
University of Macedonia, Greece

School of Information Science, Dept. of Applied Informatics

Development of Network Services Embedding method using

Reinforcement Learning

Anastasios Karageorgiadis

Thesis Committee:

Professor Panagiotis Papadimitriou (UOM)

Professor Nikolaos Samaras (UOM)

Professor Ioannis Refanidis (UOM)

Thessaloniki, August 2023

https://www.uom.gr/
https://www.uom.gr/en/dai

Anastasios Karageorgiadis ii August 2023

Πανεπιστήμιο Μακεδονίας,Ελλάδα

Σχολή Πληροφορικής, Τμήμα Εφαρμοσμένης Πληροφορικής

Ανάπτυξη Μεθόδου Ενσωμάτωσης Δικτυακών Υπηρεσιών

μέσω Ενισχυτικής Μάθησης

Αναστάσιος Καραγεωργιάδης

Εξεταστική Επιτροπή:

Καθηγητής Παναγιώτης Παπαδημητρίου (ΠΑΜΑΚ)

Καθηγητής Νικόλαος Σαμαράς (ΠΑΜΑΚ)

Καθηγητής Ιωάννης Ρεφανίδης (ΠΑΜΑΚ)

Θεσσαλονίκη, Αύγουστος 2023

https://www.uom.gr/
https://www.uom.gr/gr/dai

Anastasios Karageorgiadis iv August 2023

Abstract

In the last few years, the Network Functions Virtualization (NFV), a network architecture approach,

has become essential for all the services provider companies. With NFV architectures, providers can

reduce the requirements for specialized hardware [1], which may stay unused for most of the time if it

serves only a few requests. But in order to use most of the cloud infrastructure, they require methods for

mapping a service onto the virtualized infrastructure. There’s where Network Service Embedding comes

into play, to help providers optimize the distribution of the physical resources to fulfill the customers’

needs as fast as possible and in a more reliable way. Network Service Embedding [2] (NSE) methods

can take into account more complex needs that a client may specify, such as low latency, bandwidth

limits except for CPU or memory demands. Also, NSE helps providers to manage their resources

efficiently, therefore, serving as many clients in a given period of time, is giving them the ability to

increase their profits. This is also important for the clients as they can experience the quality of service

and lower costs based on their needs. The purpose of this Master’s thesis is to develop a method for

the optimized embedding of network services onto a virtualized infrastructure (e.g., data center) using

supportive learning techniques based on Reinforcement Learning algorithms, as opposed to heuristic

methods that are mostly employed. For the implementation of this work, Python [3] was used as

programming language, the DRL models developed using Tensorflow [4] framework and the generated

service graph were created with NetworkX [5] framework.

Περίληψη

Τα τελευταία χρόνια η Εικονικοποίηση Δικτυακών Λειτουργιών, μία αρχιτεκτονική προσέγγιση δικτύων,

έχει γίνει απαραίτητη για όλους τους παρόχους υπηρεσιών [1]. Με την Εικονικοποίηση των Δικτυακών Λει-

τουργιών [2], οι πάροχοι μπορούν να μειώσουν τις ανάγκες τους για εξειδικευμένο υλικό, το οποίο μπορεί

να μην αξιοποιείται το περισσότερο χρόνο, αν εξυπηρετεί μόνο μερικά αιτήματα. Αλλά για να αξιοποιηθεί

στο μεγαλύτερο βαθμό η υποδομή νέφους, απαιτούνται μέθοδοι τοποθέτησης μίας υπηρεσίας σε μία εικο-

νικοποιημένη υποδομή. Εκεί είναι που εμφανίζονται οι μέθοδοι Ενσωμάτωσης Δικτυακών Υπηρεσιών, για

να βοηθήσουν τους παρόχους να βελτιστοποιήσουν την κατανομή των φυσικών πόρων και να εκπληρώσουν

τις ανάγκες των πελατών τους όσο το δυνατόν γρηγορότερα και πιο αξιόπιστα. Οι μέθοδοι Ενσωμάτωσης

Δικτυακών Υπηρεσιών μπορούν να λάβουν υπόψιν πιο περίπλοκες ανάγκες που ορίζουν οι πελάτες, όπως

η χαμηλή καθυστέρηση, όρια στο εύρος ζώνης εκτος από τις απαιτήσεις επεξεργαστικής ισχύς ή μεγέθους

μνήμης. Επιπλέον, η Ενσωμάτωση Δικτυακών Υπηρεσιών, βοηθάει τους παρόχους να διαχειριστούν πιο

αποδοτικά τους πόρους τους, καθώς η ταυτόχρονη εξυπηρέτηση περισσότερων χρηστών, δίνει την δυνα-

τότητα για περισσότερα οφέλη. Αυτό είναι εξίσου σημαντικό και για τους πελάτες γιατί έχουν καλύτερες

εμπειρίες χρήσης και χαμηλότερο κόστος ανάλογα με τις ανάγκες τους. Ο σκοπός αυτής της εργασίας

είναι η ανάπτυξη μίας μεθόδου για την όσο το δυνάτον βέλτιστη ενσωμάτωση υπηρεσιών δικτύου σε μία

εικονικοποιημένη υποδομή (π.χ. κέντρο δεδομένων) χρησιμοποιώντας υποστηριζόμενες τεχνικές μάθησης

βασισμένες στην Ενισχυτική Μάθηση, σε αντίθεση με τις προτεινόμενες ερευτικές μεθόδους που ως επι

το πλείστον χρησιμοποιούνται κατα κόρον. Για την υλοποίηση της παρούσας εργασίας χρησιμοποιήθηκε η

γλώσσα προγραμματισμού Python [3], σε συνδυασμό με το εργαλείο Tensorflow [4] για την ανάπτυξη του

μοντέλου καθώς επίσης και του εργαλείου NetworkX [5] για την δημιουργία δικτυακών υπηρεσιών με την

μορφή γράφου.

Acknowledgements

First, I would like to thank my advisor Mr. Panagiotis Papadimitriou for his guidance, and Mr.

Angelos Pantelas for his help and his useful comments.

I am also grateful to my family, which has been supporting me all the time, so as to achieve my

dreams.

Anastasios Karageorgiadis viii August 2023

Contents

Nomenclature xii

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 2

2 Background 3

2.1 Network Function Virtualization . 3

2.1.1 Introduction . 3

2.1.2 Definition . 4

2.1.3 Use case . 4

2.2 Virtual Network Functions . 4

2.2.1 Definition . 4

2.2.2 Examples . 4

2.3 Network Service Embedding . 6

2.3.1 Introduction to Network Service Embedding . 6

2.4 Substrate Network . 6

2.5 Network Topologies . 6

2.5.1 What is a Network Topology? . 6

2.5.2 The main goal . 6

2.5.3 CLOS Topology . 7

2.5.4 Fat Trees Topologies . 8

2.5.5 3-Layered Fat Tree Topology . 8

2.6 Reinforcement Learning . 11

2.6.1 Introduction . 11

2.6.2 Categories of Reinforcement Learning Algorithms 11

2.6.3 Bellman Equation . 12

2.6.4 Markov Decision Process . 12

2.6.5 Q-Learning . 13

2.6.6 Deep Reinforcement Learning . 14

2.6.7 Deep Q-Learning . 14

Anastasios Karageorgiadis ix August 2023

CONTENTS

2.7 Artificial Neural Networks . 18

2.7.1 Introduction . 18

2.7.2 Dense Layer . 19

2.7.3 Activation Functions . 19

2.7.4 Loss Function . 24

2.7.5 Weights Initializers . 29

3 Problem Statement 33

3.1 Embedding of Virtual Network Functions . 33

3.2 Related Work . 35

4 Our Approach 41

4.1 Introduction . 41

4.2 Service Graphs Generator . 42

4.3 Heuristic Method As Baseline . 42

4.3.1 Mapping of VNF . 48

4.4 Reinforcement Learning Method . 50

4.4.1 Reinforcement Learning Modeling for VNE . 50

4.4.2 Deep Reinforcement Learning agent . 50

4.4.3 DDQN architecture description . 51

4.4.4 Define Input State . 53

4.4.5 Heuristic Algorithm for Candidate Servers Selection 55

4.4.6 Train Process Description . 56

4.4.7 Reward function . 57

4.4.8 Model Parameters . 58

5 Results 59

5.0.1 Experiments Description . 59

5.0.2 Define Evaluation Mid-Case scenario using the Baseline Algorithm 61

5.1 Agent Train Results . 66

5.1.1 Learning Process . 66

5.2 Evaluation Plots Baseline vs DagNeQ Agent . 69

6 Conclusion 73

6.1 Conclusion . 73

6.2 Future Work . 74

6.2.1 Multi Dimension resources demands . 74

6.2.2 Improve Efficiency of the proposed method . 74

6.2.3 Evaluate the system into a real world application 74

6.2.4 Outcome . 75

6.3 Lessons Learned . 75

References 82

Anastasios Karageorgiadis x August 2023

List of Figures

2.1 Clos Topology . 7

2.2 2 layered Fat Tree Topology [6] . 8

2.3 3 layered Fat Tree Topology [7] . 9

2.4 3 layered Fat Tree Topology with labels [6] . 10

2.5 Example of Deep Q Neural Network . 16

2.6 Sigmoid plot . 20

2.7 ReLU plot . 21

2.8 Leaky and Parametric–ReLU plot . 22

2.9 ElU plot . 22

2.10 Softmax example . 23

2.11 Mean Square Error plot . 25

2.12 Mean Absolute Error plot . 26

2.13 Huber Loss plot . 28

4.1 Example of VNFs request. 42

4.2 Mapping of VNF visual . 49

4.3 Abstract Pipeline of the RL VNE problem . 51

4.4 Abstract Pipeline of Neural Network Architecture . 52

4.5 Model’s summary . 52

5.1 VNE Request Acceptance Ratio per VNE size . 61

5.2 CPU utilization per VNE size . 62

5.3 Bandwidth utilization per VNE size . 62

5.4 VNE Request Acceptance Ratio per VNE size . 63

5.5 CPU utilization per VNE size . 64

5.6 Bandwidth utilization per VNE size . 65

5.7 Score per Epoch for k=8 and number Of VNRs 150 . 67

5.8 Score per Epoch for k=24 and number Of VNRs 1000 . 67

5.9 MSE Loss per Epoch for k=8 and number Of VNRs 150 68

5.10 MSE Loss per Epoch for k=24 and number Of VNRs 1000 68

5.11 Request Acceptance Ratio . 69

Anastasios Karageorgiadis xi August 2023

LIST OF FIGURES

5.12 CPU utilization . 70

5.13 Bandwidth utilization . 70

5.14 Request Acceptance Ratio k:24 . 71

5.15 CPU utilization k:24 . 72

5.16 Bandwidth utilization . 72

Anastasios Karageorgiadis xii August 2023

Chapter 1

Introduction

The current status quo of everyday life, requires people to be connected through the internet, in order

to work, communicate, etc. These kinds of needs are increasing the demands for network infrastructures,

in a way that more and more users could be added from day to day, and the performance of the provided

services must also be improved. In order to address these uprising client requests, service providers are

looking for new ways to make better use of their physical resources, as a matter of serving more clients

faster, and more reliably while reducing the overall costs and of course, increasing their profits. All the

above lead the path for Software Defined Networks [8] to appear, which are having as the main goal

to reduce the need for specialized hardware equipment, and move onto general purpose equipment like

typical personal computers or servers. This means that a PC has to reproduce the operation of an actual

network component like a switch, or a firewall, this is done by specific software by using a virtualized

environment that simulates the physical components. As a further step, this virtualization has to take

into account all the big or small network functions that are required for a network to operate properly.

So, this implies that multiple continuous or not, network functions that may or may not be dependent

on each other, must be mapped accordingly in a way that relies on some restrictions. A set of these

network functions is represented as a graph. The problem that arises from this, is how to map these

network functions inside a virtualized infrastructure and how to distribute them in an efficient way across

the infrastructure’s components. This problem is called Network Service Embedding better known as

Virtual Network Embedding, and it is the subject of the current master thesis. In a nutshell, this work

is about finding and testing a different approach for solving the Network Service Embedding problem,

based on supportive machine learning techniques.

Anastasios Karageorgiadis 1 August 2023

1. INTRODUCTION

1.1 Thesis Contribution

In this Master thesis, the main objective is to quantify the potential benefits of using Reinforcement

Learning methods for Network Service Embedding, such as better resource utilization or lower latency

between nodes of a network service graph, compared to state-of-the-art heuristic and exact methods.

The main idea is to extract some useful conclusions about the Reinforcement Learning methods, which

as an approach can lead to an easier scaling to real-world scenarios. For example, by adding more

requirements the dimensionality will be increased, this is easier to adapt in a Reinforcement Learning

agent than to a classic heuristic approach. Also, as a further step, it would be better to experiment with

our Reinforcement Learning methods on service graphs that stem from vehicles or robotics services.

1.2 Thesis Outline

In Chapter 2 presents all the background information needed for this master thesis. There is also an

overview of Network Function Virtualization (NFV), and Virtualized Network Functions (VNFs), the

difference between them and the basic idea for the Embending of Virtualized Network Functions (VNFs).

In Chapter 3 the problem of Embending Virtual Network Functions using Reinforcement Learning is

stated and a reference to the most recent related approaches that have been published by other authors.

In Chapter 4 the overall design and implementation of the proposed work in this master thesis, is

described. In Chapter 5 the performance of the proposed approach is evaluated compared to a simple

heuristic baseline algorithm. Finally, Chapter 6 acts as an epilogue for this thesis, presenting some

useful conclusions along with the possible future improvements and all the lessons learned throughout

this process.

Anastasios Karageorgiadis 2 August 2023

Chapter 2

Background

2.1 Network Function Virtualization

2.1.1 Introduction

Over the last few years, Internet Service Providers [9] are faced a lot of challenges arising from the

composition of their network infrastructure, which is mainly built up from physical network devices

(hardware equipment), are dedicated to a specific function or are related to only a specific group of

a network operation (e.g. firewall, load balancer, NAT, etc). This approach is causing the network

infrastructure to be very difficult to maintain, as it becomes harder to expand and upgrade it; while the

customers’ needs are increasing each day (e.g. especially during the Covid-19 period, Internet/network

demands have met a historic high). Furthermore, VNE’s purpose is to find the appropriate threshold

between making online embedding decisions faster and pursuing a long-term objective, like increasing

ISP revenues with better resource utilization. In an effort to secure the best possible level of service,

an ISP usually deals with this increase by adding more and more hardware equipment. This way of

handling the situation is leading them to raise the overall operational and sustainability costs, having

one eye on not burdening the customers with further expenses, while the other is on keeping up with

the competitors. Taking all these into account, a Network Function Virtualization solution manages

to redesign the way that network architecture is conceived, utilizing all the benefits deriving from the

virtualization process. In a nutshell, it transforms all the dedicated hardware equipment into virtual

instances, which as a result, are executable on general-purpose machines whose computational power

and memory capacity make them able to host a quite impressive number of those kinds of instances.

With the general purpose machines to be servers, more powerful personal computers.

Anastasios Karageorgiadis 3 August 2023

2. BACKGROUND

2.1.2 Definition

With the term Network Function Virtualization [2], we referred to the process that decouples network

functions [10] from the underlying dedicated hardware and ”realizes” them into a form of software,

named Virtual Network Functions, that is enabled to run in any resource-sufficient virtual machines.

In a nutshell, NFV refers to an overall concept as a framework for running software-defined network

functions.

