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Abstract

This thesis deals with the subject of Bayesian econometric methods in time-series
analysis in the field of economics and finance. Each chapter constitutes an indepen-
dent empirical application conducted in a Bayesian framework.

In the first chapter, we employ a Bayesian time-varying parameter Vector Autore-
gressive (TVP-VAR)model to examine the relation between the price of oil and investor
sentiment. To measure investor sentiment, we construct a new proxy based on the
search patterns of individuals on the Google engine. Using this new proxy, oil prices
as well as benchmarkmacroeconomic and financial variables, we estimate a TVP-VAR
that takes into account the changes in the transmission of investors sentiment shocks
to oil prices over time. The results indicate that an unexpected increase in investor
attention yields a long-lasting increase both in the price of oil and the stock market
returns.

In the second chapter, we use alternative Bayesian Markov-switching Generalised
Autoregressive Conditional Heteroscedasticity (MS-GARCH)models to analyse the be-
haviour of volatility of cryptocurrencies. In total, we consider 292 cryptocurrrencies
for each of which we estimate the estimate 27 alternative MS-GARCH specifications.
First, we evaluate the in-sample performance of each model using the information
criteria. Next, we assess the ability of the models to perform one-day ahead condi-
tional volatility and Value-at-Risk forecasts. The results indicate that for a wide range
of cryptocurrencies (with different characteristics), Markov-switching models which
two ormore regimes outperform the ones with a sole regime. In addition, the findings
suggest the presence of inverse leverage effect in themajority of the cryptocurrencies.

In the third chapter, we propose a new amethodology to test examine for Granger-
causality in a time-varying framework. Specifically, we combine the estimates from
a TVP-VAR with the null hypothesis of no Granger-causality that allows us to track
changes in the causal relationship of variables in each period. This methodology of-
fers several advantages compared the existing ones which mostly rely on rolling win-
dow algorithms. The performance (size and power) of the proposed methodology is
evaluated through Monte Carlo simulations. As an empirical application, we exam-
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ine the evolution of Granger-causal relationship between bitcoin returns and alterna-
tive variables. According to the results, other cryptocurrency returns, stock market
returns and uncertainty Granger cause bitcoin returns during periods when bitcoin
prices burst and bitcoin’s trading volume Granger causes bitcoin returns during peri-
ods when bitcoin prices remain relatively steady.
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Chapter 1

Introduction

Bayes’ theorem was formulated by Thomas Bayes in 1763. Fifty years later, in 1814,
Pierre-Simmon Laplace developed the Bayesian interpretation of probability. Since
then, many authors have introducedmany Bayesianmethods for statistical inference.
However, the computational cost of Bayesian methods made undesirable for most
statisticians for more than one century.

The dawn of the 21st century witnessed the surge of powerful computers which
facilitated the implementation of Bayesian methods. Concurrently, methodological
approaches such as Markov Chain Monte Carlo (MCMC) algorithms which are used
for Bayesian estimation have been further developed over the last decades.

From the methodological point of view Bayesian statistics and econometrics offer
two major advantages compared to the classical frequentist inference in time series
analysis. First, Bayesian models can be flexible enough to account for non-linearities
in economic and financial data, since the assumption of constant parameters in a
model is rather a poor one. For instance, it is documented that incidents like the global
financial crisis in 2008 and the COVID-19 pandemic caused structural changes in both
the macroeconomic and the financial variables.

Second, Bayesian methods a suitable for models with a large a number of vari-
ables. For example, Vector Autoregressive (VAR) models, a particularly popular class
of models among economists, can often contain more than four or five endogenous
variables. If we combine the large number of variables with the assumption of time-
varying parameters, we end up with possibly hundreds of parameters to estimate. In
this case, the challenge is to estimate such models without being affected by over-
parameterisation issues. The Bayesian approach through the appropriate selection of
shrinkage priors can identify the insignificant parameters and shrink them towards
zero.

In this doctoral dissertation, we employ alternativeBayesian econometricmethods
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to conduct empirical applications. Each of the following chapters consists of indepen-
dent essays analysing economic and financial time-series using Bayesian inference.
In the first essay, we examine the relationship between the price of oil and investor
attention. We begin the analysis by revisiting seminal VARmodels which examine the
relationship between oil prices, oil supply, oil demand and stockmarket returns. Next,
we augment these models by adding a new index for investor attention. The index is
of our construction and is based on Search Volume Index data for oil-related search
terms in the Google engine. Our index offers a number of advantages compared to tra-
ditional indices and robustness checks reveal that this new index canexplainbetter the
evolution of the price of oil. All VAR models allow all parameters to gradually evolve
over time. This assumption enables us to track changes in the transmission mecha-
nisms of a shock from one variable to the other. Our findings reveal that a shock in
investor attention causes a long-lasting increase both in the price of oil and the stock
market returns. The results remain qualitatively when additional sentiment indices,
such as proxies for uncertainty, are added to the model.

In the secondessay,weevaluate theperformanceofmodels belonging in the family
of Markov-switching Generalised Autoregressive Conditional Heteroscedasticity (MS-
GARCH) models in modelling the volatility of 292 time-series of cryptocurrency re-
turns. For each cryptocurrency we consider a total of 27 alternative MS-GARCH spec-
ifications. We focus on the number of regimes in the model and consider Markov-
switching models with one, two and three states. In the first part of the analysis, we
evaluate the goodness-of-fit of each model using the Deviance Information Criterion
and the Bayesian Predictive Information Criterion. In the second step, we focus on
the out-of-sample performance of the MS-GARCHmodels by analysing their ability to
perform one-step-ahead and Value-at-Risk forecasts. The results indicate that while
Markov-switching models with two states outperform the traditional ones (with a sin-
gle state), further increasing the number of states does not improve the performance
of the model. Furthermore, the results suggest the presence of inverse of leverage
effect in the examined time-series.

In the last essay, we propose a new a methodology to test examine for Granger-
causality in a time-varying framework. Specifically, we combine the estimates from
a TVP-VAR with the null hypothesis of no Granger-causality that allows us to track
changes in the causal relationship of variables in each period. This methodology of-
fers several advantages compared the existing ones which mostly rely on rolling win-
dow algorithms. The performance (size and power) of the proposed methodology is
evaluated through Monte Carlo simulations. As an empirical application, we exam-
ine the evolution of Granger-causal relationship between bitcoin returns and alterna-
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tive variables. According to the results, other cryptocurrency returns, stock market
returns and uncertainty Granger cause bitcoin returns during periods when bitcoin
prices burst and bitcoin’s trading volume Granger causes bitcoin returns during peri-
ods when bitcoin prices remain relatively steady.
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Chapter 2

Oil shocks and investor attention

Abstract

We examine the existence of sentiment exposure in oil price returns. We augment Kilian’s (American

Economic Review, 2009, 99, 1053–1069) SVAR model including the effects of (1) stock market returns as

in Kilian and Park (International Economic Review, 2009, 50, 1267–1287), (2) investors sentiment proxied

by Google search volume index, (3) economic policy uncertainty (EPU), (4) time variation in both co-

efficients and the variance-covariance matrix and (5) an extended sample. Our empirical results show

that changes in investor attention do exhibit a significant long-lasting impact on oil and stock market

returns. Aggregate oil demand and supply shocks have a transitory effect on investor sentiment. We

reveal that the impact of EPU is significant and short-lasting, while EPU responds strongly to shocks on

oil prices and stock market returns. In all cases, the magnitude and sign of responses are affected by

the timing of the shock. Our findings are robust to an alternative sentiment indicator and once the role

of oil inventories is considered.

2.1 Introduction

Over the last two decades, energy commodities have become a popular asset class for
financial institutions and retail investors, similar to equities andbonds. Meanwhile, oil
price fluctuations stimulated the academic and policy debate regarding the impact of
fundamental shocks such as supply and demand shocks, inventory shocks, ormacroe-
conomic and monetary shocks on the price of oil (see for instance Kilian, 2008, 2009;
Leduc and Sill, 2004; Kilian andMurphy, 2014; Baumeister and Kilian, 2016). The price
of crude oil may also be related to non-fundamental shocks, such as expectations or
herd behaviour. Moreover, oil price shocks have evolved over time and have effects on
the real economy through consumer and firm behaviour that are not constant (Blan-
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chard and Riggi, 2013; Hamilton, 2013; Kang et al., 2015). This essay offers new in-
sights by examining the relationship between oil prices and investors sentiment using
a time-varying structural vector autoregression (SVAR) model.

With regard to the direction of causality between the crude oil prices and investors
sentiment, the literature follows two main branches. One the one hand, under the ef-
ficientmarket hypothesis, the traditional asset pricingmodels assert that investors are
rational and that information is instantaneously incorporated into asset prices. Depar-
tures from efficiency have mainly been investigated through some form of investors’
reaction to new information (Barberis et al., 1998; Hong and Stein, 1999). In this re-
spect, investors’ attention or sentiment must play a significant role in asset prices and
returns. A low level of investor attention may lead to small fluctuations in oil prices,
while information that has received broad attention from investors will instantly be
comprised in prices, resulting in large fluctuations (Vozlyublennaia, 2014). On the
other hand, oil price fluctuations may lead to pessimistic expectations about future
economic conditions and to a subsequent reduction in consumer and investor senti-
ment, which induces households and firms to curb their consumption and investment
expenditures, respectively (Guntner and Linsbauer, 2018).

One limitation of existing work relates to how investor’s sentiment can be quan-
tified. The empirical literature have taken several approaches to measuring investor
sentiment. Some studies proxy for investor sentiment with market-based measures
(such us trading volume, implied volatility or IPO volume and returns). Although these
market-based measures have the advantage of being readily available at a relatively
high frequency, they have the disadvantage of being the average outcome ofmany eco-
nomic factors apparent from investor sentiment (Da et al., 2015). Others, use survey-
based indices such as the University of Michigan Consumer Sentiment Index, the UBS
/GALLUP Index for Investor Optimism, or investment newsletters. However, the sur-
vey measures are often available at a low frequency (monthly or quarterly), while in
many cases the non-response rates are high and incentive for truth-telling is low, es-
pecially in personal or sensitive questions. More recently, Brandt and Gao (2019) use
textual analysis to examinewhethermacroeconomic and geopolitical news sentiment
have an affect on oil prices (for a comprehensive survey on textual analysis and senti-
ment see Algaba et al., 2020). Yet, there is a reasonable concern about the severity and
impact of media bias. Sentiment in texts can stem from self-interest to generate a par-
ticular external outcome (Garz, 2014). Moreover, linguistic sentiment entails a degree
of subjectivity either as a positive or as a negative opinion through language. In this
respect, is quite complex to define the real sentiment disposition toward an entity.

We address both of these limitations by constructing the Google Search Volume
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Index (GSVI) based on Search Volume Index (SVI) data by Google Trends and using
this new index as a direct measure of investors attention on the crude oil market (for
applications in financial markets see Da et al., 2011; Vlastakis andMarkellos, 2012; Vo-
zlyublennaia, 2014; Da et al., 2015). The advantage of using Google search data is that
we can gauge people’s active internet search in specific geographic areas at a high fre-
quency (unlike surveys) and study their follow-up actions, as investors trade on their
beliefs and move energy market prices accordingly. Moreover, as investors take the
initiative to search online information about the oil market, the Google search index
possesses their own attention behaviour, so that bias is eliminated (Da et al., 2011).
Sockin and Xiong (2015) argue that key industrial commodities, such as crude oil, of-
ten serve as important price signals regarding the strength of the global economy for
market participants. Indeed, in Figure 2.1 we observe a strong co-movement of GSVI
with the St. Louis Financial Stress Index (STLFSI), especially during the two most re-
cent recession periods.1 Therefore, Google searches can be considered a good proxy
not only for aggregate investors’ attention to oilmarkets but also for the overall outlook
of the economy.

Figure 2.1: Oil prices, Google Search Volume Index and the Financial Stress Index over
the period 2004-2020. Oil prices,measured as refiner’s acquisition cost of crude oil, are
plotted against the right axis. The shaded areas denote the two most recent recession
periods.
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Apart from investors’ sentiment, economic policy uncertainty may exert a great
influence on real economic activity. A number of studies show that the supply-side oil
shocks are relatively unimportant for the macro-economy compared to demand-side
oil price shocks (Kilian, 2009; Hamilton, 2009a; Lippi and Nobili, 2012; Baumeister
and Peersman, 2013); this finding is confirmed by Antonakakis et al. (2014) and Kang
and Ratti (2013) who investigate the relationship between structural oil price shocks

1The St. Louis Financial Stress Index (STLFSI) quantifies financial stress in the U.S. economy using
18 key indicators of financialmarket conditions - 7 interest rates, 6 yield spreads, and 5 other indicators.
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and economic policy uncertainty. A widely used measure of uncertainty is the Eco-
nomic Policy Uncertainty (EPU) index provided by Baker et al. (2016). The index is a
weighted average of four uncertainty components, namely the news-based policy un-
certainty index, the tax expiration’s index, the CPI forecast disagreementmeasure and
the federal/state/local purchases disagreementmeasure. In this respect, EPU assesses
macroeconomic uncertainty by combining economic uncertainty related to economic
policy making and public views. Baker et al. (2016) argue that a rise in EPU is related
with an increase in price volatility and a decrease in investment.

Our empirical analysis builds on the structural vector autoregressive (SVAR) ap-
proach and extents the Kilian and Park (2009) model by including the investor’s senti-
ment index for oil (GSVI). The extended model consists of five endogenous variables,
the change in oil production, the global economic activity, the real oil prices, the stock
market returns and the GSVI index. We further allow for time-variation in both the pa-
rameters and the standard deviation by employing a Bayesian estimation of the SVAR
model.2 Our estimates show that the GSVIt−1 coefficient is negative in the stock re-
turns equation for the entire sample period. Arguably, increases (decreases) in GSVI
correspond with low (high) stock returns, a finding consistent with the sentiment in-
ducedmispricing hypothesis. Similar pattern is observed in the equation of real price
of oil, but this relationship reverses after 2015 to positive. We also find that the stan-
dard deviation for allmodels increases considerably during theGlobal Financial Crisis
in 2009, except the equation of stock market returns, where the standard deviation of
the disturbance term reaches its highest value during the recent Covid-19 pandemic.

We further examine the importance of evolving parameters through the analysis
of impulse response functions. We document that a positive shock in the GSVI vari-
able yields a decrease in oil production which lasts only for two months. From this
point on, oil production sharply increases and reaches pre-shock levels. Similar re-
sults are found in the responses of oil demand and oil prices. For the three aforemen-
tioned variables, the impulse responses are time invariant. Although, this is not the
case with stock market: if the shock occurs before 2015, stock market returns decline
after a couple of periods and if the shock occurs after 2015, stock market returns grad-
ually increase. In both cases, the effect of the shock is both persistent and statistically
significant.

Considering the role of economic policy uncertainty on firm level decisions and
real economic activity, we subsequently estimate an alternativemodel by adding in the
five-variable model the EPU index of Baker et al. (2016) as an indicator for economic

2Arampatzidis et al. (2021) show that the effect of the price of oil on the stock market depends both
on the type and timing of the shock.
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policy uncertainty. Higher volatility in oil prices has been linked with increased un-
certainty at firms. Elder and Serletis (2010) and Rahman and Serletis (2011) show that
uncertainty about changes in the real oil prices has a negative effect on real economic
activity. Moreover, Bird and Yeung (2012) show that during periods of high (low) mar-
ket uncertainty investors tend to ignore good (bad) news. In this regard, the aim of
this exercise is to uncover the time-varying role of economic policy uncertainty in the
crude oil - investor sentiment relationship.

Sensitivity analysis shows that our baseline findings are robust. First, we employ
as an alternative sentiment measure the Index of Consumer Expectations (ICE), pro-
duced by the University of Michigan, which summarizes a monthly aggregation of
around 500 survey respondents’ expectations regarding the future outlook for their
own personal finances and for the overall U.S. economy (see, e.g., Carroll et al., 1994;
Matsusaka and Sbordone, 1995; Lagerborg et al., 2020). Second, we use specifications
that consider the role of oil inventories to show that the results are not driven by an
"identification problem" (see for exampleHamilton, 2009a,b; Kilian andMurphy, 2014;
Baumeister and Hamilton, 2019).

This essay contributes to the literature in several aspects. A great deal of litera-
ture has focused on verifying the impact of investor sentiment on crude oil returns by
applying a limited number of search terms. This essay constructs a market specific
investor sentiment index for crude oil markets based on amuch wider set of attention
terms and using the dynamic factor model (DFM) framework. This framework allows
us to consider dynamics both in the factors and the idiosyncratic component, as well
as heteroscedasticity in the idiosyncratic variance. Based on Bayesian estimation, this
essay also studies the changing effects of the degree of investor sentiment in crude oil
markets. Extending the model of Kilian and Park (2009) with the oil GSVI index, we
find that information demand responds temporarily to oil supply and demand shocks
and shocks in stock market returns. Also, by allowing for time-variation we find that
these responses are time dependent (for example, a shock in oil prices after 2015 has
a greater impact on GSVI). We further examine the importance of the changes of pa-
rameters of impulse response functions, where the sources of time variation are both
the coefficients and the variance covariance matrix of the innovations. Doing so, we
may identify changes in the impulse responses, mainly in magnitude but for some
cases also in the sign of the response. Furthermore, to the best of our knowledge, this
is the first paper that explores the role of economic policy uncertainty in the linkage
between investor attention and crude oil market through a time-varying framework.
Our findings show that the effect of policy uncertainty is time-varying and becomes
significant and positive only during the period preceding the 2009 banking crises.
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The rest of the essay is organised as follows: Section 2 describes the methodology.
Section 3 describes the data. Section 4 presents themain findings of the study. Section
5 investigates the robustness of our results. The last section concludes.

