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Abstract

Transfer learning appears to be one of the most influential techniques used in machine
learning today with applications in nearly all state of the art models. From natural
language machine learning to computer vision and tabular data, transfer learning has
reshaped the way machine learning algorithms and models are developed and applied.
In this thesis the way transfer learning works is examined and results of its applica-
tions on different domains (agricultural-image data, medical-natural language data)
are presented. We conclude that this technique could change the landscape of machine
learning and artificial intelligence as a whole even more within the next few years,
something backed up by its performance and flexibility on a variety of tasks.

Keywords: Artificial Intelligence, Machine Learning, Transfer Learning, Computer
Vision, Natural Language Processing
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Chapter 1

Introduction

1.1 Motivation

The fact that the field of Machine learning is constantly evolving is a well known
and documented fact. Starting from the age of simple computer aided statistical mod-
eling in the 60’s (Fradkov, 2020), and extending all the way to today’s state of the art
machine learning models, one thing has remained in the focus of its development; ease
of access. By the term ease of access to machine learning we refer to the the level
of expertise and the machinery needed to create machine learning solutions, evaluate
them and deploy them to an environment where they will benefit their users. Easy of
access however, tends to be inversely proportional to another factor; model quality.

With the coordinated research efforts taking place in the field of machine learning,
innovations have been made that have improved the efficiency of the models’ predictive
capabilities. Nowadays, models exist that can infer directly or indirectly the cause and
effect of processes with astounding precision. Problems such as image recognition,
sentiment analysis, development of speech-to-text systems and so many more have
been successfully addressed through the use of constantly improving machine learning
models.

The combination of the two aforementioned opposing forces -ease of access and
model quality- along with a technological hardware plateau that seems to have been
reached (Theis and Wong, 2017), has lead to a developmental bottleneck, since the bet-
ter the models, the less accessible they will be to the user, with little to no chance that
further advancements in hardware will be enough to mitigate the loss of accessibility
due to the scarcity of computational resources.

Transfer learning Transfer Learning (TL) is a proposed solution to much of the
aforementioned issue. By employing the mechanisms of pre-training and fine-tuning,
described in detail in the chapters that follow, transfer learning can increase the ac-
cessibility of the model while maintaining its high quality. It essentially separates the
model training process into two parts, one being an extremely computationally de-
manding task that concerns the general fit of the model to the data (pre-training), while

1



2 1.2. Goal

the other is a less demanding reiteration of the training procedure, that further fits the
already created model to more specific data of a different but similar task (fine-tuning).
This way, models can be pre-trained initially by parties with access to massive hard-
ware resources and data (e.g. Google, Meta) and then distributed to users with fewer,
so that they can, too, use them by fine-tuning the initial models for their own purposes.

With the constant need for more data and hardware, transfer learning seems to be
the future of AI applications, where innovation will be led by a select few organizations
and the individual machine learning engineers or small companies will simply add the
necessary components to adapt the models to their needs. This will very likely also
lead to the domination of the field by no code platforms that rely on the former to offer
AI services to customers with no technical background, comparable to those that are
today available mostly to professionals.

For this reason it was deemed important that this thesis was dedicated to this tech-
nology, not only in the form of a simple literature review, but as a demonstration of its
applications. The applications chosen, in chapters 3 and 4, concern two of the most
frequently appearing fields in transfer learning: natural language processing and com-
puter vision. In this way, we hope to present a comprehensive analysis of transfer
learning and the state of its current practical applications.

1.2 Goal

The goal of the thesis is to provide background theoretical information on the tech-
nologies of machine learning, transfer learning, some of the state of the art algorithms
that are currently used in the fields of natural language processing and computer vi-
sion, as well as a thorough view into the capabilities of the technologies mentioned,
showcased in real world applications.

1.3 Thesis Outline

The thesis presented consists of five chapters: in the first and current chapter the
introduction to the rest of the thesis is made as a way both to help guide the reader as
well as inform of the thesis’s goal and motivation. In the second chapter, background
theoretical information is presented for machine learning, transfer learning and the
algorithms that have been used in the case studies of the next chapters. Algorithms
considered the conceptual predecessors of the used algorithms are also presented in
that chapter. Chapters 3 and 4 are the case studies, where in chapter 3 a computer
vision study is examined, namely the use of transfer learning computer vision models
to predict the existence of verticillium fungus on olive trees with the usage of image
data captured by unmanned aerial vehicles, while in chapter 4 the case concerns the
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classification of surgery outcome regarding the rate of cytoreduction in patients, with
the use of textual data. Chapter 5 is the discussion and the colcusions derived from the
thesis.



Chapter 2

Background

2.1 Machine Learning Theory

Throughout history, the mechanisms of approach of problems has been the focus
of research. Until very recently, the process of problem solving required careful ex-
amination of the problem’s details and a strict enough definition of the solution of
the problem that would allow for the development of a solution that would be con-
sidered reproducibly satisfactory. Though this approach had served humans very well
in a plethora of tasks, these tasks were mainly simplified versions of real-world prob-
lems, that could be perfectly modelled mathematically. However, there was an array
of problems that simply could not be addressed in this way.

That was due to two main reasons that could already be seen in the description of
the nature of the problems that could be solved through the previous approach: the
problems needed to be both strictly defined and their solutions to be completely rigid,
in the sense that every part of the solution should be able to be named and explained.

In real-world problems, it is often the case that the person required to solve the
problem does not know the exact specifics of the problem and thus cannot, alone or
with the help of others, model a solution. This is especially true in the case of highly
complex problems that involve components that are not fully understood. One such
case is prevalent in the medical sector, where often, through conventional means, it
is not possible to determine the reason for a patient’s reaction to a disease, since that
can be affected by health conditions not yet discovered or understood. Approaching
this problem traditionally has a high chance of eventually leading to no, or worse, er-
roneous conclusions, depending on the doctor’s experience and general aptitude. An-
other, not so obvious reason for which the traditional approach could fail to deliver
results could be an indirect version of the cause mentioned above. All the variables
could be understood one by one, but lack of knowledge about their interactions could
cost the doctors the solution.

The second family of cases where the traditional approaches fail, concern the so-
lution of the problem itself. In the real world, problems can be strictly defined but

4



5 2.1. Machine Learning Theory

their solution can still not be strict enough. One such example is the recognition of
images. A task that humans are naturally able to do and one that can be considered as
well defined, has proven to be nearly impossible for a traditional approach to model
and solve. That is due to the fact that even though the goal sounds straightforward, im-
age recognition involves so many mechanisms that are impossible to map accurately,
leading to solutions that can be applied only locally without generalization capacities,
and often their ability derives from human knowledge. An example for that task is the
recognition of dog and cat faces. The two differ greatly but there is no single metric
that could capture that difference perfectly. A traditional approach could rely on hu-
man knowledge to insert that metric into the equation. For example, knowing that cat
faces on average are smaller that those of dogs could indeed prove to be a way for the
difference to be modelled. As mentioned previously though, this solution would work
on only a subset of the real problem of image recognition, since every item in the world
would require a distinct knowledge-based rule to separate it from other items; the task
would become too large to model, and would become effectively impossible.

For these reasons, a new approach, or better yet, a new field of approaches was
needed to address those tasks that it was impossible to frame in a traditional way. Ar-
tificial Intelligence (AI), whose beginnings were marked by Alan Turing’s mention of
intelligent systems (Turing, 2009), in their effort to approximate human intelligence,
have revolutionized the way in which problems are approached and solved. The inher-
ent noise in the problems’ formulations that could be attributed to the way the natural
world behaves, has been successfully overcome by humans and all living organisms
through evolution. The success of Artificial Intelligence in mimicking human thought
results indirectly in creating an approach to solve those problems that fell into one of
the two cases mentioned in the above paragraphs.

Machine Learning (ML), considered a subset of AI, is the implementation of AI
in problem solving tasks, and has been the primary way of addressing problems that
conventional programming cannot as easily solve. In other words, ”Machine learn-
ing describes the capacity of systems to learn from problem-specific training data to
automate the process of analytical model building and solve associated tasks” (Jani-
esch et al., 2021a). In contrast to classical programming, that combined input data with
classical human-made algorithms to lead to certain solutions and results, ML leverages
data, usually annotated but not exclusively, with expected results to produce a program
that can solve the problem at hand (Figure 2.1).
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Figure 2.1: The difference between classical programming and machine learning
(Krichen et al., 2022)

This way of approaching the problem solving task entails the use of large amounts
of data. Though not always necessary, especially in problems of smaller complexity
where a solution is usually easy to create, there are more than a few instances where,
depending on the machine learning algorithm used, in order for a good solution to be
reached, vast amounts of data are needed. In previous eras of information, the tasks of
collecting and preprocessing data to prepare them for machine learning algorithms was
extremely time consuming if not simply impossible. With the advent of the internet
and the technologies that ensued to cover the needs that were created in the process, the
creation, collection and preparation of data have become tasks that can be completed
with relative ease. This has enabled the creation of extremely complicated machine
learning models -a term coined to describe the results of the application of the machine
learning algorithms- that have the capacity to perform tasks that rival humans or even
in some cases, surpass their abilities.

Machine learning consists of three main branches, whose usage depends on the
availability of data and the task at hand. The first branch is the one mentioned previ-
ously, where by the combination of input data and results, a machine learning model is
created that can approximate a solution to the problem. This branch of machine learn-
ing is called Supervised Machine Learning (SML). Supervised machine learning has
the advantage of being able to reach high performance in most tasks, and the ability to
output results that can be evaluated; something that is of critical importance in cases



7 2.1. Machine Learning Theory

where uncertainty of model performance can be costly to the model’s users. Super-
vised machine learning depends highly on the given data as well as the annotation that
accompanies them (the term annotation is used to signify the task’s expected results).
This entails several requirements that need to be fulfilled if the model is expected to
function correctly. But firstly, the quality of the data is of the utmost importance.

The quality of data can be both task-independent and task-dependent (Pipino et al.,
2002). By the term task-dependent we refer to the fitness of the data, related to the
task at hand: it is often the case that one dataset is of poor quality for one task but of
excellent quality for another. Quality in this sense in used to translate the notion of
predictive strength. For example, assuming that the problem that needed to be solved
was the prediction of the value of the NASDAQ index tomorrow, a dataset of cheese
production in Italy per region in 2001 is not a good quality dataset for that purpose.
That is due to the fact that relatively few insights can be drawn from the data source
that could guide the model’s prediction towards the right direction. However, if we
wanted to predict cheese consumption in Italy in 2001, the same dataset would be
almost perfect. The structure and content of the data didn’t change, quality in this case
was affected solely by the goal. On the other hand, task-independent data quality is
the product of a few objective criteria. The most important of which is veracity. The
term veracity is used to denote truthfulness. Data can be untruthful due to a variety of
reasons, like human data collection and entry error, inherent noise in the data etc. High
veracity data is much more valuable regardless of the task that needs to be solved. The
second largest task-independent data quality measure would certainly be completeness.
Completeness is the extent to which data is not missing (Pipino et al., 2002); something
extremely important for every analysis.

Apart from data quality, another contributing factor to the supervised model’s abil-
ity to approximate solutions to problems is the volume of the data. As the problems
that require a solution increase in complexity, so does the necessary volume of data.
High volume is necessary to enable the machine learning model to capture complex
relationships between features. This second requirement has become more and more
easy to satisfy, since data is becoming increasingly available, not just to enterprises
and companies but also to the common user.
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Figure 2.2: Machine learning lifecycle (Krichen et al., 2022)

Supervised Machine Learning is split into two main categories of problems, de-
pending on the variable that is to be predicted in each case. These two main tasks are
regression and classification. Regression is used when the dependent variable is a real
number, while classification is used in the case that the dependent variable is categor-
ical (Figure 2.4). These two categories of problems cover a massive field of possible
applications, since almost any predictive problem can be generalized as a form of one
of those two. Examples of real-world classification problems can be the prediction
of loan default (Madaan et al., 2021; Jiang et al., 2018a), customer churn (Tsai and
Lu, 2009; Huang et al., 2012), prediction of discrete ratings of a service (Shah et al.,
2020), and text classification (Ciarelli et al., 2009). The applications of regression
are also equally numerous compared to those of classification and concerns a variety
of fields such as medicine (Taloba et al., 2022; Steyerberg et al., 2014), economics
(Ghoddusi et al., 2019) and even music (Yang et al., 2008).
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Classification is further divided into three typical problem scenarios. The first
and probably most common scenario is binary classification (Kumari and Srivastava,
2017). In binary classification, the predicted discrete variable is dichotomous. Ex-
amples of such dichotomous dependent variable problems can be the prediction of
boolean outcomes (yes-no, true-false). The case studies in the present thesis, are also
binary classifications, as shown later, in chapters 3 and 4.

In is important to note another classification scenario: one-class classification.
One-class classification can also be considered, surprisingly, a special form of binary
classification, since the pool of possible outcomes is also dichotomous. However the
difference between the two lies in the fact that one-class classifiers have been trained
on datasets that only indicate the belonging to one class, while binary classifiers have
used training data that contained information about both classes. One-class classifica-
tion is used widely in outlier detection tasks such as fraud detection (Kamaruddin and
Ravi, 2016; Zheng et al., 2019) and anomaly detection (Wei et al., 2018).

The second large category of classification models is multi-class classification. In
problems of that nature, the model is called to predict the outcome from a pool of three
or more possible outcomes. In such classifications the dependent variable can have a
wide range of cardinality. Examples of low cardinality dependent variables can be the
diagnosis of disease in a patient (Siddiqui et al., 2017) from a small pool of possible
diseases, while examples of high cardinality classifications can be the classification
of a person’s identity through a biometrics system such as iris recognition (Rehman,
2021) and fingerprint recognition (Hammad and Wang, 2017). In these later cases the
classifier is called to predict the person’s identity from a pool of thousands, or even
millions of people.

