
UNIVERSITY OF MACEDONIA

SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

Software-defined Networking Strategies for

Efficient Next-generation Applications

Ph.D. Dissertation

of

Sarantis Kalafatidis

Thessaloniki, September 2022

Abstract

Next-generation Internet Applications (NIA), such as smart-cities and multi-

media applications like virtual reality, provide the technological foundation and

capabilities necessitated for digital transformation in various economic sectors.

With the widespread adoption of these applications, network requirements have

become increasingly demanding e.g., they require ultra-low delay for rapid

decision-making and high throughput for transferring large amounts of data. In

this thesis, we focus on the development of efficient network strategies in order

to improve the performance of two specific types of NIA: IoT and cloud-native

applications.

We focus on two primary network environments that require adaptability

to fulfill the needs of the aforementioned NIA: (i) large-scale wireless-based

IoT deployments (e.g., smart cities) and (ii) cloud environments that host

microservice-based applications with heterogeneous resource demands. In this

context, we investigate the potential advantages derived from a synergy of cloud

computing, Software-Defined Networking (SDN), Named-Data Networking

(NDN), and the microservices paradigm in enhancing NIA performance through

efficient traffic steering. Also, we argue that the centralized control feature of

SDNs is an appropriate solution for integrating these technologies and creating

a highly adaptive network ecosystem.

The research is concentrated around three key areas: (i) improving IoT ap-

plications’ adaptability to Wireless Mesh Network (WMN) to ensure consistent

and reliable performance; (ii) implementing microservices adaptive load bal-

ancing, which implements efficient resource allocation and utilization, enabling

applications to handle a larger number of simultaneous requests without perfor-

mance compromise; and (iii) predicting the impact of individual microservices

on network and processing resources, thereby support the decisions of resource

allocation control mechanisms.

In order to tackle the aforementioned challenges, this research focuses on

i

the development and evaluation of realistic applications and SDN network

environments over WMN, including as well as real indoor and outdoor testbeds.

The objective is to promote a framework where NIA can exhibit greater

responsiveness and resource efficiency by adapting to the dynamic WMNs

and cloud resource requirements.

Keywords: Next Generation Internet Applications, Traffic Steer-

ing, Load Balancing, Microservices, Microservices Profiling, Software-

defined Networks; Wireless Mesh Networks; Information-Centric

Networking; Named Data Networking; Smart-cities, Resource Con-

sumption Prediction

ii

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Eleftherios

Mamatas, for his invaluable guidance, which has greatly influenced both my pro-

fessional and personal growth. Also, my gratitude extends to my co-supervisors,

Prof. Alexander Chatzigeorgiou and Prof. Panagiotis Papadimitriou, for their

essential insights and recommendations that enriched the quality of my research.

Furthermore, I would like to express special thanks to Prof. Ilias Sakellariou

and Dr. Sotiris Skaperas for their indispensable advice during my dissertation.

Lastly, my deep appreciation goes to my parents for their unwavering support

and encouragement throughout my academic journey.

iii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Overview . 1
1.2 Research Objectives and Contributions 9
1.3 Chapters outline . 12
1.4 Publications . 14

2 Logically-Centralized SDN-Based NDN Strategies for Wireless
Mesh Smart-City Networks 15
2.1 Introduction . 15
2.2 Contributions and Chapter Organization 18

2.2.1 Chapter Organization . 19
2.3 Background and Related Works 19
2.4 Proposed SDN-Based System 22

2.4.1 Reactive NDN Path Selection Strategy 23
2.4.2 Proactive NDN Path Selection Strategy 26

2.5 Experimental Evaluation . 28
2.5.1 Experimentation Setup 28
2.5.2 Scenario 1—Evaluation of the Reactive Processes 30
2.5.3 Scenario 2—Evaluation of the Proactive Strategy 36

2.6 Conclusions and Future Work 43

3 Microservices-Adaptive Software-Defined Load Balancing 45
3.1 Introduction . 45
3.2 Motivating use-case scenario . 50
3.3 Proposed System . 51

3.3.1 Monitoring Subsystem 52
3.3.2 Microservices Profiler . 53
3.3.3 MALB Algorithm . 54

3.4 Performance Evaluation . 55
3.4.1 Scenario 1: Microservices Profiling 56
3.4.2 Scenario 2: MALB Platform Evaluation 58

iv

CONTENTS CONTENTS

3.5 Conclusions . 61

4 Evaluation of Prediction Models for Microservices’ Resource
Consumption 62
4.1 Introduction . 62
4.2 Contributions and Chapter Organization 64

4.2.1 Chapter Organization . 64
4.3 Background and Related Works 64
4.4 Experimental Methodology . 66

4.4.1 Considered Microservices 67
4.4.2 Traffic patterns . 67
4.4.3 Single-step Prediction Models 68
4.4.4 Multi-step Prediction Models 70

4.5 Experimental Results . 71
4.5.1 Evaluation Results of Single-step prediction 72
4.5.2 Evaluation Results of Multi-step prediction 84

4.6 Conclusions . 91

5 Conclusions and Future Works 92
5.1 Conclusions . 92
5.2 Future works . 94

Appendices 104

v

List of Tables

2.1 Related Work Comparison . 20

2.2 Average of Interest-Data exchanges performance delay (msec) . 34

2.3 Total amount of failures over 1500 interest-data exchanges . . . 35

2.4 Reactive’s solution path choices over 1500 interest-data exchanges 35

2.5 Comparison of the clustering results with the reactive process,
considering the average delay and fails (%) of 1500 interest-data
exchanges, over each of the available NDN paths 39

2.6 Number of hops included on each reactive’s solution path choise,
over 1500 interest-data exchanges 40

2.7 Comparison of the clustering results, considering the average
delay (secs) of 1MB file transfer using NDN-Chunks application 40

2.8 RSSI clusters average performance 41

2.9 Delay clusters average performance 41

2.10 RSSI-Delay clusters average performance 41

2.11 Comparison of reactive and proactive NDN path selection strate-
gies . 42

3.1 Well-known load balancing approaches 49

3.2 Load balancing level among the servers 58

3.3 MALB Client-Side Evaluation 60

4.1 Execution Time of the Forecasting Models (Single-Step Prediction) 73

4.2 Comparative Performance of the Forecasting Models Based on
RMSE and MAE Metrics . 74

4.3 Comparative Performance Analysis of the Models Across Differ-
ent Microservices . 76

4.4 Performance Analysis of Models for CPU, Memory, and Network
Metrics . 78

4.5 Performance Analysis of Models for Video Streaming and PHP
back-end microservices with respect to CPU, Memory and Net-
work metrics . 80

4.6 Performance of models for Web microservices with respect to
CPU, Memory, and Network metrics 81

4.7 Computational Time Comparison of Multi-step Prediction Models 85

vi

LIST OF TABLES LIST OF TABLES

4.8 Analysis of RMSE and MAE Performance Across the Multi-step
Prediction Models . 85

4.9 Multi-step Model Performance by microservice type: Results for
All Resource Types . 87

4.10 Performance Analysis of Multi-step Models by Resource Type . 88
4.11 Performance Analysis of Multi-step Forecasting Models for Video

Microservice Resources . 89
4.12 Performance Analysis of Multi-step Forecasting Models for PHP

back-end Microservices Resources 89
4.13 Performance Analysis of Multi-step Forecasting Models for Web

Microservices Resources . 90

vii

List of Figures

1.1 Research challenges and contributions 9

2.1 Example of NDN communication over CityLab testbed [1]. . . . 17
2.2 SDN-based Experimentation System. 23
2.3 NDN path selection using the proactive strategy. 27
2.4 Evaluation of the wireless links. 30
2.5 WMN topology, considering the 9th floor of the w-iLab.1 testbed. 32
2.6 Average RTTNDNc , RTTNDNpand Total Delay. 32
2.7 Number of Hops and Best Path Changes (BPC) pers round. . . 33
2.8 WMN topology, considering the 10th floor of the w-iLab.1 test-bed. 34
2.9 Selected topology—w-iLab.1 office lab 10th floor [2]. 36
2.10 RSSI clustering results among network nodes. 37
2.11 Delay clustering results among network nodes. 37
2.12 RSSI-Delay clustering results among network nodes. 38

3.1 Simple vs microservices-adaptive load balancing 48
3.2 The MALB Architecture . 51
3.3 MALB Provider-Side Evaluation 59

4.1 Prediction of Network Metrics for Video Streaming Application
using LSTM, Rolling LSTM and ARIMA Models 83

4.2 Prediction of CPU Metrics for Video Streaming Application
using LSTM, Rolling LSTM and ARIMA Models 83

4.3 Prediction of Memory Metrics for Video Streaming Application
using LSTM, Rolling LSTM and ARIMA Models 83

viii

Chapter 1

Introduction

1.1 Overview

The advent of Industry 4.0 has ushered a new era of technological advances

which transforms and improves the operation of production line and supply

chain management [3]. A crucial aspect of this trend is the development and

utilization of Next-generation Internet Applications (NIA), which leverage

pioneering technologies (e.g., teleoperated robots and autonomous vehicles) to

enhance productivity, efficiency and connectivity in various sectors, ranging

from industrial production and multimedia entertainment to automotive and

energy sectors. NIA in Industry 4.0 are characterized by their ability to

integrate physical and digital systems, incorporating data analysis and artificial

intelligence techniques enabling real-time collaboration and decision-making

among a wide range of distributed end-user devices. These applications are

revolutionizing traditional industries and paving the way for unprecedented

levels of automation, optimization, and innovation.

However, to support the evolving demands of these applications, the network

requirements have become increasingly critical [4]. For example, the widespread

utilization of IoT devices in large-scale environments such as those of industrial

plants or smart-city environments requires: high throughput for transferring

a large amount of data e.g., from many devices or sensors, and low latency

for rapid decision-making in critical use-case scenarios, such as those of health

care and autonomous vehicles. On the other hand, multimedia NIA like

augmented and virtual reality, often require specific QoS parameters to ensure

1

CHAPTER 1. INTRODUCTION

acceptable performance levels which are characterized by bandwidth guarantees,

minimizing packet loss, maintaining low latency, and managing traffic based on

application requirements.

The primary objective of this PhD thesis is to enhance the per-

formance of Next-generation Internet Applications focusing on two

specific types: (i) IoT applications and (ii) cloud-native applications.

The aim is to develop efficient strategies and methodologies that address the

unique network challenges associated with these application domains, enabling

efficient traffic steering across their respective ecosystems. This involves the

consideration of the network conditions of the environments in which they are

operated, namely (i) large-scale wireless-based IoT deployments (e.g., smart

cities) and (ii) cloud environments hosting heterogeneous microservice-based

applications. In the following subsections, we delve into an analysis of these

application domains, outline the network requirements they entail, describe the

proposed solutions, and highlight the key topics of this research.

Network challenges of IoT ecosystems

IoT applications are characterized by their ability to connect and communicate

with a wide range of devices, utilizing sensor technology to collect data from

the physical environment. These applications involve processing and analysis of

massive data, facilitating real-time decision-making, enabling remote automa-

tion and control. In this context, IoT applications rely on data collected from

IoT devices spread over large areas such as industrial or community regions.

To this end, wireless connectivity is essential, as it enables communication over

wide coverage, offering cost-effective accessibility, scalability, and flexibility.

Consequently, the efficient operation of IoT applications, which are typically

associated with critical performance requirements (e.g, low-delay), is linked

to the robustness of the wireless network infrastructure. Our research specifi-

cally investigates smart cities as representative case-study of large-scale IoT

deployments that heavily rely on wireless connectivity.

In recent years, various wireless communication technologies (e.g., WiMax,

LTE, 5G) have been proposed to support communication of IoT environments,

each of them bringing different advantages to the network [5, 6]. In parallel

2

CHAPTER 1. INTRODUCTION

with the evolution of 5G networks in the domain of wireless connectivity,

Wireless Mesh Networking (WMN) has begun to draw increased interest in

numerous IoT case studies, particularly in relation to Smart-City network

environments. Examples of such studies include Stratford [5], CityLab [1],

SmartSantander [7]. WMN can support an extensive range of IoT deployments

through multi-hop communication, adding features such as easy deployment,

low-cost infrastructure, as well as reliable and efficient connectivity in dynamic

environments, such as those involving mobile users.

In summary, some of the benefits offered by WMN in large-scale IoT

ecosystems include: (i) the flexible support for efficient interconnection of

numerous distributed end-user devices; (ii) unstructured, self-sustaining, and

self-configuring topologies; and (iii) the integration of various networking tech-

nologies, such as wired, optic-fiber, cellular, and sensor networks. Furthermore,

multi-hop communication over WMN can be a supplementary solution to other

wireless networking technologies, for example, providing connectivity in areas

where 5G coverage falls short, e.g., when the 5G Radio Access Network (RAN)

is distant.

Despite these strengths, the WMN backbone network may incorporate re-

gional communication characteristics that present challenges. These include: (i)

areas with large numbers of network nodes, requiring efficient network manage-

ment; (ii) mobile nodes, causing frequent network instabilities, such as topology

rearrangements; and (iii) areas with high signal interference. These issues result

in unstable topologies, connection failures, and poor-quality communication,

which can negatively affect the performance of IoT applications.

Regarding the network layer, many new approaches have emerged in or-

der to address the above network challenges of IoT ecosystems. A typical

approach is the Non-IP protocols which, unlike traditional Internet Protocol

(IP) approaches, do not rely on IP addresses for data transmission, providing

alternative methods for data communication which can increase efficiency and

adaptability in complex IoT network environments. One of these solutions is

the Named-Data Networking (NDN) [8], which belongs to Information-Centric

Networking (ICN) architecture. NDN is identified as a viable approach for

fulfilling the needs of IoT applications, providing network performance im-

provement and reliability. The architecture of NDN is significant for two main

3

CHAPTER 1. INTRODUCTION

reasons: (i) it makes the retrieval of content from the network easier, as NDN

packets hold data names instead of traditional IP addresses; (ii) it has the

capability to reduce communication overhead thanks to its in-network caching

features.

However, the utilization of NDN in heavily populated WMN (e.g, Smart-

City networks) requires the incorporation of extra mechanisms for efficient

end-to-end communication. This requirement arises from the inherent lack of

an adaptable routing mechanism in NDN that would promptly identify network

changes and modify the NDN nodes accordingly. Targeting efficient end-to-end

communication of the IoT application in these environments, we argue that a

viable solution may involve the centralized management of the network. This

approach would gather data in order to get NDN routing decisions dynamically

in response to real-time network conditions.

Cloud-native applications’ requirements

Regarding application execution, cloud computing offers economic advantages

by providing scalability and flexibility for web application delivery by dynami-

cally allocating resources based on real-time workload demands. Specifically,

the employment of virtual machines facilitates the expansion of processing

resources to accommodate a vast user base, on-demand, while also offering fault

tolerance by maintaining adaptability to dynamic changes (e.g., sudden increase

of network flows). However, large-scale web applications introduce complexity

due to the heterogeneity of the network and compute requirements, often

leading to inefficient management of the resources, especially when deployed in

a cloud environment where different types of applications coexist.

A key feature of cloud-native applications is their design based on the

microservices architectural paradigm which emerges as a significant strategy

for addressing the previously discussed challenges. This approach segments

complex monolithic applications or network services into a suite of simple, self-

contained microservices that interact with each other. These microservices are

commonly presented in containerized form, providing a lightweight, stand-alone,

and executable software package that includes everything needed to run as an

individual piece of software. This method brings service elasticity as an inherent

4

CHAPTER 1. INTRODUCTION

feature of applications, allowing for seamless modification of its entities without

complex configuration adjustments. As such, resource utilization becomes more

predictable since microservices typically have specific resource requirements. A

microservice orchestrator (e.g., Kubernetes) does not have to scale the entire

application but only the specific microservices experiencing excessive demand.

This strategic approach allows large-scale applications or network services to

accommodate huge amounts of client requests while maintaining fault tolerance

(for example avoid server overloading).

The accelerated growth of automated data-centric procedures, alongside the

demands posed by resource-intensive NIA like multimedia applications [9] (e.g.,

virtual reality) significantly increase the demands of cloud networks. Firstly,

there is the challenge of supporting unprecedented levels of Quality of Service

(QoS). This aspect is related to the maintenance of ultra-low latency and

high throughput, which are critical for many modern applications. Secondly,

the dynamic nature of these applications necessitates real-time adaptation of

network protocols and resource management, as they have diverse compute and

network requirements. Moreover, managing the workload efficiently for large-

scale media applications often presents challenges, particularly when these need

to be assigned to cloud-based services (e.g., run in multiple replicas of virtual

machines or containers), leading to less-than-optimal resource management.

Along these lines, efficient traffic management and workload allocation

among microservices play a key role in enhancing the overall performance of

the NIA they compose. Here, we argue that implementing network policies, like

load balancing, which accounts not only for the network conditions and cloud

resources but also for the individual resource needs of each microservice, can

lead to efficient resource management that can significantly improve latency

and throughput performance. This approach arises from the fact that simple

dynamic load balancing policies only focus on a single type of resource (e.g.,

bandwidth) may benefit bandwidth-intensive microservices but lead to the

inefficient use of other resources.

5

CHAPTER 1. INTRODUCTION

SDN-based Centralized Control as a holistic solution

Given the challenges in NIA performance, which are directly influenced by

efficient end-to-end (E2E) communication, we argue that a holistic approach

of the aforementioned technologies is required in order to complement the

advanced radio capabilities of 5G and WMN technologies. To achieve this, we

propose improvements in the communication infrastructure that encompasses

corresponding transformations at the higher levels of the network protocol

stack (i.e., above the physical layer). Specifically, the proposed solution in-

volves strategies that contribute towards a uniform orchestration of cloud,

network (including novel approaches such as Non-IP protocol stacks), and

microservices-based applications. We argue that integrating the above, can

enhance scalability, dynamically accommodating the varying number of users,

and allocate processing resources in real-time offering also adaptability of NIA

in the quality conditions of wireless communication.

Software-Defined Networking (SDN) appears as an ideal solution to this

shortcoming, providing the necessary elements of intelligent centralized control

and network programmability in order to support NIA requirements. Especially:

• Regarding to the IoT applications over WMN, the utilization of SDN

brings significant advantages by enabling a real-time global view of

the network topology, providing centralized routing decision-making,

and facilitating dynamic adaptation of NDN to the wireless conditions.

In summary, the integration of SDN-NDN-WMN brings the following

benefits: (i) the ability to reconfigure the NDN network in alignment with

the dynamic changes e.g., when a new NDN node enters the network; (ii)

increased network flexibility, which allows for the use of different paths

according to the state of the network (e.g., based on network quality

measurements); (iii) improved reliability and fault tolerance through

rapid detection of network failures e.g., when an intermediate NDN node

goes down.

• In relation to the cloud-native applications, SDN enables network perfor-

mance enhancement by allowing the implementation of various network

policies aligned with current workloads’ network and compute require-

ments. For instance, dynamic SDN-based load balancing mechanisms

6

CHAPTER 1. INTRODUCTION

can reduce latency and improve throughput by adapting the network to

workload changes (e.g., a sharp increase of network flows number). Fur-

thermore, the SDN can improve application performance by making the

appropriate routing decisions for incoming requests. That is, determining

the most efficient cloud server to handle the request, based on a variety of

monitored data, including network and resource consumption statistics,

and the unique resource demands of each microservice e.g., some may be

throughput other delay sensitive.

Nevertheless, there remains a need for SDN to improve its understanding

and adaptability towards a better awareness of specific demands of individual

applications (e.g., current computing resources’ demands, such as CPU and

memory consumption, for each application) and we argue that utilization

of such mechanisms (like load-balancing) can be improved through efficient

application profiling.

The need for predictive Microservices Profiling

In order to improve the traffic steering efficiency across cloud servers that

host NIA, through adaptation to individual NIA demands, an important issue

is the accurate and timely prediction of applications’ impact on the network

and compute resources. An important research challenge in this context

involves the efficient management of cloud computing resources, where the

problem is not last to address, since multiple applications coexist and share the

same computational resources. Here, we argue that the ”single-responsibility

principle” of microservices, where each microservice fulfills a specific function

of the overall application framework, could favor the resource usage prediction

as microservices may have a more expectable impact on processing resources,

compared to monolithic applications.

Consequently, by understanding these individual impacts, we enable appli-

cation profiling mechanisms where the prediction models can achieve accurate

resource usage prediction, thereby promoting efficient resource management.

Such a mechanism, through its predictive capabilities, can effectively guide

the orchestration and load-balancing systems. It would serve as a reliable

path-finding tool, directing these systems to allocate resources adaptable, based

7

CHAPTER 1. INTRODUCTION

on the specific needs of each microservice. This not approach only improves

resource utilization but also ensures the seamless execution of microservices

with diverse demands, therefore enhancing overall application performance.

Key Research Aspects

Considering the background outlined above, this PhD dissertation is dedicated

to advancing the traffic steering for NIA applications by exploiting the poten-

tial advantages that can be derived from cloud computing, Software-Defined

Networking (SDN), Named-Data Networking (NDN) and the microservices

paradigm. This research pays special attention to the adaptability facilitated by

the centralized control feature of SDNs, considering it as a crucial element for

effectively integrating the aforementioned technologies. This approach enables

a highly adaptive network ecosystem conducive to NIA performance. In this

context, our research focuses on three main key aspects:

• Enhancing the efficiency and reliability of IoT applications

through improved protocol control in wireless mesh networks.

Recognizing the dynamic nature of WMN conditions, this dissertation

seeks to develop mechanisms that enhance the resilience and flexibility

of applications running over wireless mesh networks, thereby ensuring

consistent and reliable performance.

• Enabling microservices adaptive load balancing. Given the modular

nature of microservices, it’s essential to devise intelligent load-balancing

strategies that ensure efficient resource allocation and usage, thereby

enabling applications to handle an increased number of simultaneous

requests without compromising performance.

• Predicting the impact of various microservices on network and

processing resources. To further improve the efficiency of resource

allocation, this research investigates the performance of prediction models

that can accurately forecast the resource demands of individual microser-

vices, in order to provide efficient utilization of resources.

Addressing the above issues, this research involves the implementation and

experimentation of realistic SDN network environments and real indoor and

8

CHAPTER 1. INTRODUCTION

outdoor testbeds. The main goal is to foster a paradigm where online applica-

tions are more responsive and resource-efficient, through their adaptability to

volatile wireless conditions (i.e., of WMN) and resource demands.