2.2 Econometric methodology

Initially we construct the index for investors’ sentiment based on internet searches
for oil-related terms. The construction of the sentiment index is described in section
2.2.1. Once the new index is created, we estimate a TVP-VARmodel with five variables:
change in oil production, global real economic activity, real oil prices, stockmarket re-
turns and investors’ sentiment. We examine the effect of investors’ sentiment on oil
price fundamentals and stock market returns by examining the evolution of the esti-
mated coefficients over time. In addition, we employ impulse response function anal-
ysis to examine the bilateral relationship between investors’ sentiment and oil supply,
oil demand, oil prices and stock market. The estimation of the TVP-VAR model is de-
scribed in section 2.2.2. In the last part of the analysis we extend the main model by
including a variable for economic policy uncertainty. In this case, we focus on the
effect of a shock from and to the policy uncertainty variable.

2.2.1 Construction of the Google Search Volume Index

We start by constructing a list of sentiment-reveal search terms that are related to the
crude oil market. We initiate the analysis with primary keywords such as “oil”, “oil
price”, “crude oil”,“oil spot”, “oil stock” etc.3 More specifically, wehave considered each
search term in Google Trends search engine and we have kept the ten “top searches”
related to each term. This generates approximately 300 related keywords for oil. Next,
we remove duplicates, terms with no economic meaning and terms with inadequate
data (query serieswith zero search volume). This leaves uswith the final 186 oil-related
search terms.

To construct the Google Search Volume Index (GSVI) we download from Google
Trends the monthly SVI for 186 search terms related to oil, from January 2004 to May
2020 and employ the dynamic factor model (DFM) framework.4 DFM is appropriate
for handling large data sets without much loss of information.5 In addition, DFM al-

3Table B1 reports all keywords used for the construction of the index.
4All time-series are stationary considering two unit root tests (the Augmented Dickey-Fuller test and

the Phillips-Perron test) and are properly scaled to the highest value within the whole sampling period.
5For example, principal components analysis can lead to information loss if the number of compo-

nents is not specified correctly.
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lows for more flexible interpretation compared to principal components analysis and
provides a better fit to the data (Sargent and Sims, 1977; Stock and Watson, 2016).

The DFM is written in the state space representation as:

xt =
s∑

i=0

Λift−i + et (2.1)

ft =

p∑
t=1

Aift−i + ut (2.2)

where xt is anN×1 vector of observable variables,Λi areN×qmatrices of factor load-
ings, ft are q × 1 vectors of unobserved common dynamic factors which summarise
the cross-covariance properties of xt. The idiosyncratic component et, are N × 1 sta-
tionary processes uncorrelatedwith ft. The elements of et areweakly correlated cross-
sectionally and/or serially. The VAR(p) model in equation 2.2, with A1. . . . , Ap the ma-
trices of autoregressive coefficients, approximates the dynamics of the common fac-
tors. The two error vectors are assumed to be independent.

The DFM described by equations 2.1 and 2.2 can be transformed into a static state
space representation. We define the state vector as Ft = (f ′

t , . . . , f
′
t−k+1)

′ where k =

max{s+ 1, p}. If k > p then Ap+1 = · · · = Ak = 0 in the companion matrix:

A =



A1 . . . Ap . . . Ak

Iq 0q . . 0q

0q
. . . . . . .

...
... . . . . . . . 0q

0q . 0q Iq 0q


if s + 1 < k, we set Λs+1 = · · · = Λk = 0 in the loadings matrix Λ = (Λ0 Λ1 . . .Λk). The
static factor form of the state-space model is given by the following equations:

xt = ΛFt + et

Ft = AFt−1 + u∗
t

with u∗
t = (u′

t, 01×q, . . . , 01×q)
′. Thenumber of estimated static factorsK = q(s+1) is de-

termined using the information criterionmethods provided by Bai and Ng (2002). The
number of dynamic factors given a preselected number of static factors is computed
using the four criteria Bai and Ng (2007).

The factors are estimated using Quasi ML - EM estimator developed by Doz et al.
(2012) by iterating the two-step estimator of Doz et al. (2011). First an ’extended’ state
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space model is defined, with one more lag than the representation (2.1),

xt =
s∑

i=0

Λift−i + 0N×qft−s−1 + et

where 0N×q indicates an N × q null matrix. The static representation of this system
then becomes:

xt = Λ̀Gt + et

Gt = ÀGt−1 + ù∗
t

where Gt = (F ′
t , f

′
t−k)

′ = (f ′
t , . . . , f

′
t−k+1, f

′
t−k)

′ and the system matrices are redefined
accordingly. Thismodification of the state space representation is necessary tomake it
possible to compute rapidly and efficiently all the quantities that are required in theM-
step. Therefore, given a preliminary estimate of θ̂, the ’extended’ systemmatrices are
computed and the Kalman smoother is run, so as to get an unbiased predictor of the
factors Ĝt with the associated covariance matrices. This is the E-step. Subsequently,
the estimated factors are used to compute the sufficient statistics:

F̂t = E(Ft|X)

P̂0,t = E(FtF
′
t |X)

P̂1,t = E(FtF
′
t−1|X)

where X = x1, . . . , xT , which are used in the M-step to compute (conditional) ML es-
timates of θ. Note that, given the covariance matrix of Gt, the calculation of P̂0,t and
P̂1,t simply amounts to selecting appropriate submatrices. With the new estimate of θ
in hand, the process is repeated until convergence. The first q− element subvector f̂
of F̂t, the ML estimate of the dynamic factor, is used as the GSVI.

To control convergence of the EM algorithm we employ a parameter distance cri-
terion that adds the absolute deviation across all estimated parameters θ̂ between two
consecutive steps. More formally, we calculate:

cjP =

∑h
i=1|θ̂

(j)
I − θ̂

(j−1)
I |

h
(2.3)

where h is the number of elements in θ̂. We stop EM process when cPM < 10−2.
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Figure 2.1 plots the constructed indexover the full samplingperiod, 2004M01-2020M04.

2.2.2 Estimation of the TVP-VARmodel

Based on Primiceri (2005), Del Negro and Primiceri (2015) and Koop and Korobilis
(2009) we consider the following time-varying parameter VAR model:6

yt = ct +

p∑
i=1

Bi,tyt−i + ut, t = 1, . . . , T (2.4)

where yt is an n× 1 vector of endogenous variables, ct is a n× 1 vector of time-varying
coefficients,Bi,t, i = 1, . . . , P are n×nmatrices of time-varying coefficients and ut are
heteroscedastic shocks with variance-covariance matrix Ωt. The lag order p is deter-
mined through the Schwarz information criterion (SIC). We can rewrite (2.4) as:

yt = X
′

tBt + A−1
t Σtϵt

X
′
= In ⊗ [1, yt−1, . . . , yt−p]

(2.5)

whereBt = [ct, vec(B1,t), . . . , vec(Bp,t)] and⊗ denotes the Kronecker product and vec()
the columnwise vectorisation of a matrix. At is a lower unitriangular matrix and Σt is
a diagonal matrix such that, AtΩtA

′
t = ΣtΣ

′
t. It follows that Var(ϵt) = In. Cogley and

Sargent (2002) consider similar decompositions of the variance-covariance matrix of
a time-varying VAR model but with a time invariant matrix At. If αt is the vector of
unrestricted elements ofAt and σt the vector of diagonal elements ofΣt, then the state
equations are:

Bt+1 = Bt + vt+1, vt ∼ N(0, Q) (2.6)

αt+1 = αt + ζt+1, ζt ∼ N(0, S) (2.7)

log σt+1 = log σt + ηt+1, ηt ∼ N(0,W ) (2.8)

The cardinalities of Bt, at and σt are nB = n + pn2, nA = n(n+1)
2

and nσ = n. All
errors in the model are assumed to be jointly normally distributed with

6In this section we drop any notation used in the section 2.2.1.
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Var




ϵt

vt

ζt

ηt


 =


In 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W


As in Cogley and Sargent (2005) and Primiceri (2005), the prior distributions (initial

conditions at t = 0) are specified and updated using a training sample. The training
sample is used to estimate a time invariant VAR with Ordinary Least Squares (OLS).
For the parameters B0, A0 and log σ0, the Normal distribution is assumed. The mean
and variance of the parameters B0 and A0 are the mean and four times the variance
of the respective estimated parameter of the OLS-VAR. In the case of log σ0 the mean
of the prior distribution is chosen to be the logarithm of the OLS point estimates of
the standard errors of the OLS-VAR model and the the variance covariance matrix is
assumed to be the identity matrix. For the priors on error co-variances Q, S and W

the hyperparameters are set to kQ = 0.01, kS = 0.1 and kW = 0.01. Summarising, the
priors take the form:

B0 ∼ N(B̂OLS, 4Var(B̂OLS))

A0 ∼ N(ÂOLS, 4Var(ÂOLS))

log σ ∼ N(log σ̂OLS, In)

Q−1 ∼ W (1 + nB, ((k
2
q)(1 + nB)Var(B̂OLS))

−1)

S−1 ∼ W (1 + nA, ((k
2
q)(1 + nA)Var(ÂOLS))

−1)

W−1 ∼ W (1 + nσ, ((k
2
q)(1 + nσ)In)

−1)

Let Mt be a generic matrix. We define M τ = [m′
1, . . . ,m

′
τ ]

′, where mt = vec(Mt).
Our aim is to estimate the posterior distributions of the unobservable states BT , AT

and ΣT and the hyperparameters of the variance covariance matrix V . The Bayesian
estimation requires a Markov chain Monte Carlo (MCMC) algorithm. To exploit the
blocking structure of the unknowns, a Gibbs sampling consisting of four steps is used.
In each step BT (the time-varying coefficients), AT (the simultaneous relations), ΣT

(the stochastic volatility) and V (the hyperparameters) are drawn respectively, condi-
tional on the observable data and the other parameters.

The state space model described in 2.5 and 2.6 is linear and Gaussian (conditional
on AT and ΣT ). This implies thatBT , AT is a product of Gaussian densities and can be
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drawn using a Gibbs sampler algorithm.7 Here, we rely on the algorithm of Carter and
Kohn (1994).8 Since ΣT is not a Gaussian product, we rely on the method of Kim et al.
(1998) to transform it to a linear, Gaussian form. As a result, it can be drawn using the
algorithm of Carter and Kohn (1994). Finally, we sample V by sampling Q, W and S

independently from an inverse-Wishart distribution.
Once the reduced-form VAR model (2.4) is estimated, we construct the following

structural VAR:

yt = X
′

tBt + Ξϵt

where Ξt contains the necessary restrictions for structural identification and ΞtΞ
′
t =

Ωt. Since the identification is based on a lower triangular scheme, it suffices to set
Ξ = A−1

t Σt.
The results are based on posterior sample of 50000 draws. The first 25000 draws

are considered a burnin sample and are discarded. To assess the validity of our results
we considered two robustness checks. In the first one, we increase the number of
both burnin and posterior draws to 50000. The second check aims to take into account
any possible autocorrelation among draws, (Korobilis, 2017). To this end, we build
the posterior sample by keeping only every 10th draw. Both robustness checks provide
similar results with the ones reported in the essay. These results are available upon
request.

2.3 Data

The study utilises monthly time-series data over 2004M01-2020M04. Data for the oil
production and prices of oil are obtained from the U.S Department of Energy. World
crude oil production ismeasured inmillions of barrels per day averagedmonthly. Fol-
lowing Kilian (2009) we use the percent change in the oil supply by calculating the
log differences and multiplying with 100 (denoted ∆prodt). To obtain the real price
of oil (denoted rpot), we divide the refiner’s acquisition cost of crude oil by the U.S.
CPI (obtained from the Bureau of Labor Statistics).9 The index of real aggregate de-
mand, constructed by Kilian (2019) is used as an indicator of global real economic ac-
tivity(denoted reat). The logarithmof closing prices of S&P500, deflated by theU.S. CPI

7AT is drawn conditional on BT and ΣT

8Alternatively, one could employ the algorithm of Frühwirth-Schnatter (1994).
9Kuck and Schweikert (2017) and Galay (2019) argue that world oil marketsmaintain a long-run equi-

librium.
9The index is an updated and corrected version of the Kilian (2009) index. See also Kilian and Zhou

(2018) and Hamilton (2021).
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is used as the stockmarket variable (denoted rett). As a proxy for economic policy un-
certainty, we employ the index constructed by Baker et al. (2016) which is a weighted
average of four uncertainty components (denoted eput). Finally, the sentiment index,
GSVI, is constructed as described in subsection 2.2.1. SVI data used for the construc-
tion of the GSVI is available from 2004M01. The availability of SVI determines the sam-
ple size in our analysis.

In our analysis, we also perform robustness checks regarding the first main (five-
variables)model. First, we replaceGSVIwithMichigan’sUniversity IndexofConsumer
Sentiment (ICS) (see section 2.5). ICS is constructed using the responses to five dif-
ferent questions that are part of a broader survey of consumer attitudes and expec-
tations. Data for the ICS are available on monthly basis starting from January 1978
from the website of Michigan’s University. Second, we examine how the results are
affected when we take oil inventories into account. To construct the variable of crude
oil inventories, we multiply the U.S. inventories by the ratio of OECD inventories (see
also Hamilton, 2009a; Kilian and Murphy, 2014; Baumeister and Hamilton, 2019). We
obtain data for the U.S. crude oil stocks (in millions of barrels) and for the OECD in-
ventories of crude petroleum and petroleum products from the Energy Information
Administration and the OECD databases, respectively. Table B2, in the Appendix, re-
ports the summary statistics for all variables used in the analysis.

2.4 Results

2.4.1 A reexamination of the models of

Beforewe proceedwith themainmodel, we revisit the seminalmodels of Kilian (2009)
and Kilian and Park (2009) which are the base of the main models of this work. Kilian
(2009) considers a trivariate model where the endogenous variables are the change in
world oil production, the global real economic activity and the real price of oil. Since
we do not use the GSVI in this model, we employ a longer sample, spanning from
1974M01 to 2020M04. In the case of constant parameters, we calculate the impulse
response functions using SVAR and local projections (LP) estimators.10 The LP are
used as a less biased, robust to model specification estimator in contrast to the biased
but efficient SVAR. The results are plotted in Figure 2.2. Both approaches produce
qualitatively similar results. This finding is in linewith the findings of Plagborg-Moller
and Wolf (2021b) who showed that both methods estimate similar impulse responses.

Adisruption inoil supply causes adecline inworldoil production. After twomonths,
10Following the related literature, in all time invariant models we use 24 lags.
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oil production returns to pre-shock levels. This is the only major difference between
our findings and the findings of Kilian (2009) where the recovery in oil productionwas
partial. The shock does not have a significant effect neither on global economic activ-
ity nor in oil price. A demand shock has a positive and persistent effect both on the
global economic activity and the price of oil. When the OLS-VAR is considered, the re-
sponses of real oil prices are statistically insignificant after four quarters. Oil-specific
demand shock does not affect oil production. However, it causes an increase both in
real economic activity and in real price of oil. In general, the findings are in line with
the results of Kilian (2009).

The impulse responses from the TVP-VAR model are presented in Figures 2.3 and
B1. Figure 2.3 plots the impulse responses for every point in the sample over a horizon
of 24 periods (months). The model contains four lags, based on the SIC. The selec-
tion of lag order is consistent with similar studies in the literature (Apergis andMiller,
2009; Degiannakis et al., 2013; Kang et al., 2015). According to the results, a negative
supply shock results in a sharp decline in global oil production. Similar to the time
invariant model, oil production is restored after a couple of periods. Time evolution
does not affect the impulse responses of global oil production. On the contrary, the
responses of the global economic activity and the price of oil to a supply shock de-
pends on the moment the shock occurs. A positive shock in demand has a positive
effect on real economic activity which lasts for a few periods followed by a gradual
decline. The response of oil production is a momentary decline. The effect is fully re-
versed and a few periods after the shock, we observe a co-movement of oil production
and oil prices. The magnitude of the increase is greater after 2010, two years after the
Global Financial Crisis of 2008. In addition, a demand shock has a positive effect in the
price of oil. An oil-specific shock has a positive effect on both the real price and the
global oil production. A stronger increase in oil production is observed after 2015. This
contradicts the findings from the time invariant model. Furthermore, an oil-specific
shock has positive effect in real economic activity which gradually declines. The sign
of long-run responses of real economic activity changes over time.11

11Figure B1, in Appendix 2.6, presents the evolution of impulse responses over the sampling period
at 3, 12, 24 months after the shock and allows us to observe how the different effects of a shock based
on the moment it happens.
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Figure 2.2: Impulse responses using time invariant OLS and LP estimators. The SVAR model is based on Kilian (2009).
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Figure 2.3: Time varying impulse responses. SVAR based on Kilian (2009).



We augment the previous setup by including the stockmarket returns in the initial
setup of Kilian and Park (2009). The aim of this exercise is to examine the relationship
between stock prices and the price of oil. Similar to the trivariate model, we consider
both time invariant and time-varyingmodels with our sample starting from 1978M01.12

The impulse responses from the time invariant analysis are presented in Figure
2.4. The left column of Figure 2.4 plots the responses of stock market to oil supply and
demand shocks. These findings are in line with the results of Kilian and Park (2009).
First, we observe that a sudden disruption of in oil supply has no significant impact on
the stock market returns. Second, an aggregate demand shock does not affect stock
market returns on impact. However, after a period of sixmonths after the shock, stock
returns start increasing. This upward trend lasts until the end of the impulse horizon.
According to the OLS estimates, the rise in stock market returns is not statistically
significant (at the 95% significance level). However, LP estimates indicate that on the
long-run (after 18 months), the increase in stock returns is substantial. Third, a shock
in oil prices has an immediate positive impact on stockmarket returnswhich gradually
increases for the a period of two years. The results from both estimators suggest that
the response of stock market returns to the oil-specific demand shock is statistically
significant over the whole impulse horizon.