Lastly, multi-label classification (Herrera et al., 2016) is the branch of classification
that concerns cases where the class of the dependent variable can be more than one.
Multi-label classification is especially important in cases where the observation for
which the prediction is made doesn’t have strictly one class. An example of such cases
can be the prediction of a movie’s genre (Wehrmann and Barros, 2017), since a movie
can simultaneously have more than one genres.

The implementation of each individual classification algorithm can lead to sen-
sitivity to imbalanced datasets that will have to be mitigated accordingly to lead to
classifications of high quality. The techniques used to fix class imbalance can be over
and under sampling as well as synthetic data augmentation (Fernández et al., 2018;
Tang et al., 2008; Burnaev et al., 2015; Zheng et al., 2015; Rayhan et al., 2017).

The usual procedure followed by machine learning engineers in supervised ma-
chine learning is to split the dataset into three partitions (Reitermanova et al., 2010);
training, validation, and testing. The training partition is used to train the algorithm
and create a model, however alongside the initial training, the validation dataset is
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usually used to provide an unbiased way for the model to be evaluated and its hyperpa-
rameters tuned, where by the term hyperparameters we denote the algorithm specific
parameters. Lastly, the testing set is used to evaluate the created model’s performance
on completely unseen data; essentially a simulation with the goal of seeing the real-
world level of success that the model is expected to have if the data remains the same.
The are many variations of the setup that can be used ranging from small differences
such as using only a testing and training split (Tan et al., 2021), or changing the rela-
tive percentages of the dataset that are to be allocated to the split datasets (Rácz et al.,
2021), to the implementation of constant evaluation techniques such as cross valida-
tion (Berrar et al., 2019; Stone, 1978), where the data is iteratively split N times in 2
non-overlapping chunks of set percentage where in every iteration of the method, the
newly created chunks will be used as train and test partitions. This provides a way of
constant monitoring of the model’s performance without losing the information present
in the validation dataset in contrast to the approach of setting a partition exclusively
for validation.

Supervised machine learning has the added advantage of being able to use evalu-
ation metrics to, as the name implies, assess model performance as mentioned previ-
ously. Evaluation methods differ between regression and classification. In regression
the most commonly used evaluation metrics rely on the calculation of the difference
between real and predicted values (Botchkarev, 2018). Some of those widely used
metrics follow below:

• Mean Absolute Error:

MAE =

∑N−1
i=0 |yi − ŷi|

N
(2.1)

• Mean Squared Error:

MSE =

∑N−1
i=0 (yi − ŷi)

2

N
(2.2)

• Root Mean Square Error:

RMSE =

√∑N−1
i=0 (yi − ŷi)2

N
(2.3)

• Mean Percentage Error:

MPE =
100%

N

N−1∑
i=0

yi − ŷi
yi

(2.4)
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• Mean Absolute Percentage Error:

MAPE =
100%

N

N−1∑
i=0

|yi − ŷi|
|yi|

(2.5)

• R2 - Coefficient of Determination:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
(2.6)

, where in all of the above, yi is the true value, ŷi is the predicted one, and N denotes
the number of observations.

In classification tasks, given that the prediction is mostly in the form of a boolean
value, the calculation of the evaluation metrics is performed on the basis of comparing
the amount of correctly and wrongly classified observations (Hossin and Sulaiman,
2015; Fatourechi et al., 2008; Vujović et al., 2021). Correctly classified observations,
also known simply as ’True’, are those were the predicted category agrees with the real
one, whereas incorrectly classified observations, or ’False’, are the opposite.

Each type of classification, from the ones mentioned previously, has its own way of
evaluating the performance of the models, with all of them being generalizations of the
metrics used in binary classification. The most common metrics in binary classification
are the following:

• Accuracy:

ACC =
TP + TN

TP + TN + FP + FN
(2.7)

• Precision:
PREC =

TP

TP + FP
(2.8)

• Recall or Sensitivity:

RECALL =
TP

TP + FN
(2.9)

• Specificity:

SPEC =
TN

FP + TN
(2.10)

• False Positive Rate:
FPR =

FP

FP + TN
(2.11)

• F1 Score:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(2.12)
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• Area under the Receiver Operating Characteristic curve (AUROC), quantified
as the area under the curve formed by plotting the Sensitivity against the False
Positive Rate at incremental threshold values

• Area under the Precision-Recall curve (AUPRC), quantified as the area under the
curve formed by plotting the Recall against the precision at incremental thresh-
old values

, with TN , TP , FN and FP being true negatives, true positives, false negatives and
false positives respectively. The terms positive and negative serve as a way to distin-
guish between the two classes, with the appointment of the classes being instantiated
in the problem definition.

Figure 2.3: Example of a confusion matrix in a binary classification (a) and a multi
class classification (b), a diagram widely used to show true and false positives and
negatives in a classification. (Markoulidakis et al., 2021)

The choice of the right evaluation metric is a product of the problem itself and
the approach adopted (Hauser and Katz, 1998; Taha et al., 2014; Mackie et al., 2014;
Schröder et al., 2011).
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Figure 2.4: Classification vs. regression. In classification the dotted line represents a
linear boundary that separates the two classes; in regression, the dotted line models the
linear relationship between the two variables (Sarker, 2021)

Even though the aforementioned supervised learning approach has a wide vari-
ety of uses and is the machine learning branch used in this thesis, it is important to
also mention briefly the two other branches. Supervised machine learning is not the
only branch, due to a simple fact: annotated data are not always available. This need
gave birth to the second branch of machine learning, Unsupervised Machine Learning
(UML). Unsupervised machine learning consists of algorithms that don’t rely on re-
sults to approximate solutions to problems, but rather use the knowledge hidden within
the dataset to create patterns. These pattern can either be groups within the data (clus-
tering), association rules etc. Unsupervised machine learning has the advantage of not
needing expected result data to operate, but this comes at the cost of missing a way to
evaluate the performance of the algorithm.

Lastly, Reinforcement Learning (RL) is the third and last branch of Machine Learn-
ing that mainly concerns problems of decision making. As mentioned in Wiering and
van Otterlo (2012), ”situated in between supervised learning and unsupervised learn-
ing, the paradigm of reinforcement learning deals with learning in sequential decision
making problems in which there is limited feedback”. It has found applications in
robotics and optimization problems and while widely used and useful, it is beyond the
scope of this thesis to further delve into the mechanics of the methods contained in
reinforcement learning.
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2.1.1 Deep Learning

Deep learning is considered a subset of machine learning and consequently, of
artificial intelligence as a whole (Figure 2.7). More specifically, deep learning refers to
a special subset of a family of algorithms in machine learning, Deep Neural Networks
(DNNs), that are Artificial Neural Networks (ANNs) with more than one hidden layer
(Janiesch et al., 2021b). In order to fully understand what that means it is important to
firstly analyze what ANNs are and how they work.

Figure 2.6: Diagram of a deep neural network (Zhu et al., 2023)

Artificial neural networks are a family of machine learning algorithms that mimic
the way brain neurons work to solve problems (Krogh, 2008). Essentially, as in biolog-
ical life forms the neurons are activated due to certain stimuli (visual, haptic etc.) that
lead to certain responses, so are artificial neurons, also known as nodes, who accept
input, and produce an output. The input can be of any form of data encoded as bytes. It
is not uncommon for neural networks to accept as input data derived from videos, text
or images. The output can be integers or floats, depending on the task. The activation
of the artificial neurons is performed by the activation function, that aggregates the
input to produce the output of the neuron. In this way, neurons can be ”chained” so
that the output of one can be passed as the input to the next. This property of the neural
networks creates an architecture of layers of nodes. The layers can be of three kinds:
either input layers, that accept the initial input, output layers, or hidden layers that are
responsible for aggregating the input through activation functions before passing it as
the output to the next layer (Figure 2.6). Layers of nodes often include a bias node,
that has the value of one, to aid the network through adding a constant in the calcu-
lation of the outputs. This chaining of hidden layers, enables the network to capture
complex patterns in the data, thus becoming a universal function approximator (Csáji
et al., 2001). As stated in LeCun et al. (2015), ”Deep learning allows computational
models that are composed of multiple processing layers to learn representations of data
with multiple levels of abstraction”. As also seen in later sections, architectures can
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vary, with some being very effective in a selection of tasks but ineffective in others.

Figure 2.7: The relationship between Artificial Intelligence, Machine Learning and
Deep Learning (Arooj et al., 2022)

Delving more deeply into the mechanics of artificial neural networks, the activation
function is considered by some to be the single most important point of the network’s
architectural choices (Ding et al., 2018). The choice of the function dictates how dif-
ferent nodes interact with one another and consequently what feature interactions are
created and passed to the next hidden layer, or the output layer of the network. The
activation functions are also of critical importance to the model’s output, as different
functions are suited best for different problems. For example, the sigmoid function is
widely used in binary classification problems, while the softmax function is used in
multi-class classification ones. It is also not uncommon to not use an activation func-
tion at all during certain parts of the network, or to be more precise, to use the identity
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function (f(x) = x), called the linear activation. This function is used as the output
node’s activation function in regression tasks. Below follow some of the most common
activation functions used:

• Sigmoid:

s(x) =
1

1 + e−x
(2.13)

• Tanh:
tanh(x) =

ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
(2.14)

• ReLU:
relu(x) = max(0, x) (2.15)

• LeakyReLU:
lrelu(x) = max(0.1x, x) (2.16)

• Parametric ReLU:
prelu(x) = max(ax, x) (2.17)

• ELU:

elu(x) =

x, if x ≥ 0

a(ex − 1), if x < 0
(2.18)

• Softmax:
softmax(x) =

exi∑K
j=1 e

xj

, for i = 1, 2, . . . , K (2.19)

The next most important detail is the way the network ”learns”. For each con-
nection of nodes, the network appoints a weight that is initialized either randomly or
through an algorithmic procedure. Weight initialization is an extremely active research
topic (Kumar, 2017; Narkhede et al., 2022; de Sousa, 2016), and as seen in the next
chapters, it plays a very important role in transfer learning. For every instance of train-
ing data, meaning every individual observation, the model passes the variables of the
observation to the input layer of the network, and following the activation functions
and the network’s connections, results in the output node that is responsible for the
predicted variable’s value. The predicted value is then compared with the true value,
through a loss function and the model’s loss is calculated. Then the change in model
weights that would be more beneficial to the model’s performance is calculated through
an optimization algorithm, usually gradient descent, and the weights are updated for
the next iteration. The mechanism of calculating the updates needed to be done to
the model’s weights for every previous layer of the network is done with the process
of backpropagation where the error is ”propagated” to the previous layer. The loss
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functions and the optimizers used are numerous and are also a vast research field that
constantly evolves (Wang et al., 2020a; Janocha and Czarnecki, 2017; Steinwart, 2007;
Bera and Shrivastava, 2020; Vani and Rao, 2019).

2.1.2 Transfer Learning

Transfer learning is considered to be the future of machine learning. It has become
the proposed solution to the problem of creation of high performance models when
data are few or when computational resources are limited. Given that larger models
tend to perform better but need a bigger volume of data to train on, while at the same
time computational efficiency has seemingly reached a plateau, transfer learning seems
to be the only viable way to make state of the art machine learning solutions available
to the general public.

Transfer learning can roughly be defined as the usage of knowledge learned in one
task applied to a related task in order to boost performance. A mathematical definition
is given by (Weiss et al., 2016): let D be a domain defined by a feature space χ and
a marginal probability distribution P (X) where X = {x1, x2, . . . , xn} ∈ χ such that
D = {χ, P (X)}. Also, let T be a task defined by a label space Y and a predictive
function f() learned from corresponding pairs belonging to the feature space and the
label space {xi, yi}, where xi ∈ X, yi ∈ Y such that T = {Y, f()}. If Ds is a
source domain with a corresponding source task Ts, and Dt the target domain with a
corresponding source task Tt, transfer learning is the process of improving the target
predictive function ft by using the related information from Ds and Ts where Ds ̸= Dt

and/or Ts ̸= Tt.
Building on that definition we can further define homogeneous and heterogeneous

transfer learning. If Ds ̸= Dt and since Ds = {χs, P (Xs)}, Dt = {χt, P (Xt)} ∴

χs ̸= χt and/or P (Xs) ̸= P (Xt). If χs ̸= χt then this will be heterogeneous transfer
learning, while χs = χt is referred to as homogeneous. In simpler terms, homogeneous
transfer learning is when the source feature space is the same as the target’s, with the
opposite being the case of heterogeneous transfer learning. Regarding the distributions
Ps and Pt, it is noted that the more they differ the less transferable the knowledge
becomes (Shimodaira, 2000).

Another case of dissimilarity between the source and the target is if the tasks dif-
fer (Ts ̸= Tt). This case is called inductive transfer learning (Pan and Yang, 2010).
Following the same logic as before, if Ts ̸= Tt and since Ts = {Ys, f()s}, Tt =

{Yt, f()t} ∴ Ys ̸= Yt and/or f()s ̸= f()t. If f()s ̸= f()t then the conditional probabil-
ity distributions between the source and target domains are different (feature context
bias) (Weiss et al., 2016). This is also a major factor in the ”transferability” of knowl-
edge between source and target. Similar is the case with the inequality of Ys and Yt.
Different label spaces are a major barrier in transfer learning that tends to be mitigated
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with transformations in the source or target data. In contrast to the above, in traditional
machine learning, both Ds = Dt and Ts = Tt.

Special settings of transfer learning can also exist. Such is the case with trans-
ductive transfer learning where Ts = Tt and Ds ̸= Dt. Another unique situation is
unsupervised transfer learning where Tt is different but related to Ts and both tasks are
related to unsupervised problems.

Figure 2.8: Categorizations of transfer learning (Zhuang et al., 2020)

The application of transfer learning is plagued by many other issues such as a
difference in label imbalance between source and target (frequency feature bias), but
generally any difference between the distributions of features or labels tend to affect
the transfer of knowledge negatively. In some cases, even negative transfer can occur.
This will result in the f()t becoming weaker if trained with a transfer learning approach
than it would be without.

