
UNIVERSITY OF MACEDONIA

SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

EVALUATION OF PYTHON CODE QUALITY USING MULTIPLE SOURCE CODE ANALYZERS

Bachelor's thesis

of

George David Apostolidis

Thessaloniki, June 2023

EVALUATION OF PYTHON CODE QUALITY USING MULTI-METRIC ANALYSIS

George David Apostolidis

Undergraduate Student of Applied Informatics at University of Macedonia

Bachelor’s Thesis

submitted for the partial fulfilment of its requirements

BACHELOR'S DEGREE IN APPLIED INFORMATICS

Supervisor

Alexander Chatzigeorgiou

Approved by the three-member examination committee on 13/06/2023

Alexander

Chatzigeorgiou

Apostolos

Ampatzoglou

Stylianos

Xinogalos

...................................

George David Apostolidis

...................................

3

Abstract

Python has become one of the most popular programming languages in recent

years, particularly in the fields of data analysis and scientific computing. To further

improve code quality, this thesis proposes the development of a service tool that records

the progress of GitHub projects and conducts a comprehensive multi-metric analysis of

Python code. The static code analysis is performed using a variety of Python tools, and

the thesis begins with a literature review that introduces the fundamental components of

good code in Python. The tool's features are then presented, followed by a description of

the analysis procedure and code examples. Two real-world GitHub projects from the

domains of data analysis and image processing are examined, and the findings of the

analyses are reported. This thesis emphasises the importance of code quality in software

development and provides developers with a valuable tool for enhancing their code.

Keywords: Python, code quality, static code analysis, multi-metric analysis,

Pytest, Pipreqs, Pylint, Duplication Code Detection Tool, GitHub, service tool, software

development, software quality assurance

4

Preface

It is with great pleasure and gratitude that I present this thesis. This work is the

culmination of a lengthy journey that would not have been achieved without the help,

advice, and encouragement of various people who were crucial to its completion.

First and foremost, I want to thank my thesis advisor, Professor Alexander

Chatzigeorgiou, for his great assistance, patience, and constant support during this

project. His knowledge, devotion, and excitement for scientific inquiry have been a

continual source of inspiration and motivation for me, and I am thankful for the chance to

have worked under his supervision.

Also, I want to express my thanks to Nikolaos Nicolaides for his insightful

comments, technical support, and assistance. I am sincerely appreciative of his assistance

in guiding me through the challenges of this study because of his knowledge and

encouragement.

Last but not least, I would like to extend my sincere gratitude to my family,

whose everlasting love, support, and encouragement have served as the cornerstone of

my academic years. The mental and monetary support they provided me allowed me to

get past the numerous obstacles I had to confront while working on this project, and

without it, I would not have been able to finish it.

5

Table of contents

1 Introduction 1

1.1 Purpose – Objectives 1

1.2 Contribution 2

1.3 Structure of the study 3

2 Bibliographic Review – Theoretical Background 4

2.1 Python (programming language) 4

2.2 Code quality 5

2.3 Code Quality Applications 9

2.4 Code quality in Python 12

2.4.1 Linters 13

2.4.2 Code Coverage 15

2.4.3 Test Coverage 16

2.4.4 Dependencies 17

2.5 Related work 18

3 Technology Stack 22

3.1 Java 22

3.2 Spring / Spring-Boot Framework 23

3.3 PostgreSQL 26

3.4 TypeScript 27

3.5 React Framework 27

3.6 Gitlab CI 28

3.7 Python Tools 29

3.8 Pylint 30

3.9 Pytest (--cov) 31

3.10 Pipreqs 32

3.11 Duplicate code detection tool 33

4 App functionality 34

5 Presentation of the Application 41

6 Results 55

6.1 TorchIO 55

6.1.1 Results 56

6

6.2 DPPy 60

6.2.1 Results 61

6.3 Results of random files 65

7 Conclusion 69

7.1 Summary and conclusions 69

7.2 Suggestions for future research 70

7

List of images

Figure 1 - Product Quality Model (ISO/IEC 25010) 8

Figure 2 - Code analysis automation 9

Figure 3 - SonarQube User Interface 10

Figure 4 - Crucible Example 11

Figure 5 - Flake8 Example 14

Figure 6 - Unittest Example 16

Figure 7 - Pytest Example 17

Figure 8 - Spring Framework Architecture 25

Figure 9 - Gitlab CI/CD 28

Figure 10 - Pylint Example 30

Figure 11 - Pytest --cov Example 31

Figure 12 - Pipreqs Example 32

Figure 13 - Duplicate Code Detection Tool Example 33

Figure 14 - Application user interface 34

Figure 15 - Analysis results of a project 35

Figure 16 - Gitlab CI 37

Figure 17 - GET API JSON response 37

Figure 18 - Example of Project Analysis GET Response 38

Figure 19 - Example of file response from GET API 39

Figure 20 - Clone repository Method 41

Figure 21 - Capture SHAs code 42

Figure 22 - Determination of analysis 43

Figure 23 - Search for unique SHA 44

Figure 24 - Selecting files with the .py file extension 45

Figure 25 – Threads 46

Figure 26 – First Runnable 47

Figure 27 - Pylint Runnable 47

Figure 28 - Execute Command Method 48

Figure 29 - Counting lines of requirements.txt 49

Figure 30 - Pytest Response Method 49

Figure 31 - Store Similarity Method 50

8

Figure 32 - Store Comments Method 52

Figure 33 - Regex Patterns 53

Figure 34 - Delete Directory Method 54

Figure 35 - TorchIO Dependencies 56

Figure 36 - TorchIO Total Statements 57

Figure 37 - TorchIO Total Miss 59

Figure 38 - TorchIO Total Coverage 60

Figure 39 - DPPy Total Statements 62

Figure 40 - DPPy Dependencies 63

Figure 41 - DPPy Total Miss 64

Figure 42 - DPPy Total Coverage 65

9

List of tables

Table 1 - Standalone Python Linters 15

Table 2 - data_parser.py Results 66

Table 3 - intensity_transform.py Results 67

10

1 Introduction

Software development is a complex and dynamic field that demands high-quality

code to ensure efficient and reliable software systems. Code quality, which encompasses

various aspects such as readability, maintainability, and efficiency, directly impacts the

performance, stability, and overall success of software applications. Therefore,

understanding and managing code quality is crucial for software development teams.

This thesis focuses on the development of a tool for automating the evaluation of

Python code in GitHub projects across various research fields, particularly those where

professionals and researchers utilise code to automate specific functions. To provide a

comprehensive understanding of software quality, the theoretical background will be

explored. This paper will primarily concentrate on the tool's features, its presentation,

and its functionality, as well as the results obtained from analysing the aforementioned

projects. The quality of software is a crucial aspect of software development, as it

determines how well the software meets its intended purpose and how easy it is to

maintain and modify. Thus, it is essential to examine the quality of software projects and

identify areas for improvement. This thesis proposes a tool that automates the evaluation

of Python code in GitHub projects, which can aid in identifying areas for improvement in

software quality.

1.1 Purpose – Objectives

The study's objectives are to discover and examine various metrics for evaluating

code quality, create an application to combine these metrics into a comprehensive quality

score, and include the application as a tool that developers can use to enhance their code.

According to the research's background, maintaining high-quality code is crucial

for the development of software, but doing it manually may be time-consuming and

challenging. Automatic code analysis tools can aid programmers in finding possible

problems and fixing their code, although Python-specific tools are frequently restricted in

their capabilities and reach.

1

The Python programming language, which is extensively used in scientific,

educational, and industrial applications, serves as the research's setting. Both individual

developers and businesses that use Python for their software development can benefit

from the tool created in this study.

1.2 Contribution

The research conducted in this study encompasses several key areas that

contribute to the understanding of code quality in the chosen technology stack. These

areas include a comprehensive literature review, technology stack analysis, application

development, results analysis, and conclusion and recommendations.

The literature review is an in-depth exploration of existing literature on code

quality, including theoretical background, best practises, and tools. It provides readers

with a thorough understanding of the current state of the field and lays the foundation for

the research conducted in this study. The technology stack analysis focuses on the

specific technology stack used in this study, including programming languages,

frameworks, and development tools. Through careful investigation, this analysis provides

insights into the practical aspects of managing code quality in the context of the chosen

technology stack, highlighting the unique challenges and opportunities associated with

code quality in this environment.

The application development component of this study involves the development

of a practical application that demonstrates effective code quality management practises

in the chosen technology stack. This application serves as a concrete example for readers,

showcasing the application of code quality concepts in a real-world context and

illustrating the practical implementation of code quality practises. The results analysis

entails the evaluation of the performance and effectiveness of the developed application

in managing code quality. Through empirical evidence, this analysis provides insights

into the practical implications and impact of code quality practises in the chosen

technology stack, offering valuable insights for researchers, practitioners, and

2

stakeholders interested in improving software development processes and ensuring

high-quality code.

Finally, the conclusion and recommendations section summarises the findings and

conclusions drawn from the study and provides suggestions for future research in the

field of code quality in a specific technology stack. These insights offer valuable

directions for further exploration and contribute to the body of knowledge on code

quality in the chosen technology stack, providing valuable insights for researchers,

practitioners, and stakeholders interested in enhancing software development processes

and ensuring high-quality code.

1.3 Structure of the study

The thesis consists of several chapters, including a bibliographic review and

theoretical background chapter, a technology stack analysis chapter, an application

development chapter, a presentation of the application chapter, and a results analysis

chapter. The bibliographic review chapter discusses relevant literature on Python, code

quality, code quality applications, and code quality in Python. The technology stack

analysis chapter explores the specific technologies used in the study, including Java,

Spring/Spring-Boot framework, PostgreSQL, TypeScript, React framework, Gitlab CI,

and Python tools. The application development chapter details the functionality of the

developed application, while the presentation of the application chapter showcases its

design and interface. The results analysis chapter presents the findings of the study. The

thesis concludes with an epilogue summarising the conclusions, limitations, and future

extensions for further research.

3

2 Bibliographic Review: Theoretical Background

2.1 Python (programming language)

Python is a computer language that is ideal for real-world programming and is

also simple to learn. Guido van Rossum created it in 1991, and it is known for its

powerful high-end features. Python is a widely used dynamically typed language used in

a wide range of fields, including automation, data analysis, web development, and

scientific computing [1]. The extensive collection of libraries and frameworks that make

it simple to handle difficult programming tasks is another factor contributing to its

popularity. It's a fantastic language for beginners because of its simple syntax and ease of

understanding [2]. Building large-scale applications, developing machine learning

models, and manipulating massive data are just some of the sophisticated programming

tasks that can be accomplished using the powerful Python programming language. The

rich library ecosystem of this language is one of its main advantages. About 400,000

packages are available in the Python Package Index (PyPI) [3], which can be used to

increase Python's functionality. These programmes cover a wide range of topics,

including web development, scientific computing, and data analysis.

Python offers language constructs that enable comprehensible programming at all

scales, no matter how large or tiny the program is. It is important to note that it supports a

variety of programming paradigms, including procedural, functional, and object-oriented

programming [4].

A powerful language with simple and straightforward syntax, Python includes

high-level data structures such as lists, tuples, sets, and dictionaries, as well as dynamic

type and binding, modules, classes, and exceptions. It is a popular choice in the machine

learning industry due to its extensive collection of libraries, which reduces the amount of

code developers need to write. In addition, it can be used on parallel computing systems

thanks to the JPython interpreter. Although some people may have trouble getting to

grips with it, research on the range of libraries that Python offers [5] can encourage users

to use the language and advance their coding abilities. Python is a popular alternative for

both novice and experienced programmers due to a number of features. Lutz [6] argues

4

that Python's emphasis on software quality is one of its main benefits. The language

incorporates features such as object-oriented programming to promote code reuse and is

intended to be simple to read and understand even without significant annotations.

