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A B S T R A C T  

In an era dominated by digital communication, the escalating threat of chat-based social 

engineering (CSE) attacks looms large. These attacks, characterized by manipulation, 

cheating, and psychological exploitation, pose a grave danger to individuals and 

organizations alike. To confront this burgeoning menace, this doctoral thesis presents 

an all-encompassing system for recognizing CSE attacks, under the banner of the Chat-

based Social Engineering Attack Recognition System (CSE-ARS). 

The foundation for this research is laid in an exhaustive exploration of the theoretical 

landscape. This comprehensive survey delves into the core concepts and principles 

essential for grasping the context of CSE attack recognition. Topics encompassed here 

range from the broader realm of cybersecurity, particularly in the context of social 

engineering, to the intricacies of the attack cycle and the profound impact of social 

engineering attacks. We further examine the pivotal role of advanced technologies such 

as artificial intelligence, deep learning, and natural language processing. Notably, this 

investigation scrutinizes the metrics used to evaluate the performance of recognition 

models, including accuracy, precision, recall, and the F1 score. The aim is to establish 

a strong theoretical grounding, emphasizing the significance of deep learning models 

in identifying and addressing the multifaceted challenges of CSE attacks. 

The identified enablers of successful CSE attacks are then thoroughly examined. One 

key enabler lies in personality traits, as social engineers strategically exploit their 

understanding of human behavior to manipulate their targets. Understanding the 

dynamics of persuasion is also crucial for defense, with machine learning algorithms 

leveraged to recognize persuasive strategies and enhance resilience against CSE attacks.  

Persistent behavior, including paraphrasing, is another central strategy used by social 

engineers to manipulate their targets. Recognizing and characterizing this behavior is 

crucial for developing effective defenses. Deception is a vital enabler, and investigating 

deception cues and developing machine learning models for recognition is an essential 

component of defense. Additionally, recognizing speech acts and the role of chat history 

in providing insights into the structure and context of conversations is emphasized. 

Deep learning models are deployed to enhance the accuracy of CSE attack recognition 

and prevention by studying speech acts and incorporating chat history analysis too. 

The creation of the CSE Corpus serves as a fundamental resource for studying and 

understanding CSE attacks. This meticulous process begins with data source selection, 

dialogues collection, enrichment, linguistic analysis, and finally annotation. The CSE 

Corpus serves as a valuable asset for researchers and practitioners alike, facilitating the 
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development and evaluation of robust models and methodologies for recognizing and 

mitigating social engineering attacks. 

Next, each enabler recognizer is introduced starting with a specialized recognition 

model, CRINL-R, for the identification of critical information leakage in CSE attacks. 

By employing deep learning techniques and a carefully curated dataset, CRINL-R 

demonstrates promising performance in identifying instances of critical information 

leakage.  

Personality traits remain at the forefront of the investigation in the development of the 

PERST-R model. This model leverages a pre-trained BERT model and a rich corpus of 

labeled text data to specialize in the accurate recognition of individual traits. This 

recognition plays a pivotal role in understanding social engineering tactics and further 

fortifying defenses. 

The recognition of persuasion techniques in CSE attacks takes center stage with the 

introduction of the PERSU-R model. This model integrates persuasion principles and 

convolutional neural networks to identify and categorize persuasive elements within 

textual interactions. Its efficacy in characterizing persuasion techniques contributes 

significantly to bolstering defenses against social engineering attacks. 

Recognition of persistence in CSE attacks is addressed through the PERSI-R model, 

which leverages natural language processing techniques and neural networks. This 

model accurately identifies and characterizes persistence cues within textual 

interactions, underlining the significance of recognizing persistence as a critical factor 

in social engineering attacks. 

The culmination of this research is presented with the introduction of the Chat-based 

Social Engineering Attack Recognition System (CSE-ARS). CSE-ARS leverages a late 

fusion approach to identify and recognize CSE attacks by combining multiple sources 

of information. By integrating individual recognizers specialized in different facets of 

CSE attacks, such as critical information leakage, personality traits, dialogue acts, 

persuasion techniques, and persistence, CSE-ARS achieves a comprehensive 

understanding of chat-based interactions. The system's performance is rigorously 

evaluated across various chat-based scenarios, demonstrating its potential real-world 

applicability. 

This doctoral thesis endeavors to provide a comprehensive framework for recognizing 

and mitigating social engineering attacks in the realm of digital communication. The 

integration of deep learning techniques, multimodal information fusion, and ethical 

considerations underscores the potential for advanced defense mechanisms against the 

pervasive challenges of social engineering threats. This interdisciplinary approach 

empowers individuals and organizations to counteract these attacks effectively, 
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enhancing security and preserving personal and organizational integrity in the digital 

age. Future research may continue to refine and expand upon these models, contributing 

to practical deployment and wider adoption in real-world scenarios. 

 

Keywords: Cybersecurity, Chat-based Social Engineering, Deep Learning, Machine 

Learning, Natural Language Processing, Transformers, Transfer Learning, Corpus, 

Annotation 
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Π Ε Ρ I Λ Η Ψ Η  

Σε μια εποχή που κυριαρχείται από την ψηφιακή επικοινωνία, η αύξηση των Επιθέσεων 

Κοινωνικής Μηχανικής βασισμένων σε Συνομιλίες (ΕΚΜΣ) είναι προδιαγεγραμμένη. 

Αυτές οι επιθέσεις, που χαρακτηρίζονται από την ψυχολογική εκμετάλλευση, και την 

εξαπάτηση, αποτελούν μια σοβαρή απειλή τόσο για τα άτομα όσο και για τις 

επιχειρήσεις. Για την αντιμετώπιση αυτής της  αυξανόμενης  απειλής , η παρούσα  

διδακτορική διατριβή παρουσιάζει ένα σύστημα αναγνώρισης επιθέσεων ΕΚΜΣ, υπό 

την αιγίδα του Συστήματος Αναγνώρισης Επιθέσεων Κοινωνικής Μηχανικής 

βασισμένων σε Συνομιλίες (CSE-ARS). 

Τα θεμέλια αυτής της έρευνας τίθενται ξεκινώντας μια εκτενή εξερεύνηση του σχετικού 

θεωρητικού υπόβαθρου. Η  έρευνα εξετάζει τις βασικές έννοιες και αρχές που είναι 

απαραίτητες για την κατανόηση του πλαισίου της αναγνώρισης των επιθέσεων ΕΚΜΣ. 

Τα θέματα που εξετάζονται εκτείνονται από τον ευρύτερο τομέα της 

κυβερνοασφάλειας αλλά με έμφαση στο πλαίσιο της κοινωνικής μηχανικής, μέχρι τις 

λεπτομέρειες του κύκλου μιας  επίθεσης ΕΚΜΣ και τις επιπτώσεις της. Εξετάζεται  

επίσης ο κρίσιμος ρόλος των προηγμένων τεχνολογιών όπως η τεχνητή νοημοσύνη, η 

βαθιά μάθηση και η επεξεργασία φυσικής γλώσσας. Σημαντική είναι επίσης η εξέταση 

των μετρικών που χρησιμοποιούνται για την αξιολόγηση της απόδοσης των μοντέλων 

αναγνώρισης επιθέσεων ΕΚΜΣ. Στόχος είναι να δημιουργηθεί μια ισχυρή θεωρητική 

βάση, η οποία αναδεικνύει  τη σημασία των μοντέλων βαθιάς μάθησης στην 

αναγνώριση και αντιμετώπιση των επιθέσεων ΕΚΜΣ. 

Στη συνέχεια, εξετάζονται εξονυχιστικά οι παράγοντες που διευκολύνουν την επιτυχία 

των επιθέσεων ΕΚΜΣ. Ένας βασικός παράγοντας συναντάται στα χαρακτηριστικά της 

προσωπικότητας του ατόμου, καθώς οι κοινωνικοί μηχανικοί εκμεταλλεύονται 

στρατηγικά την κατανόησή τους για την ανθρώπινη συμπεριφορά προκειμένου να 

εξαπατήσουν τους στόχους τους. Η επίμονη συμπεριφορά, είναι άλλος ένας κεντρικός 

παράγοντας που χρησιμοποιούν οι κοινωνικοί μηχανικοί για να εκμεταλλευτούν τις 

αδυναμίες των στόχων τους. Η δυνατότητα αναγνώρισης της επίμονης  συμπεριφοράς 

είναι κρίσιμη για την ανάπτυξη αποτελεσματικών μέτρων αμυντικής φύσης. Η 

εξαπάτηση αποτελεί έναν ακόμη κρίσιμο παράγοντα, και η ανάπτυξη μοντέλων 

μηχανικής μάθησης για την αναγνώριση της είναι ένα επιπλέον στοιχείο της άμυνας. 

Ακόμη, η αναγνώριση των πράξεων ομιλίας και ο ρόλος του ιστορικού των συνομιλιών 

είναι ιδιαίτερα σημαντικές. Τα μοντέλα βαθιάς μάθησης χρησιμοποιούνται για την 

ενίσχυση της ακρίβειας αναγνώρισης και πρόληψης των επιθέσεων ΕΚΜΣ μελετώντας 

τις πράξεις ομιλίας και συμπεριλαμβάνοντας την ανάλυση του ιστορικού των 

συνομιλιών. 
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Η δημιουργία του σώματος κειμένων CSE Corpus αποτελεί ένα θεμελιώδες εργαλείο 

για τη μελέτη και κατανόηση των επιθέσεων ΕΚΜΣ. Η διαδικασία παραγωγής του 

σώματος κειμένου αρχίζει με την επιλογή πηγών δεδομένων, τη συλλογή διαλόγων, 

τον εμπλουτισμό τους, τη γλωσσική ανάλυση και την τελική επισήμανση τους. To 

σώμα κειμένων CSE Corpus αποτελεί ένα πολύτιμο εργαλείο για τους ερευνητές, 

διευκολύνοντας την ανάπτυξη και την αξιολόγηση αξιόπιστων μοντέλων και 

μεθοδολογιών για την αναγνώριση και την αντιμετώπιση των επιθέσεων ΕΚΜΣ. 

Στη συνέχεια, οι ανιχνευτές για κάθε επιμέρους παράγοντα παρουσιάζονται ξεκινώντας 

με το εξειδικευμένο μοντέλο αναγνώρισης, ο ανιχνευτής CRINL-R, για την 

αναγνώριση της διαρροής κρίσιμων πληροφοριών. Με τη χρήση τεχνικών βαθιάς 

μάθησης και ενός προσεκτικά επιλεγμένου συνόλου δεδομένων, το CRINL-R 

εκπαιδεύεται και επιδεικνύει ελπιδοφόρα απόδοση στην αναγνώριση περιπτώσεων 

διαρροής κρίσιμων πληροφοριών. 

Τα χαρακτηριστικά της προσωπικότητας παραμένουν στο επίκεντρο της έρευνας στην 

ανάπτυξη του ανιχνευτή PERST-R. Αυτό το μοντέλο εκμεταλλεύεται ένα προ-

εκπαιδευμένο μοντέλο BERT και ένα πλούσιο σύνολο δεδομένων με ετικέτες για την 

ακριβή αναγνώριση των ατομικών χαρακτηριστικών προσωπικότητας. Αυτή η 

αναγνώριση παίζει κρίσιμο ρόλο στην κατανόηση των τακτικών της κοινωνικής 

μηχανικής και στην ενίσχυση των μέτρων αμυντικής φύσης. 

Η αναγνώριση τεχνικών πειθούς στις επιθέσεις ΕΚΜΣ καταλαμβάνει την κεντρική 

θέση στον ανιχνευτή PERSU-R. Αυτό το μοντέλο αξιοποιεί νευρωνικά δίκτυα για την 

αναγνώριση και κατηγοριοποίηση στοιχείων πειθούς. Η αποτελεσματικότητά του στην 

αναγνώριση των τεχνικών πειθούς συμβάλλει σημαντικά στην ενίσχυση των μέτρων 

αμυντικής φύσης έναντι των επιθέσεων κοινωνικής μηχανικής. 

Η αναγνώριση της επιμονής στις επιθέσεις ΕΚΜΣ αντιμετωπίζεται μέσω του ανιχνευτή 

PERSI-R, το οποίο χρησιμοποιεί τεχνικές επεξεργασίας φυσικής γλώσσας και 

νευρωνικά δίκτυα. Αυτό το μοντέλο αναγνωρίζει και χαρακτηρίζει με ακρίβεια 

στοιχεία επιμονής, υπογραμμίζοντας τη σημασία της αναγνώρισης της επιμονής ως 

κρίσιμου παράγοντα στις επιθέσεις κοινωνικής μηχανικής. 

Η κορύφωση αυτής της έρευνας πραγματοποιείται με την παρουσίαση του Συστήματος 

Αναγνώρισης Επιθέσεων Κοινωνικής Μηχανικής βασισμένου σε Συνομιλίες (CSE-

ARS). Το CSE-ARS χρησιμοποιεί μια προσέγγιση με χρήση της τεχνικής αργής 

συγχώνευσης πληροφοριών για την αναγνώριση των επιθέσεων ΕΚΜΣ, συνδυάζοντας 

τα συμπεράσματα των επιμέρους ανιχνευτών. Ενσωματώνοντας τους επιμέρους 

ανιχνευτές εξειδικευμένους στην αναγνώριση παραγόντων επιτυχίας μιας επίθεσης 

ΕΚΜΣ, όπως η διαρροή κρίσιμων πληροφοριών, τα χαρακτηριστικά της 

προσωπικότητας, οι πράξεις ομιλίας, οι τεχνικές πειθούς και η επιμονή, το CSE-ARS 
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επιτυγχάνει μια σφαιρική κατανόηση των ΕΚΜΣ. Η απόδοση του συστήματος 

αξιολογείται αυστηρά σε διάφορα σενάρια βασισμένα σε συνομιλίες, επιδεικνύοντας 

την πραγματική δυνατότητά του για εφαρμογή στον πραγματικό κόσμο. 

Αυτή η διδακτορική διατριβή παράσχει ένα σύστημα για την αναγνώριση και τη 

μείωση των επιθέσεων κοινωνικής μηχανικής στον τομέα της ψηφιακής επικοινωνίας. 

Η ενσωμάτωση τεχνικών βαθιάς μάθησης, και συνένωσης πληροφοριών υπογραμμίζει 

τη δυνατότητα για προηγμένα μέτρα αμυντικής φύσης έναντι των επικρατούντων 

προκλήσεων και απειλών κοινωνικής μηχανικής. Αυτή η διεπιστημονική προσέγγιση 

αντιμετωπίζει αποτελεσματικά τις επιθέσεις ΕΚΜΣ, ενισχύοντας την ασφάλεια και 

διατηρώντας την εμπιστευτικότητα της πληροφορίας στην ψηφιακή εποχή. 

Μελλοντικές έρευνες μπορούν να συνεχίσουν να βελτιώνουν και να επεκτείνουν τα 

επιμέρους μοντέλα, συμβάλλοντας στην πρακτική εφαρμογή και την ευρύτερη 

υιοθέτησή τους σε πραγματικά σενάρια ΕΚΜΣ. 
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1 .   I N T R O D U C T I O N  

1.1.  Motivation and Research Questions  

Social engineering is a versatile and complex phenomenon that appears in real life and 

the digital world as well. It is related to a manipulative form of communication that 

exploits human personality traits either in a mass personal or interpersonal way ((Gehl 

and Lawson 2022). From “fake news” to psychographic advertisements and from 

cognitive hacking to spear-phishing, there is a plethora of different types of social 

engineering attacks. Verizon’s key annual report (‘DBIR Report 2023 - Master’s 

Guide’ ), consistently states social engineering attacks as the most usual and hazardous 

vector by which malicious users gain access to secured and restricted computer 

networks. Contemporary practices of attackers have been studied thoroughly (Wang et 

al., 2021) and numerous solutions have been suggested within the academic domain as 

well as within the public sector.(Syafitri et al. 2022). Recently, Chat-based Social 

Engineering (CSE)  attacks increased due to the widespread use of electronic medium 

communication tools that have been  boosted due to the COVID-19 pandemic 

(Venkatesha, Reddy, and Chandavarkar 2021)and are now considered mainstream. 

CSE attacks are tightly related to pretexting, a type of social engineering attack, in 

which a storyline is methodically planned out in advance and the attacker builds a 

persona with specific characteristics to approach the human target. The most known 

pretexts were created by Kevin Mitnick, a legendary social engineer, whose stories met 

wide media coverage and can be found in (K. Mitnick 2011). In CSE attacks, pretexts 

often exploit a simple fact: human personality has vulnerabilities that can be exploited 

broader using cultural dynamics, social stereotypes, and gender roles. The complexity 

of the phenomenon imposes an interdisciplinary approach to deal with the many 

different factors that are engaged.  

Although several cyber-defense mechanisms have been proposed (Vishwanath 2022) 

to defend from social engineering attacks, most of the solutions focus on technical 

countermeasures to improve users’ protection. Being technical these mechanisms do 

not account for known CSE attack enablers as identified and illuminated in  (Tsinganos 

et al. 2018). Currently, the majority of CSE attacks include phishing attacks, spear-

phishing, social media scams, covid-19 scams, and whaling. The attackers’ favorite 

method of approach is impersonation where they pretend to be someone else to deceive 

and gain unauthorized access to sensitive information. Furthermore, the attackers 

recently use artificial technology techniques to create realistic videos and audio of 

individuals (deepfakes), which can be used to impersonate them in CSE attacks.  
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Chat-based social engineering attacks are a growing threat that can lead to various 

negative consequences, including financial loss, damage to reputation, loss of 

productivity, or other legal consequences. Financial loss can occur due to fraudulent 

transactions or data breaches, which can be costly for organizations. A successful CSE 

attack can damage the reputation of an organization, leading to a decline in business 

and loss of customer trust. Loss of productivity can occur when important data is lost, 

leading to the need for system rebuilding, and decreased efficiency. Legal and 

regulatory penalties can be incurred if an organization is held liable for data breaches. 

CSE attacks can target sensitive information essential for daily operations, such as 

financial data, personal data of employees and clients, and trade secrets. Given the 

significant impact of CSE attacks, it is crucial to develop effective recognition and 

prevention mechanisms. These mechanisms should be cost-effective, easy to use, and 

enable individuals and organizations to better protect themselves against imminent risks. 

Thus, research towards the design and implementation of a system that recognizes CSE 

attacks is important for the following reasons: 

1. Protection against CSE attacks: CSE attacks are a significant threat to 

organizations and individuals alike, as they exploit human vulnerabilities to gain 

unauthorized access to sensitive information or systems. An effective 

recognition system can help prevent such attacks and protect individuals and 

organizations against loss of critical information or financial resources. 

2. Recognition of Sophisticated CSE attacks: CSE attacks are often 

sophisticated, and traditional security measures are not sufficient to recognize 

them. Research in this area can help identify new attack vectors and develop 

countermeasures to recognize and prevent these sophisticated attacks. 

3. Automation of Recognition: Currently, the most common approach to 

recognizing CSE attacks is through manual inspection, which is time-

consuming and error-prone. An automated recognition system can help reduce 

the workload on security personnel and improve the accuracy and speed of 

recognition. 

4. Advancements in Deep Learning: Deep learning models have shown 

promising results in various domains, including natural language processing 

(NLP), image and speech recognition. The application of these models to CSE 

attack recognition can lead to more accurate and efficient recognition systems. 

5. Improved Security Posture: Effective recognition systems can enhance the 

security posture of organizations and individuals against social engineering 

attacks, and help prevent data breaches and other security incidents. 
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6. Rising Threat of Social Engineering: With the increasing dependence on 

digital technologies and the growing sophistication of cybercriminals, CSE 

attacks have become more prevalent and sophisticated. Therefore, there is a 

pressing need to develop effective methods to recognize and prevent these 

attacks. 

7. Limitations of Traditional Security Measures: Traditional security measures, 

such as firewalls and antivirus software, are essential for protecting against 

known cyber threats. However, they are not always effective in recognizing 

social engineering attacks, as these attacks rely on manipulating human 

behavior rather than exploiting technical vulnerabilities. Therefore, there is a 

need to complement traditional security measures with more advanced 

recognition techniques that can identify social engineering tactics. 

8. Need for Interdisciplinary Research: CSE attacks recognition research 

requires a multidisciplinary approach that combines expertise in psychology, 

human behavior, cybersecurity, linguistics and data analytics. By bringing 

together researchers from different fields, we can gain a deeper understanding 

of the social engineering tactics used by attackers and develop more effective 

recognition techniques. 

9. Importance of Data Collection and Analysis: CSE attacks recognition 

research requires large-scale data collection and analysis to identify patterns and 

trends in social engineering attacks. By analyzing the data collected from real-

world attacks, researchers can develop more accurate and effective recognition 

techniques and inform the development of policies and guidelines to prevent 

these attacks. 

10. Potential for Positive Impact: Effective CSE attack recognition techniques can 

have a positive impact on individuals, organizations, and society as a whole. By 

recognizing and preventing CSE attacks, we can protect sensitive information, 

prevent financial losses, and safeguard critical infrastructure. Additionally, 

research in this area can contribute to a greater understanding of human 

behavior and inform the development of more effective cybersecurity strategies. 

 

Provided the context mentioned above, the following research questions arise: 

RQ1: What are the most common types of CSE attacks, and what are the existing 

methods for recognizing them? 
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RQ2: What are the most relevant features and data sources for CSE attack 

recognition, and how can they be extracted and pre-processed to train machine 

learning models? 

RQ3: What are the most suitable machine learning models for CSE attack 

recognition, and how can they be trained and optimized? 

RQ4: How different machine learning models can be combined in an automated 

CSE attack recognition system? 

RQ5: How does the performance of the proposed CSE attack recognition system 

compare to existing CSE attack recognition methods, in terms of accuracy, 

efficiency, and false positive rates? 

RQ5: What are the limitations of the proposed CSE attack recognition system, and 

what are the potential future research directions in this area? 

1.2.  Aim and Objectives  

This PhD thesis aims to identify the critical enablers of successful CSE attacks, develop 

and evaluate machine learning models to recognize them and combine them in an 

automated system able to recognize CSE attacks. Chat-based Social Engineering Attack 

Recognition System (CSE-ARS) is an ensemble deep learning-based late fusion system 

for CSE attack recognition. Thus, the research aims to enhance the effectiveness and 

accuracy of recognizing CSE attacks by leveraging the combined power of multiple 

individual enabler recognizers in chat-based communication. 

To achieve the aim stated above, the following objectives were pursued: 

1. Investigate existing approaches in current literature: Conduct a comprehensive 

review of the existing literature on CSE attack recognition and information 

fusion techniques. Analyze the strengths and limitations of current 

methodologies in order to identify gaps and opportunities for improvement. 

2. Design the CSE-ARS system: Design a deep learning-based solution that 

incorporates late fusion of information, to effectively recognize CSE attacks.  

3. Collection and Building of corpus: Develop a methodology to assemble a 

representative corpus of chat-based conversations containing instances of social 

engineering attacks. Standardize and apply text preprocessing techniques to 

clean the data, ensuring its quality and relevance for training and evaluation 

purposes. 

4. Implement and optimize the individual enabler recognizers: Implement the 

appropriate deep learning models to facilitate enablers’ recognition and train 
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them using the collected corpus. Optimize the models by fine-tuning 

hyperparameters and exploring techniques to improve their accuracy, 

robustness, and efficiency in recognizing different types of enablers. 

5. Evaluate and compare performance of the individual deep learning models: 

Conduct extensive experiments and evaluations to assess the performance of 

individual deep learning models in terms of accuracy, precision, recall, and F1-

score. Compare their results with existing approaches to validate their 

effectiveness in recognizing CSE attacks. 

6. Implement and optimize CSE-ARS system: Design, implement and optimize the 

CSE-ARS system leveraging appropriate ensemble technique to combine the 

output of the individual deep learning models.  

7. Evaluate CSE-ARS system. Assess thoroughly a wide range of CSE-attacks, to 

offer insights into the system's abilities and its potential practical use. The 

evaluation of CSE-ARS must reveal comprehensive outcomes in its ability to 

detect CSE attacks. 

8. Analyze limitations and challenges: Identify the limitations and potential 

challenges associated with the implementation and deployment of the CSE-

ARS in real-world scenarios. Investigate factors such as scalability, 

computational requirements, and ethical considerations. 

9. Provide recommendations and future directions: Based on the findings of the 

research, provide recommendations for improving the performance and 

practical applicability of CSE-ARS. Outline potential future directions for 

research in the field of CSE attack recognition. 

1.3.  Contributions  

The contributions of this thesis can be summarized as follows:  

• The CSE ontology is an asset-oriented ontology as an asset adheres to 

cybersecurity ontology definitions (ISO 15408:2022), and connects social 

engineering concepts with cybersecurity concepts. It transforms abstract ideas, 

concepts, entities, and relations into tags and attributes to describe the related 

domain. This ontology, is helpful in categorizing hierarchies, by grouping similar 

in-context concepts and relations. 

• The enablers of a successful CSE attack 

o Critical Information Leakage: Social Engineers attempt to extract 

information from their victims. (e.g., sensitive data or login credentials).  
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o Personality traits:  Social engineers exploit personality traits to 

manipulate their victims. 

o Dialogue Acts: In a manipulated conversation, a social engineer will 

utilize dialogue acts to force the victim in unwanted actions.  

o Persuasion: In order to convince the victim to take specific actions, a 

social engineer will attempt several persuasion techniques. 

o Persistence: Persistent behavior is encountered by social engineers who 

use various language patterns to repeat questions or commands in 

different words. 

o Deception: Deceptive language is used order to capture the victim in a 

fictional scenario and lead him to unreasonable decisions.  

o Chat History: A CSE attack may be a multi-stage attack. Thus, the full 

chat dialogue history is utilized by a social engineer before he unleashes 

his attack. 

• A chat-based social engineering recognition system, known as CSE-ARS, is 

being proposed. This system adopts an interdisciplinary approach and considers 

various factors from a diverse set of disciplines such as Psychology (personality 

traits), Linguistics (dialogue-acts), Behavioral Science (persuasion, persistence), 

and Computer Science (Deep Learning, Natural Language Processing etc.). 

• The implementation and evaluation of diverse deep learning models, such as 

recurrent neural networks (RNNs), convolutional neural networks (CNNs), and 

transformer-based models, is proposed for the recognition of individual CSE 

attack enablers. More specifically, the following enabler recognizers are 

presented: 

o Critical Information Leakage Recognizer (CRINL-R): a Long -Short 

Term Model (LSTM) recognizing critical data information leakage 

utilizing named entity recognition (NER) techniques. 

o Personality Traits Recognizer (PERST-R): a Bidirectional Encoder 

Representation for Transformers (BERT) model that predicts personality 

traits. 

o Dialogue-act Recognizer (DIACT-R): a BERT model able to recognize 

dialogue acts that can lead to deception taking into account dialogue 

history. 

o Persuasion Recognizer (PERSU-R): a CNN model that predicts 

persuasion attempts. 
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o Persistence Recognizer (PERSI-R): a BERT model that predicts 

persistent behavior by identifying paraphrasing. 

• The collection of the CSE Corpus, a corpus comprising both realized and 

fictional CSE attacks is introduced.  

• A methodology for collecting, building, and annotating a corpus where the data 

sources are identified, dialogues are collected, enriched, linguistically analyzed, 

and processed. Moreover, after declaring the annotation task's goal, an abstract 

model and ontology are created, specifications are defined, annotator guidelines 

are produced, the annotation task is performed, the inter-annotator agreement is 

validated, and the final annotated corpus is established.  

• During the research CSE Corpus was enhanced, annotated, and transformed in 

different ways for different downstream tasks. Thus, five different corpora were 

developed to be used for training and evaluating the different enabler recognizers 

and the CSE-ARS system. 

• To substantiate the notion that various types of enablers are necessary for the 

successful execution of a CSE attack, a late fusion approach is proposed. This 

approach combines the final predictions from each enabler recognizer to 

generate a unified prediction, leveraging the unique strengths of each recognizer. 

• A late fusion optimization approach is proposed, wherein the outputs of the 

individual recognizers are fed into a weighted linear aggregation. The weights 

for aggregation are optimized using the metaheuristic algorithm of simulated 

annealing and k-fold cross-validation technique. 

• Recommendations and Future Directions: 

o Based on the findings and analysis, recommendations for improving the 

performance, robustness, and practical applicability of CSE-ARS are 

provided. 

o Potential future directions for research in CSE attack recognition were 

identified, such as exploring novel deep learning architectures (Large 

Language Models (LLMs) or considering real-time implementation 

challenges. 
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1.4.  Overall  Research Approach  

To achieve the objectives outlined in section 1.2, the research followed a systematic 

and iterative approach, encompassing data collection and preparation, model 

development, training and optimization, evaluation, and analysis. The overall research 

approach is divided in three main phases as follows: 

PHASE 1: CSE-ARS Design. 

PHASE 2: CSE attack enabler recognizers implementation & evaluation. 

PHASE 3: CSE-ARS ensemble model design, implementation & evaluation. 

In each phase several tasks were accomplished as depicted in Figure 1-1.  More 

specifically, the tasks per phase can be summarized as follows: 

 

PHASE 1: 

• Acquire CSE attack domain knowledge. 

• Identify CSE attack attributes and enablers. 

• CSE attack oriented corpus characteristics. 

• Corpus Collection and Building: 

o Assemble a diverse and representative corpus of chat-based 

conversations, containing instances of CSE attacks. 

o Build and annotate the dataset by standardizing the data format, cleaning 

noise, and ensuring data quality and relevance for deep learning model. 

• Propose CSE attack recognition system design 

PHASE 2: 

• Development of individual enabler recognizers (deep learning models): 

o CRINL-R (CRitical INformation Leakage Recogniser): Designed to 

identify critical information disclosure in chat-based communication. 

o PERST-R (PERSonality Traits Recognizer): Aimed at recognizing 

personality traits of individuals engaged in the conversation, which may 

indicate susceptibility to social engineering attacks. 
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Figure 1-1. Research roadmap 
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o DIACT-R (DIalogue ACTs Recogniser): Developed to identify different 

dialogue acts, such as requests for sensitive information or attempts to 

build rapport. 

o PERSU-R (PERSUasion Recogniser): Focused on recognizing 

persuasive language or manipulative techniques used in social 

engineering attacks. 

o PERSI-R (PERSIstence Recogniser): Designed to recognize persistent 

attempts made by the attacker to extract sensitive information. 

• For each individual enabler recognizer, the following steps were taken: 

o Training and Optimization: 

▪ Training of deep learning model using the appropriate 

preprocessed corpus, employing appropriate optimization 

techniques and loss functions specific to each model's objective. 

▪ Fine-tuning of hyperparameters and exploration of techniques 

such as transfer learning or ensembling to enhance the 

performance and generalization capabilities of the models. 

PHASE 3:  

• Integration and Late Fusion: 

o Integrate the outputs of the developed deep learning models, combining 

their predictions using a late fusion approach to leverage the multimodal 

information effectively. 

o Explore fusion strategies, such as weighted averaging or decision-level 

fusion, to combine the outputs of individual models into a unified 

decision-making framework. 

• Evaluation and Analysis: 

o Conduct comprehensive evaluations of the CSE-ARS system by 

assessing its performance metrics, including accuracy, precision, recall, 

and F1-score. 

o Compare the results of CSE-ARS with existing approaches to evaluate 

its effectiveness in recognizing CSE attacks. 
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o Analyze the limitations, challenges, and potential biases associated with 

the developed models and propose strategies for mitigating them. 

1.5.  Thesis  Structure  

The rest of this thesis is structured as follows: 

• Chapter 2, “Theoretical Background”, delves into the relevant theoretical 

foundations, including social engineering, artificial intelligence, deep learning, 

and natural language processing.  

• Chapter 3, “Conceptual Framework”, presents all the in-context information 

regarding the CSE attack and its enablers setting the stage for the subsequent 

chapters. 

• Chapter 4, "Related Work” critically reviews and synthesizes existing research 

and literature relevant to the thesis topic. It provides a comprehensive overview 

of the current state of knowledge in the field, highlighting key studies, 

methodologies, and gaps in the literature. This section serves as the foundation 

for the thesis, helping to contextualize the research within the broader academic 

landscape and demonstrating the need for the proposed study. 

• Chapter 5, “CSE Corpus” delves into the CSE Corpus, a pivotal resource for 

studying and combating social engineering attacks. It outlines the meticulous 

steps taken in its creation, including source selection, dialogue collection, 

enrichment, linguistic analysis, and annotation.  

• Chapter 6, “Critical Information Leakage Recognizer” explores the CRINL-R 

model for CSE attack recognition. Evaluation results demonstrate its potential 

in flagging CSE attacks, and enhancing overall security.  

• Chapter 7, “Personality Traits Recognizer” focuses on the development and 

assessment of the PERST-R model, aimed at identifying personality traits in 

CSE attacks. The chapter offers a comprehensive view of the model, describing 

its use of a pre-trained BERT model, the fine-tuning process, corpus selection, 

training methods, and evaluation metrics.  

• Chapter 8, “Dialogue Acts Recognizer” delves into the development and 

evaluation of the DIACT-R model for recognizing dialogue acts in the context 

of CSE attacks. The chapter emphasizes the schema-guided paradigm, dialogue 

state tracking, and the SG-CSE BERT model architecture.  

• Chapter 9, “Persuasion Recognizer’ delves into the development and 

assessment of the PERSU-R model for recognizing persuasion techniques in 

CSE attacks. The chapter highlights the model’s incorporation of persuasion 

principles, and the use of Convolutional Neural Networks (CNNs). 
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• Chapter 10, “Persistence Recognizer” details the development and assessment 

of the PERSI-R model for recognizing persistence in CSE attacks. The chapter 

explores the model’s use of Natural Language Processing (NLP) techniques, 

Neural Networks, and the model’s architecture.  

• Chapter 11, “Chat-based Social Engineering Attack Recognition System” 

presents the CSE-ARS, presenting its architecture, the training procedure 

involving late fusion and simulated annealing, and the achieved results.  

• Finally, Chapter 12, titled "Conclusions and Future Work," offers overall 

conclusions based on the findings, identifies potential avenues for future 

research, and concludes the thesis.  

• The appendix section and the list of publications and references follow the main 

chapters, providing additional supplementary information and resources.  
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2 .   T H E O R E T I C A L B A C K G R O U N D  

2.1.  Introduction  

Social engineering attacks pose significant challenges in today’s digital landscape. CSE 

attacks, in particular, exploit human vulnerabilities to manipulate individuals into 

divulging sensitive information or performing unintentional actions. Addressing this 

critical issue requires the development of advanced techniques that can recognize and 

mitigate such attacks effectively. This Ph.D. thesis aims to contribute to the field of 

cyber security and social engineering prevention by proposing CSE-ARS (Chat-based 

Social Engineering Attack Recognition System), a novel deep learning-based system 

that integrates information for accurate CSE attack recognition. By leveraging the 

power of deep learning models and fusing various enablers, including critical 

information leakage, personality traits, dialogue acts, persuasion, and persistence, the 

research seeks to enhance the recognition and prevention capabilities of social 

engineering attacks. 

The thesis begins with an exploration of the theoretical background necessary to 

understand the complexities of cyber security in the context of social engineering, 

artificial intelligence (AI), deep learning (DL), and natural language processing (NLP). 

This foundation sets the stage for the subsequent chapters, where specific deep learning 

models are developed to tackle different aspects of CSE attacks.  