The ways to mitigate those barriers vary depending on the definition of the prob-
lem but plenty of methods have been created that are successful in this effort. More
specifically, seven main approaches have been created, whose descriptions follow.

• Instance-based transfer learning aims to use data points selected from the
source domain that are similar to those in the target domain to train the target
predictive function. This approach is extremely useful in cases where data are
few in the target domain.

• Feature-based transfer learning, where features are transformed to be similar
between source and target domains. This approach is split in two sub cases:

– Asymmetric, where either domain’s feature space is transformed to the
other’s.
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– Symmetric, where both feature spaces are used to determine a joint feature
space.

• Parameter-based transfer learning, where the parameters learned through the
training of the source predictive function are used to train the target predictive
function. This is a very common scenario in deep learning transfer learning
where pre-trained layers are ”frozen”, in the sense that training will not affect
them, and the target predictor uses the features that are contained within to create
its own prediction using additional layers that are not ”frozen”.

• Relational-based transfer learning aims to use knowledge that is common be-
tween the two domains to reach a point that transferability of knowledge in-
creases.

• Hybrid-based transfer learning that utilizes a combination of the above.

From the above approaches all can be used in homogeneous transfer learning with
the exception of feature-based transfer learning that can be utilized both in homoge-
neous and heterogeneous transfer learning.

Special cases that are considered part of transfer learning are the Few-Shot Learn-
ing (FSL), One-Shot Learning (OSL), and Zero-Shot Learning (ZSL) paradigms. In
the cases of few-shot and one-shot learning, models are trained such that they can
rapidly generalize to new tasks containing only a few samples of supervised informa-
tion (Wang et al., 2020b). In zero-shot learning models, no supervised instances are
needed for the model to perform the task on the new dataset. In this sense it is safe
to say that zero shot models have reached such a point of generalization that can now
perform the task that they were trained to do, regardless of the target dataset (Xian
et al., 2019).

In practical terms, transfer learning techniques are applied mostly in deep learning.
The main approaches adopted are the aforementioned ”freezing” of the pre-trained
network up to a certain point, and using the learned parameters (weights) to train a
second network with the target data, or the fine-tuning of the entire network with the
new data. Both approaches are used widely with many state of the art algorithms
utilizing them.

Applications of transfer learning have been made in a variety of fields, including,
but not limited to, medical image recognition (Kim et al., 2022), atmospheric particle
classification (Ma et al., 2015), marketing applications (Perlich et al., 2014), and many
more.
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2.2 Machine Learning Applications

2.2.1 Machine Learning in Tabular Data Tasks

Until recently the majority of machine learning applications had relied on the use
of tabular data (Shwartz-Ziv and Armon, 2022). In this context we use the term tabular
data to denote data structured in a set, two dimensional, way. Typically, this structur-
ing follows the design of column-variable row-observation. However there are many
formats that are used, depending on the purpose. Thanks to the already structured
nature of the data, approaches have been created that can harness this property to out-
put machine learning models of high predictive strength, that manage to outperform
traditional statistical models that were until very recently the norm.

The added benefit of tabular data is their homogeneity. Analyses can take place on
well structured tabular data without the need for clever data manipulations and trans-
formations that are somewhat necessary with other types of data (e.g. textual data,
audio data). Machine and deep learning can analyze tabular data of considerable vol-
ume, in a variety of settings such as finance (Clements et al., 2020), online marketing
(Guo et al., 2017), medicine (Ulmer et al., 2020; Somani et al., 2021; Borisov et al.,
2021) and anomaly detection tasks (Pang et al., 2022; Wang et al., 2022; Škvára et al.,
2021), with many programming libraries written for that exact purpose (Pedregosa
et al., 2011a).

Many different machine learning algorithms have been written and tested on pre-
diction tasks in tabular data, both for supervised and unsupervised learning. Such
examples are the Support Vector Machines (Hearst et al., 1998), the nearest neighbors
algorithm (Taunk et al., 2019), the decision trees (Quinlan, 1996) and so on and so
forth, with the algorithms being so numerous that listing them all would be redundant.
However, there is one algorithm that stands out enough to be mentioned separately:
the XGBoost algorithm.

2.2.1.A The Extreme Gradient Boosting Algorithm

Amongst the most commonly used, if not the most common, algorithm in predic-
tion tasks that rely on tabular data is the Extreme Gradient Boosting Algorithm, or
XGBoost for short (Chen and Guestrin, 2016). XGBoost comes as an improvement to
already existing Classification and Regression Tree (CART) based machine learning
algorithms, by adding a process of special ensembling (Figure 2.9); an aggregation of
”weak” models to produce a ”strong” final model. Thanks to the fact that XGBoost
inherits many of the properties of classification and regression trees, it can be used for
both tasks. The ensembling added to the already existing CART algorithm is a form of
gradient boosting with regularization, where CARTs are iteratively added to the model



22 2.2. Machine Learning Applications

and the errors of the previous ”weak” CART are used to train the next with the final
prediction being a result of this procedure. Thanks to its unique structure, XGBoost
has managed to outperform many of its predecessors, and even some of the newer al-
gorithms, in a plethora of tasks (Liang et al., 2020; Hancock and Khoshgoftaar, 2020;
Zamani Joharestani et al., 2019).

Figure 2.9: Schematic diagram of the XGBoost regression tree model (Zou et al., 2022)

2.2.2 Machine Learning in Image Tasks

One of the greatest barriers that classical machine learning has had to overcome has
been the analysis of image data. The reason for this has been the fact that image data
is unstructured, with images varying both in dimensions, and homogeneity of features.
In tabular data the features usually occupy one column each, while the definition and
location of the features in image data is a question with a more complex answer. To ad-
dress such problems, a new field of artificial intelligence was created, computer vision
(Forsyth and Ponce, 2002; Voulodimos et al., 2018). Computer vision encompasses all
the tasks that have come to be, related to machine learning approaches in image data.

Computer vision techniques rely on deep learning, thanks to deep learning’s ability
to perform automatic feature extraction and engineering. With the images passed as
matrices containing color value information for every pixel, and through the imple-
mentation of deep learning algorithms, the most important of which will be covered in
the next sections, computer vision has managed to outperform all classical algorithms
in image tasks.
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The tasks in computer vision are numerous and vary in complexity (Figure 2.10).
Perhaps the most common, and simplest of all tasks is image classification. In image
classification the task is to predict, usually from a limited pool of possible answers
what the item portrayed in an image is (Lu and Weng, 2007). Due to the definition of
the problem, such data are often images where only one item of interest is included.
Image classification is considered a simple problem, always relative to other computer
vision tasks, since the goal is straightforward and the prediction output either just one
value (binary and multi-class classifications), or multiple values that are calculated in
the same way as one value would (multi-label classification). As seen later, multi-
object problems have had to adopt more complex approaches in order to be solved.

As a second step, and an advancement to simple image classification, localization
and object detection have been incorporated in classification tasks. In object local-
ization and detection the images are not only classified as a class depending on their
contents, but in cases where it is applicable, the items are located within the image.
The difference between the two methods is simply the number of items localized. In
case only the item that is the focus of the classification is located, this is a task of
localization. In contrast, when multiple objects are classified and located separately,
then the task is that of object detection. In this way, object detection can be considered
a specific case of object localization. In both tasks the algorithm not only has to clas-
sify the objects but also to predict the coordinates of their bounding boxes. Hence this
problem is both a classification (object class), and a regression problem (coordinate
prediction).

Lastly, in this same vein, instance segmentation is another task of computer vision
where items are both classified and localized. Instance segmentation is a generalization
of object detection since object coordinates are not simple bounding boxes that can be
defined by 4 points, but polygons defined by a variable amount of points. Semantic
segmentation is another form of instance segmentation where objects of the same class
are segmented as a unified entity.

The tasks mentioned have become the building block upon which several advanced
deep learning tasks are based. By incorporating textual data and language understand-
ing models, applications such as image captioning (Hossain et al., 2019; Vinyals et al.,
2016) and visual relationship detection (Lu et al., 2016) have been created. Also gen-
erative AI models trained on image data have made it possible to generate images of
high quality (Teterwak et al., 2019), or augment already existing ones of lower quality
(super-resolution) (You et al., 2019; Wang et al., 2020c).

The majority of the aforementioned applications are part of the supervised learning
paradigm, that requires both data and expected output. However, approaches have been
made that employ unsupervised learning algorithms, that often under perform when
compared to their supervised counterparts. The advent of transfer learning has led to
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zero-shot classification solutions that overcome both previous paradigms’ weaknesses.

Figure 2.10: Image classification, localization, detection, and segmentation as tasks in
computer vision (Jaiswal et al., 2021)

2.2.2.A The Convolutional Neural Network

The first major innovation for machine learning in image data tasks has been the
introduction of the Convolutional Neural Network (CNN) (O’Shea and Nash, 2015).
The convolutional neural network is a type of deep learning neural network architec-
ture that is comprised of nodes that can capture hierarchically structured information
by taking into account the proximity of the input nodes. In other words, by considering
the proximity of pixels within an image, the CNN can capture information by firstly
constructing simple features and by repeating the process of convolution within the
network, it can gradually build more and more complex features based one the previ-
ously created ones. The result of multiple convolutions taking place in the network is
reaching a point were very detailed features will be created and the classification of
very complex images will be possible, while also staying relatively unaffected by the
shift of the item within the image.

Convolutional neural networks are based on the convolution layer, a type of neu-
ral network layer that uses filter nodes that detect the presence of low level features
throughout the image. The filters, or most commonly known as kernels, are essen-
tially matrices usually of small sizes (3x3, 4x4, 5x5) that represent simple features,
like lines, edges or points. The kernels perform the convolution over the image; an
operation of ”sliding” the first matrix (kernel) over the second (image) and outputting
a result matrix that is the dot product of the two at any given point that the kernel has
slid. The result is a feature map of the image. The feature map is a representation of
the presence of this particular feature on the original image. The next feature engineer-
ing operation happens at a later convolutional layer, that taking as input the results of
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the first, creates features of higher complexity by using the previously created features
as building blocks. An example of such a procedure is the creation of the feature of
crosses in the second convolutional layer, when the first convolution had created fea-
ture maps of vertical and horizontal lines, since a cross derives from the combination
of two.

Figure 2.11: Visualization of features learned in different layers of a convolutional neu-
ral network. The network gradually learns more and more complex pattern based on
the previously learned features, before finally proceeding to the classification. (Meng
et al., 2019)

Given that the convolutional layers tend to be computationally expensive, the ad-
dition of pooling layers in the network is common practice. Pooling layers serve as a
way to downsample an image. More specifically, the pooling operation is the aggrega-
tion of windows of the image or feature map matrices through a function (usually the
average, max or min) to recreate a smaller sized matrix. Pooling layers have the benefit
of reducing the need for many convolutional layers and thus also lower computational
times. Another commonly added layer is a layer that contains a non-linear activation
function. The purpose for that is to also add features that are not linear combinations
of others, and can lead the network to create features such as curves from simple lines.
Lastly, the created high level features are passed to the final section of the network,
usually a fully connected layer, that performs the necessary task (e.g. classification).
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Figure 2.12: Example of a typical convolution neural network architecture (Tabian
et al., 2019)

2.2.2.B The You Only Look Once Algorithm

The You Only Look Once (YOLO) algorithm proposed in 2015 adopts an approach
of framing object detection as a regression problem to spatially separated bounding
boxes and associated class probabilities (Redmon et al., 2015). Essentially, classifica-
tion and bounding box location calculation happen simultaneously.

The algorithm begins by partitioning the image in an N x N grid and then for
each cell of the grid, predicts bounding box locations, confidence of detection of an
object, and class probability for every class, thus having the entire object detection and
classification process happen in a single pass over the image.

YOLO, as a project, is actively developed, with newer and more enhanced versions
coming out in the form of versions steadily throughout the last few years, with im-
provements made in the algorithm’s speed and performance (Jiang et al., 2022) through
the change of the algorithm’s architecture or the addition of new capabilities. Each new
release receives a new version number; we are currently in the 8th official release of
YOLO, YOLOv8, however in the case presented in this effort, YOLOv5(Jocher, 2020)
will be used. The reasoning behind the choice is that while newer versions of the
YOLO algorithm have been developed, YOLOv5 has been the most recent version
preferred by researchers in related works in the literature, as also shown in the next
chapter.

The YOLO algorithm is especially powerful in the task of detecting olive tree in-
fections by the Verticillium wilt from UAV images, since as shown in the literature
(Jiang et al., 2022), it has both high inference speeds that allow for the classification
of images in near real-time and can achieve high classification performance metrics.
Actually, it is not an overstatement to say that it is currently the only algorithm that of-
fers such a balanced solution, in terms of speed and performance, for the simultaneous
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object detection and classification task.
YOLOv5’s network design is comprised of a Backbone, a Neck and a Head, as de-

scribed by its authors. All of these, are essentially sub-networks that when assembled
together in the right order, mentioned above, create the YOLOv5 model. The architec-
ture of YOLOv5 that was used in the current effort, uses the New CSP-Darknet53 as
the backbone, the SPPF and the New CSP-PAN as the neck and the YOLO head layer
as the Head, as shown in Figure 2.13.

Figure 2.13: YOLO version 5 architecture

The differences between the medium, small and nano architectures of YOLOv5
concern the size of the network according to depth and width multipliers, whose values
are shown in Table 2.1.

Table 2.1: Specifications of the different YOLOv5 architectures
YOLOv5 architecture depth multiple width multiple ResNet in CSPNet Convolution kernel

Medium 0.67 0.75 24 768
Small 0.33 0.50 12 512
Nano 0.33 0.25 12 256

The model can be used as-is, without initialized weights, or with weights that have
been created through prior training on a given dataset.
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2.2.2.C The Segment Anything Model

Until recently, object segmentation was considered a supervised learning problem
that required careful data selection and time intensive labeling since unsupervised ob-
ject segmentation algorithms existed, but yielded lower performance scores compared
to their supervised counterparts in most real-world cases. Supervised approaches re-
quired large amounts both of training data and manually provided object masks, re-
sulting in being a high-cost solution. Recently Meta introduced the Segment Any-
thing Model, a self-supervised model trained on a massive dataset of 1 billion object
masks and 11 million images to preform generalized object segmentation (Kirillov
et al., 2023). The model is both able to be applied without prior supervised training or
pre-training on data and still perform at a level high enough to compete with domain
specific supervised segmentation algorithms.