The responses to a shock in the stockmarket returns are presented in the right col-
umn of Figure 2.4. The three examined variables (oil production, global real economic
activity and oil prices) are not affected by a shock in the stockmarket. In all cases, the
value of zero is included in the confidence interval (regardless of the estimator). In the
case of an aggregate demand shock, stock returns drop in the long-run, but the effect
is rather weak.

Figures 2.5 shows the impulses responses from theTVP-VARmodelwith four lags (a
two dimension illustration of the 3-month, 12-month and 24-month impulse evolution
is also presented in Figure B2, in Appendix 2.6).13 The top rows of Figure 2.5 present
the impulse responses of stock market to oil supply and demand shocks. We observe
that these responses are strongly affected by the time the shock occurs. For example,
while a sudden increase in the price of oil causes a decrease in stock returns before
2015, after that year, a shock in oil prices has a positive impact on the stock market
returns. Furthermore, the shocks have a persistent impact on the stock market. The
bottom rows of Figure 2.5 show the responses of the variables to a positive shock in the

12We report the findings regarding shocks only to and from stock market returns, since the results
regarding the relationship of supply, demand and the price of oil are similar to the ones we obtained
from the trivariate model.

13The responses of world oil production, global economic activity and oil price to supply and demand
shocks do not differ from the responses in the model without stock returns and are not reported here,
but are available from the authors upon request.
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stockmarket returns. First, we observe a sharp rise in oil productionwhich is adjusted
to a pre-shock level after a few periods. Second, the shock has a long-run effect on the
real economic activity and the real oil price. The sign of the magnitude of the effect
varies, depending on the moment the shock takes place. For example, from 2007 to
2010, two years after the shock, economic activity has declined while after 2010 the
shock has a positive effect on real economic activity. Finally, while oil prices increase
shortly after the shock, the long-run response is also time dependent (negative over
the period 2008-2014 and positive in the rest of the sampling period).
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Figure 2.4: Impulse responses using time invariant OLS and LP estimators. The SVARmodel is based on Kilian and Park (2009).
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Figure 2.5: Time varying impulse responses to shocks to and from stock market returns. SVAR based on Kilian and Park (2009).



2.4.2 The effect of GSVI on the price of oil

Figure 2.6 shows the evolution of the estimated parameters over time (we consider
two lags in the model based on the SIC).14 The left column of Figure 2.6 presents the
posterior means of the coefficients of the first lag of the GSVI variable (1 lag) in the
five equations of the model: the oil production, oil demand, real price of oil, stock
market returns and information demand equation. The shaded area in each graph re-
ports the 68% credible interval. In the oil supply equation, the coefficients of lagged
GSVI are negative, statistically significant and remain stable over the entire sample
period. In the equation of oil demand, the coefficients of GSVI are positive and statis-
tically insignificant for most of the sampling period. For a brief period, during 2016,
the coefficient becomes statistically significant. There does seem to be a movement
in the coefficients of the variable of information demand in the equation of real price
of oil. The posterior coefficient increases over the first 5 years of the sample and then
gradually declines until 2014. After 2014 it increases for almost two years and then re-
mains relatively constant. In addition, the posterior mean of coefficients is negative
until 2015 and it becomes positive after that period. We observe a similar pattern in
the evolution over time of coefficients of GSVI in the stock market returns equation.
However, the values of the coefficients are negative over the whole sample.

The effect of time is also evident on the standard deviation of the errors which jus-
tifies the selection of a model that accounts for stochastic volatility. The right column
in Figure 2.6 presents the posteriormeans of the standard deviation of residuals in the
five equations of the VAR model. In all cases, there is a steep increase in the standard
deviation during 2009, caused by the Global Financial Crisis. Furthermore, there are
cases in the sample where the standard deviations of the shocks increase for a short
period. Finally, it is worth noticing the effect of the recent pandemic in the volatility
of the error terms. Especially in the case of stock market returns where the standard
deviation of the disturbance term is currently increasing and tends to exceed themaxi-
mumvaluewhich reached during 2009. The rate of increase is also higher than in 2009.

We now turn to the impulse response function analysis. The identification scheme
builds on the work of Kilian (2009) and Kilian and Park (2009). We consider the follow-
ing relationship between the reduced form errors ut and structural errors ϵt:

14The selection of lag order is consistent with similar studies in the literature (Apergis and Miller,
2009; Degiannakis et al., 2013; Kang et al., 2015).
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Figure 2.6: Posteriormeans of coefficients of lagged GSVI and posteriormeans of stan-
dard deviations of the residuals in the mean equations.

Posterior mean of coefficients of GSVI (1 lag)

2008 2010 2012 2014 2016 2018 2020
Oil supply equation

-0.06

-0.05

-0.04

-0.03

2008 2010 2012 2014 2016 2018 2020
Oil demand equation

0

0.02

0.04

0.06

2008 2010 2012 2014 2016 2018 2020
Real price of oil equation

-0.05

0

0.05

2008 2010 2012 2014 2016 2018 2020
Stock returns equation

-0.15

-0.1

-0.05

2008 2010 2012 2014 2016 2018 2020
GSVI equation

0.6

0.65

0.7

2008 2010 2012 2014 2016 2018 2020
Oil supply equation

1

2

3
Posterior mean of the standard deviation of residuals

2008 2010 2012 2014 2016 2018 2020
Oil demand equation

0.2

0.3

0.4

0.5

2008 2010 2012 2014 2016 2018 2020
Real price of oil equation

0.1

0.2

0.3

0.4

2008 2010 2012 2014 2016 2018 2020
Stock returns equation

0.05

0.1

0.15

0.2

2008 2010 2012 2014 2016 2018 2020
GSVI equation

1

2

3

24




u∆prod
t

urea
t

urpo
t

uret
t

ugsvi
t

 =


ξ11 0 0 0 0

ξ21 ξ22 0 0 0

ξ31 ξ32 ξ33 0 0

ξ41 ξ42 ξ43 ξ44 0

ξ51 ξ52 ξ53 ξ54 ξ55




ϵ∆prod
t

ϵreat

ϵrpot

ϵrett

ϵgsvit


where we assume that stock market and information demand react contemporane-
ously to all supply and demand shocks and we treat shocks in oil prices as predeter-
mined with the respect to the economy (Lee and Ni, 2002).

Our aim is to examine the bilateral relationship between GSVI and the price of oil.
To this end, we consider the responses of the variables to shocks in theGSVI and the re-
sponse of GSVI to shocks to the rest of the variables. The top row in Figure 2.7 presents
the impulse responses of the variables to a shock in information demand. A positive
shock in the GSVI variable yields a decrease in oil production which lasts only for two
months. After that, oil production sharply increases and reaches pre-shock levels. The
shock also causes a rise in aggregate demand which in turn yields a rise in the price
of oil. Specifically, we observe a positive co-movement in aggregate demand and oil
prices with the impact on the price of oil being greater than on aggregate demand.
This result, combined with the delayed increase in oil production indicates that an
unexpected increase in information demand acts as a mechanism for a shock in real
economic activity, leading eventually in a positive co-movement of oil production and
the price of oil. Finally, a sudden increase in information demand does not have an
immediate effect on stock market. In addition, the effect is different, depending on
the timing the shock in GSVI occurs: a shock in GSVI before 2015 causes stock market
returns to start to fall four months after the shock. On the contrary, a similar shock
after 2015 causes a rise in stockmarket returns after fourmonths. In both cases, the ef-
fect of the shock is long-lasting and the upward/downward trends continues for more
than two years.

The previous results suggest that unexpected changes in GSVI affect the behaviour
of oil dynamics and stock market returns. However, oil demand and supply shocks
may affect household disposable income available for other expenditures through en-
ergy prices. Since prior evidence suggests that oil price shocks are mainly transmit-
ted through the demand side, we investigate the effect of structural oil supply and de-
mand shocks on GSVI—a barometer of private households’, retail investors and non-
institutional traders perception of uncertainty and future economic conditions. The
bottom row of Figure 2.7 shows the impact of different shocks on the GSVI index.
All shocks affect investors’ sentiment on impact, reflecting the rapid spread of news
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worldwide. Furthermore, the sign of the response is affected by the time the shock
occurs. For example, disruptions of the physical supply, which raise the real crude oil
price, have a limited impact on theGSVI until 2010, but this effect is becoming stronger
as we move to 2015 onward. The diminishing role for oil supply shocks suggests that
households and retail investors expect that these shocks are short-lived, given that re-
duced production in one country is easily offset by other oil producers. On the demand
side, both aggregate demand shocks associated with the global business cycle and oil-
specific demand shocks significantly depress GSVI during the period prior to 2015.
This impact turns to positive in subsequent years but is short-lived. In line with the
results in Kilian (2009) and Guntner and Linsbauer (2018), positive aggregate demand
shocks cause an increase of optimism among retail investors, followed by a significant
reduction in the GSVI over the next 18 months. Other oil demand shocks such as an
oil-specific demand shock, have a strong persistent positive effect on theGSVI over the
recent years. The impact of a shock in stock returns on GSVI is positive and temporary
over the last two years and during the global financial crisis period.

For illustrative purposes we also consider the impulses responses from a model
with constant parameters. We estimate the impulse response functions using both an
OLS-SVAR estimator and local projections (LP) by Jordá (2005). Following the related
literature, in all time invariant models we use 24 lags.

The results are presented in Figure 2.8. In most cases, SVAR and LP produce qual-
itatively similar results.15 LP produce narrower confidence intervals and as a result,
suggest statistical significance of the responses more often compared to SVAR esti-
mates.16 The responses of aggregate demand and oil prices remain increasing, simi-
lar to the TVP-VARmodel. The information demand shock leads to a decrease in stock
market returns which is statistically significant only when we consider LP. Finally, the
shock has no impact on crude oil production. The response of the GSVI to shocks in
the rest of the variables is a temporary increase.

15This confirms the findings of Plagborg-Moller and Wolf (2021b)
16The LP are used as a less biased, robust to model specification estimator in contrast to the biased

but efficient SVAR (Plagborg-Moller and Wolf, 2021a).
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Figure 2.7: Impulse responses to an investors’ sentiment shock (top) and impulses responses of GSVI to alternative shocks
(bottom).
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Figure 2.8: Impulse responses using time invariant SVAR and LP estimators. The first
row plots the responses of the variables to an investors’ sentiment shock. The second
row plots the responses of GSVI to alternative shocks.
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2.4.3 The impact of policy uncertainty on oil prices

In this section, we augment the baseline model by adding the EPU index. This model
is based on the work of Kang and Ratti (2013) but differs in two respects. First, our
model includes a measure of investors’ sentiment and second, we consider a time-
varying SVAR approach. By the same reasoning as in the previous model, the rela-
tionship between the reduced form and the structural errors is ut = Ξϵt where u

′
t =

(u∆prod
t , urea

t , urpo
t , uret

t , uepu
t , ugsvi

t ), ϵ′t = (ϵ∆prod
t , ϵreat , ϵrpot , ϵrett , ϵeput , ϵgsvit ) andΞ is 6×6 lower

triangular matrix.
Figure 2.9 presents the impulse responses of the variables to a shock in the EPU

index. The shock has an impact on oil production only in the short-run. Over the
period 2007-2010 oil production increases after the shockwhile the after 2010, the shock
causes a decrease. The shock has an negative impact on real economic activity if it
occurs early in the sampling period. Similar response is observed for the oil prices.
The response of stock market returns on the EPU index depends on time. From 2007
to 2008, an unanticipated increase in EPU affects stock market returns negatively in
the short-run (the first ten periods). On the contrary, a shock after 2008 causes a slight

28



increase in stock returns. Finally, a shock in EPUhas amarginal impact onGSVIwhich
lasts only for a few periods.

Figure 2.10 plots the responses of the EPU index to a shock in the rest of the vari-
ables. An unexpected disruption in oil supply has no significant effect on the EPU
index. On the contrary, a positive shock in aggregate demand leads to an increase in
policy uncertainty. After the initial rise, EPU gradually decreases. However, over the
recent years the effect of the shock persists until the end the impulse horizon. Shocks
in oil prices and stock market returns have a similar effect on the EPU index. Both
shocks yield a drop in policy uncertainty over the first two periods (months) which
gradually returns to pre-shock levels. GSVI is affected from a shock in EPU only on
impact. With the exception of a brief period from 2007 to 2008 when a shock causes
an increase in information demand, a sudden rise in EPU has a weak negative effect
on GSVI.

We now present the findings from a time invariant model. The top row of Figure
2.11 plots the impulse responses of the variables to a positive shock in EPU. Both the
SVAR and the LP estimators produce similar results regarding the direction of each
response, however, only the LP provide statistically significant estimates. An increase
in EPU has a significant negative effect on up to fifteen months after the shock. Based
on the SVAR estimates, the shock has a negative but insignificant impact on the price
of oil. The shock also affects negatively stock market returns. When we use LP, we
observe a substantial decrease in stockmarket returns that lasts up to thirteenmonths
after the shock. Finally, the sentiment index decreases only for a couple of periods
after the shock.

The second row of Figure 2.11 presents the responses of EPU. A positive aggre-
gate demand shock has a negative effect on EPU that is statistically significant up to
twomonths and from thirteenth to fifteenth month. Similarly, an oil-specific demand
shock decreases EPU only on impact. A shock in stock market returns leads to an
immediate decrease in EPU that lasts up to three periods after the shock. After that
period, EPU rises to pre-shock levels for five months and then declines again for five
more months. Finally, an increase in information demand does not affect EPU.
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Figure 2.9: Impulse responses to an EPU shock.
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Figure 2.10: Impulse responses of the EPU index to alternative shocks.
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Figure 2.11: Impulse responses using time invariant SVAR and LP estimators. The first
row plots the responses of the variables to an EPU shock. The second row plots the
responses of EPU index to alternative shocks.
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2.5 Robustness checks

2.5.1 Replacing GSVI with ICS

In this section we perform a robustness check regarding the model discussed in sec-
tion 2.4.2 (the five-variable model). To examine the robustness of the results we use
an alternative sentiment index which is often used in the literature, the Index of Con-
sumer Sentiment (ICS) of Michigan’s University (for applications, see Carroll et al.,
1994; Matsusaka and Sbordone, 1995; Lagerborg et al., 2020). The index is available
from 1978, however, for comparability purposes we estimate the model over the pe-
riod 2004M01-2020M04.17 Furthermore, we use the same number of lags, 2, as in the
main model.

The first row in Figure 2.12 shows the impact of a positive shock in the ICS. Oil sup-
ply respondswith an initial decreasewhich is reversed over the nextmonth. After that
initial response, oil production remains unresponsive. Real economic activity index,

17The results regarding the full sample are available from the authors upon request.
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oil prices and stock returns are affected positively by the shock. The effect ismore per-
sistent in the case of oil prices and stockmarket returns. Overall, the responses of the
first three variables are similar to the ones in the main model. However, the magni-
tude of the response is now smaller and independent of the time of the occurrence of
the shock. Even in periods of known events (i.e. Global Financial Crisis), we observe
no change in the response of the variables to alternative shocks. The latter lead us to
conclude that the ICS can not capture the effect of time evolution. This explains the
difference in the responses of stockmarket returns to shocks in GSVI and ICS over the
first half of the sample.

The second row of Figure 2.12 presents the responses of ICS to shocks in the rest
of the variables. Similar to GSVI, ICS is affected only for a couple of months from
these shocks. While the response of ICS to each shock is similar over time, there is an
increase in the magnitude of the response over the period 2018-2020 (oil production is
an exception). Furthermore, while real economic activity increases after a shock from
2007 to 2018, after 2018 the shock causes a sharp decline in real economic activity.
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Figure 2.12: Impulse responses using an alternative measure of investors’ sentiment (GSVI is replaced by the ICS). The figure
shows the impulse responses to shocks to and from the ICS.
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2.5.2 The role of oil inventories

The impact of oil inventories, through speculative trading, is well documented in the
literature (see for instance Hamilton, 2009a,b; Kilian and Murphy, 2014; Baumeister
and Hamilton, 2019; Känzig, 2020). However, as noted in Caldara et al. (2019) inven-
tories could in principle quickly move to absorb differences between oil production
and oil consumption, in turn affecting the dynamics of the oil market. An extension
of our empirical analysis relates to the role of inventories, since our baseline model
assumes that oil production is absorbed by consumption in every period. Thus, as an
additional robustness check, we expand the five variable model by including a proxy
for the oil inventories.