2.2.  Social  Engineering  

Social engineering is a tactic used by attackers to manipulate individuals into divulging 

sensitive information or performing actions that may compromise cyber security (Gehl 

and Lawson 2022; Hadnagy 2010) .It is a common tactic used in cyber-attacks, and it 

relies on exploiting human psychology and behavior. Social engineering attacks can 

take various forms, including phishing, pretexting, baiting, and quid pro quo. These 

attacks can be conducted through various channels or attack surfaces such as chat, email, 

phone, or in-person interactions. Recent years have seen an increase in CSE attacks 

(‘DBIR Report 2023 - Master’s Guide’ ), and they are becoming more sophisticated 

and harder to recognize.  

Traditional technical security measures such as firewalls and antivirus software are not 

effective in preventing social engineering attacks, and there is a growing need for new 

techniques to recognize and prevent such attacks. Machine learning and deep learning 

techniques have been utilized as a solution for recognizing social engineering attacks. 
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These techniques have been shown to be effective in identifying patterns and anomalies 

in text, which can be used to recognize CSE attacks. Recognition methods may involve 

natural language processing to identify specific queries, commands, or predefined 

blacklisted topics.  

Attackers often use social networking sites to gather information and manipulate their 

targets. Automated data retrieval from semi-structured web pages is a common strategy 

used to approach targets with useful information. To achieve high recognition accuracy 

and low false negative rates, it is crucial to include as many influencing factors as 

possible, such as psychological profiles of interlocutors, persuasion techniques etc. 

However, these techniques alone do not sufficiently recognize social engineering 

attacks, and there is a need for an ensemble approach that combines the results of 

multiple recognizers. The overall recognition problem can be decomposed, and 

averaging the weight of several factors for efficient modelling and effective inference 

methods.  

A very common and dangerous type of social engineering attack is Spear phishing, 

which targets a specific victim and compromises her confidential data to get access into 

a sensitive system. Spear phishing attacks may be unleashed by sending malware or 

sending a URL link to the targets using fake identities to manipulate the victim but also 

through chat-based software. Social engineers know that humans are the weakest links 

in cyber security and they can put an organization at risk of a cyber-attack. By targeting 

employees with various social engineering techniques, they can manipulate their target 

to provide sensitive data. 

A social engineering attack is mainly related to manipulation and concerns human 

behavior, making it difficult to precisely predefine and recognize it by only syntactic or 

semantic analysis of the chat messages. Furthermore, human language ambiguity makes 

discriminating a sentence as malicious or not, even harder. To cope with this challenge, 

a researcher has to employ a toolkit (e.g., machine learning tools) to process all 

available data and to infer in a probabilistic manner whether a conversation contains 

elements indicative of a social engineering attack. 

2.2.1.  Attack  Lifecycle & Attributes  

In a typical social engineering attack, the attacker acts in a predetermined manner, 

where she initially gathers information using every possible technique or tool, then 

approaches the potential victim and develops a trust relationship. Next, she exploits this 

trust relationship to manipulate the victim to perform an action that would enable her 

to violate the respective information system. At the final stage, the attacker reaches her 

original target violating a CIA triad member (confidentiality, integrity, availability) of 
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informational resources. This lifecycle was formally described in (K. D. Mitnick and 

Simon 2011) as having the following phases: 

• Reconnaissance: The attacker gathers information about the target, such as 

their name, job title, and contact information. This can be done through 

publicly available information or by using social media or other online 

platforms. 

• Building trust: The attacker establishes a relationship with the target by posing 

as a trustworthy individual or organization. They may use tactics such as 

creating a sense of urgency or offering a reward to gain the target’s trust. 

• Attack: The attacker uses the information and trust they have gained to launch 

the attack. This can take many forms, such as tricking the target into 

disclosing sensitive information, convincing them to click on a malicious link 

or open a malware-laden attachment, or even gaining physical access to a 

facility. 

• Consolidation: After the attack is successful, the attacker consolidates her 

gains. This may involve exfiltrating stolen information, using the information 

to gain further access to the target’s systems, or even selling the information 

on the dark web. 

• Cover-up: The attacker covers their tracks to avoid recognition and make it 

difficult to trace the attack. 

 

Not all social engineering attacks have all these phases and also the order of the phases 

may vary depending on the scenario. Additionally, some attacks can be launched in a 

very short time, while others may take months or even years to be completed. 

Figure 2-1 depicts the different attributes of a social engineering attacks namely actor, 

approach, method, route, technique and distribution method. This thesis targets the 

attributes in box. 
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Figure 2-1. Social Engineering Attributes 

2.2.2.  CSE Attack   

Chat-based social engineering attacks are manipulative tactics employed by malicious 

actors to exploit human psychology, trust, and vulnerabilities in various forms of online 

communication channels, such as messaging apps, email, or social media messaging 

platforms. These attacks aim to manipulate individuals into divulging sensitive 

information, performing actions, or making decisions that can compromise their 

security, privacy, or financial well-being. An example of a typical CSE attack, that 

borrows phases and attributes from section 2.2.1 follows: 

1. Initial Contact: The attacker creates a fake profile on a popular messaging app, 

posing as a colleague, friend, or a trustworthy entity. They carefully choose a 

profile picture and display a name to mimic the person they are impersonating. 

2. Building Trust: The attacker initiates a conversation with the target, often with 

a friendly greeting. They may also provide some context to make their approach 

seem legitimate. For instance, they might say, “Hey [Target’s Name], it’s been 

a while. I wanted to catch up.” 
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3. Creating Urgency: To manipulate the target into acting quickly, the attacker 

fabricates a situation that demands immediate attention. They might claim that 

the target’s account has been compromised, or that there’s an urgent matter that 

requires confidentiality. This urgency puts pressure on the target to respond 

promptly. 

4. Request for Information: The attacker eventually leads the conversation to the 

main objective—extracting sensitive information. They might say, “I need to 

verify your identity. Can you please confirm your date of birth and the last four 

digits of your Social Security Number?” 

5. Leveraging Psychological Tricks: To make the target more compliant, the 

attacker may employ psychological tactics. They could use flattery, create a 

sense of fear or excitement, or appeal to the target’s desire to help a friend in 

need. 

6. Establishing Credibility: The attacker might claim to have access to sensitive 

information or details about the target’s life, gained through social media 

stalking or other means. This can make the impersonation more convincing. 

7. Encouraging Action: Once they have acquired the desired information, the 

attacker might ask for additional favors, such as clicking on a malicious link or 

transferring money. They could claim it’s related to the urgent matter they 

previously mentioned. 

8. Concealing Identity: Throughout the conversation, the attacker takes measures 

to hide their true identity, such as using proxy servers or disposable phone 

numbers, making it challenging to trace them. 

9. Termination: After achieving their goals or sensing suspicion from the target, 

the attacker may abruptly end the conversation to avoid detection. They may 

also block the target or delete their fake profile to cover their tracks. 

If successful, this CSE attack can have a serious impact on the victim. 

 

2.2.3.  Impact  

Small-medium enterprises (SMEs) are particularly vulnerable to CSE attacks due to 

their limited resources and lack of cyber security expertise. Social engineering attacks 

can have a significant impact on SMEs, including: 

• Financial Loss: Social engineering attacks can result in financial loss for 

SMEs. This can include the loss of company funds through fraudulent 

transactions or the loss of customer data, which can result in costly data 

breaches. 
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• Loss of Reputation: A successful social engineering attack can damage the 

reputation of an SME. This can lead to a loss of customer trust and a decline 

in business. 

• Loss of Productivity: Social engineering attacks can disrupt the normal 

operation of an SME. This can include the loss of important data or the need 

to rebuild systems, which can result in a loss of productivity.  

• Legal Consequences: SMEs can be held liable for data breaches and can face 

significant legal and regulatory penalties. 

For SMEs to mitigate the risks of social engineering attacks several actions can be taken 

like educating employees about social engineering tactics, implementing cyber security 

controls, and regularly monitoring for suspicious activity. 

2.3.  CSE Attack Enablers  

For the attacker to develop a trust relationship, she relies on specific human (victim) 

personality traits treating them as vulnerabilities and adapting her tactics accordingly. 

She aims is to influence the victim’s way of thinking, and to persuade him to behave 

mistakenly. The act of deception is underlying throughout the at-tacker’s effort. A 

communication scenario between the attacker and her victims involves message 

exchange through an electronic chat system. This is the point where the effort of this 

thesis on recognizing social engineering attacks is focusing. 

For a successful CSE attack several enablers must be triggered. By definition (Bernard 

2012) an enabler is something that enables or facilitates an action. In the context of CSE 

attacks, enablers refer to the various tactics and techniques used by attackers to trick 

their targets into disclosing sensitive information or performing certain actions. These 

enablers such as persuasion techniques, deception techniques, critical information 

leverage tricks, paraphrasing methods, and specific dialogue acts, which are often used 

in combination to increase the chances for a successful CSE attack. Recognition, in 

early stage, of these enablers is important to recognize and prevent CSE attacks. In 

(Tsinganos et al. 2018)  and (Tsinganos, Fouliras, and Mavridis 2023; 2022; Tsinganos, 

Mavridis, and Gritzalis 2022; Tsinganos and Mavridis 2021) the following enablers 

were identified: 

• Critical information leakage: Social engineers may attempt to extract sensitive 

or confidential information from their targets.  
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• Personality traits: Social engineers may attempt to exploit certain personality 

characteristics of their targets to gain their trust. For example, they may appeal 

to a person’s sense of authority or their need for social validation.  

• Dialogue acts: Social engineers may use certain dialogue acts, such as questions 

or commands, to elicit information or manipulate the conversation.  

• Persuasion attempts: Social engineering attacks often involve attempts to 

persuade the target to take a certain action, such as providing personal 

information or clicking on a link.  

• Persistence attempts: Social engineers may attempt to paraphrase information 

they’ve already obtained in order to confirm its accuracy or to obtain additional 

information.  

• Deception attempts: Social engineering attacks often involve deception, such as 

pretending to be someone else or providing false information.  

• Chat Dialogue History: As said, many CSE attacks are performed in several 

stages and it is very important for a recognizer mechanism to have access to the 

full dialogue history in order to make inferences.  

Deception attempts and chat dialogue history can easily be utilized in accordance with 

dialogue acts recognition. 

2.4.  Artif icial  Intel l igence  & Machine Learning  

Artificial Intelligence (AI) is an exciting field with many practical applications and 

many more active research topics. During the last years, scientists relied on AI to tackle 

with problems difficult for humans to solve but straight-forward to be solved by 

machines (Russell and Norvig 2022). Historically, and due to the interdisciplinary 

nature of AI, there was a debate about how scientists should approach AI, meaning to 

build a machine that acts or a machine that thinks intelligently. Many disciplines such 

as Philosophy, Mathematics, Neuroscience, Psychology and of course Computer 

Science have contributed to that debate and to what AI is today. The modern AI 

approach that prevailed is focused on building rational agents, which means intelligent 

entities that act so as to achieve the best outcome or, when there is uncertainty, best 

expected outcome.  

AI is a vast and universal scientific field and it encompasses several subfields such as 

Machine Learning, Computer Vision, Robotics, Expert Systems, Speech Processing, 

Natural Language Processing and others. Machine learning is a subfield of AI that 

studies the ability to improve the agent’s performance based on experience. A statement 
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credited to Tom Mitchel (Mitchell 1997) defines ML as “A computer program is said 

to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with experience 

E.”. This statement still holds true and it is the effort to improve this performance 

measure P that led the scientific community to explore new directions. 

2.5.  Deep Learning & Neural  Networks  

In recent years, deep learning (Goodfellow, Bengio, and Courville 2016) has emerged 

as a powerful paradigm in the field of artificial intelligence, revolutionizing various 

domains by enabling machines to automatically learn intricate patterns and 

representations from large-scale data. Deep learning models offer the advantage of 

capturing complex patterns and dependencies in multimodal data, including text, 

speech, and behavioral cues.  

At their core, deep learning models consist of multiple layers of interconnected nodes, 

known as artificial neurons or units. These layers are organized in a hierarchical fashion, 

with each layer extracting increasingly complex features from the input data. The input 

to a deep learning model is typically a high-dimensional data representation, such as 

images, text, or audio. Each input feature is assigned a weight, and these weights are 

learned during a training phase to optimize the model’s performance. The first layer of 

the model, known as the input layer, receives the raw input data and passes it through 

to the subsequent layers. 

As the data flows through the network, each neuron in a given layer computes a 

weighted sum of the inputs it receives, including the weighted outputs from the previous 

layer. This sum is then passed through an activation function, which introduces non-

linearity and allows the model to learn complex relationships and patterns within the 

data. The output of each neuron in a layer becomes the input for the neurons in the next 

layer, and this process is repeated until the data reaches the final layer, known as the 

output layer. The output layer produces the model’s prediction or classification based 

on the learned weights and patterns. During training, the model’s predictions are 

compared to the true values of the training data, and an optimization algorithm, such as 

gradient descent, is used to adjust the weights iteratively, minimizing the difference 

between predicted and true values. 

One of the key strengths of deep learning models is their ability to automatically learn 

hierarchical representations of data. By having multiple layers, each layer can learn 

increasingly abstract and complex features. Lower layers typically capture low-level 

features, such as edges or textures in images, while higher layers learn more abstract 

representations, such as shapes or objects. This hierarchical feature extraction enables 
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deep learning models to excel at tasks such as image recognition, natural language 

processing, and speech recognition. 

Overall, deep learning models leverage the power of interconnected layers of artificial 

neurons, trainable weights, and non-linear activation functions to learn complex 

patterns and relationships within high-dimensional data. Through an iterative training 

process, these models can make accurate predictions, recognize patterns, and generalize 

well to unseen data, making them a valuable tool in various domains, including 

computer vision, natural language processing, and cyber security. 

Using deep learning models for natural language processing tasks is a relatively new 

paradigm that recently presented breakthrough results in many NLP tasks such as part-

of-speech-tagging, parsing, text classification and others. Since then, a massive interest 

has been generated applying deep learning models to several different domains, 

including the cybersecurity domain. 

The deep learning models proposed in this thesis are trained using carefully constructed 

corpora derived from CSE Corpus, which represents real-world chat dialogues 

involving social engineering attacks. This corpus captures the diverse nature of attacks, 

incorporating different social engineering techniques, linguistic patterns, and 

contextual variations. The availability of such annotated data facilitates the training and 

evaluation of the deep learning models, enabling the exploration of nuanced attack 

strategies and the development of effective defense mechanisms.   Figure 2-2 presents 

a typical deep learning training pipeline and training dataset split where X+Y+Z=100. 

 

 

Figure 2-2. Train/Validation/Test split and the training pipeline 
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addresses) or unstructured text (i.e., chat-based dialog). For example, deep learning can 

discover complex structure existing in a corpus and using a learning algorithm (i.e., 

backpropagation) can indicate how a model should change its internal parameters that 

are used to compute the representation in each layer from the representation in the 

previous layer. There are several cybersecurity recognition problems that can be casted 

to text classification problems such as those mentioned in (Tsinganos et al. 2018). More 

specifically, deception recognition, persuasion recognition, personality traits 

recognition, dialogue-acts recognition, and persistence recognition can be seen as text 

classification problems where the input is a sentence written by one of two interlocutors 

in a chat-based client. 

2.6.  Natural  Language  Processing  

Natural Language Processing (NLP) is a subfield of artificial intelligence and an 

intersection with computational linguistics that focuses on enabling computers to 

understand, interpret, and generate human language. It encompasses a wide range of 

techniques, algorithms, and models that facilitate the interaction between humans and 

machines using natural language, such as speech or text. The goal of NLP is to bridge 

the gap between human communication and machine understanding, enabling 

computers to process, analyze, and generate language in a way that is meaningful and 

useful. 

NLP involves various tasks, including but not limited to, natural language 

understanding (NLU) (Jurafsky and Martin 2022), natural language generation (NLG) 

(Jurafsky and Martin 2022), information extraction (Clark, Fox, and Lappin 2013), 

sentiment analysis (Dos Santos and Gatti 2014), machine translation (Luong, Pham, 

and Manning 2015), and question answering (Chakravarty 2019). NLU involves the 

comprehension of human language, enabling machines to extract meaning, identify 

entities, recognize grammatical structures, and understand the intent behind user 

queries. NLG, on the other hand, focuses on generating human-like language, allowing 

machines to produce coherent and contextually appropriate responses or written content. 

To achieve these tasks, NLP employs a range of techniques and methodologies. One 

approach is rule-based systems, where explicit rules and linguistic patterns are defined 

to handle language processing tasks. Another approach is using statistical methods, 

which utilize large amounts of annotated data to train probabilistic models that capture 

patterns and associations within the language. More recently, deep learning techniques, 

such as recurrent neural networks (RNNs) and transformers, have demonstrated 

remarkable success in NLP tasks by leveraging the power of neural networks to learn 

complex language representations. 



45 

 

NLP faces numerous challenges due to the inherent complexity and ambiguity of 

natural language. These challenges include dealing with variations in sentence structure, 

understanding context and semantics, resolving references, handling idiomatic 

expressions, and addressing the nuances of sentiment and tone. Researchers and 

practitioners in NLP continually strive to develop innovative algorithms and models 

that can overcome these challenges and improve the accuracy and effectiveness of 

language processing tasks. 

Thus, natural language processing is a field dedicated to developing computational 

methods that enable computers to understand, analyze, and generate human language. 

By leveraging techniques from linguistics, artificial intelligence, and machine learning, 

NLP plays a crucial role in facilitating human-computer interaction, powering 

applications such as chatbots, virtual assistants, sentiment analysis systems, machine 

translation services, and more. As the demand for efficient and natural language 

communication grows, advancements in NLP continue to shape the way we interact 

with and benefit from technology. 

2.7.  DL Models Evaluation  

The evaluation of deep learning models is essential to assess their performance and 

effectiveness in solving specific tasks. In the context of this thesis, where the focus lies 

on developing deep learning models for CSE attack recognition, the selection and 

application of appropriate metrics are of paramount importance. This section introduces 

the concept of metrics and their significance in evaluating the performance of the 

proposed models. 

Metrics serve as quantitative measures that allow for the objective assessment of model 

performance. They provide insights into various aspects of model behavior, such as 

accuracy, precision, recall, and F1 score, among others. In the context of CSE attack 

recognition, metrics help determine the models' ability to correctly identify and classify 

different types of attacks, while minimizing false positives and false negatives. 
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Figure 2-3. Precision, Recall, and Accuracy 

 

Several performance metrics are employed to evaluate the quality of the proposed deep 

learning models or systems and assess their ability to make accurate predictions on new, 

unseen data. More specifically, throughout the experiments, the following performance 

metrics were used: 

• Receiver Operating Characteristic (ROC) is a graphical representation of the 

performance of a binary classifier model at different classification thresholds. 

The ROC curve plots the true positive rate (TPR) against the false positive rate 

(FPR) at various threshold settings, where the TPR is the proportion of actual 

positive instances that are correctly identified by the model, and the FPR is the 

proportion of negative instances that are incorrectly identified as positive.  

• Accuracy is a measure of the proportion of correct predictions made by the 

model, expressed as a percentage. It is calculated as the ratio of the number of 

correct predictions to the total number of predictions made by the model. 

• Precision is a measure of the proportion of true positive predictions among all 

positive predictions made by the model. It is calculated as the ratio of the number 

of true positive predictions to the total number of positive predictions made by 

the model. 
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• Recall, also known as sensitivity, is a measure of the proportion of true positive 

predictions among all actual positive instances. It is calculated as the ratio of the 

number of true positive predictions to the total number of actual positive 

instances 

• F1, The F1 metric is an evaluation measure that combines precision and recall 

to assess the performance of a binary classification model. It provides a single 

numerical value that represents the harmonic mean of precision and recall, 

giving equal importance to both measures. The F1 metric is particularly useful 

when there is an imbalance between the positive and negative classes in the 

dataset. 

Where appropriate additional metrics are introduced and utilized in place. 

2.8.  Chapter Conclusion  

Chapter 2 provided a comprehensive exploration of the theoretical background 

necessary for understanding the research context of CSE attack recognition. Various 

key aspects were discussed, encompassing topics such as cyber security in the context 

of social engineering, the attack cycle and the impact of social engineering attacks, the 

role of artificial intelligence, deep learning and neural networks, natural language 

processing, and metrics for evaluation. 

Throughout this chapter, the significance of comprehending the fundamental principles 

and concepts associated with CSE attacks and the utilization of deep learning models 

for their recognition and identification was emphasized. Through the examination of 

the attack cycle and the potential impact of these attacks, valuable insights were 

acquired regarding the severity and significance of the problem at hand. Furthermore, 

an exploration was conducted on the integration of artificial intelligence, deep learning, 

and natural language processing techniques to tackle the challenges involved in 

recognizing and mitigating CSE attacks. 

In addition, a detailed discussion was held regarding the metrics employed to evaluate 

the performance of the proposed models. These metrics, such as accuracy, precision, 

recall, and F1 score, enable a quantitative assessment of the models' capabilities in 

recognizing and classifying different types of attacks. Moreover, metrics that take into 

account the multimodal nature of the data were considered, encompassing speech, text, 

and behavioral cues. Additionally, metrics related to sentiment analysis and dialogue 

acts alignment were also taken into consideration. 

Chapter 2 provided the necessary theoretical foundation for understanding the research 

context of CSE attack recognition. The insights obtained from this chapter form the 



48 

 

foundation for the subsequent chapters, where the proposed models, methodologies, 

experimental results, and analysis are presented. By leveraging the theoretical 

knowledge and metrics discussed in this chapter, the objective is to develop effective 

deep learning models and make contributions to the advancement of CSE attack 

recognition techniques. 
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3 .  R E L AT E D  W O R K  

In this chapter a summarization of the most interesting works is presented. Although 

there is no research work dedicated to CSE attack recognition, there is valuable 

information in the following works. 

Researchers performed several successful classifications of the social engineering 

attacks (Heartfield and Loukas 2016; Kumar, Chaudhary, and Kumar 2015; Salahdine 

and Kaabouch 2019) based on criteria such as the entity involved, the medium used to 

unleash the attack or the number of steps an attack can take. All these classifications 

end up in fine-grained taxonomies that include different methods of social engineering 

attacks. Verizon in (Verizon Enterprise ) reports that in 2023 social engineering attacks 

were at 21%, the first step of every cyber-attack that led to a major data breach. 

Furthermore, the same report mentions that social engineering attackers’ methods of 

choice are phishing and pretexting. The pretext method uses an invented scenario to 

facilitate the attacker to persuade the target to do what the attacker wants (Salahdine 

and Kaabouch 2019). 

In 2005, Hoeschele and Rogers ((Hoeschele and Rogers 2005)  introduced the Social 

Engineering Defense Architecture (SEDA) which is designed to recognize social 

engineering attacks during real-time phone conversations. Although the model was 

successful in recognizing the attacks, it did not incorporate previous activity history or 

personality recognition characteristics of both the attacker and the victim.  In their 2010 

paper, Bezuidenhout et al. (Bezuidenhout, Mouton, and Venter 2010) introduced an 

architecture named the Social Engineering Attack Recognition Model (SEADM), 

which assists users in making decisions through the use of a simple binary decision tree 

model. However, the authors rely on several unrealistic assumptions to justify the logic 

of their proposed system. SEADM was revisited in a subsequent paper by Mouton et al. 

in 2015 (Mouton et al. 2015) where the system was adapted to account for social 

engineering attacks that include unidirectional, and bidirectional communication 

between the attacker and the victim. According to Bhakta and Harris(Bhakta and Harris 

2015), the most successful social engineering attacks involve a conversation between 

the attacker and the victim. Their methodology involves utilizing a predefined Topic 

Blacklist (TBL) to check dialogue sentences. The authors report achieving a precision 

rate of a recall rate of 88.9% with their approach. Sawa et al. (Sawa et al. 

2016)expanded upon the aforementioned work by implementing advanced language 

processing techniques that balance syntactic and semantic analysis. The reported results 

demonstrate 100% precision and 60% recall. However, they used a small dataset with 

only three conversations which limited the precision and recall's success as a measure. 

Moreover, the algorithm did not consider any contextual information during the 
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classification process, making it unaware of the specific environment in which it 

operates. Uebelacker and Quiel (Uebelacker and Quiel 2014) have proposed a 

taxonomy of social engineering attacks based on Cialdini's Influence principles. They 

investigated the relationship between the Big-5 Theory, which pertains to personality 

traits, and Cialdini's influence principles. They proposed a Social Engineering 

Personality Framework (SEPF) and outlined a complete research roadmap for future 

work on SEPF. 

In (Smutz and Stavrou 2012), the authors recognize malicious documents using a 

framework that is based on machine learning algorithms. A Random Forests ensemble 

classifier is used which selects in random the features for each classification tree. The 

features are selected and extracted from the document’s metadata and structure. This 

Random Forests classifier appears to be resilient against mimicry attacks and highly 

efficient in recognition rate. 

(Peng, Harris, and Sawa 2018) the authors present a method to recognize malicious 

statements using natural language processing techniques. They analyze the statements 

and discriminate the malicious ones that imply a phishing attack. The malicious intent 

of the statements is recognized by analyzing the statements. The proposed algorithm is 

evaluated using a phishing email dataset that is used as a benchmark set. 

In Lansley et al. (Lansley et al. 2020; Lansley, Kapetanakis, and Polatidis 2020; Lansley, 

Polatidis, and Kapetanakis 2019), the authors use NLP methods and neural networks in 

an attempt to recognize social engineering attacks. They describe a method where 

offline or online text documents are processed using NLP tools and through artificial 

neural networks, they discriminate whether the text is a social engineering attack or not. 

The text in the first stage is parsed and checked for syntactical/grammatical errors using 

natural language techniques while later an artificial neural network classifies possible 

social engineering attacks. The proposed method has presented high accuracy results 

during the evaluation where a real and a semi-synthetic dataset were used for the model 

training. Furthermore, several other classification models have been tried to compare 

the two datasets. 

(Lee, Saxe, and Harang 2020) the authors describe a method to represent the syntactic 

and semantic characteristics of the natural language by using a pre-trained BERT model. 

The proposed model seems to be resilient to adversarial attacks where the attackers 

intentionally replace the keywords with synonyms. 

In (Catak, Sahinbas, and Dörtkardeş 2021) the authors describe  a URL classifier based 

on Random Forest models and gradient boosting classifier. The URL classifier, in order 

to improve the algorithm’s efficiency recognizing malicious web sites, makes use of 

features related to the host and the linguistic characteristics of the URL. By using 
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machine learning algorithms, the authors succeed in drastically reducing the 

recognition time of a malicious URL. Thus, they offer real-time protection for harmless 

web browsing while at the same time-saving computational resources. 

Lan (Lan 2021) proposes a social engineering recognition model based on deep neural 

network. The model is able to recognize deception attempts and phishing attempts by 

analyzing the text content. The chat history in the first stage is processed and analyzed 

using natural language techniques and the context semantics are captured and mined 

using a bi-directional Long Short-Term Model (bi-LSTM). The integration of the user 

characteristics and chat content characteristics as features for the classification is done 

by ResNet. 

Social engineering attacks are not only unleashed by humans; recent advances in 

Chatbot technology escalate even more the problem of social engineering. Chatbots 

(Adamopoulou and Moussiades 2020) are conversational agents that communicate 

through artificial intelligence  and natural language processing . A chatbot dedicated to 

accomplishing a malicious task can utilize multiple personalities in an attempt to 

deceive a human and extract sensitive data. Chatbots are also capable of approaching 

all types of humans presenting different personalities based on the seven principles of 

persuasion defined by R. Cialdini (Cialdini 2021) (reciprocity, scarcity, authority, 

commitment, liking, social proof and unity). Moreover, due to the COVID-19 pandemic 

the use of conversational agents increased, and it is a rather common practice for an 

employee to socialize with a chatbot as part of daily routine operations. Users od chat 

software must be aware of the possible dangers and be protected from malicious 

questions which aim to extract sensitive data. Although chatbots are a novel tool in the 

hands of social engineers, the rapid pace in AI and NLP makes them an important factor 

due to their capabilities. Today, the majority of CSE attacks are operated by humans, 

but AI-driven social engineering attacks are expected to happen in the near future 

through chatbots too (Pogrebna and Skilton 2019). 

In (Dalton et al. 2020), the authors describe a system that protects against CSE attacks 

by deploying a pipeline of NLP components. The NLP components include NER, 

Dialogue Engineering, Stylometry and Ask and Framing Question. They use an active 

defense approach to recognize the social engineer’s intention and then waste her time 

and resources. In (Saleilles and Aïmeur 2021), the authors also present a different 

approach with a chatbot that is dedicated to educating the users and raising their 

awareness regarding social engineering attacks. The chatbot first performs an 

assessment of the cybersecurity concepts knowledge of the user using a quiz, and then 

based on the answers it proposes specific training paths to fill the knowledge gaps. 

During the education, the chatbot makes use of malicious questions, in an attempt to 

extract sensitive data from the users to make them more aware of the possible dangers.  
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4 .  C O N C E P T U A L F R A M E W O R K  

Social engineering characterizes the general phenomenon of human manipulation 

involving the field of information systems. Its success depends on specific traits of 

human personality. These personality traits define the way of human behavior. The 

interested lies in traits that: 

• Enhance the attacker’s ability to manipulate. 

• Make the victim vulnerable to manipulation. 

A human’s previous conversations can also help us draw a more complete picture of his 

vulnerability level and trigger an alarm with more confidence if a threshold is exceeded. 

In the following sub-sections, the main entities related to this study are presented, the 

attack surface and the CSE attack enablers that are decisive for the success or failure of 

a CSE attack. 

4.1.  Entit ies  and attack surface  

A chat may begin with the user or the potential social engineer, who initiates the 

conversation by entering utterances into the chat software, which serves as their means 

of communication. As shown in Figure 4-1 the CSE-ARS system is able to analyze the 

content of the utterances utilizing deep learning algorithms and techniques and make 

inference regarding enablers that can lead to successful CSE attacks.  

 

Figure 4-1. Critical enablers that can lead to a successful CSE attack 
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Throughout this process, CSE-ARS acts as a safeguard, aiming to protect the user by 

analyzing his personality characteristics and detecting critical information leakage. On 

the social engineer’s side, CSE-ARS is able to recognize malicious persuasion attempts, 

persistent behavior and recognition of dialogue acts that can lead to unwanted actions 

by analyzing the full chat history and thus making inference regarding deception 

attempts. 

For a successful CSE attack, several enablers can be triggered. By definition (Bernard 

2012), an enabler is something that enables or facilitates an action. In the context of 

CSE attacks, enablers refer to the various tactics, techniques, and artifacts used by 

attackers to trick their targets into performing certain actions. These enablers include 

critical information leverage, personality traits that can be exploited, specific dialogue 

acts that can lead to information leakage, persuasion techniques, deception techniques, 

and paraphrasing methods. All these enablers are often used in combination to increase 

the chances of a successful CSE attack. Recognition of these enablers in an early stage 

is important to recognize CSE attacks. Following the work of (Tsinganos et al. 2018) 

the following critical enablers are identified: 

• Critical information leverage: Social engineers attempt to extract sensitive or 

confidential information from their targets.  

• Personality characteristics: Social engineers attempt to exploit certain 

personality characteristics of their victims in order to manipulate them and gain 

their trust.  

• Dialogue acts: Social engineers use certain dialogue acts, such as questions or 

commands, to elicit information or manipulate the conversation.  

• Persuasion attempts: Social engineering attacks often involve attempts to 

persuade the target to take a certain action, such as providing critical information 

or clicking on a link.  

• Persistent behavior: Social engineers may attempt to paraphrase information to 

obtain additional information by repeatedly turning the discussion to the subject 

of interest.  

• Deception attempts: Social engineering attacks often involve deception, such as 

pretending to be someone else or providing false information.  
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• Chat History: A CSE attack can be unleashed in separate and distinct phases. A 

recognition mechanism should be able to assess the full conversation between 

two interlocutors. 

In the next sections the enablers that can lead to a successful CSE attack, collectively 

known as CSE attack enablers, are presented. 

4.2.  Critical  Information Leakage  

Critical information leakage is a significant enabler for successful CSE attacks. Social 

engineers employ various tactics to extract sensitive or confidential information from 

their targets, posing a significant threat to individuals and organizations. Recognizing 

the importance of addressing this challenge, deep learning algorithms can play a pivotal 

role in recognizing patterns in language that indicate the leakage of critical information. 

Deep learning models can be trained to analyze chat-based conversations and identify 

linguistic cues or behavioral patterns that hint at the disclosure of e.g., personal 

information or login credentials. These models can learn from a vast amount of labeled 

data, encompassing both legitimate conversations and examples of information leakage. 

The training process enables the models to develop an understanding of the specific 

linguistic markers associated with critical information leakage, thereby enhancing their 

ability to recognize such instances in real-time. 

The application of deep learning models in identifying critical information leakage 

holds great promise for bolstering the security and resilience of individuals and 

organizations against CSE attacks. By swiftly recognizing and flagging instances of 

information leakage, these algorithms can provide an added layer of defense, enabling 

timely intervention and mitigating potential risks. Moreover, the continuous learning 

capabilities of machine learning models allow them to adapt to evolving attack 

strategies, thereby staying one step ahead of malicious actors and safeguarding sensitive 

information from being compromised. 

4.3.  Personality  Traits  

In psychology, human personality "refers to individual differences in characteristic 

patterns of thinking, feeling and behaving" (Kazdin, A.E. 2004) and, although there is 

no universal acceptance, the Big-5 Theory analyzes a five-factor model (FFM) of the 

personality traits, or otherwise called factors to classify personalities. These factors are 

believed to capture most of the individual differences in terms of personality. The five 

factors, usually measured between 0 and 1, are (Spielberger 2004): 
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• conscientiousness: "The degree to which individuals are hard-working, 

organized, dependable, reliable, and persevering versus lazy, unorganized, and 

unreliable." 

• extraversion: "The extent to which individuals are gregarious, assertive, and 

sociable versus reserved, timid, and quiet." 

• agreeableness: "The degree to which individuals are cooperative, warm, and 

agreeable versus cold, disagreeable, rude, and antagonistic." 

• openness: "the extent to which an individual has richness in fantasy life, 

aesthetic sensitivity, awareness of inner feelings, need for variety in actions, 

intellectual curiosity, and liberal values." 

• neuroticism: "the degree to which one has negative effect, and also disturbed 

thoughts and behaviors that accompany emotional distress" 

The degree of susceptibility to CSE attacks has also been connected to the five 

personality traits. Responsible behavior concerning security best practices has been 

positively correlated with low openness (Sudzina and Pavlicek 2023), meaning that 

high levels of openness could potentially facilitate risky security behavior. Lower levels 

of Conscientiousness have been found to predict deviant workplace behavior such as 

irresponsible conduct or rule-breaking (Salgado 2002). High levels of Extraversion are 

predictive of increased vulnerability to phishing attacks (Albladi and Weir 2017). 

Agreeableness has consistently been associated with phishing in multiple studies 

(Anawar et al. 2019; Uebelacker and Quiel 2014). Agreeable individuals may be more 

susceptible to manipulation due to their tendency to establish trust with the target, which 

is a characteristic of agreeableness. On the other hand, lower levels of Neuroticism are 

associated with higher susceptibility (Exploring the Role of Individual Employee 

Characteristics and Personality on Employee Compliance with Cybersecurity Policies, 

2012). 

The results are contradictory in many situations and they do not lead to a direct 

conclusion. Up till now, researchers have examined the relation between personality 

traits and social engineering by combining knowledge of human behavior in other fields 

(marketing, etc.). It would be of great benefit to analyze and measure the exact relation 

of personality traits with specific SE techniques.  