Figure 2.14: Segment Anything Model overview. A heavyweight image encoder out-
puts an image embedding that can then be queried by input prompts to produce object
masks. For ambiguous prompts corresponding to more than one object, SAM can
output multiple valid masks and associated confidence scores. (Kirillov et al., 2023)

More specifically, the Segment Anything Model, or SAM for short, is a newly pro-
posed, zero-shot, promptable segmentation model. The model is described as able to
perform ”zero-shot” object segmentation. Zero-shot object segmentation is the abil-
ity of the model to segment instances of an object without training or fine-tuning on
any examples of that class; in simple terms, the model can simply segment any object
on command. The command is given in the form of a prompt to the model, with the
prompt being either a bounding box, mask, text or a point. Prompts can also be neg-
ative, to help refine the selection of the example object that is to be segmented. The
result of the model is the segmentation in the form of a mask and a confidence score
representing the confidence of the model for the quality of the segmentation (Figure
2.14). This quality of segmentation is the internally calculated expected Intersection
over Union. In this case, the IoU is defined as the intersection area of the real bounding
mask and the predicted bounding mask divided by the union area of the two masks.

The architecture of the model consists of 3 components: the image encoder, the
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prompt encoder and the mask decoder. The image encoder is a MAE (He et al., 2022)
pre-trained, adapted (Li et al., 2022) Vision Transformer (ViT) (Dosovitskiy et al.,
2020). The task of the image encoder is to create the embeddings for the entire image.
The prompt encoder follows a different embedding strategy for each type of prompt.
Text prompts are encoded through a text encoder from CLIP (Radford et al., 2021),
boxes and points are encoded with positional encodings summed with learned embed-
dings, while mask prompts are considered as ”dense” in contrast to the other prompt
types and thus are passed to a convolutional neural network whose outputs are summed
element-wise with the image embeddings. All methods result in the embeddings of the
prompt that, along with the embeddings of the image are passed to the mask decoder.
The last component of the network, uses attention mechanisms to update all previously
created embeddings and output the mask along with its estimated IoU in regard to the
area that the real segmentation would occupy.

2.2.3 Machine Learning in Text Tasks

Textual data are one of the most commonly found formats of unstructured data
today. Given the fact that the majority of data is unstructured, this puts the necessity
of using texts into perspective. As with all types of unstructured data, analyzing them
and making use of the predictive strength that lies inside them is not a task that can be
easily completed through classical machine learning approaches.

Machine learning, both classical and deep, relies on the transformation of text into
numerical features. Many algorithms have been developed for this purpose, from the
simple bag-of-words approach that leads to each document being encoded as a sparse
array of counts of occurrences of its words (Qader et al., 2019), or the words’ TF-IDF
scores (Salton and Buckley, 1988) (see equation 4.1), to the Word2Vec (Goldberg and
Levy, 2014) and the Global Vectors for Word Representation (GloVe) models (Pen-
nington et al., 2014) that adopt an embedding approach to the encoding of textual data.
In classical machine learning where the numerical features are created manually with-
out embeddings on preprocessed texts (replaced abbreviations, removed stopwords,
stemmed and lemmatized) and passed directly into classical machine learning algo-
rithms, the models perform well enough at simple tasks but fail once the goal becomes
reliant on the inherent complexity of textual data, such as broader context. For this
reason deep learning has dominated the field of NLP, as will be shown later on.

similarity = cos(θ) =
a⃗ · b⃗

∥a⃗∥ · ∥⃗b∥
(2.20)

The tasks that have to do with natural language texts are at least as many as the
uses for language itself. For this reason we will be focusing on the tasks that are the
most common and concluding on the most influential in the development of NLP AI.
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One of the most common tasks and perhaps the first to be attempted is text classifi-
cation (Kowsari et al., 2019). In text classification, the task is to use the information
in the text to predict to which class a part of the document (e.g. sentence, paragraph
etc.) or even the entire document belongs best from a pool of available classes. Ex-
amples of such problems are many and in many different fields (Jiang et al., 2018b;
Kowsari et al., 2017; McCallum et al., 1998; Kowsari et al., 2018). Text classification
is done by using a text encoder and applying either deep or classical machine learning
algorithms as they would usually be used on the encoded data. Encodings resulting
from deep learning algorithms perform better than their classical counterparts. The
next big problem is text similarity (Wang and Dong, 2020). Similarity and its down-
stream tasks such as keyword extraction and topic modeling are tasks that focus on
finding ways to measure the level of semantic similarity between documents, words,
or documents and words simultaneously. Given the intuitive properties of embeddings
(Figure 2.15) text similarity tasks are performed with ease mainly by relying mostly on
the method for embedding creation and metrics such as the cosine similarity between
vectors (equation 2.20). Lastly, tasks such as Named Entity Recognition (NER) (Mar-
rero et al., 2013; Mohit, 2014) and text normalization (Sproat and Jaitly, 2016), seek
to standardize the information of the text by locating areas of interest and annotating
them as such.

Figure 2.15: Word embedding properties. An intuitive property of word embeddings
is that vector translations correspond to semantic concepts. In the left example, trans-
lation of the point corresponding to ”man” by a vector A⃗, results to the point for
”woman”. This means that this translation signifies the notion of change of sex. Hence,
when the same vector translates the point for ”king” the resulting point will be very
close to ”queen”. (Obiedat et al., 2021)
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The tasks mentioned above, while common, could be performed by classical ma-
chine learning approaches to a certain degree. However, tasks such as text generation,
question answering, text summarization and dialogue understanding needed a way for
the text to be represented such that meaning could be completely encoded. The most
influential task that required such an approach, was the problem of translation. Transla-
tion is defined as a sequence prediction (translated text) task given an original sequence
(text to be translated). In translation, especially between languages that follow vastly
different syntax rules, it is very common to encounter cases where the text in the first
language differs in size compared to the text in the second one. Deep learning came as
a solution for this task as seen in the next section and this also paved the way for the
solving of many other demanding, related tasks.

2.2.3.A The Transformer

Deep learning has become the norm in complex NLP tasks, with many deep learn-
ing algorithms being constantly invented and used. The numerical features created
to represent text are not a product of manual work, but of the deep neural networks
themselves, allowing for information to be reached in new ways. The first model that
was widely adopted for the purpose of translation and overcame the limit reached by
classical machine learning algorithms was the Recurrent Neural Network (RNN) and
later a special type of RNN, the Long Short Term Memory (LSTM). Recurrent neural
networks are used in time series analysis as well as NLP for their ability to capture
sequential information. By employing hidden states, as they are called, RNNs can
encode sequences by passing information not strictly from the input, but from the
previous hidden state to create the output. The hidden states are also calculated by
taking into account the input and the previous hidden state. This creates a mechanism
analogous to memory, and can result in the network having better understanding of
sequential data; something extremely valuable in text related tasks.

Figure 2.16: Unit of an LSTM cell, folded (left) and unfolded (right) (Ku et al., 2023)
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However, the simple RNNs that employed a simple strategy for hidden state cal-
culation resulted in poor performance for tasks where the sequence was too long.
This happened due to simple RNNs’ problems with exploding and vanishing gradi-
ents (Manaswi, 2018). LSTMs came as a solution by proposing an architecture that
included ”gates”. The gates are used to control when information enters memory, re-
sulting in a retrieval of the most relevant information (Figure 2.16).

As a further improvement on sequence specific neural networks, the transformer
architecture was proposed by Google (Vaswani et al., 2023) in 2017 (Figure 2.17).
The transformer network is a text to text network that includes an encoder-decoder
combination that relies on attention mechanisms to preform both of those actions. The
network first passes the input text into the encoder to create the embeddings and then
into the decoder to give the target output text. Attention, simply put, is a way for
the model to map the relevant hidden states in the network’s memory to draw the
information from, in order to extract it optimally. Attention is calculated by taking
into account not only the hidden states but also the tokens’ positional encoding used
to retrieve the most important hidden states in memory. The result is an output that
takes into consideration global semantic information thus overcoming the barriers of
different syntax rules and broad context.

2.2.3.B The Bidirectional Encoder Representations from Transformers and the
Robustly Optimized BERT Approach

The Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2018b) came as an extension to transformer’s encoding block. The purpose
of BERT is to be a strong encoder whose produced embeddings can be used for a vari-
ety of tasks different that text to text. Essentially, BERT’s goal is to offer generalized
word embeddings. The architecture of BERT is multiple chained transformer’s encod-
ing blocks, the number of which ranges depending on what version of BERT we are
referring to. Two sizes of BERT were originally created; one was BERTBASE while
the other was BERTLARGE , the details of whom are presented in table 2.2.

Table 2.2: Architectures of BERT models

Model size
Number of

transformer
block layers

Hidden size
Number of

self-attention
heads

Total Parameters

BERTBASE 12 768 12 110M
BERTLARGE 24 1024 16 340M

BERT was trained initially with unlabeled data and then fine-tuned on labeled data
for several downstream tasks. The unlabeled initial training was done through two
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Figure 2.17: Model architecture of Transformer (Vaswani et al., 2023)
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tasks. Firstly, it was trained by using Masked Language Modeling (MLM), where a
percentage of words in a sentence are masked randomly and the model is called to pre-
dict the masked values, and then using Next Sentence Prediction (NSP). In NSP, BERT
received two sentences and was asked to predict whether those two were consecutive
or not in the original text. This was possible since BERT is capable of receiving two
sentences simultaneously as a single token sequence, allowing for tasks such as ques-
tion answering, through the use of special separation tokens. The pre-training allowed
BERT to learn a good representation of the textual data, and build on top of the initially
learned text representations through fine-tuning on downstream tasks. Fine-tuning was
performed on the tasks of classification, question answering and named entity recog-
nition.

In 2019, Meta Research published their findings regarding BERT; more specifi-
cally, they stated that the original BERT was under trained, and with proper training
could outperform State of the Art (SOTA) models that came afterwards. In their paper
named ”RoBERTa: A Robustly Optimized BERT pre-training Approach” (Liu et al.,
2019) they proposed a novel way of pre-training the BERT model. RoBERTa included
an increase of training data, training the data for longer with bigger batches, removing
the next sentence prediction objective, training on longer sequences and finally dy-
namically changing the masking pattern applied to the training data (Liu et al., 2019).
After the above changes in the initial training of BERT, it managed to once again reach
SOTA results in multiple benchmarks (GLUE, RACE, SQuAD), thus returning to the
forefront of research.



Chapter 3

Case: Deep Learning for Detecting Verticillium
Fungus in Olive Trees: Using YOLO in UAV Imagery

The Verticillium fungus(Ruggieri, 1946) is one of the largest and most widespread
causes of destruction in olive trees around the world. The fungus survives in soil
and can transmit through water (Pérez-Rodrı́guez et al., 2016; López-Escudero and
Mercado-Blanco, 2010). Controlling it is extremely challenging, since it has a wide
selection of alternative hosts and is able to initially manifest asymptomatically (Al-
strom, 2001). In order to protect the crops, it is of the utmost importance to accurately
detect and assess tree health at scale.

Recently image data collection has been facilitated thanks to advances in technol-
ogy, such as the improvement of cameras’ resolutions and Unmanned Aerial Vehicle
(UAV) technologies that enable automatic collection of data. Machine learning and es-
pecially deep learning has made it possible to analyse and classify such data accurately
(Fichtel et al., 2021). YOLO is one of the most used algorithms for such tasks. It has
been used effectively in tasks of tree damage detection from UAV imagery both for
parasite infestations(Safonova et al., 2022), and for environmental damage detection
(Puliti and Astrup, 2022).

The timely detection of Verticillium infections is a complex and time intensive task,
due to the nature of the disease, that as previously stated, initially manifests asymp-
tomatically. Until recently, skilled labor was needed to determine whether infection
has occurred. Still, in cases where the wilt had manifested in areas not visible to the
examiner, like the top of the tree, infection could go undetected and thus lead to dis-
ease spreading. In this context the objective of this work is to explore the potential of
the application of the YOLO algorithm and the SAM algorithm paired with convolu-
tional neural networks to detect Verticillium infections in olive trees. We have used
Red, Green, Blue (RGB) images captured with UAVs from three fields in northern
Greece during October and November, when the symptoms of the disease are more
pronounced. The images were used to train three different architectures of the YOLO
version 5 algorithm with promising results and one combination of the SAM-CNN al-
gorithm. By employing UAVs, we attempted to eliminate cases where infections were
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not visible to an examiner, and by using the machine learning methods we introduced
an objective way of determining tree infection with high accuracy and without the need
for time intensive human labor.

The structure of this effort is organized as follows. In the beginning background
information on the Verticillium fungus and the Unmanned Aerial Vehicles is presented.
Next, we list the work done by other researchers on similar tasks, focusing on the
application of YOLO on UAV tree imagery data. Then, we describe the materials
and methods used to conduct the experiment as well as information on the evaluation
processes that took place. The results of this research effort are presented afterwards,
both regarding the produced dataset as well as the machine learning models’ reached
performances. Lastly, discussion of the results and future work that is to be done as an
extension of this present work ensues.

