UNIVERSITY OF MACEDONIA
SCHOOL OF INFORMATION SCIENCES
DEPARTMENT OF APPLIED INFORMATICS

Computational Thinking through Programming: A conceptual
model for teaching and learning Computational Thinking

Ph.D. Dissertation

Christina Tikva

THESSALONIKI, GREECE
MAY, 2023

Computational Thinking through Programming: A conceptual
model for teaching and learning Computational Thinking

Christina Tikva

Bachelor’s Degree (BSc) in Applied Informatics, University of Macedonia, 2007
Master’s Degree (MSc) in Computer Science and Management, Department of Computer Science
of the Aristotle University, 2009

Ph.D. Dissertation

SUPERVISOR
Efthimios Tambouris
Professor, Department of Applied Informatics, University of Macedonia

ADVISORY COMMITTEE
Efthimios Tambouris
Professor, Department of Applied Informatics, University of Macedonia

Maria Satratzemi
Professor, Department of Applied Informatics, University of Macedonia

Nikolaos Fachantidis
Associate Professor, Department of Educational & Social Policy, University of
Macedonia

EXAMINATION COMMITTEE

Efthimios Tambouris
Professor, Department of Applied Informatics, University of Macedonia

Maria Satratzemi
Professor, Department of Applied Informatics, University of Macedonia

Nikolaos Fachantidis
Associate Professor, Department of Educational & Social Policy, University of
Macedonia

Stavros Demetriadis
Professor, Department of Informatics, Aristotle University of Thessaloniki

Spyridon Doukakis
Assistant Professor, Department of Informatics, lonian University

Stylianos Xinogalos
Professor, Department of Applied Informatics, University of Macedonia

Avgoustos Tsinakos
Professor, Department of Computer Science, International Hellenic University

Abstract

Computational Thinking (CT) through programming attracts increased attention as it is
considered an ideal medium for the development of 21st century skills. CT initiatives have
emerged around the world and there is a rapid increase in relevant research studies. The
accumulation of research plethora leads to the need for a conceptual model of CT that
could map the domain, facilitating comprehensive understanding of the domain’s
challenges. The aim of this thesis is a) to develop a conceptual model based on a systematic
literature review that maps CT through programming in K-12 and higher education and b)
to investigate the relationships between certain instances of the model, namely of the
effects of scaffolding programming games and attitudes towards programming, on the
development of students’ Computational Thinking.

Regarding the first aim of this thesis, the proposed Computational Thinking
through Programming in K-12 education (CTPK-12) conceptual model emerges from the
synthesis of 101 studies and the identification of CT Areas. The proposed model consists
of six CT Areas (namely Knowledge Base, Learning Strategies, Assessment, Tools,
Factors and Capacity Building) and their relationships. Some of the relationships between
areas have not yet been sufficiently explored in the literature such as which learning
strategies enable the development of CT. The revised model for higher education is derived
from a systematic mapping of 41 studies. This model includes the same CT Areas and
relationships as CTPK-12, however it differs in sub-areas and instances. Knowledge Base
Area, Assessment Area and Tools Area have significantly evolved throughout the years,
while Capacity Building Area has only recently emerged. In addition, the introduction of
CT to undergraduate students and preservice teachers differs mainly in the tools used and
the CT elements that are assessed.

Regarding the second aim, students were introduced to CT under two distinct
experimental conditions: a scaffolding version of a programming game and a non-
scaffolding version of the same game. Results report statistically significant differences
between the pre-intervention and post-intervention CT scores for all students and
statistically significant improvement in learning outcomes in favor of the scaffolding

group. In addition, the study hypothesized that attitudes towards programming would have

Vi

an impact on students’ CT. Although this hypothesis has not been confirmed, the results
suggest that students who have a less positive attitude towards programming could

particularly benefit from scaffolding aspects in programming games.

Keywords: Computational Thinking, programming, K-12 education, higher
education, scaffolding, computational thinking games, attitudes towards programming

vii

Acknowledgements

Firstly, 1 would like to express my sincere gratitude to my advisor Professor Efthimios
Tambouris for the continuous support of my Ph.D. studies, for his patience, motivation,
and knowledge. His guidance helped me in all the time of research and writing of this
thesis. I’d also like to extend my gratitude to Associate Professor Nikolaos Fachantidis and

Professor Maya Satratzemi for their valuable and constructive advice.

Special mention goes to Dimitris Trakosas for his collaboration in publishing an article
and to Maria Mousiou for the development of the Amazed scaffolding game (Mousiou
2021). I would also like to thank Marcos Roman- Gonzalez who shared with us the full
version and the specification table sheet of the Computational Thinking Test (CTt)

(Roman-Gonzalez et al., 2017).

Most importantly, none of this would have been possible without my family, my husband
loannis and our two kids Euanthe and Vasilis. They have been a constant source of joy and
fullness. Last but not least, | would like to thank my mother and father for supporting me
always. | thank them for their unconditional love and the constant encouragement to

continue and complete my studies.

viii

Table of contents

1 Introduction 1
1.1 Problem definition and research objectives 1
1.2 Thesis Objectives and contribution 2
1.3 Thesis Contribution 5
1.4 Structure 6
1.5 Publications 7

2 Background Work 9
2.1 Introduction 9
2.2 Computational Thinking 9
2.3 Computational Thinking operational definitions 10

2.3.1 Angeli etal. (2016) 10
2.3.2 Barr & Stephenson (2011) 11
2.3.3 Brennan & Resnick (2012) 15
2.3.4 Csizmadia et al. (2015) 17

2.3.5 International Society for Technology in Education (ISTE) and Computer

Science Teacher Association (CSTA) (2011) 22
2.3.6 Kalelioglu, Gulbahar, & Kukul (2016) 22
2.3.7 Selby (2013) 23
2.3.8 Shute et al. (2017) 24
2.3.9 Sondakh et al. (2020) 25

2.3.10 Weintrop et al. (2016)

2.3.11 Computational Thinking elements

2.4

2.5

Computational Thinking Literature Reviews

Summary

3 Methodology

3.1

26

27

29

32

33

Phase 1. Developing a Conceptual Model of Computational Thinking through

programming in K-12 education (CTPK-12)

3.2

Education (CTPK-12) Conceptual Model for Higher Education

3.3

33

Phase 2. Extending the Computational Thinking through Programming in K-12

34

Phase 3. Designing and evaluating of a Scaffolding Computational Thinking

game. 34

3.4

Phase 4. Investigating certain instances of the Learning Strategies and Factors

CTPK-12 model’s areas.

35

4 Computational Thinking through programming in K-12 Education (CTPK-12)

Conceptual Model

4.1

4.2

Introduction

Study design

4.2.1 Study goal and research questions

4.2.2 Method

4.2.2.1 Elicitation of the domain knowledge

4.2.2.2 Visualization of the domain knowledge

4.2.3 Study limitations

4.3

The CTPK-12 model

36

36

36

36

37

37

41

42

42

43.1 CT Areas
4.3.1.1 Knowledge Base Area
4.3.1.2 Assessment Area
4.3.1.3 Learning Strategies Area
4.3.1.4 Factors Area
4.3.1.5 Tools Area
4.3.1.6 Capacity Building Area
4.3.2 CT Areas Relationships
4.4 Discussion
45 Summary
5 Extending the CTPK-12 model for higher education
5.1 Introduction
5.2 Study design
5.2.1 Study goal
5.2.2 Method
5.2.2.1 Definition of Research Questions
5.2.2.2 Conduct search for primary studies
5.2.2.3 Screening of studies
5.2.2.4 Classification Scheme Identification
5.2.2.5 Data extraction and mapping process

5.2.3 Study Limitations

Xi

46

46

49

o1

52

55

56

58

60

65

66

66

66

66

66

67

67

68

68

68

69

5.3 Overview of Computational Thinking through programming studies in higher

education. 69
5.3.1 Studies by year 69
5.3.2 Interventions for CT development in higher education. 70

5.4 The revised conceptual model for CT through programming in higher education

(CTPHE) 74
5.4.1 CT areas in higher education 75
5.4.1.1 Knowledge Base 75
5.4.1.2 Learning Strategies 78
5.4.1.3 Tools 82
5.4.1.4 Assessment 85
5.4.1.5 Factors 88
5.4.1.6 Capacity Building 89

5.5 Discussion 90
5.6 Summary 94
Designing and evaluating a Computational Thinking tool 95
6.1 Introduction 95
6.2 Study design 95
6.2.1 Study goal and research questions 95
6.2.2 Research design and Participants 96
6.2.3 Instrument 96
6.2.4 Study Limitations 96

xii

6.3 The aMazeD Scaffolding Computational Thinking Game 97
6.3.1 aMazeD General Description 97

6.3.2 Computational Thinking Concepts and Practices Covered by the Scaffolding

Computational Thinking Game 99
6.3.3 aMazeD Scaffolding Features 100
6.3.4 aMazeD Analytics Features 102
6.4 Results 102
6.4.1 Demographic Data of the Participants 102
6.4.2 Perceived ease of use (PE) 103
6.4.3 Perceived usefulness (PU) 104
6.4.4 Attitude (AT) 106
6.4.5 Accessibility (AC) 107
6.4.6 Overall experience 108
6.5 Discussion 109
6.6 Summary 110

7 The effect of scaffolding programming games and attitudes towards programming on

the development of Computational Thinking 111
7.1 Introduction 111
7.2 Related Work 111

7.2.1 Scaffolding strategies in Computational Thinking research 113

7.2.2 Attitudes towards programming/Computer Science in Computational

Thinking research 114

Xiii

7.3 Study design
7.3.1 Study goal and research questions
7.3.2 Research design
7.3.3 Intervention instrument
7.3.4 Data collection
7.3.5 Study Limitations
7.4 Demographics
7.5 CTt
7.6 Analytics

7.7 Scale of Attitudes towards Programming

7.8 Does aMazeD have a positive impact on middle school students'

development?

116

116

117

118

118

118

119

119

119

120

CT
121

7.9 Does aMazeD with scaffolding features have a greater impact on middle school

students’ CT development than the aMazeD version without scaffolding features?
7.10 Do attitudes towards programming have an impact on students’ CT?

7.11 Do attitudes towards programming have an impact on students’

improvement?
7.12 Discussion
7.13 Summary
Conclusions and direction for future research
8.1 Introduction

8.2 Conclusions Phase 1

Xiv

121

123

CT
123

124

129

130

130

130

8.3 Conclusions Phase 2
8.4 Conclusions Phase 3
8.5 Conclusions Phase 4
8.6 Limitations

8.7 Future work

Appendixes

Appendix A

Appendix B

Appendix C

References

XV

133

133

134

134

135

136

136

150

157

202

List of Figures

Figure 2-1. Computational Thinking dispositions (Barr & Stephenson, 2011) 14
Figure 2-2. Classroom Culture Characteristics (Barr & Stephenson, 2011). 14

Figure 2-3. Computational Thinking Concepts and Approaches (Csizmadia et al., 2015).

Figure 2-4. Definition of holistic Computational Thinking (Sondakh et al., 2020)......... 26

Figure 2-5. Computational Thinking in Mathematics and Science definition (Weintrop et

AL., 2006) ... s 27
Figure 3-1. Method followed in this theSiS..........ccoiiiiiiiiii e 33
FIQUIE 4-1. METNOU ..ot 37
Figure 4-2. Process applied for study selection adapted by Moher et al. (2009) 38
Figure 4-3. Example of elements recording and sub-areas identification...................... 41
Figure 4-4. Example of evidence recording and relationship identification 41

Figure 4-5. Computational Thinking through Programming in K-12 education (CTPK-12)

Figure 4-6. Percentage of studies by CT Areas to which they contribute in the periods
2006-2014 and 2015-2019. References to 2019 actually refer to period January 2019
LCOJ @ o1 0] o1 g2 1 SRR 45

Figure 4-7. Number of studies by CT element appearing more than twice in the examined

] (00 | =TSSR 49
Figure 4-8. Number of studies by the most common learning strategies.............c.cc.ceuue. 52
Figure 4-9. Number of studies Dy t00]coiiiiiii s 56
Figure 4-10. Example of a hypothesized research model based on CTPK-12 model...... 64

XVi

Figure 4-11. CTPK-12 model application in K-12 educational practice..............cccccoeu... 65

Figure 5-1. Systematic mapping process, adapted from Petersen et al. (2008)................ 67
Figure 5-2. STUAIES DY YEAT........ccviiiiiieie ettt sre e 70
Figure 5-3. Percentage of studies by branch in periods 2006-2016 and 2017-2020........ 73

Figure 5-4. The revised conceptual model for CT through programming in higher
Lo [0 Tor: U o] I (O I = o | = SR 74

Figure 5-5. Distribution of CT Knowledge Base elements sub-categories by time period

.. 77
Figure 5-6. Distribution of learning strategies sub-categories by time period................. 81
Figure 5-7. Distribution of tools sub-categories by period...........c.cccccveveivievveiesiieieenns 84
Figure 5-8. Distribution of assessment sub-categories by periodcccccooveviivieinenns 87
Figure 6-1. The aMazeD game enVIrONMENL..........cccueieiiieiieiecie e ee e 98
Figure 6-2. Semi-finished INStrUCTIONSccuiiiiiiiiee e 101
Figure 6-3. Demographic data of the partiCipantS...........c.ccovviriiiniiicic e 103
Figure 6-4. RESUITS ON PEL.........ooiiiiiiiiii e 103
Figure 6-5. RESUITS ON PE2.........couiiiiiiii e 104
Figure 6-6. RESUITS ON PULoiiiiiiiieieeee e 104
Figure 6-7. RESUITS ON PUZ ... 105
Figure 6-8. RESUIS ON PUS3oiiiiiicce et 105
Figure 6-9. RESUITS ON PUZooiiicie et 105
Figure 6-10. ReSUITS ON PUDooiiiii st 106
Figure 6-11. ReSUIES ON AT L ..ottt 106

Figure 6-12. RESUITS ON AT2 ..ottt re e nas 107
Figure 6-13. RESUITS ON ACociiiece ettt nas 107
Figure 7-1. Means of pre-tests scores by attitudes towards programming group 126

Figure 7-2. Means of score changes by attitudes towards programming group for the non-

1o L (0] [0 [T pTo [| (0111 o OSSR 127

Figure 7-3. Means of score changes by attitudes towards programming group for the

1o L (0] [0 [T gTo [0 (0111 o PSSP RR 128

XViil

List of Tables

Table 2-1. Computational Thinking skills (Angeli et al.,2016)ccccoooverviinriverennnnne 10
Table 2-2. Computational thinking skills curriculum (Angeli et al., 2016) 10
Table 2-3. Computational Thinking operational definition (Barr & Stephenson, 2011) . 11

Table 2-4. Computational Thinking concepts, practices and perspectives (Brennan &

RESNICK, 2012)oieeiiiieeiie ettt e e et e et e naee s 15
Table 2-5. Computational Thinking Concepts (Csizmadia et al., 2015)c.cccoeevenneee. 18
Table 2-6. Computational Thinking Techniques (Csizmadia et al.,2015)c......... 21

Table 2-7. Framework for Computational Thinking as a Problem-Solving Process

(Kalelioglu, Gulbahar, & KUKul, 2016)........ccccerriieriiieiienese e 23
Table 2-8. Computational Thinking components (Shute et al., 2017)ccccccevvevieenene. 24
Table 2-9. CT elements in CT operational definitions..............ccccvevevieiiieii e 28
Table 2-10. Literature Reviews in CT dOmain...........ccoeiiiieiiineneisceeeese e 30

.. 40
TaDIE 4-2. CT ATBAS ...ttt bbbttt 43
Table 4-3. CT Areas’ relationsShipsccoeiiiriiiiiiieic s 45
Table 4-4. Knowledge Base SUD-areasccccccveiuieieiieeieeie e 47
Table 4-5. ASSESSMENT SUD-AIEAS.ccviiviiiiiiiiiiieie e 50
Table 4-6. Learning strategies SUD-areascooureiineie i 51
Table 4-7. FACIOIS SUD-AIEAS..........civiieriiiti ittt 54
Table 4-8. TOOIS SUD-AIEAScoueiiieiiiie it 56

XiX

Table 4-9. Capacity Building SUD-areasccoovveiiiieie s 58

Table 5-1. Inclusion and exXClUSION CrTErTaccoviveieiiiiccs e 68
Table 5-2. Interventions for CT development in higher educationccccoccevvevieenen. 70
Table 5-3. Classification of DranChes ..o 72
Table 5-4. CT Knowledge Base SUD-CAtegOriescciveveiiieiiieiieie e 76

Table 5-5. Percentage of studies’ CT Knowledge Base elements sub-categories by

ClasSified DraNCh ..o 77
Table 5-6. Learning strategies SUD-CatEgOrIiEScvcvveieeieerieiie e 79
Table 5-7. Percentage of learning strategies sub-categories by classified branch 81
Table 5-8. TOOIS SUD-CALEJOIIEScveiieiiieiii e 83
Table 5-9. Percentage of tools sub-categories by classified branch.............c..cccocverenee. 84
Table 5-10. ASSESSMENt SUD-CAtEGOTIES.......oiueiieiieiieieiee e 86
Table 5-11. Percentage of assessment sub-categories by classified branch..................... 88
Table 5-12. Factors investigated in the selected StUIES...........cccovcvervrieniienree e 89
Table 5-13. Capacity Building methods............ccooveiiieceic e 90
Table 6-1. CT Concepts and practices per aMazeD levelccccoceeveiieiiiciicceee, 99
Table 7-1. Attitudes towards programming/CS found in the literature..............c..c........ 115
Table 7-2. Distribution of participants by grade and gender............cccccovvvevieiiiciiecinnnns 119
Table 7-3. Internal consistency of the scale of Attitudes towards Programming........... 121

Table 7-4. Computational Thinking pre-scores and post-scores means by game version

XX

Table 7-5. Computational Thinking Conditional-Level, Loop-Level, Conditional-Use,
Loop-Use scores, Conditional-Ratio and Loop-Ratio means by game version 125

Table 7-6. Computational Thinking changes in pre-scores and post-scores means by game
version and attitudes towards programming GroUPcccceeeeeeeieerreniesesesesieninns 128

XXi

1 Introduction

1.1 Problem definition and research objectives

Computational Thinking (CT) has its roots in 1980s with Papert’s (1980) attempts to
introduce programming to young students. Later in 2006, Wing (2006) defines CT as a
process that “involves solving problems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental to computer science”. CT is considered
a necessary skill for everyone (Wing, 2006) and an ideal medium for the development of
21st century skills (Lye & Koh, 2014; Grover & Pea, 2013).

After about fifteen years of renewed interest in CT, the domain of CT research is
beginning to mature. It is indicative that a large number of studies focusing on CT have
been published in recent years (T.-C. Hsu, Chang, & Hung, 2018). This large body of
literature indicates challenges in particular areas including (a) developing widely accepted
assessment methods and frameworks that encompass the complexity of CT (Brennan &
Resnick, 2012; Denner, Werner, & Ortiz, 2012; Denning, 2017; Fronza, loini, & Corral,
2017; Grover et al., 2017; Grover, Pea, & Cooper, 2015; Moreno Ledn, Robles, & Roméan
Gonzélez, 2015; Zhong, Wang, Chen, & Li, 2016), (b) designing theoretically-based
approaches that align learning strategies with CT (Dolgopolovas, Dagien¢, Jasute, &
Jevsikova, 2019) and (c) identifying the knowledge needed to teach CT (Angeli et al.,
2016; Cooper, Grover, Guzdial, & Simon, 2014) and methods by which support to teachers
is provided (Yadav, Stephenson, & Hong, 2017).

Several literature reviews examine the whole domain from different perspectives
as well as propose frameworks and definitions. Researchers in these studies review the
literature in order to derive insights on CT through programming for K-12 curriculum (Lye
& Koh, 2014), to understand the development and application of CT in education (Hsu et
al. 2018), to facilitate CT learning and assessment within K-12 curricula (Shute, Sun, &
Asbell-Clarke, 2017), to review CT literature in higher education (Czerkawski & Lyman,
2015) and to support educators in developing CT tasks and programs (Kalelioglu,
Gulbahar, & Kukul, 2016). Despite all these efforts, a comprehensive mapping of the
domain is still lacking. A comprehensive mapping of the domain would enable better

understanding of challenges and guide future research.

1

Regarding the practical use of CT, efforts to integrate CT in schools and higher
education are taking place worldwide responding to societal need for 21st century skills
(Buitrago Florez et al., 2017; Czerkawski & Lyman, 2015; Y.-C. Hsu, Irie, & Ching, 2019;
Passey, 2017). At the same time, many undergoing initiatives promote CT by providing
curriculum suggestions (Csizmadia et al., 2015), CT and programming tools and resources
(Garcia-Pefialvo & Mendes, 2018). However, educators do not have an overall map of the
CT through programming domain to help them design CT curricula. This is evident from
the fact that several studies underline that educators lack clear understanding of how CT
could be effectively integrated into their educational practices (e.g., Denning, 2017; Grover
& Pea, 2013; Yadav et al., 2017).

When the research that has been conducted is mature and there is sufficient
material, what often helps is the existence of a conceptual model. A conceptual model
offers in developing domain understanding through aiding reasoning about the domain,
communicating the domain details and documenting the domain for future reference
(Gemino & Wand, 2004). In addition, a conceptual model could be an effective roadmap
between what we know and what we need to know, providing a firm foundation for
advancing the domain knowledge (Webster & Watson, 2002). Such a conceptual model of
CT through programming education is still missing. Its existence could help researchers
better understand the domain and its challenges through a holistic approach and identify
areas that have already been covered by research and areas where more research is needed.
In addition, a conceptual model serves as a point of agreement (Mylopoulos, 1992) and

thus could support CT teaching and learning by providing a reference point for educators.

1.2 Thesis Objectives and contribution

Our aim is to develop a conceptual model of CT through programming. This model could
aid domain understanding and serve as a basis for future studies. It could also support
researchers to focus on significant research gaps in their CT studies, having an up-to-date
synthesis of the relevant literature. In addition, it could support the integration of CT into
educational practices, providing evidence to educators and policy-makers as well as

bringing closer research, practice and policy.

Given that the bulk of the research concerns K-12 and that K-12 and higher
education are often treated as related but distinct levels of education, we chose to base our

model on K-12 and then extend it to higher education.

We also aim to further investigate certain instances of the model namely, Learning
Strategies and Factors areas. To do so a) we design and evaluate a CT tool and b) we design
and conduct an experimental study. In this context, the following objectives and research

questions guide the work carried out in this dissertation:

O1: To develop a Conceptual Model of Computational Thinking through

programming in K-12 education based on a Systematic Literature Review

This involves investigating and analysing the literature in order to elicit the areas

of Computational Thinking domain and their relationships.

e RQ1.1. What are the areas of CT through programming in K-12 education

domain?
e RQ1.2 What are the sub-areas of each CT Area in K-12 education?
e RQ 1.3 How do CT Areas relate to each other in K-12 education?