The following table depicts when a personality trait can lead to increased susceptibility 

of CSE attacks. 
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Table 4-1 - Personality traits & CSE Susceptibility 

Personality Trait Value Vulnerability 

Openness High High 

Consciousness Low High 

Extraversion High High 

Agreeableness High High 

Neuroticism Low High 

 

4.4.  Speech-Acts & Dialogue Acts  

Theoretical linguistics inquire into the nature of human language and seek to answer 

fundamental questions as to what a language is, or the inner workings of it. Several 

different levels of analysis are defined, such as syntactic (studies the structure of the 

visible/audible form of the language), semantic (studies the relations and dependencies 

between different language structures and their potential meanings), and pragmatic 

(studies the issues related to language use due to context and uncovers the intention of 

the speaker in an utterance). 

This study on chat-based conversations can benefit by finding the ordering and patterns 

of interaction between two interlocutors. The interest is in uncovering the actions that 

are hidden between the words and pragmatic analysis seems to be the appropriate 

approach from such a language/action perspective (Winograd 1986). The starting point 

to study the pragmatics of language action is Speech Act Theory (SAT). According to 

SAT (Searle et al. 1980), the uttering of a sentence is an action, and in short, the  form 

says that "saying is doing" or similarly "words are deeds". Austin (Austin 1975) claimed 

"all utterances, in addition to meaning, perform specific acts via the specific 

communicative force of an utterance" and introduced a three-fold distinction among the 

acts one simultaneously performs when saying something: 

• Locutionary act: the production of a meaningful linguistic expression. 

• Illocutionary act: the action intended to be performed by a speaker in uttering a 

linguistic expression, either explicitly or implicitly. Examples include: accusing, 

apologizing, refusing, ordering, etc. 

• Perlocutionary act: the effect of the illocutionary act on the hearer such as 

persuading, deterring, surprising, misleading or convincing. 
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For example, the phrase of an IT technician: "The operating system will reboot in five 

minutes." results in saying that the OS will reboot in 5 minutes (locutionary act) and 

informs the users of the imminent rebooting of the OS (illocutionary act). By producing 

his utterance, the IT technician intents to make users believe that the OS will reboot in 

5 minutes and urges them to do housekeeping activities (perlocutionary act). The IT 

technician performs all these speech acts, at all three levels, just by uttering the above 

sentence. 

Searle proposed speech acts to be classified into the following five categories along 

four dimensions (illocutionary point, direction of fit between words and world, 

psychological state, and propositional content): 

• Representatives express the speaker’s beliefs. Examples include claiming, 

reporting, asserting, stating and concluding. Using representatives, the speaker 

makes words fit the world by representing the world as he believes it is. 

• Directives express the speaker’s desire to get the hearer act in a specific way. 

Examples include commands, advice, orders and requests. Using directives, the 

speaker intends to make the world match the words via the hearer. E.g., 

"Double-click this file." 

• Commissives are used to express the speaker’s intention and commitment to do 

something in the future. Examples include offers, pledges, promises, refusals, 

and threats. Using Commissives, the speaker adapts the world to the words; e.g., 

"I’ll never give you access to your account." 

• Expressives express the psychological state of the speaker such as joy and 

sorrow. Examples include praising, blaming, apologizing, and congratulating. 

There is no direction of fit for expressives; e.g. "Well done, John!" 

• Declaratives are used to express immediate changes in the current state of some 

affair. Examples are firing (from employment), declaring war, etc. Both 

directions of fit, suit this type of speech act (words-to-world and world-to-

words). E.g., "I object, Your Honor." 

Speech acts and dialogue acts play a crucial role in CSE attack recognition. Speech acts 

involve the communicative intent behind a statement, while dialogue acts represent the 

function of an utterance in a conversation. Recognizing these acts is essential for 

identifying CSE attacks as attackers often use specific speech and dialogue acts to 

manipulate victims. Understanding the interplay between speech and dialogue acts 

allows for the detection of manipulative or coercive language patterns, helping to 

enhance the accuracy of CSE attack recognition systems and ultimately bolstering 

cybersecurity measures in chat-based interactions. 
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4.5.  Influence & Persuasion  

As Schneier points out (Samuel Galice Marine Minier 2008), human risk perception 

has evolved over thousands of years. Nevertheless, progress in technology has changed 

our lives very fast without allowing enough time for our risk perception to adjust to 

new threats. This vulnerability in human design is exploited by social engineers and 

then transferred to information systems to compromise them. Schneier discusses also 

heuristics (called shortcuts) in human behavior and biases. Both are causal factors for 

wrong appraisals and decisions. Robert Cialdini (Ganzha and Polskie Towarzystwo 

Informatyczne 2010) agrees with Schneier and discusses the principles of influence and 

how heuristics and biases are exploited by a human to manipulate another human. 

Cialdini also argues that there are two types of influence: compliance and persuasion. 

Using persuasion, the attacker sends a message and then the victim changes his behavior, 

attitude or knowledge as a result of the received message. Compliance forces the change 

of a behavior as a result of a direct request. The request can be explicit (hard) or implicit 

(soft). Cialdini (Cialdini and Goldstein 2002) conducted experiments and field studies 

on sales and marketing department employees, and defined six influence principles. In 

a recent work (Cialdini 2021) Cialdini added a seventh principle to his famous 

taxonomy. Overall, the seven persuasion principles are: 

• Reciprocation: a social norm that makes us repay others for what we have 

received. It builds trust between humans and we are all trained to adhere or 

suffer severe social disapproval. Humans feel obliged after receiving a gift. 

• Commitment and Consistency: humans commit by stating who they are, based 

on what they do or think. They also like to be consistent because that builds 

character. Attackers exploit that kind of belief by initially asking for a small 

favor, then a bigger one and finally the big bad favor. Humans that have already 

served an attacker feel they have to show commitment and be consistent with 

their prior behavior. 

• Social Proof: humans tend to believe what others do or think as right. 

• Liking: if someone likes us and makes it obvious, it is hard to resist not to like 

him back. After that it is easier for him to ask us a favor and difficult for us to 

deny him one. On the opposite direction we all want to be liked 

• Authority: humans tend to trust and obey experts or someone in a high 

hierarchical position. It is difficult for an employee to deny a request from an 

IT manager, for example. 

• Scarcity: limited information leads to wrong decisions and limited resources are 

more desirable. If an attacker knows that an employee wants a specific 

application then she can offer it (after injecting an exploit), or claim a reason to 

request a favor based on evidence that only the user possesses. 
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• Unity: a perception that we share a common identity, that we are all part of “us.” 

Apart from Cialdini, many researchers tried to capture the psychological aspects of 

human behavior related to persuasion. Gragg (Gragg 2003) presents a list of such 

principles and calls them triggers: Strong affect, Overloading, Reciprocation, Deceptive 

Relationships, Diffusion of Responsibility, Authority, Integrity and Consistency. 

Scheeres (Scheeres 2008) makes obvious the relationship between Gragg’s and 

Cialdini’s treatment by correlating all these principles and triggers. Granger (Granger 

2001; 2002)  and Peltier(Peltier 2006) present similar factors of persuasion based on 

their point of view. 

Table 4-2 summarizes the mapping of the above factors along with Cialdini’s principles. 

In this thesis’ approach Cialdini’s influence principles are adopted because there is a 

major overlap with all of the factors proposed by the other researchers. 

 

Table 4-2. Mapping of Persuasion Principles and Factors. 

Cialdini's 

Principles 

Harl's (1997) 

Communication 

Strategies 

Gragg's (2003) 

Compliance-

Gaining Strategies 

Granger (2001) 

Persuasion 

Principles 

Peltier's (2006) 

Persuasion 

Principles 

Reciprocity Giving and receiving Offering concessions Exchange Exchange 

Scarcity Limited availability 

Creating a sense of 

urgency Scarcity Scarcity 

Authority 

Expertise and 

credibility 

Appealing to 

expertise Authority Authority 

Liking 

Similarity and 

attraction 

Making yourself 

likable Liking Liking 

Social proof 

Consensus and 

conformity 

Appealing to others' 

behavior Social proof Social proof 

Consistency 

Commitment and 

consistency 

Getting someone to 

commit to a small 

step Commitment Commitment 

 

4.6.  Deception  

An (An 2015) describes Deception as "an act or statement intended to make people 

believe something that the speaker does not believe to be true, or not the whole truth". 

A more precise definition for Deception is given in (Granhag and Strömwall 2004) 

where "Deception is a successful or unsuccessful attempt, without forewarning, to 

create in another a belief which the communicator considers to be untrue". Over the 

years the research community became very interested in the recognition of deception. 

Due to the interdisciplinary nature of the phenomenon, researchers from various 
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scientific fields (psychology, computer science, linguistics, philosophy, etc.) have 

already presented their results by studying and analyzing several different deceptive 

cues (e.g., bio-metric indicators, facial indicators or gestural indicators).  

There are two categories of deception (An 2015): 

• face-saving: when humans lie to protect themselves, to avoid tension and 

conflict in a social interaction, or to minimize hurt feelings and ill will, 

• malicious: when humans lie with harmful intent. 

The primary interest is in recognizing a malicious deception attempt in a text-based 

conversation and using this finding as an extra indicator for recognizing a social 

engineering attempt. So far, several research attempts have been made to study verbal 

or nonverbal cues to recognize deceptive behavior (Ott et al. 2011), (Feng, Banerjee, 

and Choi 2012). Current work in deception recognition is mainly based on verbal cues 

and has shown that it is possible to reliably predict a deception attempt (Vrij 2014). In 

most of the works researchers have collected data and manually annotated them for 

deceptive status. After that, the labeled data were fed to a classification algorithm for 

supervised learning. The features extracted for text-based deception recognition are 

critical and directly connected to prediction accuracy (Ott et al. 2011), (Feng, Banerjee, 

and Choi 2012). 

The common scientific approach for persuasion recognizing is to use three types of 

features, namely lexical, acoustic, and speech features. The most frequently used 

techniques for lexical analysis are: Linguistic Inquiry and Word Count (LIWC), N-gram, 

Part-of-speech (POS), and Dictionary of Affect in Language (DAL). LIWC is primarily 

used for recognizing psychological characteristics by calculating several metrics for the 

usage of different word categories, the usage of casual words, the existence of positive 

or negative emotions in text, etc. In (Hirschberg et al. 2005), and  (Ott et al. 2011) 

researchers used LIWC to examine text-based communication and managed to extract 

valuable knowledge regarding people’s personality, and cognitive and emotional 

characteristics. The above research works differ in accuracy results due to the use of 

different datasets that lead to accurate or less accurate machine learning algorithms. 

DAL is mostly used to analyze emotive content and its main difference from LIWC is 

that it has a narrower focus. N-gram is usually combined with other more advanced 

techniques, like LIWC to train binary classifiers (e.g., Naive Bayes, SVM, etc.) during 

a lexical analysis. 
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4.7.  Chat History  

This enabler poses a significant technical challenge in assessing the risk of a potential 

CSE attack by analyzing the user's chat dialogues. CSE attacks often unfold over 

multiple phases, where the attacker strategically prepares and builds a sense of trust 

with the victim over time. During this process, the attacker carefully explores the 

victim's vulnerabilities and seeks the opportune moment to launch the attack. Therefore, 

it becomes crucial to leverage the entire history of chat dialogues between the same 

individuals, converting them into quantifiable metrics that can serve as additional 

indicators for recognizing CSE attacks. 

By analyzing the chat history, we can capture valuable insights into the dynamics and 

patterns of the communication between the attacker and the victim. This historical 

information provides a contextual understanding of the relationship between the 

interlocutors and unveils the progression of the conversation over time. It allows us to 

identify any anomalous or suspicious behavior that deviates from the norm, potentially 

indicating the presence of a social engineering attack. 

Transforming the chat history into measurable values involves the extraction of relevant 

features and the application of suitable techniques, such as natural language processing 

and machine learning. These techniques enable us to quantify various aspects of the 

dialogues, such as linguistic patterns, sentiment analysis, topic modeling, and user 

behavior. By quantifying the chat history, we can create a comprehensive representation 

of the communication dynamics, enabling the development of effective algorithms and 

models for CSE attack recognition. 

The analysis of chat history provides an additional layer of insight in recognizing CSE 

attacks. By incorporating the historical context of the interlocutors' communication and 

transforming it into measurable values, we can leverage this enabler to enhance the 

accuracy and robustness of CSE attack recognition systems. The utilization of chat 

history as an extra indicator strengthens the ability to identify suspicious patterns, 

behaviors, and manipulative techniques employed by attackers. Future research can 

further explore advanced techniques for feature extraction and modeling to optimize 

the utilization of chat history in CSE attack recognition and prevention. 

 

4.8.  Persistence  

The persistent behavior of an attacker serves as a critical enabler for successful CSE 

attacks. Social engineers often employ tactics (Kubal and Nimkar 2019)such as 

paraphrasing to confirm the accuracy of information they have already obtained or to 
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extract additional sensitive details from their targets. Recognizing the significance of 

addressing this challenge, machine learning algorithms can be trained to recognize 

patterns in language that indicate paraphrasing attempts, thus enhancing the recognition 

and prevention of such persistent behavior. 

By leveraging machine learning techniques (Thompson 2017), algorithms can learn to 

analyze chat-based conversations and identify linguistic cues that suggest paraphrasing. 

These algorithms can be trained on labeled data that encompasses instances of 

paraphrasing, allowing them to develop an understanding of the various linguistic 

markers associated with this persistent behavior. By examining patterns such as the 

repetition of information in different words or syntactical variations used to convey the 

same meaning, machine learning models can effectively flag instances of paraphrasing, 

thereby alerting users to potential social engineering attacks. 

The application of machine learning algorithms in recognizing persistent behavior, such 

as paraphrasing, plays a crucial role in mitigating the risks associated with CSE attacks. 

By proactively identifying and highlighting instances of paraphrasing, these algorithms 

empower individuals and organizations to recognize suspicious behavior and take 

appropriate countermeasures. The continuous learning capabilities of machine learning 

models also enable them to adapt to evolving techniques employed by attackers, 

ensuring a robust defense against persistent social engineering tactics. 

4.9.  Chapter Conclusions  

Chapter 4 delved into the enablers of CSE attacks, exploring various factors that 

contribute to the success of these malicious activities. The focus of the study was 

directed toward the exploration of key enablers, namely critical information leverage, 

personality traits, persuasion, deception, speech acts, chat history, and persistence. By 

thoroughly examining each enabler, valuable insights were obtained into the tactics 

employed by social engineers and the significance of addressing these enablers in the 

development of effective defense mechanisms. 

Personality traits play a crucial role in social engineering attacks, as social engineers 

strategically leverage their understanding of human behavior to manipulate targets. The 

examination of personality traits and their recognition through machine learning 

algorithms contributes to the development of robust models for recognizing and 

mitigating social engineering attacks. 

Furthermore, persuasion is a powerful enabler that social engineers exploit to 

manipulate targets' decisions and actions. Understanding the dynamics of influence and 
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employing machine learning algorithms to recognize influential strategies contributes 

to enhancing the resilience against social engineering attacks. 

Persistent behavior, including the use of paraphrasing, is a key strategy for social 

engineers to manipulate their targets and increase the likelihood of a successful attack. 

It allows them to build trust, adapt to the target's responses, and maintain a consistent 

deception, ultimately making it more challenging for the target to recognize and resist 

the manipulation. 

Deception is another vital enabler, as social engineers often employ techniques to 

deceive targets and gain their trust. By investigating deception and developing machine 

learning models that recognize deceptive cues, we can fortify defenses against CSE 

attacks. 

Moreover, speech acts and chat history provide valuable insights into the structure and 

context of conversations, which can be leveraged to recognize suspicious or malicious 

activities. By studying speech acts and incorporating chat history analysis into machine 

learning models, we can improve the accuracy of attack recognition and prevention. 

The insights obtained from this chapter establish a strong basis for the following 

chapters, where the proposed models and methodologies for recognizing and mitigating 

these enablers are presented. By effectively addressing these enablers, we aim to 

enhance the resilience of individuals and organizations against CSE attacks. 
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5 .   C S E  C O R P U S  

5.1.  Introduction  

It is a fact that humans nowadays are extensively using Information and 

Communication Technologies (ICT) and especially Electronic Medium 

Communication (EMC) software for almost every aspect of their daily activities. 

Although EMC software is an advantageous tool, it also constitutes a large and 

vulnerable attack surface. The vulnerabilities lay in human personality characteristics, 

and the way adversaries exploit them to extort valuable information for their benefit. 

As stated by ENISA (‘What Is Social Engineering?’ ), the term Social Engineering 

“refers to all techniques aimed at taking a target into revealing specific information or 

performing a specific action for illegitimate reasons”. 

A CSE attack cannot be described using only technical terms due to the nature of the 

human vulnerabilities. Therefore, the implementation of a multi-factor recognition 

system is imperative to enable the automatic identification of a CSE (CSE) attack. An 

ideal multi-factor recognizer should process the dialogue in real-time and protect the 

users by recognizing potential CSE attacks in early stages, e.g., by alerting the user if 

the probability of sensitive data leakage exceeds a predefined threshold. 

Such recognition can be based either on a pure statistical approach or a machine 

learning approach. Considering the importance of recognizing a CSE attack in real-time, 

the ML approach can qualify as an efficient solution. Furthermore, ML algorithms can 

be combined perfectly with NLP algorithms which can be used to process the language 

used in a natural communication setting. Such ML/NLP algorithms need labelled 

datasets to be trained and to be efficient in their predictions. For example, a set of 

processed dialogues (usually named ‘corpus’) of realized CSE attacks can be tagged at 

the sentence-level to discriminate the malicious sentences from the benign ones. A 

ML/NLP algorithm trained with this corpus will be able to efficiently recognize a 

malicious sentence in a future dialogue. The efficiency of the algorithm is related to the 

level of consistency between the content of the dataset and the researcher’s domain of 

interest, i.e., if one asks how to recognize phishing emails, then she needs a corpus of 

emails that gives insight into the question asked. 

Currently, there is a lack of corpus composed of realized CSE attacks, in contrast with 

other types of attacks like network intrusions, because CSE dialogues are rarely going 

public. Furthermore, a CSE Corpus should be of sufficient quantity so the algorithms 

can be trained well and be efficient. In case the collected dialogues are not of sufficient 
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quantity, researchers apply resampling techniques (Lateh et al. 2017; D.-C. Li et al. 

2018) to enlarge the corpus, or they use annotation (Wilcock 2009) to add useful in-

context information as metadata to every dialogue. 

 The metadata information augments the algorithms’ effectiveness by providing 

pointers to what is important in a corpus. The ML/NLP algorithms extrapolate rules 

from the metadata provided in order to apply those rules later to unannotated text 

dialogues. An annotation task frequently employs a custom eXtensible Markup 

Language (XML) representation scheme depending on the context used. While there 

are some well-known annotation schemes, there is no universal standard for annotating 

dialogues. Furthermore, there are multiple ways for this metadata information to be 

stored, either as inline annotation (metadata are stored in the same file as the dialogue), 

or stand-off annotation (metadata are stored in a separate file). 

This chapter answers the aforementioned concerns by investigating: 

• The feasibility of collecting and building a CSE attack corpus to address 

the lack of training data composed of realized CSE attacks. 

• The feasibility of annotating the linguistic characteristics of social 

engineers’ language in order to constitute an adjuvant factor for the ML 

algorithms’ training. 

5.2.  Foundations & Methodology  

This research’s approach to CSE Corpus design was based on a conceptual framework 

describing the CSE attack domain and a methodology for building and annotating a 

CSE corpus. 

5.2.1.  Foundat ions  

According to ENISA , the ISO/IEC 15408-1:2009(E) standard (‘Evaluation Criteria for 

IT Security — Part 1: Introduction and General Model - ISO/IEC 15408-1:2009’ ) is 

commonly used as a resource for evaluating the security of IT products and systems, 

and it is also used for procurement decisions concerning such products by providing an 

abstract cybersecurity concept map. This concept map (Figure 5-1) is focused on the 

protection of assets from threats. Threats are related to malicious or other human 

activities that seek to abuse the assets. In this high-level concept map, the cybersecurity 

concepts are interconnected through relationships depicting the strong interrelation 

between them. 
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After a thorough text analysis of the collected raw dialogues that is presented in Section 

5.3, it was concluded that social engineers aimed to extract information that could be 

categorized into the following three sensitive data categories.: 

• Personal: Details related to the victim, e.g., first or last name, telephone 

number etc. 

• IT: Details related to the Information Technology (IT) ecosystem, e.g., 

network-share names, hardware/software characteristics, etc. 

• Enterprise: Details related to the enterprise operation, e.g., department 

names, Office numbers, etc. 

By integrating the aforementioned findings and narrowing the scope to enterprise 

environments, significant enhancements were made to the concept map of CSE attacks 

within the framework provided by ENISA. These improvements resulted in a more 

comprehensive understanding of CSE attacks specifically tailored to enterprise settings, 

enabling organizations to better identify and address potential vulnerabilities and risks. 

This enrichment of the concept map added valuable in-context details that are relevant 

to the thesis’ specific goal.  

The concept map in Figure 5-1 introduces seven new concepts that are essential for 

describing the domain of CSE attacks. By utilizing this concept map, we can discern 

that Small-Medium Enterprises (SMEs) prioritize the protection of their assets against 

potential threats as their main concern. Threat agents, such as Social Engineers, give 

rise to these threats by exploiting vulnerabilities leading to greater risk for the assets. It 

is the responsibility of the SMEs to safeguard the assets where, in the case of a CSE 

attack the most critical asset is the Sensitive Data that can leak. In addition, sensitive 

data can include Personal, IT, or Enterprise details. 



67 

 

 

Figure 5-1. The concept map of CSE Attack. 

5.2.2.  Methodology  

The methodology followed for building and annotating a CSE Corpus contains two 

phases, each comprising several steps, as described below: 

• PHASE 1: CSE Corpus Building 

o STEP1-Sources Selection: the CSE attack dialogue sources are 

identified. 

o STEP2-Dialogues Collection: the CSE attack dialogues are 

collected through manual and automated web scraping methods. 

o STEP3-Dialogues Enrichment: the collected dialogues are 

enriched. 

o STEP4-Linguistic Analysis: the enriched dialogues are analyzed 

from a linguistic perspective. 

o STEP5-Dialogues Processing: the analyzed dialogues are 

further processed using NLP techniques to form the CSE corpus. 

• PHASE 2: CSE Corpus Annotation, based on the steps described in 

(Pustejovsky and Stubbs 2013). 
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o STEP1-Goal Declaration: the goal of the annotation task is 

declared. 

o STEP2-Model and CSE Ontology Creation: the phenomenon in 

study is modeled in abstract terms and an ontology is created to 

be used as the base for the annotation task. 

o STEP3-Specifications Definition: a concrete representation of 

the model is created based on the CSE ontology. 

o STEP4-Annotator Guidelines: a blueprint is produced to help 

annotators in element identification and element association with 

the appropriate tag. 

o STEP5-Annotation Task: the annotation process is performed. In 

case of changes in the CSE ontology, the process continues with 

STEP2. 

o STEP6-Inter-Annotator Agreement: the inter-annotator 

agreement is validated. 

o STEP7-Adjudication Task: the final version (gold standard) of 

the annotated CSE Corpus is formed. 

The following sections 5.3 and 5.4 present the details of building and annotating the 

CSE Corpus. 

5.3.  PHASE 1: CSE Corpus  Building  

In the first phase of the methodology the data sources were identified and the dialogues 

were collected. Moreover, the dialogues were enriched, analyzed linguistically and 

preprocessed to be ready to be fed as input for the model’s training. 

5.3.1.  STEP 1 – Sources Se lect ion  

To establish the CSE corpus, the first step entailed identifying sources for obtaining 

dialogues pertaining to CSE attacks. This task commenced by gathering synonyms and 

comparable search terms for the term “dialogue.” To achieve this objective, the 

collection of synonyms and analogous search terms for the term “dialogue” was 

initiated. Using the Word Embeddings (Goldberg and Levy 2014) technique, similar 

terms were identified and selected based on a ranking of the most used words in context. 

The words that were selected were: dialog, dialogue, chat, conversation, and discourse. 

Additionally, the following terms in the CSE context were used: discourse analysis, 
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data leakage, sensitive data exposure, corpus, dataset, online chat, instant messenger, 

excerpts, and conversation transcripts. By utilizing combinations of the previously 

mentioned search terms, numerous websites, books, logs, and forums containing 

pertinent content were identified. The discovered sources belong to one of the following 

categories: 

• Social engineering dark websites (tutorials, guides, and others) 

• Social engineering dark forums (text dialogues) 

• Social engineering books 

• Instant Messaging logs 

• Telephone conversations 

The following table (Table 5-1) presents the top twenty web sites, forums and books 

used to acquire dialogues useful in producing the CSE corpus. 

 

Table 5-1. Top twenty sources for collecting CSE attack dialogues. 

No# Web Sites/Forums 

1 
‘What is the bloody point ?’ 

https://www.whatsthebloodypoint.com/ (accessed on 15 November 2021) 

2 

‘Social Engineering’, Nulled. 

https://www.nulled.to/forum/69-social-engineering/ (accessed on 15 

November 2021) 

3 

‘Sinisterly-Social Engineering’ 

https://sinister.ly/Forum-Social-Engineering (accessed on 15 November 

2021) 

4 
‘Ripoff Scams Report | Consumer Complaints & Reviews | Ripandscam.com’ 

https://www.ripandscam.com/ (accessed on 15 November 2021) 

5 

MPGH-MultiPlayer Game Hacking & Cheats 

https://www.mpgh.net/forum/forumdisplay.php?f=670 (accessed on 15 

November 2021) 

6 
‘Home’, BlackHatWorld. 

https://www.blackhatworld.com/ (accessed on 15 November 2021) 

https://www/
https://www/
https://sinister/
https://www/
https://www/
https://www/
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7 
‘Hack Forums’ 

https://hackforums.net/index.php (accessed on 15 November 2021) 

8 
‘Demonforums.net’, demonforums.net. 

https://demonforums.net/ (accessed on 15 November 2021) 

9 
419 Eater-The largest scambaiting community on the planet! 

https://www.419eater.com/ (accessed on 15 November 2021) 

10 

Socialengineered Forum 

https://web.archive.org/web/20200119025819/https://socialengineered.net/  

(accessed on 15 November 2021) 

11 

SE Forums 

https://web.archive.org/web/20180401044855/https://seforums.se/  (accessed 

on 15 November 2021) 

12 

Leak Forums Net 

https://web.archive.org/web/20190123070424/https://leakforums.net/  

(accessed on 15 November 2021) 

 Books 

13 
Advanced Persistent Threat Hacking: The Art and Science of Hacking-Tyler 

Wrightson 

14 

G. Watson, A. Mason, and R. Ackroyd, Social Engineering Penetration 

Testing: Executing Social Engineering Pen Tests, Assessments and Defense. 

Syngress, 2014 

15 
C. Hadnagy, Unmasking the Social Engineer: The Human Element of 

Security. John Wiley & Sons, 2014 

16 
M. I. Mann, Hacking the Human: Social Engineering Techniques and Security 

Countermeasures. Gower Publishing, Ltd., 2012. 

17 
K. D. Mitnick and W. L. Simon, The Art of Deception: Controlling the Human 

Element of Security. John Wiley & Sons, 2011. 

18 
K. Mitnick, Ghost in the Wires: My Adventures as the World’s Most Wanted 

Hacker. Hachette UK, 2011. 

19 
J. Long, No Tech Hacking: A Guide to Social Engineering, Dumpster Diving, 

and Shoulder Surfing. Syngress, 2011. 

https://hackforums/
https://demonforums/
https://www/
https://web/
https://web/
https://web/


71 

 

20 
C. Hadnagy, Social Engineering: The Art of Human Hacking. John Wiley & 

Sons, 2010. 

 

5.3.2.  STEP 2 – Dialogues  Col lec t ion  

To perform the collection of dialogues (Tsinganos 2021) a cloud-based infrastructure 

was established to host all the required software services and custom scripts. More 

specifically, the infrastructure was deployed in a Cloudstack environment by 

provisioning virtual machines with discrete roles. A dissection of the infrastructure 

based on functionality is illustrated in Figure 5-2.  

The Corpus Building section includes the n Web Scrapers used, which host custom 

scripts that scan and collect text from different web sources. The Web Scrapers are the 

only members of the infrastructure that communicate with the Internet to locate 

dialogues. This section also hosts every server that stores information at all stages of 

the project. The Raw Content server contains the scraped content before any 

preprocessing, while the Database server and the Corpus server contain selected 

information based on specific criteria and the final corpus, respectively. The Processor 

server applies the custom scripts in different processing stages and stores the results in 

the appropriate target. Finally, the Corpus Annotation section includes the workstations 

of the cybersecurity experts acting as annotators. 

 
Figure 5-2. Infrastructure Setup. 
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5.3.3.  STEP 3: Enrichment  

As mentioned earlier, a corpus can be small in size, and this can have a negative 

influence on ML/NLP algorithms’ efficiency. To enhance the collected dialogues, a 

parsing process was conducted to generate a list of 200 crucial nouns associated with 

one of the three categories of sensitive data. Afterward, for each noun, ten new 

sentences were added where the noun identified as critical was substituted by a similar 

word. Thus, the dialogues were enriched by 2000 new sentences. The discovery of 

similar words was based on the Word Embeddings technique (Goldberg and Levy 2014), 

which is used to capture the meaning of the words using a dense vector representation. 

Each point in the embedding space represents a word and, based on the surrounding 

words of the target word, these points are learned and moved around.  

A pre-trained word2vec model (Mikolov, Chen, et al. 2013) was employed to identify 

synonyms using the distributional hypothesis, which posits that linguistic elements such 

as words exhibiting similar distributions in a specific context (dialogue/document) tend 

to have similar meanings. This way, a segregation of the different domain words is 

created using their vector values. Words with similar meanings were grouped due to 

their similar distribution in the dialogues. A vector space was constructed in which each 

distinct word in a dialogue was assigned a corresponding vector. Hence, the vector 

space is a vector representation of the words in the collected dialogues. 

The Individual dimensions of these vectors have no inherent meaning. However, it is 

the overall patterns of location and distance between vectors that ML/NLP algorithms 

take advantage of. For example, the application of the word embedding technique in 

order to locate the ten most similar words to the word ‘password’ gave us the list 

illustrated in Figure 5-3: 

 

Figure 5-3. Ten most similar words of ‘password’ term. 

One can notice that the word ‘password’ and the word ‘logon’ have an Euclidean 

distance of 0.632 while the word ‘password’ and the word ‘passphrases’ have a smaller 

Euclidean distance of 0.602. 
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5.3.4.  STEP 4 -  L inguis t ic Analys is  

The linguistic analysis was performed according to the following levels of observation 

(see Figure 5-4). A sample of the CSE dialogues was analyzed from a linguistic 

perspective and served as a baseline to ensure that the software tools and libraries were 

able to achieve the desired level of quality. Initially, as seen in Figure 5-4, a lexical 

analysis was performed by breaking down a sentence into words, phrases, or other 

meaningful part, a task known as chunking. Afterward, a morphological analysis was 

performed where the structure and the form of each word were the main concern. Part-

of-speech tagging (POS), stems and lemmas were identified, and a syntactic analysis 

followed that focused on grammar and syntax patterns. Subsequently, the meaning of 

the words and phrases was examined, and the semantics of words and phrases were 

investigated. The most crucial step, though, was the pragmatic analysis that took place 

to identify the actual meaning of the utterances. This is reasonable because an 

automation tool cannot understand the hidden intent of a speaker or a writer. 

 
Figure 5-4. Example of linguistic analysis. 

5.3.5.  Preprocessing  

The collected CSE dialogues were prepared using the text processing workflow 

depicted in Figure 5-5. At first, all dialogues were converted to use the UTF-8 encoding 

scheme. Slang and abbreviations were removed or substituted with corresponding 

phrases using open-source slang databases. Spelling correction and removal of emojis 

were executed using dictionaries and the TextBlob library (‘TextBlob: Simplified Text 

Processing — TextBlob 0.16.0 Documentation’ ). Empty lines, specific stopwords and 

specific punctuation marks were removed using traditional NLP libraries like NLTK 

(‘NLTK :: Natural Language Toolkit’ ) and spaCy(‘spaCy · Industrial-Strength Natural 

Language Processing in Python’ ). Moreover, all HTML or other programming code 

and URLs or paths were stored in a separate database and substituted with _code_, _url_, 
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and _path_ placeholders in the dialogue. Any illegal characters were also stripped and 

all text was transformed to lowercase. 

The standard Penn Treebank (Taylor, Marcus, and Santorini 2003) tokenization rules 

were utilized for sentence tokenization, and finally, standardization processes using 

regular expressions and lookup tables were applied to tune the CSE dialogues. Figure 

5-5 depicts the dialogues processing workflow where each stage, along with the 

individual tasks below, is shown. 

 
Figure 5-5. The CSE dialogues processing workflow. 

At the end of this step, a corpus composed of CSE dialogues was formed. Table 5-2 

presents the summary of the produced corpus, named CSE corpus. 

Table 5-2. CSE Corpus summary. 

Corpus Name CSE Corpus  

Collection methods  Web scraping, pattern-matching text extraction 

Corpus size  (N) 56 text dialogues/3380 sentences 

Vocabulary size  (V) 4500 terms 

Content  chat-based dialogues 

Collection date June 2018–December 2020 

Creation date  June 2021 

 

The CSE Corpus is composed of realized and fictional CSE attack dialogues. The 

existence of fictional attack dialogues does not affect its quality and capability because, 

similarly, a social engineer does not always act spontaneously but frequently prepares 

a fictional scenario (pretext attack) to guide the conversation and unleash his attack. 

The same applies to the CSE corpus, which incorporates a combination of confirmed 

and fictional dialogues of CSE attacks. 

5.4.  PHASE 2 -  CSE Corpus Annotation  

Following the above methodology outlined in Section 5.2.2, a plan was devised, and a 

specific goal was established for annotating the CSE corpus. Afterward, a simple model 

was developed to represent the annotation task in abstract terms, and a CSE ontology 
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was created to represent the in-context entities and their interconnection. Next, a 

specifications file was created where the entities and interconnections were described 

in a formal way and became tags. This file, along with the corpus guidelines, was given 

to the annotators to perform the annotation task. After the annotators finished their job, 

an inter-annotator agreement assessment took place using Cohen’s Kappa metric, and 

the gold standard version of the CSE Corpus was finally produced. 

5.4.1.  STEP 1 -  Goal Declarat ion  

The annotation goal was to create the appropriate semantic target to facilitate the CSE 

attack recognition by assigning the correct tag to in-context words in a sentence. The 

labeling of all pertinent words, word sequences, or text spans within the context of CSE 

attacks was imperative to facilitate efficient Named Entity Recognition (NER) (Shelar 

et al. 2020)  or text classification processes. Each word or text span was labelled with 

a type identifier (tag) drawn from a vocabulary created based on the CSE ontology and 

indicated what various terms denote in the context of a CSE attack and how they 

interconnect between them. 

As mentioned before, SME employees are vulnerable to sensitive data leakage of type 

Personal, IT, and Enterprise details. Moreover, ML/NLP algorithms are more efficient 

for recognizing terms that belong to abstract classes than terms that belong to more 

specific subclasses. Thus, the aim during annotation was to identify and assign the 

correct ontology tag to words or text based on the CSE ontology. 