3.1 Background

3.1.1 The Verticillium Wilt

Verticillium wilt of olive tree is caused by the soil-borne fungus Verticillium dahliae
Kleb. It is currently considered the main soilborne disease threatening olive production
worldwide. This disease was first described in Italy in 1946 (Ruggieri, 1946), followed
by California (Snyder et al., 1950) and Greece (Zachos, 1963). Descriptions of dis-
ease occurrence have been reported from 1970 and onwards in Turkey, France, Spain,
Syria, Morocco, Jordan, Algeria, Israel, Iran, Malta, and Australia (Geiger et al., 2000;
Jiménez-Dı́az et al., 1998; Levin et al., 2003; Naser et al., 1998; Porta-Puglia et al.,
2005; Sanei et al., 2004; Saydam and Copcu, 1972; Sergeeva et al., 2009) practically
covering all olive production zones. This disease is one of the most significant dis-
eases of olives causing every year big economic damages not only in terms of yields
but also in terms of trees that die decreasing thus permanently production potential.
(López-Escudero and Mercado-Blanco, 2010). One more factor affecting financial
sustainability is the fact that fruits of V. dahliae-infected trees have poor organoleptic
properties (Báidez et al., 2007). The fungus survives in soil by means of microsclerotia
which serve as primary inoculation means. Hyphae generated by microsclerotia ger-
mination penetrate the roots and grow toward the xylem vessels, producing mycelium
and conidia (Pegg and Brady, 2002).

The typical symptoms of infestation includes early drop of asymptomatic, green
leaves from individual twigs and branches that eventually end to complete defoliation
However there are cases that apoplexy is rapidly developing (acute form of the dis-
ease) (Blanco-López et al., 1984; Thanassoulopoulos CC, 1979; Zachos, 1963). The
symptoms are more evident from late fall to late spring. The blocking of xylem by
fungus mycelia reduces the water flow and leads to water stress (Ayres, 1978; Trapero
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et al., 2018) affecting amongst others, plant transpiration rates. Cultivation techniques
have contributed to fast dispersal of the disease worldwide. Infested plants that are
transported to new areas the means of new infestations, increased water levels in soil
help microsclerotia migrate to new areas infecting new olive trees (Pérez-Rodrı́guez
et al., 2016; López-Escudero and Mercado-Blanco, 2010). V. dahlia biology includes
specific traits that make control very difficult. The most important are the numerous
alternative hosts and the asymptomatic appearance of infested olive trees at initiative
stages of infection (Alstrom, 2001).

3.1.2 Unmanned Aerial Vehicles

Until recently, certain procedures required the presence of humans, either for pro-
cess monitoring purposes, or simply for carrying out tasks that needed human decision
making or dexterity to be involved. Due to the above, automation of such tasks was
considered practically impossible. However, the technological advancements made in
recent years have changed the landscape of applied technology and process automa-
tion along with it. Amongst those new technologies, one stands out for its flexibility
and performance in a wide enough array of tasks for it to be considered revolutionary:
unmanned vehicles.

Unmanned vehicles have made it possible for tasks to be carried out without human
involvement. They are separated into two main classes: ground, and aerial. Both have
their unique uses, and while there is a considerable overlap in some cases, in others,
they can be employed symbiotically (Lazna et al., 2018; Zoto et al., 2020; Vasudevan
et al., 2016). Cooperative applications of the two types of vehicles have resulted in the
automation of elaborate tasks, and have shown that these technologies can reduce if
not completely eliminate the need for human labor.

Figure 3.1: Categories of Unmanned Aerial Vehicles. (a) fixed-wing, (b) fixed-wing
hybrid, (c) single rotor, and (d) multirotor UAV. (Mohsan et al., 2022)

Unmanned aerial vehicles, also known as drones or UAV for short and henceforth,
are flying vehicles that do not require a human pilot to be present onboard for them to
be operated. However, in the majority of UAV operation cases, a pilot is still required
to drive the vehicle, remotely, from a Ground Control Station (GCS). In other cases,
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drones can have their operation procedure completely automated through the use of
smart systems that utilize artificial intelligence technologies to handle tasks such as
path planning and landing (Politi et al., 2022). Their size can range from a few cen-
timetres to a few meters. There are different categories depending on the usage of the
drone, with the two largest distinctions being the existence of wings and the number
of rotors (Figure 3.1). Unmanned aerial vehicles can have only one rotor or as many
as eight. Usually, multi-rotor vehicles are preferred for precision tasks, as they have
the ability to hover and stabilize themselves better, compared to single or double rotor
vehicles (Mohsan et al., 2022). UAVs can both collect data and analyze them in real-
time through equipment embedded in the drone, or simply collect the data and send it
to the ground control station for analysis; the first option requires on-board processors
with high processing power, while the second option requires a reliable connection
and a large enough bandwidth for the data to be transferred timely and accurately to
the station responsible for their analysis.

UAVs have seen a rise in popularity in the last few years due to their ability to
perform various tasks in a relatively short amount of time compared to conventional
means used for the same tasks in the past. More specifically, UAVs are known to offer
both an inexpensive (Gaffey and Bhardwaj, 2020; Pérez et al., 2013) and also a highly
flexible medium for real time monitoring tasks (Lee et al., 2017), making them a staple
in research efforts focused in showing results in a low budget setting. Their ability to
carry lightweight sensor equipment such as cameras, microphones, temperature, prox-
imity and acceleration sensors have widened the field of their potential uses (Pajares,
2015). Another factor that has contributed positively towards their usability is the ad-
vancement of the networking technologies responsible for the transfer of data between
drone and the ground control station.

For this reason unmanned aerial vehicles have dominated the field of research and
have been responsible for many recent breakthroughs in multiple fields of science. In
2022, researchers used UAVs equipped with low-cost sensors to monitor air quality
(Arroyo et al., 2022). Facilitated by the aforementioned flexibility and inexpensive-
ness of the drone technology, the researchers managed to achieve their goal without
employing costly specialized equipment, that was used until recently to perform this
task. In the same year, another team of researchers employed drones, this time with
camera equipment, to develop a car-free street mapping model (Lee et al., 2022). They
showed that it is possible to map a road network easily without cars and the subsequent
expenses.

The applications of UAVs are too many to list, but efforts have been made to map
the fields that are to become the main beneficiaries of this technology (Ahmed et al.,
2022). Namely, and as shown in Figure 3.2, those are agriculture, surveillance and
monitoring, transportation, building, delivery and inspection.
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Figure 3.2: Expected reach of UAVs in various applications (Ahmed et al., 2022)

3.2 Related Works

Unmanned aerial vehicles and machine learning have been a game changer in tree
image data collection and analysis, that used to rely solely on satellites until recently.
More specifically, in the case of tree image collection and analysis, it is shown (Fichtel
et al., 2021) that the two technologies when paired together, could provide a means to
analyze data with significantly lowered costs and at a much greater speed thus enabling
the accurate and timely detection of damages, both caused by weather conditions or
pests and disease.

The YOLO algorithm is ideal for tree image data detection and classification tasks
since it provides a unified solution for those two most common agricultural problems at
scale, with the added advantage of fast inference time; something that makes it suitable
for real time applications.

The combination of YOLO on UAV image data has been tested on multiple sce-
narios, with one of the most general of them being the simple detection of fruit trees
regardless of species in an orchard. In that research effort, the researchers deployed an
improved version of the YOLOv4 algorithm, and managed to successfully build a fast
and accurate model with 1380 RGB UAV images of varying resolutions that were aug-
mented through standard augmentation methods (change in orientation, brightness and
by adding noise) to a total of 3000 images. Their model achieved 98.21% Mean Aver-
age Precision (mAP), and 0.936 f1-score for canopy detection, showing that a model
like that can be an effective way to address tree detection tasks (Zhu et al., 2022b).

Moving to more specific situations, the implementation of YOLO on UAV tree
image data has been used to detect only trees of a specific genus (Tian et al., 2022) or
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species (Özer et al., 2022; Jintasuttisak et al., 2022; Aburasain et al., 2021; Chowdhury
et al., 2022; Wibowo et al., 2022). In all of those cases, the detection was not anymore
a matter of just detecting trees but the task had to be narrowed down to the correct type
of tree; something that was done with success, indicated by high classification scores
with multiple metrics (precision, recall, f1-score) in the above cases. The parameters
of the experiments is shown below, on Table 3.1.

Table 3.1: Research parameters of detecting specific trees with YOLO on UAV
images

Reference YOLO Version Tested Number of Images UAV Flight Altitude

(Tian et al., 2022) YOLOv5 - 50m
(Özer et al., 2022) YOLOv5 (s, m, x) 889 -

(Jintasuttisak et al., 2022) YOLOv5 125 122m
(Aburasain et al., 2021) YOLOv3 221 -

(Chowdhury et al., 2022) Improved version of YOLOv5 1,558 -
(Wibowo et al., 2022) YOLOv3,v4,v5m 17,343 200m

As seen from the table, the research efforts had a high level of experimental vari-
ance, with the number of images used ranging from 125(Jintasuttisak et al., 2022) to
17,343(Wibowo et al., 2022), the UAV flight altitude ranging from 50 meters(Tian
et al., 2022) to 200(Wibowo et al., 2022), while the versions of the YOLO algorithm
used were v3(Aburasain et al., 2021; Wibowo et al., 2022), v4(Wibowo et al., 2022),
and v5 (Tian et al., 2022; Özer et al., 2022; Jintasuttisak et al., 2022; Chowdhury et al.,
2022; Wibowo et al., 2022), with the last version having many different architectural
variants. Thus, it can be concluded that YOLO is more than capable to tackle problems
of detecting very specific objects from UAV images, thus allowing for finer detection
tasks to be undertaken.

Still, the two applications of the YOLO-UAV combination described above only
show the algorithm’s capacity to detect one class, whether it is trees in general or a
specific species. Research has been conducted to highlight the ability of YOLO to per-
form simultaneous detection of multiple classes. In (Safonova et al., 2022), researchers
deployed the YOLO algorithm on UAV images to detect predominantly spruce trees
damaged by the bark beetle. In that case, the classes that the algorithm was called to
classify the trees into were 4: green attack, yellow attack, red attack and grey attack;
essentially different levels of tree damage from the bark beetle. YOLO versions 2,3 and
4 were tested on 400 images taken 120 meters from ground level. There was significant
class imbalance on the training set (green: 312, yellow: 622, red: 76, grey:188) and the
validation set (green: 202, yellow: 400, red: 20, grey:61) (Safonova et al., 2022), with
the two sets having different class imbalances. Despite that, YOLOv4 along with the
author’s proposed method of image preprocessing, achieved impressive results with
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0.95 precision, 0.76 recall and a mAP of 0.94.
Another case study was that of (Puliti and Astrup, 2022), where the researchers

applied the YOLOv5 algorithm on a vast dataset of tree UAV image data, derived from
40,697 individual trees photographed during different times of the day, month and
year to detect snow damage on trees. The classes were healthy, damaged and dead,
while there was a great class imbalance; only 16% of the instances were damaged or
dead. Nevertheless, the classification evaluation metrics proved to be high, with the
small caveat that the different classes had significantly different results, with precision
ranging from 0.759 to 0.546 and recall from 0.78 to 0.40 (Puliti and Astrup, 2022) -
almost double.

Finally, in (Sun et al., 2022), research was conducted to spot trees affected by pine
wilt nematode, a fast spreading disease affecting forest areas. The disease starts from
the top of the affected tree and spreads to the bottom, making the use of UAVs ideal
since they provide a top view, allowing for an easy and early detection. In this research
effort, 116,012 images were taken at different heights ranging from 50m to 300m, and
the YOLOv4 algorithm was applied again with success (precision: 1, recall: 0.8969).

Based on the results of the research efforts mentioned above we can determine that
the YOLO algorithm can be used effectively in damage or disease detection on trees
that belong to a particular species. It was also shown that the algorithm was capable of
handling class imbalance but at the same time it would be possible for one class to be
more easily detectable than another; sometimes with large differences.

3.3 Methodology

Our areas of study were three olive fields, Field A, E and K, located in Northern
Greece (Figure 3.3), photographed at midday between the 5th of October and the 4th
of November of 2022. The UAV used to gather the images was an Air Surveyor 4
equipped with a SONY ILCE-6000 camera. The camera was running the 3.21 version
of its software, and captured images at 8 × 10−4 seconds exposure time, with the use
of a SAMYANG AF 24mm F2.8 lens. The produced RGB images where 6000x4000
pixels.
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Figure 3.3: Locations of the olive fields

After the images were collected by the UAV, they were separated depending on
what field they originated from and images from the same field were stitched together
to create an orthomosaic. Every created field orthomosaic was then cut in tiles of size
3000x2000 (pixels) and was annotated with the use of the Labelimg package (Figure
3.4) to create the data that was provided to the YOLO algorithm.

The annotations were produced in the YOLO format, where for each image a text
file with the same name storing the results of the annotation was created, and in every
text file, each instance (tree) was represented as a line of text. The annotations had the
form of bounding rectangles, and were represented in text as follows: the first number
in the line conveyed the class to which the instance belonged, encoded as an integer,
while the next four numbers represented the coordinates of the bounding boxes, with
the first two being the centers of the bounding box in the X and Y axis divided by the
height and width of the image respectively, and the last two being the width and height
of the bounding box divided by the height and width of the image respectively.
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Figure 3.4: Annotating trees with bounding boxes through the Labelimg graphical
interface

The classes that every tree was classified into were two: either damaged or healthy.
The annotation process had two parts: initially, the bounding boxes were created by
visually determining the borders of each tree, while the second part - the class anno-
tation - was performed by experts based on what constitutes as damage caused by the
verticillium wilt - the damaged trees had visibly altered color, a result of the withering
effect that the wilt has on olive tree leaves (Figure 3.5).

Figure 3.5: Comparison of a damaged tree (left) and a healthy one (right).

The annotated images were randomly split in train, validation and test datasets. The
split happened so that the training dataset contained 60% of the data while validation
and testing contained 20% each. To avoid providing the algorithm with datasets of
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different percentages of damaged trees, and thus, to ensure that the three fields were
equally represented in the splits, the splitting of the data was stratified to account for
the field from which the tiles originated.