2.1.3 Use case

The Network Function Virtualization (NFV) approach adopted by Telecommunication and Services

provides companies with deployment management and scaling of the network functions. The NFV

also allows for decoupling and virtualization of existing Operational Support Systems, systems used by

operators to manage their communication networks, or legacy and dedicated hardware to make them

software-driven by using standardized hardware. The advantages of NFV are the reduced overall costs

both for ISPs and customers, and the ability to have a faster evolution of service since the interconnec-

tion of network functions no longer demands any new hardware addition or rearranging/modifying the

infrastructure components.

2.2 Virtual Network Functions

2.2.1 Definition

The Virtual Network Function is the implementation of a physical network function by utilizing

software decoupled from the underlying hardware infrastructure. To simplify it, any virtual device

usually is called a Virtual Network Function (VNF), or in other words, a VNF replaces network hardware

with software [11] and it can be freely moved in the physical infrastructure inside commodity servers.

Many VNFs create a Network Service [12].

2.2.2 Examples

Usually, nowadays, VNFs are deployed in the cloud infrastructure as microservices, that can work

independently or can be combined to provide essential networking functionality to be used by service

providers or even some third-party end users. Some examples of virtual network functions include: a)

Network routing, such as Domain Name Service (DNS), b) Natural Address Translation (NAT). There are

also VNFs for security reasons, such as c) malware detection, d) intrusion detection (ID), and e) Virtual

Private Network (VPN) services. In addition, there are network functions that are also virtualizable for

Anastasios Karageorgiadis 4 August 2023

2.2 Virtual Network Functions

f) traffic analysis, prediction, and Quality of Service (QoS) measurement purposes. At last, there are

also g) VNFs for network and resource load balancing[11].

Anastasios Karageorgiadis 5 August 2023

2. BACKGROUND

2.3 Network Service Embedding

2.3.1 Introduction to Network Service Embedding

The Network Service Embedding also referred to as Virtual Network Embedding [13] deals with for-

mulating the best way to place Virtual Network Functions, which represent the network’s functional

components, in the most suitable location of a Substrate Network(SN) [14]. More particularly, the

VNE problem deals with the challenge in network virtualization that is about optimizing the resource

allocation[12, 15] inside an SN. The solution to the problem implies ensuring that the resource require-

ments are not violated and furthermore that the proposed mapping is optimal according to some specific

objectives, for example, inter-rack traffic minimization.

2.4 Substrate Network

A substrate network is a network represented as a graph. More precisely a substrate network is

a directed graph notated as G(N, F), where N refers to the set of the nodes or the physical routers,

switches, servers, etc that are modeled as vertices of the graph, and F is referred to the set of edges or

the physical links between the actual components of a network [14] (e.g. core switches).

2.5 Network Topologies

2.5.1 What is a Network Topology?

Network topology is the architecture of all the physical components of a Network. More precisely, with

the term network topology, we refer to the way that all the hardware equipment of a network is connected

or structured in a top-down design approach. In most cases, this is represented by a tree schema but

there are some exceptions, like peer-to-peer networks, which are structured like a circle. Lately, there

are also virtual networks that are simulating a specific type of network topology. So, in conclusion, a

more accurate definition of network topology would be this, a network topology is the representation of

the way that any kind of physical or virtualized network equipment is placed and connected with each

other, in an order that forms a network.

2.5.2 The main goal

The main goal of constructing a network infrastructure is to connect as many as possible endpoints

(mainly with endpoints referring to servers) by using switches that have a limitation on the number

of ports. The basic concept is to use switches with the smallest number of ports that can cover the

Anastasios Karageorgiadis 6 August 2023

2.5 Network Topologies

requirements, in order to reduce the overall cost. So, by connecting switching elements and forming a

topology, in a smart and efficient way, a network can interconnect a large number of endpoints.

2.5.3 CLOS Topology

The CLOS network topology [7] is a hierarchical topology that has multistage switching with the

same cost for each route and that’s why it is also sometimes referred to as Equal Cost Multiple Paths

topology. The main benefit of the CLOS network is that reduces the number of ports required from a

switch. CLOS networks were invented by Edson Erwin [16] back in 1938 as a more scalable approach

to connect network nodes and it was formalized in 1952 by Charles Clos [17], who used this topology

to redesign the telephone nodes’ interconnection in order to optimize telephony network systems. The

CLOS topology was used before IP networks show up, and in our days is used to create a Leaf and Spine

system of interconnecting Edge switches (Top of the Rack switches) together through Spine switches.

It is built so that, each Leaf or Edge switch is connected to all Spine switches. The CLOS topology is

shown in the following figure 2.1.

Figure 2.1: Clos Topology

Anastasios Karageorgiadis 7 August 2023

2. BACKGROUND

2.5.4 Fat Trees Topologies

A type of network topology that managed to serve the above, goal is the Fat-Tree network topology.

It came as an expansion of the classic CLOS topology. The Fat-Tree networks were proposed for the

first time back in 1985, by Charles E. Leiserson [18]. This type of network forms a tree, and servers are

connected to the lowest layer. The basic feature of a fat tree, that distinguishes it from other tree-like

topologies, is that for any switch in a layer, the number of links going down to its children nodes is equal

to the number of links going up to its parent nodes in the first layer above it. As a result, the links are

getting ”fatter”, moving towards the top of the tree, and the switch or the switches in the root (named

core switches) of the tree have the most links compared to any other switch below them.

Figure 2.2: 2 layered Fat Tree Topology [6]

2.5.5 3-Layered Fat Tree Topology

2.5.5.1 Introduction

As the need to have a huge amount of servers (endpoints), the complexity in the middle layers increases,

so an extra layer of switches is added to the aggregation one. In the two-layered Fat Tree network

topology, there are two layers the core switches layer and the edge or tor (Top of Rack) layer where the

servers are attached. In the three-layered one, the edge layer has as a parent layer the aggregation layer,

in which the switches in it are used for interconnection between multiple edge switches with multiple

core switches. A part of the aggregation layer and part of the edge layer connected together, they are

forming an abstract section of network topology called a pod. By using this extra layer the Fat Tree

topology becomes more robust to failures, for example, if an aggregation or a core switch link fails there

are alternative routes to connect a server to the rest of the network.

Anastasios Karageorgiadis 8 August 2023

2.5 Network Topologies

Figure 2.3: 3 layered Fat Tree Topology [7]

2.5.5.2 Description

The size of a 3-layered Fat tree topology is relatively connected to the size of a switch component, in

terms of the number of ports that it has. In this stage, is useful to notice that every switch or router in

the topology is assumed to have the same size. So, given a switch’s number of ports is k, the network

will have k2

4 core switches, followed by k pods as children nodes. The pod is an abstraction of two more

layers the aggregation and the edge one. Each core switch must have one link to each pod, this means

that a core switch is connected with one aggregation switch of the pod, as there are multiple aggregation

switches inside a single pod. By moving down to inside the pod abstraction, each node has k
2 aggregation

switches and k
2 edge/ToR switches. As a result, an aggregation switch is connected to k

2 core and k
2 edge

or ToR switches. The total number of aggregation switches sums up to k2

2 , and it is the same for ToR

switches. At the final layer, there is where the servers are connected to the network, as it entails from

the above, there are k
2 servers per ToR switch. A ToR switch has multiple servers connected to it and

this group of servers is known as a rack, that’s why the switch is called ToR (Top of the Rack). Finally,

the result is to have a physical or virtual network with a total of k3

4 servers. Last but not least, all these

nodes are somehow connected, and this is made with the links, the total number of those links inside

the network is k2

2 (k + k
2). The links normally have a specific bandwidth/capacity that is increasing as

they move closer to the core switches, this is also referred to as oversubscription of the network usually

a ratio of 4:1.

Anastasios Karageorgiadis 9 August 2023

2. BACKGROUND

Figure 2.4: 3 layered Fat Tree Topology with labels [6]

Anastasios Karageorgiadis 10 August 2023

2.6 Reinforcement Learning

2.6 Reinforcement Learning

2.6.1 Introduction

Reinforcement Learning [19] belongs to the field of Artificial Intelligence and is specifically a part of

Machine Learning techniques. The basic concept of Reinforcement Learning assumes having an agent

(AI software) that by taking some actions inside an environment tries to increase its rewards in order to

achieve a goal. Nowadays, RL, and especially DRL has offered a new way of solving difficult problems

and has made some important breakthroughs in a variety of domains. This is also expected to help

with the VNE problem also, as there is a need for better performance in high-complexity environments.

Overall the Reinforcement Learning methods are all about making decisions sequentially that will lead

toward a specific goal, and that is exactly what the VNE problem requires. Furthermore, Reinforcement

learning is trying to find the appropriate balance between, exploration, where the agent gathers more

information that might lead it to better decisions in the future steps (action selection), and exploitation

where the agent makes the most profitable decision given the current information.

2.6.2 Categories of Reinforcement Learning Algorithms

In general, there are two main categories, that the reinforcement learning methods are classified into,

the first one is Model-free and the second one is Model-based. The key difference between the two

of them is that Model-based methods involve learning an explicit model of the environment and its

dynamics, including transition probabilities and all the reward functions, in order to train an agent to

act according to the objectives of the problem. By proceeding further the Model-free methods are split

into the value-based or value iteration and the policy-based. The Value-based methods in reinforcement

learning aim to estimate the value or more precisely the quality of different state-action pairs. These

algorithms use a value function to determine the optimal policy that an agent must follow toward a goal.

One popular value-based algorithm is Q-learning, which iteratively updates a value function, known as

the Q-function, to approximate the maximum expected rewards after an action. By using the Q-function,

the agent can choose the action that maximizes its expected return. This is represented in the form of

a table where each action-state pair has a value that is constantly updated as the agent moves closer

to the final objective. An alternative is to use Deep Q-Networks (DQNs)[20, 21] to extend Q-learning

by employing deep neural networks to approximate the Q-function, enabling reinforcement learning in

high-dimensional and continuous state spaces, where the use of a large matrix would be inefficient. The

Policy-based methods, on the other hand, try to directly optimize the policy of an agent, which is a

Anastasios Karageorgiadis 11 August 2023

2. BACKGROUND

mapping from states to actions, without estimating the value function explicitly. In a nutshell, policy-

based methods are used to find the best possible sequence of actions to be made by the agent, that

maximizes the expected cumulative reward and leads to the final goal. The algorithm uses gradient

ascent to iteratively update the policy parameters. By sampling actions from the current policy and

estimating the gradient of the expected return, policy-based methods learn to improve the policy over

time. In addition, they are able to handle larger and more complex action spaces. Regarding the Model-

based reinforcement learning algorithms. These algorithms use the learned model to simulate interactions

with the environment, enabling planning and decision-making based on simulated experiences. Overall

a model-based reinforcement learning algorithm can be advantageous when direct interaction with the

real environment is costly or time-consuming. The learned model can be used for predicting future states

and rewards but also is used for generating sample trajectories for policy optimization. Model-based

algorithms, such as I2A[22], or AlphaZero[23] combine planning and exploration to find optimal actions

in a given environment.

2.6.3 Bellman Equation

In order to describe a Reinforcement Learning problem, there are some variables that need to be

specified like, an environment inside where the actor-agent will operate, the Actions list which is a set

of all possible actions that an agent/learner algorithm can take inside the environment, the States table

which represents all the states that the agent may be in by taking an action. There is also a positive

Reward when the agent reaches a goal and there is a negative Reward if the agent makes a mistake and

reaches a non-wanted state. In addition to supporting the agent to reach the goal as soon as possible or

with fewer actions, there is a γ factor that discounts the reward in each step, this also allows the agent to

choose actions in a better way. The above description refers to Value iteration, where the agent updates

each state’s reward value iteratively in order to extract a sequence of actions that lead to the goal. The

value iteration is formulated by the following mathematical equation [24, 25]:

V (s) = max
a

(R(s, a) + γV (s′)) (2.1)

where s is the current state,s′ is the next state, a is the action taken, R represent the reward for the

current action,state pair, the discount factor γ, 0 < γ < 1.

2.6.4 Markov Decision Process

The above equation describes the value for each state if the environment in which the agent is mov-

ing/acting is deterministic, which means that every action occurs every time. But in a real-world

Anastasios Karageorgiadis 12 August 2023

2.6 Reinforcement Learning

environment, there is also some kind of randomness, that makes the environment a non-deterministic

one. So, if the agent chose an action to take there is a chance that this action will not happen/occur.

For example, if the agent is a self-driving car and it wants to move forward (action: move forward) there

is a 70% that the car will move forward without any problem, and there is a chance of 20% that another

car is blocking its way and there is a 10% chance that the car stops working. As a result, the action

selected might not lead to the preferred state. In order to model this randomness in Reinforcement

Learning, Markov Processes [26] are used, based on Markov’s property that every state is independent

of the previous one. There for now the agent is making decisions based on some probabilities per action.

This concept is formulated from the following equation, which is a variation of the previous one 2.1.

V (s) = max
a

(
R(s, a) + γ

∑
s′

P (s, a, s′)V (s′)

)
(2.2)

2.6.5 Q-Learning

The Q-Learning is an Off-policy Reinforcement Learning method, that tries to find the best action

given a state. The reason why it is considered an Off-policy RL algorithm is that the Q-learning

function learns from actions that are outside the current policy, with other words it is taking random

actions, and therefore a policy isn’t necessary. The best action is defined by a value, named q-value,

that shows the quality of an action. In simpler words, this means that the higher the q, the better the

action. With Q-learning [27, 28, 20] instead of calculating the value of the current state that an agent is

in, now the purpose is to expose the quality of an action that updates an agent’s state and the purpose of

the Q-Learning approach is to expose the best sequence of actions that leads to the final goal, where the

maximum reward is given to the agent. The states and actions form a table that shows a corresponding

q-value Q(state, action) = q, where q ∈ R. More specifically, q-learning seeks to learn a policy that

maximizes the total reward.

Q(s, a) = R(s, a) + γ
∑
s′

(P (s, a, s′)V (s′)) (2.3)

The above equation 2.3 is transformed to only described by Q iteratively in the following form:

Q(s, a) = R(s, a) + γ
∑
s′

(
P (s, a, s′)max

a′
Q(s′, a′)

)
(2.4)

where s is the symbol of current state, a the current action, s′ is the next possible state, after action a

was occur, a′ is the action given the state s′ and γ is a discount factor of the expected reward as the

agent moves forward and choose actions.

Anastasios Karageorgiadis 13 August 2023

2. BACKGROUND

2.6.6 Deep Reinforcement Learning

In general the term Deep is referred to the use of a Neural Network model, as it wide common in

the machine learning field. The same thing happens into the Reinforcement Learning field, which is

consists of a set of algorithms that are focusing onto function approximations. For example, in the

previous section the Q-learning method uses matrices/tables to store a specific and deterministic states,

actions and rewards sets. This approach is limited to handle low-dimension problems with discrete states

and actions. So, with the use of Deep Reinforcement Learning instead of those tables there is a ANN,

usually a kind of MLP [29, 30] (Multi-Level Perceptron) model, which takes as input a vector /tensor

that represents the state of the environment and gives as output a set of actions or the q-values of these

actions. To be more accurate the output is the Q value per action, showing the quality of the agent

taking this specific action given the current state. After the NN model has made an approximation the

agent uses another method in order to pick an action, usually with some greedy approach that includes

a randomness or uses a probability distribution per action and picks the one with the highest probability

to occur (see softmax [31] selection).

2.6.7 Deep Q-Learning

Deep Q-learning [21] is an alternative approach to implementing the Q-learning [20] algorithm using

neural networks. The basic concept is to encode the state space into Rn dimension in order to feed them

into an Artificial Neural Network, as output you get Qi value of each action. In the Deep Q-learning

process, there are 3 stages: the first one is the learning phase where the model is trained by updating

its weights given a state as input and gets a vector of actions by using a loss function (Section: 2.7.4)

based on output and Q-target set of actions, the second phase is about acting, where the agent uses the

model to make decisions inside the environment and the last phase is the way an action is selected, this

called action selection policy.