Our aim is to examine whether our findings are affected by the inclusion of oil
inventories in the model. Doing so, we repeat the impulse response function analysis
regarding shocks to and from theGSVI. These results are reported inFigure 2.13. In the
first row, we plot the responses of the change in oil production, real economic activity,
oil prices and stock market returns to a positive shock in information demand. The
responses of the variables to a shock in the GSVI are similar to the responses in the
main part of the analysis. In addition, the shock leads to an increase in oil demand
which yields a positive shift in the price of oil. The increase both in oil demand and
the price of oil is greater during the earlier period of the sample, something which
we do not observe in the main results. The sign of the response of the stock market
changes over time. With few exceptions, stock market returns decline if the shock
occurs before 2015 and rise if the shock occurs after 2015. The second row of Figure
2.13 presents the impulse responses to supply and demand shocks. Similar to themain
findings, the sign of the responses and the response of GSVI is affected mostly by the
time of the shock.
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Figure 2.13: Impulse responses to shocks from and to the GSVI. The model includes a proxy for oil inventories.
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We subsequently consider the effect of oil inventories. In Figure 2.14 we plot the re-
sponses of all variables to a speculative shock. An unanticipated increase in oil inven-
tory demand yields an increase in oil prices which results to a decrease in economic
activity. Furthermore, a speculative shock leads to a rise in oil production which lasts
only for one period. These findings are in line with the findings of Baumeister and
Hamilton (2019). The speculative shock has a negative effect on stock market returns,
a result also suggested by Ahmadi et al. (2016). The response of the GSVI is not sta-
tistically significant suggesting that a rise in inventory demand does not imply a rise
in information demand. Figure 2.15 presents the impulse response of oil inventory to
different shocks. Oil inventories do not respond to an increase in oil production but
decline after a positive oil demand shock. This finding contradicts the results from
Kilian and Murphy (2014) where the effect of a demand shock on impact increases oil
inventories. However, this could be due to the sign restrictions, since in the next peri-
ods, the response of oil inventories becomes negative. An increase in prices reduces
the oil stocks but the effect is rather weak. On the contrary, a positive shock in stock
market has a strong impact on oil inventories. The effect is mostly negative, however
for specific timeperiods, i.e. 2007-2009 and 2013-2014, the shock can lead to an increase
in oil inventories. Finally, an unexpected increase in information demand leads to an
decrease in oil inventories one month after the shock. The effect is reversed over the
next few months. If the shock occurs from 2015 to 2017, the period after the sudden
reduction of oil prices, the effect of an information demand shock on oil inventories
is reversed.
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Figure 2.14: Impulse responses of the variables to a speculative shock.
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Figure 2.15: Impulse responses of oil inventories to alternative shocks.
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2.6 Conclusions

The empirical role of retail investors’ sentiment shocks as a driver of oil price fluctua-
tions remains debated in the literature, with findings hinging upon the identification
assumptions used. This essay examines whether behavioural factors have an impact
on oil prices. In order to get a direct measure of investor sentiment, we construct a
Google search volume index (GSVI) by employing a dynamic factor analysis on 186 oil
related search terms. The sentiment index is added to the model of Kilian and Park
(2009) and the impulse response function analysis reveals that a sudden increase in
information demand increases the price of oil through an increase in aggregate de-
mand. Furthermore, the sign of the response of stock market returns to the shock
depends on the timing of the shock. For example, a shock in the GSVI yields negative
stock market returns before 2015 and positive stock market returns after 2015.

Motivatedbyprevious evidence that oil price shocks are transmittedmainly through
the demand side, we examine the effect of structural oil demand and supply shocks on
GSVI —a barometer of households’ and retail investors perception of uncertainty and
current and future economic conditions. We show that the aggregate oil supply and
demand shocks, oil-specific demand shocks and stock returns shocks have mostly a
short-lived and significant impact on GSVI. The impact of aggregate oil supply and de-
mand shocks is found similar in magnitude with the sign of the response to change
over time only for the demand side.

Furthermore, economic policy uncertainty (EPU) plays also an important role in
influencingfinancial and economic activities andmayattract the attentionof investors
in the oil market, thus affecting the relationship between investor attention and oil
market prices. By adding the EPU index in the model, we find that the effect of the
EPU index on the variables is important but short-lasting. However, the EPU responds
strongly to shocks in oil prices and stockmarket returns. In both examinedmodels the
results indicate that both the coefficients and transmissionmechanisms of the shocks
change over time. Finally, our findings are robust to an alternativemeasure of investor
sentiment and after taking into account the role of oil inventories.
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Appendix

Table B1: List of searched terms used for the construction of the GSVI.

a barrel of oil current crude oil price(s) oil barrel price(s) oil symbol
barrel of crude oil current crude oil oil barrel oil ticker symbol
barrel of crude current crude oil chart(s) oil ticker
barrel of oil price(s) current oil price(s) oil close oil today
barrel of oil current oil oil closing price oil trading price
barrel oil price(s) current price of a barrel of oil oil commodities oil trading
barrel oil current price of crude oil oil commodity price barrel of oil
barrel price(s) current price of crude oil contract price barrel oil
bloomberg crude current price of oil oil cost per barrel price crude oil
bloomberg energy prices daily oil price(s) oil cost price crude
bloomberg energy energy fund(s) oil crude price for barrel of oil
bloomberg oil energy index oil current price price of a barrel of oil
buy oil futures energy mutual funds oil demand price of barrel of oil
closing oil price(s) energy prices oil future price of barrel
closing price of oil energy stocks oil futures price(s) price of crude oil per barrel
cost of a barrel of oil future oil oil futures price of crude oil
cost of crude oil futures price oil graph price of crude
cost of oil gas barrel oil index price of oil barrel
crude future(s) gas index oil market(s) price of oil
crude oil barrel price gas per barrel oil options price oil barrel
crude oil barrel gas price per barrel oil per barrel price oil
crude oil chart(s) global oil oil price barrel price per barrel of oil
crude oil close historic oil prices oil price chart(s) price per barrel today
crude oil future(s) historical oil price(s) oil price graph price per barrel
crude oil index history of oil prices oil price history real time oil
crude oil market investing in oil oil price index spot crude
crude oil per barrel latest oil price(s) oil price per barrel spot oil price(s)
crude oil price(s) light crude oil oil price quote spot oil
crude oil pricing light crude oil price ticker stock market oil
crude oil quote light sweet crude oil oil price today sweet crude oil
crude oil spot light sweet crude price oil price trend sweet crude price(s)
crude oil stock symbol light sweet crude oil price(s) sweet crude
crude oil stock live oil price oil prices graph symbol for crude oil
crude oil symbol nymex crude future oil pricing the price of oil
crude oil ticker symbol nymex crude oil oil producers time oil
crude oil ticker nymex crude oil quote(s) today oil price
crude oil today nymex oil oil spot price trade oil
crude oil oil a barrel oil spot trading oil
crude price(s) oil and gas prices oil stock symbol world oil prices
crude stock oil barrel cost oil stocks
crude oil barrel price today oil supply
Notes: All SVI data are downloaded from Google Trends.
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Table B2: Summary statistics of the variables used in the analysis.

Variable / Statistic Mean Maximum Minimum St. dev. Skewness Kurtosis Jarque-Bera stat. ADF stat.
Oil production 7356 12859 3973 2425 0.721 2.265 21.36*** -2.283
REA 13.02 191.0 -160.0 78.47 0.360 2.289 8.355** -3.948**
Oil price 67.04 127.7 16.74 24.38 0.395 2.105 11.65*** -2.923
Stock market 1712 3230 735.0 624.7 0.730 2.375 20.76*** -1.893
GSVI -0.002 0.463 -3.164 0.548 -2.846 12.38 1066.51*** -2.207
EPU 119.6 283.1 57.20 40.42 0.955 4.250 42.53*** -1.714
ICS 83.98 103.8 55.30 12.18 -0.526 2.224 13.96*** -2.205

Notes: i) ***, ** and * denote rejection of the null hypothesis at the 1%, 5% and 10% significance level. ii) In the implementation of the ADF
test we assume only constant in the test equation and for the selection of the lag-length we use the SIC.
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Figure B1: Evolution of the 3-month, 12-month and 24-month impulse responses over
time. SVAR model based on Kilian (2009).
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Figure B2: Evolution of the 3-month, 12-month and 24-month impulse responses over
time. SVAR based on Kilian and Park (2009). Responses to shocks to and from stock
market returns.
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Chapter 3

On the volatility of cryptocurrencies

Abstract

We perform a large-scale analysis to evaluate the performance of traditional and Markov-switching

GARCHmodels for the volatility of 292 cryptocurrencies. For each cryptocurrency,we estimate a total of

27 alternative GARCH specifications. We considermodels that allowup to three different regimes. First,

the models are compared in terms of goodness-of-fit using the Deviance Information Criterion and the

Bayesian Predictive Information Criterion. Next, we evaluate the ability of the models in forecasting

one-day ahead conditional volatility and Value-at-Risk. The results indicate that for a wide range of

cryptocurrencies, time-varying models outperform traditional ones.

3.1 Introduction

The introduction of Bitcoin (Nakamoto (2009)) spurred the creation of new cryptocur-
rencies, with their current number exceeding 5000. Digital currencies facilitate elec-
tronic payments without the need of a bank (or other third party) intermediation.1

According to Yermack (2013), Bitcoin cannot function asmoney, due to its nearly fixed
supply, as Bitcoin mining is an energy consuming activity. However, there are simi-
laritieswith exhaustible commodity resources (see the discussion inGronwald (2019)).
Furthermore, Bitcoin and digital currencies have additional features, such as hedging,
diversifying and safe haven capabilities that make them appealing as an asset, (see for
instance Dyhrberg (2016a,b); Bouri et al. (2017)).

Bitcoin likemany financial assets exhibit volatility clustering and structural breaks
in their volatility dynamics. Ignoring these features could negatively impact on the
precision of volatility forecasts; see Lamoureux and Lastrapes (1990) and Bauwens

1Bitcoin also offers anonymity and low transactions fees, Panagiotidis et al. (2018).
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et al. (2014). Since cryptocurrencies share similarities with other assets, one could ex-
pect that the volatility dynamics of cryptocurrencies also suffer fromstructural breaks.
Recent studies examine the time-varyingbehaviour of Bitcoin returns and their volatil-
ity. Evidence from these reveals the presence of regime changes in the volatility of
Bitcoin returns.2 For example, Ardia et al. (2019) argue that Markov-switching GARCH
(MSGARCH) models outperform single-regime specifications at predicting the one-
day ahead Value at Risk (VaR).

The majority of the existing literature focuses on the analysis of Bitcoin and a lim-
ited number of major cryptocurrencies. This is, to some degree, justifiable since Bit-
coin is the most traded digital currency in terms of market capitalisation. There are,
however, other digital currencies that play an important role as speculative assets. The
differences between cryptocurrencies in terms of both market capitalisation and in-
vestors’ attention suggests that different modelling approaches should be employed
in each case. In this essay, we perform an in-depth analysis of the volatility dynamics
across a whole tranche of cryptocurrencies (292 in total).

We examine the presence of regime changes in the volatility of various cryptocur-
rencies using MSGARCH models. We consider a total of 292 cryptocurrencies includ-
ing Bitcoin, Ethereum, Ripple and Tether which dominate the market of cryptocur-
rencies and capture the main bulge of the total market capitalisation.3 We employ
three traditional GARCH-type models, the GARCH, TGARCH (threshold GARCH) and
EGARCH (exponential GARCH). For eachmodel we consider three cases depending on
the number of regimes (one, two and three regimes) and three cases depending on the
specification of the conditional distribution (the Normal distribution, the Generalised
Error Distribution (GED) and the Student’s-t distribution). In total, for each currency,
we estimate 27 alternative specifications of MSGARCH-type models. First, we com-
pare the models in terms of goodness-of-fit using the Deviance Information Criterion
(DIC) and the Bayesian Predictive Information Criterion (BPIC). Next, we asses the
out-of-sample one-step-ahead volatility and density risk forecasting performance of
the models. We evaluate the models performance using the mean squared (MSE), the
meanabsolute (MAE) errors (for volatility forecasts), the conditional coverage test (CC)
of Christoffersen (1998) and the dynamic quantile test (DQ) of Engle and Manganelli
(2004) (for risk forecasts). The models are estimated using Bayesian Markov chain
Monte Carlo (MCMC) procedures. We choose the Bayesian approach since assessment
of financial risk requires employing state-of-the-art econometric methodologies. We
aim to compare the performance ofMSGARCHmodels to their single-regime counter-

2The next section offers a review of the related literature.
3Throughout the essay the term ’major cryptocurrency’ is used in terms of market capitalisation, at

the time the study was conducted.
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parts and to identify patterns for the cryptocurrencies based on the models that best
describe them.

Our work expands and the work of Bouoiyour and Selmi (2015), Bouoiyour and
Selmi (2015), Katsiampa (2017), Bouri et al. (2017) and Ardia et al. (2019) who assess the
performance of GARCHmodels using information criteria. Furthermore, we comple-
ment the work of Stavroyiannis (2018) and Ardia et al. (2019) who examine the Value-
at-Risk (VaR) of Bitcoin. Our contribution is twofold. First, we do not focus only on
major cryptocurrencies but examine alternative digital currencies with different char-
acteristics. Second, we employMSGARCHmodels and we are able to detect structural
changes in the volatility of cryptocurrencies without any a-priori specification on the
time of the change.

It emerges from our analysis is that there is no one-model-fits-all solution in terms
ofmodelling the volatility of cryptocurrencies; differentGARCH-typemodels are found
to bemore suitable for different cryptocurrencies. More specifically, our analysis pro-
vide three main findings. First, MSGARCH models provide better results compared
to their traditional counterparts. In-sample analysis suggests that MSGARCH models
provide better goodness-of-fit results in more than 50% of the examined cryptocur-
rencies and out-of-sample analysis indicates that MSGARCH models provide better
forecasts more than 60% (in some cases more than 70%) of times. Second, EGARCH
models are selected less times by the employed criteria compared to the0 GARCH and
TGARCH models. More formally, for a given number of regimes and a given con-
ditional distribution, we obtain worse results (both in- and out-of-sample) from the
EGARCHmodel compared to the non-exponential models. Finally, the analysis of two
asymmetric models (the TGARCH and the EGARCH) indicates the presence of inverse
leverage effect inmost of the examined cryptocurrencies. That is, positive past returns
affect the volatility of cryptocurrencies more than negative past returns.

The rest of the essay proceeds as follows: Section 2 discusses the related literature,
the third one describes the econometric methodology, section 4 presents the main
findings and the last one concludes.

3.2 Literature review

Despite the large number of active cryptocurrencies, the existing literature focuses
on Bitcoin and some highly traded cryptocurrencies. One of the few exceptions is the
work of Chu et al. (2017) where the seven most popular cryptocurrencies are consid-
ered. For each cryptocurrency, twelveGARCHmodelswere fitted and compared based
on five criteria.
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Polasik et al. (2015) divide the Bitcoin analysis in four categories, one of which fo-
cuses on economic and financial issues from both theoretical and empirical perspec-
tive.4 From a financial perspective, Urquhart (2016) studies the market efficiency of
Bitcoin and finds that the results were affected by the sampling period. When exam-
ining the whole sample, the results indicate that the Bitcoin market is not weakly effi-
cient. When the sample was split in two periods, the results reveal that informational
inefficiency was caused by the first subsample. Bariviera (2017), Bouri et al. (2017) and
Nadarajah and Chu (2017) also find Bitcoin to be in line with the efficient market hy-
pothesis.

Bitcoin is considered an asset which can be used for speculative purposes, see for
instance Baek and Elbeck (2015); Kristoufek (2014); Dyhrberg (2016b); Blau (2017), and
Corbet et al. (2018). This can lead to extreme volatility and bubbles (see Fry and Cheah
(2016)). These characteristics are closely related to speculation (Ahamed (2009), Rein-
hart and Rogoff (2009)). Williams (2014) shows that the volatility of Bitcoin price is
seven times greater than that of gold. In addition, Baur et al. (2018) argue that returns,
volatility and correlation characteristics of Bitcoin aredistinctively different compared
to gold and the US dollar.5

A large part of the related literature examines the volatility dynamics of Bitcoin.
GARCH-type specifications provide the best in-sample performance according to Chu
et al. (2017).6 Glaser et al. (2014) employ the GARCH(1,1) model. Gronwald (2014) uses
an autoregressive jump-intensity GARCHmodel and finds that Bitcoin prices are par-
ticularly marked by extreme price movements. Bouoiyour and Selmi (2015) examine
the goodness-of-fit of GARCH model over two different periods, 2010 to 2015 and the
first half of 2015. During the first interval, the threshold-GARCH estimates reveal the
long duration of persistence. For the second period, the EGARCH is selected, display-
ing less volatility persistence. Klein et al. (2018) also focus on volatility persistence
using the Fractionally Integrated APARCH (FIGARCH) to model volatility of Bitcoin. A
number of papers examine the leverage effect on Bitcoin volatility. Bouri et al. (2017)
find a negative relationship between the past shocks and volatility of Bitcoin before the
first bubble burst in 2013 and no significant relation after. Katsiampa (2017) evaluates
the performance of six different GARCHmodels using information criteria and selects
the Asymmetric Component GARCH model as the most appropriate. Stavroyiannis
(2018) implements a GJR-GARCHmodel to examine the VaR and related measures for
the Bitcoin. The findings suggest that Bitcoin is a highly volatile currency which vio-

4For a detailed review on the Bitcoin literature see Panagiotidis et al. (2019).
5This essay is a replication and extension of Dyhrberg (2016a) who suggest that, in terms of volatility,

the Bitcoin shares similarities with both gold and the dollar.
6HARmodels are also used in Urquhart (2017).
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lates the VaRmeasuresmore than the other assets (i.e. gold). Finally, Ardia et al. (2019)
use MSGARCH models to investigate the presence of regime changes in the volatility
dynamics of Bitcoin. They find that that asymmetric MSGARCH models perform bet-
ter than their single-regime counterparts.

Thework of Ardia et al. (2019) is not the only one to employ regime-switchingmod-
els to model volatility of digital currencies. Caporale and Zekokh (2019) fit more than
1000 MSGARCHmodels to four cryptocurrencies and forecast one-day ahead VaR and
expected shortfall. Mensi et al. (2019) support the existence of dual longmemory in re-
turns and volatility of Bitcoin and Ethereum. Cheikh et al. (2020) implement a Smooth
Transition GARCHmodel to study the volatility dynamics of four major cryptocurren-
cies. Their findings support the existence of inverse leverage effect and safe haven
hypothesis. Ma et al. (2020) propose a Markov regime-switching mixed-data sampling
which improves the prediction accuracy of the realised variance of Bitcoin. Finally,
Maciel (2021) argue that MSGARCHmodels provide better expected shortfall and VaR
forecasts compared to their single-regime counterparts.