The YOLOv5n, YOLOv5s and YOLOv5m models were applied on the dataset at
two different image scales, utilizing network weights created from pre-training on the
COCO128 dataset. The models were trained on a desktop computer equipped with an
Intel(R) Core(TM) i7-10700 Central Processing Unit (CPU) running at 2.90Gigahertz
(GHz) and 16 Gigabyte (GB) of Random-Access Memory (RAM). The results were
evaluated with the metrics commonly used in evaluating YOLO model performance,
that are described in detail below:

• Precision:
TP

TP + FP
(3.1)

• Recall:
TP

TP + FN
(3.2)

where TP = true positives, FP = false positives, FN = false negatives.

• Mean Average Precision or mAP, which is the mean of Average Precision (AP)
values calculated for a certain threshold (e.g. mAP[0.5]: mAP for threshold
value of 0.5) or range of thresholds (e.g. mAP[0.5:0.95]: mAP for threshold
values of 0.5 up to 0.95 with a step of 0.05) for all classes:

mAP =
1

n

∑
n

APn (3.3)

with
APn =

1

101

∑
r∈{0.0,...,1.0}

max
r̃≥r

PRC(r̃) (3.4)

, where PRC is the precision-recall curve, r̃ is the 101-point interpolated recall
value and n is the class.

The thresholds above are referring to the minimum value of Intersection over Union
(IoU) over which a classification is considered correct. The IoU is defined as the
intersection area of the real bounding box and the predicted bounding box divided by
the union area of the two boxes.

As a further step towards the direction of creation of high performant image clas-
sifiers, we compared the results of the best YOLOv5 model with a convolution neural
network classifier trained with resized images that were the result of segmentation.
More specifically, the images that corresponded to each of the three datasets (train-
ing, validation, testing) were passed to the Segment Anything Model prompted by the
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same bounding boxes that the YOLO algorithm was trained on, to create high precision
object masks and consequently segmentations of individual olive trees.

3.4 Results

3.4.1 Data Collection and Dataset Processing

The three fields that were the subject of our research were photographed at different
times between the 5th of October and the 4th of November of 2022, shown in detail
below, in Figure 3.6.

Figure 3.6: Date and time when images where captured

In total, 429 images were captured out of which 137 were in Field A, 152 were in
Field E, and 140 where in Field K. The images had a high level of overlap and were
captured in sequence. These images created three orthomosaics, one for each field,
and then cut into tiles. The tiles created were 160 with almost every field having the
same number of them (Field A: 50, Field E: 55, Field K: 55).

The total number of annotation instances (trees or parts of trees) that were created
originally was 3038. However, the three fields varied greatly in terms of percentage of
damage done by the verticillium wilt (Table 3.2).

Table 3.2: Number and percentage of damaged trees for every field
Field A Field E Field K

Number and percentage of healthy instances 804 (92.94%) 927 (98.82%) 1102 (89.23%)
Number and percentage of damaged instances 61 (7.05%) 11 (1.17%) 133 (10.76%)
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To tackle this problem, stratified shuffling, available through the Scikit-Learn Python
library (Pedregosa et al., 2011b), was employed during the train-test-validation split
and its use resulted in datasets of almost equal percentage of damaged trees (Table
3.3). The stratified shuffling method creates datasets by sampling without replacement
from the original dataset, while also taking into account the class of the samples, so
that every resulting dataset contains the same distribution of classes. The created train,
validation and test datasets contained 60%, 20% and 20% of the total images (Train:
96 images, Validation: 32 images, Test: 32 images), respectively.

Table 3.3: Number and percentage of damaged trees for every dataset after
stratified splitting of data

Train Validation Test

Number and percentage of healthy instances 1610 (92.36%) 591 (93.95%) 631 (94.74%)
Number and percentage of damaged instances 133 (7.63%) 38 (6.04%) 35 (5.25%)

3.4.2 Application of the YOLOv5 Algorithm

The training, validation and testing datasets whose creation was described above,
were provided to three architectures of the YOLOv5 algorithm to train and make pre-
dictions on. The architectures were YOLOv5n, YOLOv5s and YOLOv5m with the last
letter of the model name referring to the size of the model architecture (nano, small,
medium). Given that the dataset had high class imbalance (see Table 3.3), in order to
ensure that the frequency of occurrence of the dominant class does not cause the model
to optimize only for that class, we weight the penalty for false predictions by multiply-
ing the loss of each class by the inverse frequency of that class. This technique is often
adopted in classification tasks with high class imbalance to ensure equal performance
metrics between classes(Huang et al., 2016; Mahajan et al., 2018; Mikolov et al., 2013;
Wang et al., 2017). Additionally, the build-in method of --image-weights was
employed, that sampled images by taking into account the proportion of each class’s
instances present in each image, thus, downsampling images with high proportional
content of the dominant class and vice versa.

The models were trained for 300 epochs with early stopping enabled with a pa-
tience of 100 epochs. The patience mechanism would restore the best weights of the
models if for 100 epochs no advancement was made in the model fitness metric. The
model fitness metric in this case was calculated as the weighted sum of the mAP[0.5]
and mAP[0.5:0.95] metrics, a combination widely used in the literature (Chen et al.,
2023; Bjerge et al., 2023; Kubera et al., 2022), as shown below:
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modelfitness =
[
0.0 0.0 0.1 0.9

]


Precision

Recall

mAP@0.5

mAP@0.5 : 0.95

 (3.5)

The model batch size used was 16, and the three models were trained with two dif-
ferent model input sizes each, with one size being 1216x1216 and the other 640x640.
The model input translates to size of input image in pixels.

Table 3.4: Model training fitness statistics

Architecture Model input size Max fitness epoch Max model fitness reached

Nano 640x640 282 0.577714
Nano 1216x1216 300 0.569750
Small 640x640 208 0.587946
Small 1216x1216 269 0.616960

Medium 640x640 263 0.640254
Medium 1216x1216 262 0.652587

The evaluation of the models was done on the testing set that was held aside for that
purpose. The models’ performances are shown in Figure 3.7, where model YOLOv5m
with model input of size 640x640 managed to outperform all other models in every
metric and for every class.

Figure 3.7: Model performances on testing data

The speed statistics of the model application pipeline are shown below, in table
3.5. The three columns displayed are the preprocessing speed, that refers to the time
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it took for the model to transform the input image into a pytorch array and rescale its
values, the inference speed, that is the time the model spent detecting bounding boxes
within the image and predicting the corresponding class, and lastly the Non-Maximum
Suppression (NMS) speed, showing the time Non Max Suppression needed to be per-
formed on the predicted bounding boxes of the previous step to exclude overlapping
boxes.

Table 3.5: Model application on the testing set speed statistics (in milliseconds,
per image)

Architecture Model input size Preprocessing speed Inference speed NMS speed

Nano 640x640 1.0 94.7 5.9
Nano 1216x1216 1.0 77.5 2.5
Small 640x640 1.0 178.9 2.4
Small 1216x1216 1.0 168.0 1.5

Medium 640x640 1.3 328.8 1.5
Medium 1216x1216 1.0 318.0 2.0

Since depending on the hardware these speeds are bound to change, we should
focus on the relative difference between each model’s speed. The table showcases
an interesting detail: models using the reduced input size of 640x640 required longer
to infer the contents of the images. Also we can see that as the model architecture
increases in size, inference time also increases while NMS time drops. This is an
expected outcome as with larger models more calculations must be performed but since
these calculations tend to lead to better results, NMS time is decreased as it is not
needed as much to sort out the erroneous predicted bounding boxes.

3.4.3 Application of the Segment Anything Model paired with Con-
volutional Neural Networks

The Segment Anything Model was applied to each image of every dataset. The
datasets used were those created after the stratification procedure (table 3.3) as a way
to standardize the experiment parameters between applications of the different algo-
rithms. Each of the images in the datasets was passed to SAM to create the object
segmentation masks. SAM was prompted with the bounding boxes produced during
the labeling procedure that took place in the original data annotation phase. This re-
sulted in 3047 individual tree image masks. The resulting segmentation masks were
used to create images where only the tree was visible with the rest of the image being
black (Figure 3.8).
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Figure 3.8: Application of the Segment Anything Model on the aerial images. The
green box outlines are the manually created tree annotations used as prompts for the
SAM model.

The images were resized to the size of 150x150 pixels and passed to a convolu-
tional neural network whose architecture consisted of three consecutive pairs of con-
volutional and max pooling layers, followed by a dense layer of 1024 nodes that finally
led to a single node responsible for the classification. The activation functions of the
network were ReLu for all layers with the exception of the last, single node layer, that
used a sigmoid activation function.

The neural network was set to train for 50 epochs but with early stopping enabled
and a patience of 5 epochs, trained for only 8. This was not surprising considering the
simple nature of the task, and the fact that the data were now clear of noise. Still, the
results reached were phenomenal. More specifically, the combination of SAM-CNN
managed to reach a precision of 94.66% a recall of 100% and an f1 score of 97.25%,
thus surpassing even the best YOLOv5 model regarding the task of classification.

3.4.4 Result Evaluation and Discussion

All YOLO models tested were close in terms of performance, with model m640
outperforming them all by a small margin in most cases. A possible explanation as
to why model m640 managed to do that, could be due to a pattern shown in the re-
sults. We can generally see that as input size decreases and model capacity increases,
the performance increases. This pattern indicates that for the task at hand, models
with high capacity are needed to capture the necessary information for a successful
classification. This also works in reverse: input of smaller size reduces the needed
model capacity. Few things should be noted relative to the models’ performances: The
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first general pattern observed is that every YOLO model consistently achieved lesser
scores when it came to predicting the damaged class. That could be something that
can be attributed to the relatively few instances of that class present in the training
set. This is a known problem, that affected previous research efforts; even those that
have had datasets of considerable size. In (Puliti and Astrup, 2022), even though a
total of 40,697 trees were used to train the model, the class that was the most under-
represented, consistently achieved the lowest scores. More precisely, instances of that
class achieved precision, recall, mAP@0.5 and mAP@0.5:0.95 of 0.546, 0.40, 0.45
and 0.24, respectively, with the instances themselves making up 4% of the total cases.
That was in contrast to the metrics of the other classes that outperformed the metrics
of the underrepresented one by 12% to 38%. Nevertheless, the metrics reached in our
case, were satisfactory, especially considering that the algorithm was trained with so
few training images, and showed that YOLOv5 models of varying architectures can be
utilized to detect trees in UAV imagery and classify their health status effectively. This
was an indication that depending on the specific dataset used, the same version of the
YOLO algorithm can have quite different results.

The second pattern of the models’ performances that should be noted is that the
metrics of the damaged class were the most sensitive to the choice of model architec-
ture, having the highest variability in precision, recall, mAP@0.5 and mAP@0.5:0.95.
This could be due to the nature of the appearance of the damaged class, that is more
dependent on model architecture to be detected correctly.

YOLO and YOLO-based models have shown that they can be effectively used for
real-time agricultural applications. In (Liu et al., 2022), researchers came up with a
model based on the lightweight YOLO v4-tiny model, that could detect seedling maize
weeds in real time, with the detection speed reaching 57.33 f/s. It is necessary to note
that real time applications also depend on the available and used hardware, as inference
times are highly dependent on processing power. Especially in UAVs, the ability of the
YOLO model to be lightweight enough but at the same time capable of high quality in-
ference is of critical importance, since typically, hardware of higher processing power
are of larger size and weight, requiring larger and thus more expensive UAVs. With
our model’s inference speed (77.5ms-328.8ms), we can deduce that the trained model
can be used in real time or near real time applications in precision agriculture tasks.

Regarding the application of SAM-CNN, given the difference in tasks of the two
algorithms, a direct comparison between YOLO and SAM-CNN is not possible, how-
ever we can confidently note that in a real world scenario where instant object detection
and classification is needed, YOLO is far more functional, but in a scenario where high
performance classification is more important and object bounding boxes are available,
the SAM-CNN algorithm has the upper hand. Hypothetically, a pipeline consisting of
a YOLO model whose outputs of bounding boxes could be passed to SAM to create
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object segmentations and classify them with a CNN at a much higher quality would be
ideal.

As an extension of the current research effort, future work will include application
of the presented machine learning object detection and classification pipeline on ther-
mal and near infrared images, with the final aim of early detection of the existence of
Verticillium wilt on olive trees.



Chapter 4

Case: RoBERTa-Assisted Outcome Prediction in
Ovarian Cancer Cytoreductive Surgery using
Operative Notes

Contemporary efforts to predict surgical outcomes and postoperative complications
usually focus on the associations between traditional surgical risk factors, including
age or preoperative albumin (Uppal et al., 2013; Barber et al., 2015). In addition to
risk factors in discrete data fields, we now have access to abundant textual data within
the digital medical records. In the era of healthcare digitalization, the increasing imple-
mentation of Electronic Health Records (EHR) at UK Hospitals has created valuable
data sources for clinical and translational research (Economics, 2019). Although EHRs
hold structured data, a large proportion of clinical notes are in narrative text format.
It is estimated that unstructured data accounts for more than 80 percent of currently
available healthcare data(Martin-Sanchez and Verspoor, 2014). Reading note text and
extracting information is resource intensive. Artificial Intelligence (AI) has emerged
as a potential solution in harnessing these data.

More specifically, Natural Language Processing (NLP) is the AI discipline that fo-
cuses on extracting information form texts by converting narrative clinical notes into
a structured format. The NLP methods have been shown to achieve remarkable re-
sults in such tasks using hundreds to thousands clinical notes (Spasic and Nenadic,
2020). Their implementation has been promoted and accelerated during the COVID
era (Zhu et al., 2022a). Nevertheless, clinical research has been heavily affected by the
underutilization of unstructured data from EHRs (Seol et al., 2019).

Amongst the best NLP models employed to date, the Bidirectional Encoder Repre-
sentations from Transformers (BERT) model was created by Google in 2018. Thanks
to its architecture, it can extract information from texts by considering bidirectional
contextual information (Devlin et al., 2018a). BERT’s advanced information extrac-
tion capacities when combined with the fact that traditional NLP methods such as
Word2Vec have shown promising results in classification tasks in clinical settings (Bar-
ber et al., 2021b), can lead to the reasonable expectation that a BERT-based classifica-
tion model would outperform previously used methodologies.