The Loss function can be described by the following equation,

Lθ = E
[
rt + γ ∗max

α
Qθ(st+1, α)−Qθ(st, αt)

]
(2.5)

where θ represents the Neural Network’s parameters, rt is the current reward, γ is the discount factor

s,st+1 are the current and next state variables according and α represent the action.

Anastasios Karageorgiadis 14 August 2023

2.6 Reinforcement Learning

Algorithm 1 DQN Algorithm with Experience Replay

1: Initialize replay memeory D to capacity N

2: Initialize action− value function Q with random weights

3: for episode = 1,M do

4: Initialize sequence s1 = x1&preprocessed sequenced ϕ1 = ϕ(s1)

5: for t = 1, T do

6: With probability ϵ select random action, otherwise select at = maxaQ
∗(ϕ(st), a; θ)

7: Execute action at in emulator & observe reward rt & image xt+1

8: Set st+1 = st, at, xt+1 & preprocess ϕt+1 = ϕ(st+1)

9: Sample random minibatchoftransitions(ϕt, at, rt, ϕt+1) trasition from D

10: Set yj =

 rj , for terminal state ϕj+1

rj + γ ∗maxα′ Q(ϕj+1, α
′; θ), for non-terminalϕj+1

11: Perform a gradient descent step on (yi −Q(ϕj , αj ; θ))
2

Anastasios Karageorgiadis 15 August 2023

2. BACKGROUND

Figure 2.5: Example of Deep Q Neural Network

2.6.7.1 Replay Memory

The concept of the replay buffer or experience memory is crucial for Deep Q Learning, as the agent

acts inside the environment and explores the world, the old experiences are stored in a memory buffer.

Old experiences refer to vectors that store the current state, action, reward, and the next state, action

set. The agent interacts with the environment e.g. takes action, gets rewards, etc., for a number of

episodes, completely at random at the beginning of the process, and stores these interactions’ data as

vectors in the memory. Then the agent uses this memory by selecting a batch of it, to feed and train the

model upon these data, and it updates the memory with new experiences. The sampling of experiences

can be done randomly or they can have a priority on which will be picked up each time. This sampling

Anastasios Karageorgiadis 16 August 2023

2.6 Reinforcement Learning

approach of experiences makes the model more robust to over-fit and that prevents it from not acting

properly in a new state.

2.6.7.2 Selection Policy

As a part of the process, the output of the Neural Network model has to give the agent the ability

to choose an action. For the purpose of taking action, there are a few options available to do so, like

ϵ-greedy,ϵ-soft, and softmax.

� ϵ-greedy: A greedy approach to pick an action. An action is chosen with probability ϵ, while the

best action, the one with the highest Q-value, is chosen, with probability1− ϵ ∈ [0, 1].

The main problem of this approach is that the choice is uniformly distributed so it considers that all

actions are equal good.

� ϵ-soft: This is compliment method of the ϵ-greedy. In general, this policy is any policy given a

state s that the probability of all actions is greater than some minimum value ϵ. The soft decision of

not picking an action.

π(α|s) ≥ ϵ

|A(s)|
(2.6)

where ∀α ∈ A(s).

� Softmax: The output of Q-values is using a softmax function in order to transpose the Q-values

into a probability distribution, so the agent in each states selects the action that is most probably to

occur.

σ(xi) =
expxi∑N
j=1 exp

xi

(2.7)

This is the standard softmax function σ: RN → RN, where i = 1, · · ·N and x = (x1 · · · , xN) ∈ RN.

All the above selection policies are trying to find the balance between exploration and exploitation,

to create a policy for the agent that gets the best actions. For example, the ϵ-greedy can be expanded to

have an adaptive ϵ, so at the start of the training the ϵ is high, so as the agent explores the environment,

and as the iteration goes by, there is a decay to ϵ value, in a way that eventually it will exploit the

optimal action in the end.

Anastasios Karageorgiadis 17 August 2023

2. BACKGROUND

2.7 Artificial Neural Networks

2.7.1 Introduction

As part of this work, the focus is on using neural networks as the model for the Reinforcement Learning

Agent. Neural networks are an essential building block of deep learning models, and they are inspired by

the biological neural network of the human brain. Artificial Neural Networks (ANN) are mathematical

models that are designed to mimic the structure and function of biological neurons in the brain. The

basic building block of an ANN is the neuron, which receives input signals, processes them, and produces

an output signal. ANNs are typically composed of layers of neurons, with each layer performing a specific

task in the overall learning process.

The basic idea behind ANNs is to learn a function that maps input data to output data, similar

to the way humans learn from experience. This makes ANNs particularly effective at tasks such as

classification, regression, and pattern recognition. ANNs consist of a series of interconnected nodes,

called artificial neurons or units, organized into layers. Each unit in a layer receives input from the

previous layer, performs a simple computation, and outputs a signal to the next layer. The strength

of these connections between units can be adjusted during training to enable the network to learn to

perform a specific task. Additionally, ANNs can learn to recognize complex patterns and relationships

that might be difficult or impossible for humans to discern.

There are many different types of ANN architectures, each with its own strengths and weaknesses.

Some of the most common types of architectures include feedforward networks [29], recurrent net-

works [32], and convolutional networks [33, 34]. Each of these architectures is suited to different types of

tasks and data, and selecting the appropriate architecture is an important step in designing an effective

neural network.

The development of ANNs has been a major focus of research in the field of machine learning for

several decades, owing to their ability to learn complex patterns and relationships in data, and their

success in a wide range of applications, such as computer vision [34], natural language processing [35, 36],

and speech recognition [37, 34]. However, the design and training of ANNs can be a complex and

challenging process, requiring a deep understanding of both the mathematics and the underlying data.

Furthermore, the effectiveness and the success of the model are heavily dependent on the quality and

quantity of the training data, the architecture of the network, and the hyperparameters used during the

learning process.

Overall, ANNs are a powerful tool for developing intelligent systems that can learn from data, adapt

to changes in the environment, and make informed decisions. And as for the role of ANNs in the current

Anastasios Karageorgiadis 18 August 2023

2.7 Artificial Neural Networks

master thesis is to develop a model that can learn and adapt to changes in the environment and make

informed decisions based on the learned experiences.

2.7.2 Dense Layer

The simplest kind of an Artificial Neural Network (ANN) is a Multilevel Perceptron Model [29], which

only contains a couple of fully connected dense layers. Dense layers, also known as fully connected layers,

are the most commonly used layers in deep learning models, including Multilevel Perceptron Models. In

general, a dense layer is a layer where each neuron is connected to every neuron in the previous layer.

The output of each neuron is a weighted sum of the inputs, plus a bias term, which is passed through

an activation function. One important aspect of the dense layer is the initialization of the weights and

biases (Section 2.7.5). The initialization of the weights and biases can affect the overall performance of

the model during training. The weights and biases in the dense layer are learned during training using

an optimization algorithm to minimize a loss function. The activation function introduces non-linearity

into the model, allowing it to learn complex relationships between inputs and outputs. The number of

neurons in a dense layer is a hyperparameter that needs to be tuned during model selection. Is good

to mention that the last layer in a neural network model is usually a dense layer where the number of

neurons in this layer is typically equal to the number of classes in a classification task the number of

features in a regression task, or the number of actions in a Reinforcement Learning task. As for the

example of Multilevel Perceptron Models [29] typically contain one or more dense layers, followed by

one or more non-linear activation functions, and an output layer. The output layer may have a different

number of neurons and a different activation function than the hidden layers. Overall, dense layers are

essential building blocks of many deep learning models, including Multilevel Perceptron Models. Their

purpose is to enable the model to learn complex relationships between inputs and outputs and is typically

followed by an activation function (Section 2.7.3) and an output layer.

2.7.3 Activation Functions

Activation functions [31, 30, 34] are used to obtain the output of a neural network layer’s node. It

actually maps the node’s result values in [0, 1] or [-1, +1] depending on the function. There are two types

of activation functions, Linear and Non-Linear ones. For example, a linear function would be something

like y = x. A non-linear example is an exponential or logarithmic function.

In neural networks, we mostly use non-linear functions, one of these types is the Sigmoid(Figure 2.6).

But we mostly use a variant of the Sigmoid , the ReLU –Rectify Linear Unit(Figure 2.7)–, which is

half rectified in x ∈ [−∞, 0]. The function and its directive are both monotonic (increasing).

Anastasios Karageorgiadis 19 August 2023

2. BACKGROUND

�The Sigmoid function:

σ(x) =
1

1 + exp−x
(2.8)

Figure 2.6: Sigmoid plot

�The ReLU function:

R(z) = max(0, x) (2.9)

or otherwise we can say:

f(x) =

{
0, if x < 0 (2.10)

x, if x ≥ 0 (2.11)

The ReLU ’s drawback is that all negative values become zero immediately, which decreases the

model’s ability to fit or train from the data properly. That means any negative input given to the ReLU

activation function turns the value into zero immediately in the graph, which in turn affects the resulting

graph by not mapping the negative values appropriately. It is also known as the zero-stacked neurons

problem and it’s more likely to occur when we have a high learning rate or there is a large negative bias.

This problem means that many neurons will not add useful information to our network, so a solution to

that is adding a dropout parameter, where neurons are disabled with a random probability in order to

retrieve information from different neurons each time and improve the fitting of the model.

Anastasios Karageorgiadis 20 August 2023

2.7 Artificial Neural Networks

Figure 2.7: ReLU plot

Engineers have come up with some other activation functions to avoid this problem, like LReLU ,

PReLU , and ELU . Which are shown in Figures 2.8, 2.9 along with their equations:

� Leaky–ReLU equation:

f(x) =

{
0.01× x, if x < 0 (2.12)

x, if x ≥ 0 (2.13)

if we generalize the equation of LReLU it comes to PReLU,

� Parametric–PReLU equation:

f(x, a) =

{
a× x, if x < 0 (2.14)

x, if x ≥ 0 (2.15)

where a is added to set of the trainable variables of the model.

� Exponential Linear Unit (ELU) equation:

f(x, a) =

{
a× (expx−1), if x ≤ 0 (2.16)

x, if x > 0 (2.17)

Anastasios Karageorgiadis 21 August 2023

2. BACKGROUND

Figure 2.8: Leaky and Parametric–ReLU plot

Figure 2.9: ElU plot

Anastasios Karageorgiadis 22 August 2023

2.7 Artificial Neural Networks

Another well-known activation function is the Softmax . Softmax is a function that takes as ar-

gument a vector of N real numbers and converts it into a probability distribution consisting of N

probabilities proportional to the exponentials of the input numbers (Figure 2.10). This method actually

normalizes the input between [0,1] by respecting the main rule of probability theory that
∑N

i P (Ni) = 1.

In neural networks Softmax is used in most cases after the last layer –logits– to map the non-normized

output to a probability distribution over the predicted logits or classes. Also, Softmax is used in the

calculation of the loss in such cases by using softmax–cross-entropy loss.

� Softmax Equation :

σ(xi) =
expxi∑N
j=1 exp

xi

(2.18)

this is the standard softmax function σ: RN → RN, where i = 1, · · ·N and x = (x1 · · · , xN) ∈ RN .

Figure 2.10: Softmax example

Anastasios Karageorgiadis 23 August 2023

2. BACKGROUND

2.7.4 Loss Function

The most important part of a Neural Network model is the appropriate selection of a loss function. A

loss function is a mathematical expression that tries to calculate the error between the predicted output of

the model given the input, in such a way that the model updates its weights inside each node of all layers,

to get closer to the true values. The choice of a loss function depends on the type of machine learning

problem being solved. Based on the machine learning field if the task is a problem of Supervised learning,

where the true labels are provided, the model calculates the error/loss between the prediction and the

ground truth ones, that a user feeds the model. In a nutshell, it is responsible for measuring the difference

between the predicted output of the model and the true values. So, in Supervised learning tasks, the

model learns by minimizing the loss function, which measures the discrepancy between the predicted

and true values. Some common loss functions used in supervised learning tasks include mean squared

error (MSE) [38, 39], cross-entropy [40], and binary cross-entropy [41]. But in the case of Unsupervised

Learning, where Reinforcement Learning is laid, on the other hand, there are not any labels, instead,

the model trains itself through a system of penalties or rewards that are given for each action, and

help it to move closer to the final objective. This means that the model trains itself by maximizing

or minimizing some objective function that is indicative of performance, such as reconstruction error

or contrastive loss or maximizing the profits/score. Unsupervised learning has been used extensively in

several machine learning applications, such as clustering, dimensionality reduction, anomaly detection,

or any other problem where the classic methods failed to do so, either because of a lack of labeled datasets

or because of the complexity of the task. The choice of an appropriate loss function for reinforcement

learning is crucial for the success of the model. The loss functions used in reinforcement learning include

mean squared error, policy gradients, and Q-learning.

For the VNE problem, which is the focus of this work, the Double Deep Q-Network (DDQN) model

will be used as a reinforcement learning agent. The objective of the DDQN model is to learn an optimal

policy that maximizes the expected cumulative reward obtained by placing virtual network functions

(VNFs) in a virtual network. The choice of an appropriate loss function for the DDQN model is critical

for the success of the VNE problem.

2.7.4.1 Mean Square Error

The mean squared error (MSE) is a common loss function used in regression problems in machine

learning [39]. It is used to measure the average squared difference between the predicted and true values

of a model’s output. Mathematically, it is calculated by taking the average of the squared differences

between the predicted values and the true values.

Anastasios Karageorgiadis 24 August 2023

2.7 Artificial Neural Networks

MSE =
1

N

N∑
i=0

(yi − ypredi
)2 (2.19)

where N is the number of data points yi are the observed values and ypredi are the predicted ones.

Figure 2.11: Mean Square Error plot

The MSE loss function has several desirable properties that make it a popular choice for regression

problems. First of all is continuous and differentiable, which means that it can be easily optimized using

gradient-based methods, like neural networks which use the backpropagation technique. Additionally,

it gives higher weight to large errors, which can be useful in situations where large errors are more

significant than small errors. This has also a significant drawback, and that is MSE is very sensitive to

outliers. If the data that feeds the model are not cleaned or they have missing values or in general the

quality of them is not as it should be this definitely will affect the final model and its performance.

In general MSE loss has been widely used in a variety of regression-based applications, including

finance, healthcare, and transportation [42, 43]. For example, in financial forecasting, MSE can be

used to measure the accuracy of stock price predictions. In healthcare, it can be used to evaluate the

Anastasios Karageorgiadis 25 August 2023

2. BACKGROUND

performance of medical diagnostic models. In transportation, it can be used to evaluate the accuracy of

traffic flow models.

The MAE can be expressed mathematically as:

MAE =
1

N

N∑
i=0

|yi − ypredi
| (2.20)

where yi is the actual value, ypredi
is the predicted value, and N is the number of samples in the dataset.

Figure 2.12: Mean Absolute Error plot

The MAE is often used in situations where outliers can have a large impact on the performance of

the model. This is because the MAE is less sensitive to outliers than the MSE, since the absolute value

operation makes the difference between the predicted and actual values insensitive to the direction of

the difference.

One potential downside of the MAE is that it treats all errors equally, whereas the MSE places a

higher weight on larger errors. As a result, the MAE may not be the best choice if you want to minimize

the impact of large errors on your model’s performance.

