using data collection tools that require code execution. 

 

 

Table 4.2: Criteria for selecting open-source projects 

Selected Criteria Freq. 

Java 78 

Widely Used / Popular 67 

Use Of Best Practices 56 

Used In Previous Studies 54 

Specific Application Domain or Technology  45 

Tested Systems  43 

Version Control Information  43 

Size Information (In Other Metric)  41 

Project Age / Maturity  39 

Various Domains  39 

Size Information (In Loc)  29 

Intensity Of Development Activity  28 

Diversity In Size  25 

Development Community Information  22 

C-Family (C/C++/C#) 21 

Bug Tracker Information  20 

Buildable Systems  18 

Size Information (In Modules)  18 

Hosted In Git/GitHub  15 

Issue Tracker Information  13 

Other Programming Language  11 

Service-Oriented Software  11 

Feature / Functionality / Requirements Criteria  11 

Python 7 

JS/JavaScript 5 
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Inactive Projects  4 

Random Selection  4 

 

 

Below in Table 4.3 we present the cross-tabulations between the selection criteria 

and goals. This table is particularly important to future researchers as it provides a clear 

mapping and alignment between the research goals and the selection criteria. It promotes 

consistency, standardization, and integrated analysis of the research framework, 

facilitating communication and iterative improvements. This structured approach 

enhances the quality of research and leads to impactful results. As can be seen from the 

table below it is evident that if one aims to study "Bugs//Defects/Faults" the most 

common criteria for selecting open-source projects in previous work are that the projects 

are in Java, are tested and have been used in previous studies (frequency of occurrence 

17, 15 and 16 respectively). 
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Table 4.3: Cross-tabulations between selection criteria and goals 
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Maintenance     1      2   1    1   1  1 2 2   

GUI              1   1    2 1 1 1    

Search Based Software 

Engineering 
          2      1          2 

Software Quality 

Assurance Processes 
 2       1    1 2     1 1  1 1 1 1 2  

Change Impact Analysis 

(Cia) 
    1    1  2  1       1  1 2  3 1 1 

Software Patterns  1   2      3         1   1 1 1   
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Software Crashes 1 1              1  1  1  2      
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Complexity             1 1      1   1    1 

Network   1  1      1   1   1   1 3    1  2 

Software Build  2         1 1  1       1 1  1    

User Reviews 1    1      1       1  1 1  2  1   

Privacy                     1  2     

Modularity              1            1 1 
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Service Oriented 

Architectures 
                1  1 1 1  1 1    

User Experience                     2  1  1 1 1 

Aesthetics           1      1          1 

Slicing   1               1    1      

Agile Methodologies         1            1  1    1 
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Program 

Comprehension 
          1       1     1     

Exception Handling           1       1 1 1        

Parallelization   1               1    1      

Cloud-Based Software                 1    1     1  

Business Parameters    1       1        1 1     1 1  
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 4.4  Widely used open-source software (RQ3) 

According to Table 4.4, the most used projects in the empirical studies examined 

were apache-camel and apache-commons-lang, with frequencies of 48 (2.74%) and 43 

(2.74%) respectively. In contrast, there were over 1000 projects that were studied only 

once; to save space, in the table we decided to present projects that were used in at least 4 

articles. The top 10 projects with the highest frequency are Apache Camel, Apache 

Commons Lang, Apache Commons Math, Apache Ant, Apache Lucene, Apache Log4j, 

jEdit, JFreeChart, Spring Framework and Apache HBase. These projects cover various 

domains such as integration, programming tasks, math and statistics, manufacturing 

automation, search functions, logging, word processing, charting, business application 

development, and NoSQL database management. 