52



53 4.1. Methodology

Since 2018, several augmentations occurred, with Facebook publishing the Ro-
bustly Optimized BERT Approach (RoBERTa) language model in 2019 (Liu et al.,
2019), surpassing previously set records. The RoBERTa is a late, robust, unsupervised
pre-trained language model that can be used in the context of supervised tasks with
outstanding results (Wang et al., 2018).

Undoubtedly, the abundance of clinical information is locked in clinical narratives.
Documentation of EHRs is now developing into standard practice. For instance, the
surgeons spend significant time documenting and reading, amongst other tasks, narra-
tive descriptions of operative reports and findings (Rosenbloom et al., 2011). Devel-
oping tools to facilitate clinical review of these unstructured data can derive clinical
meaningful insights for advanced Epithelial Ovarian Cancer (EOC), a heterogeneous
disease. Compared to standard approaches, they can potentiate condensation of results
from several tasks and optimize analysis time. One aspiration could be the prediction
of no residual disease (R0 resection) following cytoreductive surgery for EOC. Such
task of confirming macroscopic clearance remains subjective (Laios et al., 2022b),
to the point that photographic ”mapping” has been recommended that allows for an
assessment of the surgical effort at primary surgery or provides a baseline for deter-
mining the effect of neo-adjuvant chemotherapy at delayed surgery (Jones and Mo-
hamed, 2020). As a result, most of the quantitative intra-operative assessment tools
have mainly focused on their predictive value for suboptimal surgery (Hosoya et al.,
2022). To improve modern care, application of NLP tools could be useful to determine
whether processing of unstructured full text documents improves the ability to forecast
outcomes in clinical conditions with significant heterogeneity such as EOC.

In this work, we utilized the pre-trained RoBERTa-base language model to predict
whether residual disease persists in EOC patients following their cytoreductive surgery.
We hypothesized that operative notes contain valuable information associated with
surgical outcomes. We aimed to develop an NLP methodology that would address the
objectiveness of R0 resection through information hidden in unstructured operative
notes.

4.1 Methodology

4.1.1 Dataset Collection

Electronic Health Records EHR were queried to identify women with advanced
EOC who underwent cytoreductive surgery at St James’s University Hospital, Leeds
from January 2014 to December 2019. The modern EHR dataset included the fol-
lowing clinical features; diagnosis codes (ICD-10 codes), procedure codes (OPCS-4
codes), age at diagnosis, grade, stage and operative notes with findings. An inter-
nally developed advanced EOC clinical database was integrated with the EHR system
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Figure 4.1: The components and the flow of the machine learning pipeline applied in
our case

(Newsham et al., 2011) to provide availability of discrete and engineered data. In-
stitutional research ethics board approval was obtained through the Leeds Teaching
Hospitals Trust (MO20/133163/18.06.20), and informed written consent was obtained.
The study was added to the UMIN/CTR Trial Registry (UMIN000049480). Treatment
was pre-operatively planned at the weekly central gynecological oncology MultiDis-
ciplinary Team (MDT) meeting prior to patient review. The cohort details, hospital
setting, indications for surgery and surgical procedures have been described in previ-
ous studies (Laios et al., 2022b,c). Comprehensive visual assessment of all the areas
of the abdomen and pelvis was routinely performed, and no visible residual disease
was documented as R0 resection. The analysis took place in three steps: Firstly, words
and combinations of words were analyzed based on their frequency and the case they
concerned. Following the initial descriptive text analysis, the RoBERTa classifier was
employed to predict case outcomes based on operative notes. Lastly, an XGBoost clas-
sification model was tasked with predicting the same outcome, this time using tabular
discrete data, but also the probabilities that were derived from the RoBERTa classifier
of the second step. A Flowchart of our approach is shown in Figure 4.1.

4.1.2 Textual descriptive analysis

For the analysis of the text, word frequencies were calculated, and tables were
created using the most common words and n-grams. N-grams are continuous word
sequences of words, as they could be found in the text. The length of the n-grams can
be as small as one, meaning one word, or as large as the entirety of the text. N-grams
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are important because they carry contextual information more than simple words do.
To find the n-grams that best discriminated between the two cases, we performed an
analysis based on the Term Frequency – Inverse Document Frequency (TF-IDF). The
TF-IDF is a metric used to quantify n-gram importance in a particular document (Tang
and Ng, 2006). The score, as implied by its name, is a function of the number of times
the n-gram appears in the document adjusted for the number of times it appears in the
rest of the documents, as shown also in equation 4.1.

tfidfi,j = tfi,j ∗ log
N

dfi
(4.1)

Where:

• tfi,j is the number of occurences of n-gram i in document j

• dfi is the number of documents containing i

• N is the total number of documents

For each of the two possible outcomes (R0 resection vs non-R0 resection) we com-
piled a document consisting of the concatenation of all the individual notes that con-
cerned this outcome. The words inside the documents were reduced to their lemmas, to
make the analysis more representative of the real n-gram frequency without account-
ing for word conjugation. The two resulting documents were inputted to Sklearn’s
TfidfVectorizer, that was tasked with assigning scores per n-gram, per document. A
high TF-IDF score for an n-gram in a document signifies n-gram importance to this
document. The TF-IDF n-gram scores for the documents reporting non-R0 resection
were then subtracted from the TF-IDF scores for the documents reporting R0 resec-
tion. This way, the higher the absolute difference in scores, the higher the ability of the
n-gram to discriminate between the two cases. Positive difference scores show that the
n-gram belongs to R0 resection case notes, while negative scores show the opposite.

4.1.3 Natural language classification with RoBERTa

We utilized the pre-trained RoBERTa-base language model to extract information
from the unstructured surgical notes through transfer learning. Transfer learning is the
process of re-training part of a pre-trained model on specific data to fine-tune its per-
formance for a specific task. The initial training often uses vast datasets that hold most
of the information relevant to the task at hand. Re-training allows for finer details to
be captured by the model. The main advantage of transfer learning is that the resulting
model can reach high performance without needing to use large amounts of data. The
RoBERTa-base language model is a RoBERTa language model pre-trained on a large
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corpus of English data using the BERT-base architecture and has 125 million parame-
ters (Liu et al., 2019). The surgical data was used to train and test the model at a ratio
4:1. The model was trained for 40 epochs. Discrimination was measured using the
most common performance metrics for classification tasks, namely with:

• Accuracy = TP+TN
TP+TN+FP+FN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1-score = 2∗Precision∗Recall
Precision+Recall

• Area under the Receiver Operating Characteristic curve (AUROC)

• Area under the Precision-Recall curve (AUPRC)

Understanding how the RoBERTa reached the conclusions is essential in evaluat-
ing its performance. For such an extremely complicated model, tracing the individual
impact of the text tokens on the final prediction is a task requiring advanced decompo-
sitional methods. In this effort, we employed the transformers-interpret Python library
(Pierse, 2021) to explain and visualize the factors that contributed to the model’s pre-
diction accuracy. In turn, the library employs the captum model interpretability and
understanding library (Kokhlikyan et al., 2020). Using integrated gradients, the li-
brary evaluates the contribution of each input feature to the model output of the model.
The net result is an attribution score for each token; that is positive when the token
contributes towards class prediction, and negative in the reverse scenario.

As a final step, we employed a surrogate model in order to augment the explain-
ability effort. In this context, a surrogate model denotes a simpler model compared to
the powerful original one (in our case RoBERTa), whose outputs are interpretable. The
surrogate model trains on the outputs of the original, and through its interpretable co-
efficients, offers a way to access the decision process of the complex, original model.
The surrogate model used was a simple logistic regression. The dependent variable
was the RoBERTa predictions in the form of binary integer values, created by setting a
threshold of 0.5 on the original probabilities, while the independent variables were the
TF-IDF sentence vectors created through the method of TF-IDF vectorization. In this
way, the aim was two-fold: The surrogate model would serve both as an explainer and
as a conceptual link between the RoBERTa outputs and the TF-IDF scores created in
the descriptive analysis.
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4.1.4 XGBoost classification model

Subsequently, we trained an XGBoost model (Chen and Guestrin, 2016) to predict
R0 resection using a combination of structured and unstructured data sources. The
independent variables included the Aletti Surgical Complexity Score (SCS), the size
of the largest bulk of the disease in centimetres, the age of the patient, the Pre-Surgery
CA125, the IntraOperative Mapping of ovarian cancer (IMO) score, the operative time
in minutes, the Estimated Blood Loss (EBL), the Pre-treatment CA125, the tumour
grade encoded as a binary variable, the Peritoneal Carcinomatosis Index (PCI), the
timing of surgery (encoded as a binary variable where primary debulking equalled
0 and interval debulking surgery equalled 1), the ANAtomic FIngerprints (ANAFI)
score, and the probabilities that the RoBERTa classifier outputted when solely tasked
to predict R0 resection (real number in the interval of 0 to 1). The PCI and IMO scores
were calculated at the beginning of surgery to describe the intra-operative location
of the disease (Jacquet and Sugarbaker, 1996; Sehouli et al., 2003). The Aletti SCS
was assigned to describe the surgical effort (Aletti et al., 2007). The ANAFI score
is an AI-derived novel intra-operative score that assigns specific weights to the EOC
dissemination patterns (Laios et al., 2023). It appears to be more predictive of R0 re-
section than the entire PCI and IMO scores whilst it retains its prognostic power. Most
of these discrete and engineered data predictors have been interrogated in previous
studies (Laios et al., 2022b,c, 2023, 2021, 2022a).

The hyperparameters of the XGBoost model were selected by using an exhaustive
grid hyperparameter search. The grid search also implemented cross validation. The
hyperparameter grid is shown in Table 4.1. The feature importance was determined
using the SHAPley Additive Explanations (SHAP) framework to interpret the model’s
predictions based on the Shapley values (Lundberg et al., 2020).

4.2 Results

4.2.1 The Dataset

Using the ICD-10 code for EOC, we identified 555 cases of EOC cytoreduction
performed by eight surgeons between January 2014 and December 2019. This cohort
has been previously described (Laios et al., 2022b,c). Some basic descriptive statistics
are shown in Table 1. The rate of complete cytoreduction was 65.4%.

4.2.2 Textual descriptive analysis

Discrete word clouds weighted by n-gram TF-IDF score difference (Table 2) be-
tween R0 and non-R0 resection were identified (Figure 4.2).
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Figure 4.2: N-gram word clouds for findings notes where residual disease is non zero
(left) and zero (right)

The words ”normal” and ”miliary” best discriminated between both groups. For
non-R0 resection prediction, these included n-grams related to the EOC dissemination,
such as ”omental cake”. The appearance of the cancer was best described by the pre-
dictive n-gram ”miliary disease”. The average word count was 320±98 vs 292±105
in case notes with non-R0 vs R0 resection, respectively. The average stop word count
was 11.22±6.27 vs 9.86±5.89 in case notes with non-R0 vs R0 resection, respectively.

4.2.3 Natural language classification with RoBERTa

The model reached high evaluation metrics (Area under ROC 0.86; area under
precision-recall curve 0.87 , precision, recall and F1 score of 0.77 and accuracy of
0.81 (Figures 4.3, 4.4 and 4.5)), surpassing even specialized BERT and DistilBERT
models tested (BioBERT (DMIS-Lab): R 0.6, P 0.84, F1 0.7, ACC 0.79, AUROC
0.84, AUPRC 0.84, ClinicalBERT (Medicalai): R 0.68, P 0.72, F1 0.7, ACC 0.76,
AUROC 0.82, AUPRC 0.82 and BioClinicalBERT (Alsentzer et al., 2019): R 0.64,
P 0.76, F1 0.69, ACC 0.77, AUROC 0.81, AUPRC 0.79).. The true positives, true
negatives, false positives and false negatives were 35, 56, 10, 10 respectively.
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Figure 4.3: Receiver operating characteristic curve and area under the curve for the
RoBERTa classifier
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Figure 4.4: Precision-recall curve and area under the curve for the RoBERTa classifier
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Figure 4.5: Confusion matrix for the RoBERTa classifier

The explanations of the model’s predictions were visualized in a highlighted text
plot, where negatively contributing tokens are coloured as red, and positively con-
tributing tokens are coloured as green, whereas the colour intensity is translated to an
attribution score strength (Figure 4.6).

As shown in the figure, it is easy to discern the fact that there is a correlation be-
tween word contribution to the prediction and TF-IDF score difference. This makes
sense, as n-grams with high TF-IDF score difference tend to discriminate better be-
tween the two cases. However, it is equally important to see that not all words that
have high prediction contribution score appear as entries in table 2. That is due to the
fact that since RoBERTa is able to capture contextual meaning spanning several words
that could also be non sequential, it is possible that local information that wasn’t ap-
parent though simple TF-IDF analysis was now deemed as important to the prediction.

The results of the surrogate logistic regression model employed, further reinforce
the results acquired from the RoBERTa model. Specifically, n-grams that reached
high TF-IDF difference scores (Table 2), appeared as top coefficients in the logistic
regression, in either direction (Figure 4.7).

4.2.4 XGBoost classification model

The XGBoost model that employed both discrete features and the probabilities
from the RoBERTa classifier was then trained on the same training data set as the
RoBERTa. The grid hyperparameter search resulted in 180 model evaluations with the
best combination of hyperparameters shown on table 4.1 alongside the search spaces.
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Figure 4.6: Explainability on the RoBERTa inference on textual data. The green high-
lighting indicates the section of text that contributed positively in the classification of
the note as belonging to the assigned class, while the red highlighting indicates the
opposite. Examples are text instances correctly classified as describing cases where a)
residual disease persisted and b) no residual disease persisted after surgery
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Figure 4.7: The top 10 n-grams with the lowest (green) and highest (red) coefficients
of the logistic regression model. The negative sign denotes non-existence of residual
disease and vice versa.
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Table 4.1: Hyperparameter search space of grid search and chosen parame-
ters

Hyperparameter Search space

Chosen
hyperpa-
rameter
value

max depth [4, 6, 8, 10] 4
n estimators [500, 800, 1200] 500
learning rate [0.01, 0.03, 0.08] 0.01
colsample bytree None 0.5

For the XGBoost model, while precision, recall, f1 score and accuracy remained static,
a marginal performance improvement was demonstrated as shown by the AUPRC and
AUROC reaching 0.91. The RoBERTa probabilities, when used as a prediction feature
performed significantly better than discrete features, but also engineered features such
as the ANAFI score (Figure 4.8).