1.2 Research Objectives and Contributions

Figure 1.1 provides an overview of this thesis including the problem statement,

research objectives, and contributions. More precisely, our main goal is to

improve the performance of NIA applications by enabling their adaptability

in two critical contexts. Firstly, we aim to improve the adaptability of IoT

applications operating over the dynamic conditions of Wireless Mesh Networks

(WMNs). Secondly, we seek to enhance the performance of cloud-native appli-

cations by addressing the specific resource requirements of each microservice

that constitutes it.

Figure 1.1: Research challenges and contributions

In order to achieve this goal, our work introduces three major contributions:

Firstly, we have developed, tested, and compared two novel SDN strategies

for Named Data Networking (NDN) based routing i.e., a dynamic approach

and a static one based on clustering of WMN quality measurements. Sec-

ondly, we developed and experimented with a new SDN platform, designed for

9

CHAPTER 1. INTRODUCTION

microservice-adaptive load balancing, which takes into account the impact of

microservice on network and compute resources. Lastly, we have conducted a

study comparing statistical and machine learning models’ capabilities to predict

resource usage of individual microservices. A more detailed description of the

above contributions follows.

• Logically-Centralized SDN-Based Strategies for Wireless Mesh

Smart-City Networks. The main objective is to improve the perfor-

mance of end-to-end communication between NDN producers-consumers

over multi-hop WMN. Towards this goal, we consider and investigate

NDN as a suitable protocol as: (i) provides flexibility to the network

facilitating content retrieval from the network using data names instead

of IP addresses, and (ii) reduces the communication overhead, offering

reliability, thanks it’s in-network caching capabilities. Considering the

above, we developed and experimented with of a reactive and a proactive

SDN-based solution that facilitates NDN adaptability in unstable wireless

mesh networking conditions. In particular, our reactive approach exploits

the advantages of SDN-NDN integration enabling efficient NDN Interest-

Data exchange (in terms of network delay). Our solution encompasses:

(i) a global view of network topology in real-time; (ii) centralized decision-

making (including content-based decision-making and best-path selection)

and (iii) dynamic NDN adaptation to network changes. The proactive

NDN path selection strategy is based on evaluating available wireless

links in terms of RSSI and delay. Specifically, in this approach, we collect

historical network monitoring data and classify their performance to

select the appropriate NDN path. The evaluation of our methods involves

experimentation over real a WMN, providing and discussing the trade-offs

between the two methods by investigating both control overhead and

data message exchange performance, considering two different types of

applications.

• Microservices-Adaptive Load Balancing. Our target is to extend

microservice-based NIA performance efficiency in terms of response times,

application-layer throughput, energy consumption and fairness while

improving resource utilization of the cloud environment. In this context,

10

CHAPTER 1. INTRODUCTION

we propose, develop and evaluate a novel SDN-based load balancing

facility that focuses on a specific use case scenario, that is, services

consisting of microservices with heterogeneous, but simpler resource-

demands compared to the service they constitute. Our solution adapts

its load-balancing process to the particular requirements of microservices,

based on dynamic microservice profiling. In summary, our approach offers:

(i) microservice-awareness through online profiling that quantifies the level

of importance of each resource type, based on simple prediction techniques.

(ii) microservice-level adaptability of bespoke SDN-based load balancing

policies, considering both cloud (i.e., CPU and memory) and network

aspects (i.e., bandwidth allocation and flow sizes, in terms of duration

time) and (iii) real experimentation of our approach with an assumed

use-case that consists of microservices different resource requirements,

demonstrating efficient and balanced server resource allocation, as well

as improved application performance.

• Performance Analysis of Machine Learning and Statistical Mod-

els in Predicting Microservices Resource Usage. The main ob-

jective is to enhance the methods we use to estimate the impact of

microservices on network and processing resources, leveraging the single-

purpose functionality of microservices. More precisely, our experimental

evaluation assesses the effectiveness of various statistical models in pre-

dicting resource usage for diverse types of microservices, with a particular

emphasis on short time intervals. Our research lies in determining the

model that demonstrates superior performance in resource forecasting

across various traffic patterns: (i) generally, when considering the type

of microservice; (ii) when based on the specific resource type; and (iii)

when both the microservice and resource type are taken into account.

In this context, our contributions include: (i) the evaluation of the per-

formance of classical machine learning and statistical-based techniques

over a diverse set of measured parameters and microservice requirements,

spanning from typical time-series approaches, e.g., ARMA, ARIMA, and

Kalman Filter to machine learning, e.g., LSTM and Random Forest; (ii)

the investigation both single-step and multi-step prediction processes;

11

CHAPTER 1. INTRODUCTION

(iii) valuable insights and discussion of the performance advantages and

trade-offs of each choice, according to the accuracy and the computational

complexity; (iii) the potential advantages of rolling time-series procedures

in order to adapt to dynamic changes. The evaluation is grounded in

actual measurements of containerized microservices with varying resource

requirements, such as those that are CPU or network intensive. Also,

we consider distinct traffic patterns for this evaluation e.g., gradually

decrease and increase, sharp increase, stable and random.

1.3 Chapters outline

The structure of this thesis is presented as follows. Each chapter depicts the

specific mechanisms and strategies related to the three research challenges

(mentioned in the overview subsection) and the primary contributions outlined

earlier. In each chapter, we present a brief introduction, the motivation of our

solution and contributions to the problem under consideration, followed by a

description of the current state of related works in the literature and theoretical

background, if necessary. Next, we describe the design of the proposed systems

and the technical options of our solutions. Then, the experimental methodology

and the associated setups are presented i.e., employed to validate the operations

and performance gains of each approach. Finally, a series of experimental results

are provided that, through their analysis, highlight the benefits and performance

trade-offs of each investigated subject.

In Chapter 2, two technological solutions based on SDN are discussed,

that offer performance gains and reliability (in terms of delay and packet

loss respectively) in applications operating over wireless mesh networks. The

first solution is dynamic i.e., is updated on the current state of the wireless

network (e.g. topology rearrangements) and appropriately adjusts the paths of

network nodes dynamically. The second solution is static, i.e. the paths are pre-

selected based on classification of wireless links considering real measurements

in terms of delay and signal strength (RSSI). The basic capabilities of the

proposed strategies are detail described, that is, the functionality of the SDN-

based system and its corresponding mechanisms. The experimental evaluation

includes real experimentation over WMN and a special emphasis is placed

12

CHAPTER 1. INTRODUCTION

on the experimental setup and methodology, considering an analysis with our

results based on real measurements.

In Chapter 3, we present our proposal for microservices-adaptive SDN-

based load balancing. We analyze the functionality of the proposed platform,

highlighting its unique capability for microservices-based adaptability which is

grounded on a profiling activity building an improved view of each microservice,

in terms of particular resource demands and resource status. More precisely,

the Microservices Profiler component dynamically predicts the level of mi-

croservices’ impact on each resource type and determines the typical flow size

characterizing the latter. Then the proposed solution and its corresponding

mechanisms are described in detail including: (i) the SDN controller (ii) the

Monitoring Subsystem (iii) and the load balancing algorithm. Our experimental

methodology involves load-balancing among microservices with heterogeneous,

but simpler resource demands compared to the service they constitute and

are based on a realistic use-case scenario. Our results revealed the significant

performance advantages of our solutions, in both efficient cloud resource utiliza-

tion as well as application performance in terms of response time, throughput,

energy consumption and fairness.

Chapter 4 is structured around the primary goal of augmenting the

methods we employ to assess the impact of microservices on network and

processing resources. Our empirical study evaluates the effectiveness of various

statistical models in forecasting resource usage for diverse types of microservices.

Firstly, we analyze the problem statement of microservices resource usage

prediction and provide corresponding approaches from the literature. We

then move on to analyze our experimental methodology, detailing the specific

microservices evaluated, the traffic patterns utilized, and the prediction models

under consideration. Our research efforts focus on determining the most effective

model for resource forecasting across varied traffic patterns, whether it’s based

on the type of microservice, the specific resource type, or a combination of both.

We investigate the performance of both classical machine learning and statistical

techniques over a wide range of parameters and microservice requirements,

while also considering both single-step and multi-step prediction processes.

Finally, we analyze the results of each model yielding valuable insights about

the potential benefits and trade-offs of each choice, considering both accuracy

13

CHAPTER 1. INTRODUCTION

and computational complexity.

In conclusion, Chapter 5 provides a summary of our research results, and

potential future research directions stemming from our work.

1.4 Publications

The scientific findings of this thesis have been published in IEEE peer-reviewed

journals and international conference proceedings. Below we give the complete

list of our publications.

Refereed International Journals:

1. S. Kalafatidis, and L. Mamatas. ”Microservices-Adaptive Software-

Defined Load Balancing for 5G and Beyond Ecosystems.” IEEE Network

36.6 (2022): 46-53.

2. S. Kalafatidis, S. Skaperas, V. Demiroglou, L. Mamatas, and V. Tsaous-

sidis. ”Logically-Centralized SDN-Based NDN Strategies for Wireless

Mesh Smart-City Networks”. Future Internet (2022), 15(1), 19.

3. L. Mamatas, V. Demiroglou, S. Kalafatidis, S. Skaperas, and V. Tsaous-

sidis. ”Protocol-Adaptive Strategies for Wireless Mesh Smart City Net-

works”. IEEE Network (2022).

Refereed International Conference Proceedings:

1. S. Kalafatidis, V. Demiroglou, L Mamatas, and V. Tsaoussidis. ”Ex-

perimenting with an SDN-Based NDN Deployment over Wireless Mesh

Networks”. In IEEE INFOCOM 2022-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS) (pp. 1-6). IEEE.

2. S. Kalafatidis, et al. ”Experiments with SDN-based Adaptable Non-IP

Protocol Stacks in Smart-City Environments”. 2022 IEEE Symposium

on Computers and Communications (ISCC). IEEE, 2022. (Demo Paper)

3. I. Papakonstantinou, S. Kalafatidis, and L. Mamatas. ”A Techno-

Economic Assessment of Microservices.” 2020 16th International Confer-

ence on Network and Service Management (CNSM). IEEE, 2020.

14

Chapter 2

Logically-Centralized

SDN-Based NDN Strategies for

Wireless Mesh Smart-City

Networks

2.1 Introduction

Smart-cities networks are characterized by a large number of heterogeneous

end-user devices with spatial diversity, deployed over city-wide network regions.

In this framework, the smart-city ecosystems adopt the Internet of Things

(IoT) technology to utilize the smart-city applications (e.g., e-health [10] and

environmental quality notification [5]), which are typically associated with

critical performance requirements, e.g., low delay, reduced communication

overhead, and high resilience. Wireless technology appeared as a key feature to

meet the aforementioned requirements, increasing the communication range of

distant infrastructure-free IoT deployments. As a consequence, various wireless

communication technologies (such as WiMax, LTE, 5G, and beyond) have been

proposed to support communication in smart city environments, each of them

bringing different advantages to the network [5, 6].

Wireless Mesh Networking (WMN) seems to attract more attention in several

case studies of smart cities (e.g., Stratford [5], CityLab [1], SmartShatader [7])

15

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

as is capable to support a wide range of wireless smart community areas in a

multi-hop manner, with ease-deployable and low-cost infrastructure, while at the

same time guarantees robust and efficient connectivity in dynamic environments

(e.g., mobile users support). In summary, some of the advantages provided by

WMN in smart cities are (i) flexibility supporting efficient interconnection of

multiple distributed end-user devices; (ii) unstructured self-sustaining and self-

configuring topologies, and (iii) integration of different networking technologies

such as wired, optic-fiber, cellular and sensor networks [6]. Moreover, the multi-

hop communication over the WMN can work as a complementary solution

to other wireless networking technologies, e.g., to provide connectivity in

areas where 5G coverage is not sufficient or achieve low delay in case the 5G

RAN is far. However, the WMN backbone network may incorporate regional

communication characteristics, such as areas with (i) static nodes, requiring

efficient management of network resources [11]; (ii) mobile nodes, causing

frequent instabilities in the network (e.g., topology rearrangements), and (iii)

high signal interference [1].

On the other hand, Named-Data Networking (NDN) [8], an Information-

Centric Networking (ICN) [12] architecture, has been proposed as a promising

approach to match the IoT application requirements [13] in smart-city environ-

ments [14]. In particular, NDN architecture: (i) facilitates content retrieval from

the network, as NDN packets contain data names instead of IP addresses and

(ii) contributes to reduced communication overhead thanks to the in-network

caching [15]. A typical example of NDN implementation on top of smart-city

environments is the work [11] in which the authors examine the efficiency and

effectiveness of NDN principles in CityLab testbed, using containerized NDN

service placement in wireless nodes.

However, deploying NDN in such dense WMN requires employing additional

mechanisms to enable efficient multi-hop NDN communication. On the one

hand, an important aspect is the selection of nodes, in which, the NDN protocol

will be deployed [16], to avoid unnecessary resource consumption. For example,

Figure 2.1 depicts that in a multi-hop communication between two NDN nodes

(producer-consumer), not all of the available intermediate nodes are required.

On the other hand, a second major challenge is to adjust the NDN paths

appropriately.

16

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Figure 2.1: Example of NDN communication over CityLab testbed [1].

Considering the latter, smart-city networks provide a diverse set of commu-

nication conditions, spanning from stable to unstable conditions. For instance,

a specific region of a smart-city deployment may suffer from unstable wireless

conditions, such as frequent topology rearrangements, wireless node failures,

or high signal interference in crowded areas [1], affecting the NDN perfor-

mance. In this context, efficient NDN packet forwarding over WMN networks

with unstable conditions and low-quality wireless links is remaining an open

issue [16].

Here, we argue that Software-Defined Network (SDN) may provide the miss-

ing features of intelligent centralized control and programmability to facilitate

efficient NDN operation in challenging communication environments, such as

the smart-cities WMN [5,17]. For example, in decentralized (e.g., non-SDN)

NDN routing solutions, each NDN router is only aware of the state of its own

paths and ignores other paths in the network. The SDN-NDN integration

enables the centralized network view making easier the path selection/finding

considering more sophisticated forwarding decisions based on several metrics

(e.g., network state, RTT, hop counts, cash contents) [18]. Furthermore, the

state of NDN routing nodes is maintained in low complexity as the routing

decisions, and the network configuration functions are taken over by the SDN

controller. Thus, the integration of SDN with NDN over WMNs may bring

the following features: (i) global view of the network topology and centralized

17

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

monitoring data collection; (ii) allows the decision-making (including NDN

best-path selection) based on the “global” network view; and (iii) the dynamic

NDN configuration in groups of network nodes. In this context, we proposed

an SDN controller which utilized a WMN routing protocol, providing a reactive

solution for NDN path selection.

Despite the strengths provided from the SDN and NDN integration for

dynamic routing, there is a limitation of the communication management

overhead of the SDN. For example, the centralized of the SDN controller

communication with the distributed network nodes brings communication

overhead, and presents an important tradeoff between the cost and the benefits

of designing SDN forwarding strategies [18]. Nevertheless, there are several

studies that target reducing the SDN overhead, especially over low-power SDN

wireless networks, e.g., [19]. Additionally, a reactive solution, such as [20], may

handle dynamic changes in the communication performance, this comes with

the cost of increased management overhead, due to the frequent (and potentially

unnecessary) NDN path changes. The latter implies that this approach could

be inefficient over network typologies consisting of static wireless nodes [1].

Motivated by this fact, we discuss the limitations of a one-fits-all NDN path

selection strategy, claiming that an appropriate solution should take into

consideration the respective network environment, even in the context of a

smart-city environment.

2.2 Contributions and Chapter Organization

In this work, we discuss the trade-offs between two logically-centralized NDN

strategies over WMN smart-city networks. More precisely, we consider the

following SDN-based NDN path selection solutions, which they target efficient

end-to-end NDN communication in terms of performance (i.e., delay): (i)

a reactive approach, which is an extension of our previous work in [20] (this

approach is utilized also in our work [21]) and re-adjusts the NDN path based on

the BATMAN protocol; and (ii) a proactive approach, that a priori defines the

NDN path, based on a combination of partitional clustering and similarity-based

measures.

The key contributions of the specific work are summarized as follows:

18

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

• Implementation of an SDN-based system that supports two NDN path

selection strategies (i.e., a reactive one and a cluster-based proactive),

built on top of real WMN networks.

• Real experimentation over the w-iLab.t testbed [22], evaluating the per-

formance impact of our SDN-based solutions considering experimental

scenarios with stable and unstable conditions.

• Collection of real measurements related to RSSI, Delay, and Packet loss

from indoor [22] WMN network. We record the performance of links

among real wireless nodes and provide the measurements as released

open-data [23].

2.2.1 Chapter Organization

The rest of the Chapter is organized as follows. The next section contrasts our

proposal against the related works. In Section 2.4, we detail the characteristics

and design choices of our approach, providing an extensive experimentation

analysis in Section 2.5. Finally, our conclusions and directions for future work

are presented in Section 2.6.

2.3 Background and Related Works

The smart community networks may benefit from the ICN approach as it

can increase the network performance, reducing communication overhead,

thanks to the in-network caching capabilities, as shown in [11]. However, ICN

architectures, including NDN, lack of inherent mechanisms for supporting

efficient NDN operation in challenging communication environments, such

as WMN. In this context, content delivery and packet forwarding over such

networks, with unstable wireless links, remains an open issue [16]. In this

work, we study two different strategies for appropriate NDN path selection over

WMN environments: (i) a dynamic approach with a reactive operation and (ii)

a proactive one based on clustering evaluation of the quality of the wireless

links.

19

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Here, we discuss a number of NDN-based solutions sharing similar de-

sign characteristics with the aforementioned strategies. Moreover, we divide

the representative-related works into dynamic/reactive and cluster-based ap-

proaches, comparing them with the basic technical characteristics of our strate-

gies (i.e., SDN-based centralized control and real experimentation over WMN),

as illustrated in Table 2.1.

Table 2.1: Related Work Comparison

Approach Works Centralized SDN Wireless Mesh Real Experimentation

R
ea
ct
iv
e

SRSC [24] ✓ ✓ X X
Multipath Forwarding [25] ✓ ✓ X ✓
Software-Defined NDN [26] ✓ ✓ X X
SDN-NDN over WMN [27] ✓ ✓ ✓ ✓
Our reactive strategy ✓ ✓ ✓ ✓

C
lu
st
er
-b
as
ed Cluster-based NDN Routing [28] X X X X

LCRN [29] X X X X
NDN-based IoT [30] X X X X
PiGeon [11] ✓ X ✓ ✓
Our proactive strategy ✓ ✓ ✓ ✓

Recent approaches have been trying to resolve NDN routing and forwarding

limitations with SDN [31]. In [24], authors designed and evaluated an SDN-

based routing scheme for CCN/NDN (SRSC) which fully exploits the NDN

principles, and, thus, the Controller and the nodes communicate using NDN

messages (exchanging control and information messages). Particularly, the

controller makes the routing decisions, and the NDN nodes act as forwarding

devices only, as in our case. In SRSC, the Controller only informs an NDN node

of the entire path to the content and afterward, the NDN nodes communicate

with each other (hop-by-hop), to create the specific path. In contrast, we

selected the controller to communicate independently with each on-path node

and configure the NDN network, because of the unstable mesh topology.

In [25], the authors proposed an SDN-enabled Controller for multipath

forwarding in NDN. The SDN controller analyzes the global view of the NDN

network and makes appropriate forwarding decisions, according to the router

states, the available forwarding paths, and the cached contents. The particular

20

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

centralized solution improves the performance of NDN compared to a distributed

multipath forwarding strategy, which relies on a priori forwarding information

and is inappropriate for networks with dynamic topologies, as in our case. Such

solutions have been evaluated over a real-world WAN network, so frequent path

changes and unstable topologies were not investigated in depth.

Authors in [26] introduced an integrated SDN-NDN framework and modified

NDN’s FIB design to address FIB overflow. In particular, FIB overflow is

affected by (i) a large number of different contents and (ii) long-lived FIB

entries. In our work, we maintain the default NDN’s FIB design and address

those issues by creating short-lived FIB entries in the NDN network.

In [27], authors target to improve the NDN performance through efficient

content management, considering features of wireless communication. Their

proposed solution has been evaluated in a real WMN environment and exhibits

the most common design features with our dynamic approach (e.g., SDN-based

centralized control over real WMN). Nevertheless, the main difference between

our approach with [27] is decision-making regarding the dynamic conditions

of WMN. In particular, our work aligns the functionality of NDN with the

decisions of a dynamic WMN routing protocol, offering a rapid response of the

NDN network to frequent topology changes (e.g., due to link failures).

Most of the aforementioned works are not validated in real-world test beds.

Moreover, there is no prior work that addresses the challenging communication

issues of deploying NDN in real-world mesh networks, using the SDN approach,

as illustrated in Table 2.1.

As our proactive strategy, there are also other works that utilize clustering

methods for NDN routing. In [28], authors propose an NDN routing protocol

for wireless networks using clustering to reduce the number of nodes considered

for route discovery. Moreover, in [29], a routing protocol is presented based

on clustering to reduce routing overhead among the network nodes. In [30],

the authors studied the integration of NDN-based IoT with Edge computing,

introducing an algorithm that employs clustering to improve NDN routing. In

contrast with our cluster-based approach, the above works are not evaluated

over real network environments, and their routing decisions do not take into

account WMN network characteristics (e.g., the quality of the wireless links).

In work, [11] authors use clustering for NDN service placement and in-

21

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

vestigate ICN advances by conducting experiments over a smart-city WMN

test-bed [1]. The decision-making for the service placement takes into account

compute resources (i.e., CPU) and bandwidth among the network nodes. In

contrast to this work, we investigate the best NDN path selection considering

RSSI and delay metrics among the network nodes, as we target efficient NDN

communication over WMN in terms of delay and reliability.

From the literature review, we observe that most cluster-based routing works

(as the above) mainly focus on excluding monitoring data or characteristics of the

network (e.g., considered network nodes) that affect the routing decision, aiming

to reduce the data communication latency or costs. Compared to these works,

we approach cluster-based routing differently, using a multi-cluster approach as

an evaluation quality measure to select the best NDN path (i.e., the clustering

results are taken into account for the path selection). The employment of a

clustering-based approach, which intuitively requires stationary data structures,

corresponds with the results of an extensive experimental analysis over a real

wireless network with static nodes (described in Section IV).

2.4 Proposed SDN-Based System

In this section, we present the proposed SDN system and the implemented

reactive and proactive approaches, which target efficient NDN operation over

WMNs. The main objective of both approaches is the selection of the ap-

propriate paths between the NDN producer and consumer. In summary, we

consider:

1. A reactive NDN path selection strategy that aligns NDN paths with the

dynamic routing decisions of the WMN protocol. This approach is based

on distributed decision-making information (i.e., each node chooses the

best route for each destination among its neighbors) which is collected

from the SDN Controller to configure the NDN nodes.

