
UNIVERSITY OF MACEDONIA

Machine learning-based mood classification
via standardized questionnaires

by

Michaela Balkoudi

A thesis submitted in partial fulfillment for the

Master ’s degree:

Artificial Intelligence and Data Analytics

in the

Department of Applied Informatics

Supervising Professor: Dimitrios Hristu-Varsakelis

27/6/2023

https://www.uom.gr/
mailto:mixmpalk@gmail.com
https://www.uom.gr/en/dai


Declaration of Authorship

I, Michaela Balkoudi, declare that this thesis titled, “Machine learning-based mood classifi-

cation via standardized questionnaires” and the work presented in it are my own. I confirm

that:

■ This work was done wholly or mainly while in candidature for a research degree at this

University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



Knowledge is power. Information is liberating. Education is the premise of progress, in every

society, in every family.

Kofi Annan



UNIVERSITY OF MACEDONIA

Abstract
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Master ’s Degree

by Michaela Balkoudi

In recent years, there has been an increase in awareness of mental health issues and it is widely

accepted that their early detection is essential to preventing social consequences. The use of

questionnaires is a common medical technique for promptly detecting mental health concerns.

Some scientists have proposed further automating the diagnosis of one mental condition by

utilizing a questionnaire that diagnoses another condition. However, more research and study

are required in order to prove the effectiveness of this further automation of the diagnosis of

mental disorders and make it practical. This thesis investigates two questions. First whether

a standardized memory questionnaire known as the PRMQ (Prospective and Recall Memory

Questionnaire) along with a few demographic and general health-related questions, may be

used to diagnose depression. Second, we try to investigate the reverse, that is whether memory-

related disorders may be diagnosed in patients by using a common questionnaire that makes

a diagnosis of depression called the ZUNG Depression Questionnaire (SDS), coupled with the

same demographic questions and health-related questions used in the first investigation. The

selection of these two mental illnesses is not arbitrary; rather, it is based on their usual co-

occurrence and the link that has been found between them. Both questions will be inves-

tigating via machine learning techniques. More specifically, question is approached in two

ways: as a regression and as a classification task. For each such task, suitable machine learn-

ing models are applied and compared in order to find the one with the best performance. The

memory-related classification task will turn out to be an imbalanced classification problem,

hence appropriate methods, such as resampling during training and cost-sensitive algorithms,

are used to resolve it. Our results show that we can diagnose depression through the memory

questionnaire, coupled with some demographic questions and health-related questions with an

accuracy of approximately 79%. The diagnosis of memory-related issues via the Zung depres-

sion questionnaire could not be achieved with adequate accuracy. This does not necessarily

imply that we can not diagnose memory-related issues from a depression questionnaire, but

more research is needed to improve performance.
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Chapter 1

Introduction

Mental health is receiving a growing amount of attention in recent years, in light of the global,

structural threats including public health emergencies, war, social and economic inequality,

changes in cultural and societal attitudes, changes in the “modern” way of life and the climate

crisis. A clinically significant disturbance in a person’s cognition, emotional regulation, or be-

havior is an indication of mental disorder. Mental disorders come in a wide variety of forms.

They are also termed mental health conditions, a broader notion that encompasses mental

illnesses, psychosocial disabilities, and (other) mental states linked to considerable distress,

functional impairment, or risk of self-harm.

The broadest assessment of global mental health since the turn of the century was recently

published by the World Health Organization [1]. Nearly a billion people worldwide, including

14% of teenagers, lived with a mental illness in 2019, with anxiety and depressive disorders be-

ing the most prevalent [2]. More than one death out of every 100 is a result of suicide, and 58%

of suicides happen before the age of 50. One in every six years of life is spent with a disability,

with mental diseases being the primary reason. Most often owing to physical illnesses that

can be prevented, people with severe mental health disorders pass away 10 to 20 years earlier

than the general population. Depression is frequently brought on by childhood sexual abuse

and bullying victimization. Due to the COVID-19 pandemic, there were significantly more

people in 2020 who suffered from anxiety and depressive illnesses. According to preliminary

estimates, major depressive disorders and anxiety disorders have each increased by 28% and

26% in just one year [3].

The process of identifying mental health issues entails numerous steps and is not one that can

be completed quickly. Generally, the diagnosis will typically start with a detailed interview that

is jam-packed with inquiries regarding symptoms, medical history and physical examination.

More specifically, mental illness is typically diagnosed based on the individual’s self-report,

1
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which necessitates the use of questionnaires created to identify particular emotional or social

interaction patterns [4]. Additionally, psychological tests and diagnostic tools are offered and

are used to determine whether a person has mental health issues. Serious societal repercus-

sions from mental illness necessitate novel prevention and intervention. The process of early

mental health detection is crucial. Many people with mental illness or emotional disorders

should be able to heal with the right care and therapy [5]. However, oftentimes people who

are facing mental or emotional challenges are unsure as to whether their particular situation

warrants/requires professional help. This may result in unnecessary visits to mental health

professionals or, worse, in mental health conditions that are not diagnosed and treated in a

timely manner. It is therefore necessary to have a medical method that makes a quick and

reliable assessment of mental health in order to easily detect mental health issues.

A common method for making a preliminary diagnosis of mental health conditions is the use of

questionnaires, which are easily accessible to the general public and easy to complete. The use

of questionnaires gives people the opportunity to find out from home if they have a possible

mental health issue, so that they then seek treatment with a professional. Thus, early treatment

can prove to be a lifesaver for their treatment and prevent serious health consequences or even

death. On the other hand, by using questionnaires, people can also easily ascertain that they

do not have any problem with their mental health and can avoid scheduling an appointment

with a doctor, at further expense and inconvenience. The questionnaires also benefit the health

care system by not conducting unnecessary tests to diagnose mental health issues, which is

especially important at this time when the healthcare system is burdened by the pandemic

and medical staff is under pressure. In general, it can be said that the use of questionnaires

to diagnose mental disorders helps to save resources in the healthcare system, which can be

allocated to other areas in need.

The automation of diagnosis using questionnaires has given some scientists the idea of further

automating the diagnosis of one mental disorder by using a questionnaire that diagnoses an-

other mental disorder. This idea, however, needs further study in order to prove its usefulness

and to enable it to be put into practice. Along these lines, this thesis undertakes two related

investigations. The first will explore whether a common memory questionnaire that diagnoses

memory-related disorders called PRMQ (Prospective and Recall Memory Questionnaire) to-

gether with some demographic questions, can diagnose depression. The second investigation

will study the reverse, i.e. whether a common questionnaire that makes a diagnosis of de-

pression called SDS (Zung Self-Rating Depression Scale) questionnaire together with the same

demographic questions, can be used to diagnose memory-related disorders in patients. The

choice of these two mental disorders was not random but rather based on the high frequency

of these two disorders and the link which has been shown to exist between the two of them

which will be further analysed below.
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1.0.1 Depression and the link with Memory loss

As previously mentioned, according to the WHO, approximately one billion people suffer from

mental disorders [6] and over 300 million people experience depression around the world [7].

Despite the existence of efficient therapies, the primary issue is to offer precise and early risk

detection. Self-reporting surveys are used by medical professionals to further their diagnoses,

although such surveys have several drawbacks, such as social stigma and lack of awareness.

In the literature, there are many tools proposed for evaluating the severity of depression and

screening MDD, or recognizing susceptibility to MDD. The Zung Self-rating Depression Scale

(SDS) and Beck Depression Inventory (BDI), among others, are two of those tools. The Beck

Depression Inventory [8] is a 21-question multiple-choice self-report inventory, which is a

psychometric test for evaluating the severity of depression. The SDS and BDI are useful for

diagnosing MDD, although they have drawbacks, e.g. they can be affected by cultural adapta-

tion, and respondents can “cheat” and give answers which they feel “expected” of them.

Apart from the fact that depression is one of the most widespread mental disorders world-

wide, it has a significant impact on one’s health and quality of life. Suicidal thoughts are more

common in those with depression. Every year, almost 800,000 individuals die by suicide. Its

signs and symptoms, which include melancholy and mood swings, have been found to impair

memory, higher-order thinking, and decision-making [9]. However depression is a complex

diagnosis that has a wide range of effects on how the brain functions, including memory and

cognition. People with depression claim to have trouble remembering specific memories. This

implies that depression can have an impact on both declarative and autobiographical memories,

among other memory categories [10]. Major depressive disorder (MDD) [11] is characterized

by memory issues [12]. Researchers have also identified a link between depression and sev-

eral forms of memory loss, including short-term memory impairment and dementia-related

memory loss [13]. The International Neuropsychiatric Disease Journal reports that some an-

tidepressants may also have an impact on memory [13].

The link between depression and memory has been the subject of much research. A 2013 study

[14] indicated that participants’ performance on memory tasks suffered while depressed. De-

pression, it was concluded, might impair memory. In [15] the authors found that those with

depression had poorer executive function, memory and attention compared to controls. These

cognitive deficits are “a key hallmark of depression” according to the authors. Working mem-

ory deficiencies were also linked to depressive thoughts, [16]. Moreover, the work in [17]

showed that depression can also interfere with autobiographical memory, which includes the

events that helped shape one ’s identity. According to [17], sadness can result in a bias toward

remembering more memories that are unfavorable to them and less capacity to recollect mem-

ories that are favorable to you. Self-reported memory issues can be impacted by depressive
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symptoms. In [18] the authors found that those with more depression symptoms self-reported

memory issues at higher rates than those with fewer symptoms.

The effects of depression on cognitive function, such as working memory and long-term mem-

ory, can persist even after you have reached remission, according to [19]. Working memory

is the capacity to store and use knowledge temporarily, as when we need to recall a phone

number or follow straightforward instructions. According to recent studies [20], people who

are depressed usually have little trouble remembering “good” memories. People with depres-

sion memory loss typically find it easier to recall unpleasant memories than pleasant ones,

compared to non-depressed people.

1.0.2 Memory loss

When one has both memory loss and depression, they should not automatically conclude that

depression is to blame, especially if the memory problems affect their ability to carry out

daily tasks. Other than depression, a number of factors can impair memory [12], including

Alzheimer’s disease or other forms of dementia, head injuries, Parkinson’s disease, multiple

sclerosis, a brain tumor, infections, lack of sleep, medications, age-related memory loss, stroke,

thyroid issues, alcoholism or other substance abuse, vitamin B12 deficiency, mild cognitive im-

pairment (MCI), and others. Finding the cause of memory problems is the first step in receiving

the best treatment. A doctor could advise one to take certain memory tests if they feel that

memory loss is a concern. Additional testing may also be advised including a brain magnetic

resonance imaging (MRI) scan to look for brain damage or blood tests to check for signs of

infection.

Testing for cognitive problems can be performed in a number of ways. A typical cognitive

examination can consist of [12]:

• Account of medical history: The subjects’ physical and mental health background is

examined by a doctor. The participant can be questioned about any illnesses that run in

their family as well as their current medication intake.

• Physical exam or diagnostic tests: A physician will take subjects’ blood pressure, listen

to their heart and lungs and take urine or blood samples for lab analysis.

• Cognitive test: This test measures the subjects’ capacity for memory, thought, and problem-

solving. While some cognitive tests are quick, others are more involved and time-consuming.

Some physicians administer computerized cognitive testing.

• Neurological exam: The subjects’ speech, eye movement, reflexes and coordination are

evaluated. An imaging test of the brain may also be performed.
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Other possible causes of cognitive issues can be ruled out by the subjects’ physician. A neu-

rologist or a mental health specialist, such as a psychologist, psychiatrist, or therapist, may

be recommended, depending on the results of the examination. Even a slight memory loss

might be a sign of a more serious issue, therefore anyone experiencing it should always con-

sult a doctor. If the doctor suspects that depression is to blame, asking about memory-boosting

techniques and getting a mental therapy referral are options.

1.0.3 Machine Learning onQuestionnaire data for Mental health disorders

Machine learning (ML) methods can be used to probe a subjects ’ mental health and evalu-

ate their emotional state. Because this thesis deals with questionnaire data, similar works in

the literature on machine learning models applied to questionnaire data for predicting mental

health disorders are discussed next.

A recent mental health study, [21], applied machine learning based on questionnaire data to

create an effective selective screening of mild cognitive impairment (MCI) which is one of the

first indications of dementia among elderly populations. In that study, decision trees were ap-

plied to target population groups more susceptible to suffering from mild cognitive impairment

and were used for cost-effective selective screening of the disease. At first, the study gathered

a variety of demographic and lifestyle features along with information about patient medica-

tions. Detection of possible cases of MCI was made by the usage of the Short Portable Mental

Status Questionnaire (SPMSQ) [22] and the Mini-Mental State Examination (MMSE). Finally,

machine learning technique was used to classify people at risk of MCI.

In [23] ML algorithms were applied on data coming from a Mental Disorder Questionnaire

(MDQ) to screen Mental Health. Two different types of questionnaires were used in this study.

The first Self Reporting Questionnaire-15 (SRQ-15) contained 15 questions about general men-

tal disorders with a Yes/No response option. Five questions were included for each of the five

main mental health problems indicated in the second Self Reporting Questionnaire-25 (SRQ-

25), for a total of 25 items. Supervised Machine Learning was employed to label the training

data set. Finally, the results were compared with manual testing using appropriate algorithms.

Specifically, Logistic Regression was implemented on MHS (Mental Health Screening). On

MMDS (Multiple Mental Disorder Screening ), Decision Tree Classifier, SVM (Linear Kernel),

SVM (RBF-Radial Basis Function), and Naive Byes were applied for a prediction about mental

health through Screening Questionnaires. For MHS, the Accuracy of Logistic Regression was

more than 90%. For MMDS, the Accuracy of SVM linear (78%) was the highest compared to

other algorithms.
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In [24] the authors described the use of cognitive behavioral performance data integrated with

Machine Learning to create a novel and objective diagnostic tool for anxiety and depression

differentiation. A high degree of anxiety, a high level of depression, a high level of anxiety and

depression, and the controls, were the four major symptom categories that subclinical par-

ticipants were assigned questionnaires. Six different cognitive behavioral tasks were used to

test the participants’ cognitive activities in order to access different biases. A Random Forest

algorithm was used to assess the data after that, and the model assigned individuals strictly

based on their combined cognitive performance. That study confirmed the efficacy of the com-

bination of the cognitive-behavioral test battery analyzed by the ML algorithm as a diagnostic

tool, capable of distinguishing between anxiety and depression, based on cognitive-behavioral

performance patterns and no self-report measures, in order to support differential diagnostic

decisions.

In [25] studied data of adult patients who underwent diagnosis of Attention deficit hyperactiv-

ity disorder (ADHD) over the past few years. For that experiment, a hybrid approach made up

of an ML model and a knowledge-based model was utilized with clinical data and surveys. The

authors demonstrated a 95% accuracy rate and their approach has been used in a clinical set-

ting. They suggested utilizing an extreme learning machine (ELM) to automatically diagnose

ADHD, as ELM performed better than SVM. In [26] machine learning was used on question-

naire data to predict types of psychiatric disorders in child mental health clinics in London and

Dhaka. In that paper, a computerized algorithm forecast child psychiatric diagnoses based on

the symptom and impact scores obtained from questionnaires completed by parents, teachers,

and the children themselves.

It is worth noting that some studies produced conflicting results and deficiencies, such as they

apply different machine learning tools to assess the depression status and the selection of the

calibration questionnaires. Additionally, there were no studies that looked specifically at the

evaluation procedures and findings of the depression status in the Chinese soldier population,

particularly in Chinese recruits. Hence, a study presented in [27], has been made to assess the

predictive and diagnostic capability of three machine learning methods (decision trees, neural

networks, support vector machines (SVM)) that evaluate the depression status, based on the

BDI. The results could be useful for providing more tools for the evaluation of the depression

status, and for estimating how much subjects are prone to that disease.

1.0.4 Contribution and impact

This thesis investigates whether
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• (M from D): responses to a questionnaire designed to diagnose depression can be used

to identify memory-related disorders

• (D from M): responses to a separate questionnaire used to detect memory disorders, can

be used to also detect depression

Based on the outcomes, we will determine whether the results of one test can be used to ac-

curately predict the results of the other and vice versa. If either question can be answered

positively, then the link between memory disorders diagnosis and depression diagnosis us-

ing questionnaires will be strengthened and the reliability of diagnosis of mental disorders

through questionnaires will be further enhanced. This will also result in a step forward on the

automated diagnosis on mental health conditions. By means of this automation people who

do not need further treatment will be spared from unnecessary trips to the doctor, and avoid

unnecessary expense, disruption, stress and inconvenience. The health system will also bene-

fit by avoiding unnecessary examinations, which equates to savings in resources, i.e. medical

staff and equipment. At the same time, people who may not be aware they need help may be

“nudged” towards seeking it, and therefore be given early treatment that can be life-saving, as

late diagnosis can often lead to irreversible results.

If the results are unclear we will conclude that we cannot diagnose depression from the mem-

ory disorders questionnaire or we cannot diagnose memory disorders from the depression

questionnaire or neither of the two questionnaires that diagnose one disease can diagnose the

other. This does not necessarily mean that we cannot diagnose the one mental disorder from

the other, but it does mean that further research is needed to be done on the questionnaires

and it guides and triggers new efforts to rebuild the memory and depression questionnaires.

1.0.5 Methodology

We will analyze responses collected from an online questionnaire created by a team of men-

tal health doctors at Papageorgiou Hospital. This questionnaire has two sub-questionnaires

built in, one dedicated to memory and one to depression. From the answers of the memory

questionnaire, a memory numerical score and a memory “class” are generated. Similarly, from

the answers to the depression questionnaire, a depression numerical score and a depression

“class” are generated. Thus, the two aforementioned questions: (M from D) and (D from M)

are converted into four prediction tasks. More specifically, the (M from D) questions corre-

sponds to either a regression task that predicts the memory score or a classification task that

predicts memory class (having memory disorders or not). Similarly, the (D from M) question

corresponds to either a regression task, predicting the depression score, or a classification task
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predicting depression class (having depression or not). For the prediction of each of the two

tasks the latest machine learning models, techniques and statistical analysis are employed.

1.0.6 Thesis Outline

In Chapter 2, we will describe the structure of the study, the data which was collected and

the machine learning models to be used. We also detail the way in which the target variables

for memory disorders and depression diagnosis were created, and how these were used to

formulate a regression problem and a classification problem for each. Finally, the statistical

methods applied to select the variables used as predictor variables in each of the four predic-

tion tasks created are presented. In Chapter 3, we summarize the basic theory behind each

machine learning algorithm, model and technique used in this study. In Chapter 4, we present

performance metrics and general results from each machine learning technique used. Chapter

5 focuses on the memory classification problem, which belongs to a special class of classifica-

tion problems called imbalanced classification. We present the specific methodologies applied,

as well as comments and results from the various tests carried out.



Chapter 2

Data Collection and the Problem
Statement

2.1 Data Description

In this thesis, the data consists of 3340 responses to an online questionnaire along with the

response times to each question. This data comes from an inter-clinical research called “Mem-

ory And Depression Study: MANDY” under the auspices of the First University Psychiatry and

Neurology Clinic of Papageorgiou Hospital at Thessaloniki. Study and data collection protocol

approved by the Papageorgiou Hospital of Thessaloniki Scientific Council on June 16, 2021.

Approval nr. 136 (Ref. nr. 19728/15-06-2021). In this research, an online questionnaire (Ap-

pendix C) was created, which is a version of the PRMQ (Prospective and Retrospective Mem-

ory Questionnaire) containing questions about memory (Appendix C) in conjunction with the

SDS questionnaire (Zung Self-Rating Depression Scale) (Appendix C) containing also ques-

tions about depression and some demographic questions and other health related questions.

For the sake of simplicity in the questionnaire, the questions were coded. The full question-

naire is given in the Appendix C. It contains 20 questions about depression and mood coded

as Q1, Q2,…,Q20, 16 questions related to memory coded as Mem01, Mem02,…, Mem16 and 5

questions for electronic participation consent coded as Cons01, Cons02,…,Cons05. Moreover,

it has 19 questions which relate to demographic and basic health information, coded as Dem00,

Dem01,…, Dem18. Finally, it has two self-assessment questions about memory and mood coded

as SEM01, SEM02. After removing the 5 consent participation features Cons01-Cons05, partic-

ipant reference codes, and URLs, dates of entry of responses and the responses to the questions

coded as Dem10 and Dem17, the dataset contains 62 features which after encoding are 131 in

number.

9
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The online questionnaire is used to assess in a timely manner whether people are experiencing

problems with their memory or mood (e.g., Alzheimer’s disease, mild cognitive impairment,

Parkinson’s disease, lewy type dementia, subjective memory disorders, depression, etc.). In

practice, after taking approximately 15 minutes to complete the questionnaire, participants

can find out free of charge if they are having trouble with their memory or mood and may

possibly need help from a medical professional. The participants of the study were all adults,

residents of the Region of Central Macedonia and Thrace, or able to travel to the examination

site of the Memory Mental Functions Clinic of Papageorgiou Hospital at Thessaloniki.

2.2 Coding responses from PRMQ and SDS questionnaires

It is known that before applying any statistical method or machine learning model to the data,

we should perform some data preprocessing to transform raw data to well-formed data sets in

order to proceed with analytics. In this data set, the data come from questionnaires, so it is

necessary to pay special attention when coding the data. The questionnaire data are in a text

format that computers can not recognize, therefore we should convert them to numbers. First,

the responses to questions about memory and depression from the two questionnaires were

encoded into numbers, as they were measured on the Likert scale. As it is known, Likert scale

or Likert-type questions are often used to rank the level of agreement with a statement on a

scale from 1) Strongly disagree to 5) Strongly agree, however they have a wide range of uses

and can also measure items such as frequency, quality importance and satisfaction. Individual

Likert-type questions are generally considered ordinal data, since the items have clear rank

order, although they do not follow an even distribution.

In this thesis, memory responses measure frequency and have thus been coded according to

the mental health professionals’ instructions in the following way: Very often=4, Often=3,

Sometimes=2, Seldom=1, Never=0. The responses to questions about depression also measure

frequency, but they were divided according to codification into two categories. In the first

category, depression data was coded in the following way: Always=4, Often=3, Sometimes or

Seldom=2, At all=1. In the second category depression data was coded in the following way:

At all=4, Sometimes or Seldom=3, Often=2, Always=1.

2.3 Creating memory score and class

After coding answers to the memory questions: Mem01, Mem02,…, Mem16 into numbers, we

summed up all the coded answers by column and the result was the “PRMQ” variable, which

will be a memory score, a numeric target variable that helped to identify memory disorders.
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According to mental health professionals the value 42 is an acceptable cut-off for the numeric

memory score, in order to create a binary variable “PRMQ class”, a dichotomous memory score,

that takes the value 0 when “PRMQ” variable is less or equal to 42 and 1 otherwise. When a

subject ’s PRMQ class is 1 and (the numeric memory score is greater than 42), it means that

the subject may have a memory disorder and needs the help of a mental health professional,

otherwise the person likely does not need treatment about memory disorders.

2.4 Creating depression score and class

A similar process was applied to the depression answers. More specifically, the answers to

the depression and mood questions: Q1, Q2,…,Q20 were also coded into numbers as described

above. Then, they were summed and the total was our “Zung depression” variable, which is a

numeric depression score, the numeric target variable that helps detect depression problems.

According to professionals the value 44, is an appropriate cut-off for the depression score. Thus,

we created a binary variable “Zung depression class”, which is a dichotomous depression score

that takes the value 0 when Zung depression score is less or equal to 44 versus 1, otherwise. In

particular, when the Zung depression score is 1 (the numeric depression score is greater than

44) then there is an indication for some depression disorders and the subject may likely benefit

by consulting a mental health professional. When the numeric depression score is less or equal

to 44 (the Zung depression class is 0), the person likely does not need treatment for depression.

2.5 The four prediction problems

2.5.1 Problem 1 (D-from-M score): Depression score via memory

For the first question called “Depression via memory”, we investigated whether the responses

to the PRMQ questionnaire (Mem01,Mem02,…,Mem16) that diagnoses memory related issues

together with the demographic and health related responses (Dem00,Dem01,…,Dem18 exclud-

ing Dem10 and Dem17), two two self-assessment questions about memory and mood-depression

(SEM01, SEM02) and the response time data can be effective for diagnosing depression. This

task is essentially a regression problem for predicting the numeric Zung depression score vari-

able, using as predictors the aforementioned data.

2.5.2 Problem 2 (D-from-M class): Depression class via memory

The first question called “Depression through memory” was also investigated by the classifica-

tion task that predicts the depression class or Zung depression class variable. This classification
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task used as predictors the responses to the PRMQ questionnaire (Mem01, Mem02.., Mem016)

that diagnoses memory related disorders together with the demographic and health related re-

sponses (Dem00,Dem01,…,Dem18 without Dem10 and Dem17), two self-assessment questions

about memory and mood-depression (SEM01, SEM02) and the response time data. The one of

our aims was to classify a person into two states. If the person was classified to the class 1, it

means the person needs mental health professional help about depression. Otherwise, if the

person was classified to the class 0, it means the person does not need treatment for depres-

sion. The proportions of the two classes of Zung depression class variable in our data set are

presented in the Table 2.1:

Zung class percentage

class 0: Without Zung depression 55.57%

class 1: With Zung depression 44.43%

Table 2.1: The proportion of the two classes of the Zung depression class variable

From the proportion of the two classes of the Zung depression class, we notice that the one

class is more common than the other, with the first class (people without Zung depression)

accounting for the majority of the observations and the second class (people with Zung de-

pression) representing a smaller proportion of the total observations. Although, the difference

in proportions between the two classes is not extremely large, as the difference between 55.57%

and 44.43% is 11.14%. This suggests that the classes are relatively balanced, and there is not a

severe class imbalance issue.

2.5.3 Problem 3 (M-from-D score): Memory score via depression

For the second question called “Memory through depression”, we investigated whether the

responses to the SDS questionnaire (Q1,..,Q20) that diagnoses depression and evaluates mood,

together with the demographic and health related responses (Dem00,Dem01,…,Dem18 without

Dem10 and Dem17), two two self-assessment questions about memory and mood-depression

(SEM01, SEM02) and the response time data can be effective for diagnosing memory disorders.

This is essentially a regression task for predicting the numeric memory score (or PRMQ score),

using as predictors the aforementioned data.

2.5.4 Problem 4 (M-from-D class): Memory class via depression

The second question called “Memory through depression” was also investigated by trying to

solve the classification problem that predicts the memory class (or PRMQ class variable). For

the solution of this problem we used used as predictors the responses to the SDS questionnaire
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(Q1,..,Q20) that diagnoses depression and evaluates mood, together with the demographic and

health related responses (Dem00,Dem01,…,Dem18 excluding Dem10 and Dem17), two self-

assessment questions about memory and mood-depression (SEM01, SEM02) and the response

time data. The one of the aims of this thesis is to classify a person into two memory-related

classes (class 0: without memory disorders, class 1: with memory disorders). If it is predicted

that a person belongs to the class 1, it means the person needs mental health professional help

for memory disorders otherwise it means the person does not mental health professional help.

The proportion of the two classes of the PRMQ class variable in the whole data set is presented

in the Table 2.2.

PRMQ class percentage

class 1: Without PRMQ disorder 95.27%

class 0: With PRMQ disorder 4.73%

Table 2.2: The proportion of the two classes of the PRMQ class variable

From the proportion of the two classes of PRMQ memory class variable means we notice that

the class 0 is much more common than the other, e.g accounting for the vast majority of the

observations and the class 1 representing a very small proportion of the total observations. The

large difference in proportions between the two classes suggests that there is a class imbalance

issue. In such cases, the machine learning model used to predict the dicthotomous class vari-

able might be biased towards the majority class, leading to poor performance in predicting

the minority class. To address this issue, resampling techniques such as oversampling the mi-

nority class or undersampling the majority class were employed and cost-sensitive learning

algorithms.

2.6 Feature Selection

One method to reduce the number of input features of a machine learning model is Feature

selection. Reducing the number of input features can be advantageous, because it can help

reduce the model ’s cost and sometimes can increas the model ’s performance. A large number

of features can reduce the model’s training speed and may require expansive system memory.

Moreover, in some cases the model ’s performance can be negatively affected if irrelevant fea-

tures are included in the training set.

A commonly used technique for feature selection is a class of methods based on statistics that

evaluates the association between each input feature and the target variable by applying sta-

tistical methods, and chooses those input features which have statistical significant effect on
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the target variable. These methods can be fast and compelling, however the choice of statisti-

cal method used to investigate the relationship between each task ’s target variable (numeric

and binary) and each candidate predictor, depends on their data types. In this thesis, we will

consider the statistical methods listed below. Each is described in detail in Appendix A.

Numerical target variable (PRMQ memory score variable or Zung depression score
variable) with

• numerical input feature: Pearson Correlation (A.1.1)

• ordinal input feature: Spearman Rank Correlation Coefficient (A.1.2)

• binary input feature: Point biserial correlation (A.1.3)

• nominal input feature: Kruskal–Wallis H Non Parametric Hypothesis Test (A.1.4)

Binary target variable (PRMQ memory class variable or Zung depression class vari-
able) with

• numerical input feature: Point biserial correlation (A.3.1)

• ordinal input feature: Mann-Whitney U test (A.3)

• binary input feature: Fisher ’s Exact Test (A.2.1)

• nominal input feature: Chi-square test of independence (A.2.2)

2.7 Modeling process for each problem 1-4

In order to make predictions about memory score or class (M-from-D score or M-from-D class),

we first exclude all features (Mem01,Mem02,…,Mem16) of the dataset that correspond to the

PRMQ memory questionnaire. Respectively, in order to make predictions about depression score

or class (D-from-M score and D-from-M class), we first exclude all features of the dataset that

correspond to the SDS depression-mood questionnaire (Q1,Q2,…,Q20). After the exclusion of

the aforementioned features, we follow the following procedure:

1. Define the initial input features from the questionnaire data. The initial features will be

all the questions from the online questionnaire except questions about registration dates,

consent in replying questions, the two demographic questions (Dem 10 and Dem17) and

the respective aforementioned questions depending on the task.
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2. Apply Feature Selection process by performing the appropriate statistical hypothesis

test between the target variable and every input feature. The choice of the appropriate

hypothesis test is based on the data type of both target variable and input feature.

3. Encode nominal categorical input features by one-hot encoding and ordinal categorical

features by ordinal encoding.

4. Standardize the numeric input features, e.g. Xnew =
Xi−Xmean,i

XSD,i

5. Use the selected features to train a variety of ML models on Problems 1-4 and identify

the best model for each task.

where Xi is the i-predictor, Xmean,i is the sample mean value of the i-predictor and XSD,i is

the sample standard deviation of the i-predictor.



Chapter 3

Machine Learning Models

The four problems presented in chapter 1 are approached either as a classification or as a regres-

sion task. For each task, suitable machine learning models are applied and compared in order to

find the one with the best performance. For the classification problem, the following models are

used: Logistic regression, Gaussian Naive Bayes classifier, Support Vector Machines, K-nearest

neighbor (KNN) classifier, Decision Tree classifier, Linear Discriminant Analysis and ensem-

ble methods like boosting, bagging, stacking and voting. Regarding the boosting technique, we

use AdaBoost classifier, CatBoost classifier, Gradient boosting classifier. Regarding the bagging

technique, we use Bagging classifier, Random Forest classifier, Extra Trees classifier. It should

be noted that the memory-related classification task is an imbalanced classification problem,

hence appropriate methods, such as resampling during training and cost-sensitive algorithms,

will be used to resolve it.

For the regression problem, the following models are used: Linear regression, Lasso regression

(and the corresponding cross validated version called Lasso CV), Elastic net linear regression

(and the corresponding cross validated version called Elastic net CV), Ridge linear regression

(and the corresponding cross validated version called Ridge CV), Support Vector Regression,

K-nearest neighbor (KNN) regression and the same ensemble methods applied in classification

and also averaging. Regarding the boosting technique, we use AdaBoost regression, CatBoost

Regression, LightGBM regression. Regarding bagging technique, we use Random Forest re-

gression, Bagging regression, Extra Trees Regression.

3.1 Logistic Regression

Logistic regression [28] is used to model categorical outcomes or the probability that an event

will occur based on a number of categorical or numerical predictor features.

16



17

Let the functions:

Y = f(X) or f : X → Y or P (Y |X)

be such that

• Y takes on discrete values

• X = (X1, X2, ..., Xn) is a vector of discrete or continuous random variables

for notational simplicity, only the situation when Y is a binary variable is taken into consider-

ation.

Logistic regression considers a parametric form for the distribution P (Y |X) and estimates

its parameters from training data. The parametric model listed below is taken into account if

Y is binary:

P (Y = 1|X) =
1

1 + exp{−(b0 +
∑n

i=1 biXi)}
(3.1)

=
exp{b0 +

∑n
i=1 biXi}

1 + exp{b0 +
∑n

i=1 biXi}
(3.2)

and

P (Y = 0|X) = 1− P (Y = 1|X) (3.3)

=
1

1 + exp{b0 +
∑n

i=1 biXi}
(3.4)

where bi, i = 1, ..., n are the coefficients, also known as the model parameters or regression

coefficients and represent the relationship between the predictor variables (features) and the

probability of a binary outcome. The coefficients determine the impact of each predictor vari-

able on the log-odds of the outcome.

Thus, the distribution P (Y = 1|X) is of the form Y = 1
1+exp(X) which results in a simple

linear expression for classification. For the classification of a given X, the idea is to find the yj

value that maximizes P (Y = yj |X). In practice, the label Y = 1 is assigned when:

P (Y = 1|X)

P (Y = 0|X)
> 1 (3.5)
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using the equations (2.2) and (2.4), it turns out that

exp

{
b0 +

n∑
i=1

biXi

}
> 1 (3.6)

After applying the natural log on both sides, the following linear classification rule arises

Y =

1 if (b0 +
∑n

i=1 biXi) > 0

0 otherwise.

3.1.1 Learning Logistic Regression

It is necessary to estimate the n+1 parameters,B = (b0, b1, b2, ..., bn), in order to specify the lo-

gistic regression model. The estimation of the parameters is based on the concept of finding the

suitable values that maximize the probability of the observed data “given” the training data set.

For the estimate of these parameters, many methods are used. One technique is based on

finding the parameter values that maximize the conditional data likelihood or maximizing the

conditional data log likelihood. The conditional data likelihood is defined as the probability of

the observed Y values in the training data, conditioned on their corresponding X values.

If Y l
is the observed data of Y in the lth training sample and L(B) is the conditional data

log likelihood, then L(B) is defined as follows:

L(B) = log
∏
l

P (Y l|X l, B). (3.7)

More simply, let Y be a random binary variable taking on the values {0, 1} and

P (Y = yl) = pyl(1− p)(1−yl).

It is easy to see that P (Y = 1) = p and P (Y = 0) = 1− p.

Then, the likelihood is defined as follows:

∏
l

P (Y = yl) = py1+y2+...+yN (1− p)N−(y1+y2+...+yN ).
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The log likelihood is equal to:

L =log
∏
l

P (Y = yl) = (y1 + y2 + ...+ yN )logp

+ (N − (y1 + y2 + ...+ yN ))log(1− p)∑
l

{yllog(P (Y = 1)) + (1− yl)log(P (Y = 0))}

which also can be written as:

L(B) =
∑
l

{Y llogP (Y l = 1|X l, B)

+ (1− Y l)logP (Y l = 0|X l, B)}

=
∑
l

Y l{logP (Y
l = 1|X l, B)

P (Y l = 0|X l, B)

+ logP (Y l = 0|X l, B)} =∑
l

{Y l(b0 +

n∑
i=1

biX
l
i)

− log(1 + exp(b0 +

n∑
i=1

biX
l
i))}

where X l
i is the value of Xi for the lth training sample.

Unfortunately, there is no closed-form solution that maximizes L(B) with respect to B.One

can proceed with the gradient ascent method that optimizes the weights B by calculating
∂L(B)
∂bi

for each bi, where the partial derivative is equal to:

∂L(B)

∂bi
=
∑
l

(Y lX l
i −X l

i

exp(b0 +
∑n

i=1 biX
l
i)

1 + exp(b0 +
∑n

i=1 biX
l
i)
)

=
∑
l

X l
i(Y

l − P (Y l = 1|X l, B)).

The rule for updating the weights bi according to gradient ascent technique is given by

bi(t+ 1) = bi(t) + η
∂L(B)

∂bi
=

= bi(t) + η
∑
l

X l
i(Y

l − P (Y l = 1|X l, B))

where η is the learning rate.
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There is an algorithm that describes a method for estimating the parameters of logistic regres-

sion for a two-class issue using the gradient ascent methodology where the term P (Y = 1|X)

is calculated as:

P (Y = 1|X) =
exp(b0 +

∑n
i=1 biXi)

1 + exp(b0 +
∑n

i=1 biXi)
=

1

1 + exp{−(b0 +
∑n

i=1 biXi)}

The above-mentioned algorithm uses two convergent criteria. The first criterion uses a prede-

fined number of iterations. The second one is a measure, referred to as prospective parameter

change (PPC), which is defined as the highest relative change in the parameters suggested by

the parameter-change vector estimated for the next iteration. PPC is defined as follows:

|bi(t+ 1)− bi(t)|
bi(t) + ϵ

where

• ϵ > 0 is a small positive constant.

• bi(t) is the current value of the parameter bi.

• bi(t+ 1) is the prospective value of this parameter after adding the change vector com-

puted for the next iteration.

When PPC is closer to zero, the repetition process stops.

In case of binary classification, R = (b0 +
∑n

i=1 biXi) is calculated. Then

Y =

1, if R ≥ 0

0, otherwise.

3.2 Decision tree classifiers

A decision tree classifier [29] is a popular supervised machine learning algorithm utilized for

classification tasks. It constructs a tree-shaped model that represents a series of decisions and

their potential outcomes, enabling predictions and classification of new instances based on

their features.

Initially, the decision tree begins with a single node representing the entire dataset. It then

recursively divides the data based on different attributes or features, generating decision nodes

and branches. The splits are determined by selecting the features that offer the most informa-

tion gain or effectively separate the classes.
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At each decision node, the tree assesses a specific feature and its potential values to deter-

mine the subsequent node to follow. This process continues until a stopping criterion is met,

such as reaching a maximum depth, a minimum number of instances within a node, or when

all instances in a node belong to the same class.