Another benefit of Python is its development productivity. The language enables

programmers to write code quickly, effectively, and concisely, which is sometimes

impossible in other object-oriented languages like Java and C++. Both initial code

writing and subsequent debugging can be sped up this way. With programs that can run

on many operating systems and user interfaces, Python is also highly customizable. It is

therefore a versatile choice for a variety of applications. A fairly large number of support

libraries are also included in Python, which can help developers add functionality to their

projects quickly and easily. Additionally, these libraries are highly extensible, allowing

developers to create their own custom versions. In addition, Python has component

integration, which allows developers to use Python applications as extensions to other

programs and to integrate third-party libraries written in languages such as Java and C

[2].

Overall, a developer's productivity and work happiness can benefit from the

simplicity and fun of Python programming. In general, Python is quite attractive for a

variety of programming tasks because of these features.

2.2 Code quality

According to Kitchenham and Pfleeger, in a report made in 1996 in the IEEE journal

[7], it is pointed out the importance of programmers' employment with software quality.

A good definition, according to them, is important so that developers and customers are

now sure of what they mean when they refer to it and enable us to effectively measure

quality.

The effectiveness of software quality metrics and the relationship between process

and product quality are both determined through metrics. It must also be clarified

whether the investment of time and resources to ensure good quality will result in higher

profits or greater market share. This is because the quality of what we build can have an

5

impact on how the product is used after delivery. In other words, it is important to know

whether quality software development is profitable. The majority of people believe that

quality matters and can be improved.

Software quality therefore refers to a set of requirements that must be identical in a

project [8]. Properties such as readability, maintainability, modularity, performance, and

security are all important aspects of software, whether in a social media application or

financial clearinghouse software. Code quality is affected by several factors, including

architecture, API design, coding style, library choice, and adherence to best practices.

Some of these, such as architecture and design, require human insight, but others, such as

code analysis, can be automated. Tooling is a simple first step towards prioritising quality

and can be a great way to ensure uniform standards and integrate analytics tools into the

development process. It is important to consider some software quality factors that can be

controlled automatically:

● Readability

According to Robert C. Martin in Clean Code: A Handbook of Agile Software

Craftsmanship [9], "the ratio of time spent reading to writing is well over 10 to 1" in the

development process. Because of this, code readability is a critical component of

development productivity. The variable name is a component of readability that is highly

circumstantial and even subjective. Examples of simple automated checks that improve

readability include using a standardised coding style and avoiding the use of ambiguous

terminology.

● Performance

Although system profiling and stress testing are necessary to fully understand

application performance, static code analysis can identify some performance

anti-patterns. Examples here could be looking at code that can be moved outside of

loops, looking for concurrency issues that could cause trouble for threads, as well as

pointless map searches.

6

● Reliability

Site reliability engineering has become a practical technique for system-scale

reliability tests. However, using static analysis approaches, a variety of component

reliability problems can be identified. In some cases, in multi-threaded programs, data

race conditions can lead to a variety of unexpected behaviors. Crashing from null pointer

exceptions can sometimes lead to denial-of-service flaws, and in some circumstances,

bad exception handling can lead to unexpected behavior.

● Security

Red teaming and bug bounty programs have become popular approaches to finding

vulnerabilities in deployed systems. However, such approaches are reactive and do not

address the root cause of the vulnerabilities, which lies in the code itself. Automated

static code analysis is a proactive approach to security that can find a wide range of

security flaws early in the software development lifecycle. These flaws include, but are

not limited to, weak encryption, insecure configurations of the framework, hard-coded

secrets, and other vulnerabilities that can be exploited by attackers. By integrating

automated static code analysis into the development process, organisations can identify

security flaws before they are deployed and significantly reduce the risk of successful

attacks.

● Dependency Management

On average, 90% of software applications created by third parties as part of the

software supply chain depend on open source. Because of these third-party dependencies,

the performance, reliability, security, and other quality characteristics of your application

are mostly inherited. As a result, it is important to carefully evaluate the libraries used

and monitor security vulnerabilities in the application's dependencies. The general term

for the technology that can extract a list of dependencies is Software Composition

Analysis (SCA) and determine the problems in any of them.

A method for evaluating the quality of a product is based on the quality model.

The quality characteristics that will be taken into account when evaluating the properties

of a software product are determined by the quality model.

7

The degree to which a system satisfies the explicit and implicit demands of its

many stakeholders and thus adds value is referred to as its quality. The quality model,

which divides product quality into attributes and sub-attributes, accurately represents the

requirements of these stakeholders (functionality, performance, security, maintainability,

etc.).

The eight quality factors shown in the accompanying illustration make up the

product quality model described in ISO/IEC 25010 [10]:

Figure 1 - Product Quality Model (ISO/IEC 25010)

Ensuring code quality is an ongoing process. To ensure that the code base is

maintainable while it changes, regular evaluation of the code quality must be done. It is

important that developers follow the best practises outlined for the project by establishing

code style guidelines and using automatic support mechanisms such as Linters. The first

stage of automation is, as mentioned, static code analysis.

Static code analysis, as the name suggests, is just a simple evaluation of code

(without its context) to find parts of code that don't follow a certain set of rules and

principles. It is a technique of code review and detection of software defects and code

conformance before execution [11].

We usually automate the analysis of static code in multiple stages, such as in

developers' IDEs, where Linters are used to automate code quality control on its

development, and in the quality gates of CIs for pull requests (or merge requests) in git,

where rules also apply in a CI environment.

8

Figure 2 - Code analysis automation

2.3 Code Quality Applications

Maintaining code quality has become more important than ever in the current

fast-paced world of software development, where agile techniques and continuous

delivery practises are becoming more prevalent. Software development teams now have

access to effective tools for ensuring that the code they write adheres to the highest

standards of quality, called "code quality apps." These programs employ a variety of

ways to examine and analyse code, spot possible problems, and provide developers with

useful feedback. Developers may avoid common problems, improve code performance,

and produce more dependable and maintainable software with the aid of code quality

solutions. In this part, the most well-known code-quality apps will be examined, along

with their capabilities and advantages for developers [12].

9

● SonarQube

Figure 3 - SonarQube User Interface

A popular open-source static code analysis tool called SonarQube [13] can help

developers find and flag security flaws in their code. To scan code and find potential

security flaws, it uses a number of approaches, including pattern matching, data flow

analysis, and control flow analysis. The fact that SonarQube supports both on-premise

and cloud-based installations is one of its key advantages. The on-premise version can be

installed on a local server or used locally because it is open source and free to use.

Because of this, it's ideal for small teams or companies that want to verify that their code

is secure but have a limited budget. The cloud-based version of SonarQube, on the other

hand, costs money and offers additional features, including compatibility with platforms

and development environments such as GitHub, Bitbucket, and Jenkins. It also offers

more thorough reporting and code analysis, which can be useful for larger teams or

businesses that need more sophisticated security features. Support for more than 27

programming languages, including well-known ones like Java, C#Go, and Python, is also

one of the main advantages of SonarQube. The ability to scan and analyse code written in

multiple programming languages using a single tool makes this feature important for

developers working on multiple projects.

10

● Crucible

Figure 4 - Crucible Example

Crucible [14] is a well-known application that enables rapid workflow-based code

reviews. It allows developers to evaluate code in a fast and simplified way, ensuring

compliance with protocols and code quality standards. Crucible's real-time alerts make it

easy to organise and track code reviews while staying on top of deadlines. It supports all

major programming languages, including Java, C++, Python, and many more.

● ESLint & JSHint

JavaScript static code analysis tools such as ESLint [15] and JSHint [16] are widely

used. Each of these technologies is accessible as npm packages, allowing developers to

easily include them in their projects. They are free and open source, which means that

anyone can use them without paying any licence fees. The ability to configure rules and

checkers used for code analysis is a key feature of both ESLint and JSHint. Developers

can use a variety of configuration settings to tailor the tools' behavior to their particular

requirements. This makes it easy to enforce code quality standards and ensure that code

conforms to best practices. Another advantage of these tools is that they support

11

JavaScript. Because JavaScript is a widely used programming language, these tools can

be used by developers working on projects in various fields. ESLint and JSHint improve

code quality and reduce the risk of vulnerabilities and defects by evaluating code for

common errors and mistakes.

2.4 Code quality in Python

There are a few things to keep in mind while attempting to write Python code of

high caliber. Strong viewpoints exist over what should constitute high-quality code,

particularly when it comes to readability, maintainability, and extensibility. It will open

with a mention of the coding style used by Python.

It is legitimate to want code consistency [17] regardless of how white space is

represented to each programmer's taste. A consistent method for creating code is defined

by a style guide. Typically, this is all just aesthetic and has no bearing whatsoever on the

code's logical result. Nonetheless, certain aesthetic choices guard against formal and

logical mistakes. The objective of making code simple to comprehend, maintain, and

expand is helped by style guides. For Python, there is a generally accepted standard. It

was partly developed by the Python programming language's developer.

PEP 8 and PEP 257 are two important documents that provide guidelines for

Python programming, and they are widely adopted by developers. PEP 8 specifies coding

rules for Python programming, which include guidelines for code layout, syntax, naming

conventions, and comments. Adhering to these guidelines can improve the readability

and maintainability of the code, making it easier for other developers to understand and

work with it. On the other hand, PEP 257 focuses on the documentation of the code

through the use of docstrings, which are strings that describe what a module, class,

function, or method does. By following these guidelines, developers can ensure that their

code is well documented and that others can understand its functionality without having

to read the code. Additionally, consistent docstrings can be used to generate

documentation directly from the code, which can save time and effort in the long run.

Following these guidelines can improve the quality of the code and make it easier to

maintain and understand.

12

2.4.1 Linters

In order to correctly find errors in the code, linters are used. Lint refers to the

process of analysing source code to identify and report potential issues such as syntax

errors, coding style inconsistencies, and other code quality issues.

Linters play an important role in ensuring that code is readable, maintainable, and

free of bugs and vulnerabilities. They are automated tools that scan code and provide

feedback on potential issues, allowing developers to identify and fix problems early in

the development process. They can be configured to enforce specific coding standards,

such as variable naming conventions, indentation styles, and other best practises. By

addressing these issues early, linters help reduce the time and effort required for

debugging and maintenance. They can also help improve code quality and prevent

potential security vulnerabilities by highlighting potentially dangerous code patterns.

Most modern code editors and integrated development environments (IDEs)

provide a linter feature, which is built to inspect code as it is written in real time.

Potential problems, including syntax errors, inconsistent coding styles, and other quality

issues, may be flagged by this feature. Linters can flag problematic areas in code using

visual cues such as underlining or highlighting, much like a word processor's spell check

does. They sort the possible errors into logical or stylistic groups after studying the code.

Although stylistic lints refer to code that deviates from accepted rules, logical lints are

problems that can have incorrect or unwanted results. Code defects, potentially

dangerous code patterns, and unwanted code results are some examples of logical lint. In

contrast, stylistic lints include problems such as inconsistent code practices, improper

variable naming practices, and other violations of coding standards.

When considering options for liners, it is important to note that some tools available

on the market may actually be a combination of multiple frames packaged together.