Anastasios Karageorgiadis 26 August 2023

2.7 Artificial Neural Networks

2.7.4.2 Huber Loss

The Huber loss [44] is a popular choice of loss function in machine learning due to its ability to provide

a balance between the Mean Squared Error (MSE) and Mean Absolute Error (MAE) losses. The Huber

loss is robust to outliers in the data, meaning it is less affected by data points that are far from the

majority of the data. It is a smooth and continuous function that behaves like the MSE loss for small

errors and like the MAE loss for larger errors.

The Huber loss function is commonly used in regression problems where the goal is to predict a

continuous value output. The Huber loss function is similar to other loss functions such as the MSE

and MAE loss functions, but it provides a trade-off between the two. In situations where the dataset

may contain outliers, the Huber loss function can be particularly useful as it can downweight the impact

of these outliers on the overall loss. The Huber loss function is particularly useful when modeling data

from real-world situations where the noise levels may be higher or the dataset may contain errors.

The Huber loss function is a loss function used in regression tasks that is less sensitive to outliers

than the mean squared error (MSE) loss function. It is defined as a combination of MSE and MAE loss

functions and is typically used when the data contains outliers or noise. The Huber loss function can be

written as:

Lδ(α) =

{
1
2α

2, if |α| ≤ δ.

δ(|α| − 1
2δ), otherwise.

(2.21)

If α = y − f(x) the above equation is expanded into this form,

Lδ(y, ypred) =

{
1
2 (yi − ypred)

2, if |y − f(x)| ≤ δ.

δ(|y − ypred| − 1
2δ), otherwise.

(2.22)

where y is the true value, ypred is the predicted value, and δ is a hyperparameter that determines the

threshold at which the function switches from quadratic to linear. When the absolute error |y− ypred| is

less than or equal to delta, the function is quadratic, similar to MSE. When the absolute error is greater

than the delta, the function is linear, similar to MAE. This equation essentially can be described as:

for loss values less than the δ, use the MSE formula. In the case that loss values are greater than δ,

use the MAE. Using the MAE for larger loss values mitigates the weight that is put on outliers so that

get a well-rounded model. At the same time, the MSE is used for the smaller loss values to maintain

a quadratic function near the center. Overall, this method manages effectively to combine the best of

both worlds from the two loss functions.

The advantage of using the Huber loss function over MSE is that it is less sensitive to outliers.

Outliers can cause the weights of the model to be updated in such a way that they overfit the outlier

Anastasios Karageorgiadis 27 August 2023

2. BACKGROUND

Figure 2.13: Huber Loss plot

data, leading to poor generalization performance. By using the Huber loss function, the effect of outliers

is reduced and the model can learn to fit the majority of the data.

Anastasios Karageorgiadis 28 August 2023

2.7 Artificial Neural Networks

2.7.5 Weights Initializers

Weight initialization is a crucial step in the training process of a neural network model. It involves

setting the initial values of the weights in each layer of the network to appropriate values that can

help the network avoid getting stuck in a sub-optimal solution and improve the overall convergence

towards minimizing the loss. Weight initialization can have a significant impact on the performance of

the network and can play a crucial role in reducing the training time and improving accuracy. This

section provides an overview of weight initialization approaches in machine learning models.

There are several weight initialization techniques that can be used in neural networks. The choice of

initialization method is dependent on the network architecture, the activation functions used, and the

nature of the problem being solved. The most common method used in deep learning is random weight

initialization. With random initialization, the weights of the network are set to random values drawn

usually from a uniform or a normal distribution. While this method is simple and easy to implement,

it can lead to slow convergence and poor performance in deeper networks. In recent years, researchers

have proposed many weight initialization methods to address the limitations of random initialization.

These methods are designed to set the weights in a way that can speed up the convergence rate, improve

the accuracy of the model, and prevent overfitting. The choice of initialization method can also depend

on the optimization algorithm used to train the network, as some methods are better suited for certain

optimization techniques.

In the following section, some of the most commonly used weight initialization methods in neural

networks will be discussed such as He initialization (Subsection 2.7.5.1) and Glorot (Subsection 2.7.5.2)

initialization.

2.7.5.1 He Weight Initialization

The He initialization is a weight initialization technique that is widely used in deep learning networks.

This method was introduced in 2015 by He [45] and is an improvement over previous techniques, such

as random initialization, that were not optimized for use in deep neural networks. The main goal of He

initialization is to prevent the vanishing and exploding gradients problems that can occur during the

training phase in deep neural networks.

In general, the He initialization method works by setting the weights of a layer to random values

drawn from a Gaussian distribution with a mean of 0 and a variance of 2
n , where n is the number of

inputs to the layer. This approach ensures that the variance of the outputs of each layer is roughly the

same as the variance of the inputs. The importance of the above initialization lies in the need that the

gradients in a neural network are proportional to the variance of the inputs, and if the variance changes

Anastasios Karageorgiadis 29 August 2023

2. BACKGROUND

significantly from layer to layer, the gradients can become too small or too large, which can cause the

network to learn slowly or not at all or stack at sub-optimal solutions.

In practice, He initialization has been shown to work well in a wide range of deep learning models,

including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and other types

of architectures that use ReLu activation (Section 2.7.3) functions. It has also been found to be more

effective than other methods, such as Glorot (also known as Xavier) initialization, which was designed to

be used with sigmoid activation functions (Section 2.7.3). However, the choice of initialization method

should be carefully considered for each specific model, and there are other methods that can be used in

conjunction with He initialization to further improve the performance of the network. It is common that

some layers may have different activation functions from others, even in the same model. For example,

it’s common in a CNN classifier where all the convolutional layers have a ReLu activation function, and

the last Dense layer which makes the classification may have a sigmoid or a softmax activation function.

The He initialization method [45, 46] as is implemented and described by the TensorFlow documentation

is split into to sub-methods the He normal, which draws samples from a truncated normal distribution

centered on 0 with stddev =
√

2
fanin

. And the He uniform where the weights are sampling values from a

uniform distribution within [-limit, limit], and the limit is given by this formula limit =
√

6
fanin

, where

fanin is the number of input units in the weight tensor, for both methods.

2.7.5.2 Glorot Weight Initialization

Glorot initialization is a commonly used method for weight initialization in neural networks. It was

introduced by Xavier Glorot and Yoshua Bengio in 2010 [47] as a way to address the vanishing and

exploding gradient problem that can occur during training. The idea behind Glorot initialization is to

set the initial weights to values that take into account the number of input and output connections for

a given layer, as well as the activation function being used.

The Glorot initialization method involves randomly initializing the weights with values drawn from

a uniform or normal distribution that is centered around zero. However, the range of the distribution

is scaled by a factor that depends on the number of inputs and outputs for the layer. Specifically, the

weights are initialized to values in the range [-r, r], where r is calculated as the square root of 6 divided

by the sum of the number of inputs and outputs. This range is chosen to ensure that the activations of

the neurons in the layer are not too small or too large, which can help to prevent vanishing or exploding

gradients during training.

Glorot initialization is a popular choice for weight initialization in neural networks due to its simplicity

and effectiveness. It has been shown to improve the performance of deep neural networks compared to

Anastasios Karageorgiadis 30 August 2023

2.7 Artificial Neural Networks

other initialization methods, particularly in networks with large numbers of layers. However, it may not

always be the best choice for every type of network or problem, and other initialization methods such as

He initialization may be more appropriate in some cases. Inside the the official Tensorflow documentation

there are implemented two versions of the above technique one mentioned as Glorot normal, which draws

samples from a truncated normal distribution centered on 0 with stddev =
√

2
fanin+fanout

. The other

is the Glorot uniform where draws samples from a uniform distribution within [-limit, limit], where

limit =
√

6
fanin+fanout

, where in both cases the fanin is the number of input units in the weight tensor

and fanout is the number of output units.

2.7.5.3 LeCun Weight Initialization

LeCun weight initialization method, also known as LeCun initialization, is a weight initialization tech-

nique commonly used in deep neural networks. This method was introduced by Yann LeCun [48, 46].

The aim of this technique is to provide an efficient initialization of the weights in a neural network by

taking into account the number of input and output connections of each layer. Following a similar logic

as the previous two methods. The LeCun initialization method considers the distribution of the inputs

to each neuron and the non-linearity of the activation function used in each layer. In this method, the

weights are initialized using a normal distribution with a mean of zero and a standard deviation that is

determined by the size of the input and output connections of each layer. This means that the weights are

scaled based on the number of incoming and outgoing connections, which helps to preserve the variance

of the signal throughout the network. For example, as described from the Tensorflow documentation [46],

there is the LeCun Normal method, which takes samples from a truncated normal distribution centered

on 0 with stddev =
√

1
fanin

. There is the LeCun Uniform method which samples from a uniform dis-

tribution within [-limit, limit], limit =
√

3
fanin

. The fanin is the number of input units in the weight

tensor.

The LeCun initialization method also takes into account the non-linear activation functions used in

each layer. The idea is to ensure that the variance of the output of each layer is equal to the variance of its

input. This is done by scaling the weights with a factor that depends on the type of activation function

used. For instance, the factor for the hyperbolic tangent (tanh) activation function is approximately

1.25, while for the Rectified Linear Unit (ReLU) activation function it is approximately 2.

One of the main advantages of the LeCun initialization method is that it helps to avoid the vanishing

or exploding gradient problem. This problem arises when the gradients in a deep neural network become

too small or too large, which can lead to slow convergence or divergence during training. By initializing

Anastasios Karageorgiadis 31 August 2023

2. BACKGROUND

the weights in each layer based on the input and output connections and the activation function used,

the LeCun method ensures that the gradients remain within a reasonable range throughout the network.

In summary, the LeCun weight initialization method is a powerful technique that can help to improve

the performance and training time of deep neural networks. By taking into account the number of input

and output connections and the non-linear activation functions used in each layer, this method provides

an efficient initialization of the weights that can help to avoid the vanishing or exploding gradient problem

and improve the overall convergence of the network.

Anastasios Karageorgiadis 32 August 2023

Chapter 3

Problem Statement

3.1 Embedding of Virtual Network Functions

The embedding of VNFs is the problem of finding the optimal fitted virtual node, inside a virtualized

network represented by a Substrate Network (SN), where a VNF can be placed [14, 12, 15, 49]. In the case

of multiple sequential VNFs that are parts of a network service, further from node placement, there are

links that must be mapped inside SN; so, there is another step that is similar to the path-finding problem,

where usually the optimal shortest path is selected. The VNFs are served by the network operator in

the form of Virtual Network Requests (VNRs). In the real world, a VNE method has to handle the

VNRs upon arrival rather than serving them at once after arrival (off-line). With the on-line embedding

decisions, the ISP aims to maximize its long-term revenue. The Network Service Embedding overall is

an NP-hard [15, 50] problem. With this master thesis, an alternative method of NSE is implemented and

tested in order to compare it with the basic heuristic or linear programming methods. As the demands

for more capacity or better user experience over a network infrastructure have been increasing over the

last few years, the need for an efficient, faster, and more robust change approach is necessary. With

the use of virtualized networks and the ability to use any commodity server as a physical node, which

can simulate a large variety of multiple network functions, classical Linear programming methods are

getting too difficult to maintain and respond to more complex requirements. This is opening the path

to machine learning approaches that are easier to expand for higher-dimension constraint problems.

The goal of this work is to create another proof of concept to point out all the benefits that a

Reinforcement Learning method has to offer to a difficult and time-demanding problem. More precisely,

this work tries to quantify the improvements in time and complexity that a Reinforcement Learning(RL)

method has instead of a simple heuristic or Integer Linear Programming (ILP) methods that were

Anastasios Karageorgiadis 33 August 2023

3. PROBLEM STATEMENT

proposed in previous publications (see [12, 15]).

Anastasios Karageorgiadis 34 August 2023

3.2 Related Work

3.2 Related Work

The present work was inspired by previously published research on network service embedding titled

”Network Service Embedding Across Multiple Resource Dimensions” [12]. In that paper, the main

problem discussed is the classic Network Service Embedding over multiple resource constraints. The

resources that a VNF has, are CPU and memory (2-D) there is also the link bandwidth between two

VNF nodes. The goal is to compare a MILP [51] method and a simple heuristic baseline algorithm

with a more sophisticated heuristic method that was developed to solve NSE in a more efficient way for

multiple dimensions. The higher dimensionality of the problem refers to the extra resource demands of

a VNF sequence, resources demands like CPU, memory, and bandwidth. So, the Mixed Integer Linear

Program has the objective of minimizing the Equation 3.1, and the formulation is described with the

following mathematical expressions:

∑
u∈V

zu +
1∑

(i,j)∈EF
dij

∑
(u,v)∈E

∑
(i,j)∈EF

f ij
uv (3.1)

The 3.1 must subject to these constraints:∑
u∈V

xj
u = 1 ∀i ∈ VF (3.2)

∑
v∈Vs

(f ij
uv − f ij

vu) = dij(xi
u − xj

u) (3.3)

Where (u ̸= v), (i ̸= j,∀(i, j) ∈ EF ,∀u ∈ V).

∑
i∈VF

dki x
i
u ≤ rku · zu ∀u ∈ V,∀k ∈ {1, 2} (3.4)

∑
i,j∈EF

f ij
uv ≤ ruv, ∀(u, v) ∈ E (3.5)

xi
u, zu ∈ {0, 1}, ∀i ∈ VF ,∀u ∈ V (3.6)

f ij
uv ≥ 0, ∀(u, v) ∈ E,∀(i, j) ∈ EF (3.7)

Anastasios Karageorgiadis 35 August 2023

3. PROBLEM STATEMENT

Symbol Description

V the set of physical nodes within the substrate topology

VF the set of virtual nodes comprising a network service

E the set of physical edges within the substrate topology

EF the set of virtual edges between virtual nodes

dki demand of virtual node i on resource k

dij bandwidth demand of edge (i,j) in Mbps

rku residual capacity of physical node u on resource k

ruv residual capacity of physical edge (u,v) Mbps

xi
u assignment of virtual node i to physical node u

f ij
uv amount of bandwidth assisgned to link (u,v) for the virtual edge (i,j) in Mbps

zu usage indicator of server u

siu suitability value of mapping VNF i to server u

Table 3.1: Symbol Explanation Table[12]

Anastasios Karageorgiadis 36 August 2023

3.2 Related Work

Regarding the baseline heuristic, that was used in this paper, it sorts the racks of the substrate

network by using the server’s CPU load. Then this baseline is expanded in order to be used for an

n-dimension problem, where the resource is represented as 2D vectors and the constraints formulation

uses the Manhattan distance in order to check if there is any violation of the constraints. In the case a

Virtual Node can be placed, then there is a priority to keep, on where to place this node. The priority

has to do with putting a VN first in the same rack on a different or in the same server and then if it

can’t be placed there, the algorithm tries for a server on a different rack. This process simply takes into

account the intra-rack and inter-rack traffic, so as to better manage the substrate network resources and

balance the load.

In order to think a level further the [15] was used as a guideline to design the Reinforcement Learning

approach presented in these pages. In [15], the problem of NSE is described and a basic formulation is

presented that shows how to handle the mapping of a VNF service. More precisely they define the state

of the network, as a multi-dimension vector/ array,

State =

S CPU MAX

S BW MAX

S CPU Free

S BW Free

Current Embedding

V CPU Request

V BW Request

Pending V Nodes

(3.8)

The above vector is explained by the Table,

Anastasios Karageorgiadis 37 August 2023

3. PROBLEM STATEMENT

State Representation Feature Description

S CPU Max The maximum of CPU resources over

all SN nodes

S BW Max The max bandwidth of each substrate

node. We define the bandwidth of a

node as the sum of all links’ bandwidth

that directly link to this node.