The leaf nodes within the decision tree signify the final predicted class or outcome. Each path

from the root node to a leaf node corresponds to a specific combination of attribute conditions

that lead to a particular class assignment. During the classification phase, a new instance tra-

verses the decision tree by evaluating the attribute conditions at each node, ultimately arriving

at a leaf node and assigning the appropriate class label.

Decision trees are renowned for their ease of understanding and interpretation, and they can

handle both numerical and categorical data. However, they are susceptible to overfitting when

the tree becomes overly complex and might struggle to generalize well to unseen data. Tech-

niques such as pruning, ensemble methods (e.g., random forests), or regularization can be em-

ployed to address these concerns and enhance the performance of the decision tree classifier.

3.2.1 Decision tree algorithm

The decision tree algorithm is a method for constructing a tree-like structure that helps in

predicting the class or value of a given dataset. This algorithm follows a set of steps to create

the decision tree:

1. Start with the root node, representing the entire dataset.

2. Determine the best attribute to split the data based on an attribute selection measure

(e.g., Information Gain or Gini Index). In a decision tree, an attribute refers to a feature

or characteristic of the data that is used to make decisions and perform splits in the tree.

Attributes are the properties or variables associated with the instances or examples in

the dataset.

3. Divide the dataset into subsets based on the potential values of the chosen attribute.

4. Create a decision tree node that contains the selected attribute.

5. Recursively create new decision trees using the subsets of data generated in step 3. Re-

peat this process until further splitting is not possible, and the last node is referred to as

a leaf node.
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In a classification tree, the goal is to assign each observation to the most frequently occur-

ring class in its corresponding region. The classification error rate measures the proportion of

training samples in a region that do not belong to the most frequent class.

The Gini index is another measure used in classification trees. It quantifies the total variance

across all classes in a region, taking into account the proportion of training samples from each

class.

These measures guide the splitting process and help in determining the structure of the deci-

sion tree. By evaluating attribute values and following the branches, the algorithm can predict

the class or value for new instances based on their attributes.

Overall, the decision tree algorithm provides an interpretable and intuitive way to make predic-

tions by organizing data into a tree structure based on attribute values and their relationships.

3.3 Decision Trees for regression

In the context of regression trees [30], attributes are not explicitly defined as in classification

trees. Instead, the focus is on partitioning the predictor space into non-overlapping and dis-

tinct regions (denoted as R1, R2, ..., Ri). These regions represent different subsets of feasible

values for the predictor variables X1, X2, ..., Xn.

The process of building a regression tree involves the following steps:

1. Partitioning the predictor space: The predictor space is divided into regionsR1, R2, ..., Ri

in a way that minimizes the Residual Sum of Squares (RSS). Each region corresponds to

a subset of samples in the training set. The goal is to find the partitioning that minimizes

the sum of squared differences between the actual response values (yj) and the predicted

response values (ŷRi ) for each sample j in region Ri. This helps in creating distinct re-

gions that capture the variability in the data.

2. Predicting the response within each region: Once the regions R1, R2, ..., Ri are defined,

the same prediction is assigned to all the samples within a specific region. This predic-

tion is typically the average of the dependent feature (response) values for the training

samples in that region. The average value serves as the prediction for any new sample

that falls within that region.
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By dividing the predictor space into distinct regions and assigning predictions to each region,

a regression tree is constructed. The resulting tree can capture complex relationships between

predictor variables and the response variable, allowing for nonlinear modeling and providing

interpretable predictions within each region. The main objective in building a regression tree

is to find the optimal partitioning of the predictor space that minimizes the RSS. This ensures

that the predictions within each region are as accurate as possible given the training data.

The Residual Sum of Squares (RSS) is defined in the following mathematical formula:

I∑
i=1

∑
j∈Ri

(yj − ŷRi)
2

where (ŷRi) is the mean response of the training sets in the i-th box.

3.4 Support Vector Machines for classification (SVC)

In its initial design, the support vector machine (SVM) was intended for binary classification.

The SVM [31] seeks to build a hyperplane in a given p-dimensional feature space, where p is

the number of features, distinctly separating the data points with different labels. Finding a

plane with the maximum possible distance between data points from both classes is necessary.

In case of binary classification, the primary goal of SVM is to find the optimal hyperplane,

f(w, x) = wx + b, that separates the two classes with labels y ∈ {1,+1} in a given data set

with input features x ∈ Rp
.

The learning procedure for SVM is achieved by solving the following constrained optimiza-

tion task:

min
1

p
wTw + C

p∑
i=1

ξi

s.t y
′
i(wx+ b) ≥ 1− ξi

ξi ≥ 0, i = 1, ..., p

where

• w is a vector of weights

• wTw is the Manhattan norm

• ξ is a cost function

• C is the penalty parameter (a hyper-parameter)
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Assuming that K is the kernel function and that ϕ is the projection function for the vector xi

into the high-dimensional space. The input is mapped to the feature space via this function.

The following is how these two functions are related:

K(xi, xj) = ϕ(xi)
Tϕ(xj)

Following is the corresponding optimization problem without constraints:

min
1

p
wTw + C

p∑
i=1

max(0, 1− y′
i(wixi + b)) (3.8)

where wx+ b is the predictor function.

The above equation’s goal is known as the L1-SVM primal form problem with the standard

hinge loss. The drawback of the L1-SVM is that it is not differentiable. However, the L2-SVM

(the variant of L1-SVM) is differentiable and produces more stable results. L2-SVM is defined

as follows:

min
1

p
||w||22 + C

p∑
i=1

max(0, 1− y′
i(wixi + b))2 (3.9)

Despite the SVM’s initial focus on linear relationships, different kernels, such as polynomial

or radial, may be used thanks to the kernel function. The kernel to be used must be chosen

before an SVM method is applied.

As a result, SVM may effectively be applied to non-linear classification in addition to linear

classification by using a technique known as the kernel trick, which implicitly maps inputs

into high-dimensional feature spaces. In practice, it draws margins between the classes, and

those margins are created in a way that maximizes the distance between the classes and the

margin. The maximization of this distance minimizes the classification error.

3.5 Support Vector Machine for Regression (SVR)

By introducing a different loss function that is updated to include a distance measure, SVMs

may also be used to solve regression tasks. In this case, the term “Support Vector Regression”

is used (SVR). In practice, SVR [32, 33] is capable of nonlinear mapping the input x onto an

m-dimensional feature space and then building a linear model inside the feature space. For

each instance, there should be a smaller difference than the epsilon between the function to be

learned and the output variable.
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Let the task of approximation the set of data

(x1, y1), ..., (xl, yl), x ∈ RN , y ∈ R

with a linear function: f(x, α) = (w · x) + b.

Minimizing the following empirical risk yields the optimal regression function:

Remp(w, b) =
1

l

∑
|yi − f(xi, α)|ϵ

With the most general loss function with ϵ-insensitive zone described as

|y − f(x, α)| =

ϵ if |y − f(x, α)| ≤ ϵ

|y − f(x, α)|, otherwise

Finding a function f(x, α) that is both as flat as feasible and has at most ϵ deviation from the

actual observed targets yi is the objective. This is equivalent to minimizing the functional:

ϕ(w, ξ∗i , ξi) =
1

2
||w||+ C

∑
(ξi + ξ∗i )

where C is a pre-specified value, ϵ is an insensitive loss function and ξ and ξ∗ are slack variables

representing upper and lower constraints on the outputs of the system as follows:

yi − ((wxi) + b) ≤ ϵ+ ξi, i = 1, 2, ..., l

((wxi) + b) ≤ ϵ+ ξ∗i , i = 1, 2, ..., l

ξi ≥ 0 and ξ∗i ≥ 0, i = 1, 2, ..., l

3.6 K-nearest Neighbor (KNN)

The supervised learning technique K-nearest neighbors (KNN) [34] may be applied to classi-

fication and regression tasks. By calculating the distance between the test data and all of the

training points, the KNN algorithm tries to predict the proper label for the test data. The K

points that are closest to the test data are then chosen.

In case of classification, a new instance is classified by the classes of its k-nearest neighbors. A

new instance is classified to the class which is most common amongst its k-nearest neighbors

or otherwise it is classified by a majority vote of its neighbors.
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In the case of regression, the predicted value to the new instance is the mean value of the

K selected training points.

Distance functions

Some distance functions commonly used in the KNN algorithm for finding nearest neighbours

are defined below:

• Euclidian √√√√ k∑
i=1

(xi − yi)2

• Manhattan

k∑
i=1

|xi − yi|

• Minkowski

(
k∑

i=1

(|xi − yi|)q)
1
q

The previous three distance metrics are only applicable for continuous-valued variables. If

there are categorical variables, the Hamming distance should be preferred which is defined as

follows:

• Hamming

DH =
k∑

i=1

|xi − yi|

x = y ⇒ D = 0

x ̸= y ⇒ D = 1

The Hamming distance measures the number of cases where corresponding symbols are not

the same in two strings of equal length.

3.6.1 KNN Algorithm

1. Initialize K value
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2. For each example in the data

• Compute the distance between the query example and the current example from

the data.

• Put the distance and the index of the example to an ordered collection

3. Sort the ordered collection of distances and indices in ascending order by the distances

4. Choose the first K elements from the sorted collection

5. Get the labels of the selected K elements

6. In case of regression, the predicted value is the mean of the K labels

7. In case of classification, the predicted label is the mode of the K labels

3.6.2 Choosing the right value for K

Selecting the optimal number for K is aided by the primary inspection of the data. Generally,

a large K value often improves accuracy since it reduces the overall noise. As K is increased,

the predictions resulting from averaging or majority voting become more stable and prediction

accuracy is more likely to increase up to a certain point. However, the drawback is that the

boundaries in the feature space start to blur. It is important to keep in mind that if a majority

vote is used among labels, K usually has an odd number chosen as a tiebreaker.

Cross-validation is a usual approach to retrospectively choosing a good K value through the

use of an independent data set for the validation of K value. For most data sets, the best K is

10 or more.

3.7 Naive Bayes

A simple probabilistic classification technique built on the Bayes theorem is called Naive Bayes

(NB) [35, 36]. The idea of independence between each attribute value on a given class and the

values of the other attributes is where the word “naive” originates.

Let

• X = (X1, X2, ..., Xn) be a random variable

• A1, A2, ..., An be the attributes of X associated with the n components X1, X2, ..., Xn

respectively.



28

• T = x = (X1 = x1, X2 = x2, ..., Xn = xn) be the set of training samples drawn from

the population of X

• There are c classes: C = y1, y2, ..., yc

• Each and every sample has a certain class labels, i.e. Y = yj ∈ C

The classifier ’s objective is the prediction of the class label Y when a sample X is given. NB

computes P (Y = yj |x) for each class yj , j = 1, 2, ..., c to predict the class label of a given

x. In practice, the predicted class label of x is that class whose probability has the highest value.

More formally, NB use the following equation to find the class label (CMAP ) of x:

CMAP = argmaxyj∈CP (Y = yj |x)

= argmaxyj∈C
P (x|Y = yj)P (Y = yj)∑

j P (Y = yj)

= argmaxyj∈CP (x|Y = yj)P (Y = yj)

= argmaxyj∈CP ((x1, x2, ..., xn)|Y = yj)P (Y = yj)

= argmaxyj∈C

n∏
i

p(xi|Y = yj)P (Y = yj)

3.7.1 Learning NB

In the process of learning NB, the training set is used to estimate the probabilities

P (x1|Y = yj), P (x2|Y = yj), ..., P (xn|Y = yj)

for each class yj with j = 1, 2, ..., c.

The probability of Y = yj , ∀j ∈ {1, 2, ..., c} is simply estimated by the frequencies of Y = yj

in the training set. Thus,

P (Y = yj) =
N(y = yj , T )

N
,

where

• N(y = yj , T ) is the number of sample of class yj in T

• N is the number of training samples in T

For the estimation of P (Xi = xk|Y = yj), there are two cases:
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1. If Xi has discrete observations or Ai is categorical:

P (Xi = xk|Y = yj) =
N(Xi = xk, Y = yj , T )

N(Y = yj , T )
,

where

• N(Xi = xk, Y = yj , T ) is the number of samples of class yj in T that have the

value xk for attribute Ai.

2. If Ai is continuous-valued:

• NB is called Gaussian NB and

• it is extended to numerical attributes by assuming a Gaussian distribution (N(µj , σ
2
j ))

for the values, i.e.:

P (Xi = xk|Y = yj) =
1√
2πσj

exp(−(xk − µj)2

2σ2j
)

Thus, µj and σj , the mean and standard deviation of values of attribute Ai for training

samples of class yj should be estimated from the training set.

3.8 Linear Discriminant Analysis for classification

A linear classification and dimension reduction model is linear discriminant analysis (LDA)

[37, 38]. It is a method for categorizing data, reducing its dimensions, and visualizing it. It is

most frequently applied to feature extraction problems involving pattern classification.

LDA assumes that the class conditional densities p(x|Y = k) = fk(x) are multivariate Gaus-

sian distributions for each of the K classes, i.e. P (x|Y = k) ∼ N(µk,Σk). Therefore, the

densities are defined as follows:

fk(x) =
1

(2π)ρ/2|Σk|1/2
exp{−1

2
(x− µk)TΣ−1

k (x− µk)}

In this case an unlabeled datapoint is assigned to the class k where the posterior probability

p(Y = k|x) is maximized.

Consideration of the two class classification is instructive. We would classify the datapoint

x as argmax
k

(p(Y = k|x)) = argmax
k

(logp(Y = k|x)) if the multivariate Gaussian distri-

butions for classes 1 and 2 are f1(x) and f2(x), respectively, with the corresponding prior

probability of π1 and π2.
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Following the application of Bayes’ rule, we may now choose the class k with the highest

argmax
k

(log(πk) + log(fk(x))) and eliminate the independent of k denominator. By choos-

ing the class k with the highest δk(x), we arrive at the discriminant function δk(x) below for

each class k (again emphasizing that the common 2π constant can also be removed from the

maximization):

δk(x) = log(πk)−
1

2
log(|Σk|)−

1

2
(x− µk)TΣ−1

k (x− µk)

where the quantity (x − µk)Tσ1k(x − µk) called (squared) Mahalanobis distance metric mea-

sures the distance between a point and a distribution (squared) Mahalanobis distance metric.

Additionally, the covariance matrices of the different classes are assumed to be equal by LDA:

Σ1 = Σ2 = ... = Σk = Σ. When the discriminant functions are precisely identical between

two classes, we may analyze the decision boundary between them:

δ1(x) = δ2(x)

log(π1)−
1

2
log(|Σ|)− 1

2
(x− µ1)TΣ−1(x− µ1) = log(π2)−

1

2
log(|Σ|)− 1

2
(x− µ2)TΣ−1(x− µ2)

0 = log(
π1
π2

)− 1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) + xTΣ−1(µ1 − µ2)

The result from the previous equation discriminates between the data from class 1 and the data

from class 2 and it is linear in x. This is where the term “linear discriminant” analysis comes

from.

3.9 Multiple linear regression

Multiple linear regression (MLR) [39] is a statistical method that uses a number of explanatory

(independent) factors to predict the result of a response (dependent) variable. The objective of

MLR is to model the linear relationship between the explanatory variables and the response

variable.

In particular, MLR assumes the following relationship between a response y and some ex-

ploratory variables x1, ..., xk−1:

y = b0 + b1x1 + ...+ bk−1xk−1 + ϵ, (3.10)

where ϵ is the model ’s error term also known as the residuals.
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The measurements are carried out n times resulting in n values of y for n sets of xj .

yi = b0 + b1xi1 + ...+ bk−1xik−1 + ϵi, i = 1, ..., n, (3.11)

where

• xij is the i− th observation of xj

• The ϵi are not observed directly.

After the addition of the following parameters, the previous equations can be described equiv-

alently in the matrix form

x10 = x20 = ... = xn0 = 1. (3.12)

Thus,

Y = Xβ + ϵ, (3.13)

where

Y = [yi]n, X = [xij ]nxk, B = [bj ]k, ϵ = [ϵi]n (3.14)

The coordinates b0, b1, ..., bk−1 of the vector B are unknown. MLR aims to estimate the vector

B according to the multivariate observations, because the coefficients b0, b1, ..., bk−1 are not

known.

[X,Y ] =


x10 x11 . . . x1k−1 y1

x20 x21 . . . x2k−1 y2

. . . . . . . . . . . . . . . . . . . . . . . . .

xn0 xn1 . . . xnk−1 yn

 (3.15)

The ordinary least squares (OLS) estimator is usually applied to solve this problem where

n∑
i=1

(yi −
k−1∑
j=0

bjxij)
2 → min. (3.16)

The OLS estimates of the unknown coordinates b0, b1, ..., bk−1 solve the previous minimization

problem and can also be represented as follows:

B̂ = [b̂j ]k. (3.17)
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In case of detXTX > 0, the OLS estimates can be estimated from the next formula:

B̂ = (XTX)−1XTY. (3.18)

Let Ŷ := XB̂, this equation can be rewritten in the coordinate form in the following way:

ŷi = b̂0 + b̂1xi1 + ...+ b̂k−1xik−1, i = 1, ..., n. (3.19)

Thus, the predicted response value that corresponds to the predictor values x1, ..., xk−1 is ŷ.

The residual sum of squares (RSS) calculates the difference between the estimating model and

the data as follows:

RSS :=
n∑

i=1

(ŷi − yi)2. (3.20)

R2
is the coefficient of determination and is defined as follows:

R2 := 1−
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2

∈ [0, 1] (3.21)

It is a goodness of fit measure for linear regression models. The closer it is to 1, the better the

regression model fits the data.

3.9.1 Data standardization

Linear regression analysis usually uses data standardization.

By denoting,

x̂j =
1

n

n∑
i=1

xij , ŷ =
1

n

n∑
i=1

yi, S
2
y =

n∑
i=1

(yi − ȳ)2, S2
j =

n∑
i=1

(xij − x̄j)2, j = 1, ..., k − 1

(3.22)

Centered and normalized variables for the original sample are got

vi :=
yi − ȳ
Sy

, wij =
xij − x̄j
Sj

, i = 1, .., n, j = 1, ..., k − 1. (3.23)

Let,

V = [vi]n, W = [wij ]nx(k−1), (3.24)
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In case detW TW > 0, the following formula can be used to find the OLS estimates for the

standardized model

B̂ = (W TW )−1W TV. (3.25)

For the following reasons, standardized data is helpful for linear regression:

• When standardized data are utilized, the solution is independent of the measuring scale.

• Instead of the absolute value xj , the predictor input most likely depends on the relative

value wj .

3.10 Ridge regression and the LASSO

The matrixXTX frequently approaches the singular form. Multicollinearity is the name given

to this phenomenon in MLR. Although the OLS estimates can still be estimated, they are un-

likely to have “good” statistical properties. Because of this, even little modifications to the data,

such as dropping or adding a few observations, can cause significant variations in the estima-

tors of the model’s coefficients.

The variance inflation factors V IFj , j = 1, ..., k, can be used to identify multicollinearity in the

regression data. The regression matrix X is said to have a high multicollinearity if V IFj > 5

or V IFj > 10 for at least one j.

The estimators of the coefficients are regularized by the regression analysis techniques Ridge

and LASSO (Least Absolute Shrinkage and Selection Operator). Therefore, they could be help-

ful to overcome the drawbacks of OLS estimators.

Prediction accuracy

In case the variables are almost linearly related and the sample size is significantly larger than

the number of predictors (k), e.g. (k << n), it’s likely that the simple OLS estimator would

provide accurate findings. The OLS estimates will often have low accuracy and considerable

variation when n is not much higher than k. If k > n, the OLS process will not provide a

unique result, and the estimator’s variance will be infinite. Regularization techniques often

allow for the reduction of estimate variance at the expense of slight bias introduction. As a

result, prediction accuracy improves.

Model interpretability
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Regression models frequently have a large number of predictors (k), but in practice, not all

of them have a significant impact on the outcome. It would be simpler to comprehend the

model if the factors that don’t truly effect the answer were taken out. The LASSO and Ridge

estimators provide an alternative to “subset selection” approaches in this regard, which reduce

the number of predictors in the regression model. These regularization techniques result in

linear models with coefficient estimates that are close to zero or equal to zero.

3.11 Ridge regression

The estimate of an unknown vector B by the Ridge regression based on standardized observa-

tions {W,V } (defined in the equation 3.24) is equal to

B̃λ := (W TW + λI)−1W TV, (3.26)

where I is the identity matrix and λ > 0 is the parameter of regularization.

The coordinate form of the Ridge estimator is shown below:

B̃λ = [β̃j(λ)]k−1

By including the “ridge” parameter λ to the diagonal elements of the matrix W TW , it is pos-

sible to solve the issue of the ill-conditioned matrix W TW . The ill-conditioned matrix W TW

becomes the well-conditioned matrix (W TW +λI) using this technique. As a result, the usual

issues that occur when reversing the ill-conditioned matrix are resolved. Nevertheless, com-

pared to the OLS estimate, the Ridge estimate B̃λ is biased.

It is worth noting that the Ridge estimate B̃λ solves the following equivalent minimization

problems:

• min(||V −WB||2 + λ||B||2)

• For all λ > 0, there is a t(λ) > 0 such that

min(||V −WB||2) subject to ||B||2 ≤ t(λ).

Therefore, the Ridge estimate may be seen as an OLS estimate after adding a penalty placed on

the coefficient vector.
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3.12 Lasso

The LASSO estimate B̃λ solves the following equivalent minimization problems based on stan-

dardized observations {W,V }.

• min(||V −WB||2 + λ||B||1)

• For all λ > 0, there is a t(λ) > 0 such that

min(||V −WB||2) subject to ||B||1 ≤ t(λ),

where ||B||1 =
∑k−1

j=1 |βj |.

Lasso penalizes the coefficient vector βj , j = 1, ..., k − 1, in a slightly different way from

Ridge. Ridge multiplies the λ parameter by the l2-norm of the vector (β1, ..., βk−1), whereas

LASSO uses the l1-norm.

In terms of model interpretability, one benefit of the LASSO approach is that it produces a

model, as opposed to the Ridge regression, where certain coefficient estimates are precisely

equal to zero when λ is large. The LASSO regularization also does variable selection, making

the model easier to understand.

It is important to note that different λ values in the Ridge regularization lead to various B̃λ

vectors. Therefore, picking the right λ value is important. The following is a presentation of

the cross-validation approach that may be used for this purpose.

3.12.1 Cross-validation for choosing the λ value for LASSO and Ridge

When a collection of candidate values for the λ parameter is provided, the approach that may

be used to choose a “proper” value is called cross-validation. The train set and the test set are

two subsets of the initial data that are separated before the algorithm is applied. The train set

is used to estimate coefficients after that. The validation of these estimations is then carried

out using the test data.

The term “proper” value refers to selecting a λ that yields the greatest degree of accuracy

in forecasting the response values. The model tends to explain the data noise when λ is too

small, which can lead to overfitting. On the other hand, if the method is unable to capture the

underlying relationship, overly large λ values likely to result in underfitting. In both situations,

the computation of the error using the test data yields a high value.
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The algorithm is explained in some more detail below. The first step is to randomly parti-

tion the initial data set into Q blocks of the same size. While the remaining Q− 1 blocks form

the train set, one of the blocks serves as the test set. The typical range for Q is 5 to 10. Follow-

ing that, the regression coefficients are calculated for each value in the grid of values λ = [λs].

These regression coefficients are used to compute the residual sum of squares presented below.

RSSq
λs

=

n∑
i=1

(yi −
k−1∑
j=0

b̂j(q, λs)xij)
2

where q = 1, ..., Q is the block’s index that has been chosen as the test set. Often the average

of these RSS values over all blocks is computed.

MSEλs =
1

Q

Q∑
q=1

RSSq
λs
.

Afterwards, λ takes the value of λs that corresponds to the minimum MSEλs .

The “one-standard-error rule” is used in a second widely used approach. The standard er-

ror of the mean is calculated for each MSEλs . Then, the largest λs for which the MSEλs is

within one standard error of the minimumMSE value is chosen. From this approach, a “more

regularized” model is obtained whereas the MSE is increased by not more than one standard

error.

3.13 LassoCV

A regularization technique to reduce overfitting in a regression model is LASSO. By applying

the L1 regularization, it reduces large coefficients. LassoCV is a Lasso regression model with

built-in cross-validation of the α parameter. When training the model, an iterative process is

applied to automatically tune alpha parameter in order to choose the optimal value for a Lasso

model using cross-validation, resulting in finding the optimal model for the data.

3.14 RidgeCV

RidgeCV stands for ridge regression with built-in cross-validation of the α parameter. In prac-

tice, an iterative practice is applied to automatically tune the α paramter using cross-validation

during the implementation of a ridge regression model. This technique operates similarly to

grid-search cross-validation, with the exception that Generalized Cross-Validation, a kind of

effective LeaveOne-Out cross-validation, is carried out by default.
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3.15 Ridge classifier

When compared to Logistic Regression with a l2 penalty, the Ridge Classifier operates differ-

ently. Cross entropy is not the loss function for the Ridge Classifier. The following is how

Ridge Classifier develops a classifier using the Ridge Regression Model:

For sake of simplicity, let’s consider the binary classification task:

1. Convert target variable into +1 or -1 based on the class in which it belongs to.

2. Create a Ridge regression model to predict the target variable. MSE plus l2 penalty forms

the loss function.

3. If the decision function-based Ridge regression’s prediction value is greater than 0, it

will predict a positive class; otherwise, it will predict a negative class.

3.16 Elastic-Net

The Elastic-Net [40] is a regularised linear regression model that linearly combines both l1 and

L2 penalties of the Lasso and Ridge regression methods respectively. With this combination,

it is possible to learn a sparse model, similar to Lasso, in which just a small percentage of the

weights are non-zero while yet preserving Ridge’s regularization properties. The l1 ratio pa-

rameter is used to control the convex combination of l1 and l2.

When there are several features correlated with one another, elastic-net is helpful. Lasso will

probably choose one of these at random, but elastic-net will probably choose both at once.

Elastic-Net can inherit part of Ridge’s stability under rotation as a result of the trade-off be-

tween Lasso and Ridge.

The objective function that is minimised by Elastic-Net is given below:

argmin
w

1

2n
||Xw − y||22 + αρ||w||1 +

α(1− ρ)
2

||w||22

where α and ρ are the parameters parameters that determine the trade-off between L1 and L2

regularization, w is the weight vector in the cost function formula and n is the the sample size.
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3.17 Elastic-NetCV

ElasticNetCV is an Elastic-Net model with built-in cross-validation of the α parameter. When

training the model, an iterative process is applied to select the optimal parameter α among

multiple candidate alpha values for an Elastic-Net model using cross-validation. The usage of

ElasticNetCV, as opposed to Grid-Search cross-validation in the Elastic-Net class, will avoid

redundant computation and allow for the automated tuning of the value of alpha. To find also

the optimal value of ρ in complement, standard Grid-Search cross-validation can be used.

3.18 Ensemble methods

A particular model fitting methodology or statistical learning can be improved by the use of

ensemble techniques [41]. The fundamental principle of ensemble methods is to linearly mix

different model fitting techniques rather than relying just on one fit..

Let’s simplify things by assuming that the task of function estimation has the goal of esti-

mating a real-valued function.:

g : Rd → R

using the data (X1, Y1), ..., (Xn, Yn) where X is a d-dimensional predictor variable and Y is

an 1-dimensional response. It is conceivable to generalize to other g(·) functions and different

data types. The function ĝ(·) can be estimated if a base process is stated and some input data

are provided.

When changing the input data, we may execute a base process several times. The initial con-

cept behind ensemble techniques was to employ reweighted original data to generate various

estimates ĝ2(·), ĝ3(·) etc. based on various reweighted input data. The individual function es-

timates ĝk(·) may then be combined linearly to provide an ensemble-based function estimate

gens(·):

gens() =

M∑
k=1

ckĝk(),

Two basic techniques of ensemble learning known as Bagging and Boosting will be presented

below.
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3.18.1 Bagging

Bagging which stands for Bootstrap aggregating is an ensemble learning technique that en-

hances the predictive performance and accuracy of machine learning algorithms. It lowers the

variance of a prediction model and is employed to handle bias-variance trade-offs. Bagging is

used for regression and classification tasks and especially for decision tree methods. It usually

helps to address the problem of over fitting.

Let the regression or classification task. The data is given in the form of pairs (Xi, Yi), i =

1, ..., n, where Xi ∈ Rd
is the d-dimensional predictor variable and Yi is the response. For

regression: Yi ∈ R and for classification with J classes: Yi ∈ {0, 1, ..., J − 1}

Typically, the target function of interest is:

• For regression: E[Y |X = x]

• For classification is the multivariate function: P [Y = j|X = x], (j = 0, ..., J − 1)

When a certain base process is used, the function estimator ĝ(·) is the outcome:

ĝ(·) = hn((X1, Y1), ..., (Xn, Yn))(·) : Rd → R,

where the estimator is defined as a function of the data by the function hn(·).

3.18.2 Bagging algorithm

1. Build a bootstrap sample (X∗
1 , Y

∗
1 ), ..., (X

∗
n, Y

∗
n ) from the data (X1, Y1), ..., (Xn, ..., Yn),

by drawing n times at random with replacement.

(The initial sample size and the size of the bootstrap samples are equal.)

2. Calculate the bootstrapped estimator ĝ∗(·) based on plug-in principle or in either case,

estimate a base model using the bootstrap sample.:

ĝ∗(·) = hn((X
∗
1 , Y

∗
1 ), ..., (X

∗
n, Y

∗
n ))(·).

(Typically, bagging uses the same based models.)

3. Steps 1 and 2 should be repeated M (M is frequently set to 50 or 100) times to get M

bootstrapped estimators: ĝ∗1(·),ĝ∗2(·),…, ĝ∗M (·).

(A base model is simply calculated from each bootstrap sample and provides M score

functions.)

4. By aggregating these functions into the final score, the bagged estimator is obtained as

follows:
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• For regression: ĝbag(·) = 1
M

∑M
k=1 ĝ

∗k(·)

• For classification: ĝbag(·) = maxvoting(ĝ∗1, ĝ∗2, ..., ĝ∗M )

Figure 3.1: Bagging algorithm for regression

Figure 3.2: Bagging algorithm for classification
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Bagging simply explained

• From the initial data set, M bootstrap samples of equal size are built by sampling obser-

vations with replacement.

• On each of these bootstrap samples, a base model is fitted.

• Each model is independently learnt in parallel from every training set.

• Combining all of the models’ predictions results in the final predictions.

3.18.3 Bagging models

3.18.3.1 Random Forest

Random forest [42] is a supervised learning algorithm. This method applies to both classifica-

tion and regression problems and is proven to be an efficient non-linear tool. It is a combination

of tree predictors such that the trees are constructed independently of each other. Each tree

makes predictions and the final classification decision is obtained by a majority vote law on all

the classification trees. The methodology is described in more detail below.

A classification tree is defined iteratively by a division criterion (node) obtained from one of

the variables, xj , which results in the construction of two subsets in the training sample. The

observations i satisfying the condition xij < T where the algorithm defines the real number T

are contained in the first subset. Whereas the observations i that satisfy T ≤ xij are contained

in the second subset. The algorithm automatically builds the choices of the variable and of the

threshold T to minimize a heterogeneity criterion. More specifically, the aim is to create two

subsets that are the most homogeneous as possible in term of their values of Y. The tree stops

growing when all the subsets resulting have homogeneous values of Y.

However, a single classification tree is frequently not a very accurate classifier, despite its

intuitive form. Therefore, a Random Forest is an improvement of this classification method by

aggregating several under efficient classification trees using a bagging procedure. According

to the aforementioned, the algorithm at each step randomly chooses several observations and

several variables and builds a classification tree from this new data set.

At the end, the random forest makes the classification decision using a majority vote law on all

the classification trees. Also, the probability of each class can be estimated by calculating the

proportion of each decision on all the classification trees. It is worth noting that the higher the

number of trees in the forest results in higher accuracy in the random forest classifier, because
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the generalization ability of this algorithm is good.

3.18.3.2 Random Forest classifier algorithm

Random forest classifier algorithm intuition can be divided into two stages. In the first stage,

k features are selected randomly out of total m features and the random forest is constructed.

In the first stage, the following procedure is applied:

1. k features from a total of m features where k < m are randomly chosen.

2. Calculation of the node d using the best split point among the k features.

3. Splitting the node into daughter nodes by the best split.

4. Repetition of steps 1 to 3 until l number of nodes has been reached.

5. Repeat steps 1 to 4 for n number of times to construct n number of trees and build forest.

In the second stage, the trained random forest algorithm is used to make predictions.

1. The test features are taken and the rules of each randomly constructed decision tree are

used to predict the outcome and then the predicted outcome is stored.

2. Calculation of the votes for each predicted target.

3. The high voted predicted target is considered as the final prediction from the random

forest.
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Figure 3.3: Random Forest Classifier

3.18.3.3 Random Forest regression

The Random Forest (RF) ensemble technique [43] generates hundreds or even thousands of de-

cision trees, each of which functions as a regression function on its own, through “bagging or

bootstrap aggregation.” The average of all decision tree outputs constitutes the Random Forest

regression’s ultimate result.

Let Y be the output scalar, X = {x1, x2, ..., xm} be the input vector having m features, and Sn

be the training set with n observations defined the following expression:

Sn = (X1, Y1), (X2, Y2), ..., (Xn, Yn), X ∈ Rm, Y ∈ R

To build a collection of q prediction trees ĥ(X,SΘ1
n ), ..., ĥ(X,SΘq

n ), the boosting algorithm

chooses a number of bootstrap samples (SΘ1
n , ..., S

Θq
n ) fromSn and applies a CART algorithm’s

extension to these samples. The training process ends with the creation of a prediction func-

tion of the form ĥ(X,Sn) over Sn.
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The nonparametric statistical model known as CART, or Classification and Regression Tree,

is based on the construction of a decision tree. It is important to note that neither CART fixes

the tree structure nor makes any assumptions about the class densities beforehand. Although

the growth of the tree depends on the complexity of the input data throughout the learning

procedure. Nodes and leaf nodes are the components of every decision tree. Making the op-

timal split among all variables is necessary at the decision tree’s initial stage. This splitting

process starts at the root and proceeds through each node, applying its own split function to

each new input sample. This is repeated up to the terminal node, commonly known as the

tree leaf. The tree stops growing after a predetermined number of levels have been reached or

when a node has less observations than a predetermined threshold.

The random forest regression model, an extension of the CART technique, can yield more ac-

curate predictions. Several de-correlated decision trees are constructed during the RF training

phase. The forest is referred regarded as “random” because each tree in RF is produced using

a randomized subset of predictors. X is an input vector, the family of random vectors, Θk, is a

set of independent random vectors, and the basic classifier utilized by RF is a L tree-structured

classifier: h(X,Θk), where k = 1, ..., L.

According to each tree, RF creates q outputs, Ŷ1 = ĥ(X,SΘ1
n ), Ŷ2 = ĥ(X,SΘ2

n ),…,Ŷq =

ĥ(X,SΘq
n ). Then, by averaging all of the trees’ outputs, the aggregation is completed. As a

result, the estimation of the output, Ŷ , may be obtained by

Ŷ =
1

q

q∑
l=1

Ŷl =
1

q

q∑
l=1

ĥ(X,SΘl
n ) (3.27)

where Ŷl is the output of l − th tree and l = . . .1, 2, ..., q.

The following figure shows the methodology for utilizing RF regression for prediction:
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Figure 3.4: Random Forest for regression

3.18.4 Boosting

A machine learning ensemble approach called “boosting” [44] can turn poor learners into

strong ones. The main idea behind boosting is to sequentially fit a group of weak learners.

Therefore, boosting is a sequential process in which each new model attempts to correct the

errors in the preceding model. In practice, it weights the data used to train the weak learners

such that each successive learner pays greater weight to or only fits observations that the prior

learners failed to accurately predict.

Simply put, the boosting technique prioritizes observations that were incorrectly predicted by
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model n during the training of model n+ 1, as opposed to the bagging procedure, which ran-

domly selects training samples from the whole population. Each model is therefore dependent

on the one before it. Additionally, with boosting, as opposed to bagging, where all learners’

weights are identical, each learner might have a varied significance or weight in the final result.

Training process of a Boosting model

The training approach varies depending on the Boosting algorithm being used (such as Ad-

aboost, XGBoost, or LightGBM), but in general, it goes like this:

1. All of the data samples are first given identical weights. On these samples, an individual

model is fitted.

2. Prediction error is calculated for every sample.

3. To make those samples more significant for the fitting of the subsequent individual

model, the weights of those samples with a larger error are raised.

4. The relevance or weight of any particular model is determined by how well it predicts

the response. High weight or high significance in the final score will be given to a model

with a very excellent predictive performance.

5. The posterior model’s input is weighted data, and steps 2) and 3) are repeated.

6. Step four is repeated until either a set number of models have been trained or the error

does not go over a predetermined level (threshold).
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Figure 3.5: Boosting Model

3.18.4.1 A more mathematical approach to Boosting

Boosting techniques are characterized as sequential ensemble algorithms, as opposed to bag-

ging, which is referred to as a parallel ensemble approach. In Boosting the weights ck in

ĝens(·) =
∑M

k=1 ckĝk(·) are dependent on the former estimated functions ĝ1, ..., ĝk−1.

Breiman was the first to put the boosting method in a novel light, saying that it may be viewed

as a nonparametric optimization procedure in function space. The use of boosting to problems

other than classification, such as regression and survival analysis, is made possible by this

approach.

3.18.4.2 Boosting as functional gradient descent

Boosting algorithms can be viewed as functional gradient descent methods rather than ensem-

ble methods. The objective is to estimate a function g : Rd → R that minimizes an expected
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loss

E[ρ(Y, g(X))], ρ(·, ·) : R× R→ R+
(3.28)

for some given data (Xi, Yi), (i = 1, ...n).

Here, we take into account both situations in which the univariate answer Y is continuous

(regression problem) or discrete (classification problem), as boosting may be helpful in either

situation.