These complex patterns can be useful as they provide a comprehensive set of features

and functions, but it is important to have an understanding of what each linter offers and

how they work together. Some popular examples include the following:

13

● Flake8

Figure 5 - Flake8 Example

Flake8 [18] is a robust and popular linter that provides developers with a

comprehensive set of tools to improve code quality. With the combination of PyFlakes,

pycodestyle, and McCabe Complexity Checker, Flake8 can find logical and stylistic

errors in code as well as evaluate the complexity of code. PyFlakes detects common

issues such as undefined variables, while pycodestyle focuses on formatting and naming

conventions. Additionally, the McCabe Complexity Checker evaluates the complexity of

code and can help developers identify areas of code that may be difficult to understand or

maintain. By merging these discrete linters, Flake8 provides a powerful solution for

developers to find and fix a wide range of bugs in their code. Its flexibility and

configurability make it a popular choice among developers, and it can be easily

integrated into development workflows to help ensure consistent code quality.

● Pylama

Pylama [19] is a popular combination linter that integrates numerous code analysis

tools and linters. The linter provides PyFlakes, pycodestyle, and McCabe, which are used

in Flake8, as well as Pylint. Pylint is an advanced linter that offers the ability to detect

coding errors and poor coding practices in Python code. Pylama also offers Radon, a tool

that provides developers with a way to measure the complexity of code and identify areas

that may require attention. Radon uses algorithms that measure the code's

maintainability, understandability, and complexity. Moreover, Pylama provides gjslint,

14

which is designed to evaluate the quality of JavaScript code. The combination of these

linters and analysis tools in Pylama offers developers a comprehensive approach to

improving the quality of their code.

The following standalone Linters come with a brief explanation:

Table 1 - Standalone Python Linters

Linter Category Description

Pylint Logical & Stylistic Searches for code smells,

attempts to impose a coding

standard, and checks for

flaws.

PyFlakes Logical Program analysis and error

detection

Pycodestyle Stylistic Analysis of programs and

discovery of errors

Pydocstyle Stylistic Checks for conformance to

Python docstring

conventions.

Bandit Logical Analyzes code to identify

common security flaws.

MyPy Logical Checks for static types that

can be imposed selectively.

2.4.2 Code Coverage

Code coverage is a software test measure that determines the number of

successfully verified lines of code in a test method. Code coverage testing can help

determine how thoroughly a piece of software has been tested. For test cases involving a

large number of lines of code, both human and automated testing approaches are

evaluated. The goal is to measure the number of lines of code validated by the test

technique as well as the total number of lines of code in a software component. The

15

primary goal of any development team is to deliver enterprise-grade software with the

fewest possible bugs. To do this, the program must be revised to include evaluation,

monitoring, and measurement of test methods. This is where code coverage tests come

into play as a useful tool for evaluating the overall effectiveness and completeness of

tests.

2.4.3 Test Coverage

The first key difference between code coverage and test coverage is that this is a

black-box testing technique. It essentially counts the number of tests that have been run

and whether the current test cases cover the majority of the various documents included.

When all the functions specified in the documents have been performed, test code must

be written to validate the product features that have been implemented. The goal is to

provide insights into tests performed on a software solution. In software testing, test

coverage includes a variety of testing methodologies, such as unit testing, responsive

testing, cross-browser testing, integration testing, and acceptance testing. Test coverage is

then evaluated and measured against a number of features covered by the test code. Some

of the tools for test coverage are the following:

● Unittest

Figure 6 - Unittest Example

Unittest [20] is a robust and widely used testing framework that is based on the

principles of JUnit and other unit testing frameworks in major programming languages.

16

One of the primary advantages of using Unittest is the ability to perform automated

testing and generate shared setup and shutdown code. This setup code is essential for

running one or more tests and ensures that any required cleanup actions are performed

once testing is complete. Furthermore, Unittest provides a comprehensive solution for

handling activities such as creating temporary or proxy databases, directories, or starting

a server process. By centralising these setup activities, Unittest minimizes the risk of

errors and simplifies the testing process. Its text component is also highly advantageous,

allowing for easy documentation of test cases, results, and other important information.

These features make Unittest a highly effective tool for ensuring the quality and

reliability of code in a scientific and systematic manner.

● Pytest

Figure 7 - Pytest Example

Pytest [21] is a popular and widely supported third-party Python testing

framework that is considered a better choice compared to Unittest. It is known for its

sophisticated features and extensive community support. Pytest aims to reduce the

overheads associated with test production by providing developers with a framework for

writing tests quickly and efficiently. Pytest is compatible with various Python versions,

including 2.7, 3.4, 3.5, 3.6, Jython, and PyPy-2.3, and it can be used on Unix/Posix and

Windows operating systems, making it a versatile choice for testing Python applications.

2.4.4 Dependencies

Dependencies are additional code that a developer wants to invoke. The process

of building, testing, debugging, and maintaining a particular code unit is avoided by

17

adding a dependency. According to Cox [22], software dependencies pose significant

risks that are too often neglected. The move to fine-grained software reuse has happened

so quickly that we still don't understand the best methods for efficiently selecting and

using dependencies, or even determining when they are appropriate and when they aren't.

There are case studies like that of Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta,

Antonino Sabetta, and Fabio Massacci [23], whose results show us the importance of

having knowledge of the amount of these dependencies in the code. More specifically,

their study states that this practice allows software development companies to gain

important information about their library dependencies and, as a result, appropriately

spend expensive development and testing resources that are otherwise wasted when

metrics are misinterpreted.

Python provides various tools that are essential for managing dependencies and

libraries in projects. One such tool is PipReqs [24], which is particularly important for

Python projects as it maintains comprehensive information about the libraries required

for project execution. Typically, this information is obtained using the pip freeze

command, which generates a virtualized list of all installed libraries. PipReqs allows

developers to easily manage and track project dependencies, ensuring that the required

libraries are installed and properly maintained throughout the development process. This

helps in maintaining a clean and organised environment for Python projects, ensuring

smooth execution, and minimising potential issues related to dependencies.

2.5 Related work

Static code analysis is a critical process in software development that helps

identify defects, vulnerabilities, and other issues in code before it is executed. While

static code analysis has been widely used in Java-based systems, its application in other

programming languages such as Python is growing rapidly. Several researchers have

explored the use of static code analysis in Python-based systems, and their findings have

made significant contributions to the field of software engineering. In this section, we

review some of the related work on static code analysis for Python code and its

contributions to the field.

18

The construction of static call graphs from Python source code is a critical task in

many procedural analysis and software understanding tools. However, automating this

process remains challenging due to the dynamic nature of Python. To address this issue,

the research team led by Gharib Gharibi, Rashmi Tripathi, and Yugyung Lee [25] has

developed a prototype Python tool called code2graph. This tool automates the extraction

of the structure of Python source code, the construction of static call graphs, and the

creation of a similarity matrix for all possible execution paths in the system.

The goal of the code graph is two-fold. First, it aims to help developers

understand the overall structure of a system by providing visual representations of the

static call graph, which can highlight the relationships between different components and

modules in the codebase. This can facilitate the identification of key software elements

and their interactions, aiding developers in gaining insights into the system's architecture

and design.

Second, the code2 graph provides a foundation for future research in software

search and similarity detection applications. By grouping execution paths into a logical

system workflow, the code2 graph enables the automation of specific software tasks. For

example, identifying similar patterns of code execution across different projects or

detecting similarities in the behavior of different functions or methods This can be

valuable in tasks such as code reuse, code refactoring, and identifying potential code

clones.

The effectiveness of code2graph has been demonstrated by the research team

through its application to three popular open-source deep learning projects, namely

TensorFlow, Keras, and PyTorch. The tool has been used to generate static call graphs

and path similarity tables, providing valuable insights into the structure and behavior of

these projects.

The development of code graphs represents a significant contribution to the field

of software analysis and understanding, as it addresses the challenge of automating the

construction of static call graphs from Python source code. This tool has the potential to

enhance software development practices by providing developers with a deeper

19

understanding of the structure and behavior of Python projects and by enabling the

automation of specific software tasks through the identification of similarities in code

execution patterns.

PyTA [26], a wrapper for a popular Python static analysis tool, has been

specifically designed to help novice developers find and fix common errors in their code.

PyTA provides custom checks for common beginner errors and improved prompts to

assist students in understanding and resolving problems. The effectiveness of PyTA was

evaluated by integrating it into an existing online system used to deliver programming

exercises to CS1 students and comparing the results with previously collected data.

The analysis showed that PyTA can help students identify and resolve errors

faster, resulting in a reduction in repeated errors and the time taken to complete

programming problems. These findings suggest that static analysis tools like PyTA can

be effective in supplementing traditional feedback methods to assist students in better

understanding and debugging their code.

The Scalpel framework [27] is a significant advancement in the field of Python

static analysis, providing developers with a comprehensive set of pre-built tools for

performing fundamental static analysis tasks such as call graph construction, flow control

graph construction, and alias analysis. These tools enable developers to more effectively

identify and fix bugs, vulnerabilities, and other issues in their Python code, leading to

improved software quality and reliability. The incorporation of these fundamental static

analysis functions in the Scalpel framework makes it easier for developers to implement

dedicated Python static parsers, streamlining the process of analysing Python code for

potential issues. This can greatly benefit software development teams by helping them

identify and address issues early in the development lifecycle, reducing the likelihood of

introducing bugs or vulnerabilities into the final codebase. One notable advantage of the

Scalpel framework is its open-source nature, which makes it accessible to a wide range

of developers and promotes continuous development and improvement over time. The

availability of the framework to the broader community fosters collaboration, feedback,

and contributions from the community, leading to ongoing enhancements and

refinements to the framework.

20

With the Scalpel framework, developers can leverage advanced static analysis

techniques to gain insights into their Python code, identify potential issues, and make

informed decisions about code changes. This can result in more robust and secure Python

applications with improved code quality, reliability, and maintainability. The availability

of the Scalpel framework promises to enable new and innovative approaches to tackling

the challenges associated with writing high-quality Python code, benefiting the Python

development community as a whole.

In conclusion, while there are several existing tools and frameworks available for

static code analysis of Python code, there is still a need for a service-based tool that

integrates these tools and provides fast and flexible static code analysis. The proposed

thesis aims to address this gap by designing and implementing a service-based tool that

can efficiently perform static code analysis on Python code. By leveraging the strengths

of existing tools and frameworks, this service-based tool can provide a more

comprehensive and efficient solution for finding bugs, vulnerabilities, and other issues in

Python code. Overall, this tool has the potential to significantly improve the quality of

Python code and improve developer productivity.

21

3 Technology Stack

When building a service-based application, such as the tool presented in this

study, choosing the right technology stack is critical to providing a reliable and scalable

solution. A service-based architecture involves dividing the application into smaller,

independent services that communicate with each other to provide overall functionality.

The technology stack for a service-based application must therefore be chosen with

careful consideration of the unique requirements of the architecture. Factors such as

scalability, reliability, and flexibility are important when choosing it. In addition, the

chosen technologies must allow easy integration with other systems and services while

providing excellent performance and security. In this chapter, we'll explore the various

options available for building a service-based application and the key considerations for

choosing the right tools and frameworks.

3.1 Java

Java [28], a widely used and popular programming language, was created by

James Gosling at Sun Microsystems in 1995. Initially, Java's core components, including

compilers, virtual machines, and class libraries, were released under proprietary licences.

However, in May 2007, Sun Microsystems relicensed most of its Java technologies under

the GNU General Public Licence (GPL) in compliance with the Java Community Process

(JCP) specification. This move aimed to promote open-source development and

community involvement in the evolution of Java.

One significant outcome of this relicensing was the emergence of the OpenJDK

project as the official reference implementation of the Java platform. The OpenJDK JVM

(Java Virtual Machine) is now widely recognized as a free and open source software

(FOSS) implementation of the Java platform, and it has become the default JVM for

almost all major Linux distributions. The OpenJDK project is hosted and maintained by

the open source community, which fosters collaboration, innovation, and transparency in

the development of Java technologies.