S CPU Free The amount of CPU resources that are

currently free on every substrate node.

S BW Free The bandwidth resources that are yet

to be allocated on all substrate nodes.

Current Embedding The (partial) embedding result of the

current VNR. Each substrate node is

set to 1 if it host a virtual node in the

current VNR and 0 otherwise. This fea-

ture works as a mask to prevent virtual

nodes in the same VNR from sharing

one substrate node, as most previous

works did.

V CPU Request The number of virtual CPUs the cur-

rent virtual needs to fulfil its require-

ments.

V BW Request The total bandwidth the current virtual

node demands according to the current

VNR.

Pending V Nodes The number of unallocated virtual

nodes in the current VNR.

Table 3.2: State Vector Features Explanation Table[15]

As for the mapping steps the authors of [15] split it, into two separate sub-problems one is to place

a VNF node on the substrate network if the CPU constraints are valid, and then to map the linking

between two VNF nodes with those of virtual network’s nodes, or with other words to find the optimal

path between all possible layers/nodes of the virtual network, that also satisfy the bandwidth request of

the VNF nodes. There is also this work [52], where the authors are focusing on the ’Online’ procedure of

placing VNFs, which is closer to the real world scenarios. They try to fully automating Virtual Network

Embedding by using neural networks and reconstructing the substrate network state into a 2D array

that contains the CPU and bandwidth features of all nodes. This array is handled as an image vector

and feed into a Convolutional Neural Network [53]. At the end there is also an extra logic in order to

Anastasios Karageorgiadis 38 August 2023

3.2 Related Work

reduce the action space, so as the model to converge faster and give a feasible solution at the end. Last

but not least, as for the evaluation or simulation process a lot of the information was extracted from

[54, 10, 55, 56] and it will be discussed further at the Chapter 5.

Author Methology Features Spatial Features Features Extraction DRL usage Problem Solving Time

Chowdhury et al [57] MIP modelling

and LP relaxation

CPU & bandwidth Yes No No Massive with

larger networks

Shahriar et al [58] ILP formulation

with heuristic solver

mean substrate and

virtual path lengths

Yes No No Affordable

Dehury et al [59] MIP formulation CPU,

memory and bandwidth

Yes No No Affordable

Cheng et al [60] Node Ranking CPU & bandwidth No Yes No Affordable

Yao et al [61] Deep RL CPU & bandwidth Yes No Yes Affordable

Yuan et al [56] Q-Learning CPU & bandwidth Yes No No Affordable

Sciancalepore et al [62] Q-Learning CPU & bandwidth Yes Yes No Costly due to

huge solution complexity

Xiao et al [63] Deep RL &

policy gradient training

Throughput & operation cost No Yes Yes Not mentioned

Wang et al [64] Deep RL CPU, memory & bandwidth No Yes Yes Computational overhead in-

creases

in larger scale networks

Pham et al [65] DDPG CPU & QoS No No Yes Not mentioned

Dolati et al [52] Deep RL CPU & bandwidth Yes Yes Yes Not mentioned

Wang et al [66] TD CPU & QoS No No Yes Not mentioned

Table 3.3: State of the Art Comparison Table [15]

The above table shows an overview of the main characteristics of the similar and well-known ap-

proaches for Network Service Embeddings 1, and it was used as a form of guideline to get inspiration

before selecting am Reinforcement Learning method.

1This is a part of the original table, you can see more at [15]

Anastasios Karageorgiadis 39 August 2023

3. PROBLEM STATEMENT

Anastasios Karageorgiadis 40 August 2023

Chapter 4

Our Approach

4.1 Introduction

In this Master thesis, the main objective is to quantify the potential benefits of using Reinforcement

Learning methods for Network Service Embedding, such as better resource utilization or lower latency

between nodes of a network service graph, compared to state-of-the-art heuristic or exact methods.

The first step is to define the optimization objectives and constraints, taking into account the resource

demands of our services. As such, the CPU utilization or bandwidth limitations, that may be expressed

in service graphs, will be investigated. Subsequently, a heuristic algorithm was developed as a baseline

to measure the overall gains through the comparison with the RL method. The idea is to extract some

useful conclusions about the Reinforcement Learning methods, which as an approach can lead to an

easier scaling to real-world scenarios. For example, by adding more resource requirements to a VNF,

the dimensionality of the input features will be increased, so as the complexity of the problem too, this

is easier to adapt in a Reinforcement Learning agent than to a classic heuristic or exact approach. In

addition, the selected RL method is examined for its efficiency (e.g. time) in various network conditions,

e.g. CPU load, number of requests arriving in a specific moment, etc. As for the scale of the problem,

regarding network topology, the initial step is using a small network for a micro (µ) datacenter with let’s

say 4 servers per rack, and then expanding to a larger scale with a few hundred servers per rack. For the

evaluation of the performance a network service generator is developed and a Fat Tree model of network

topology is built. Moreover, as a further step, there is research to experiment with the Reinforcement

Learning method on service graphs that stem from actual datacenter data for service graphs of network

functions.

Anastasios Karageorgiadis 41 August 2023

4. OUR APPROACH

4.2 Service Graphs Generator

To generate the data that simulates network service graphs, the NetworkX [5] framework was used,

to construct a list of graphs. This list represents the list of pending requests that the algorithm must

try to place inside the virtualized network. A service graph has a length that is given from a uniform

distribution randint(2, 5). The CPU demands of a VNF node are selected randomly from this list

[0.1, 0.2, 0.3, 0.4]. As for the link bandwidth demand between the VNF nodes is randomly distributed

between (20, 250) Mbps. Both the CPU and Bandwidth demands are normalized in space [0, 1], this is

necessary for the later data generation that would feed to the RL model. The total number of services to

be generated is given as input, and it is dependent on the total number of servers in the virtual network.

A simple example of a VNFs service graph is shown below in Figure 4.1

Figure 4.1: Example of VNFs request.

4.3 Heuristic Method As Baseline

For the purpose of this work, a heuristic algorithm was developed as a baseline to evaluate the results of

the Reinforcement Learning (RL) method. The idea of the heuristic algorithm was inspired by a similar

approach referenced in [12]. The algorithm was designed based on a specific network topology 2-layer

Fat Tree, while in this case a 3-layered Fat Tree is used. With this change, a different complexity level

is added to the problem. The objective of the baseline algorithm is to sort the available servers/nodes

based on CPU load and choose the one with the lowest load first. Looking at this from an abstract

view, a naive approach would be that the algorithm must classify the servers in groups depending on the

network layer, so as to reduce the sorting time. In a nutshell, starting from the higher layer and moving

forward the algorithm, must choose the pod, then the rack, and finally, the server where a node will

be placed. This process is repeated for each Virtual Network Function (VNF) node of a service graph.

Placing sequential nodes of a Virtual Network Request (VNR) also keeps a priority in order to decide

where to put the next node of the service chain, firstly trying into the same server as the previous node

of the chain, then trying inside the same rack but in a different server, then in the same pod but in a

Anastasios Karageorgiadis 42 August 2023

4.3 Heuristic Method As Baseline

different rack and so as into a different server. As for the sorting process, the algorithm would have to

calculate the average CPU load of each group. So, there would be a variable for storing the CPU average

load of servers inside a pod, then one similar variable for racks inside a pod, and finally the same metric

for the list of servers inside a rack.

But here, a more straightforward approach is followed as the number of servers in the datacenter is

quite manageable, the algorithm referenced below sorts all the servers of the entire datacenter picks the

one with the most available capacity, and maps the current VNR’s node.

Anastasios Karageorgiadis 43 August 2023

4. OUR APPROACH

Algorithm 2 Heuristic Baseline CPU Algorithm

1: procedure nseBaselineCPU(V NFreq, datacenter)

2: vnf map = []

3: sorted servers← sort rack server(datacenter)

4: rack id← sorted servers[0][0][0]

5: server id← sorted servers[0][0][1]

6: for V NFnode in V NFsreq do

7: if first node of V NFs then

8: placed,map node = placement(datacenter, rack id, server id, node name, cpu d)

9: if placed then

10: vnf map.append(map node)

11: else

12: print(”st node can’t be inserted, drop..”.format(i+1,node))

13: break

14: else

15: placed,map node = placement(datacenter, vnf map[−1][2], vnf map[−1][3], node name, cpu d)

16: if node placed then

17: link path = find substate path(datacenter, vnf [−1],map node)

18: if None in link path then

19: vnf map.append(map node)

20: else

21: valid map link = check bw(edges[(vnf map[−1][0], node[0])], link path)

22: if valid link map then

23: vnf map links[(vnf map[−1][0], node[0])] = link path

24: vnf map.append(map node)

25: else

26: print(”loop , link can’t be fitted”.format(i, (vnf map[−1][0], node[0])))
27: vnf map, vnf map links = revert map(datacenter, vnf map, vnf map links, nodes, edges)

28: break

29: else

30: picked i+ = 1

31: rack id← sorted servers[pickedi][0][0]

32: server id← sorted servers[pickedi][0][1]

33: placed,map node = placement(datacenter, rack id, server id, node name, cpu d)

34: if placed then

35: vnf map.append(map node)

36: else

37: revert placement(vnf map, vnf map links, vnf req nodes, vnf req edges)

38: break

Anastasios Karageorgiadis 44 August 2023

4.3 Heuristic Method As Baseline

Algorithm 3 Heuristic Baseline NSE Algorithm

1: procedure nseBaselineCPU(V NFreq, datacenter)

2: vnf map = []

3: sorted servers← sort rack server(datacenter)

4: rack id← sorted servers[0][0][0]

5: server id← sorted servers[0][0][1]

6: for V NFnode in V NFsreq do

7: if first node of V NFs then

8: placed,map node = placement(datacenter, rack id, server id, node name, cpu d)

9: if placed then

10: vnf map.append(map node)

11: else

12: print(”st node can’t be inserted, drop..”.format(i+1,node))

13: break

14: else

15: placed,map node = placement(datacenter, vnf map[−1][2], vnf map[−1][3], node name, cpu d)

16: if placed then

17: link path = find substate path(datacenter, vnf [−1],map node)

18: if None in link path then

19: vnf map.append(map node)

20: else

21: valid map link = check bw(edges[(vnf map[−1][0], node[0])], link path)

22: if valid link map then

23: vnf map links[(vnf map[−1][0], node[0])] = link path

24: vnf map.append(map node)

25: else

26: print(”loop , link can’t be fitted”.format(i, (vnf map[−1][0], node[0])))
27: vnf map, vnf map links = revert map(datacenter, vnf map, vnf map links, nodes, edges)

28: break

29: else

30: sorted servers = datacenter.sort rack server()

31: placed,map node = placement(datacenter, sorted servers[0][0][0], sorted servers[0][0][1]

32: ,node[0], node[1])

33: if placed then

34: link path = find substrate path(datacenter, vnf map[−1],map node)

35: if None in link path then

36: vnf map.append(map node)

37: else

38: valid map link = check bw(edges[(vnf map[−1][0], node[0])], link path)

39: if valid link map then

40: vnf map links[(vnf map[−1][0], node[0])] = link path

41: vnf map.append(map node)

42: else

43: vnf map, vnf map links = revert map(datacenter, vnf map, vnf map links, nodes, edges)

44: break

Anastasios Karageorgiadis 45 August 2023

4. OUR APPROACH

Algorithm 4 Find Link Path Between Substrate Network’s Nodes

1: procedure find link path(datacenter, nodeA, nodeB)

2: nodeA rack = datacenter.rack[nodeA[2]]

3: nodeB rack = datacenter.rack[nodeB[2]]

4: nodeA server = nodeA rack.servers[nodeA[3]]

5: nodeB server = nodeB rack.servers[nodeB[3]]

6: podA = nodeA[1]

7: podB = nodeB[1]

8: torA = nodeA rack.tor id

9: torB = nodeB rack.tor id

10: links path = []

11: if nodeA server == nodeB server then

12: links path.append(None)

13: else if torA == torBandnodeA server! = nodeB server then

14: links path.append(datacenter.links d[(torA, server1)])

15: links path.append(datacenter.links d[(torA, server2)])

16: else if podA id == podA id : then

17: links path.append(datacenter.links d[(torA, serverA)])

18: links2select = find link by child(datacenter, torA)

19: selected agg torA = pick best fit link(links2select)

20: links path.append(selected agg torA[1])

21: liks path.append(datacenter.links d[selected agg torA[0][0], tor2])

22: links path.append(datacenter.links d[(torB, serverB)])

23: else

24: links path.append(datacenter.links d[(torA, serverA)])

25: links2select = find link by child(datacenter, torA)

26: selected agg torA = pick best fit link(links2select)

27: links path.append(selected agg torA[1])

28: links2select = find link by child(datacenter, selected agg torA[0][0])

29: selected core agg = pick best fit link(links2select)

30: links path.append(selected core agg[1])

31: links2select = find link by parent(datacenter, selected core agg[0][0])

32: selected agg sw = get agg both way(datacenter, links2select, torB)

33: links path.append(selected core agg[0][0], selected agg sw)

34: links path.append(datacenter.link d[selected agg sw, torB])

35: links path.append(datacenter.links d[(torB, serverB)])

36: return links path

Anastasios Karageorgiadis 46 August 2023

4.3 Heuristic Method As Baseline

Algorithm 5 Placement Algorithm

1: procedure placement(datacenter, rack id, server id, node name, cpu d)

2: placed = False

3: map node = ()

4: rack obj = datacenter.find rack(rack id)

5: server obj = rack obj.find server(server id)

6: if (server obj.node fits(cpu d))h then

7: placed = True

8: map node = (vnf node id, rack obj.pod id, rack id, server id)

A more realistic approach needs to take into account a link’s bandwidth demand between two

consecutive nodes. So the initial algorithm Heuristic Baseline NSECPU is extended with a few more

steps to validate that the bandwidth constraints, of a given node, are satisfied too, before continuing

further with the placement process. This generates the Heuristic Baseline NSECPU+BW algorithm,

where the extra step contains the link mapping.

For the purpose of link mapping implementation, a new subroutine is developed. This routine exam-

ines mapped nodes in consecutive pairs, to check where the two physical nodes are located. The available

locations that two virtual nodes may be mapped are, into the same server or two different servers. In

the case of the same server, there is no need for any link constraint, but in the case of different servers,

there is a need for specification of the link’s path. The link path varies in length since there are three

cases, the two servers are located in the same rack, the servers are in the same pod but different racks,

and finally the case where the two servers are in completely different pods. All the above, says that a

link path between two physical servers where virtual nodes are mapped can have a length of 2,4 or 6

intermediate nodes.

All the above presents the necessary information for the Find Link Path algorithm.

Anastasios Karageorgiadis 47 August 2023

4. OUR APPROACH

4.3.1 Mapping of VNF

The mapping is done by storing the VNF’s node name/id, and the virtual network’s node signature.

This signature contains the pod’s, rack’s, and server’s identity, and across with the VNF node identity

are stored in a tuple data structure. Each VNF node mapping tuple is appended into a list, till every

node of the VNF sequence is placed. In case one node can’t be placed, the list is discarded and the CPU

resources of the server are updated back into the previous values.

