
Developing Distributed Systems with 
Modular Monoliths and Microservices

Student: Michail Tsechelidis

Advisor: Apostolos Ampatzoglou



Grouping 
Information

2



Types of Requirements

3

● Software requirements

● Hardware requirements

● Development requirements

● Business requirements



Modular Monolith?

4



Why?

● Resolve Development Requirements

● Control Granularity with ease

● Aim for Simpler Infrastructures (ex. people, networks, pipelines, ….)

5



Controlling 
Granularity

6



Service Oriented 
Architectures

7



Microservices?

No definition ⟹ Dubious properties

● What is small?

● Loose coupling ≠ Independence

8

● Horizontal scaling?
(Business requirement)

● Software requirements

● Hardware requirements

● Development requirements



Scaling

● M5 (4 CPUs, 16G memory)

● Max = 20000 Requests/second

● CPU usage = 99%

● 56% UI          -          0,84% Logic

9

● Aim for SLA = 99,999%

● Deployment Strategies

● Scale at Lower CPU usage?

● Vertical or Horizontal?



Cloud Patterns

10

● Enhance the system

● Applied to any SOA

Examples:
● LoadBalancer (Scalability)

● CQRS (Performance)

● Sidecar (Extensibility)

● Retry (Reliability)

● Canary release (Deployment)



Hexagonal Architecture

11

● Simple starting point

● Easy identification & extraction of internal functionalities



A Monolith with 
Dependency 
Injection

12



Patterns

13

● Dependency Injection

● Separated Interfaces

● Layer Supertype

● Abstract Factory



The Monolith Modularized

14



Reversed Dependency diagram

15



Modular Compiles

16

Initial state After change



Larger systems have more Development 
Requirements

● Git Branches

● Pipelines (ex. Github Actions)

● Artifact Repository (ex. Github 
Packages)

17



Case Studies

Amazon:
● 90% reduced costs

● Same domain

18

Shopify:
● 1.27 million RPS

● SLA = 99.999%



Simpler Infrastructures
⇒

● Less costs
● Easy Management

19

● Team Topologies
○ Independent teams

● Agile Development
○ Asynchronous centralized dependencies

● Continuous Integration and Delivery
○ Reusable pipelines - Monorepo

● Networks in the Cloud
○ Latency - Less hops

● Resource savings - Green Computing
○ 25% of 16.000 cloud servers no useful work



Validation

20



Thank you!

21

Questions?