0O2: To expand the Conceptual Model of Computational Thinking through

programming in K-12 education for Higher Education

This involves studying the areas and relationships of the CTPK-12 conceptual
model in the context of higher education. In addition, the analysis of these areas based on
the following two dimensions is performed: a) their evolution over the years and b) the

branches to which CT is applied.

e RQ 2.1 What are the areas and sub-areas of teaching and learning CT through
programming in higher education and how do they relate to each other?

e RQ 2.2 How do these areas evolve over the years and how do they apply to

various branches?

0O3: To design, develop and evaluate a Scaffolding Computational Thinking game

This involves the design, implementation and evaluation of a Scaffolding CT game.
In this dissertation, the design and evaluation of the game are presented, while the

implementation was done by Maria Mousiou during her master thesis (Mousiou, 2021).
03.1: To design the aMazeD Scaffolding Computational Thinking game

¢ RQ 3.1.1 Which Computational Thinking concepts and perspectives should be

covered by the aMazeD game?
¢ RQ 3.1.2 Which scaffolding features should be included in the aMazeD game?
e RQ 3.1.3 Which analytics should be included in the aMazeD game?
03.2: To evaluate the aMazeD Scaffolding Computational Thinking game

e RQ 3.2.1 Do students perceive the aMazeD Scaffolding Computational
Thinking Game as ease to use?

e RQ 3.2.2 Do students perceive the Scaffolding Computational Thinking Game

aMazeD as effective on learning Computational Thinking?

e RQ 3.2.3 Do students perceive the scaffolding features of the Scaffolding
Computational Thinking Game aMazeD as effective in learning Computational
Thinking?

O4: Using the CTPK-12 model to design and conduct an empirical study to
investigate certain instances of the model namely, Learning Strategies and Factors

areas.

This involves the investigation of the effects of a) scaffolding programming games
and b) attitudes towards programming, on the development of middle school students’

Computational Thinking.

e RQ 4.1 Does the aMazeD programming game have a positive impact on middle

school students' CT development?

e RQ 4.2 Does the scaffolding version of the aMazeD programming game have
a greater impact on middle school students’ CT development than the version

without scaffolding?

e RQ 4.3 Do attitudes towards programming have an impact on middle school
students’ CT?

e RQ 4.4 Do attitudes towards programming have an impact on middle school

students’ CT improvement?

1.3 Thesis Contribution

The development of a conceptual model for CT through programming aims to a) provide
guidance to researchers in designing, delivering, and assessing CT studies and b) to provide
guidance to educators in integrating CT into their educational practices. The benefits of

utilizing such a conceptual model regard:

e Mapping the Computational Thinking through programming domain for future

reference and communicating the domain details.

e Identifying areas that have already been covered by research and areas where more

research is needed.

e Serving as a basis for future studies. In particular, the model could serve as a basis
for hypothesized research models that establish a direct link between theory and

statistical estimations.

e Providing evidence to teachers and policy-makers as well as bringing closer

research, practice and policy.

Towards the aforementioned goals, the contribution is summarized in the following

parts:

Developing a Computational Thinking through programming conceptual
model: A conceptual model that presents the concepts and relationships of the domain and
their visual representation. It comprises of six Computational Thinking Areas, namely

Knowledge Base Area, Assessment Area, Learning Strategies Area, Factors Area, Tools

5

Area and Capacity Building Area. Each CT Area includes sub-areas that are populated
with specific instances. Example of such sub-areas and instances include sub-areas of Self-
Report Methods, Tests, Artifact analysis, Observations and Assessment frameworks in
Assessment Area and instances of scales, questionnaires, surveys, interviews, think-aloud
protocol, journals and reflection reports in Self-Report sub-area. Finally, we identify

relationships between the CT Areas.

Utilizing the model to study certain CT Areas relationships: The model was
utilized to explore a) the relationship between the instance of Scaffolding (Learning
Strategies Area) and CT concepts (Knowledge Base Area) and b) the relationship between
the instance of Attitudes towards programming (Factors Area) and CT concepts
(Knowledge Base Area). The effects of scaffolding programming games and students’
attitudes towards programming on the development of students’ Computational Thinking
were explored. The implication of the study findings is important, as they provide support
that scaffolding in CT games could be an effective strategy for teaching and learning CT
to middle school students fostering a deeper understanding of CT concepts. In addition,
when it comes to students’ attitudes towards programming, students who perceive
programming as less meaningful, less interesting and have lower programming self-

efficacy could particularly benefit from scaffolding aspects in programming games.

1.4 Structure

The thesis is structured as follows:

The first chapter is the introduction of the research carried out, while the second
chapter provides background information on related work. More specifically, it presents a
study conducted on Computational Thinking definition frameworks in order to derive
terms that describe the components of Computational Thinking that are repeatedly raised
in the literature. In addition, the main characteristics of the literature reviews focusing on

the field of Computational Thinking are briefly presented.

The third chapter presents the method followed during the Ph.D. research.

Specifically, the research phases and the study designs that were followed are presented.

The fourth chapter presents the Computational Thinking through programming in
K-12 (CTPK-12) education conceptual model that was designed based on a systematic
literature review. In particular, the concepts and relationships of the model are presented,

analysed and discussed in this chapter.

The fifth chapter presents the extension of the CTPK-12 model to include higher
education. Similar to the previous chapter, the concepts and relationships of the model are

presented and discussed, albeit in the context of higher education.

The sixth chapter presents the design and evaluation of a scaffolding programming
game for Computational Thinking. In addition, the Computational Thinking concepts and
practices covered by the game and the scaffolding framework on which it is based are

presented.

The seventh chapter presents the investigation of certain relationships of the CTPK-
12 model. Specifically, it presents an experimental study that exploits the scaffolding
programming game presented in the previous chapter, to investigate the impact of the

CPTK-12 model areas, namely “Learning Strategies” and “Factors”.

The eighth chapter offers conclusions drawn and future work.
1.5 Publications

The scientific findings of this thesis have been published in international journals as

follows:

Chapter 4

Tikva, C., & Tambouris, E. (2021a). Mapping computational thinking through
programming in K-12 education: A conceptual model based on a systematic
literature Review. Computers & Education, 162, 104083.

https://doi.org/10.1016/j.compedu.2020.104083 [IF 11.82]

Chapter 5

https://doi.org/10.1016/j.compedu.2020.104083

Tikva, C., & Tambouris, E. (2021b). A systematic mapping study on teaching and
learning Computational Thinking through programming in higher education.
Thinking Skills and Creativity, 41, 100849.

https://doi.org/10.1016/j.tsc.2021.100849 [IF 3.652]

Chapter 7
Tikva, C., & Tambouris, E. (2022) The effect of scaffolding programming games and
attitudes towards programming on the development of Computational Thinking.

Education and Information Technologies. https://doi.org/10.1007/s10639-022-

11465-y [IF 3.605]

Trakosas, D., Tikva, C., & Tambouris, E. Visual Programming and Computational
Thinking Environments for K-9 Education: A Systematic Literature Review.

International Journal of Learning Technology (accepted for publication).

https://doi.org/10.1016/j.tsc.2021.100849
https://doi.org/10.1007/s10639-022-11465-y
https://doi.org/10.1007/s10639-022-11465-y

2 Background Work

2.1 Introduction

The aim of this Chapter is to present definitions, related introductory concepts and previous
work conducted in the field of Computational Thinking for a better understanding of the

subject.

The remainder of this Chapter is organised as follows: Section 2.2 presents the
definition of Computational Thinking according to previous research. Section 2.3 presents
Computational Thinking frameworks that have been developed to provide an operational
definition of Computational Thinking. The Section concludes with a summary of CT
elements presented in the CT operational definitions. Section 2.4 presents literature
reviews conducted in the field of Computational Thinking. Section 2.5 presents the

summary of the Chapter.

2.2 Computational Thinking

Computational Thinking (CT) was firstly introduced by Papert (1980), who relates
programming to procedural thinking skills. The term was reintroduced by Wing (2006)
who defines CT as a process that “involves solving problems, designing systems, and
understanding human behaviour, by drawing on the concepts fundamental to computer
science” (Wing 2006, p.33). She points out that CT is a fundamental skill for everyone,
not just for computer scientists and argues that “To writing and arithmetic, we should add
CT to every child’s analytical ability” (Wing 2006, p.33). CT is the thought process that
involves solving problems and designing model systems by utilizing Computer Science
(CS) core concepts (Wing, 2008). Wing’s definition has subsequently become a reference
point for discussion on CT. However, various other definitions have emerged in the
literature (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013). Aho
(2012) defines CT as “the thought processes involved in formulating problems so their
solutions can be represented as computational steps and algorithms.” Many other

definitions exist in the literature.

CT definitions can be classified into two main categories: generic definitions that
focus on CT as a thought process (Roman-Gonzalez, Pérez-Gonzalez, & Jiménez-

9

Fernandez, 2017) and operational definitions that describe what CT entails. The second

category which comprises efforts that develop models describing CT elements, is

presented in the next section.

2.3 Computational Thinking operational definitions

2.3.1 Angeli et al. (2016)

Angeli et al. (2016) propose a conceptual framework that describes CT skills (Table 2-1).

Based on this framework they also present specific examples (Table 2-2) for each CT skill

taking into account the age of the students.

Table 2-1. Computational Thinking skills (Angeli et al.,2016)

Skill

Definition

Abstraction

The skill to decide what information about an entity/object to keep and what to ignore

(Wing, 2011).

Generalization

The skill to formulate a solution in generic terms so that it can be applied to different

problems (Selby, 2014).

Decomposition

The skill to break a complex problem into smaller parts that are easier to understand and
solve (National Research Council, 2010; Wing, 2011).

Algorithms The skill to devise a step-by-step set of operations/actions of how to go about solving a
Sequencing problem (Selby, 2014).

Flow of The skill to put actions in the correct sequence (Selby, 2014).

control The order in which instructions/actions are executed (Selby, 2014).

Debugging The skill to identify, remove, and fix errors (Selby, 2014).

Table 2-2. Computational thinking skills curriculum (Angeli et al., 2016)

Skill

K-2 (ages 6 to 8)

3-4 (ages 9 to 10)

5-6 (ages 11 to 12)

Abstraction

With the use of external reference
systems, create a model/representation
to solve a problem.

Create a
model/representation
to solve a problem

Create a new
model/representation
to solve a problem.

Generalization

Identify common patterns between
older and newer problem-solving tasks,
and use sequences of instructions
previously employed, to solve a new
problem

Remix and reuse (by
extending if needed)
resources that were
previously created

Remix and reuse (by
extending if needed)
resources that were
previously created.

10

Decomposition

Break a complex task into a series of
simpler subtasks

Break a complex task
into simpler subtasks.

Develop a solution by

assembling together
collections of smaller
parts.

Break a complex
task into simpler
subtasks.

Develop a solution
by assembling
together collections
of smaller parts.

Algorithmic Define a series of steps for a solution. Define a series of Define a series of
thinking steps for a solution. steps for a solution.
Put instructions in the correct sequence.
Put instructions in the | Put instructions in
correct sequence. the correct sequence.
Repeat the sequence Repeat the sequence
several times several times
(iteration). (iteration).
Make decisions
based on conditions.
Store, retrieve, and
update variables.
Formulate
mathematical and
logical expressions
Debugging Recognize when instructions do not Recognize when Recognize when

correspond to actions.

Remove and fix errors.

instructions do not

correspond to actions.

Remove and fix errors.

instructions do not
correspond to
actions.

Remove and fix
errors.

2.3.2 Barr & Stephenson (2011)

Barr & Stephenson's (2011) presents CT concepts and capabilities in the context of K-12
education. The framework practically approaches the integration of Computational
Thinking in K-12 classrooms by providing tangible examples (Table 2-3).

Table 2-3. Computational Thinking operational definition (Barr & Stephenson, 2011)

CT Concept, CS
Capability

Math Science Social Studies | Language

Arts

11

data collection | find a data source for a collect data study battle do linguistic
source for a problem area from an statistics, or analysis of
problem area doing experiment population sentences
probability data
exercises, for
example,
flipping coins
or throwing
dice
data analysis write a count analyze data identify trends | identify
program to do | occurrences of | from an in the data patterns for
basic flips, dice experiment from the different
statistical throws and statistics sentence types
calculations on | analyzing
a set of data results
data use data use a summarize summarize represent
representation | structures such | histogram, pie | data from an and represent | patterns of
and analysis as array, chart, bar experiment the trends different
linked list, chart, etc. to sentence types
stack, queue, represent data;
graph, hash use sets, lists,
table, etc. graphs, etc. to
contain data
abstraction use procedures | use variables build a model summarize use of simile
to encapsulate | in Algebra; of a physical facts; deuced | and metaphor
a set of often identifying entity conclusions
repeated essential facts from facts
commands in a word
that performa | problem
function
analysis and validate curve fitting validate that
model random the model is
validation number correct
generator
automation use tools such | use Prove ware | use Excel use a spell
as: Geometer checker
Sketch Pad;
Star Logo;
Python code
snippets
testing and debug a do guess and validate and
verification program; wire | check clean data
unit tests;
formal
program

verification

define main
and functions

an expression

algorithms & study classic do long doan write
procedures algorithms; division, experimental instructions

implementan | factoring; do procedure

algorithm for a | carries in

problem area addition/

subtraction

problem define objects | apply order of | do a species write an
decomposition | and methods; operations in classification outline

of the variables

control use study functions write a story
structures conditionals, in algebra with
loops, compared to
recursion, etc. | functions in branches
programming;
use iteration to
solve word
problems
parallelization | threading, solve linear run
pipelining, systems; do experiments
dividing up matrix simultaneously
data or task in | multiplication | with different
such a way to parameters
be processed
in parallel
simulation algorithm graph a simulate play Age of Trail do a re-
animation, function in a movement of Empires; enactment
parameter Cartesian the solar Oregon from a story
sweeping plane and system
modify values

The framework also includes dispositions (Figure 2-1) and characteristics of a
classroom culture (Figure 2-2) that could contribute to the development of Computational
Thinking.

13

Confidence in

dealing with
complexity

Knowing one’s
strengths and
weaknesses when
working with
others

Persistence in
working with
difficult problem

Dispositions

_ Setting aside
differences to work The ability to
with others to handle ambiguity
achieve a common
goal or solution,

The ability to deal
with open-ended
problems

Figure 2-1. Computational Thinking dispositions (Barr & Stephenson, 2011)

Increased use of
computational

vocabulary to describe
problems and solutions

Classroom
Culture

Acceptance of failed
solution attempts,
recognizing

Team work by students,
with explicit use of:

—decomposition
—abstraction
—negotiation

—consensus building

that early failure can

often put you on the

path to a successful
outcome

Figure 2-2. Classroom Culture Characteristics (Barr & Stephenson, 2011).

14

2.3.3 Brennan & Resnick (2012)

Brennan and Resnick (2012) introduced a Computational Thinking framework that
describes CT concepts, practices and perspectives for young learners using Scratch to

design applications.

According to this framework there are three dimensions of Computational
Thinking (Table 2-4):

e Computational Concepts, the concepts that students use as they program.
e Computational Practices, the practices that students develop as they program.

e Computational Perceptions, the perceptions that students form about the world

around them and about themselves.

Table 2-4. Computational Thinking concepts, practices and perspectives (Brennan &
Resnick, 2012)

Dimension Element Description

A series of individual steps or
Sequences instructions that can be executed by
the computer.

A mechanism for running the same

Loops . .
P sequence multiple times.

Sequences of instructions

Parallelism . .
happening at the same time.

Computational
Thinking
Concepts

One thing causing another thing to
Events happen — essential component of
interactive media.

The ability to make decisions based
on certain conditions, which

Conditionals . .
supports the expression of multiple
outcomes.

Operators Operators provide support for

mathematical, logical, and string

15

expressions, enabling the
programmer to perform numeric
and string manipulations.

Data

Data involves storing, retrieving,
and updating values.

Computational
Practices

Being incremental and iterative

The design and implementation of
a project is an evolutionary
process. It consists of iterative
cycles of design, development and
execution of the program and its
further development, based on the
experiences gained and new ideas.

Testing and debugging

Development of strategies for
dealing with and anticipating
problems in the development of a
project.

Reusing and remixing

Reuse, modify and mix projects
created by others to create a more
complex project that would not
otherwise be possible.

Abstraction and modularizing

Creating a large project by
combining collections from smaller
sections. For example, code
segmentation depending on the
functionality of the commands.

Computational
Perspectives

The use of technology not only as a

Expressing consumer but as a means of design
and expression.
. Interact with others in the context
Connecting . . .
of social learning practice.
Being encouraged to ask questions
. and challenge the obvious, in some
Questioning

cases, answering these questions
with suggestions and designs.

16

2.3.4 Csizmadia et al. (2015)

Csizmadia et al. (2015) suggest “Computational thinking is a cognitive or thought process
involving logical reasoning by which problems are solved and artefacts, procedures and
systems are better understood”. In addition, they propose a conceptual framework that
describes Computational Thinking Concepts, Approaches (Figure 2-3) (Table 2-5) and
Techniques (Table 2-6).

17

CcT Concepts/

Logic:
predicting &
analysing

Algorithms:
making steps &
rules

Decompotition:

Breaking down
into parts

Patterns:
Spotting and
using
similarities

Abstraction:
Removing
unnecessary
detail

Evaluation:
making
judgement

CcT

Approaches /

Tinkering:
Experimenting
& playing

Creating:
Designing and
making

Debugging:
finding & fixing
errors

Persevering:
keeping going

Collaborating:
working
together

Figure 2-3. Computational Thinking Concepts and Approaches (Csizmadia et al.,

2015).

Table 2-5. Computational Thinking Concepts (Csizmadia et al., 2015)

Element

Description

In classroom

Examples of learner
behavior that may be
observed in the
classroom

18

Computational Thinking Concepts

Logic: the ability to
think in terms of
logical reasoning

the ability to analyze and
control facts through thinking
clearly and accurately to draw
conclusions

Algorithms: the ability
to think
algorithmically

the ability of getting to a
solution through a clear
definition of the steps

formulating
instructions to achieve
a desired effect

using an appropriate
notation to write code
to represent the
formulated
instructions

designing algorithmic
solutions that take into
account the abilities,
limitations and desires
of the people who will
use them

Decomposition: the
ability to think in
terms of
decomposition

the ability of splitting a whole
into separate elements, thus
reducing the level of difficulty
in solving, understanding or
designing

breaking down
artefacts into
constituent parts to
make them easier to
work with

breaking down a
problem into simpler
versions of the same
problem that can be
solved in the same
way

Patterns: the ability to
think in
generalisations,
identifying and
making use of patterns

the ability of identifying
patterns, similarities and
connections, and exploiting
those features

identifying patterns
and commonalities in
artefacts.

adapting solutions, or
parts of solutions, so
they apply to a whole
class of similar
problems

transferring ideas and
solutions from one

19

problem area to
another.

Abstraction: the
ability to think in
abstractions, choosing
good representations

the ability of reducing

unnecessary detail, so that a
problem becomes easier or a

concept simpler, without
losing anything important.

Choosing a way to
represent an artefact,
to allow it to be
manipulated in useful
ways

hiding the full
complexity of an
artefact (hiding
functional
complexity)

hiding complexity in
data, for example by
using data structures.

Identifying
relationships between
abstractions.

Filtering information
when developing
solutions.

Evaluation: the ability
to think in terms of
evaluation

ensuring that a solution,

whether an algorithm, system,
or process, is a good one: that

it is fit for purpose

assessing that an
artefact is fit for
purpose, is functional
correct, is good
enough, is easy for
people to use and
gives an appropriately
positive experience
when used

designing and running
test plans and
interpreting the results
(testing)

comparing the
performance of
artefacts that do the
same thing

making trade-offs
between conflicting
demands

20

stepping through
processes or
algorithms/code step-
by-step to work out
what they do (dry
run/tracing)

Table 2-6.

Computational Thinking Techniques (Csizmadia et al.,2015)

Element

Description

reflecting

making evaluations that have value

coding

converting a plan into code and ensure
that it produces the right result under any
circumstances; debugging is the ability of
evaluating, testing and verifying the
outcome

designing

creating representations of the design such
as flowcharts, storyboards, pseudo-code,
systems diagrams, etc. It involves further
activities of decomposition, abstraction
and algorithm design.

Computational Thinking Techniques

analysing

breaking down into component parts
(decomposition), reducing the unnecessary
complexity (abstraction), identifying the
processes (algorithms) and seeking
commonalities or patterns

(generalisation); using logical thinking
both to better understand things and to
evaluate them as fit for purpose

applying

adoption of pre-existing solutions to meet
the requirements of another context

21

2.3.5 International Society for Technology in Education (ISTE) and Computer
Science Teacher Association (CSTA) (2011)

International Society for Technology in Education (ISTE) and Computer Science Teacher
Association (CSTA) (2011) developed an operational definition that includes, the

following elements:

(a) formulating problems in a way that enables us to use a computer and other tools to help

solve them,

(b) logically organizing and analyzing data,

(c) representing data through abstractions such as models and simulations,

(d) automating solutions through algorithmic thinking (a series of ordered steps),

(e) identifying, analyzing, and implementing possible solutions with the goal of achieving

the most efficient and effective combination of steps and resources; and

(f) generalizing and transferring this problem-solving process to a wide variety of

problems.

In addition to these elements (ISTE) and (CSTA) include the following attitudes to

their operational definition:

(a) confidence in dealing with complexity,

(b) persistence in working with difficult problems,
(c) tolerance for ambiguity,

(d) the ability to deal with open ended problems; and

(e) the ability to communicate and work with others to achieve a common goal or solution.

2.3.6 Kalelioglu, Gulbahar, & Kukul (2016)

Kalelioglu, Gulbahar, & Kukul (2016) develop a framework (Table 2-7) that describes CT

skills, considering CT to be a problem-solving process.

22

Table 2-7. Framework for Computational Thinking as a Problem-Solving Process

(Kalelioglu, Gulbahar, & Kukul, 2016)

Identify the Gathering, Generate, select Implement Assessing
problem representing and | and plan solutions solutions and
analysing data solutions continue for
improvement
Abstraction Data collection Mathematical Automation Testing
reasoning
Decomposition Data analysis Modelling and Debugging
Building simulations
Pattern) Generalisation
algorithms and
recognition

procedures

Conceptualisin
P g Parallelisation

Data

representation

Each element of this framework is related to the process of solving a problem. For
example, the problem must first be identified. Using subtraction and decomposition one
can locate the structural elements of a problem. This is followed by data collection,
representation and analysis. In the second phase, solutions that require mathematical
reasoning and algorithmic reasoning must be designed. These solutions must be
implemented using automation, modeling and simulations. Finally follows the evaluation
of the implemented solutions using testing of the designed plans, debugging the code and

generalization of the solutions.

2.3.7 Selby (2013)

Selby (2013) review the literature, analyzing the Computational Thinking terms previously
proposed. She suggests Abstraction and Decomposition be at the heart of Computational
Thinking and classifies the various terms found in the literature into four main categories:
Thinking terms, Problem-solving terms, Computer Science terms and Imitation terms.
After analyzing these terms, she proposes to exclude broad terms that are not well-defined
and terms related to skills demonstrations, defining CT as a though process that involves
the following elements:
23

(a) the ability to think in abstractions,

(b) the ability to think in terms of decomposition,
(c) the ability to think algorithmically,

(d) the ability to think in terms of evaluations; and

(e) the ability to think in generalizations.