2. A proactive NDN path selection strategy based on evaluating available

wireless links in terms of RSSI and delay. Specifically, in this approach, we

collect historical network monitoring data and classify their performance

to select the appropriate NDN path.

22

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Their detailed description follows next.

2.4.1 Reactive NDN Path Selection Strategy

Here, we present our proposed SDN-based system and its corresponding mech-

anisms, aiming to the flexible and adaptive NDN operation in unstable WMN

regions of smart-city backbone networks. Its main functionalities are (i) cen-

tralized monitoring of the wireless mesh network; (ii) dynamic best-path

decision-making, and (iii) NDN configuration according to the selected routes.

The system consists of two functional entities: (i) the SDN Controller which is

the centralized control point of the network and (ii) the Network Nodes, which

support NDN communication over WMN. A detailed description of the system

components follows.

Figure 2.2: SDN-based Experimentation System.

23

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

SDN Controller

The Controller is the key component that enables the integration of the NDN

with the dynamic decisions of wireless routing protocol [32] and as it performs

centralized monitoring of the wireless nodes to configure the NDN paths. Its

main functionalities are (i) information collection about the network state

and rapid detection of network changes, enabling the global view of the entire

network in real-time; (ii) definition of the best route for each content request

between the NDN-Consumer and the NDN Producer, and (iii) to NDN route

establishment including per-hop NDN face and FIB entry creation. The

overview of the Controller’s operation is presented in Figure 2.2.

The monitoring data collection of WMNs is performed through the WMNs

routing protocol, i.e., the blue dashed lines of Figure 2.2. That is the central-

ized information collection from the distributed wireless nodes, regarding the

discovery of the neighbors of each node and the routes that occur between

the hops of the network. The routing costs among the links are based on the

quality metrics of BATMAN [32] routing protocol (Layer 2), which is utilized

in our implementation. The Controller is also located in the WMN network

and communicates with the Network Nodes over IP.

The Controller manages the content requests through the reactive operation,

following these four actions: (i) receives Consumer’s updates for each new

Interest packet; (ii) defines the best wireless routing path among the Consumer

and the Producer, according to the collected monitoring data; (iii) establishes

the selected NDN route, and (iv) triggers the Consumer to send the particular

Interest packet.

Moreover, our system maintains information related to NDN in-network

cashing. Especially, our Controller associates the content prefix with the corre-

sponding utilized NDN paths and the content’s Freshness Period to determine

whether the content is cached. More precisely, as the Data packet will travel

through the reverse path, the Controller node stores the path that has cached

the particular Data packet and estimates the caching remaining time. This can

be accomplished by maintaining information about the particular data packet

(e.g., Freshness Period) as well as the corresponding caching information (e.g.,

utilized cache size, remaining entries, caching policy).

24

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

The Controller is located in the wireless mesh network and communicates

with the wireless nodes over wireless links. Here, a major challenge is to

guarantee reliable communication between the SDN controller and the WMN

nodes, for example, in case of disruptive communication. Following our previous

works [33,34], we assume two wireless communication channels: (i) a control

channel utilizing long-range but low-data-rate wireless communication, targeting

the reliable connection between the Controller and the wireless nodes and (ii)

a data channel utilizing a high-data-rate and short-range channel, supporting

application data transfer. Although, the deployment of a reliable control channel

is a complex aspect, and deserves an independent study outside the scope of

this paper. We briefly discuss this approach here, to underline the complexity

of the above task, which may become a major disadvantage considering the

reactive strategies.

Network Nodes

The infrastructure of our proposed system consists of interconnected wireless

nodes that support NDN communication. The NDN and WMN functionalities

are independent and are integrated with the Controller (i.e., the Controller

monitors the WMN to configure the NDN). Here, we describe the NDN and

WMN functionalities to illustrate the system’s network nodes operation.

In a nutshell, NDN is a future Internet architecture that follows the ICN

principles and accomplishes named content retrieval by employing two types of

packets (e.g., the Interest and the Data packets). In NDN, Consumers send

an Interest packet in the network to fetch the corresponding Data packet that

contains the requested content. Although a Data packet is originally generated

from a Producer node, it may be retrieved from intermediate nodes’ caches, as

NDN supports in-network caching.

Each NDN node uses three components: the Content Store (CS), the

Pending Interest Table (PIT), and the Forwarding Information Base (FIB).

When a new Interest packet is received, the NDN node first checks if the

requested content exists in the CS (i.e., it is cached), and in that case, it

responds directly with the Data packet. Alternatively, if the prefix matches a

specific PIT entry (which contains the already sent Interest prefixes associated

25

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

with the respective faces), then the incoming face is added to the particular

entry (meaning that when the Data is fetched it will be forwarded also to that

face). Otherwise, a new PIT entry is created and the Interest is forwarded to

the next hop according to the FIB information [15].

In our NDN deployment, face creation and prefix registration are triggered

from the Controller node. Since NDN communication is Consumer-driven, our

system performance heavily relies on the Consumer node behavior. Thus, this

plane targets to fetch the data efficiently with the minimum communication

delay, by exploiting the NDN features.

The NDN consumer communicates with the SDN controller, if a new

Consumer-Producer path has to be established, i.e., in cases: (i) the consumer

requests a specific content for the first time or (ii) freshness period for a content

(already requested) has expired. In all other cases, the requested content is

retrieved to the consumer from the network, using the in-network cashing

capability of NDN.

Here, we give an example of the NDN and SDN interaction of our system,

as illustrated in Figure 2.2. The NDN Consumer (node1) intends to fetch the

content with the prefix e.g., sensor/temperature. Thus, it sends a request to

the Controller to inform them about the specific content. If the content is

not cached in the network, the Controller finds the best path to the NDN

Producer (e.g., Node1-Node2-Node4) and establishes the NDN routes. Finally,

the Controller triggers the Consumer to transmit the Interest packet through

the created path.

2.4.2 Proactive NDN Path Selection Strategy

The proactive strategy is also SDN-based and it is grounded on the implemen-

tation described in Figure 2.2. Specifically, each node in the network collects

information from its neighbors related to RSSI and delays, periodically. The

collected monitoring data is transferred to the SDN controller through the

control channel. Then, the controller performs the clustering and chooses the

best path by adjusting the NDN on the wireless nodes accordingly. Compared

to the reactive strategy, in this implementation, the SDN controller forwards

all the content requests on the selected path until it re-estimates the best path

26

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

again. For this reason, we consider this strategy proactive.

More precisely, the proactive strategy is based on partitional clustering and

similarity-based distance measures. The main goal is to determine the best NDN

path in terms of performance and reliability for end-to-end NDN communication

(e.g., between an NDN consumer and NDN producer). In summary, our

implementation has the following objectives: (i) the data collection among

the network nodes, regarding the RSSI and delay, in a central node of the

network; (ii) the clustering of the measurements, and (iii) the determination of

the end-to-end NDN best paths among the wireless links.

In Figure 2.3, we illustrate the NDN path selection according to the clus-

tering results, considering 4 clusters, sorted from best to worst based on the

average value within the cluster. The color gradations indicate the cluster each

link belongs to, i.e., the colors green, blue, black, and red symbolize the clusters

from best to worst, respectively. Then, each provided path is characterized by

its worst link, e.g., the worst path contains at least one link clustered as the

worst link. For example, in Figure 2.3, the best path is that containing the

nodes 1-2-3-5-8, since all the including links are clustered as best-links (notated

with green color).

Figure 2.3: NDN path selection using the proactive strategy.

Here we describe the clustering method, we choose the dynamic time warping

(DTW) [35] to estimate the similarity between the time series. Exploiting

the nonlinear and time-independent nature of DTW, compared to typical

measures (e.g., Euclidean distance), which provides a more robust and “global”

(less sensitive to local time-series shifts) similarity estimation, improving the

clustering performance. Moreover, we utilize the k-medoids [36] algorithm,

since it is a representative object technique, more resilient to outliers [37] than

27

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

k-means. The fundamental steps of the proposed clustering approach, are given

below:

• Step 1: Calculate DTW, pairwisely, between all the available links.

• Step 2: Apply the k-medoids algorithm to the vector that describes the

pairwise similarity of all the available links (computed in Step 2). The

number of clusters is pre-defined (in Section 2.5. We chose 4 clusters).

• Step 3: Sort the clusters, according to a specific Quality of Service (QoS)

metric, for example, RSSI or delay.

2.5 Experimental Evaluation

In this section, we assess our proactive and reactive approaches for NDN path

selection, targeting to the efficient operation of NDN over WMN. Our evaluation

includes real experimentation over an indoor wireless environment, considering

small-scale SDN-NDN deployments, utilizing the w-iLab.1 Fed4FIRE+ testbed.

In summary, the evaluation metrics include (i) the NDN performance in terms

of delay; (ii) the SDN communication management overhead; (iii) the frequency

of dynamic path changes (path selection), and (iv) NDN reliability (i.e., per-

centage of Interest-Data exchange failures). More precisely, we consider two

experimental scenarios:

• Scenario 1, which evaluates the reactive approach over different types of

network conditions, i.e., stable and unstable WMN conditions.

• Scenario 2, which assesses the effectiveness of a proactive (clustering-

based) approach in this context, also comparing its outputs with these of

the reactive approach.

2.5.1 Experimentation Setup

Here, we present the most important experimentation details of both scenar-

ios. The NDN implementation is based on the containerized Named data

Forwarding Daemon (NFD) [38], developed in Docker containers [39] since it is

lightweight, easily reconfigurable, and facilitates the NDN deployment on any

28

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

hardware. Moreover, we use the better approach to mobile ad-hoc networking

(BATMAN) [32] wireless mesh routing protocol.

The multi-hop network topologies consist of wireless network nodes (Intel

NUC devices) of the w-iLab.1 testbed. The nodes are equipped with an AR9462

wireless network adapter that we used to construct our wifi mesh network. We

used the ath9k driver and configured these devices to run at 2.4 GHz with 20

MHz channel width in mesh mode. Moreover, we use a separate 802.11 wireless

channel for the control messages (i.e., for the communication of the controller

with the NDN nodes,) which is in mesh mode and uses the ath10 driver.

Regarding the performance measurements of the wireless links (i.e., RSSI

and delay) utilized in the clustering process, we use wireless connectivity (among

all nodes of the network) based on a Peer Link Management protocol, which is

used to discover neighboring nodes and keep track of them. Here, the neighbor

discovery is only limited to the signal range of each node. The evaluation is

based on Ping tool by sending a batch of 100 ICMP packets every 3 s. As

illustrated in Figure 2.4, the results present: total completion time—the total

time to communicate of the 100 packets (we use a 2-s threshold waiting for each

batch to complete. If the time is exceeded the particular batch is considered

undelivered); PLR—the percentage of ICMP packets loss (i.e., out of 100);

avg—the average Round Trip Time (RTT) of the ICMP packets; sd—and the

Standard deviation RTT of the ICMP packets. The RSSI measurements are

recorded from a second interface on each wireless node (the first interface was

in mesh mode and was used for sending the ICMP packets), which is in monitor

mode and uses the same driver. The performance measurements were collected

from the w-iLab.1 testbed [22], utilizing the above method, are provided in [23].

Finally, the use case under consideration is an IoT scenario, where an IoT

NDN Consumer requests sensor measurements from an IoT NDN Producer, that

generates emulated sensor measurements. Here, focus on two IoT applications

with different requirements: (i) short flows with delay demands, assuming

a typical sensor measurement application, i.e., the produced data packets

have a limited size (350 Bytes) and represent raw sensor measurements (e.g.,

temperature, humidity, etc); and (ii) long flows with throughput demands,

assuming photo file transfers with a limited size (1 Mb). In the short flows, the

emulation of Consumer and Producer applications are based on the ndnpeek

29

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

and ndnpoke tools, respectively, and for the long flows emulation, we use

the ndncatchunks and ndnputchunks tools to transfer files as data segments.

Moreover, to measure NDN connectivity failure attempts, we have disabled

NDN retransmissions for the short-flow application.

Figure 2.4: Evaluation of the wireless links.

2.5.2 Scenario 1—Evaluation of the Reactive Processes

Here, we demonstrate the functionality of the reactive strategy, targeting the

flexibility and adaptability improvements that may bring, rendering NDN

deployments over dynamic WMN topologies feasible.

In this scenario, we focus on the first IoT application scenario, i.e., short

flows with delay demands. More precisely, we consider 150 different IoT

contents generated from the Producer node, while the Consumer node transmits

1000 interest packets one by one to fetch the generated IoT contents from

the Producer node. The content requests follow the Zipf distribution [40],

(with α = 1.5). We set the freshness period to 10 s, which is the time that the

cached content is valid.

First, we discuss the results over stable networking conditions. In practice,

we consider a multi-hop network topology consisting of seven wireless network

nodes from the 9th floor of the w-iLab.1 Fed4FIRE+ [22] office lab, illustrated in

Figure 2.5. The experiment assumes one Consumer (Node9-13), one Producer

node (Node9-21), and the Controller (Node9-3) participating in the same

30

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

wireless topology, i.e., the latter performs centralized control of the entire

network. Although the selected devices are located in close proximity, we adjust

the transmission power (TP) of the wireless nodes to 3 dBm and managed

to shape a multi-hop scenario. The monitoring data of each node include

information about the BATMAN neighbors and originators enabling the global

view of the network, and, are sent to the Controller through the A.L.F.R.E.D.

tool [41]. The Controller configures the NDN nodes by transferring messages to

the NFD container over TCP. These messages include information about the

next hop and the particular content prefix and, thus, enable NDN face creation

and prefix registration. Moreover, the nodes are not located nearby, thus, their

connectivity is accomplished through the WMN. Results are collected over

10 repetitions of the experiment. Furthermore, the evaluation includes three

metrics: (i) the performance of the NDN network in terms of communication

delay (i.e., the Interest-Data exchange procedure between the Consumer and

the Producer); (ii) the path establishment delay, i.e., the elapsed time at which

the Controller makes the best path decision and configures the NDN network,

and (iii) the performance of SDN decision making over the WMN. A detailed

description of the metrics used, follows.

• RTTNDN is obtained from the NDN Consumer node and represents the

round trip time (RTT) between the interest packet transmission and the

data packet reception,

RTTNDN = RTTNDNc +RTTNDNp ,

where RTTNDNc corresponds to the RTT values in cache-hit cases and

RTTNDNp is the measured RTT in case of Producer-fetched content.

Note that, the Consumer can fetch the requested content either from the

Producer node or from the on-path nodes, due to the in-network caching.

• Total Delay: denotes the elapsed time between the Consumer’s request

to the Controller until the Data packet reception, including the path

establishment delay.

• Best Path Changes (BPC): represents the total number of best path

changes in the whole duration of the experiment.

31

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Figure 2.5: WMN topology, considering the 9th floor of the w-iLab.1 testbed.

We now move on to discussing our results. In Figure 2.6, we present the

outputs of the reactive approach, considering the RTTNDN and the Total Delay

metrics. The low average RTTNDN value, indicates that a reactive approach

may ensure the seamless operation of the NDN in volatile network topologies,

without compromising the NDN performance. On the other hand, the high

average Total Delay, especially in contrast to the average RTTNDN , reveals the

additional network control overhead introduced by the Controller, as detailed

in Section 2.4.1, which could be avoided in the case of proactive path selection

strategies. Note that the significant difference between RTTNDNp and RTTNDNc

(≈87 msec) is attributed to the locally occurred cache hits in the Consumer

node (without requiring any network transmission) while fetching data from

the remote Producer requires interest and data packet transmissions over the

3-hop topology.

Figure 2.6: Average RTTNDNc , RTTNDNpand Total Delay.

Figure 2.7 illustrates the average best paths hops and the total Best Path

32

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Changes (BPC), per round (experiment repetition). As is shown, the average

number of hops (in each round) is 3, confirming the validity of the experimental

methodology. Additionally, the Best Path Changes deviation (i.e., ranging

from 7 to 19) illustrates the wireless links volatility of the test-bed’s setup

and highlights the proposed system’s capability to capture frequent network

changes and establish the appropriate paths.

Figure 2.7: Number of Hops and Best Path Changes (BPC) pers round.

Subsequently, we discuss the outputs of the reactive process, targeting the

effectiveness of NDN end-to-end communication, and, therefore, we exclude in-

network caching (i.e., NDN cash contents). Here, the network topology consists

of 6 network nodes from the 10th floor of the w-iLab.1 Fed4FIRE+ test-bed,

as it is depicted in Figure 2.8. Node10-29 hosts the Consumer, node10-20 the

Producer, and Node10-32 the Controller, which (as in the previous experiment)

belongs to the same wireless topology. According to Figure 2.8, two multihop

paths may be formed for the end-to-end communication, i.e., path1 (node10-

29, node10-9 and node10-20) and path2 (node10-29, node10-32, node10-34,

node10-5 and node10-20). The Transmission Power (TP) of node10-34 and

node10-5 is 10 dBm, and the TP of node10-32, node10-9, and node10-29 is

5 dBm. Finally, we consider three types of communication conditions, by

adjusting the Producer’s TP, as follows: (i) 5 dBm (low TP), (ii) 10 dBm (high

TP), and (iii) periodically increase/decrease from 5dBm to 10dBm, every 5

minutes (unstable TP).

Next, in Tables 2.2 and 2.3, we compare the proposed SDN, BATMAN-

33

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

based, reactive solution with the conventional NDN approach, i.e., fixed path1

and path2 solutions, over the total amount of 1500 Interest-Data exchanges

from the NDN Consumer node.

Figure 2.8: WMN topology, considering the 10th floor of the w-iLab.1 test-bed.

Table 2.2 enlists the average delay (msec) values of the Interest-Data

exchanges for the fixed NDN paths and the reactive NDN solution. According

to the outputs, Path2 provides the lower delay values for both low and unstable

TP of the Producer, on the contrary, Path1 minimizes the delay for the

case of high TP. Regarding the results of the proposed reactive strategy, the

integration of the BATMAN protocol provides comparable performance in all

cases, implying that a dynamic approach can successfully select the best paths,

according to the network conditions.

Table 2.2: Average of Interest-Data exchanges performance delay (msec)

NDN Path Low TP
(5 dBm)

High
TP (10
dBm)

Unstable
TP (5-10
dBm)

Fixed Path1 61.62 29.86 53.71
Fixed Path2 45.36 38.62 43.35

Reactive solution 48.58 29.93 48.99

Similarly, in Table 2.3, we evaluate the fixed and dynamic NDN path

selection solutions in terms of reliability, i.e., comparing the total amount

of Interest-Data exchange failures. The reactive strategy demonstrates its

34

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

effectiveness in challenging communication conditions (low and unstable TP),

providing the lowest number of interest-data failures, and also, indicating the

potential gains of a dynamic mechanism, concerning unstable communication

conditions. On the other hand, Path1 has the least failures in high TP cases.

Table 2.3: Total amount of failures over 1500 interest-data exchanges

NDN Path Low TP
(5 dBm)

High
TP (10
dBm)

Unstable
TP (5-10
dBm)

Fixed Path1 115 11 61
Fixed Path2 70 53 58

Reactive solution 58 40 51

Finally, Table 2.4 presents the results of the reactive solution’s path choices

regarding path 1 and path 2 (i.e., how many times BATMAN chose each

path), considering the different TP adjustments for the Producer node. As it

is shown, the reactive solution’s path choices are in accordance with the best

path selection, derived in Tables 2.2 and 2.3. In other words, our dynamic

approach, integrating the functionality of NDN with the decisions of a wireless

mesh protocol (i.e., BATMAN), successfully detects the best paths.

In a conclusion, scenario 1 demonstrates that an SDN-based solution may

effectively support the NDN operation over WMN, especially considering

the reliable performance on challenging communication networks. However,

real-time network monitoring increases the network overhead, also adding

extra delays to the network performance due to the centralized SDN control

management overhead. Hence, in scenario 2 we discuss the potential gains of

a proactive routing strategy instead of the operation of dynamic NDN path

changes, targeting relatively stable wireless networks.

Table 2.4: Reactive’s solution path choices over 1500 interest-data exchanges

NDN Path Low TP
(5 dBm)

High
TP (10
dBm)

Unstable
TP (5-10
dBm)

Path 1 41 1186 362
Path 2 1469 314 1138

35

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

2.5.3 Scenario 2—Evaluation of the Proactive Strategy

In scenario 2, we aim at the effectiveness of the SDN-based proactive procedure

in terms of NDN performance over WMN smart-city environments. We use

a multi-hop network topology consisting of ten wireless network nodes as

illustrated in Figure 2.9 with green circles, including one Consumer (Node10-

29) and one Producer node (Node10-20), located at the edges of the network.

Figure 2.9: Selected topology—w-iLab.1 office lab 10th floor [2].

First, we discuss the clustering results over the experimental network topol-

ogy. More precisely, the proposed clustering technique considers 4 clusters,

classified from best to worst based on their intra-cluster mean value; the best

cluster provides the minimum intra-cluster mean value. Figures 2.10–2.12

illustrate the clustering outputs considering as inputs the absolute RSSI, the

delay, and the bivariate RSSI-delay values of the links, respectively. The color

gradations denote the cluster that each link belongs to, i.e., green, blue, black,

and red colors symbolize the clusters from the best to worst, respectively.

According to the clustering results: (i) RSSI values mainly depict the distance

among the nodes; as expected, since we experiment over an indoor environment

with low interference, (ii) no evidence for the high similarity between RSSI and

delay values exists, e.g., the path from node-1 to node-20, (iii) RSSI-delay-based

clustering presents dissimilarities from both RSSI and Delay clustering.

36

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Figure 2.10: RSSI clustering results among network nodes.

Figure 2.11: Delay clustering results among network nodes.

The second part of this scenario includes: (i) the performance evaluation of

the available NDN paths over the considered WMN and (ii) the comparison

of the clustering results with the choices of our dynamic SDN-based solutions.

Specifically, in this phase, we performed 15,000 Interest-data exchanges (using

the reactive process) over the topology described in Figure 2.5, and we recorded

the BATMAN path choices (i.e., which paths have been chosen and how many

times). Then, we performed 1500 Interest-data exchanges and 100 file transfers

37

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

for each selected path using the NDN chunk method, and finally, for each path,

we present the clustering results.

Figure 2.12: RSSI-Delay clustering results among network nodes.