As we’ll see in the section below, boosting algorithms are seeking a “small” empirical risk,

n−1
n∑

i=1

ρ(Yi, g(Xi)) (3.29)

by choosing a g in the linear hull of some function class, i.e. g(·) =
∑

k ckgk(·) with gk(·)’s
from a function class like trees.

The table below lists the most prevalent loss functions for binary classification and regression.

boosting loss function population minimizer for (3.28)

L2Boost ρ(y, g) = (y − g)2 g(x) = E[Y |X = x]

LogitBoost ρ(y, g) = log2(1 + exp(−2(y − 1)g)) g(x) = 0.5logit(P [Y = 1|X = x])

Adaboost ρ(y, g) = exp(−2(y − 1)g) g(x) = 0.5logit(P [Y = 1|X = x])

Table 3.1: The squared error, binomial negative log-likelihood and exponential loss functions

and their population minimizers; logit(p) = log(p/(1p)).

While the exponential loss and the log-likelihood are exclusively utilized for binary classifica-

tion, the squared error loss and the log-likelihood are mostly employed in regression.

3.18.4.3 The generic boosting algorithm

A constrained minimization of the empirical risk n−1
∑n

i=1 ρ(Yi, g(Xi)) is followed in order

to estimate the function g(·), which minimizes an expected loss defined in the equation (3.28).

By using a technique known as functional gradient descent to minimize the empirical risk, the

constraint is introduced algorithmically and implicitly. In short, the solver of the minimization

of the empirical risk is required to satisfy a “smoothness” constraint as regards a linear expan-

sion of “simple” fits from a real-valued base procedure function estimate.

Generic functional gradient descent
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1. Initialization: Given the data {(Xi, Yi)i = 1, ..., n}, the basic approach is used to

produce the function estimate:

F̂1(·) = ĝ(·),

where ĝ = ĝX,Y = hn((X1, Y1), ..., (Xn, Yn)) is a function of the initial data.

Set m=1.

2. Projecting gradient to learner: Calculate the negative gradient vector

Ui = −
∂ρ(Yi, g)

∂g
|g=F̂m(Xi)

, i = 1, 2, ..., n,

evaluated at the current F̂m(·). Afterwards, apply the basic technique on the gradient

vector

ĝm+1(·),

where ĝm+1 = ĝX,U = hn((X1, U1), ..., (Xn, Un)) is a function of the original predictor

variables and the current negative gradient vector as pseudoresponse.

3. (line search). Find the best step-size defined as follows using a one-dimensional numer-

ical search.

ŝm+1 = argmins

n∑
i=1

ρ(Yi, F̂m(Xi) + sĝm+1(Xi)).

Update,

F̂m+1(·) = F̂m(·) + ŝm+1ĝm+1(·).

4. (iteration). Increase m by one and repeat Steps 2 and 3 until a stopping iteration M is

achieved.

M is the boosting tuning parameter and is the number of algorithm replications. As

the parameter value rises, the estimator becomes more convex.

3.18.5 Boosting models

3.18.5.1 AdaBoost for classification

AdaBoost [45] is one of the first implementations of boosting algorithm. It is a machine learn-

ing technique than can be applied to binary classification tasks. A decision stamp, or a decision
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tree with one level, serves as the basic model in this boosting approach. AdaBoost ’s objective

is to create a classifier from a collection of weak decision stamp classifiers. For the purpose

of training the following model, Cm+1, observations that the previous model Cm misclassi-

fied are given greater weights. The next model’s goal is to fix the wrong predictions made by

the prior model. The final prediction is a weighted combination of the predictions from each

weak learner, with each weak learner’s weight corresponding to the quality of its predictive

performance on the training data.

3.18.5.2 AdaBoost classification algorithm

Let a binary classification problem with the observed data {Xi, Yi}Ni=1, where Yi ∈ {0, 1}. The

AdaBoost applies the following algorithm to formulate a model which accurately predicts Y:

Initialize the observation weights wi =
1
N , i = 1, 2, .., N .

For m=1 to M repeat steps (1)-(4):

1. Fit a classifier Cm(x) to the training data using weights wi.

2. Computed weighted error of newest classifier:

errm =

∑N
i=1wiI(yi ̸= Cm(xi))∑N

i=1wi

3. Compute αm = log[(1− errm)/errm]

4. Update weights for i = 1, ..., N :

wi ← wi ∗ exp[αm ∗ I(yi ̸= Cm(Xi))]

and normalize to wi to sum to 1.

This scheme increases the weights of observations poorly predicted by Cm.

Output C(x) = sign[
∑M

m=1 amCm(x)]

3.18.5.3 AdaBoost for regression

Given AdaBoost’s success with classification problems, the method was expanded to include

regression [46] issues using the AdaBoost.R technique [47], which turns the regression issue

into a binary classification problem. Although, there are two drawbacks to this extension.
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Firstly, the number of Boosting iterations is linearly increased when each example in the re-

gression sample is expanded into multiple classification examples. Secondly, the iteration error

function changes, and even this function varies among samples from the same iteration. Then,

a number of approaches have been put out to convert the regression problem into a classifi-

cation problem, with the AdaBoost.RT approach being emphasized owing to its performance

and simplicity of implementation when compared to AdaBoost. R.

AdaBoost.RT Algorithm

Inputs: Sequence of m examples

(x1, y1), (x2, y2), ..., (xm, ym) where y ∈ R

Weak Learner Algorithm

Integer T (Number of algorithm iterations)

Threshold ϕ (0 < ϕ < 1) ( Demarcate correct samples)

Initialize: Dt(i) =
1
m∀i (Probability Distribution Function)

While t ≤ T do

Train the Weak learner, providing Dt;

Build the regression model: ft(x)→ y

Compute the Absolute Relative Error (ARE) for each training sample

ARE(i) =
ft(xi)− yi

yi

Compute the ft(x) error rate as follows:

ϵt =
∑

i:AREt(i)>ϕ

Dt(i)

Set βt = ϵnt , n = 1, 2, 3 (Linear, square or cubic)

Update the distribution Dt

Dt+1(i) =
Dt(i)

Zt
∗

βt if AREt(i) ≤ ϕ

1, otherwise

end

Output: Calculate the Strong Learner

SL(x) =

∑T
t=1 log(

1
βt
)ft(x)∑T

t=1 log(
1
βt
)

Gradient boosting machine
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Let the function estimate problem in the classical supervised learning context. The objective

of supervised learning, given a training dataset (xi, yi)
N
i=1, where the x = (x1, ..., xN ) are the

explanatory input variables and y are the corresponding values of the response variable, is to

minimize a certain loss function ψ(y, f) while rebuilding the unknown functional dependence

x

f−→ y using the approximation f̂(x), where:

f̂(x) = y,

f̂(x) = argmin
f(x)

ψ(y, f(x))

An ensemble of weak prediction models, frequently tree-structured models, can be combined

using the machine learning technique known as gradient boosting [48] to generate a predic-

tion model. It results from combining Gradient Descent with Boosting and its objective is to

minimize this loss function by adding weak learners using gradient descent.

The main distinction between boosting approaches and traditional machine-learning methods

is that optimization takes place in the function space. In other words, the function estimate f̂

is parameterized in the additive functional form:

f̂(x) = f̂M (x) =
M∑
i=0

f̂i(x)

where M is the number of iterations, f̂0 is the initial guess and {f̂i}Mi=1 are the function incre-

ments also known as boosts.

A similar method of parameterizing the family of functions may be used to make the functional

approach practical in reality. In order to distinguish the parameterized ”base-learner” functions

from the overall ensemble function estimates hatf(x), they will be denoted as h(x, θ). It is

worth noting that there are different families of baselearners such as decision trees or splines.

The “greedy stagewise” approach of function incrementing with the base-learners can be now

formulated. For this objective at each iteration, the optimal step size, ρ, should be specified.

The following is the definition of the optimization rule for the function estimate at the t− th
iteration:

f̂t ← f̂t−1 + ρth(x, θt)

with

(ρt, θt) = argmin
ρ,θ

N∑
i=1

ψ(yi, f̂t−1) + ρh(xi, θ)
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Gradient boost algorithm

Both the loss function and the base learner models may be arbitrarily specified on request.

It can be challenging to find the solution to the parameter estimates in practice, given a spe-

cific loss function ψ(y, f) and/or a custom base-learner h(x, θ). In order to address this, it

was suggested to select a new function h(x, θt) that is most parallel to the negative gradient

{gt(xi)}Ni=1 along the observed data:

gt(x) = Ey[
∂ψ(y, f(x))

∂f(x)
|x]f(x)=f̂ t−1(x)

The new function increment that is most correlated with −gt(x) can be simply selected, as

opposed to searching for the general solution for the boost increment in the function space.

As a result, a potentially challenging optimization task can be replaced with the traditional

least-squares minimization problem:

(ρt, θt) = argmin
ρ,θ

N∑
i=1

[−gt(xi) + ρh(xi, θ)]
2

Finally, the complete form of the gradient boosting algorithm, as initially suggested by Fried-

man (2001) is given below. It is worth noting that the choices of ψ(y, f) and h(x, θ) affect the

exact form of the algorithm.

Gradient Boost Algorithm

Inputs:

• Input data (xi, yi)
N
i=1

• Number of iterations M

• Choice of the loss-function ψ(y, f)

• Choice of the base-learner model h(x, θ)

Algorithm:

1. Intialize f̂0 with a constant

2. for t=1 to M do

3. Compute the negative gradient gt(x)

4. Fit a new base-learner function h(x, θt)
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5. Find the best gradient descent step-size ρt:

ρt = argminρ

N∑
i=1

ψ[yi, f̂t−1(xi) + ρh(xi, θt)]

6. Update the function estimate:

f̂t ← f̂t−1 + ρth(x, θt)

7. End for

Gradient boosting is a boosting-like algorithm used for regression and classification. When

the target column is continuous, we use Gradient Boosting Regressor whereas when it is a

classification problem, we use Gradient Boosting Classifier. The only difference between the

two is the loss function. Generally, there are several distributions from which the response

variable y may come. Naturally, this results in the definition of several loss functions. Regres-

sion, classification, and time-to-event analysis tasks are only a few of the response families

for which specific boosting algorithms have been developed. We can organize the most pop-

ular loss-functions in the manners described below, depending on the family of the response

variable y:

1. Continuous response, y ∈ R:

• Gaussian L2 loss function

• Laplace L1 loss function

• Huber loss function, δ specified

• Quantile loss function, α specified

2. Categorical response, y ∈ {0, 1}:

• Binomial loss function

• Adaboost loss function

3.18.5.4 XGboost for regression

Generally, a boosting algorithm creates a weak learner at each step and incorporates it into the

overall model. If the weak learner for each step is based on the gradient direction of the loss

function, the boosting algorithm is called Gradient Boosting Machines (GBM). XGBoost algo-

rithm [49] which stands for Extreme Gradient Boosting is a scalable machine learning system

for tree boosting. It is composed of a sequence of decision trees using the gradient descent
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technique to minimize the errors of weak estimators.

In comparison with other gradient boosting algorithms, XGBoost uses a more regularized

model formalization, e.g. its objective functions consists of a training loss and a regulariza-

tion term in order to control the over-fitting resulting in a model with a better performance.

Objective function

For a better understanding of this boosting algorithm, let the following data set:

D = (xi, yi) : i = 1, ..., n, xi ∈ Rm, yi ∈ R

composed of n observations with m features each and with a corresponding variable y.

Let’s define ŷi as the outcome of an ensemble which is defined in the following generalised

model:

ŷi = ϕ(xi) =
K∑
k=1

fk(xi)

where fk is a regression tree and fk(xi) denotes the score assigned by the k-th tree to the i-th

observation in data.

The regularized objective function that follows should be minimized in order to learn the func-

tions fk:

L(ϕ) =

n∑
i=1

l(ŷi, yi) +

K∑
k=1

Ω(fk),

where l denotes the loss function and Ω represents the regularization term.

The penalty term Ω is added in the model in the following way to reduce the model ’s com-

plexity and avoid over-fitting:

Ω(fk) = γT +
1

2
λ||ω2||

where

• γ is a parameter that controls penalty for the number of leaves T

• λ is a parameter that controls the magnitude of leaf weights w
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Iterative method

The objective function is minimized by an iterative method. In this algorithm, every tree is

trained once at a time. The objective function minimized in j-th iteration to learn the j-th tree,

fj , is the following one:

Lj =
n∑

i=1

l(yi, ŷ
(j−1)
i + fj(xi)) + Ω(fj)

Using the Taylor expansion, this function may be made simpler. After the tree split from a

particular node, a formula for loss reduction may be derived:

G =
1

2
[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
+

(
∑

i∈II gi)
2∑

i∈II hi + λ
]− γ

where

• I denotes a subset of the available observations in the current node

• IL is the subset of the available observations in the left nodes after the split

• IR is the subset of the available observations in the right nodes after the split

The definitions of the functions gi and hi are given as follows:

• gi = ∂ŷ(j−1) l(yi, ŷ
(j−1)
i ) is the first order gradient statistics on the loss function

• hi = ∂2
ŷ(j−1) l(yi, ŷ

(j−1)
i ) is the second order gradient statistics on the loss function

The formula Lsplit can be used to determine the optimal split at any given node. The only

two parameters on which the formula depends are the regularization parameter γ and the loss

function. It is clear that any loss function that may provide the first and second-order gradients

can be optimized using this algorithm.

Three factors explain why XGBoost outperforms other tree boosting techniques:

• The establishment of the regularised loss function

• A provided constant, η, can be used to scale down the weights of each new tree, reducing

the effect of a single tree on the final score.

• Comparable to random forests in operation is column-sampling
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3.18.5.5 LightGBM

In 2017 a novel Gradient Boosting Decision Tree (GBDT) algorithm LightGBM [50] was de-

veloped, which has been employed in a variety of data mining applications, including classi-

fication, regression, and ordering. Two innovative techniques are included in the LightGBM

algorithm, namely gradient-based one-side sampling and exclusive feature bundling.

LightGBM aims to find an approximation f̂(x) to a particular function f∗(x) that minimizes

the expected value of a particular loss function L(y, f(x)) given the supervised training set

{(xi, yi)}ni=1 as follows:

f̂ = argmin
f
Ey,XL(y, f(x)) (3.30)

To approximate the final model which is defined in the following equation, LightGBM inte-

grates a number of T regression trees

∑T
t=1 ft(X).

fT (X) =

T∑
t=1

ft(X) (3.31)

Regression trees can be written as wq(x), q ∈ {1, 2, . . . , J}, where J is the number of leaves, q

represents the tree’s decision-making rules and w is a vector that represents the sample weight

of leaf nodes. As a result, at step t, LightGBM would be trained in an additive way as follows:

Γt =
n∑

i=1

L(yi, Ft−1(xi) + ft(xi)) (3.32)

Newton’s approach is used in LightGBM to rapidly approximate the objective function. To

make the formulation more simple, the constant term in the equation (2.31) can be removed in

the following way:

Γt
∼=

n∑
i=1

(gift(xi) +
1

2
hif

2
t (xi)) (3.33)

Where

• gi is the first order gradient statistic of the loss function

• hi is the second order gradient statistic of the loss function

The equation (2.32) can be transformed in the following way:

Γt =

J∑
j=1

((
∑
i∈Ij

gi)wj +
1

2
((
∑
i∈Ij

hi + λ)w2
j ))
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Where Ij is the sample set of leaf j.

The optimal leaf weight scores of each leaf node w∗
j for a given tree structure q(x) and the

extreme value of Γk could be solved in the following way:

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ

Γ∗
T = −1

2

J∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ

where Γ∗
T could be considered as the scoring function to gauge how well the tree structure q

is constructed. At the end, after adding the split, the objective function is defined as follows:

G =
1

2
(
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈II gi)
2∑

i∈II hi + λ
)

Where

• IL is the sample set of the left branch

• IR is the sample set of the right branch

LightGBM processes large-scale data and features more efficiently than other algorithms be-

cause in contrast to traditional GBDT-based techniques like XGBoost and GBDT growing trees

horizontally, it grows the tree vertically.

3.18.5.6 CatBoost classifier

CatBoost [51, 52] stands for Categorical Boosting. It belongs to depth-wise gradient boosting

algorithms and was released as an open source machine learning library by Yandex in 2017.

One-hot encoding and label encoding are the two most used methods of handling categorical

data in machine learning. This algorithm’s ability to handle the various categories of data in the

form as they come, without the need to pre-process them, is the reason for its name. Instead of

the need of pre-process, the algorithm simply needs the specification of the set of categorical

features by the usage of the parameter cat featuresparameter.

CatBoost presents two crucial algorithmic innovations: the implementation of ordered boost-

ing, a permutation-driven alternative to the traditional approach, and a cutting-edge technique

for processing categorical features. These advances are the primary components of CatBoost.
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A modified version of the gradient boosting method is the ordered boosting approach. Predic-

tion shifting was considered to be an issue with gradient boosting algorithms. A special kind

of target leakage causes predictions shifting. In order to fight the prediction shift brought on

by a special kind of target leakage found in all current implementations of gradient boosting

algorithms, both methods are built in such a way that they employ random permutations of

the training data.

Gradient boosted decision trees are used by Catboost. To develop a balanced tree, it makes

use of oblivious decision trees. The oblivious trees are easier to fit and more CPU-efficient to

implement than classic trees. For each level of the tree, the left and right splits are created using

the same features. During the training, numerous decision trees will be constructed. Decision

trees created in subsequent iteration will have a minimized loss than trees created in earlier

iterations. In this manner, the iteration will go on until the loss function does not significantly

decrease. The following figure shows how the Catboost algorithm ’s working order.

Figure 3.6: The workflow of a Catboost algorithm

Some information about the algorithm’s steps for the building stages for a single tree is pro-

vided below:

Prior Split Calculation

Quantization will be used in the prior split calculation step to form the buckets from the data.

To determine the potential ways to split data into buckets, quantization is carried out for each

numerical feature. The tree structure is chosen using the information that is generated. The

initial settings provide the quantization technique and the number of buckets. The algorithm

’s starting parameters define the quantization method and the number of buckets.

Transformation of categorical features

Prior to choosing each split in the tree, categorical characteristics are converted to numeri-

cal ones by permuting the buckets at random and choosing the acceptable integer values for
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the labels. Various statistics on combinations of categorical features and combinations of cat-

egorical and numerical features are used for this.

Tree structure selection

The greedy behaviour of the tree structure selection is such that a higher priority is given

to the features having the ability to split the tree. For substitution in each leaf, features are

chosen in order along with their splits. Candidates are chosen based on data obtained from the

preliminary split computation and the conversion of categorical features to numerical features.

The algorithm ’s starting parameters include the tree depth as well as further rules for selecting

the structure.

he following describes how a feature-split pair is selected for a leaf:

1. Candidate feature-split pairs that are possible be assigned to a leaf as the split are aggre-

gated into a list.

2. If all of the candidates from step 1 have been assigned to the leaf, each object has a

number of penalty functions computed for it.

3. Selected is the split that carries the lowest penalty.

The leaf is given the resultant value. For each following leaf, this process is repeated. It is

worth noting that the number of leaves must correspond to the depth of the tree.

A random permutation of classification objects is carried out before the construction of each

new tree. The structure of the following tree is chosen using a measure that indicates the di-

rection for further improving the function.For each object the value is computed sequentially.

The calculation uses the permutation created before the tree construction. In the order they

were arranged before to the operation, the data for the objects are utilised.

3.19 Boosting vs Bagging

The main difference between Boosting and Bagging [53] is that in the latter the weak learn-

ers are fitted in parallel utilizing randomness, while in boosting the learners are trained in a

sequential manner in arrange to be able to perform the data weighting or filtering described

above.
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Similarities between Bagging and Boosting

• Both ensemble approaches start with 1 learner and take N learners..

• Using random sampling, both generate various training data sets.

• In both cases, the final decision is made by either utilizing the majority vote of the learn-

ers in classification or taking the average of the N learners in regression.

Differences between Bagging and Boosting

Boosting [54]:

• A way of combining predictions that belong to the different types.

• Sequential

• Boosting aims to lessen bias.

• Increases variance (large ensemble can cause over-fitting)

• High dependency between ensemble elements

• Models are weighted based on how well they perform.

• Performance of previously constructed models has an impact on newly constructed mod-

els.

• Every new subset contains the elements that were poorly predicted by previous models.

• Apply boosting if the model is stable and simple (high bias).

Bagging:[54]

• The simplest method of merging forecasts of the same type.

• Parallel

• Bagging attempts to lower variance and address the overfitting issue.

• The bias does not change much

• Attempts to minimize correlation between ensemble elements.

• Every model is given equal weight..
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• Each model is built independently.

• From the complete training dataset, several training data subsets are randomly selected

with replacement.

• Apply bagging in case the model is unstable (high variance).

In the present thesis, the following Boosting algorithms: Gradient Boosting Machines (GBM),

Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machines (LightGBM), Cate-

gorical Boosting (CatBoost) and AdaBoost are implemented and briefly presented. Also, the

following Bagging algorithms: Random Forests, Extremely Randomized Trees ang Bagging are

implemented and briefly presented.

3.20 Extra Trees Classifier

Extra Trees Classifier [55], also known as Extremely Randomized Trees Classifier, is a form

of ensemble learning method. To provide its classification result, it combines the output from

multiple de-correlated decision trees that have been gathered in a forest. Its only major con-

ceptual difference from a Random Forest Classifier is how the decision trees in the forest are

built. There are two main differences in the construction of the tree: bootstrap method is not

used and rather than using the optimal splits, nodes are divided based on random splits among

a randomly chosen subset of the features at each node. Therefore, randomness in Extra Trees

originates from the random splitting of all observations, not from bootstrapping of the data.

In more detail, the original training sample is used to build each decision tree in the Extra Trees

Forest. Afterwards, each decision tree is given a random sample of k features from the feature-

set at each test node, from which it must choose the best feature to split the data according

to certain mathematical criterion for example the Gini Index. There are several de-correlated

decision trees produced as a result of this random sampling of features.

When the aforementioned forest structure is used, Gini index (if it is used to build the for-

est) is calculated for each feature to perform feature selection. The process of feature selection

involves ranking each feature according to its Gini importance and selecting the top k features.

Extremely randomized trees have even more randomization in the computation of splits. A

random subset of candidate features is employed, much as in random forests, but instead of

searching for the thresholds that are the most discriminative, the best of these randomly pro-

duced thresholds is chosen as the splitting criteria. This frequently permits reduction in the

variance of the model at the cost of a little increase in bias.
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3.21 Stacking

Stacking is an ensemble learning technique [56] defined as the procedure that combines several

estimators via a meta-model (meta-regressor or meta-classifier) aiming to reduce their biases.

Predictions from each estimator (base-level model) are stacked together and the meta-model

gets them as input to calculate the final prediction or otherwise the meta-model is fitted on the

outputs of the base level model as features.

Figure 3.7: Stacking Model

The algorithm for Stacking follows the next steps:

1. Divide the data into a training and validation set,

2. Split the training set into K folds, for instance 10,

3. Fit a base model (e.g. Decision Tree) on 9 folds and make predictions on the 10-th fold,

4. Repeat until predictions are made for each fold,

5. Repeat step 3 – 6 for other base models (e.g. SVM),

6. Utilize predictions from the test set as features to the meta-model,

• For regression: the values passed to the meta-model are numeric.

• For classification: the values passed to the meta-model are probabilities or class

labels.

7. The meta-model makes the final predictions on the test set.
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Voting Classifier

Voting Classifier is an ensemble classifier that uses a number of classifiers to make predictions.

In particular, multiple classifiers are trained, then the aggregation of their findings are passed

into a single model called Voting classifier which predicts the output class based on combined

majority of voting for each output class. Twod ifferent voting methods are supported by Voting

Classifier:

• Hard Voting: The class with the highest majority of votes is the predicted output. In

other words, the class which has the highest probability to be predicted by each of the

classifiers is the predicted output.

• Soft Voting: For each class, the average of the probabilities given to this class by each

classifier is calculated. The predicted output is the class with the highest probability

averaged by each classifier.

3.22 Voting regression

Voting Regressor [57] is an ensemble meta-estimator that comprises several machine learning

models and averages their individual predictions across all models to form a final prediction.

This method is useful for a set of well performing models to compensate for their individual

weaknesses in order to build a single model that can better generalize.

3.23 Theory for choosing hyperparmaters for the models

3.23.1 Hyperparameter tuning

Selecting the best set of hyperparameters for a learning algorithm is known as hyperparameter

tuning [58]. A model argument known as a hyperparameter is one whose value is predeter-

mined before learning process begins since it is unknown and cannot be learnt from the data.

Although, the model’s performance is impacted by the values given to these arguments. As a

result, since the model’s hyperparameters’ optimum values are unknown, tuning them is cru-

cial. Distinct hyperparameter settings result in different models that may perform differently

in practice.

In case the model has several hyperparameters, the goal is to identify the ideal combination of

hyperparameter values by scanning a space with multiple dimensions. Because of this, hyper-

parameter tuning may be an exceptionally complex and time-expensive task. There are two
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simple techniques to tune the hyperparameters: Grid search and Random search. oth of these

techniques include cross validation method which will be presented in more detail below. Also,

the two aforementioned techniques will be described in further detail after the presentation of

the cross-validation technique.

3.23.1.1 Cross validation

A statistical technique known as cross validation compares and evaluates learning algorithms

by splitting data into two segments: one for learning or training a model and the other for

model evaluation. There are three methods of cross validation:

• K-fold method: samples of equal sizes resulting from the shuffling of the original data

set. One of the k samples is saved to be utilized as a testing sample for the model. The

model is trained using the remaining samples. Then, with each of the remaining k - 1

samples, this process is repeated k times. The cross validation procedure has an error

value for each run. The average error is then calculated from all the k runs. As a result,

the variance is decreased, but this method’s disadvantage is its running time.

• Holdout method: The sample for the holdout technique is divided into two segments,

one for training and the other for testing. The training set ’s size is typically bigger

than the testing set ’s one due to the size of this split. The model is fitted using the

larger training sample and the model is tested using the test set. This cross validation

technique is the simplest, because it is just a single cross validation. The holdout method

has a faster running time than the K-fold method which is its advantage.

• Leave one out method: With a very large number for k, often equal to the size of

the sample universe, this approach is similar to the k-fold method. With the exception

of one, which is left out for testing, the model is trained on every value in the dataset.

Although resource and time expensive, this method decreases the variance.

3.23.1.2 Grid search

Grid search is the simplest hyperparameter tuning approach. It is an exhaustive technique

that examines all the candidate combinations of values for the hyperparameters. As a result,

it actually finds the domain’s optimum point. It is worth noting that checks every point in

the grid by k-fold cross-validation, so it requires k training iterations. Therefore, it takes a lot

of time to test every possible combination of the space, which is occasionally unavailable. As

a result, its main disadvantage is its running time. Although, Grid search may be costly and

complex, it is quite effective in finding the best combination of values of the hyperparameters.
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In the proposed master thesis, every combination of hyperparameters used in the predictive

models is selected by applying grid search which uses 10-cross validation.

3.24 Evaluation techniques used for themachine learningmod-
els

Evaluation of a machine learning model’s performance on a test set

A common technique to evaluate the performance of a machine learning model on unseen

data is to use a subset of data called test set. It is a separate subset of data used to test the

model after completing the training. It is worth noting that the training set and the test set

are mutually exclusive sets. In this master thesis, the data is apportioned into training and test

sets, with an 80-20 split.

K cross validation for evaluating a machine learning model

A machine learning model’s evaluation might be challenging. As previously mentioned, the

data is randomly divided into a training set and a test set in order to assess the model’s perfor-

mance. The training set is used to train the model. By calculating various model performance

metrics on the test set, the model’s performance is assessed. The performance measurements

obtained on one test set may be considerably different from the performance metrics derived

on another test set, making this approach not very reliable. Additionally, in case a model is

evaluated for different “hyperparameters”, there is still a risk of overfitting on the test set, since

the estimator’s parameters can be tuned until the estimator performs optimally. In this manner,

the test set’s knowledge might “leak” into the model, and evaluation measures will no longer

reflect generalization performance.

Another section of the data set can be also held out as a so-called “validation set” which will

aid in dealing with the previous problems. Thus, the data set is split into three subsets: training

set, validation set and test set. In particular, training set is used to train the model, and the test

set is used for final evaluation when it seems that the experiment was successful.

Although, when the available data is divided into three sets, the size of the training set utilized

to learn the model is significantly decreased and the results may depend on a particular random

selection for the pair of train-set and validation-set. A method known as cross-validation (CV)

has been suggested as a solution to this problem. The validation set is no longer necessary for

performing the CV, but the test set still be held out for final evaluation. The k-fold CV applied

on the training set is one common approach. First, this method divides the training set into k
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folds or segments of equal size, making sure that each fold is utilized as a “validation” set at

some point. k iterations of training and validation are then completed. In each i− th iteration,

where i ∈ {1, 2, ..., k}:

• A different fold of the data is firstly held-out

• The model is trained on the remaining k-1 folds

• The fitted model is validated on the held-out fold, i.e. it is used as a test set to calculate

a performance metric.

After the completion of k-cross validation procedure, k values of a performance metric have

been calculated. The average of these k values computed in the loop is the performance mea-

sure reported by k-fold cross-validation. Although this method could be computationally ex-

pensive, it doesn’t waste as much data as the case when fixing an arbitrary validation set.

In summary, cross-validation is only utilized on training data while evaluating a model, and

a test set is maintained separate for the final assessment. This method’s goal is to determine

whether the model that will be used can be generalized. Therefore, in this master thesis, each

metric that evaluates the performance of the model was calculated in two ways. Firstly, it

was computed using the 10-cross validation technique on the training set and secondly it was

simply computed on the test set.

3.24.1 Binary classification

Classification matrix

A classification model’s or “classifier’s” performance on a test set where the real values that

correspond to the model’s predictions are known is frequently evaluated using a confusion

matrix [59], which is a N ×N table where N is the number of target classes.

For a binary classification problem, a 2×2 matrix is defined as follows with four count values:
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Figure 3.8: Confusion matrix for classification

Where

• There are two target classes: positive and negative

• The actual values of the target variable are represented by the columns

• The predicted values of the target variable by the ML model are represented by rows

• True Positive (TP):

– The predicted value equals to the actual value

– The predicted value is positive and the actual value is positive

• True Negative (TN):

– The predicted value equals the actual value

– The predicted value is negative and the actual value is negative

• False Positive (FP)

– The predicted value is incorrectly predicted

– The predicted value is positive and the actual value is negative

• False Negative (FN)

– The predicted value is incorrectly predicted

– The predicted value is negative and the actual value is positive

Accuracy
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The accuracy metric [60] is the percentage of correct predictions to the total of all predictions

and is defined as follows:

Accuracy =
Correct Predictions

Total predictions

=
TP + TN

TP + TN + FP + FT

Sensitivity or Recall or True Positive Rate (TPR)

The percentage of data points that truly belong to the “positive” category and are accurately

predicted as such in relation to all actual “positive” data points is known as Sensitivity, Recall,

or True Positive Rate (TPR) [60]. It demonstrates how well the positive class was predicted. The

recall metric, in other words, measures the model’s capability to identify positive data points.

As a result, it exclusively focuses on the predictions made for the positive data points. How

the negative data points are classified has no bearing on this.

It is defined as follows:

sensitivity =
TP

TP + FN

More positive data points are detected when recall is higher.

Specificity or True Negative rate (TNR)

The percentage of data points that actually belong to the negative class and are correctly pre-

dicted as negative when compared to all actual negative data points is known as Specificity or

True Negative rate (TNR) [60]. It indicates how well the negative class is predicted.

It is defined as follows:

specificity =
TN

TN + FP

More negative data points are detected when specificity is higher.

Precision

The precision [60] is the ratio of the number of data points that were correctly predicted as

positive to the total number of the data points that were correctly or wrongly predicted as

positive. In other words, the precision measures how well the model predicts a data point to

be positive.
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Precision is defined as follows:

precision =
TP

TP + FP

F1-score

A harmonic mean of precision and recall is the F1-score. The F1-score [60] reflects the balance

between the precision and the recall, which gives a combined idea of these two measurements.

The range for F1-score is [0,1]. F1 increases as the classifier’s predictive performance improves.

F1-score is defined as follows:

F1− score = 2 ∗ precision ∗ recall
precision+ recall

=
TP

TP + 1
2(FP + FN)

AUC-ROC score

The name AUC [61] stands for “area under the curve”. In this case, the curve is the Receiver

Operating Characteristics (ROC) curve which is a coordinate schema analysis method. Sensi-

tivity vs. 1-Specificity are plotted on this graph for various probabilities thresholds of model

predictions.

In other words, at various classification thresholds, the ROC curve depicts the relationship

between false positive rate and true positive rate. This single curve therefore represents a

summary of the information included in the cumulative distribution functions of the scores of

the two classes. As the choice of the classification threshold varies, the (ROC) curve may be

considered as a full representation of the performance of the classifier. Therefore, a common

assessment statistic for model performance is the AUC.

AUC ’s range is the interval [0, 1]. The performance of the model improves as AUC value

increases. An excellent model has an AUC that is very near to 1, which indicates that it has

strong separability. Good predictive performance is often indicated by an AUC value > 0.8.

An AUC near to 0 indicates a poor model, which has the worst separability metric.

In practice, this implies that the results are reversed, i.e., negative points are classified as pos-

itive ones and positive points are classified as negative ones. If the AUC is 0.5, the model is

unable to distinguish between different classes or otherwise it does not have any class separa-

tion ability. The probability that the model would rank a randomly selected positive instance

higher than a randomly selected negative instance is another way to interpret AUC.
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Figure 3.9: ROC curve

Balanced Accuracy

Balanced Accuracy is the arithmetic mean of Sensitivity(TPR) and Specificity (TNR). It is par-

ticularly useful for imbalanced data sets.

Balanced Accuracy is defined as follows:

Balanced Accuracy =
Sensitivity + Specificity

2

3.24.2 Regression task

Mean Absolute Error (MAE)

The absolute differences between the actual and predicted values are averaged using then Mean

Absolute Error (MAE). In MAE, each error is given the same weight. The prediction result is
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more accurate the smaller the MAE value. The following equation provides its definition:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where n is the number of observations, yi and ŷi are the actual and predicted values, respec-

tively.

Mean Squarred Error (MSE)

A performance indicator that measures how well a model fits the target is the mean squared

error, or MSE [62]. The average of all squared differences between the actual value and the

predicted one defines the mean squared error as follows:

MSE =

∑n
i=1(yi − ŷi)2

n

where n denotes the number of observations, yi is the actual true value of the i-th data, ŷi is the

predicted value of the i-th data. A high MSE value indicates poor model performance, whereas

an MSE of 0 indicates a flawless model that accurately predicts the target.

The average squared differences between the actual values and the predicted values is what

is referred to as MSE. As a result of squaring the differences, the unit of MSE is different from

the unit of the y-values, which makes MSE interpretation somewhat hard. Another measure

of performance is the root mean squared error (RMSE), which is the square root of the MSE.

RMSE in contrast to MSE takes on the same unit as that of the target values.

Root Mean-Square Error (RMSE)

It is common practice to measure the difference between values predicted by the model and

the actual values using the Root Mean-Square Error (RMSE) [63]. It is fairly comparable to

the MAE, but it penalizes higher absolute values by assigning them greater weight than the

MAE. The difference between MAE and RMSE increases as the variation in the individual errors

increases. Following is the definition of RMSE:

RMSE =

√∑n
i=1(yi − ŷi)2

n

The squared value of the prediction errors is used in RMSE. This aids in determining the influ-

ence of outliers. In regression, the RMSE is often employed as the loss function and a decreased

RMSE value enhances the model’s performance. The accuracy of predictions can be measured

since the higher the error, the larger the RMSE. In other words, more precise predictions are
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indicated by a prediction model with a lower RMSE value.

Goodness-of-fit (R2)

Another indicator of how well a model’s predicted values match actual values is the R2
coeffi-

cient. A model’s optimum R2
value is 1, which means it can fully explain all of the variability

of the target. It is defined in the following way:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

where ȳ stands for the average of the response variables. The MAE and RMSE values are al-

most zero when the predicted values are close to the actual values. Conversely, R2
around 1

implies an excellent match between actual and predicted values.

*Mean Arctangent Absolute Percentage Error (MAAPE)

The normal MAPE [63] a severe drawback, it creates infinite or undefined values when the ac-

tual values are zero or very near to zero. Mean Arctangent Absolute Percentage Error (MAAPE)

overcomes this drawback by transforming the normal MAPE using the inverse tangent func-

tion.

In practice, this transformation via arctangent function resolves two issues. Firstly, a more

balanced penalty for small and large errors is retained. And secondly, when the actual values

approach zero, the bounded range of the arctangent function assures that undefined or infinite

errors may be avoided.

As a result, MAAPE is an indicator of prediction accuracy that enhances the quality of mea-

surements of actual values that are zero or nearly zero. MAAPE is defined in the following

way:

MAAPE =
1

n

n∑
i=1

AAPEi =
1

n

n∑
i=1

arctan(|yi − ŷi
yi
|)

It is worth noting that the unbounded range of MAPE [0,∞] has been turn into the bounded

range [0, π/2] for MAAPE. It is also noted that more accurate predictions are indicated by a

prediction model with a lower MAAPE value.

Symmetric Mean Absolute Percentage Error (SMAPE)
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Symmetric mean absolute percentage error (SMAPE) [64] is an accuracy metric based on rela-

tive or percentage errors. The absolute error is divided by the size of the actual value to form

the relative error. Additionally, SMAPE is a relative error metric that is scale independent and

fixes MAPE’s disadvantages.

Although highly intuitive, MAPE degenerates into positive infinity the moment any of the

actual values is zero. MAPE may readily explode towards infinity, even for very tiny actual

values. When any yi is 0, SMAPE does not fall apart, in contrast to the slightly simpler MAPE

measure. SMAPE is defined in the following way:

100%

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

SMAPE has a lower bound and an upper bound, unlike the MAPE metric. It may be used to

compare prediction results across datasets because it is scale-independent. The SMAPE is con-

sistently between 0% and 200%, with 0% denoting zero error. When SMAPE numbers are small

enough, especially when under 30%, they can be interpreted much like MAPE values.

SMAPE has the drawback that the error value will be close to 100% if the actual value or pre-

dicted value equals 0. A forecast’s accuracy increases with decreasing SMAPE value .