2.3.8 Shute et al. (2017)

Shute et al. (2017) reviewed definitions and CT models and define CT as “the conceptual
foundation required to solve problems effectively and efficiently (i.e., algorithmically,
with or without the assistance of computers) with solutions that are reusable in different
contexts.” They propose an operational definition that underlines the relationship between
Computational Thinking and problem solving and includes six main dimensions presented
in Table 2-8.

Table 2-8. Computational Thinking components (Shute et al., 2017)

Facet Description

Decomposition | Dissect a complex problem/system into manageable parts. The divided parts are not
random pieces, but functional elements that collectively comprise the whole

system/problem.

Abstraction Extract the essence of a (complex) system. Abstraction has three subcategories:

(a) Data collection and analysis: Collect the most relevant and important information

from multiple sources and understand the
relationships among multilayered datasets;

(b) Pattern recognition: Identify patterns/rules underlying the data/information

structure;

(c) Modeling: Build models or simulations to represent how a system operates, and/or

how a system will function in the future.

24

Algorithms

Design logical and ordered instructions for rendering a solution to a problem. The

instructions can be carried out by a human or

computer. There are four sub-categories:

(a) Algorithm design: Create a series of ordered steps to solve a problem;
(b) Parallelism: Carry out a certain number of steps at the same time;

(c) Efficiency: Design the fewest number of steps to solve a problem, removing

redundant and unnecessary steps;

(d) Automation: Automate the execution of the procedure when required to solve similar

problems.

Debugging Detect and identify errors, and then fix the errors, when a solution does not work as it
should.
Iteration Repeat design processes to refine solutions, until the ideal result is achieved.

Generalization

Transfer CT skills to a wide range of situations/domains to solve problems effectively

and efficiently.

2.3.9 Sondakh et al. (2020)

Sondakh et al. (2020) proposed a CT definition (Figure 2-4) based on the fuzzy Delphi

method. Experts from Computer Science and Technology Industry participated in the study

validating terms found in the literature. They describe the main components of CT as skills,

attitudes and spiritual intelligence.

25

Skill (Knowledge)

Abstraction

Algorithmic Holistic

Attitudes
Problem Solving

= Teamwork
thinking Computational
Decomposition

Debugging J/ \E
Evaluation

Spiritual

Communication

Intelligence

Self-awareness

Intearityv

Figure 2-4. Definition of holistic Computational Thinking (Sondakh et al., 2020).

2.3.10 Weintrop et al. (2016)

Weintrop et al. (2016) proposed a definition (Figure 2-5) for Computational Thinking with
an emphasis on mathematics and science. Their model consists of the following
interrelated practices: data practices, modeling and simulation practices, computational
problem-solving practices, and systems thinking practices. In addition, each category

further consists of a subset of practices.

26

4 N [N [~ N [)
. Computational -
. Modeling & P . System Thinking
Data Practices . . . Problem Solving .
Simulation Practices . Practices
Practices
. . Preparing Problems for o
Using Computational Computational Investigating a
Collecting Data Models to Understand Solutions Complex System as a
a Concept Whole
Programming
Using Computational Understanding the
Creating Data Models to Find and Relationships within a
Test Solutions Choosing Effective System
Computational Tools
Assessing Assessing Different
Manipulating Data Computational Models Approaches/Solutions Thinking in Levels
to a Problem
Developing Modular
Computational c icati
. Solutions ommunicating
Analyzing Data Des.lgnlng Information about a
Computational Models Syst
Creating ystem
Computational
Abstractions
Visualizing Data Constructing . Defining Systems and
g Computational Models Troubleshoopng and Managing Complexity
Debugging
. /. /' /. J

Figure 2-5. Computational Thinking in Mathematics and Science definition
(Weintrop et al., 2016)

2.3.11 Computational Thinking elements

Each definition presented above contributes to the understanding and clarification of the

Computational Thinking construct in relation to the elements of which it consists. This

subsection presents a summary of CT elements (Table 2-9) described in some of the

definitions presented in the previous sub-sections. We select to present the specific

definitions as they are highly cited in the literature, cover an extensive period of time and

are developed based on different approaches (e.g., systematic literature review, previous

authors' studies, literature summary, meeting procedures).

27

Table 2-9. CT elements in CT operational definitions

Barr &
Stephenson
(2011)

Brennan &
Resnick (2012)

Selby (2013)

Angeli et al.
(2016)

Shute et al. (2017)

Abstraction

Analysis and

Model validation
Simulation

Data collection,
analysis and

representation

Problem

decomposition

Abstracting and

modularizing

Ability to think

in abstractions

Abstraction

Abstraction

Data collection and

analysis
Pattern recognition

Modeling

Ability to think
in terms of

decomposition

Decomposition

Decomposition

Algorithms and

procedures

Control structures

Computational
concepts (mapping

to Scratch

Ability to think

algorithmically

Algorithms

Sequencing

Algorithms

Algorithm design

programming Flow of control Parallelism
Parallelization blocks such as N

sequences, loops Efficiency
Automation

etc) Automation
Testing and Testing and Ability to think | Debugging Debugging
verification debugging in terms of

evaluations

28

Ability to think | Generalization Generalization
in terms of

generalizations

Being incremental Iteration
and iterative

Reusing and

remixing

Expressing

Connecting

Questioning

2.4 Computational Thinking Literature Reviews

Many of the above definitions come from studies that review the literature, investigating
Computational Thinking terms. Despite the strong interest in defining Computational
Thinking, a growing number of literature reviews focusing on the teaching and learning of
Computational Thinking can be also found. Some of these reviews focus on a specific topic
of CT domain, such as assessment, while others cover multiple topics. Reviews that cover
multiple topics can be classified in three categories: a) studies aiming to develop a
definition (e.g. Kalelioglu et al., 2016; Shute et al.; 2017) b) studies reviewing the literature
to provide insights on teaching and learning CT (e.g. Grover & Pea 2013; Lye & Koh,
2014; Buitrago Florez et al., 2017) and c) studies aiming to analyze CT research (e.g. Hsu
et al., 2018). Despite all this work reviewing various aspects of CT through programming
in K-12 education, a conceptual model of the domain is still missing. Table 2-10 presents

recent Computational Thinking studies that review the literature

29

Table 2-10. Literature Reviews in CT domain

Review

Main Contribution

Scope

CT
approach

Main focus
on
educational

level

Studies
included

(Grover &
Pea, 2013)

Review CT
definitions, the
rationale for
integrating CT into
K-12 education,
tools for CT
development and
assessment, and
provide information
on what CT entails
and how is integrated

in K-12 education.

General

Programming

K-12

Undefined

(Lye & Koh,
2014)

Review the trends of
empirical research in
the development of
CT through
programming in K-
12 education such as
programming
environments,
learning outcomes
and approaches, and
derive insights on K-

12 curriculum.

General

Programming

K-12

Empirical higher
education and
K-12 articles

(Kalelioglu et
al., 2016)

Review theoritical
basis, definition, CT
elements, population,
type of research

design, and develop

General

Programming
and
unplugged
methods

K-12

Higher
education and
K-12 articles

30

a framework that
includes notion,
scope and elements
of CT.

(Buitrago Review challenges General Programming | K-12 and Journal articles,
Florez et al., | faced by early higher reviews,
2017) programmers, proceedings,
programming
short
languages and
. communications,
pedagogical tools,
. and
and provide an
. governmental
overview of how
_— standards
programming is
being taught in K-12
and higher
education.
(Shute etal., | Review CT General Programming | K-12 Conceptual
2017) definitions and and other papers and
characteristics, approaches empirical studies
interventions,
assessments and
models, and develop
a CT competency
model.
(T.-C. Hsu et | Review learning General Programming | All SCl and SSCI
al., 2018) strategies, teaching and other educational | journal articles
instruments, approaches levels

programming
languages and course
types, and analyze
the evolution of CT

research.

31

(Ching, Hsu, | Review the Focused on | Programming | K-12 Undefined
& Baldwin, technologies used for | technologies | and other
2018) developing CT in approaches
young learners.
(Da Cruz Review the Focused on | Programming | K-12 K-12 and higher
Alves, Gresse | automatic automatic education
Von assessment tools assessment articles
Wangenheim, | used to analyze
& Hauck, artifacts in order to
2019) assess CT skills.
(Zhang & Review the CT skills | Focused on | Scratch K-9 K-9 empirical
Nouri, 2019) | that can be obtained | CT programming studies
through Scratch in elements
K-9 education and
extend Brennan &
Resnick's (2012)
framework.

2.5 Summary

This Chapter presents definitions, related introductory concepts and previous work
conducted in the field of Computational Thinking for a better understanding of the subject.
Specifically, definitions and frameworks of Computational Thinking are presented and
synthesized. In addition, literature reviews conducted in the field of Computational

Thinking, are presented.

32

3 Methodology

The research was organized in the following four phases guided (Figure 3-1) by the

respective research objectives presented in Section 1.1.

Phase 1. Developing a Conceptual Model of Computational Thinking through
programming in K-12 education (CTPK-12).

Phase 2. Expanding the Computational Thinking through Programming in K-12
Education (CTPK-12) Conceptual Model for Higher Education.

Phase 3. Designing and evaluating of a Scaffolding Computational Thinking

game to to be further used in the fourth phase of this dissertation.

Phase 4. Using the CTPK-12 model to design an empirical study to investigate

certain instances of the Learning Strategies and Factors model’s areas.

Invetigation of the

| Extension of the Design and reIatlo_nshlp
model - between instanses
el e CT conceptual to evaluation of a e e
higher education Scaffolding CT tool

K-12 Strategies - Factors

areas

Figure 3-1. Method followed in this thesis

3.1 Phase 1. Developing a Conceptual Model of Computational
Thinking through programming in K-12 education (CTPK-12)

In order to develop a Conceptual Model of Computational Thinking through programming
in K-12 education we elicited the domain knowledge and we subsequently visualized this
knowledge as proposed by Wand and Weber (2002). To gain the knowledge of the domain,
we systematically reviewed the literature. To this end, we followed the Webster and

Watson’s (2002) method, widely used in conducting literature reviews. The method

33

involves a rigorous approach to the selection of cases to be included in the review and a
concept-centric approach to the presentation of results. In addition, in order to further
enhance the systematic selection of studies and to reduce subjectivity as much as possible,
we applied the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman, 2009). The steps

of the method followed in this phase are further elaborated in Section 4.2.2.

3.2 Phase 2. Extending the Computational Thinking through
Programming in K-12 Education (CTPK-12) Conceptual Model for
Higher Education

This phase aims to extend the CT conceptual model to include higher education as well.
For this purpose, we followed a systematic mapping method proposed by Petersen et al.
(2008). They propose systematic mapping as a method that could contribute in research
development by providing a structured type of research that has been conducted. The steps

of the method followed in this phase are further elaborated in Section 5.2.2.

3.3 Phase 3. Designing and evaluating of a Scaffolding Computational

Thinking game.

This phase aims to design and evaluate a Scaffolding Computational Thinking game. The
decision to design a simple tool with scaffolding features instead of using a pre-existing
tool was based on the need for customization. We based the design of the tool on the results
of the literature review conducted in the previous phases. Specifically, we designed the
tool in order to cover CT components included in Brennan and Resnicks’ (2012)
framework. The tool that includes features for scaffolding, also offers the ability to create
log files for CT assessment. In order to evaluate the tool, we investigated how students
perceive its effectiveness, paying particular attention to the scaffolding features. To do so,
we collected data form students through a survey and analyzed their answers using
descriptive statistics and thematic analysis. The research design of this phase is further

elaborated in Section 6.2.

34

3.4 Phase 4. Investigating certain instances of the Learning Strategies
and Factors CTPK-12 model’s areas.

This phase aims to investigate certain instances of the Learning Strategies and Factors
Areas presented in the CPTK-12 model. More specifically, this phase aims to investigate
the effect of scaffolding programming games on middle school students’ Computational
Thinking acquisition. An additional goal is to investigate the effect of middle school
students’ attitudes towards programming in their Computational Thinking development.
For this purpose, we designed and conducted an experimental study where students were
randomly assigned to two groups. The students of the experimental group were introduced
to Computational Thinking through the Scaffolding Computational Thinking tool, while
the students of the control group were introduced using the same tool but without
scaffolding features. Data were collected through tests, questionaries and log files and were
analyzed through descriptive and inferential statistics. The research design of this phase is

further elaborated in Section 7.3.

35

4 Computational Thinking through programming in K-12
Education (CTPK-12) Conceptual Model

4.1 Introduction

The aim of this Chapter is to present one of the main theoretical results of this research,
the Computational Thinking through programming in K-12 Education (CTPK-12)
conceptual model.

The CTPK-12 could aid domain understanding and serve as a basis for future
studies. It could also support researchers to focus on significant research gaps in their CT
studies, having an up-to-date synthesis of the relevant literature. In addition, it could
support the integration of CT into K-12 educational practices, providing evidence to

teachers and policy-makers as well as bringing closer research, practice and policy.

The remainder of this Chapter is organised as follows: Section 4.2 presents the
design of the study for the development of the CTPK-12 model. Section 4.3 presents the
CTPK-12 model. Section 4.4 further discusses the CTPK-12 model areas and its potential

uses. Section 4.5 presents the summary of the chapter.
4.2 Study design

4.2.1 Study goal and research questions

This phase aims to the development of a conceptual model for CT through programming
in K-12 education. The model aims to describe the CT Areas and the relationships between
them. The conditions in which CT is integrated in K-12 education such as policies and
issues regarding national curricula are falling out of scope of the model.

The research questions are:
RQ1. What are the areas of CT through programming in K-12 education domain?
RQ2. What are the sub-areas of each CT Area?

RQ3. How do CT Areas relate to each other?

36

4.2.2 Method

In order to develop a conceptual model for CT through programming in K-12 education
we proceed to the following two steps proposed by (Wand & Weber, 2002): a) elicit the
domain knowledge and b) visualize the domain knowledge. Figure 4-1 presents the study
method in terms of steps conducted and relevant results. We apply the Webster and
Watson’s (2002) systematic literature review approach for the elicitation of the domain
knowledge (CT Areas and their relationships). This includes a structured approach to
identifying sources and a concept-centric approach to presenting the results. We started by
applying the PRISMA Statement (Moher et al., 2009) for the study selection phase. We
then, proceed to the coding scheme identification phase, in which we identify the CT Areas
that serve as a coding scheme for the data extraction phase. The data extraction phase aims
to identify the sub-areas of each CT Area and the CT Areas’ relationships. The process
concludes with the visualization of the data extraction phase results. The whole process
evolved into iterative phases where searches led to new selected studies that were being
analyzed, leading to revised CT areas, sub-areas and relationships. The steps followed in

this study are further elaborated below.

Conceptual Model Development

Visualization of the domain

Elicitation of the domain knowledge
knowledge

Steps Coding scheme

Study selection || identification] Data extraction H—| Concept mapping

3 - CTA
reas
Results cT CT Areas olements CT sub-areas & Conceptual
‘studies CT Areas -matrix > T Areas’ model
L included relationships

Figure 4-1. Method

Y

4.2.2.1 Elicitation of the domain knowledge

Study selection

We carry out the study selection presented in (Figure 4-2), adapting the PRISMA
Statement (Moher et al., 2009). Specifically, we adapt the PRISMA flow diagram (Figure

37

4-2) by placing additional records identified in included phase, as we identified these

studies by examining the selected studies as proposed by Webster & Watson (2002).

The selection of studies included is a critical factor for the validity of the study. For
this reason, the authors identified the search keywords and criteria together but worked
individually to screen the studies and apply the inclusion and exclusion criteria. During
this process a few conflicts emerged, which were solved through discussions until

agreement was reached.

The sub-steps of study selection phase are outlined in the following sub-sections.

Study Selection
Identification | Screening | Eligibility e Included
Records identified through Re;ﬁ;ﬁi;:ffggiﬂeﬂm | | Ful-textarticles assessed | | Studies included (n=101)
database searching (n=759) [| (n=586) for eligibility (n=308)
h l l Studies included (n=87)
Full-text articles excluded,
Records excluded (n=278) with reasons (n =221) Additional records
identified (n =14)

\ °/

Figure 4-2. Process applied for study selection adapted by Moher et al. (2009)

Identification

The relevant studies were detected using keywords in the scientific databases Web
of Science and Scopus. Specifically, we searched the phrase “computational thinking”,
quotations included, with a time constraint of 2006 onwards. The year 2006 was chosen as
it was then that the term “Computational Thinking” was re-introduced by Wing (2006). In
Scopus we included title, abstracts, keywords and in Web of Science we defined category
as Education Educational Research. In both databases we included only articles and
reviews. Searches took place from March 2018 to October 2019 maintaining the
aforementioned structure. In total, three searches took place that resulted in 759 studies,

499 articles in Scopus database and 260 in Web of Science database.

38

Screening

In this sub-step we screened the studies retrieved from the previous step after we
removed 173 duplicates. To this end, we read all the titles and abstracts and we removed
the studies that were not written in English or were not fully available. We also excluded

short papers. This sub-step resulted in 308 studies remaining.
Eligibility

During this sub-step we filtered out the studies retrieved from the screening process
by examining the full-texts and applying the following inclusion and exclusion criteria.

The Inclusion Criteria suggest: a) studies should be published in journals; b) studies
can be conceptual papers, opinion articles and empirical studies, as the incorporation of
conceptual papers in addition to empirical studies broadens the scope of the study by
including theoretical frameworks and future directions; c) the focus should be on CT in K-
12 education and should involve programming; d) in the case of empirical CT studies, in
addition participants should be K-12 students, K-12 pre-service teachers or K-12 in-service

teachers.

The Exclusion Criteria suggest studies are excluded when a) they do not
specifically focus on CT in K-12 education, such as studies that focus on higher education
b) they do not specifically focus on CT through programming, such as studies where
examination approaches focus on tangible artifacts, board games, exhibits etc., and c) they
refer to CT only in their introduction or background and not in their results or they measure

something other than CT.

Included

Subsequently, the studies were further processed by reviewing their citations
(backward) and identifying articles that cite them (forward). The process resulted in the
collection of 14 additional studies including 2 gray literature materials. Finally, 101 studies

were included in the study.

39

4.2.2.1.1 Coding scheme identification

To determine the areas of CT through programming in K-12 domain that serve as our
coding scheme, we apply conventional content analysis. Conventional content analysis is
suggested when existing theory is limited and does not involve a predefined coding scheme
but one that derives from text analysis (Hsieh & Shannon, 2005). We choose conventional
content analysis because of the lack of a conceptual model describing the domain. Initially,
we read all full-text articles in order to approach the domain as a whole. Then we carefully
read each article and highlight keywords that imply a concept/area. Keywords are
combined together, providing categories of the coding scheme. For example, keywords
“assessing the development of Computational Thinking”, “assessment” (Brennan &
Resnick, 2012), “assess and evaluate”, “assessment” (Zhong et al., 2016) are grouped and
eventually led to adding “Assessment Area” in the coding scheme. Subsequently, we sort
the studies in these categories. During this phase the coding scheme evolves by adding new
categories or merging and splitting existing ones. The phase leads to the identification of
the final categories, which from now on will be referred to as CT Areas and serve as the

coding scheme and as the concepts of the conceptual model.

Consequently, we compile a concept-matrix or CT Area-matrix, which is a matrix
listing the CT Areas where each article contributes. In this way we transit from an author-
centric to a concept-centric approach, as suggested by Webster and Watson (2002) (Table
4-1).

Table 4-1. Approaches to Literature Reviews adopted from Webster and Watson
(2002)

Concept-centric Author-centric

Concept X [Author A, Author B] Author A [Concept X, Concept Y]
Concept Y [Author A, Author C] Author B [Concept X, Concept W]

4.2.2.1.2 Data extraction

During this phase, we sort the selected studies into the coding scheme. In this respect, we
use a table for each CT Area. When we insert a study into the table, we also record the
area’s elements that appear in the study (Figure 4-3). Subsequently, we compare every

element with all other elements. The elements with clear match with other elements

40

constitute a sub-area. For example, in Assessment Area, “project analysis” (Brennan &
Resnick, 2012) and “examination of artifacts for CT patterns” (Denner et al., 2012) are
included in the “Artifact analysis” sub-area. Sub-areas consisting of only one element and

low-frequency (<2 studies) sub-areas, are not included in the model.

Subsequently, we use a table for each CT Area in order to record evidence in studies
that suggest relationships between sub-areas (Fig. 4) and therefore Areas. We then group

these evidences and conclude to the relationships between areas.

Elements
Project analysis
(Brennan & ArtiJfact-bade interviews
Resnick, 2012) - X . .
Design scenarios Artifact analysis sub-area
Examination of artifacts based on three
(Denner, categories: programming, documentation
Werner, & Ortiz, g P g. & .
2012) and understanding of software, and design

for usability.

Figure 4-3. Example of elements recording and sub-areas identification

Evidence of relationships

Project analysis (Assessment sub-area) of the CT Relationship between
concepts within Scratch projects (Knowledge base — Assessment Area &
sub-area) Knowledge Base Area

(Brennan &
Resnick, 2012)

Figure 4-4. Example of evidence recording and relationship identification
4.2.2.2 Visualization of the domain knowledge

4.2.2.2.1 Concept mapping

In this step, we use concept mapping as proposed by Siau & Tan, (2005) for visualizing
the concepts (CT Areas) and relationships of the domain, the identification of which is
described in section 4.2.2.1.1. We create a visualization of the conceptual model depicting

CT Areas as nodes. At each node, we note the sub-areas of each CT Area, identified in the

41

previous phase. Finally, we depict the relationships between CT Areas as links. We then

place a label to each link to explain the relationship.

4.2.3 Study limitations

We acknowledge that this study has a number of limitations. First, the proposed model is
based on the analysis of studies written in English. Second, searches for studies were
conducted in only two scientific databases, namely Web of Science and Scopus. Third,
searches included only articles published in journals. Although, we eventually included
some conference papers and gray literature identified through manual inspection of the
references of the selected studies, still the majority of the selected literature includes
journal articles. Fourth, searches were conducted with a time constraint of 2006 onwards.
Thus, the model is based exclusively on the research conducted since 2006 and not on the
initial stages of CT research. Fifth, non-inclusion of studies on the basis of quality criteria
prevents the presentation of all conducted research. Finally, subjectivity combined with
the small number of authors (only two) constitutes an additional limitation of the study.
Although we applied a systematic method (presented in Section 4.2.2) we had to make
subjective choices regarding e.g., grouping the elements, defining the relationships based
on the recorded evidence, naming the CT Areas and sub-areas, and defining exclusion

criteria for selecting sub-areas that are finally included in the model.

4.3 The CTPK-12 model

The proposed Computational Thinking through Programming in K-12 education (CPTK-
12) conceptual model (Figure 4-5) is based on the extracted CT Areas and their
relationships presented in detail in Sections 4.3.1 and 4.3.2 respectively.