V NF map = (V NF node name, pod id, rack id, server id) (4.1)

V NF map links[vnf nodei, vnf nodei+1] = [Link1, Link2..] (4.2)

The Equation 4.2 represents a Python dictionary that has as keys two consecutive VNF nodes’ names,

and its value is a list of Link objects. The Link objects are composing the path on the substrate network,

from the server that vnf nodei to the server where the vnf nodej are placed. So, in order to have the

full information of a VNF request that is mapped on a virtual network, there is an extra dictionary data

structure that stores the list of all V NF map tuples for each VNF node, and a list with all the links

between each substrate network’s node. It’s also important to mention that if a VNF request’s nodes

can be placed on the same server there is not a V NF map links list. In conclusion, the first task is

to put as many VNF nodes of a service request into the same server and then examine placement into

different servers, not considering any priority between pods or racks, just picking the server with the

most available CPU. This logic allows a faster decision if a node can be placed into the substrate network

or not. This way also reduces the times that servers are sorted based on CPU load before picking one,

the sorting process is done once in the beginning and once at the end of the placement.

To better understand the mapping process and the info that is stored in order to construct the

mapped VNF node on the substrate network, the whole procedure is visualized by the Figure 4.2

Anastasios Karageorgiadis 48 August 2023

4.3 Heuristic Method As Baseline

Figure 4.2: Mapping of VNF visual

Anastasios Karageorgiadis 49 August 2023

4. OUR APPROACH

4.4 Reinforcement Learning Method

4.4.1 Reinforcement Learning Modeling for VNE

In order to build a Reinforcement Learning approach for the Virtual Network Embedding problem,

the initial step is to try and formulate the problem as a Markov Decision Process (MDP). Towards this

direction the MDP consists of four sections, the first one is the state, the second one is the action space,

the third is the transition probabilities from one state to another, and finally, the rewards that are given

to the agent as an action is taken or a state is reached. Let’s now define the state section, which in

the VNE problem can be the current status of the resources’ load of the datacenter, in other words, the

average available resources e.g. CPU, Bandwidth of the whole datacenter. In addition to that the state

includes the demands of the current VNR, which need to be mapped on the datacenter’s servers. As for

the action space, this represents the different choices that the agent can make in each state, so in VNE

a possible action set is composed of all available datacenter’s servers. The agent’s action is the selection

of one server where the current VNR’s node can be mapped. Then as for the transition from one state

to another as the result of an action that is done by the agent, it could be determined based on the

availability of resources. Last but not least the rewards that the agent gets from executing an action

could reflect the desired behaviour of the VNE agent based on the final goal, for example maximizing the

VNE request acceptance ratio or minimizing the resource usage or in general better resource utilization.

4.4.2 Deep Reinforcement Learning agent

The methodology employed in this study relies on the application of Deep Reinforcement Learning

(DRL) techniques, by aiming to address the challenge of efficiently embedding virtual network requests

onto physical networks while maintaining the quality of service and minimizing resource consumption.

The selected technique particularly focuses on the development of a Virtual Network Embedding (VNE)

agent based on a double Deep Q-Network (DQN) architecture. The main purpose of using a Double

Deep Q Neural Network approach is because of the overestimation problem that comes along with the

simpler DQN architecture [21]. In the DQN model the max operator that is used for calculating the

Bellman equation (see 2.6.3,2.6.5), is prone to cause overestimation of Q-values. The intuition behind

the overestimation is that the agent may overemphasize some actions, even if they are not the optimal

selection. This causes slower convergence or stack at suboptimal policies. In general, this problem may

be a huge challenge when the agent explores better solutions. So, a way to address this is by using a

DDQN model, which can be shown as an expansion of DQN model. The DDQN as an expansion of

DQN, has a restriction which is, that it can be used only for problems with a finite action space. So in a

Anastasios Karageorgiadis 50 August 2023

4.4 Reinforcement Learning Method

more simplistic way, if the action space of the VNE mapping problem, is all the possible physical nodes

that a datacenter has, this can lead to a large action space, as the datacenter scales up. In a nutshell, it

is more difficult for a model to be trained and also to be robust, if the action space is large. Furthermore,

it makes the operation of the VNE agent computationally intensive as the agent needs to evaluate many

different action combinations and learn optimal policies to follow. This leads to further examining ways

of reducing the action space, down to an optimal minimum that is enough for the agent to select from.

The solution to this problem consists of the first section of the described methodology’s pipeline.

Figure 4.3: Abstract Pipeline of the RL VNE problem

4.4.3 DDQN architecture description

In this Section, the overall architecture and functionality of a Double Deep Q Network will be described.

The concept of Double Deep Q Network (DDQN) is to build two similar neural networks, the main model

and the target model. The architecture of the model is composed of two Dense Layers with a size of

hidden layers equal to 24. Each layer has as an activation layer the ReLu 2.7.3, while the selected

weights’ initializer method used is the HeUniform 2.7.5.1.

The main model is used for the part of the action selection while the target model is used for the

evaluation of the selected action. This can be described by the following equation

Q(s, α) = r + γ ∗Qtarget (s
′, argmax (Q(s′, α′, θ), θtarget)) (4.3)

where Qtarget(s
′, α′, θ) represents the estimated Q values for the next state s′ using the target network

with parameters θtarget, the argmax(Q(s′, α′, θ) is showing the action that maximizes the Q-values for

Anastasios Karageorgiadis 51 August 2023

4. OUR APPROACH

the next state s′ based on the main network with parameters θ.

Figure 4.4: Abstract Pipeline of Neural Network Architecture

In the above Figure 4.4 the input size (see: 4.4.4) is defined from the actual size of the action space

after is pruned with the help of the Heuristic algorithm (see:4.4.5). The red circle is used to represent

the Q-value with the highest value, which is selected at the end using the argmax.

To help further understand the model architecture, a second part of the information is shown in the

next Figure 4.5 , and shows the total size of the model, and it is called model’s summary.

Figure 4.5: Model’s summary

Anastasios Karageorgiadis 52 August 2023

4.4 Reinforcement Learning Method

4.4.4 Define Input State

In the presented approach, a vector state representation that encapsulates critical information about

the current virtual network and the physical network resources at hand is utilized by the DDQN agent.

The main focus of this Section is the ¡state¿ part of the Reinforcement Learning design, which centers

on the development of an appropriate state representation capturing the essential features of the VNE

problem. Starting from the work referenced in Chapter 3, and specifically at Section 3.2 where the state

vector 3.8 is presented, a similar formulation for the state is developed. This state representation must

include details about a virtual node that is pending to be mapped. These details are first and foremost

the node’s resource demands, the physical nodes and their available resources, and the length of the

VNE request that is to be handled by the agent, while also there is a value for the order of the node that

is currently processed, and ready to be mapped. By looking at this in a more abstract way, as shown in

Figure 4.3, the state of the agent is combined by two parts, one is the datacenter’s state (SN), and the

other is the VNE request’s information(VNR).

Breaking down this abstraction and starting from the datacenter’s state, it is important to mention

that the state’s vector size can vary according to the number of actions that the agent is allowed to

have. For example, by using the heuristic 4.4.5 algorithm, the action space is pruned down to a specific

number. This number is equal to the number of possible physical node candidates that a VNE node can

be mapped onto. For the requirements of this project, given that a node has only CPU and Bandwidth

demands, so a physical node has two values. This means if the number of servers candidate is equal to

4, the datacenter state has a length of 4×2. On the other hand, the VNE request’s state size is fixed, as

it only includes 4 values. To provide additional details, there are two values that correspond to the CPU

and Bandwidth demands, one value for the current node index, meaning that there is a linear sequence

of nodes in a VNE request, plus a value showing the size of this VNE request.

Let’s say that the selected number of server candidates using the 4.4.5 algorithm is 2, so the state

Anastasios Karageorgiadis 53 August 2023

4. OUR APPROACH

vector looks like this,

State =

dc CPUi

dc BWi

dc CPUi+1

dc BWi+1

CPU d

BW d

Current node index

Length V NE req

(4.4)

State Representation Feature Description

dc CPUi The i-th server’s CPU load status.

dc BWi The i-th server’s Bandwidth load sta-

tus.

dc CPUi+1 The i+1-th server’s CPU load status.

dc BWi+1 The i+1-th server’s Bandwidth load

status.

CPU d The CPU demand of the current node

to be mapped.

BW d The Bandwidth demand of the current

node to be mapped.

Current node index The node of the VNE request that is

pending to be mapped.

Length V NE req The number of total nodes that the cur-

rent VNE request has.

Table 4.1: State Vector Features Explanation Table

where i is the index of each server candidate.

Anastasios Karageorgiadis 54 August 2023

4.4 Reinforcement Learning Method

4.4.5 Heuristic Algorithm for Candidate Servers Selection

The necessity of a finite and manageable action space, in order to train an efficient and robust RL agent,

requires reducing the actual action space into a more feasible one. In the Virtual Network Embedding

the action space is consisted of all the available servers/nodes of the physical network. This might be

a huge amount of nodes, that the agent has to select from so as to make a mapping action, which is

increasing the complexity and the execution time. To deal with this uprising problem, a good solution

is to select a subset of nodes (servers) out of the total, in a way that let’s say the κ top candidate nodes

to be selected. The selection is made by combing the server’s current resource status, in such a way that

the selected κ servers are those with the highest probability of a successful mapping.

For this reason, a heuristic algorithm was developed, this algorithm is described below:

Algorithm 6 Heuristic Rank Servers Algorithm

1: procedure grc rank

2: get servers status()

3: weights = {}
4: for server, loads in servers resources.items() do

5: weights[server] = 1/(loads[0] + loads[1])

6: total weight = sum(weights.values())

7: for server in servers resources do

8: weights[server] = weights[server]/totalweight

9: sorted servers = sorted(weights.items(), key = lambda x : x[1])

10: k selected = [server[0] for server in sorted servers[−topN :]

As a guideline each time a datacenter object is created we must define the size of the action space, in

order to set the boundary on how many servers must be selected. By trying to minimize the range of the

available options the agent has, in such a way that will help it to make better decisions. Furthermore,

before the ranking of the servers takes place, the current status of all servers’ load, in terms of CPU

load and Bandwidth availability, must be updated. As the bandwidth of a server, we define the link’s

capacity between the server and the ToR switch. To do so, a dictionary data structure is used named

servers resources, where the key is the server’s id and as values are the list of float values, representing

the two load variables.

Anastasios Karageorgiadis 55 August 2023

4. OUR APPROACH

4.4.6 Train Process Description

In this section, the training process of the agent is described in the form of pseudocode. The basic idea

is that given a datacenter and a number of generated VNRs, representing the episodes, iterating over all

the VNRs one at a time, and by calling the agent’s train process. Afterwards, the agent’s train process

uses a node of the passed VNR, and follows the algorithm 7 described below. The training process

makes use of an Experience Replay buffer, in which new experiences are added. When the memory size

reaches a specific limit above the batch size the actual train is happening, so the DDQN model updates

its parameters. The first approach uses the classic selection policy with ϵ-greedy (Section 2.6.7.2).

Algorithm 7 Training Process Abstract Pseudocode

1: procedure train agent(vnr, vnri, numOfV NRs, upd target step)

2: score = 0

3: done = False

4: state = get state(vnr, 0)

5: for nodei in range(2, len(vnr), 2) do

6: action = selectaction(state)

7: valid action = check valid action(vnr, action, state)

8: next state = get state(vnr, node i)

9: vnr state(valid action, nodei, len(vnr))

10: ar = acceptance ratio(noV NRs)

11: reward = calculate reward(state, action, valid action, len(vnr), ar)

12: done = is done(state, actionvalid)

13: score+ = reward

14: add mem samples(state, action, reward, next state, done)

15: state = next state

16: if len(memory) > batch size then

17: replay(batch size)

18: if nodei % upd target step == 0 then

19: update target model()

20: save model()

21: print(”episode|score|e”.format(vnri, score, epsilon))

22: if done then

23: break

The following algorithm showing the actual training/updating model procedure. This part is executed

only after there is sufficient data inside the memory.

Anastasios Karageorgiadis 56 August 2023

4.4 Reinforcement Learning Method

Algorithm 8 Experience Replay Pseudocode

1: procedure replay memory(batch size)

2: minibatch = random.sample(memory, batch size)

3: for state, action, reward, next state, done in minibatch do

4: q = model.predict(state)

5: if done then

6: q[0][action] = reward

7: else

8: α
′
= model.predict(next state)[0]

9: qt = target model.predict(next state)[0]

10: q[0][action] = reward+ γ × qt[argmax(α
′
)]

11: model.fit(state, q)

12: if epsilon > min epsilon then

13: epsilon∗ = epsilon decay

4.4.7 Reward function

This section is referred to the Reward and Penalty system that is applied to the agent, to guide it

closer to the final goal. For purposes of simplicity, the goal of the agent is to reach a specific Request

Acceptance Ratio. While the agent is learning and exploring for solutions, the reward system is split

into two different parts. The first part is to reward the agent in each step after a successful action is

made, and then give an extra reward for moving towards the goal.

As mentioned before the goal to catch is to reach a specific Request Acceptance Ratio. With that

being said, the Acceptance Ratio threshold for this problem is set to be 0.95. So, the Acceptance Ratio

reward function is described as :

RRAR(x) =

{
1, if x ≥ 0.95 (4.5)

1− (0.95− x), otherwise (4.6)

In general, the threshold is a variable and can be tuned up accordingly to the specific task. In the

above equation, the x represents the current calculated Request Acceptance Ratio.

The second part of the reward system is defined by the length of the VNR, in terms of how many

nodes it has. The concept is that each node is equally important in a way where the maximum reward,

here is 1, is split equally for each node.

Rvnr(status) =

{
1/length(V NRi), if status == success (4.7)

−1/length(V NRi), otherwise (4.8)

Anastasios Karageorgiadis 57 August 2023

4. OUR APPROACH

The above shows that if a node is successfully mapped by the agent, a reward is given accordingly,

in this way if a whole VNR is successfully mapped, the agent gets a reward of 1. In case the agent maps

fail, an equivalent negative reward is given.

With all these being said, the total reward function is given by the equation:

R = α ∗Rvnr(status) + β ∗RRAR(x) (4.9)

where α, β are the weights that can be used to balance the importance of each reward in the training

process. For simplicity purposes, both weights are equal to 1. In this case, because as is defined by

the type of rewards one is related to the number of total VNR generated (epochs) and the other to the

length of each VNR, the length of the VNR is much smaller than the total number of VNRs. This means

that the RRAR is relatively small at the start of the training and as the agent moves forward, and gets

closer to the goal it gets higher RRAR values.

4.4.8 Model Parameters

Here the rest of the agent parameters are briefed and discussed, to help explain the Results that

are following. A Neural Network model requires a few parameters to be defined before even starting.

First thing first the Loss function that was used was the MSE 2.7.4.1 and also an alternative of it

called Huber 2.7.4.2, both choices had similar performances, so the MSE was kept as the final choice.

The learning step was set 0.001 and the selected optimizer was Adam [34]). The batch size was set

into different values, according to the size of the training process in terms of the number of generated

VNRs (epochs), so the batch size was set either to 20,32 or 64, the mid one was the selected one. Now,

coming into the part of DDQN architecture there are some extra parameters that are used for the Q-

function 2.6.5. These are the γ, known as the discount factor which was set to 0.95, then there is the ϵ,

since the DDQN by default follows an epsilon-greedy policy, so the ϵ initial value was set as 1, with the

final or minimum value of ϵ to be 0.01, while the ϵ decays with a step of 0.99, as the agent moves into

the environment and tries to balance exploration and exploitation of new actions.

Anastasios Karageorgiadis 58 August 2023

Chapter 5

Results

In this chapter, the results of this work are presented according to each of the methods described in

the previous Chapter 4. First, of, it would be important to mention that this work is a simple proof of

concept, with the purpose of quantifying any possible outcomes of Reinforcement Learning methods for

the Virtual Network Embedding process, with its goal to be another valuable pointer toward the state

of the art path for the field. It would be more than necessary to examine, the above methodology at

deeper levels, and compare it with other similar approaches. In order to evaluate the proposed methods,

some well-known metrics would be used. These are the Request Acceptance Ratio, the CPU utilization,

and the Bandwidth utilization, which have been referenced in other similar works [67].