Summarization of the of the regreesion metrics

The table below summarises the useful information for each of the previously presented metric:

Metric Scale dependency Formula Value range Aim to

RMSE Dependent

√∑n
i=1(yi−ŷi)2

n [0,∞] Decrease

MAE Dependent MAE = 1
n

∑n
i=1 |yi − ŷi| [0,∞] Decrease

SMAPE Independent
100%
n

∑n
i=1

|yi−ŷi|
(|yi|+|ŷi|)/2 [0,200] Decrease

MAAPE Independent
1
n

∑n
i=1 arctan(|

yi−ŷi
yi
|) [0, π/2] Decrease

MSE Dependent MSE =
∑n

i=1(yi−ŷi)
2

n [0,∞] Decrease

R2
Independent 1−

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳi)2

[−∞, 1] Increase



Chapter 4

Results

Chapter 4 first presents the results of the statistical analysis applied to each of the four re-

gression and classification problems specified in Section 2.5 in order to select the predictors

that are statistically significant for the prediction of the target variable. In particular, we focus

on feature selection techniques to identify the most important predictors that are statistically

significant in predicting the target variable of each problem. For each of the four problems,

we start with a large set of candidate predictors and aim to identify the subset of predictors

that have the strongest association with the target variable. To accomplish this, we employ ap-

propriate statistical tests that evaluate the predictive power of each candidate predictor. These

methods help us to determine the relevance and importance of each predictor in the context of

the overall model. By applying feature selection techniques, we can reduce the number of pre-

dictors used in our model while maintaining a high level of predictive accuracy. This approach

is particularly useful when dealing with high-dimensional datasets that contain a large num-

ber of potential predictors, as it helps to avoid overfitting and improve model interpretability.

Overall, our goal in this section is to identify the most significant predictors that contribute to

the prediction of the target variable in each of the four problems, providing insights that can

be used to better understand and address this important mental health issue.

Chapter 4 also presents the results of the machine learning models that were developed and

tested to predict the target variable for each of the following three problems: Problem: 1 D-

from-M score, Problem 2: D-from-M class, Problem 3: M-from-D score. We utilized a range

of machine learning algorithms, to develop and test our models. For each problem, we used

a combination of data pre-processing, feature engineering, and model selection techniques to

develop the most accurate and robust machine learning model possible. We also utilized cross-

validation techniques to ensure that our models were not overfitting to the training data. The

performance of each model was evaluated using a variety of metrics, such as mean squared

error, mean absolute error, R-squared, accuracy, precision, recall, and F1 score. The results are

75
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presented in a clear and concise manner, making it easy for the reader to understand the effec-

tiveness of each model in predicting the target variable. By presenting these results, we aim to

contribute to the growing body of literature on machine learning in various fields and provide

insights into the effective use of these techniques for problem-solving.

4.1 Feature Selection

In this section, we present the results of the Feature selection for each of the four regression and

classification problems specified in Section 2.5. More specifically, for each problem the results

are organized and presented in four tables corresponding to the four different data types (i.e.,

ordinal, numerical, binary and nominal) of the features/predictors of the dataset. In each table,

rows correspond to features of the dataset, the second column refers to the statistical test used

to test if the feature of the row has a statistically significant effect at 5% significance level on

the target variable of the problem, the third column contains the result of the test, i.e. the

✓symbol if the feature of the row has a statistically significant effect on the target variable, or

the ✗ if there is no statistically significant effect. The numbers in the fourth column corresponds

either to the effect size of the statistical test performed or to the correlation between the target

variable and the feature of the corresponding row. It is worth noting that we will later use as

predictors for each problem only the features with the ✓symbol.

4.1.1 Problem 1 (D-from-M score): Depression score through memory

This section presents the outcomes of the statistical analysis conducted on the depression score

and various independent features or questionnaire attributes that were candidate predictors of

the depression score. The results of these evaluations have been divided into four sections based

on the types of independent variables analyzed. Notably, only the features that demonstrated

statistical significance to the depression score, as indicated by the 3 symbol, were utilized as

predictors for the prediction of the depression score
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4.1.1.1 Ordinal features vs. Depression (ZUNG) score

Feature Statistical test statistically significant Kendall Rank correlation

Which of the following best describes your education? Spearman’s rank-order test ✓ -0.09026

How good do you think your memory is? [Mnemonic Ability] Spearman’s rank-order test ✓ -0.25208

In the last two weeks what was your average mood? [Mood] Spearman’s rank-order test ✓ -0.51415

Do you decide to do something in the next few Spearman’s rank-order test ✓ 0.27637

minutes and then forget to do it?

Having trouble recognising a place you’ve visited before? Spearman’s rank-order test ✓ 0.23804

Do you find it difficult to do something you intended to do Spearman’s rank-order test ✓ 0.26063

even if it is in front of you, such as taking a pill or turning off the stove?

Are you forgetting something you were told a few minutes ago? Spearman’s rank-order test ✓ 0.27546

Do you forget appointments if someone doesn’t remind you Spearman’s rank-order test ✓ 0.21854

or if you haven’t written them down in a calendar?

Do you have trouble recognising a character Spearman’s rank-order test ✓ 0.18621

on TV from one scene to the next?

Forget to buy something you were planning to get, Spearman’s rank-order test ✓ 0.26403

like a gift, even though you’ve seen the store?

Do you find it difficult to recall things that Spearman’s rank-order test ✓ 0.28094

have happened to you in the last few days?

Do you repeat the same story to the same Spearman’s rank-order test ✓ 0.24980

person in different circumstances?

Do you forget to take something with you before you leave a room Spearman’s rank-order test ✓ 0.28948

or before you go out even if it is right there in front of you?

Do you lose things you just put somewhere, Spearman’s rank-order test ✓ 0.25645

like a magazine or your glasses?

Do you forget to mention something Spearman’s rank-order test ✓ 0.29283

or give something to someone who asked you?

Are you looking at something without realizing Spearman’s rank-order test ✓ 0.31735

you saw it a few minutes ago?

If you try to contact a friend or relative who is absent Spearman’s rank-order test ✓ 0.26598

at the time, do you forget to try again later?

Do you forget what you saw on TV the day before? Spearman’s rank-order test ✓ 0.24387

Are you forgetting to mention something you ? Spearman’s rank-order test ✓ 0.31349

intended to mention just a few minutes ago?

Table 4.1: Results of the Feature selection on the ordinal features that are candidate to predict

depression (ZUNG) score.

The above results from the statistical analysis reveals compelling evidence that each of the

19 candidate ordinal features, specifically designed to predict the Depression (ZUNG) score,

demonstrates a noteworthy and statistically significant influence on the score. Notably, among

these ordinal features, the comprehensive set of 16 questions from the (PRMQ) questionnaire

is included. This observation holds significant implications, as it underscores the preliminary

indication that the incorporation of memory-related questions within the predictive model has

the potential to make a valuable contribution to accurately predicting the depression (Zung)

score. This finding suggests that memory-related factors may play a substantial role in under-

standing and evaluating an individual’s depressive tendencies as measured by the Zung scale.

Further investigation and analysis are warranted to explore the precise nature and extent of the

relationship between these memory-related questions and the prediction of depression score.

More information about the statistical tests applied are given in Appendix A.1.2
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4.1.1.2 Nominal features vs. Depression (ZUNG) score

Feature Statistical test Statistically significant Effect size

Which statement best describes the quality of your sleep? The Kruskal-Wallis H test ✓ 0.14168

Where do you live? The Kruskal-Wallis H test ✓ 0.01023

Do you smoke? The Kruskal-Wallis H test ✓ 0.01111

Table 4.2: Results of the feature selection on the nominal features that are candidate to predict

depression (ZUNG) score

The findings indicate that the three potential nominal features, designed to forecast the depres-

sion (ZUNG) score, exhibit a notable statistical impact on it. As a result, all three of these fea-

tures will be incorporated into the machine learning model to estimate the depression (ZUNG)

score. This choice is motivated by the belief that integrating these significant nominal features

can improve the model’s ability to predict the depression (ZUNG) score. By including these

particular features, our objective is to leverage their influence and enhance the precision of the

predictions produced by the machine learning model. More information about the statistical

tests applied are given in Appendix A.1.4
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4.1.1.3 Binary features vs. Depression (ZUNG) score

Feature Statistical test Statistically significant Point Biserial

Do you think you have memory disorders that affect your daily life? Welch’s t-Test ✓ 0.31146

Have you ever visited a memory clinic, psychologist or psychiatrist? Welch’s t-Test ✓ 0.18863

Is there a family history of memory disorders Welch’s t-Test ✗ 0.02391

(mother, father, grandfather, grandmother, brother or sister)?

Currently, you have a known disease that affects memory Welch’s t-Test ✓ 0.28281

(e.g., depression, Alzheimer’s disease, mild cognitive

impairment, Alzheimer’s disease, Multiple Sclerosis, etc.)?

Do you think you experience mood disorders Welch’s t-Test ✓ 0.57886

(e.g. depression) that affect your daily life?

Do you suffer from a medical condition?If so, which one? Welch’s t-Test ✓ -0.13568

[I do not suffer from any pathological problem. I am perfectly healthy.]

Do you suffer from a medical condition? Welch’s t-Test ✓ -0.0414

If so, which one? [Blood Pressure]

Do you suffer from a medical condition?If so, which one? Welch’s t-Test ✗ 0.01255

[Chronic Atrial Fibrillation or Other Cardiac Problem]

Do you suffer from a medical condition? Welch’s t-Test ✗ -0.00168

If so, which one? [Stroke]

Do you suffer from a medical condition? Welch’s t-Test ✗ -0.00904

If so, which one? [High Cholesterol]

Do you suffer from a medical condition? Welch’s t-Test ✓ 0.22535

If so, which one? [Diagnosed Anxiety]

Have you ever suffered a head injury Welch’s t-Test ✓ 0.03718

that resulted in hospitalisation?

Do you suffer from hypothyroidism? Welch’s t-Test ✓ 0.05848

Do you suffer from Diabetes mellitus? Welch’s t-Test ✗ 0.02601

What gender are you? Welch’s t-Test ✓ 0.24985

Do you exercise more than 3 hours a week? Welch’s t-Test ✓ -0.20194

Have you been a confirmed case/infected with Welch’s t-Test ✗ -0.00944

coronavirus (COVID-19) in the past?

Table 4.3: Results of the Feature selection on the binary features that are candidate to predict

depression (ZUNG) score

From the above results, we can see that among the 17 candidate binary features to forecast the

depression (ZUNG) score, an impressive 11 of them manifest a statistically significant influ-

ence in predicting the aforementioned score. It is worth noting, however, that certain binary

features concerning a family history of memory disorders, chronic atrial fibrillation or cardiac

problems, stroke, high cholesterol, diabetes mellitus, and confirmed cases of COVID-19 in the

past do not demonstrate a statistically significant effect on the prediction process. This find-

ing suggests that these particular binary features may not carry substantial predictive power

in relation to the depression (ZUNG) score and, consequently, their inclusion in the model

may not significantly contribute to accurately estimating the depression (ZUNG) score. More

information about the statistical tests applied are given in Appendix A.1.3
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4.1.1.4 Numeric features vs. Depression (ZUNG) score

Feature Statistical test Statistically significant Pearson correlation coefficient (r)

How many glasses of alcohol do you consume per week? Pearson correlation test ✗ 0.66948

[Beer - 500ml glass of 5% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.000024

[Cider (330ml) 4.5% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.00008

[Wine - Medium glass of Chardonnay (175ml) 12.5% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✗ 0.30333

[Tsipouro, Ouzo or raki (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.00378

[White Drink (vodka, tequila, gin, etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✗ 0.05632

[Dark Drink (rum, whisky etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.000001

[Sweet liqueur (40ml) 17% alcohol]

Fill in your age. Pearson correlation test ✓ 6.92547 ∗ 10−37

Response time to question: Dem01 Pearson correlation test ✗ 0.4264

Response time to question: Dem02 Pearson correlation test ✗ 0.86086

Response time to question: Dem03 Pearson correlation test ✗ 0.12006

Response time to question: Dem04 Pearson correlation test ✗ 0.86356

Response time to question: Dem05 Pearson correlation test ✗ 0.08223

Response time to question: Dem06 Pearson correlation test ✗ 0.49328

Response time to question: Dem07 Pearson correlation test ✗ 0.64739

Response time to question: Dem08 Pearson correlation test ✗ 0.13909

Response time to question: Dem09 Pearson correlation test ✗ 0.43733

Response time to question: Dem10 Pearson correlation test ✓ 0.00262

Response time to question: Dem11 Pearson correlation test ✓ 0.00784

Response time to question: Dem12 Pearson correlation test ✗ 0.69373

Response time to question: Dem13 Pearson correlation test ✓ 0.01364

Response time to question: Dem14 Pearson correlation test ✗ 0.17091

Response time to question: Dem15 Pearson correlation test ✓ 0.00006

Response time to question: Dem16 Pearson correlation test ✗ 0.4732

Response time to question: Dem17 Pearson correlation test ✗ 0.30811

Response time to question: Dem18 Pearson correlation test ✗ 0.74661

Response time to question: SEM02 Pearson correlation test ✗ 0.84552

Response time to question: SEM01 Pearson correlation test ✗ 0.29125

Response time to question: Mem01 Pearson correlation test ✓ 0.00599

Response time to question: Mem02 Pearson correlation test ✗ 0.31806

Response time to question: Mem03 Pearson correlation test ✗ 0.09978

Response time to question: Mem04 Pearson correlation test ✗ 0.91829

Response time to question: Mem05 Pearson correlation test ✗ 0.08709

Response time to question: Mem06 Pearson correlation test ✗ 0.34058

Response time to question: Mem07 Pearson correlation test ✗ 0.35084

Response time to question: Mem08 Pearson correlation test ✗ 0.57598

Response time to question: Mem09 Pearson correlation test ✗ 0.34009

Response time to question: Mem10 Pearson correlation test ✓ 0.02817

Response time to question: Mem11 Pearson correlation test ✗ 0.05928

Response time to question: Mem12 Pearson correlation test ✗ 0.44828

Response time to question: Mem13 Pearson correlation test ✗ 0.79531

Response time to question: Mem14 Pearson correlation test ✗ 0.25996

Response time to question: Mem15 Pearson correlation test ✗ 0.11301

Response time to question: Mem16 Pearson correlation test ✗ 0.62853

Table 4.4: Results of the feature selection on the numeric features that are candidate to predict

depression (ZUNG) score

Based on the results presented above, it is evident that out of the 44 candidate numerical fea-

tures considered for predicting the depression (ZUNG) score, a total of 11 features demonstrate
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a statistically significant effect on the score. Notably, among these 11 significant features, four

of them pertain to the quantity of alcohol consumption per week, specifically focusing on cider,

wine, white drink, and sweet liqueuer. Additionally, other significant features include age, re-

sponse times to two questions belonging to PRMQ questionnaire: Mem01, Mem10 and response

times to questions related to some pathological diseases, a history of head injury resulting in

hospitalization, information regarding diabetes mellitus, and the quantity of some kind of alco-

hol consumption per week. The identified findings emphasize the notable importance of these

specific features in effectively predicting the depression (ZUNG) score. Consequently, based

on their statistical significance, we have made a deliberate decision to include these features as

predictors in the machine learning model that aims to forecast the depression (ZUNG) score.

By incorporating these influential features into the model, we aim to leverage their predic-

tive power and enhance the accuracy of the predictions generated for the depression (ZUNG)

score. This strategic choice underscores our commitment to utilizing the most relevant and

statistically significant factors to optimize the performance of the machine learning model in

predicting the depression (ZUNG) score. More information about the statistical tests applied

are given in Appendix A.1.1

To sum up, we initially started with a total of 83 candidate input features to predict Depression

(ZUNG) score. Among them, there were 17 binary features, 19 ordinal features (16 of them

were the questions from the PRMQ questionnaire), 3 were nominal data and 44 were numeric

features (36 of them were response time variables). After applying feature selection, we ended

up with 44 input features to predict Depression (ZUNG) score. Among them, there are 11

binary features, 19 are ordinal features, 3 are nominal features and 11 are numeric features.

4.1.2 Problem 2 (D-from-M class): Depression class through memory

Within this section, we present the findings derived from the statistical analysis performed

on the depression class variable and the independent features or questionnaire attributes that

were evaluated as potential predictors of this variable. The outcomes of these assessments have

been thoughtfully categorized into four sections, based on the distinct types of independent

variables investigated. It is worth highlighting that only those particular features which ex-

hibited a statistically significant association with the depression class variable, as signified by

the 3 symbol, were ultimately employed as predictors in the prediction of the depression class

variable.
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4.1.2.1 Ordinal features vs. Depression (ZUNG) class

Feature Statistical test statistically significant Effect size

Which of the following best describes your education? Mann-Whitney U test ✓ 0.07728

How good do you think your memory is? [Mnemonic Ability] Mann-Whitney U test ✓ 0.26572

In the last two weeks what was your average mood? [Mood] Mann-Whitney U test ✓ 0.54599

Do you decide to do something in the next few Mann-Whitney U test ✓ -0.26667

minutes and then forget to do it?

Having trouble recognising a place you’ve visited before? Mann-Whitney U test ✓ -0.20636

Do you find it difficult to do something you intended to do Mann-Whitney U test ✓ -0.23962

even if it is in front of you, such as taking a pill or turning off the stove?

Are you forgetting something you were told a few minutes ago? Mann-Whitney U test ✓ -0.28504

Do you forget appointments if someone doesn’t remind you Mann-Whitney U test ✓ -0.21442

or if you haven’t written them down in a calendar?

Do you have trouble recognising a character on Mann-Whitney U test ✓ -0.14792

TV from one scene to the next?

Forget to buy something you were planning to get, Mann-Whitney U test ✓ -0.23745

like a gift, even though you’ve seen the store?

Do you find it difficult to recall things that Mann-Whitney U test ✓ -0.27041

have happened to you in the last few days?

Do you repeat the same story to the Mann-Whitney U test ✓ -0.23944

same person in different circumstances?

Do you forget to take something with you before you leave a room Mann-Whitney U test ✓ -0.27583

or before you go out even if it is right there in front of you?

Do you lose things you just put somewhere, Mann-Whitney U test ✓ -0.24946

like a magazine or your glasses?

Do you forget to mention something Mann-Whitney U test ✓ -0.27621

or give something to someone who asked you?

Are you looking at something without realizing Mann-Whitney U test ✓ -0.29716

you saw it a few minutes ago?

If you try to contact a friend or relative who is absent Mann-Whitney U test ✓ -0.26033

at the time, do you forget to try again later?

Do you forget what you saw on TV the day before? Mann-Whitney U test ✓ -0.23018

Are you forgetting to mention something Mann-Whitney U test ✓ -0.29548

you intended to mention just a few minutes ago?

Table 4.5: Results of the feature selection on the ordinal features that are candidate to predict

depression (ZUNG) class

The statistical analysis results presented above provide compelling evidence that each of the

19 candidate ordinal features to predict the Depression (ZUNG) class variable, exerts a signif-

icant and noteworthy influence on this variable. Notably, among these ordinal features, the

inclusive set of 16 questions derived from the (PRMQ) questionnaire is encompassed. This

noteworthy observation holds substantial implications, as it highlights the initial indication

that the inclusion of memory-related questions within the predictive model holds the poten-

tial to contribute significantly to accurately predicting the depression (Zung) class variable.

This finding suggests that memory-related factors may play a substantial role in understand-

ing and evaluating an individual’s propensity towards depression as measured by the Zung

scale. Further investigation and analysis are necessary to delve deeper into the precise nature

and extent of the relationship between these memory-related questions and the prediction of
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the depression class variable. More information about the statistical tests applied are given in

Appendix A.3

4.1.2.2 Nominal features vs. Depression (ZUNG) class

Feature Statistical test Statistically significant Cramer’s V

Which statement best describes the quality of your sleep? χ2
test ✓ 0.31191

Where do you live? χ2
test ✓ 0.07445

Do you smoke? χ2
test ✓ 0.10267

Table 4.6: Results of the feature selection on the nominal features that are candidate to predict

depression (ZUNG) class

The observation of the above results is that the three potential nominal features intended to

predict the depression (Zung) class variable demonstrate a statistically significant influence on

it. Therefore, all three of these features will be integrated into the machine learning model

to predict the depression (Zung) class variable. This decision is based on the understanding

that incorporating these significant nominal features can enhance the model’s predictive ca-

pabilities for the depression (Zung) class variable. By including these specific features, we aim

to capitalize on their impact and optimize the accuracy of the predictions generated by the

machine learning model. It is noteworthy that similar results were observed for predicting the

corresponding numerical depression score. More information about the statistical tests applied

are given in Appendix A.2.2
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4.1.2.3 Binary features vs. Depression (ZUNG) class

Feature Statistical test Statistically significant ϕ

Do you think you have memory disorders that affect your daily life? Fisher’s Exact Test ✓ 0.25588

Have you ever visited a memory clinic, psychologist or psychiatrist? Fisher’s Exact Test ✓ 0.15143

Is there a family history of memory disorders Fisher’s Exact Test ✗ 0.01292

(mother, father, grandfather, grandmother, brother or sister)?

Currently, you have a known disease that affects memory Fisher’s Exact Test ✓ 0.22659

(e.g., depression, Alzheimer’s disease, mild cognitive

impairment, Alzheimer’s disease, Multiple Sclerosis, etc.)?

Do you think you experience mood disorders Fisher’s Exact Test ✓ 0.51646

(e.g. depression) that affect your daily life?

Do you suffer from a medical condition?If so, which one? Fisher’s Exact Test ✓ -0.09616

[I do not suffer from any pathological problem. I am perfectly healthy.]

Do you suffer from a medical condition? Fisher’s Exact Test ✓ -0.03982

If so, which one? [Blood Pressure] Fisher’s Exact Test

Do you suffer from a medical condition?If so, which one? Fisher’s Exact Test ✗ 0.00926

[Chronic Atrial Fibrillation or Other Cardiac Problem]

Do you suffer from a medical condition? Fisher’s Exact Test ✗ -0.01638

If so, which one? [Stroke]

Do you suffer from a medical condition? Fisher’s Exact Test ✗ -0.00852

If so, which one? [High Cholesterol]

Do you suffer from a medical condition? Fisher’s Exact Test ✓ 0.17329

If so, which one? [Diagnosed Anxiety]

Have you ever suffered a head injury that Fisher’s Exact Test ✗ 0.01571

resulted in hospitalisation?

Do you suffer from hypothyroidism? Fisher’s Exact Test ✓ 0.04469

Do you suffer from Diabetes mellitus? Fisher’s Exact Test ✗ 0.02783

What gender are you? Fisher’s Exact Test ✓ 0.20773

Do you exercise more than 3 hours a week? Fisher’s Exact Test ✓ -0.16015

Have you been a confirmed case/infected with Fisher’s Exact Test ✗ -0.01355

coronavirus (COVID-19) in the past?

Table 4.7: Results of the feature selection on the binary features that are candidate to predict

depression (ZUNG) class

The aforementioned results reveal that among the 17 candidate binary features specifically se-

lected for predicting the depression (ZUNG) class variable, an impressive 11 of them exhibit a

statistically significant influence on predicting the class variable. However, it is important to

note that certain binary features related to family history of memory disorders, a head injury

resulting in hospitalization, chronic atrial fibrillation or cardiac problems, stroke, high choles-

terol, diabetes mellitus, and confirmed cases of COVID-19 in the past do not demonstrate a

statistically significant effect on the prediction process.

Interestingly, it is worth mentioning that 10 out of the 11 features mentioned above, which

lack statistical significance for the depression (ZUNG) class variable, are also not statistically

significant on the corresponding depression numerical score, e.g. the depression (ZUNG) score,
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except for the question related to a head injury resulting in hospitalization. This finding im-

plies that these specific binary features may not possess substantial predictive power in relation

to the depression (ZUNG) class variable, and therefore, their inclusion in the model may not

significantly contribute to accurately estimating the depression (ZUNG) class variable. More

information about the statistical tests applied are given in Appendix A.2.1
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4.1.2.4 Numerical features vs. Depression (ZUNG) class

Feature Statistical test Statistically significant Point Biserial

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ -0.00485

[Beer - 500ml glass of 5% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✓ 0.04788

[Cider (330ml) 4.5% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✓ -0.05853

[Wine - Medium glass of Chardonnay (175ml) 12.5% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ -0.02299

[Tsipouro, Ouzo or raki (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✓ 0.03424

[White Drink (vodka, tequila, gin, etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ 0.0194

[Dark Drink (rum, whisky etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✓ 0.06525

[Sweet liqueur (40ml) 17% alcohol]

Fill in your age. Welch’s t-Test ✓ -0.16439

Response time to question: Dem01 Welch’s t-Test ✗ -0.00715

Response time to question: Dem02 Welch’s t-Test ✗ 0.01005

Response time to question: Dem03 Welch’s t-Test ✗ -0.01761

Response time to question: Dem04 Welch’s t-Test ✗ -0.01978

Response time to question: Dem05 Welch’s t-Test ✓ -0.04869

Response time to question: Dem06 Welch’s t-Test ✗ -0.01116

Response time to question: Dem07 Welch’s t-Test ✗ 0.00888

Response time to question: Dem08 Welch’s t-Test ✗ 0.00768

Response time to question: Dem09 Welch’s t-Test ✗ -0.0052

Response time to question: Dem10 Welch’s t-Test ✗ 0.0322

Response time to question: Dem11 Welch’s t-Test ✗ 0.024

Response time to question: Dem12 Welch’s t-Test ✗ -0.01486

Response time to question: Dem13 Welch’s t-Test ✓ -0.04072

Response time to question: Dem14 Welch’s t-Test ✗ -0.02197

Response time to question: Dem15 Welch’s t-Test ✓ -0.07079

Response time to question: Dem16 Welch’s t-Test ✗ 0.00282

Response time to question: Dem17 Welch’s t-Test ✓ -0.03799

Response time to question: Dem18 Welch’s t-Test ✗ -0.00458

Response time to question: SEM02 Welch’s t-Test ✗ -0.01017

Response time to question: SEM01 Welch’s t-Test ✓ -0.03576

Response time to question: Mem01 Welch’s t-Test ✓ -0.04025

Response time to question: Mem02 Welch’s t-Test ✗ -0.0017

Response time to question: Mem03 Welch’s t-Test ✓ -0.04029

Response time to question: Mem04 Welch’s t-Test ✗ 0.00302

Response time to question: Mem05 Welch’s t-Test ✓ -0.03622

Response time to question: Mem06 Welch’s t-Test ✗ 0.00408

Response time to question: Mem07 Welch’s t-Test ✗ 0.00506

Response time to question: Mem08 Welch’s t-Test ✗ 0.00058

Response time to question: Mem09 Welch’s t-Test ✗ -0.02969

Response time to question: Mem10 Welch’s t-Test ✓ -0.04894

Response time to question: Mem11 Welch’s t-Test ✗ -0.02389

Response time to question: Mem12 Welch’s t-Test ✗ 0.00781

Response time to question: Mem13 Welch’s t-Test ✗ -0.00778

Response time to question: Mem14 Welch’s t-Test ✗ -0.01634

Response time to question: Mem15 Welch’s t-Test ✗ -0.0045

Response time to question: Mem16 Welch’s t-Test ✗ 0.00013

Table 4.8: Results of the feature selection on the numerical features that are candidate to

predict Depression (ZUNG) class



88

Based on the aforementioned findings, it becomes evident that out of the 44 candidate numeri-

cal features evaluated for predicting the depression (ZUNG) class variable, a total of 14 features

exhibit a statistically significant effect on the class variable. Among these significant features,

four of them specifically pertain to the quantity of alcohol consumed per week, focusing on

cider, wine, white drink, and sweet liqueuer. Additionally, other significant features include

age, response times to four questions from the PRMQ questionnaire (Mem01, Mem03, Mem05,

Mem10), response times to questions related to memory disorders affecting daily life, a history

of head injury resulting in hospitalization, information regarding diabetes mellitus, sleep qual-

ity, average mood in the past two weeks, and the quantity of certain types of alcohol consumed

per week.

These identified findings highlight the notable importance of these specific features in effec-

tively predicting the depression (ZUNG) class variable. Consequently, based on their statistical

significance, a conscious decision has been made to incorporate these features as predictors in

the machine learning model aimed at forecasting the depression (ZUNG) class variable. By in-

cluding these influential features in the model, we aim to leverage their predictive power and

enhance the accuracy of the predictions generated for the Zung class variable. This strategic

choice underscores our commitment to utilizing the most relevant and statistically significant

factors to optimize the performance of the machine learning model in predicting the depres-

sion class variable. More information about the statistical tests applied are given in Appendix

A.3.1

To sum up, we initially started with 83 candidate input features to predict Depression (ZUNG)

class variable. Among them, there were 17 binary features, 19 ordinal features (16 of them

were the questions from the PRMQ Memory questionnaire), 3 were nominal features and 44

were numeric features (36 of them were response time variables). After applying feature se-

lection, we ended up with 46 input features to predict Depression (ZUNG) class. Among them,

there are 10 binary features, 19 are ordinal features, 3 are nominal features and 14 are numeric

features.

4.1.3 Problem 3 (M-from-D score): Memory score through depression

In this section, we provide an overview of the statistical analysis conducted between the mem-

ory (PRMQ) score and various independent features or questionnaire attributes that were con-

sidered as potential predictors of this score. The results obtained from these evaluations have

been categorized into four sections based on the types of independent variables examined. It
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is important to note that only the features demonstrating statistical significance to the mem-

ory (PRMQ) score, indicated by the 3 symbol, were used as predictors in the prediction of the

memory (PRMQ) score.

4.1.3.1 Ordinal features vs. Memory (PRMQ) score

Feature Statistical test statistically significant Kendall Rank correlation

Which of the following best describes your education? Spearman’s rank-order test ✓ -0.09678

How good do you think your memory is? [Mnemonic Ability] Spearman’s rank-order test ✓ -0.4394

In the last two weeks what was your average mood? [Mood] Spearman’s rank-order test ✓ -0.25476

I feel discouraged or sad. Spearman’s rank-order test ✓ 0.25021

I cry easily or feel ready to cry Spearman’s rank-order test ✓ 0.18013

I have trouble sleeping at night. Spearman’s rank-order test ✓ 0.20277

I notice that I am losing weight Spearman’s rank-order test ✓ 0.06550

I have constipation problems Spearman’s rank-order test ✓ 0.11628

I have palpitations. Spearman’s rank-order test ✓ 0.15646

I get tired for no particular reason Spearman’s rank-order test ✓ 0.31003

I feel anxious and I can’t calm down. Spearman’s rank-order test ✓ 0.24636

I have more nervousness than before. Spearman’s rank-order test ✓ 0.19964

I feel it would be better for others if I died. Spearman’s rank-order test ✓ 0.20053

In the morning I feel better than at any time of the day. Spearman’s rank-order test ✓ 0.08311

I eat the same amount of food as before. Spearman’s rank-order test ✓ 0.168

I’m still interested in sex. Spearman’s rank-order test ✓ 0.17312

My mind is as clear as before. Spearman’s rank-order test ✓ 0.41230

It’s easy for me to do the things I used to do before. Spearman’s rank-order test ✓ 0.33673

I am optimistic about my future. Spearman’s rank-order test ✓ 0.22291

I make decisions as easily as before. Spearman’s rank-order test ✓ 0.31271

I feel useful and necessary. Spearman’s rank-order test ✓ 0.25999

My life is quite full. Spearman’s rank-order test ✓ 0.19059

I still enjoy the things I used to do. Spearman’s rank-order test ✓ 0.28157

Table 4.9: Results of the feature selection on the ordinal features that are candidate to predict

memory (PRMQ) score

The results obtained from the statistical analysis provide compelling evidence that each of

the 23 candidate ordinal features to predict the memory (PRMQ) score, exerts a noteworthy

and statistically significant influence on the score. Notably, among these ordinal features, the

comprehensive set of 20 questions from the (Zung) depression questionnaire is included. This

observation carries significant implications as it suggests an initial indication that incorporat-

ing depression-related questions within the predictive model can contribute significantly to

accurately predicting the memory (PRMQ) score. This finding implies that depression-related

factors may have a substantial impact on understanding and assessing an individual’s memory-

related issues as measured by the PRMQ scale. Further investigation and analysis are necessary

to delve deeper into the precise nature and extent of the relationship between these depression-

related questions and the prediction of the memory (PRMQ) score. More information about the

statistical tests applied are given in Appendix A.1.2
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4.1.3.2 Nominal features vs. memory (PRMQ) score

Feature Statistical test Statistically significant Effect size

Which statement best describes the quality of your sleep? The Kruskal-Wallis H test ✓ 0.04131

Where do you live? The Kruskal-Wallis H test ✓ 0.00635

Do you smoke? The Kruskal-Wallis H test ✓ 0.00621

Table 4.10: Results of the Feature selection on the nominal features that are candidate to

predict memory (PRMQ) score

Based on the findings above, it is evident that the three potential nominal features aimed at

predicting the memory (PRMQ) score exert a statistically significant influence on it. As a result,

all three of these features will be incorporated into the machine learning model to predict the

memory (PRMQ) score. This decision is grounded in the understanding that integrating these

significant nominal features can enhance the model’s predictive capabilities for the memory

(PRMQ) score. By including these specific features, our objective is to leverage their impact

and maximize the accuracy of the predictions generated by the machine learning model. More

information about the statistical tests applied are given in Appendix A.1.4



91

4.1.3.3 Binary features vs. Memory (PRMQ) score

Feature Statistical test Statistically significant Point Biserial

Do you think you have memory disorders that affect your daily life? Welch’s t-Test ✓ 0.50319

Have you ever visited a memory clinic, psychologist or psychiatrist? Welch’s t-Test ✓ 0.10827

Is there a family history of memory disorders Welch’s t-Test ✗ 0.01601

(mother, father, grandfather, grandmother, brother or sister)?

Do you think you experience mood disorders Welch’s t-Test ✓ 0.27229

(e.g. depression) that affect your daily life? 0.27229

Do you suffer from a medical condition?If so, which one? Welch’s t-Test ✓ -0.05827

[I do not suffer from any pathological problem. I am perfectly healthy.]

Do you suffer from a medical condition? Welch’s t-Test ✗ -0.01748

If so, which one? [Blood Pressure] Welch’s t-Test -0.01748

Do you suffer from a medical condition?If so, which one? Welch’s t-Test ✗ 0.02859

[Chronic Atrial Fibrillation or Other Cardiac Problem]

Do you suffer from a medical condition? Welch’s t-Test ✓ 0.0462

If so, which one? [Stroke]

Do you suffer from a medical condition? Welch’s t-Test ✗ -0.02547

If so, which one? [High Cholesterol]

Do you suffer from a medical condition? Welch’s t-Test ✓ 0.14316

If so, which one? [Diagnosed Depression]

Do you suffer from a medical condition? Welch’s t-Test ✓ 0.09416

If so, which one? [Diagnosed Anxiety]

Have you ever suffered a head injury Welch’s t-Test ✗ 0.03319

that resulted in hospitalisation?

Do you suffer from hypothyroidism? Welch’s t-Test ✗ 0.00727

Do you suffer from Diabetes mellitus? Welch’s t-Test ✓ 0.04409

What gender are you? Welch’s t-Test ✓ 0.15137

Do you exercise more than 3 hours a week? Welch’s t-Test ✓ -0.10735

Have you been a confirmed case/infected Welch’s t-Test ✗ 0.01845

with coronavirus (COVID-19) in the past?

Table 4.11: Results of the feature selection on the binary features that are candidate to predict

memory (PRMQ) score

Based on the results above, it is evident that among the 17 candidate binary features intended

to forecast the memory (PRMQ) score, a remarkable 10 of them exhibit a statistically significant

influence on predicting the score. However, it is important to note that certain binary features,

such as family history of memory disorders, blood pressure, chronic atrial fibrillation or cardiac

problems, high cholesterol, hypothyroidism, a head injury resulting in hospitalization, and

confirmed cases of COVID-19 in the past, do not demonstrate a statistically significant effect

on the prediction process. This finding suggests that these specific binary features may lack

substantial predictive power in relation to the memory (PRMQ) score. Consequently, their

inclusion in the model may not significantly contribute to accurately estimating the memory

(PRMQ) score. More information about the statistical tests applied are given in Appendix A.1.3
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4.1.3.4 Numeric features vs. Memory (PRMQ) score

Feature Statistical test Statistically significant Pearson correlation coefficient (r)

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.00014

[Beer - 500ml glass of 5% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.00742

[Cider (330ml) 4.5% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✗ 0.79497

[Wine - Medium glass of Chardonnay (175ml) 12.5% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✗ 0.12893

[Tsipouro, Ouzo or raki (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.00062

[White Drink (vodka, tequila, gin, etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.03738

[Dark Drink (rum, whisky etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Pearson correlation test ✓ 0.023035

[Sweet liqueur (40ml) 17% alcohol]

Fill in your age. Pearson correlation test ✓ 0.000001

Response time to question: Dem01 Pearson correlation test ✗ 0.13742

Response time to question: Dem02 Pearson correlation test ✗ 0.08863

Response time to question: Dem03 Pearson correlation test ✗ 0.55117

Response time to question: Dem04 Pearson correlation test ✗ 0.32206

Response time to question: Dem05 Pearson correlation test ✗ 0.07314

Response time to question: Dem06 Pearson correlation test ✗ 0.41044

Response time to question: Dem07 Pearson correlation test ✗ 0.14201

Response time to question: Dem09 Pearson correlation test ✗ 0.32659

Response time to question: Dem10 Pearson correlation test ✓ 0.00115

Response time to question: Dem11 Pearson correlation test ✓ 0.003

Response time to question: Dem12 Pearson correlation test ✗ 0.86254

Response time to question: Dem13 Pearson correlation test ✗ 0.21532

Response time to question: Dem14 Pearson correlation test ✗ 0.13478

Response time to question: Dem15 Pearson correlation test ✓ 0.01669

Response time to question: Dem16 Pearson correlation test ✗ 0.55146

Response time to question: Dem17 Pearson correlation test ✗ 0.31763

Response time to question: Dem18 Pearson correlation test ✗ 0.10507

Response time to question: SEM02 Pearson correlation test ✗ 0.0564

Response time to question: SEM01 Pearson correlation test ✗ 0.35285

Response time to question: Q1 Pearson correlation test ✗ 0.49245

Response time to question: Q2 Pearson correlation test ✓ 0.00029

Response time to question: Q3 Pearson correlation test ✗ 0.826423

Response time to question: Q4 Pearson correlation test ✗ 0.32475

Response time to question: Q5 Pearson correlation test ✗ 0.90466

Response time to question: Q6 Pearson correlation test ✗ 0.38294

Response time to question: Q7 Pearson correlation test ✗ 0.52583

Response time to question: Q8 Pearson correlation test ✗ 0.95166

Response time to question: Q9 Pearson correlation test ✗ 0.30671

Response time to question: Q10 Pearson correlation test ✗ 0.17766

Response time to question: Q11 Pearson correlation test ✓ 0.00026

Response time to question: Q12 Pearson correlation test ✗ 0.07442

Response time to question: Q13 Pearson correlation test ✗ 0.79835

Response time to question: Q14 Pearson correlation test ✗ 0.68669

Response time to question: Q15 Pearson correlation test ✗ 0.87902

Response time to question: Q16 Pearson correlation test ✗ 0.99184

Response time to question: Q17 Pearson correlation test ✗ 0.31473

Response time to question: Q18 Pearson correlation test ✗ 0.42116

Response time to question: Q19 Pearson correlation test ✗ 0.09864

Response time to question: Q20 Pearson correlation test ✗ 0.20743

Table 4.12: Results of the Feature selection on the numeric features that are candidate to

predict memory (PRMQ) score
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According to the presented results, it is clear that among the 47 numerical features considered

for predicting the memory score (PRMQ), 11 features have a significant impact on the score.