 

Table 4.4: Open-source software 

Project Freq Project Freq 

apache-camel 48 weka 6 

apache-commons-lang 43 curl 6 

apache-commons-math 39 apache-commons 

configuration 

6 

apache-ant 35 apache-commons-net 6 

apache-lucene 33 apache-kylin 6 

apache-log4j 28 apache-avro 6 

jedit 27 jenkins 6 

jfreechart 25 netty 6 

spring framework 24 apache-beam 6 

apache-hbase 24 apache-flume 6 

apache-cassandra 24 jetty 6 

apache-xalan 23 petclinic 5 

apache-hive 23 totinfo 5 

apache-hadoop 23 replace 5 

apache-commons-io 21 libtiff 5 
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Project Freq Project Freq 

apache-xerces 21 apache-spark 5 

apache-commons-closure 21 antennapod 5 

apache-wicket 19 couchbase 5 

apache-poi 19 bugzilla 5 

eclipse-jdt 19 columba 5 

eclipse-core 19 postgresql 5 

apache-ivy 18 equinox 5 

apache-commons-

collections 

17 apache-deltaspike 5 

apache-derby 16 apache-giraph 5 

apache-activemq 16 apache-jspwiki 5 

apache-tomcat 16 apache-knox 5 

github organization 16 apache-nutch 5 

apache-commons-mockito 16 apache-opennlp 5 

joda-time 16 apache-santuario 5 

apache-zookeeper 16 jabref 5 

apache-velocity 15 netflix organization 5 

chart 14 apache-httpcomponents 5 

apache-flink 14 apache-struts 5 

elasticsearch 13 hsqldb 5 

google-guava 13 apache-jena 5 

apache-synapse 13 pmd 5 

apache-commons-codec 13 coreutils 5 

apache-storm 12 wireshark 5 

pde 12 libreoffice 5 

argouml 12 tensorflow 5 

apache-jmeter 12 apache-phoenix 5 

apache-groovy 12 gcc 5 

junit 11 apache-hdfs 5 

apache-mahout 11 wordpress 5 

apache-jackrabbit 10 notepad 5 
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Project Freq Project Freq 

gzip 10 chromium 4 

qt 10 apache-qpid 4 

google-gson 10 sed 4 

apache-cxf 10 eq 4 

hibernate 10 space 4 

apache-maven 10 ansible 4 

apache-kafka 10 geronimo 4 

jackson-core 10 apache-mesos 4 

apache-ambari 9 sentry 4 

openstack 9 apache-zeppelin 4 

reactivex-rxjava 9 jgit 4 

apache-mylyn 9 connectbot 4 

apache-cayenne 9 javaparser-organization 4 

zxing 9 apache-jxpath 4 

alibaba-fastjson 9 okhttp 4 

apache-commons-bcel 9 busybox 4 

mozilla-organization 9 nova 4 

ffmpeg 9 apache-commons-digester 4 

apache-jruby 9 apache-commons-vfs 4 

apache-organization 9 apache-lens 4 

time 8 apache-manifoldcf 4 

checkstyle 8 tika 4 

apache-commons-cli 8 apache-tez 4 

jsoup 8 gitlab 4 

linux 8 rhino 4 

apache-calcite 8 zipkin 4 

apache-commons-compress 8 matplotlib 4 

apache-accumulo 8 react 4 

apache-dubbo 8 apache-drill 4 

django 8 apache-jclouds 4 

pandas 7 colt 4 
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Project Freq Project Freq 

k-9 mail 7 eclipse-emf 4 

apache-openjpa 7 fresco 4 

apache-pig 7 php 4 

jhotdraw 7 wget 4 

android 7 apache-druid 4 

apache-ignite 7 asterisk 4 

apache-commons-beanutils 7 promise 4 

apache-commons-dbcp 7 apache-aries 4 

apache-commons-validator 7 keras 4 

apache-pdfbox 7 gerrit 4 

openssl 7 firefox 4 

python 7 vlc 4 

swt 6 qemu 4 

eclipse 6 deeplearning4j 4 

apache-karaf 6 aspectj 4 

apache-thrift 6 quantum 4 

apache-flex 6 apache-commons-csv 4 

grep 6 apache-bookkeeper 4 

squirrel 6 printtoken 4 

freemind 6 tcas 4 

 

Below in Table 4.5 we present the cross-tabulations frequencies between goals 

and open-source projects. Frequency cross-tabulations between goals and projects are 

useful for researchers as they help to identify project-target correlation, aim research 

efforts at high-frequency cross-tabulations for greater impact, explore unexplored areas, 

facilitate collaboration and networking, perform comparative analysis, and support 

evidence-based decision making. 