Table 2.5 enlists: (i) the reactive’s solution selected paths out of a total

of 15,000 interest-data exchanges (Paths); (ii) the hops number of each path

(Hops); (iii) the times each path was chosen during the experiment (reactive’s

solution path choices); (iv) the average delay for the Interest-Data exchanges

(Interest-Data); (v) the percentage of Interest-Data exchange failures (Fails %),

and (vi) the clustering results, for the metrics under consideration, i.e., RSSI,

Delay, and RSSI-Delay. Here, notation C.i, i = {1, 2, 3, 4} refers to paths sorted

from best to worst. A path is characterized by its worst link, for example, C.1

exclusively includes the best links in terms of clustering and C.4 includes at

least one link estimated as the worst link.

We discuss the results focusing on the Interest-Data exchange performance.

In this context, Table 2.5 highlights that (i) the number of hops does not affect

the Interest-Data performance and (ii) the reactive solution’s path choices do

not correspond to the best path selection of the clustering approach, for example,

the path 29-8-20, No.14; (iii) reactive solution avoids unreliable paths, i.e.,

paths characterized by significant failures (Fails %). Regarding the clustering

outputs, one may observe that the Delay based and the RSSI-Delay based

clustering successfully reveal low delay paths, while, this is not the case in

38

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

the RSSI-based clustering, for example, the path with the minimum delay is

characterized as C.3). Finally, all three clustering realizations provide similar

results in terms of reliability.

Table 2.5: Comparison of the clustering results with the reactive process,
considering the average delay and fails (%) of 1500 interest-data exchanges,
over each of the available NDN paths

No. Paths Hops
Reactive
solution’s
path choices

Interest-Data
Delay (msec)

Fails (%) RSSI Delay RSSI-Delay

1 29-32-1-20 3 42 14.82 3.2 C. 3 C. 1 C. 2

2 29-32-1-5-20 4 781 15.61 3.9 C. 2 C. 1 C. 1

3 29-34-1-20 3 52 16.79 5.7 C. 3 C. 1 C. 2

4 29-9-8-20 3 335 18.72 4.0 C. 3 C. 1 C. 2

5 29-32-34-1-5-20 5 8 19.22 2.3 C. 2 C. 1 C. 1

6 29-34-1-5-20 4 624 19.5 6.5 C. 2 C. 1 C. 2

7 29-26-8-20 3 359 21.67 5.1 C. 3 C. 1 C. 2

8 29-32-34-1-3-5-20 6 4 23.16 2.3 C. 1 C. 1 C. 1

9 29-32-1-3-5-20 5 40 26.79 3.9 C. 2 C. 1 C. 2

10 29-34-1-3-5-20 5 21 27.75 5.9 C. 2 C. 1 C. 2

11 29-1-5-20 3 1419 28.48 8.9 C. 3 C. 3 C. 3

12 29-1-20 2 208 33.46 10.9 C. 3 C. 3 C. 3

13 29-34-5-20 3 528 38.14 19.2 C. 3 C. 1 C. 2

14 29-8-20 2 5798 39.68 9.1 C. 3 C. 3 C. 3

15 29-32-34-5-20 4 5 43.27 23.5 C. 3 C. 1 C. 2

16 29-34-3-5-20 4 173 48.39 8.9 C. 2 C. 2 C. 2

17 29-32-34-3-5-20 5 20 54.68 8.9 C. 2 C. 2 C. 2

18 29-9-20 2 3758 54.92 6.2 C. 3 C. 2 C. 3

19 29-26-9-20 3 87 79.03 11.6 C. 3 C. 3 C. 3

20 29-32-8-20 3 398 79.95 22.4 C. 3 C. 3 C. 3

21 29-32-9-20 3 31 123.77 14.6 C. 3 C. 3 C. 3

22 29-26-20 2 28 144 21.1 C. 4 C. 4 C. 4

-
Reactive
solution (total)

2 to 6 15000 89.19 4.7 - - -

Table 2.6 presents the number of hops over all the available paths in the

corresponding network topology, and, the total amount and the percentage

of hops included in the path selection of the reactive process, over 15,000

Interest-data exchanges. As described in Table 2.6, the reactive solution tends

to select paths with the fewest hops, e.g., the paths with two hops are selected

for 65% of the total requests.

Here, we evaluate the performance of NDN over the aforementioned static

39

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Table 2.6: Number of hops included on each reactive’s solution path choise,
over 1500 interest-data exchanges

Number
of hops

Total amount of reactive’s
solution choices

Percentage of reactive’s
solution choices (%)

2 9792 65,28
3 3251 21,67
4 1583 10,55
5 93 0,62
6 4 0,03

Table 2.7: Comparison of the clustering results, considering the average delay
(secs) of 1MB file transfer using NDN-Chunks application

N. Paths
NDN-Chunks
Delay (secs)

RSSI Delay RSSI-Delay

1 29-34-1-20 11.48 C. 3 C. 1 C. 2
2 29-32-1-20 11.57 C. 3 C. 1 C. 2
3 29-26-8-20 11.72 C. 3 C. 1 C. 2
4 29-34-1-5-20 12.09 C. 2 C. 1 C. 2
5 29-9-8-20 12.26 C. 3 C. 1 C. 2
6 29-32-1-5-20 12.27 C. 2 C. 1 C. 1
7 29-34-5-20 12.7 C. 3 C. 1 C. 2
8 29-34-1-3-5-20 12.95 C. 2 C. 1 C. 2
9 29-32-34-1-5-20 12.98 C. 2 C. 1 C. 1
10 29-34-3-5-20 13.03 C. 2 C. 2 C. 2
11 29-32-1-3-5-20 13.18 C. 2 C. 1 C. 2
12 29-32-34-1-3-5-20 13.82 C. 1 C. 1 C. 1
13 29-32-34-3-5-20 15.24 C. 2 C. 2 C. 2
14 29-1-20 16.89 C. 3 C. 3 C. 3
15 29-1-5-20 16.9 C. 3 C. 3 C. 3
16 29-32-34-5-20 18.74 C. 3 C. 1 C. 2
17 29-8-20 20.18 C. 3 C. 3 C. 3
18 29-32-8-20 24.82 C. 3 C. 3 C. 3
19 29-9-20 25.37 C. 3 C. 2 C. 3
20 29-26-9-20 25.59 C. 3 C. 3 C. 3
21 29-32-9-20 27.11 C. 3 C. 3 C. 3
22 29-26-20 31.36 C. 4 C. 4 C. 4

NDN paths (i.e., Table 2.5) considering an NDN application that generates

long flows. More precisely, Table 2.7 depicts the average delay (in secs) of

transferring a file, sized 1 Mb, as NDN data segments utilizing the ndncatchunks

and ndnputchunks tools. In this particular application, we enable NDN retrans-

40

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

missions and consequently, all requests are served successfully. The results in

Table 2.7 reconfirm the conclusions of the previous use case. More specifically:

(i) the RSSI-based clustering does not efficiently categorize the paths in terms

of performance, since the lower delay values correspond equally to the C.2 and

C.3 categories; (ii) delay-based clustering successfully identifies links with high

delay performance. Interestingly, paths are categorized as C.1, such as the

path 29-32-34-5-20 (No. 16), show inefficient delay, due to the influence of

retransmissions on the total delay; (iii) The RSSI-Delay clustering provides

comparable outputs to that of delay clustering.

Table 2.8: RSSI clusters average performance

RSSI
No. of
paths

Reactive
solution’s
path choices (%)

Interest-Data
Delay (msec)

Fails (%)
NDN-Chunks
Delay (secs)

C. 1 1 0.03 23.16 2.33 13.82
C. 2 7 11.11 30.28 5.76 13.11
C. 3 13 86.80 45.59 11.11 18.10
C. 4 1 0.19 144.00 21.13 31.36

Table 2.9: Delay clusters average performance

Delay
No. of
paths

Reactive
solution’s
path choices (%)

Interest-Data
Delay (msec)

Fails (%)
NDN-Chunks
Delay (secs)

C. 1 12 18.66 23.79 7.13 12.98
C. 2 3 26.34 52.66 8.02 17.88
C. 3 6 52.94 64.06 12.92 21.92
C. 4 1 0.19 144.00 21.1 31.36

Table 2.10: RSSI-Delay clusters average performance

RSSI-
Delay

No. of
paths

Reactive
solution’s
path choices (%)

Interest-Data
Delay (msec)

Fails (%)
NDN-Chunks
Delay (secs)

C. 1 2 5.29 19.33 2.84 13.02
C. 2 11 14.66 30.05 8.62 13.18
C. 3 7 77.99 72.91 13.11 23.53
C. 4 1 0.19 144 21.13 31.36

Tables 2.8–2.10, summarize the clustering results, over Delay, RSSI, and

41

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

RSSI-Delay, by evaluating the average performance for both applications, i.e.,

NDN Interest-Data exchanges and 1MB file transfer using the NDN-Chunks

application). More specifically, we measure for each cluster: (i) the number of

paths; (ii) the percentage of reactive’s solution path choices per cluster out of

the 15,000 interest-data exchanges; (iii) the average delay of the Interest-Data

exchange (msec) carried out on the paths belonging to each cluster; (iv) the

percentage of failed Interest-Data exchanges, and (v) the average delay of

the file transfer, considering the chunk application. Results indicate that the

proposed clustering solutions efficiently categorize the paths, i.e., the average

values of delays (for both applications) and fails increase according to the

clustering characterization.

Table 2.11: Comparison of reactive and proactive NDN path selection strategies

Strategy Advantages Disadvantages

Reactive NDN
path selection

based on
BATMAN protocol

Reliability and fault tolerance Control management overhead
Adaptation to unstable conditions
(topology rearrangements)

Need to implement a reliable chan-
nel for the control plane

Rapid detection of network
changes (e.g., connection failures)

High complexity, support of small-
scale topologies

Proactive
cluster-based NDN

path selection

Routing decisions based on Delay
and RSSI quality measurements

Lack of adaptation to dynamic
changes

Support of larger topologies Ignores the current network state
Low complexity and control over-
head

Does not detect topology changes

Based on the analysis of the scenario’s 2 results, we can synthesize our

conclusions in the following two points:

• The usage of dynamic protocols over relatively stable wireless mesh

networks is not always the best solution in terms of delay, i.e., the

reactive solution, which is based on BATMAN routing protocol, does not

always select the “best” NDN path.

• Clustering is an efficient method for determining the “best” NDN paths

over a stable WMN, considering both performance and reliability, for

example, a clustering technique incorporating both RSSI and delay met-

rics may successfully locate the paths with low delay and interest data

exchange failures.

42

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

Concluding this Section, in Table 2.11, we present the major advantages/dis-

advantages of both approaches, derived from the experimental analysis. More

precisely, the overall results provided a piece of strong evidence that there is

not a one-fits-all approach for the establishment of the appropriate NDN path

over WMNs. More importantly, efficient rooting strategies should consider the

communication conditions of the network environment under consideration.

2.6 Conclusions and Future Work

Smart-city environments incorporate a huge amount of nodes deployed in large

areas, highlighting the need for efficient multi-hop NDN communication based

on appropriate NDN path selection. To address the latter, in this paper, we have

discussed two alternative SDN-based NDN strategies, involving a reactive and

a proactive solution, extensively evaluated over a real WMN smart-city testbed.

We investigated the potential gains of each approach in terms of end-to-end NDN

delay performance, considering several use cases and wireless communication

conditions. The real experiments demonstrated that i) a reactive approach

is preferable in communication environments with frequent network changes

since the real-time centralized management increases the network overhead; ii)

a proactive solution (e.g., clustering based) may successfully identify wireless

routes with high performance and reliability, considering smart-city deployments

with stable network conditions.

In future work, we plan to

• develops a hybrid-protocol SDN platform involving mechanisms to dis-

tinguish between smart-city regions with stable and unstable network

communication conditions, deploying accordingly the appropriate NDN

path selection strategy.

• extend the controller’s decision-making capabilities: (a) involving ad-

ditional NDN-related parameters, for example, caching information of

the intermediate network nodes and (b) elaborating improvements on

both (reactive/proactive) NDN path selection strategies, based on AI/ML

algorithms.

43

CHAPTER 2. LOGICALLY-CENTRALIZED SDN-BASED NDN
STRATEGIES FOR WIRELESS MESH SMART-CITY NETWORKS

• validate the proposed NDN path selection approaches over large-scale

WMN, with multiple consumers and producers.

• compare experimentally our SDN-based solutions with non-SDN strate-

gies.

44

Chapter 3

Microservices-Adaptive

Software-Defined Load Balancing

3.1 Introduction

5G and beyond networks (5GB) are enabling new applications and network

services with challenging, stringent requirements, including ultra-low delays and

high throughput, which are radically transforming vertical sectors, including

manufacture, media & entertainment, automotive industry and energy. The

main goals of 5GB include (i) exploiting higher frequency bands for improved

throughput, e.g., millimeter-wave (mmWave) spectrum; (ii) improving spec-

trum usage efficiency through its intelligent management; and (iii) radically

transforming the telecommunication system with the virtualization of physical

network functions, reducing the capital expenditure (CAPEX) and improving

the deployment and configuration flexibility.

Since challenging application performance concerns end-to-end (E2E) com-

munication efficiency, 5G and beyond networks participate in flexible ecosystems

integrating emerging technologies that improve the adaptability of the net-

work or cloud environment to dynamic changes in application requirements

or network conditions. Indicatively, for a 50ms E2E delay documented in 5G

paper [42], radio access network (RAN) contributed to the 13%, while network

and cloud aspects to the 87% of delay. As a bottom line, communication and ca-

pacity improvements should be matched by particular transformations at higher

layers of network stack and computation aspects, i.e., jointly implementing

45

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

awareness and adaptability of radio, transport and cloud resources.

The cloudification of RAN processes e.g., Open RAN [43], makes the 5G

operations flexible, bringing the ability of multiple independent instances

of RAN functions to run on a common hardware platform. However, this

technological approach requires efficient workload assignment and resource

management improvements, as the virtualization of network services (i.e.,

breaking the software from the hardware allowing the RAN software to run on

any hardware) is inherently energy inefficient. On the other hand, the resource

requirements of the highly demanding 5GB applications (e.g., virtual reality)

vary over time requiring dynamic adaptation of RAN resources to achieve

acceptable levels of QoS or QoE.

Elasticity is a key feature of cloud computing provided to address the above

needs. For example, virtual or physical resources may scale (up or down)

according to monitored user demands, implementing horizontal and vertical

elasticity policies. Traditional cloud environments use sizable virtual machines

(VMs) and inflexible applications, while elasticity is mainly considering medium

or long time-scales. For example, it may take minutes to boot up a VM and

re-configure a non-flexible application, which leads to a non-responsive system

for rapid changes in the network environment. Furthermore, VM migration

or clustering requires the transmission or storage of data at the range of GBs,

which is resource-consuming.

The microservices architectural paradigm appeared as a solution to above

issues, breaking down complex monolithic applications or network services to

a collection of simple, single-purpose communicating microservices, usually

in the form of lightweight containers with rapid manipulation capabilities. A

microservices orchestrator does not need to scale the whole application, but

only those microservices that are overloaded. The employment of microservices

targets large-scale resource-efficient applications with fault-tolerance require-

ments, since new microservices can be quickly deployed near the users, i.e.,

reducing latency, in a resource-efficient manner and without time-consuming

configuration changes.

The centralized control of the Software-Defined Networks (SDN) offers

flexibility in cloud computing improving the network adaptability and traffic

control aiming to efficient service performance and resource allocation. Through

46

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

the global view of the cloud environment, the SDN enables the dynamic

adjustment of network policies making rapid decisions, taking into account

monitoring information of multiple entities of an ecosystem. Here, we argue

that the SDN is an appropriate solution for microservices load balancing taking

into account multiple characteristics such as microservice needs, cloud resource

consumption, and network state.

However, in the most complex landscape of 5G networks and beyond, appli-

cations or network services may consist of tasks with heterogeneous resource

requirements (e.g., some being CPU intensive, others network-sensitive, etc),

increasing the complexity of resource management. We argue that these tasks

could be decomposed based on specific resource requirements in stand-alone

units of software packages (e.g., containers) thus constituting atomic microser-

vices. Based on this approach, elasticity facilities driven by the prediction or

rapid detection of load as well as the efficient workload assignment maintain

resource-availability and simplify the traffic patterns reaching the microser-

vices. In this work, we assume a specific class of applications that organizes its

functions in a way that each one of them is characterized by simpler resource-

allocation demands, compared to those of the whole service. We split these

functions into containerized microservices call them Resource-Organized Mi-

croservices (ROM) focusing on the efficient workload assignment aspect among

them.

In Fig. 3.1, we illustrate an example snapshot on the operation of alternative

load balancing solutions with a relevant service. On its left side, we highlight

the impact of a simple load balancing solution prioritizing servers with the

least network load. This leads to an efficient balancing of network resources,

but other resource types may be over-utilized, such as CPU and memory

consumption in first and second servers, respectively. This strategy also leads

to the deployment of additional microservices to handle the increased load, i.e.,

to a vertical elasticity event.

On the right side of Fig. 3.1, we depict a load balancing mechanism

that is aware of the particular requirements of all microservices, the current

resource availability of cloud resources, as well us of network properties, e.g.,

network utilization and flow characteristics. This approach can achieve a better

balance of all resource types, improved application performance, while avoiding

47

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

Figure 3.1: Simple vs microservices-adaptive load balancing

unnecessary scalability actions. Consequently, we argue that load-balancing

should be microservices-aware, in terms of being aware and adaptable to the

dynamic resource requirements of all microservices implementing the service.

In our understanding, typical load-balancing approaches do not fully address

above requirements, as we show in Table 3.1, where we enlist indicative related

works. For example, Kubernetes usually employs simple load balancing policies,

including: (i) round-robin, balancing one-to-one requests among available servers

in a circular fashion; (ii) least network load, assigning requests to the server

with the lower network utilization; and (iii) shortest expected delay, assigning

an incoming job to the server with the lower estimated expected delay.

As we see in Table 3.1, most relevant approaches balance load based on

network and flow characteristics, while some of them take into account cloud

resource availability [44], [45]. A few proposals consider individual microser-

vices in the load balancing decisions, e.g., [46] proposes a chain-oriented load

balancing algorithm to minimize microservice chains response time and [47]

introduces a QoS-aware load balancing model considering links’ capacity and

delay between microservices. Due to the complexity of 5GB microservices-based

applications, a sophisticated load-balancing mechanism should consider most

above aspects, i.e., server resources as well as network properties, including

48

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

bandwidth availability and flow characteristics, in order to match the unique re-

quirements of each individual microservice. In our understanding, our proposal

(i.e., MALB) is the only solution in this direction.

Table 3.1: Well-known load balancing approaches

Load balancing (LB)
mechanism

Micro-
services

Cloud Net.
Flow
char.

Kubernetes round-robin - - - -
Kubernetes least net-
work load

- - ✓ -

Kubernetes shortest ex-
pected delay

- - ✓ -

Mahout [48] - - ✓ ✓
FDALB [49] - - ✓ ✓
Hedera [50] - - ✓ ✓
Server Cluster LB [44] - ✓ ✓ -
e-STAB [45] - ✓ ✓ ✓
LB accross microser-
vices [46]

✓ - - -

LB for Interdependent
IoT Microservices [47]

✓ - ✓ ✓

MALB ✓ ✓ ✓ ✓

Here, we propose the Microservices-Adaptive Load Balancing (MALB)

platform and corresponding mechanisms characterized by the following novelties:

• microservice-awareness through online profiling that quantifies the level

of importance of each resource type, based on simple prediction policies.

• microservice-level adaptability of bespoke SDN-based load balancing

policies, considering both cloud (i.e., CPU and memory) and network

aspects (i.e., bandwidth allocation and flow sizes, in terms of duration

time).

• real experimentation of our approach with a challenging use-case aligned

to the class of ROS, demonstrating efficient and balanced server resource

allocation as well as improved application performance in terms of re-

sponse times, throughput and fairness.

49

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

In the following, a motivating use case scenario is presented, highlighting

the advantages of the proposed platform.

3.2 Motivating use-case scenario

We focus on applications that consist of functions can be implemented as

Resource-Organized Microservices (ROM). In this context, we assume a partic-

ular virtual reality gaming use-case, inspired by [9], and emulate its behavior in

terms of network and compute resource utilization. It consists of service func-

tions with diverse characteristics, in terms of resource requirements, function

execution times, and flow sizes, including: (i) video streaming microservices be-

ing bandwidth-intensive and mainly producing long flows; (ii) user interactions’

microservices, producing short flows and being characterized by low-latency

and moderate CPU and bandwidth demands; and (iii) back-end microservices,

including on user behavioral analysis, which are CPU-intensive but with a fixed

execution time to maintain a given latency, i.e., return the best outcome within

a deadline.

Typical dynamic load-balancing techniques may monitor a specific resource

type, e.g., network utilization, and assign each new flow to the least overloaded

entity (e.g., server, server cluster, edge cloud, etc.), in a reactive manner.

This may work well for the video streaming microservices of the virtual reality

gaming use-case, characterized by intense network communication, however,

it may cause performance issues in other microservices that are sensitive to

different types of resources (e.g., the back-end microservices) or accommodate

flows with shorter sizes than the monitoring period (e.g., the user interactions’

microservices).

Consequently, load balancing in the context of the considered virtual reality

gaming use-case, should be able to: (i) detect the diverse resource-requirements

of microservices using profiling techniques; (ii) accommodate alternative load

balancing policies, matching the particular requirements of each microservice

type; and (iii) consider both cloud and network-faced aspects. These require-

ments relate to the focus of this paper on transport and cloud aspects of 5G

and beyond ecosystems, rather than on network and capacity improvements

based on advances in radio technologies.

50

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

In the sections that follow, we present our relevant proposal and highlight

experimentally its capabilities based on the considered use-case.

3.3 Proposed System

Here, we present our Microservices-Adaptive Load Balancing (MALB) platform

and its corresponding mechanisms, targeting: (i) the minimum and balanced

resource utilization of both networking and cloud aspects; and (ii) the effi-

cient operation of applications constituting of multiple types of microservices

with diverse resource-demands. As we show in Fig. 3.2, MALB is built on

top of an SDN-based network and a cloud environment hosting containerized

microservices consider as ROMs aiming to simplify the monitoring and man-

agement procedures. The three key components of our infrastructure support

the following novel operations:

Figure 3.2: The MALB Architecture

• the Monitoring Subsystem monitors the SDN-based network, cloud servers

and microservices, providing a holistic awareness of the application envi-

ronment.

• the Microservices Profiler dynamically predicts the level of microser-

vices’ impact on each resource type and determines the typical flow size

characterizing the latter

51

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

• the MALB Algorithm balances the load bespoke to each microservice

type, exploiting the produced insights regarding the network and cloud

environment hosting the microservice, as well as its unique resource-

allocation characteristics.

A detailed description of the above components follows.