42

Learning Strategies _— ——— Capacity Building

Game Based Related Strategies R2 R1 Knowledge for teaching CT
Modeling & Slimulations Relatedlstrategies ehablé acéliring facilitates acquiring Teacher Education
Problem Solving Related Strategies Professional Development
[~ Project Based Related Strategies
Scaffolding Related Strategies
Collaborative Related Strategies —— Knowledge Base
Concepts — R7
LRA Sk|||s' measures
support Practices
Perspectives
RS Tools Attitudes Assessment
address challenges + o
related to Progra'mmlng'tools & Communities Self-Report methods
Robotics & Microcontrollers Tests
Tools specifically developed for CT R Artifact Analysis
RS . Observations
affect the acquisition of Frameworks
address challenges related to
Factors -

Demographic Factors
Non-Cognitive and Cognitive
Factors

Figure 4-5. Computational Thinking through Programming in K-12 education
(CTPK-12) model

The analysis of the 101 studies during the coding scheme identification phase
resulted in the determination of six CT Areas finally included in the model (Table 4-2). CT
studies attempt to address the challenges of CT through programming in K-12 education

domain by focusing on these areas that repeatedly appear in the selected studies.

Table 4-2. CT Areas

Knowledge Base CT measurable elements and their classification.

Assessment Assessment methods and frameworks for measuring CT

through programming in K-12 education.

Learning Strategies Learning strategies leveraged to enhance students' CT

learning through programming in K-12 education.

Factors Factors related to CT through programming acquisition in K-

12 education.

Tools Tools that are used or specifically developed for teaching and

learning CT through programming in K-12 education.

43

Capacity Building Capacity building needed for teaching CT through
programming in K-12 competently.

The percentage of studies by CT Areas to which they contribute is depicted in
Figure 4-6. We categorize the studies into two groups 2006-2014 and 2015-2019. As
shown in Figure 4-6, Assessment and Tools are the two most popular areas that gather the
greatest interest of researchers in both periods. Assessment Area is coming first across the
two timelines (27.9% in period 2006-2014, 25.6% in period 2015-2019) followed by Tools
Area (20.9% in both periods). During period 2006-2014 Knowledge Base Area is coming
third (18.6%) while in period 2015-2019 the percentages of studies aimed at defining CT
fall to 8.5% placing the area as the one with the least interest. On the contrary, the
percentage of studies that focus on Learning Strategies increases from 9.3% during period
2006-2014 to 17.1% during period 2015-2019, placing Learning Strategies in the third
place of researchers’ interest in the selected studies. Respectively for the Capacity Building
Area the percentage of studies that focus on this area increases from 9.3% during period
2006-2014 to 14.7% during period 2015-2019, placing Capacity Building in the fourth
place of interest followed by Factors. These results indicate that as the field matures efforts
still focus on assessment and tools but the focus shifts beyond the definition of CT on more

tangible issues such as Learning Strategies, Capacity Building and Factors.

44

==-2006-2014 2015-2019

Knowledge Base

18,6%
N

Capacity Building 2\ Learning Strategies
/g oo 17,1%
14,7% 4 8% _‘ w70
’ v-9,3%
" 9,3% M
\
4 \
113,2% N
0,
14,0% W 25,60\
Fact A == p t
actors \ 9 ssessmen
\20,9f"_.—27‘9%
20,9%
Tools

Figure 4-6. Percentage of studies by CT Areas to which they contribute in the periods
2006-2014 and 2015-2019. References to 2019 actually refer to period January 2019
to October 2019

The CTPK-12 depicts the areas of Computational Thinking through programming
in K-12 education (CT Areas) and the dominant relations (Table 4-3) between CT Areas

as they emerge from the selected studies.

Table 4-3. CT Areas’ relationships

Capacity R1. Supports teachers to facilitate students understand and acquire
Building CT.

Learning R2. Enable students understand and acquire CT.
Strategies

R3. Increase the motivational levels of underrepresented students,
thereby broadening CT participation and addressing underrepresentation due

to socio-economic, cultural and gender differences.

Tools R4. Allow students to acquire CT through supporting learning

strategies.

45

R5. Address the challenges encountered in learning programming and

reinforce underrepresented students’ motivation.

Factors R6. Affect the acquisition of CT.

Assessment R7. Measures CT and provides a means for deep understanding of

students’ learning.

4.3.1 CT Areas

4.3.1.1 Knowledge Base Area

Knowledge Base Area is at the core of the domain. 57 of the 101 studies are included in
this CT Area. Researchers in these studies either propose a framework or a definition to
identify and classify measurable elements of CT, or simply assess CT elements in order to
assess CT. Based on CT frameworks we examined CT elements in the selected studies.
We classify Knowledge Base Area in five sub-areas: concepts, skills, practices,
perspectives and attitudes (Table 4-4). Figure 4-7 presents the number of studies by CT

element.

The results of the CT knowledge base analysis in the selected studies, include
various CT elements and terms describing classifications of CT elements such as skills,
capabilities, perspectives, attitudes, practices, characteristics, concepts, facets and thought

processes. Some of these terms are often presented with different meaning.

In addition, several CT elements such as Abstraction, Algorithms, Decomposition,
Data representation, Testing, Evaluation, Debugging, Generalization, Iteration appear to
be classified in various ways including CT skills, CT concepts, CT practices or thought
processes. For example, abstraction occurs as the thought process of “the ability to think
in abstractions” (Selby, 2013), as “the skill to decide what information about an
entity/object to keep and what to ignore” (Angeli et al., 2016), and as the practice of
Abstracting and modularizing, that is “building something large by putting together

collections of smaller parts” (Brennan & Resnick, 2012).

The analysis of the reviewed studies reveals the following CT practices according

to Brennan & Resnick’s (2012) framework: Testing and Debugging, Remixing and

46

Reusing code, Being incremental and iterative, Abstracting and Modularizing. In addition,
elements such as Design for usability, Code organization and documentation, and
Programming efficiency proposed by Denner et al. (2012) as key competences for

engaging in CT are also evident.

CT concepts as defined by Brennan & Resnick (2012) that repeatedly arouse in the
examined studies are Sequences, Conditionals, Loops, Events, Parallelism, Variables
(Data), and Operators. Functions, Synchronization blocks and User Interactivity blocks
that are not included in Brennan & Resnick's (2012) framework, are also evident.
Researchers (e.g., Moreno Ledn et al., 2015; von Wangenheim et al., 2018) in the reviewed
empirical studies often match these concepts with other CT elements. For example, von
Wangenheim et al. (2018) assign abstraction to the use of more than one script and the

definition of custom blocks in Snap!.

The examination of the studies also reveals the presence of elements such as Logic,
Collaboration, Cooperativity, Problem solving, Creativity, Communication, Critical
Thinking, Self-efficacy and others that appear once or twice and are not included in CT
frameworks. The presence of these elements could be explained since some validated
general assessment methods such as Dr. Scratch (Moreno Leon et al., 2015) and CTS
(Korkmaz, Cakir, & Ozden, 2017) assess these skills. These general methods are adopted
by other studies (Durak, Yilmaz, & Bartin, 2019; Gabriele et al., 2019; Garneli &
Chorianopoulos, 2018, Garneli & Chorianopoulos 2019; Giinbatar, 2019; Korkmaz & Bai,
2019; Marcelino, Pessoa, Vieira, Salvador, & Mendes, 2018), resulting in a strong

presence of these elements in the reviewed empirical studies.

CT attitudes and perspectives appear less frequently in the reviewed studies and

include mainly Connecting and Expressing as described by Brennan & Resnick (2012).

Table 4-4. Knowledge Base sub-areas

CT elements Description CT frameworks

classification

Concepts Concepts (programming elements) Brennan & Resnick

encountered during programming. (2012)

47

Skills The ability and capacity to carry out CSTA & ISTE (2011),

CT thought processes. Angeli et al. (2016), Shute et al.
(2017)

Practices Thinking and learning processes Brennan & Resnick
developed during programming. (2012)

Perspectives Perception of oneself, his/her Brennan & Resnick

relationship with others and the digital world. (2012)

Attitudes Dispositions and mindsets. CSTA & ISTE (2011),
Barr & Stephenson (2011)

48

Abstraction
Sequences

Loops

Conditionals
Decomposition
Parallelism
Algorithms

Logic

Data representation
Flow control

Events

Creativity

Problem solving
Debugging
Generalization

Data analysis
Algorithmic thinking
Data (Variables)
Reusing and remixing
Testing and debugging
Collaboration
Modeling

Operators
Synchronization

User interactivity
Abstracting and modularizing
Automation

Data collection
Expressing

Critical thinking
Simulation
Communication skills
Functions
Cooperativity

CT patterns for scientific modeling
Evaluation

Efficiency

Iteration

Being incremental and iterative
Connecting

o
(52}

10 15 20 25

Figure 4-7. Number of studies by CT element appearing more than twice in the

examined studies

4.3.1.2 Assessment Area

CT assessment is examined in 53 studies. Researchers in the examined studies develop and
validate assessment methods, propose frameworks or measure students’ CT in order to
achieve deep understanding of students’ learning (Fronza et al., 2017) through various
assessment methods. We classify Assessment Area into five sub-areas: Self-report
methods; Tests; Artifact Analysis; Observations; and Frameworks. Tests, Artifact Analysis
and Observations measure directly CT, in contrary with self-report methods that measure
CT indirectly through recording self-reflection. Table 4-5 presents the classification of
Assessment.

49

CT assessment methods in the examined studies are mainly based on the specific

content of each study. However, there are some efforts to develop general assessment

methods. These efforts include development and validation of tests (Chen et al., 2017;

Roméan-Gonzélez et al., 2017), self-report scales (Kong, Chiu, & Lai, 2018; Korkmaz et
al., 2017; Kukul & Karatag, 2019; Yage1, 2019) for general use in CT assessment and

automatic artifact analysis instruments (Moreno Ledn et al., 2015). Artifact analysis

involves examining students’ programs to detect evidence of CT. Automatic artifact

analysis allows teachers and researchers to focus on assessment methods such as

observations and interviews to gain a complete picture of students’ understanding (Da Cruz

Alves et al., 2019).

Assessment frameworks usually propose optimal combinations of assessment

methods. Frameworks that have been proposed involve data mining techniques (De Souza,

Barcelos, Munoz, Villarroel, & Silva, 2019), hypothesis-driven approaches (Grover et al.,
2017) and Evidence-Centered-Design (ECD) methods (Snow, Rutstein, Basu, Bienkowski,

& Everson, 2019).

Table 4-5. Assessment sub-areas

Studies

Indirect Self-Report

scales, questionnaires,
surveys, interviews, think-
aloud protocol, journals,
reflection reports

S2,54,56,512,513,518,530,535,536,S3
9,540,547,548,555,556,557,559,560,S
61,566,570,579,588,595,597,5101

Tests

multiple-choice tests,
quizzes, open-ended and
other tasks, tasks and
assignments with rubrics,
semi-finished programs,
projects, design scenarios

S3,56,59,510,511,512,513,515,519,S3
2,539,553,570,575,576,577,579,584,S
85,590,593,595,5100,5101

Direct Artifact
Methods analysis

automatic analysis, manually
inspection of artifacts for CT
evidence, examination of
artifacts for CT patterns, log
data

$4,510,513,S15,525,526,532,S33,S35,
S36,537,544,546,554,563,565,566,57
2,586,588

Observations

observations of students’
actions, screen recordings,
learning analytics, camera
recordings, researchers’
notes, structure-based
observations

54,56,510,512,5S35,537,570,579

50

$4,510,515,525,532,537,539,584,590,
Frameworks frameworks for CT assessment 5101

4.3.1.3 Learning Strategies Area

Learning strategies are mentioned in 37 studies. We classify the most common learning
strategies in six sub-areas: Game Based Related Strategies, Modeling & Simulations Based
Related Strategies, Problem Solving Related Strategies, Project Based Related Strategies,
Scaffolding Related Strategies and Collaborative Related Strategies (Table 4-6).
Scaffolding Related Strategies are classified as a separate sub-area, as they are particularly
emphasized in the selected studies. Other strategies involve hands-on, aesthetic design
through media design, storytelling and guided-discovery. Figure 4-8 presents the number

of CT studies by most common strategies.

Studies focusing on learning strategies either propose a pedagogical framework for
CT or apply learning strategies to motivate students and enable them acquire CT. Many of
these strategies are linked to constructionism (Papert, 1980) grounded in Piaget’s (1970)
constructivist theory, and/or Vygotsky’s (1978) Zone of Proximal Development.
Additionally, learning strategies are implemented in traditional classroom settings, at
distance or in blended environments (e.g., Basogain et al., 2018; Grover et al., 2015) that
take advantage of the presence of teachers and the services provided by virtual learning
environments. Researchers in selected studies often use multiple learning strategies to take
advantage of their benefits. Out of the 37 studies included in this CT Area, 15 apply or

propose more than one learning strategy.

Table 4-6. Learning strategies sub-areas

Studies
Game Based Related Game Based Related Strategies involve game design S4,525,526,S35,
Strategies and digital/video game development, programming S36,546,548,S53,
games and any strategy that exploits games and S60,572,S89,
programming. S100

Modeling & Simulations Modeling & Simulations Based Related Strategies S2,511,528,S35,
Based Related Strategies involve designing of scientific models and simulations S72,S81
through strategies such as scientific inquiry and learning
by design.

51

Problem Solving Related ~ Problem Solving Related Strategies involve Problem S5,539,S51
Strategies Based Learning and problem-solving learning strategies
in general.
Project Based Related Project Based Related Strategies involve the $32,553,569,S70,
Strategies engagement with authentic projects set around real S79
challenges and problems.
Scaffolding Related Scaffolding Related Strategies involve strategies that $6,511,513,S17,
Strategies offer support to students as they learn, including S$26,536,539,545,
instructional scaffolding, support/guidance, and S70,S72,5S81,593
adaptive, peer-, resource- scaffolding.
Collaborative Related Collaborative Related Strategies involve strategies S$6,530,S33,545,
Strategies where students actively interact during the learning S48,S70

process including collaborative learning, teamwork,
pair programming and strategies based on student’s
collaboration.

=]
=1
I w

o o
I I |

o0

GAME DESIGN SCAFFOLDING SCIENTIFIC COLLABORATIVE PROJECT BASED PROBLEMSOLVING

MODELING AND LEARNING LEARNING
SIMULATIONS

Figure 4-8. Number of studies by the most common learning strategies

4.3.1.4 Factors Area

CT-related factors are discussed in 22 studies. We classify Factors Area in two sub-areas:

Demographic factors and Cognitive & non-cognitive factors presented in Table 4-7.

Demographic factors have the strongest presence in the selected studies with gender being

discussed in 17 and grade level in 7 out of 22 examined studies.

Several studies investigate the relationship between CT and grade level. Some of

them (Atmatzidou & Demetriadis, 2016; Werner, Denner, Campe, & Kawamoto, 2012)

conclude that CT acquisition is not grade-related (or age-related). Several other studies

conclude that there is a significant relationship. However, their results on the type of this

relationship are contradictory. On the one hand, some studies conclude that there is a

positive relationship between grade level or age and CT. More specifically, Roméan-

52

Gonzélez, Pérez-Gonzalez, & Jiménez-Fernandez (2017) assessed 1,251 students’ CT
using Computational Thinking Test (CTt). They concluded that CT levels increased with
the grade, thus suggesting that this finding may be related to the cognitive problem-solving
aspect of CT. This finding is in line with the results reported by Durak et al. (2019). On
the other hand, there are studies providing evidence that there is a negative relationship
between age (grade level) and CT. More specifically, Durak & Saritepeci (2018) found
that grade level negatively predicted CT, suggesting that as the students’ grade level
increases their CT levels are negatively affected. However, they note that this finding may
be related to participants’ prior experience, which was different depending on the grade
level. A negative relationship between CT (elements of programming empowerment) and
grade level has also been reported in Kong, Chiu, & Lai’s, (2018). However, authors
emphasize that other factors such as less personalized instruction and differences in the
level of difficulty may have affected students’” CT acquisition. Israel-Fishelson &
Hershkovitz (2019) go further by comparing students’ achievement in specific CT
elements between their different grade levels. The authors emphasize that students at
different grade levels performed better on different concepts, suggesting that the design of
a CT approach should take into account “the fit between CT concepts and grade level”
(Israel-Fishelson & Hershkovitz, 2019).

Studies that investigate gender relationship with CT are also contradictory. Some
of them conclude that learning CT is gender-related, while others (Atmatzidou &
Demetriadis, 2016; Werner et al., 2012) find that there is no significant relationship
between gender and CT learning. Studies that conclude that CT is gender-related are also
contradictory. Some of them (e.g., Durak & Saritepeci, 2018; Durak et al., 2019) found CT
level differentiation in favor of female while others (e.g., Kong et al., 2018; Roman-
Gonzaélez et al., 2017) in favor of male students. Studies (e.g., Cooper et al., 2014; Fletcher
& Lu, 2009; Repenning et al., 2015) also discuss challenges related to demographic factors
(e.g., gender, socio-economic) such as underrepresentation in CS and students’ low

motivation.

Creativity appears in the selected studies in the light of two different perspectives.
Several studies (Allsop, 2019; Kim & Kim, 2016; Korkmaz et al., 2017; Yagci, 2019;
Zhong et al., 2016) place creativity in the core of CT along with other elements. However,

53

other studies approach creativity as a separate construct and examine its relationship to
CT. Teachers who participated in Nouri, Zhang, Mannila, & Norén (2019) reported
creativity as one of the skills occurred during CT learning. Kim & Kim (2016) found that
students’ creativity was improved after they participated in their CT intervention. On the
contrary, Hershkovitz et al. (2019) found no relationship between CT and creativity.
However, they suggest that this may relate to specific features of the learning platform

used.

Self-efficacy is an additional factor that appears in the selected studies in the light
of the two aforementioned perspectives. Roméan-Gonzéalez, Pérez-Gonzéalez, Moreno-
Ledn, & Robles (2018) found that CT was positively related to CT self-efficacy. In
addition, they suggested that fostering students' self-efficacy through positive and personal
learning experiences might be effective in acquiring CT. A significant relationship

between CT and programming self-efficacy was also reported by Durak et al. (2019).

Other factors addressed in the selected studies include aspects of personality
(Romén-Gonzalez et al., 2018), persistence (Israel-Fishelson & Hershkovitz, 2019),
attitudes toward and interest in programming, (Kong et al., 2018; Witherspoon & Schunn,
2019) attitudes toward collaboration (Kong et al., 2018), academic success and attitude
against various school subjects (Durak & Saritepeci, 2018), challenges in learning
programming (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013) and teachers’

instructional goals (Witherspoon & Schunn, 2019).

Cognitive factors such as verbal, spatial, reasoning, numerical and problem-solving
ability (Roman-Gonzalez et al., 2017), ways of thinking (Durak & Saritepeci, 2018), and

reflective thinking (Durak et al., 2019) are also investigated in the literature.

Table 4-7. Factors sub-areas

Studies

Demographic factors Grade level, gender, socio-economic and cultural $4,56,522,529,530,531,54

background 3,545,549,553,555,556,S7
0,572,576,577,590
Non-Cognitive and Personal traits, attitudes and motivations such as $29,530,542,546,S55,566,
Cognitive factors aspects of personality, creativity, self-efficacy, S76,577,581,S90, S93

persistence, attitudes toward programming and

54

attitudes toward collaboration; academic
performance, challenges in learning programming
Factors that involve cognitive functions and mental
abilities such as verbal, spatial, reasoning &

numerical ability and problem-solving ability

4.3.1.5 Tools Area

Researchers in 47 studies use or develop tools for CT teaching and learning. We classify
tools leveraged for teaching and learning CT through programming in K-12 education in
three sub-areas: programming tools & communities, robotics & microcontrollers, and tools
specifically developed for CT. Table 4-8 presents the classification of tools. Figure 4-9

presents the number of studies by tool.

Students in the selected studies are mainly engaged with programming concepts
and practices through programming tools. According to Brennan & Resnick (2012), the
concepts and practices that students encounter during programming could be considered
as CT concepts and practices as well. Most of the tools recorded in the selected studies are
visual programming tools. Furthermore, even when text programming is used, the outcome
of programming is often visualized through animations. Agent-based programming
paradigm is also widely applied. In addition, communities are proposed by authors (e.g.,
Clark & Sengupta, 2019; Kafai, 2016) who argue that CT and programming are social
practices. Students in the selected studies share their programs and use socialization

features of communities that according to Xing (2019) can lead to CT development.

Robotics are used for teaching and learning CT in some of the selected studies.
Students in these studies encounter CT concepts and practices during programming robots
to interact with the environment. Among other tools educational robotics kits have the
strongest presence (e.g., Atmatzidou & Demetriadis, 2016; Chalmers, 2018).
Microcontrollers are also evident in studies (e.g., Carlborg, Tyrén, Heath, & Eriksson,

2019; Durak et al., 2019) where students program automations or complex robotic devices.

Several studies develop tools in order to support a CT theoretical framework or
curriculum. Most of the developed tools are visual programming tools and involve game
play (e.g., Clark & Sengupta, 2019; Weintrop, Holbert, Horn, & Wilensky, 2016) and/or

55

modeling (e.g., Basu, Biswas, & Kinnebrew, 2017; Clark & Sengupta, 2019; Kynigos &
Grizioti, 2018; Sengupta et al., 2013).

Table 4-8. Tools sub-areas

Studies

Programming tools
& Communities

Visual & text programming tools.
Communities that provide users with the
with other

opportunity to interact

programmers.

52,54,55,510,515,21,526,530,S3
2,533,535,536,537,539,542,544,
545,546,548,549,553,554,558,S

60,563,570,571,572,575,579,S8

6,594,5101

Programmable robot constructs including

Robotics & $6,512,513,517,518,519,530,56
Microcontrollers educational robotics kits, physical & 0,593
virtual robots.
Automations, control devices,
interactive physical systems.
Tools specifically ~ 100IS developed 1o support @ CT oy 559 547 559 581,589, $93,
developed for CT theoretical framework or curriculum. S100
3

R ANRSIC OIS RS {—‘500%0/\«0%%&@ RS &
C*v/\‘%z& o T O & ” qp\) S 6‘0@& & TN I NI FFSSE
N
L’G&\ Q}Q'\ (;oé Q\e :’(/Q' QQ-O q\v N ¢ & %OQ? @ngeo Q\Q\
v Q0 TS S %QO & & L T &
& «© & & S
v & S &
) \%
N
(')\

Figure 4-9. Number of studies by tool

4.3.1.6 Capacity Building Area

56

https://en.wikipedia.org/wiki/Physical_system

Providing guidance and support to teachers is discussed in 19 studies. We classify Capacity
Building Area in three sub-areas: Knowledge for teaching CT, Teacher Education and

Professional Development (Table 4-9).