 

Table 4.5: Correlation between goals and open-source projects 

Final Goal Projects Freq. 

Bugs / Defects / Faults apache-camel 29 
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Final Goal Projects Freq. 

apache-lucene 19 

apache-commons-lang 19 

apache-commons-math 19 

apache-xalan 17 

apache-poi 16 

apache-ivy 16 

apache-log4j 15 

eclipse-jdt 15 

apache-ant 14 

jedit 14 

apache-velocity 14 

apache-xerces 13 

apache-commons-closure 13 

pde 12 

apache-hbase 12 

apache-hive 12 

apache-synapse 12 

apache-activemq 11 

apache-derby 10 

apache-tomcat 9 

apache-commons-collections 9 

chart 8 

apache-commons-mockito 8 

apache-mylyn 7 

mozilla-organization 7 

apache-commons-codec 7 

apache-commons-io 7 

apache-wicket 7 

time 6 

apache-commons-compress 6 

apache-zookeeper 6 
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Final Goal Projects Freq. 

apache-groovy 6 

apache-storm 6 

jackson-core 6 

swt 5 

zxing 5 

joda-time 5 

jfreechart 5 

postgresql 5 

equinox 5 

apache-calcite 5 

apache-commons-dbcp 5 

apache-kylin 5 

apache-jruby 5 

eclipse-core 5 

apache-hadoop 5 

eclipse 4 

apache-ambari 4 

apache-cayenne 4 

eq 4 

apache-commons-bcel 4 

apache-commons-beanutils 4 

apache-commons configuration 4 

apache-commons-net 4 

apache-commons-validator 4 

apache-commons-vfs 4 

apache-mahout 4 

apache-avro 4 

apache-tez 4 

apache-commons-cli 4 

apache-flink 4 

apache-ignite 4 
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Final Goal Projects Freq. 

aspectj 4 

quantum 4 

gzip 4 

apache-openjpa 3 

lc 3 

ml 3 

safe 3 

bugzilla 3 

apache-archiva 3 

apache-commons-digester 3 

apache-commons-jcs 3 

apache-commons-jexl 3 

apache-deltaspike 3 

apache-giraph 3 

apache-jspwiki 3 

apache-knox 3 

apache-lens 3 

apache-nutch 3 

apache-parquet 3 

apache-santuario 3 

apache-accumulo 3 

apache-beam 3 

apache-httpcomponents 3 

apache-jxpath 3 

apache-cassandra 3 

apache-cxf 3 

apache-kafka 3 

apache-commons-csv 3 

elasticsearch 3 

geronimo 3 

printtoken 3 
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Final Goal Projects Freq. 

tcas 3 

totinfo 3 

apache-flex 3 

apache-aries 3 

apache-organization 3 

roslyn 3 

Localization 

apache-commons-lang 14 

apache-commons-math 14 

apache-commons-closure 12 

chart 8 

apache-commons-mockito 8 

time 6 

jackson-core 6 

apache-hive 5 

apache-camel 4 

joda-time 4 

jfreechart 4 

apache-commons-compress 4 

apache-commons-collections 4 

apache-hbase 4 

apache-commons-codec 3 

swt 3 

aspectj 3 

eclipse-jdt 3 

apache-commons-csv 3 

gzip 3 

printtoken 3 

tcas 3 

totinfo 3 

Testing 
apache-commons-lang 13 

apache-commons-math 12 
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Final Goal Projects Freq. 