Notably, out of these 11 features, 5 of them are related to the amount of alcohol consumed per

week, specifically focusing on beer, cider, white drink, dark drink, and sweet liqueur. Other

significant features include age, response times to two questions from the Zung depression

questionnaire: Q2 (I feel better in the morning than at any time of the day) and Q11 (My mind

is as clear as before), response times to questions about certain diseases, a history of hospi-

talization due to head injury, and the quantity of some type of alcohol consumed per week.

These findings highlight the importance of these specific features in accurately predicting the

memory score (PRMQ). Therefore, based on their statistical significance, we have decided to

include these features as predictors in our machine learning model that aims to forecast the

memory score (PRMQ). By incorporating these influential features into the model, we intend

to utilize their predictive power and improve the accuracy of the predictions for the memory

score (PRMQ). This strategic decision emphasizes our dedication to using the most relevant

and statistically significant factors to optimize the performance of the machine learning model

in predicting the memory score (PRMQ). More information about the statistical tests applied

are given in Appendix A.1.1

To sum up, we initially started with 90 candidate input features to predict Memory (PRMQ)

score. Among them, there were 17 binary features, 23 ordinal features (20 of them were the

questions from the depression questionnaire), 3 were nominal data and 47 were numeric fea-

tures (39 of them were response time variables). After applying Feature selection, we endep

up with 47 input features (these are the features that have statistically significant effect at 5%

significance level on the Memory (PRMQ) score) to predict Memory (PRMQ) score. Among

them, there are 10 binary features, 23 are ordinal features, 3 are nominal features and 11 are

numeric features.

4.1.4 Problem 4 (M-from-D class): Memory class through depression

This section presents a summary of the statistical analysis performed to assess the relationship

between the memory (PRMQ) class variable and different independent features or question-

naire attributes that were considered as potential predictors to the class variable. The obtained

results have been divided into four sections based on the types of independent variables in-

vestigated. It is crucial to mention that only the features showing statistical significance to

the memory (PRMQ) class variable, indicated by the 3 symbol, were utilized as predictors in

predicting the memory (PRMQ) class variable.
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4.1.4.1 Ordinal features vs. Memory (PRMQ) class

Feature Statistical test statistically significant Effect size

Which of the following best describes your education? Mann-Whitney U test ✓ 0.07285

How good do you think your memory is? [Mnemonic Ability] Mann-Whitney U test ✓ 0.24976

In the last two weeks what was your average mood? [Mood] Mann-Whitney U test ✓ 0.04163

I feel discouraged or sad. Mann-Whitney U test ✓ 0.09366

I cry easily or feel ready to cry Mann-Whitney U test ✓ -0.15609

I have trouble sleeping at night. Mann-Whitney U test ✓ 0.06244

I notice that I am losing weight Mann-Whitney U test ✓ 0.18732

I have constipation problems Mann-Whitney U test ✓ -0.27057

I have palpitations. Mann-Whitney U test ✓ -0.27057

I get tired for no particular reason Mann-Whitney U test ✓ -0.14569

I feel anxious and I can’t calm down. Mann-Whitney U test ✓ 0.05203

I have more nervousness than before. Mann-Whitney U test ✓ 0.12488

I feel it would be better for others if I died. Mann-Whitney U test ✓ 0

In the morning I feel better than at any time of the day. Mann-Whitney U test ✓ -0.21854

I eat the same amount of food as before. Mann-Whitney U test ✓ 0.04163

I’m still interested in sex. Mann-Whitney U test ✓ -0.27057

My mind is as clear as before Mann-Whitney U test ✓ -0.1665

It’s easy for me to do the things I used to do before. Mann-Whitney U test ✓ 0.07285

I am optimistic about my future. Mann-Whitney U test ✓ 0.02081

I make decisions as easily as before. Mann-Whitney U test ✓ -0.09366

I feel useful and necessary. Mann-Whitney U test ✓ -0.07285

My life is quite full. Mann-Whitney U test ✓ 0.12488

I still enjoy the things I used to do. Mann-Whitney U test ✓ 0.03122

Table 4.13: Results of the Feature selection on the ordinal features that are candidate to predict

Memory (PRMQ) class

From the above results, it is worth mentioning that all the 23 candidate ordinal features for

predicting the memory (PRMQ) class variable has a statistically significant effect on the class

variable. Notably, among these ordinal features, the comprehensive set of 20 questions from

the Zung depression questionnaire is included. This observation is particularly important as it

suggests that incorporating questions related to depression in the predictive model can greatly

contribute to accurately predicting the memory (PRMQ) class variable. This finding suggests

that depression-related factors may play a significant role in understanding and assessing an

individual’s memory-related issues as measured by the PRMQ scale. However, further investi-

gation and analysis are needed to gain a deeper understanding of the precise nature and extent

of the relationship between these depression-related questions and the prediction of the mem-

ory (PRMQ) class variable. It is worth mentioning that similar observations were noticed for

the corresponding numerical depression (Zung) score, thus the same ordinal predictors were

used to predict the depression (Zung) score as well as with the depression (Zung) class variable.

More information about the statistical tests applied are given in Appendix A.3
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4.1.4.2 Nominal features vs. Memory (PRMQ) class

Feature Statistical test Statistically significant Cramer’s V

Which statement best describes the quality of your sleep? χ2
test ✓ 0.08762

Where do you live? χ2
test ✗ 0.05199

Do you smoke? χ2
test ✓ 0.04845

Table 4.14: Results of the feature selection on the nominal features that are candidate to

predict memory (PRMQ) class

Based on the aforementioned findings, it is observed that two out of the three potential nom-

inal features, excluding the question ”Where do you live?”, intended to forecast the memory

(PRMQ) class variable, have a statistically significant influence on it. Consequently, these two

features will be integrated into the machine learning model to predict the memory (PRMQ)

class variable. This decision is grounded in the understanding that incorporating these signif-

icant nominal features can enhance the model’s ability to predict the memory (PRMQ) class

variable. By including these specific features, our goal is to leverage their impact and optimize

the accuracy of the predictions generated by the machine learning model. It is important to

note that for predicting the corresponding numerical depression score, we utilized all three

candidate nominal features. More information about the statistical tests applied are given in

Appendix A.2.2
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4.1.4.3 Binary features vs. Memory (PRMQ) class

Feature Statistical test Statistically significant ϕ

Do you think you have memory disorders that affect your daily life? Fisher’s Exact Test ✓ 0.18649

Have you ever visited a memory clinic, psychologist or psychiatrist? Fisher’s Exact Test ✓ 0.05619

Is there a family history of memory disorders Fisher’s Exact Test ✗ -0.02373

(mother, father, grandfather, grandmother, brother or sister)?

Do you think you experience mood disorders Fisher’s Exact Test ✓ 0.13208

(e.g. depression) that affect your daily life?

Do you suffer from a medical condition?If so, which one? Fisher’s Exact Test ✗ -0.0138

[I do not suffer from any pathological problem. I am perfectly healthy.]

Do you suffer from a medical condition? Fisher’s Exact Test ✗ -0.01275

If so, which one? [Blood Pressure]

Do you suffer from a medical condition?If so, which one? Fisher’s Exact Test ✗ 0.00846

[Chronic Atrial Fibrillation or Other Cardiac Problem]

Do you suffer from a medical condition? Fisher’s Exact Test ✗ 0.02929

If so, which one? [Stroke]

Do you suffer from a medical condition? Fisher’s Exact Test ✗ -0.02681

If so, which one? [High Cholesterol]

Do you suffer from a medical condition? Fisher’s Exact Test ✓ 0.1176

If so, which one? [Diagnosed Depression]

Do you suffer from a medical condition? Fisher’s Exact Test ✓ 0.07164

If so, which one? [Diagnosed Anxiety]

Have you ever suffered a head injury Fisher’s Exact Test ✗ -0.00574

that resulted in hospitalisation?

Do you suffer from hypothyroidism? Fisher’s Exact Test ✗ -0.01489

Do you suffer from Diabetes mellitus? Fisher’s Exact Test ✗ 0.03511

What gender are you? Fisher’s Exact Test ✓ 0.08482

Do you exercise more than 3 hours a week? Fisher’s Exact Test ✓ -0.05125

Have you been a confirmed case/infected Fisher’s Exact Test ✗ 0.0287

with coronavirus (COVID-19) in the past?

Table 4.15: Results of the feature selection on the binary features that are candidate to predict

memory (PRMQ) class

The above-mentioned findings indicate that out of the 17 chosen binary features candidate for

predicting the memory (PRMQ) class variable, 7 of them demonstrate a statistically significant

impact on predicting the class variable. These 7 binary features encompass questions regard-

ing the following factors: exercising more than 3 hours a week, gender, diagnosed anxiety,

diagnosed depression, visit to a memory clinic, psychologist or psychiatrist, personal assess-

ment of memory problems affecting daily life, and personal assessment of mood disorders

(such as depression) affecting daily life. This discovery suggests that these particular binary

features possess considerable predictive strength in relation to the memory (PRMQ) class vari-

able. Therefore, incorporating them into the model is likely to significantly contribute to ac-

curately estimating the memory (PRMQ) class variable. More information about the statistical

tests applied are given in Appendix A.2.1.
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4.1.4.4 Numeric features vs. Memory (PRMQ) class

Feature Statistical test Statistically significant Point Biserial

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ 0.02517

[Beer - 500ml glass of 5% alcohol ]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✓ 0.03559

[Cider (330ml) 4.5% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ -0.0175

[Wine - Medium glass of Chardonnay (175ml) 12.5% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ 0.00149

[Tsipouro, Ouzo or raki (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ 0.01913

[White Drink (vodka, tequila, gin, etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ 0.01372

[Dark Drink (rum, whisky etc.) (40ml) 40% alcohol]

How many glasses of alcohol do you consume per week? Welch’s t-Test ✗ 0.01321

[Sweet liqueur (40ml) 17% alcohol]

Fill in your age. Welch’s t-Test ✓ -0.04489

Response time to question: Dem01 Welch’s t-Test ✗ 0.01992

Response time to question: Dem02 Welch’s t-Test ✗ -0.00091

Response time to question: Dem03 Welch’s t-Test ✗ 0.00973

Response time to question: Dem04 Welch’s t-Test ✗ 0.00159

Response time to question: Dem05 Welch’s t-Test ✗ -0.01379

Response time to question: Dem06 Welch’s t-Test ✗ -0.00503

Response time to question: Dem07 Welch’s t-Test ✗ -0.00669

Response time to question: Dem09 Welch’s t-Test ✗ -0.01408

Response time to question: Dem10 Welch’s t-Test ✗ 0.0065

Response time to question: Dem11 Welch’s t-Test ✗ 0.02244

Response time to question: Dem12 Welch’s t-Test ✗ -0.01111

Response time to question: Dem13 Welch’s t-Test ✗ -0.00254

Response time to question: Dem14 Welch’s t-Test ✗ -0.01057

Response time to question: Dem15 Welch’s t-Test ✗ -0.0203

Response time to question: Dem16 Welch’s t-Test ✗ -0.01864

Response time to question: Dem17 Welch’s t-Test ✗ -0.01032

Response time to question: Dem18 Welch’s t-Test ✗ -0.00434

Response time to question: SEM02 Welch’s t-Test ✗ 0.00457

Response time to question: SEM01 Welch’s t-Test ✗ -0.02264

Response time to question: Q1 Welch’s t-Test ✗ -0.01393

Response time to question: Q2 Welch’s t-Test ✓ -0.04295

Response time to question: Q3 Welch’s t-Test ✗ -0.00991

Response time to question: Q4 Welch’s t-Test ✗ -0.00804

Response time to question: Q5 Welch’s t-Test ✗ -0.01755

Response time to question: Q6 Welch’s t-Test ✗ -0.01917

Response time to question: Q7 Welch’s t-Test ✗ -0.01038

Response time to question: Q8 Welch’s t-Test ✗ -0.00349

Response time to question: Q9 Welch’s t-Test ✗ -0.01144

Response time to question: Q10 Welch’s t-Test ✗ -0.01353

Response time to question: Q11 Welch’s t-Test ✓ -0.05948

Response time to question: Q12 Welch’s t-Test ✗ -0.01865

Response time to question: Q13 Welch’s t-Test ✗ -0.01299

Response time to question: Q14 Welch’s t-Test ✗ -0.00967

Response time to question: Q15 Welch’s t-Test ✗ -0.0205

Response time to question: Q16 Welch’s t-Test ✗ -0.02177

Response time to question: Q17 Welch’s t-Test ✗ -0.00749

Response time to question: Q18 Welch’s t-Test ✗ 0.01059

Response time to question: Q19 Welch’s t-Test ✗ -0.00206

Response time to question: Q20 Welch’s t-Test ✗ -0.01552

Table 4.16: Results of the feature selection on the numeric features that are candidate to

predict memory (PRMQ) class
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Based on the obtained results, it is evident that among the 47 numerical features examined for

predicting the memory (PRMQ) class variable, four features have a significant effect on the

class variable. Notably, one of these four features is associated with the weekly consumption

of cider. The other three statistically significant features encompass age, as well as response

times to two questions from the Zung depression questionnaire: Q2 (I feel better in the morn-

ing than at any time of the day) and Q11 (My mind is as clear as before). It is worth noting

that these two response time variables also exhibited statistical significance in relation to the

corresponding memory score.

These findings underscore the importance of these specific features in accurately predicting

the memory (PRMQ) class variable. Consequently, based on their statistical significance, we

have made the decision to incorporate these features as predictors in our machine learning

model, which aims to forecast the memory (PRMQ) class variable. By integrating these influ-

ential features into the model, our intention is to leverage their predictive power and enhance

the accuracy of the predictions for the memory (PRMQ) class variable. This strategic choice

emphasizes our commitment to utilizing the most pertinent and statistically significant factors

in order to optimize the performance of the machine learning model in predicting the memory

(PRMQ) class variable. More information about the statistical tests applied are given in A.3.1

To sum up, we initially started with 90 candidate input features to predict Memory (PRMQ)

class. Among them, there were 17 binary features, 23 ordinal features (20 of them were the

questions from the depression questionnaire), 3 were nominal data and 47 were numeric fea-

tures (39 of them were response time variables. After applying Feature selection, we ended

up with 36 input features to predict PRMQ class variable. Among them, there are 7 binary

features, 23 are ordinal features, 2 are nominal features and 4 are numeric features.

4.2 Results from the Machine Learning models

In this section, we present an overview of the performance measures derived from an evalua-

tion of various machine learning models for addressing Problem 1: D-from-M score, Problem 2:

D-from-M class, and Problem 3:M-from-D score. We analyzed the effectiveness of these models

to assess their suitability for solving the specific problems at hand. Moreover, we scrutinized

the performance metrics of each model. By considering the performance metrics, we were able

to identify the top-performing models that exhibited exceptional performance across all evalu-

ated measures. We believe that this examination of performance measures and the selection of

the best models will offer valuable insights for researchers, practitioners, and decision-makers

in choosing the most suitable machine learning approaches for addressing similar problems in

various domains.
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4.2.1 Results for the Problem 2 (D-from-M class)

After the training of each classification model designed to predict depression (ZUNG) class

problem 2: D-from-M class from Section 2.5.2, we illustrate the performance measure of each

classification model calculated via 10-cross validation technique as well as calculated on the

test set, itself, in the following tables.

Model Recall (CV) Recall (test) Accuracy (CV) Accuracy (test) Precision (CV) Precision (test)

LightGBM classifier 0.77605 0.79125 0.80576 0.79341 0.78468 0.75563

Gradient Boosting classifier 0.78249 0.78451 0.81062 0.79042 0.78937 0.75405

Bagging classifier 0.7686 0.77778 0.80277 0.79042 0.78319 0.75738

Voting Classifier (2) 0.782241 0.78788 0.80651 0.79042 0.78299 0.75241

CatBoost classifier 0.75626 0.76094 0.79753 0.78892 0.78207 0.76351

AdaBoost classifier 0.79019 0.77778 0.81139 0.78743 0.78622 0.75244

XGBoost classifier 0.77901 0.78115 0.80914 0.78743 0.78859 0.75081

Logistic Regression 0.78496 0.78115 0.80989 0.78743 0.78719 0.75081

Voting Classifier (1) 0.71689 0.72727 0.79604 0.78593 0.80278 0.77698

LDA classifier 0.78845 0.80135 0.80801 0.78593 0.78116 0.73913

Ridge classifier 0.79 0.80135 0.80837 0.78593 0.78068 0.73913

Voting Classifier (3) 0.71689 0.72727 0.79604 0.78593 0.80278 0.77698

Voting Classifier (4) 0.78876 0.80135 0.80426 0.78593 0.7743 0.73913

Random Forest classifier 0.78291 0.79125 0.80501 0.78443 0.77893 0.74133

Voting Classifier (0) 0.78031 0.78451 0.80688 0.78293 0.78371 0.74204

Voting Classifier (5) 0.78817 0.79125 0.80651 0.77994 0.77879 0.73438

Stacking Classifier (1) 0.81109 0.78115 0.81101 0.77994 0.77371 0.73885

SVM Classifier 0.78828 0.79125 0.80204 0.77695 0.77101 0.72981

Extra Trees classifier 0.78223 0.78788 0.79154 0.77246 0.75631 0.72446

Decision tree classifier 0.6731 0.64983 0.76421 0.76048 0.77669 0.7751

KNN classifier 0.72689 0.72727 0.78293 0.75449 0.77289 0.72241

Stacking Classifier (2) 0.74652 0.75758 0.7687 0.75299 0.73674 0.70755

GaussianNB classifier 0.75711 0.78115 0.75972 0.73653 0.71873 0.67639

Table 4.17: Performance measures calculated via 10-cross validation as well as on the test set

for each ML model used to predict Depression (ZUNG) class.
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Model F1 (CV) F1 (test) AUC-ROC (CV) AUC-ROC (test) Balanced accuracy (CV) Balanced accuracy (test)

LightGBM classifier 0.77949 0.77303 0.80308 0.79319 0.80308 0.79319

Gradient Boosting classifier 0.78506 0.76898 0.80796 0.78983 0.80796 0.78983

Bagging classifier 0.77496 0.76744 0.80003 0.78916 0.80003 0.78916

Voting Classifier (2) 0.78168 0.76974 0.80459 0.79017 0.80459 0.79017

CatBoost classifier 0.76798 0.76223 0.79379 0.78613 0.79379 0.78613

AdaBoost classifier 0.78739 0.7649 0.80966 0.78646 0.80966 0.78646

XGBoost classifier 0.78288 0.76568 0.80638 0.78679 0.80638 0.78679

Logistic Regression 0.78515 0.76568 0.80806 0.78679 0.80806 0.78679

Voting Classifier (1) 0.75658 0.7513 0.78857 0.78008 0.78857 0.78008

LDA classifier 0.78378 0.76898 0.80655 0.78747 0.80655 0.78747

Ridge classifier 0.78442 0.76898 0.80697 0.78747 0.806970 0.78747

Voting classifier (3) 0.75658 0.7513 0.78857 0.78008 0.78857 0.78008

Voting Classifier (4) 0.78065 0.76898 0.80285 0.78747 0.80285 0.78747

Random Forest classifier 0.77993 0.76547 0.80296 0.78511 0.80296 0.78511

Voting Classifier (0) 0.78117 0.76268 0.80449 0.78309 0.80449 0.78309

Voting Classifier (5) 0.78249 0.76175 0.80494 0.78107 0.80494 0.78107

Stacking Classifier (1) 0.79129 0.75941 0.81143 0.78006 0.81143 0.78006

SVM classifier 0.77855 0.75929 0.80081 0.77837 0.80081 0.77837

Extra Trees classifier 0.76809 0.75484 0.79083 0.77399 0.79083 0.77399

Decision tree classifier 0.71525 0.70696 0.75704 0.74944 0.75704 0.74944

KNN classifier 0.74835 0.72483 0.77747 0.75178 0.77747 0.75178

Stacking Classifier (2) 0.74092 0.73171 0.76633 0.75345 0.76633 0.75345

GaussianNB classifier 0.73647 0.725 0.75984 0.74098 0.75984 0.74098

Table 4.18: Performance measures calculated via 10-cross validation as well as on the test set

for each ML model used to predict Depression (ZUNG) class

Based on the provided Table 4.17 of performance measures for different ML models used to

predict the Depression (ZUNG) class, here are some notices:

1. Recall (CV) represents the ability of the model to correctly identify positive cases dur-

ing cross-validation. The Stacking Classifier (1) has the highest recall value in cross-

validation with 0.81109, indicating its effectiveness in capturing positive instances. It is

followed by the AdaBoost classifier and Ridge classifier with recall values of 0.79019 and

0.79, respectively.

2. Recall (test) measures the model’s ability to correctly identify positive cases on the test

set. The Ridge classifier, LDA classifier and Voting classifier (4) have the highest recall

value on the test set with 0.80135.

3. Accuracy (CV) represents the overall correctness of the model’s predictions during cross-

validation. The Stacking Classifier (1) achieves the highest accuracy in cross-validation

with a value of 0.81101. Other models with relatively high accuracy in cross-validation

include the AdaBoost classifier, XGBoost classifier, and Logistic Regression.

4. Accuracy (test) measures the overall correctness of the model’s predictions on the test

set. The LightGBM classifier exhibits the highest accuracy on the test set with a value

of 0.79341. Other models with notable accuracy on the test set include the Gradient

Boosting classifier, Bagging classifier, and Voting classifier (2).
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5. Precision (CV) indicates the model’s ability to correctly identify positive cases out of

the predicted positive instances during cross-validation. The Voting classifier (1) and

Voting classifier (3) achieve the highest precision value in cross-validation with 0.80278,

followed by the Gradient Boosting classifier and XGBoost classifier.

6. Precision (test) measures the model’s ability to correctly identify positive cases out of the

predicted positive instances on the test set. The Voting classifier (1) and Voting classifier

(3) demonstrates the highest precision value on the test set with 0.77698, followed by the

CatBoost classifier and Bagging classifier.

These notices highlight the performance of different ML models in predicting the Depression

(ZUNG) class based on the provided performance measures. It’s important to consider the spe-

cific requirements and priorities of the project while selecting a suitable model.

Also, we notice that

7. Overfitting: Overfitting occurs when a model performs well on the training data but

fails to generalize to unseen data. One way to identify overfitting is by comparing the

performance measures between cross-validation and the test set. If there is a significant

drop in performance on the test set compared to cross-validation, it suggests overfitting.

In the provided table, models like the Decision tree classifier and GaussianNB classifier

show a noticeable drop in performance on the test set, indicating potential overfitting.

8. Underfitting: Underfitting happens when a model is too simple and fails to capture the

underlying patterns in the data. This can be identified by low performance measures on

both cross-validation and the test set. However, none of the models in the provided table

exhibit clear signs of underfitting based on the performance measures provided.

9. Cross-Validation Metrics: Cross-validation is a technique used to assess the model’s per-

formance by splitting the data into multiple subsets for training and evaluation. The per-

formance measures calculated via cross-validation (CV) provide insights into the model’s

average performance across different subsets. Models like the Stacking Classifier (1), Ad-

aBoost classifier, and Ridge classifier demonstrate relatively high cross-validation recall,

accuracy, and precision values, indicating their effectiveness in capturing patterns in the

data.

10. Test Set Metrics: Test set metrics represent the model’s performance on unseen data,

which is crucial for evaluating its generalization capability. Models like the LightGBM

classifier, Gradient Boosting classifier, and CatBoost classifier exhibit high recall, accu-

racy, and precision values on the test set, suggesting their ability to generalize well to

new instances.
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Based on the provided Table 4.18 of performance measures for different ML models used to

predict the Depression (ZUNG) class, here are some notices:

11. F1 Score (CV and Test):

• The model with the highest F1 score in cross-validation is the Stacking Classifier

(1) with a score of 0.79129.

• The model with the highest F1 score on the test set is the LightGBM classifier with

a score of 0.77303.

• The Stacking Classifier (1) performs well in cross-validation, while the LightGBM

classifier performs well on the test set.

12. AUC-ROC Score (CV and Test):

• The model with the highest AUC-ROC score in cross-validation is the Stacking

Classifier (1) with a score of 0.81143.

• The model with the highest AUC-ROC score on the test set is the LightGBM clas-

sifier with a score of 0.79319.

• The Stacking Classifier (1) has the highest AUC-ROC score in cross-validation,

while the LightGBM classifier performs well on the test set.

13. Balanced Accuracy (CV and Test):

• The Stacking Classifier (1) has the highest Balanced Accuracy with a score 0.81143

in cross-validation.

• The LightGBM classifier has the highest Balanced Accuracy on the test with a score

of 0.79319.

• The Stacking Classifier (1) has the highest Balanced Accuracy score in cross-validation,

while the LightGBM classifier performs well on the test set.

14. The Stacking Classifier (1) stands out with the highest scores in terms of F1 score, AUC-

ROC, and balanced accuracy in cross-validation. However, the LightGBM classifier also

perform well on the test set. It’s important to note that the model’s performance on the

test set should be considered for evaluating its generalization capabilities.

Based on the table 4.18, we can make the following observations regarding overfitting and

underfitting:

15. Overfitting:
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• The LightGBM classifier, Gradient Boosting classifier, and AdaBoost classifier show

relatively small differences between CV and test set metrics across different per-

formance measures, indicating less overfitting.

• On the other hand, the Decision tree classifier and KNN classifier demonstrate sig-

nificant drops in performance on the test set compared to the CV metrics, suggest-

ing potential overfitting.

16. Underfitting:

• The Decision tree classifier and KNN classifier exhibit lower performance on both

CV and test set metrics, indicating potential underfitting.

17. Overall, models such as LightGBM classifier, Gradient Boosting classifier, and AdaBoost

classifier appear to generalize well, while the Decision tree classifier and KNN classifier

may suffer from overfitting or underfitting. It’s important to note that these conclusions

are based solely on the provided performance measures, and additional analysis con-

sidering the dataset, model complexity, and available data size would provide a more

comprehensive evaluation of overfitting and underfitting.

From these observations, we see that the LightGBM classifier has the best performance in 4 of

the 12 calculated metrics and the Adaboost classifier has also the best performance in 4 of the

12 metrics. So we propose either the LightGBM classifier or the AdaBoost classifier to predict

depression (ZUNG) class. The hyperparameters for these two models are given in Tables 4.17

and 4.18.

Model Hyperparameters

LightGBM classifier reg alpha=7.11

reg lambda=0.009

num leaves=141

min child samples=37

lambda l1=9.83

feature fraction=0.69

bagging freq=2

max depth=14

learning rate=0.005

colsample bytree=0.1

n estimators=1182

Table 4.19: The hyperparameters of the LightGBM model used to predict depression (ZUNG)

class.
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Model Hyperparameters

AdaBoost classifier n estimators=100

learning rate=0.1

Table 4.20: The hyperparameters of the AdaBoost classifier to predict depression (ZUNG)

class.

To ensure optimal performance and fine-tuned configuration of the tested machine learning

models, we employed the grid search method to select the most suitable hyperparameters. Grid

search is a systematic approach that exhaustively explores different combinations of hyperpa-

rameters within predefined ranges. For each machine learning model utilized in solving the

problem, we carefully designed a specific grid of hyperparameters, capturing various settings

that could significantly impact the model’s performance. This grid, outlining the ranges and

values considered for each hyperparameter, is provided in the appendix for reference. The de-

tails of the specific grids used for each machine learning model tested to predict depression

(ZUNG) class are given in detail in the appendix B.1, allowing for transparency and repro-

ducibility of the experimentation process.

4.2.2 Results for the Problem 1 (D-from-M score)

After the training of each regression model designed to predict depression (ZUNG) score (Prob-

lem 1: D-from-M score from Section 2.5.1), we illustrate each regression model ’s performance

measure calculated via 10-cross validation technique as well as on the test set, itself, in the

following tables.
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Model RMSE (CV) RMSE (test) MAE (CV) MAE (test) SMAPE (CV) SMAPE (test)

Second averaged regression model 2.36381 5.52242 4.43816 4.41056 10.477 10.23

Weighted voting Regression (1) 2.36251 5.52503 4.43499 4.40782 10.478 10.22

Weighted voting Regression (2) 2.36225 5.52543 4.4334 4.40772 10.473 10.22

Stacking Regression (1) 2.36382 5.53396 4.43424 4.39927 10.468 10.20

Stacking Regression (2) 2.36283 5.53479 4.43178 4.40688 10.465 10.22

First averaged model 2.36933 5.53647 4.45349 4.40652 10.511 10.23

Weighted voting Regression (3) 2.35886 5.53651 4.41478 4.42447 10.421 10.27

ElasticCV Regression 2.37389 5.53681 4.47549 4.43039 10.577 10.28

Lasso Regression 2.36774 5.53721 4.45704 4.42446 10.534 10.27

Ridge Regression 2.36888 5.54314 4.46167 4.44022 10.547 10.30

RidgeCV Regression 2.37582 5.54363 4.48377 4.44069 10.597 10.30

Bagging Regressor 2.37133 5.54377 4.46786 4.43629 10.566 10.32

Linear Regression 2.37132 5.54378 4.46789 4.43627 10.567 10.31

Elastic Net Regression 2.36885 5.54411 4.45915 4.43788 10.543 10.31

Stacking Regression (3) 2.36132 5.54983 4.42331 4.42862 10.442 10.28

XGBoost Regressor 2.36575 5.59442 4.44029 4.44516 10.479 10.31

Stacking Regression (4) 2.36942 5.6076 4.44208 4.47558 10.479 10.40

CatBoost Regressor 2.3666 5.62218 4.42629 4.49914 10.448 10.45

Gradient Boosting Regressor 2.37496 5.62467 4.46392 4.48009 10.527 10.40

LightGBM Regressor 2.38827 5.64626 4.52356 4.51751 10.666 10.49

AdaBoost Regressor 2.39611 5.68707 4.52466 4.53743 10.663 10.52

Stacking Regression (5) 2.39781 5.6974 4.5593 4.57823 10.740 10.66

Extra Trees Regressor 2.42036 5.80048 4.64361 4.64903 10.935 10.79

Random Forest Regressor 2.42402 5.80359 4.63193 4.62952 10.913 10.74

LassoCV Regression 2.54028 6.34258 5.13647 5.05154 12.124 11.68

KNN Regressor 2.56693 6.63388 5.2242 5.28204 12.284 12.16

Support Vectors Regression 2.71955 7.04617 5.7712 5.54169 13.607 12.94

Table 4.21: Performance measure calculated via 10-cross validation as well as on the test set

for each ML model used to predict depression (ZUNG) score.
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Model MAAPE (CV) MAAPE (test) MSE (CV) MSE (test) R2(CV) R2(test)

Second averaged regression model 0.11851 0.10223 31.32754 30.49715 0.65273 0.64526

Weighted voting Regression (1) 0.10584 0.10217 31.2669 30.5259 0.65324 0.64492

Weighted voting Regression (2) 0.10579 0.10216 31.25239 30.53039 0.65339 0.64487

Stacking Regression (1) 0.10575 0.10195 31.33838 30.62469 0.65245 0.64377

Stacking Regression (2) 0.105720 0.10214 31.28102 30.63387 0.65305 0.64367

First averaged regression model 0.17798 0.10201 31.63005 30.65254 0.64946 0.64345

Weighted voting Regression (3) 0.10532 0.10263 31.07722 30.65297 0.65543 0.64345

ElasticCV Regression 0.10683 0.10275 31.8145 30.65624 0.64677 0.64341

Lasso Regression 0.10638 0.10262 31.55525 30.66068 0.65009 0.64336

Ridge Regression 0.10653 0.10297 31.61174 30.72643 0.64947 0.64259

RidgeCV Regression 0.10701 0.10298 31.91612 30.7318 0.64557 0.64253

Bagging Regressor 0.10661 0.10291 31.74873 30.73345 0.64793 0.64251

Linear Regression 0.10662 0.10292 31.74872 30.73355 0.64795 0.6425

Elastic Net Regressor 0.1064 0.10295 31.61824 30.73714 0.64939 0.64247

Stacking Regression (3) 0.10548 0.10269 31.21237 30.80056 0.65392 0.64173

XGBoost Regressor 0.10583 0.10314 31.42103 31.29751 0.65156 0.63595

Stacking Regression (4) 0.10586 0.10363 31.63646 31.44519 0.64926 0.63423

CatBoost Regressor 0.10559 0.1042 31.48061 31.60892 0.65094 0.63233

Gradient Boosting Regressor 0.10634 0.10397 31.93868 31.63693 0.64579 0.63199

LightGBM Regressor 0.1077 0.10471 32.65037 31.88029 0.63786 0.62917

AdaBoost Regressor 0.10798 0.10502 33.04641 32.34281 0.63367 0.62379

Stacking Regression (5) 0.10816 0.10658 33.21549 32.46041 0.63185 0.62242

Extra Trees Regressor 0.11079 0.10785 34.41742 33.64551 0.61859 0.60864

Random Forest Regressor 0.11035 0.10725 34.63442 33.68174 0.61605 0.60821

LassoCV Regressor 0.12313 0.11735 41.71499 40.22827 0.5374 0.53207

KNN Regressor 0.12297 0.12088 43.53819 44.00838 0.51786 0.48809

Support Vector Regressor 0.13559 0.12671 54.90445 49.64851 0.39282 0.42249

Table 4.22: Performance measure calculated via 10-cross validation as well as on the test set

for each ML model used to predict depression (ZUNG) score.

Based on the Table 4.21 of performance measures for different ML models used to predict

depression (ZUNG) score, we can make the following comparisons:

1. RMSE (Root Mean Squared Error):

• The model with the lowest RMSE (CV) score is “Weighted voting Regression (3)”

with a value of 2.35886 and then follows “Stacking Regression (3)” with value of

2.36132.

• The model with the lowest RMSE (test) score is “Second averaged regression” model

with a value of 5.52242. Then, follows the “Weighted voting Regression (1)” with a

value of 5.52503.

2. MAE (Mean Absolute Error):
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• The model with the lowest MAE (CV) scores is “Weighted voting Regression (3)”

with a value of 4.41478. Then, follows the “Stacking Regression (3)” with a value of

4.42331.

• The model with the lowest MAE (test) scores is the “First averaged model” with a

value of 4.40652. Then, follows the “Stacking Regression (2)” with a value of 4.40688.

3. SMAPE (Symmetric Mean Absolute Percentage Error):

• The models with the lowest SMAPE (CV) scores are ”Weighted voting Regression

(3)” and ”Stacking Regression (3)” with values of 10.421 and 10.442, respectively.

• The model with the lowest SMAPE (test) scores is ”Stacking Regression (1)” with a

value 10.20.

4. Based on these comparisons, ”Weighted voting Regression (3)” and ”Stacking Regres-

sion (3)” consistently perform well across multiple evaluation metrics. It’s important to

note that these comparisons are based on the provided data, and further analysis or ex-

perimentation may be required to validate the performance of these models in different

scenarios or datasets.

We can analyze the provided data from the Table 4.21 to identify potential cases of overfitting,

underfitting, and to assess model performance using cross-validation and test set metrics. Here

are some observations:

5. Overfitting:

• In the given data, if a model has significantly lower performance metrics (RMSE,

MAE, SMAPE) on the test set compared to the cross-validation set, it indicates

possible overfitting.

• For instance, “Extra Trees Regressor” and “Random Forest Regressor” have higher

RMSE (test), MAE (test), and SMAPE (test) values compared to their cross-validation

counterparts, suggesting overfitting.

6. Underfitting:

• Underfitting occurs when a model fails to capture the underlying patterns in the

data, resulting in poor performance on both the training and test data.

• If a model has relatively high performance metrics (RMSE, MAE, SMAPE) on both

the cross-validation and test sets, it may indicate underfitting.

• However, based on the provided data, there aren’t clear cases of severe underfit-

ting. Some models like “Support Vectors Regression” show relatively higher errors

compared to others, but it is not evident that they are consistently underfitting.
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7. Cross-validation vs. Test Set Metrics:

• Cross-validation metrics are calculated by repeatedly training and evaluating the

model on different subsets of the data, providing an estimate of the model’s gener-

alization performance.

• Test set metrics are calculated by evaluating the model on a separate, unseen dataset,

which helps assess the model’s performance on new, independent data.

• Generally, if the cross-validation metrics and test set metrics are close, it indicates

that the model is performing well and generalizing to new data.

• Models like “Second averaged regression model,” “Weighted voting Regression (1-

3),” and “Stacking Regression (1-3)” show similar performance between cross-validation

and test set metrics, suggesting good generalization.

8. It’s important to note that the provided observations are based on the given data, and

further analysis or experimentation may be necessary to draw definitive conclusions

about the presence of overfitting, underfitting, and model performance.