The specification of knowledge for teaching CT is a prerequisite for teacher support
(Angeli et al., 2016; Cooper et al., 2014) and thus, we classify it as a separate sub-area in
Capacity Building Area. Technological Pedagogical Content Knowledge (TPCK or
TPACK) is proposed for specifying this knowledge in the selected studies (e.g., Angeli et
al., 2016; Mouza, Yang, Pan, Yilmaz Ozden, & Pollock, 2017). TPCK interweaves the
knowledge of technology (TK), content (CK) and pedagogy (PK) (Koehler & Mishra,
2006). Angeli et al. (2016) define TPCK for CT as the knowledge that enables teachers to
identify creative and authentic CT projects; identify technologies that provide the
necessary technological means for practicing/teaching the whole range of CT; and use
representations in order to make CT comprehensible for all. Other researchers (e.g., Mouza
et al. 2017) place CT into the Technology Knowledge (TK), suggesting that teachers
should understand this knowledge and draw connections with PK and disciplinary content

(CK), such as math, language, art.

Teacher Education could be based on revised educational technology courses that
provide pre-service teachers with CT opportunities and methods courses that focus on
teaching and learning and facilitate the integration of CT into pre-service teachers’ future
educational practices (Yadav et al., 2017). Along these lines, studies in this sub-area
introduce CT to pre-service teachers through technology courses (Angeli et al. 2016,
Gabriele et al., 2019; Mouza et al., 2017; Yadav, Mayfield, Zhou, Hambrusch, & Korb,
2014) and methods courses. For example, Adler & Kim (2018) incorporated CT into a
science methods course for pre-service teachers. A high percentage of participants (90%)
who engaged with CT through simulations consider that CT and simulations could be
integrated into the classroom environment. Participants in Gabriele et al. ‘s (2019) study
developed projects in Scratch and subsequently incorporated them into their teaching
practices during their internship.

Professional Development aims to support teachers in understanding and
integrating CT into their practices (Alfayez & Lambert, 2019; Bower, Wood, Lai, Howe,
& Lister, 2017). Hickmott & Prieto-Rodriguez (2018) propose that Professional

57

Development should (a) provide activities relevant to both CT tools and CT learning
strategies; (b) include both step-by-step exercises and self-directed projects; (c) take into
account teachers’ prior knowledge; (d) provide resources that can be directly integrated
into teaching practices; and (e) assess teachers’ knowledge acquisition through direct
assessment methods. Kale et al. (2018) argue that when Professional Development focuses
on the application of CT in different domains and problem solving, it allows teachers to
recognize the importance of CT and integrate the knowledge gained into their teaching.
Ongoing professional development that involves workshops, embedded coaching,
administrative support, co-planning lessons and co-teaching, could also provide in-service
teachers with valuable assistance and thereby expanding their participation in CT (lsrael,
Pearson, Tapia, Wherfel, & Reese, 2015).

Table 4-9. Capacity Building sub-areas

Studies

Knowledge for Models for specifying the knowledge that teachers S5,518,522,567,596
teaching CT need for teaching CT.

Teacher Undergraduate courses such as educational $2,533,534,567,595,596
education technology and methods courses that promote CT
learning and teaching.

Professional Variety of tools such as workshops, training, courses S8,514,S18,541,544,545,
development designed to help teachers improve their professional S50,561,563,569,5S82
knowledge.

4.3.2 CT Areas Relationships

CT Areas Relationships are depicted as arrows between the CT Areas in Figure 4-5 and
descripted in Table 4-3. R6 and R7 model’s relationships could be considered plausible
and are widely reflected in the studies included in the respective CT Areas described in
section (4.3.1). The same is true for R1, while this relationship is not widely tested
empirically in the selected studies. The remaining relationships are further elaborated in

this section.

R2. Several studies attribute the success of the proposed interventions to the applied
strategies. Grover et al. (2015) place particular emphasis on the pedagogical design of their
strategy, which eventually led to the students' understanding of CT concepts (algorithmic
constructs). Repenning et al. (2015) also found that Scalable Game Design strategy that

58

involves game design, simulations and scaffolding allowed students to develop CT skills,
highlighting the important role of pedagogy in the strategy. Séez-Lopez, Roman-Gonzélez,
& Vazquez-Cano (2016) implemented an active pedagogical approach, concluding that
primary school students who participated in their study improved their CT levels in regard
to CT concepts, logic and CT practices. In addition, there are also findings that support the
assumption that learning strategies such as Game Design (Garneli & Chorianopoulos,
2019), Project Based Learning enhanced with software agile methods (Fronza et al., 2017)
and Modeling & Simulations (Garneli & Chorianopoulos, 2018) enable the acquisition of
CT.

R3. Studies also discuss the role of learning strategies in relation to challenges
posed by demographic factors (e.g., gender, socio-economic background) such as
underrepresentation in CS and students’ low motivation (Cooper et al., 2014; Fletcher &
Lu, 2009), arguing that CT teaching and learning motivates learners, especially females
and underrepresented students. More specifically, loannidou, Bennett, Repenning, Koh, &
Basawapatna (2011) and Repenning et al. (2015) suggest that Scalable Game Design
learning strategy leads in broadening participation in CS. Out of over 4000 students who
participated in Scalable Game Design Project, 56 % were minority students and 45% were
female. 64% of the participated girls were interested in continuing their CT activities. In
addition, ethnic minority factor did not affect students’ interest in continuing involving
with CT (Repenning et al., 2015). Teachers who participated in Israel’s et al. (2015) study,
used teaching CT through collaborative problem solving, modeling, explicit instruction,
peer collaboration, and guided discovery in order to make CS accessible to students with
low financial backgrounds and disabilities.

R4. Learning strategies are supported by tools. Out of 32 empirical student-
centered studies, 21 utilize tools as a means of supporting learning strategies to introduce
students to CT. Specific features of tools could support different learning strategies. For
example, a strategy that involves modeling is supported among others, by tools that include
a modeling environment such as CTSiM (Basu et al., 2017; Sengupta et al., 2013). A game
design strategy is often supported in the selected studies by tools such as Scratch (Resnick
et al., 2009) that allows students of all ages to develop games through its low floor

environment.

59

Furthermore, there is evidence that engaging with tools without a learning strategy
is not enough to gain knowledge of CT. Denner et al. (2012) analyze 108 games created
by middle school students in Creator, finding lack of code organization, documentation
and design for usability. Since they found that participated students faced challenges in
designing their games and understanding several programming concepts, they suggested
that proper guidance is critical to enable students’ motivation. Brennan & Resnick (2012)
noted that interviewee students that developed projects in Scratch, sometimes could not
explain their programs, although they had incorporated several programming constructs
into them. Zhao and Shute (2019) examined the development of students’ CT through a
game environment they developed, noting that a non-trivial part of the students’

improvement in CT could be attributed to increased familiarity with the environment.

R5. There is also evidence that tools enhance underrepresented students’
engagement in programming and CS. In a study by Kim & Kim (2016), participating
elementary female students reduced their negative attitudes towards software education

after following a CT course and designing games in App Inventor.

In addition, several studies emphasize (e.g., Fronza et al., 2017; Garcia-Pefialvo &
Mendes, 2018; Lye & Koh, 2014; Repenning, Basawapatna, & Escherle, 2017; Sengupta
et al., 2013) that certain tool features (e.g., visual interfaces) eliminate the challenges
related to the nature of programming, such as difficulty of learning a complex

programming syntax.
4.4 Discussion

The analysis of Knowledge Base Area reveals that recent years' efforts to identify
measurable elements of CT have led to various terms describing classifications of CT
elements such as concepts, practices, skills, attitudes, perspectives. These terms are often
presented with different meaning. In addition, several CT elements proposed by
frameworks appear to be classified in various ways. For example, abstraction occurs as the
thought process of “the ability to think in abstractions” (Selby, 2013), as the skill “to decide
what information about an entity/object to keep and what to ignore” (Angeli et al., 2016),
and as the practice of Abstracting and modularizing, that is “building something large by

putting together collections of smaller parts” (Brennan & Resnick, 2012).

60

During the analysis of the studies, we recorded more than 60 different CT elements
proposed by frameworks and definitions or simply assessed in empirical studies. Some of
them are not included in definition frameworks. This could be explained by the evolution
of the domain. As research in the domain progresses, empirical studies introduce further
CT elements in their assessments in addition to those proposed by the respective
frameworks. The strong presence of some of these elements in the reviewed studies is due
to the fact that they are included in assessment methods such as Dr. Scratch (Moreno Leon
etal., 2015) and CTS (Korkmaz et al., 2017) that have been adopted by other studies (e.g.,
Durak, Yilmaz, & Bartin, 2019; Gabriele et al., 2019; Garneli & Chorianopoulos, 2018,
Garneli & Chorianopoulos 2019; Ginbatar, 2019; Korkmaz & Bai, 2019; Marcelino,
Pessoa, Vieira, Salvador, & Mendes, 2018).

Many of the reviewed empirical studies assess CT as a skill. This could be
explained, since CT was introduced as a skill and attitude by the widely accepted definition
of Wing (2006). In addition, the term CT skills emerges from definitions and frameworks
such as (Angeli et al., 2016) and (CSTA & ISTE, 2011). Programming constructs or CT
concepts as described by Brennan & Resnick (2012) are also frequently assessed. This
finding is consistent with the results presented by Zhang & Nouri (2019). This is likely
because CT concepts can be assessed by direct assessment methods and in addition some
of these methods provide automation facilitating the assessment process. On the contrary,
it is likely that the difficulty to assess perspectives and attitudes through direct assessment

methods leads to its low presence in the reviewed studies.

CT assessment methods mainly assess CT through pretest/posttest, self-report and
artifact analysis. In order to gain a complete picture of the learning process, several studies
include observations in their assessment. CT assessment methods are mainly based on the
specific content of each study although there are some efforts to develop assessment
methods for general use. Most of these methods are self-report methods assessing CT
indirectly, proposing CT elements that are absent in definition models. Thus, we can
conclude that there is no agreement on what and how to assess CT. This is consistent with
several studies (Brennan & Resnick, 2012; Denning, 2017; Fronza et al., 2017; Grover et
al., 2017, Grover et al., 2015; Moreno Leon et al., 2015; Werner et al., 2012; Zhong et al.,
2016) that highlight the challenge of CT assessment.

61

The examination of the studies also reveals that the most common proposed
learning strategies are Game Based Related Strategies and Modeling & Simulations
Related Strategies leveraging scaffolding and collaborative strategies. This could be
explained as game design increases the motivational level of students while modeling &
and simulations facilitates processes that are core to CT such as Abstraction and
Evaluation. There is evidence that learning strategies that enhance students’ CT learning
are essential, as there is research that reveals that introducing CT to young students without

considering appropriate learning strategies leads to difficulties for students to acquire CT.

Tools in the reviewed studies provide environments and communities where
students are engaged with programming constructs and practices. Most of them share the
common feature of visual programming. Scratch is the most commonly used tool and is
usually used for game and media design. This is likely due to the combination of the
following reasons: a) Scratch is proposed as a tool to support CT development by its
designers (Resnick et al., 2009), b) Brennan & Resnick's (2012) framework in which CT
elements are defined in relation with Scratch, facilitates researchers to use Scratch in their
studies and c) the assessment of CT through projects developed in Scratch is facilitated by

automatic assessment methods such as Dr. Scratch (Moreno Leon et al., 2015).

Several studies examine CT-related factors including cognitive, non-cognitive and
demographic factors. Determining the relationship between these factors and CT could
indicate the most appropriate approaches for each case depending on the presence of these
factors. Most of the studies examine gender and socio-economic factors and challenges
that arise from them such as students’ underrepresentation and gender and social
differences. The examination of the selected studies indicates that while factors may affect
CT development, teaching and learning CT could address low enrollment in CS and
increase interest of underrepresented students. Researchers and teachers in the examined
studies are not particularly concerned about challenges that could affect CT acquisition
due to the nature of programming as discussed in (Buitrago Flérez et al., 2017). This could
be explained as the tools used have features that eliminate these difficulties.

Capacity Building has gained attention especially after 2015. Teacher education,
professional development and the knowledge that teachers need in order to teach CT are

the main issues discussed in the selected studies. Many of these studies are surveys that

62

examine the challenges faced by teachers. Other studies propose frameworks or discuss

professional development and teacher education interventions.

The proposed CTPK-12 conceptual model is developed to aid domain
understanding, communicate domain details and document CT through programming in
K-12 domain for future reference. The CTPK-12 conceptual model can be expanded to
include higher education or other approaches than programming, such as kinesthetic
approaches. Thus, it has the potential to serve as a basis for future studies by including CT

Areas or sub-areas as the domain evolves.

In addition, the CTPK-12 model could serve as a basis for hypothesized research
models that establish a direct link between theory and statistical estimations. An example
is presented in (Figure 4-10) where research hypothesis is developed between some CT
Areas of the model. Research hypothesis in the specific example includes H1 (Between
Learning Strategies Area and Knowledge Base Area): Game design enables the acquisition
of CT skills. H2 (Between Learning Strategies Area and Factors Area): Game design
motivates female students, addressing gender differences. H3 (Between Tools and
Learning Strategies): Scratch provides opportunities for game development, supporting
game design. H4 (Between Tools and Factors): Scratch motivates female students,
addressing gender differences. H5 (Between Factors and Knowledge Base): Female and

male students acquire a different level of CT skills.

63

. H1: Game design enables the acquisition of CT skills
Game Design

H3: Scratch provides opportunities CT skills
for game development, supporting game design

‘ Scratch

H5: Female and male students acquire different level of CT skills

H2: Game Design motivates female students,

addressing gender differences. H4: Scratch motivates female students,

addressing gender differences.

L] }_
- Gender

Figure 4-10. Example of a hypothesized research model based on CTPK-12 model

We suggest using the CTPK-12 conceptual model to design empirical interventions
aimed at teaching and learning CT through programming in K-12 education to investigate
as many CT Areas as possible. Furthermore, we assert that empirical studies that explicitly
define the targeted elements of the CT knowledge base, the learning strategies applied, the
assessment methods used, the tools used, the factors that may affect CT based on the profile
of participants, and the capacity building of teachers involved, provide a complete picture

of the intervention being attempted.

In addition, the CTPK-12 conceptual model could be combined with models for
CT activities such as the scope of autonomy model (Carlborg et al., 2019) and the
constructionism matrix (Csizmadia, Standl, & Waite, 2019). The CTPK-12 model could
be used as a guide to designing teachers' lessons, providing them with evidence-based
results and detailed information on CT through programming in K-12 education and
facilitating them to integrate CT into their educational practices. The models’ areas and
their relationships could be taken into account during designing of curricula as well as CT
teaching and learning process to improve effectiveness. In addition, CTPK-12 model could
inform policy makers on their decision-making regarding CT and integration into K-12
education. It should be noted that the application of the CTPK-12 model in practice should
take into account the settings under which CT will be incorporated. These settings include

64

parameters such as course type (optional or compulsory) or whether CT will be employed
into other courses in the curriculum or as a separate course. Further elaboration of these
settings is outside the scope of this study. Figure 4-11 presents the possible application of

CTPK-12 model in educational practice.

Frameworks for CT CTPK-12 model
materials and activities

Settings

implementation

CT curriculum |

Figure 4-11. CTPK-12 model application in K-12 educational practice

4.5 Summary

This chapter presents the method and results of the firs phase of this dissertation that
involves investigating and analysing the literature in order to elicit the areas of
Computational Thinking domain and their relationships. The purpose of this phase was to
develop a conceptual model based on a systematic literature review that maps the CT
through programming in K-12 education domain. The proposed Computational Thinking
through Programming in K-12 education (CTPK-12) conceptual model emerges from the
synthesis of 101 studies and the identification of CT Areas. The proposed model consists
of six CT Areas (namely Knowledge Base, Learning Strategies, Assessment, Tools,

Factors and Capacity Building) and their relationships.

65

5 Extending the CTPK-12 model for higher education

5.1 Introduction

In the previous Chapter we present the development of the (CTPK-12) Computational
Thinking through Programming in K-12 Education conceptual model. We thoroughly
analyse the concepts (CT Areas) and relationships of the model. In this Chapter, we
proceed to extend the proposed CTPK-12 model to include higher education to develop a

holistic model covering CT teaching and learning from early years until graduation.

The remainder of this Chapter is organised as follows: Section 5.2 presents the
design of the study followed for the extension of the CTPK-12 model. Section 5.3 presents
an overview of Computational Thinking through programming studies in higher education.
Section 5.4 presents the CTPHE model which is the extension of the CTPK-12 for higher
education. Section 5.5 further discusses the CTPHE model areas. Section 5.6 presents a

summary of the chapter.
5.2 Study design

5.2.1 Study goal

The study goal is to expand the Computational Thinking through Programming in K-12
education (CTPK-12) Conceptual model for higher education.

5.2.2 Method

In order to achieve the study goal, we apply a Systematic Mapping Study based on
Petersen’s et al. (2008) methodology. This includes the following adapted steps.

Stepl. Definition of research questions: Definition of research questions based on
the study goal (Section 5.2.1)

Step2. Conduct search for primary studies: Conducting a structured search based

on relevant search strings on scientific databases (Section 5.2.2).

Step3. Screening of Studies: Applying exclusion and inclusion criteria (Section
5.2.3).

66

Step4. Classification scheme Identification: Definition of the classification scheme
(Section 5.2.4).

Step5. Data Extraction and mapping process: Shorting the studies into the
classification scheme and provide visualizations of the results. Figure 5-1 presents the

study method in terms of steps conducted and relevant outcomes.

Process Steps

Definition of Research
CQuestions

Conduct Search

Screening of Studies

Classification Scheme
Identification

Data Extraction and
Iapping Process

Review Scope All Studies Relevant Studies Classification Scheme Systematic Map
Outcomes

Figure 5-1. Systematic mapping process, adapted from Petersen et al. (2008)

5.2.2.1 Definition of Research Questions
The research questions are the following:

RQL. What are the areas and sub-areas of teaching and learning CT through

programming in higher education?

RQ2. How do these areas evolve over the years and how do they apply to various
branches?

5.2.2.2 Conduct search for primary studies

We structured the search string driven by the research study goal. Specifically, we used
the search string TITLE-ABS-KEY (“computational thinking”) AND PUBYEAR > 2005
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “r’)) AND (LIMIT-
TO (LANGUAGE, “English”)) in Scopus database and TITLE: (“computational
thinking”) Refined by: DOCUMENT TYPES: (ARTICLE OR REVIEW) AND
LANGUAGES: (ENGLISH) Timespan: 2006-2020. Indexes: SCI-EXPANDED, SSCI,
A&HCI, ESCI in Web of Science database. Searches include articles published between
January 2006 and December 2020. Searches took place on January 2021 and resulted in
993 studies, 707 articles in Scopus database and 286 in Web of Science database.

67

5.2.2.3 Screening of studies

During this step we removed 249 duplicates and studies that were not fully availably.
Subsequently, we applied inclusion and exclusion criteria to exclude studies that were not
relevant to answering the research questions. Table 5-1 presents the exclusion and
inclusion criteria defined. Finally, we included 39 primary studies and 2 additional primary
studies that we identified through backward (reviewing citations) and forward searching.

Appendix B present the total of 41 studies included.

Table 5-1. Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

Empirical CT studies in which participants Studies which discuss/apply CT through
are undergraduate students, postgraduate students other means than programming.

and academic staff.

Empirical CT studies that focus on CT

through programming.

5.2.2.4 Classification Scheme Identification

We use as base for the classification scheme the areas of the CTPK-12 model presented in
Chapter 4. Each Area of the model corresponds to one category in the classification
scheme. Petersen et al. (2008) propose the extraction of the classification scheme based on
keywording of abstracts of the selected studies. For this purpose, we read all the abstracts
of the selected articles and wrote down keywords. Each keyword was assigned to one of
the classification scheme categories in order to determine if there were any additional

categories that could be included in the classification scheme.

5.2.2.5 Data extraction and mapping process

In this step we classify the selected primary studies into the classification scheme.
According to Petersen et al. (2008) the classification scheme evolves while data extraction
is performed. When sorting the selected primary studies into the categories, new sub-
categories appear, while others remain unused. We used an Excel table per category to

68

document the different instances of sub-categories in each primary study and the evolution
of the classification scheme. When listing a primary study into a particular category and
sub-category, we provide a brief rational for why the study should be located in that
particular category/sub-category. The final tables show the distribution of primary studies
into sub-categories and calculate the relevant frequencies. The analysis of the results
focuses on comparing frequencies between different time periods and different targeted
groups. This allows us to identify the categories and sub-categories highlighted in CT
through programming in higher education research and therefore understand its

evolvement and application.

5.2.3 Study Limitations

We acknowledge that this study has some limitations. First, the study includes only studies
written in English. Second, searches were conducted in only two scientific databases,
namely Web of Science and Scopus. Third, searches were conducted with a time constraint
of 2006 onwards. Thus, the study maps the research conducted since 2006 and not on the
initial stages of CT research. Finally, the small number of authors (only two) combined
with subjectivity constitutes an additional limitation of the study. Although we applied a
systematic mapping method, we had to make subjective choices regarding the evolution of
the classification scheme.

5.3 Overview of Computational Thinking through programming

studies in higher education.

5.3.1 Studies by year

The distribution of studies by year (Figure 5-2) reveals an upward trend in the number of
studies. This is particularly true from 2017 onwards when the number of studies increases,
suggesting that the field is generally beginning to mature. For this reason, we analyze the
evolution of the field based on the two time periods 2006-2016 and 2017-2020.

69

0
)
~N ~N ~N
I . . I I
2009 2012 2013 2014 2015 2016 2017

Figure 5-2. Studies by year

o
-
~N
m ‘

2018 2019 2020

5.3.2 Interventions for CT development in higher education.

CT through programming empirical interventions in higher education (Table 5-2) mainly
focus on Education majors, Natural Sciences majors and Computer Science (CS) majors.
Table 5-3 presents the classification of branches based on the selected studies. The intense
interest in Education branch led us to classify it as a separate branch in the context of this

study. Figure 5-3 presents the percentage of studies by branch in periods 2006-2016 and

2017-2020.