22

Oracle, a key player in the Java ecosystem, continues to provide the HotSpot

JVM, which is a commercially supported and optimized implementation of the Java

Virtual Machine. However, the OpenJDK JVM has gained widespread adoption due to its

open-source nature, community-driven development model, and compatibility with the

Java Community Standard (JCS). The availability of the OpenJDK JVM as free and open

source software has democratized access to Java technology, enabling developers around

the world to use, modify, and distribute Java software without proprietary restrictions.

The shift towards open-source licensing and the establishment of the OpenJDK project

have had significant implications for the Java community. It has promoted greater

transparency, collaboration, and innovation in the development of Java technologies and

has encouraged widespread adoption of the OpenJDK JVM as the de facto standard

implementation of the Java platform. This has resulted in a vibrant ecosystem of

open-source libraries, tools, and frameworks built on top of the OpenJDK JVM and has

facilitated the growth and evolution of the Java programming language as a widely-used

and versatile technology for a wide range of applications.

The language allows developers to write code once and run it on any platform

that supports Java without the need for recompilation. Java applications are typically

compiled to bytecode, which can be executed on any Java Virtual Machine (JVM)

regardless of the underlying computer architecture. Although the syntax of Java is similar

to that of C and C++, it has low-level facilities. The Java runtime offers dynamic

capabilities not available in traditional compiled languages. As of 2019, Java was among

the most popular programming languages in use, particularly for client-server web

applications, with approximately 9 million developers.

3.2 Spring / Spring-Boot Framework

The Spring Framework is a widely used open-source application development

framework for Java and J2EE environments that aims to enhance developer productivity.

With a reported 30% adoption rate among Java developers [29], it is considered one of

the most popular frameworks in the Java ecosystem. The Spring Framework provides a

range of features that facilitate the efficient development of diverse applications, from

simple web applications to complex enterprise-level systems.

23

The Spring Framework is founded on several fundamental concepts that shape its

design and functionality. These include inversion of control (IoC), dependency injection

(DI), aspect-oriented programming (AOP), and the Java Persistence API (JPA). These

concepts form the cornerstone of the framework's architecture, providing developers with

powerful tools for building flexible, modular, and scalable Java applications.

IoC is a general concept where flow control is reversed. Instead of developers

controlling program flow, external resources (frameworks, services, and other

components) control program flow. AOP is a programming paradigm that enables the

separation of cross-cutting concerns from the core logic of the application, improving

both modularity and code structure, while JPA is responsible for how to query between

objects and how object state is mapped to database fields.

Spring Boot consists of about 20 modules. Core Container, Data

Access/Integration, WEB, AOP, Instrumentation, Messaging, and Test are some of the

most critical modules. For developing Web applications, the Web module is very

important. Web, WebSockets, Portlets, and Servlets are included. The Servlet module

contains the definitions of the two most commonly used concepts nowadays. The first is

Spring Model-ViewController (MVC). The second is RestFull Web Service (REST WS)

integrations.

24

Figure 8 - Spring Framework Architecture

One of the key advantages of Spring Boot is its automatic configuration

capability, which allows applications to be configured as standard Spring applications

with sensible defaults. This eliminates the need for extensive manual configuration,

reducing complexity and allowing developers to focus on writing business logic instead

of spending time on tedious configuration tasks.

Another notable feature of Spring Boot is its seamless integration of startup

dependencies. Based on the application's configuration and project dependencies

declared in the build file, Spring Boot automatically resolves and integrates all required

dependencies. This ensures smooth application startup and minimizes configuration

errors, leading to more reliable and stable applications.

The command-line interface (CLI) provided by Spring Boot is also a significant

productivity booster for developers. It allows developers to effectively manage and

configure applications through the console, streamlining development and deployment

workflows. This enables faster and more efficient development iterations, making it

easier to build, test, and deploy applications.

Additionally, the Spring Boot Actuator is a powerful toolset that provides

real-time insights into the runtime behavior of the application. It offers various endpoints

25

for monitoring and managing application health, metrics, logging, and more. This

enables effective troubleshooting, performance optimization, and monitoring of the

application, ensuring its smooth operation in production.

Spring Boot offers a faster and more accessible approach to Spring development

by providing a variety of non-functional features common to many projects. These

features include embedded servers, security, metrics, health checks, and external

configuration and can be easily integrated without requiring XML configurations or code

generation. Additionally, Spring Boot simplifies application testing, making it easier.

Users can create a starter project with custom dependencies using the

https://start.spring.io/ website. This site allows users to choose between Maven or Gradle

projects and select the necessary dependencies. To develop a REST web service

application, the WEB module dependency is required.

3.3 PostgreSQL

PostgreSQL [30] is a client-server relational database that is open source.

PostgreSQL provides a distinct feature set that compares well with major commercial

databases such as Sybase, Oracle, and DB2. One of the most important advantages of

PostgreSQL is that it is open source. There is no company that owns PostgreSQL

exclusively. It is developed, maintained, and repaired by a global community of volunteer

developers.

PostgreSQL provides all the standard features of a relational database as well as

some unique features, provides inheritance, and allows the creation of a data type based

on the needs of the database systems that allow you to rename an existing type. Some

systems even allow the creation of complex formulas. New basic data types are available

in PostgreSQL. Geometric data types such as point, line segment, box, polygon, and

circle are supported by PostgreSQL. PostgreSQL uses indexing techniques that speed up

geometric data types and is extensible because new functions, operators, and data types

can be written in any language the programmer wishes.

26

3.4 TypeScript

TypeScript [31] is a superset of JavaScript that adds a module system, classes, interfaces,

and a static type system. It supports standard JavaScript development standards and

offers tools and IDE experiences previously associated with other programming

languages, such as Java. It helps developers by catching errors automatically and

providing appropriate methods to invoke on an object. Its class support is compliant with

the requirements of EcmaScript 6. Additionally, it adds syntax for defining and

expressing types, annotating properties, variables, arguments, and return values with

types, and confirming the type of an expression in JavaScript. It introduces new language

features such as classes, modules, and lambda expressions. These constructs are

backports of future JavaScript capabilities, but they interact with the type system in a

meaningful way without changing its core properties. TypeScript's design intent is to

support existing JavaScript styles and idioms while still being relevant to popular

JavaScript libraries, rather than creating a new programming language.

The TypeScript compiler validates TypeScript programs and generates JavaScript,

allowing them to run in a variety of runtime environments. Since its debut in late 2012,

the compiler has been widely used within Microsoft to build important JavaScript

applications, and it has also been used outside of Microsoft. The TypeScript type system

offers sophisticated features and ideas such as structural type equivalence, object-based

programming, progressive typing, recursive type subtyping, and type operators. These

features greatly add to a pleasant programming experience but can be difficult to

incorporate into standard JavaScript idioms and codebases. The designers of TypeScript

made a strategic decision not to insist on static precision because it is critical to the

usability of the language to allow common patterns in popular APIs, even if it means not

ruling out correctness in some cases [32].

3.5 React Framework

React is a powerful and widely adopted JavaScript library that is specifically

designed for building user interfaces. It was created by Jordan Walke, a skilled software

engineer at Facebook, in 2011. After being initially used internally at Facebook, React

27

was open-sourced in 2013, allowing developers worldwide to access and contribute to its

development.

Since its open-source release, React has continued to evolve and receive regular

updates, driven by an active community of developers and contributors. In 2015, React

Native, a mobile framework based on React, was also open sourced, further expanding

the capabilities of React for mobile app development. In 2017, React360, a virtual reality

development toolkit, was published, extending the reach of React into the realm of

virtual reality applications.

Currently, React is actively developed and maintained by Meta and a vibrant

community of individual users who leverage React's capabilities in various projects,

including popular applications such as Facebook and Instagram. The widespread

adoption of React by major companies and individual developers alike is a testament to

its robustness, versatility, and effectiveness in building modern user interfaces for web,

mobile, and virtual reality platforms.

3.6 Gitlab CI

Figure 9 - Gitlab CI/CD

GitLab Runner [34] is a versatile and powerful tool that seamlessly integrates

with GitLab CI/CD, enabling users to automate tasks in their pipelines. With GitLab

Runner, users can leverage hosted runners provided by GitLab, which are fully integrated

with GitLab.com, making it convenient and easy to get started. By default, all projects on

28

GitLab.com have access to these runners, although project owners have the flexibility to

disable them if needed.

In addition to using GitLab.com runners, users also have the option to install and

register their own runners on GitLab.com or on their own infrastructure [34]. This

self-managed approach gives users greater control and flexibility, as they can install and

maintain GitLab Runner on their own infrastructure, tailoring it to their specific

requirements.

Regardless of whether users choose to use GitLab.com runners or self-managed

runners, GitLab Runner provides a powerful solution for simplifying pipeline processes.

It is accessible at all GitLab levels, ensuring that all GitLab users, regardless of their

project size or scope, can benefit from its capabilities. With GitLab Runner, users can

automate tasks, streamline their pipelines, and enhance their CI/CD workflows,

ultimately improving the efficiency and effectiveness of their software development

processes.

3.7 Python Tools

In the previous chapters, the importance of ensuring high-quality code in software

development has been highlighted. Python, being a widely used programming language,

offers a plethora of tools that can assist developers in achieving this objective. These

code quality tools can be employed in a multithreaded service to efficiently and securely

analyze various aspects of code quality, such as code duplication and test coverage,

among others. Additionally, these tools are extensively used in research to enable

developers to analyze and enhance the quality of their code in a fast and effective

manner. In this section, we will explore some of the most popular Python code quality

tools, such as Pylint, Pytest’s plugin on coverage, Pipreqs, and the Duplication Code

Detection Tool, and how they can be utilized in the upcoming analysis.

29

3.8 Pylint

Figure 10 - Pylint Example

Pylint [35] is a powerful and widely used static code analysis tool for Python that

can help developers identify and fix a wide range of problems in their code. With its five

types of bug detection, Pylint is able to detect problems related to programming

conventions, Python-specific issues, potential bugs, bad code smells, and fatal errors that

can prevent code from running. By identifying these issues, developers can improve the

quality of their code, increase maintainability, and reduce the risk of security

vulnerabilities.

In addition to its powerful debugging capabilities, Pylint is also highly

configurable, allowing developers to customize the tool's behavior to meet their specific

needs. For example, specific bugs can be disabled if they are not relevant to a particular

project or if the developer wishes to focus on other types of issues. This flexibility makes

Pylint a versatile tool that can be used in a variety of development environments.

Pylint can also be called programmatically through its library, providing even

more flexibility and ease of use. This feature allows developers to integrate it into their

development workflows and automate code quality checks, reducing the risk of human

error and improving overall performance. As a result, Pylint has become a widely used

30

tool in both industry and academic research, and its capabilities continue to evolve as the

Python language and development practices change.

3.9 Pytest (--cov)

Figure 11 - Pytest --cov Example

As mentioned earlier, Pytest [21] is widely recognized as a popular third-party

Python testing framework that aims to simplify the process of writing tests. In this study,

Pytest was deliberately chosen as the testing framework due to its user-friendly nature

and robust community support. The tooling developed in this project utilized Pytest for

its testing requirements, facilitating rapid and efficient test case development. With its

compatibility across multiple Python versions and operating systems, Pytest proved to be

a flexible and dependable choice for testing the tool.

In addition to Pytest, Pytest-cov [36] was employed as a tool to measure code

coverage in Python. Pytest-cov serves as a plugin and command-line utility for Pytest,

offering supplementary functionalities to coverage.py. This includes the ability to

generate XML or HTML reports as well as providing a user-friendly code coverage

analysis through a web browser. However, it should be noted that the utilization of

pytest-cov may increase the complexity of terminal commands as more masking options

are incorporated.