At the same time, Bayesian approaches have been employed in financial risk mod-
elling. Geweke and Amisano (2010) compare Bayesian predictive distributions from
five alternative models (including an ARCH model). Bauwens et al. (2010) proposed a
MSGARCHmodel, estimated using a BayesianMCMC algorithm. Bauwens et al. (2014)
developed an estimation and forecasting method, based on a differential evolution
MCMC method, for inference in GARCH models that allow for an unknown number
of structural breaks at unknown dates. Balcombe and Fraser (2017) employ Bayesian
Markov switchingmodels to examine nine bubble containing series (including Bitcoin
returns). Nearly all series appear to display strong regime switching. Ardia et al. (2017)
compare the risk forecast performance of several GARCH-type models estimated via
MaximumLikelihood (ML) and Bayesian techniques and find that Bayesian predictive
densities improve the VaR backtest. Finally, Thies andMolnár (2018) utilise a Bayesian
change point model to study structural breaks in average returns and volatility of Bit-
coin. They find that regimes with higher volatility have higher average returns, how-
ever, the most volatile regime is the only regime with negative average returns.

3.3 Methodology

3.3.1 Estimation

Let yt denote the returns of a cryptocurrency at day t. We assume E[yt] = 0 and
E[ytyt−l] = 0, that is the series has zero mean and are serially uncorrelated. We en-
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sure that these assumptions are met by filtering the series with an AR(1) model. We
follow Ardia et al. (2018) and express the general MSGARCH specification as:

yt|(st = k, It−1) ∼ D(0, hk,t, ξk), (3.1)

where D(0, hk,t, ξk) denotes a continuous distribution with zero mean, time-varying
conditional variancehk,t andadditional shapeparameters gathered in the vector ξk and
It−i is the information set observed up to time t. The stochastic variable st defined on
the discrete space {1, . . . , K} evolves according to an unobserved first-order ergodic
homogeneousMarkov chainwithK×K transitionprobabilitymatrixP = (pi,j), where
pi,j denotes the probability of a transition from state st−1 = i to state st = j. In the
empirical analysis we allow up to K = 3 regimes. The standardised innovations are
defined as ηk,t = yt/h

1/2
k,t ∼ D(0, 1, ξk).

Conditionally on regime k, the conditional variance hk,t = h(yt−1, hk,t−1, θk) follows
a GARCH-type model, as in Haas et al. (2004).7 We consider three specifications. The
GARCH Bollerslev (1986), TGARCH Zakoian (1994) and EGARCH Nelson (1991). The
models are described by the following equations:

GARCH: hk,t = α0,k + α1,ky
2
t−1 + βkhk,t−1, (3.2)

EGARCH: ln(hk,t) = α0,k + α1,k(|ηk,t−1| − E[|ηk,t−1|]) + α2,kηt−1 + βk ln(hk,t−1), (3.3)

TGARCH: h
1/2
k,t = α0,k + α1,kyt−1I{yt−1 ≥ 0}+ α2,kyt−1I{yt−1 < 0}+ βkh

1/2
k,t−1, (3.4)

where I is the indicator function. For the conditional distribution we use the Nor-
mal, the GED and the Student’s-t distribution.8 Positivity and covariance stationarity
conditions apply for all models. To ensure positivity in the GARCH and TGARCHmod-
els, we require that all coefficients are positive. No constraints are necessary in the
EGARCH model. Covariance stationarity is obtained for the GARCH model by requir-
ing that α1,k + βk < 1. For the TGARCH model the constraint is α2

1,k + β2
k − 2βk(α1,k +

α2,kE[ηk,tI{ηk,t < 0}]−α2
1,k −α2

2,k)E[η
2
k,tI{ηk,t < 0}] < 1, see Francq and Zakoian (2010).

Covariance stationarity for the EGARCH models requires that βk < 1. The required
constraints do not prevent the asymmetric models (TGARCH and EGARCH) from cap-
turing the (inverse) leverage effect. In equation (3.3), (α2,k > 0) α2,k < 0 indicates the
presence of (inverse) leverage effect. To examine the sign of asymmetry in equation
(3.4), we examine whether the quantity α1,k − α2,k is positive or not. In the first case,

7θk is the vector of additional regime-dependent parameters.
8The PDF of the GED is given by: f(η; ν) = νe−

1
2
|η/λ|ν )

λ2(1+1/ν)Γ(1/ν)
, where λ =

(
Γ(1/ν

41/νΓ(3/ν)

)1/2
, η ∈ R and the

shape parameter ν is positive.
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there is leverage effect while in the second case there is inverse leverage effect.
The models are estimated using a Bayesian MCMC approach. We denote Ψ =

{ξ1, θ1, . . . , ξk, θk,P} the vector of model parameters, f(yt|It−1) the density of yt given
the past observations, It−1 . The likelihood function is then written as:

L(Ψ|IT ) =
T∏
t=1

f(yt|Ψ, It−1). (3.5)

The conditional density of yt is:

f(yt|Ψ, It−1) =
K∑
i=1

K∑
j=1

pi,jzi,t−1fD(yt|st = j,Ψ, It−1),

where zi,t−1 = P [st−1 = i|Ψ, It−1] represents the filtered probability of state i at time
t − 1 obtained via the filter of Hamilton (1989) and fD is the conditional density of yt
givenΨ and It−1.

Following Ardia (2008), the likelihood function is combined with a prior f(Ψ) to
build the kernel of posterior distribution f(Ψ|IT ). The prior is built from independent
diffuse priors as follows:

f(Ψ) =f(θ1, ξ1) · · · f(θk, ξk)f(P ),

f(θk, ξk) ∝f(θk)f(ξk)I{θk, ξk ∈ CSCk},

f(θk) ∝fN (θk;µθk ,diag(σ
2
θk
))I{θk ∈ PCk},

f(ξk) ∝fN (ξk;µξk ,diag(σ
2
ξk
))I{ξk,1 > 0},

f(P ) ∝
K∏
i=1

(
K∏
j=1

pi,j

)
I{0 < pi,i < 1},

where k = 1, . . . , K, CSCk and PCk denote the covariance stationarity condition and
positivity condition in regime k (see Trottier and Ardia (2016)). ξk,1 is the asymmetry
parameter in regime k. fN (, µ,Σ) denotes the multivariate Normal density with mean
vector µ and covariance matrix Σ. The entries of prior means, µ• and variances, σ2

•

vectors are set to zero and 1000 respectively. The posterior must be approximated by
simulation techniques, since is of unknown form. MCMC draws from the posterior
are generated using the adaptive random walk Metropolis sampler of Vihola (2012).
We set the number of the burn in draws to 5000. We then build a posterior sample of
5000 from 50000 draws by keeping every 10th draw.
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3.3.2 Deviance and Bayesian predictive information criteria

The goodness-of-fit of each estimatedmodel is evaluated using the Deviance (DIC) and
Bayesian Predictive (BPIC) information criteria. DIC is a hierarchical modelling gen-
eralisation of the Akaike Information Criterion used in Bayesianmodel selection.9 De-
viance is defined as D(Ψ) = −2 ln (L(Ψ|IT )) + C, with C a constant that cancels out
in all calculations that compare different models, and which therefore does not need
to be known. The effective number of parameters of the models, pD is calculated as
in Spiegelhalter et al. (2002): pD = D(Ψ)−D(Ψ) whereΨ is the expectation of Ψ and
D(Ψ) is computed as the average ofD(Ψ) over the samples ofΨ. DIC is then calculated
as: DIC = pD+D(Ψ). BPIC is an extensionof theDIC, suggestedbyAndo (2008) to avoid
over-fitting problems of DIC. BPIC is calculated as BPIC = −2EΨ[ln (L(Ψ|IT )) + 2pD]

3.3.3 Forecasting volatility

For the one-step-ahead volatility forecast, we employ half of the total number of ob-
servations of yt for estimation and test the performance of the models over the same
number of out-of-sample observations. All models are estimated on a rolling window
basis with the parameters being updated every 10 observations. Since volatility itself
is unobservable, the comparison of volatility forecasts relies on an observable proxy
for the latent volatility process. We assess the forecasting performance of the different
GARCH types using employ two criteria, the Mean Square Error (MSE) and the Mean
Absolute Error (MAE).

3.3.4 Density risk forecasting

The one-step-ahead Value-at-Risk forecast (VaR) is estimated as a quantile of the pre-
dictive density function (CDF), F , by numerically inverting the predictive CDF. Specif-
ically, for a given risk level α,

VaRα
T+1 = inf{yT+1 ∈ R|F (yT+1|IT ) = α}. (3.6)

To compute the CDF, we first note that the one-step-ahead conditional probability
density function (PDF) of yT+1 is a mixture ofK regime-dependent distributions:

f(yT+1|Ψ, IT ) =
K∑
k=1

πk,T+1 × fD(yT+1|sT+1 = k,Ψ, IT ),

9Brooks and Burke (2003) argue that unmodified traditional information criteria cannot be used for
order determination of conditional heteroscedastic models.
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with mixing weights πk,T+1 =
∑K

i=1 pi,kzi,T , where zi,T = P[sT = i|Ψ, IT ], for i =

1, . . . , K are the filtered probabilities at time T . The CDF is then given by:

F (yT+1|Ψ, IT ) =

∫ yT+1

− inf

f(z|Ψ, IT )dz.

Given a posterior sample {Ψ[m],m = 1, . . . ,M}, the predictive PDF is obtained as:10

f(yT+1|IT ) =
∫
Ψ

f(yT+1|Ψ, IT )f(Ψ|IT )dΨ ≈ 1

M

M∑
1=m

f(yT+1|Ψ[m], IT ),

and the predictive CDF is given by:

F (yT+1|IT ) =
∫ yT+1

− inf

f(z|IT )dz

We test the accuracy of the VaR predictions using the conditional coverage (CC)
and dynamic quantile (DQ) backtesting procedures. To investigate CC, Christoffersen
(1998) proposed a series of VaR exceedance dt, t = S, . . . , S + H, where dαt = I{rt <
VaRt(a)}, usually referred to as the hitting series. Specifically, if correct CC is achieved
by the model, VaR exceedances should be independently distributed over time.

TheDQ test byEngle andManganelli (2004) assesses the joint hypothesis thatE[δαt ] =
α and that the hit variables are distributed independently. The implementation of the
test involves the de-meaned process, Hitαt = δαt − α. Under the correct model specifi-
cation, unconditionally and conditionally, Hitαt has zero mean and is serially uncorre-
lated. The DQ test is then the traditionalWald test of the joint nullity of all coefficients
in the following linear regression:

Hitαt = δ0 +
L∑
l=1

Hitαt−l + δL+1VaRα
t−1 + ηt.

Under the null hypothesis of correct unconditional and conditional coverage, we note
that the Wald test statistic is asymptotically X 2 distributed with L+ 2 degrees of free-
dom.11 Similar to volatility forecasts, we employ half of the total number of observa-
tions of the time-series for estimation and test the performance of themodels over the
same number of out-of-sample observations. Themodel parameters are estimated for
every 10 observations. Ardia and Hoogerheide (2014) and Ardia et al. (2018) show, in
the context of GARCH models, that the performance of VaR forecasts is not affected
significantly when the updating frequency is low.

10By integrating out the parameter uncertainty.
11We follow the standard choice and set L = 4 lags.

57



The analysis is conducted in the R language using the MSGARCH and GAS packages by
Ardia et al. (2019) and Ardia et al. (2019), respectively.12 MSGARCH is used for model esti-
mation and forecasting. The package is implemented such that positivity and covari-
ance stationarity are ensured in the estimation. The package also provides estimates
for the two information criteria. The GAS package is used to implement the CC and DQ
tests and compute the p-values for the two tests.

3.4 Data

We download the closing prices for a total of 292 digital currencies from Yahoo Fi-
nance. Table B1 shows the symbols of the cryptocurrencies used in the empirical anal-
ysis. The downloaded time-series have different sample lengths based on the date of
the release date of each cryptocurrency and the availability of the data. For all time-
series the last observation is for 16/9/2020. Themost extensive sample consists of 2583
observations (the first observation is on 1/10/2013). Data for Ripple (XRP) and Litecoin
(LTC) are also available from 1/10/2013. In total, seventeen time-series have a sample
length equal to 2583 observations.

We use the retrieved data and calculate the daily returns as the natural logarithmic
differences of closing prices. Table 3.1 reports the summary statistics of the returns
for thirty digital currencies with different size ofmarket capitalisation (large, medium
and small). We report themean, themedian, the standard deviation, the skewness and
the kurtosis coefficients of the entire sample. For all three groups we observe similar
results. Standard deviation ranges at similar levels and skewness is both positive and
negative. Furthermore, in all groups we observe cases of extreme kurtosis (USDT, AE
and IOC). In addition to the descriptive statistics with employ the Jarque-Bera and the
ADF tests to examine the normality and stationarity of the returns. In all cases, the
tests indicate that the series are stationary and do not follow the Normal distribution.
These results are not reported and are available on request.

Figure 3.2 shows the closing prices for Bitcoin, Ethereum, Tether andRipple scaled
accordingly. Bitcoin and Ethereum are plotted against the left axis and Tether and Rip-
ple against the right axis. We observe a burst in prices that starts in 2017 and lasts until
the end of 2018. The next four subfigures plot the returns for the four cryptocurren-
cies where deviations from themean are obvious. Themeans and standard deviations
for the ten largest cryptocurrencies are presented in Figure 3.1 and respective values
for all cryptocurrencies are presented in the Appendix, in Figures C1 and C2. The

12The MSGARCH package can be found in cran.r-project.org/MSGARCH and the GAS package in cran.r-
project.org/GAS, see also Ardia et al. (2018).
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Figure 3.1: Mean values for the returns (scaled to 103) and standard deviations for the
ten major cryptocurrencies.
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examination of the standard deviations of all cryptocurrencies suggests that digital
currencies with smaller market capitalisation have a greater standard deviation. In
addition, we observe cases with extreme standard deviation (compared to the rest of
the cryptocurrencies) such as WICC, DEV and MOON.
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Table 3.1: Descriptive statistics of return prices for 30 cryptocurrenies.

Symbol Mean Median Std Skewness Kurtosis Max Min
Large market-cap

BTC 1.57e-03 1.94e-03 0.03 -0.94 13.48 0.22 -0.46
ETH 2.63e-03 3.12e-05 0.06 -3.47 72.03 0.41 -1.30
USDT -9.15e-05 0.00 0.01 -13.11 970.62 0.50 -0.68
XRP -4.43e-04 -2.66e-03 0.07 0.23 10.26 0.43 -0.56
BSV 1.73e-03 -2.13e-03 0.06 2.80 45.66 1.02 -0.61
ADA 4.60e-03 7.89e-04 0.07 0.95 15.30 0.67 -0.54
LTC 3.61e-03 -1.05e-03 0.07 0.19 6.82 0.48 -0.61
BCH 1.22e-03 9.88e-05 0.07 2.31 26.89 0.86 -0.50
LINK 1.11e-03 -5.77e-04 0.05 0.41 14.71 0.51 -0.51
BNB -1.89e-03 -4.17e-03 0.04 0.27 7.25 0.22 -0.18

Mediummarket-cap
VSYS -3.08e-03 -2.37e-03 0.05 -0.04 10.62 0.28 -0.25
SERO 6.26e-04 -3.52e-03 0.04 0.92 2.71 0.19 -0.12
MAID 8.44e-04 9.88e-04 0.06 -0.28 6.76 0.49 -0.57
TFUEL 9.09e-03 -8.19e-03 0.10 3.28 17.32 0.67 -0.25
AION -1.43e-03 2.00e-03 0.05 -0.44 2.97 0.17 -0.27
AE -1.56e-03 -5.49e-04 0.10 -2.39 34.73 0.62 -1.21

DEV -2.70e-03 -4.16e-03 0.61 -0.23 31.49 4.42 -4.66
IOTX 5.96e-03 -3.43e-04 0.07 0.74 2.78 0.35 -0.18
XNC 3.76e-03 2.31e-03 0.02 0.85 6.87 0.13 -0.08
GXC -1.39e-03 -2.29e-03 0.04 -1.12 6.87 0.11 -0.28

Large market-cap
TUBE -2.61e-03 -9.64e-03 0.08 0.76 2.10 0.36 -0.23
CURE 1.38e-04 -6.55e-03 0.05 0.97 3.32 0.24 -0.15
BST -4.71e-03 -9.97e-03 0.24 -0.23 0.74 0.57 -0.83

NLC2 4.54e-04 -5.78e-03 0.16 1.12 37.65 2.03 -1.93
IOC 6.85e-04 -1.53e-03 0.17 0.07 276.73 4.03 -4.02
MGO -5.02e-03 -1.68e-03 0.11 -0.25 4.55 0.62 -0.67
EDG -1.57e-03 -6.09e-03 0.09 0.34 27.08 1.15 -1.02
SUB -3.07e-03 -3.47e-03 0.09 -0.02 3.17 0.45 -0.56
ATB -6.31e-03 -4.41e-03 0.12 0.07 8.42 0.71 -0.83
XUC -3.94e-04 -1.28e-03 0.07 3.12 36.21 0.85 -0.40

Notes: The table reports the summary statistics for cryptocurrencies with different level
of market capitalisation.

60



Figure 3.2: Daily closing prices and returns of the Bitcoin, Ethereum, Tether and Rip-
ple.
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Notes: The first figure shows the closing prices of Bitcoin (black), Ethereum (blue), Tether (red) and
Ripple (red) scaled appropriately. Bitcoin and Ethereum are plotted against the left axis and Tether and
Ripple against the right axis. The next four figures plot the returns of the four cryptocurrencies.
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3.5 Results

3.5.1 In-sample analysis

This section evaluates the performance of the models in terms of goodness-of-fit. Ta-
ble 3.2 summarises the results regarding model selection through information crite-
ria. Table 3.2 reports the absolute frequency at which each model is selected via DIC
(Panel A) and BPIC (Panel B). The same results are also presented in the first subplot
of Figure 3.3. According to the findings, DIC indicates single-regimemodels for 111 out
292 time-series, and regime-switching models for 181 time-series (119 two-regime and
62 three-regimemodels). On the contrary, BPIC selects single-regimemodelsmore of-
ten than regime-switching models. Specifically, BPIC indicates single-regime models
for 162 digital currencies, two-regime for 91 and three-regime models for 39 models.
Despite these differences, the two criteria select the samemodel in terms of goodness-
of-fit for 192 out of 292 cryptocurrencies. If we confine the analysis to the set of cryp-
tocurrencies for which both criteria indicate the same model, we observe that multi-
regimemodels are preferred inmore cases than single-regimemodels (100 over 92). In
addition, we observe that the models with Student’s-t conditional distribution outper-
form other models regardless of the GARCH-type and the number of regimes. These
findings are consistent with the stylised empirical facts of financial time-series as dis-
cussed in Cont (2001) and Cont and Tankov (2004). Finally, we find that for a given
number of regimes, the exponential model is outperformed by the other models.