Table 5-2. Interventions for CT development in higher education

Study Content Branch Participants
(Adler & Kim, Science methods Education 19 graduate and 13
2018) course undergraduate
preservice teachers
(Bui etal., 2018) Mindmaps and Mathematics Education 50 preservice teachers
Scratch programming
(Cachero et al., Programming training Health Information Systems, 104 undergraduate
2020) Psychology students
(Chao, 2016) Principles and Information Communication 158 undergraduate
methods of C++ students
language

programming

70

(Choi, 2019)

(Cutumisu &
Guo, 2019)

(Cetin, 2016)

(Dolgopolovas &
Jevsikova, 2015)

(Fang et al.,
2017)

(Fernandez et al.,

2018)

(Fernandez et al.,

2018)

(Gabriele et al.,
2019)

(Hambrusch et
al., 2009)

(Hou et al.,
2020)

(Jaipal-Jamani &

Angeli, 2017)

(Jeon & Kim,
2017)

(Kang & Lee,
2020)

(Kazimoglu et
al., 2012)
(Katai, 2020)

(Kwon & Kim,
2018)

(Lee & Cho,
2020)

(Lin & Chen,
2020)

Java programming
class

Educational
Technology course

Programming
language course

Structured
programming (SP)
course

Database Principles
course

Workshop

Start to Programming
course

Programming course

Introduction to CT

Programming course

Science education
methods course

CT-based
programming course
applicable to liberal
arts

Project-based
learning course

Introductory
computer
programming

Sorting algorithms

CT and Software
Coding & Problem
Solving and
Algorithm courses

Computer
programming

Program Logic
Thinking Education

Undefined

Education

Education

Software Engineering

Computer Science and
Technology

Education

Physics, Mathematics and
Natural Sciences

Primary Education
Physics and Chemistry
Beauty Science

Elementary Teacher Education

Education

Non-engineering majors

Computer Science

Humanities, Science

Humanities, Social sciences

and Arts

Undefined

Arts, Music, Chinese, Public
Administration

28 undergraduate
students

139 preservice teachers

56 pre-service teachers

65 undergraduate
students

24 undergraduate
students

21 in-service and pre-
service teachers

22 undergraduate
students

141 preservice teachers
13 undergraduate
students

40 sophomore students

21 preservice teachers

110 preservice teachers

Undergraduate students

25 undergraduate
students

48 undergraduate
students

250 undergraduate
students

151 undergraduate
students

97 undergraduate
students

71

(Mouza et al.,
2017)

(Page &
Gamboa, 2013)

(Pala & Mihg1
Turker, 2019)

(Qin, 2009)

(Rodriguez-
Garcia et al.,
2020)

(Romero et al.,
2017)

(Rubinstein &
Chor, 2014)

(Shih et al.,
2015)

Integrating
Technology in
Education program

How Computers
Work: Logic in
Action

Programming-I

Introduction to
Bioinformatics

Al, ML and its
societal implications
workshop

StorytoCode creative
challenge

Computational
Approaches for Life
Scientists

Computer
Applications in
Emergency
Management

Education

Science, Engineering, History,
Letters, Philosophy,
Linguistics, Economics,
Drama, Business, Psychology,
Business, Computer Science,
Computer Engineering

Education

Biology

Computer Science

Elementary School Education

Biology

Emergency Management
Technology

21 preservice teachers

36 undergraduate
students

33 preservice teachers

Undefined

14 students

120 preservice teachers

25 graduate and
undergraduate students

18 undergraduate
students

(Wuetal.,, 2019) Introduction to C++ Education 47 preservice teachers
programming
(Yuen & Introductory Biology 5 undergraduate
Robbins, 2014) computer science students
course (data-driven)
(Zha et al., Educational Education 59 preservice teachers
2020a) Technology course
(Zhaetal., Educational Education 15 preservice teachers
2020b) Technology course

Table 5-3. Classification of branches

Branch sub-
category

Description

72

Majors (CS)

Education majors

Non-majors in CS

Computer Science including Computer Science and Technology, Computer
Science, Computer Engineering, Software Engineering

Education including Mathematics Education, Primary Education, Elementary
School Education, Secondary Education

Natural Sciences including Chemistry, Biology, Physics

Humanities, Social sciences and Arts including History, Letters, Philosophy,
Linguistics, Economics, Drama, Business, Psychology, Business, Arts, Music,
Chinese, Public Administration.

Engineering
Mathematics
Health Information Systems

Information Communication

Beauty Science

60,00%
50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

=@ 2006-2016
2017-2020

/.—.—\ \—.

or—e ~¢
Emergen
Health Informati cy Humaniti
Beauty | Informati on Manage Engineeri Mathem Compute Natural es, Social Educatio
Science on Commun ment ng atics r Science = Sciences | sciences n
Systems ication | Technolo and Arts
gy

0,00% = 0,00% 7,69% 7,69% 7,69% = 000% = 23,08% 38,46% 7,69% 7,69%
4,17% 4,17% | 0,00% 0,00% 0,00% 4,17% 833% 833% 16,67% 54,17%

Figure 5-3. Percentage of studies by branch in periods 2006-2016 and 2017-2020

During period 2006-2016 a percentage of 69,23% focuses on Computer Science,

Engineering and Natural Sciences while only 7.69% focuses on Education majors. During

the next period 2017-2020 the focus shifts from the aforementioned branches to Education.

A 54,17% of interventions for CT through programming focus mainly on preservice

73

teachers’ preparation. Thus, we can conclude that there is an upward research trend for

interventions aimed at Teacher Education.

5.4 The revised conceptual model for CT through programming in
higher education (CTPHE)

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning
Strategies, Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12
model also cover teaching and learning CT through programming in higher education.
However, different sub-areas emerge in CT areas, while some of the model’s sub-areas do
not exist in the selected higher education studies. The following sections present the areas
and sub-areas found in studies aimed at higher education. Figure 5-4 presents the revised
CTPK-12 model that corresponds to CT through programming in higher education. The
CTPK-12 model also depicts the relationships between the areas of teaching and learning
CT through programming as links between the areas shown in Figure 5-4. The revised
model could be use in order to develop research questions between the areas of teaching
and learning CT through programming in higher education. For example, which learning
strategies could be more appropriate for teaching CT domain specific elements, which for

CT programming elements and which for CT higher-order skills.

Learning Strategies —— ——— Capacity Building

Game Based Strategies Professional development
Modeling & Simulations Based Strategies
Problem Solving enable acquiring
Strategies

Project Based Strategies
Scaffolding Strategies

Collaborative Strategies
Flipped Classroom Strategies Knowledge Base -—

facilitates acquiring

Hands-Cn Strategies Domain Specific elements =)
Lectures Programming elements
Lsuppon

Higher-order elements measures

Tools A nent
address challenges Programming tools Self-Report Methods
related to Robotics & Microcontrollers Tests

Augmented Reality systems Artifact analysis
Machine Learning tools Observations

Tools developed for CT

affect the acquisition of

address challenges related to

Factors -

Non-Cognitive factors

Figure 5-4. The revised conceptual model for CT through programming in higher
education (CTPHE)

74

5.4.1 CT areas in higher education

The classification scheme identification phase revealed that there are no additional areas
in the selected studies other than those indicated by the CTPK-12 model. Therefore, the
areas of CT through programming in higher education which are analyzed and synthesized
in the following sections are the following: Knowledge Base, Learning Strategies, Tools,

Assessment, Factors, Capacity Building.

5.4.1.1 Knowledge Base

15 studies discuss elements of CT including domain specific elements, programming
elements and higher-order skills. Table 5-4 presents the classification of CT elements in
the selected studies. Figure 5-5 presents the distribution of CT Knowledge Base sub-
categories by periods 2006-2016 and 2017-2020. Table 5-5 presents the distribution of CT

Knowledge Base sub-categories by classified branch.

Chao (2016) investigates Computational practice (Sequence, Selection, Simple
iteration, Nested iteration, Testing), Computational design (Problem decomposition,
Abutment composition, Nesting composition) and Computational problem-solving
performance (Goal attainment, Program size). Wu et al. (2019) adapts Brennan &
Resnick’s framework (2012), proposing Concepts (Sequence, Loops, Conditions,
Operators, Data), Practices (Incremental and Iterative, Testing and Debugging, Reusing
and Remixing, Abstracting and Modularizing) and Identities (Expressing, Questioning). In
the same line, Cutumisu & Guo (2019) adopts Brennan & Resnick’s framework (2012) for
assessing CT concepts, practices and perspectives. Cetin (2016) investigates variables,
conditional and selection statements, loops, arrays, and functions as CT elements. Yuen &
Robbins (2014) investigates students’ CT based on a coding scheme that includes
Organization (Coding style, Data organization), Construction (Following procedures,
Visualizing data) and Analysis (Interpretation and Conclusions). Jaipal-Jamani & Angeli

(2017) investigate correct sequence, decisions on the flow of control and debugging.

Qin (2009) propose Multilevel abstraction and conceptualization, Iteration,
recursion and backtracking, Modularization, Assessment and error corrections,
Optimization and Simulation among other CT skill sets that are domain specific, derived
from mapping CT skills to specific bioinformatics topics. In the same line, Rubinstein &

75

Chor (2014) propose Abstraction, Generalization, Modular design and decomposition,
Data structures and Computational models among other domain specific computational

concepts and processes.

Other studies propose skills such as Abstraction, Decomposition, Recognition of
Patterns and Algorithms (Fernandez et al., 2018; Hou et al., 2020), Creativity, Algorithmic
Thinking, Cooperativity, Critical Thinking and Problem Solving (Korkmaz et al., 2017,
Lin & Chen, 2020; Pala & Mihg¢1 Tiirker, 2019). Sondakh et al. (2020) propose a holistic
CT framework that includes the skills of Abstraction, Algorithmic Thinking,
Decomposition, Debugging, Evaluation, Generalization and the attitudes of Problem

solving, Teamwork and communication.

Table 5-4. CT Knowledge Base sub-categories

Knowledge Description Studies

Base sub category

Domain CT concepts, skills and processes mapped PS31, PS34
Specific elements to specific domains.
Programming Programming related concepts, practices, PS4, PS5,
elements identities and designs. PS7,PS11, PS15, PS38,
PS39
Higher-order Higher-order thinking skills and PS10, PS13,
elements competencies. PS21, PS24, PS29,
PS36

76

70,00%
60,00%

50,00% \

40,00%

30,00% /

20,00%
10,00%
0,00% - —
Programming elements Higher-order elements Domain Specific
elements
—8—2006-2016 60,00% 0,00% 40,00%
2017-2020 44,44% 55,56% 0,00%

Figure 5-5. Distribution of CT Knowledge Base elements sub-categories by time

period

Domain-specific elements are discussed in studies during period 2006-2016 while
in period 2017-2020 these elements are absent. Higher-order elements are introduced
during period 2017-2020 with a percentage of 60% in the selected studies of this period.

Programming elements are discussed throughout the years.

Table 5-5. Percentage of studies’ CT Knowledge Base elements sub-categories by

classified branch

Knowledge Base sub-category Non-majors in CS Education majors
Programming elements 33,33% 66,67%
Higher-order elements 33,33% 33,33%
Domain Specific elements 33,33% 0,00%

100,00% 100,00%

Domain Specific elements are discussed only in studies targeted non-majors in CS.
Programming elements have the strongest presence in the selected studies and particularly

in Education majors.

77

5.4.1.2 Learning Strategies

Researchers in 24 studies discuss, propose or apply teaching and learning strategies for CT
through programming in higher education. Out of these studies, seven apply more than one
learning strategy or practice. We classify learning strategies in nine sub-categories,
namely, Game Based Strategies, Modeling & Simulations Based Strategies, Problem
Solving Strategies, Project Based Strategies, Scaffolding Practices, Collaborative
Strategies, Flipped Classroom, Hands-on strategies and Lectures. Table 5-6 presents
studies by each sub-category. Figure 5-6 presents the distribution of learning strategies
sub-categories by time periods 2016-2016 and 2017-2020. Table 5-7 presents the
distribution of learning strategies sub-categories by classified branch.

Six studies discuss Problem Solving Strategies (Cetin, 2016; Hambrusch et al.,
2009; Jeon & Kim, 2017; Kang and Lee, 2020; Lee & Cho, 2010; Yuen & Robbins, 2014).
For example, Yuen & Robbins (2014) examine how undergraduate students develop CT
skills during a data-driven programming course that encompasses problem-solving
iterative processes. Lee & Cho (2020) exploit problem-solving methods to improve
students’ CT skills and logical thinking ability. Hambrusch et al. (2009) developed a course

aimed at introducing students to CT based on a problem-driven format.

Four studies discuss Collaborative Strategies: Pair programming (Choi, 2019),
Think-Pair-Share practice (Choi, 2019), Collaborative programming (Wu et al., 2019),
teamwork (Jaipal-Jamani & Angeli, 2017; Zha et al., 2020b). Collaborative programming
is proposed as an effective learning strategy to enhance students’ CT in higher education
(Wu et al., 2019). For example, Choi (2019) develops an instructional model that exploits
Think-Pair-Share Strategy and pair programming. The results of this study show that

collaborative strategies could help students learn CT and programming.

Three studies discuss Project Based Strategies (Ma et al., 2017; Wu et al., 2019).
Wu et al. (2019) support that project-based learning contexts can help novice students
develop different learning pathways to learn CT. In the same line, Ma et al. (2017) propose

using project-driven learning strategies to enable students to acquire CT.

Three studies discuss Scaffolding strategies (Chao, 2016; Jaipal-Jamani & Angeli,
2017; Yuen & Robbins, 2014) usually combined with other strategies. Yuen & Robbins

78

(2014) propose scaffolding as an effective learning strategy in order to enable students to
focus on higher-order computational concepts without struggling with coding process in a
text programming language such as MATLAB. In the same line, Chao (2016) argues that
scaffolding may facilitate students to develop programming strategies and skills. Jaipal-
Jamani & Angeli (2017) also found that the scaffolding programming instructional strategy

they applied in their study, helped students to acquire CT.

Two studies discuss Modeling & Simulations Based Strategies (Adler & Kim,
2018; Magana & Silva Coutinho, 2017), two studies Flipped classroom (Zha et al.,2020a,
Zha et al. 2020b) and one study Game Based Strategies (Kazimoglu et al., 2012).
Specifically, Kazimoglu et al. (2012) propose a serious game where students develop their

game strategies through programming based on an educational game framework for CT.

Two researchers choose to give hands-on activities (Qin, 2009; Rubinstein & Chor,
2014) and three use lectures (Cetin, 2016; Gabriele et al., 2019; Jaipal-Jamani & Angeli,
2017). Other strategies involve reflective learning (Choi, 2019), storytelling (Romero et
al., 2017) and network autonomous learning (Li & Hou, 2014). Additionally, learning
strategies are implemented in traditional classroom settings or in blended environments
(Fernandez et al., 2018; Mouza et al., 2017; Zha et al., 2020b).

Table 5-6. Learning strategies sub-categories

Learning Description Studies

Strategies sub-category

Game Based Game Based Related Strategies PS18
Strategies involve game design and digital/video game
development, programming games and any
strategy that exploits games and

programming.

Modeling & Modeling & Simulations Based PS1, PS26
Simulations Based Strategies Related Strategies involve designing of

scientific models and simulations.

79

Problem Solving

Strategies

Project Based

Strategies

Scaffolding

Strategies

Collaborative

Strategies

Flipped Classroom

Strategies

Hands-On Strategies

Lectures

Problem Solving Related Strategies
involve Problem Based Learning and
problem-solving learning strategies in

general.

Project Based Related Strategies
involve the engagement with authentic
projects set around real challenges and

problems.

Scaffolding Related Strategies
involve practices that offer support to

students as they learn.

Collaborative Related Practices
involve practices where students actively
interact during the learning process including
Pair programming, Think-Pair-Share practice
and any practice based on student’s

collaboration and cooperation.

Flipped classroom Strategies
involve strategies that reverse the traditional
model of classroom instruction.

Hands-on activities

Theoretical lectures

PS4, PS12,
PS16, PS23, PS26,
PS39

PS26, PS38

PS6, PS15,
PS39

PS5, PS15,
PS38, PS40

PS40, PS41

PS31, PS34

PS4, PS11,
PS15

80

40,00%

35,00%
30,00%
25,00%
20,00%
15,00%
C ° ° C O
10,00%
5,00%
0,00% .
Modeling
Collaborat Game & Problem Project | Scaffoldin .
. Hands-On . . R Flipped
ive Based . Lectures Simulation Solving Based
. . Strategies . . . Classroom
Strategies Strategies s Based | Strategies Strategies Strategies
Strategies

e=@==2006-2016 9,09% 9,09% 18,18% 9,09% 0,00% 36,36% 9,09% 9,09% 0,00%
==9==2017-2020 20,00% 0,00% 0,00% 13,33% 13,33% 13,33% 13,33% 13,33% 13,33%

Figure 5-6. Distribution of learning strategies sub-categories by time period

During period 2006-2016 problem solving Strategies have the strongest presence
(36.36%), while during period 2017-2020 almost all learning strategies sub-categories
occupy the same percentage (13.33%) with the exception of Game Based Strategies which
has no presence at all and Collaborative Strategies which have a slightly stronger presence
than the rest (20%).

Table 5-7. Percentage of learning strategies sub-categories by classified branch

Learning strategies CS majors Educatio Non-majors
sub-category n majors

Collaborative Related 0,00% 23,08% 12,50%
Strategies

Game Based Related 33,33% 0,00% 0,00%
Strategies

Hands-On Strategies 0,00% 0,00% 25,00%

Lectures 0,00% 23,08% 12,50%

81

Modeling & 0,00% 7,69% 0,00%
Simulations Based Related

Strategies

Problem Solving 33,33% 15,38% 25,00%
Related Strategies

Project Based 33,33% 7,69% 12,50%
Related Strategies

Scaffolding Related 0,00% 7,69% 12,50%
Strategies
Flipped classroom 0,00% 15,38% 0,00%
100,00% 100,00% 100,00%

No strategy seems to be dominant in any of the classified branches. In addition, as
shown in Table 5-7. Percentage of learning strategies sub-categories by classified branch,
in studies aimed at preservice teachers and non-majors, a greater variety of studies is

applied than in studies aimed CS majors.

5.41.3 Tools

Researchers in 37 studies discuss, propose or exploit tools for CT teaching and learning in
higher education. We classify tools in five sub-categories, namely, Programming tools,
Robotics & Microcontrollers, Augmented Reality Systems, Machine Learning tools and
tools specifically developed for CT. Table 5-8 presents tools sub-categories leveraged in
the selected studies. Figure 5-7 presents the distribution of tools sub-categories in periods
2006-2016 and 2017-2020. Table 5-9 presents the distribution of tools sub-categories by

classified branch.

Eight studies exploit Scratch (Adler & Kim, 2018; Bui et al., 2018; Cetin, 2016;
Gabriele et al., 2019; Hou et al., 2020, Mouza et al., 2017; Romero et al., 2017, Zha et al.,
2020a), two studies Hour of Code (Adler & Kim, 2018; Mouza et al., 2017), one study
Code.org (Cutumisu & Guo, 2019), one study App Inventor (Shih et al., 2015), one study

82

ARDUINO IDE (Pala & Mihg Tiirker, 2019), one study LEGO® WeDo robotics (Jaipal-
Jamani & Angeli, 2017), one study Java (Choi, 2019), one study Hopscotch (Zha et al.,
2020b), one study HTML5 and CSS3 (Jeon & Kim, 2017) nine studies Python (Cachero
et al., 2020; Dolgopolovas & Jevsikova, 2015; Hambrusch et al., 2009; Kang & Lee, 2020;
Kwon & Kim, 2018; Lee & Cho, 2020; Magana & Silva Coutinho, 2017; Pala & Mihg¢1
Tirker, 2019; Rubinstein & Chor, 2014), one study ACL programming language (Page &
Gamboa, 2013), two studies C++ (Pala & Mihg1 Tiirker, 2019; Wu et al., 2019), three
studies SQL (Huang & Leng, 2019; Qin, 2009; Fang et al., 2017), two studies MATLAB
(Magana & Silva Coutinho, 2017; Yuen & Robbins, 2014), and four (Chao, 2016; Katai,
2020; Kazimoglu et al., 2012; Lin & Chen, 2020) studies develop a tool. For example,
Chao (2016) develops a problem-solving programming environment and Lin & Chen

(2020) develop a deep learning recommendation based augmented reality system.

Table 5-8. Tools sub-categories

Tools sub-category Studies
Programming Visual programming & PS1, PS2, PS4,
tools PS5, PS7, PS11, PS13,

PS18, PS19, PS28, PS33,
PS35, PS39, PS40

Text programming tools. PS3, PS6, PS8,
PS9, PS12, PS14, PS16,
PS17, PS22, PS23, PS27,
PS29, PS30, PS31, PS34,
PS35, PS38, PS39

Robotics & Microcontrollers PS15, PS30

Augmented Reality systems PS25

Machine Learning tools PS32

Tools specifically developed to support a CT strategy PS5, PS18, PS25,
PS19

83

60,00%

40,00%
20,00%
0,00% Tool i m o ®

Text ools Visual icrocontro Augmented Machine

rogrammin developed for rogrammin ers & Realit Learnin

prog & CcT prog & Robotics v &

=@=2006-2016 57,14% 14,29% 28,57% 0,00% 0,00% 0,00%

2017-2020 40,00% 4,00% 40,00% 8,00% 4,00% 4,00%

Figure 5-7. Distribution of tools sub-categories by period

During period 2006-2016 text programming tools have the strongest presence
(57.14%) while 28.57% of studies investigates visual programming. Subsequently during
period 2017-2020 a 40% of studies investigating visual programming. Thus, an upward
trend in visual programming is revealed. In addition, new tools such as Microcontrollers,

Robotics, Machine Learning tools and Augmented Reality systems are introduced.

Table 5-9. Percentage of tools sub-categories by classified branch

Tools sub-category CS Education Non-majors
majors majors inCS
Tools developed for 20,00% 0,00% 12,50%
CT
Microcontrollers & 0,00% 13,33% 0,00%
Robotics
Visual programming 20,00% 66,67% 25,00%
Text programming 40,00% 20,00% 56,25%
Augmented Reality 0,00% 0,00% 6,25%

84

Machine learning 20,00% 0,00% 0,00%

Total 100,00 100,00% 100,00%
%

Visual programming is investigated mainly in studies that focus on preservice-
teachers while it is not prevalent in studies that target Non-majors and CS majors. Text-
programing is investigated in all branches while it is prevalent in studies that target Non-
majors in CS (56,25%) and CS majors (40%).

5.4.1.4 Assessment

29 studies discuss CT through programming assessment methods. Assessment methods are
classified in four sub-categories, namely, Self-report methods, Tests, Artifact analysis and
Observations. Table 5-10 presents assessment methods applied in the selected studies.
Figure 5-8 presents the distribution of assessment sub-categories in periods 2006-2016 and
2017-2020. Table 5-11 presents the distribution of assessment sub-categories by classified

branch.

Four of the selected studies involve observations. Wu et al. (2019) record students’
actions and conversations (screen and video recording) to examine how novice
programmers develop CT by interacting with each other during collaborative programming
and problem solving. More specifically, they investigate students’ trajectories and their
different CT development pathways. Screen recording is used to capture the programming
process while video recording is used to capture student’s conversations. Yuen & Robbins

(2014) collect field notes during participants interviews.

Six of the selected studies involve artifact analysis. Chao (2016) collects log data
about the participants' practice, strategies, and performance of computational problem-
solving activities. Choi (2019) evaluates students’ programming artifacts. Yuen & Robbins
(2014) collect source code from students’ in-class activities. Romero et al. (2017) analyze
students’ projects through Dr. Scratch (Moreno-Leon et al., 2015) and manual inspection
based on entities, events, code blocks and errors. Gabriele et al. (2019) analyzed students’
Scratch files through manual inspection for programming concepts, code organization and

85

designing for usability adapted by Denner et al. (2012) and automatic inspection through
Dr. Scratch.