3.3.1 Monitoring Subsystem

The Monitoring Subsystem enables microservice-awareness through online

monitoring of microservices and their network and cloud server environment. It

consists of two main components: (i) the Monitoring Broker collecting centrally

all monitoring information; and (ii) the Agents handling the extraction of

monitoring data from particular cloud servers. For simplicity, we currently

employ Agents in the servers only, since we emulate SDN devices through Open

vSwitch, i.e., the latter reports directly to the Monitoring Broker.

Monitoring Broker collects link utilization and flow sizes from SDN network,

as well as CPU and memory utilization for both cloud servers and each particular

microservice. The network statistics are being provided to the Monitoring

Broker through the Open vSwitch API. This approach offloads the SDN

Controller from all monitoring information, because the data are being processed

from the Microservice Profiler, i.e., the former receives summarized information,

only. Alternatively, the SDN Controller could lookup link utilization and flow

size data from the switches directly, based on the OpenFlow protocol. The

cloud statistics are being provided from the Agents, which periodically lookup

monitoring data through the docker stats application. Monitoring Broker

communicates with the Agents through REST calls.

The monitoring aspect is critical and challenging on its own. Our next steps

include the implementation of an Agent for real SDN switches interconnecting

physical servers, utilizing a sophisticated monitoring infrastructure for large-

scale service deployments, like [51], and carry out a study on the impact

of monitoring period, tuning the trade-off between monitoring accuracy and

involved control overhead, e.g., SDN Controllers are typically overloaded.

The monitoring data represent the input of Microservice Profiler, which

description follows.

52

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

3.3.2 Microservices Profiler

The microservices-based adaptability of MALB is grounded on a profiling

activity building the complete view of each microservice, in terms of particular

resource demands and resource status of the surrounding network and cloud

environment. This process is being handled by the Microservices Profiler,

producing the following two-fold output for each microservice: its impact degree

prediction on diverse resource types and a classification of its network flows

into two categories, i.e., short and long. This output is being communicated to

the SDN Controller via REST calls, while the historical values of monitoring

data are being stored in a dataset.

The Microservices Profiler collects and processes the latest monitoring

information communicated from theMonitoring Subsystem for each microservice

and calculates a coefficient for each resource type (i.e., CPU, memory or

network), reflecting the impact degree of the microservice on the particular

resource to the total normalized resource consumption. Such values are placed

on a window-based prediction mechanism that estimates the upcoming weights

for each resource, after smoothing their evolution to remove outliers (e.g., CPU

peaks). Although CPU peaks are important for load balancing [46], we decided

to focus here on the average behavior of the system rather than on variance

aspects, for simplicity.

Here, we assume that simple mechanisms exhibit a decent accuracy in

predicting the resource demands of microservices, due to the single-purpose

functionality of the latter. At this point of investigation, we employ window-

based mechanisms based on the Rolling Mean (RM) and the AutoRegressive

Moving Average (ARMA). RM is biased towards the recent measurements and

it smooths the short-term fluctuations, while ARMA assumes linear depen-

dence for the data. Although we cannot claim achieving maximum resource

prediction accuracy, such shortcomings were not critical in terms of validating

the key message in the paper, i.e., the importance of microservice-awareness

and microservice-level adaptability. MALB could ideally employ a bespoke

prediction approach to each resource type, matching the structure of the cor-

responding time-series. The incorporation and study of more sophisticated

prediction mechanisms in MALB, considering also the variance aspect, are left

53

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

as a future work.

The flow sizes’ classification determines which microservices produce short

and which long flows, in terms of flow duration times, assuming that microser-

vices in the context of ROM produce mostly either short or long flows. In

practice, the Profiler groups the flow durations per microservice type and

tags a microservice as a short flow one, when its flows last less than a specific

threshold, and as long, when they last more. This strategy allows us to handle

the case that a flow may be completed, before a load balancing schema is

able to determine the status of microservices or servers, in terms of resource

demands or availability, respectively.

Here, we argue that simpler policies with low complexity, including the

Round Robin load balancing, suffice for such microservices producing short

flows as due to their short duration there is no risk of their accumulation

in a destination. We note that short flows benefit greatly from an efficient

resource allocation of long flows sharing the same resources. In our case, MALB

produces an accurate status of the system every 3 seconds, due to performance

constraints of the open-source facilities we employ, i.e., Floodlight controller

and docker stats tool. For example, a control plane latency that fluctuates by

tens of milliseconds may create monitoring accuracy issues, in case of an 1-sec

interval.

The SDN Controller Algorithm that follows realizes the microservices-based

adaptability of MALB platform, based on the above two outputs.

3.3.3 MALB Algorithm

The microservice-level adaptability of our load balancing platform is realized

through MALB Algorithm, an SDN Controller module that defines the appro-

priate destination (i.e., server, in our case) to forward each incoming request.

In practice, MALB aims to balance the load among the servers and bring

uniformity in the utilization of network and server resources, i.e., avoiding both

network congestion and server overloading.

As shown in Fig. 3.2, MALB receives the outcome of Microservices Profiler

expressing the predicted weighted resource demands of each microservice as

well as a categorization of the typical flows’ size of the latter. Furthermore, it

54

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

receives frequent snapshots of the resource utilization of all servers. At this

point of investigation, MALB determines the type of microservice based on

layer-4 ports.

MALB applies the Round Robin load balancing schema for the short flows

(e.g, the user interactions’ microservices), which is a simple and efficient strategy,

in our experience. In the case of long flows (e.g., the streaming microservices),

requests are forwarded to the server with the lower estimated load, i.e., com-

bining the weighted resource demands of the particular microservice with the

online resource availability of the servers. The load of each server is expressed

as the weighted sum of its estimated CPU, memory and network utilization

percentance. The respective weights are α, β, and γ, reflecting the importance

of each resource type in the particular microservice.

SDN Controller calculates the load of each server and the particular mi-

croservice and forwards upcoming requests to the servers with the lowest load,

i.e., through applying the corresponding flow table rules to the SDN devices.

3.4 Performance Evaluation

In this section, we provide our experimentation analysis on the i) evaluation of

microservice profiling process of MALB, while backing relevant design choices;

and ii) validation of MALB proposal, in terms of efficient service performance

and cloud resource utilization.

Since our solution brings together SDN load balancing with containerized

microservices, we conducted our experiments on Containernet [52], which

supports both SDNs and Docker Containers. The studied load balancing

mechanisms correspond to relevant Kubernetes policies, but are implemented

in the Floodlight controller [53]. We simulated the workload, i.e, characterized

by the number of requests from clients, through the Apache JMeter. We utilize

a test-bed environment consisting of two physical servers and one switch. The

first server hosts the client emulation facilities and the second the services.

The considered ROMs are aligned to the proposed use-case, which are: i)

a video streaming service delivering videos of different sizes, built using VLC

server; ii) a web service representing the users’ interactions functionality based

on Flask web framework; and iii) a back-end service (developed through PHP

55

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

using Apache server) which executes demanding calculations with configurable

durations. Each type of microservices is characterized by particular resource

requirements, i.e., the video streaming service is bandwidth-intensive, the

back-end service is CPU-intensive and the user interaction service utilizes

both processing and network resources, at a moderate level. The services are

configurable to generate flows with different sizes. We do not vary the number

of deployed microservices, since we focus on optimizing the system between

elasticity events. We have assigned isolated physical resources to four different

sets of microservices, i.e., representing four physical servers.

In our experiments, we consider an on-line game event with a 30-min

duration, where the workload is characterized by three different 10-min phases,

which descriptions follow: (i) gradually increasing, linearly increasing the load

over a fixed time period, resembling gamers entering the event; (ii) stable,

having a fixed workload, assuming a particular number of active players; and

(iii) gradually decreasing, linearly reducing the workload over the same fixed

period, i.e., users are leaving the system. All requests have been conducted

asynchronously, i.e, using separate threads.

To realize the objectives of our experimentation analysis and highlight

the novel aspects of MALB proposal, we devised the following scenarios: (i)

the microservices profiling, evaluating the corresponding mechanisms, while

motivating and supporting technically our approach to predict the requirements

of microservices, in terms of CPU, memory, and network resource-demands; and

(ii) the MALB platform evaluation scenario that validates the novel features of

our proposal.

3.4.1 Scenario 1: Microservices Profiling

Here, we validate the dynamic microservice profiling process of MALB and

investigate relevant design choices and configurations. Due to the dynamic

nature of beyond 5G services, MALB estimates, for each forthcoming time-

instance of the monitoring period, which is 3 sec in our case, the CPU, memory

and network utilization of each microservice. This process defines the weight

values of MALB algorithm, enabling microservice-aware load balancing. In

practice, we evaluate the accuracy of RM and ARMA with different window

56

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

sizes, in terms of producing efficient weight values.

For understanding better the profiling process, we document the average

calculated weights α, β, and γ for the full duration of an experiment with 1

video streaming request per 2 sec, which are 0.012, 0.452, and 0.536. This run

produced average CPU, memory and network utilization values 0.51, 19.26,

22.87, respectively. Indicatively, γ value 0.536 reflects the importance of network

(22.87) in the total normalized resource allocation 0.51+19.26+22.87. This

means that this service requires insignificant network resources. The idea of our

dynamic profiling feature is to carry out a similar process at each time-instance,

while consider predicted resource allocations, instead of measured.

We conducted next experiments with separate deployments of: (i) the

three considered microservice types; (ii) RM and ARMA having window sizes

of 2, 5, 10 and 20, 50, 100, respectively; and (ii) the gradual increasing,

stable and gradual decreasing user patterns, i.e., linearly increasing from 1

to 3 requests/sec, having 3 requests/sec, and linearly decreasing from 3 to 1

request/sec, respectively.

According to our results based on Mean Squared Error (MSE) measurements,

both RM and ARMA exhibit a descent accuracy (i.e., MSE ranging most

of the times between 0 and 8), while being especially accurate with under-

utilized resources. This can be justified by the single-purpose functionality of

microservices, i.e., they have a more expectable resource utilization in contrast

to monolithic applications. Smaller window sizes seem to favor RM, while larger

ones ARMA. However, it is more challenging to predict CPU and network

utilization, characterized by a number of short-term peaks, especially for ARMA

with its linear properties. For example, CPU peaks are more frequent with

the stable number of clients, since such run utilizes more clients on average,

i.e., a higher mean value produces a lower variance, causing a high MSE in the

case of back-end service and CPU utilization metric. RM with window 2 either

achieves the best accuracy or it is marginally outperformed. This is expected,

since it follows the short-term dynamics of the resources.

For simplicity, we selected to use Rolling Mean with window size 10 in our

experiments, balancing its accuracy with a smoothness level that follows the

average behavior of the system. Such strategy appeared effective in our results,

which could be further improved with a more accurate relevant prediction

57

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

mechanism, ideally considering both mean and variance aspects.

3.4.2 Scenario 2: MALB Platform Evaluation

In this scenario, we assess resource-allocation efficiency and impact on service

performance of MALB in contrast to the Simple Round Robin (SRR) and Least

Network Load (LN) strategies, both being widely used in SDN environments

and microservice management platforms, such as Kubernetes.

We implement an SDN environment that stress tests above mechanisms

with the communication of clients with four servers, each one of them hosting

all considered microservices. Our goal is to evaluate the impact of MALB from

both provider’s (i.e., in terms of server and network resource utilization as well

as energy efficiency) and clients’ side (i.e., in terms of request response time,

throughput and fairness). All provided figures and tables illustrate the average

values between 10 runs. We did not have significant deviations among the

runs, e.g., standard deviation ranged between 0.03 and 0.47, for the average

measurements of CPU, memory and network resources.

Here, we emulated: (i) light (i.e., 1MB) and medium-sized (i.e., 10MB)

file requests, for the user-interaction microservices; (ii) medium (i.e., 10 sec

flow sizes, 15% of CPU) and heavy-sized (i.e., 30 sec flow size, 30-35% of

CPU) communication, for the back-end microservices; and (iii) a live video

broadcasting, i.e., without a specific flow duration, for the video streaming. The

clients to all above microservices are being deployed, according to the assumed

on-line game event.

We estimated the servers energy consumption based on work [54], by using

the non-linear model for the CPU and the linear for memory and network.

According to same work [54], the coefficients used are r = 1.4, CPU = 160W

(4 processors), Memory = 36 W (4 memories), Other devices = 12W (disk) +

25W (pci slots) + 25W (motherboard) + 10W (fan) = 72 W.

Table 3.2: Load balancing level among the servers

SRR LN MALB
Metric CPU Mem Net Watt CPU Mem Net Watt CPU Mem Net Watt
STDEV 17.3 2.1 9.3 27.1 15.0 2.0 9.45 24.7 11.2 1.9 10.1 18.3
Range 44.2 5.2 23.6 70.1 38.4 5.1 24.3 62.8 29.2 5.1 25.1 47.7

58

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

Table 3.2 enlists the average of all standard deviations (STDEV) and ranges

(i.e., max - min) for each timestamp among the four servers, quantifying

their load balancing level. We observe that MALB demonstrates a significant

higher load balancing level, compared to the other two approaches, of the CPU

resources (e.g., 34%, and 24% lower Range than LN and SRR, respectively) and

almost equally to the lower Range of LN for memory and network. Consequently,

as the CPU is the most energy-consuming of the resources, the results show that

MALB is significantly energy efficient (e.g., 32%, and 24% lower Range than

LN and SRR, respectively). This result highlights the performance advantages

of MALB in terms of load balancing, due to its wider view of resources and

knowledge of the microservices’ resource-demands.

In Fig. 3.3, we illustrate the mechanisms’ performance in terms of average

and worst-case resource consumption of CPU and network resources, over all

servers at the full duration of the experiments. We quantify the worst-case

resource consumption as the average of the 30 higher values of the particular

metric, i.e., corresponding to the 3% of total measurements. The green bar

represents the average of the worst cases among all servers and purple one the

metric of the overloaded server. We also denote an elasticity threshold, when

one of the metrics exceeds the 70%.

Figure 3.3: MALB Provider-Side Evaluation

Although all mechanisms exhibit a similar performance in terms of average

consumption of CPU and network, i.e., attributed to the under-stressed cloud

59

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

resources, there are cases of high CPU utilization for both SRR and LN,

triggering elasticity events that could be avoided with a better balancing of

resources. For example, the worst CPU allocation of MALB is 16.9% lower

than those of SRR. Also, in the case of MALB the overloaded server metrics

are close to the average worst cases highlighting the fairness achieved in load

balancing.

Table 3.3 illustrates our evaluation results from the clients’ point of view.

It enlists the type of microservices (Microservice Type), the total number of

requests (Requests) for each particular run, as well as the considered metric

(Metric) and the corresponding values. We document Requests’ Completion

Time (RT, ms) for all microservice types, besides video that does not have a

a fixed execution time. The performance of the latter is measured in terms

of application Throughput (TP, kB/sec). We enlist the average and standard

deviation of each corresponding metric over the indicated number of requests.

Consequently, the latter metric is an indication of the fairness level among the

microservices of the same type.

Table 3.3: MALB Client-Side Evaluation

Microservice Type Requests Metric SRR AVG LN AVG MALB AVG SRR STDEV LN STDEV MALB STDEV

User Int. Light 1600 RT 448 460 429 313 256 201
User Int. Medium 1500 RT 1175 1177 1068 552 493 336
Back-end Medium 900 RT 10226 10224 10224 198 125 89
Back-end Heavy 550 RT 30232 30230 30223 142 118 86
Video Stream 650 TP 1560 1818 1767 36 40 43

In general, Table 3.3 results verify the observations of Fig. 3.3 and Table 3.2,

showing that efficient load balancing affects the performance of services. On the

one hand, we observe from the average measurements that, MALB achieves the

best RT performance of both short-flow and long-flow requests e.g., in the case

of user-interaction medium requests workload, MALB completes requests 107

ms and 109 ms sooner than SRR and LN, respectively. This also underlines that

microservice-level adaptability of MALB is an effective strategy. Regarding

video streaming microservices, LN slightly outperforms MALB in terms of

throughput (e.g., 51 kB/sec), since it is a bandwidth-intensive application.

This outcome could be improved with a more accurate prediction mechanism

for network consumption.

On the other hand, the STDEV measurements reveal significant advantages

60

CHAPTER 3. MICROSERVICES-ADAPTIVE SOFTWARE-DEFINED
LOAD BALANCING

of MALB in terms of microservice performance fluctuation and fair operation

among the microservices of the same type, aspects being crucial for 5G and

beyond services. MALB achieves up to 55% and 31% STDEV reduction

contrasted to SRR and LN, respectively.

Our results can be summarized as follows. MALB improves resource

utilization and application performance for the considered resource-organized

microservices. We also confirm mainMALB design directions: (i) to incorporate

a simple load-balancing policy, such as SRR, for services generating short flows;

and (ii) to handle long flows with dynamic load-balancing equipped with

online resource monitoring of both network and compute resources, as well

as adaptability to the particular resource-demands of each microservice type,

driven by dynamic microservice profiling.

3.5 Conclusions

This chapter presented MALB, a novel SDN-based load-balancing facility that

focuses on a special case of 5G and beyond services, i.e., services consisting of

microservices with heterogeneous resource requirements. MALB employs load-

balancing that adapts to the particular requirements of microservices, supported

by dynamic microservice profiling. We provided an experimental analysis based

on a virtual reality gaming use-case and a client requests’ pattern resembling

an on-line gaming event. Our results revealed the significant performance

advantages of MALB, in terms of resource utilization of cloud environment

as well as the response times, application-layer throughput and fairness of

the microservices implementing the considered use-case, further supporting

the significant radio performance and capacity advantages of 5G and beyond

ecosystems.

61

Chapter 4

Evaluation of Prediction Models

for Microservices’ Resource

Consumption

4.1 Introduction

Microservices have been widely adopted in cloud environments by both appli-

cation and telecommunication providers. For instance, the 5G core is designed

to be cloud-native, implying that its components are structured as sets of

interconnected containerized network functions. These containers are orches-

trated within cloud infrastructure by microservices orchestration platforms

(e.g., Kubernetes) bringing several benefits such as: (i) enhanced scalability,

allowing services to efficiently adjust to varying resource demand levels; (ii)

fault tolerance, ensuring that a failure in one does not impact the others ser-

vices; (iii) flexibility by enabling individual services to be updated or replaced

without affecting the overall system; and (iv) efficient resource allocation due

to the modular nature of microservices, enabling precise allocation of resources

per service based on its unique requirements. This architecture is particularly

beneficial in dynamic environments, such as 5G networks, where the demand

and network conditions can change rapidly.

Efficient resource allocation poses challenges in microservice management,

especially regarding scaling up (or down) in response to varying workloads.

62

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Unlike the monolithic architectural paradigm, where resource allocation is deter-

mined based on the application’s overall demands, the microservices approach

presents a complex landscape of diverse resource needs and usage patterns for

each distinct service. The critical task of microservice management necessi-

tates efficient microservices profiling, which relies on the accurate prediction

of resource consumption patterns, considering both immediate and long-term

behaviors. Additionally, microservices are typically associated with heteroge-

neous resource demands (e.g., CPU and memory), where different profiling

techniques need to be considered in order to adapt to a variety of demands,

e.g., resource or data.

In our research presented in Chapter 3, we demonstrated performance bene-

fits that could be derived from incorporating load balancing with microservice-

awareness through on-line application profiling. This method quantifies the

level of importance of each resource type, based on simple prediction techniques

considering both cloud (i.e., CPU and memory) and network aspects (i.e.,

bandwidth allocation and flow sizes, in terms of duration time). Our findings

highlighted significant performance advantages, in terms of resource utiliza-

tion of cloud environment as well as better response times, application-layer

throughput, energy consumption, and fairness.

In this chapter, we aim to investigate the effectiveness of various statistical

and machine-leaernig models in predicting resource consumption for diverse

types of microservices. Our work concentrates on short-term behavior, acknowl-

edging the significance of accurate resource consumption predictions within

limited number of time intervals. To achieve this, we leverage historical mon-

itoring data obtained from CPU, memory, and network measurements. Our

primary objective is to predict future resource values for containers’ resource

usage, considering the data generated during short time periods. Additionally,

we incorporate rolling approaches, wherein the models are retrained for each

new prediction, enabling us to recognize and adapt to the current resource

state. Furthermore, we investigate the performance of both multi-step and

single-step prediction strategies employed by the respective models under dif-

ferent traffic patterns. By examining various use cases, we can evaluate the

models’ adaptability and suitability for different microservices with distinct

resource usage patterns.

63

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

4.2 Contributions and Chapter Organization

The main contribution of this Chapter are listed below:

1. We evaluate the performance of classical machine learning and statistical-

based techniques over a diverse set of measured parameters and microser-

vice requirements, spanning from typical time-series approaches, e.g.,

ARMA, ARIMA, and Kalman Filter to machine learning, e.g., LSTM

and Random Forest.

2. We investigate both single-step and multi-step prediction processes

3. We discuss the performance advantages and trade-offs of each choice,

according to the accuracy and the computational complexity.

4. We investigate the potential advantages of rolling time-series procedures

in order to adapt to dynamic changes. Which is, in practice, infeasible

for ML approaches.

5. Our methods are assessed on real measurements of containerized mi-

croservices with different resource requirements (e.g. CPU or Network

intensive) considering five different types of traffic patterns: gradually

decrease, gradually increase, sharp increase, stable and random.

4.2.1 Chapter Organization

The remaining chapter is organized as follows: In the next section, we contrast

our approach with related work. Following that, in Section 4.4, we provide a

detailed description of our experimental methodology, including the technical

characteristics of the microservices, the considered traffic patterns, and the

models employed. Section 4.5, we provide and discuss our research results,

while our conclusions and directions for future work are presented as the final

section.

4.3 Background and Related Works

Numerous related works in the literature have addressed resource consumption

prediction, employing statistical and machine learning models. The majority of

64

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

these works focus primarily on workload prediction with the goal of anticipating

resource consumption. For example, the works [55–57], have leveraged ARMA

and ARIMA models to predict workloads, defined as the inflow of clients

or requests to the network, under different traffic patterns. More precisely,

work [56], uses the ARIMA model to predict future workloads evaluating the

model’s accuracy using real traces of requests to Web servers.

There has been a growing trend toward adopting machine learning models,

specifically Long Short-Term Memory (LSTM), for forecasting purposes based

on time-series data analysis. For instance, the study [58] applied the LSTM

model in contrast to the ARIMA model to balance workload using Alibaba and

Dinda workload traces datasets. Such a comparative approach provides valuable

insights into the performance differentiation between a machine learning model

(LSTM) and a statistical model (ARIMA) for an identical task.