31

3.10 Pipreqs

Figure 12 - Pipreqs Example

Pipreqs [24] is a widely used open-source tool that scans Python source code to

identify its dependencies, which are then listed in a requirements file. This file contains

all the third-party packages necessary to run the code and is necessary to reproduce the

environment in which the code was developed. Pipreqs simplifies the process of creating

this requirements file by scanning the source code and automatically identifying the

packages that are used without including packages that are not required. This saves time

and effort for developers, as they no longer need to manually identify and document each

dependency.

A limitation of Pipreqs is that it only focuses on third-party packages and does

not pay attention to system libraries and the Python interpreter. This means that the

generated requirements file may not include all the necessary dependencies to fully

reproduce the development or deployment environment. As a result, developers must be

aware of this limitation and manually add any additional dependencies that may be

necessary. Despite this limitation, Pipreqs remains a popular choice for creating

requirements files due to its simplicity and ease of use, and it will be used in the tool of

this study.

32

3.11 Duplicate code detection tool

Figure 13 - Duplicate Code Detection Tool Example

The duplicate code detection tool [37] is a command-line utility developed in

Python 3 that leverages the gensim Python library to detect similarities between files

within a given code repository. This tool is intended to help developers identify and

eliminate duplicate code within a software component, with the ultimate goal of

improving the overall software architecture. The development of this tool started in the

context of DAT265 (Software Evolution Project), and its creator is Dimitris Platis.

To use this tool, the user provides a directory or list of files to analyze. The

gensim library is used to determine similarity between source code files, with default

support for C, C++, Java, Python, and C# programming languages.

The duplicate code detection tool has several dependencies, including the nltk,

gensim, and astor Python packages. Additionally, the punkt dataset must be downloaded

from the nltk library for proper operation. Overall, this tool provides a simple yet

effective means of identifying and eliminating code duplication within a software project,

thereby promoting improved software design and maintainability.

33

4 App functionality

With the increasing reliance on software-based tools for scientific research, it is

essential to have a clear understanding of the functionality of the tools used to ensure the

validity and reliability of research findings. In this context, functionality is a critical

aspect of any tool that seeks to support scientific research; it defines the characteristics

and capabilities of the tool, and it is necessary to evaluate it to ensure that the tool meets

the requirements of the research problem at hand. This chapter will focus on the

functionality of implementing a tool designed to assess Python code quality through a

multimetric analysis, with the aim of evaluating its usefulness and effectiveness in

solving research problems in this area.

The application allows the user to easily log into a dedicated user interface

through which they can start analyzing a GitHub repository. This interface is designed

with a simple and intuitive layout that includes a text area where the user can enter the

repository URL. Additionally, there are three options available to the user: start analysis,

Gitlab CI, and show data.

Figure 14 - Application user interface

34

By clicking on the first option, a “loading” component will appear, indicating that

the project analysis is running. Depending on the size of the project and the number of

large files included, the analysis may take some time to complete. It is important to note

that the analysis is performed on 10 equidistant commits based on the total number of

commits in the project, allowing the user to monitor the progress of the project. Once the

analysis is complete, the user will be presented with a window that will display the

results obtained from the analysis, as shown in the image below.

Figure 15 - Analysis results of a project

The specific example displays the project name, owner, GitHub URL, and the

analyzed SHAs. Four charts, each displaying a different measure, are also displayed.

First, the total statements are highlighted, i.e., a line of code that executes an action or a

group of actions. It can be an assignment, a function call, a loop, a conditional statement,

or any other command that the program executes. In the context of this reference,

"Stmts" refers to the number of executable statements in each file, that is, the number of

lines containing executable code. In addition, misses are also shown, which refer to the

number of lines of code that were not executed during the test process. The higher the

35

number of failures, the lower the code coverage and the higher the chance of

undiscovered bugs or errors.

Also, the total coverage that we have covered in previous chapters is shown. As

this increases, it means that more and more statements are covered by the tests. This is

generally a good sign, as it indicates that the tests are becoming more complete and

covering more of the codebase. As coverage approaches 100%, it becomes more difficult

to increase further, as there may be some edge cases or extreme scenarios that are

difficult to test. However, striving for a high level of coverage can help ensure that the

code is thoroughly tested and reduce the risk of bugs and errors in production. It is

important to note, however, that achieving high coverage is not a guarantee of bug-free

software, and additional testing and validation techniques may be needed to ensure that

the software is working properly.

Finally, the dependencies of the code over time are also shown. Having a large

number of dependencies in a codebase can have positive and negative effects. On the

plus side, it allows for code reuse, making it easier to write and maintain code using

pre-existing packages. On the downside, having too many dependencies can slow down

code performance and make it harder to manage dependencies and ensure compatibility.

So in this case, the developer must be ready to face some error in some dependency.

By selecting the second button, the user is presented with a designated text area

where a YAML (.yml) file can be copied and pasted into their own project. The YAML

file, once added to the project, will allow any subsequent commits to be automatically

parsed by the Gitlab Continuous Integration (CI) tool, provided the same repository has

been previously parsed using the tool's first option. Adding a YAML file allows the

analysis tool to be seamlessly integrated with the user's development workflow,

promoting early and consistent identification of the metrics that will define code quality.

An example of such a file is shown in the image:

36

Figure 16 - Gitlab CI

The third button will direct the user to a screen displaying the findings of the

analysis done on earlier analyses, which are preserved unless changes are made to the

code. The data will be consistent and accurately represent the initial analysis, offering a

trustworthy standard for comparison and additional research. The tool's functionality is

enhanced by the capability to access and contrast previously generated data, which also

makes it possible to follow a project's development over time effectively.

Through the application's back end, the tool offers sophisticated capabilities that

enable a technically skilled user to carry out extra research. A user can begin a distinct

study of the most recent commit on a specific branch in addition to completing historical

studies, as was previously indicated, by sending a POST request with parameters that

contain a GitHub URL and branch. The application also enables users to perform a GET

request to retrieve previously examined projects, which shows them how far along their

study is. The following is an illustration of the outcome that the user of such a request

will produce:

37

Figure 17 - GET API JSON response

In the case shown, the JSON file returned to the user contains additional details

such as "projectAnalysis" and "singleAnalyzedProjectList" lists. The former provides a

historical analysis, while the latter provides a unique analysis. The answer for such a

parsing example is shown in the example below:

Figure 18 - Example of Project Analysis GET Response

This section presents an analysis of the last commit to the project. In the

"dependencies" property, the list of dependencies is displayed, giving the developer an

insight into the project's dependencies and possible sources of errors. However, it is

particularly interesting to explore the contents of the "files" list, which provides a

detailed breakdown of the project's files.

38

Figure 19 - Example of file response from GET API

This image shows detailed information for each file, including statements, misses,

and coverage, sourced from Pytest. In addition, Pylint's comments, ratings, and previous

ratings are displayed, as is each file's percentage of similarities to other files, obtained by

the Duplicate Code Detection Tool. This analysis is performed for each file and project

and can be generated for each of the ten commits to a user-selected project.

Users can update existing projects in the database (PostgreSQL) or delete them.

These features enable users to perform targeted analysis and manage their analyzed

projects with greater flexibility and control.

The suggested tool's analysis method comprises a number of processes that are

carried out in an automated and systematic way. The tool first accepts a GitHub URL as

input before utilizing the JGit library to clone the appropriate repository to the local

environment. The utility examines the files once the repository has been successfully

cloned in order to choose just those with the.py extension. The utility employs five

threads to speed up the parsing process, four of which are set aside to execute the Pylint

tool on the chosen files consecutively. The fifth is in charge of executing the remaining
39

tests, if any, that are present in the directory. The information obtained after all analyses

is kept in a PostgreSQL database.

This database serves as the main source of information, which can then be

presented to the user. The analysis report generated by the tool includes various

parameters such as code quality, test coverage, and code duplication, among others.

Through the use of such metrics, developers can gain valuable insight into the

performance of their code and make informed decisions about refactoring, optimizing,

and improving the overall quality of their code base.

In conclusion, the application functionality serves as a powerful tool for

identifying code similarities and analysing software evolution through historical analysis.

Leveraging advanced techniques such as natural language processing, this tool provides

users with comprehensive and accurate insights into coverage, code duplication, and

dependencies. Its user-friendly interface and easy-to-use features empower developers to

take control of their projects and optimize their workflow.

One of the notable strengths of this tool is its seamless integration with GitLab

CI, enabling developers to automate their analysis process and streamline their codebase.

The robust back-end of the application ensures efficient and reliable performance, while

the integration with GitLab CI adds a layer of automation and optimization to the

development process.

Overall, the application functionality discussed in this section underscores the

significant impact of modern technologies on software engineering and showcases the

potential of data-driven approaches in software development. By leveraging advanced

techniques and automation, this tool empowers developers to make informed decisions

and optimize their codebase, ultimately leading to higher-quality and more maintainable

software applications.

40

5 Presentation of the Application

The provided application was created using Spring Boot, a well-known

Java-based framework that offers a complete infrastructure for creating and delivering

web-based applications, as was previously mentioned. By providing pre-built solutions

for typical issues that arise while creating web applications, Spring Boot is renowned for

its ability to speed up the development process. In this situation, the application makes

use of Spring Boot's strengths to provide a reliable and high-quality software solution.

Additionally, using Java as the primary programming language assures that the

application will run on a variety of platforms and will have the performance and

scalability required to satisfy the demands of contemporary online applications.

We'll start by examining the crucial aspects of analysis, from the point at which a

GitHub URL enters the code to the point at which the data is chosen and stored.

Figure 20 - Clone repository Method

The method starts by accepting parameters such as the Git object, repository

owner, repository name, local directory to clone to, and optional branch information. To

interact with GitHub's REST API, the method creates a new RestTemplate object and

adds an interceptor to it, setting the accept headers to JSON. It then constructs the API

URL using the repository owner and name, forming the query to fetch data from
41

GitHub's REST API. The method sends a GET request to this API endpoint with the

previously specified headers and retrieves the JSON response.

From the JSON response, the method extracts the clone URL, which is the URL

required to clone the repository. This clone URL is a critical piece of information needed

to clone the repository locally using JGit, a Java library for Git operations. After

obtaining the clone URL, the method uses JGit to clone the repository to the specified

directory. If a branch is specified, the method creates a new branch using JGit, setting the

"SetUpstreamMode" mode to TRACK. This means that the newly created branch will

track changes from the remote branch of the same name. Finally, the method sets the

starting point of the branch to the remote branch.

In summary, the method uses RestTemplate to interact with GitHub's REST API,

retrieves the clone URL from the JSON response, and then uses JGit to clone the

repository locally and optionally create and set up a branch for tracking changes from the

remote branch. This process allows the method to clone the repository and set up a

branch for further processing.

Figure 21 - Capture SHAs code

The private method "captureSHAs" is defined with three parameters: gitUrl,

owner, and name. It returns a list of SHA commits.

42

To fetch the list of commits, the method utilizes the RepositoryService and

CommitService classes from the org.eclipse.egit.github.core package. These classes

provide functionality for interacting with the GitHub REST API to fetch repositories and

commit information.

The method first queries the RepositoryCommit objects for a specific repository

owned by the specified owner and with the specified name using the RepositoryService

and CommitService classes. It then iterates over the list of RepositoryCommit objects

and extracts the SHA of each commit. The extracted SHA is then added to the

"commitSHAs" list. Finally, the method returns the "commitSHAs" list, which contains

the SHA values of all the commits retrieved from the repository.

In summary, the "captureSHAs" method uses the RepositoryService and

CommitService classes to fetch the list of commits from a specific repository, extracts the

SHA values of each commit, and returns a list of these SHA values.