Further refinement of the goal resulted in defining the following objectives: 

• Identify keywords, syntax, and semantic characteristics to recognize Personal 

data leakage. If found, label with appropriate tag. 

• Identify keywords, syntax, and semantic characteristics to recognize IT data 

leakage. If found, label with appropriate tag. 

• Identify keywords, syntax, and semantic characteristics to recognize Enterprise 

data leakage. If found, label with appropriate tag. 

• Identify noun-verb combinations and verb repetitions based on blacklists. 

5.4.2.  STEP 2- Model and CSE Onto logy Creat ion  

An abstract model that practically represented the aforementioned goal was defined. A 

three-category classification (Personal, IT, Enterprise) was introduced to be the basis 

of this abstract model for identifying CSE-related terms in a dialogue. The model M 

consists of a vocabulary of terms T, the relations between these terms R, and their 

interpretation I. The triple in Formula (1) represents the model 
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M = < T, R, I >                                    (1) 
(

1) 

where: 

T = {CSE_Ontology_term, Personal, Enterprise, IT} 

R = {CSE_Ontology_term:: = Personal | Enterprise | IT} 

I = {Personal = “list of personal terms in vocabulary “, IT = “list of Information 

Technology terms in vocabulary “, Enterprise = “list of enterprise/corporate terms in 

vocabulary “} 

The CSE ontology was based on the concept map presented in 5.2 and is asset-oriented 

as an asset is defined in cybersecurity ontologies (Souag, Salinesi, and Comyn-Wattiau 

2012). The development of this ontology provided valuable support to this work as it 

enables the grouping of similar concepts and relationships within the context. This CSE 

ontology, in order to be useful, must meet the following requirements: 

• focus on assets (sensitive data) that could leak from an SME employee. 

• include only the necessary concepts in-context. 

• not exceed three levels of depth because that would lead to difficulties for 

algorithms and annotators to recognize the concepts. 

The ontology was created in a semi-automated manner using a custom Information 

Extraction System (IES) to acquire structured knowledge about the related concepts. 

Several documents (Corporate IT Policies, IT professionals’ CVs, ICT Manuals, etc.) 

were used as input to the IES. Subsequently, regular expressions rules were used to 

extract related concepts and relations.  

Figure 5-6 illustrates the process of the IES workflow. 

 

 
 

Figure 5-6. The IES workflow. 

The proposed CSE ontology extends the ontology presented in (T. Li and Ni 2019), 

which connects social engineering concepts with cybersecurity concepts. The interest 

is centered around protecting sensitive data leakage in personal, IT, and enterprise 

contexts. The implemented ontology was finalized using Protégé (‘Protégé’ ) software. 
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An excerpt of the CSE ontology created in Protégé, is illustrated in Figure 5-7 along 

with the arc types. 

 
Figure 5-7. Excerpt of the proposed CSE ontology. 

In the following Figure 5-8, the core concepts of the proposed CSE ontology are 

presented. 

 

 

Figure 5-8. The CSE ontology core concepts. 

Figure 5-9 presents an excerpt of the CSE ontology’s object properties. 
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Figure 5-9.  Excerpt of Object properties. 

5.4.3.  STEP 3 -  Spec if icat ions  Def ini t ion  

The produced specification file holds the annotation schema and uses XML DTD 

(Murata, Laurent, and Kohn 2021) representation. It describes the model and the CSE 

ontology by turning the abstract ideas and entities/relations into tags and attributes. 

Following a clear and simple approach for the specifications file helps to build better 

and more accurate prediction models at a later stage. An excerpt of the produced 

specification file is depicted in Figure 5-10: 

 
Figure 5-10. Excerpt of the specifications file. 

5.4.4.  STEP 4 -  Annotator Guide l ines  

Two cybersecurity experts with heavy knowledge of the SMEs ecosystem were selected 

as the annotators and assigned the task of performing annotation at the sub-sentence 
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level. The annotators were also members of the annotation schema development team. 

They performed a stand-off annotation by character location because, in this case, the 

metadata type tags are stored separately from the original chat text. By employing this 

approach, the original text format was preserved, enhancing the efficiency of reading 

the original text. Moreover, this way of work enables effective handling of overlapping 

tags in the event of merging different annotation schemes in the future. 

Over twenty different annotation tools (open source and commercial) were tested 

during the annotation project. The decision was made to utilize GATE ((Wilcox and 

Bhattacharya 2016)) and Prodigy (‘Prodigy · An Annotation Tool for AI, Machine 

Learning & NLP’ )  for their comprehensive functionality and ability to construct 

comprehensive natural language pipelines encompassing various NLP tools. 

Annotators were given guidelines to direct them about tagging the important terms in a 

compliant way based on the schema. Several examples were also given to help resolve 

ambiguous term cases. First, the different tags were explained, and prioritization 

guidelines were given for the case of an ambiguous term that could belong to more than 

one category. For example, if an outsider asks for the (First or Last) Name of a 

department’s supervisor, the answer can be tagged by Personal and Enterprise tags 

simultaneously. Annotators were advised to follow this order: 

1. prefer the IT category over (Enterprise category or Personal category) 

2. prefer the Enterprise category over the Personal category 

This priority order ensures that IT details have greater importance over all other 

categories, and Enterprise details have greater importance over Personal details. 

More specifically, an excerpt from the annotators guidelines follows: 

1. Each text span may be tagged with Personal, IT or Enterprise main tags 

2. If a sentence has entities that can fit in two or more tags, then follow the 

following priority IT > Enterprise > Personal 

3. Prefer individual words to word combinations 

4. The tag Personal is assigned to whatever information is related to a person. e.g., 

first name, Last Name. Consult CSE ontology 

5. The tag IT is assigned to whatever information is related to the Information 

Technology, e.g., USB stick, computer, software and others. Consult Ontology 

6. The tag Enterprise is assigned to whatever information is related to enterprises 

and enterprise environment, e.g., Department, office, positions, resumes and 

others. Consult CSE ontology 

7. A sentence can have no important words. This sentence is called Neutral 

8. Noun-verb combinations and verb repetitions will be identified automatically 

based on blacklists 
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Table 5-3 lists a sample of the examples that were given to the annotators where the 

important terms are in red colors, and the tag assigned to each one of them is on the 

right column. 

Table 5-3.Examples of CSE Corpus 

No# Sentence Tag 

1 
You will find contact numbers on the 

Intranet 
IT 

2 
Let me get that name again and give me 

your employee number 
Enterprise 

3 Our project leader is Jerry Mendel Enterprise 

4 

I can cut some corners and save some 

time, but I’ll need your username and 

password 

IT 

5 
Okay, can you tell me again your 

employee ID number. 
Enterprise 

6 
I’ll just hit reset and the old one will be 

wiped out 
IT 

7 
For account identification may you 

please provide your account number 
IT 

8 
Tom, Its Eddie… go ahead and try your 

network connection 
IT 

9 
May I have your full name and email 

address please 
Personal 

10 

Rest assured that they will be able to read 

the chat transcript as well as the 

documentation in your case 

- 

 

5.4.5.  STEP 5 -  Annotat ion Task  

The annotation task performed had the target to label the words of CSE Corpus based 

on their semantic and syntactic characteristics. The two cybersecurity experts were 

responsible for labelling the words based on their semantic characteristics, and thus 

performed semantic annotation. By annotating the semantic characteristics of the words, 

the background information in each dialogue was linked with the CSE ontology. The 

syntactic characteristics of the words were labeled using a custom annotation software 

designed specifically for this purpose. This software enabled syntactic annotation by 

extracting statistical information related to the words employed by social engineers. 

Table 5-4 showcases the two distinct types of annotation and the specific responses that 

were sought after. 
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Table 5-4. Questions per annotation type. 

Syntactic Semantic 

What Part-of Speech (POS) 

type is it?  
Is it a CSE ontology entity? 

Is it a bi-gram? What role does it play in the CSE ontology? 

 

The syntactic characteristics that were annotated are the POS type, and the bi-grams 

which denote the syntactic relationship between pairs of words. Through the process of 

tagging the POS type and bigrams, subsequent phrase structure analysis became 

feasible, enabling the extraction of dependency trees associated with the respective 

phrases. This extra information can be used by parsers for Named Entity Recognition, 

n-grams identification, and Bag-of-Words representation. 

The labelled words or text spans were further processed in order to extract statistical 

information valuable for the task of CSE attack recognition. Furthermore, for each 

sentence, a plethora of counters was also attached as metadata. This metadata 

information included vocabulary words frequency, words sequence pattern, words 

context relativity, urgency indicators, number of URLs or paths appeared, blacklisted 

verb and noun combinations, and backlisted bi-grams (e.g., tech support, USB stick and 

others). Moreover, the sentences similarity was measured to be used as attacker 

persistence metric; i.e., if the attacker uses different sentences but the sentences are 

highly similar, this means that the attacker persists on his initial intent; this information 

counts also as metadata information for the annotation task. 

GATE and Prodigy handled all of the annotation steps along with WordNet (Miller 1995) 

and LIWC (Pennebaker et al., 2021) software. Figure 5-11 illustrates a tree-structured 

taxonomy of the syntactic and semantic annotation targets. 
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Figure 5-11. Annotation targets. 

The preferred encoding scheme to tag the existing chunks of text (word, or text spans) 

was based on the IOB format (Ramshaw and Marcus 1995). In the IOB encoding 

scheme, the “I- “prefix of a tag indicates that the tag is inside a chunk, “O” indicates 

that the tag does not belong to a chunk and the “B- “prefix of a tag indicates that a token 

is the beginning of a chunk. 

For example, the sentence ‘Mr. Robinson is the Head of Financial Department, and his 

office is on the second floor’ using the IOB format is presented in Table 5-5. 

Table 5-5.  IOB encoding example. 

Chunk Encoding 

Mr B-EMP-NAME 

Robinson I-EMP-NAME 

is O 

the O 

head I-POS 

of O 

Financial B-DEPT-NAME 

Department I-DEPT-NAME 

and O 

his O 

office I-DEPT 

is O 

on O 

the O 

second I-OFF-NUM 

floor I-OFF-NUM 
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During the annotation task, the words were labelled based on their semantic and 

syntactic characteristics. This way, relationships were extracted between words or text 

spans belonging to different branches of the ontology. Moreover, hidden patterns that 

attackers use in a conversation were discovered and valuable information about how 

different CSE concepts and ontology entities interact was extracted. For example, in 

Figure 5-12, where the semantic categories are labelled with tags in brackets, we can 

discover that an Employee_Name has an “IS” relation with Position and an “OF” 

relation with Department_Name. 

 
Figure 5-12.  Discovery example. 

5.4.6.  STEP 6 -  Inter-Annotator Agreement  

The inter-annotator agreement (IAA) was validated using Cohen’s Kappa (McHugh 

2012), which is one of the most popular statistics to measure the agreement between 

two annotators of N terms on m categories (Craig 1981). Formula (2) was used to 

calculate Cohen’s Kappa for two annotators: 

𝑘 =  
𝑝0−𝑝𝑒

1−𝑝𝑒
= 1 −

1−𝑝0

1−𝑝𝑒
        (2) 

 
 

where p0 is the relative observed agreement among annotators and pe is the hypothetical 

probability of chance agreement. 

The produced CSE Corpus has N = 4500 terms and m = 3 categories, and both 

annotators (A and B) agreed for the personal category 1665 times, for the enterprise 

category 1442 times and for the IT category 1194 times. Table 5-6 contains a 

contingency matrix where each xij represents the multitude of terms that annotator A 

classified in category i, but Annotator B is classified in category j, with i, j = 1, 2, 3. 

The proportions on the diagonal, xii, represent the proportion of terms in each category 

for which the two annotators agreed on the assignment. 

Table 5-6. Contingency matrix. 

Annotator  B B B Total 

 Category personal enterprise IT  

A personal 1665 63 13 1741 

A enterprise 59 1442 31 1532 

A IT 14 19 1194 1227 

Total  1738 1524 1238 4500 
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The observed agreement is calculated as: 𝑃(𝑜) =  
1665+1442+1194

4500
= 0.956 (95.6%) 

The expected change agreement, thus the proportion of terms that would be expected 

to agree by chance is given by formula (3): 

𝑃(𝑒) =

(1741𝑥1738)
4500

+
(1532𝑥1524)

4500
+
(1227𝑥1238)

4500
4500

= 0.339.  (3) 
 

 

thus, the Cohen’s Kappa metric is, 𝑘 = 
𝑝0−𝑝𝑒

1−𝑝𝑒
= 

0.617

0.661
= 0.933 

Interpreting the Cohen’s kappa value of 0.933, we can safely conclude that the level of 

agreement for the CSE Corpus annotation task was ‘Almost Perfect’. 

5.4.7.  STEP 7 -  Adjudication Task  

After the two annotators finished the annotation task, having succeeded in an almost 

perfect level of inter-annotator agreement, the gold standard corpus was created by 

performing adjudication over the data. The gold standard corpus was the final annotated 

version of the CSE corpus. No annotator was part of the adjudication process. As 

anticipated, no difficulties were encountered owing to the significant level of agreement 

among the annotators. Furthermore, it is noteworthy to mention that there were no 

instances where the annotators agreed while the adjudicators, held a different opinion 

regarding the annotation tag. Thus, after the adjudication, the final CSE Corpus was 

produced with the annotation information stored in a different file accompanying each 

dialogue. 

5.5.  CSE Corpus  presentation  

The annotated CSE Corpus is composed of 56 dialogues, and 3380 sentences. The 

words that are in context and can be tagged by the CSE ontology are 4500. Table 5-7 

presents ten random utterances from the CSE corpus. 

Table 5-7. Ten random utterances from the CSE corpus. 

No # Utterance 

1 which computer servers does your group use 

2 do you sign in under the username Rosemary 

3 ok i am trying to logon now 
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4 trace it back to where its plugged 

5 
it could save us both big headaches the next time this network 

problem happens 

6 did you turn your computer off 

7 thanks a lot please wait for my email 

8 take care and bye for now 

9 my flex 2 is charged but wont turn on is it normal 

10 are you experiencing any computer issues presently 

 

As depicted in Figure 5-13a, the distribution of the sentence categories based on the 

aforementioned tags shows that the produced CSE Corpus is well balanced. Valuable 

information can also be extracted by observing the average word count per category, as 

seen in Figure 5-13b. 

 

Figure 5-13. (a) Distribution of sentence categories, (b) Average word count per 

category. 

Several interesting statistics were extracted that gave us information regarding the 

content of the sentences. Indicatively, Figure 5-14 illustrates the five most frequent 

words per category and Figure 5-15 illustrates the five most frequent bi-grams per 

category. 
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Figure 5-14. Five most frequent words per category. (a) Neutral, (b) Personal, (c) IT, 

(d) Enterprise 

 
Figure 5-15.  Five most frequent bi-grams per category. (a) Neutral, (b) Personal, (c) 

IT, (d) Enterprise 
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5.1.  Chapter Conclusion  

 

Chapter 5 focused on the comprehensive exploration of the CSE Corpus, which serves 

as a fundamental resource for studying and understanding CSE attacks. The chapter 

provided valuable insights into the building process of the corpus, including source 

selection, dialogue collection, enrichment, linguistic analysis, and annotation. The 

thorough examination of the corpus-building process contributes to the development of 

robust models and methodologies for recognizing and mitigating social engineering 

attacks. 

The creation of the CSE Corpus involved meticulous steps, beginning with the selection 

of reliable and diverse sources to capture the real-world dynamics of CSE attacks. The 

dialogues were then collected, enriched, and subjected to rigorous linguistic analysis 

and preprocessing techniques to ensure the quality and integrity of the corpus. The 

annotation process involved the declaration of goals, the creation of models and 

ontology, specification definition, and the development of annotator guidelines. The 

inter-annotator agreement and adjudication tasks were performed to enhance the 

reliability and consistency of the corpus annotations. 

The availability of the CSE Corpus provides researchers and practitioners with a 

valuable resource for studying CSE attacks, enabling the development and evaluation 

of robust models and methodologies. By leveraging the annotated corpus, researchers 

can train machine learning algorithms and perform comprehensive analyses to gain 

deeper insights into the patterns, strategies, and vulnerabilities associated with social 

engineering attacks. 

Chapter 5 presented a detailed exploration of the CSE Corpus, encompassing its 

creation process, linguistic analysis, and annotation. The corpus constitutes a crucial 

resource for advancing research in the domain of CSE attacks, laying the groundwork 

for forthcoming chapters where innovative models and techniques are proposed and 

evaluated. The availability of such a corpus greatly contributes to the development of 

effective defense mechanisms, enabling the recognition and prevention of social 

engineering attacks in real-world scenarios. 
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6 .  C R I T I C A L I N F O R M AT I O N  L E A K A G E  

R E C O G N I Z E R  ( C R I N L - R )  

6.1.  Introduction  

Critical information leakage refers to the unintentional or unauthorized disclosure of 

sensitive information during a conversation. CRINL-R utilizes the named-entity 

recognition (NER) technique (Collobert et al., ), a technique that extracts contextual 

information from unstructured text data, such as chat text. Pre-trained NER models can 

be fine-tuned to recognize additional entities by training them with an annotated corpus 

containing the relevant tags. CRINL-R utilizes NER to process dialogue sentences of 

the CSE corpus where personal, IT, and enterprise information have been identified and 

labeled. CRINL-R identifies the words or text spans that are labeled with a tag 

associated with an entity from the CSE ontology (Tsinganos and Mavridis 2021).  

CRINL-R utlizes a bi-directional Long Short-Term Memory neural network (bi-LSTM) 

(Lample et al. 2016) for CSE attack named entities recognition.  LSTMs were designed 

to overcome Recurrent Neural Networks (RNNs) inefficiency, since RNNs fail to learn 

long dependencies due to bias toward their most recent inputs. RNNs are a family of 

neural networks that operate on sequential data; they take as input a sequence of vectors 

(x1, x2…, xN) and produce as output another sequence that represents information about 

every step in the input sequence. LSTMs incorporate a memory cell to capture long-

range dependencies. Using several gates, LSTMs control the proportion of input that is 

given to the memory cell, as well as the proportion from the previous state that should 

be forgotten. 

6.2.  Model  

Named Entity Recognition (NER) (Shelar et al. 2020) is a natural language processing 

method to extract in-context information from unstructured text data such as e-mails, 

web articles or chat-based dialogues. Using NER we can identify entities, like people, 

organizations, places etc., which exist in text. There are several well-known libraries 

like SpaCy NLP library (‘spaCy · Industrial-Strength Natural Language Processing in 

Python’ ), Apache OpenNLP (‘Apache OpenNLP’ ) and TensorFlow  (‘TensorFlow’ ) 

with pretrained NER models that can be used to build a NER system that identifies the 

aforementioned entities. Furthermore, these pretrained models can be modified to 

recognize additional entities by training them with an annotated corpus that contains 
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the additional entities (tags). Such a corpus is the already presented CSE Corpus, where 

personal, IT and enterprise information has been identified and tagged. 

CRINL-R takes as input preprocessed CSE dialogue sentences and identifies, in each 

sentence, the words or text spans that can be labelled by a tag that is associated with an 

entity of the CSE Ontology. This kind of task is a sequence-labelling task where a token 

is classified as belonging to one or none of the annotation classes. Keras (‘Keras: The 

Python Deep Learning API’ ) and TensorFlow were used to build, train and evaluate a 

standard bi-directional Long Short-Term Memory neural network (bi-LSTM) (Lample 

et al. 2016) for CSE attack named entities recognition. 

To build the CRINL-R NER system the following steps were taken: 

1. Preprocessing: The CSE Corpus, which has already been annotated in IOB 

format, contains lines that can easily be read and stored as a list of token-tag 

pairs. Then, each token was represented by a word embedding using a pre-

trained English language model of the SpaCy NLP library. 

2. Building: Using Keras, a bi-LSTM model was constructed, which is 

comprised of two compound layers: 

o Bi-directional LSTM layer, where the forward and backward pass 

were encapsulated and the input and output sequences returned 

were stacked. 

o Classification layer, where classification was performed to every 

position of the sequences in the stack. The SoftMax (Bridle 1989) 

activation function was used to scale the output and obtain 

sequences of probability distributions. 

3. Training: To train the model in Keras, a loss function for the model was 

specified to measure the distance between prediction and truth, and a batch-

wise gradient descent algorithm was specified for optimization. 

4. Assessing: The performance assessment of the model was conducted by 

applying the model to the preprocessed validation data. For each sample 

dialogue sentence and each token in a sentence, a tensor was obtained that 

contained a predicted probability distribution over the tags. The tag with the 

highest probability was chosen, and for each sentence and each token the true 

and predicted tags were returned. 

More specifically, inside the bi-LSTM neural network the following actions occurred 

in sequence: 

1. Each dialogue sentence was split into a sequence of token-tag pairs. 
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2. Each token-tag pair was represented by a word embedding vector. 

3. The word embeddings were pretrained to encode semantic information. 

This approach is known as Transfer Learning (Lu et al. 2015). 

4. Going forward the bi-LSTM model at each step: 

a. the input vector was read and combined with the internal memory 

b. the output vector was produced and the internal memory was 

updated 

5. This sequence of actions was performed by the bi-LSTM model to the input 

sequence and produced an output sequence of the same length. 

6. Going backwards, the model read the input sequence again and produced 

another output sequence. 

7. At each position, the outputs of steps 4 and 5 were combined and fed into 

a classifier which outputted the probability for the input word, at this 

position, which should be annotated with the Personal, IT or Enterprise tag. 

6.3.  Corpus  

CRINL-R was trained using the CSE Corpus and its characteristics are presented in 

Table 6-1 

Table 6-1. CSE Corpus details 

Characteristic Value 

Corpus Name CSE Corpus 

Collection Method Web-scraping, pattern-matching text extraction 

Corpus size (N) 56 text dialogues/3380 sentences 

Vocabulary size (V) 4500 terms 

Total no. of turns 3380 

Avg, tokens per turn 7.97 

Content Chat-based dialogues 

Collection date Jun 2018 – Dec 2020 

Language English 

Release year Jun 2021 

License Private 

 

6.4.  Training  

The training of the bi-LSTM neural network involved a sequential execution of several 

steps. Each sentence within the dialogue was split into a sequence of token-tag pairs 
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where each pair represented a token and its corresponding tag. Next, the token-tag pairs 

were transformed into word embedding vectors. These word embeddings were 

generated using the spaCy NLP library, which had pre-trained models capable of 

encoding semantic information into the embeddings. Each token-tag pair was mapped 

to its respective word embedding vector. At each step of the bi-LSTM model, an input 

vector, representing a token-tag pair, was read and combined with the internal memory 

of the model. This combination allowed the model to take into account the information 

from previous steps. Subsequently, the model produced an output vector while updating 

its internal memory. This sequence of actions was performed by the bi-LSTM model 

for each input token-tag pair, resulting in an output sequence of the same length as the 

input sequence. To further refine the training process, the model underwent a backward 

pass. It re-read the input sequence in reverse and generated another output sequence. At 

each position in both the forward and backward passes, the outputs were combined. 

These combined outputs were then fed into a classifier, which produced a probability 

for each input word at that particular position. This probability indicated the likelihood 

of the word being annotated with the Personal, IT, or Enterprise tag. By following this 

series of steps, the bi-LSTM model learned to understand the relationships between the 

input tokens and their corresponding tags, enabling it to predict the appropriate tags for 

new, unseen data. 

6.5.  Results  

The training and validation performance results of CRINL-R are presented in Figure 

6-1 

 

Figure 6-1. CRINL-R (a) Loss metrics, (b) Accuracy metrics 

After training the model for 10 epochs, the achieved scores are presented in Table 6-2: 
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Table 6-2. CRINL-R performance results on identifying terms related to Personal, 

Enterprise, or IT 

tag F1 Precision Recall Support 

PERSONAL 0.67 0.63 0.51 65 

IT 0.86 0.93 0.64 122 

ENTERPRISE 0.71 0.84 0.56 89 

 

The results are satisfactory, taking into account the relatively small size of the CSE 

corpus. Further performance improvement can be achieved by tuning the model in one 

of the following ways: 

• Enriching the CSE Corpus, i.e., adding sentences where more critical nouns 

belonging to one of the three sensitive data categories are substituted by similar 

words. 

• Replacing the last feed-forward layer with a conditional random field (CRF) 

model, 

• Reducing the imbalance of the tag distribution, e.g., by using a different loss 

function, 

• Providing more input by tagging new coming CSE dialogues and thus training 

more data. 

6.6.  Chapter Conclusion  

Chapter 6 delved into the development and evaluation of the CRINL-R model for CSE 

attack recognition. The chapter presented an in-depth exploration of the model, 

including its architecture, training process, and evaluation results. Through this analysis, 

valuable insights were gained regarding the effectiveness of the CRINL-R model in 

recognizing critical information leakage and its potential impact on mitigating social 

engineering attacks. 

The CRINL-R model showcased a sophisticated architecture designed to analyze and 

recognize patterns in language that indicate the leakage of critical information during 

chat-based interactions. By leveraging deep learning techniques and training the model 

on a carefully curated dataset, the CRINL-R model exhibited promising performance 

in identifying instances of critical information leakage. The evaluation results 

demonstrated its ability to effectively recognize and flag potential social engineering 

attacks, thereby enhancing the overall security posture in chat-based communication 

channels. 

The development and evaluation of the CRINL-R model significantly contribute to the 

field of CSE attack recognition. By successfully integrating deep learning algorithms 
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into the recognition process, the model showcases the potential of leveraging advanced 

machine learning techniques for combating social engineering threats. The findings of 

this chapter pave the way for further research and refinement of the CRINL-R model, 

as well as the exploration of other deep learning approaches for improved attack 

recognition and prevention. 

Chapter 6 provided a comprehensive examination of the CRINL-R model, highlighting 

its architecture, training process, and evaluation results. The successful development 

and evaluation of the model underscore its potential in recognizing critical information 

leakage and mitigating CSE attacks. The insights gained from this chapter contribute to 

the ongoing efforts to enhance the security of communication channels and foster the 

development of robust defense mechanisms against social engineering threats. 
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7 .   P E R S T- R  

7.1.  Introduction  

In psychology, the term "human personality" denotes the unique variations in patterns 

of cognition, affect, and behavior that distinguish one individual from another. The 

Five-Factor Model (FFM) (Salgado 2002), also known as the Big-5 Theory, represents 

a widely recognized framework for the classification of personality traits. The Big-5 

comprises five factors that are thought to account for the majority of individual 

differences in personality.  

The five personality traits have also been linked with high or low suppressibility to CSE 

attacks as presented in section 4.3. Having a system that recognizes personality traits 

can also provide valuable insights into the behavior and decision-making of humans. 

The main objective of the PERST-R model is to identify the personality traits, as 

defined in the Big-5 theory utilizing the chat dialogue.   

Psychology plays a significant role in the context of CSE attacks. Social engineers 

employ various psychological tactics to manipulate and exploit the vulnerabilities of 

their targets. By understanding the principles of psychology, including cognitive biases, 

emotional triggers, and social influence, researchers can gain valuable insights into the 

techniques employed by social engineers. Psychological factors such as trust, authority, 

and reciprocity are exploited by social engineers to establish rapport and gain the trust 

of their targets. They may use persuasive language, mimic the communication style of 

the target, or employ social norms to create a sense of familiarity and credibility. 

Additionally, social engineers often leverage cognitive biases, such as the confirmation 

bias or the halo effect, to manipulate the perceptions and decision-making processes of 

their targets. 

Furthermore, an understanding of human emotions and their influence on behavior is 

crucial in combating CSE attacks. Social engineers may exploit emotions such as fear, 

excitement, or curiosity to manipulate their targets into divulging sensitive information 

or performing certain actions. By studying psychological theories and models, 

researchers can develop robust models and algorithms that recognize emotional 

manipulation attempts in chat-based interactions. 
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7.2.  Model  

The PERST-R model incorporates a pre-trained Bidirectional Encoder Representations 

from the Transformers (BERT) model to recognize personality traits. Initially, the 

BERT model is fine-tuned using a large corpus of text data that has been meticulously 

labeled for each of the five personality traits: Openness, Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism. This fine-tuning process enables the 

model to specialize in accurately identifying and characterizing these personality traits 

based on textual inputs. 

To develop the PERST-R model, a carefully selected corpus of textual data is utilized. 

This corpus comprises instances of individual behavior that can be leveraged to deduce 

various personality traits. The collected data undergoes a preprocessing stage where it 

is transformed and formatted to be compatible with the training requirements of the 

BERT model. The BERT model is then trained on this preprocessed corpus, to predict  

the likelihood of each of the five personality traits for a given input text. 

The performance evaluation of the trained PERST-R model involves rigorous 

assessment measures, including accuracy, precision, recall, and F1 score. These metrics 

are computed on a held-out test dataset that serves as an independent benchmark for 

evaluating the model's proficiency in accurately recognizing and categorizing 

personality traits. Through this evaluation process, the effectiveness and reliability of 

the PERST-R model can be determined, providing insights into its ability to 

successfully identify and classify personality traits based on textual inputs. 

In Figure 7-1 the training workflow of the PERST-R model is depicted where the 

corpus is preprocessed and fed into the BERT model. The final output is a probability 

distribution over the five personality traits. 

 

Figure 7-1 - PERST-R model workflow 

The values of the hyperparameters for the training and optimization are presented in the 

following Table 7-1 
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Table 7-1 - PERST-R training and Optimization details 

Parameter Value 

Hidden size 768 

Hidden layers 12 

Attention Heads 12 

Activation function  gelu 

Dropout probability 0.1 

Positional Embedding 512 

Optimizer Adam 

Learning rate 0.00001 

Batch size  32 

Loss Function Cross-Entropy 

 

To conclude regarding parameter values we followed a k-cross validation approach 

utilized according to the procedure depicted in Figure 7-2 

 

Figure 7-2 – 10-k Cross Validation 
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7.3.  Corpus  

The training corpus used is the FriendsPersona (Jiang, Zhang, and Choi, 2022) which 

is a large-scale conversational dataset that was constructed using scripts from the 

popular American TV show "Friends". It contains 1,175 dialogues between pairs of 

characters, totaling 105,784 utterances. The dataset is annotated with the Big-5 

personality traits, with each dialogue annotated by three human raters. The 

FriendsPersona dataset is unique in that it provides both conversational data and 

personality trait annotations, which enables researchers to explore the relationship 

between personality traits and conversational behavior. In terms of inter-annotator 

agreement, the creators achieved an average pair-wise kappa of 54.92% among 2 

annotators and Fleiss’ kappa of 20.54% among 3 annotators across five personality 

traits.  Table 7-2 presents the corpus details 

Table 7-2. FriendsPersona corpus details 

Characteristic Value 

Total dialogues 1,175 

Total utterances 105,784 

Annotated personality traits Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism 

Annotation method Three human raters per dialogue 

Demographic information Age, gender, occupation 

Relationship labels Friends, family, romantic partners 

Source Scripts from the TV show "Friends" 

Language English 

Release year 2021 

License Creative Commons Attribution 4.0 International (CC BY 4.0) 

 

7.4.  Results  

The PERST-R model achieves satisfactory accuracy in recognizing Big-5 personality 

traits, with an overall accuracy of 71,12%. Table 7-3 and Figure 7-3 present the 

performance results and the ROC graph. The area under the ROC curve (AUC) for each 

of the Big-5 personality traits was also impressive, with values of 0.83 for Openness, 

0.62 for Conscientiousness, 0.79 for Extraversion, 0.57 for Agreeableness, and 0,80 for 

Neuroticism. These results demonstrate the effectiveness of the PERST-R model in 

accurately recognizing Big-5 personality traits and suggest that this approach could be 

useful in CSE attack recognition. 

Table 7-3. PERST-R Accuracy 

Model Openness Conscientiousness Extraversion Agreeableness Neuroticism Average 

BERT 80,12 66,79 71,09 65,37 72,27 71,12 
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Figure 7-3. PERST-R ROC 

7.5.  Chapter Conclusion  

Chapter 7 focused on the development and evaluation of the PERST-R model for 

recognizing personality traits in CSE attacks. The chapter provided a detailed 

description of the model, including its utilization of a pre-trained BERT model, fine-

tuning process, corpus selection, training methodology, and evaluation metrics. 

Through this analysis, significant insights were gained into the efficacy of the PERST-

R model in accurately identifying and characterizing personality traits based on textual 

inputs. 

The PERST-R model leverages a pre-trained BERT model as its foundation, which is 

subsequently fine-tuned using a large corpus of labeled text data encompassing the five 

major personality traits. This fine-tuning process allows the model to specialize in the 

accurate recognition of individual traits such as Openness, Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism. The selected corpus plays a crucial role 

in providing relevant behavioral instances that facilitate the deduction of personality 

traits. 

During the development of the PERST-R model, the collected textual data undergoes 

preprocessing to transform it into a suitable format for training the BERT model. The 

model is then trained to predict the likelihood of each personality trait for a given input 

text. Evaluation of the PERST-R model's performance is conducted using 
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comprehensive metrics such as accuracy, precision, recall, and F1 score on a held-out 

test dataset, providing a robust assessment of its efficacy in personality trait recognition. 
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8 .   D I A C T- R  

8.1.  Introduction  

Language stands as one of humanity's most remarkable accomplishments and has been 

a driving force in the evolution of human society. Today, it is an indispensable 

component of both our professional and social lives. Dialogue, as a term, refers to 

interactive communication between two or more individuals or groups in the context of 

human language. It is a two-way intentional communication that can take on spoken or 

written forms. Language assumes a prominent role, especially in the context of 

cybersecurity and social engineering, as malicious users employ it to deceive and 

manipulate unsuspecting individuals. Among various social engineering attacks, CSE 

is recognized as a critical factor in the success of cyber-attacks, particularly in small 

and medium-sized enterprise (SME) environments. This type of attack is attracting 

increasing attention due to its potential impact and ease of exploitation. According to 

Verizon's 2023  report (‘DBIR Report 2023 - Master’s Guide’ ), the human element is 

a significant factor in driving 82% of cybersecurity breaches.  

During a CSE attack, malicious users utilize linguistic manipulation to deceive their 

targets by exploiting human personality traits and technical misconfigurations. From a 

strategic standpoint, it is more effective (Tsinganos and Mavridis 2021) to isolate 

individual CSE attack enablers and investigate recognition methods for each enabler 

separately. In a chat-based dialogue, such as one between an SME employee and a 

potential customer, interlocutors communicate through written sentences. The ability to 

identify one or more characteristics that can reveal the malicious intent of an 

interlocutor can sufficiently safeguard the SME employee against potential CSE attacks. 

Dialogue act (DA) is a term used to describe the function or intention of a specific 

utterance in a conversation, and it has already been identified (Tsinganos and Mavridis 

2021) as one of the critical enablers of successful CSE attacks. As such, recognizing 

dangerous DAs that may lead to a successful CSE attack is of paramount importance. 

The widespread use of dialogue systems (such as Alexa and Siri) has led to a surge in 

research in this field. Thus, it is advantageous to transfer knowledge and terminology 

from this field to CSE recognition tasks. The formalism used to describe dialogue 

systems can facilitate the modeling of human-to-human conversations, especially CSE 

attacks, as both types of dialogues share common structural characteristics. Dialogue 

systems rely on dialogue state tracking (DST) to monitor the state of the conversation. 

Similarly, in human-to-human dialogues and CSE attacks, the state of the dialogue can 

be tracked through the DST process, which in this case is the state of the CSE attack. 