4.2.5 Result Evaluation and Discussion

In this proof-of-principle study, we demonstrated the capability of the RoBERTA
classifier to extract and process information from unstructured operative note formats
that can enable important clinical tasks, such as R0 resection prediction following
EOC surgical cytoreduction. We showcased how EHRs can be a helpful data source
for supporting surgeon’s activities by automated data coding for quality assessment,
while reducing the burden for chart review. As an estimated 70% of clinicians report
EHR-related, specialty-specific burnout (Gardner et al., 2019), this information may
guide healthcare organisations how to remediate burnout amongst their staff. Equally,
we surmise this effort can help establishing interoperability standards of surgical nar-
ration to ensure objectivity, when it comes to reporting residual disease. Working with
EHR data is relatively challenging due to data heterogeneity. Being able to quickly
retrieve important information stored in surgical narratives carries the potential to im-
prove understanding of patient journeys and identify subgroups of patients for research
purposes. For those reasons, the design and application of a system that could offer
the NLP AI-derived insights directly to the surgeon in real time would be extremely
beneficial. The system could offer an objective feedback on written notes. A study on
the effects of such a system should be investigated.

The driving motivation behind this effort was to explore the potential of using the
RoBERTa algorithm in the EOC domain. This transformer architecture has been re-
cently used to extract adverse drug events from biomedical text to monitor drug-safety
(Jain et al., 2021). Barber et al initially developed an NLP-augmented algorithm that
improved the ability to predict postoperative complications and hospital readmissions
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among women with EOC undergoing surgical cytoreduction (Barber et al., 2021a).
They compiled discrete data with different types of NLP features from unstructured
clinical notes, and sequentially employed machine learning to build new sets of fea-
tures. Herein, we purely used a novel NLP tool that recognizes the specific local
textual context thus enabling a recommendation concerning the prediction of residual
disease. Preprocessing steps contributed to the rather high AUROC of 0.86, which
shows how surgeons tend to capture more of the predictive information in their words.
This “hunch” critically layered upon situational awareness and human factors has been
addressed in Laios et al. (2022b). The model specificity was higher than its sensitivity,
which is critical, should this be used as a cancer screening tool for quality control.
Reports of surgical findings are less restrictive in vocabulary than other EHRs but their
efficiency at scale has never been previously examined. They do not usually contain
highly complex sentence structures, so they are not incorrectly abstracted as a result.
By avoiding the model to make assumptions, this advantage would potentially explain
the high-performance accuracy.

More importantly, we demonstrated a distinct pattern of word differential expres-
sion between R0 resection and non-R0 resection operative notes from 555 surgical
events. While survival is the ultimate treatment outcome, prediction of residual dis-
ease is a key issue in the advanced EOC trajectory. This disease quantification can
valuably complement work using AI to predict EOC-specific surgical outcomes (Laios
et al., 2022b,c, 2023, 2021, 2022a) and validate the paradigm shift towards complete
clearance to improve the survival outcomes of these patients (Jong et al., 2022; Laios
et al., 2022b). The use of language in medicine is often underestimated not that all Gy-
naecologic Oncology Surgeons speak the same language (Brennan and Moran, 2021).
While addressing the need to improve standardization and reproducibility of surgi-
cal outcomes, we made some interesting observations. Despite several words or n-
grams being commonly shared between examined surgical outcomes, several descrip-
tive words were found to be predictive of residual disease. For instance, the words
“stuck” and “adherent” tend to describe a more complex and morbid surgery; dis-
semination leading to residual disease was best described by “(small volume) miliary
disease” or “miliary in all peritoneal surfaces”. “Excellent response to chemo” was
clearly an obvious indication to achieve R0 resection. Notably, the “completion of
cytoreduction” (CC) scoring system was developed to evaluate the extent of resec-
tion for peritoneal malignancies (Jacquet and Sugarbaker, 1996). We clearly showed
that the word “miliary” if quantified, rather refers to CC1 (residual disease nodules
up to 2.5mm in size) of the perhaps outdated Sugarbaker classification (PCI) (Jacquet
and Sugarbaker, 1996). We provide valid language evidence that the CC score is more
likely to give a convincing and reproducible description for residual disease in EOC. In
addition, subtle performance superiority of textual data when compared with discrete
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surgical data can be also invoked. Going forward, data integration between structured
and unstructured formats can promote innovative thinking to perfect the prediction of
surgical outcomes.

The challenges of Machine Intelligence in healthcare have been consistently ad-
dressed (NIoBIa., 2019). We anticipate portability of our RoBERTa algorithm across
similar practice settings by conducting original studies albeit we acknowledge the het-
erogeneous nature of the clinical language. Historically, linguistic models are evalu-
ated by perplexity, i.e., the probability of predicting the word in its context. Our study
used retrospective data from a single institution. On that note, our data size was small-
to-moderate, which entertains the general wisdom that the less data we feed the model,
the lower the expected quality. We reiterate our strong preference for explainable NLP
methods (Chen et al., 2019), which has been showcased in this work. Understanding
the features that drive a model prediction can potentially support decision-making in
the healthcare domain. As NLP is moving to deep learning, it is becoming increasingly
challenging for these complex non-linear data transformations to satisfy transparency
(Shickel et al., 2018).

The latest hype from the technological advancements in large language models has
been embraced with some cautious excitement. Undoubtedly, the AI-based chatbots
engage in a capacity to understand multiple languages and possess knowledge of var-
ious topics. They can generate fabricated information in healthcare settings word by
word (Sallam, 2023). In ovarian cancer research, most efforts focus on addressing the
disease heterogeneity (Hu et al., 2020). It is likely that this heterogeneity contains
“special grammars” that cannot be distilled from simply vast amounts of pre-trained
textual data resources. Our work highlights the need for a bespoke, proprietary ovar-
ian cancer-specific natural language that can pay attention to detail and learn beyond
human knowledge.



Chapter 5

Conclusions

The level of quality in the models that utilize transfer learning has been demon-
strated throughout this thesis. From the first case, that of detection of existence of
disease in olive trees, we noted that fine-tuning pre-trained weights worked well, espe-
cially considering the fact that in this problem both domain and task differed between
source and target. The result was the creation of a model that performed great in object
detection and classification. Furthermore, the application of the zero-shot segmenta-
tion model, SAM, produced equally great results in its own task. Given the fact that
in the case of SAM the source domain was more similar to the target domain, since
the initial model was trained on nearly a billion image segmentations of different ob-
jects, the difference in performance between YOLO and SAM in their respective tasks
was expected. In the second case, of prediction of cytoreduction from medical notes
with the pre-trained RoBERTa language model, we noticed that the the model was
more than able to capture the information well, especially considering the number of
instances used for the fine-tuning. Both cases highlighted the ability of transfer learn-
ing models to overcome common machine learning problems, such as scarcity of data
and/or computational resources, in two fields that differed greatly; computer vision
and natural language processing.

As seen throughout this thesis, transfer learning is a technique whose reach, per-
formance and flexibility in application is unparalleled. With applications both in struc-
tured and unstructured data, with proven performance, transfer learning is in the pro-
cess of transforming the way machine learning algorithms and models are developed.
The effect that it is expected to have both on the academic and the business worlds is
hard to quantify, and even harder to predict, however it is certain that it is here to stay.
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M. Pérez-Rodrı́guez, N. Serrano, O. Arquero, F. Orgaz, J. Moral, and F. J. López-
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G. Schröder, M. Thiele, and W. Lehner. Setting goals and choosing metrics for recom-
mender system evaluations. In UCERSTI2 workshop at the 5th ACM conference on

recommender systems, Chicago, USA, volume 23, page 53, 2011.
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Cherry tree detection with deep learning. In 2022 Innovations in Intelligent Systems

and Applications Conference (ASYU), pages 1–4, 2022. doi: 10.1109/ASYU56188.
2022.9925332.

https://doi.org/10.1145/3535508.3545555
https://www.mdpi.com/1424-8220/23/1/62
https://www.mdpi.com/1996-1944/15/15/5298


Appendices

88



89

Table 1: Cohort statistics

Variable Overall
(n=555)

Training
Set
(n=444)

Testing
Set
(n=111)

pvalue
(train-

ing)

Zero
residual
(n=363)

Non-
zero
residual
(n=192)

pvalue
(R0 vs

non R0)

Grade cat
502
(90.45)

403
(90.77)

99
(89.19)

0.745
332
(91.46)

170
(88.54)

0.337

IDS/PDS
385
(69.37)

306
(68.92)

79
(71.17)

0.730
247
(68.04)

138
(71.88)

0.404

Surgical
Complexity
Score
(SCS)

3.77 ±
2.07

3.8 ±
2.04

3.66 ±
2.2

0.544
4.13 ±
2.27

3.08 ±
1.4

<0.001

Size
Largest
Bulk of
Disease
(cm)

8.83 ±
5.57

8.71 ±
5.62

9.3 ±
5.37

0.306
8.31 ±
5.67

9.79 ±
5.25

0.002

Age
63.57 ±
11.23

63.88 ±
10.96

62.32 ±
12.25

0.221
62.45 ±
11.65

65.69 ±
10.1

0.001

Pre
Surgery
CA125

412.99 ±
1180.36

406.44 ±
1229.0

439.45 ±
963.76

0.762
399.52 ±
1297.67

438.6 ±
919.64

0.682

IntraOpera-
tive
Mapping of
ovarian
cancer
(IMO)

4.9 ±
1.95

4.83 ±
1.91

5.2 ±
2.11

0.096
4.36 ±
1.88

5.93 ±
1.65

<0.001

Time
procedure
(min)

168.82
± 75.13

169.5 ±
72.33

166.08
± 85.71

0.699
172.77
± 80.26

161.35
± 63.84

0.068

EBL
521.84 ±
386.84

523.06 ±
400.16

516.95 ±
329.82

0.868
512.1 ±
417.74

540.26 ±
320.62

0.377

Pre
Treatment
CA125

1525.33
±
2719.94

1421.98
±
2573.98

1938.7 ±
3218.95

0.118
1499.46
±
2911.22

1574.24
± 2322.0

0.742

PCI
7.3 ±
4.39

7.16 ±
4.26

7.89 ±
4.85

0.145
6.52 ±
4.3

8.79 ±
4.17

<0.001

ANAFI
5.02 ±
5.45

4.72 ±
5.27

6.23 ±
5.98

0.016
2.85 ±
4.4

9.13 ±
4.86

<0.001
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Table 2: Top 10 n-grams with the highest TF-IDF difference scores per case
outcome. The two top-level header columns indicate the case according to
which the score difference was sorted. R0 n-grams had high positive score
difference while non R0 n-grams had high negative score difference
R0 non R0

word

TF-IDF
score
for
word
in R0
docu-
ment

TF-IDF
score
for
word
in
non-
R0
docu-
ment

TF-IDF
Score
differ-
ence

word

TF-IDF
score
for
word
in R0
docu-
ment

TF-IDF
score
for
word
in
non-
R0
docu-
ment

TF-IDF
Score
differ-
ence

normal 0.261 0.154 0.106 miliary 0.026 0.170 -0.143

liver 0.151 0.068 0.082
miliary
disease

0.018 0.127 -0.109

diaphragm 0.141 0.071 0.070 disease 0.269 0.346 -0.077
left 0.213 0.164 0.048 tumour 0.108 0.178 -0.069
uterus 0.213 0.168 0.044 adherent 0.170 0.237 -0.066
adhesion 0.108 0.064 0.044 colon 0.058 0.116 -0.058
tube 0.094 0.052 0.042 involving 0.012 0.059 -0.046
diaphragm
normal

0.046 0.006 0.039
omental
cake

0.031 0.073 -0.042

sub
diaphragm
normal

0.045 0.006 0.038 cake 0.032 0.073 -0.040

liver sub 0.046 0.007 0.038 sigmoid 0.090 0.131 -0.040



Acronyms

AI Artificial Intelligence.

ANAFI ANAtomic FIngerprints.

ANN Artificial Neural Network.

AUPRC Area under the Precision-Recall curve.

AUROC Area under the Receiver Operating Characteristic curve.

BERT Bidirectional Encoder Representations from Transformers.

CART Classification and Regression Tree.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

DNN Deep Neural Network.

EBL Estimated Blood Loss.

EHR Electronic Health Records.

EOC Epithelial Ovarian Cancer.

FSL Few-Shot Learning.

GB Gigabyte.

GCS Ground Control Station.

GHz Gigahertz.

GloVe Global Vectors for Word Representation.

IMO IntraOperative Mapping of ovarian cancer.

IoU Intersection over Union.
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92 Acronyms

LSTM Long Short Term Memory.

mAP Mean Average Precision.

MDT MultiDisciplinary Team.

ML Machine Learning.

MLM Masked Language Modeling.

NER Named Entity Recognition.

NLP Natural Language Processing.

NMS Non-Maximum Suppression.

NSP Next Sentence Prediction.

OSL One-Shot Learning.

PCI Peritoneal Carcinomatosis Index.

RAM Random-Access Memory.

RGB Red, Green, Blue.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

RoBERTa Robustly Optimized BERT Approach.

SCS Surgical Complexity Score.

SHAP SHAPley Additive Explanations.

SML Supervised Machine Learning.

SOTA State of the Art.

TF-IDF Term Frequency – Inverse Document Frequency.

TL Transfer Learning.

UAV Unmanned Aerial Vehicle.

UML Unsupervised Machine Learning.



93 Acronyms

XGBoost Extreme Gradient Boosting Algorithm.

YOLO You Only Look Once.

ZSL Zero-Shot Learning.
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