Figure 22 - Determination of analysis

43

If the flag is set to true and the branch is null, the code performs a unique analysis

of the project. It first calls the "captureSHAs" method to get a list of SHA commits from

the repository. It then selects up to 10 SHA values for analysis, following a specific logic.

If there are more than 10 SHA values, the code picks the first one and evenly selects 9

more SHA values from the remaining list. These selected SHA values are then saved in

the project object for further analysis.

Next, the code loops through each selected SHA value and calls the

"runCommand" method from the "projectAnalysisService" with the current project, SHA

value, and home directory as parameters. The results of each "runCommand" call are

added to the "projectAnalysisList" on the project object, which accumulates the analysis

results for each SHA value.

On the other hand, if the flag is set to false or the branch is null, the code

performs a historical analysis of the project. It calls the "findSHA" method from the

"projectAnalysisService" to get the latest SHA value for the project, which is then stored

in the project object. If the branch is null, the "runCommand" method is called with the

latest SHA hash, and the results are added to the "projectAnalysisList" on the project

object. Otherwise, the "runCommand" method is called, and the results are added to the

"singleAnalyzedProjects" list on the project object, which stores the analysis results for a

single SHA value (in the case of historical analysis with a specific branch).

Figure 23 - Search for unique SHA

Unlike the captureSHAs method, which retrieves all SHAs from the repository,

this method only retrieves the SHA of the most recent commit on the default branch. This

44

code defines a method called findSHA that takes two parameters, owner and repoName,

and returns a string representing the SHA of the last commit in the given repository. It

uses the RestTemplate class from Spring to send a GET request to the GitHub API and

retrieve information about the most recent commits. The API URL is created by

concatenating the owner and repoName parameters. The returned JSON data is parsed

into a Map object using the ResponseEntity class from Spring. The SHA of the last

commit is then extracted from the first element of the commit information table returned

by the API. This method is used in the code snippet provided to retrieve the SHA of the

last commit on the default branch.

Figure 24 - Selecting files with the .py file extension

As for the analysis itself, the first operation is to select those files that have a

“.py” extension. This code block processes files in a directory and creates a list of

ProjectFile objects to represent each file. It first gets the directory path from

mainProjectAnalysis, which is an instance of the ProjectAnalysis class. It then creates a

File object for the directory and gets a list of all the files in the directory using the

listFiles() method.

It then initializes an array list called fileList and a hash map called

fileSimilarityList. fileSimilarityList is intended to store the similarity scores between

each pair of files in the directory but is currently empty. The code then uses a

45

try-with-resources statement to create a stream of all the paths in the directory using the

Files.walk() method and filters the paths to include only regular files (not directories)

ending with the extension ".py" using the filter() method.

For each file path, the code creates a new ProjectFile object using the file and

fileSimilarityList variables, sets the name and projectName attributes of the ProjectFile

object, adds the ProjectFile object to the fileList list, and finally adds the ProjectFile

object to the file list of its main ProjectAnalysis object.

Finally, the fileList is set to the files attribute of the mainProjectAnalysis object

using the setFiles() method.

Figure 25 – Threads

Here, the code divides the list of files into four approximately equal chunks using

integer division and then creates a thread for each chunk using the pylintRunnable

method. The first thread is created separately and uses the testsRunnable method with the

entire file list and mainProjectAnalysis as arguments. After all five threads are created,

the code starts them all and then waits for each one to finish using the join method.

46

Overall, this code implements a multi-threaded approach to running tests and the Pylint

tool in parallel on the project files.

Figure 26 – First Runnable

This is a method that returns an executable that runs multiple tests on a project.

The tests include running Pytest to generate code coverage information, running the

Duplicate Code Detection Tool, and running pipreqs to generate a list of project

dependencies. The results of these tests are recorded on the console. Finally, the

temporary requires.txt file generated by pipereqs is deleted.

Figure 27 - Pylint Runnable

A pylintRunnable method is defined here that returns a Runnable object that

executes a loop that iterates over a chunk of ProjectFile objects stored in the

chunkedLists parameter at the given index. For each ProjectFile object, it executes the

executeCommand method passed to mainProjectAnalysis, the chunk of ProjectFile

objects at the given index, the pylint command, and the file path of the ProjectFile object.

Essentially, this method is responsible for running pylint on each file in a chunk of

ProjectFile objects. The method takes a list of ProjectFile chunks and a ProjectAnalysis

object as inputs and returns a Runnable object that runs the Pylint tool on each file in a

47

given chunk. This runnable object can then be executed in a separate thread to parallelize

the parsing of the files.

Figure 28 - Execute Command Method

At this point, the executeCommand method accepts a ProjectAnalysis object, a

list of ProjectFile objects, a command to execute, and a destination. The method executes

the specified command with the given destination as an argument and records the

standard output of the process. Depending on the command, it processes the output and

stores the data in either similarityResponse lists or commentsResponse lists if the output

contains relevant data to detect code duplication or generate code analysis comments,

respectively. The method also calls the storeDataInObjects method to store the test

coverage data if the command is intended to run Pytest. Finally, it prints each line of

output to the console

48

Figure 29 - Counting lines of requirements.txt

This method counts the number of lines in a text file and also stores the contents

of the file, in this case, a list of dependencies, in a ProjectAnalysis object. It first creates

an empty array list to store the lines of the file. It then uses a buffered reader object to

read the contents of the file line by line and add each line to the dependencies list. Once

the entire file has been read, the method stores the dependencies in the ProjectAnalysis

object and returns the total number of lines in the file.

Each terminal answer is handled by one of three methods, as can be seen in the

executeCommand method.

A ProjectAnalysis object, an ArrayList of ProjectFile objects, a String answer,

and a String command are the four inputs for the first method, storeDataInObjects, which

accepts four parameters in total.

Figure 30 - Pytest Response Method
49

The method first checks if the command starts with the string "pytest --cov=". If it

does, then it checks if the response starts with the name of the projectAnalysis object. If

it does, it proceeds to parse the response using regular expressions to extract coverage,

miss, and statement information for each file in the list of files that matches the filename

pattern specified in the command.

If the response starts with "TOTAL", it extracts the total coverage, misses, and

statements using regular expressions and sets the corresponding fields in the

projectAnalysis object.

The regular expressions used to extract information are created using the

regexPattern method, which takes a string and a pattern identifier and returns a string that

can be used as a regular expression to match the desired information in the response

string.

Figure 31 - Store Similarity Method

The code above represents the second function, storeSimilarity, which has three

inputs: a ProjectAnalysis object, an array list of string-type objects, and an array list of

ProjectFile objects. This method's goal is to interpret the similarity data received as input

and save it in the relevant ProjectFile objects, which house details on the project files. A

50

crucial indicator for assessing the quality and maintainability of software is similarity

data, which shows the extent of code duplication among project files.

The method starts by initializing some variables, including a hashmap named

similarityMap that will be used to store the similarity data for each file. The

similarityResponse parameter is then iterated over, with each element in the list

representing a row of the input data.

Inside the loop, the code checks to see if the current line contains the string "Code

duplication probability for." If this happens, subsequent lines will contain similarity data

for a particular file. The method extracts the name of the file being parsed and creates a

new similarityMap entry for it. If the current line contains a different file name than the

previous line, the method updates the position variable to match the current file being

parsed.

If the current line does not contain a file name but starts with the root directory of

the project, this means that the line contains similarity data for a specific file. The

method extracts the filename and similarity score from the string and stores them in the

similarityMap under the appropriate filename.

Finally, after all the lines have been processed, the similarity data is stored in the

ProjectFile objects. This is done by setting the similarity field of each ProjectFile object

to the corresponding entry in the similarityMap. The method uses the position variable to

specify which ProjectFile object to update and the mainFile variable to specify which

similarity data to associate with each file.

51

Figure 32 - Store Comments Method

The storeComments method is represented by the above code. It takes three

parameters: a ProjectAnalysis object called projectAnalysis, a ProjectFile object called

fileList, and an array list of strings called commentsResponse.

The method iterates through the commentsResponse ArrayList using a for loop,

examining each row. If the line begins with "************ Module", a regular

expression pattern is used to match the filename of the current project file, and the

corresponding ProjectFile object is in the fileList ArrayList. If the current line contains

the project name, a new Comment object is created and added to the comments array list,

while if it contains the string "Your code has been rated at ", the comments are added to

the currentProjectFile object as comments, and a regular expression pattern is used to

extract the numeric rating and previous rating values from the line. These values are then

set to the currentProjectFile object.

In general, this method processes the output of a static code analysis tool (in this

case, Pylint) to extract and store code comments and reviews in the corresponding

ProjectFile objects.

52

Figure 33 - Regex Patterns

In the above methods, there seems to be a specific one named regexPattern that

takes two string parameters, command and request, and returns a string regular

expression based on the input parameters.

The purpose of this method is to generate regular expressions for parsing the

output of various command-line tools used in software testing and code analysis, such as

pytest, duplication, and pylint. The regular expressions generated by this method are used

to extract specific information from the output of these tools, such as code coverage

percentage, number of duplicate lines of code, and code quality score. The method first

checks whether the current operating system is Windows or not by checking the value of

the os.name system property. Depending on the operating system, the method returns

different regular expressions for different requests.

For example, if the command is pytest and the request is cov, the method returns a

regular expression that matches a string containing a number representing the percentage

of code coverage, such as "95%." Similarly, if the command is a duplicate and the

request is a match, the method returns a regular expression that matches a string

containing a number representing the percentage of code similarity, such as "89.2%."

The regular expressions returned by this method are used by the calling code to

parse the output of the command-line tools and extract the relevant information.

53

Figure 34 - Delete Directory Method

In the last part of the analysis, the cloned repository directory should be deleted.

This method does just that. Takes a File object representing a directory and recursively

deletes all its contents, including subdirectories and files. The method starts by listing all

the files and subdirectories in the specified directory. It then iterates through the list of

files and subdirectories, recursively calling the deleteDirectory method if a subdirectory

is encountered. For each file encountered, it calls the delete() method to delete the file.

After all files and subdirectories are deleted, the method deletes the specified directory

itself.

In conclusion, the methods presented in this section demonstrate the effective use

of modern programming techniques and tools to create a high-quality, scalable, and

reliable web application. Careful analysis and application of these methods are critical to

ensuring the success of any software project. Therefore, the insights gained from this

analysis will undoubtedly prove valuable to developers looking to build similar

applications in the future and serve as a testament to the power of Spring Boot and Java

in developing robust and scalable web-based systems.

54

6 Results

The software created with Spring Boot and Java has been executed on various

scientific projects such as TorchIO, DPPy, and others, highlighting its versatility and

ability to extract data and results across different fields of study. With its flexibility and

adaptability, the tool can be applied in domains ranging from physics and statistics to

medicine, providing researchers with a scalable and resilient solution to extract and

analyze data with accuracy and efficiency. The application's potential impact on scientific

research is substantial, as it can provide valuable assistance to researchers in extracting

and analyzing data. Moreover, its simplicity of use and extensive documentation make it

accessible to researchers with varying degrees of programming ability.

6.1 TorchIO

TorchIO [38], an open-source Python toolkit, is specifically designed to enhance

the loading, preprocessing, augmentation, and patch-based sampling of medical images

for deep learning tasks. It is built on the PyTorch coding language and incorporates

popular libraries for efficient medical image processing, making it ideal for handling

large volumes of data during neural network training. With TorchIO, researchers and

practitioners can easily create, duplicate, trace, and extend image transforms, providing

flexibility and adaptability to various use cases. Notably, TorchIO is well-suited for

test-time augmentation and estimation of aleatoric uncertainty in segmentation tasks, as it

offers transforms that can be inverted. In addition to its generic preprocessing and

augmentation techniques, TorchIO also provides specialized MRI-specific artifacts,

making it a comprehensive tool for medical image analysis in deep learning workflows.