CSE attacks involve deception and manipulation in order to acquire sensitive 
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information, such as an attacker posing as a trusted individual (e.g., a bank 

representative) to trick the target into disclosing personal information. By using DST 

to track the dialogue state and identify when the attacker is attempting to extract 

sensitive information or deceive the victim, we can recognize and prevent CSE attacks. 

By leveraging the advancements made in dialogue systems, a recognizer is developed 

to carry out CSE attack state tracking. The main component in the system’s architecture 

is a BERT-based model that is trained and fine-tuned to recognize the intent of an 

interlocutor utilizing a multi-schema ontology and dialogue acts related to deception 

8.2.  Background  

8.2.1.  Dialogue Systems  

According to (Jurafsky and Martin 2022), human-to-human dialogues possess several 

properties. A crucial structural attribute is the ‘turn’, which is a singular contribution 

made by one speaker in the dialogue. A full dialogue comprises a sequence of turns. 

For instance, in Table 8-1, two interlocutors identified as T(arget) and A(ttacker) 

exchange utterances in a small six-turn dialogue excerpted from the CSE Corpus 

(Tsinganos and Mavridis 2021). One or more utterances from the same speaker can be 

grouped into a single turn. Typically, an utterance from speaker T is followed by a 

response from speaker A, constituting an exchange. A dialogue consists of multiple 

exchanges. 

Table 8-1. A sample dialogue in turns 

Turn Utterance 

T1 We don’t allow Telnet, especially from the Internet, it’s 

not secure. 

 If you can use SSH, that’d be okay 

A2 Yeah, we have SSH.  

A3 So, what’s the IP address? 

T4 IP is [ANON] 

A5 Username and password? 

T6 Username is [ANON] and password is [ANON] 

 

Nowadays, a dialogue can be conducted between humans or between a machine and a 

human and the latter is called a dialogue system. Dialogue systems communicate with 

humans in natural language, both spoken and written and can be classified as:  

• task-based dialogue systems where the system helps humans to complete a task.  

• conversational dialogue systems where the systems answer questions.  
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Task-based systems can be further classified, based on their architecture, into systems 

that use:  

• Genial Understander System (GUS) architecture (Bobrow et al., 2022) which is 

an old simple approach to describing a dialogue structure. 

• Dialogue-State (DS) architecture, in which the dialogue is modeled as a series 

of different states. 

The primary objective of dialogue systems when interacting with a human is to elicit 

three key pieces of information from the user's utterance: domain classification, user 

intention, and requested information. Domain classification pertains to the 

conversation's context and can be determined through the use of a domain ontology. 

To ensure proper interpretation and response to user input, a formal representation of 

the knowledge that a conversational system has to comprehend must exist. This 

knowledge comprises concepts and entities mentioned in the conversation, the 

relationships between them, and the potential dialogue states, which are encapsulated 

in the domain ontology. Dialogue systems rely on ontologies to link the user's input to 

the corresponding concepts and entities, as well as to monitor the current dialogue state. 

By tracking the state of the conversation and the user's objectives, the system can 

generate more precise and pertinent responses. The domain ontology can be defined by 

means of a static schema, where the dialogue system operates within a single domain, 

or a dynamic schema, where the dialogue system is capable of operating within multiple 

domains. In this context, the schema represents a framework or structure that defines 

the arrangement of data.  

Typically, a dialogue system consists of the following units (Jurafsky and Martin 2022): 

• Natural Language Understanding (NLU) unit, which uses machine learning to 

interpret the user's utterance.  

• Dialogue-State Tracking (DST) unit, which maintains the entire dialogue history.  

• Dialogue Policy unit, which defines a set of rules to drive the interactions 

between the user and the system. 

• Natural Language Generation (NLG), which generates responses in natural 

language.  

• Text-to-Speech unit, which transforms text to speech. 

• Automated Speech Recognition unit, which transforms speech into text 

8.2.2.  Dialogue Acts  

The Speech Act theory, was introduced by Austin (Austin 1975) and Searle (Searle 

1969), (Searle 2010) in the 1960s, and has become a widely used concept in linguistics 
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and literature studies. Today, the modern notion of speech act (Bach and Harnish 1979) 

has found applications in diverse fields such as ethics, epistemology, and clinical 

psychology (Kissine, 2022). Dialogue Acts are a type of Speech Act that represents the 

communicative intention behind a speaker's utterance in a dialogue. Hence, identifying 

the dialogue acts of each speaker in a conversation is an essential initial step in 

automatically determining intention. 

The Switchboard-1 corpus (‘Computational Pragmatics | The Switchboard Dialog Act 

Corpus’ ), which consists of telephone speech conversations, was one of the first 

corpora related to dialogue and dialogue acts. It contains approximately 2,400 two-way 

telephone conversations involving 543 speakers. The Switchboard Dialogue Act 

Corpus (SwDA) (Godfrey, John J. and Holliman, Edward 1993) extended the 

Switchboard-1 corpus with tags from the SWBD-DAMSL tagset. The SWBD-DAMSL 

tagset was created by augmenting the Discourse Annotation and Markup System of 

Labelling (DAMSL) tagset. Through clustering, 220 tags were reduced to 42 tags to 

improve the language model on the Switchboard corpus. The resulting tags include 

dialogue acts such as statement-non-opinion, acknowledge, statement-opinion, and 

agree/accept, among others. The size of the reduced set has been a matter of debate, 

with some studies using a 42-label set, while others have used the most commonly used 

four-class classification. 

• Constatives: committing the interlocutor to something’s being the case. 

• Directives: attempts by the interlocutor to get the addressee to do something. 

• Commissives: committing the interlocutor to some future course of action.  

• Acknowledgments: express the interlocutor’s attitude regarding the addressee 

with respect to some social action. 

Thus, we can think of DAs as a tagset that can be used to classify utterances based on 

a combination of pragmatic, semantic, and syntactic criteria. 

8.2.3.  Schema-Guided Paradigm  

Rastogi et al. (Rastogi et al. 2020a) proposed a novel approach named schema-guided 

dialogue to facilitate dialogue state tracking by using natural language descriptions to 

define a dynamic set of service schemas. A schema-guided ontology is an ontology that 

characterizes the domain and is confined by a specific schema or set of schemas. In this 

context, a schema specifies the organization of the data and the associations between 

the concepts and entities that are expected to be present in the dialogue. A frame is a 

data structure that represents the current state of the dialogue at a specific time point. It 

is comprised of key-value pairs, where the keys represent the entities and concepts that 

are relevant to the conversation, and the values represent the corresponding values of 
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these concepts. Typically, a frame corresponds to a specific schema or set of schemas, 

and it can be updated as the dialogue progresses. For instance, in a restaurant booking 

system, a frame may contain information such as the date and time of the reservation, 

the number of diners, and the desired cuisine type. In the schema-guided paradigm, 

frames are predetermined and the system anticipates the user's input to conform to one 

of the predefined frames. Although this approach can improve the robustness and 

accuracy of the dialogue system by providing a structured and domain-specific 

representation of knowledge, it also limits the flexibility of the system to handle novel 

and unforeseen input. A frame is typically comprised of the following components: 

• Intents: represent the goal of the interlocutor, it defines the task or action that 

the dialogue systems trying to accomplish. 

• Slots: represent the information that is being requested or provided, they 

describe the properties of the entities or concepts that are relevant to the task. 

• Slot values: represent the value of the slots, they are the actual information that 

has been extracted or provided during the conversation in order to deceive the 

target. 

• Constraints: represent the additional information that is useful for the task, they 

are used to guide the dialogue towards a successful outcome. 

8.2.4.  Dialogue State Tracking  

Dialogue state tracking (Williams and Young 2007) is the process of maintaining an 

accurate representation of the current state of a conversation. This involves identifying 

the user's intentions and goals, as well as the entities and concepts that are mentioned 

in the conversation, in order to provide relevant and precise responses. To tackle the 

challenge of representing the dialogue state, Young et al. (Young et al. 2010) proposed 

a method that leveraged dialogue acts. They employed a partially observable Markov 

decision process (POMDP) to build systems that can handle uncertainty, such as 

dialogue systems. To achieve a practical and feasible implementation of a POMDP-

based dialogue system, the state can be factorized into discrete components that can be 

effectively represented by probability distributions over each factor (Williams, Raux, 

and Henderson 2016). These factorized distributions make it more feasible to represent 

the most common slot-filling applications of POMDP-based systems, where the 

complete dialogue state is reduced to the state of a small number of slots that require 

filling. 

In 2020, Rastogi et al. (Rastogi et al. 2020b) proposed the schema-guided paradigm to 

tackle dialogue-state tracking, which involves predicting a dynamic set of intents and 

slots by using their natural language descriptions as input. They also introduced a 
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schema-guided dataset to evaluate the dialogue-state tracking tasks of dialogue systems, 

including domain prediction, intent prediction, and slot filling. Additionally, they 

developed a DST model capable of zero-shot generalization. In zero-shot generalization, 

a model is trained on a diverse set of tasks or domains, and it learns to understand the 

underlying patterns or relationships between them. By leveraging this learned 

knowledge, the model can make predictions or generate outputs for new tasks or data 

points it has never encountered before. The schema-guided design utilizes modern 

language models, such as BERT, to create a unified dialogue model for all APIs and 

services by inputting a service's schema, which enables the model to predict the 

dynamic set of intents and slots within the schema. This approach has gained significant 

attention, and annual competitions such as the Dialogue Systems Technology Challenge 

(DSTC) track the progress in this field (Rastogi et al. 2020b). 

To achieve slot filling, a sequence model can be trained using different types of dialogue 

acts as classification labels for each domain. Additionally, pretrained language models, 

such as GPT, ELMo, BERT, and XLNet, have shown significant promise in recent years 

with regards to natural language processing. These models have outperformed prior 

algorithms in terms of generalization and zero-shot learning. Consequently, they offer 

an effective approach to performing zero-shot learning for language understanding. 

Furthermore, by leveraging pretrained language models in the schema-guided paradigm, 

dialogue systems can generalize to unseen service schema elements and improve their 

accuracy and robustness. 

The primary objectives of dialogue state tracking encompass predicting the active user 

intention, requested slots, and values of slots in a given conversation turn. Within the 

context of DST, the user intention closely relates to the service supplied by the dialogue 

system. The intention refers to the user input's purpose or goal, while the service 

represents the functionality offered by the dialogue system to achieve the user's intent. 

The user's intention is typically deduced from the input and ongoing conversation state 

and can be expressed as a label or a set of labels that indicate the user's objective. A 

service denotes the task or action the dialogue system intends to perform and can be 

defined by a group of intentions and slots. The slots indicate the requested or supplied 

information. For example, an intention might involve "booking a flight," while the slots 

could consist of "destination," "departure date," "return date," and other related 

information. Services may vary over time, making it critical to have a flexible and 

adaptable ontology that can be modified as required. 

DST's capacity to handle either a closed set of slots (static ontology) or an open set of 

slots (dynamic ontology) is a crucial attribute. In the former, the model is capable of 

predicting only those pre-defined slot values, and cannot assimilate new slot values 

from example data. The model generally comprises three modules: an input layer that 
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translates each input token into an embedding vector, an encoder layer that encodes the 

input to a hidden state, and an output layer that predicts the slot value based on the 

hidden state. In the former, where the set of possible slot values is predefined, the output 

layer may be approached in two ways: i) a feed-forward layer that generates all possible 

values associated with a specific slot; or ii) an output layer that contrasts both the input 

representation and slot values, and provides scores for each slot value. The scores can 

be normalized by applying non-linear activation functions, such as SoftMax or sigmoid, 

to convert them into probability distributions or individual probabilities. 

In DST, the zero-shot setting enables a model to handle new intents or slots that it has 

not seen before, without requiring additional training data. This allows the model to 

generalize to new contexts or situations based on the knowledge gained during training. 

Unlike traditional supervised learning approaches, where a DST model is trained on a 

specific dataset with a specific set of intents and slots, a zero-shot DST model can 

handle new intents and slots without prior exposure. Techniques such as transfer 

learning, pre-training, or meta-learning can be used to achieve this goal and learn a 

more general and robust model. For instance, a zero-shot DST model can utilize pre-

trained language models or embeddings, which have already learned significant 

knowledge about language from a large corpus of text data. The model can then be fine-

tuned on a smaller dataset specific to the DST task at hand. 

8.3.  Model  

SG-CSE BERT is part of an SG-CSE Attack State Tracker (SG-CSEAST) a system that 

estimates the dialogue state during a CSE attack state by predicting the intention and 

slot-value pairs at turn t of the dialogue. The SG-CSEAST consists of the following 

four units depicted in Figure 8-1. 

 

Figure 8-1. The SG-CSE Attack State Tracker main units 

• NLU: converts the utterances into a meaningful representation. 
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• SG-CSE BERT: takes into account the dialogue history, and outputs the 

estimated state of the CSE attack.  

• CSE Policy: decides which mitigation action to take. 

• Mitigation Action: applies the selected mitigation action 

This chapter, presents the SG-CSE BERT unit which recognizes information leakage 

and deception attempts by examining the full chat history and it is the deep learning 

model underneath DIACT-R. The information pertains to Small-Medium Enterprises 

(SMEs), Information Technology (IT), and personal information, whereas deception, 

within this thesis’ context, is defined as the endeavor of a malicious user to convince a 

user to utilize or disclose an IT resource. The schema-guided paradigm is employed, 

incorporating dialogue acts (DAs) and dialogue history. The steps towards SG-CSE 

BERT implementation are the following (see Figure 8-2): 

• Related dialogue acts (SG-CSE DAs) are extracted from the CSE Corpus 

(Tsinganos and Mavridis 2021) by mapping the intention of the utterance to a 

proposed dialogue act. 

• A new corpus (SG-CSE Corpus) is created specifically for Dialogue State 

Tracking (DST), annotated with SG-CSE DAs. This corpus is utilized for fine-

tuning and evaluating the recognition model. 

• The CSE conceptual model and CSE ontology (Tsinganos and Mavridis 2021) 

are utilized to construct the SG-CSE Ontology. Thus, different attack types are 

extracted. 

o Four different CSE attack types (CSE SME Info Extraction, CSE IT Info 

Extraction, CSE Personal Extraction, and CSE Department Extraction) 

are extracted and they are going to be represented as services. 

o Each service is mapped to a specific schema. 

o The schema has several intents which are mapped to the corresponding 

DA.  

The schema-guided paradigm makes use of a domain’s ontology to create the required 

schema that describes each service existing in the domain. In this research, the domain 

is the CSE attacks and we predict the service, user intention, and requested slot-value 

pairs. For example, for an utterance like: “What is the CEO’s first name?” the SG-CSE 

BERT model should be able to build a representation like the one presented in Table 

8-2 
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Table 8-2. Sample representation of frame slots 

Acquire Value 

Service CSE_SME_Info_Extraction 

Intent WH-SME_Question 

Employee_name Null 

Employee_position CEO 

 

 

Figure 8-2. Implementing SG-CSE BERT 

A CSE attack is unleashed through the exchange of utterances in turns of a dialogue. 

Time is counted in turns, and thus at any turn 𝑡, the CSE attack is at the state 𝑠𝑡 and this 

state comprises the summary of all CSE attack history until time 𝑡. State 𝑠𝑡 encodes the 

attacker's goal in the form of (slot, value) pairs. The different slot and value pairs are 

produced by the CSE ontology (Tsinganos and Mavridis 2021) and the proposed DAs 

that represent the in-context entities, intents, and their interconnection. The values for 

each slot are provided by the attacker during the CSE attack and represent her goal. E.g., 

during a CSE attack at turn 𝑡 the state 𝑠𝑡  could be 

𝑠𝑡 = {(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒_𝑛𝑎𝑚𝑒, 𝑁𝑈𝐿𝐿), (𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝐶𝐸𝑂)}} 

In such a state the attacker’s goal has been encoded for slots  𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒_𝑛𝑎𝑚𝑒,

𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  during the dialogue. Figure 8-2 depicts the dialogue system 

concepts and evolution that are related to the research and the concepts transferred from 

the dialogue systems field to the CSE attack domain for CSE attack recognition via 

CSE attack state tracking. As Figure 8-2  depicts, a dialogue can be realized between 

humans, or between humans and machines. The latter is called dialogue systems and 

can be task-oriented or conversational. The architecture of dialogue systems can be 

described using frames, and among their properties, dialogue state tracking is a property 

that represents the state of the dialogue at any given moment. The schema is created 

based on the SG-CSE Ontology and we can perform prediction tasks using state-of-the-

art language models such as BERT.  
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 The SG-CSE BERT unit, as proposed, adheres to the schema-guided approach for zero-

shot CSE attack state tracking by employing a fine-tuned BERT model. By taking 

various CSE attack schemas as input, the model can make predictions on a dynamic set 

of intents and slots. These schemas contain the description of supported intents and 

slots in natural language, which are then used to obtain a semantic representation of 

these schema elements. The use of a large pre-trained model such as BERT enables the 

SG-CSE BERT unit to generalize to previously unseen intents and slot-value pairs, 

resulting in satisfactory performance outcomes on the SG-CSE Corpus.  The SG-CSE 

BERT unit, is made up of two different components.  

• A pre-trained BERT base cased model from Hugging Face  Transformers (Wolf 

et al. 2020) to obtain embedded representations for schema elements, as well as 

to encode user utterances. The model is capable of returning both the encoding 

of the entire user utterance using the <CLS> token, as well as the embedded 

representation of each individual token in the utterance including intents, slots, 

and categorical slot values. This is achieved by utilizing the natural language 

descriptions provided in the schema files in the dataset. These embedded 

representations are pre-computed and are not fine-tuned during the optimization 

of model parameters in the state update module.  

• The second component, is a decoder that serves to return logits for predicted 

elements by conditioning on the encoded utterance. In essence, this component 

utilizes the encoded user utterance to make predictions regarding the user's 

intent and the relevant slot values. Together, these various components comprise 

the SG-CSE BERT recognizer. 

 

8.3.1.  The SG-CSE Dia logue Acts  

Given the inherent differences between CSE attack dialogues and standard dialogues, 

a carefully designed set of dialogue-act labels is necessary to meet the requirements of 

CSE attack recognition. These dialogue acts should be able to capture the intentions of 

the attacker while remaining easily understandable. To create a set of appropriate 

dialogue acts, the utterances of both interlocutors in the CSE Corpus were analyzed, 

classified, and combined into pairs. Based on Young's paradigm outlined in (Young et 

al. 2010), a set of fourteen dialogue acts is proposed. Each SG-CSE DA is represented 

by an intent slot and has a data type and a set of values that it can take. The full list of 

the dialogue acts is presented in the following Table 8-3. The percentage of each 

dialogue act frequency is also given in the last column for the total number of utterances 

in the SG-CSE Corpus. 
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Table 8-3. Frequency of Dialogue Acts in SG-CSE Corpus 

 

 

 

 

 

 

 

The following Table 8-4 contains examples of dialogue acts mapped to real word 

utterances from the SG-CSE Corpus. 

Table 8-4. Sample utterances and corresponding dialogue acts 

Utterance Dialogue Act 

Hello Angel, I’m experiencing a problem 

with my Charge 2 

Greeting  

I saw that the battery was leaking Statement  

Can you confirm my email associated with 

my [ANON] account? 

Directive  

Cheers! Bye  

 

8.3.2.  The SG-CSE Onto logy  

The SG-CSE ontology comprises a collection of schemas that describe the CSE attack 

domain, based on the CSE ontology and the proposed set of fourteen SG-CSE DAs. 

The use of a schema-based ontology enables a structured and domain-specific 

representation of knowledge, enhancing the robustness and accuracy of the recognition 

task. This is achieved through the provision of predefined frames, encompassing 

predetermined entities and concepts, which the system can expect to encounter as input. 

Table 8-5 presents the 18 slots existing in SG-CSE Corpus in tabular form with 

accompanying example values 

 

Dialogue Act Example % 

Greeting Hello, my name is John 6 

Statement I’ve lost the connection 21 

Uninterpreted :-) 2 

Agreement Sure, I can 7 

Question Is this the Sales department? 11 

Yes-No Question Can you give me a copy? 9 

WH-SME-Question What this the HQ Address? 5 

WH-IT-Question What is your IP address? 8 

WH-Personal Question Which one is your personal email? 4 

Rephrase Do you have a network address? 1 

Directive Click this link, please 16 

Yes Answer No, not possible 5 

Reject I can’t do this 3 

Bye Cheers! 2 
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Table 8-5. Slots in SG-CSE Corpus 

 

The services present in training set are the following four: 

• CSE_SME_Info_Extraction 

• CSE_IT_Info_Extraction 

• CSE_Personal_Extraction 

• CSE_Department_Extracrtion 

Where the slots related to each service are combinations of the aforementioned slots in 

Table 8-5. 

Figure 8-3 depicts an excerpt of the example schema for the 

CSE_SME_Info_Extraction service. The dots between the boxes denote that more slots 

and intents exist. 

Slot Type Example Values 

Hardware Dictionary CD, DVD, USB stick 

Network Numbers 192.168.13.21 

Server String subdomain.domain.tld 

Service String Email, ftp, ssh 

Software String RDP, Firefox 

Personal_Email String user@domain.tld 

Personal_Name String George, Sandra 

Personal_Telephone Numbers 0123456789 

Dept_Email String dept@domain.tld  

Dept_Name String Sales, Marketing 

Employee_Name String George, Maria 

Employee_Email String name@domain.tld 

Employee_Telephone Numbers 0123456789 

Employee_Position String Executive, Manager 

Office_Number Numbers 12, 23 

Enterprise_Address String 26th Av. Somewhere 

Enterprise_Location String Athens, Thessaloniki 

Enterprise_Name String ACME, Other 

mailto:user@domain.tld
mailto:name@domain.tld
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Figure 8-3. Example schema for CSE_SME_Info_Extraction 

8.3.3.  The SG-CSE BERT Model  

This section introduces the SG-CSE BERT model, which operates in a schema-guided 

setting and can condition the CSE attack service schema using the descriptions of 

intents and slots. To enable the model to represent unseen intents and slots, a BERT-

based model pre-trained on large corpora is employed. As a result, the proposed SG-

CSE is a model for zero-shot schema-guided dialogue state tracking in CSE attack 

dialogues. The SG-CSE BERT model encodes all schema intents, slots, and categorical 

slot values into embedded representations. Since social engineering attacks can take 

many forms, schemas may differ in their number of intents and slots. Therefore, 

predictions are made over a dynamic set of intents and slots by conditioning them on 

the corresponding schema embedding. 

The sequence pairs used for the embeddings of intent, slot, and slot value are presented 

in Table 8-6, and they are fed as input to the pre-trained BERT model (see Figure 8-4) 

where 𝑎1, … , 𝑎𝑛  and 𝑣,… , 𝑣𝑛 are the two sequence tokens that are fed as a pair to SG-

CSE BERT encoder. The 𝑈𝐶𝐿𝑆   is the embedded representation of the schema and 

𝑡, … , 𝑡𝑛+𝑚   are the token-level representations. 



113 

 

Table 8-6. Sequence pair used for embeddings 

 Sequence 1 Sequence 2 

Intent CSE attack description Intent description 

Slot CSE attack description Slot description 

Value Slot description value 

 

 

Figure 8-4. Pre-trained BERT model 

Schema Embeddings: Let 𝐼, 𝑆 be the intents and slots of CSE attack service and {𝑖𝑗} 

where 1 ≤ 𝑗 ≤ 𝐼 and {𝑠𝑗} where 1 ≤ 𝑗 ≤ 𝑆 their embeddings. The embeddings of the 

𝑁  non-categorical slots are denoted by  {𝑠𝑗
𝑛}     where 1 ≤ 𝑗 ≤ 𝑁 ≤ 𝑆  and the 

embeddings for all possible values that the 𝑘𝑡ℎ categorical slot can take are denoted by 

 {𝑣𝑗
𝑘} where 1 ≤ 𝑗 ≤ 𝑉𝑘 and 1 ≤ 𝑘 ≤ 𝐶 . C is the number of categorical slots and 

𝑁 + 𝐶 = 𝑆. 

Utterance Embedding: A pair of two consecutive utterances between the two 

interlocutors is encoded and represented to embeddings as 𝑢𝐶𝐿𝑆  and the token level 

representations {𝑡𝑖} where 1 ≤ 𝑖 ≤ 𝑀 and M the total number of tokens in the pair of 

utterances. 

The model utilizes the schema and utterance embeddings and a set of projections 

(Rastogi et al. 2020a) to proceed to predictions for active intent, requested slot, and user 

goal. Regarding the active intent, which pertains to the intent requested by the attacker 

and the one being recognized, it assumes the value 'NONE' when no intent is currently 

being processed by the model. Otherwise, if 𝑖0 is the trainable parameter in  ℝ𝑑 then 

the intent is given by 

𝑙𝑖𝑛𝑡
𝑗
=  ℱ𝑖𝑛𝑡(𝑢, 𝑖𝑗 , 1), 0 ≤ 𝑗 ≤ 𝐼 
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 SoftMax function is used to normalize the logits  𝑙𝑖𝑛𝑡
𝑗

 are normalized and produce a 

distribution over the set of intents plus the “NONE” intent. The intent with the highest 

probability is predicted as active 

The requested slots, that means the slots whose values are requested by the user in the 

current utterance are given by:  

 

𝑙𝑟𝑒𝑞_𝑠𝑙𝑜𝑡
𝑗

= ℱ𝑟𝑒𝑞_𝑠𝑙𝑜𝑡(𝑢, 𝑠𝑗 , 1), 0 ≤ 𝑗 ≤ 𝑆 

The sigmoid function I is used to normalize the logits 𝑙𝑟𝑒𝑞_𝑠𝑙𝑜𝑡
𝑗

 and get a score in the 

range of [0, 1]. During inference, all slots with a score > 0.6 are predicted as requested. 

The user goal is defined as the user constraints specified over the dialogue context till 

the current user utterance and it is predicted in two stages. In the first stage, a 

distribution of size 3 denoting the slot status taking values none, harmless and current 

is obtained using  

𝑙𝑠𝑡𝑎𝑡𝑢𝑠
𝑗

= ℱ𝑠𝑡𝑎𝑡𝑢𝑠(𝑢, 𝑠𝑗 , 3), 1 ≤ 𝑗 ≤ 𝑆 

If the status is predicted as none, its value is assumed unchanged. If the predicted status 

is harmless then the slot gets the value harmless. Otherwise, the slot value is predicted 

using the following  

𝑙𝑣𝑎𝑙𝑢𝑒
𝑗,𝑘 

= ℱ𝑠𝑡𝑎𝑡𝑢𝑠(𝑢, 𝑣𝑗
𝑘 , 1), 1 ≤ 𝑗 ≤ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝐶 

 

The SoftMax algorithm is used to map the categorical values of a variable into a 

distribution over the entire range of possible values. For each non-categorical slot, 

logits are obtained using 

𝑙𝑠𝑡𝑎𝑟𝑡
𝑗,𝑘 

= ℱ𝑠𝑡𝑎𝑟𝑡(𝑡𝑘 , 𝑠𝑗
𝑛, 1), 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 

𝑙𝑒𝑛𝑑
𝑗,𝑘 

= ℱ𝑒𝑛𝑑(𝑡𝑘 , 𝑠𝑗
𝑛, 1), 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 

 

Each of these two distributions above represents the starting and end points for the 

actual span of text that references the specific slot. The indices a ≤  v  maximizing 

start[a]  +  end[v] will be the boundary between spans, and the value associated with 

that span is assigned to that slot.  
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Figure 8-5. Two example pairs of utterances with predicted dialogue states 

In Figure 8-5 above we see the predicted CSE attack dialogue state using two turns 

from two different utterance pairs. In green boxes, the active intent and slot assignments 

are shown and in the orange box, we can see the related schema of the CSE attack 

service. The CSE attack state representation is conditioned on the CSE attack schema 

which is provided as input along with the victim and attacker utterances. 

8.4.  Corpus  

The SG-CSE Corpus is a task-oriented dialogue corpus specifically designed for CSE 

attacks and is derived from the CSE corpus. Its main purpose is to serve as a training 

set for intent prediction, slot-value prediction, and dialogue state tracking in the context 

of CSE attacks. The evaluation set of the SG-Corpus contains previously unseen 

services from the CSE domain, which allows us to evaluate the SG-CSE BERT model's 

ability to generalize in zero-shot settings. The corpus comprises various types of CSE 

attacks, including real-life cases and fictional scenarios. The hybrid approach used to 

create the SG-CSE Corpus combines characteristics of both balanced and opportunistic 

corpora, and it is based on the schema-guided paradigm. The SG-CSE Corpus contains 

90 dialogues and is presented in Table 8-7. 
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Table 8-7. SG-CSE Corpus identity 

Characteristic Value 

Corpus name SG-CSE Corpus 

Collection Methods Web scraping, pattern-matching text extraction 

Corpus size (N) 90 text dialogues/5798 sentences 

Vocabulary size (V) 4500 terms 

Total no. of turns 5798 

Avg. tokens per turn 8.42 

No. of slots 18 

No. of slot values 234 

Content chat-based dialogues 

Collection date June 2018–December 2020 

Creation date Aug 2022 

 

The original CSE Corpus was preprocessed and all dialogues were converted into pairs 

of utterances and annotated to enhance the corpus, paraphrasing techniques were 

employed, replacing important verbs and nouns to generate additional dialogues. To 

mitigate the potential limitations of a small corpus, a list of 100 critical nouns and 100 

critical verbs was compiled, and categorized under three sensitive data categories. For 

each noun and verb, ten new sentences were generated by substituting the noun with a 

similar word.  To address this, the Word Embeddings technique was employed, utilizing 

dense vector representations to capture the semantic meaning of words. The 

embeddings are learned by moving points in the vector space based on the surrounding 

words of the target word. To identify synonyms, a pre-trained word2vec model was 

utilized, leveraging the distributional hypothesis that suggests linguistic items sharing 

similar contextual distributions exhibit similar meanings. Segregation of domain words 

was achieved by grouping words that exhibited similar contextual distributions based 

on their corresponding vector values. This resulted in a vector space where each unique 

word in the dialogues was assigned a corresponding vector, representing a vector 

representation of the words in the collected dialogues. The critical verbs and nouns were 

replaced and combined to create new phrases. The following Figure 8-6 depicts the 

distribution of the number of turns in the dialogues involved. 



117 

 

 

Figure 8-6. Distribution of turns in the SG-CSE Corpus 

The following Figure 8-7 presents the distribution of types of dialogue acts existing in 

the SG-CSE Corpus 

 

Figure 8-7. Distribution of types of dialogue acts in the SG-CSE Corpus 

The annotation task has significantly enhanced the value and quality of the SG-CSE 

Corpus, allowing it to be utilized for task-oriented dialogue tasks, such as DST. 

Additionally, natural language descriptions of the various schema elements (i.e., 

services, slots, and intents) are included in the corpus. To test the zero-shot 

generalization ability, the evaluation set includes at least five services that are not 

present in the training set. The SG-CSE Corpus is composed of CSE attack dialogues 

between two interlocutors, where each dialogue pertains to a specific CSE attack 

service in the form of a sequence of turns. Each turn is annotated with the active intent, 

dialogue state, and slot spans for the different slot values mentioned in the turn. The 

schema includes information such as the service name, the supported tasks (intents), 

and the attributes of the entities used by the service (slots). 
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8.5.  Results  

The following metrics are considered for evaluating the CSE attack state tracking:  

• Active Intent Accuracy: The fraction of user turns for which the active intent 

has been correctly predicted.  

• Requested Slot F1: The macro-averaged F1 score for requested slots overall 

eligible turns. Turns with no requested slots in ground truth and predictions are 

skipped. 

• Average Goal Accuracy: The average accuracy is calculated based on the correct 

prediction of slot values in each turn of the dialogue state. 

• Joint Goal Accuracy: This is the average accuracy of predicting all slot 

assignments for a given service in a turn correctly. Also, Harmonic mean 

between seen and unseen classes. 

The SG-CSE BERT model was implemented using the Hugging Face library and the 

BERT uncased model, which consists of 12 layers, 768 hidden dimensions, and 12 self-

attention heads. The model was trained using a batch size of 32 and a dropout rate of 

0.2 for all classification heads. A linear warmup strategy was applied with a duration of 

10% of the training steps. The AdamW optimizer (Kingma and Ba 2014) with a learning 

rate of 2e-5 was used during training. 

In Figure 8-8 the performance of the SG-CSE BERT model is depicted. SG-CSE BERT 

shows efficiency in Active Intent Accuracy and Requested Slots F1 and less efficiency 

in Average Goal Accuracy and Joint Goal Accuracy.  

 

Figure 8-8. The SG-CSE BERT model’s performance 

The following  Table 8-8 presents the same performance results in tabular form. 
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Table 8-8. SG-CSE Attack state tracker performance 

 

8.6.   Discussion  

Early dialogue state tracking datasets were developed to be specific to a particular 

domain due to the difficulty in building models that can effectively track dialogue states 

for multiple domains. However, with the recent release of multidomain datasets and the 

incorporation of machine learning-based methods, it has become possible to build 

models that can track states for multiple domains using a single set of training data. To 

evaluate the models' generalization capability in zero-shot settings, the SG-CSE Corpus 

was generated. This corpus includes evaluation sets that consist of previously unseen 

services. By testing the models on these unseen services, their ability to generalize 

beyond the training data can be assessed, providing insights into their robustness and 

adaptability. This allowed the evaluation of the models' performance on tasks they had 

not been explicitly trained on. To address the issue of limited dialogue resources, data 

augmentation can be explored as an option. Augmenting the training dataset by adding 

more diverse examples can improve performance. Source-based augmentation 

generates sentences by changing a single variable value in a sample utterance, while 

target-based augmentation takes portions of sentences from different places in the 

training data and recombines them. 

DIACT-R is built around BERT, a pre-trained transformer-based model that has been 

trained on a large corpus of text data. BERT has demonstrated strong generalization 

ability across a wide range of natural language processing tasks and domains. When 

fine-tuned on a specific task and domain, BERT is able to learn specific patterns and 

features of the task and domain, which allows it to achieve good performance. However, 

if BERT is not fine-tuned, it may be able to recognize new unseen intents but it would 

not have enough information to generate the corresponding slot values. Moreover, it 

may not be able to recognize new unseen services or new unseen domains. Large-scale 

neural language models trained on massive corpora of text data have achieved state-of-

the-art results on a variety of traditional NLP tasks. However, although the standard 

pre-trained BERT is capable of generalizing, task-specific fine-tuning is essential for 

achieving good performance. This is confirmed by recent research which has shown 

System Model Parameters Active 

Intent 

Accuracy 

Req Slot 

F1 

Acg Goal 

Accuracy 

Joint 

Goal 

Accuracy 

Seen BERTBASE 110M 85.2 89.6 74.1 56.7 

Unseen BERTBASE 110M 53.8 48.3 31.4 24.9 

All BERTBASE 110M 69.5 68.9 52.7 40.8 
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that pre-training alone may not be sufficient to achieve high accuracy in NLP tasks. For 

example, the performance of a pre-trained model on a downstream task may be 

significantly improved by fine-tuning it on a smaller in-domain dataset.  

The SG-CSE Corpus is designed to test and evaluate the ability of dialogue systems to 

generalize in zero-shot settings. The evaluation set of the corpus contains unseen 

services, which is important to test the generalization ability of the model. This 

evaluation set does not expose the set of all possible values for certain slots. It is 

impractical to have such a list for slots like IP addresses or time because they have 

infinitely many possible values, or for slots like names or telephone numbers, for which 

new values are periodically added. Such slots are specifically identified as non-

categorical slots. In the evaluation sets, a significant number of values that were not 

present in the training set were meticulously selected. This was done to specifically 

evaluate how well the models performed on unseen values, providing a robust 

assessment of their generalization capabilities. Some slots like hardware, software, etc. 

are classified as categorical, and a list of all possible values for them is provided in the 

schema.  