Based on the provided performance measures (MAAPE, MSE, R2) from Table 4.22 for each ML

model, we can make comparisons between the models. Here are some observations:

1. The best-performing models in terms of MAAPE (CV) are the Weighted Voting Regres-

sion model (3), Stacking Regression model (3) and Stacking Regression model (2) with

MAAPE values ranging from 0.10532 to 0.10572. These models have the lowest average

percentage error on the cross-validated data.

2. The model with the lowest MAAPE (test) is Stacking Regression (1), with a value of

0.10195. This indicates that it has the lowest average percentage error on the test set.

3. When considering MSE (CV) and MSE (test), the models with the lowest values are the

Second Averaged Regression Model and the Weighted Voting Regression models (1, 2,

and 3). These models have relatively similar performance in terms of mean squared error.

4. In terms of R2 (CV) and R2 (test), the models with the highest values are the Weighted

Voting Regression models (1, 2, and 3). These models have a higher coefficient of deter-

mination, indicating better goodness of fit.

5. The ElasticCV Regression, Lasso Regression, Ridge Regression, RidgeCV Regression,

Bagging Regressor, and Linear Regression have similar performance across various mea-

sures, suggesting comparable performance among these models.

6. The worst-performing models, based on the provided measures, are the Support Vector

Regressor, KNN Regressor, and LassoCV Regressor. These models have higher MAAPE,

MSE, and lower R2 values compared to other models in the table.
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7. Overall, the Weighted Voting Regression models (1, 2, and 3) and the Second Averaged

Regression Model demonstrate strong performance across multiple evaluation metrics,

indicating their effectiveness in predicting the depression (ZUNG) score.

Also, we can examine the provided Table 4.22 to analyze overfitting, underfitting, and the

performance of models using cross-validation and test set metrics. Here are some observations:

8. overfitting: One way to identify overfitting is by comparing the performance of the

model on the training set (cross-validation) and the test set. If the model has signifi-

cantly better performance on the training set than on the test set, it indicates overfitting.

In the provided table, the Second Averaged Regression Model has a lower MAAPE

(CV) value of 0.11851 compared to its MAAPE (test) value of 0.10223. This suggests

a potential overfitting issue, as the model performs better on the training data than

on the unseen test data.

9. Underfitting: Underfitting occurs when a model fails to capture the underlying patterns

in the data and performs poorly on both the training and test sets. It is characterized by

high errors and low R2
values.

• None of the models in the provided table exhibit significant underfitting based on

their performance measures. However, models with higher MAAPE, MSE, and

lower R2
values, such as the Support Vector Regressor, KNN Regressor, and Las-

soCV Regressor, may indicate a potential underfitting problem.

10. Cross-validation metrics:

• The Weighted Voting Regression models (1, 2, and 3) consistently exhibit lower

MAAPE (CV) values, indicating better performance on cross-validated data.

• Models like the Support Vector Regressor, KNN Regressor, and LassoCV Regres-

sor have higher MAAPE (CV) values, suggesting poorer performance on cross-

validated data.

11. Test set metrics:

• The Stacking Regression (1) has the lowest MAAPE (test) value of 0.10194, indicat-

ing better performance on unseen data.

• Other models, such as the Weighted Voting Regression models, Stacking Regression

models, and various individual regression models, also demonstrate comparable

performance based on their MAAPE (test) values.

12. In summary, while there may be some indications of overfitting in the Second Averaged

Regression Model, most of the models in the provided table show reasonably consistent
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performance between cross-validation and test set metrics. The Weighted Voting Regres-

sion models generally perform well in terms of both cross-validation and test set metrics,

suggesting their potential effectiveness in predicting the Depression (ZUNG) class.

From these observations, we notice that Weighted voting Regression (3) model has the best

performance in 6 out of 12 calculated metrics. Thus, we propose Weighted voting Regression

(3) model for modeling the (D-from-M score) or predicting depression (ZUNG) score.

The elements necessary to specify the Weighted Voting Regression (3) model are the regressors

and the weights used for voting. These elements are given in the Table 4.23.

Model Meta-regressor Regressor

Weighted Voting Regression model (3) Linear Regression Lasso Regression

Elastic Net Regression

Gradient Boosting Regressor

Table 4.23: The regressors of the Weigthed voting Regression (3) models used to predict de-

pression (ZUNG) score.

To ensure optimal performance and fine-tuned configuration of the tested machine learning

models, we employed the grid search method to select the most suitable hyperparameters. The

details of the specific grids used for each machine learning model and the final values of the

hyperparameters tested to predict depression (ZUNG) score are given in detail in the Appendix

B.2, allowing for transparency and reproducibility of the experimentation process.

4.2.3 Results for the Problem 3 (M-from-D score)

After the training of each regression model designed to predict memory (PRMQ) score (Problem

3: M-from-D score from Section 2.5.3), we illustrate each regression model ’s performance

measure calculated via 10-cross validation as well as on the test set, itself, in the Tables 4.24

and 4.25.
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Model RMSE (CV) RMSE (test) MAE (CV) MAE (test) SMAPE (CV) SMAPE (test)

Stacking Regression (1) 2.76952 7.6284 6.01643 5.94725 32.715 31.49

Second averaged regression model 2.76647 7.63245 6.00143 5.94761 32.480 31.38

Stacking Regression (2) 2.76979 7.63671 6.02034 5.95041 32.711 31.48

Stacking Regression (3) 2.76382 7.64591 5.97894 5.95803 32.470 31.49

Weighted voting Regression (1) 2.76503 7.65511 5.98887 5.96416 32.460 31.49

Stacking Regression (4) 2.77409 7.6557 6.01612 5.95753 32.537 31.44

Weighted voting Regression (2) 2.7701 7.66308 6.00426 5.97249 32.523 31.58

Gradient Boosting Regressor 2.772975 7.673872 6.008919 5.968707 32.471 31.48

Weighted voting Regression (3) 2.76894 7.67823 5.99801 5.97118 32.458 31.57

First averaged regression model 2.77142 7.68263 6.01708 5.99696 32.621 31.59

Weighted voting Regression (4) 2.76774 7.70115 5.99473 5.9911 32.416 31.61

Weighted voting Regression (5) 2.77831 7.72062 6.05807 6.02474 32.945 31.74

Lasso Regression 2.78108 7.73114 6.07049 6.02569 33.012 31.76

CatBoost Regressor 2.77519 7.73381 6.03281 5.98823 32.589 31.55

Elastic Net Regression 2.78176 7.74264 6.073 6.03274 32.993 31.77

ElasticCV Regression 2.78136 7.74273 6.07504 6.03707 33.011 31.79

Ridge Regression 2.78283 7.74585 6.08815 6.06421 33.212 32.00

RidgeCV Regression 2.78236 7.74898 6.08527 6.06097 33.116 31.94

XGBoost Regression 2.79319 7.75851 6.09199 6.04819 33.038 31.97

Stacking Regression (5) 2.79201 7.76291 6.07588 6.03889 32.779 31.80

Linear Regression 2.786291 7.764213 6.099420 6.093982 33.356 32.23

Stacking Regression (6) 2.795286 7.781608 6.087085 6.057157 32.831 31.93

AdaBoost Regressor 2.80075 7.79922 6.12796 6.06138 33.122 32.04

LightGBM Regressor 2.78897 7.79986 6.0721 6.07985 32.900 31.89

Stacking Regression (7) 2.833005 7.831471 6.279176 6.071750 33.665 32.05

Bagging Regression 2.79748 7.8367 6.15047 6.09202 33.211 32.15

Random Forest Regressor 2.807405 7.852295 6.165974 6.125943 33.308 32.29

Extra Trees Regressor 2.80344 7.87736 6.12641 6.11362 32.953 32.12

Stacking Regression (8) 2.83205 8.06624 6.29262 6.30448 33.782 32.72

LassoCV Regreiion 2.85828 8.31645 6.40931 6.48687 34.359 33.81

KNN Regressor 2.989342 8.779788 6.960747 6.778069 36.796 35.47

Support Vector Regression 3.072019 9.265469 7.311703 7.028870 40.793 38.93

Table 4.24: Performance measures calculated via 10-cross validation as well as on the test set

for each ML model used to predict memory (PRMQ) score.
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Model MAAPE (CV) MAAPE (test) MSE (CV) MSE (test) R2(CV) R2(test)

Stacking Regression (1) 0.32632 0.31369 59.12159 58.19254 0.52203 0.55923

Second averaged regression model 0.33381 0.31482 58.83056 58.25423 0.52434 0.55877

Stacking Regression (2) 0.32693 0.31432 59.14397 58.31941 0.52189 0.55827

Stacking Regression (3) 0.32415 0.31394 58.63854 58.45997 0.52597 0.55721

Weighted voting Regression (1) 0.32541 0.31556 58.72352 58.6007 0.52527 0.55614

Stacking Regression (4) 0.32529 0.31446 59.46623 58.60974 0.51884 0.55607

Weighted voting Regression (2) 0.32501 0.31513 59.13659 58.72286 0.52174 0.55522

Gradient Boosting Regressor .3253 0.31569 59.41539 58.88832 0.51959 0.55396

Weighted voting Regression (3) 0.32463 0.31506 59.05106 58.95521 0.52248 0.55346

First averaged regression model 0.32847 0.31656 59.26518 59.02281 0.52079 0.55294

Weighted voting Regression (4) 0.32519 0.31694 58.94953 59.30777 0.52335 0.55079

Weighted voting Regression (5) 0.32874 0.31698 59.87041 59.60793 0.51617 0.54851

Lasso Regression 0.329215 0.316695 60.104103 59.770573 0.514271 0.547279

CatBoost Regressor 0.3268 0.31637 59.55989 59.81187 0.51836 0.54697

Elastic Net Regression 0.32949 0.31726 60.16141 59.94848 0.51382 0.54593

ElasticCV Regression 0.32941 0.31744 60.12697 59.94987 0.51189 0.54592

Ridge Regression 0.33025 0.31836 60.27181 59.99813 0.51295 0.54556

RidgeCV Regression 0.33011 0.31836 60.20294 60.04674 0.51121 0.54519

XGBoost Regressor 0.32847 0.31755 61.16058 60.19451 0.50522 0.54407

Stacking Regression (5) 0.32755 0.31786 61.00985 60.26281 0.50611 0.54355

Linear Regression 0.33034 0.31948 60.58236 60.28299 0.51048 0.54339

Stacking Regression (6) 0.32803 0.31911 61.30837 60.55342 0.50392 0.54135

AdaBoost Regressor 0.32768 0.31611 61.76975 60.82784 0.49991 0.53927

LightGBM Regressor 0.32779 0.31858 60.83011 60.83778 0.50832 0.53919

Stacking Regression (7) 0.333674 0.319137 64.709229 61.331943 0.476334 0.535453

Bagging Regression 0.33381 0.32218 61.4673 61.41392 0.50265 0.53483

Random Forest Regressor 0.33374 0.32294 62.33373 61.65854 0.49539 0.53298

Extra Trees Regressor 0.33099 0.32215 62.00698 62.05284 0.4985 0.52999

Stacking Regression (8) 0.33445 0.32672 64.58796 65.06427 0.47747 0.50718

LassoCV Regression 0.34664 0.34067 67.04736 69.16337 0.45562 0.47614

KNN Regressor 0.35768 0.34268 80.11971 77.08467 0.35222 0.41614

Support Vector Regression 0.37229 0.34778 89.29185 85.84892 0.27543 0.34975

Table 4.25: Performance measures calculated via 10-cross validation as well as on the test set

for each ML model used to predict memory (PRMQ) score.

From the Table 4.24, we compared the models tested to predict memory (PRMQ) score based

on their performance measures and we noticed the following:

1. RMSE (CV) and RMSE (test):

• The models with lower RMSE (CV) and RMSE (test) values generally indicate better

performance in terms of predicting the memory (PRMQ) score.

• The models “Stacking Regression (3)”, “Stacking Regression (1)”, and “Second aver-

aged regression model” have the lowest RMSE (CV) and RMSE (test) values, sug-

gesting better predictive accuracy.
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2. MAE (CV) and MAE (test):

• MAE (CV) and MAE (test) values indicate better performance in terms of capturing

the average absolute difference between predicted and actual depression scores.

• The models “Stacking Regression (3)”, “Stacking Regression (1)”, and “Second av-

eraged regression model” again have the lowest MAE (CV) and MAE (test) values,

indicating better accuracy.

3. SMAPE (CV) and SMAPE (test):

• Lower SMAPE (CV) and SMAPE (test) values indicate better performance in terms

of the symmetric mean absolute percentage error.

• The models “Second averaged regression model”, “Stacking Regression (1)”, and

“Stacking Regression (4)” have the lowest SMAPE (CV) and SMAPE (test) values,

suggesting better performance.

4. Based on these comparisons, the models ”Stacking Regression (3)”, ”Stacking Regression

(1)”, and ”Second averaged regression model” consistently perform well across multiple

metrics. They have relatively lower RMSE, MAE, and SMAPE values both on cross-

validation and the test set. These models show promise in accurately predicting the

memory (PRMQ) score.

From Table 4.24, we analyzed the provided data and make observations regarding overfitting,

underfitting, and the performance of the models using cross-validation metrics and test set

metrics and we noticed the following:

5. RMSE (CV) and RMSE (test):

• Lower RMSE (CV) and RMSE (test) values indicate better model performance in

terms of Root Mean Squared Error.

• Models with similar RMSE values for both CV and the test set are less likely to

suffer from overfitting or underfitting.

• The models “Stacking Regression (1)”, “Second averaged regression model”, and

“Stacking Regression (2)” have relatively low RMSE values for both CV and the test

set, suggesting consistent performance.

6. MAE (CV) and MAE (test):

• Lower MAE (CV) and MAE (test) values indicate better model performance in terms

of Mean Absolute Error.

• Models with similar MAE values for both CV and the test set are less likely to suffer

from overfitting or underfitting.
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• The models “Stacking Regression (3)”, “Weighted voting Regression (1)”, and “Stack-

ing Regression (4)” have relatively low MAE values for both CV and the test set,

indicating consistent performance.

7. SMAPE (CV) and SMAPE (test):

• Lower SMAPE (CV) and SMAPE (test) values indicate better model performance in

terms of Symmetric Mean Absolute Percentage Error.

• Models with similar SMAPE values for both CV and the test set are less likely to

suffer from overfitting or underfitting.

• The models “Stacking Regression (1)”, “Second averaged regression model”, and

“Stacking Regression (2)” have relatively low SMAPE values for both CV and the

test set, suggesting consistent performance.

8. Based on these observations, the models “Stacking Regression (1)”, “Second averaged

regression model”, and “Stacking Regression (2)” exhibit consistent performance across

multiple metrics. They have relatively low RMSE, MAE, and SMAPE values for both CV

and the test set. These models are less likely to suffer from overfitting or underfitting

and provide reliable predictions for the memory (PRMQ) score.

9. On the other hand, models with significant discrepancies between CV and test set met-

rics or relatively higher errors, such as “KNN Regressor”, “Support Vector Regression”,

and “LassoCV Regression”, may indicate overfitting or underfitting issues. These models

should be further evaluated and potentially fine-tuned to improve their performance.

Based on the performance measures provided in the Table 4.25, we can make comparisons

between the different ML models used to predict the memory (PRMQ) score. Here are some

observations:

1. Stacking Regression (1), Stacking Regression (2), Stacking Regression (3), Stacking Re-

gression (4), Stacking Regression (5), and Stacking Regression (6) are different variations

of stacking regression models. They generally perform well compared to other models

in terms of MAAPE, MSE, and R2
scores.

2. The Second averaged regression model and the First averaged regression model are two

different ensemble models that involve averaging the predictions of multiple regression

models. Both models show similar performance, but the First averaged regression model

has slightly better results in terms of MAAPE and MSE.

3. Weighted voting Regression (1), Weighted voting Regression (2), Weighted voting Re-

gression (3), Weighted voting Regression (4), and Weighted voting Regression (5) are
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different variations of weighted voting regression models. They perform reasonably well,

with similar performance across the different versions.

4. The Gradient Boosting Regressor, CatBoost Regressor, AdaBoost Regressor, LightGBM

Regressor, Bagging Regression, Random Forest Regressor, and Extra Trees Regressor are

ensemble models that utilize boosting or bagging techniques. They generally perform

better than linear models like Linear Regression, Lasso Regression, Elastic Net Regres-

sion, Ridge Regression, and their variants in terms of MAAPE, MSE, and R2
scores.

5. The XGBoost Regressor shows good performance in terms of R2 score but has slightly

higher MAAPE and MSE compared to other ensemble models.

6. LassoCV Regression and Lasso Regression show similar performance, but LassoCV Re-

gression performs slightly better in terms of MAAPE, MSE, and R2
scores.

7. KNN Regressor, Support Vector Regression, and ElasticCV Regression have relatively

lower performance compared to other models. They have higher MAAPE and MSE and

lower R2
scores, indicating that they may not be the best models for predicting the

memory score in this case.

8. Overall, the stacking regression models, ensemble models utilizing boosting or bagging

techniques, and some of the weighted voting regression models tend to perform better

than other models in terms of MAAPE, MSE, and R2
scores. It’s important to note that

the specific performance of each model may vary depending on the dataset and problem

at hand, so it’s recommended to consider these results as a starting point and conduct

further experimentation and evaluation to choose the most suitable model.

We analyzed the data from the table 4.25 to identify overfitting, underfitting, and evaluate the

performance of the models using cross-validation metrics and test set metrics. Here are some

observations:

9. Overfitting: Overfitting occurs when a model performs well on the training data but

poorly on unseen data. Signs of overfitting include significantly better performance on

the training set compared to the test set or cross-validation results. Models that poten-

tially exhibit overfitting:

• Stacking Regression (8): This model shows a high MAAPE and MSE on the test set

compared to cross-validation, indicating possible overfitting.

• LassoCV Regression: Similar to Stacking Regression (8), this model has higher

MAAPE and MSE on the test set, suggesting overfitting.
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10. Underfitting: Underfitting happens when a model fails to capture the underlying pat-

terns in the data, resulting in poor performance on both the training and test sets. Signs

of underfitting include consistently low performance metrics. Models that potentially

exhibit underfitting:

• KNN Regressor: This model shows relatively high MAAPE and MSE on both the

test set and cross-validation, indicating underfitting.

• Support Vector Regression: Similar to KNN Regressor, this model has consistently

higher MAAPE and MSE scores on both test set and cross-validation, suggesting

underfitting.

11. Cross-validation metrics vs. Test set metrics: Cross-validation is a technique used to

estimate the performance of a model on unseen data by splitting the training data into

multiple folds. The test set metrics, on the other hand, provide the actual performance

of the model on completely unseen data.

• In general, the cross-validation metrics and test set metrics are relatively close for

most models, indicating that the models are performing consistently on unseen

data.

• However, some models show slight variations between the cross-validation metrics

and test set metrics. For example, models like Stacking Regression (1), Stacking Re-

gression (2), Stacking Regression (3), Second averaged regression model, and Gra-

dient Boosting Regressor have slightly better performance on the test set compared

to cross-validation, suggesting good generalization capabilities.

From the previous observations, we see that Stacking Regression (1) has the best performance

in 5 of the 12 calculated metrics and Stacking Regression (3) has also the best performance in 5

of the 12 metrics. So we propose a Stacking Regression model for modeling the memory-related

regression task. We choose the Stacking regression (1) model to predict Memory (PRMQ) score

as it has the best performance according to the R2
metric calculated on the test set.

The elements necessary to specify the Stacking Regression (1) model are the meta-regressor

and the regressors. In this case the meta-regressor is a Lasso Regression model. The regressors

and their hyperparameters are given in the Table 4.26.

Model Meta-regressor Regressor

Stacking Regression (1) Linear Regression Lasso Regression

ElasticNet Regression

XGBoost Regression

Table 4.26: The necessary elements to specify the Stacking Regression (1) model used to

predict the memory (PRMQ) score.
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To ensure optimal performance and fine-tuned configuration of the tested machine learning

models, we employed the grid search method to select the most suitable hyperparameters. The

details of the specific grids used for each machine learning model and the final values of the

hyperparameters tested to predict memory (PRMQ) score are given in detail in the Appendix

B.3, allowing for transparency and reproducibility of the experimentation process.



Chapter 5

Imbalanced classification and the
memory-related classification task

Chapter 5 discusses the problem of imbalanced classification in machine learning. Several ap-

proaches have been proposed to solve this problem, such as algorithm-level techniques, data-

level strategies, and hybrid-level techniques. The chapter also describes the inadequacy of

traditional performance metrics, such as accuracy, for imbalanced datasets and presents ap-

propriate metrics, such as precision, recall, F1-measure, and area under the ROC curve (AUC).

Moreover, Chapter 5 presents the methodology and results for solving the memory-related

problem classification problem (M-from-D class). The main objective is to diagnose memory-

related problems through questions used to diagnose depression, and the task is an imbalanced

binary classification problem. In the methodology section, two approaches were applied: data

level methods and Cost-Sensitive learning. At the end of the chapter, the results of the M-from-

D class are given.

5.1 Imbalanced classification

Classification can be divided into two sub-categories. The first one is termed complete classifi-

cation and is used with balanced datasets. In machine learning, a balanced dataset refers to a

dataset where the number of data points for each class or category is approximately equal. For

example, in a binary classification problem where we are trying to predict whether an email

is spam or not, a balanced dataset would mean having roughly the same number of spam and

non-spam emails in the dataset. A balanced dataset is desirable because it helps prevent bias

in the model towards any particular class and ensures that the model is equally capable of

predicting both classes. However, in some real-world scenarios, such as medical diagnosis, it’s

common to have imbalanced datasets where one class significantly outnumbers the other. In

119
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such cases, specific techniques can be used to balance the dataset during the training process.

The second is called partial classification and used on imbalanced datasets [65], which is a basic

issue in machine learning and has drawn a lot of attention [66, 67]. In the binary imbalanced

datasets, there are more samples belonging to one class than there are of the other. The first

class is therefore referred to as the majority class, and the second as the minority class. As a

result, there are two types of classes in such datasets: majority and minority. The imbalance

ratio (IR) [65],

IR =
number of majority instances

number of minority instances

is a statistical indicator of the distribution of instances in imbalanced binary datasets. There

are three groups of imbalanced datasets, as determined by the value of their IR: Datasets with

low imbalance (IR is between 1.5 and 3), datasets with medium imbalance (IR is between 3 and

9), and datasets with high imbalance (IR is higher than 9)

Several methods have been put forth in an effort to solve the binary imbalanced classifica-

tion problem. We categorize the methods using: The algorithm level, the data level, and the

hybrid level. This categorization has been done on the basis of the way the methods handle

the class imbalance. First, algorithm-level [66, 68] techniques modify the existing classifica-

tion algorithms to give more importance to the minority class during the training process.

Second, data-level strategies [69, 67], such as undersampling and oversampling provide a pro-

cessing step to lessen the effect of skewed class distribution. Last but not least, algorithm level

and data-level techniques like resampling and cost-sensitive learning are combined when the

hybrid-level techniques [70, 71] are applied.

5.2 Evaluation metrics for the imbalanced classification task

For imbalanced datasets, the traditional performance metrics used to assess classifier perfor-

mance e.g. accuracy, are inappropriate. This comes as a result of their sensitivity to class skews

and significant bias toward the majority class. For instance, the accuracy metric can be mis-

leading when the dataset is imbalanced. For example, in a dataset with only 1% of minority

instances and 99% of majority instances, the accuracy is 99% if all majority instances are cor-

rectly classified. Nevertheless, an enormous cost can arise from the misclassification of the

1% minority instances and, for a medical diagnosis the seemingly high 99% accuracy might be

disastrous. As a result, alternate metrics are required to evaluate the effectiveness of classifiers

with imbalanced datasets.
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We can use the confusion matrix, to extract directly certain measures [65]. They can eval-

uate independently how well the majority and minority classes are classified. We can also

combine some others to evaluate the performance of a classifier. Below is a description of

some performance metrics which are appropriate for imbalanced classification:

• Precision: is the percentage of the minority instances which were correctly classified

relative to all instances that were classified to the minority class.

• Recall: is the percentage of minority instances correctly classified as belonging to the

minority class.

• F1 measure: is the harmonic mean of precision and recall. The increase of the accuracy

and recall causes a proportional increase in the F1 metric. When F1 is high, the model is

more effective in predicting the minority class.

• Area under the ROC curve (AUC): A ROC (Receiver Operating Characteristic) curve

displays a binary classifier system’s performance in a visual format by changing its dis-

crimination threshold. It graphs the true positive rate (TPR) against the false positive rate

(FPR) using varying threshold values. The true positive rate is the proportion of correct

positive predictions to the total number of positive samples in the data, while the false

positive rate is the proportion of incorrect positive predictions to the total number of

negative samples.

The area under the ROC curve (AUC) is used to compare the performance of two classi-

fiers. If classifier C1’s area is larger than classifier C2’s area, then C1’s performance will

be better than C2’s. To calculate the AUC, first sort the data in descending order based

on the predicted probability of the positive class. Then, initialize the true positives and

false positives variables to 0, as well as the area variable. Proceed by looping through

each sample in the sorted data, incrementing true positives or false positives depending

on whether the sample is a true positive or false positive. Calculate the true positive rate

(TPR) and false positive rate (FPR) using the updated true positives and false positives

values. Next, calculate the area of the trapezoid formed by the current point and the

previous point on the ROC curve using a specific formula. Add the area of the trape-

zoid to the area variable. Finally, set the previous FPR and previous TPR variables to the

current FPR and TPR values, respectively, and return the area as the AUC.
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5.3 Cross validation with resampling

If a resampling process is applied to an imbalanced dataset, cross-validation is a delicate task.

If cross-validation is applied on already upsampled data, the performance metrics are not nec-

essarily valid for new data. On the other hand if the resampling process is applied before cross

validation, the same data points may end up being in the training and validation sets. As a re-

sult, the values of those data points will be perfectly predicted by a complicated enough model

when predictions are made on the validation set, inflating the values of the accuracy and recall

metrics.

When k cross-validating is applied in combination with resampling [72], the following steps

guarantee the generalisation of the results:

• At the beginning of each cross-validation loop, choose randomly a sample from the data

set, keep it separated and do not use it for anything related to resampling, model training,

or feature selection.

– The excluded sample is called the validation set.

– The data set without the excluded sample is called the training set.

• Apply a method of resampling on the training set and take resampled data (oversampled

minority class + the majority class, or undersampled majority class + the minority class).

• Use the resampled data to build and train the model.

• Use the excluded sample (validation set) for validation, i.e., testing the performance of

the trained model to “unknown” data.

• Repeat the above steps k times.

5.4 Techniques for imbalanced classification

Data-level resampling techniques are a class of techniques used to address class imbalance in

machine learning. These techniques involve modifying the original dataset by either over-

sampling the minority class, undersampling the majority class, or both. The goal of these

techniques is to create a balanced dataset that can improve the performance of the machine

learning model.
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5.4.1 Data-level methods

Data-level methods [65] resample the data to lessen the effect of the imbalance. They are

divided into three categories: oversampling, undersampling and hybrid approaches.

5.4.2 Oversampling methods

Oversampling is used to expand a dataset that is unevenly distributed by replicating a few

minority instances. The following techniques can be used for this duplication.

5.4.2.1 Random Oversampling

In random oversampling, the minority class is oversampled by randomly duplicating some of

its samples until its size matches the size of the majority class. This is done to balance the

class distribution and avoid bias towards the majority class during model training. However,

duplicating samples can lead to overfitting, where the model may become too focused on the

minority class and not generalize well to new data.

5.4.2.2 Synthetic minority oversampling technique (SMOTE)

SMOTE is a data-generating synthetic approach. For each minority instance, xi, SMOTE gen-

erates a synthetic example xnew as shown in the Equation (5.1). Initially, SMOTE finds the

K-nearest neighbors (yj , j ∈ {1, ...,K}) of xi. Then, it finds one of K-nearest neighbors, yi, at

random. Finally, SMOTE creates a new sample by interpolating between the two samples. The

interpolation is done by selecting a random point along the line that connects the two sam-

ples and using this point to create the new synthetic sample. The previous process is done by

applying the following equation, where δ is a number chosen at random in the interval [0, 1].

xnew = xi + (yi − xi) ∗ δ (5.1)

We recognize that xnew is a point on the segment that connects xi and yi. SMOTE has the

benefit of improving the generalization performance of the model by increasing the diversity

of the data. SMOTE produces artificial samples that don’t exactly replicate existing ones, but

instead, create new instances within the feature space. Nonetheless, SMOTE may cause over-

fitting when the newly created samples resemble the existing ones too closely. As a result,

it is crucial to cautiously fine-tune the SMOTE algorithm’s parameters, such as the oversam-

pling ratio and the number of nearest neighbors, to achieve a harmonious balance between

oversampling and generalization.
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5.4.2.3 Adaptive Synthetic Sampling Approach (ADASYN)

ADASYN [69] is an adaptive synthetic sampling approach for imbalanced learning. The main

concept behind ADASYN is the usage of a weighted distribution for different minority class in-

stances depending on their level of learning difficulty, e.g., for minority class instances that are

more challenging to learn, more synthetic data is produced than for minority examples that are

simpler to learn. The number of synthetic instances that may be produced for each minority

instance is determined by ADASYN, using a distribution function termed density. This function

measures the density of the minority class in the feature space. The algorithm then calculates

the difference between the density of each sample in the minority class and the density of its k

nearest neighbors. This difference is used to determine the degree of synthetic sample gener-

ation, with samples in sparser regions of the feature space receiving more synthetic samples.

ADASYN has an edge over SMOTE in that it can create synthetic samples that are more varied

and inclusive. This is due to its capability of generating samples in underrepresented regions

of the minority class. Furthermore, ADASYN can efficiently cope with datasets with varying

degrees of imbalance, as it modifies to the level of imbalance present in the data. Nevertheless,

ADASYN, like other oversampling methods, has the potential of overfitting the model if the

newly generated samples are too much alike to the existing ones. Hence, it is crucial to assess

the model’s performance meticulously by employing techniques like cross-validation.

5.4.3 Undersampling methods

Undersampling methods reduce the data size by deleting some majority instances with the

objective of equalizing the number of instances of each class [44]. There are several approaches

for this kind of undersampling, that differ in the way of selection of majority instances that

will be deleted.

5.4.3.1 Random undersampling

Random undersampling is the inverse of random oversampling. The aim of this strategy is to

reduce the number of examples in the majority class in the modified data by randomly selecting

and removing samples from it.

5.4.3.2 Tomek Links

Tomek Links is an undersampling technique [73] that is a modification of the Condensed Near-

est Neighbors (CNN) created by Tomek (1976). It involves identifying pairs of examples from
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different classes that are closest to each other and then removing the example from the ma-

jority class in that pair. The Tomek Links technique, as opposed to the CNN approach which

chooses at random samples from the majority class with their k nearest neighbors, employs a

rule that defines a Tomek Link to choose the pair of observations. In particular, let’s say, a and

b fulfill all the following properties:

• Observation b is nearest to observation a.

• Observation a is nearest to observation b.

• The observations a and b are of distinct classes. This means that a and b are members of

the minority and majority classes, respectively, or vice versa.

It may be stated mathematically as follows: Let d(xi, xj) be the Euclidean distance between

samples xi and xj , where xi stands for the minority class sample and xj for the majority class

sample. If there is no sample xk satisfying the following conditions:

1. d(xi, xk) < d(xi, xj), or

2. d(xj , xk) < d(xi, xj)

then the pair of (xi, xj) is a Tomek Link.

This process continues until there are no more such pairs with a Tomek Link left in the dataset.

The removal of these examples creates a cleaner and more easily separable dataset, thereby

improving the performance of machine learning models on imbalanced datasets.

5.4.3.3 Edited Nearest Neighbor (ENN)

The ENN approach [74] finds each observation’s K-nearest neighbor first, afterwards it checks

whether or not the observation’s class and its k-nearest neighbor’s majority class are the same.

The observation and its K-nearest neighbor are removed from the dataset if the majority class

of the observation’s neighbor is different from that of the observation.

The following will describe how the ENN algorithm works:

• Determine K, the number of nearest neighbors, given a dataset containing N observa-

tions.

• In the dataset, locate the observation’s K-nearest neighbor and then return the majority

class from K-nearest neighbor.
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• The observation and its K-nearest neighbor are removed from the dataset if the class of

the observation and the majority class from the observation’s K-nearest neighbor vary.

• Till the desired proportion of each class is reached, repeat steps 2 and 3 as necessary.

Compared to Tomek Links, ENN approach is more powerful. When the class of the observation

and the majority class from the observation’s K-nearest neighbor vary, ENN drops the obser-

vation and its K-nearest neighbor, rather than just eliminating observation and its 1-nearest

neighbor belonging to different data classes. As a result, ENN is anticipated to provide more

in-depth data cleaning than Tomek Links.

5.4.4 Hybrid data-level

Hybrid data-level techniques are a class of techniques used to address class imbalance in ma-

chine learning that combine oversampling and undersampling techniques. The goal of these

techniques is to create a balanced dataset while preserving as much information as possible. A

brief presentation of hybrid data-level techniques used in this thesis are given below.

5.4.4.1 SMOTE-Tomek Links

The SMOTE-Tomek Links [75] algorithm is a hybrid data-level resampling technique used to

address class imbalance in machine learning. The algorithm combines two techniques: Syn-

thetic Minority Over-sampling Technique (SMOTE) and Tomek Links undersampling. SMOTE

is used to oversample the minority class by creating synthetic samples that are generated by

interpolating between existing minority class samples. This helps to increase the representa-

tion of the minority class in the dataset. Tomek Links, on the other hand, are pairs of samples

from different classes that are close to each other but represent borderline cases. Tomek Links

undersampling removes samples that belong to Tomek Links, which can help to reduce the

overlap between the minority and majority classes

The SMOTE-Tomek Links algorithm works in the following way:

1. Apply SMOTE to oversample the minority class, generating synthetic samples.

2. Identify Tomek Links between the minority and majority classes.

3. Remove the samples from both classes that belong to Tomek Links.

4. Evaluate the performance of the machine learning model on the balanced dataset.
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The combination of SMOTE and Tomek Links undersampling can improve the performance

of the machine learning model by creating a more separable dataset that is less susceptible to

noise and overlapping data points. This can result in a more accurate and reliable model that

is better able to handle class imbalance.

5.4.4.2 SMOTE-ENN Method

SMOTE-ENN Method [74] combines SMOTE’s ability to produce synthetic instances of the

minority class data and the ability of ENN to exclude some observations from both classes that

are determined to have a different class from the observation’s class and the majority class of

its K-nearest neighbors. The following describes how SMOTE-ENN works:

1. (SMOTE begins) Choose at random sample from the minority class.

2. Calculate the distance between the sample data and its k nearest neighbors.

3. Multiply the distance with a random number between 0 and 1, afterwards add the out-

come to the minority class as a synthetic sample.

4. Till the needed size of the minority class is reached, repeat steps 2-3. (SMOTE ends)

5. (ENN begins) Determine K, the number of nearest neighbors.

6. In the dataset, locate the observation’s K-nearest neighbors and then return the majority

class from K-nearest neighbors.

7. The observation and its K-nearest neighbors are removed from the dataset if the class of

the observation and the majority class from the observation’s K-nearest neighbors differ.

8. Repeat steps 6 and 7 until the needed size of each class is reached. (ENN ends)

5.4.4.3 Cost-Sensitive Learning

Most machine learning algorithms assume that all misclassification errors made by a model

are “equal” independently whether they involve minority or majority class targets. This is of-

ten not the case for imbalanced classification problems, where missing a positive (or minority)

class case is worse than incorrectly classifying a sample from the negative (majority) class.

Cost-sensitive learning [76, 77] is a subfield of machine learning that takes into account the

costs of prediction errors (and potentially other costs) when training. Many machine learning

algorithms can be updated to be cost-sensitive, where the model is penalized more for misclas-

sification errors from one class compared to the other.
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The scikit-learn library in Python provides this capability for a range of algorithms via the

“class weight” attribute specified when defining the model. A weighting can be specified that

is inversely proportional to the class distribution. For example, if the class distribution was

0.99 to 0.01 for the majority and minority classes respectively, then the “class weight” argu-

ment could be defined as a dictionary that defines a penalty of 0.01 for errors made for the

majority class and a penalty of 0.99 for errors made with the minority class.

5.5 Solving Problem 4 (M-from-D class): Memory class through
depression

One of our state goals in this thesis is to diagnose memory-related problems through ques-

tions that relate to depression, along with demographics and general health questions. From

the available data, we see that there is an uneven distribution between those who have prob-

lems with their memory and those who do not. Specifically, approximately only 5% of subjects

who responded to the questionnaires were diagnosed with a memory problem. Therefore, the

task of predicting memory-related conditions through questions that are used to diagnose de-

pression is an imbalanced binary classification task.

To solve the M-from-D problem, we attempted all of methods mentioned in Section 5.4. In

each case, we evaluated the resulting models with the metrics described in Section 5.2 ,i.e. Pre-

cision, Recall, F1-Measure and AUC. More specifically, after randomly splitting the data set into

a training set and a test set with a ratio of 80% to 20% in a manner that preserved the distribu-

tion of the memory classes (majority class 95%: without memory-related problems, minority

class 5%: with memory-related problems), we followed each of two approaches to solve the

binary imbalanced classification problem.

In the first approach, we applied, in turn, 14 classifiers: Logistic Regression, Decision Tree,

Random Forest, Linear Discriminant Analysis, Support Vector, K-Nearest Neighbors, Bagging,

AdaBoost, Gaussian Naive Bayes, Gradient Boosting, XGBoost, CatBoost and Extra Trees. Each

classifier was trained on five different training sets:

1. Original training set

2. Training set arising from the application of SMOTE resampling on the original training

set.

3. Training set arising from the application of ADASYN resampling on the original training

set
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4. Training set arising from the application of Smote & Tomek Links resampling on the

original training set.

5. Training set arising from the application of Smote & ENN resampling on the original

training set.

All trained models were evaluated on the same original test set which was independent of the

resampling technique used during the training phase.