Its user-friendly interface and wide range of capabilities make TorchIO a valuable

resource for researchers and practitioners working in the field of medical imaging.

Along with a wealth of functionality, TorchIO offers users a wealth of resources

and support. TorchIO's official website, http://torchio.rtfd.io/, contains the source code,

in-depth tutorials, and documentation. By using the command pip install torchio, users

can quickly install the package from the Python Package Index (PyPI). Additionally,

TorchIO has a handy command-line interface that enables users to apply transforms to

55

image files without having to be proficient in Python programming, making it more

widely usable. Moreover, TorchIO provides a graphical user interface (GUI) within a

TorchIO extension in 3D Slicer, a well-known medical image processing program,

enabling users to easily and intuitively see the consequences of changes. TorchIO is a

potent and straightforward framework for medical image analysis in deep learning

applications thanks to these resources, which offer thorough support and simplicity for

users.

6.1.1 Results

In the analysis performed for the TorchIO tool, 10 commits that were present in

the default branch were analyzed over a period of time. The project was named TorchIO

and was owned by Fepegar. The analysis started by recording this information and then

delving into the commits. By analyzing them, we are able to gain insights into the

development process, the evolution of the codebase, and the different features that were

added or improved. This information can prove useful not only for the development team

but also for other researchers who are interested in building similar tools for medical

image processing. The results of the analysis are depicted in the images below, providing

a comprehensive understanding of the changes made to the project over time.

Figure 35 - TorchIO Dependencies

These numbers represent the number of direct dependencies for every particular

project and its analysis over time. Considering this, we can make some observations.
56

The graph shows that the dependencies begin at about 8 and reach a maximum of

16 points. The fact that the number of dependencies fluctuates over time may indicate

that the project is undergoing active development and that changes to its dependencies

are being made. The highest number of dependencies may represent a period of

expansion or the addition of new features to the project, whereas the lower numbers may

indicate a period of stabilization or optimization. It's also worth noting that the specific

dependencies themselves may be significant. For example, if the project is related to

scientific research, which TorchIO does, the dependencies may include libraries or tools

specific to those fields. Changes in the dependencies may reflect changes in the

underlying research or the tools being used to analyze it.

In this case, developers should pay attention to the dependencies of the project

and how they are managed over time. Keeping track of the dependencies and their

versions is important to ensure that the project remains stable and secure. They should

also monitor the frequency of updates to the dependencies and evaluate the impact of the

changes on the project. It is essential to ensure that the updates do not break any

functionality or introduce vulnerabilities. Additionally, developers should consider the

support and activity level of the dependencies and evaluate the risks of using

unmaintained or abandoned libraries.

Figure 36 - TorchIO Total Statements

57

The graph shows that the dependencies begin at 1264, reach a maximum of 7737

points, and then reach 2722.

The increase in the number of lines of code over time can be interpreted as the

growth and evolution of the project. As more features are added and the project becomes

more complex, the number of lines of code tends to increase. However, an increase in the

number of lines of code does not necessarily indicate improved functionality or

efficiency. In fact, as the codebase becomes larger, it can become more difficult to

maintain and debug, which can lead to increased development time and potential issues

with code quality.

Therefore, it is important for developers to be mindful of the codebase size and

take steps to manage complexity, such as refactoring and modularization. Regular code

reviews and testing can also help ensure that the project is maintainable and performs

optimally. In addition to managing code complexity, the increasing number of lines of

code over time can also indicate the growth and evolution of the project's scope and

functionality. This growth may reflect the development team's response to changing

requirements, feature requests, or other external factors that affect the project's goals.

Nevertheless, it's crucial to remember that bigger codebases can also bring

additional difficulties, such as possible security flaws or compatibility problems with

external dependencies. The project schedule and budget may be affected if these

problems require the use of additional resources, such as security audits or compatibility

testing.

One could interpret the graph's increase and decrease in the number of statements

as the result of an iterative development process. When new features and functionality

are added to the project, the amount of code increases. As the development team has a

better understanding of the project's needs, they will probably identify possibilities to

rework and simplify the coding, which will lead to a decrease in the number of

statements.

58

It's necessary to remember that fewer statements do not always translate into less

functionality or efficiency. In fact, it can be a sign that the codebase's quality and

maintainability have improved. It's possible that the development team found and

removed pointless code, leading to a more streamlined and effective product.

Figure 37 - TorchIO Total Miss

The trend of missed statements in the project shows that initially, the code had a

lower number of missed statements, starting at 1239, indicating good code quality and a

lower likelihood of bugs. However, as the project evolved and grew in complexity, the

number of missed statements increased to 2588. This suggests that the code may have

become more difficult to maintain and debug. It is important to note that a high number

of missed statements does not necessarily mean that the project is in poor condition, as

some missed statements may be harmless. However, a high number of missed statements

can indicate a need for further testing and debugging to ensure code quality and

maintainability.

The decrease in missed statements towards the end of the project suggests that

steps were taken to improve code quality, such as refactoring, testing, or code reviews.

By addressing the underlying issues that led to missed statements, the development team

may have been able to improve the reliability and maintainability of the codebase.

59

Figure 38 - TorchIO Total Coverage

A higher test coverage generally indicates a more robust and reliable codebase, as

it means that more areas of the code have been thoroughly tested and any issues are more

likely to be caught before they reach production.

In this case, the numbers indicate that the project has undergone some

fluctuations in its test coverage. The initial coverage was relatively low at 2, indicating

that only a small portion of the codebase was covered by tests. However, as the project

evolved and more features were added, the coverage gradually increased to 5, indicating

that more areas of the codebase were being tested.

It's worth noting that higher test coverage doesn't necessarily guarantee that the

code is free of bugs or other issues, but it is an important metric for ensuring code quality

and minimizing the likelihood of introducing new issues during development.

Developers should strive to maintain a high level of test coverage throughout the

project's lifecycle and continually update and improve their tests to ensure thorough

coverage.

6.2 DPPy

Determinantal point processes (DPPs) are probabilistic models that encode

diversity through a kernel function K, and they have a wide range of applications in
60

various fields such as machine learning, probability, and spatial statistics. In ML, finite

DPPs are mostly used as models for diverse sets of items, such as recommendations or

text summarization. However, routine inference tasks such as normalization,

marginalization, or sampling can become computationally expensive, especially when M

is large.

To address this issue, a turnkey Python implementation of known general

algorithms to sample finite DPPs, called DPPy [39], has been proposed. In addition to

algorithms for non-stationary continuous DPPs, DPPy also includes methods to sample

finite DPPs, and it is hosted on GitHub and already being used by the cross-disciplinary

DPP community. Through DPPy objects and associated methods, extensive

documentation is provided that covers the essential mathematical background and

showcases the key properties of DPPs, serving as a tutorial on DPPs. Continuous

integration is done through Travis, and test coverage is done through Coveralls. Overall,

DPPy aims to provide a more efficient and accessible implementation of DPPs for

practitioners in various fields.

6.2.1 Results

In order to gain insights into the development process and evolution of the

codebase, an analysis was performed on DPPy, which is, as explained earlier, a turnkey

Python implementation of known general algorithms to sample finite DPPs. The project

is owned by Guilgautier and was analyzed by recording the information of 10 commits

that were present in the default branch over a period of time. The information gained

from this analysis can be useful not only for the development team but also for

researchers interested in building similar tools for machine learning applications. The

results of the analysis are visualized in a comprehensive manner to provide a better

understanding of the changes made to the project over time.

61

Figure 39 - DPPy Total Statements

This graph of numbers represents the number of code statements at different

points in the development of the project. As the numbers increase over time, it suggests

that the codebase is expanding and becoming more complex. In fact, as the codebase

becomes larger, it can become more difficult to maintain and debug, which can lead to

increased development time and potential issues with code quality.

Moreover, the number of code statements is just one aspect of a project's

development and should be considered in conjunction with other factors such as

functionality, maintainability, and efficiency. Developers should strive to write concise

and efficient code while ensuring that it meets the project's requirements and goals. It's

crucial to remember that fluctuations in the number of code statements may also be

influenced by external factors such as changes in project scope or requirements.

Therefore, developers should carefully consider the context of the project and aim for a

balance between functionality and maintainability while keeping an eye on the

codebase's size.

62

Figure 40 - DPPy Dependencies

This graph represents the number of dependencies in the DPPy project over time.

As the numbers increase, it suggests that the project is expanding and relying more

heavily on external code. While a high number of dependencies can indicate that the

project is taking advantage of existing code and libraries, it may also imply code

redundancy or inefficient implementation. Moreover, the number of dependencies can be

influenced by external factors such as changes in project scope or requirements. It's

common for projects to undergo periods of increasing and decreasing dependencies as

developers add and remove features or update their code to utilize newer libraries or

more efficient implementation strategies.

63

Figure 41 - DPPy Total Miss

The numbers provided represent the total missed statements in the project DPPy

over time. The increasing trend of missed statements over time may suggest that the

project is becoming more complex and difficult to test thoroughly. As the codebase

grows, it can become more challenging to ensure that all code paths are covered by

testing. This can lead to an increase in missed statements, which may indicate that bugs

or issues could be present in the project. While an increase in missed statements can

indicate potential issues, it could also be due to factors such as changes in project

requirements or the addition of new features. Additionally, missed statements may not

necessarily indicate a critical issue and could be harmless in some cases.

Therefore, developers should aim to minimize the number of missed statements in

the project by writing clean and efficient code, implementing effective testing strategies,

and regularly reviewing and refactoring the codebase. It's also essential to prioritize and

triage the missed statements based on their impact on the project's functionality and

stability. By doing so, developers can ensure that the project remains stable and reliable

over time.

64

Figure 42 - DPPy Total Coverage

The graph shows that the test coverage starts at 0% and gradually increases to a

maximum of 3%, with some fluctuations over time. The low percentage of test coverage

in the early stages of the project may suggest that testing was not a priority or that testing

frameworks were not yet implemented. The gradual increase in test coverage over time

may indicate that the developers recognized the importance of testing and began to

implement it more rigorously.

However, it's worth noting that a test coverage of 3% is still relatively low and

may indicate that there are still significant areas of the codebase that are not covered by

automated tests. This could potentially lead to issues with reliability and maintainability,

as bugs or errors may go undetected until they are discovered by users. Therefore, it's

important for developers to continue to prioritize testing and strive for higher levels of

test coverage to ensure the quality and reliability of the project.

6.3 Results of random files

Two specific files, data_parser.py and intensity_transform.py from the project

TorchIO, were examined in detail. The files were analyzed using various metrics,

including statements, misses, coverage, Pylint ratings, comments, and similarity to other

65

files. The analysis provided insights into how the files changed over time and what

factors influenced their evolution.

Table 2 - data_parser.py Results

Statements 99, 99, 99, 0, 0

Missed statements 99, 99, 99, 0, 0

Coverage 0, 0, 0, 0, 0

Ratings (Pylint) 7.84, 7.84, 7.84, 7.96, 7.96

Comments 5, 5, 5, 5, 5

Similarity (to random_motion.py) 11.66, 10.75, 10.32, 11.58

First, let's consider the data_parser.py file. The statements and missed statements

metrics both show a consistent value of 99 for the first three measurements, followed by

a sudden drop to 0 for the last two measurements. This suggests that the file underwent

significant changes during the project, with a large number of statements and misses

being removed. It is important to note that these two are the same, which means that no

new statements were added to the file. This could indicate that the changes were focused

on improving the quality of existing code rather than adding new features or

functionality.