In the first section of Chapter 5, the environment for the experiments of the Baseline algorithm

(Section: 4.3) is described, and then the results in terms of VNE request acceptance ratio, CPU, and

link utilization are presented, along with the necessary comments. Then in the next Section, the training

progress of the agent is presented, and finally the overall evaluation of the agent across with the comments.

The training and the evaluation process was made by using randomly synthesized data, that were

fabricated by taking into account the recent bibliography like [54].

When it comes to hardware specifications to train the RL agent and to run the simulation, because

of the complexity of Neural Networks in general, a GPU was necessary. This was a MSI Nvidia 1080 8

Gb and the PC used has also a AMD Ryzen 2600X 3.6GHz CPU with a total memory size of 16 Gb.

5.0.1 Experiments Description

The characteristics of the generated data are specified in the first part of this chapter. In this case,

VNE requests are utilized, which are represented in two forms. The first form is the actual VNE graph,

which is solely used for plotting purposes. The second form is a simplified representation consisting of a

Anastasios Karageorgiadis 59 August 2023

5. RESULTS

list of float values, which are handled as pairs. Each pair comprises the CPU and bandwidth demands

of a VNE node. For the purpose of symmetry, a simple zero padding is required. This means that the

final element of the list has a value of zero, as the last node does not have any link and, therefore, no

bandwidth demand.

The CPU demand of a VNE node is randomly sampled between 0.1 − 0.4, and corresponds to the

percentage of CPU the node needs to occupy in order to operate. The CPU available load is normalized

in 0− 1, so the maximum available CPU is 1. As for the bandwidth demand, is randomly selected too,

but between 20− 250, in the magnitude of Mbps. The datacenter’s links have a capacity of 1Gbps, and

this is also normalized between 0 − 1. So, the randomly selected bandwidth value must be divided by

1000, before being assigned as a node’s demand.

To generate different sizes of VNE requests, a list with possible up-limits, such as max length =

[3, 5, 10], is utilized. The minimum size of a VNE request is 2. This approach generates a variety of VNE

requests that are evaluated. Furthermore, it is worth noting that the number of VNE requests changes

dynamically, ranging from a few hundred up to a few thousand, ranging from 100-8000 requests.

The datacenter is also scaled up by a factor of k, which represents the number of switch’s ports.

Specific k values are selected from a list such as k ∈ [8, 24]. Generally, it is considered a good practice

for k to be a factor of a power of 2.

Anastasios Karageorgiadis 60 August 2023

5.0.2 Define Evaluation Mid-Case scenario using the Baseline Algorithm

In the Figures below, the idea is that there is a plot for each metric under consideration, Request

Acceptance Ratio (RAR), Central Process Unit (CPU), and bandwidth usage. In each chart, the x-axis is

the same and shows the number of VNE requests generated. The y-axis is the value of each measurement.

Also, as is obviously observed, there are three different coloured graphs in the same graph. This is done

to show the relationship of each measurement to the length of the VNE request. In short, the example of

the magenta-coloured graph in the RAR plot shows how RAR changes as the number of VNE requests

increases, while a VNE request has a random length of 2-3 nodes. There are six graphs in total, three

per value of the k that is the parameter for the scale of the datacenter.

Figure 5.1: VNE Request Acceptance Ratio per VNE size

Anastasios Karageorgiadis 61 August 2023

5. RESULTS

Figure 5.2: CPU utilization per VNE size

Figure 5.3: Bandwidth utilization per VNE size

Anastasios Karageorgiadis 62 August 2023

Figure 5.4: VNE Request Acceptance Ratio per VNE size

The relationship between the request acceptance ratio (RAR) and the total number of VNE (virtual

network embedding) requests is illustrated in figures (5.4,5.1). As the total number of VNE requests

increases, the RAR decreases due to the limited capacity of the datacenter resources. Specifically, in the

conducted experiments, the scale-up of the datacenter in terms of the number of servers by a parameter

k. The total number of servers in the datacenter is k3

4 , where k ∈ [8, 24]. In Figure (5.1), the RAR plot

is shown for k = 8, while in Figure (5.4), the k is increased to 24. Furthermore, both figures demonstrate

that as the length of VNE requests increases, the RAR decreases.

The Figure (5.2) displays the CPU utilization, respectively, for k = 8. It is worth noting that

each request has multiple nodes with various resource demands. It is evident from the figure that the

Baseline(4.3) algorithm prioritizes mapping the nodes of a VNE request onto the same server if possible,

resulting in higher CPU usage. It follows that as the length of VNE requests increases, more nodes

are mapped onto the same server, resulting in higher CPU usage. Therefore, VNE requests with a

maximum length of 10 exhibit greater CPU usage. This is mostly because the VNE request that comes

first allocates the server’s CPU proportional to the number of nodes, so the next VNE request might

not fit in the server due to bigger demands, and the CPU available capacity is reduced significantly from

Anastasios Karageorgiadis 63 August 2023

5. RESULTS

the previous request.

Figure 5.5: CPU utilization per VNE size

The graph in Figure (5.3) illustrates that the bandwidth utilization of links is relatively low since

most of the requests are mapped onto the same server. While this eliminates latency between nodes in

VNE requests, it creates a single point of failure. If one node operation fails, the entire VNE request

fails. It is worth noting that the generated VNE requests have larger CPU demands than bandwidth.

For instance, a VNE node may require 0.4 of the CPU capacity while the bandwidth requirement is only

0.04. The difference in resource usage between Figures (5.2,5.5, 5.3,5.6) is due to this discrepancy in

resource demands.

Anastasios Karageorgiadis 64 August 2023

Figure 5.6: Bandwidth utilization per VNE size

Anastasios Karageorgiadis 65 August 2023

5. RESULTS

The results presented in this Section 5.0.2 are used in order to get an intuition about the behavior

of the problem and its environment. More precisely, the objective is to use the above simulations as

a guideline to pick a mid-case scenario to be used for the performance evaluation of the two proposed

methods. So as a conclusion, for the next Section 5.2 the size of VNE request is set to 2− 5 nodes, and

the maximum number of VNE requests is set to 8000 for the case where k = 24. The k is either 8 or 24,

so as to show the difference as the datacenter scales up.

5.1 Agent Train Results

For this Section, the generated VNR data, has the length of the (2,5), where the minimum number of

nodes is 2 and the maximum is 5. As was examined in the previous Section the VNE case with length

(2,5) was selected as a mid-case scenario, to test the agent built in the current work.

5.1.1 Learning Process

For the training process of the agent two different scales k = [8, 24] of the training datacenter-instance

were tested, where at the end the smaller one was selected in order to evaluate its performance.

Where k is the scale-up factor of the datacenter as described above (see: Section 5.0.1) and the

number of VNRs can be seen as the number of episodes.

The above plots were examined for a variety of parameter configurations and came out that the

action space size had a huge impact on the learning process. More precisely for the architecture that is

described fair well in the previous Chapter, the optimal training progress is achieved by using an action

space of 3 or 4. The action space size defines the number of servers that the Heuristic Algorithm 4.4.5

pre-selects in order to minimize the action space. From the training process is shown that for an action

space with size 2 (binary selection) or greater than 4, the model doesn’t converge properly, actually, the

MSE loss shows larger deviations from the optimal. With all the above being said the final choice for

the actual action space size was 3. So, the agent actually has three servers as candidates to select from,

in order to map a VNE node.

Anastasios Karageorgiadis 66 August 2023

5.1 Agent Train Results

Figure 5.7: Score per Epoch for k=8 and number Of VNRs 150

Figure 5.8: Score per Epoch for k=24 and number Of VNRs 1000

Anastasios Karageorgiadis 67 August 2023

5. RESULTS

Figure 5.9: MSE Loss per Epoch for k=8 and number Of VNRs 150

Figure 5.10: MSE Loss per Epoch for k=24 and number Of VNRs 1000

Anastasios Karageorgiadis 68 August 2023

5.2 Evaluation Plots Baseline vs DagNeQ Agent

5.2 Evaluation Plots Baseline vs DagNeQ Agent

Figure 5.11: Request Acceptance Ratio

The Figures 5.11, 5.12, 5.13 are the showcase, for the VNE mapping using the proposed agent in

Chapter 4 at Section 4.4.1. Starting from Figure 5.11, which is the base characteristic to compare the

Agent with the Baseline method, as shown from the plot the agent has similar or worse behavior than

the baseline, so it seems the model described in this work doesn’t outperform the Baseline algorithm.

But at this point is good to take into account that the agent is very dependent on selecting a suitable

reward function, and in the case of this work, it might need some improvements. Moreover, the randomly

generated data lacks the necessary quality and there are some general assumptions like the size of the

VNR length or the resource demands for each node, that affect the overall performance. That being

said, it points out the necessity of exploring and further research for more realistic data, that are closer

to the real-world problem of VNE mapping. As for the Figures 5.12, 5.13 the results are way worse

than the Baseline. But need to consider that the agent does not have any information about the CPU

or Bandwidth utilization while training.

Anastasios Karageorgiadis 69 August 2023

5. RESULTS

Figure 5.12: CPU utilization

Figure 5.13: Bandwidth utilization

Anastasios Karageorgiadis 70 August 2023

5.2 Evaluation Plots Baseline vs DagNeQ Agent

Figure 5.14: Request Acceptance Ratio k:24

As the datacenter is scaled up in Figures 5.14,5.15,5.16, and the number of VNE requests, the gap

between the two approaches becomes more apparent. For a large number of VNE requests the Baseline

algorithm seems to make a better decision regarding the mapping process. From the utilization plots for

CPU and Bandwidth, it is pretty obvious that the Baseline is also doing better. The Figures 5.15,5.16

if closely looked together, may help to observe that the DagNeQ agent doesn’t develop any specific

hierarchical preference in terms of which server has an advance over another. As was described in the

Baseline algorithm, it was designed to select firstly the same server then a server that belongs to the

same rack, and then anyone else. This is why the DaqNeQ seems to use more bandwidth in the beginning

while the Baseline after it starts to exhaust the other options.

As for the CPU and Bandwidth utilization is expected behavior, as mentioned above at 5.12, 5.13

, because in the above test case scenario of the agent (DagNeQ) the reward function does not include

any reward point system for reaching a CPU or Bandwidth-based objective. In a nutshell, the agent is

not trained to look for any resource utilization. This causes the agent to have a suboptimal solution in

comparison with the Baseline algorithm.

Anastasios Karageorgiadis 71 August 2023

5. RESULTS

Figure 5.15: CPU utilization k:24

Figure 5.16: Bandwidth utilization

Anastasios Karageorgiadis 72 August 2023

Chapter 6

Conclusion

6.1 Conclusion

This master thesis describes an alternative approach for Virtual Network Embedding by using Rein-

forcement Learning. The developed model is a variant of the Deep Q-Learning model implemented with

the help of Tensorflow framework and Keras API based on Artificial Neural Networks. The Network

Service Embedding agent gets as input the current state of the Virtual Network combined with the

Network Service request. The goal is to select the appropriate action: pick the suitable server to map a

VNR’s node. As the process goes on, the agent aims to map the whole VNR. The final objective is set

to it through the reward function. In this work, the objective is to reach a Request Acceptance Ratio of

0.95 and over. So, is important to define a specific reward system according to the desired objective. For

example, an alternative would be to have a reward function that shows the agent to achieve a specific

resource utilization threshold. Furthermore, it could be a more complex task to solve, like a combination

of Request Acceptance Ratio and CPU utilization thresholds that must be reached. As the results from

the previous Chapter 5 indicate, there is a need for deeper research on building a reward function. By

designing and implementing a more sophisticated reward system, the goal is to build an optimal agent

that solves the VNE problem. One more final thought would be after testing different reward scenarios

to implement and evaluate different Neural Network Models, in terms of alternative architectures. It

may seem like, a too narrow-visioned approach, following the Neural Network path, for the model, but

the level of abstraction that has to offer can make things a lot easier.

Anastasios Karageorgiadis 73 August 2023

6. CONCLUSION

6.2 Future Work

With a simplistic overview of the VNE problem, there are a few ideas that are worth investing more

time for further research. For example, expanding the resource demands by adding extra features like

memory demand, time duration of a VNE request, or more complex relations between a VNE’s nodes.

Furthermore, to move closer to the real-world scenarios, a VNE request’s demands and properties are

closely investigated to get a good-quality of data. In more detail, a VNE request may contain information

about the size of a VNE request, the resource demands values that are needed per type of VNE or the

type of graph that the VNE’s nodes form with respect to node dependencies. As a final thought the

time factor is crucial also, meaning in the online mapping process will requests keep coming, how much

time does the agent have to do the mapping before the subsequent request comes? This also raises the

possibility of parallelizing the process of the mapping, to achieve better timing.

6.2.1 Multi Dimension resources demands

As a new path to be discovered in the future, it would be useful to examine the above proposed solution

to a higher dimensionality. In this work, the service graphs that were used, had only demands on CPU

and Bandwidth resources, while in real-world applications there are more needs like RAM, GPU, etc. So,

it is quite interesting to further explore and analyze the results of the above work by adding complexity

to it and also by choosing a different method as the baseline, in order to quantify any possible gains.

6.2.2 Improve Efficiency of the proposed method

Further experimentation and research must be done, so as to improve the efficiency of the proposed

VNE agent. The first thing to be re-examined should be the reward system, which will provide multiple

objectives except the Request Acceptance Ratio. The results point out the necessity for better resource

utilization, which can be achieved through a represented reward function. Secondly, a possible improve-

ment would be to add an extra action into the available selection set, and that would be something like

”no-op”. This action, ”no-operation” or simpler ”no-action” will help the agent avoid mapping a VNE

node if it doesn’t apply to the resource constraints of any of the available servers. This will give the

agent the ability to instantly reject a request.

6.2.3 Evaluate the system into a real world application

The main concern for future work will be the further testing and scaling of the proposed solution, into a

synchronous datacenter and using service graphs from real-world scenarios. At the same time, it will be

Anastasios Karageorgiadis 74 August 2023

6.3 Lessons Learned

necessary to re-evaluate the results of this work with more similar approaches. This will give us results

for comparison to mark how good the above implementation is and of course to provide a more robust

conclusion about the benefits of it.

6.2.4 Outcome

If we look beyond the implementation of this project, the next goal to chase is to build an agent as a

software package, to be used in modern datacenter applications. An actual software product that will be

useful to Service Provider companies, and will help them to improve the quality of their services while

providing a better customer experience like cheaper subscriptions and a more fair balance between cost

and demands for each use-case.

6.3 Lessons Learned

The period of engagement with this Master’s thesis on Virtual Network Embedding methods utilizing

Reinforcement Learning has unveiled valuable insights into virtual network resource optimization. The

research and experimentation, that took place in this work, gave some critical lessons. Firstly, the choice

of the DQN algorithm and its hyper-parameters significantly influences the performance of the VNE

agent. Furthermore, this study underscores the importance of the accurate virtual network environment

modeling. The reward system design in a Reinforcement Learning-based VNE problem is one more factor

that profoundly impacts the learning process, subsequent embedding decisions, and the overall efficiency

of the approach. In addition, a noteworthy observation pertains to the scalability of the proposed

DQN method for VNE, which may encounter challenges when dealing with large-scale networks. As a

final conclusion, this research offers a comprehensive understanding of the potential of Reinforcement

Learning methods, underlining the significance of careful algorithmic choices, robust network modeling,

and resource-aware reward design in achieving efficient and adaptable network embedding solutions,

while exposing any difficulties or problems during the development and design process.