In the second approach, we applied Cost-Sensitive learning. In particular, different weights

were given to the majority (subjects with no memory-related problems indicated) and minor-

ity (subjects with a memory-related problem) classes during the training phase of each clas-

sification algorithm, in order to take into account the skewed distribution of the classes. The

idea was to penalize to a higher degree the misclassification made by the minority class by

increasing its class weight, while simultaneously decreasing the corresponding weight for the

majority class. After the class weights were set, they were multiplied by the class loss, and

the minority class had a much higher error than the majority class. In practice, we used some

of the sklearn modeling libraries and some boosting based libraries in Python which have an

in-built parameter “class weight”. This parameter does exactly the job of assigning different

weights to different classes. The “class weight” setting’s default value is None, in this case

both classes have equal weights. To assign different weights to the two different classes, we

set class weight =“balanced” or assign a dictionary with manual weights for each class to the

class weight parameter. In case, class weight =“balanced”, the model automatically assigns

the class weights to be inversely proportional to their corresponding frequencies, i.e.

wj =
n samples

n classes ∗ n samples j

where wj is the weight for the j-th class, n samples is the total number of samples or rows

in the dataset, n classes is the total number of unique classes in the target (i.e. 2 in case of

binary classification) and n samples j is the total number of rows of the respective class.

In this thesis, we applied Cost-Sensitive Logistic Regression, Cost-Sensitive Decision trees,

Cost-Sensitive Support Vector Classifier, Cost-Sensitive Random Forest Classifier, Cost-Sensitive

Ridge Classifier, Cost-Sensitive XGBoost Classifier and Cost-Sensitive Extra Trees Classifier.

For each model, we executed 3 trials by changing the class weight parameter. In the first trial,

we used the class weight =“balanced”, in the second we assigned manually weights depend-

ing on the proportion of the two classes in the training set and in the third trial we performed

a grid search to choose the best class weights among a predefined grid for candidate class-

weights. Each model was trained on the same training set and evaluated on the same test

set.
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5.6 Results for Problem 4: (M-from-D class)

Although approximately 100 trials were conducted to model the imbalanced binary classifi-

cation problem of diagnosing memory-related problems, the results obtained were not satis-

factory enough. The range of values of each evaluation metric calculated on the test set by

applying the approaches described in Section 5.4 is given below: Precision: [0.11789,1], Re-

call: [0.03125, 0.9375], F1-score: [0.05882,0.46154], AUC-ROC: [0.514839,0.91799]. We notice

that the F1-score values are not high, which we expected because F1 is the harmonic mean of

precision and recall for which it was observed from the trials that when one had a very high

value the other had a very low value. It is worth noting that we wanted a high Recall in order

to pay attention on predicting well the people with memory problems (Positive Class). So, we

decided to choose the model that gave a Recall> 0.5 with the maximum Precision. The model

was the Extra Trees classifier with SMOTE & ENN resampling technique on the training set

which gave the following metric values on the test set: Precision: 0.307692, Recall: 0.62500,

F1-score: 0.412371, AUC-ROC: 0.890625.



Chapter 6

Conclusions

This thesis focused on the growing prominence of mental health issues worldwide, driven by

global challenges like public health emergencies, social inequality, and the climate crisis. Men-

tal disorders had a significant impact on individuals and society, with anxiety and depressive

disorders being the most prevalent. The COVID-19 pandemic further worsened mental health,

leading to a rise in anxiety and depression cases. Identifying mental health issues involves

various methods such as interviews, questionnaires, psychological tests, and diagnostic tools.

Early detection is crucial for timely and appropriate care, and questionnaires had emerged as

accessible tools for individuals to assess their mental health and seek help. They enable early

treatment, potentially saving lives and preventing severe consequences.

The thesis explored the use of questionnaires for diagnosing mental health conditions, specif-

ically focusing on the relationship between depression and memory disorders. Depression

affected the quality of life and was often associated with memory impairments. Understand-

ing the link between depression and memory loss is crucial for accurate diagnosis and effec-

tive treatment. Memory problems could arise from various causes, including depression, but

it was essential to rule out other underlying conditions that contributed to cognitive impair-

ments. Seeking medical evaluation and undergoing cognitive tests helped determine the cause

of memory issues and guided appropriate treatment. By utilizing questionnaires like the PRMQ

for memory and the SDS questionnaire for depression, the thesis investigated whether these

tools could diagnose depression and detect memory-related disorders, respectively. Machine

learning techniques were also explored as a way to predict mental health disorders using ques-

tionnaire data. Previous studies had shown promise in using machine learning algorithms to

identify mental health conditions. These approaches provided valuable insights and potential

for automated diagnosis using questionnaire data from one mental health disorder to predict

another one.
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In practice, the thesis discussed four prediction problems based on the questionnaire data:

• Problem 1: “D-from-M score” focused on predicting the depression score using the re-

sponses to the memory PRMQ questionnaire and other demographic and health-related

data.

• Problem 2: “D-from-M class” involved predicting the depression class (with or with-

out depression) using the responses the memory PRMQ questionnaire and other demo-

graphic and health-related data.

• Problem 3: “M-from-D score” aimed to predict the memory score using the responses to

the depression SDS questionnaire and other demographic and health-related data.

• Problem 4: “M-from-D class” focused on predicting the memory class (with or without

memory disorders) using the responses to the depression (SDS) questionnaire and other

demographic and health-related data.

To address these prediction problems, various statistical methods for feature selection were

employed, depending on the data types and target variables. These methods included Pear-

son Correlation, Spearman Rank Correlation Coefficient, Point Biserial Correlation, Kruskal-

Wallis H Non-Parametric Hypothesis Test, Mann-Whitney U Test, Fisher’s Exact Test, and

Chi-Square Test of Independence. The modeling process for each problem involved training

machine learning models using the selected features and the corresponding target variables.

The thesis discussed the steps and methodologies employed for each prediction problem and

highlighted the proportions of the different classes in the target variables to provide insights

into class imbalance issues. Below we present the results of the machine learning applications

for each problem, the final model-models chosen to model it and their performance results.

6.1 Results for the Problem 1: D-from-M score

Based on the provided data and analysis of the performance measures for different ML models

used to predict the depression (ZUNG) score, the “Weighted Voting Regression (3)” model stood

out. The “Weighted Voting Regression (3)” model consistently demonstrates strong perfor-

mance across multiple evaluation metrics for predicting depression (ZUNG) score. It achieves

the lowest RMSE (CV) and MAE (CV) scores, indicating its accuracy in capturing the under-

lying patterns in the data. Additionally, it performs well in terms of SMAPE (CV), further

highlighting its effectiveness. Moreover, it shows competitive performance in terms of RMSE

(test), MAE (test), and SMAPE (CV). Below we give detailed information about the performance

metrics of the ”Stacking Regression (3)” model:
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• RMSE (CV) and RMSE (test): The model achieves an RMSE (CV) value of 2.35886, indi-

cating that, on average, its predictions deviate from the actual values by approximately

2.36 units during cross-validation. On the test set, the RMSE value is 5.53651, suggesting

that the model’s predictions deviate by around 5.54 units from the true values.

• MAE (CV) and MAE (test): The model achieves an MAE (CV) value of 4.41478 during

cross-validation, meaning that, on average, its predictions have an absolute difference

of approximately 4.41 units compared to the true values. On the test set, the MAE value

is 4.42447, indicating an average absolute difference of around 4.42 units between the

model’s predictions and the actual values. The MAE metric provides insights into the

magnitude of the model’s errors.

• SMAPE (CV) and SMAPE (test): The model achieves an SMAPE (CV) value of 10.421 dur-

ing cross-validation, suggesting that, on average, the model’s predictions have a relative

error of approximately 10.42% compared to the true values. On the test set, the SMAPE

value is 10.27, indicating a relative error of around 10.27%. The SMAPE metric provides

a measure of the percentage error in the predictions.

• MAAPE (CV) and MAAPE (test): The model achieves an MAAPE (CV) value of 0.10532

during cross-validation, indicating that, on average, the model’s predictions have an

absolute percentage difference of approximately 10.53% compared to the true values. On

the test set, the MAAPE value is 0.10263, suggesting an average absolute percentage

difference of around 10.26% between the model’s predictions and the actual values. The

MAAPE metric provides a measure of the percentage error in the predictions.

• MSE (CV) and MSE (test): The model achieves an MSE (CV) value of 31.0772 during

cross-validation, indicating the average squared difference between the predicted and

true values. On the test set, the MSE value is 30.65297, suggesting a similar average

squared difference between the model’s predictions and the actual values. The MSE met-

ric provides insights into the magnitude of the errors made by the model.

• R2
(CV) and R2

(test): The model achieves an R2
(CV) value of 0.65543 during cross-

validation, indicating that approximately 65.54% of the variance in the target variable

can be explained by the model’s predictions. On the test set, the R2
value is 0.64345,

suggesting that around 64.35% of the variance in the target variable is explained by the

model’s predictions. The R2
metric provides a measure of how well the model fits the

data and captures the underlying patterns.

Overall, the “Weighted Voting Regression (3)” model performs reasonably well based on the

provided metrics, including low errors and high coefficient of determination (R2
). It achieves

a relatively low MAAPE, indicating that its predictions have a relatively small absolute per-

centage difference from the true values. The MSE values are also moderate, indicating that the
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model’s predictions have a reasonable squared difference from the actual values. Additionally,

theR2
values indicate that a significant portion of the variance in the target variable is captured

by the model’s predictions. It achieves relatively low RMSE, MAE, and SMAPE values during

cross-validation and on the test set, indicating its ability to make accurate predictions on both

seen and unseen data. Thus, it demonstrates good generalization ability to unseen data with

similar performance between cross-validation and test set metrics. Therefore, it is a strong can-

didate for predicting depression (ZUNG) score and presents a promising approach for solving

the problem: D-from-M score. It’s also worth noting that these comments are based solely on

the provided data and metrics. Further analysis, comparison with other models, and considera-

tion of additional factors such as interpretability, computational efficiency, and domain-specific

requirements would be necessary to make a more comprehensive assessment of the model’s

practical utility.

6.2 Problem 2: D-from-M class

Based on the machine learning analysis of Problem 2: D-from-M class, it is evident that the

LightGBM classifier and AdaBoost classifier consistently outperform other models in predict-

ing the Depression (ZUNG) class. These models demonstrate strong performance across mul-

tiple metrics, including recall, accuracy, precision, F1 score, AUC-ROC score, and balanced ac-

curacy. Also, models like the LightGBM classifier, Gradient Boosting classifier, and AdaBoost

classifier exhibit better generalization capabilities, indicating their ability to perform well on

unseen data in contrast to the presence of potential overfitting or underfitting in other mod-

els. For instance, the Decision tree classifier and KNN classifier may be prone to overfitting

or underfitting, as suggested by noticeable differences between cross-validation and test set

performance. Below, there are some analytical notes on the classification performance of the

LightGBM classifier and AdaBoost classifier for the prediction of the Depression (ZUNG) class:

• Recall (CV) and Recall (test): The LightGBM classifier achieves a recall (CV) value of

0.77605 during cross-validation, indicating that it correctly identifies approximately 77.61%

of the positive instances in the dataset. On the test set, the recall value is 0.79125, suggest-

ing that the model correctly identifies around 79.13% of the positive instances. Similarly,

the AdaBoost classifier achieves a recall (CV) value of 0.79019 during cross-validation

and a recall (test) value of 0.77778 on the test set. These values indicate that both models

have a relatively high ability to identify positive instances correctly. Both of them have

recall values of around 0.78-0.79 in cross-validation and test set, indicating their ability

to capture most positive instances.
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• Accuracy (CV) and Accuracy (test): The LightGBM classifier achieves an accuracy (CV)

value of 0.80576 during cross-validation, indicating that it correctly classifies approx-

imately 80.58% of the instances in the dataset. On the test set, the accuracy value is

0.79341, suggesting that the model correctly classifies around 79.34% of the instances.

Similarly, the AdaBoost classifier achieves an accuracy (CV) value of 0.81139 during

cross-validation and an accuracy (test) value of 0.78743 on the test set. These values

indicate that both models have a relatively high overall classification accuracy or overall

correctness in predictions (Accuracy).

• Precision (CV) and Precision (test): The LightGBM classifier achieves a precision (CV)

value of 0.78468 during cross-validation, indicating that approximately 78.47% of the in-

stances predicted as positive are actually true positives. On the test set, the precision

value is 0.75563, suggesting that around 75.56% of the instances predicted as positive

are true positives. Similarly, the AdaBoost classifier achieves a precision (CV) value of

0.78622 during cross-validation and a precision (test) value of 0.75244 on the test set.

These values indicate that both models have a relatively good precision, meaning they

have a relatively low rate of false positives. Thus, when it comes to correctly identi-

fying positive cases out of all predicted positive instances (Precision), both classifiers

demonstrate good precision scores.

• F1 (CV) and F1 (test): The F1 score is a measure that combines precision and recall, pro-

viding an overall assessment of the model’s ability to balance between correctly identify-

ing positive instances and minimizing false positives. The LightGBM classifier achieves

an F1 score (CV) of 0.77949 during cross-validation, indicating a good balance between

precision and recall. On the test set, the F1 score is 0.77303, suggesting a similar balance

in performance. The AdaBoost classifier also performs well with an F1 score (CV) of

0.78739 during cross-validation and an F1 score (test) of 0.7649 on the test set. These val-

ues indicate that both models achieve a relatively good balance between precision and

recall.

• AUC-ROC (CV) and AUC-ROC (test): The Area Under the Receiver Operating Charac-

teristic curve (AUC-ROC) is a popular metric for evaluating the overall performance of

a classification model across different probability thresholds. The LightGBM classifier

achieves an AUC-ROC score (CV) of 0.80308 during cross-validation, indicating a high

ability to distinguish between positive and negative instances. On the test set, the AUC-

ROC score is 0.79319, suggesting that the model maintains good performance on unseen

data. Similarly, the AdaBoost classifier achieves an AUC-ROC score (CV) of 0.80966 dur-

ing cross-validation and an AUC-ROC score (test) of 0.78646 on the test set. These values

indicate that both models have a relatively good ability to discriminate between positive

and negative instances.
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• Balanced accuracy (CV) and Balanced accuracy (test): The balanced accuracy takes into

account the imbalance between the number of positive and negative instances in the

dataset and provides a fair assessment of the model’s performance. The LightGBM clas-

sifier achieves a balanced accuracy (CV) of 0.80308 during cross-validation, indicating

a good overall accuracy considering the class imbalance. On the test set, the balanced

accuracy is 0.79319, suggesting that the model maintains similar performance on unseen

data. The AdaBoost classifier also performs well with a balanced accuracy (CV) of 0.80966

during cross-validation and a balanced accuracy (test) of 0.78646 on the test set. These

values indicate that both models have a relatively good overall accuracy, accounting for

the class imbalance in the dataset.

Overall, both the LightGBM classifier and the AdaBoost classifier show promising performance

in predicting the Depression (ZUNG) class based on the provided metrics. They achieve rela-

tively high recall values, indicating their ability to correctly identify positive instances. Addi-

tionally, they demonstrate good accuracy values, reflecting their overall classification perfor-

mance. Furthermore, the precision values suggest that both models have a low rate of false

positives, meaning they are conservative in predicting positive instances. They achieve good

F1 scores, indicating a balanced trade-off between precision and recall. Additionally, they per-

form well in terms of AUC-ROC, showcasing their ability to distinguish between positive and

negative instances. Furthermore, the balanced accuracy that both models have a good overall

accuracy, accounting for the class imbalance in the dataset. Also, they show consistent per-

formance across different evaluation metrics, indicating their reliability and effectiveness in

classifying instances.

Based on these observations, it is recommended to consider either the LightGBM classifier or

the AdaBoost classifier for predicting the Depression (ZUNG) class. The LightGBM classifier

performs slightly better in terms of precision on the test set, indicating its ability to minimize

false positives. On the other hand, the AdaBoost classifier has a slightly higher recall on the

test set, suggesting it captures a higher proportion of positive instances. The final choice may

depend on specific requirements, such as the importance of precision or recall, and the need

for higher accuracy or generalization to new data. It is recommended to further evaluate and

compare these classifiers on additional datasets to gain more insights into their performance.

The final decision should take into account other factors such as computational requirements,

interpretability, and specific project requirements. It’s important to note that these comments

are based solely on the provided data and metrics. Further analysis, comparison with other

models, and consideration of additional factors such as computational efficiency, interpretabil-

ity, and specific requirements of the classification task would be necessary to make a more

comprehensive assessment of the models’ practical utility.
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6.3 Problem 3: M-from-D score

Based on the provided data and analysis of the performance measures for different ML models

used to predict the memory (PRMQ) score, it can be concluded that the Stacking Regression

(1) model is the most suitable for predicting the memory (PRMQ) score compared to the other

models tested. This conclusion is based on the following factors:

1. Performance across multiple metrics: Stacking Regression (1) consistently performs well

across various evaluation metrics, including MAAPE, MSE, andR2
scores. It has the best

performance in 5 out of the 12 calculated metrics, indicating its overall effectiveness.

2. Generalization capability: Stacking Regression (1) exhibits good generalization capabili-

ties as its performance on the test set is slightly better or comparable to its performance

on cross-validation. This suggests that the model can effectively generalize to unseen

data.

3. Comparison with other models: Stacking Regression (1) outperforms other models, in-

cluding different variations of stacking regression models, ensemble models, and weighted

voting regression models, in terms of MAAPE, MSE, and R2
scores.

4. Stability and reliability: Stacking Regression (1) consistently demonstrates good per-

formance across different metrics, indicating stability and reliability in predicting the

memory (PRMQ) score.

5. Therefore, based on its overall performance, generalization capability, and comparison

with other models, the Stacking Regression (1) model is recommended for accurately

predicting the memory (PRMQ) score.

Below we present detailed comments on the performance of the Stacking Regression (1) model:

• RMSE (CV) and RMSE (test): The Stacking Regression (1) model achieved an RMSE of

2.76952 during cross-validation, indicating that it can predict the target variable with an

average deviation of approximately 2.76952 units from the actual values. On the test set,

the RMSE was slightly higher at 7.6284, suggesting that the model’s predictions had a

slightly higher average deviation of approximately 7.6284 units from the actual values.

Overall, the model performed well in terms of RMSE, but there is a larger deviation on

the unseen test data.

• MAE (CV) and MAE (test): The Stacking Regression (1) model achieved an MAE of

6.01643 during cross-validation, indicating that, on average, its predictions had an ab-

solute deviation of approximately 6.01643 units from the actual values. On the test set,
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the MAE improved slightly to 5.94725, suggesting that the model’s predictions had a

slightly lower absolute deviation of approximately 5.94725 units from the actual values.

The model’s MAE values indicate reasonably accurate predictions, but there is still room

for improvement.

• SMAPE (CV) and SMAPE (test): The Stacking Regression (1) model achieved an SMAPE

of 32.715% during cross-validation, indicating that, on average, its predictions had a per-

centage error of approximately 32.715% compared to the actual values. On the test set,

the SMAPE improved slightly to 31.49%, suggesting a slightly lower percentage error of

approximately 31.49%. The model’s SMAPE values indicate that the predictions had a

moderate level of error, but further improvements are desirable.

• MSE (CV) and MSE (test): The Stacking Regression (1) model achieved an MSE of 59.12159

during cross-validation, indicating that, on average, the squared differences between its

predictions and the actual values amounted to approximately 59.12159. On the test set,

the MSE was slightly lower at 58.19254, indicating a slightly smaller average squared

difference of approximately 58.19254. The model’s MSE values suggest that there is still

room for improvement to reduce the errors between predictions and actual values.

• R2
(CV) and R2

(test): The Stacking Regression (1) model achieved an R2
of 0.52203

during cross-validation, indicating that it can explain approximately 52.203% of the vari-

ance in the target variable based on the independent variables. On the test set, the R2

improved slightly to 0.55923, suggesting an increased ability to explain approximately

55.923% of the variance. These R2
values indicate that the Stacking Regression model

captures a moderate amount of the target variable’s variability, but there is potential for

further improvement in explaining the variance.

Overall, the Stacking Regression (1) model shows promise in making predictions for memory

(PRMQ) score, as indicated by the performance metrics. However, there is room for improve-

ment, particularly in reducing the average deviation, absolute deviation, and percentage error

between the predicted values and the actual values. Additionally, enhancing the model’s ability

to explain more variance in the target variable would be beneficial.

6.4 Problem 4: M-from-D class

Although approximately 100 trials were conducted to model the imbalanced binary classifi-

cation problem of diagnosing memory-related problems, the results obtained were not satis-

factory enough. The range of values of each evaluation metric calculated on the test set by

applying the approaches described in Section 5.4 is as follows:
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• Precision: Ranging from 0.11789 to 1

• Recall: Ranging from 0.03125 to 0.9375

• F1-score: Ranging from 0.05882 to 0.46154

• AUC-ROC: Ranging from 0.514839 to 0.91799

Based on these results, it can be observed that the overall performance of the models in diag-

nosing memory-related problems was not satisfactory, as indicated by the relatively low values

for precision, recall, and F1-score. Specifically for the F1-score, it was observed for its values

that were not high, which was expected because the F1-score is the harmonic mean of preci-

sion and recall. It was noticed from the trials that when one had a very high value, the other

had a very low value, indicating a trade-off between precision and recall. It is worth noting

that we wanted a high Recall in order to pay attention to predict well the people with mem-

ory problems (Positive Class). Among the models considered, the Extra Trees classifier with

SMOTE & ENN resampling technique was chosen as the best option. This model achieved the

following performance metric values on the test set:

• Precision: 0.307692. Precision measures the accuracy of positive predictions made by

the model. In this case, the model achieved a precision of almost 0.31, indicating that

almost 31% of the positive predictions were correct and a significant proportion (69%)

of the positive predictions made by the model were incorrect. This indicates a potential

issue with the model’s ability to accurately classify positive samples.

• Recall: 0.625. It measures the proportion of actual positive samples that were correctly

identified by the model. In this case, the model achieved a recall of 0.625, indicating that

62.5% of the positive samples were detected.

• F1-score: 0.412371. F1-score is the harmonic mean of precision and recall, providing a

balanced measure of a model’s performance. The achieved F1-score of 0.412371 indicates

a moderate trade-off between precision and recall, highlighting the need for improve-

ment in both areas.

• AUC-ROC: 0.890625. AUC-ROC (Area Under the Receiver Operating Characteristic Curve)

is a metric that assesses the overall performance of a classification model across various

classification thresholds. Despite the moderate precision, recall, and F1-score, the AUC-

ROC value of 0.890625 indicates that the model exhibits relatively good discriminatory

ability in distinguishing between positive and negative samples across different classifi-

cation thresholds.
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In summary, the performance of the Extra Trees classifier with SMOTE & ENN resampling

technique in diagnosing memory-related problems through depression questionnaire data, as

well as demographic and other health-related data, was not very satisfactory. While it showed

relatively better results in terms of the Recall compared to other models considered, its classifi-

cation performance on the imbalanced dataset was sub-optimal, as indicated by the low preci-

sion and F1-score. Therefore, further optimization of the Extra Trees classifier with SMOTE &

ENN resampling technique is necessary. To improve the classifier’s performance in an imbal-

anced task, several approaches can be explored. These include parameter tuning, considering

additional features, applying different resampling techniques to address class imbalance, or

incorporating additional data sources to enhance the model’s predictive capabilities. Although

feature selection, parameter tuning, and various resampling techniques have been applied in

the current study, focusing on data-level approaches such as data collection or incorporating

more data sources with less class imbalance may yield better results. Regular monitoring and

updating of the model with new data are crucial to ensure adaptability and continued perfor-

mance improvement. Additionally, conducting thorough analysis and domain-specific inves-

tigations into potential sources of bias or limitations can provide valuable insights for refining

the model.

6.5 Summary results for predicting memory disorders and fu-
ture work

In conclusion, the results obtained from predicting memory disorders based on responses to the

depression SDS questionnaire were not satisfactory enough. However, we remain optimistic

about the potential to achieve better outcomes in future studies. It is widely recognized that in-

dividuals with depression often experience concurrent issues with their memory, and we firmly

believe that this relationship can be effectively verified through the application of a machine

learning approach. One of the main challenges encountered in this study was the presence

of class imbalance within the memory disorder category. This imbalance likely contributed to

the suboptimal performance of the predictive model. Addressing this class imbalance should

be a primary focus in future research endeavors to improve the accuracy and reliability of our

predictions.

To overcome this limitation, we propose exploring various strategies to rectify the class imbal-

ance issue. This may involve actively seeking a larger sample size of individuals with memory

disorders to participate in the study. By including a more diverse and representative range

of participants, we can mitigate the impact of class imbalance and enhance the model’s abil-

ity to accurately identify and classify memory-related problems associated with depression.

Moreover, further refinement of the machine learning approach is essential. This can include
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exploring alternative algorithms, optimizing model parameters, and incorporating additional

relevant features or data sources to strengthen the predictive capabilities. By employing a com-

prehensive and systematic approach, we can unlock the full potential of machine learning in

predicting memory disorders.

In terms of future work, we propose a replication of the study using alternative question-

naires for depression and memory assessment, excluding the PRMQ questionnaire for mem-

ory disorders assessment and the depression SDS questionnaire for depression assessment.

This replication will allow for a more comprehensive evaluation of the relationship between

depression and memory, aiming to enhance the validity and generalizability of the findings.

By incorporating a diverse set of validated questionnaires, we can explore various aspects of

depression and memory functioning, gaining a more nuanced understanding of their intercon-

nectedness. The replication study holds significant potential in advancing our understanding

of the complex relationship between depression and memory. Through the utilization of ma-

chine learning techniques and a wider range of questionnaires, the predictive model can be

refined, potentially revealing novel insights into the specific cognitive mechanisms underly-

ing memory impairments in individuals with depression.

In conclusion, our proposed replication study, utilizing different questionnaires for depression

and memory assessment, aims to improve the results and validate the link between depression

and memory problems. Addressing class imbalance and expanding the sample to include more

individuals with memory difficulties will likely lead to enhanced performance in predicting

memory-related issues associated with depression. This replication study, combined with the

exploration of alternative questionnaires, has the potential to deepen our understanding of the

intricate relationship between depression and memory, ultimately benefiting clinical assess-

ment, intervention, and support for individuals affected by these conditions.

6.6 Summary results for predicting depression and future work

This study has unveiled a remarkable predictive approach that can significantly contribute to

the field of depression diagnosis and bring forth substantial insights into the link between de-

pression and mental health assessment in general. With the utilization of the responses data to

the PRMQ memory questionnaire, alongside additional demographic and health-related ques-

tions, we can train a ML model (“Weighted Voting Regression (3)” ) that achieves a 0.79 ac-

curacy rate in predicting depression. This remarkable accuracy rate of 0.79 demonstrates the

potential of this predictive model in identifying individuals at risk of depression. The impli-

cations of such accurate predictions are significant. Early detection of depression allows for

timely interventions, support, and appropriate treatment, leading to improved outcomes and
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enhanced mental well-being. Additionally, the findings highlight the link between depression

and memory while providing insights into the intricate relationship between these two factors.

The following are some of the key insights gained from the findings:

(a) The PRMQ memory questionnaire, designed to assess memory problems, has proven to

be a powerful tool in identifying individuals at risk of depression. By analyzing responses

to specific memory-related questions, researchers have gained a deeper understanding

of how memory disturbances intertwine with depressive symptoms. The questionnaire’s

remarkable accuracy rate signifies its potential as a reliable screening method, facilitat-

ing early intervention and support for those vulnerable to depression.

(b) Moreover, by incorporating demographic and other health-related questions alongside

the PRMQ memory questionnaire, researchers have unraveled additional layers of com-

plexity in the depression-memory link. Factors such as age, gender, education, and med-

ical history have been found to influence the relationship between memory and depres-

sion. These findings shed light on the multifaceted nature of depressive disorders, em-

phasizing the importance of considering various contextual variables in mental health

assessments.

The enhanced understanding of the connection between depression and memory offered by

this research carries significant implications for both clinical practice and future research en-

deavors. Clinicians can utilize the PRMQ memory questionnaire, combined with demographic

and health-related inquiries, to augment their diagnostic accuracy and tailor treatment plans

more effectively. Additionally, researchers can delve deeper into the underlying mechanisms

driving the depression-memory association, opening new avenues for therapeutic interven-

tions and prevention strategies.

In conclusion, the remarkable 0.79 accuracy achieved in predicting depression through the

PRMQ memory questionnaire, along with demographic and health-related questions, marks a

pivotal advancement in mental health assessment. This model holds great potential in identi-

fying individuals at risk of depression, facilitating early interventions, and improving mental

health outcomes. Moreover, these findings not only strengthen the link between depression

and memory but also provide invaluable insights into the complex interplay between these

factors. By harnessing this knowledge, we can strive towards more targeted interventions, im-

proved patient outcomes, and a better understanding of the intricate nature of mental health.

For future work, we suggest the continued refinement and application of this predictive model,
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so it can hold promise for advancing the field of depression diagnosis. By leveraging the in-

sights gained from the predictive performance of the model, we can inform the development

of targeted interventions, personalized treatment plans, and preventative strategies, ultimately

improving the lives of individuals affected by depression. Furthermore, we recommend con-

ducting a replication of the study by employing different questionnaires to evaluate depression

and memory, excluding SDS and PRMQ for these specific purposes. This approach would en-

able an examination of the performance of machine learning models when applied to datasets

derived from diverse sources. The outcomes of these models may yield comparable results,

which would further solidify the reliability of the conclusions drawn. Conversely, the alterna-

tive questionnaires may produce even more favorable outcomes, indicating the effectiveness

of utilizing them for training machine learning models in the prediction of depression. Con-

versely, if the results prove to be inferior, it would underscore the necessity of selecting PRMQ

and SDS as the most suitable questionnaires for our study.
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Appendix A

Statistical tests for Feature Selection

A.1 Statistical tests for applying feature selection on problems
that predict a numeric target variable

A.1.1 Numeric target variable and numeric input variable: Pearson Correla-
tion

Pearson correlation is a type of correlation used only for numerical variables. It is a metric that

measures the extent of linear correlation between two numerical variables. Pearson correlation

coefficient ranges between -1 and 1.

• A number closer to 0 means weaker correlation. When the value is exactly 0, there is no

correlation.

• A number closer to 1 means stronger positive correlation

• A number closer to -1 means stronger negative correlation

Pearson correlation formula:

r =

∑N
i=1(xi −mean(x))(yi −mean(y))√∑N

i=1(xi −mean(x))2
∑N

i=1(yi −mean(y))2

The p− value for testing the significance of the correlation between x and y variables can be

computed as follows:

1. By calculating the t statistic in the following way:

t =
r√

1− r2
√
n− 2
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Then, the corresponding p-value is determined using t distribution table for df = n− 2,

where n is the number of observations in x and y variables.

In case the p-value is less than 5%, the linear correlation between x and y is statisti-

cally significant.

2. Or by using the Pearson ’s correlation table for the degrees of freedom: df = n− 2.

A.1.2 Numeric target variable and ordinal input variable: Spearman Rank
Correlation Coefficient

The Spearman’s rank-order correlation is the non-parametric analog of the Pearson ’s corre-

lation. As a nonparametric correlation measurement, it can also be used with ordinal data.

Spearman’s correlation coefficient, rs, determines the strength and direction of the monotonic

relationship between two variables rather than the strength and direction of the linear rela-

tionship between your two variables. It can be considered as a statistical test of independence,

because the Spearman rank correlation coefficient is used as a hypothesis test to determine

if there is a relation between two variables. In the proposed master thesis, it will be used to

evaluate the relationship between a numeric variable and an ordinal variable.

As a correlation measurement between two variables, Spearman’s correlation coefficient sat-

isfies the following:

1. It ranges between −1 and +1.

2. X and Y variables are positively correlated, if the value of the correlation coefficient is

positive. They are perfectly positively correlated, if the correlation coefficient is equal to

+1.

3. X and Y variables are negatively correlated, if the value of the correlation coefficient is

negative. They are perfectly negatively correlated, if the correlation coefficient is equal

to −1.

4. X and Y are not correlated, if the correlation coefficient is close to zero.

Mathematical Formula:

Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two samples of size n of two variables X and

Y. We define RXi as the rank of Xi for i = 1, 2, . . . , n compared to the other values of the X
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sample. More specifically, RXi = 1, if Xi is the smallest value of X, RXi = 2, if Xi is the

second smallest value, etc., until RXi = n, if Xi is the largest value of X. In the same way, RYi

symbolizes the rank of Yi , for i = 1, 2, . . . , n.

The Spearman rank correlation coefficient is computed as follows:

rs = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)

where di = RXi −RYi

Hypothesis Testing:

H0: X and Y are mutually independent.

H1: There is either a positive or a negative correlation between X and Y.

Decision rule rejects H0 at the significance level α if

rs > tn−1,1−α
2

or rs < tn,α
2

where t is the critical value of the test given by the Spearman table.

A.1.3 Numeric target variable and binary input variable: Point biserial cor-
relation

The relationship between a continuous variable and a binary variable can be assessed by a

correlation coefficient which is called point biserial correlation and symbolized as rpb. The

point biserial correlation cannot be used to analyze categorical variables with more than two

categories. The Point-biserial is a correlation coefficient, so it ranges between −1 and +1.

• -1 implies that two variables are perfectly negatively correlated.

• 0 implies that two variables are not correlated.

• 1 implies that two variables are perfectly positively correlated.

Mathematical formula:

rpb =
Ȳ1 − Ȳ0
s̄y

√
n1n0

n(n− 1)
,

where
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• Y0 is the mean of the numerical observations coded as 0 (first category of the binary

variable).

• Y1 is the mean of the numerical observations coded as 1 (second category of the binary

variable).

• n0 and n1 are number of observations coded 0 and 1 respectively.

• n = n0 + n1 is total number of observations.

• s̄y is the standard deviation of all the numeric observations

s̄y =

∑N
i=1 y

2
i −

(
∑n

i=1 yi)
2

n

n− 1

Hypothesis Testing:

H0: Continuous variable and binary variable are not associated

H1: Continuous variable and binary variable are associated

Or equivalently,

H0: Mean values of the numerical observations coded as 0 and 1 are equal

H1: Mean values of the numerical observations coded as 0 and 1 are not equal

Determining the significance of the test:

The point biserial and the independent samples t-test are very similar. In fact, the p-value

which determines the significance of a point biserial correlation coefficient is exactly the same

as the p-value computed by an independent samples t-test given that the two tests are done

on the same data. Thus, testing if a value of rpb differs significantly from zero is equivalent to

testing if the difference between the means of the two groups is statistically significant.

This in practice means that an independent groups t test with (n − 2) degrees of freedom

(df) or a one-way analysis of variance (ANOVA) with two levels can be used to test whether

rpb is nonzero.

We can see below how the t-statistic for comparing two independent groups and rpb are related.

t =
√
n− 2

rpb√
1− r2pb
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A.1.4 Numeric target variable and nominal input variable: Kruskal–Wallis
H Non Parametric Hypothesis Test

The Kruskal-Wallis H test is a rank-based nonparametric (distribution free) test that we use to

investigate if there are statistically significant differences on a continuous or ordinal dependent

variable by a categorical independent variable (with two or more groups). It can be character-

ized as a nonparametric version of the one-way analysis of variance (one-way ANOVA) which

should meet specific assumptions to be applied. One of these assumptions is that the dependent

variable follows normal distribution and another assumption is that the variance of dependent

variable in the different groups should be approximately the same. However, in most cases

these assumptions do not hold in practice. Kruskal-Wallis Test does not have these assump-

tions. Thus, we can apply the Kruskal-Wallis test either to continuous or ordinal dependent

variables.

Hypothesis Testing:

H0 : Population medians are equal

H1 : Population medians are not equal

Or equivalently,

H0 : There are not statistically significant differences between the groups of the independent

categorical variable on the continuous or ordinal dependent variable.

H1 : There are statistically significant differences between the groups of the independent

categorical variable on the continuous or ordinal dependent variable.

Determining the significance of the test:

In order to apply Kruskal-Wallis test, the observations from the k different groups should be

gathered into one sample. Then, the observations in the combined sample should be ranked

from lowest to highest value.

The test statistic for the Kruskal Wallis test is defined as follows:

H =
12

n(n+ 1)

c∑
i=1

T 2
i

ni
− 3(n+ 1)

Where
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• n=total number of observations from all samples.

• c=number of samples.

• Ti = sum of ranks in the i sample.

• ni = size of the i-th sample.

Then, the value of the statistic H should be compared to the χ2
distribution with c− 1 degrees

of freedom, where c is the number of groups. In case the critical χ2
value is less than the H

statistic, the null hypothesis is rejected. On the other hand, there is enough evidence to accept

the null hypothesis.

A.2 Statistical tests for applying feature selection on problems
that predict a binary target variable or a class

A.2.1 Binary target variable and binary input variable: Fisher ’s Exact Test

Fisher’s exact test is a statistical hypothesis test used to determine if there is an association

between two binary categorical variables. Thus, data can be represented in a 2x2 contingency

table. In other words, it is a statistical test to investigate whether there is a dependence between

the two variables or equivalently if there are differences in the proportions of one variable de-

pending on the value of the other variable. Fisher’s Exact test is more suitable for samples with

small number of observations (regularly under 1.000 records), since it does not dependent on

distributional assumptions.

Hypothesis Testing:

H0 : The two binary variables are not associated

H1 : The two binary variables are associated

There is no formula for the test statistic of Fisher’s exact test instead of other statistical tests. In-

deed, hypergeometric distribution is used to calculate directly the p-value of Fisher’s exact test.

Methodology to perform Fisher’s exact test:

Firstly, we create a 2x2 contingency table with the cell frequencies represented by f1,1, f1,2,

f2,1 and f2,2 :
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category 1 category 2

group 1 f1,1 f1,2

group 2 f2,1 f2,2

Secondly, we calculate the marginal totals and the grand total n:

category 1 category 2

group 1 f1,1 f1,2 f1,1 + f1,2

group 2 f2,1 f2,2 f2,1 + f2,2

f1,1 + f2,1 f1,2 + f2,2 f1,1 + f1,2 + f2,1 + f2,2 = n

It has been proven that under the assumption of the null hypothesis and if the values of the

marginal totals are fixed, the probability of observing the previous table is described by the

hypergeometric distribution described bellow:(f1,1+f1,2
f1,1

)(f2,1+f2,2
f2,1

)(
n

f1,1+f2,1

) =
(f1,1 + f1,2)!(f2,1 + f2,2)!(f1,1 + f2,1)!(f1,2 + f2,2)!

f1,1!f1,2!f2,1!f2,2!n!