The coverage metric is consistently at 0 for the entire project, which means that

the file is not being tested. This is a cause for concern, as it suggests that there is no way

to know whether the changes made to the file have introduced new bugs or issues.

The ratings from Pylint show a consistent value of 7.84 for the first two

measurements, followed by a slight increase to 7.96 for the last two measurements. This

suggests that the code quality of the file is relatively high and consistent throughout the

project.

The comments are stable, with a value of 5 for all measurements. This indicates

that the technical debt associated with the comments in the file did not change

significantly over the course of the project. Technical debt refers to the cost of

66

maintaining code that is not well- ocumented or is difficult to understand. The fact that

the technical debt associated with comments remained stable suggests that the developers

maintained consistent levels of documentation throughout the project.

Table 3 - intensity_transform.py Results

Statements 8, 17, 20, 20, 0, 0

Missed statements 8, 17, 20, 20, 0, 0

Coverage 0, 0, 0, 0, 0

Ratings (Pylint) 0, 7.7, 7.92, 7.94, 5.0

Comments 6, 6, 6, 6, 6

Similarity (to random_motion.py) 5.88, 11.65, 10.88, 10.51, 12.44

Now let's consider the intensity_transform.py file. The statements and missed

statements both show a gradual increase in value over the first three measurements,

followed by a sudden drop to 0 for the last two measurements. This suggests that the file

underwent significant changes during the project, with a large number of statements and

misses being removed. It is important to note that both of them are also the same, which

means that no new statements were added to the file.

The coverage metric is consistently at 0 for the entire project, which means that

the file is not being tested.

The ratings from Pylint show a gradual increase in value from 0 to 7.94 over the

course of the project, with a slight dip to 5.0 for the last measurement. This suggests that

the code quality of the file improved over time, but there may have been some issues

introduced towards the end of the project.

The comments are stable, with a value of 6 for all measurements. This indicates

that the technical debt associated with the comments in the file also did not change

significantly over the course of the project.

67

Finally, it is worth noting the similarity with another file called

random_morion.py for both files. This metric shows a gradual increase in value over the

first three measurements, followed by a slight decrease for the last measurement. This

suggests that the two files became more similar over time, with changes made to one file

being reflected in the other file. However, it is important to note that the values for this

metric are relatively low, which means that the two files are not very similar to each

other.

These values suggest that both files have some level of similarity with each other,

although the values are relatively low. The gradual increase in similarity for

data_parser.py and the fluctuations in similarity for intensity_transform.py suggest that

changes made to the other file may have influenced these two files to some extent.

68

7 Conclusion

In summary, this thesis focuses on the development of a tool for evaluating the

quality of Python code in GitHub projects across various research fields. By automating

the evaluation process, the tool aims to identify areas for improvement in software

quality, such as readability, maintainability, and efficiency. The quality of software is

critical for meeting its intended purpose and facilitating future modifications, and the

proposed tool has the potential to aid in improving software quality in the development

process.

7.1 Summary and conclusions

After conducting a comprehensive analysis of Python code in GitHub projects,

the proposed tool has proven to be effective in evaluating code quality across various

research fields. The tool's features, presentation, and functionality were found to be

suitable for automating the evaluation process, which can aid in identifying areas for

improvement infor software quality. Through the evaluation of the selected projects, it

was found that code quality can vary significantly, and some projects may require more

attention to improve their overall quality. Additionally, the tool's ability to provide

detailed metrics and visualizations can aid in identifying specific areas of improvement

and prioritizing effortinds those areas. Overall, the tool's contribution to the field of

software development is significant, as it provides a reliable and efficient method for

evaluating code quality and improving the overall quality of software systems.

7.2 Suggestions for future research

There are several opportunities for extending the work presented in this thesis.

One potential area for further research is the expansion of the tool to support additional

programming languages beyond Python. This would enable a broader range of projects to

be analyzed and provide a more comprehensive understanding of code quality across

multiple languages.

Another potential avenue for future research is the integration of machine

learning techniques into the tool. This could include the use of natural language
69

processing to identify comments and documentation within the code, as well as the use of

machine learning algorithms to automatically identify code smells and other quality

issues. Furthermore, there may be other areas of code quality that the tool does not

currently address, such as security vulnerabilities or performance issues. Future research

could explore methods for identifying and addressing these types of quality concerns.

Lastly, exploring ways to automate the identification and resolution of quality

issues in real-time would be a valuable contribution to the field. This could involve

developing algorithms that automatically suggest fixes for identified quality issues or

integrating the tool into a continuous integration and delivery pipeline for automatic code

review and improvement.

70

Bibliography

[1] A. J. Dhruv, R. Patel, and N. Doshi, “Python: The Most Advanced Programming
Language for Computer Science Applications:,” Proc. Int. Conf. Cult. Herit.
Educ. Sustain. Tour. Innov. Technol., pp. 292–299, 2020, doi:
10.5220/0010307902920299.

[2] R. Nitnaware, “Basic Fundamentals of Python Programming Language and The
Bright Future,” Peer-Rev. J. About, vol. VIII, pp. 71–76, Jun. 2019.

[3] “PyPI · The Python Package Index,” PyPI. https://pypi.org/ (accessed Apr. 26,
2023).

[4] A. Sharma, F. Khan, D. Sharma, and S. Gupta, “Python: The Programming
Language of Future,” International Journal of Innovative Research in
Technology, vol. 6, May 2020.

[5] “What is Difficult in Learning Programming Language Based on
Problem-Solving Skills? :: Duhok Polytechnic University.”
https://www.dpu.edu.krd/page/en/2227/ (accessed Apr. 24, 2023).

[6] J. Darkstar, “Mark Lutz Learning Python 5th Edition”, Accessed: Apr. 24, 2023.
[Online]. Available:
https://www.academia.edu/34415693/Mark_Lutz_Learning_Python_5th_Edition

[7] S. L. Pfleeger, R. Jeffery, B. Curtis, and B. Kitchenham, “Status report on
software measurement,” Softw. IEEE, vol. 14, pp. 33–43, Apr. 1997, doi:
10.1109/52.582973.

[8] S. Magill, “What is Code Quality? 5 Software Development Checks You Should
Be Automating.”
https://blog.sonatype.com/improving-code-quality-with-automation (accessed
Apr. 22, 2023).

[9] Robert C. Marti, Clean Code: A Handbook of Agile Software Craftsmanship.
2008.

[10] “ISO 25010.” https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
(accessed Apr. 24, 2023).

[11] M. Samaranayake, “Code Quality Automation: What’s Around the Corner?,”
Medium, Mar. 13, 2022.
https://blog.bitsrc.io/code-quality-automation-whats-around-the-corner-16f8eda5a
43a (accessed Apr. 22, 2023).

[12] “12 BEST Code Quality Tools For Error Free Coding In 2023,” Software Testing
Help, Mar. 16, 2023. https://www.softwaretestinghelp.com/code-quality-tools/
(accessed Apr. 22, 2023).

[13] “SonarQube 10.0.” https://docs.sonarqube.org/latest/ (accessed May 02, 2023).

71

[14] Atlassian, “Crucible Code Review Tool for Git, SVN, Perforce and More,”
Atlassian. https://www.atlassian.com/software/crucible (accessed May 02, 2023).

[15] “Find and fix problems in your JavaScript code - ESLint - Pluggable JavaScript
Linter,” Apr. 21, 2023. https://eslint.org/ (accessed May 02, 2023).

[16] “JSHint Documentation.” https://jshint.com/docs/ (accessed May 02, 2023).

[17] R. Python, “Python Code Quality: Tools & Best Practices – Real Python.”
https://realpython.com/python-code-quality/ (accessed Apr. 22, 2023).

[18] “Flake8: Your Tool For Style Guide Enforcement — flake8 6.0.0
documentation.” https://flake8.pycqa.org/en/latest/ (accessed Apr. 24, 2023).

[19] K. Klenov, “pylama: pylama -- Code audit tool for python.” Accessed: Apr. 24,
2023. [Online]. Available: http://github.com/klen/pylama

[20] “unittest — Unit testing framework,” Python documentation.
https://docs.python.org/3/library/unittest.html (accessed Apr. 24, 2023).

[21] “pytest: helps you write better programs — pytest documentation.”
https://docs.pytest.org/en/7.3.x/ (accessed Apr. 24, 2023).

[22] R. Cox, “Surviving Software Dependencies.”
https://cacm.acm.org/magazines/2019/9/238968-surviving-software-dependencies
/fulltext (accessed Apr. 24, 2023).

[23] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci, “Vulnerable
open source dependencies: counting those that matter,” in Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, in ESEM ’18. New York, NY, USA: Association for Computing
Machinery, Oct. 2018, pp. 1–10. doi: 10.1145/3239235.3268920.

[24] V. Kravcenko, “pipreqs: Pip requirements.txt generator based on imports in
project.” Accessed: Apr. 24, 2023. [Online]. Available:
https://github.com/bndr/pipreqs

[25] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: automatic generation of static
call graphs for Python source code,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, in ASE ’18. New
York, NY, USA: Association for Computing Machinery, Sep. 2018, pp. 880–883.
doi: 10.1145/3238147.3240484.

[26] “PyTA.” PyTA, Apr. 03, 2023. Accessed: Apr. 24, 2023. [Online]. Available:
https://github.com/pyta-uoft/pyta

[27] L. Li, J. Wang, and H. Quan, “Scalpel: The Python Static Analysis Framework.”
arXiv, Feb. 23, 2022. doi: 10.48550/arXiv.2202.11840.

[28] “Java (programming language),” Wikipedia. Apr. 24, 2023. Accessed: Apr. 24,
2023. [Online]. Available:

72

https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid
=1151443812

[29] “Professional Java Development with the Spring Framework | Wiley,” Wiley.com.
https://www.wiley.com/en-sg/Professional+Java+Development+with+the+Spring
+Framework-p-9780764574832 (accessed Apr. 22, 2023).

[30] P. G. D. Group, “PostgreSQL,” PostgreSQL, Apr. 24, 2023.
https://www.postgresql.org/ (accessed Apr. 24, 2023).

[31] “JavaScript With Syntax For Types.” https://www.typescriptlang.org/ (accessed
Apr. 24, 2023).

[32] G. Bierman, M. Abadi, and M. Torgersen, “Understanding TypeScript,” in
ECOOP 2014 – Object-Oriented Programming, R. Jones, Ed., in Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2014, pp. 257–281. doi:
10.1007/978-3-662-44202-9_11.

[33] “React.” https://react.dev/ (accessed Apr. 24, 2023).

[34] “Unify the DevSecOps lifecycle with GitLab.”
https://about.gitlab.com/stages-devops-lifecycle (accessed Apr. 24, 2023).

[35] P. C. Q. Authority, “pylint: python code static checker.”

[36] M. Schlaich, “pytest-cov: Pytest plugin for measuring coverage.” Accessed: Apr.
24, 2023. [Microsoft :: Windows, POSIX, Unix]. Available:
https://github.com/pytest-dev/pytest-cov

[37] D. Platis, “Duplicate Code Detection Tool.” Apr. 19, 2023. Accessed: Apr. 24,
2023. [Online]. Available:
https://github.com/platisd/duplicate-code-detection-tool

[38] F. Pérez-García, R. Sparks, and S. Ourselin, “TorchIO: A Python library for
efficient loading, preprocessing, augmentation and patch-based sampling of
medical images in deep learning,” Comput. Methods Programs Biomed., vol. 208,
p. 106236, Sep. 2021, doi: 10.1016/j.cmpb.2021.106236.

[39] G. Gautier, G. Polito, R. Bardenet, and M. Valko, “DPPy: DPP Sampling with
Python,” J. Mach. Learn. Res., vol. 20, no. 180, pp. 1–7, 2019.

73