For the three out of the four most traded cryptocurrencies, the two criteria indi-
cate the same model as the most appropriate; for Bitcoin and Tether, the best model
in terms of goodness-of-fit is the the two-regime TGARCHwith Student’s-t conditional
distribution. In the case of Ethereum, the three-regime GARCH with Generelised dis-
tribution is selected. We also find evidence of regime changes in the volatility of Rip-
ple, however the criteria indicate different models. In some cases, DIC and BPIC sug-
gest models with different number of regimes for the same digital currency. Among
these cryptocurrencies are Bitcoin Cash, Binance and Litecoin.

As discussed in the literature review, positive past returns have a greater effect on
Bitcoin volatility. Here, we study the behaviour of leverage effect for all 292 cryptocur-
rencies, using the two asymmetric models (EGARCH and TGARCH). Table 3.3 reports
the number of cryptocurrencies for which each model indicates the presence of in-
verse leverage effect in at least one regime. Clearly, for themajority of the time-series,
both models support the hypothesis of inverse leverage effect. For example the tradi-
tional EGARCH model suggests positive asymmetry in the volatility of 177 out of 292
digital currencies. In total, there are 10 cryptocurrencies in which inverse leverage
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Table 3.2: Model selection based on DIC and BPIC.

K = 1 K = 2 K = 3

N Std GED N Std GED N Std GED

Panel A: DIC
GARCH 1 29 21 5 28 7 6 17 6
EGARCH 0 14 7 10 13 6 0 7 4
TGARCH 0 30 9 10 34 6 3 15 4

Panel B: BPIC
GARCH 1 46 41 6 24 9 4 11 3
EGARCH 0 17 3 3 7 4 0 3 2
TGARCH 1 42 11 5 25 8 2 12 2

Panel C: Counts of agreement between DIC and BPIC
GARCH 1 27 21 3 18 5 4 9 3
EGARCH 0 8 3 3 6 4 0 3 2
TGARCH 0 26 6 4 22 2 1 9 2
Notes: The total number of cryptocurrencies is 292. The values denote the num-
ber of time-series for which the corresponding model is selected through DIC
(panel A), BPIC (panel B) and both criteria (panel C). N, Std and GED denote the
Normal, Student’s-t and GED distributions, respectively. K refers to the number
of regimes in the model.

effect is indicated by all models. These are LINK, XTZ, HIVE, XWC, PLC, ZNN, QBSR,
QRK, SAPP,USNBT.On the contrary, there are 3 caseswhere according to theEGARCH,
negative past returns affect the volatility more than positive past returns. These are
CTC, DUN, XMC. For all cryptocurrencies, at least one specification of TGARCH in-
dicates inverse leverage effect. Considering the major cryptocurrencies, we observe
that most models indicate inverse leverage effect in at least one regime. For Bitcoin
only the single-regime models with normal conditional distribution do not support
the hypothesis of inverse leverage effect.

Table 3.3: Inverse leverage effect.

K = 1 K = 2 K = 3

N Std GED N Std GED N Std GED

EGARCH 177 196 202 245 240 241 265 261 262
TGARCH 187 218 208 249 255 257 268 268 267
Notes: The total number of cryptocurrencies is 292. The values denote the
number of time-series for which the corresponding model indicates the exis-
tence of inverse leverage effect in at least one regime. N, Std and GED denote
the Normal, Student’s-t and GED distributions, respectively. K refers to the
number of regimes in the model.

In the last part of the in-sample analysis, we calculate themean and standard devi-
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ation of conditional volatility of each estimated model. The results for the four major
cryptocurrencies are presented in Figure C3. In all cases, the mean and the standard
deviation values are close for all models. With the exception of Ripple, single-regime
models exhibit a greater mean than MSGARCH models. For example, in the case of
Ethereum, the two models with the higher mean values of the conditional volatility
are the TGARCH and EGARCH with Student’s-t distribution. Comparing the different
digital currencies, we find that for most models the Bitcoin exhibits greater volatility.
Similar plots for all examined cryptocurrencies are presented in the Appendix. From
the examination of these figures it occurs that we can divide digital currencies in three
groups. The first group contains the cryptocurrencies like Bitcoin and Ethereum for
which all mean and standard deviation do not exhibit substantial differences for all
models. The second group contains the cryptocurencies where the mean and stan-
dard deviation of few models differs from the rest. Tether and Ripple belong in the
second group. The last group consists of the cryptocurrencies for which we cannot
identify a patter for the calculated means and standard deviations, i.e. NMC and NPC.
For most ctyptocurrencies and models we observe a mean higher than the standard
deviation. There are however, a few exceptions such as Ethereum, NPCoim, TenX and
Veritaseum.

3.5.2 Out-of-sample analysis

We now turn to the out-of-sample analysis. First, we compare the ability of the 27
models to correctly forecast the one-day ahead conditional volatility. We evaluate the
performance of the the MSE and MAE loss functions. The main results are presented
in Table 3.4 and the middle subfigure of Figure 3.3. Overall, two-regime models out-
perform both traditional and three-regimemodels. According to theMSE, two-regime
models perform better than the rest of the models 79% of the time. That percentage
is a little lower when MAE is used, approximately 73%. According to both criteria,
TGARCH outperforms both GARCH and EGARCH models, regardless of the number
of regimes or the conditional distribution. In addition, we obtain the most accurate
forecasts when we fit TGARCH-type models to the major cryptocurrencies. For 218
out of 292 examined cryptocurrencies, both MSE and MAE agree on the model selec-
tion. Similar to the in-sample analysis, EGARCHmodels are outperformedby the other
models. We obtain similar results if we focus only on these models (Panel C of 3.4).

We focus on the major digital currencies such as Bitcoin, Ehtereum, Ripple and
Tether. For each one of these four cryptocurrencies both MSE and MAE indicate the
samemodel as the best one. In the case of Bitcoin and Ethereum, single-regimemod-
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Table 3.4: Predictive power of the models.

K = 1 K = 2 K = 3

N Std GED N Std GED N Std GED

Panel A: MSE
GARCH 9 5 7 22 20 27 2 2 2
EGARCH 3 1 1 9 10 5 0 1 0
TGARCH 11 6 3 50 33 55 4 1 3

Panel A: MAE
GARCH 11 5 9 22 17 23 4 2 3
EGARCH 2 0 3 10 16 2 3 1 0
TGARCH 10 9 5 39 31 54 5 2 4

Panel C: Counts of agreement between MSE and MAE
GARCH 7 4 6 15 12 19 2 2 1
EGARCH 1 0 1 6 9 1 0 1 0
TGARCH 9 5 3 35 27 45 4 1 2
Notes: The total number of cryptocurrencies is 292. The values denote the
number of time-series for which the corresponding model is minimises the MSE
(panel A), MAE (panel B) and both criteria (panel C). N, Std and GED denote the
Normal, Student’s-t and GED distributions, respectively. K refers to the number
of regimes in the model.

els are chosen, the TGARCH with Normal distribution and the GARCH with Gener-
alised distribution, respectively. In the case of Tether and Ripple, the two-regime
TGARCHmodel is chosen (with Student’s-t and generalised error distribution, respec-
tively). Overall, MSGARCH models seem to perform better than their single-regime
counterparts. In addition, asymmetric models are preferred to symmetric ones (for
a given number or regimes). The latter also applies to the major cryptocurrency of
the dataset such as Bitcoin, Tether and Bitcoin Cash where models that account for
leverage effect appear as the most appropriate.

Next, we evaluate the performance of the models in forecasting one-day ahead
VaR. Similar to conditional volatility predictions, allmodels are compared against each
other inVaR forecasting based on the p-value of the CC andDQ tests. Table 3.5 presents
the number of times each model outperforms all other models at forecasting the one-
step-ahead VaR (these results are presented in the last panel of Figure 3.3). According
to CC, the two-regime TGARCH model with Normal distribution is the best model in
predicting VaR. Specifically, CC indicates this model as the best for 72 cryptocurren-
cies. Similar to volatility forecasts, MSGARCHmodels outperform single-regimemod-
els. The results are different when the DQ test is used. First, there is no model spec-
ification which clearly outperforms all others. Both the three-regime GARCH model
with Student’s t conditional distribution and the two-regimeTGARCHwithNormal dis-
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Table 3.5: Model selection based on VaR forecasts.

K = 1 K = 2 K = 3

N Std GED N Std GED N Std GED

Panel A: CC
GARCH 15 7 2 17 17 4 9 8 3
EGARCH 2 2 0 19 16 3 1 2 1
TGARCH 15 13 7 72 30 11 3 10 3

Panel B: DQ
GARCH 18 16 4 24 13 13 17 27 8
EGARCH 3 3 3 11 8 7 0 1 0
TGARCH 12 17 6 26 19 10 8 14 4

Panel C: Counts of agreement between CC and DQ
GARCH 4 2 0 7 4 2 3 2 1
EGARCH 1 1 0 2 2 0 0 1 0
TGARCH 4 4 2 16 7 2 1 5 1
Notes: The total number of cryptocurrencies is 292. The values denote the
number of time-series forwhich the correspondingmodel is selected through
CC (panel A) and DQ (panel B). N, Std and GED denote the Normal, Student’s-t
and GED distributions, respectively. K refers to the number of regimes in the
model.

tribution perform equally well (27 and 26 out of 292, respectively). Second, the GARCH
models performsbetter thanTGARCHmodels. Despite these differences, theEGARCH
produces the worst results compared to the other models. CC and DQ agree on the se-
lectionof themodel in 74 cases (out of 292). For these cases, the results are qualitatively
the same with the ones we obtained using the CC test.

Considering themajor cryptocurrencies, we observe that different GARCHmodels
are chosen for different cryptocurrencies and as a result we can not arque that only
one should be used in predicting the one-step-ahead VAR. In the case of Bitcoin, the
three-regime GARCH model is selected. Regime-switching models are also suitable
for Ripple. CC indicates a two-regime GARCH model with Normal distribution and
DQ a three-regime GARCH model with Student’s-t conditional distribution. The best
model for forecasting theVaRof EthereumandTether is the traditional GARCHmodel.
For the remaining popular digital currencies the asymmetric models (TGARCH) are
preferred. Table 3.6 summarises the findings regarding ten major cryptocurrencies
both for the in and the out-of-sample analysis.
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Table 3.6: Summarised results for the ten major cryptocurrencies.

Symbol DIC BPIC MSE MAE CC DQ
BTC TGARCH-T(2) TGARCH-T(2) TGARCH-N(1) TGARCH-N(1) GARCH-G(3) GARCH-T(3)
ETH GARCH-T(3) GARCH-T(2) GARCH-G(1) GARCH-G(1) GARCH-T(1) GARCH-T(1)
USDT TGARCH-T(2) TGARCH-T(2) TGARCH-T(2) TGARCH-T(2) GARCH-T(2) GARCH-T(2)
XRP TGARCH-T(3) GARCH-T(2) TGARCH-G(2) TGARCH-G(2) GARCH-T(2) TGARCH-T(3)
BSV GARCH-T(1) GARCH-T(1) GARCH-G(1) TGARCH-T(1) GARCH-T(2) TGARCH-T(1)
ADA GARCH-T(1) GARCH-T(1) GARCH-N(1) GARCH-N(1) GARCH-N(2) TGARCH-T(2)
LTC GARCH-T(3) TGARCH-T(1) GARCH-N(1) GARCH-N(1) GARCH-N(1) TGARCH-G(3)
BCH GARCH-T(3) TGARCH-T(1) EGARCH-N(1) EGARCH-N(3) EGARCH-T(1) GARCH-T(1)
LINK GARCH-T(1) GARCH-T(1) GARCH-N(1) GARCH-N(1) TGARCH-T(1) TGARCH-T(1)
BNB TGARCH-G(2) GARCH-T(1) GARCH-T(1) GARCH-T(1) EGARCH-T(1) GARCH-G(1)

Notes: The table reports the results for the ten cryptocurrencies with the greatest capitalisation. -N, -T and -G denote the
Normal, Student’s-t and GED conditional distribution. The number in parentheses denote the number of the regimes in the
selected MSGARCHmodel.



Furthermore, we report the percentages of cryptocurrencies for which the null hy-
pothesis of correct unconditional and conditional coverage is rejected at the 5% signif-
icance level (Table 3.7). For all models the failure rate is less than 8%. Based on the CC
test, the model with the highest failure rate is the traditional GARCHmodel with Nor-
mal conditional distribution and based on theDQ test, the two-regime EGARCHmodel
with Student’s t conditional distribution. For both tests, the model with the lowest re-
jection frequency is the TGARCHmodel with three regimes and Student’s t conditional
distribution. Overall, the rejection level decreases as thenumber of regimes increases.
In addition, for a given number of regimes, the TGARCHmodels outperform the other
models.

Table 3.7: Percentage of cryptocurrencies for which the
validity of the VaR predictions is rejected.

CC DQ

No. of regimes 1 2 3 1 2 3

GARCH-N 7.12 6.02 5.13 6.74 6.02 5.41
GARCH-Std 6.57 6.71 6.67 7.12 7.05 6.91
GARCH-GED 6.95 3.93 3.01 6.98 4.04 3.21
EGARCH-N 6.95 4.96 3.18 6.47 5.17 3.21

EGARCH-Std 6.71 6.74 6.57 6.95 7.15 6.95
EGARCH-GED 6.88 3.42 2.08 6.84 3.21 2.15
TGARCH-N 4.41 1.43 0.30 3.93 0.85 0.17

TGARCH-Std 4.86 1.16 0.58 4.34 0.75 0.30
TGARCH-GED 4.38 0.95 0.47 3.73 0.61 0.34
Notes: The values denote the percentage of cryptocurrencies for
which the validity of the VaR forecasts is rejected for each model. N,
Std and GED denote the Normal, Student’s-t and GED distributions,
respectively.

3.6 Conclusions

Cryptocurrencies have flourished over the last decade. Since the introduction of Bit-
coin, hundreds of digital currencies have been created. Studies that examined Bit-
coin and other cryptocurrencies have classified the cryptocurrencies as an asset used
mostly for speculative purposes. This is an explanation for the extreme volatility of the
returns of Bitcoin. Despite their similarities, there are significant differences between
cryptocurrencies. For example, the level of market capitalisation between digital cur-
rencies and the attention each digital currency receives from investors are distinct.
In this essay, we perform an extensive analysis of the volatility of the cryptocurrency
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markets. We examine the volatility of the returns for a total of 292 different cryptocur-
rencies. For each one we estimate 27 GARCH-type models using Bayesian methods.

First, we perform an in-sample analysis. We evaluate the performance of each
model in terms of goodness-of-fit using DIC and BPIC and investigate the presence
of leverage effect. While DIC selects MSGARCHmodels more and BPIC selects single-
regimemodelsmore, the two criteria agree on themodel selection approximately 66%
of cryptocurrencies. In this case, MSGARCHmodels are preferred in 52% of the cases.
The examination of leverage effect suggests that most cryptocurrencies returns ex-
hibit inverse leverage effect and respond more strongly to positive past returns than
negative past returns.

Next, we perform the out-of-sample analysis and consider two forecast exercises.
First, we evaluate the ability of the models to predict the one-step-ahead volatility.
We find that two-regime models produce better forecasts than the rest of the mod-
els. Next, we assess the ability of the models to predict the one-step-ahead VaR based
on conditional and unconditional convergence tests. For both tests the three-regime
TGARCHmodels have the lowest rejection frequencies. Both from in-sample and out-
of-sample analysis, we conclude that the EGARCH models are outperformed both by
the GARCH and the TGARCHmodels.

Our study can be expanded in various ways. First, the analysis can be repeated,
considering other digital currencies not included here. Second, it would be of inter-
est to see whether including skewed versions of the conditional distributions would
affect the results. Finally, we do not consider the GJR-GARCH model in our analysis.
The positivity constraints, regarding theGJR-GARCHmodel, requires that the leverage
coefficient is positive. However, this rules out the possibility of inverse leverage effect
which is often observed in cryptocurrencies. To consider the GJR-GARCH model, we
should ensure positivity as in Ardia et al. (2019).
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Figure 3.3: Absolute frequency of model selection based on in-sample and out-of-
sample ananlysis.
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Notes: Each figure presents the absolute frequency at which each model is selected. The total num-
ber of examined cryptocurrencies is 292. N, T and G denote the Normal, Student’s-t and Generalised
distributions. The number in parentheses denote the number of regimes. For instance, according to
Bayesian predictive information criterion, GARCH-T(1) is preferred in 46 out of the 292 cases.
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Appendix

Figure C1: Mean values for the returns of the cryptocurrencies.
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Figure C2: Standard deviations of the returns of the cryptocurrencies.
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Figure C3: Mean and standard deviation of conditional volatility of cryprocurrencies.
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Chapter 4

A time-varying Granger-causality
analysis on bitcoin returns

Abstract

Weexamine the impact of alternative drivers of bitcoin returns. We employ a Bayesian time-varying pa-

rameter vector autoregressivemodel andBayesian variable selection todetect variableswith thehighest

posterior inclusion probability in the equation of bitcoin returns. Using these variables, we reestimate

the TVP-VAR model and perform structural analysis, based on impulse response function and forecast

error variance decomposition. To examine the causal relationship between bitcoin returns and their

drivers, we employ a time-varying Granger-causality test based on the estimates of the TVP-VARmodel

and heteroscedastic-consistent Granger-causality hypothesis testing. We detect Granger-causality from

information demand and cryptocurrency markets to bitcoin returns over the entire sample.