23 studies exploit self-report assessment methods. Five studies exploit scales, three
surveys, seven interviews, eight questionnaires and one study students’ reflections. Yuen
& Robbins (2014) use interviews as their primary method for data collection. Shih et al.
(2015) survey students’ perceptions about programming and their experiences with the
applied CT intervention. Mouza et al. (2017) assess students’ CT knowledge based on a
pre/post scale. Cutumisu & Guo (2019) used topic modeling techniques to extract
participants CT understanding through their reflections. Researchers also develop and
validate self-report scales in their studies. For example, Korkmaz et al. (2017) developed
the CTS scale in order to assess students’ CT skills. The scale includes the items of
Creativity, Algorithmic Thinking, Critical Thinking, Problem Solving and Cooperativity.
Sondakh et al. (2020) propose a scale for CT assessment validated through Fuzzy Delphi
Method that includes the items of Abstraction, Algorithmic Thinking, Decomposition,
Debugging, Evaluation, Generalization, Problem solving, Teamwork, Communication and
spiritual intelligence. In the same line, Kilig et al. (2020) developed and validated a scale
that includes the items of Conceptual Knowledge, Algorithmic Thinking and Evaluation.
Finally, ten studies assess students’ CT through tests and assignments. For example, Jaipal-
Jamani & Angeli (2017) used programming worksheets with completed, semi-completed
and new programming tasks. Lin & Chen (2020) used multiple-choice and fill-in-the-blank

questions to assess students’ programming understanding.

Table 5-10. Assessment sub-categories

Assessment Description Studies

sub-category

Self-Report scales, questionnaires, surveys, PS1, PS2, PS3,
Methods interviews, reports, reflections PS4, PS5, PS7, PS10, PS11,
PS15, PS16, PS17, PS20,
PS21, PS22, PS28, PS29,
S30, PS31, PS34, PS35,

PS36, PS39, PS40

86

Tests multiple choice and open-ended PS3, PS4, PS15,
tests, quizzes, tasks, assignments PS18, PS25, PS31, PS32,
PS34, PS39, PS40

Artifact automatic analysis, manually PS5, PS11, PS19,
analysis inspection of artifacts, log data PS33, PS38, PS39
Observations observations of students’ actions, PS2, PS37, PS39,

screen recordings, camera recordings, field PS40

notes

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00% . . -
Artifact Analysis Observations Tests Self-Report Methods

—=@=—2006-2016 13,33% 6,67% 33,33% 46,67%
=@==2017-2020 14,29% 10,71% 17,86% 57,14%

Figure 5-8. Distribution of assessment sub-categories by period

During period 2017-2020 an upward trend in the use of observations (+4,04%) and
self-report methods (+10.47%) and a downward trend in the use of tests (-15.47%) is
revealed in the assessment of CT. Artifact analysis shows a very small increase of 1.48%.

87

Table 5-11. Percentage of assessment sub-categories by classified branch

Assessment sub- CS Education Non-majors
category majors majors in CS

Artifact Analysis 0,00% 15,79% 14,29%

Observations 0,00% 15,79% 7,14%

Tests 50,00% 10,53% 28,57%

Self-Report 50,00% 57,89% 50,00%
Methods

Total 100,00% 100,00% 100,00%

Self-report methods have the strongest presence compared to other methods in

studies targeted Non-majors in CS (50%) and education majors (57.89%).
5.4.1.5 Factors

Nine studies discuss factors that affect CT. Table 5-12 presents factors discussed in the
selected studies. The effects that CT could have on interest in Computing and attitudes
toward programming (Cetin, 2016; Hambrusch et al., 2009; Shih et al., 2015), self-efficacy
(Jaipal-Jamani & Angeli, 2017; Kwon & Kim, 2018), creativity (Romero et al., 2017),
interest in CT (Zha et al., 2020a), motivational impact (Katai, 2020), enrollment in CS
courses (Hambrusch et al., 2009) and occupational change (Kwon & Kim, 2018) are
discussed in the selected studies. CT-related factors are discussed through the years,
33.33% of the studies are published during 2006-2016 and another 66.67% during 2017-
2020. Furthermore, studies that investigate CT-related factors focus on both Education
Majors (57.14%) and Non-majors in CS (71.43%).

Hambrusch’s et al. (2009) study reveals that the problem-driven approach focused
on computational principles and scientific discovery they applied, increased students’
interest in CS. In the same line, Shih et al. (2015) found a positively change in students’

perceptions about computing after they attended a course aimed to encourage students to

88

apply CT and problem-solving skills to authentic problems. On the contrary, Cetin (2016)
found no significant difference between control and experimental group students in terms
of their attitudes towards programing. However, he suggests that this this is probably due
to the short duration of the intervention and the difficulty of changing students’ already
high attitudes. Kwon & Kim (2018) conclude that a software education curriculum based
on CT can stimulate students’ intrinsic motivation and improve students’ self-efficacy. In
the same line, Jaipal-Jamani & Angeli (2017) found that after participated in a CT robotics
program students’ self-efficacy related to robotics and interest in learning robotics
significantly increased. Kwon & Kim’s (2018) study reveals that integrating CT could

affect students’ perspectives about their future occupation.

Table 5-12. Factors investigated in the selected studies

Factors Description Studies
Non- Personal traits, attitudes and motivations such as PS4, PS12,
Cognitive factors attitudes toward programming, self-efficacy, creativity, PS15, PS19, PS22,
interest in CS, perspective about future occupation. PS27, PS33, PS35,
PS41

5.4.1.6 Capacity Building

Only three of the selected studies discuss academic faculty training and professional
development and they are all published in period 2017-2019. Table 5-13 presents methods

regarding capacity building discussed in the selected studies.

Magana & Silva Coutinho (2017) survey industry and academia experts to identify
the challenges facing academic staff in integrating CT at undergraduate level. Ma et al.
(2017) suggest ways to improve university student’s CT skills, including faculty
professional training based on two principles: the mobility of academic staff and the
organization of training programs. Taylor et al (2018) emphasize the role of collaboration
between institutions as a means of motivating academic staff to redesign courses to

integrate new concepts such as CT and coding.

89

Table 5-13. Capacity Building methods

Capacity Description Studies
Building

Professional Variety of tools such as training PS26, PS27,
development programs, mobility of academic staff, PS37

collaboration between institutions.

5.5 Discussion

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning
Strategies, Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12
model also cover teaching and learning CT through programming in higher education.
However, different sub-areas emerge in CT areas, while some of the model’s sub-areas do

not exist in the selected higher education studies.

Furthermore, as CT applications become more mature these areas evolve. Early
attempts often link CT to domain-related elements, drawing on topics and activities related
to specific courses and disciplines. However, in the coming years, CT is considered as a
construct that is more associated with high-level skills such as abstraction and
decomposition. Elements related to programming are most prevalent and evident
throughout the years. This is plausible as CT draws from CS concepts according to Wing’s

(2006) definition.

CT through programming in higher education is traditionally implemented through
text programming environments. However, the analysis of the selected studies revealed an
upward trend in visual programming. This could be explained as visual programming is
often applied to teacher education courses that have been at the forefront of CT higher
education in recent years. In addition, tools such as Microcontrollers, Robotics and

Augmented reality systems have recently emerged.

CT assessment is generally considered difficult to achieve by several authors
(Brennan & Resnick, 2012; Denning, 2017; Fronzaetal., 2017; Werner et al., 2012; Zhong

et al. 2016). While self-report methods are the most common, the analysis of the selected

90

studies also revealed a shift from tests to artifact analysis and observations in recent years.
These methods are incorporated in order to provide a more complete picture of the CT

acquisition.

Learning strategies and factors related to CT development such as personal traits,
attitudes and motivations are discussed throughout the years, while academic faculty
training and professional development gained attention only recently.

Teaching and learning CT through programming in higher education could be also
organized in two areas: CT development for Non-majors and CS majors; and Teacher
Education. The first concerns interventions and studies that propose the integration of
programming aiming to help Non-majors and CS majors to acquire CT. The second
concerns efforts to educate and support pre-service teachers with ultimate goal the
integration of CT in K-12 education. The two areas present differentiation mainly in the
tools used and the CT elements that are assessed with the second one to draw upon research
on CT contacted in K-12 settings. Implementation of CT through programming for pre-
service teachers is designed mainly on the basis of programming elements and includes

mainly visual programming.

The analysis of the selected studies reveals that the focus of CT research in higher
education is mainly on re-designing courses to align disciplinary knowledge with CT core
concepts and to provide instructional models. The development of frameworks for learning
strategies, tools and assessment methods is not extensively discussed in the selected
studies.

Herein we also identify gaps that we discuss in the following paragraphs in an
attempt to draw connections and implications from K-12 education where extensive efforts

are being made worldwide to integrate CT.

In terms of learning strategies, although previous research has revealed that game
design is often selected to introduce software engineering to students Souza et al. (2018),
this is not the case for CT in higher education. There is no study in the selected studies that
focuses on the development of CT through programming that applies game design learning
strategy. In contrary, in K-12 education, game design is one of the most common strategies

applied in several studies such as (Garneli & Chorianopoulos, 2018; Repenning et al.,

91

2015; Weintrop et al., 2016). This is probably due to the capabilities of the tools offered to
different age groups. In K-12 education, various tools such as Scratch (Resnick et al.,
2009), and Agentsheets (Repenning et al., 2015) are utilized for game design and media
computation, supporting the implementation of learning strategies that include game
design learning. Although these tools are widely used in K-12 education and in higher
education to prepare future teachers (Adler & Kim, 2018; Angeli et al., 2016; Gabriele et
al., 2019), they are rarely used in interventions targeted other CS major or non-major
students. Text programming languages that are mainly used in higher education pose
challenges to students such as dealing with complex syntaxes and abstract concepts
(Buitrago Florez et al., 2017) and require deep programming learning and experience to

enable students to develop a game.

The importance of learning strategies in CT development is emphasized in both K-
12 and higher education studies. Denner et al. (2012) study reveals that introducing CT to
young students without applying a learning strategy, causes difficulties in developing
students’ CT skills. In the same line, Dolgopolovas & Jevsikova, (2015) argue that
appropriate learning strategies should be exploited in order to facilitate CT skills
development. They suggest that programming didactical approaches in higher education
should focus on problem solving skills rather than language programming syntax.

Only few studies (Lee & Cho, 2020; Li & Hou, 2014; Ma et al., 2017) focus on
creating frameworks by aligning learning strategies with CT. The bulk of research in higher
education focuses on the implementation of learning strategies within specific courses and

the development of instructional models.

Although there are studies that underline the role of communities in CT
development (Xing, 2019) and the need to shift from tools to Communities (Clark &
Sengupta, 2019; Kafai, 2016), as CT and programming are social practices, the
exploitation of programming Communities in higher education is still lacking behind.
Content-specific tools and mainly text programming languages are those applied in the
higher education context. This in line with Magana & Silva Coutinho's (2017) study,
showing that tools for teaching and learning CT in higher education are chosen on the basis
of subjects rather than on their ability to support the acquisition of these skills. Exception

are studies that focus on pre-service teachers that investigate mainly visual programming.

92

CT assessment in higher education applies the same assessment methods (Artifact
Analysis, Observations, Tests and Self-report) as in K-12 education. However, the
assessment is mainly carried out in the context of course evaluation. There are some efforts
to develop universally accepted assessment methods but all of them are self-report
methods. This is consistent with Lyon and Magana (2020) review that highlights the strong
presence of self-report assessment methods in higher education CT studies. In addition,
studies do not always attempt to validate the methods used and often do not yield
quantitative results. Other challenges involve the small sample size and the lack of CT

specific elements in the studies’ results.

Moreover, often while studies present in the background various definitions of CT,
they do not ultimately provide information on which elements of CT they focus on based
on these definitions. Many times, they do not mention the CT context on which they are
based, or display CT elements that are not based on a clear definition, are poorly
documented and often vague.

Females and minority groups are often underrepresented in computing, as well as
in technology labor (Jenson & Droumeva, 2016). Cooper et al. (2014) suggest that research
in computing education should focus on gender and other minority groups. In addition,
Shute et al. (2017) review the literature highlighting that researchers consider utilizing CT
to motivate learners, especially females and minorities. However, there are limited studies
(e.g., Zha, 2020a) in higher education that discuss the use of CT through programming to
address issues related to female or underrepresented students. In addition, although gender
as a factor affecting CT acquisition is particularly discussed in K-12 education
(Atmatzidou & Demetriadis, 2016; Durak & Saritepeci, 2018), this is not the case for
higher education. Studies in higher education do not focus on examining the relationship

between gender and other social factors with CT.

Although teachers’ knowledge and needs and their preparation to support students’
understanding of CT are highly discussed in K-12 literature (e.g., Alfayez & Lambert,
2019; Angeli et al., 2016; Bower et al., 2017; Giannakos et al., 2015; Israel et al., 2015;
Mouza et al., 2017; Yadav et al., 2017), research in higher education rarely focuses on

faculty preparation. Only two of the selected studies involve higher education faculty

93

(Magana & Silva Coutinho, 2017) or discuss opportunities for professional development
(Maetal., 2017).

5.6 Summary

This chapter presents the method and results of the second phase of this dissertation that
involves (a) the study of the areas and relationships of the CTPK-12 conceptual model in
the context of higher education and (b) the investigation of these areas based on the
following two dimensions: i) their evolution over the years and ii) the branches to which
CT is applied. For this purpose, a systematic mapping methodology was applied. Main
results include the identification of the CT areas of Knowledge Base, Assessment,
Learning Strategies, Tools, Factors and Capacity Building. Of these, Knowledge Base,
Assessment and Tools have significantly evolved throughout the years, while Capacity
Building has only recently emerged. In addition, the introduction of CT to undergraduate
students and pre-service teachers differs mainly in the tools used and the CT elements that

are assessed.

94

6 Designing and evaluating a Computational Thinking tool

6.1 Introduction

In this Chapter, we proceed to the design and evaluation of a Computational Thinking tool.
The implementation of the tool was done by Maria Mousiou during her master thesis
(Mousiou, 2021). We design a Computational Thinking game that incorporates scaffolding
features and can further be parameterized to produce different versions that are used in the
study presented in the next chapter. In addition, we evaluate the game and investigate the

perceived effectiveness of its scaffolding features.

The remainder of this Chapter is organised as follows: Section 6.2 presents the
study design. Section 6.3 presents the Scaffolding Computational Thinking tool. Section
6.4 presents the evaluation of the tool and the perceived effectiveness of its scaffolding
features. Section 6.5 further discusses the chapters results. Section 6.6 presents a summary

of the chapter.
6.2 Study design

6.2.1 Study goal and research questions
This study aims to design and evaluate a Scaffolding Computational Thinking game.
The research questions of the study are:

RQL. Do students perceive the aMazeD Scaffolding Computational Thinking Game as

ease to use?

RQ2. Do students perceive the aMazeD Scaffolding Computational Thinking Game as

effective on learning Computational Thinking?

RQ3. Do students perceive the scaffolding features of the aMazeD Scaffolding

Computational Thinking Game as effective in learning Computational Thinking?

95

6.2.2 Research design and Participants

To answer the research questions of the study, we adopted a survey research approach. For
this purpose, we designed and conduct a study in a Greek school for students from grades
710 9 (ages 13 to 15) that has been approved by the Ethics Committee of the university of
the authors. The study was conducted during formal teaching hours and lasted one and a
half hours (two teaching hours) for each grade. Students played the Scaffolding
Computational Thinking Game for one hour and subsequently were asked to complete a
questionnaire for about 30 minutes. Only students whose parents gave their written consent
participated in the intervention. A total of 28 students were finally participated in the study.

6.2.3 Instrument

We adapted the instrument (Appendix C) developed by Park (Park, 2009) which is based

on the technology acceptance model (TAM), in order to use it for the data collection.
The questionnaire is divided in the following sections:

e Perceived ease of use (PE)

e Perceived usefulness (PU)

e Attitude (AT)

e Accessibility (AC)

A 5-point Likert scale from 1 to 5 was used for, where 1 equal “Strongly Disagree”,
2 equals “Disagree”, 3 equals “Indifferent”, 4 equals “Agree” and 5 equals “Strongly
Agree.

In addition to the above sections, a demographics section was included, as well as
an open-ended question about the overall experience.

6.2.4 Study Limitations

We acknowledge that this study has some limitations. First, the study is designed to include
only one research group. Second, the results are based on a self-report measure and capture

student’s opinions and perceptions.

96

6.3 The aMazeD Scaffolding Computational Thinking Game

6.3.1 aMazeD General Description

The “aMazeD” scaffolding Computational Thinking game (Mousiou, 2021) consists of 10
levels, most of which are adaptations of the Computational Thinking Test (CTt) questions
developed by Roman-Gonzalez et al. (2017). The game is developed with Blockly and is
based on Blockly Games Maze and Turtle. Each level belongs to one of the following

categories: a) Maze and b) Turtle.

On the one hand, the goal of the game in the levels belonging to the maze category
is to guide the avatar from the beginning to the end following a certain path. On the other
hand, the goal of the game at the levels belonging to the turtle category is to guide the
avatar to draw the required shapes. In both cases, the player uses programming blocks to

give the appropriate instructions to the avatar to complete the levels.

The game environment consists of the following parts: the navigation bar, the
instruction bar, the main game frame, the results box, the Blockly toolbox and the

workspace (Figure 6-1).

The level numbers are displayed in the navigation bar. The light purple color
indicates the completed levels as well as the current level at which the user is. The player
does not have the right to move to any level of his/her choice. The player starts from level
1 and with the submission of his/her answer moves to each next level. In the left part of
the navigation bar the player can select the desired language. In the workplace the player
can stack the blocks in order to create the program that will finally solve the level. The

Blockly toolbox contains the available blocks for each level.

97

M D 1 2 3 4 5 6 7 8 9

Level instructions:

Correct the block options if needed and put the right statements in the if-else block in order to
help me reach my goal.

move forward

tum repeat until

do rﬁ;ve forward

ifpath CXTITICRS

do
repeat until # Try to turn the charater to the right
- direction if there is path to the right.

o

(=N to the left G -

- . " do
o
Result
P Play button count: 2
Level outcome:
199 Level score:

& Total score: 0

Figure 6-1. The aMazeD game environment

Below the main game frame there are the three buttons “Play”, “Reset” and
“Submit”. By clicking the play button, the player can see the visual execution of the code
inserted in the workspace. During code execution, the executed blocks are highlighted. No
level output is displayed after the execution. The play button allows students to see the
execution of their designed solutions, try them out and debug their code. By clicking the
reset button, the character or brush moves to the beginning of the path or to the beginning

of the shape. The game is restored to its original state. No code execution is taking place.

By clicking the submit button the player can see the movement of the character or
the brush depending on the instructions loaded in the workspace. During code execution,
the executed instructions are highlighted. After the execution, a message is displayed with
the level output. If the player manages to solve the level, a success message is displayed,
otherwise a failure message is displayed. In both cases, the submitted instruction is

translated to JavaScript and displayed in the screen, while the game moves to the next

98

level. The player is transferred to the next level regardless of whether the current level has

been completed successfully.

In the results box the message Success or Failure is displayed, in addition to the
current level score and the player's overall score up to that level. The level output and the
score of the level are displayed after the submission by the player. Furthermore, some
additional information is displayed such as the time needed for completion and the times

that the paly button was pressed.

6.3.2 Computational Thinking Concepts and Practices Covered by the
Scaffolding Computational Thinking Game

The player must employ different Computational Thinking concepts and practices
according to Brennan’s and Resnick’s framework (Brennan & Resnick, 2012) in order to
solve each level. Computational Thinking concepts and Practices covered by the game are

presented in Table 6-1.

Table 6-1. CT Concepts and practices per aMazeD level

Computational Thinking concepts adopted from Brennan and Resnick (2012)

specific number of times or until
a condition becomes true

Concept Description Application to aMazeD levels

Sequences Basic instructions and directions | The player needs to design a
sequence of steps in order to
solve the level (Level 1,7)

Loops Repeat a set of instructions for a | The player needs to repeat a set

of instructions in order to solve
the level (Level 2-6, 8-10)

Conditionals

Constraints that allow the
execution of different
instructions

The player needs to design a
solution that involves the
selection of a choice based on
constraints (4-6)

99

Computational Thinking practices adopted from Brennan and Resnick (2012)

Practice

Description

Application to aMazeD levels

Testing and debugging

Trial and error processes for
correcting malfunctions

The player needs to make
corrections to a given set of
instructions (Level 1-3, 5, 7)

Being incremental and iterative

Design and implement solutions

The player uses the play button
in order to see the execution of

using iterative processes
the game and make changes to
his/her solution until the final
submission (Level 1-10)

6.3.3 aMazeD Scaffolding Features

The aMazeD game is designed and developed to support scaffolding based on a three-
dimension framework that includes: i) the provision of a semi-finished or semi-correct
solution, ii) instructions and explanations of the Computational Thinking concepts required
for the solution of the level and iii) the provision of support regarding the logic behind the

solution design.

The scaffolding game provides semi-finished preloaded workspace solutions for
each level. This aims to make it easier for students to understand and use the concepts of
Computational Thinking as they are asked to make small changes to pre-existing semi-
finished solutions rather than writing their own from scratch (Werner et al., 2012). In
addition, the player has the ability to run the semi-finished solutions before even trying to
solve the level so as to observe exactly how the avatar moves with the given instructions.
In this way, he/she can better and more deeply understand how Computational Thinking
concepts such as sequence, loops and conditions work. When the solution is executed for
the first time, an explanation of the Computational Thinking concepts covered at the level
is displayed. The explanation concerns the operation and use of the specific concepts of
Computational Thinking. Subsequently, when the solution is executed for the second time,

a prompt about the logic behind the solution of the level appears. This way, the player

100

could understand how he could use Computational Thinking concepts to solve the

particular level.

Following the above framework, we construct scaffolding for students, first
ensuring the understanding of the concepts of Computational Thinking by providing them
with incomplete solutions and explanations regarding the use of the concepts. We then
provide support to students to help them understand how they could use these concepts to

design effective solutions.

M D 1 2 3 4 5 6 7 8 9

Level instructions:

Correct the block options if needed and put the right statements in the if-else block in order to
help me reach my goal.

move forward

turm repeat until

do rﬁ;ve forward

wm (IR] o the right © -

it path ELZT RS

do

repeat until # Try 10 turn the charater to the right
"o direction if there is path to the right.

g é . (510l to the left & ~
- do
m
S Bt —————————

199 Level score:

& Total score: 0

Figure 6-2. Semi-finished instructions

All game levels are designed based on the three-dimension framework described
above. In the following paragraphs we present how the aforementioned framework is

applied at Level 4.

A semi-finished solution appears in the workspace when the level is loaded (Figure

6-2). In addition, an instruction for correcting the given solution appears. When the

101

solution is executed for the first time, the following explanation about the “if” block is
displayed: “The 'if' block will execute the 'do’ block only if the condition is true.
Subsequently, when the solution is executed for the second time, the following prompted

is displayed: “Try to turn the avatar to the right direction if there is path to the right.”.