DIACT-R is designed to handle dialogue state tracking for a larger number of related 

services within the same domain. Its schema-guided paradigm provides a structured 

and domain-specific representation of knowledge, which increases the model's 

robustness and accuracy. This, in turn, allows the system to better understand and 

interpret user input, and track the dialogue state more accurately. The schema and 

frames work together to create this representation, with the schema constraining the 

possible states of the dialogue, and the frames tracking the current state.  The proposed 

system has shown satisfactory performance, and the experimental results demonstrate 

its effectiveness. Its simplistic approach also leads to more computational efficiency, 

which makes it a good candidate for use as a separate component in a holistic CSE 

attack recognition system, as proposed in previous works (Tsinganos et al. 2018), 

(Tsinganos, Mavridis, and Gritzalis 2022), and (Tsinganos, Fouliras, and Mavridis 

2022). Additionally, SG-CSE BERT is computationally efficient and scalable to handle 

large schemata and dialogues. It should be noted that the performance of SG-CSE 

BERT is dependent on the quality and completeness of the training data. Moreover, 

incorporating additional sources of information such as user context and sentiment can 

enhance the system's performance in real-world scenarios. Overall, SG-CSE BERT 

provides a promising solution for zero-shot schema-guided dialogue state tracking in 

the domain of CSE attack recognition.  

A static ontology, which is a predefined and unchanging set of intents and slots, can be 

used for zero-shot recognition in DST. However, there are some limitations to its 

effectiveness. While a comprehensive ontology can cover a wide range of possible 
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situations and contexts, it may not be able to encompass all possible scenarios. As a 

result, a model trained on such an ontology may struggle to generalize to new and 

unseen intents and slots. Moreover, since the ontology remains static and is not updated 

during the training process, it may not be able to adapt to changes in the domain over 

time or new types of attacks. In contrast, a dynamic ontology can be updated during the 

training process to adapt to new situations and contexts. This can be achieved by using 

unsupervised methods to extract the ontology from the data or by incorporating active 

learning methods that allow the system to query human experts when encountering 

unseen intents and slots. By using a dynamic ontology, the system can learn to recognize 

new intents and slots over time, improving its ability to generalize to new and unseen 

scenarios. Zero-shot recognition in DST remains an active area of research, with new 

methods and approaches being developed to improve the performance of DST models 

in recognizing unseen intents and slots. By incorporating dynamic ontologies and other 

techniques, future DST models may be better equipped to recognize and respond to 

previously unseen user input. 

8.7.  Chapter Conclusion  

This chapter aimed to investigate schema-guided dialogue state tracking in the context 

of CSE attacks. A set of fourteen dialogue acts was formulated and the SG-CSE Corpus 

was constructed using the CSE Corpus. By adopting the schema-guided paradigm, 

DIACT-R’s model was developed as a straightforward method for zero-shot CSE attack 

state tracking. The obtained performance results exhibited promise and confirmed the 

efficacy of the proposed approach. To establish the necessary background for the study, 

an analysis of dialogue systems and their attributes was conducted, which facilitated 

the formulation of this approach. Furthermore, an exploration was conducted on how 

task-based dialogue systems and dialogue state tracking concepts and terminology can 

be adapted to the CSE attack domain. 

The primary focus of this work revolved around the creation of the SG-CSE DAs 

(dialogue acts) and the SG-CSE Corpus. These efforts included mapping slots and 

intents, as well as proposing DIACT-R. The model achieved satisfactory performance 

results using a small model and input encoding. Although various model enhancements 

were attempted, no significant improvement was observed.  

The study suggests that data augmentation and the addition of hand-crafted features 

could improve the performance of the CSE attack state tracking, but further 

experimentation is necessary to explore these methods. The DIACT-R model offers an 

advantage in the few-shot experiments, where only limited labeled data is available. 

Such an approach can help to create a more comprehensive and accurate understanding 
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of CSE attacks and their underlying mechanisms, as well as to develop more effective 

recognition and prevention strategies. For example, experts in natural language 

processing can help to improve the performance of dialogue state tracking models, 

while experts in psychology and sociology can provide insights into the social 

engineering tactics used in CSE attacks and the psychological factors that make users 

susceptible to these attacks. Cyber-security experts can provide a deeper understanding 

of the technical aspects of CSE attacks and help to develop more robust and effective 

defense mechanisms.  
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9 .   P E R S U - R  

9.1.  Introduction  

A diverse group of vulnerabilities are targeted in a CSE attack, ranging from technical 

misconfigurations to human psychological characteristics. However, it is more efficient 

to isolate the enablers of a successful CSE attack and to investigate the methods of 

recognition and defense separately. As mentioned in (Tsinganos et al. 2018) persuasion 

is only one of the enablers, and it is critical to be able to recognize it in the early stage 

and obtain information about it. Collectively, our knowledge about persuasion coupled 

with our knowledge about other enablers will guide our decisions regarding the 

response to the CSE attack. Persuasion is a crucial factor, but alone is not an adequate 

criterion to conclude whether a CSE attack is occurring. However, if persuasion 

methods are recognized in a cyber-security context using an appropriate dataset related 

to digital work environments, then the expected outcome will be rather useful.  

Persuasion is a well-known method used by social engineers and the latest research 

regarding persuasion as an influence tactic (Cacioppo, Cacioppo, and Petty 2018; 

Cawood 2021), confirms and emphasizes persuasion’s role as a CSE attack enabler. 

ISACA (‘Information Technology - Information Security - Information Assurance | 

ISACA’ 2018) defines enablers as the "factors that, individually and collectively, 

influence whether something will work". In (Tsinganos et al. 2018), persuasion was 

identified as one of the most critical factors that can lead to a successful CSE  attack. 

Thus, in any given chat, it is of utmost importance to detect and recognize persuasion 

attempts at an early stage to deter a consequent attack and prevent sensitive data from 

being compromised. 

Cialdini’s latest work (Cialdini 2021) added a seventh persuasion principle called Unity 

to his famous taxonomy. Overall, the seven persuasion principles are reciprocity, 

commitment, social proof, liking, authority, scarcity, and unity. These principles distract 

people from thinking deliberately and analytically because of the amount of 

disinformation they inject into a normal communication flow (Ross, Rand, and 

Pennycook 2021). Therefore, from a cybersecurity perspective, it is critical to identify 

if a sentence in a natural communication setting contains a degree of disinformation. 

The term "persuasive payload" (pp) is defined as any information deliberately designed 

to deceive a human by modifying their opinion or leading them to make erroneous 

actions. Additionally, the concept of a "pp-container" is established to refer to every 

sentence that conveys a persuasive payload. In other words, any sentence that contains 

information aligned with one of the seven persuasion principles defined by Cialdini will 

be classified as a pp-container.  
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The main objective of this chapter is to guide cybersecurity defense mechanisms in 

recognizing early-stage CSE attacks by determining if sentences in the chat-based 

conversation contain persuasive payload. The timely recognition of pp-containers 

during a chat will raise awareness of the social engineering cues which permeate chat-

based conversations. To achieve the intended goal, deep learning and natural language 

processing (NLP) techniques, specifically convolutional neural networks (CNN) and 

word embeddings, were utilized.  

This chapter describes the design and implementation of a persuasion classifier that 

utilizes deep learning and natural language processing techniques. For this purpose, a 

convolutional neural network was trained on CSE-PUC Corpus , specifically annotated 

for recognizing Cialdini's persuasion principles. The proposed persuasion classifier 

network, named CSE-PUC, is the main algorithm of PERSU-R, and can determine 

whether a sentence carries a persuasive payload by producing a probability distribution 

over the sentence classes as a persuasion container. The focus is on classifying 

sentences as pp-containers or not, treating all persuasion principles as equally important. 

Therefore, persuasion recognition can be understood as a sentence classification task 

that attempts to recognize the existence of any type of persuasion payload, that is, 

whether the sentence is a pp-container or not. 

9.2.  Background  

9.2.1.  Persuasion pr inc ip les  

Persuasion as a process has been an interdisciplinary field of study for many years 

owing to the universality of its applications. There are exceptional works that have set 

the theoretical background, such as Cialdini’s (Cialdini 2021; Cialdini and Goldstein 

2002; Resnik and Cialdini 1986). Cialdini discussed the principles of influence and 

concluded that there are two types of influence: compliance and persuasion. The 

difference between them lies in the fact that in compliance, a direct request is used to 

force a change in someone's behavior while in ‘persuasion,’ we are sending a message 

to force someone to change his/her behavior because of the message reception. 

Additionally, in (Siddiqi, Pak, and Siddiqi 2022) the authors further elaborate on 

influence methodologies, where they present the following categories: social influence, 

persuasion, attitude and behavior, trust and deception, language, and reasoning, 

countering social engineering-based cyberattacks, and machine learning-based 

countermeasures. Moreover, they classified the persuasion method into distinct types 

of persuasion: similarity, distraction, curiosity, and persuasion using authority. A similar 

classification is performed for the proposed attitude and behavior category, where 
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commitment influences the attitudes and behaviors of someone. The aforementioned 

classification is adapted in this work, and thus a way of identifying the 'Persuasion using 

authority' and 'Commitment' methods is proposed. 

Overall, the seven Cialdini’s persuasion principles are as follows: 

• Reciprocation: A strong urge based on the rule of social interaction to 

reciprocate by giving something back to someone who gave us something first.  

• Commitment and Consistency: We feel obliged to carry out the promise we have 

made so as not to feel untrustworthy. 

• Social Proof: humans tend to believe what others do or think is right. 

• Liking: we tend to like people who like us. 

• Authority: Under certain circumstances, people are likely to be highly 

responsive to assertions of authority. 

• Scarcity: We are highly responsive to indications that something we may want 

is in short supply. 

• Unity: a perception that we share a common identity, that we are all part of “us.” 

After conducting a quantitative analysis to examine the existing persuasion principles 

in the CSE-PUC Corpus (Tsinganos and Mavridis 2021), authority and commitment 

arise as  the most common persuasion principles used by social engineers.  

9.2.2.  Convolutional Neural Networks  

Convolutional neural networks (Lecun et al. 1998) are feed-forward networks with an 

architecture inspired by the human visual cortex, and they were initially used for image 

recognition. They were named after a mathematical operation called convolution, 

which was being applied. These specialized network architectures can take arbitrarily 

sized data inputs and identify local patterns in a dataset that are sensitive to the word 

order; however, they do not consider where these patterns are located in the data.  When 

CNNs are applied to images, the neural network architecture uses a 2-D convolution. 

In Figure 9-1, a CNN is illustrated, where we can identify its two main functional parts: 

the feature extractor and the classifier. The feature extractor part contains convolution 

and pooling layers, where the most relevant features for the task are automatically 

selected, saving us from the manual labor of extracting features, as in traditional 

machine learning algorithms. The classifier part contains fully connected and prediction 

layers, where the actual classification is performed using an activation function. 
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Figure 9-1. A CNN comprised of a feature extractor and a classifier part. 

Four main operations are taking place in the layers of the aforementioned functional 

parts, and they are the following:  

• Convolution: A linear operation of element-wise matrix multiplication and 

addition between a predefined part of the input data and a predefined matrix, 

called a filter, that captures the local dependencies underlying the original input 

data.  This operation is executed on the convolution layer. 

• Non-Linearity: A nonlinear operation performed by a function that enables the 

network architecture to represent real-world phenomena by capturing complex 

patterns that linear functions cannot capture. Almost all real-world phenomena 

are nonlinear. This operation is also executed on the convolution layer, and the 

final output is a matrix called a feature map that encodes the most notable 

features. 

• Pooling: A subsampling operation that reduces the dimensionality of each 

resulting feature map while retaining the most valuable information. Usually, 

one can use max-pooling or average-pooling, that is, in 1-max-pooling, the most 

significant data element is selected from the feature map within a predefined 

window. 

• Classification:  A classification operation is performed using a fully connected 

layer that uses an activation function in the prediction layer. The outputs of the 

convolutional and pooling layers represent high-level features of the input data. 

In the last output layer, called prediction, these high-level features are used to 

classify the input data into various classes based on the training dataset. If 

SoftMax is used as the activation function, the output is a probability 

distribution over the classes. 

 

In Figure 9-1, we see only one set of convolution and pooling layers; however, a CNN 

architecture can contain multiple sets in a row, where the second convolution layer 

performs convolution on the output of the previous pooling layer. Utilizing multiple 

convolution layers means that we use multiple filters on different input data, which 

results in the production of a richer feature map. In general, as we add more convolution 

steps, the network will be able to learn and recognize more intricate features. 
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While CNNs for image recognition typically use 2-D convolutions, in the context of 

NLP, the operation of convolution is 1-D, which means that a 1-dimensional array 

represents the text. Utilizing the ability of CNNs to identify local patterns in data, one 

can locate indicative patterns (phrases or n-grams) in larger text blocks such as 

sentences or documents. In the NLP context, a sentence is represented as a matrix, and 

each row of the matrix is associated with a language token, that is, a word (Y. Kim 

2014). Using a similar representation, a CNN can learn to identify the local patterns 

during the training phase. Several CNN architectures (Torfi et al. 2020) have been used 

successfully for a variety of natural language processing tasks (text classification 

(Conneau et al. 2016), sentence classification (Zhang and Wallace 2015), and sentiment 

analysis (Dos Santos and Gatti 2014).  

9.3.  Model  

PERSU-R is a task-specific neural network architecture composed of a CNN and a 

Multilayer Perceptron (MLP). The task of the classifier is to decide whether a sentence 

carries a persuasive payload by producing a probability distribution over the sentence 

classes, thus deciding whether the sentence is a pp-container. The CNN was used as a 

feature extractor in the first layer of PERSU-R, and it was integrated at a later stage 

with the rest of the architecture. PERSU-R was trained end-to-end, producing the result 

of the prediction task. 

As mentioned in section 9.1, predicting that a written sentence carries a persuasive 

payload can be cast into a sentence classification task that identifies specific patterns in 

the sentence. These patterns are composed of specific sequences of ordered sets of 

tokens (i.e., words in the sentence). Thus, identifying a persuasive payload in a sentence 

means identifying informative local features that may be repeated, regardless of where 

they are placed in the sentence. Let us consider the following sentence that is part of 

the CSE Corpus (Tsinganos and Mavridis 2021): “I need that information to report back 

to my boss.”. We can easily conclude that some of the words are highly informative of 

a persuasive payload existence (i.e., the word boss denotes a possible use of the 

persuasion principle of authority), which holds true regardless of the position of this 

word in the sentence.  

PERSU-R was developed to identify informative cues within sentences. This 

architecture is designed to process input sentences and extract the relevant information. 

CNNs with convolutional and pooling layers are used to identify such local cues 

(Johnson and Zhang 2016), where they have been used to identify indicative phrases 

for specific tasks. Furthermore, it is not important where this pattern may appear in a 

sentence. The main point of interest is only the existence of a specific sequence of 
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tokens of varying lengths that indicate a particular cue. A convolutional neural network 

identifies indicative local patterns (linguistic structures) and combines them to produce 

a fixed-size vector representation of these structures. This fixed-size vector represents 

the local patterns that are most informative for the prediction task at hand, which in this 

case is persuasion payload recognition.  

When using a CNN architecture for a natural language task such as sentence 

classification, we initially apply a nonlinear function at the convolution layer of the 

CNN, which is learned over each k-sized window of tokens sliding in the sentence. This 

nonlinear function is called a filter and transforms the k-sized window of tokens into a 

scalar value. We can even apply multiple filters, that is, ℓ number of filters, and instead 

of a scalar, we can obtain a vector equal in dimensions to the number of filters applied. 

Next, in the pooling layer of the CNN, the pooling operation combines the resulting 

vectors from the different k-sized windows into a single ℓ-dimensional vector by taking 

the maximum (max pooling) value observed in each of the ℓ  dimensions over the 

different k-sized windows. Each filter identifies a different feature from the input data 

window and the pooling operation selects the most important ones. The output of the 

ℓ -dimensional vector is then fed into the following parts of the overall network 

architecture. The parameters, which are the values of the filters applied, are tuned by 

back-propagating the gradients from the network loss during the training phase. In 

Figure 9-2 we can see an example of a convolution with a sliding window of size 𝑘 =

3, and 6-dimensional output ℓ = 6 applied to the following sentence “I need that info 

to report back to my boss.” 

 

Figure 9-2. Convolution was applied over a sentence with a window of size k=3 and 

an output of dimension l =6. 

9.3.1.  Operat ion  

PERSU-R takes as input the sentences exchanged between the interlocutors of the chat-

based conversation. The words are represented using word vector embeddings, which 

are either trained by us (own trained) or by others (pre-trained). When there is a lack of 

a sizeable supervised training set, a common method to improve the performance of the 

deep learning algorithm is the word embeddings initialization using pre-trained vectors 

obtained from an unsupervised neural language model. During the tests, publicly 

available fastText word vectors were utilized (Mikolov et al. 2017) trained on 630 

billion tokens on the Common Crawl. The vectors have a dimensionality of 300 and 
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were trained using a continuous bag-of-words architecture (Mikolov, Sutskever, et al. 

2013). All words in the CSE-PUC Corpus vocabulary that were not present in the set 

of pre-trained words were initialized randomly with the same dimension and variance. 

The operation of PERSU-R can be explained easily using a toy example. Let us assume 

that we have a corpus composed of just two sentences (taken from the CSE-PUC 

Corpus): “I need your username” and “Please read me your password.” This corpus has 

a vocabulary (set of different words) of size v = 8, the length of the largest sentence 

was n = 5, and there are two sentences in the corpus; thus, b = 2. All sentences should 

have the same length to be fed as inputs to the CNN. Therefore, the first sentence is 

padded until it reaches a length of five. Each word in a sentence is represented by word 

embedding (e.g., one-hot and fastText). For ease of visualization in this example, a one-

hot representation is assumed. The word embeddings are shown in Figure 9-3. 

 

Figure 9-3. One-hot word vector representation of a corpus composed of only two 

sentences; thus, b=2. The vocabulary was of size v=-8, and the largest sentence was of 

size n=5. 

If we assume that we are processing only one sentence (the first), then it is evident that 

we are dealing with an n ∗ v matrix, which in our example is 5 × 8. In contrast, if we 

process a batch, or, as in our case, the whole corpus of size b=2, then we can represent 

the sentences in the corpus with a 2 × 5 × 8 tensor. 

The convolution filter will have a size of m ∗ v , where in our example m=2, to process 

two words simultaneously. Convolving the n ∗ v input with the m ∗ k filter provides a 

feature map of 1 ∗ n dimensions. If multiple filters q are used, we obtain a q ∗ n matrix, 

as shown in Figure 9-4. 
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Figure 9-4. 1-D Convolution 

The convolution operation plays a vital role in preserving the spatial information of the 

sentences. With q  different layers with different filter sizes, the network learns to 

extract ratings with different size phrases, leading to improved performance. 

Subsequently, the max-pooling operation subsamples the outputs produced by the 

previously discussed parallel convolution layers. Therefore, from the q ∗ n feature map, 

a q ∗ 1  vector was produced by concatenating the maximum elements of each 

convolution layer (Figure 9-5). 

 

Figure 9-5. The max-pooling operation 
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The end-to-end PERSU-R architecture is shown in Figure 9-6. 

 

Figure 9-6. PERSU-R architecture. 

9.3.2.  Architecture  

PERSU-R is trained end-to-end. As previously mentioned, a CNN is employed as a 

feature extractor to generate a sequence of vectors. These vectors are then passed to 

subsequent components of the network to make predictions. Every interesting pattern 

in each sentence that is informative for the pp-container classification task is captured 

by PERSU-R.  

A single-layer convolutional neural network (CNN) is utilized in this approach. This 

CNN is trained on word vector embeddings obtained from fastText, which includes 

both the own trained embeddings as well as pre-trained embeddings. The CSE Corpus 

is appropriately annotated with labels corresponding to the two classes of sentences: 

pp-container and neutral. In the case of pre-trained word embeddings, the CSE Corpus 

was also used for transfer learning on top of the pre-trained word vectors. The word 

vocabulary of size v contains words projected from a 1 − of − v encoding to a reduced 

dimensionality vector space via a hidden layer. As already mentioned, these reduced 

dimensionality word vectors encode the semantic features of vocabulary words.  

Figure 9-7 illustrates the functional end-to-end architecture of PERSU-R, where only 

two filters per window are shown for ease of visualization. The labels above the layers 

represent the operations performed in each layer. 



132 

 

 

Figure 9-7. Functional end-to-end architecture of PERSU-R 

The operations of the convolutional and pooling layers are explained in the following 

subsections. 

 

9.3.2 .1 .  Convolut ion  

Suppose that we have a sequence of n words 𝑤1:𝑛 = 𝑤1 , 𝑤2, … , 𝑤𝑛 , which constitute a 

sentence, and each word 𝑤𝑖  is projected in a d-dimensional space, and thus is associated 

with a d-dimensional word vector (word embedding) 𝐸[𝑤𝑖] = 𝑤𝑖  . To apply a 1-D 

convolution of width k, we slide a k-width window over the sentence and apply the 

convolution filter (also called a kernel) to each window over the sentence.  The 

convolution filter is a dot product with a weight vector u followed by a nonlinear linear 

activation function, which in this case is a rectified linear unit (ReLU) (Agarap 2018). 

Therefore, the i-th window of the k words 𝑤𝑖 , 𝑤𝑖+1, … , 𝑤𝑖+𝑘 results in the concatenated 

vector 𝑥𝑖 = [𝑤𝑖 , 𝑤𝑖+1, … , 𝑤𝑖+𝑘] ∈  ℝ
𝑘∗𝑑. On each concatenated vector, the convolution 
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filter is applied, and the vector is transformed to a scalar value 𝑟𝑖 = 𝑓(𝑥𝑖 ∘ 𝑢), where f 

is the nonlinear-linear activation function, 𝑟𝑖  ∈  ℝ, 𝑥𝑖  ∈ ℝ
𝑘∗𝑑   and 𝑢 ∈ ℝ𝑘∗𝑑 . When 

multiple ℓ  filters are used, arranged in matrix U, then 𝒓𝑖 = 𝑓(𝑥𝑖 ∘ 𝑼 + 𝒃), where 𝑟𝑖  ∈

 ℝℓ, 𝑥𝑖  ∈ ℝ
𝑘∗𝑑 , 𝑼 ∈ ℝ𝑘∗𝑑∗ℓ , and  𝑏 ∈  ℝ is the bias. The vector summarizes the i-th 

window and captures various kinds of informative information in each dimension.  

 

9.3.2 .2 .  Pool ing  

When the convolution operation is completed, the output is q vectors 𝒑𝑖:𝑞where 𝒑𝑖  ∈

 ℝℓ. Next, these vectors are pooled (combined) to form a vector 𝒄 ∈  ℝℓ, representing 

the entire sequence and capturing and encoding all informative cues for the persuasive 

payload recognition task. We use 1-max-pooling, which takes the maximum value 

across each dimension, which equally means that it selects the most important feature. 

Vector 𝒄 is fed to a fully connected layer that uses the SoftMax function to output a 

probability distribution over the pp-container classes. 

The loss for this network architecture is calculated for the persuasive payload 

recognition task by back-propagating the error all the way back through the pooling and 

convolution layers, as well as the word embedding layer. During the training, the 

convolution matrix U, the bias vector b, the fully connected layer, and potentially the 

embedding matrix E such that the vector c resulting from the convolution and pooling 

process indeed encodes information relevant to the task at hand. 

Returning to the example sentence “I need that info to report back to boss” and adapting 

to the inspiring work of Goldberg (Goldberg 2016), Figure 9-8 illustrates the 

convolution, pooling, and max-pooling operations. In the illustration, there is a window 

of size three, and each word has been transformed into a 2-dim embedding vector (not 

shown). The word-embedding vectors are concatenated, resulting in a 6-dimensional 

window representation. Each of the eight windows was transferred through a 6 × 3 filter 

(linear transformation MUL followed by ReLU), resulting in eight 3-dimensional 

filtered representations. MUL is  a multiplication operation between the input feature 

map and a weight matrix and ReLU (Rectified Linear Unit), is a non-linear activation 

function. Finally, the max-pooling operation is applied, which takes the maximum over 

each dimension (feature), resulting in the final 3-dimensional pooled vector. 
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Figure 9-8. Illustration of convolution, pooling, and max-pooling 

9.4.  Corpus  

PERSU-R was trained using the CSE-PUC Corpus which was created by collecting 

realized and fictional social engineering attack dialogues from social engineering dark 

websites (forums, tutorials, etc.), social engineering books, and several logs. The corpus 

was enriched using the word-embedding technique by adding sentences with 

synonymous or similar words based on a pre-defined ranking.  

After a pre-processing pipeline composed of noise removal (stopwords, empty lines, 

etc.), tokenization, and standardization, the CSE-PUC Corpus was created having the 

characteristics presented in Table 9-1. 

Table 9-1. CSE-PUC Corpus 

Characteristic Value 

Corpus name CSE-PUC Corpus 

Collection Methods Web scraping, pattern-matching text extraction 

Corpus size (N) 56 text dialogues/3380 sentences 

Vocabulary size (V) 4500 terms 

Content chat-based dialogues 

Collection date June 2018–December 2020 

Creation date June 2021 

 



135 

 

The CSE-PUC Corpus was explicitly labeled for the pp-container prediction task. Each 

of the 3880 sentences was labeled as a pp-container based on the criterion of whether 

any of Cialdini’s persuasion characteristics exist in the sentence or not. After the 

annotation task, the final dataset was well-balanced, as depicted in Figure 9-9 where 

51,1% of the sentences were pp-containers and 48,9% were not (denoted in the figure 

as neutral). 

 

Figure 9-9. The CSE-PUC Corpus is composed of 51,1% pp-container sentences and 

48,9% neutral sentences. 

The distribution of the number of words in the sentences in each class is shown in 

Figure 9-10. We can observe that most social engineers utilize short sentences to 

unleash their attack, and they use more words to become friendly before their actual 

attack. 

 
Figure 9-10. Distribution of words per sentence class in the CSE-PUC Corpus 

9.5.  Training  

Parameters like the number of filters, filter sizes, the architecture of the network, etc., 

have all been fixed before Step 1. They did not change during the training. A summary 

of the training process follows, while Table 9-2 presents the same process in 

pseudocode: 
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• STEP1: All filter values and weights were initialized using fastText word vector 

representations (either own-trained on the CSE-PUC Corpus or pre-trained). 

• STEP2: The network takes a training sentence as input, then the forward 

propagation step is executed where the convolution operation, ReLU, and 

pooling operations take place in the fully connected layer and outputs the 

probabilities over the classes. Let us suppose that the output probabilities for 

the sentence “I need that info to report back to my boss” are at the end of the 

first epoch [0.9, 0.1]. For the first training example, the weights are randomly 

initialized; thus, the output probabilities are also random. 

• STEP3: Calculate the total error at the prediction layer with the following 

formula  

 𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =  ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)2 9.1 

 

• STEP4: A back-propagation algorithm was used to calculate the gradients of the 

error regarding all weights in the network. Then, gradient descent is used to 

update all the weights and filter values to minimize the output error. 

o The weights are adjusted in proportion to their contribution to the total 

error. 

o The values of the filter matrix get updated. 

• STEP5: Repeat steps 2-4 with all sentences in the training set. 

When a new (unseen) sentence reaches PERSU-R as input, the network goes through 

the forward propagation step and outputs a probability for each class (for a new 

sentence, the probabilities over the classes are calculated using the weights that have 

been optimized to classify all previous training examples correctly).  

Table 9-2. Algorithmic steps of PERSU-R training 

Algorithm PERSU-R 

Require labeled SOURCE corpus, unlabeled TARGET corpus, 

hyperparameters 

Input dataset 𝒟  CSE Corpus, n words 𝑤1:𝑛 = 𝑤1 , 𝑤2, … , 𝑤𝑛  , 

sentence  𝐸[𝑤𝑖] = 𝑤𝑖, concatenated vector of k words 𝑥𝑖  , weight vector 

u, nonlinear-linear activation function f,  𝑟𝑖  ∈  ℝ, 𝑥𝑖  ∈ ℝ
𝑘∗𝑑  and 𝑢 ∈

ℝ𝑘∗𝑑. 

 

Initialization CSE-PUC training hyperparameters initialization: batch 

size, training epochs, learning rate, dropout rate, optimizer 
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Begin Training: 

Step 1: CSE-PUC network hyperparameters initialization: filter size, 

number of filters, weight values, padding, activation function, stride 

length, pooling method, 

Loop: for each sentence 𝐸 in dataset 𝒟 

 

Step 2: do forward propagation: 

        1-D Convolution operation, transform vector 𝑥𝑖 =

[𝑤𝑖 ,𝑤𝑖+1,… , 𝑤𝑖+𝑘] ∈  ℝ
𝑘∗𝑑 to 𝑟𝑖 = 𝑓(𝑥𝑖 ∘ 𝑢) 

        Pooling operation: output q vectors 𝒑𝑖:𝑞where 𝒑𝑖  ∈  ℝ
ℓ 

 

Step 3: Calculate Total Error 

    𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =  ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)2 

 

Step 4:   Backpropagate the error and adjust the model parameters.  

                    Calculate gradients of the error regarding all weights in the 

network 

             Execute gradient descent: 

                    Update all filter and weight values  

End Loop 

End Training 

 

Output: Probabilities over the classes 

 

The above steps train PERSU-R, which means that by the end of the training process, 

all weights and filter values of the network will be optimized and ready to classify 

sentences from the training set. 

The training process of the example input sentence “I need that information to report 

back to my boss” from a higher-level perspective is illustrated in Figure 9-11. 

 

Figure 9-11. End-to-end training of the persuasion classifier for recognizing whether 

a sentence is a pp-container. 
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9.6.  Results  

PyTorch (Paszke et al. 2019) was used to implement the PERSU-R architecture. This 

Python library is dedicated to facilitating rapid research on deep learning models by 

easing the implementation of innovative neural network architectures.  AllenNLP 

(Gardner et al. 2017), a Pytorch-based NLP library designed to support researchers who 

want to build novel natural language models, is also used. Pytorch Lightning (‘PyTorch 

Lightning’ ) and wandb (Biewald 2020) completed the toolset to manipulate the training 

pipelines and Bayesian hyper-parameter sweep. 

The critical difference between the different variations of PERSU-R architectures that 

were tested in the word vector representation layer. Initially, word vectors were created 

using the cutting-edge fastText algorithm trained on the CSE-PUC corpus. These word 

vectors were specifically trained for this purpose. fastText (Joulin et al. 2016) is an 

algorithm and a word-embedding library developed by Facebook that uses information 

from linguistic units smaller than words to train high-quality word embeddings. In 

addition, fastText pre-trained word vectors were utilized, which were treated either as 

fixed (they are not updated during training) or as updated parameters of PERSU-R. 

Lastly, randomly initialized word vectors were employed in one test turn. Thus, the four 

variations of the PERSU-R’s model were: 

• Own-trained CSE-PUC: word embeddings are created using the CSE Corpus 

and fastText 

• Fixed pre-trained CSE-PUC: fastText pre-trained vectors are used and remain 

fixed during the pp-container CNN training. 

• Updated pre-trained CSE-PUC: fastText pre-trained vectors are used and 

updated during network training. 

• Random CSE-PUC: where the word embeddings are initialized using random 

numbers 

A standard 80/10/10 split of the CSE-PUC Corpus was made for the 

training/development/test sets respectively, and a five-fold validation was conducted 

using the average scores across folds to compare the performance of the different model 

variations. The learning rate was 0.001, the training batch size was 16, and all models 

were trained for ten epochs. Additionally, a dropout 0.1 probability was applied to 

reduce overfitting.  

The four different learner implementations were also compared against an SVM 

baseline model, which is a traditional machine learning technique that is simple and 

flexible in addressing a wide range of classification tasks.  



139 

 

Table 9-3. Training results 

Model 
Accuracy 

Macro F1 

SVM 70.4 % 57,2 % 

Own-trained CSE-PUC 62.2 % 54.8 % 

Fixed pre-trained CSE-PUC 66.4 % 57.3 % 

Updated pre-trained CSE-PUC 71.6 % 58.2 % 

Random CSE-PUC 60.5 % 51.7 % 

 

The experimental results are presented in Table 9-3 and illustrated in Figure 9-12 and 

Figure 9-13.  In the former figure, the x-axis represents the number of epochs in 

training the variations in the CSE-PUC network. The y-axis represents the accuracy 

ratio of the CSE-PUC model on the validation set. The Updated pre-trained CSE-PUC 

yielded the best results among the four different CSE-PUC variations. It outperformed 

the Fixed pre-trained CSE-PUC, Own-trained CSE-PUC, and Random CSE-PUC by a 

clear margin, achieving an accuracy of 71.6%. The Fixed pre-trained CSE-PUC gave 

the second maximum accuracy of 66.4%, while the Own-trained CSE-PUC attained an 

accuracy of 62.2%, and the Random CSE-PUC had the lowest accuracy. These 

experimental results confirm the significance of word vectors learned from extensive 

unlabeled text data in capturing syntactic and semantic information. 

 

Figure 9-12. Accuracy ratio of the validation set for four different CSE-PUC variations  



140 

 

 
Figure 9-13. Loss on the validation set for CSE-PUC model variations. 

The minor improvement of the pp-container CSE model against the pp-container 

random model can be attributed to the insignificant influence of the context information, 

which calls for further research regarding the extraction of context-related features. 

Nevertheless, the competitive results of the updated and fixed models are promising 

and can be used as part of a multifactor CSE recognition system, such as that proposed 

in a previous work (Tsinganos et al. 2018). 

These results also suggest that fastText pre-trained vectors are suitable, ‘universal’ 

feature extractors, and can be utilized across datasets and corpora. Finetuning the pre-

trained vectors for the pp-container classification task yielded satisfactory 

improvements. 

 

9.7.  Discussion  

PERSU-R’s architecture details and training choices are presented in Table 9-4. 

Table 9-4. PERSU-R architecture & training choices 

Description 
Values 

Batch size 16 

Word Embeddings fastText 

Word Embeddings size 300 

Filter sizes 2,3,4,5 

Number of filters 100,100,100,100 
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Stride length 1 

Zero padding Yes 

Activation function ReLU 

Pooling method 1-max  

Dropout rate 0.1 

Training epochs 10 

 

Several different architectures of PERSU-R were tested (e.g., multiple layers of 

convolution), but no significant increase in performance was observed; thus, a simpler 

architecture was selected. This experiment acted as a proof-of-concept for the eligibility 

of simple neural network architectures as aid tools for cybersecurity defense 

mechanisms. The fast pace of research regarding deep learning algorithms and NLP 

techniques offers the opportunity for cybersecurity researchers to quickly adapt and 

apply new innovative tools. What is usually missing is the context awareness of the 

specific task at hand. In this case, recognizing whether persuasion methods existed in a 

sentence during a potential CSE attack was cast as a sentence classification problem. 

Furthermore, the NLP and deep learning toolset had to be tuned to align with the 

specific requirements of this approach. This customization was essential to ensure the 

successful functioning of the method. The toolset was enhanced to incorporate 

knowledge from the cybersecurity domain, particularly in the realm of CSE attack 

recognition. This customization enabled the toolset to be more attuned and effective in 

addressing the specific challenges of this domain. The CSE Corpus and persuasion-

oriented annotation played a critical role in this awareness. The annotation transforms 

a corpus composed of CSE attacks into a corpus capable of recognizing persuasion 

attempts while remaining in the realm of CSE attacks.  