4.1 Introduction

More than ten years after its creation, bitcoin continues to attract the attention of both
researchers and investors. Bitcoin has distinct differences from traditional currency
as it is not used as a medium of exchange, despite its low transaction costs and peer-
to-peer network, nor as a store of value due to its price fluctuations, (Blau, 2017). Fur-
thermore, it can not function asmoney due to its almost fixed supply (Yermack, 2015).
However, bitcoin has features that make it appealing as an asset. Guesmi et al. (2019)
provide evidence that bitcoin can function as a risk diversifier and reduce liquidity risk
since it is characterised by high average returns and low correlation with traditional
financial assets. As an asset, bitcoin is used mainly for speculative purposes (among
others, see Baur et al., 2018; Lee et al., 2020). This exploitation as a speculative asset
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leads to bubbles (Cheah and Fry, 2015, 2016; Corbet et al., 2018) and extreme volatility
(Bakas et al., 2022; Panagiotidis et al., 2022). Furthermore, Fry (2018) demonstrates
that liquidity risks can result to boom-bust episodes even in the absence of a bubble
and Xiang et al. (2022) argue that the bitcoin market capitalisation series exhibit ex-
plosive behaviour.

A strand of the bitcoin related literature focuses on the dynamics that drive bitcoin
returns and the causal relationship between bitcoin returns and other factors. The lit-
erature identifies numerous factors as bitcoin returns determinants. Macroeconomic
and financial variables such as stock market indices (Lahiani et al., 2021), exchange
rates (Dyhrberg, 2016), exchange traded funds (Ciner et al., 2022) and economic pol-
icy uncertainty receive themost attentionby researchers. The attractiveness of bitcoin
as an asset is also documented as a driving force of its returns. As an investment as-
set, bitcoin draws the attention of retail investors who rely mostly on the internet as
a source of information. Google searches (Li and Wang, 2017; Fry and Serbera, 2020;
Liang et al., 2022; Raza et al., 2022), Wikipedia (Kristoufek, 2013), Twitter (Shen et al.,
2019) and Reddit (Rothman, 2019) are shown to have a significant impact on bitcoin
returns. Another set of variables that can affect its returns are the bitcoin supply and
demand forces (de la Horra et al., 2019). However, supply forces have a smaller impact
due to the nearly fixed amount of bitcoins. The nearly constant amount of bitcoins is
caused by the difficulty in creating new bitcoins. New bitcoins are generated through
a mining process (validating transactions on the network) which requires enormous
amounts of electricity and computational power. Chen et al. (2021) examine the ability
of several technological factors to forecast bitcoin returns.

Another strand of the literature employs a causality analysis. Lin (2021) employs
a VAR model and Granger-causality analysis to investigate the relationship between
cryptocurrency returns and Google searches. The causal relationship between bit-
coin returns and Google searches is also examined by Dastgir et al. (2019) and Li et al.
(2021). Dastgir et al. (2019) employ the Copula-based Granger-causality in the distri-
bution test and find a bidirectional causal relationship between Google Trends search
terms and bitcoin returns only in the tails of the distribution. Li et al. (2021) use a
wavelet-based quantile Granger-causality test and find a symmetric causal relation-
ship between Google searches and cryptocurrency returns in the short term. The au-
thors do not consider only a single search term but proxy investor attention by con-
structing an index similar to Da et al. (2011). Shen et al. (2019) use a linear and nonlin-
ear Granger-causality to examine the link between bitcoin returns and the number of
tweets from Twitter. Bouri et al. (2018) study daily dependence between global finan-
cial stress and bitcoin using standard and quantile-based copulamodels. Their results
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suggest that financial stress causes bitcoin returns at the left and right tail of the lat-
ter’s conditional distribution. Financial stress, however, has limited directional pre-
dictability for Bitcoin. Finally, Ji et al. (2018) use the directed acyclic graph approach to
study the interrelation between bitcoin and other financial asset classes. Despite the
growing literature on thedriving factors of bitcoin returns, the results are oftendiverse
and contradicting and the discussion on the most important determinants continues.

The aim of this essay is to examine the effect of alternative factors on bitcoin re-
turns. Contrary to previous studies, we do not focus only on a specific group of vari-
ables (e.g. stock markets or investor sentiment) but consider a wide range of factors
from different areas. Specifically, we consider bitcoin volatility, investor sentiment
indices, proxies for bitcoin supply and demand, stock market returns and volatility
indices, commodities returns, exchange rates and interest rates. Overall, we consider
29 potential determinants of bitcoin returns.

The analysis is conducted on a time-varying framework using a Bayesian time-
varying parameter vector autoregressive (TVP-VAR) model. In this framework, we
model the evolution of the variance-covariance matrix of the errors using stochastic
volatility, thus accounting for the volatility dynamics of bitcoin returns. The latter is
often overlooked in the relevant literature. We perform the analysis using a two-step
approach. In the first step, we estimate the TVP-VAR using all 29 potential factors (and
bitcoin returns) and detect the most important variables of the model based on the
Bayesian variable selection method by Korobilis (2013).1 In the second step, we rees-
timate the TVP-VAR model using only the variables selected in the previous step and
perform the analysis. We perform Granger-causality, impulse response function and
forecast error variance decomposition analysis.

To take advantage of the time-varying framework in the Granger-causality analy-
sis, we propose a time-varying Granger-causality approach that allows us to examine
the evolution of causal relationship between two variables over time. The proposed
methodology combines the estimates from the TVP model with the heteroscedastic-
consistent Granger-causality hypothesis testing. Moreover, our approach does not rely
on rolling windows or recursive algorithms (as in Shi et al., 2018) that require the es-
timation of the model on subsamples of the initial sample and thus does not suffer
from inference issues caused by small sample sizes (Zapata and Rambaldi, 1997) and
temporal aggregation (Otero et al., 2021). In addition, the causality analysis can be
performed over the whole sample and does not require an initial window to initiate
the algorithm.

1Instead of reducing the number of variables, one could employ the procedures of Song and
Taamouti (2019) who propose alternative procedures to test for Granger-causality in a big data envi-
ronment. However, these procedures assume a time invariant framework.
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The contribution of this study is twofold. From a methodological perspective, we
propose anew time-varyingGranger-causality approach that doesnot dependon rolling-
window or recursive evolving algorithms. We assess the performance of this new ap-
proach using Monte Carlo simulations. From an empirical perspective, we study the
impact of alternative predictors on bitcoin returns. The results, based on the Bayesian
variable selection algorithm, suggest that themost important factors that drive bitcoin
returns are investor sentiment (proxiedbyGoogle searches anduncertainty cryptocur-
rency index), bitcoin trading volume, Nasdaq and ethereum returns. Using the newly
proposed approach, we quantify the causal relationship between the five variables and
bitcoin returns. Wefind thatGoogle searches andethereumreturnsGranger-causebit-
coin returns over the whole sample while the rest of the variables are only for specific
periods. In addition, the causal relationship from trading volume to bitcoin returns
exists only during periods when bitcoin prices remain relatively steady.

The rest of the essay proceeds as follows. Section 2 describes themethodology and
thenew time varyingGranger-causality test. Section 3 discusses theMonteCarlo simu-
lations. Section 4 presents the data used in the empirical analysis. Section 5 discusses
the main findings. Section 6 compares the empirical results with the results from a
recursive algorithm. Section 7 concludes and discusses the opportunities for further
research.

4.2 Methodology

4.2.1 The TVP-VARmodel

Let yt be a vector of n time series, t = 0, . . . , T − 1. The VAR(p) model is written as:

yt = bt +

p∑
i=1

Bi,tyt−i + εt, (4.1)

where bt is a n× 1 vector of time-varying coefficients, Bi,t, i = 1, . . . , p are n× nmatri-
ces of time-varying coefficients and εt ∼ N(0,Σt). The TVP-VAR is a state spacemodel,
Koop and Korobilis (2010). Specifically, we defineXt = In⊗ [1, y′t−1, . . . , y

′
t−p] (where In

is the n×n unit matrix) and βt = vec([ct, (B1,t), . . . , (Bp,t)]
′) (where vec() is the column-

wise vectorisation of a matrix) and rewrite equation (4.1), the measurement equation,
in block form as follows:

yt = Xtβt + εt. (4.2)

Since the variance-covariance matrix of the error terms are allowed to smoothly
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evolve over time, wemodel the evolution ofΣt as in Cogley and Sargent (2005). Specif-
ically, we consider the following decomposition of Σt:

Σ−1
t = A′D−1

t A,

whereAt is a n×n lower triangularmatrix with diagonal elements equal to one andDt

is an×ndiagonalmatrixwith diagonal elements, ehi,t. Contrary to Primiceri (2005), we
assume that A is a time invariant matrix. If we denote by α the vector of unrestricted
elements of A, the elements below the main diagonal, and ht = (h1,t, . . . , hn,t)

′, we
complete the state space model by obtaining the following state equations:

βt = βt−1 + ut, ut ∼ N(0, Q)

hi,t = hi,t−1 + uh
i,t, ut ∼ N(0, σ2

h,i),
(4.3)

where the initial conditions β0 and hi,0 are treated as unknown parameters and Q is
assumed to be diagonal (Q = diag(qi), where i = 1, . . . , n+ n2p).

We complete the model by specifying the prior distributions for β0, qi, α, hi,0. We
consider the following independent priors:

β0 ∼ N(a0, B0),

qi ∼ IG(v0,qi,S0,qi
),

α ∼ N(α0, Vα),

σ2
h,i ∼ IG(v0,hi,S0,hi

),

h0 ∼ N(s0, S0),

where IG denotes the inverse gammadistribution. We consider alternative set of prior
values to assess the validity of our findings. In all cases, the results remain similar to
the ones presented here. The five model parameters and the two states are estimated
using a Gibbs sampler described in Chan et al. (2019).

Once themodel is estimated, we employ the Bayesian variable selection, proposed
by Korobilis (2013), to select the most important variables in themodel. We then rees-
timate the TVP-VAR model using using only the most important variables. In the new
model, we employ the time-varying Granger-causality test as well as the impulse re-
sponse function and forecast error variance decomposition analysis.
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4.2.2 The time varying Granger-causality test

To describe the Granger-causality test, it is useful to define Zt = [1, y′t−1, . . . , y
′
t−p]

′ and
Ri,j an appropriate coefficient restriction matrix for the null hypothesis that yi does
not Granger-cause yj. Next, we can calculate

Ω = T−1

T−p∑
t=1

(εt ⊗ Zt)(εt ⊗ Zt)
′,

F = T−1

T−p∑
t=1

ZtZ
′
t,

G = In ⊗ F.

We estimate a series of heteroscedastic-consistent Wald statistics Wi,j,t, t = p +

1, . . . , T as follows:

Wi,j,t = T (Ri,jβ
′
t)

′(Ri,jG
−1ΩG−1R′

i,j)
−1(Ri,jβ

′
t). (4.4)

For each t, Wi,j,t follows a χ2
q, where the degrees of freedom, q, is the number of re-

stricted coefficients.

4.3 Monte Carlo simulations

4.3.1 Design of the Monte Carlo simulations

To assess the performance of the proposed time varying Granger-causality test, we
perform several Monte Carlo experiments. We consider the following general data
generating process (DGP):

y1,t = b10 + b11y1,t−1 + b12y2,t−1 + ε1,t

y2,t = b20 + b21y1,t−1 + b22y2,t−1 + ε2,t
(4.5)

The DGP describes a bivariate VAR(1) model with a constant term. In all cases,
ε1,t and ε2,t follow a normal distribution with zero mean and unit variance. Three al-
ternative sample sizes are considered, T ∈ {100, 200, 400}. We examine the size and
power properties of the test and the performance of the test in the presence of a struc-
tural break. To examine the size (incorrectly reject the null of no Granger-causality)
properties of the test, we set b21 = b12 = 0, so that there is no Granger-causality be-
tween y1 and y2. The values of the rest of the parameters are all different from zero
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and described in Table 4.1. To examine the power of the test, we use the same set of
parameters as in the previous case but set b12 = b21 = 0.4. We consider a final case,
where we there is a structural break in the parameters. Specifically, for the first half of
the sample we set b12 = 0 and for the second half of the sample we set b12 = 0.4. We do
so to validate the ability of the test to detect Granger-causality in specific subsamples.
Figure 4.1 shows an example of two time series simulated using DGP3 and T = 400.
Table 4.1 summarises the details for all DGPs.

Table 4.1: Parameter values for the Monte Carlo simulations.

DGP/Parameter b10 b11 b12 b20 b21 b22

DGP1 1 -0.3 0.0 1 0.0 0.6
DGP2 1 -0.3 0.2 1 0.4 0.6

DGP3 1 -0.3 0.2 1 0.0 0.6 t = 1,. . . , T/2
1 -0.3 0.2 1 0.4 0.6 t = T/2+1,. . . , T

Notes: i) DGP1 and DGP2 are used to examine the size and power prop-
erties of the test, respectively. In DGP3 Granger-causality exists only in
the second half of the sample. ii) We consider three sample sizes, T =
100, 200, 400. iii) Both error terms are independently and identically dis-
tributed following the normal distribution with zero mean and unit vari-
ance.

Figure 4.1: Example of simulated time series using DGP3. For t = 1, . . . , 200, there is a
unidirectional Granger-causal relationship from y2 to y1. For t = 201, . . . , 400 there is
a bidirectional causal relationship.
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The TVP-VARmodel is fitted to the generated time series. To estimate the posterior
distributions, we use 20.000 iterations of the Gibbs sampler algorithm. The first half of
the iterations are used as burn-in sample and the remaining are used to build posterior
sample. The results of the Monte Carlo simulations are based on 10.000 iterations.
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4.3.2 Results

For all DGPs, we consider the unidirectional Wald statistics, both from y1 to y2 and
vice versa. First, we evaluate the size properties of the test using DGP1. For the test to
be successful, we require that it accepts the null hypothesis of no Granger-causality, at
the 5% significance level, for every observation in the sample. The left part of Table 4.2
presents the failure frequency of the test. We observe that even for smaller samples
(i.e. T = 100), the test handles size reasonably well.

We use DGP2 to assess the power of the proposed test. We assume that the test
successfully detects Granger-causality if it rejects the null hypothesis for the entire
sample. Themiddle part of Table 4.2 reports the success rate of the test. Regardless of
the sample size, the test is able to detect the causal relationship more than 90% of the
time.

The last Monte Carlo experiment, DGP3, is used to examine the behaviour of the
test in the presence of a structural break. Specifically, we investigate whether the test
detects Granger-causality from y1 to y2 during a specific subsample. The fifth column
of Table 4.2 shows the number of times that the test rejects the null hypothesis only
during the latter half of the sample. However, we consider a period of T/10 obser-
vations before and after the break point, where the test is allowed to produce a false
result. The results suggest that the new test successfully identifies the change in causal
relationship in more than 80% of the cases. The success rate increases as the number
of observations increases. Furthermore, we notice that change in b21 does not affect,
the ability of the test to reject the null hypothesis of no Granger-causality from y2 to y1
for all observations in the sample. In particular, the last column of Table 4.2 indicates
that the test indicates that y2 Granger-causes y1 for the entire sample, in more than
90% of the cases. This finding is, validates the results regarding the power of the test
(obtained using DGP2).

4.4 Data

The empirical study utilises weekly data over the period 2015-2023. We download bit-
coin closing prices from coinmarketcap.com and calculate the bitcoin returns as the
logarithmic differences of the closing prices. In addition, we calculate bitcoin volatil-
ity as the square of the returns (Yousaf and Yarovaya, 2022).

We consider three indices regarding investor sentiment. The first is created us-
ing Search Volume Index (SVI) data, from Google Trends, for three search terms, ’bit-
coin’, ’bitcoin price’ and ’BTC’. Alternative queries such as ’bitcoin returns’, ’bitcoin
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Table 4.2: Power and size properties of the pro-
posed time-varying Granger-Causality methodol-
ogy.

DGP1 DGP2 DGP3
T W1,2 W2,1 W1,2 W2,1 W1,2 W2,1

100 0.143 0.164 0.915 0.940 0.802 0.903
200 0.065 0.089 0.953 0.982 0.816 0.947
400 0.030 0.034 0.995 1.000 0.853 0.961
Notes: i) DGP1 and DGP2 are used to examine the size
and power properties of the test, respectively. In DGP3
Granger-causality exists only in the second half of the
sample.

invest’ or ’BTCUSD’ are not used since the search volume for these queries is negligi-
ble compared to the search volume of the keywords that are used in the study. The
three downloaded SVIs take values from 0 to 100 and are scaled accordingly (meaning
that at each date, the SVIs are comparable). Furthermore, the three indices maximise
on the same date (on 30/08/2019). Using themaximumas values asweights (rescaled so
their sum equals 1), we define the Google Search Volume Index (GSVI) as the weighted
average of the three indices.2 We use the GSVI as a measure of attention for retail
investors. We assume that Google searches quantify information demand from indi-
vidual investors given that it is the most popular search engine. The other two indices
of investor attention, are the Uncertainty Cryptocurrency (UCRY) policy and price in-
dices, respectively. The two indices, proposed by Lucey et al. (2022), can be used to
gauge, among other things, uncertainty around bitcoin stemming from policymakers
and institutional investors. We opt not to include the Central Bank Digital Currency
(CBDC) attention and uncertainty indices since CBCB is more related to stablecoins
rather than bitcoin.