A separate group of studies, represented by [59,60], has targeted the predic-

tion of power consumption. These studies draw on historical monitoring data

from various resources, including CPU, memory, and network, and implement

ML models for resource utilization prediction. They mainly focus on CPU

utilization due to its significant contribution to overall energy consumption.

Specifically, the study in [60] used a combined approach of Random Forest

and LSTM to predict VM’s CPU utilization by harnessing historical CPU

utilization data.

Furthermore, certain works, like [61], aim to predict the power consumption

of cloud servers to improve energy efficiensy in cloud data centers. The authors

propose an Artificial Neural Network (ANN) method to model server power

consumption, considering CPU-intensive and memory-intensive workloads. In

addition, there are studies like [62] that apply statistical and machine learning

prediction models based on historical resource usage data, but they focus on

long-term predictions. As an example, the authors in [62] used LSTM and

ARIMA models to predict CPU consumption in Google clusters, with a forecast

scope spanning 2-hour, half-day, and 24-hour periods.

In contrast to these works, our study investigates the resource usage of

containerized microservices, encompassing all three key aspects: CPU, memory,

and network.

Other related works, such as [63], concentrate on container, application, or

65

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

microservice resource consumption, but their methodologies diverge. Instead of

prediction models, these studies employ classification models and do not aim at

online prediction. A notable example is the work [63], which adopts a machine

learning-based classification approach to profile containerized applications. The

main goal is to find the most suitable hardware infrastructure for deploying

these applications, taking into account operational costs and the required

Quality of Service (QoS).

Among the related works, [64] bears considerable similarities to our study. In

this research, a hybrid model comprising ARIMA and triple exponential smooth-

ing was designed and implemented for Docker container resource consumption

prediction data. They also considered CPU and memory resource usage based

on predicted values average in comparison to ARIMA, accommodating different

types of workloads in their study.

In contrast to the aforementioned studies, our work is based on historical

monitoring data from CPU, memory, and network to predict future values,

focusing on the resource consumption of Docker containers considering online

streaming data in short time periods (10 minutes experiments). We perform

an in-depth comparative analysis of the performance of both statistical and

ML models incorporating also rolling approaches (i.e., retraining the model for

each new prediction) enabling us to recognize the existing state of resources.

On top of that, our study includes the investigation of the performance of both

multi-step and single-step prediction strategies of the respective models in use

cases of different traffic patterns.

4.4 Experimental Methodology

Our experimental evaluation aims to investigate the effectiveness of various

statistical models in predicting resource consumption for diverse types of

microservices, focusing on small time periods. More precisely, our study seeks

to answer the following research question: Which model performs better in

forecasting resources: (i) generally, (ii) based on microservice type, (iii) by

resource type, and (iv) by both microservice and resource type?

Internet applications or network services are inherently diverse, encompass-

ing a wide range of functions that often exhibit varying resource demands.

66

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

These demands can include CPU-intensive tasks, as well as functions that are

sensitive to network conditions. To capture the intricacies of such applica-

tions, our study involves the utilization of microservices with different resource

requirements, taking into account the multifaceted nature of traffic patterns

commonly encountered in cloud environments.

The evaluation metrics are related to the resource consumption percentage of

CPU, memory, and network (bandwidth). The time series of the measurements

have approximately the size of 300-400 values which corresponds to 10-minute

experiments (cases with resource constraints, and low storage availability). A

detailed description of our experimental methodology follows.

4.4.1 Considered Microservices

The microservices utilized in our study are implemented as Docker containers

and possess the following characteristics:

• A video Streaming microservice, constructed using VLC server, which de-

livers 30-second videos. This microservice primarily demands bandwidth

but has minimal memory and CPU requirements.

• A content delivery microservice that employs the Python Flask server to

deliver Web pages of various sizes. While this microservice also relies on

bandwidth, it exerts a more substantial influence on CPU and Memory

consumption compared to Video Streaming.

• A back-end service developed with PHP using the Apache server, designed

to perform on-demand calculations with adjustable durations. This

microservice is CPU intensive and has negligible bandwidth impact, as

its sole output after execution is an ”OK” message.

4.4.2 Traffic patterns

We conducted a sequence of experiments, taking into account the previously

mentioned microservices. All the requests were managed asynchronously via

individual threads. The workload comprised of five distinct 10-minute traffic

patterns, the specifics of which are outlined below:

67

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

• Gradual Increase Scenario: This setup involves a linear surge in

workload over a predetermined time. Here, the test started with a rate of

1 request per second, which was systematically doubled every 2.5 minutes.

• Gradual Decrease Scenario: Contrary to the first scenario, this exper-

iment involved a linear decline in workload over the same fixed duration.

It commenced with a rate of 4 requests per second, which was halved at

2.5-minute intervals.

• Stable Scenario: This experiment was characterized by a constant

workload. Throughout the test, the rate was maintained at 3 requests

per second.

• Random Scenario: In this case, the request rate varied within certain

time frames. The test included requests at different random intervals (i)

ranging from 1 to 5 seconds, (ii) ranging from 1 to 10 seconds, and (iii)

from 1 to 15 seconds.

• Sharp Increase Scenario: This scenario began with a rate of 1 request

per minute. However, there was a drastic tripling of the request rate from

the 3.5-minute to the seventh minute of the test.

4.4.3 Single-step Prediction Models

Here, we provide details about the machine learning and statistical-based tech-

niques employed on the measured parameters outlined earlier. Initially, we

apply conventional time-series methods, namely: (i) Auto-regressive Moving

Average (ARMA); (ii) Auto-regressive Integrated Moving Average (ARIMA);

(iii) Exponential Moving Average (EMA); and (iv) Kalman Filter (KF). Addi-

tionally, we incorporate advanced machine learning approaches such as Long

Short-Term Memory (LSTM) and Random Forests (RF).

Given our focus on analyzing short time periods with limited data, con-

sidering the presence of resource constraints and limited storage capacity, we

investigate the potential benefits of employing rolling time-series methods which

effectively are adapted to dynamic fluctuations. This is particularly crucial

as the available data may introduce cases where resource trends might not

68

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

have been previously observed by the models. Consequently, for every new

prediction, the models undergo retraining utilizing the preceding values.

For all models employed, the data were divided into training (60% of the total

data) and testing data (40% of the total data), with predictions commencing

from the first value of the testing data. In terms of the rolling approach, we

employed two strategies: (i) the models were trained to all previous values,

including the testing portion, for each new forecast; and (ii) we implemented a

fixed window size of 50 in order to expedite the training process while adapting

the models to the current state. For example, when using a window size of 50,

the model predicts the first value of the testing data utilizing the most recent

50 values from the training data. Similarly, for the second value prediction, the

model retrained utilizing the last 49 values from the training data and the first

value from the testing data.

A more detailed description of the models follows:

• ARMA (2,1) & ARIMA (2,1,1): These are statistical models for time

series data that describe the autocorrelation in the data. The ARMA

model is characterized by two parameters: the order of the autoregressive

part (2) and the order of the moving average part (1). The ARIMA model

has an additional parameter that represents the degree of differencing

(1) involved to make the time series stationary. In our implementation,

both ARMA and ARIMA models are trained on the training data, and

for each new value from the testing data, the model is updated to predict

the new value one by one.

• Rolling ARMA (window 50) and Rolling ARIMA (window 50):

These models follow the same concept as the ARMA and ARIMA models,

but instead of training on all previous data, these models only consider

the last 50 values (referred to as the ”window”). For example, to predict

the second value in the testing set, the models are trained using the final

49 values from the training data and the first value from the testing data.

• Rolling EMA (window 50): The Exponential Moving Average (EMA)

model applies more weight to recent observations. The weight or ”alpha”

is calculated as 2 / (50 + 1) in this setup. The EMA model follows the

same rolling window tactic as the rolling ARMA/ARIMA models.

69

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

• Kalman Filter: The Kalman Filter is a recursive algorithm used to

estimate the current state of a dynamic system based on the previous

observation and a model of how the system evolves over time. The

algorithm has two main steps: the prediction step, where the future state

of the system is estimated, and the update step, where the predicted

state is updated based on new observations. In this setup, both the state

and observation dimensions are set to 1.

• Rolling Kalman (window 50): This model applies the same rolling

window schema as the rolling ARMA/ARIMA models using the Kalman

Filter algorithm.

• LSTM (windows of 5, 10, 20): LSTM is a type of Recurrent Neural

Network (RNN) that can learn and remember patterns over long sequences.

The LSTM model in this setup is built using the Sequential class, allowing

for multiple layers in the model. The first layer is an LSTM layer with

64 units. The output of the LSTM layer is passed to a dense layer with

a single output unit, representing the predicted value. The model is

compiled using the Adam optimizer and Mean Squared Error (MSE) loss

function. The model is trained on the training data with 100 epochs and

a batch size of 8.

• Random Forest (windows of 5, 10): A Random Forest model is

an ensemble learning method that operates by constructing multiple

decision trees. In this setup, the Random Forest model consists of 100

decision trees (n estimators=100). The random number generator used

for initializing the trees is seeded with the value 42 (random state=42).

• Rolling LSTM and Random Forest: These models apply the same

rolling window schema as above. For each new value, the models are

retrained using all the training data.

4.4.4 Multi-step Prediction Models

In this section, we describe the multi-step approaches. The ’steps’ parameter is

set to 5, which signifies that the models are designed to forecast the next 5 time

70

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

periods. Also in these experiments, the data are divided into training (60% of

the total data) and testing (40% of the total data) sets. The models are then

used to predict the first 5 values of the testing data based on the training data.

• ARMA (2,1) and ARIMA (2,1,1): These models are trained using

all the data from the training set. After training, they are used to forecast

the first 5 values of the testing data.

• Rolling ARMA and Rolling ARIMA (window 50): Unlike the

traditional ARMA and ARIMA models, these models incorporate a rolling

window approach. They are trained using the most recent 50 data points

from the training set (the ”window”) and are then used to forecast the

first 5 values of the testing data.

• LSTM (window 5, 10, 20): The training process of the model is

conducted using the available training data, where it learns patterns and

relationships from historical information. In the case of the specific model

being discussed, it employs a window approach for predictions. This

means that the model utilizes the final 5 values of the training data as

a window to make predictions for the first 5 values of the testing data.

Similarly, for windows of size 10 and 20, the model considers the last 10

values of the training data to forecast the first 5 values of the testing

data.

• Random Forest with window sizes of 5, 10: This method uses the

same tactic with LSTM, however, due to the absence of a library that

supports multi-step prediction for Random Forest models, an iterative

prediction method with a rolling approach is employed. This involves

making a single-step prediction for the next value, then including the

predicted value as part of the input data for predicting the subsequent

value. This process is repeated until all 5 values have been forecasted.

4.5 Experimental Results

In this section, we present and analyze the results obtained from our experiments.

Our objective is to evaluate the performance of various forecasting models in

71

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

both single-step and multi-step prediction scenarios.

We begin with an evaluation of single-step prediction in Subsection 4.5.1.

For each model, we assess the average computation time required for training

and prediction, along with the accuracy of the predictions, which is quantified

using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). This

evaluation is conducted considering all scenarios, including different microser-

vices and traffic patterns. We then delve deeper into the results, providing

analysis per application and per resource type.

In Subsection 4.5.2, we extend our evaluation to multi-step prediction

scenarios. Similar to the single-step prediction evaluation, we begin with an

overall analysis considering all scenarios based on average computation time,

RMSE, and MAE. This is followed by a more detailed investigation of results

per application and per resource type.

Through this analysis, we aim to identify the strengths and weaknesses of

each model in different scenarios and to provide insights that could guide the

selection of suitable models for specific microservice and resource types.

4.5.1 Evaluation Results of Single-step prediction

Firstly, we quantify the computational complexity of each model, measured

as the execution time required to predict all values in the testing data using

the single-step approach. Notably, rolling approaches do not have a distinct

training phase, as they are retrained at each step of the prediction process.

Conversely, non-rolling LSTM (Long Short-Term Memory) and RF (Random

Forest) models are trained once on the training data before making predictions

on the testing data.

For these non-rolling models, we further distinguish between two specific

measurements for better insight: (i) the total time taken by the LSTM and RF

models to be trained based on the training data and subsequently predict the

testing data; and (ii) the time taken by the LSTM and RF models to make

predictions on the testing data, excluding the time spent on training.

According to Table 4.1, it is clear that the non-Rolling ML prediction models

such as RF (Random Forest) and LSTM (Long Short-Term Memory) appear

to have fastest prediction times. The prediction times for the entire testing

72

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Table 4.1: Execution Time of the Forecasting Models (Single-Step Prediction)

Execution Time (sorted)
Model Time (sec)

RFw10 0.003
RFw5 0.003
REMA 0.010
LSTMw10 0.031
LSTMw5 0.031
LSTMw20 0.033
RFw5 (With Training) 0.074
RFw10 (With Training) 0.086
RKF 0.129
KF 0.131
ARMA 2.841
LSTMw5 (With Training) 3.234
ARIMA 3.398
LSTMw10 (With Training) 3.859
RARIMA 5.460
LSTM20 (With Training) 5.572
RARMA 7.656
Rolling RFw5 9.854
Rolling RFw10 11.927
Rolling LSTMw5 132.599
Rolling LSTMw10 163.654
Rolling LSTMw20 216.148

set range from 0.003 seconds for RF with a window size of 10 (RFw10) and 5

(RFw5), to 0.033 seconds for LSTM with a window size of 20 (LSTMw20).

Even when the training phase is included, RF models still demonstrate

quick execution times, ranging from 0.074 seconds for RFw5 to 0.086 seconds

for RFw10. This underscores the efficiency of RF models both in training and

prediction phases.

On the other hand, traditional statistical models such as the Kalman

Filter (KF), ARMA, and ARIMA exhibit more substantial delays. This is

largely because they need to be retrained at each new prediction step, which

significantly increases their computational complexity and hence the execution

time.

The slowest models in terms of prediction time are the rolling variants

of ML models, specifically RF and LSTM. Due to the retraining required at

73

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

every prediction step, these models exhibit much longer delays. For instance,

the execution time for Rolling LSTMw20 model reaches a high of 216.148

seconds. This underscores the fact that the training phase for ML models is

more time-consuming compared to traditional statistical models.

In conclusion, while ML models like RF and LSTM offer rapid prediction

times, their rolling counterparts require significantly more time due to the

constant retraining involved. As such, the choice of model should take into

account the trade-off between prediction speed and the ability to adapt to new

data.

Table 4.2: Comparative Performance of the Forecasting Models Based on RMSE
and MAE Metrics

RMSE MAE

Model
RMSE
Average

RMSE
ST.DEV

Model
RMSE
Average

RMSE
ST.DEV

ARIMA 3.31 5.80 ARIMA 1.67 4.59
RARIMA 3.44 6.00 RARIMA 1.75 4.74

ARMA 3.57 5.93
Rolling
LSTMw5

1.97
(winner)
2.95

Rolling
LSTMw5

3.88
(winner)
5.36

Rolling
RFw5

2.18 3.78

Rolling
RFw5

3.90 6.12 ARMA 2.23 4.94

Rolling
RFw10

4.03 6.67
Rolling

LSTMw10
2.28 3.64

RARMA 4.24 7.40
Rolling
RFw10

2.44 4.37

Rolling
LSTMw10

5.52 9.58 RARMA 2.60 5.81

LSTMw5 5.88 9.44 RKF 3.85 11.35
RKF 5.90 12.89 LSTMw5 3.90 7.72
KM 5.97 12.98 KM 3.93 11.56
RFw5 6.65 9.71 LSTMw10 3.95 6.83
RFw10 6.79 10.24 RFw5 4.47 7.61
LSTM20 7.43 13.43 RFw10 4.86 8.56
REMA 7.65 11.51 REMA 5.88 10.35
Rolling
LSTM20

8.76 16.86
Rolling
LSTM20

6.39 17.41

LSTMw10 12.38 30.11 LSTM20 24.13 80.19

Table 4.2 presents a comparative performance analysis of the considered

74

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

models for the three distinct microservices: Video Streaming, PHP Back-end,

and Web Content Delivery. The table provides insights into the models’ Root

Mean Squared Error (RMSE) average and RMSE standard deviation for each

microservice. The term ’Winner’ is used to highlight the best-performing

model in each category. According to the result, we make the following key

observations:

The ARIMA model outperforms other models in terms of both the Root

Mean Squared Error (RMSE) and Mean Absolute Error (MAE) when consid-

ering average values. With an average RMSE of 3.31 and MAE of 1.67, it

indicates that the ARIMA model has demonstrated the most accurate predic-

tions on average across all datasets. This suggests that the ARIMA model is

capable of capturing the underlying patterns in the time series data effectively,

leading to lower prediction errors.

On the other hand, the Rolling LSTM model with a window size of 5 (Rolling

LSTMw5) demonstrates the most robust performance in terms of standard

deviation in both RMSE and MAE. This implies that the Rolling LSTMw5

model provides the most consistent prediction results across different datasets.

While its average error metrics may not be the lowest, its performance is less

likely to vary greatly when applied to different datasets, making it a reliable

choice for forecasting.

It is also interesting to note that the non-rolling versions of machine learning

models tend to have larger standard deviations compared to their rolling

counterparts, indicating that their performance might be more sensitive to the

specific characteristics of the dataset.

In summary, the choice of model could depend on the specific requirements

of the forecasting task. If the main objective is to minimize prediction errors

on average, the ARIMA model would be the preferred choice. However, if the

aim is to achieve reliable and consistent performance across various datasets,

the Rolling LSTM20 model might be more suitable.

Results per application considering all types of resources

Here, we provide an evaluation of the single-step prediction results obtained

from different models across different microservice types. The focus of this

75

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

analysis is to assess the performance of statistical and machine learning models

while considering all types of resources involved.

The evaluation results, as depicted in Table 4.3, showcase the performance

of each model for the Video, PHP, and Web microservices. The evaluation

metrics include the RMSE Average and RMSE Standard Deviation of all traffic

pattern scenarios.

Table 4.3: Comparative Performance Analysis of the Models Across Different
Microservices

Video Streaming
microservice

PHP Back-end
microservice

Web
microservice

Model RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 4.18 4.09 3.25 4.70 1.15 1.44
ARIMA 4.17 4.07 1.79 1.78 1.05 1.44
RARMA 4.25 4.01 7.30 13.44 1.21 1.67
RARIMA 4.29 4.06 1.89 1.86 1.13 1.84
REMA 9.37 11.17 10.53 18.44 2.82 4.91
KF 4.55 4.39 12.75 25.98 1.35 1.63
RKF 4.53 4.37 12.45 25.97 1.34 1.62
LSTMw5 9.24 10.75 2.17 1.97 3.19 8.58
LSTMw10 10.15 11.20 2.29 2.07 4.26 8.89
LSTMw20 19.75 31.91 3.20 2.77 5.76 16.15
RFw5 10.85 13.14 3.26 3.06 3.40 7.25
RFw10 11.56 14.22 2.90 3.21 3.61 7.43
Rolling
LSTMw5

6.42 7.15 2.61 2.29 2.30 4.03

Rolling
LSTMw10

6.77 8.35 6.60 9.83 4.34 10.87

Rolling
LSTMw20

10.46 16.78 5.04 6.16 7.16 16.22

Rolling
RFw5

7.31 8.56 2.09 1.90 1.60 2.94

Rolling
RFw10

7.69 9.67 2.02 1.94 1.94 3.77

According to the results of Table 4.3, ARIMA performs best, in terms of

both RMSE Average and Standard deviation, across all three microservices.

On the other hand, the ML models (LSTM and RF) with varying window sizes

demonstrate a higher degree of variability. For instance, in the Video Streaming

76

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

microservice, the LSTM model with a window size of 20 (LSTMw20) has the

highest RMSE average and standard deviation among all the models. Similarly,

in the PHP Back-end and Web microservices, the LSTM models with larger

window sizes tend to have higher RMSE averages.

As for the rolling ML models, their performance seems to be mixed, de-

pending on the specific microservice. For the PHP Back-end microservice, the

Rolling RF model with a window size of 5 (Rolling RFw5) performs exception-

ally well, with the second-lowest RMSE average and a relatively low standard

deviation. Similarly, for the Web microservice, the Rolling RFw5 model delivers

a very competitive performance with the second-lowest RMSE average and

standard deviation. However, for the Video Streaming microservice, the rolling

models do not perform as well as the ARIMA model.

In conclusion, the ARIMA model generally outperforms both the ML and

rolling ML models across the three microservices in terms of RMSE average.

The ML models, especially LSTM with larger window sizes, tend to have higher

variability, as indicated by higher RMSE averages and standard deviations.

It should be highlighted that the results obtained for each application are

influenced by the type of resources used and the sensitivity of each application to

these resources. As such, variations in performance may stem from the specific

characteristics and requirements of each application. With this understanding,

we will continue our analysis, further investigating the impact of different types

of resources on the performance of these models.

Results per resource type considering all applications

Here, we provide an analysis of the performance results obtained from the

models, considering CPU, Memory, and Network (Bandwidth) metrics across

different microservices. The key observations regarding the results of Table 4.4

are:

• The Rolling Random Forest with window 5 (Rolling RFw5) model shows

remarkable performance on the CPU metric, with the lowest RMSE

average, however, it is not significantly different from Rolling ARIMA

which has RMSE 1.12 and the lowest standard deviation (1.45). Regarding

to the Memory metrics, the Rolling LSTM with window 5 has superior

77

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Table 4.4: Performance Analysis of Models for CPU, Memory, and Network
Metrics

CPU Memory Network
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 1.64 3.10 1.18
Winner
1.29

6.17 4.96

ARIMA 1.49 1.57 1.17 1.79
Winner
5.13

Winner
3.94

RARMA 3.22 8.49 1.25 1.66 5.85 4.83

RARIMA 1.12
Winner
1.45

1.14 1.69 5.30 4.01

REMA 4.60 11.74 3.07 6.99 11.92 9.95
KF 5.45 16.18 1.38 1.80 5.52 4.23
RKF 5.33 16.12 1.38 1.80 5.49 4.21
LSTMw5 1.18 1.58 1.99 4.49 14.00 12.88
LSTMw10 1.51 2.13 2.74 6.78 15.75 11.41
LSTMw20 1.79 2.36 8.74 26.90 22.84 27.46
RFw5 1.63 2.35 3.28 9.56 14.70 11.10
RFw10 1.52 2.30 3.76 11.20 15.31 11.03
Rolling
LSTMw5

1.40 1.86
Winner
1.05

2.13 9.85 7.15

Rolling
LSTMw10

2.91 6.48 2.55 6.64 12.39 8.35

Rolling
LSTMw20

3.65 4.96 2.88 7.59 19.75 16.78

Rolling
RFw5

Winner
1.11

1.51 1.88 4.87 8.99 8.56

Rolling
RFw10

1.16 1.57 2.68 7.56 9.01 9.67

performance, demonstrating the smallest RMSE average. These models

successfully capture and utilize the inherent patterns and relationships

present within the CPU and Memory data.