It is observed that in case the marginal totals are known, there is only one degree of freedom,

because only a frequency value, for example f1,1, is sufficient to find all the other frequencies.

Therefore, the previous probability depends only on f1,1.

In order to calculate the p-value for a Fisher’s exact test, all possible tables of non-negative

integers with the same row and column totals as the original table should be found and after-

wards the probability of each such table should be computed. After, in case we should perform

a two tailed test, all the probabilities of every table that has a probability lower than or the

same as that of the observed table should all be summed together.

If we perform a one-tailed test, only the tables that are more extreme than the observed ta-

ble should be accounted but only in one direction:

• In case f1,1 < f1,2, the probabilities of all tables that have a value lower than or equal to

f1,1 in the upper-left corner should be summed, including the observed table.

• In case f1,1 > f1,2, the probabilities of all tables that have a value greater than or equal

to f1,1 in the upper-left corner should be summed, including the observed table.

• In case f1,1 = f1,2, we can choose both of the previous options. Whatever the choice,

the result will be the same.
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A.2.2 Binary target variable and Nominal input variable: Chi-square test of
independence

The Chi-square test of independence is a statistical test applied when we need to investigate

if two categorical variables are likely to be related or not. The assumptions for the Chi-square

test are the following ones:

1. Two categorical variables (Two or more categories for each variable.)

2. Independence of observations.

3. Relatively large sample size.

• Each cell should have expected frequencies at least 1.

• Expected frequencies should be at least 5 for the majority (80%) of the cells.

Hypothesis Testing:

H0 : The two variables are independent.

H1 : The two variables are not independent.

Determining the significance of the test:

Formula for the test statistic:

χ2 =
R∑
i=1

C∑
j=1

(oij − eij)2

eij

where

• oij is the observed cell count in the ith row and jth column of the table

• eij is X2
the expected cell count in the ith row and jth column of the table, computed as

eij =
row i total ∗ col j total

grand total

The quantity (oij − eij) is sometimes referred to as the residual of cell (i, j), denoted as

rij .

The χ2
statistic is tested against the critical value from the X2

distribution table with degrees

of freedom df = (R− 1)(C − 1).

In case, χ2
value ≥ critical χ2

value, the null hypothesis is rejected.
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A.3 Binary target variable and ordinal input variable: Mann-
Whitney U test

The Mann-Whitney U test is a nonparametric statistical hypothesis test used to determine if the

differences between two independent groups of a dependent variable which is either ordinal

or continuous, but not normally distributed, are statistically significant or not. In other words,

the test assess the association between a continuous or ordinal dependent variable and a binary

independent variable. Mann-Whitney U test has the following assumptions:

1. The dependent variable should be either ordinal or continuous.

2. The independent variable should have two categorical and independent groups.

3. Independent observations.

Hypothesis Testing:

H0 : The probability that a randomly drawn observation from one group is larger

than a randomly drawn observation from the other is equal to 0.5

H1 : The probability that a randomly drawn observation from one group is larger

than a randomly drawn observation from the other is not equal to 0.5

Mann-Whitney U-statistic:

The computation of Mann-Whitney U-statistic depends on the type of method:

• Direct method:

Firstly, we should order separately the two data sets in ascending order. Then, we com-

pute the statistic U1 by summing up the number of times each observation in sample A

is exceeded by an observation in sample B. It is practical to denote the sample with the

fewer observations as A, but not necessary. Afterwards,U2 is calculated by (nAnB−U1).

The direct method is only really suitable for samples with small sizes.

• Indirect method:
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For large sample sizes, the quantities U1 and U2 are easier to be computed by the in-

direct method.

U1 = SA −
nA(nA + 1)

2

U2 = SB −
nB(nB + 1)

2

Where

– U1 and U2 are the two alternative U statistics

– nA is the size of sample A

– nB is the size of sample B,

– SA and SB are the sums of ranks for each sample after gathering the data of the

two samples into a single sample

In both cases the test statistic U equals to the minimum of U1 and U2. The maximum value

of U1 and U2 is symbolized as U’. Rather than computing both U1 and U2 from the previous

formula, U2 can be calculated as follows: U2 = nAnB − U1

Determining the significance of the statistic U:

The critical value for the significance of U can be obtained by the published tables of U (e.g.

given by Siegel (1956)). In case the computed U statistic is less than the corresponding critical

value, it is statistically significant. Also, the exact p-value can be easily obtained using a soft-

ware.

Normal approximation:

In case the number of observations in sample A or the number of observations in sample B

are more than twenty, we can use the normal approximation. Normal approximation was also

used in the previous years when ties presented as published tables were only accurate for data

without ties. (The term tie is utilized in association with rank order statistics. Tied data are

observations having the same value that forbids the assignment of unique rank numbers to the

data. In order to solve this problem, tied data are assigned to the average of their hypothetical

ranks).
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Untied data:

z =
SA − nA(N + 1)/2√
(nAnB(N + 1))/12

Tied data:

z =
SA − nA(N + 1)/2√

nAnB
N(N−1)

∑
R2 − (N+1)2nAnB

4(N−1)

Where

• SA is the sum of ranks for sample A,

• nA is the size of sample A,

• nB is the size of sample B,

• N = nA + nB the total number of observations,

• ΣR2
is the sum of all the squared ranks.

Finally, z is compared to the standard normal deviation Z in order to determine if the null hy-

pothesis will be rejected or not.

Nowadays accurate tests are also provided by synchronous software for tied data.

A.3.1 Binary target variable andNumerical input variable: Point biserial cor-
relation

In order to test the association between a binary target variable and a numerical input variable,

we use the Point biserial correlation of Section A.1.3.



Appendix B

Machine Learning models

B.1 Hyperparameters of classification models for the Problem
2 (D-from-M class)

Table B.1 contains the hyperparameters of each ML model used to predict depression (ZUNG)

class (or to solve Problem 2 (D-from-M class)) its combination of hypereparmeters and the grid

used by grid search to determine the combination of the used hypereparameters.
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Model Hyperparameters Grid

Gradient boosting n estimators=545 [100,1000, step 5]

learning rate=0.02 [0.01,0.1, step 0.01]

min samples leaf=3 [3,20, step 1]

max depth=3 [1,9, step 1]

max features=0.15 [0.1,0.5, step 0.05]

AdaBoost classifier n estimators=100 [5, 10, 15, 20, 25, 50, 75, 100]

learning rate=0.1 [0.001, 0.01, 0.1, 1.]

CatBoost classifier n estimators=867 [500,1000, step 10]

max depth=10 [3,10, step 1]

learning rate=0.013 [0.01,0.02, step 0.001]

max bin=13 [10,20, step 1]

l2 leaf reg=0 [0,10, step 1]

thread count=3 [0,10, step 1]

Logistic Regression C=0.1 [0.01,0.1,1.0,10,100]

solver=liblinear [’liblinear’]

penalty=l1 [’l1’, ’l2’]

Random Forest classifier n estimators=590 [50,1000, step 10]

max depth=24 [4,50, step 1]

min samples leaf=1 [1,60, step 1]

min samples split=30 [1,100, step 1]

LightGBM classifier reg alpha=7.11 [7,7.9, step 0.01]

reg lambda=0.009 [0.0001,0.001, step 0.0001]

num leaves=141 [100,200, step 1]

min child samples=37 [1,50, step 1]

lambda l1=9.83 [9,10, step 0.01]

feature fraction=0.69 [0,1, step 0.01]

bagging freq=2 [1,5.step 1]

max depth=14 [1,20, step 1]

learning rate=0.005 [0,009, step 0.001]

colsample bytree=0.1 [0.1,0.9, step 0.1]

n estimators=1182 [1100,1200, step 1]

LDA classifier solver=’lsqr’ [’svd’, ’lsqr’, ’eigen’]

tol=0.0001 [0.0001,0.001,0.01,0.1,1]

Ridge classifier alpha=0.9 [0.1, 1, step 0.1]

Bagging classifier n estimators=223 [2,300, step 1]

max samples=143 [1,200, step 1]

Extra Trees classifierlassifier n estimators=186 [100,200, step 1]

max depth=9 [2,10, step 1]

Decision tree classifier max depth=2 [1,20, step 1]

min samples split=362 [300,450, step 1]

max leaf nodes=124 [100,200, step 1]

criterion=’entropy’ [’gini’, ’entropy’]

KNN classifier metric=’minkowski’ [’minkowski’]

p=1 [1,5, step 1]

n neighbors=11 [1,30, step 1]

XGBoost classifier n estimators=713 [500,1000, step 1]

max depth=10 [3,10, step 1]

learning rate=0.02 [0.01,0.1, step 1]

min child weight=44 [20,100, step 1]

subsample=0.99 [0,1, step 0.01]

colsample bytree=0.95 [0,1, step 0.01]

colsample bylevel=0.36 [0,1, step 0.01]

gamma=7 [0,20, step 1]

eta=0.99 [0,1, step 0.01]

reg lambda=0.67 [0,1, step 0.01]

reg alpha= 0.72 [0,1, step 0.01]

SVM classifier C=0.37 [0.1,0.5, step 0.01]

kernel=’linear’ [’rbf’, ’linear’, ’poly’]

gamma=0.009 [0.001,0.01, step 0.001]

GaussianNB classifier var smoothing=0.000074 [0.00007,0.00008, step 0.000001]

Table B.1: Hyperparameters of ML classifiers predicting depression (ZUNG) class
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In the following tables, we give the parameters of each Voting Classifier model used to predict

depression (ZUNG) class.

Model Voting Classifier weights

Voting Classifier (1) Hard Gradient boosting (0,2,2)

Catboosting

AdaBoost

Table B.2: Definition of Voting Classifier (1) predicting depression (ZUNG) class

Voting Classifier (2) and Voting Classifier (3) are as Voting Classifier 1, the only differences

being the weights. In particular,

• Voting Classifier (1): Weights=(0,2,2)

• Voting Classifier (2): Weights=(1,1,1)

• Voting Classifier (3): Weights=(0,1,1)

Voting Classifier (0) is as Voting Classifier (1), the differences are in the weights and the way

of voting. In particular,

• Voting Classifier (1): Weights=(0,2,2) and voting=Hard

• Voting Classifier (0): Weights=(2,0,1) and voting=Soft

Model Voting Classifier weights

Voting Classifier (4) Soft Extra Trees Classifier (1,1,1)

LDA Classifier

Random Forest classifier

Table B.3: Definition of Voting Classifier (4) predicting depression (ZUNG) class

Voting Classifier (5) is as Voting Classifier (4), the only difference is in the way of voting. In

particular,

• Voting Classifier (4): Voting=Soft

• Voting Classifier (5): Voting=Hard

Model Voting Classifier weights

Voting classifier (5) Soft Gradient boosting (2,0,1)

Catboosting

AdaBoost

Table B.4: Definition of Voting Classifier (5) predicting depression (ZUNG) class



159

The following tables define the Stacking classifiers used to predict depression (ZUNG) class.

Model Meta-classifier Classifier

Stacking Classifier (1) Gradient Boosting Catboosting

AdaBoost

Logistic Regression

Table B.5: Definition of Stacking Classifier (1) predicting depression (ZUNG) class

Model Meta-classifier Classifier

Stacking Classifier (2) Extra Trees classifier Ridge Classifier

LDA Classifier

Random Forest classifier

Table B.6: Definition of Stacking Classifier (2) predicting depression (ZUNG) class

B.2 Hyperparameters of regression models for the Problem 1
(D-from-M score)

Table B.7 contains the hyperparameters of each ML model used to predict depression (ZUNG)

score (or to solve Problem 1 (D-from-M score)) its combination of hypereparmeters and the

grid used by grid search to determine the combination of the used hypereparameters.
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Model Hyperparameters Grid

Lasso Regression alpha = 0.03 [0,1, step 0.01]

Ridge Regression alpha = 100 [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

fit intercept = True [True, False]

normalize = False [True, False]

solver=’cholesky’ [’svd’, ’cholesky’, ’lsqr’, ’sag’]

Elastic Net Regression alpha = 0.01 [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

l1 ratio = 0.8 [0.2,0.4,0.6,0.8]

Support Vector Regression C = 1100 [700,1200, step 100]

epsilon = 0.25 [0.1,0.3, step 0.05]

kernel=’rbf’ [’rbf’]

Random Forest Regressor bootstrap = True [True, False]

max features =’auto’ [”auto”, ”log2”, ”sqrt”]

n estimators =100 [10,50,100]

XGBoost Regressor colsample bytree = 0.7 [0.1,0.3,0.5,0.7]

learning rate =0.03 [0.03, 0.05, 0.07]

max depth = 5 [5, 6, 7]

min child weight = 4 [3,4,5]

n estimators = 500 [400,500,600]

nthread = 4 [4]

objective =’reg:linear’ [’reg:linear’]

silent = 1 [1]

subsample = 0.7 [0.1,0.3,0.5,0.7]

Extra-trees Regressor max features = 50 [50,400, step 50]

min samples leaf = 20 [20,50, step 5]

min samples split = 15 [15,35, step 5]

n estimators = 125 [50,125, step 25]

Bagging Regressor base estimator = LinearRegression [None, LinearRegression(), KNNRegressor()]

bootstrap = False [True,False]

bootstrap features = False [True,False]

max features = 1.0 [0.5,0.6,0.7,0.8,0.9,1]

max samples = 1.0 [0.5,0.6,0.7,0.8,0.9,1]

n estimators = 20 [20,50,100]

Gradient boosting Regressor n estimators = 353 [300, 400, step 1]

learning rate = 0.05 [0.01,0.09, step 0.01]

max depth = 2 [1,20, step 1]

min samplessplit = 13 [2,20, step 1]

min samples leaf = 9 [2,20, step 1]

max features = 30 [10,50, step 1]

CatBoost Regressor depth = 6 [6,7,8,9]

iterations = 100 [30, 50, 100]

learning rate = 0.1 [0.001,0.01,0.1,0.2]

l2 leaf reg = 10 [1,3,5,10,100]

LightGBM Regressor num leaves = 79 [50,100, step 1]

max depth = 5 [5,6,7,8,9]

learning rate = 0.03 [0.01,0.03,0.05,0.07,0.09]

n estimators = 181 [150,200, step 1]

min child weight = 1.008 [1,1.01, step 0.001]

reg alpha = 1.6 [1.2,1.8, step 0.2]

reg lambda = 0.99 [0.8,1, step 0.01]

subsample = 0.71 [0.6,0.8, step 0.01]

AdaBoost Regressor base estimator=DecisionTreeRegressor() [None, DecisionTreeRegressor(), KNNRegressor(), LinearRegression()]

n estimators=300 [100,350, step 50]

learning rate=2 [0.5, 0.8, 1.0, 2.0]

KNN Regressor n neighbors=5 [1,20, step 1]

Table B.7: Hyperparameters of ML regressors predicting depression (ZUNG) score
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In the following tables, we define every Voting Regressor model used to predict depression

(ZUNG) score.

Model Regressor weights

Weighted voting Regression (1) Lasso Regression (3,1,1)

XGBoost Regressor

Ridge Regressor

Table B.8: Definition of Weighted voting Regression (1) predicting depression (ZUNG) score

Model Regressor weights

Weighted voting Regression (2) Lasso Regression (4,1,2,2)

ElasticNet Regression

XGBoost Regressor

Ridge Regression

Table B.9: Definition of Weighted voting Regression (2) predicting depression (ZUNG) score

Model Regressor weights

Weighted voting Regression (3) CatBoost Regression (1,1,2)

Gradient Boosting Regressor

Lasso Regression

Table B.10: Definition of Weighted voting Regression (3) predicting depression (ZUNG) score

The following tables define the Stacking Regressors used to predict depression (ZUNG) score.

Model Meta-regressor Regressor

Stacking Regression (1) Linear Regression Lasso Regression

Elastic Net Regression

XGBoost Regressor

Table B.11: Definition of Stacking Regression (1) predicting depression (ZUNG) score

Model Meta-regressor Regressor

Stacking Regression (2) Lasso Regression Elastic Net Regression

XGBoost Regressor

Ridge Regression

Table B.12: Definition of Stacking Regression (2) predicting depression (ZUNG) score

Model Meta-regressor Regressor

Stacking Regression (3) Linear Regression Lasso Regression

Elastic Net Regression

Gradient Boosting Regressor

Table B.13: Definition of Stacking Regression (3) predicting depression (ZUNG) score
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Model Meta-regressor Regressor

Stacking Regression (4) Lasso Regression LightGBM Regressor

XGBoost Regressor

CatBoost Regressor

Table B.14: Definition of Stacking Regression (4) predicting depression (ZUNG) score

Model Meta-regressor Regressor

Stacking Regression (5) CatBoost Regressor Gradient Boosting Regressor

Elastic Net Regression

XGBoost Regressor

Table B.15: Definition of Stacking Regression (5) predicting depression (ZUNG) score

The First averaged model: The First averaged model averages the predictions of the models:

Lasso Regression, Elastic Net Regression,XGBoost Regression, Ridge Regression,Linear Regres-

sion, Random Forest Regressor, Support Vector Machines Regressor used to predict depression

(ZUNG) score.

The Second averaged model: The Second averaged model averages the predictions of all

the models used to predict the depression (ZUNG) score except for the stacking regression

models and the weighted voting regression models.

B.3 Hyperparameters of regression models for the Problem 3
(M-from-D score)

Table B.16 contains the hyperparameters of each ML model used to predict memory (PRMQ)

score (or to solve Problem 3 (M-from-D score)) its combination of hypereparmeters and the

grid used by grid search to determine the combination of the used hypereparameters.
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Model Hyperparameters Grid

Gradient Boosting Regressor n estimators = 585 [500,700, step 5]

learning rate = 0.01234 [0.0123,0.0124, step 0.00001]

max depth = 5 [1,20, step 1]

min samples split = 4 [2,20, step 1]

min samples leaf = 10 [2,20, step 1]

max features = 11 [2,20, step 1]

CatBoost Regressor border count = 100

depth = 6 [6,7,8,9]

iterations = 100 [30, 50, 100]

l2 leaf reg = 10 [3,1,5,10,100]

learning rate = 0.1 [0.001,0.01,0.1,0.2]

LightGBM Regressor boosting type = “dart” [”gbdt”, ”dart”, ”goss”]

num leaves = 65 [17,75, step 10]

maxdepth = 2 [2,10, step 1]]

learning rate = 0.55 [0.5,1,0.05]

n estimators = 100 [100,1000, step 100]

AdaBoost Regression base estimator = DecisionTreeRegressor() [None, DecisionTreeRegressor(), KNNRegressor(), LinearRegression()]

learning rate = 0.8 [0.5, 0.8, 1.0, 2.0]

n estimators = 300 [100, 350, step 50]

XGBoost Regression colsample bytree = 0.7 [0.5,0.6,0.7,0.8,0.9]

learning rate = 0.03 [0.03, 0.04,0.05,0.06, 0.07]

max depth = 5 [5, 6, 7]

min child weight = 4 [1,2,3,4,5]

n estimators = 500 [400,500,600,700,800,900,1000]

nthread = 4 [1,2,3,4,5]

objective = ‘reg : linear′ [’reg:linear’]

silent = 1 [1,2,3]

subsample = 0.7 [0.5,0.6,0.7,0.8,0.9]

Elastic Net Regression alpha = 0.1 [0.1,0.2,0.3,0.4,0.5]

l1 ratio = 0.8 [0,1, step 0.01]

Bagging Regression base estimator = None [None, LinearRegression(), KNNRegressor()]

bootstrap = True [True, False]

bootstrap features = False [True, False]

max features = 1.0 [0.5,1.0, step 0.1]

max samples = 0.5 [0.5,1.0, step 0.1]

n estimators = 100 [20,50,100]

Lasso Regression alpha = 0.07 [0,1, step 0.01]

Random Forest Regressor bootstrap=True [True, False]

max features = “auto” [”auto”, ”log2”, ”sqrt”]

n estimators = 100 [10,50,100]

Ridge Regression alpha = 100 [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

fit intercept = True [True, False]

normalize = False [True, False]

solver = “svd” [’svd’, ’cholesky’, ’lsqr’, ’sag’]

Extra Trees Regressor max features = 50 [40,50,60,70,80,90,100]

min samples leaf = 20 [10,20,30,40,50]

min samples split = 20 [10,20,30,40,50]

n estimators = 125 [100,125,150,175,200]

KNN Regressor n neighbors = 4 [1,20, step 1]

Support Vector Regression C = 1100 [700,1200, step 100]

epsilon = 0.25 [0.1,0.3, step 0.05]

kernel = “rbf” [“rbf”]

Table B.16: Hyperparameters of ML regressors predicting memory (PRMQ) score
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In the following tables, we give the parameters os each Voting Regressor model used to predict

memory (PRMQ) score.

Model Regressor weights

Weighted voting Regression (1) CatBoost Regressor [1,4,4]

Gradient Boosting Regressor

Lasso Regressor

Table B.17: Definition of Weighted voting Regression (1) predicting memory (PRMQ) score

Model Regressor weights

Weighted voting Regression (2) Gradient Boosting Regressor [2,2,2,4]

CatBoost Regressor

LightGBM Regressor

AdaBoost Regressor

Table B.18: Definition of Weighted voting Regression (2) predicting memory (PRMQ) score

Model Regressor weights

Weighted voting Regression (3) Gradient Boosting Regressor [3,1,2]

CatBoost Regressor

AdaBoost Regressor

Table B.19: Definition of Weighted voting Regression (3) predicting memory (PRMQ) score

Model Regressor weights

Weighted voting Regression (4) Gradient Boosting Regressor [2,1]

CatBoost Regressor

Table B.20: Definition of Weighted voting Regression (4) predicting memory (PRMQ) score

Model Regressor weights

Weighted voting Regression (5) Lasso Regression [4,2,1]

XGBoost Regressor

Ridge Regression

Table B.21: Definition of Weighted voting Regression (5) predicting memory (PRMQ) score

The following tables define the Stacking regressors used to predict mwmory (PRMQ) score.

Model Meta-regressor Regressor

Stacking Regression (1) Linear Regression Lasso Regression

ElasticNet Regression

XGBoost Regression

Table B.22: Definition of Stacking Regression (1) predicting memory (PRMQ) score
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Model Meta-regressor Regressor

Stacking Regression (2) Lasso Regression XGBoost Regression

ElasticNet Regression

Ridge Regression

Table B.23: Definition of Stacking Regression (2) predicting memory (PRMQ) score

Model Meta-regressor Regressor

Stacking Regression (3) Linear Regression Lasso Regression

ElasticNet Regression

Gradient Boosting Regression

Table B.24: Definition of Stacking Regression (3) predicting memory (PRMQ) score

Model Meta-regressor Regressor

Stacking Regression (4) Lasso Regression LightGBM Regression

XGBoost Regression

CatBoosting Regression

Table B.25: Definition of Stacking Regression (4) predicting memory (PRMQ) score

Model Meta-regressor Regressor

Stacking Regression (5) XGBoost Regression CatBoosting Regression

LightGBM Regression

AdaBoost Regression

Table B.26: Definition of Stacking Regression (5) predicting memory (PRMQ) score

Model Meta-regressor Regressor

Stacking Regression (6) XGBoost Regression CatBoosting Regression

LightGBM Regression

AdaBoost Regression

Table B.27: Definition of Stacking Regression (6) predicting memory (PRMQ) score

Model Meta-regressor Regressor

Stacking Regression (7) CatBoosting Regression Gradient Boosting Regression

LightGBM Regression

AdaBoost Regression

Table B.28: Definition of Stacking Regression (7) predicting memory (PRMQ) score

Model Meta-regressor Regressor

Stacking Regression (8) CatBoosting Regression Gradient Boosting Regression

ElasticNet Regression

XGBoost Regression

Table B.29: Definition of Stacking Regression (8) predicting memory (PRMQ) score
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Below we define the two averaged models used to predict memory (PRMQ) score:

The First averaged model: The First averaged model averages the predictions of the models:

Lasso Regression, Elastic Net Regression,XGBoost Regression, Ridge Regression,Linear Regres-

sion, Random Forest Regressor, Support Vector Machines Regressor

The Second averaged model: The Second averaged model averages the predictions of all the

models used to predict the Memory (PRMQ) score except for the stacking regression models

and the weighted voting regression models.

B.4 Hyperparameters of regression models for the Problem 4
(M-from-D class)

The grid for the grid search to choose the best set of hyperparameters for each classifier pre-

dicting memory-related disorders to solve Problem 4 (M-from-D class) is given in the following

table.
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Model Hyperparameters Grid

Gradient boosting n estimators [10, 100, 1000]

learning rate [0.001, 0.01, 0.1]

subsample [0.5, 0.7, 1.0]

max depth [3, 7, 9]

AdaBoost classifier n estimators [5, 10, 15, 20, 25, 50, 75, 100]

learning rate [0.001, 0.01, 0.1, 1.]

Catboosting depth [4,5,6,7,8,9,10]

learning rate [0.01,0.02,0.03,0.04]

iterations [10,20,30,40,50,60,70,80,90,100]

Logistic Regression C [0,10, step 0.5]

Random Forest classifier n estimator [2,10,30,50,100]

max depth [5,16, step 2]

min samples leaf [1,2,5]

min samples split [2,5,10,15,20,50,100]

LDA Classifier solver [’svd’, ’lsqr’, ’eigen’]

Ridge Classifier alpha [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Bagging classifier n estimators [100, 300, 500, 800, 1200]

max samples [1, 2, 5, 10, 13]

max features [5, 10, 25, 50, 100]

Extra Trees Classifier n estimators [1,50, step 2]

max features [1,50, step 2]

Decision Tree Classifier max depth [5,16, step 2]

min samples leaf [1,2,5]

min samples split [2,5,10,15,20,50,100]

KNN classifier leaf size [1,50, step 1]

p [1,2]

n neighbors [1,30, step 1]

XGBoost Classifier n estimators [60,220, step 40]

max depth [2,10, step 1]

learning rate [0.01,0.05,0.1]

GaussianNB Classifier var smoothing=0.000074 [0,0.0001, step 0.00001]

SVM classifier C [50, 10, 1.0, 0.1, 0.01]

kernel [’rbf’,’sigmoid’, ’poly’]

gamma [’scale’]

Table B.30: Hyperparameters of ML classifiers predicting memory (PRMQ) class
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Questionnaire and Time Features

Questionnaire and Time Features

1. Response ID

2. Registration date

3. Last page

4. Original language

5. Seed

6. Start date

7. Last action date

8. Reference URL

9. I agree to participate in the above study

and wish to receive the results of the on-

line PRMQ (memory) test and the Zung

Test for depression at the end of the

study (Cons03)

10. I confirm that I am over 18 years of age.

(Cons05)

11. My participation is voluntary and I am

free to withdraw at any time and with-

out explanation. (Cons01)

12. I understand that this result is for infor-

mational purposes only and cannot re-

place a clinical examination by a psychi-

atrist/neurologist/psychologist or other

health care professional. (Cons04)

13. I confirm that I have read and un-

derstood the information sheet for the

above study and have had the opportu-

nity to ask questions. (Cons02)

14. Participant Code. Your code is made up

of the first letter of your maiden name,

the first letter of your first name and

your year of birth. (Dem00)

15. Fill in your age. (Dem01)

16. What gender are you? (Dem02)

17. Where do you live? (Dem03)

18. Which of the following best describes

your education? (Dem04)

19. Do you think you have memory disor-

ders that affect your daily life? (Dem05)

168
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20. Have you ever visited a memory clinic,

psychologist or psychiatrist? (Dem06)

21. Is there a family history of mem-

ory disorders (mother, father, grandfa-

ther, grandmother, brother or sister)?

(Dem07)

22. Do you currently suffer from a known

disease that affects memory (e.g., de-

pression, Alzheimer’s disease, mild cog-

nitive impairment, n. Parkinson’s dis-

ease, Multiple Sclerosis, etc.)? (Dem08)

23. Do you think you experience mood dis-

orders (e.g. depression) that affect your

daily life? (Dem09)

24. Do you suffer from a medical condi-

tion?If so, which one? [I do not suffer

from any pathological problem. I am

perfectly healthy] (Dem10)

25. Do you suffer from any pathological dis-

ease? [Blood Pressure] (Dem10)

26. Do you suffer from any pathological dis-

ease? If so, which one? [Chronic Atrial

Fibrillation or Other Cardiac Problem]

(Dem10)

27. Do you suffer from any pathological dis-

ease? [Stroke] (Dem10)

28. Do you suffer from a medical condition?

[High Cholesterol] (Dem10)

29. Do you have a medical condition? [Di-

agnosed Depression] (Dem10)

30. Do you suffer from a medical condition?

[Diagnosed Anxiety] (Dem10)

31. Do you suffer from a medical condition?

[Other] (Dem10)

32. Have you ever suffered a head in-

jury that resulted in hospitalization?

(Dem11)

33. Do you suffer from hypothyroidism?

(Dem12)

34. Do you suffer from diabetes mellitus?

(Dem13)

35. Do you smoke? (Dem14)

36. How many glasses of alcohol do you

consume per week? [Beer - 500ml glass

of 5% alcohol] (Dem15)

37. How many glasses of alcohol do you

consume per week? [Cider (330ml) 4.5%

alcohol] (Dem15)

38. How many glasses of alcohol do you

consume per week? [Wine - Medium

glass of Chardonnay (175ml) 12.5% al-

cohol] (Dem15)

39. How many glasses of alcohol do you

consume per week? [Tsipouro, Ouzo or

raki (40ml) 40% alcohol] (Dem15)

40. How many glasses of alcohol do you

consume per week? [White Drink

(vodka, tequila, gin, etc.) (40ml) 40% al-

cohol] (Dem15)

41. How many glasses of alcohol do you

consume per week? [Dark Drink (rum,

whisky, etc.) (40ml) 40% alcohol]

(Dem15)

42. How many glasses of alcohol do you

consume per week? [Sweet liqueur

(40ml) 17% alcohol] (Dem15)

43. Do you exercise more than 3 hours per

week? (Dem16)
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44. Which statement best describes your

sleep quality [Other] (Dem17)

45. In the past, have you been a con-

firmed case/infected with coronavirus

(COVID-19)? (Dem18)

46. To what extent do you think your

memory is good? [Mnemonic Ability]

(SEM02)

47. In the last two weeks what has been

your average mood? [Mood] (SEM01)

PRMQ questionnaire

48. Do you decide to do something within

the next few minutes and then forget to

do it? (Mem01)

49. Do you have difficulty recognizing a

place you have visited before? (Mem02)

50. Do you find it difficult to do something

you intended to do even though it is

right in front of you, such as taking a

pill or turning off the stove? (Mem03)

51. Do you forget something you were told

a few minutes ago? (Mem04)

52. Do you forget appointments if you are

not reminded by someone or if you have

not marked them in a diary? (Mem05)

53. Do you have trouble recognizing a char-

acter on TV from one scene to another?

(Mem06)

54. Do you forget to buy something you

were planning to get, like a gift, even

though you’ve seen the store? (Mem07)

55. Do you have trouble recalling things

that have happened to you in the last

few days? (Mem08)

56. Do you repeat the same story to the

same person on different occasions?

(Mem09)

57. Do you forget to take something with

you before you leave a room or before

you go out even if it’s right there in front

of you? (Mem10)

58. Do you lose things you just put some-

where, like a magazine or your glasses?

(Mem11)

59. Do you forget to mention something or

give something to someone who asked

you? (Mem12)

60. Do you look at something without re-

alizing you saw it a few minutes ago?

(Mem13)

61. If you try to contact a friend or relative

who is absent at the time do you forget

to try again later? (Mem14)

62. Do you forget what you saw on TV the

day before? (Mem15)

63. Do you forget to mention something

you were going to mention just a few

minutes ago? (Mem16)

Zung questionnaire

64. Feeling discouraged or sad. (Q1)

65. I feel better in the morning than at any

time of the day. (Q2)

66. I cry easily or feel ready to cry (Q3)
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67. I have trouble sleeping at night. (Q4)

68. I eat the same amount of food as before.

(Q5)

69. I am still interested in sex. (Q6)

70. I notice that I am losing weight (Q7)

71. I have constipation problems (Q8)

72. I have palpitations. (Q9)

73. I get tired for no particular reason (Q10)

74. My mind is as clear as before. (Q11)

75. It is easy for me to do the things I used

to do before. (Q12)

76. I feel restless and cannot calm down.

(Q13)

77. I have optimism about my future. (Q14)

78. I have more nervousness than before.

(Q15)

79. I make decisions as easily as before.

(Q16)

80. I feel useful and needed. (Q17)

81. My life is quite “full”. (Q18)

82. I feel it would be better for others if I

died. (Q19)

83. I still enjoy the things I used to do. (Q20)

Time features

84. Total Time to complete the question-

naire: Total Time

85. Response time to question: Cons03

86. Response time to question: Cons05

87. Response time to question: Cons01

88. Response time to question: Cons04

89. Response time to question: Cons02

90. Response time to question: Dem00

91. Response time to question: Dem01

92. Response time to question: Dem02

93. Response time to question: Dem03

94. Response time to question: Dem04

95. Response time to question: Dem05

96. Response time to question: Dem06

97. Response time to question: Dem07

98. Response time to question: Dem08

99. Response time to question: Dem09

100. Response time to question: Dem10

101. Response time to question: Dem11

102. Response time to question: Dem12

103. Response time to question: Dem13

104. Response time to question: Dem14

105. Response time to question: Dem15

106. Response time to question: Dem16

107. Response time to question: Dem17

108. Response time to question: Dem18

109. Response time to question: SEM02

110. Response time to question: SEM01

111. Response time to question: Mem01

112. Response time to question: Mem02

113. Response time to question: Mem03
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114. Response time to question: Mem04

115. Response time to question: Mem05

116. Response time to question: Mem06

117. Response time to question: Mem07

118. Response time to question: Mem08

119. Response time to question: Mem09

120. Response time to question: Mem10

121. Response time to question: Mem11

122. Response time to question: Mem12

123. Response time to question: Mem13

124. Response time to question: Mem14

125. Response time to question: Mem15

126. Response time to question: Mem16

127. Response time to question: Q1

128. Response time to question: Q2

129. Response time to question: Q3

130. Response time to question: Q4

131. Response time to question: Q5

132. Response time to question: Q6

133. Response time to question: Q7

134. Response time to question: Q8

135. Response time to question: Q9

136. Response time to question: Q10

137. Response time to question: Q11

138. Response time to question: Q12

139. Response time to question: Q13

140. Response time to question: Q14

141. Response time to question: Q15

142. Response time to question: Q16

143. Response time to question: Q17

144. Response time to question: Q18

145. Response time to question: Q19

146. Response time to question: Q20
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Short code Question number

Cons01 11

Cons02 13

Cons03 9

Cons04 12

Cons05 10

Dem00 14

Dem01 15

Dem02 16

Dem03 17

Dem04 18

Dem05 19

Dem06 20

Dem07 21

Dem08 22

Dem09 23

Dem10 24-31

Dem11 32

Dem12 33

Dem13 34

Dem14 35

Dem15 36-42

Dem16 43

Dem17 44

Dem18 45

Sem01 47

Sem02 46

Mem01 48

Mem02 49

Mem03 50

Mem04 51

Mem05 52

Mem06 53

Mem07 54

Mem08 55

Mem09 56

Mem10 57

Mem11 58

Mem12 59

Mem13 60

Mem14 61

Mem15 62

Mem16 63

Q1 64

Q2 65

Q3 66

Q4 67

Q5 68

Q6 69

Q7 70

Q8 71

Q9 72

Q10 73

Q11 74

Q12 75

Q13 76

Q14 77

Q15 78

Q16 79

Q17 80

Q18 81

Q19 82

Q20 83

Table C.1: For the sake of simplicity, the same questionnaire is presented by showing only

the number of the question and its abbreviation if it exists
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[41] P. Bühlmann, “Bagging, boosting and ensemble methods.” Available at https://st

at.ethz.ch/Manuscripts/buhlmann/handbook-cs-rev2010.pdf.

[42] A. Ruiz and N. Villa, “Storms prediction: Logistic regression vs random forest for unbal-

anced data,” arXiv preprint arXiv:0804.0650, 2008.

[43] Y. Li, C. Zou, M. Berecibar, E. Nanini-Maury, J. C.-W. Chan, P. Van den Bossche,

J. Van Mierlo, and N. Omar, “Random forest regression for online capacity estimation

of lithium-ion batteries,” Applied energy, vol. 232, pp. 197–210, 2018.

[44] Y. Pandya, “Ensemble methods in machine learning.” Available at https://medium

.com/analytics-vidhya/ensemble-methods-in-machine-learn

ing-31084c3740be, Accessed on 2021-02-14.

[45] B. Ozen, “Introduction to boosting methodology & adaboost algorithm.” Available at

https://burakozen.medium.com/introduction-to-boosting-m

https://harvard-iacs.github.io/2018-CS109A/a-sections/a-section-6/presentation/a_section6.pdf
https://harvard-iacs.github.io/2018-CS109A/a-sections/a-section-6/presentation/a_section6.pdf
https://stat.ethz.ch/Manuscripts/buhlmann/handbook-cs-rev2010.pdf
https://stat.ethz.ch/Manuscripts/buhlmann/handbook-cs-rev2010.pdf
https://medium.com/analytics-vidhya/ensemble-methods-in-machine-learning-31084c3740be
https://medium.com/analytics-vidhya/ensemble-methods-in-machine-learning-31084c3740be
https://medium.com/analytics-vidhya/ensemble-methods-in-machine-learning-31084c3740be
https://burakozen.medium.com/introduction-to-boosting-methodology-adaboost-algorithm-a9a3e8be6bc3
https://burakozen.medium.com/introduction-to-boosting-methodology-adaboost-algorithm-a9a3e8be6bc3


Bibliography 178

ethodology-adaboost-algorithm-a9a3e8be6bc3, Accessed on 2021-

01-21.

[46] G. Ridgeway, D. Madigan, and T. S. Richardson, “Boosting methodology for regression

problems,” in Seventh International Workshop on Artificial Intelligence and Statistics, PMLR,

1999.
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