The next group of variables aims to capture supply and demand forces. We mea-
sure bitcoin supply using the number of total bitcoins in circulation. We proxy bitcoin
demand using the trading volume and a number of network related measures, the
number of confirmed transactions, the number of unique addresses, hash rate and
network difficulty. The two latter variables are proxies of mining difficulty. Hash rate
measures the computational power in the network. A higher hash rate indicates a
more secure network and more users validating transactions. In addition, the higher
the hash rate, the higher the chance that a user creates a new block in the blockchain
and obtains bitcoin. Network difficultymeasures the computational power required to

2Due to the small number of SVIs, othermethods such as Bayesian averaging, principal components
analysis or factor models.
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verify a transaction and is adjusted, based on hash rate and the total number of users,
to maintain the time required to verify a transaction of approximately ten minutes.

To analyse the relationship between stockmarkets and bitcoin returns, we employ
the returns of five stockmarket indices, the S&P500, Dow Jones, Nasdaq, EURO STOXX
100, FTSE50, Nikkei 225 and the Shanghai composite index. We also include two stock
market volatility indices, the CBOE market and the EURO STOXX 50 volatility indices.
Regarding commodity markets, we consider two oil price indices, WTI and Brent and
the price of gold. Finally, we examine the relationship between bitcoin returns and
four exchange rates: euro, British sterling, Japanese yen and Chinese yuan. The ex-
change rates are expressed as theprice of domestic currency to oneUSdollar, implying
that an increase in the exchange rate denotes an appreciation.

All variables are obtained in weekly frequency from their respective data sources.
Stationarity of the time series is examined through theADFand thenecessary transfor-
mations are performed. Figure D1 presents all variables used in the analysis in levels.
Table 3.1 lists the variables and the data sources.

4.5 Empirical results

In what follows, for each TVP-VAR model, we consider a burn-in sample of 50,000 it-
erations and build the posterior distributions from the next 50,000 draws by keeping
only each 10th draw. This thinning process is used in order tomitigate auto-correlation
among draws. The number of lags is based on the Schwarz information criterion and
set equal to 1 in all cases. Finally, the results of the Granger-causality test are based on
the 5% significance level

We estimate the TVP-VARmodel using all variables presented in Section 4.4 and use
the Bayesian variable selection algorithm to detect the most important regressors in
the equation where the bitcoin returns are the dependent variable. Table 4.3 presents
the posterior inclusion probability for each variable in the bitcoin equation. We find
that apart from the lag of bitcoin returns, the variables with the greatest posterior in-
clusion probability are the cryptocurrency policy uncertainty index and the GSVI, two
variables that proxy investor sentiment. The finding is supported by evidence from
previous studies that conclude that information demand is the most important deter-
minant of bitcoin returns, (see Panagiotidis et al., 2018). Out of the ten stock and com-
modity markets, only one, the Nasdaq index, has a sufficient high posterior inclusion
probability. This result reinforces the argument of Liu and Tsyvinski (2020) and Liu
et al. (2022) who argue that cryptocurrency returns have low exposure to traditional
asset markets. Other variables with high posterior inclusion probability are the bit-
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coin trading volume and ethereum returns, indicating that the behaviour of bitcoin
returns is better explained by cryptocurrency factors (Liu and Tsyvinski, 2020).

Table 4.3: Posterior inclusion probability of the coefficients for the bitcoin equation
in the TVP-VAR model.

BTC : 0.952 TV : 0.672 EURO: 0.436 SP500 : 0.590 SSEC : 0.296
VOL : 0.046 ADD : 0.376 GBP : 0.440 DJ : 0.466 VIX : 0.000
GSVI : 0.786 CTR : 0.000 YUAN: 0.236 NASDAQ: 0.748 VSTOXX: 0.000

UCRY policy: 0.949 HASH: 0.118 YEN : 0.010 STOXX : 0.402 WTI : 0.070
UCRY price : 0.553 DIF : 0.254 FFER: 0.288 FTSE : 0.448 BRENT : 0.146

ETH : 0.834 NBC : 0.196 ECB : 0.144 NIKKEI: 0.462 GOLD : 0.458
Notes: i) The values denote the posterior inclusion probability and are obtained using the Bayesian
variable selectionmethodproposedbyKorobilis (2013). ii) The results refer to thebitcoin equation.
iii) The five variables with the highest probability, highlight in bold, are considered for the main
model. iv) See Table D1 for the definitions of the mnemonics.

Using these five variables and bitcoin returns (i.e. cryptocurrency policy uncer-
tainty index, the GSVI, the bitcoin trading volume, the returns of Nasdaq index, the
ethereum and bitcoin returns) we estimate the main TVP-VAR(1) model and perform
the time-varying Granger-causality test, impulse response function analysis and fore-
cast error variance decomposition.

We use the time-varying Granger-causality test, described in the section 4.2.2, to
examine whether there is a unidirectional causal relationship between each variable
and bitcoin returns. Figure 4.2 presents the sequences of Wald statistics for each vari-
able, along with the critical value at the 5% significance level. The null hypothesis
of no Granger-causality is rejected during the periods that the Wald statistic exceeds
the critical value. We observe that the GSVI and ethereum returns Granger-cause bit-
coin returns for the entire sample. The results indicate that the other three variables
(bitcoin trading volume, cryptocurrency policy uncertainty and nasdaq returns) af-
fect bitcoin returns only for specific periods of time. All three variables have a sig-
nificant effect during the first part of the sampling period (approximately up to 2017).
We observe that the policy uncertainty index becomes statistically significant during
the third quarter of 2017, the period of the first major rise in the price of bitcoin. The
index remains significant for a year, until 2018-10-26., long after bitcoin prices have
returned to a steady level. After that period, the index becomes significant only dur-
ing the last quarter of the sample. Regarding trading volume, we detect four periods
where the null of Granger-causality is rejected. These are the first two years of the
sample (up to 2017-09-15), during 2018, during the second quarter of 2019 and during
the first three quarters of 2022. During these periods, bitcoin price was relatively con-
stant, indicating that trading volume is better used to analyse the behaviour of bitcoin
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during periods when no bursts occurs. Furthermore, if we consider a lighter confi-
dence level (i.e. 10%), the null hypothesis is rejected for the majority of the sampling
period, further supporting the results of Yarovaya and Zięba (2022) who show a causal
relationship between trading volume and cryptocurrency returns. Finally, the Wald
statistics for Nasdaq returns exceed the critical value from the start of the sample up
to the third quarter of 2018.3 Nasdaq returns also Granger-cause bitcoin returns from
June 2021 until the end of the sample. That is, there is no causal relationship between
Nasdaq and bitcoin returns during the second bubble burst at the end of 2020. How-
ever, there is a relationship during themost recent bubble burst which occurred at the
second half of 2021.

Figure 4.3 presents the median impulse responses of bitcoin returns to a shock in
each variable alongwith 95% credible set. Since the variance-covariancematrix of the
residuals varies over time, we compute the impulse response functions using the me-
dian of all variance-covariance matrices. In all cases, the effect of each shock is short
lasting, meaning that after four periods (weeks) bitcoin returns to pre-shock levels.
The cryptocurrency policy uncertainty index is the only variable that does not have a
significant effect on bitcoin returns. In addition, it is the only variable that causes a de-
crease in bitcoin returns. Considering the second sentiment indexwe observe that the
positive shock in the GSVI yields a rise in bitcoin returns. Similarly, the results suggest
that an unexpected increase in bitcoin trading volume leads to a rise in bitcoin returns.
Furthermore, bitcoin returns respond positively to shocks both in cryptocurrency (i.e.
ethereum) and stock (i.e. Nasdaq)market returns. In particular, a shock in the Nasdaq
index yields to rise in bitcoin returns that lasts for two weeks. After that period, the
response of bitcoin returns becomes statistically insignificant.

3There are a few exceptions during this period but only last for up to two consecutive observations.
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Figure 4.2: Time varying Granger-causality results.
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Notes:) i) The blue lines present the evolution of the Wald statistic during the sampling period. The
red line presents the critical value at the 5% significance level. ii) The null hypothesis of Granger non-
causality is rejected if the Wald statistic is greater than the critical value.
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Figure 4.3: Impulse responses of bitcoin returns to a shock in each variable.
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Notes: i) The blue lines presents the median impulse responses and the shaded area the 95% credible
set. ii) Since stochastic volatility allows for the variance-covariance matrix to change over time, we
estimate the impulse responses using the median matrix of the variance-covariance matrices.
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Figure 4.4 plots the forecast error variance decomposition of bitcoin returns for
a forecast horizon of 24 periods. In the initial period, 83% of the variance of bitcoin
returns is explained by shocks in the bitcoin returns. Ethereum returns contribute
to 10% of variation. The contribution of the remaining four variables is rather feeble,
less than 7%. After one period, the percentage of variance attributed to bitcoin returns
decreases by 5 percentage units. However, this difference is absorbed exclusively by
Nasdaq returns, which explain approximately 6% of the forecast error variance of bit-
coin returns. The contribution of the rest of the variables remains similar to that of
the first period. Furthermore, as we move into later periods of the forecast horizon,
we observe that shocks in each variable explain qualitatively the same percentage of
the forecast error variance of bitcoin returns as in the second period.

To assess the validity of the results, we repeat the analysis and set the lag order
equal to 2. The results remain qualitatively the same and are available upon request.

Figure 4.4: Forecast error variance decomposition of bitcoin returns.
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4.6 Comparison with a recursive algorithm

In this sectionwe compare the proposed time-varyingmethodologywith the recursive
evolvingwindowalgorithmproposed by Shi et al. (2018) (for an additional emprical ap-
plication see, Baum et al., 2021). For a given window of size r0, the algorithm runs the
Granger-causality test for all possible subsamples of length greater or equal than r0. As
a result, every point in the sample, except the ones in the initial window, is associated
with a set of statistics. From each such set, we retrieve the supremum norm statistic
and base statistical inference on the supremum norms. The recursive evolving algo-
rithm since is a generalisation of both the rolling window and the forward expanding
window algorithms.

Here, we consider a window size equal to 20% of the sample size (i.e. 77 observa-
tions). For all subsamples with length greater or equal than the selected window size,
we estimate a time invariant VARmodel with six endogenous variables (i.e. bitcoin re-
turns, ethereum returns, Nasdaq returns, bitcoin trading volume, GSVI and the cryp-
tocurrency policy uncertainty index) and then, the heteroskedastic-consistent Wald
statistic for the null hypothesis that a variable Granger-causes bitcoin returns. Figure
D2 presents the sequences of Wald statistics obtained from the recursive evolving al-
gorithm. Note that there are no Wald statistics during the initial window size. The
Figure also plots the series ofWald statistics obtained using the Bayesian time-varying
methodology for ease of comparison between the two approaches. In the case of Nas-
daq returns and the GSVI, we observe that the recursive evolving algorithm fails to
reject the null hypothesis of no Granger-causality during specific periods. For exam-
ple, according to the recursive algorithm, there is no Granger-causal effect from the
GSVI to bitcoin returns during 2020 which contradicts the existing literature (for ex-
ample, see Raza et al., 2022). In the case of policy uncertainty index and ethereum re-
turns, the recursive algorithm indicates that there is a unidirectional Granger-causal
relationship from the variables to bitcoin returns. Furthermore, the periods that the
causal relationship is present, coincide with the periods indicated by the Bayesian
time-varying approach. However, the critical value presented in Figure D2 is not size-
adjusted. Shi et al. (2019) propose a bootstrapping algorithm that controls for size dis-
tortions (caused by the small sample size). If we consider a size-adjusted critical value,
then the recursive algorithm detects a causal relationship for substantially shorter pe-
riods compared to the time-varying approach (note that the approach we propose in
this essay does not require size-adjusted critical values). These results are available
upon request.
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4.7 Conclusions

In time series analysis, the assumption that the coefficients remain constant through-
out the sample is not a realistic one. In this essay, wepropose an approach to performa
time-varying Granger-causality test. The test combines the VAR estimates from a TVP-
VARmodel with heteroscedastic-consistent Granger-causality hypothesis testing. The
proposed methodology does not rely on rolling window estimates. Consequently, this
test is not subjected to small sample size distortions and does not require a subsam-
ple to initiate the recursive algorithm. The power and size properties of the test are
evaluated throughMonte Carlo simulations. We employ the new test to date-stamp the
causal relationship between bitcoin returns and alternative variables. Specifically, in
the empirical application, we consider a two-step approach. Initially, we estimate a
Bayesian TVP-VAR with 30 variables (bitcoin returns and 29 potential determinants
of bitcoin returns) and identify the most important variables of the model based on
Bayesian variable selection algorithm. Next, we reestimate the TVP-VAR model using
only the variables selected in the previous step and perform the analysis. Specifically,
we employ the time-varying Granger-causality test which we discussed earlier, as well
as impulse response function and forecast error variance decomposition analysis.

The results indicate that themost important variables inmodelling bitcoin returns
are information demand (proxied by the constructed GSVI), the cryptocurrency pol-
icy uncertainty index, bitcoin trading volume and ethereum and Nasdaq returns. Evi-
dence from the time-varying Granger-causality test suggests that GSVI and ethereum
returnsGranger-cause bitcoin returns over the entire sampling period. The remaining
three variables Granger-cause bitcoin returns only for specific periods in the sample,
most profoundly during the first part of the sample over the period 2015 to 2017. Fur-
thermore, the impulse response function analysis shows that with the exception of
the policy uncertainty index, a shock in all variables yields a significant rise in bitcoin
returns that lasts up to two weeks. On the contrary, an increase in the cryptocurrency
policy uncertainty index leads to a decrease in bitcoin returns, however, the response
is not significant. Finally, the forecast error variance decomposition indicates that re-
gardless of the horizon, shocks in bitcoin returns contributemore than 78%of forecast
error variance while shocks in Nasdaq and ethereum returns explain approximately
13% of the variance. The results reinforce the findings of previous studies and shed
new light on the relationship between alternative variables and bitcoin returns. The
empirical results also provide new insight into bitcoin market trading strategies.

It is worth emphasising that the time-varying Granger-causality approach we em-
ploy in this study is very general and goes well beyond the current bitcoin application.
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It provides a rich and flexible environment for the detection of Granger-causality, that
accounts for the disadvantages of similar methodologies. As a result, this methodol-
ogy can be used in financial and economics applications where the data-set is charac-
terised by structural breaks. In the cryptocurrency related literature, one could follow
this approach, to examine for bidirectional causal relationship between a broad set of
cryptocurrencies or examine the ability of traditional assets to Granger-cause alterna-
tive cryptocurrencies such as ethereum and litecoin.
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Appendix

Table D1: Data sources.

Variable Source
Bitcoin returns Yahoo Finance
Bitcoin returns’ volatility (VOL) authors’ calculations
Ethereum returns (ETH) Yahoo Finance

Sentiment SVI (GSVI) Google Trends
Uncertainty Cryptocurrency policy (UCRY policy) Cryptocurrency indices
Uncertainty Cryptocurrency returns (UCRY price) Cryptocurrency indices

Supply Total number of bitcoins in circulation (NBC) blockchain.com
Demand Trading volume (TV) Yahoo Finance

Confirmed transactions per day (CTR) blockchain.com
Unique addresses used (ADD) blockchain.com
Hash Rate (HASH) blockchain.com
Network Difficulty (DIF) blockchain.com

Stockmarket S&P500 (SP500) Yahoo Finance
Dow Jones NYSE index (DJI) Yahoo Finance
NASDAQ index (NASDAQ) Yahoo Finance
EURO STOXX 50 index (STOXX) Yahoo Finance
FTSE 100 index (FTSE) Wall Street Journal
Nikkei 225 index (NIKKEI) Yahoo Finance
Shanghai Composite Index (SSEC) Yahoo Finance
CBOE Market Volatility Index (VIX) Yahoo Finance
EURO STOXX 50 Volatility Index (VSTOXX) Wall Street Journal

Commodities Brent (BRENT) FRED
WTI (WTI) FRED
Gold (GOLD) Yahoo Finance

Exchange rate Euro (EURO) FRED
Sterling (GBP) FRED
Yuan (YUAN) FRED
Yen (YEN) FRED

Financial variables Fed Funds effective rate (FFER) FRED
ECB deposit facility rate (ECB) FRED

Notes: i) We calculate the volatility of bitcoin returns as the square of bitcoin returns. ii) The mnemonics in the
parentheses are used to denote the variable in the Tables and Figures.
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Figure D1: Data in levels: Bitcoin and ethereum.
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Notes: i) Bitcoin, ethereum and the stock market indices are in thousands of US dollars. Volume is in millions of US dollars. The number of unique
addresses and daily confirmed transactions is in thousands. Hash rate is millions of TH/s. Difficulty is in trillions. The exchange rates are expressed as
the price of domestic currency to one US dollar.
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Figure D1: Data in levels (continued): Bitcoin related indices.
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Figure D1: Data in levels (continued): Stock market prices and volatility.
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Figure D1: Data in levels (continued): Commodities, exchange rates and interest rates.
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Figure D2: Granger-causality results from the recursive evolving window algorithm

0

10

20

30

40

2016 2018 2020 2022

W
al

d 
st

at
is

tic

TVP

REW

Nasdaq returns

0

2

4

6

2016 2018 2020 2022

W
al

d 
st

at
is

tic

TVP

REW

Trading volume

0

50

100

150

200

2016 2018 2020 2022

W
al

d 
st

at
is

tic

TVP

REW

GSVI

0

5

10

15

2016 2018 2020 2022

W
al

d 
st

at
is

tic

TVP

REW

Policy uncertainty index

0

2

4

6

8

2016 2018 2020 2022

W
al

d 
st

at
is

tic

TVP

REW

Ethereum returns

Notes: i) The red blue lines denote the sequence of Wald statistics obtained using the algorithm of Shi et al. (2019). The pink lines denote the sequence
of Wald statistics obtained using the Bayesian TVP methodology. The red line represents the critical value at the 5% significance level. ii) The null
hypothesis of Granger non-causality is rejected if the Wald statistic is greater than the critical value.
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