joda-time 7 

gzip 5 

grep 5 

apache-commons-io 5 

jfreechart 5 

apache-hadoop 5 

google-guava 5 

apache-flex 4 

sed 4 

replace 4 

apache-commons-closure 4 

apache-commons-collections 4 

alibaba-fastjson 4 

google-gson 4 

apache-ant 4 

apache-cassandra 4 

apache-flink 4 

apache-hbase 4 

petclinic 4 

apache-jmeter 4 

apache-log4j 4 

totinfo 3 

make 3 

weka 3 

apache-camel 3 

apache-hive 3 

apache-karaf 3 

restcountries 3 

apache-commons-codec 3 

colt 3 

Code Review qt 8 
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Final Goal Projects Freq. 

openstack 5 

eclipse-core 5 

couchbase 4 

android 3 

Program Repair 

apache-commons-closure 7 

apache-commons-lang 7 

apache-commons-math 7 

chart 4 

time 3 

apache-commons-mockito 3 

libtiff 3 

jfreechart 3 

joda-time 3 

apache-camel 3 

Security 

github organization 6 

ffmpeg 5 

coreutils 3 

linux 3 

wireshark 3 

Logs 

apache-hadoop 6 

apache-zookeeper 6 

apache-hdfs 3 

apache-activemq 3 

Statistical Analysis 
apache-cassandra 5 

apache-ant 3 

Bad Smells 

jfreechart 5 

ganttproject 4 

apache-ant 4 

apache-xerces 4 

apache-cassandra 4 

checkstyle 3 
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Final Goal Projects Freq. 

jasperreports 3 

apache-lucene 3 

squirrel 3 

eclipse-core 3 

junit 3 

apache-camel 3 

apache-hive 3 

Version Control 

apache-hadoop 5 

elasticsearch 4 

apache-activemq 3 

apache-camel 3 

apache-derby 3 

apache-hbase 3 

apache-openjpa 3 

spring framework 3 

Vulnerabilities 

github organization 5 

ffmpeg 4 

coreutils 3 

Quality Metrics 

apache-commons-lang 4 

joda-time 4 

eclipse-jdt 4 

apache-lucene 4 

apache-cassandra 4 

apache-hbase 4 

apache-commons-math 3 

apache-commons-closure 3 

jfreechart 3 

apache-commons-mockito 3 

checkstyle 3 

apache-commons-io 3 

junit 3 
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Final Goal Projects Freq. 

pde 3 

apache-ant 3 

apache-camel 3 

apache-hive 3 

apache-wicket 3 

netty 3 

apache-xerces 3 

Technical Dept 

quantum 4 

apache-beam 3 

apache-dubbo 3 

apache-pdfbox 3 

apache-ant 3 

argouml 3 

columba 3 

eclipse-emf 3 

hibernate 3 

jedit 3 

jfreechart 3 

apache-jmeter 3 

apache-jruby 3 

squirrel 3 

Code/Test Generation 
freemind 4 

weka 3 

Dependency Analysis 
github organization 4 

apache-thrift 3 

Comments 
elasticsearch 3 

google-guava 3 

Application Programming 

Interfaces 
apache-log4j 3 

Documentation hibernate 3 

Effort Estimation spring framework 3 
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Final Goal Projects Freq. 

Human Factors apache-lucene 3 

 

As we can observe from the table above, most open-source projects belong to the 

Apache "family". Also, in almost every goal, if not all, researchers use Apache software. 

The above table is particularly useful to new researchers, giving them the appropriate 

guidance in selecting software according to the objectives they have set in their research. 

Finally, in Figure 4.1 we can see the tendency of researchers to make the results 

of their research available to the public. Of the total of 394 empirical studies, 121 did not 

have their data available, while correspondingly 273 did. 

 

 

 

Figure 4.1: Available dataset 
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 5 Website Presentation 

 5.1  Introduction 

In this chapter, we will give a detailed description of the website developed for 

our thesis. The website serves as the main interface for users to interact with the system 

and access various functions. We will briefly mention the front-end technologies used. In 

addition, we will delve into the back-end technologies used, such as .NET 6 to create a 

REST API with basic authentication. The API is connected to a PostgreSQL database 

and the entire backend is executed through a Docker container. 