Furthermore, the word-embedding layer of the overall PERSU-R architecture, which 

encodes the written sentences of the interlocutors was trained over the CSE-PUC 

Corpus. During this process contextual knowledge from the digital battlefield is 

injected into PERSU-R. In addition, the use of pre-trained word embeddings (fastText) 

yielded more efficient results than CSE pre-trained or randomly initialized word 

embeddings. This was expected because the vast corpus (600+ billions of words) used 

for training was not easy to beat. Nevertheless, the CSE-PUC variation that used word 

embeddings trained on CSE-PUC Corpus gave satisfactory results, and future 

enrichment of CSE-PUC Corpus would be beneficial for transfer learning.  

The convolutional neural network as an encoder and a feature extractor has already 

been tested, measured (Zhang and Wallace 2015), and trusted for text classification. 

The convolution operation plays an essential role in preserving the spatial information 

of a sentence. In this study, a convolutional neural network with one convolution layer 
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was trained, employing multiple filters and filter sizes to capture multiple features. 

Different filters were able to capture distinctive features from each sentence. The CSE-

PUC variations independently learned the values of these filters on their own during 

the training process. Prior to the training process, several hyperparameters need to be 

specified, including the number of filters and filter sizes.  

 All hyperparameters were chosen via a grid search of the development set. As the 

number of filters increases, more features are extracted, and the network’s recognition 

capability improves for unseen sentences. However, to avoid overfitting, constraints 

were applied to the l2 norms of the weight vectors as a regularization technique by 

employing a dropout rate of 0.1.  Various dropout rates were tested, that is, when the 

number of feature maps was increased, the dropout rate was also increased to avoid 

overfitting effects. A rectified linear unit (ReLU) was selected and used as the activation 

function for the convolution layer, but tanh was another excellent candidate with 

slightly worse performance results. Finally, mini-batches of size 16 were fed to PERSU-

R, and filter sizes of 2, 3, 4, and 5 were used with 100 feature maps each. During 

training, the Adadelta optimizer was selected.  

Due to the small size of the training corpus, addressing the out-of-vocabulary (OOV) 

problem was crucial. To mitigate this challenge, the fastText algorithm was employed, 

utilizing sub word information to alleviate the OOV problem. This approach effectively 

handled unseen words, enhancing the overall robustness of the system. It is common 

for a neural network to be trained for days or even weeks but such a training duration 

would be a limitation for a network like PERSU-R. Thus, training efficiency and speed 

are critical for an application like CSE attack recognition and choices must be made 

with care and after exhausting grid search. A neural network’s complexity analysis is 

necessary because the dimensionality of a neural network is a key factor in its learning 

and performance ability.  It is a design decision that should be taken with care as it plays 

a vital role in the computational cost.  Although the computational cost involves several 

computer resources such as central processing unit speed, random access memory, etc. 

it usually refers to the time required to complete a certain operation. Concerning neural 

networks, the computational cost is a measure of the number of computing resources 

used for training or inference which leads us to know how much power or time we need 

to train or use a neural network. There are several ways to measure computational cost 

such as floating-point operations (FLOPS) or multiply and accumulate operations 

(MACs). Considering the operation of a neural network, measuring the multiplication 

of inputs and weights and adding them is critical to conclude about their computational 

cost. The convolutional layers that PERSU-R uses are very efficient for one-

dimensional sequences analysis that we apply for the recognition of CSE attacks. 

Furthermore, even for larger text sequences, convolutional layers can be used as a pre-
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processing step that extracts higher-level features that later will consume further 

processing cycles. PERSU-R has one convolutional layer and according to [57] the 

complexity is 𝑂(𝑛 ∗ 𝑑 ∗ 𝑘 ∗ 𝑓) where n is the sequence length, d is the representation 

dimension, k is the filter size and f is the number of filters. The fact that PERSU-R has 

only one convolutional layer keeps complexity low and makes the model efficient for 

implementation. 

9.8.  Chapter Conclusion  

Chapter 9 focused on the development and evaluation of PERSU-R for recognizing 

persuasion techniques in CSE attacks. The chapter provided a comprehensive overview 

of the CSE-PUC model which is the model that PERSU-R utilizes, including its 

incorporation of persuasion principles, the utilization of Convolutional Neural 

Networks (CNNs), and the architecture of PERSU-R. Through this analysis, significant 

insights were gained into the effectiveness of PERSU-R in accurately identifying and 

characterizing persuasion techniques based on textual inputs. 

PERSU-R integrates persuasion principles as a foundation for recognizing persuasive 

techniques employed by social engineers in chat-based interactions. By leveraging 

CNNs, the CSE-PUC model captures meaningful patterns and features within the text, 

enabling accurate identification of persuasive elements. The architecture of the CSE-

PUC model forms the core of PERSU-R, incorporating the operation and architecture 

components to effectively recognize and categorize persuasion techniques. 

During the development process, CSE-PUC comprising instances of persuasive 

interactions was carefully constructed for training and fine-tuning. The model 

underwent training to learn the nuances of different persuasion techniques and their 

associated patterns in the text. The evaluation of PERSU-R’s performance was 

conducted using comprehensive metrics, including accuracy, precision, recall, and F1 

score, on a held-out test dataset. These metrics provided valuable insights into the 

model's effectiveness in identifying and categorizing persuasion techniques accurately. 

The results suggest that satisfactory performance levels can be achieved while keeping 

a simple model architecture and low computational costs. This approach broadens the 

understanding of embracing machine learning models to respond to real-life cyber 

threats and might help fellow researchers adapt similar machine learning algorithms to 

solve cybersecurity problems. This research indicates that the same approach can be 

used as a generic solution framework within which we can cast cybersecurity problems 

related to natural language into text classification problems. Following a similar pattern, 

we can also try to recognize deception acts, recognize personality traits, or recognize 

speech acts by using modern text-classification machine-learning techniques. 
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1 0 .   P E R S I - R  

10.1.  Introduction  

In a chat-based dialogue e.g., between an SME employee and a potential customer, the 

interlocutors exchange written sentences during their communication. The ability to 

identify one or more characteristics (Tsinganos et al. 2018) that can discriminate a 

normal interlocutor from a malicious one can lead to sufficiently protect the SME 

employee from a potential CSE attack. To achieve her goal, a malicious interlocutor 

repeats her arguments many times in a conversation to convince and manipulate her 

partner. This was also confirmed, after processing the CSE Corpus (Tsinganos and 

Mavridis 2021), where it was observed that 83% of social engineering attackers tend to 

insist on their arguments to exfiltrate the targeted type of critical information. The 

persistence of an interlocutor to regurgitate the same topic that could lead to sensitive 

data exfiltration is an enabler of a successful CSE attack. Thus, there is a need to 

develop a mechanism for recognizing when an interlocutor is continuously trying to 

lead the conversation to a specific and previously mentioned topic.  

To cope with such a problem, we can adopt different approaches depending on the pros 

and cons of each one. Traditional machine learning models require substantial amounts 

of labeled data to be trained for a recognition task, but labeling data is a time-consuming 

and expensive activity. To achieve persistence recognition, the latest advancements in 

deep learning, particularly the Transformers  (Lin et al. 2021), were leveraged. These 

cutting-edge techniques were employed to enhance the effectiveness of the persistence 

recognition process. Transformers use substantial amounts of unlabeled raw text for 

training and take advantage of the linguistic information contained to overcome the 

difficulty of creating a large amount of labeled data. The Transformer models are very 

efficient in learning the context and relationships between sequential data, such as 

words in a sentence. Even if supervised learning using labeled data is an option, 

learning robust word vector representations in an unsupervised manner of learning can 

lead to a significant performance boost.  

In this chapter, an approach is described for the paraphrase recognition task, in the 

context of CSE attacks, based on a combination of unsupervised pre-training and 

supervised fine-tuning based on the Transformer-based BERT model (Devlin et al. 

2019). This approach results in a model, called CSE-PersistenceBERT, which learns a 

universal representation that transfers knowledge with only minimal adaptation to the 

paraphrase recognition task and it is  the main model of PERSI-R recognizer. Initially, 

the CSE-PersistenceBERT model has access to a large corpus of unlabeled text on 

which BERT has been pre-trained, and later it uses the CSE-Persistence Corpus, which 
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emerged from the CSE Corpus (Tsinganos and Mavridis 2021). CSE-Persistence 

Corpus was generated after manually annotating the CSE Corpus and utilizing the CSE 

ontology (Tsinganos and Mavridis 2021) . This corpus which is relevant to the 

downstream task was used to fine-tune PERSI-R. The complete training procedure was 

performed in two stages: firstly, the BERT model parameters were learned by training 

the model using unlabeled data on a language modeling objective, and secondly, a part 

of the pre-trained parameters was fine-tuned on the paraphrase recognition task using 

labeled data from the CSE-Persistence Corpus. The evaluation results confirmed that 

PERSI-R can recognize the persistence of an interlocutor in an early stage of a chat-

based conversation. This can result in an indicator of a potential CSE attack, given that 

the topic of the conversation is an entity in the CSE ontology.  

This chapter contributes to improving knowledge about utilizing existing state-of-the-

art deep learning models as cyber defense mechanisms. This study provides a better 

understanding of how we can tailor a BERT-based language model to expose the 

malicious intent of an interlocutor. Furthermore, detailed implementation details are 

given about fine-tuning such a model using an in-context and appropriately annotated 

corpus for the paraphrase recognition task.  

10.2.  Background  

10.2.1.  Text S imilar i ty  

In Natural Language Processing (NLP) terms, persistence recognition can be cast as a 

Natural Language Understanding (NLU) task. Furthermore, there are a plethora of 

relative NLU tasks that can be utilized to describe persistence recognition, such as 

Semantic Textual Similarity, Natural Language Inference, and Paraphrase Recognition. 

All these NLU tasks are closely related, but they also differ in several aspects:   

• Semantic Textual Similarity (STS) (Chandrasekaran and Mago 2022; Agirre et 

al. 2012) is the semantic task of inferring the relation between different text data 

units. It is usually measured as a numerical score in the range of [0,1] and 

quantifies the semantic similarity between different text data units. In earlier 

days, techniques like Bag of Words (BoW) and Term Frequency - Inverse 

Document Frequency (TF-IDF) were used to represent text as vectors to aid the 

calculation of semantic similarity. These techniques were designed to identify 

if two text units contained the same words or a similar group of characters. 

However, sentences can have different meanings while containing the exact, 

same words or can contain different words while representing semantically 

similar concepts. 
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• Natural Language Inference, sometimes also called Textual Entailment 

(Manning 2006; Marelli et al. 2014; Dagan, Glickman, and Magnini 2006), is 

the classification task of determining, given a text premise and a text hypothesis, 

whether the hypothesis is entailed by, contradictory to, or independent of the 

premise. The most popular categories used for textual entailment relationships 

are entailment, contradiction, and neutral.  

• Paraphrase Recognition (Vrbanec and Meštrović 2020) can be described as 

another text classification task that determines whether two text data units have 

a similar meaning (or not) in a specific context. 

Semantic textual similarity identifies the semantic equivalence between text data units 

as a continuous value, while textual entailment and paraphrase recognition produce a 

categorical output. However, it is possible to quickly transfer, e.g., from the STS 

measure area to the Paraphrase Recognition task, by introducing a paraphrase 

recognition threshold. For example, one can set a certain value of the STS measurement 

above which two different text data units can be considered as related. The 

aforementioned NLU tasks can also broadly be classified based on the approach used 

to achieve the objective, as follows: 

• knowledge-based, where ontologies, databases, or dictionaries are used (e.g., 

WordNet (‘WordNet | A Lexical Database for English’ )) 

• corpus-based, where information retrieved from large corpora is used (e.g., 

word2vec (Mikolov, Chen, et al. 2013)) 

• deep neural network-based, where recent developments of neural networks are 

utilized (e.g., CNNs (Y. Kim 2014), Transformers (Lin et al. 2021), etc.), and 

• hybrid-based, where characteristics from all the above-mentioned methods are 

combined (Mohamed, Gomaa, and Abdalhakim 2019). 

For each of these NLU tasks, there are several popular datasets used for the performance 

evaluation of the corresponding algorithms. These datasets are composed of sentences 

or pairs of sentences with associated classification labels.  

10.2.2.  Transformers  

A neural network model that transforms one sequence of tokens into another performs 

a sequence-to-sequence (Seq2Seq) task, as it accepts a sequence of tokens as input and 

produces another sequence of tokens as output. Known applications of such tasks are 

machine translation (McCann et al. 2017), spell checking (Singh and Singh 2020), etc. 

This paradigm, until recently, was implemented by neural networks based on an 

encoder-decoder architecture like recurrent neural networks (RNNs) (Lipton, 

Berkowitz, and Elkan 2015). The encoder e.g., a Long Short-Term Memory  (LSTM) 
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(Yu et al. 2019) neural network, takes a sequence of tokens and outputs a fixed-size 

vector representation of the input. Then, the decoder, which is also an RNN, uses this 

vector to produce the output sequence of tokens. The limitation of this workflow lies in 

the information compression that occurs during the transformation of the input 

sequence into a fixed-length vector. No matter how lengthy the input sequence is, its 

representation will always have to fit into a fixed vector size, and consequently a 

significant part of the information is lost. 

This bottleneck was overcome using a mechanism called Attention (Vaswani et al. 2017; 

Bahdanau, Cho, and Bengio 2014). Attention can produce a summary for each input 

token, which is context-dependent. This summary is a list of vectors that act as a 

memory that the decoder can look up during output production. These vectors represent 

the hidden states of the encoder and, in NLP, we can think of them as key-value pairs 

representing input tokens. An attention function f is applied on every key producing a 

weight, and then the input values are weighted by the corresponding weight and 

summed up to create the summary vector. This weighted sum is then appended to the 

decoder's hidden states to produce the final output sequence.   

A Transformer [19] is a relatively new type of encoder-decoder neural network 

architecture that utilizes a specific type of attention mechanism based on the concept of 

self-attention. Due to their outstanding performance over RNNs, Transformers are now 

the de facto standard architecture to use in related NLP tasks (machine translation, etc.). 

The self-attention mechanism produces, for each input token, a summary of the entire 

input using as context the specific token. Furthermore, a Transformer uses multi-head 

self-attention by using multiple sets of key-value pairs and queries per token, thus 

producing multiple sets of weights focused on different input sequence characteristics. 

By repeatedly applying several layers, the input sequence is transformed from a raw 

word embedding to a more abstract form representing the input's semantics.  While a 

Transformer is a powerful model by itself, it also acts as the underlying architecture of 

well-known pre-trained models such as GPT-2 (Budzianowski and Vulić 2022) and 

BERT (Devlin et al. 2019).  

Pre-trained models are used in the transfer learning (Ruder 2019), which is a collection 

of techniques that improve the performance of a neural network model in a task using 

data and/or a model trained for a different task. Transfer learning consists of at least 

two steps (Peters, Ruder, and Smith 2019); 

• pre-training, where the model learns a general-purpose representation of inputs, 

and 

• adaptation, where the input representation is transferred to a downstream task. 

The adaptation has two main paradigms: 
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o Feature extraction, where the model's weights remain unchanged and are 

used as features in a downstream task. 

o Fine-tuning, where (some of) the model's weights are unfrozen and fine-

tuned for the new downstream task. 

 In the first step, the model is trained for one task (pre-training), and in the second step, 

it is adjusted for another task (fine-tuning). Transfer learning uses word embeddings, 

which are learned vector representations. Thus, semantically similar words share 

similar representations. Although these word embeddings can be used for downstream 

NLP tasks, they are limited in the sense that they are trained per token and thus ignore 

context. 

BERT is a transformer-based pre-trained language model that employs the transformer 

encoder part to transform the input into contextualized embeddings through a series of 

layers that gradually summarize the input sequence. Due to its transformer-based 

architecture, BERT can capture long-term dependencies between input tokens, 

considering the context of the token in both directions. BERT is trained using self-

supervised learning, which means there is no need for human intervention, e.g., data 

annotation. BERT’s training comes from the data itself, as the humungous datasets used 

for training contain deep linguistic knowledge such as collocation, syntactic, 

grammatical, and semantic information. 

In the literature, the big pre-trained language models are sometimes referred to as  base 

or Foundation models (Bommasani et al. 2021), and their availability gave rise to the 

terms of fine-tuning, transfer learning, and classification heads. Fine-tuning implies 

updates to some of the model's layers, while classification heads treat the last layer of 

the model as input features: they take input X and predict the outcome Y performing 

classification if the labels are categorical or regression if the labels are continuous 

(Church, Chen, and Ma 2021). 

10.3.  Model  

The approach proposed in this thesis, incorporates the technologies of Transformers, 

self-supervised learning, pre-trained language models, and transfer learning to boost 

the performance of the paraphrase recognition task in the context of a CSE attack. For 

this purpose, the PERSI-R recognizer was developed, a fine-tuned version of the BERT 

model. PERSI-R defines a sentence vector-based model that performs text classification 

on pairs of fixed-size sentence representations that are computed independently of one 

another. PERSI-R takes as input an instance composed of two sentences and outputs a 

classification result for them.  
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BERT is available in two variants: BERT-base and BERT-large. For this work, the 

decision was made to utilize BERT-base, which consists of twelve layers of transformer 

encoder blocks and a total of 110 million parameters. This choice of model architecture 

provides a powerful and expressive framework for capturing and understanding the 

contextual information within the text data, enabling effective analysis and processing 

of the CSE attack domain. The transfer learning technique is used to improve the 

performance of the downstream NLP task, which in this study is the paraphrase 

recognition task, using a model that is already trained (pre-trained) on a different task 

(e.g., language modeling). Transfer learning, as adopted in this work, is depicted in 

Figure 10-1. 

 

Figure 10-1. The proposed Transfer Learning approach 

The end-to-end learning process of the complete neural network is divided into a pre-

training phase where the BERT-base model is trained by masking word tokens in each 

sentence of a large text corpus and a fine-tuning phase where the pre-trained BERT 

model is learning the persistence recognition labels, once again, from the CSE-

Persistence corpus. This last training is performed only on the last BERT layer to extract 

features that will allow the model to use the representations of the pre-trained model.  

BERT uses the [CLS] token that is placed at the beginning of a token indicating the 

start of the input sequence. In addition, the [SEP] token separates the two sentences, 

and the [PAD] token is used for padding. Thus, an example instance would be the 

following: 

[CLS] <sentence 1> [SEP] <sentence 2> [SEP] [PAD] 

 

The [CLS] vector acts as an input to the dense layer, and the similarity is calculated 

using a cosine similarity measure. The cosine similarity of two vectors a and b is 

computed according to formula (10.1): 

BERT
pre-trained

BERT

Word

Embeddings

Large

Text Corpus

CSE-Persistence

Corpus

(annotated data)

CSE-PersistenceBERT

model

persistence

 detection

53%

fine-tuning phasepre-t raining phase



150 

 

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =
∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1 √∑ 𝑏𝑖
2𝑛

𝑖=1

, 10.1 

 

where a, and b are vectors of dimension n. 

 

During the fine-tuning phase, no modifications are made to the neural network 

architecture. The focus is primarily on adjusting the model's parameters and training it 

on domain-specific data to improve its performance on the target task. More specifically, 

the classification pipeline (see Figure 10-2) is as follows: The pre-trained BERT 

tokenizer sends to the transformer encoder a sequence of tokens, which is composed of 

the two input sentences concatenated and separated by a special [SEP] token. A [CLS] 

token is prepended to the sequence denoting the start of the sequence. This token is 

used to extract the final embedding of the input instance. [PAD] token is a way to keep 

the input size constant. The loss function is minimized by continuously training the 

entire neural network on the CSE-Persistence Corpus data. The loss function used is 

cross-entropy, which is computed according to formula (2): 

 

𝑙𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(ŷ, 𝑦) = −∑ 𝑡𝑖 log(ŷ𝑖)
𝐶
𝑖=1 , (2) 

 

where C is the number of different classes in the data, ŷ is the predicted probabilities 

vector over the classes for the instance, y is the correct label for the instance, ti indicates 

binary if i is the correct label for the specific instance, and ŷ𝑖 is the predicted probability 

that the instance belongs to class i. 

The training objective is to find the parameters that minimize the function, as mentioned 

above, which equally translates to:  

 

𝑎𝑟𝑔𝜃𝑚𝑖𝑛
1

|𝐷|
∑ 𝑙(�̂�, 𝑦)(𝑥,𝑦)∈𝐷 , (3) 

 

where D is the dataset consisting of n data points (xi, yi) usually referred as input vectors. 

xi is the vector inputted into the neural network and yi is the accompanying label. 
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Figure 10-2. The proposed classification pipeline. 

Instead of being initialized randomly, PERSI-R’s weights are inherited by the pre-

trained BERT model, and the neural network is trained from scratch. The final sentence 

representations, which are a set of values called logits, are then passed to the SoftMax 

(Goodfellow, Bengio, and Courville 2016) function to derive a probability distribution 

regarding the sentences' paraphrase recognition task. Some of the BERT’s weights, 

which were initialized with the pre-trained values, are also fine-tuned through 

backpropagation. The combination of the linear layer with SoftMax is called a head. 

Therefore, it is said that we are attaching a classification head to BERT to solve the 

prediction task. The SoftMax function that outputs the probabilities of the instance 

belonging to each class is the following:  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑗
, (4) 

 

where 𝑧𝑖 is each element in the last layer of the neural network. 
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For the implementation, the Hugging Face (Transformers 2022) library of transformers 

was used along with AllenNLP (Gardner et al. 2017) and Pytorch (Paszke et al. 2019). 

The Hugging Face library has become the standard library for NLP researchers, and 

several state-of-the-art model implementations exist, such as GPT-2, BERT, RoBERTa, 

etc., with or without pre-trained model parameters. Using AllenNLP and BERT-as-

service (Raval  2022), a text classification model was implemented that embeds the 

input sequence, encodes it with a seq2vec (H. J. Kim, Hong, and Cha 2020) encoder, 

and finally classifies it with the help of a SoftMax layer coupled with a classification 

head. The embedding is done by BERT, BertPooler (Gardner et al. 2017) did the 

encoding, and Adam (Gardner et al. 2017) was employed as the optimizer. 

For the fine-tuning of PERSI-R, the hyperparameter values were set as recommended 

in (Devlin et al. 2019): a maximum length of the input sentence to the model of 128 

(max_length = 128), a batch size of 32 (batch_size = 32), a learning rate of 3e5; 4 

training epochs (epochs = 4), and a dropout probability of 0.1.  

During the persistence recognition task, an additional aspect involves maintaining a 

top-five ranking of the most similar sentences. This ranking enables the identification 

of sentences that exhibit high similarity to aid in the recognition process. E.g., for the 

sentence "The chief executive character wants to change her password", the top-5 

ranking returns the following (Table 10-1): 

Table 10-1. Top 5 of similar sentences 

Index Sentence Similarity 

1 The chief executive character is in a meeting with 

important clients and would like the password 

reset as his current email account password no 

longer works 

0.7804 

2 And listen we just installed an update that allows 

people to change their passwords 

0.6937 

3 Now go ahead and type your password but don't 

tell me what it is 

0.5255 

4 You should never tell anybody your password not 

even tech support 

0.3490 

5 In this case, would you like to reset your password 0.3488 

 

10.4.  Corpus  

The Stanford Natural Language Inference (SNLI) corpus (Bowman et al. 2015) is a 

well-known extensive collection of English written sentence pairs manually annotated 

with entailment, contradiction, and neutral labels. It is usually used to determine the 
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semantic relationship between two different text data units, a premise, and a hypothesis. 

Following the SNLI paradigm, the CSE-Persistence corpus was produced by modifying 

and annotating the CSE Corpus (Tsinganos and Mavridis 2021) to be suitable for the 

task of paraphrase recognition. For this purpose, the CSE ontology (Tsinganos and 

Mavridis 2021) was utilized, which is asset-oriented and connects social engineering 

concepts with cybersecurity ones. The CSE ontology focuses on sensitive data that 

could leak from an SME employee during a chat-based conversation. It groups similar 

in-context concepts to facilitate the hierarchical categorization of an SME’s assets and 

does not exceed three levels of depth to be efficient for text classification algorithms. 

The CSE ontology was created using a custom information extraction system and 

several text documents as input (corporate IT Policies, IT professionals’ CVs, ICT 

Manuals, and others). An excerpt of the CSE ontology is depicted in Figure 10-3 

 

Figure 10-3. Excerpt of the CSE ontology 

Each instance of the CSE-Persistence corpus is composed of two sentences and is 

manually labeled as being a member of one of the following three categories: 

 

• Identical (I): the two sentences are semantically close and share a common 

term targeting the same leaf entity in the CSE Ontology (e.g., USB_Stick in 

Figure 1). 

• Similar (S): the two sentences are semantically related and share a common 

intent, which translates into a higher-level entity in the CSE ontology, 

targeting a different leaf entity (e.g., Hardware as the higher-level entity and 

CD as the leaf entity in Figure 1). 

• Different (D): the two sentences are not semantically related, and they do 

not share a common higher-level or leaf entity. 

 

To capture the essence of each instance in the CSE-Persistence corpus, an analogy is 

drawn to a miniature drama play composed of only two sentences. Following this 

concept, specific names have been assigned to the two sentences, drawing from 

commonly used terminology associated with dramatic structure. These assigned names 

+ Infrastructure

+ Software

+ Service

+ Hardware

+ USB_Stick

+ CD

+ DVD

+ Sensitive_Data

+ owl:Thing

+ IT
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provide a descriptive framework for understanding and analyzing the dialogues within 

the corpus, facilitating further analysis and interpretation  

• The first sentence is referred to as the Prologue in the sense that the social 

engineering attacker uses it to introduce her intention to the play. 

• the second sentence is referred to as the Epilogue in the sense that it 

concludes the play and informs us how the story ends.   

 

Thus, the CSE-Persistence Corpus contains instances of training examples where 

each instance is composed of a string for the Prologue, a string for the Epilogue, and a 

Paraphrase Recognition label (Identical, Similar, Different). 

 

Table 10-2 presents the identity of the CSE-Persistence corpus, providing several 

key statistics:  

Table 10-2. Key Statistics of the CSE-Persistence Corpus 

Data set size 16900 sentences 

Type of text units Pairs of sentences 

Source of judgment Three judges 

Training pairs 13520 

Development pairs 1690 

Test pairs 1690 

Identical sentences 6484 

Similar sentences 5023 

Different sentences 5393 

 

Several text pre-processing steps occurred on the CSE-Persistence Corpus, such as 

identification and removal of one-word sentences, ensuring appropriate text file 

encoding, and noise removal, e.g., stopwords, emoji, etc. to prepare it as input to 

PERSI-R. 

In a separate validation phase, apart from the custom annotation, two more judgments 

were collected for each label of the 16900 examples, where a 96% annotator consensus 

emerged. In Table 10-3, three random sentence pairs with the selected gold label 

(Identical, Similar, Different) in bold, and each annotator's complete set of labels are 

depicted. E.g., the first sentence pair was classified as Identical (I) by us and the two 

annotators.  Thus, the three labels are III, and the final Paraphrase Recognition Label 

(gold label) is Identical.  

Table 10-3. Examples of sentence pairs from the annotated CSE-Persistence corpus 

Prologue Epilogue Annotators 

Labels 

Paraphrase 

Recognition  

Label 

without your 

password, 

I can cut some 

corners to save 

III Identical 
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nobody can 

access your mail, 

even we at the 

data center 

 

some time, but I'll 

need your 

username and 

password 

 

Just double click 

on the icon when 

it downloads 

You must open 

the file when it's 

done 

 

SSS Similar 

 

  

Are you using a 

USB extension 

cord 

Thanks for the 

quick replies 

DDD Different 

  

 

The underlined word is the entity found in the CSE Ontology. The first pair of sentences 

in Table 10-3 uses the leaf-entity “password” of the CSE ontology. The second pair of 

sentences does not share a leaf entity but a higher-level entity “IT” (Fig.1). The higher-

level entity “IT” contains the leaf entities “icon” and “file”. Finally, the third pair of 

sentences has neither a leaf entity nor a higher-level entity in common.  

To produce a well-balanced dataset, each Prologue appears five times in the CSE-

Persistence corpus with a different Epilogue and the corresponding label. An example 

of a corpus instance in JSON format is presented in Figure 10-4: 

 

Figure 10-4. Example of a CSE-Persistence instance in JSON format 

 

10.5.  Training  

During the training process, three columns were considered from the CSE-Persistence 

corpus — 'Prologue', 'Epilogue', and 'Paraphrase Recognition label'. The Paraphrase 

Recognition label is the 'gold_label' given to the instance after the manual annotation 

of the dataset. An excerpt of the CSE-Persistence corpus that is used for persistence 

recognition follows in Table 10-4: 

Table 10-4. Excerpt from the CSE-Persistence corpus 

# Prologue Epilogue Paraphrase 

Recognition 

label 
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1 I have my resume on this USB 

key 

Are you using a USB 

extension cord 

identical 

 

2 See, without your password, 

nobody can access your mail 

As smart as they are, they 

didn't the password 

identical 

 

3 When did you last change your 

password 

I can cut some corners and 

save some time but I ‘ll 

need your username and 

password 

identical 

4 My network connection just went 

down like you said 

I am just working on an 

audit 

different 

5 Hello how may I help you Is there anything else I can 

help you for today 

similar 

6 It's called Doctors Database and I 

believe that they are located in 

Denver Colorado 

Hello John. This is Bill 

Jenkins from Doctors 

Database in Denver 

identical 

7 We're trying to troubleshoot a 

computer networking problem 

In the back of the 

computer can you 

recognize the network 

cable 

identical 

8 I am sorry for interrupting you 

but I am experiencing a problem 

with my Charge 2 

When I tried to turn on the 

Charge 2 I saw that the 

battery was leaking 

similar 

9 I need that info to report back to 

my boss 

My boss will probably fire 

me if I don't have it for the 

morning 

similar 

10 The chief executive character is 

in a meeting with important 

clients and would like the 

password reset as his current 

email account 

But we need the details or 

we can't give you any 

information 

different 

 

The CSE-Persistence Corpus was divided into train, validation, and test set, where all 

the source data were elicited from successful or unsuccessful CSE attacks gathered 

from websites, books, and logs as described in a previous work (Tsinganos and 

Mavridis 2021).  

10.6.  Results  

The evaluation of the CSE-PersistenceBERT model was conducted using standard 

performance measures commonly employed to assess classification tasks.: 

True Positives (TP): sentence pairs where the true tag is positive and whose category is 

correctly predicted to be positive. 

False Positives (FP): sentence pairs where the true tag is negative and whose category 

is incorrectly predicted to be positive. 
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True Negatives (TN): sentence pairs where the true tag is negative and whose category 

is correctly predicted to be negative. 

False Negatives (FN): sentence pairs where the true tag is positive and whose class is 

incorrectly predicted to be negative. 

Using the above measures, Accuracy was calculated, defined as the number of sentence 

pairs correctly identified as either true positive or truly negative out of the total number 

of entities 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (5) 

 

For the baseline model,  word2vec (Mikolov, Chen, et al. 2013) is used to produce word 

vector representations in ℝ300. Then, the sentence vector embeddings were generated 

by averaging the vector embeddings of all tokens in the sentence. Furthermore, BERT-

base was employed without fine-tuning as a comparison model to support the proposed 

model’s superiority.  

During PERSI-R’s fine-tuning, the only required architecture changes that are 

appropriate for the paraphrase recognition task concern the extra fully-connected layers. 

During the supervised learning of the downstream task, the parameters of these extra 

layers were learned from scratch, while some of the parameters of the pre-trained BERT 

model were fine-tuned. After fine-tuning, PERSI-R was compared  to the baseline 

model and achieved the accuracy values presented in Table 10-5, which are also aligned 

with the work in (Phang, Févry, and Bowman 2019). 

Table 10-5. Model benchmarks on the CSE-Persistence Corpus 

Model 

Training 

Accuracy 

(%) 

Training  

Loss 

Validatio

n 

Accuracy 

 (%) 

Validation  

Loss 

Baseline 82.57 0.36 73.83 0.39 

BERT-base 84.01 0.24 76.79 0.37 

PERSI-R 84.96 0.21 78.03 0.36 

 

Figure 10-5 (a), depicts the accuracy of the training and validation data sets of PERSI-

R, and Figure 10-5 (b) depicts the loss of training and validation datasets. 
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Figure 10-5. (a) Training & Validation Accuracy (b) Training & Validation Loss 

(a)                 (b) 

A comparison of the accuracy of the baseline model vs. PERSI-R is depicted in Figure 

10-6 as the validation set of the CSE-Persistence Corpus varied from 0% to 100%. In 

every percentage of data used, PERSI-R outperforms the baseline model. One key 

observation of the experimental results was that the difference between PERSI-R and 

baseline model's accuracy was bigger when the corpus was smaller (between 20% and 

40%). This shows that even a complex BERT-based model can be efficient with a 

smaller corpus. 

 

Figure 10-6. Comparison of accuracy on the validation set as a function of corpus 

percentage. 
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In addition, an investigation was carried out to assess the influence of the number of 

layers transferred during fine-tuning, specifically from the unsupervised pre-training 

phase to the persistence recognition task. Figure 10-7, depicts the performance of 

PERIS-R as a function of the transferred layers. As an observation, it was confirmed 

that each layer of the pre-trained BERT model contains valuable information for the 

persistence recognition task. Thus, PERSI-R improved its performance in the 

persistence recognition task by transferring its "knowledge".  

 
Figure 10-7. Performance improvement during transfer-learning 

10.7.  Discussion  

The high accuracy of  the PERSI-R model indicates that it is capable of being used as 

an additional module in the proposed CSE attack recognition system (Tsinganos et al. 

2018). PERSI-R recognizes the persistent behavior of a malicious user by measuring 

the semantic similarity of the sentences uttered. Therefore, if an interlocutor tries to 

extract critical information by trying different approaches, her intention will be revealed 

by the model. Such a component is a useful add-on for a holistic system that combines 

several different models to recognize individual enablers of successful CSE attacks e.g., 

personality characteristics, persuasion and deception attempts, dialogue acts, etc. 

This research concludes that pre-trained models can be used for cyber-security-oriented 

tasks such as the recognition of CSE attacks. The benefits are considerable: 

• less development and training time compared to an RNN model approach that 

is trained from scratch. The model weights are pre-trained, encoding valuable 

information trained on extensive corpora. 
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• Reduced training data requirements, as the focus lies in fine-tuning the pre-

trained model specifically for the targeted downstream task. 

• increased accuracy on the downstream task after fine-tuning for a few epochs 

(e.g., 2-4). 

Initially, there were instances of overestimating semantic similarity, and upon 

conducting further research, it was concluded that punctuation played a crucial role in 

many of the missed cases. Also, the lexical overlap was another reason that led the 

model to mistakenly classify pairs of sentences as similar when they were not. The 

reasons were almost analogous for the cases where PERSI-R underpredicted similarity. 

Thus, the similarity was difficult to recognize when there was a significant lack of 

lexical overlap or if completely different punctuation was used. 

By conducting experiments, the use of Euclidean distance as an alternative to cosine 

similarity was explored, revealing slightly inferior performance metrics. This can be 

explained because Euclidean distance is highly effective at clustering tasks, but a 

smaller distance is measured if the two different vectors have no common attribute 

values. .  