• Regarding to the network metrics statistical models like ARIMA and the

Rolling ARIMA showcase superior performance. This distinction arises

due to the influence of network bandwidth, which is not only impacted

by the type of application but is also susceptible to the complexities of

traffic patterns. These patterns do not exhibit consistent trends that

can be easily detected by machine learning models. Hence, traditional

78

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

statistical models like ARIMA, along with their rolling counterparts excel

in capturing the different behavior of network bandwidth.

These findings underscore the significance of selecting appropriate mod-

els and considering the specific characteristics of the metrics being analyzed.

Rolling mechanisms, with their adaptability to emerging trends, prove advan-

tageous in capturing dynamic patterns. However, it is crucial to recognize

that the performance of models can vary based on the unique nature of each

microservice and resource type and the inherent challenges they present.

Result by application and resource type

Here we provide an in-depth analysis of the performance results obtained from

various models for different microservices, focusing on the metrics related to

CPU, Memory, and Network. The analysis encompasses the applications of

Video Streaming, PHP back-end, and Web, highlighting the performance of

each model for specific resource types.

Table 4.5 presents the performance analysis of models for Video Streaming

metrics resource consumption, including CPU, Memory, and Network, as well

as the performance analysis of models for PHP microservice encompassing the

CPU and Memory. In the PHP application, we did not consider the network

metrics as all metrics were 0. This is because the PHP application was printing

an ”ok” via HTTP after the back-end execution without transferring additional

data.

Also, according to the results of Table 4.5, we observe that the RMSE

values of the CPU in case of the case of Video Streaming and the memory of

PHP application are both remarkably low, not surpassing 3 and 1, respectively.

This is indicative of the nature of these applications: Video Streaming is not

CPU-intensive, while PHP is not demanding in terms of memory usage. In

contrast, the RMSE in the network for the Video Streaming application and

the CPU for the PHP application exhibit a wide range of values, this is because

the resource usage of them in experiments spanning from 0 to 100%.

Upon analyzing the results obtained from Tables 4.5 and 4.6, our previous

observations are further verified, providing a deeper understanding of the

performance of different models across various applications and resource types.

79

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION
T
ab

le
4.5:

P
erform

an
ce

A
n
aly

sis
of

M
o
d
els

for
V
id
eo

S
tream

in
g
an

d
P
H
P
b
ack

-en
d
m
icroserv

ices
w
ith

resp
ect

to
C
P
U
,
M
em

ory
an

d
N
etw

ork
m
etrics

V
id
e
o
C
P
U

V
id
e
o
M

e
m
o
ry

V
id
e
o
N
e
tw

o
rk

P
h
P

C
P
U

P
h
P

M
e
m
o
ry

M
o
d
e
l

R
M

S
E

A
v
e
ra

g
e

R
M

S
E

S
T
.D

E
V

R
M

S
E

A
v
e
ra

g
e

R
M

S
E

S
T
.D

E
V

R
M

S
E

A
v
e
ra

g
e

R
M

S
E

S
T
.D

E
V

R
M

S
E

A
v
e
ra

g
e

R
M

S
E

S
T
.D

E
V

R
M

S
E

A
v
e
ra

g
e

R
M

S
E

S
T
.D

E
V

A
R
M

A
0.93

1.27
2.30

W
in
n
er

1.34
9.32

2.98
5.24

5.42
0.27

0.03

A
R
IM

A
0.89

1.20
W

in
n
er

2
.44

1.61
9.18

2.21
W

in
n
er

2.85
1.49

0.22
0.06

R
A
R
M

A
0.99

1.41
2.75

2.14
9.91

2.22
11.99

16.69
0.26

W
in
n
er

0.01

R
A
R
IM

A
0.94

1.30
2.80

2.17
W

in
n
er

9.12
W

in
n
er

2.16
3.02

1.49
0.21

0.08

R
E
M

A
1.10

1.59
8.13

11.27
18.89

10.65
17.40

22.42
0.22

0.07

K
F

0.91
1.19

2.91
2.29

9.82
2.40

21.09
33.00

0.25
0.05

R
K
F

0.91
1.19

2.91
2.29

9.77
2.40

20.59
33.17

0.25
0.05

L
S
T
M

w
5

0.94
1.33

5.27
7.22

21.51
7.48

3.42
1.39

0.30
0.16

L
S
T
M

w
1
0

1.86
3.00

7.33
11.23

21.28
7.56

3.64
1.30

0.26
0.07

L
S
T
M

w
2
0

1.47
2.40

2
4
.77

46.23
33.00

29.62
5.13

1.15
0.31

0.12

R
F
w
5

0.95
1.43

9.24
16.25

22.35
7.54

5.26
1.94

0.26
0.15

R
F
w
1
0

0.96
1.39

1
0
.67

19.10
23.04

6.96
4.69

2.94
0.23

0.11

R
o
llin

g
L
S
T
M

w
5

1.04
1.56

3.17
3.02

15.07
4.83

4.20
1.04

0.23
0.07

R
o
llin

g
L
S
T
M

w
1
0

0.97
1.31

7.07
10.98

12.26
6.96

10.86
11.19

0.21
0.08

R
o
llin

g
L
S
T
M

w
2
0

2.94
5.35

8.02
12.57

20.40
25.11

8.25
6.11

0.23
0.11

R
o
llin

g
R
F
w
5

W
in
n
er

0.83
W

in
n
er

1.18
5.10

8.14
16.00

6.14
3.33

W
in
n
er

1.19
0.23

0.11

R
o
llin

g
R
F
w
1
0

1.02
1.55

7.45
12.80

14.59
7.35

3.23
1.43

W
in
n
er

0.20
0.08

80

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Table 4.6: Performance of models for Web microservices with respect to CPU,
Memory, and Network metrics

Web CPU Web Memory Web Network
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 0.31 0.34 0.74 1.02 2.80 2.71

ARIMA 0.29 0.35 0.44 0.56
Winner
2.43

Winner
1.78

RARMA 0.32 0.34 0.58 0.77 2.74 2.13
RARIMA 0.30 0.34 0.35 0.44 2.75 2.54
REMA 0.54 0.64 0.65 0.81 7.28 6.73
KF 0.65 0.90 0.74 1.06 2.65 2.00
RKF 0.65 0.90 0.74 1.05 2.64 2.00
LSTMw5 0.23 0.14 0.36 0.32 8.98 13.77
LSTMw10 0.22 0.13 0.52 0.56 12.06 12.61
LSTMw20 0.34 0.28 0.87 1.18 16.07 26.33

RFw5 0.28
Winner
0.11

0.33 0.30 9.60 10.47

RFw10 0.32 0.15 0.34 0.32 10.16 10.50
Rolling
LSTMw5

0.23 0.12 0.31 0.32 6.36 5.04

Rolling
LSTMw10

0.23 0.13 0.31 0.30 12.48 16.81

Rolling
LSTMw20

1.83 3.15 0.33 0.31 19.31 24.84

Rolling
RFw5

Winner
0.19

0.12
Winner
0.29

Winner
0.28

4.32 3.98

Rolling
RFw10

0.21 0.12 0.32 0.32 5.29 5.28

We observe that both Rolling LSTM and Rolling RF models outperform their

non-rolling counterparts in terms of their overall performance. It’s noteworthy

to mention that the window size also plays a significant role in determining

the performance of these models. Evidently, a smaller window size seems to

enhance the performance for both the LSTM and Random Forest models.

When focusing on the Video streaming service (Table 4.5), the simpler sta-

tistical models like ARIMA and ARMA, seem to exhibit superior performance,

especially respect to the network. The Rolling ARIMA (RARIMA) model, in

particular, presents the best performance with the lowest RMSE average of

2.44 in the network. This could be attributed to the Video streaming service’s

81

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

high sensitivity to changes in bandwidth. This microservice is also influenced

by various traffic patterns, introducing new trends that are often challenging

for prediction models to promptly detect.

However, when we examine CPU performance for the Video microservice,

the scenario changes slightly. The Rolling LSTMw5 model comes out on top,

but the margin between this model and other models, including non-rolling

ones, is not drastic. This pattern is similarly observed in the PHP memory

performance category.

In the case of PHP Back-end application’s CPU performance, the ARIMA

model is better once again. However, it’s worth mentioning that even though

PHP is highly CPU sensitive, the performance gap between ARIMA and

non-Rolling ML models was not significant. This suggests that non-rolling

approaches could be effectively utilized in this context, offering the advantage

of lower computational costs.

Regarding to the results of the Web application (Table 4.6), the conclusions

are common with the two preceding microservices. Non-rolling mechanisms

perform exceptionally well for both CPU and memory, thus allowing the use of

such a mechanism for these resources. Nevertheless, in the case of Network,

ARIMA had by far the best performance.

Concluding to the results, we observe that the ideal model selection for

prediction is highly contingent on the specific resource needs of each microservice.

The one-size-fits-all approach, such as rolling models with high computational

costs, may not be necessary or optimal in all situations. The choice should be

determined based on the specific microservice’s requirements and the nature of

the resources in question.

In figures 4.1, 4.2, and 4.3 we illustrate the performance of three distinct

predictive models LSTM, Rolling LSTM, and ARIMA across all the resource

categories (CPU, Memory, and Network) for the Video Streaming application

subjected to the Gradually Decreasing load scenario.

In Figure 4.1 (a), we observe that LSTM model struggles to predict resources

accurately during decreasing load conditions, whereas the Rolling LSTM model

significantly improves upon this, as indicated in Figure 4.1 (b). The ARIMA

model, given its retraining regimen that includes all past data (inclusive of the

training phase), has the best performance.

82

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Figure 4.1: Prediction of Network Metrics for Video Streaming Application
using LSTM, Rolling LSTM and ARIMA Models

Figure 4.2: Prediction of CPU Metrics for Video Streaming Application using
LSTM, Rolling LSTM and ARIMA Models

Figure 4.3: Prediction of Memory Metrics for Video Streaming Application
using LSTM, Rolling LSTM and ARIMA Models

83

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

However, this performance stratification does not hold consistent across

all resource types in the same scenario. As shown in Figures 4.3 and 4.2, for

CPU and Memory forecasting, the non-rolling LSTM model - despite its lower

computational cost and minor variation in forecast duration - matches the

performance of its counterparts.

In summary, our detailed analysis reaffirms that the performance of models

varies across different applications and resource types. ML models excel in

capturing specific trends and patterns observed in CPU and Memory metrics,

while statistical models such as ARIMA and ARMA outperform ML models

when it comes to Network metrics influenced by complex traffic patterns.

4.5.2 Evaluation Results of Multi-step prediction

In this subsection, we delve into the results of the multi-step prediction processes.

Our focus shifts to using the previously discussed models to forecast the first 5

values of the testing data. Notably, the analysis excludes the Kalman filter as

it is not suitable for multi-step prediction. Furthermore, we exclude the rolling

approaches for ML models (LSTM and Random Forest) since we only predict

the initial 5 values once, so there is no need for retraining.

Regarding to the difference between the Rolling ARMA/ARIMA models

and the simple ARMA/ARIMA models, the rolling models utilize the most

recent 50 values from the testing data to generate predictions, whereas the

simple ARMA/ARIMA models incorporate the entire training data without a

rolling window approach.

By focusing on the multi-step predictions, we gain insights into the models’

ability to project future values beyond a single time step. This analysis provides

a broader perspective on their forecasting capabilities and informs us about

their performance in longer-term predictions.

Average Time, RMSE and MAE results considering all scenarios

Table 4.7 presents the computational time in seconds required by each model

for the prediction processes. The RFw5 and RFw10 models exhibit the lowest

computational times, with 0.014 seconds and 0.015 seconds, respectively. These

models are followed by RARMA and RARIMA, which require slightly more

84

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

computational time at 0.022 seconds and 0.028 seconds, respectively.

In terms of the statistical models, ARIMA and ARMA both take longer

computational times, with 0.040 seconds and 0.041 seconds, respectively. The

LSTM models, namely LSTMw10, LSTMw5, and LSTMw20, require the most

substantial computational time among the models listed, with 0.090 seconds,

0.106 seconds, and 0.110 seconds, respectively.

Table 4.7: Computational Time Comparison of Multi-step Prediction Models

MODEL
TIME
Seconds

RFw5 0.014
RFw10 0.015
RARMA 0.022
RARIMA 0.028
ARIMA 0.040
ARMA 0.041
LSTMw10 0.090
LSTMw5 0.106
LSTM20 0.110

Table 4.8: Analysis of RMSE and MAE Performance Across the Multi-step
Prediction Models

RMSE MAE

Model
RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

LSTM20 1.89 3.52 1.63 3.16
LSTMw10 2.08 4.19 1.76 3.55
RFw10 2.18 5.80 1.92 5.55
LSTMw5 2.36 4.88 2.14 4.60
RARMA 2.80 6.48 2.45 5.50
ARIMA 2.89 7.80 2.60 7.11
ARMA 2.90 7.13 2.65 6.67
RARIMA 2.90 7.74 2.68 7.42
RFw5 3.27 8.28 2.91 8.03

Regarding to the results of the RMSE and MAE (Table 4.8) several obser-

vations can be made:

• ML Models Outperform Statistical Models: The ML models, such as

LSTM, demonstrate superior performance in terms of RMSE and MAE

85

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

compared to the statistical models. This indicates that the ML models

are better able to capture the underlying patterns and dynamics of the

data, resulting in more accurate predictions.

• Impact of Window Size: Larger window sizes tend to yield better re-

sults in both LSTM and RF models. This suggests that considering a

larger context of historical data enables the models to capture long-term

dependencies and trends, leading to improved prediction accuracy.

It is important to note that the specific performance of each model can vary

depending on the dataset and application context. However, based on these

results, it is evident that ML models with larger window sizes exhibit better

performance in terms of RMSE and MAE compared to the statistical models

and smaller window sizes.

These findings highlight the potential benefits of leveraging ML models,

particularly those with larger window sizes, for accurate and reliable multi-step

predictions. However, further analysis and experimentation may be required to

optimize model performance based on specific application requirements and

datasets.

Results per application considering all types of resources

In this section, we detail the results of the models’ assessments across different

microservices. In Table 4.9, we observe that different models excel in different

applications. The model performance does not follow a one-size-fits-all pattern

but rather depends on the type of microservice and the type of resources being

considered.

Specifically, in the Video application, the Rolling ARMA (RARMA) model

appeared to be the most efficient, demonstrating the lowest average RMSE of

3.45 and the lowest standard deviation of RMSE at 3.72. This highlights the

suitability of the Rolling ARMA model for capturing the complex dynamics of

the video microservice.

In the PHP-backend application, the LSTM model with a window size

of 5 (LSTMw5) performed the best, exhibiting the lowest average RMSE of

1.81 and the lowest standard deviation of RMSE at 2.28. The LSTM model’s

86

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Table 4.9: Multi-step Model Performance by microservice type: Results for All
Resource Types

Video PHP Back-end Web
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 4.05 6.32 7.36 14.82 0.64 1.03
ARIMA 4.04 8.16 7.29 15.13 0.66 1.33

RARMA
Winner
3.45

Winner
3.72

7.75 14.38 0.72 1.80

RARIMA 4.15 8.12 7.24 14.93 0.61 1.33

LSTMw5 5.37 7.43
Winner
1.81

Winner
2.28

0.54 1.28

LSTMw10 4.18 6.51 2.23 2.38 0.63 1.29

LSTM20 3.68 4.88 2.41 4.02
Winner
0.52

Winner
1.00

RFw5 7.10 12.92 3.70 5.89 0.57 2.18
RFw10 4.25 9.05 3.01 4.59 0.52 1.94

ability to capture long-term dependencies and patterns within the PHP-backend

microservice contributed to its superior performance.

For the Web application, the LSTM model with a window size of 20

(LSTMw20) provided the most accurate predictions, demonstrating the lowest

average RMSE of 0.52 and the lowest standard deviation of RMSE at 1.00.

This highlights the LSTM model’s effectiveness in capturing the intricate

relationships and patterns within the Web microservice.

However, it is noteworthy that the differences between the top-performing

model and the other models were not markedly significant, indicating a com-

petitive performance across all models in each application. This suggests

that various models can achieve reliable predictions for different microservices,

showcasing their versatility and adaptability.

In conclusion, the decision for the best model for multi-step prediction should

be driven by the specific application and the type of resources in focus. Each

microservice and resource type impacts the resource requirements differently,

necessitating a model that best fits their unique characteristics. Therefore, it

is important to consider these factors when selecting the appropriate model for

the task.

Below, we continue the analysis of model performance by resource type to

87

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

gain further insights into their capabilities and limitations.

Results per resource type considering all resources

Table 4.10 presents a performance analysis of various models based on different

resource types. According to the results of ML models vs. statistical models

across all resource types, ML learning models consistently outperform simple

statistical models in terms of prediction accuracy. This highlights the effective-

ness of ML models in capturing the complex patterns and dynamics of resource

data for multi-step prediction.

Also, the optimal window size varies based on the resource type. For memory

and bandwidth, larger window sizes yield better performance. This is because

memory and bandwidth exhibit longer-term dependencies and trends that can

be captured by models with larger windows. On the other hand, for CPU,

smaller window sizes are more effective. CPU behavior often involves rapid

changes and short-term fluctuations, such as CPU bursts, which are better

captured by models with smaller windows.

Table 4.10: Performance Analysis of Multi-step Models by Resource Type

CPU Memory Network
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 3.58 9.87 0.83 1.13 4.41 6.83
ARIMA 3.55 10.04 0.45 0.42 4.90 8.80
RARMA 3.79 9.68 0.85 1.29 3.76 4.28
RARIMA 3.55 9.92 0.47 0.46 4.90 8.80

LSTMw5
Winner

1.30
Winner

2.26
0.76 1.05 5.76 8.11

LSTMw10 1.41 2.05 0.64 1.09 4.75 7.02

LSTM20 1.77 3.68 0.85 1.58
Winner

3.30
Winner

4.68
RFw5 2.11 4.18 0.60 1.03 8.09 14.23

RFw10 1.72 3.34
Winner

0.14
Winner

0.15
5.27 9.90

88

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Result by microservice and resource type

Here, we provide the performance analysis of the models per microservice and

resource type.

Table 4.11: Performance Analysis of Multi-step Forecasting Models for Video
Microservice Resources

Video CPU Video Memory Video Network
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA
Winner
1.34

Winner
2.27

1.43 1.68 9.37 9.03

ARIMA 1.41 2.29 0.54 0.35 10.18 12.76

RARMA 1.46 2.32 2.05 1.71 6.84
Winner
4.37

RARIMA 1.45 2.39 0.82 0.30 10.18 12.76

LSTMw5 1.91 3.17 1.72 1.41 12.47 9.47

LSTMw10 1.57 2.18 1.41 1.72 9.56 9.46

LSTM20 2.61 5.07 1.95 2.58
Winner
6.48

6.25

RFw5 1.82 2.65 1.58 1.39 17.91 19.22

RFw10 1.49 2.43
Winner
0.16

Winner
0.09

11.10 14.13

Table 4.12: Performance Analysis of Multi-step Forecasting Models for PHP
back-end Microservices Resources

PHP CPU PHP Memory
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 10.81 17.84 0.47 0.33

ARIMA 10.70 18.30 0.45 0.11

RARMA 11.44 17.03 0.37 0.01

RARIMA 10.63 18.04 0.46 0.23

LSTMw5
Winner
2.48

2.61 0.47 0.30

LSTMw10 3.18
Winner
2.41

0.32 0.20

LSTM20 3.45 4.75 0.34 0.18

RFw5 5.41 6.79
Winner
0.29

Winner
0.01

RFw10 4.33 5.31 0.39 0.16

• In the Video microservice (Table 4.11), the ARMA model performs better

89

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

Table 4.13: Performance Analysis of Multi-step Forecasting Models for Web
Microservices Resources

Web CPU Web Memory Web Network
Model RMSE

Average
RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

RMSE
Average

RMSE
ST.DEV

ARMA 0.27 0.43 0.55 0.81
Winner
1.11

Winner
1.52

ARIMA 0.22 0.37 0.39 0.55 1.38 2.14

RARMA 0.25 0.42 0.22 0.45 1.70 2.98

RARIMA 0.22 0.38 0.25 0.49 1.38 2.14

LSTMw5 0.11 0.07 0.22 0.29 1.29 2.12

LSTMw10 0.12 0.09 0.23 0.32 1.54 2.00

LSTM20
Winner
0.08

Winner
0.03

0.30 0.24 1.17 1.59

RFw5 0.12 0.07 0.05 0.02 1.55 3.79

RFw10 0.13 0.10
Winner
0.04

Winner
0.02

1.38 3.38

for CPU resource prediction, with the lowest average RMSE and ST.DEV.

In terms of memory resource prediction, RFw10 outperforms other models,

while RARMA takes the lead in network resource prediction.

• In the PHP microservice (Table 4.12), which is CPU-intensive, the LSTM

model with a window size of 5 (LSTMw5) demonstrates the best perfor-

mance in predicting CPU resource usage. For memory resource prediction,

the Random Forest model with window size 5 (RFw5) exhibits the lowest

average RMSE and ST.DEV.

• For the Web microservice (Table 4.13), ARMA achieves the best perfor-

mance in predicting network resource usage with a small difference from

machine learning models. LSTM20 excels in CPU resource prediction,

and RFw5 performs best in predicting memory resource usage.

In summary, the analysis of model performance across microservices and

resource types generally confirms our previous observations. Machine learning

models tend to outperform simple statistical models, with the exception of the

Video CPU and Web network resource predictions, where ARMA has the best

performance but with a small margin from the ML models. Additionally, in

the CPU-intensive PHP back-end microservice, the LSTM model with a small

window (window size 5) exhibits the best performance.

90

CHAPTER 4. EVALUATION OF PREDICTION MODELS FOR
MICROSERVICES’ RESOURCE CONSUMPTION

4.6 Conclusions

In conclusion, our study presents the performance dynamics of several statis-

tical and ML models across different microservices and resource types. Our

analysis points towards significant variability, wherein given models excel under

particular conditions and applications, but may not perform as well under

others.

In particular, the ML models under investigation, i.e., LSTM and Random

Forest, perform robustly in predicting CPU and Memory metrics, while the

involved statistical models, i.e., ARIMA and KF, demonstrate superior perfor-

mance in Network metrics affected by the clients’ distribution. We further note

that the performance of these models is influenced by factors such as window

size and the rolling or non-rolling nature of the model, implying that the choice

of model and its configuration should be informed by the specific application

and resource types in focus.