 

 5.2  Website Presentation 

In the following link we can see the website that we have built, 

http://195.251.210.147:3030/ . 

Essentially, the website is an empirical research database, and the platform is 

designed to facilitate future researchers. The home page presents an extensive collection 

of empirical studies, each distinguished by their title. By simply clicking on the 

accompanying icon, you can unlock additional information pertaining to each entry. 

Recognizing the crucial importance of an efficient search engine, we have 

included a search area at the top of the page. In this designated area, you can enter 

specific titles to quickly locate the desired entries. For a more sophisticated exploration, 

the advanced search function allows you to drill down into papers based on open-source 

project names, researcher goals, and the selection criteria of open-source projects. The 

"Top Projects", "Top Goals" and "Top Criteria" buttons serve as inputs to the most 

notable and established entries in each respective category. 

Finally, logged-in users have the additional possibility to contribute to our 

website, expanding our database by entering new empirical studies, thus enriching the 

scientific dialogue and promoting academic collaboration. Below we have some 

illustrative images from browsing the website. 

http://195.251.210.147:3030/
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Figure 5.1: Home page 

 

 

 

 

Figure 5.2: Advanced search feature 
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Figure 5.3: Information from an empirical study 

 

 

Figure 5.4: Search based on open-source project, selection criterion and goal 
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 5.3  Website Development 

 

Frontend development 

In order for the reader to have a complete picture of the website we created; we 

will make a reference to the technologies used. More information on the Frontend part 

can be found in the thesis of my colleague, Anna Zivoni (Zivoni, 2023). Some of the 

technologies used are: 

1. jQuery: a fast and concise JavaScript library, was used to simplify the process 

of DOM handling and event handling. Its extensive feature set facilitated 

dynamic and interactive user experiences. 

2. React Fragment: a feature introduced in React 16, was used to group multiple 

elements without adding unnecessary markup. It allowed us to create a 

cohesive user interface while keeping the HTML structure clean and clear. 

3. Babel: a JavaScript compiler, was used to convert the modern ECMAScript 

syntax into browser-compatible versions. This allowed us to write code using 

the latest JavaScript features while ensuring compatibility between browsers. 

4. Semantic UI: a user interface framework, provided a comprehensive set of 

ready-to-use elements and styles. It allowed us to create an aesthetically 

pleasing and responsive design with minimal effort. 

5. SweetAlert Popup: a JavaScript library, was used to display attractive and 

customizable popup messages to users. It improved the user experience by 

providing visually appealing and informative notifications. 

 

Backend development 

a) REST API 

To develop the backend, we used .NET 6, a flexible and powerful development 

framework, to create a REST API. The REST API acts as a communication bridge 

between the frontend and the database, allowing data retrieval, manipulation, and storage. 

RESTful APIs are built upon the architectural style introduced by Roy Fielding in 

his doctoral dissertation. (R.T.Fielding,2000) This style emphasizes scalability, 

statelessness, and a client-server interaction model. The principles of REST guide us in 
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designing APIs that are both robust and easy to understand. Below are some key 

principles that have influenced the design of our REST API: 

Stateless Communication 

Each API request from a client to the server must contain all the information 

needed to understand and process the request. This means that sessions are not stored on 

the server between requests, making the system more scalable and manageable. 

Client-Server Architecture 

In a RESTful system, the client and server are separate entities that interact over 

HTTP. The client handles the user interface and user experience, while the server 

manages the data and the backend logic. This separation allows each to evolve 

independently of the other. 

Resource-Based 

RESTful APIs operate on the concept of "resources," which are essentially 

objects or data entities that can be manipulated using standard HTTP methods like GET, 

POST, PUT, and DELETE. Resources are identified by URLs, making it easy to perform 

operations on them. 

State Representation 

When a client interacts with a resource, they are manipulating its state. The 

resource's current state is represented when it is fetched (typically, in a JSON or XML 

format). This state can be manipulated by the client, and changes can be stored back on 

the server. 