Word embedding dimensionality reduction was explored using Principal Components 

Analysis (PCA) and found a slight improvement in accuracy as in Huang et. al 2019). 

This approach may be helpful in the case of a smaller dataset; however, research is 

ongoing regarding making pre-trained models better few-shot learners (Gao, Fisch, and 

Chen 2021),(Hu et. al 2022) focusing on natural language inference tasks such as text 

entailment (Wang et al. 2021).  

10.8.  Chapter Conclusion  

Chapter 10 presented the implementation and evaluation of PERSI-R for recognizing 

persistence in CSE attacks. The PERSI-R model leverages NLP techniques to capture 

the linguistic features and patterns indicative of persistence in CSE attacks. By 

employing neural networks, the model effectively learns and recognizes these 

persistence cues, enabling accurate identification and characterization of persistent 

behavior. The architecture of the CSE-PersistenceBERT model forms the core of the 

PERSI-R model, incorporating the principles and mechanisms necessary to identify and 

classify persistence in textual data. 

During the development process, a carefully curated corpus (CSE-Persistence Corpus) 

of textual data containing instances of persistence in chat-based interactions was 

utilized to train and fine-tune the PERSI-R model. The model underwent rigorous 

training to understand the subtleties and nuances of persistent behavior in text. The 
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performance of the PERSI-R model was evaluated using various metrics, including 

accuracy, precision, recall, and F1 score, on a held-out test dataset. These metrics 

provided valuable insights into the model's effectiveness in accurately recognizing and 

characterizing persistence. 

Through pre-training on a corpus with long sections of contiguous in-context sentences, 

PERSI-R acquired the necessary language knowledge related to CSE attacks. This way 

the model acquires the capability to process long-range linguistic and semantic 

dependencies which are then successfully transferred to solve NLU tasks such as 

persistence recognition. The presented work confirms that the generic word vector 

representations produced by the pre-trained models can be employed in a range of 

natural language processing tasks related to the cyber security domain. Moreover, the 

fine-tuning using the appropriately annotated CSE-Persistence Corpus generated in-

context representations suitable for the paraphrase recognition task during a CSE attack. 

The approach taken achieved satisfactory performance results while keeping the same 

model size. The findings from this chapter lay the groundwork for further advancements 

in recognizing and mitigating persistence, ultimately bolstering the security and 

resilience of individuals and organizations in the face of CSE threats. 
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1 1 .  C S E - A R S  

11.1.  Introduction  

In the context of this thesis a typical chat setup is described in Figure 11-1 involving 

various entities and roles. This setup revolves around the interaction between the user, 

the social engineer, the Internet, the chat server, and CSE-ARS.  

 

Figure 11-1. A typical setup for chat between a user and a potential social engineer 

The entities that appear in the above figure are the following: 

• The user: The user is an individual who actively participates in the chat setup. 

He uses chat software as a means of communication, engaging in conversations 

with other users. The user’s role is crucial as he is the intended target of potential 

CSE attacks. He inputs his utterances or messages into the chat software, 

initiating (or responding to) the communication process. The user’s 

characteristics, behavior and responses play a significant role in determining the 

effectiveness of the CSE attack recognition system. 

• CSE-ARS: CSE-ARS, serving as a virtual machine (VM) or a docker container, 

acts as an intermediary between the user and the potential social engineer. This 

system is specifically designed for detecting and recognizing CSE attacks, 

leveraging its deep learning-based techniques and expertise. When the user 

enters an utterance or message into the chat software, the communication is 

intercepted by CSE-ARS. It performs preliminary checks and analysis on the 

utterance, applying various algorithms and models to identify potential CSE 

attacks. 

User Social Engineer
Chat Server

Internet

Secure Area

CSE-ARS
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• The chat server: The chat server serves as a central entity responsible for 

transmitting messages between the user and the social engineer. It also acts as 

an intermediary, receiving the victim's utterance from CSE-ARS and forwarding 

it to the social engineer. Once the social engineer formulates a response, the chat 

server receives the response and forwards it back to CSE-ARS for analysis. The 

chat server plays also a critical role in facilitating the communication process 

and ensuring the exchange of messages between the user and the social engineer. 

• The social engineer: The social engineer is an individual who interacts with the 

user through the chat setup. Her objective is to manipulate the user into 

revealing sensitive information or performing malicious actions. The social 

engineer formulates responses based on the user’s utterances, aiming to exploit 

vulnerabilities and achieve her malicious goals.  

• The internet acts as the underlying infrastructure that enables the 

communication between the victim, the chat server, and the social engineer. It 

provides the connectivity and network capabilities required for the chat setup to 

function effectively. 

The chat may begin with the victim or the potential social engineer, who initiate the 

conversation by entering utterances into the chat software, which serves as their means 

of communication. Simultaneously, the CSE-ARS system, acts as an intermediary 

between the two interlocutors which can detect and recognize CSE attacks.  As shown 

in Figure 4-1 the CSE-ARS system is able to analyze the content of the utterances 

utilizing deep learning algorithms and techniques and make inference regarding 

enablers that can lead to successful social engineering attacks.  

In Figure 11-2 CSE-ARS is depicted in action where we can see the individual enabler 

recognizers that are utilized to make inference regarding the state of the chat. 
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Figure 11-2. CSE-ARS in action 

Throughout this process, CSE-ARS acts as a safeguard, aiming to protect the user by 

analyzing his personality characteristics and detecting critical information leakage. 

Furthermore, on the social engineer’s side, CSE-ARS is able to recognize malicious 

persuasion attempts, persistent behavior and recognition of dialogue acts that can lead 

to unwanted actions by analyzing the full chat history and thus make inference 

regarding deception attempts.  

11.2.  Architecture  

A resilient and efficient cyber-defense system was designed and implemented with the 

aim to predict whether a chat-based dialogue is transitioning into a social engineering 

attack. It decides whether an interlocutor is unleashing a CSE attack to extract critical 

personal, enterprise, or IT data from the other. CSE-ARS brings a multi-modal approach 

to solving the problem of recognizing CSE attacks. In the context of this study, multi-

modal refers to the use of multiple modalities or sources of information to make 

predictions. The proposed system utilizes a late fusion technique, which takes as input 

each recognizer’s output and produces a final prediction through a weighted linear 

aggregation. The weights were determined using a validation set and are optimized to 

maximize the performance of the system.   

CSE-ARS, utilizes the recent trends in deep learning and natural language processing 

to examine and classify utterances taking into account the CSE attack enablers 

presented in Sections 4.2 though 4.8. The enabler recognizers were evaluated based on 

their performance using the same context to draw safe conclusions. This means special 
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attention was paid to the training data, the hyperparameters, the experimental setup, and 

the number of experiments conducted for the comparison to be trustworthy. In the 

evaluations, the emphasis was placed on prioritizing the reduction of false negatives 

rather than false positives. The objective was to minimize instances where potential 

CSE attacks go undetected, even if they resulted in a slightly higher number of false 

positives. This trade-off was a basic design decision for all enabler recognizers that 

were tested and evaluated.  

This approach allowed to exploit the strengths of the different enabler recognizers and 

to account for the fact that different enablers may be utilized to successfully conduct a 

CSE attack. More analytically, CSE-ARS incorporates the following enabler 

recognizers:  

• Critical Information Leverage Recognizer (CRINL-R):  a named-entity 

recognizer (NER),  based on a bi-directional long short-term memory (bi-LSTM) 

model(Schuster and Paliwal 1997),  recognizing critical data information.  

• Personality Recognizer (PERST-R): a BERT (Devlin et al., 2019) model that 

predicts personality traits of the interlocutors based on the Big-5 theory. 

• Dialogue-act Recognizer (DIACT-R): a BERT model that recognizes dialogue 

acts that can lead to deception taking into account the whole dialogue history. 

• Persuasion Recognizer (PERSU-R): a convolutional neural network (CNN) 

(Lecun et al. 1998) that predicts persuasion attempts. 

• Persistence Recognizer (PERSI-R): a BERT model that predicts persistent 

behavior by identifying paraphrasing in chat dialogue. 

After the individual recognizers generate their outputs, the late fusion model combines 

them to determine whether the chat text constitutes a CSE attack. Each recognizer has 

its feature extraction network customized for its specific objective and state. The 

outputs of the recognizers are fused using a weighted linear aggregation method. All 

the recognizers, including the CSE-ARS but excluding PERST-R,  are trained on 

different variants of the custom CSE Corpus (Tsinganos and Mavridis 2021) 

The multimodal fusion architecture is depicted in Figure 11-3. The system’s design is 

flexible, allowing for the addition or removal of individual recognizers as needed. This 

allows the system to be adapted to new types of CSE attack enablers as they emerge. 

By using a combination of different recognizers, the system can capture a wide range 

of enablers and provide a comprehensive assessment of the likelihood of a particular 

input being a CSE attack. 
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Figure 11-3. The CSE-ARS system architecture 

In this work, concatenation was used for the fusion layer to combine the outputs of 

multiple binary classifiers denoting the independence of the different enablers and 

keeping the system simple.  The concatenation layer takes the outputs of each classifier 

and concatenates them into a single vector, which can then be fed into a fully connected 

layer for the final prediction. The outputs of the classifiers are treated as separate 

features and the information from each classifier is retained in the final combined vector. 

This is useful when the classifiers are designed to capture different aspects of the input 

and the outputs are independent of each other. In this way, the final combined vector 

provides a multi-modal representation of the input and can be used to make a prediction. 

11.3.  Corpus  

CSE-ARS was trained on the CSE-ARS Corpus, which is an augmented version of the 

CSE Corpus (Tsinganos and Mavridis, 2021) composed of realized and fictional CSE 

attack dialogues. Table 11-1 presents the details of the CSE-ARS Corpus. 

 

Table 11-1. CSE-ARS Corpus  

Characteristic Value 

Corpus Name CSE-ARS corpus 

Collection Method Web-scraping, pattern-matching text extraction 

Corpus size (N) 56 text dialogues/3380 sentences 

Vocabulary size (V) 5400 terms 

Total no. of turns 9685 

Avg. tokens per turn 9,34 

Content Chat-based dialogues 

Collection date Jun 2018 – Dec 2020 
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Language English 

Release year Feb 2023 

License Private 

 

11.4.  Training  

To comprehensively assess the effectiveness of the proposed CSE-ARS, a ten-fold 

cross-validation experiment was conducted. CSE-ARS Corpus underwent a 

randomization process, resulting in its division into ten distinct subsets. Throughout 

each iteration of the experiment, nine subsets were further subdivided into training 

(80%) and validation (20%) sets, while the remaining subset was designated as the 

testing set. By employing this methodology, prediction scores for each testing subset 

were obtained after ten rounds, which were subsequently amalgamated to derive an 

overall prediction score. To enhance the performance of this approach, several 

strategies were implemented. At the outset, diverse configurations were explored, and 

each recognizer was trained using a single domain training set. The validation set was 

employed to mitigate the risk of overfitting during the training process. Subsequently, 

the optimal configuration parameters were selected based on the evaluation criterion of 

the area under the receiver operating characteristic curve (AUC) value. Finally, after 

the training of the specific recognizers, an exhaustive examination of various 

coefficient combinations was conducted until the classification performance, as 

assessed by the AUC value, reached its maximum on the validation set. 

11.4.1.  Late Fusion  

Ensemble techniques offer a valuable means of enhancing system performance by 

combining multiple machine learning models. Such techniques prove particularly 

beneficial when individual models exhibit high accuracy but differ in the types of errors 

they make, as often encountered in multimodal approaches. Within the context of this 

study, as "modality"(Lahat, Adali, and Jutten 2015) is considered each distinct 

acquisition framework that captures information regarding the same phenomenon from 

various types of recognizers, under different conditions, across multiple experiments or 

subjects, among other factors. The late fusion approach (Lahat, Adali, and Jutten 2015), 

akin to decision-level fusion, constitutes an ensemble technique that combines multiple 

models to generate a final prediction. In late fusion, the unimodal decision values are 

acquired and merged to derive the ultimate decision. This approach facilitates flexible 

training and straightforward predictions, even when one or more modalities are absent, 

albeit at the expense of disregarding certain low-level interactions between modalities. 
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The output of enabler recognizers is concatenated and subsequently fed into a final 

classifier to formulate the conclusive prediction. Leveraging late fusion methodology 

leads to enhanced performance when compared to utilizing a solitary model, rendering 

it a commonly adopted technique across various machine learning domains, including 

image classification, natural language processing, and speech recognition. The key 

advantage of late fusion lies in its capacity to allow individual recognizers to specialize 

in their respective areas of expertise, thereby contributing to a more accurate final 

prediction. If a recognizer 𝑚𝑖  is used on modality 𝑖  using input 𝑘𝑖   where i =

1,2,… ,M  then the final prediction of a late fusion system is given by p =

f(𝑚1(𝑘1),𝑚2(𝑘2), … ,𝑚𝑀(𝑘𝑀)) . The strengths of late fusion systems are relatively 

simple to implement compared to other models, as they simply combine the outputs of 

different models into a single prediction.  

11.4.2.  Simulated  Annealing  

The novelty of this approach resides in the architectural design and the fusion of multi-

dimensional data. The fundamental idea behind the multimodal fusion approach is to 

integrate the distinct output to enhance CSE attack recognition. The outputs of the 

individual enabler recognizers are represented by probability distributions, obtained 

through the application of the SoftMax classifier. The SoftMax classifier formula is as 

follows: 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦)𝑖 =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑛
𝑗=1

 (11.1) 

 

where 𝑦𝑖 represent the data in  𝑗𝑡ℎ  column of the output vector and n represents the 

output vector dimension. The SoftMax layer's output constitutes a probability 

distribution across the two possible classes, whether an utterance is considered a CSE 

attack or not. Multimodal fusion was performed using weighted linear aggregation as 

the fusion technique; the specific construction steps are as follows: 

• STEP1: The trained enabler recognizers (CRINL-R, DIACT-R, PERSI-R, 

PERST-R, and PERSU-R) are applied to the particular validation sets. The 

output (prediction results) of each recognizer ( 𝑖. 𝑒. , 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑅𝐼𝑁𝐿−𝑅 , 

𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝐼𝐴𝐶𝑇−𝑅, 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝐸𝑅𝑆𝐼−𝑅, 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝐸𝑅𝑆𝑇−𝑅, and 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝐸𝑅𝑆𝑈−𝑅) has the 

form of a matrix with dimensions equal to the number of samples in the 

corresponding validation set and the number of classes. 

• STEP2: To fuse the features of the individual recognizers, the following fusion 

methods are defined: 
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{
  
 

  
 

𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑆𝐸−𝐴𝑅𝑆 = 𝛼 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑅𝐼𝑁𝐿−𝑅
+𝛽 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝐼𝐴𝐶𝑇−𝑅 + 𝛾 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝐸𝑅𝑆𝐼−𝑅
+𝛿 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝐸𝑅𝑆𝑇−𝑅 + 휀 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝐸𝑅𝑆𝑈−𝑅

 
𝛼 + 𝛽 + 𝛾 + 𝛿 + 휀 = 1 

 
0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 휀 ≤ 1  

 (11.2) 

 

 

where 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑆𝐸−𝐴𝑅𝑆 represent the result of feature fusion, α represents the weight of 

the CRINL-R output, β represents the weight of the DIACT-R output, γ represents the 

weight of the PERSI-R output, δ represents the weight of the PERST-R output and ε 

represents the weight of the PERSU-R output.  

• STEP3: the best combination of (𝛼, 𝛽, 𝛾, 𝛿, 휀) on the validation set is found so 

that the cross entropy between 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑆𝐸−𝐴𝑅𝑆 and label (one-hot encoding) is 

close to the theoretical minimum (𝛼, 𝛽, 𝛾, 𝛿, 휀). The step is equivalent to a new 

round of feature learning.  

• STEP4: In order to find the optimal solution of (𝛼, 𝛽, 𝛾, 𝛿, 휀) on the validation 

set, the following optimization problem is defined: 

 min (𝐿𝑜𝑠𝑠(𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑆𝐸−𝐴𝑅𝑆 , 𝐿𝑎𝑏𝑒𝑙) (11.3) 

 

 {
𝛼 + 𝛽 + 𝛾 + 𝛿 + 휀 = 1 

0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝛽 ≤ 1, 0 ≤ 휀 ≤ 1
 

(11.4) 

 

To obtain the global optimal solution, the Simulated Annealing (SA) algorithm (Rere, 

Fanany, and Arymurthy 2015) is utilized . SA is a metaheuristic optimization algorithm 

used for discovering the global optimum of a complex objective function. The 

probability of a particular state of x is determined by the following equation: 

 

 𝑝(𝑥) = 𝑒
−∆𝑓(𝑥)
𝑘𝑇  (11.5) 

 

 

where f(x) is the configuration of energy, k is Boltzmann’s constant, and T is 

temperature. The algorithm (Rere, Fanany, and Arymurthy 2015)  that describes the 

optimization procedure is shown in Table 11-2 
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Table 11-2. Simulated Annealing algorithm 

Algorithm: Simulated Annealing 

Generate a random initial solution 𝑥0 

Calculate objective function 

Parameter initialization (T, k, c) 

while control condition not true do 

       for number of new states  

           Pick new solution 𝑥0 + ∆𝑥  in neighborhood 

               # Evaluate new state 

               If 𝑓(𝑥0 + ∆𝑥)  >  𝑓(𝑥0) then  

                   𝑓𝑛𝑒𝑤  =  𝑓(𝑥0 +); 𝑥0  =  𝑥0  +  ∆𝑥 

             else 

                  ∆𝑓 =  𝑓(𝑥0  +  ∆𝑥) –  𝑓(𝑥0) 

                  𝑟𝑎𝑛𝑑𝑜𝑚 𝑟(0, 1) 

                      𝒊𝒇 𝑟 > exp (
−∆𝑓(𝑥)

𝑘𝑇
) 𝒕𝒉𝒆𝒏 

                         𝑓𝑛𝑒𝑤  =  𝑓(𝑥0  + ∆𝑥), 𝑥0  =  𝑥0  +  ∆𝑥 

                     else 

                        𝑓𝑛𝑒𝑤 =  𝑓(𝑥0), 

                     end if 

             end if 

       𝑓 =  𝑓𝑛𝑒𝑤 

       Decrease the temperature periodically: T =  c x T 

   end for 

end while 

 

To summarize, the Simulated Annealing (SA) algorithm starts with an initial solution 

and evaluates it using the objective function. Then, it perturbs the solution and evaluates 

the new solution. If the new solution is better, it becomes the new current solution. If 

it's worse, it may still be accepted with a probability based on the temperature parameter.  

The objective function in this work is defined as shown in formula 11.4, and the SA 

algorithm is used to determine the optimal values of (α, β, γ, δ, ε) on the validation set. 

Finally, the tuple (α, β, γ, δ, ε) is transferred to the test set to predict CSE attacks using 

the fused features, and the results are compared to those obtained through single 

modality feature learning. The workflow of CSE-ARS’ multimodal fusion is shown in 

Figure 11-4. 
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Figure 11-4. Workflow of the CSE-ARS multimodal fusion 

The layers depicted in the figure above are as follows: 

• Embeddings Layer: This layer receives input from the individual recognizers. 

• Fusion Layer: This layer combines the outputs from the individual recognizers 

into a single representation. The fusion layer is implemented as a weighted linear 

aggregation.  

• Dense Layer: This layer is used to apply non-linear transformations to the fused 

representation to produce the final prediction. The dense layer is implemented 

as a fully connected layer. 

• Output Layer: This layer produces the final prediction, which is the probability 

of a given text being a CSE attack or not. 

These steps were repeated during training until the system reached satisfactory 

performance. For this specific problem of CSE attack recognition, a binary cross-

entropy loss function (Kullback and Leibler 1951) is used. For the optimizer, the 

method of choice was the Adam optimizer (Kingma and Ba 2014), which adaptively 

adjusts the learning rate for each parameter based on the historical gradient information. 

Furthermore, it tends to converge faster and with a better convergence minimum 

compared to SGD (Ruder 2016).  In summary, the choice of a binary cross-entropy loss 

function and the Adam optimizer is a reasonable one for the late fusion system for CSE 

attack recognition, as it provides a robust and efficient way to measure the error and 

update the system parameters. 
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11.5.  Evaluation Results  

CSE-ARS has been extensively evaluated on the CSE-ARS corpus. Due to the absence 

of comparable CSE recognition systems, a baseline system was utilized as a point of 

reference  employing majority voting (Breiman 1996; Dietterich 2000) a method, in 

which the predictions of several classifiers are combined and the class label with the 

highest frequency is selected as the final prediction. The objective of comparing the 

results of the two models is to highlight the advantages of employing a more 

sophisticated late fusion model over a simplistic majority voting ensemble model for 

CSE attack recognition. The results show that CSE-ARS is outperforming the majority 

voting ensemble model which is used as a baseline system. 

For each distinct recognizer, the assumption is made that if the recognition is true (e.g., 

persuasion is correctly recognized), it indicates the presence of a CSE attack. 

Consequently, there are two distinct classes that need to be predicted: CSE-attack and 

Neutral. The predicted class label �̂�, if there are m different classifiers, is given by �̂� =

𝑚𝑜𝑑𝑒{𝐶1(𝑥), 𝐶2(𝑥),… , 𝐶𝑚(𝑥)} . The performance of each recognizer was evaluated 

through 10-fold cross-validation on the training dataset before combining them in to 

CSE-ARS.  

The evaluation process provided insights into the individual performance of each 

recognizer before their integration into CSE-ARS e.g., the global optimization outcome 

for (α, β, γ, δ, ε) on the validation set yielded (0.134, 0.294, 0.201, 0.169, 0.202). Upon 

acquiring the key parameters (α, β, γ, δ, ε) for the CSE-ARS, both the individual 

recognizers and the fusion model were tested on the test set. Their respective prediction 

accuracies were 56,70%, 71,20%, 68,70%, 64,90%, 58,90%, and 79,96%. CSE-ARS 

achieved a prediction accuracy of 8.76% greater than the optimal single modality model.  

The loss value of each model was calculated as shown in the following formula 

 𝐿𝑜𝑠𝑠(𝐿𝑡 , 𝐿𝑡
∗) = −

1

𝑛
∑[𝐿𝑡(𝑖) ∗ 𝑙𝑜𝑔𝐿𝑡

∗(𝑖)] + 𝜆𝑅(𝑤) (11.6) 

 

where 𝐿𝑡 is the correct label of the sample, 𝐿𝑡
∗  is the network output, and 𝜆 is the weight 

of the regularization term.  

The loss value for each recognizer was 0.304, 0.250, 0.378, 0.401, 0.290 and the 

multimodal fusion model was only 0.17954. This rigorous evaluation method provided 

a robust assessment of the performance of each recognizer and CSE-ARS. The results 

of the 10-fold cross-validation are shown in Figure 11-5. 
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Figure 11-5. – Sequence of 10-fold Cross-Validation 

Each set represents a 10-fold cross-validation. In the 10 times of validations, the 

average prediction accuracy, prediction, recall and F1 score of the enablers, majority 

voting model and CSE-ARS are shown in Table 11-3. 

 

Table 11-3. Average Accuracy of individual recognizers and CSE-ARS multimodal 

fusion in 10-fold cross-validation 

Model Avg. Accuracy Avg. Precision Avg. Recall Avg. F1-score 

PERST-R 0.567 0.512 0.501 0.560 

DIACT-R 0.712 0.648 0.633 0.604 

PERSU-R 0.687 0.601 0.600 0.653 

PERSI-R 0.749 0.667 0.640 0.630 

CRINL-R 0.589 0.554 0.550 0.601 

Majority Voting 0.753 0.700 0.689 0.701 

CSE-ARS 0,799 0.702 0.702 0.701 

 

To assess the performance of the CSE-ARS system in predicting CSE attacks, ROC 

curves were computed for each class, and the corresponding AUC values were 

determined for each model. This analysis provided insights into the discriminative 

power and overall performance of the system in detecting CSE attacks.  Figure 11-6 

shows the ROC curves of the models used to evaluate the prediction performance of 

CSE attacks, and Table 11-4  displays the calculated AUC values for each model.  
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Figure 11-6. ROC curves of CSE-ARS, Majority Voting model and recognizers  

Table 11-4. AUC values CSE-ARS, Majority Voting model and recognizers 

Model AUC 

PERST-R 0.5479 (+/- 0.14) 

DIACT-R 0.6783 (+/- 0.12) 

PERSU-R 0.7010 (+/- 0.11) 

PERSI-R 0.6971 (+/- 0.14) 

CRINL-R 0.5783 (+/- 0.9) 

Majority Voting 0.649 (+/- 0.12) 

CSE-ARS 0.7432 (+/- 0.10) 

  

11.6.  Chapter Conclusion  

In today's digital world, CSE attacks have emerged as a significant threat, capable of 

extracting sensitive information or manipulating individuals into performing certain 

actions. By exploiting human personality traits and employing persuasive dialogue acts 

and deception techniques, attackers can effectively deceive their victims.  
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In this chapter, CSE-ARS was presented, showcasing its efficacy in the recognition and 

mitigation of CSE attacks. CSE-ARS integrates multiple recognizers, including 

CRINL-R, PERST-R, DIACT-R, PERSU-R, and PERSI-R, to capture various aspects 

of CSE attacks. Through the late fusion technique it combines the outputs of these 

individual recognizers, allowing for a holistic analysis of multimodal information, such 

as critical information leakage, personality traits, dialogue acts, persuasion techniques, 

and persistence. The Simulated Annealing algorithm was employed to optimize the 

fusion process, ensuring an optimal combination of the individual model outputs. 

By leveraging transfer learning, CSE-ARS effectively utilized pre-existing pre-trained 

models, reducing the need for extensive training data while enhancing system efficiency.  

To train the CSE-ARS model, a carefully constructed corpus comprising labeled 

instances of CSE attacks was utilized. The model underwent an extensive training 

process, fine-tuning each individual deep learning model and optimizing the late fusion 

mechanism.  

In order to assess the effectiveness of CSE-ARS, experiments were conducted on 

custom corpora (CSE-ARS Corpus) that consists of both real-world and fictional chat 

texts. This comprehensive evaluation allowed for the examination of the system's 

performance across different types of chat-based scenarios, providing insights into its 

capabilities and potential real-world applicability. The comprehensive evaluation 

conducted in this study substantiates the effectiveness and reliability of CSE-ARS in 

accurately recognizing CSE attacks. Thus, CSE-ARS renders a valuable tool for 

safeguarding individuals and organizations against such threats. The results indicate 

that the proposed approach exhibits satisfactory performance in recognizing CSE 

attacks.  
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1 2 .   C O N C L U S I O N S  A N D  F U T U R E  W O R K  

12.1.   Conclusions  

Deep learning is a powerful approach for building recognizers as it allows for the 

learning of high-level abstractions from data. This is particularly useful in the case of 

CSE attacks, where the patterns of behavior and language used by attackers can be 

complex and difficult to identify. Deep learning models such as CNNs, LSTMs, and 

transformer-based ones such as BERT can learn these complex patterns and make 

accurate predictions about the likelihood of a CSE attack. Furthermore, the use of pre-

trained deep learning models is beneficial as these models are already trained on large 

amounts of data, which enables them to generalize well to new data and new types of 

CSE attacks. This is important as social engineering attacks are constantly evolving, 

and being able to adapt to new types of CSE attacks is crucial for the effectiveness of a 

CSE attack recognition system.  

For the implementation of the individual deep learning recognizers, the popular deep 

learning frameworks PyTorch (Paszke et al. 2019) and HuggingFace (Wolf et al. 2020) 

were mainly used . Every experiment was tracked as it relates to the progress and the 

results. The level of detail captured during each experiment was meticulously 

maintained to ensure that the experiments could be recreated accurately or compared 

with other experiments in the future. This comprehensive logging approach allows for 

reproducibility and facilitates effective comparisons between different experiments for 

experiment tracking (e.g., loss curve, model performance metrics, hyperparameters, etc.) 

and experiment versioning, and for this reason the Weight & Biases platform (Biewald 

2020) was utilized. Different combinations of hyper-parameter values gave different 

performance results. A thorough and exhaustive search was conducted, considering all 

possible combinations, to identify the optimal values for hyperparameters. This 

approach ensured that no potential combination was overlooked and allowed for the 

selection of the most suitable hyperparameter values for the given task. The 

performance of each hyper-parameters set was evaluated against a dedicated validation 

set. The test split was never used for hyper-parameter tuning, to avoid overfitting and 

the best model in each case was selected based on its performance on the validation set. 

Afterward, each model’s performance was measured against the test split.  

Many trade-offs had to be considered during model selection such as computing 

requirements, and performance. As already mentioned, the design decision was to 

prefer models that had fewer false positives neglecting the false negatives metric. 

Furthermore, it was also a design decision to choose the models based solely on their 

performance and not on computing requirements. Neural networks demand more 
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powerful machines (e.g., GPU over CPU) to deliver high accuracy with an acceptable 

inference latency. It was crucial to maintain a comprehensive record of definitions 

required to replicate an experiment alongside its pertinent artifacts, which refer to the 

files created during an experiment such as those displaying loss curves, evaluation loss 

graphs, logs, or intermediate results of a model throughout a training process. This 

practice facilitates the comparison of distinct experiments and aids in the selection of 

the optimal experiment tailored to one's specific requirements.  

CSE-ARS system has been extensively evaluated on the CSE-ARS corpus and 

outperformed the individual recognizers in terms of accuracy, precision, recall, F1 score, 

and AUC value. PERSI-R had the highest performance among the individual models, 

but CSE-ARS achieved a higher accuracy in 10-fold cross-validation. However, there 

was a large gap between the AUC value of CSE-ARS and PERSU-R. It is suggested 

that the superior performance of CSE-ARS is due to the strength of the late fusion 

approach to utilize multiple modalities, which may capture more comprehensive 

information about CSE attacks. Overall, the results suggest that the multimodal fusion 

approach has the potential to improve the accuracy of CSE attack prediction. The 

proposed system CSE-ARS has shown promising results in recognizing the various 

enablers such as personality traits, dialogue acts, persuasion attempts, persistent 

behavior, and critical information leverage.  

One of the main contributions of this study is the use of the late fusion method to 

combine the separate outputs of the individual recognizer. This approach allows for the 

strengths of each technique to be leveraged and results in a more robust and accurate 

recognition system. The individual recognizers used in the proposed system also 

deserve further discussion. The use of a convolutional network for recognizing 

persuasion attempts is effective in identifying patterns in the language used in 

persuasion attempts. The use of BERT for recognizing personality traits, dialogue acts, 

and persistent behavior is also well-suited for these tasks as BERT is a pre-trained 

language model that has been shown to have strong performance in natural language 

understanding tasks. It is worth noting that the BERT models used in this study were 

fine-tuned on specific and appropriate corpora, and their performance may be improved 

by further fine-tuning on larger and more diverse corpora. Moreover, the use of such 

models allows for the proposed system to be easily updated and improved as new data 

and techniques become available, making it more adaptive to the constantly evolving 

social engineering attacks. Overall, the individual recognizers used in CSE-ARS are  

effective in recognizing the various enablers of social engineering attacks. The results 

obtained from the experiments and evaluations showcase the potential of deep learning 

models to recognize critical information leakage, personality traits, dialogue acts, 

persuasion techniques, and persistence in chat-based interactions. These models offer 
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valuable insights into the identification and analysis of social engineering behavior, 

facilitating proactive defense and enhancing cybersecurity measures. The developed 

CSE-ARS system, incorporating the individual models, provides a holistic approach to 

CSE attack recognition, equipping organizations and individuals with an effective 

defense mechanism. 

This study emphasizes the efficiency and efficacy of the proposed system as a valuable 

tool in safeguarding individuals and organizations from the insidious threats of social 

engineering attacks. By raising awareness of the vulnerabilities inherent in human 

interactions and developing advanced recognition systems, we can empower 

individuals and organizations to counteract these attacks effectively. The implications 

of this research extend beyond the field of computer science, reaching into the realm of 

computer security and the preservation of personal and organizational integrity in the 

digital age. 

Finally, it is important to emphasize the need for ethical considerations in the 

development of CSE attack recognition systems. As these systems involve the 

processing of sensitive and personal information, it is crucial to ensure that they are 

designed and used in a way that respects privacy and protects against potential biases 

and discrimination. This requires a careful and transparent design process, as well as 

ongoing monitoring and evaluation of the system's performance and impact. Overall, a 

multi-disciplinary and ethical approach is essential for the development of effective and 

responsible CSE attack recognition systems. 

In conclusion, this thesis contributes to the body of knowledge in the field of CSE attack 

recognition. The developed deep learning models and CSE-ARS lay the foundation for 

effective defense strategies against social engineering threats. By combining the power 

of deep learning, natural language processing, and cybersecurity, we can enhance the 

security posture of individuals and organizations, safeguarding critical information and 

mitigating the risks posed by CSE attacks. With continued research and collaboration, 

we can foster a safer digital environment and protect users from the detrimental impacts 

of social engineering. 

12.2.  Future Work  

While the current research has made significant contributions to the field of CSE attack 

recognition, several avenues for future work can further enhance the effectiveness and 

applicability of the developed models and system. These areas of future research 

include: 
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1. Enhancing Model Generalization: The developed deep learning models, 

including CRINL-R, PERST-R, DIACT-R, PERSU-R, PERSI-R, and CSE-ARS, 

have shown promising performance on the existing corpora. However, it is 

crucial to evaluate their generalization capabilities in diverse and real-world 

scenarios. Future work can involve collecting larger and more diverse datasets, 

encompassing a wider range of social engineering techniques and attack vectors. 

This will allow for a more comprehensive evaluation of the models' 

performance and their ability to generalize to real-world situations.  

2. Incremental Model Updates: Social engineering techniques and attack vectors 

evolve over time, requiring continuous updates and improvements to the 

recognition models. Future research can explore techniques to enable the 

models to adapt and learn from new types of attacks and emerging trends in 

social engineering. This can be achieved through incremental learning 

approaches that allow the models to update their knowledge and adapt to 

evolving attack patterns without requiring a complete retraining process. 

3. User Awareness and Education: While the developed system focuses on CSE 

attack recognition, raising user awareness and providing education on social 

engineering risks remain essential. Future work can involve the development of 

educational materials, training programs, or interactive tools that help users 

understand CSE attack techniques and learn how to identify and respond to 

suspicious activities. Integrating user awareness and education initiatives with 

the recognition models and system can create a comprehensive defense strategy 

against CSE attacks. 

4. Beyond Text: The development of large language models (LLMs) has opened 

up new possibilities for the detection of deepfakes. One challenge in using 

LLMs for deepfake detection is that deepfakes are becoming increasingly 

sophisticated. However, the capabilities of generative models are still under 

research and the first results are highly promising. 

5. Interpretability: It may be beneficial to investigate the interpretability of 

individual models and CSE-ARS to identify the specific features that contribute 

to the final prediction. 

The future work outlined above presents several directions for extending the current 

research and enhancing the capabilities of the individual models and CSE-ARS for CSE 

attack recognition. By addressing these areas, researchers can contribute to the 

advancement of the field and provide more effective solutions to combat social 

engineering threats. The combination of improved model generalization, incremental 

updates, user awareness and beyond text initiatives will further strengthen the defense 
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against CSE attacks and contribute to the overall cybersecurity landscape. Additionally, 

collaboration between academia, industry, and cybersecurity professionals is essential 

to foster the exchange of knowledge and expertise, enabling the implementation of 

robust defense mechanisms against social engineering attacks. 
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