For instance, the ARIMA model, when retrained with all past data, shows

robust performance for Video Streaming applications, especially under decreas-

ing load conditions. However, in the same scenario, the non-rolling LSTM

model, despite having lower computational cost, demonstrates comparable

performance for CPU and Memory forecasting.

Moreover, our study suggests that the ’one-size-fits-all’ approach, such as

defaulting to models with high computational costs, may not be always optimal.

The decision for the best-suited model for prediction should be driven by the

specific microservice’s requirements and the nature of the resources in focus,

offering potential avenues for balancing computational cost and predictive

accuracy.

Regarding to the multistep prediction, ML models generally outshine sim-

ple statistical models across microservices and resource types, barring a few

exceptions, making them a safer choice for multi-step prediction.

91

Chapter 5

Conclusions and Future Works

5.1 Conclusions

This final chapter concludes the thesis, presenting and summarizing its sci-

entific contributions, and describing relevant future research directions. The

primary focus of the thesis is to enhance the adaptability of applications to the

conditions of wireless mesh networks (WMNs), enable microservices adaptive

load balancing, and predict the impact of various microservices on network and

processing resources.

Regarding to the application adaptability in wireless mesh networks, we

developed and evaluated experimentally two technological solutions based on

SDN: (i) a reactive solution that is updated on the current state of the wireless

network and appropriately adjusts the paths of network nodes; and (ii) a

proactive solution where the paths are pre-selected based on classification

wireless links considering real measurements in terms of delay and signal

strength (RSSI).

Our evaluation demonstrated that the reactive strategy offers advantages

such as reliability, fault tolerance, and adaptation to unstable conditions like

topology rearrangements, through timely detection of network changes such

as connection failures. However, it also poses some challenges, including the

control management overhead, the need to implement a reliable channel for

the control plane, and high complexity, which makes it more suitable for small-

scale topologies. On the other hand, the proactive strategy bases its routing

decisions on delay and RSSI quality measurements, making it suitable for larger

92

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

topologies with lower complexity and control overhead. However, this strategy

faces difficulties in adapting to dynamic changes, since it largely ignores the

current network state and does not detect topology changes promptly.

In the context of efficient traffic steering among microservices, the research

introduces and investigates Microservice-Aware Load Balancing (MALB), aim-

ing at addressing the stringent resource-efficiency and service performance

requirements of beyond 5G networks. The main feature of MALB is the ability

to adapt the workload/traffic to specific resource demands of each microservice

type, thus achieving the best resource allocation and application performance,

applying different load-balancing policies depending on the characteristics of

each microservice. Through our experimental analyses, our research demon-

strates that the performance advantages of MALB in terms of CPU, memory,

and network utilization, and also in terms of response times and application-

layer throughput of microservices.

Also, the research analyzed the performance dynamics of both statistical and

Machine Learning (ML) models across diverse microservices and resource types.

While ML models, particularly LSTM and Random Forest, performed robustly

in predicting CPU and Memory metrics, statistical models such as ARIMA and

ARMA were found superior in Network metrics predictions, strongly affected by

traffic patterns. It was noted that the performance of these models is influenced

by factors such as window size and the rolling or non-rolling nature of the model.

This insight indicates the necessity of tailoring model choice and configuration

to the specific application and resource types in focus.

Moreover, the research suggests moving away from the ’one-size-fits-all’

approach, emphasizing that the decision for the best-suited model for prediction

should consider the specific microservice’s requirements and the nature of the

resources.

In summary, this thesis has made significant contributions to understand-

ing the dynamics of wireless mesh networks, improving resource utilization

in microservices, and developing efficient predictive models for resource allo-

cation. Future research should continue to advance these fields, taking into

consideration the increasingly dynamic nature of network environments and the

growing complexity of microservice architectures. This will help in meeting the

performance and efficiency demands of next-generation Internet applications.

93

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

In the next section, we describe future plans and directions arising from this

thesis.

5.2 Future works

Here, we also discuss potential future work inspired by the findings and limita-

tions of the present study.

• Adaptive MALB for WMNs: Future work could consider developing

an adaptive MALB specifically designed for WMNs. This approach could

consider the unique characteristics and constraints of WMNs in balancing

the load among microservices. The ability of such a system to adapt to the

dynamic network conditions of WMNs could be a significant advancement

in ensuring efficient resource allocation and usage.

• Customizable Prediction Models in MALB: Given the variability in

the performance of statistical and machine learning models across different

microservices and resource types, future work should focus on integrating

customizable prediction models into MALB. This could involve a dynamic

model selection process based on the specific microservice’s requirements

and the nature of the resources, thereby achieving an optimal balance

between computational cost and predictive accuracy.

• Advanced Clustering Techniques: The utility of clustering in iden-

tifying optimal NDN paths over a stable WMN provides a promising

research area. More advanced clustering techniques, considering also AI

models, incorporating additional metrics could be explored to further

improve path selection and overall network performance.

• Hybrid Reactive-Proactive Strategies: This thesis has shown the

merits of both reactive and proactive strategies under different network

conditions. Future research could investigate hybrid strategies that lever-

age the advantages of both approaches, dynamically switching between

reactive and proactive modes based on real-time network conditions.

• Predictive Load Balancing in WMNs: An exciting area of future

research could be the integration of multi-step prediction models into the

94

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

load balancing process of applications in WMNs. This approach could

help predict future demands and optimally distribute the load in advance,

thereby increasing the overall efficiency and performance of the network.

• Integrated Framework for Beyond 5G Networks: Finally, the

development of an integrated framework that combines the adaptability

of applications in WMNs, customizable prediction models, and adaptive

load balancing could be a significant leap forward for beyond 5G networks.

Such a framework could be capable of dynamically adjusting to network

conditions, predicting resource requirements, and efficiently balancing

the load among microservices.

95

References

[1] Jakob Struye, Bart Braem, Steven Latré, and Johann Marquez-Barja. The

CityLab testbed — Large-scale multi-technology wireless experimentation

in a city environment: Neural network-based interference prediction in a

smart city. In IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pages 529–534, 2018.

[2] w-iLab.1 (OfficeLab) inventory. https://boss.wilab1.ilabt.iminds.be/inventory/,

note = Accessed: 2022-11-10.

[3] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. The future

of industrial communication: Automation networks in the era of the

internet of things and industry 4.0. IEEE industrial electronics magazine,

11(1):17–27, 2017.

[4] Network ITU. 2030-gap analysis of network 2030 new services, capabilities

and use cases, 2020.

[5] Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Yasir Mehmood, Abdullah

Gani, Salimah Mokhtar, and Sghaier Guizani. Enabling Communication

Technologies for Smart Cities. IEEE Communications Magazine, 55(1):112–

120, 2017.

[6] Cleitianne Silva, Yuri Oliveira, Clayson Celes, Reinaldo Braga, and Carina

Oliveira. Performance evaluation of wireless mesh networks in smart cities

scenarios. In Proceedings of the Euro American Conference on Telematics

and Information Systems, pages 1–7, 2018.

[7] Luis Sanchez, Luis Muñoz, Jose Antonio Galache, Pablo Sotres, Juan R

Santana, Veronica Gutierrez, Rajiv Ramdhany, Alex Gluhak, Srdjan Krco,

96

REFERENCES

Evangelos Theodoridis, et al. Smartsantander: Iot experimentation over a

smart city testbed. Computer Networks, 61:217–238, 2014.

[8] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KC Claffy,

Patrick Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang.

Named data networking. ACM SIGCOMM Computer Communication

Review, 44(3):66–73, 2014.

[9] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus

Doppler. Toward low-latency and ultra-reliable virtual reality. IEEE

Network, 32(2):78–84, 2018.

[10] Taher M Ghazal, Mohammad Kamrul Hasan, Muhammad Turki Al-

shurideh, Haitham M Alzoubi, Munir Ahmad, Syed Shehryar Akbar,

Barween Al Kurdi, and Iman A Akour. IoT for smart cities: Machine

learning approaches in smart healthcare—A review. Future Internet,

13(8):218, 2021.

[11] Mennan Selimi, Leandro Navarro, Bart Braem, Felix Freitag, and Adisorn

Lertsinsrubtavee. Towards Information-Centric Edge Platform for Mesh

Networks: The Case of CityLab Testbed. In 2020 IEEE International

Conference on Fog Computing (ICFC), pages 50–55, 2020.

[12] George Xylomenos, Christopher N. Ververidis, Vasilios A. Siris, Nikos

Fotiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V. Katsaros,

and George C. Polyzos. A Survey of Information-Centric Networking

Research. IEEE Communications Surveys Tutorials, 16(2):1024–1049,

2014.

[13] Ahed Aboodi, Tat-Chee Wan, and Gian-Chand Sodhy. Survey on the

Incorporation of NDN/CCN in IoT. IEEE Access, 7:71827–71858, 2019.

[14] Boubakr Nour, Kashif Sharif, Fan Li, Sujit Biswas, Hassine Moungla,

Mohsen Guizani, and Yu Wang. A survey of Internet of Things commu-

nication using ICN: A use case perspective. Computer Communications,

142:95–123, 2019.

97

REFERENCES

[15] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan

Zhang, and Lixia Zhang. A case for stateful forwarding plane. Computer

Communications, 36(7):779–791, 2013.

[16] Asadullah Tariq, Rana Asif Rehman, and Byung-Seo Kim. Forwarding

strategies in NDN-based wireless networks: A survey. IEEE Communica-

tions Surveys & Tutorials, 22(1):68–95, 2019.

[17] Wanqing Tu. Data-driven QoS and QoE management in smart cities: A

tutorial study. IEEE Commun. Mag., 56(12):126–133, 2018.

[18] Qingxia Chen, Renchao Xie, F Richard Yu, Jiang Liu, Tao Huang, and

Yunjie Liu. Transport control strategies in named data networking: A

survey. IEEE Communications Surveys & Tutorials, 18(3):2052–2083,

2016.

[19] Michael Baddeley, Reza Nejabati, George Oikonomou, Mahesh Sooriyaban-

dara, and Dimitra Simeonidou. Evolving SDN for low-power IoT networks.

In 2018 4th IEEE Conference on Network Softwarization and Workshops

(NetSoft), pages 71–79. IEEE, 2018.

[20] Sarantis Kalafatidis, Vassilis Demiroglou, Lefteris Mamatas, and Vassilis

Tsaoussidis. Experimenting with an SDN-Based NDN Deployment over

Wireless Mesh Networks. IEEE INFOCOM WKSHPS CNERT, 2022, 2022.

[21] Lefteris Mamatas, Vassilis Demiroglou, Sarantis Kalafatidis, Sotiris

Skaperas, and Vassilis Tsaoussidis. Protocol-Adaptive Strategies for Wire-

less Mesh Smart City Networks. IEEE Network, 2022.

[22] Wireless Testlab and OfficeLab — imec iLab.t documentation.

https://doc.ilabt.imec.be/ilabt/wilab/. Accessed: 2022-11-10.

[23] Wireless mesh performance measurement.

https://github.com/SWNRG/wireless-mesh-performance-measurements.

Accessed: 2022-11-15.

[24] Elian Aubry, Thomas Silverston, and Isabelle Chrismen. Implementation

and Evaluation of a Controller-Based Forwarding Scheme for NDN. In 2017

98

REFERENCES

IEEE 31st International Conference on Advanced Information Networking

and Applications (AINA), pages 144–151, 2017.

[25] Mohammad Alhowaidi, Deepak Nadig, Byrav Ramamurthy, Brian Bock-

elman, and David Swanson. Multipath Forwarding Strategies and SDN

Control for Named Data Networking. In 2018 IEEE International Con-

ference on Advanced Networks and Telecommunications Systems (ANTS),

pages 1–6, 2018.

[26] Marica Amadeo, Claudia Campolo, Giuseppe Ruggeri, Antonella Moli-

naro, and Antonio Iera. Understanding Name-based Forwarding Rules in

Software-Defined Named Data Networking. In ICC 2020 - 2020 IEEE

International Conference on Communications (ICC), pages 1–6, 2020.

[27] Won-Suk Kim, Chung Sang-Hwa, and Moon Jae-Won. Improved content

management for information-centric networking in SDN-based wireless

mesh network. Computer Networks, 92:316–329, 2015.

[28] Gaurav Verma, Arun Nandewal, and K Chandrasekaran. Cluster Based

Routing in NDN. In 2015 12th International Conference on Information

Technology-New Generations, pages 296–301. IEEE, 2015.

[29] Zeinab Shariat, Ali Movaghar, and Mehdi Hoseinzadeh. A learning au-

tomata and clustering-based routing protocol for named data networking.

Telecommunication Systems, 65(1):9–29, 2017.

[30] Xiaonan Wang, Xingwei Wang, and Yanli Li. NDN-based IoT with Edge

computing. Future Generation Computer Systems, 115:397–405, 2021.

[31] Qing-Yi Zhang, Xing-Wei Wang, Min Huang, Ke-Qin Li, and Sajal K. Das.

Software Defined Networking Meets Information Centric Networking: A

Survey. IEEE Access, 6:39547–39563, 2018.

[32] BATMAN Concept - open-mesh - open mesh. https://www.open-

mesh.org/projects/open-mesh/wiki/BATMANConcept. Accessed: 2022-

11-10.

[33] Tryfon Theodorou, George Violettas, Polychronis Valsamas, Sophia Petri-

dou, and Lefteris Mamatas. A Multi-Protocol Software-Defined Networking

99

REFERENCES

Solution for the Internet of Things. IEEE Communications Magazine,

57(10):42–48, 2019.

[34] Tryfon Theodorou and Lefteris Mamatas. SD-MIoT: A software-defined

networking solution for mobile Internet of Things. IEEE Internet of Things

Journal, 8(6):4604–4617, 2020.

[35] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm opti-

mization for spoken word recognition. IEEE transactions on acoustics,

speech, and signal processing, 26(1):43–49, 1978.

[36] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for

k-medoids clustering. Expert systems with applications, 36(2):3336–3341,

2009.

[37] Preeti Arora, Shipra Varshney, et al. Analysis of k-means and k-medoids

algorithm for big data. Procedia Computer Science, 78:507–512, 2016.

[38] NFD Overview — Named Data Networking Forward-

ing Daemon (NFD) 0.7.1 documentation. https://named-

data.net/doc/NFD/current/overview.html. Accessed: 2022-11-10.

[39] Empowering App Development for Developers — Docker.

https://www.docker.com/. Accessed: 2022-11-10.

[40] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi,

Teemu Koponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott Shenker.

Less Pain, Most of the Gain: Incrementally Deployable ICN. In Proceedings

of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13,

page 147–158, New York, NY, USA, 2013. Association for Computing

Machinery.

[41] Wiki - alfred - Open Mesh. https://www.open-

mesh.org/projects/alfred/wiki. Accessed: 2022-11-10.

[42] Joao F Santos, Wei Liu, Xianjun Jiao, Natal V Neto, Sofie Pollin, Johann M

Marquez-Barja, Ingrid Moerman, and Luiz A DaSilva. Breaking down

network slicing: Hierarchical orchestration of end-to-end networks. IEEE

Communications Magazine, 58(10):16–22, 2020.

100

REFERENCES

[43] Andres Garcia-Saavedra and Xavier Costa-Perez. O-RAN: Disrupting the

virtualized RAN ecosystem. IEEE Communications Standards Magazine,

5(4):96–103, 2021.

[44] Qingwei Du and Huaidong Zhuang. OpenFlow-Based Dynamic Server Clus-

ter Load Balancing with Measurement Support. J. Commun., 10(8):572–

578, 2015.

[45] Dzmitry Kliazovich, Sisay T Arzo, Fabrizio Granelli, Pascal Bouvry, and

Samee Ullah Khan. e-STAB: Energy-efficient scheduling for cloud comput-

ing applications with traffic load balancing. In 2013 IEEE International

Conference on Green Computing and Communications and IEEE Internet

of Things and IEEE Cyber, Physical and Social Computing, pages 7–13.

IEEE, 2013.

[46] Yipei Niu, Fangming Liu, and Zongpeng Li. Load balancing across mi-

croservices. In IEEE INFOCOM 2018-IEEE Conference on Computer

Communications, pages 198–206. IEEE, 2018.

[47] Ruozhou Yu, Vishnu Teja Kilari, Guoliang Xue, and Dejun Yang. Load

balancing for interdependent IoT microservices. In IEEE INFOCOM 2019-

IEEE Conference on Computer Communications, pages 298–306. IEEE,

2019.

[48] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-

overhead datacenter traffic management using end-host-based elephant

detection. In 2011 Proceedings IEEE INFOCOM, pages 1629–1637. IEEE,

2011.

[49] Shuo Wang, Jiao Zhang, Tao Huang, Tian Pan, Jiang Liu, and Yunjie Liu.

FDALB: Flow distribution aware load balancing for datacenter networks.

In 2016 IEEE/ACM 24th International Symposium on Quality of Service

(IWQoS), pages 1–2. IEEE, 2016.

[50] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nel-

son Huang, Amin Vahdat, et al. Hedera: dynamic flow scheduling for data

center networks. In Nsdi, volume 10, pages 89–92. San Jose, USA, 2010.

101

REFERENCES

[51] Stuart Clayman, Alex Galis, and Lefteris Mamatas. Monitoring virtual

networks with lattice. In 2010 IEEE/IFIP Network Operations and Man-

agement Symposium Workshops, pages 239–246. IEEE, 2010.

[52] Containernet. https://containernet.github.io/.

[53] Floodlight controller - project floodlight. https://floodlight.

atlassian.net/wiki/spaces/floodlightcontroller/overview.

[54] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power pro-

visioning for a warehouse-sized computer. ACM SIGARCH computer

architecture news, 35(2):13–23, 2007.

[55] Wei Fang, ZhiHui Lu, Jie Wu, and ZhenYin Cao. RPPS: A novel resource

prediction and provisioning scheme in cloud data center. In 2012 IEEE

Ninth International Conference on Services Computing, pages 609–616.

IEEE, 2012.

[56] Rodrigo N Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar

Buyya. Workload prediction using arima model and its impact on cloud

applications’ qos. IEEE transactions on cloud computing, 3(4):449–458,

2014.

[57] Anoop S Kumar and Somnath Mazumdar. Forecasting HPC workload

using ARMA models and SSA. In 2016 International Conference on

Information Technology (ICIT), pages 294–297. IEEE, 2016.

[58] Yonghua Zhu, Weilin Zhang, Yihai Chen, and Honghao Gao. A novel

approach to workload prediction using attention-based LSTM encoder-

decoder network in cloud environment. EURASIP Journal on Wireless

Communications and Networking, 2019:1–18, 2019.

[59] K Valarmathi and S Kanaga Suba Raja. Resource utilization prediction

technique in cloud using knowledge based ensemble random forest with

LSTM model. Concurrent Engineering, 29(4):396–404, 2021.

[60] Jiechao Gao, Haoyu Wang, and Haiying Shen. Machine learning based

workload prediction in cloud computing. In 2020 29th international con-

102

https://containernet.github.io/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview

REFERENCES

ference on computer communications and networks (ICCCN), pages 1–9.

IEEE, 2020.

[61] Weiwei Lin, Guangxin Wu, Xinyang Wang, and Keqin Li. An artificial

neural network approach to power consumption model construction for

servers in cloud data centers. IEEE Transactions on Sustainable Computing,

5(3):329–340, 2019.

[62] Deepak Janardhanan and Enda Barrett. CPU workload forecasting of ma-

chines in data centers using LSTM recurrent neural networks and ARIMA

models. In 2017 12th international conference for internet technology and

secured transactions (ICITST), pages 55–60. IEEE, 2017.

[63] Alexandros Psychas, Phivos Dadamis, Nikolaos Kapsoulis, Antonios Litke,

and Theodora Varvarigou. Containerised Application Profiling and Classi-

fication Using Benchmarks. Applied Sciences, 12(23):12374, 2022.

[64] Yulai Xie, Minpeng Jin, Zhuping Zou, Gongming Xu, Dan Feng, Wenmao

Liu, and Darrell Long. Real-time prediction of docker container resource

load based on a hybrid model of ARIMA and triple exponential smoothing.

IEEE Transactions on Cloud Computing, 10(2):1386–1401, 2020.

103

Appendices

Funding

This work received funding from EU’s H2020 research and innovation programme

through the 9th open call scheme of the Fed4FIRE+ project (grant agr. num.

732638). Also, it is supported by the ”GSRI FUNDING FOR THE YEAR 2019

(Award for the participation in competitive E.U. projects)”, Novel Enablers for

Cloud Slicing - NECOS, GA No 777067, HORIZON 2020 - JOINT ACTION EU -

BRAZIL, H2020-EUB-2017, Ministry of Development and Investments – General

Secretariat for Research and Innovation. It is also co-funded by Greece and the

European Union (European Social Fund-ESF) through the Operational Programme

“Human Resources Development, Education and Lifelong Learning” in the context of

action “Enhancing Human Resources Research Potential by undertaking a Doctoral

Research,” sub-action 2: “IKY Scholarship Programme for Ph.D. candidates in Greek

Universities”.

104

	Abstract
	Acknowledgements
	Introduction
	Overview
	Research Objectives and Contributions
	Chapters outline
	Publications

	Logically-Centralized SDN-Based NDN Strategies for Wireless Mesh Smart-City Networks
	Introduction
	Contributions and Chapter Organization
	Chapter Organization

	Background and Related Works
	Proposed SDN-Based System
	Reactive NDN Path Selection Strategy
	Proactive NDN Path Selection Strategy

	Experimental Evaluation
	Experimentation Setup
	Scenario 1—Evaluation of the Reactive Processes
	Scenario 2—Evaluation of the Proactive Strategy

	Conclusions and Future Work

	Microservices-Adaptive Software-Defined Load Balancing
	Introduction
	Motivating use-case scenario
	Proposed System
	Monitoring Subsystem
	Microservices Profiler
	MALB Algorithm

	Performance Evaluation
	Scenario 1: Microservices Profiling
	Scenario 2: MALB Platform Evaluation

	Conclusions

	Evaluation of Prediction Models for Microservices' Resource Consumption
	Introduction
	Contributions and Chapter Organization
	Chapter Organization

	Background and Related Works
	Experimental Methodology
	Considered Microservices
	Traffic patterns
	Single-step Prediction Models
	Multi-step Prediction Models

	Experimental Results
	Evaluation Results of Single-step prediction
	Evaluation Results of Multi-step prediction

	Conclusions

	Conclusions and Future Works
	Conclusions
	Future works

	Appendices