Uniform Interface 

RESTful APIs have a uniform and consistent interface, which simplifies 

interactions and enhances usability. Operations are standardized through HTTP methods: 

GET: Retrieve a resource 

POST: Create a new resource 

PUT: Update an existing resource 

DELETE: Remove a resource 

Layered System 

REST allows for a layered system where each layer has a specific role and 

responsibility. For instance, one layer might handle caching, another might deal with 

authentication, and yet another might handle business logic. This separation of concerns 

simplifies maintenance and scalability. 
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 Below in Figure 5.5 we can see the methods and ways in which the user can 

communicate with our database. The name of the methods is such that anyone using this 

API will be able to understand what data will be returned from the database. The way 

that these methods work can be seen in Figure 5.6. For example, we chose to demonstrate 

the GET method "/get/data/by/project/{project}". To work, this method needs to connect 

with the database using Npgsql (Npgsql is an open-source package for accessing 

PostgreSQL database server which you can download to your project through NuGet). 

Npgsql allows you to execute SQL statements directly from your C# project and returns 

the content that you requested as a stream of rows. Then we handle that data and present 

it in the form of a JSON file. As an illustration in Figure 5.7 we have some dummy data 

from the first steps of creating the backend. 

To ensure secure access to the system, we implemented basic authentication in 

the REST API. Basic authentication requires users to provide their login credentials 

(username and password) for authentication before accessing sensitive data. This 

authentication mechanism helps protect sensitive data and ensures that only authorized 

users can interact with the system. 

 

Figure 5.5: Web service illustration through swagger 
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Figure 5.6: GET method "/get/data/by/project/{project}" 

 

 

 

Figure 5.7: Dummy data 

b) Database 

We used PostgreSQL to store and manage the data of our system. PostgreSQL is 

an open-source relational database management system, known for its reliability, 

scalability and extensive feature set. Its support for complex data types, transactions, and 

concurrency control made it an appropriate choice for our project. We employed ACID 
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(Atomicity, Consistency, Isolation, Durability) properties to ensure data consistency and 

integrity. PostgreSQL's native support for transactions aids us in achieving this. 

 

1.Database schematic and code execution program 

The database schema was designed to represent our data and their relationships in 

the system. We created the tables as: "paper", "goals", "projects", "consolidatedcriteria", 

"paper_goals", "paper_project" and "paper_criteria". These tables represent the 

relationships between entities, whose relationships are many to many. The tables 

'paper_goals', 'paper_project' and 'paper_criteria' act as link tables for linking the 

respective entities. This was done because as we can realize in research there can be 

more than one goal as well as open-source software used. Similarly, one open-source 

software can be used in more than one research. The schema of the database and the 

connection between the tables can be seen in figure 5.8. 

To initialize the database, we developed a script to create the required tables and 

their associations. In addition, this script was also used to populate the tables with the 

data we collected and had stored in an Excel spreadsheet. Again, Npgsql was used for the 

creation and population of the tables. This approach allowed us to easily manage and 

import the original data into our database. The way this script (which is in .NET 6) works 

is: 

 

• Connect to the database 

• Create the tables (if they do not already exist) 

• Read the excel file and create the data model 

• Read data from the model, line by line, and insert the data into the "paper" 

table. At the end it returns the id. 

• We split the projects, goals, research questions according to the rule we had 

defined with the hash symbol (#). If they are not already in the respective 

tables we insert them, otherwise we skip them. In any case we take back their 

id.  

• We insert in the relation tables the pairs of ids that have been created. 

• We proceed to the next line until all the data is inserted. 
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Figure 5.8: Database schema 

 

c) Docker Containerization 

To ensure deployment and easy portability of our backend, we embedded the 

entire application inside a Docker container. Docker provides a lightweight and isolated 

runtime environment, allowing us to package the backend, its dependencies, and 

necessary configuration in a single container. This approach simplifies deployment 

across different environments and ensures consistent behavior regardless of the 

underlying infrastructure. To deploy our backend, we needed to include 2 files, which 

will be explained below, dockerfile and docker-compose.yml. 