Anastasios Karageorgiadis 75 August 2023

6. CONCLUSION

Anastasios Karageorgiadis 76 August 2023

References

[1] VMware: Network functions virtualization (2013) https://www.vmware.com/topics/glossary/

content/network-functions-virtualization-nfv.html. v, vi

[2] ETSI-ESO: NFV ETSI, GS NFV 002 V1.1.1 Network Functions Virtualisation (NFV), Architectural

Frame- work (2013) https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/

gs_nfv002v010101p.pdf. v, vi, 4

[3] Van Rossum, G., Drake, F.L.: Python 3 Reference Manual, Scotts Valley, CA. (2009) v, vi

[4] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Joze-

fowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,

Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,

Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,

X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015) Software available

from tensorflow.org. v, vi

[5] Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function

using networkx. In Varoquaux, G., Vaught, T., Millman, J., eds.: Proceedings of the 7th Python

in Science Conference, Pasadena, CA USA (2008) 11 – 15 v, vi, 42

[6] Konstantin S. Solnushkin: Fat Tree Design (May 2013) https://clusterdesign.org/fat-trees/.

xi, 8, 10

[7] Panagiotis, P.: Big data networks lectures (2021) University of Macedonia. xi, 7, 9

[8] Urrea C, B.D.: Software-Defined Networking Solutions, Architecture and Controllers for the Indus-

trial Internet of Things: A Review (October 2021) 1

Anastasios Karageorgiadis 77 August 2023

https://www.vmware.com/topics/glossary/content/network-functions-virtualization-nfv.html
https://www.vmware.com/topics/glossary/content/network-functions-virtualization-nfv.html
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://clusterdesign.org/fat-trees/

REFERENCES

[9] Varvara, A.: A framework for virtual network functions(vnf) modeling and service graph verification

in sdn/cloud context. Master’s thesis, Politecnico Di Torino (2018) 3

[10] Wang, L., Mao, W., Jin Zhao, Y.X.: DDQP: A Double Deep Q-Learning Approach to Online

Fault-Tolerant SFC Placement. IEEE Transactions on Network and Service Management (2021) 4,

39

[11] Cohen, P.: What is Virtual Network Function? (October 2021) https://www.rcrwireless.com/

20211021/fundamentals/what-is-a-virtual-network-function. 4, 5

[12] Pentelas, A., Papathanail, G., Fotoglou, I., Papadimitriou, P.: Network Service Embedding Across

Multiple Resource Dimensions. IEEE Transactions on Network and Service Management (2020) 4,

6, 33, 34, 35, 36, 42

[13] Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual Network Embedding:

A Survey. IEEE Communications Surveys and Tutorials 15(4) (2013) 1888–1906 6

[14] Alkmim, G., Batista, D., Fonseca, N.: Mapping virtual networks onto substrate networks. Journal

of Internet Services and Applications 4 (01 2013) 6, 33

[15] Yan, Zhongxia and Ge, Jingguo and Wu, Yulei and Li, Liangxiong and Li, Tong: Automatic virtual

network embedding: A deep reinforcement learning approach with graph convolutional networks.

IEEE Journal on Selected Areas in Communications 38(6) (2020) 1040–1057 6, 33, 34, 37, 38, 39

[16] E. L. Erwin: Telephone system (February 1938) US2244004A. 7

[17] Clos, Charles: A study of non-blocking switching networks. The Bell System Technical Journal

32(2) (1953) 406–424 7

[18] Leiserson, C.E.: Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans-

actions on Computers C-34(10) (1985) 892–901 8

[19] Andrew, A.M.: Reinforcement learning:: An introduction. Kybernetes (1998) 11

[20] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Ried-

miller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement

learning. nature 518(7540) (2015) 529–533 11, 13, 14

[21] Li, Y.: Deep reinforcement learning: An overview (2017) 11, 14, 50

Anastasios Karageorgiadis 78 August 2023

https://www.rcrwireless.com/20211021/fundamentals/what-is-a-virtual-network-function
https://www.rcrwireless.com/20211021/fundamentals/what-is-a-virtual-network-function

REFERENCES

[22] Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Jimenez Rezende, D., Puig-

domènech Badia, A., Vinyals, O., Heess, N., Li, Y., et al.: Imagination-augmented agents for

deep reinforcement learning. Advances in neural information processing systems 30 (2017) 12

[23] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,

Kumaran, D., Graepel, T., Lillicrap, T.P., Simonyan, K., Hassabis, D.: Mastering chess and shogi

by self-play with a general reinforcement learning algorithm. CoRR abs/1712.01815 (2017) 12

[24] Sammut, C., Webb, G.I., eds. In: Bellman Equation. Springer US, Boston, MA (2010) 97–97 12

[25] Jordi Torres: The Bellman Equation (June 2020) https://towardsdatascience.com/the-

bellman-equation-59258a0d3fa7. 12

[26] van Otterlo, M., Wiering, M. In: Reinforcement Learning and Markov Decision Processes. Springer

Berlin Heidelberg, Berlin, Heidelberg (2012) 3–42 13

[27] Fan, J., Wang, Z., Xie, Y., Yang, Z.: A theoretical analysis of deep q-learning. In Bayen, A.M.,

Jadbabaie, A., Pappas, G., Parrilo, P.A., Recht, B., Tomlin, C., Zeilinger, M., eds.: Proceedings of

the 2nd Conference on Learning for Dynamics and Control. Volume 120 of Proceedings of Machine

Learning Research., PMLR (10–11 Jun 2020) 486–489 13

[28] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.:

Asynchronous methods for deep reinforcement learning. In Balcan, M.F., Weinberger, K.Q., eds.:

Proceedings of The 33rd International Conference on Machine Learning. Volume 48 of Proceedings

of Machine Learning Research., New York, New York, USA, PMLR (20–22 Jun 2016) 1928–1937 13

[29] Deep Learning: MultiLevel Perceptron. http://deeplearning.net/tutorial/mlp.html. 14, 18,

19

[30] Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized mlp

architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems

1(4) (2011) 111–122 14, 19

[31] MissingLink.AI: 7 Types of Neural Network Activation Functions: How to Choose?

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-

activation-functions-right/. 14, 19

[32] Sherstinsky, A.: Fundamentals of recurrent neural network (rnn) and long short-term memory

(lstm) network (2018) cite arxiv:1808.03314Comment: 39 pages, 10 figures, 66 references. 18

Anastasios Karageorgiadis 79 August 2023

https://towardsdatascience.com/the-bellman-equation-59258a0d3fa7
https://towardsdatascience.com/the-bellman-equation-59258a0d3fa7
http://deeplearning.net/tutorial/mlp.html
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

REFERENCES

[33] O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR abs/1511.08458

(2015) 18

[34] Karageorgiadis, A.: FACESiR: Face and Speaker identity recognition in video streams. Master’s

thesis, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece

(2019) https://doi.org/10.26233/heallink.tuc.84791. 18, 19, 58

[35] Rogers, A., Kovaleva, O., Rumshisky, A.: A primer in bertology: What we know about how bert

works (2020) 18

[36] Kalyan, K.S., Rajasekharan, A., Sangeetha, S.: Ammus : A survey of transformer-based pretrained

models in natural language processing (2021) 18

[37] McLaren, M., Yun, L., Scheffer, N., Ferrer, L.: Application of convolutional neural networks to

speaker recognition in noisy conditions. INTERSPEECH-2014 (2014) 686–690 18

[38] George Seif: Understanding the 3 most common loss functions for Machine Learning Re-

gression (2019) https://towardsdatascience.com/understanding-the-3-most-common-loss-

functions-for-machine-learning-regression-23e0ef3e14d3. 24

[39] Sammut, C., Webb, G.I., eds. In: Mean Squared Error. Springer US, Boston, MA (2010) 653–653

24

[40] Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy

labels. Advances in neural information processing systems 31 (2018) 24

[41] Ruby, U., Yendapalli, V.: Binary cross entropy with deep learning technique for image classification.

Int. J. Adv. Trends Comput. Sci. Eng 9(10) (2020) 24

[42] Jadon, A., Patil, A., Jadon, S.: A comprehensive survey of regression based loss functions for time

series forecasting (2022) 25

[43] NΓ΄ΙΓ±ez, E., Steyerberg, E.W., NΓ΄ΙΓ±ez, J.: Regression modeling strategies. Revista EspaΓ±ola

de CardiologΓa (English Edition) 64(6) (2011) 501–507 25

[44] Huber, P.J.: Robust estimation of a location parameter. Breakthroughs in statistics: Methodology

and distribution (1992) 492–518 27

[45] He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification (2015) 29, 30

Anastasios Karageorgiadis 80 August 2023

https://doi.org/10.26233/heallink.tuc.84791
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3

REFERENCES

[46] TensorFlow: https://www.tensorflow.org/api_docs/python/tf/keras/initializers/. 30, 31

[47] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks.

In Teh, Y.W., Titterington, M., eds.: Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics. Volume 9 of Proceedings of Machine Learning Research., Chia

Laguna Resort, Sardinia, Italy, PMLR (13–15 May 2010) 249–256 30

[48] LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.R. In: Efficient BackProp. Springer Berlin Heidel-

berg, Berlin, Heidelberg (2012) 9–48 31

[49] Dräxler, S., Karl, H., Mann, Z.Γ.: Jasper: Joint optimization of scaling, placement, and routing

of virtual network services. IEEE Transactions on Network and Service Management 15(3) (2018)

946–960 33

[50] Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support

for path splitting and migration. ACM SIGCOMM Computer Communication Review 38(2) (2008)

17–29 33

[51] Magatao, L.: Mixed integer linear programming and constraint logic programming: towards a

unified modeling framework. (2005) 35

[52] Dolati, M., Hassanpour, S.B., Ghaderi, M., Khonsari, A.: Deepvine: Virtual network embed-

ding with deep reinforcement learning. In: IEEE INFOCOM 2019-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), IEEE (2019) 879–885 38, 39

[53] O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR abs/1511.08458

(2015) 38

[54] Hongzi Mao, Mohammad Alizadeh, I.M.: Resource Management with Deep Reinforcement Learning.

IEEE (2016) 39, 59

[55] Quang, P.T.A., Hadjadj-Aoul, Y., Outtagarts, A.: A Deep Reinforcement Learning Approach for

VNF Forwarding Graph Embedding. IEEE Transactions on Network and Service Management 16

(December 2019) 39

[56] Yuan, Y., Tian, Z., Wang, C., Zheng, F., Lv, Y.: A Q-learning-based approach for virtual network

embedding in data center. Neural Computing and Applications 32(7) (2020) 1995–2004 39

Anastasios Karageorgiadis 81 August 2023

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/

REFERENCES

[57] Chowdhury, M., Rahman, M.R., Boutaba, R.: Vineyard: Virtual network embedding algorithms

with coordinated node and link mapping. IEEE/ACM Transactions on networking 20(1) (2011)

206–219 39

[58] Shahriar, N., Chowdhury, S.R., Ahmed, R., Khan, A., Fathi, S., Boutaba, R., Mitra, J., Liu, L.:

Virtual network survivability through joint spare capacity allocation and embedding. IEEE Journal

on Selected Areas in Communications 36(3) (2018) 502–518 39

[59] Dehury, C.K., Sahoo, P.K.: Dyvine: Fitness-based dynamic virtual network embedding in cloud

computing. IEEE Journal on Selected Areas in Communications 37(5) (2019) 1029–1045 39

[60] Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo, Y., Wang, J.: Virtual network embedding

through topology-aware node ranking. ACM SIGCOMM Computer Communication Review 41(2)

(2011) 38–47 39

[61] Yao, H., Chen, X., Li, M., Zhang, P., Wang, L.: A novel reinforcement learning algorithm for virtual

network embedding. Neurocomputing 284 (2018) 1–9 39

[62] Sciancalepore, V., Yousaf, F.Z., Costa-Perez, X.: Z-TORCH: An automated NFV orchestration

and monitoring solution. IEEE Transactions on Network and Service Management 15(4) (2018)

1292–1306 39

[63] Xiao, Y., Zhang, Q., Liu, F., Wang, J., Zhao, M., Zhang, Z., Zhang, J.: NFVdeep: Adaptive

online service function chain deployment with deep reinforcement learning. In: Proceedings of the

International Symposium on Quality of Service. (2019) 1–10 39

[64] Wang, H., Wu, Y., Min, G., Xu, J., Tang, P.: Data-driven dynamic resource scheduling for network

slicing: A deep reinforcement learning approach. Information Sciences 498 (2019) 106–116 39

[65] Quang, P.T.A., Hadjadj-Aoul, Y., Outtagarts, A.: Evolutionary actor-multi-critic model for VNF-

FG embedding. In: 2020 IEEE 17th Annual Consumer Communications and Networking Conference

(CCNC), IEEE (2020) 1–6 39

[66] Wang, S., Bi, J., Wu, J., Vasilakos, A.V., Fan, Q.: VNE-TD: A virtual network embedding algorithm

based on temporal-difference learning. Computer Networks 161 (2019) 251–263 39

[67] Dietrich, D., Papagianni, C., Papadimitriou, P., Baras, J.S.: Network function placement on virtu-

alized cellular cores. In: 2017 9th International conference on communication systems and networks

(COMSNETS), IEEE (2017) 259–266 59

Anastasios Karageorgiadis 82 August 2023

	Nomenclature
	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 Network Function Virtualization
	2.1.1 Introduction
	2.1.2 Definition
	2.1.3 Use case

	2.2 Virtual Network Functions
	2.2.1 Definition
	2.2.2 Examples

	2.3 Network Service Embedding
	2.3.1 Introduction to Network Service Embedding

	2.4 Substrate Network
	2.5 Network Topologies
	2.5.1 What is a Network Topology?
	2.5.2 The main goal
	2.5.3 CLOS Topology
	2.5.4 Fat Trees Topologies
	2.5.5 3-Layered Fat Tree Topology

	2.6 Reinforcement Learning
	2.6.1 Introduction
	2.6.2 Categories of Reinforcement Learning Algorithms
	2.6.3 Bellman Equation
	2.6.4 Markov Decision Process
	2.6.5 Q-Learning
	2.6.6 Deep Reinforcement Learning
	2.6.7 Deep Q-Learning

	2.7 Artificial Neural Networks
	2.7.1 Introduction
	2.7.2 Dense Layer
	2.7.3 Activation Functions
	2.7.4 Loss Function
	2.7.5 Weights Initializers

	3 Problem Statement
	3.1 Embedding of Virtual Network Functions
	3.2 Related Work

	4 Our Approach
	4.1 Introduction
	4.2 Service Graphs Generator
	4.3 Heuristic Method As Baseline
	4.3.1 Mapping of VNF

	4.4 Reinforcement Learning Method
	4.4.1 Reinforcement Learning Modeling for VNE
	4.4.2 Deep Reinforcement Learning agent
	4.4.3 DDQN architecture description
	4.4.4 Define Input State
	4.4.5 Heuristic Algorithm for Candidate Servers Selection
	4.4.6 Train Process Description
	4.4.7 Reward function
	4.4.8 Model Parameters

	5 Results
	5.0.1 Experiments Description
	5.0.2 Define Evaluation Mid-Case scenario using the Baseline Algorithm

	5.1 Agent Train Results
	5.1.1 Learning Process

	5.2 Evaluation Plots Baseline vs DagNeQ Agent

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Multi Dimension resources demands
	6.2.2 Improve Efficiency of the proposed method
	6.2.3 Evaluate the system into a real world application
	6.2.4 Outcome

	6.3 Lessons Learned

	References