 

Dockerfile 

The Dockerfile serves as a script containing a set of instructions to build a Docker 

image for our application. It specifies the operating system, installs necessary software, 

copies project files, and sets up the environment for our .NET 6 application. The image 

built from this Dockerfile is a snapshot that contains everything our application needs to 

run. 

The Dockerfile in Figure 5.9 employs a multi-stage build process to optimize the 

size and configuration of the resulting Docker image. The first stage, named build-env, 

uses the .NET 6 SDK image to compile the application in a temporary container. It 

copies the source code, restores NuGet packages, and publishes the application to an out 

directory. The second stage uses a lighter ASP.NET 6 runtime image to create the final 

container. It copies the compiled application and additional files from the build-env 
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stage to the final image, setting BackendService_MSRWebsite.dll as the entry point for 

container execution. 

 

 

Figure 5.9: Dockerfile 

 

Docker-compose.yml 

The docker-compose.yml file is used to define and manage multi-container 

Docker applications. It provides an easy way to configure and run all the services, 

including databases, queues, and the application itself, that make up a complex 

application. With a single command, docker-compose up, you can spin up the entire 

stack. 

 

 

Figure 5.10: Docker-compose.yml 



 

55 

In Figure 5.10, the docker-compose.yml file defines two services: backend for our 

backend service and db for our PostgreSQL database. The backend service builds an 

image using the Dockerfile in the current directory and maps port 8000 on the host to 

port 80 on the container. The db service uses a prebuilt PostgreSQL image and sets some 

environment variables for database configuration. 

By using both a Dockerfile and a docker-compose.yml file, we gain the ability to 

easily build, ship, and run our application in a variety of environments with a single 

command, ensuring consistency across all stages of development and deployment. 
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6 Conclusions and Future Research 

In this thesis, we attempted to answer several key research questions related to the 

selection of open-source software in empirical studies. Our research was guided by three 

research questions: 

• What are the goals of Mining Software Repositories (MSR) studies that 

use collections of projects mined from open repositories? 

• What are the most common project selection criteria? 

• What are the most used projects as subjects? 

 

During our study, we thoroughly reviewed 1492 academic papers and drew on 

this extensive literature corpus to isolate key trends and patterns in the selection of open-

source software for empirical research. 

Our analysis revealed several interesting trends. First, our analysis shed light on 

the primary goals of MSR studies using open repositories. We found that these studies 

typically aim to find bugs, defects, and faults, predict vulnerabilities and identify security 

issues. 

Secondly, we found that project selection criteria often revolve around project 

size, language, and popularity. These criteria are chosen primarily because of their 

perceived influence on the robustness of empirical findings. 

Finally, our study identified the most used projects in empirical research. We 

found that projects such as Apache and Eclipse are frequently used as objects in 

empirical studies due to their large code bases, mature development processes and active 

contributor communities. This finding reflects the importance of project size, maturity, 

and community involvement in project selection criteria. 

Based on our findings, we developed a web site that serves as a resource for 

future researchers. This website presents a summary of our research findings and 

provides a data-driven guide for selecting open-source software in empirical studies. 

While this thesis provides an important step forward in understanding how open-

source software is selected for empirical research, it also highlights several areas that 

need further investigation. 

Future research could, for example, explore the potential biases introduced by 

over-reliance on a small set of popular projects. It might be worth exploring whether less 
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popular but nevertheless important works could offer new and unique insights. 

Moreover, future work could also delve into the impact of different project selection 

criteria on the results of empirical studies. As our understanding of software development 

evolves, it is likely that project selection criteria will also need to evolve. 

In conclusion, we believe that our research has made a significant contribution to 

the field of empirical software engineering. We hope that our findings and the resulting 

web site can serve as valuable resources for future researchers and help guide more 

robust, representative, and insightful empirical studies. 
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