6.3.4 aMazeD Analytics Features

Logs are kept for assessment and self-assessment purposes. The data is stored locally at
browser level and displayed on the results page where the teacher or student can download

it in pdf or excel format. Except the total score of the game the following data is stored for

each level:

. Level outcome: the result of the level, Success or Failure

. Score: the level score, zero if it was a failure

. Time: the time it took the player to click "Submit™ button

. "Play" button: how many times the “Play” button was pressed
. JavaScript code: the code submitted.

6.4 Results

6.4.1 Demographic Data of the Participants

The students who participated in the study are in grade 7, 8 and 9. A high percentage of
students (75%) stated that they have previous programming experience. This is important
as they may be able to compare their previous experiences with the experience from the
Scaffolding Computational Thinking Game and draw safer conclusions about it. The

demographic data of the participants are presented in Figure 6-3.

102

Gender Grade level Prior experience in
programming

= Male =Female ngrade7 wgrade8 =grade$ =Yes =No

Figure 6-3. Demographic data of the participants

The scale had a good level of internal consistency, as determined by a Cronbach's
alpha of 0.761. The following paragraphs present the results of each section of the scale.

6.4.2 Perceived ease of use (PE)

PE1L. I find the aMazeD programming and Computational Thinking game easy to use.

10 (35,7%)

9 (32,1%)

75

5,0

2,8

0.0 |

Figure 6-4. Results on PE1

PE2. Learning how to use a programing and Computational Thinking game is easy

for me.

103

10 (35,7%)

0 (0%} ——
00 | 1(3,6%)

Figure 6-5. Results on PE2

Figure 6-4 and Figure 6-5 present the students’ answers to PEl and PE2
respectively. 64,3% of the students perceived the game as easy/very easy to use which is a
slightly higher than the 60,7% who answered that they find easy/ very easy to learn how
to use a Computational Thinking game. While only 3,6% answered that disagrees that the

game is easy to use.

6.4.3 Perceived usefulness (PU)

PUL. The aMazeD game would improve my understanding of the concepts and practices

of programming and Computational Thinking.

20

18 (64,3%)

8(28,6%)

0 (%) 0 (0%}
o | |
1 2

Figure 6-6. Results on PU1

Figure 6-6 presents the students’ answers to PU1. A high percentage of 92.9% of
the students answered that the aMazeD game would improve their understanding of

Computational Thinking practices.

PU2. The aMazeD game could make it easier to study the concepts and practices

of programming and Computational Thinking.

104

10 (35,7%)
9(32,1%)
7.5
7 (25%)
5,0
2.5
1 (3,6%)
0,0
1 2 3 4 5

Figure 6-7. Results on PU2

Figure 6-7 presents the students’ answers to PU2. 57.1% consider that the game
could make it easier for them to study Computational Thinking concepts and practices,

while 7.2% of students answered that they disagree/strongly disagree.

PU3. The prompts the game provide me were enough to help me solve the levels.

15

13 (46,4%)
10
8 (28 64%)
5
4 (14,3%)
3 (10,7%)
0 (0%j
O |
1 2 3 4 5

Figure 6-8. Results on PU3
PUA4. The prompts the game provide me were useful to help me solve the levels.

15

10

5 (17.9%)
4 (14,3%)
1 {05}

D |

1 2 3 4 5

Figure 6-9. Results on PU4
105

PUS5. The prompts the game helped me understand the basic concepts of

programming and Computational Thinking.

10.0

10 (35,7%)

75 8 (28,6%)

a0

25 3 (10,7%)

0.0

Figure 6-10. Results on PU5

Figure 6-8, Figure 6-9 and Figure 6-10 present the students’ answers to PU3, PU4
and PU5 respectively. 75% of students answered that the prompts provided were enough
to help them solved the levels. 67.9% found them useful and 53.6% found that the prompts
helped them understand Computational Thinking concepts and practices. While only
17.1% stated that they disagree/strongly disagree that the game helped to understand the

basic programming and Computational Thinking concepts.

6.4.4 Attitude (AT)

AT1. Studying Computational Thinking and programming through games such as aMazeD

is a good idea.

9 (32,1%)

o

0 {0%)
D |
1

Figure 6-11. Results on AT1

106

Figure 6-11 presents the students’ answers to AT1. 82.1% has a positive attitude
towards learning Computational Thinking through games such as aMazeD. While only

3.6% express a negative attitude.

AT2. I'm positive about programming and computational thinking games.

15
14 (50%)

12 (42,9%)

10

1(3,6%)

1(3,6%)
0 (lea-f:.}

1 2 3 4]

Figure 6-12. Results on AT2

Figure 6-12 presents the students’ answers to AT2. 92.9% has a positive attitude

towards Computational Thinking games, while 3.6% express a negative attitude.

6.4.5 Accessibility (AC)

AC. I have no difficulty accessing and using the aMazeD programming and Computational

Thinking game

10,0
9(32,1%)

¥.8

3,0

4 (14,3%)

24
0{0%)
0.0

Figure 6-13. Results on AC

Figure 6-13 presents the students” answers to AC. 60.7% had no difficulty in using
the aMazeD Computational Thinking game, while 14.3% had difficulties. It is possible that

the question wasn’t clear enough and students answered in regard the level of difficulty

107

of the game and not the difficulty in using the game. We base this assumption on the fact
that no student reported having difficulty in using the game in the open-ended question,

with some students commenting on how challenging/difficult the game was.

6.4.6 Overall experience

Students were asked to answer the following open-ended question: “Write a few words
about your experience of playing aMazeD. What did you like or dislike? What impressed
you?”. 25 students answered this open-ended question while three left it blank. We coded
their answers into two themes: Game overall and Game experience in relation to

Computational Thinking and programming.

Regarding how students perceived the game, students generally found the game
nice, interesting and fun. 11 students stated that the game was “nice”/ “very nice” /

“interesting” / “fun” / “challenging”.

Three students focused on the ease of use of the game. For example, one student

stated that “The game is very well designed and easy to use.”
Three students focused on the prompts:

e Studentl: “I loved playing this game because of its ease of use. I was impressed by

how helpful the tips were.”

e Student2: “This is my second time doing programming, and the instructions given

to us helped me to solve them [the levels] more easily.”

e Student3: “I really liked the logic of the game. Also, the prompts were very
interesting, although on most levels | did not need them. In addition, the
environment was very friendly, simple and convenient. | have only a small
objection to a very small detail: the "reset™ button could have a repeat icon rather

than an “X”. Also, the submit button could have a tick for icon.

The majority of the students also perceived the game as effective on learning

Computational Thinking and programming. This is supported by the following quotes:

108

e Student4: “It was a really nice experience. The game helps in thinking and

creativity.”
e Student5: “I liked that it helped me understand Computational Thinking a little bit.”
e Student6:” I liked it and it helped me to understand some things.”
e Student7: “The game was interesting to get acquainted with the programming.”

e Student8: “I quite liked it because it is a fun way to learn things about

programming”.

e Student9: “The thought process helps you understand Computational Thinking

concepts.”
Finally, only two students express moderate or negative statements about the game.
e Student10: “Although I did not find it very useful it was quite interesting.”

e Studentll: “I didn’t like it.”

6.5 Discussion

In this study we design and evaluate a Scaffolding Computational Thinking game. We
present the aMazeD game that provides Computational Thinking activities to students and
includes scaffolding features. We also present the results of the evaluation of the game and
its features. The aMazeD Computational Thinking game is developed to cover
Computational Thinking core concepts and practices and to support scaffolding. The
scaffolding features include a) the provision of semi-finished or incorrect solutions, b) the
provision of explanations for the basic Computational Thinking concepts and c) the
provision of prompts that explain the logic behind the solution of the game.

The results of the evaluation regarding ease of use, usefulness, attitude,
accessibility and overall experience are promising. Specifically, students seem to consider
aMazeD and similar games as easy to use and accessible. What is also important is that
students are in general positive to Computational Thinking games. The results in questions

regarding how students perceive usefulness of the game indicate that Computational

109

Thinking and programming games could help students develop Computational Thinking.
This is constant with prior research e.g. (Zhao & Shute, 2019; Karakasis & Xinogalos,
2020) that found that programming games could be effectively utilized to help students
develop their Computational Thinking. It is characteristic that a high percentage of 92%
believe that the game could improve their Computational Thinking. Students also found
scaffolding features and specifically prompts useful for solving the game and effective in
learning Computational Thinking. This is reflected in their answers to the open-ended
question where they evaluate the game and their experience as a whole. Almost all the
comments are extremely positive, focusing on both the ease of use of the game and the

effectiveness of its scaffolding features.

6.6 Summary

This chapter presents the method and results of the third phase of this dissertation that
involves the design and evaluation of a Scaffolding Computational Thinking game. For
this purpose, a Computational Thinking game with scaffolding features, was designed and
evaluated by 28 middle school students. The study adopts a survey research approach. The
results regarding ease of use, usefulness, attitude, accessibility and overall experience of
the scaffolding game are promising. Specifically, students found scaffolding features

useful for solving the game and effective in learning Computational Thinking.

110

7 The effect of scaffolding programming games and attitudes
towards programming on the development of

Computational Thinking

7.1 Introduction

This chapter presents an experimental study that aims to investigate the effect of
scaffolding programming games on the development of middle students’ Computational
Thinking.

The remainder of this Chapter is organised as follows: Section 7.2 presents
literature review of scaffolding and attitudes investigated in Computational Thinking
studies. This section has been added to provide basic concepts and previous work on
scaffolding and attitudes towards programming for better understanding of the background
theory of the study described in the chapter. Section 7.3 presents the design of the
experimental study. Sections 7.4-7.11 present the effects of scaffolding programming
games on the development of middle students’ Computational Thinking. Section 7.12

further discusses the chapters results. Section 7.13 presents a summary of the chapter.

7.2 Related Work

In the process of teaching and learning Computational Thinking, learning strategies play
an important role. Efforts have been made to investigate several pedagogies and learning
strategies for teaching Computational Thinking. Among them, game-based learning and
scaffolding are widely adopted (Hsu et al., 2018). Game-based approaches can increase
student motivation, address their disengagement, and foster the acquisition of
Computational Thinking (Weintrop et al., 2016). Thus, they are exploited in several studies
(e.g., de Souza et al., 2019; Garneli & Chorianopoulos, 2018, 2019; Israel-Fishelson &
Hershkovitz, 2020; Zhao & Shute, 2019). In addition to game-based learning, scaffolding
is proposed (Repenning et al., 2015) to increase motivation and student participation in
Computational Thinking. Studies also (e.g., Angeli & Valanides, 2020) reveal that there is
a need to scaffold students’ learning during their engagement with Computational

Thinking. According to Denner et al. (2012), without proper guidance students face

111

significant challenges in developing Computational Thinking skills. Scaffolding helps
students better understand Computational Thinking concepts, which they would not be
able to assimilate if left alone to experiment in a programming environment (Grover et al.,
2015). The aforementioned efforts highlight the importance of feedback and guidance
strategies in Computational Thinking approaches. However, more research is needed on
how the absence versus presence of scaffolding strategies could affect students' cognitive

Computational Thinking learning gains.

Technologies and tools are also important. Thus, researchers focus on the
development of tools specific to support Computational Thinking learning through
programming. Sengupta et al. (2013) developed the CTSiM (Computational Thinking in
Simulation and Modelling) tool. CTSIM is a visual programming environment that
includes a modelling environment and supports low-threshold, high-ceiling, algorithm
visualization, scaffolding and constructivist learning activities. The second version of
CTSIiM is developed to provide students with adaptive scaffolding based on modelling
learner’s domain knowledge, cognitive skills and interests (Basu et al., 2017). Weintrop et
al. (2016) developed a constructionist video game aiming to foster Computational
Thinking. RobotBuilder features a block-based programming language to allow students
to construct their game strategies. Clark and Sengupta (2019) developed the SURGE:
Gameblox, a Disciplinary-Integrated Game (DIG). SURGE: Gameblox exploits formal
representations (such as scientific graphs) and agent-based game programming in a
collaborative environment targeting on promoting Computational Thinking. Although the
aforementioned tools have been developed to include features that support specific
learning strategies, more empirical research that aims to investigate the relationship
between tools, learning strategies and Computational Thinking development (Tikva &
Tambouris, 2021b) is needed.

In addition to learning strategies and tools, research studies are interested in how
various factors influence the acquisition of Computational Thinking. Research (e.g., Kong
et al., 2018) has focused on exploring students’ attitudes towards programming in the
context of Computational Thinking. Particular interest has been paid on how several
Computational Thinking interventions could improve students’ attitudes towards

programming. For example, Cetin (2016) explored the effect of a Scratch-based

112

intervention on students’ attitudes towards programming. However, studies that explore
the relationship between attitudes towards programming and Computational Thinking

acquisition are scarce (Sun et al., 2022).

7.2.1 Scaffolding strategies in Computational Thinking research

Scaffolding strategies including instructional scaffolding, adaptive, peer-,
resource-scaffolding support/guidance, feedback and prompts have been explored in
several studies focusing on the development of Computational Thinking (Tikva &
Tambouris, 2021a). Chevalier et al. (2022) investigated the role of different types of
guidance and feedback in the development of Computational Thinking. To this end, they
designed an experimental study to investigate which of these methods fosters students’
Computational Thinking. They explored four experimental conditions for the different
combinations of with/without guidance and immediate/delayed feedback strategies. Their
results support that delayed feedback could be an effective intervention method for
Computational Thinking development. Angeli and Valanides (2020) investigated the
impact of two scaffolding techniques, designed with gender differences into consideration.
To this end, students were randomly assigned to two groups, each following a different
type of scaffolding. Their findings show that both sexes benefited from both scaffolding
techniques, while each gender benefited more from a different scaffolding technique. Chen
et al. (2021) designed a quasi-experimental study to investigate the effects of scaffolding
prompts on students’ Computational Thinking. Students were assigned to three groups,
each of which received cognitive prompts, metacognitive prompts and combination of
cognitive and metacognitive prompts respectively. Their findings support that
metacognitive scaffolding prompts could be an effective strategy to foster student’s
Computational Thinking. In the same line, Atmatzidou et al. (2018) explored the effects of
different types of guidance (minimal vs strong) on students’ metacognitive and problem-
solving skills. The findings of their quasi-experimental study support that strong guidance

could have a positive impact on students’ metacognitive and problem-solving skills.

113

7.2.2 Attitudes towards programming/Computer Science in Computational

Thinking research

Attitudes towards programming and Computer Science (CS) are of interest to
Computational Thinking studies. Attitudes towards programming are explored under two
major research questions: a) To what extent do specific interventions impact students’
attitudes towards programming/CS? and b) To what extent students’ attitudes towards
programming/CS affect their Computational Thinking? For example, Zhao and Shute
(2019) measure attitudes toward CS based on a survey that includes questions about how
students perceive computers such as “Computers are fun” and “Computing jobs are
boring”. Subsequently they explored if playing a programming video game could have an
impact on students’ attitudes, finding no statistically significant differences in students’
attitudes before and after the intervention. They point out that the short duration of the
intervention may have played a role in this outcome. In the same line, Cetin (2016)
explored the effects of a Scratch-based instruction on participants’ attitudes towards
programming, finding no statistically significant effect. They suggest that this could be
attributed to the limited duration of treatment, the participants' already high attitudes and
satisfaction with the quality of teaching.

Other studies focus on how students’ attitudes towards programming could affect
Computational Thinking acquisition. For example, Sun et al. (2022) define programming
attitude based on a framework that includes the elements of programming self-efficacy,
programming utility, social needs, perceptions of programmers, and programming interest.
Their results support that students’ attitudes towards programming could impact their
Computational Thinking, indicating them as an important factor in Computational
Thinking development. Kong et al. (2018) define programming empowerment as a
Computational Thinking perspective. They explore whether interest in programming and
attitude towards collaboration are related to programming empowerment. Their results
suggest that interest in programming could affect the acquisition of programming

empowerment.

Despite the interest in attitudes towards programming/CS, there is no unanimously
accepted definition by researchers. Computational Thinking studies explore various

attitudes, while focusing on developing scales for them (e.g., Cetin & Ozden, 2015). Table

114

7-1 presents attitudes that appear repeatedly in the literature. In the context of this study,

attitudes towards programming consist of the following three (3) dimensions:

programming self-efficacy, interest in programming and programming meaningfulness.

Table 7-1. Attitudes towards programming/CS found in the literature

Attitude Scale item example Study
Confidence/ programming self- | I am good at programming (Kong et | Kukul et al.,
efficac al., 2018 2017
Self-efficacy y)
Kong et
al.,2018
Durak et al.,
2019
CS self-efficacy | feel confident about my ability to use | Werner et al.,
computers (Werner et al, 2012) 2012
Romén-

Gonzalez et al.,
2018

coding confidence

I am good at coding (Mason & Rich,
2020)

Mason & Rich,
2020

programming
confidence

I am confident to learn programming
(Sun et al.,2022)

Sun et al., 2022

Interest

interest in

programming

I think the content of programming is
fun (Kong et al., 2018)

Kongetal. 2018

Sun et al., 2022

coding interest Solving coding problems seems fun | Mason & Rich,
(Mason & Rich, 2020) 2020
programming Programming is useful to me (Kong et | Kong et al.,,

115

meaningfulness al., 2018 2018
Meaningfulness/Utility d)
coding utility Knowing how to code will help me to | Mason & Rich,
create useful things (Mason & Rich, | 2020
2020)
programming Learning programming is very useful | Sun et al, 2022
utility (Sun et al, 2022)
Social influence/needs My parents think coding is important | Mason & Rich,
(Mason & Rich, 2020) 2020

Sun et al, 2022

Perception of coders/ programmers I think kids who can code spend less | Mason & Rich,
time outdoors than other kids (Sun et | 2020

al, 2022
) Sun et al, 2022

7.3 Study design

7.3.1 Study goal and research questions

This study aims to investigate the effect of scaffolding programming games on the
development of middle students” Computational Thinking (CT). An additional goal is to
investigate the effect of middle school students’ attitudes towards programming in their
Computational Thinking development. For this purpose, the “aMazeD” (Chapter 6) was
utilized. The scaffolding game is aligned with CT concepts and practices included in
Brenan’s and Resnik’s (2012) framework. In particular, we explore how the presence of
scaffolding features affect the acquisition of students’ Computational Thinking. In
addition, herein we investigate the effect of students’ attitudes towards programming on

their Computational Thinking improvement.
The following research questions are posed:

RQ1. Does aMazeD have a positive impact on middle school students' CT

development?

116

RQ2. Does aMazeD with scaffolding features have a greater impact on middle

school students’ CT development than the aMazeD version without scaffolding?

RQ3. Do attitudes towards programming have an impact on middle school
students’ CT?

RQ4. Do attitudes towards programming have an impact on middle school

students’ CT improvement?

7.3.2 Research design

In order to address the study goal, we conducted an experimental study. Ethical approval
from the university ethical committee of the authors’ university was obtained. In addition,
all students’ parents were informed and gave their consent to participate in the study.
Participants were 57 students in seventh, eighth and ninth grade. From them, 29 students
were randomly assigned to the experimental group where a scaffolding version of the
programming game was used as the learning approach, while the rest 28 students were
assigned to the control group where a version of the programming game that did not
include scaffolding features was used. In order to prevent potential influence of different
teachers on the outcome of the study, all students were taught by the same teacher using
the same technical equipment regardless of which group they belonged to. The experiment
was conducted in three phases and lasted three weeks. In the first phase, students were
asked to complete a pre-test for measuring their Computational Thinking and a
questionnaire measuring their attitudes towards programming. Both the pre-test and the
questionnaire lasted 45 minutes. Students completed the pre-test and the questionnaire on
two different days. In the second phase of the experiment, students participated in a 45-
minute intervention where they were introduced to Computational Thinking through the
two versions of the programming game, depending on the group they belonged to. During
the intervention, students encountered Computational Thinking concepts such as sequence,
loops, conditionals and Computational Thinking practices such as testing and debugging
and being incremental and iterative. Log files from the game were also collected. In the
last phase, students completed a post-test for measuring their Computational Thinking
which lasted 45 minutes.

117

7.3.3 Intervention instrument

The “aMazeD” scaffolding programming game presented in the previous Chapter was

utilized as the tool through which students were introduced to Computational Thinking.

7.3.4 Data collection

In this study, we measured students’ pre-intervention and post-intervention Computational
Thinking using the Computational Thinking Test (CTt). The CTt was developed and
validated by Roméan-Gonzalez et al. (2017). A translated version of the CTt that authors
shared with us, is presented in Appendix C. The CTt is a direct assessment method that is
widely accepted as a reliable way to measure Computational Thinking. It consists of 28
multiple choice items. Questions are presented using the interface of Maze or Canvas and

the answers are presented as visual arrows or blocks.

We also collected the aMazeD log files that include the following information for
each student: a) the success or failure in each level and b) the code submitted for each

level.

An instrument for measuring attitudes towards programming was adapted from
Kong (2018). We used the following three constructs of the aforementioned instrument
translated in the students’ native language: programming meaningfulness, programming
self-efficacy and interest in programming to measure students’ attitudes towards
programming. The scale consists of 13 items and students were asked to indicate their level
of agreement with each item on a 5-point Likert scale (1=Strongly agree; 5=Strongly
disagree).

7.3.5 Study Limitations

This study has some limitations including the small sample size and the short duration of
the intervention. A longer duration could provide more insights on students’ learning gains.
In addition, we based our analysis only on tests, questionnaires and logs. Including
interviews and video recording could have provided a more holistic understanding of
students’ CT development. The inclusion of students from a single school could be also

considered as a limitation of the study

118

7.4 Demographics

57 students whose parents gave their consent to participate in the study were randomly
assigned to the control and experimental group. There were 5 students from the control
group and 7 from the experimental group who were absent either during the completion of
the tests or during the intervention. This resulted in a final sample of 45 students, of whom
23 belong to the control group and the rest 22 to the experimental group. The distribution
of students by grade and gender is shown in Table 7-2. Among participants, 23 (51%)
students were male and 22 (49%) were female. 13 (29%) were in 7th grade, 21 (47%) were
in 8th grade and 11 (24%) were in 9th grade.

Table 7-2. Distribution of participants by grade and gender

Grade Gender

7th 8th 9th Male Female

Version Non-Scaffolding 7 10 6 14 9

Percentage in the non-scaffolding group 30.4% 43.5% 26.1% 60.9% 39.1%

Scaffolding 6 11 5 9 13
Percentage in the scaffolding group 27.3% 50% 22.7% 40.9% 59.1%
75 CTt

CTt (Roman-Gonzélez et al., 2017) was employed to measure CT pre-intervention and
post-intervention scores. For each item we assigned 1 if it was correct and O if it was
incorrect. The score for each test ranged from 0 to 28. The scale had an acceptable level of
internal consistency, as determined by a Cronbach's alpha of .763 reported in the pre-
intervention data and an acceptable level of internal consistency as determined by a

Cronbach’s alpha of .803 reported in the post-intervention data.

7.6 Analytics

We calculated the overall game score for each student based on aMazeD game logs. For

each level we assigned 1 if it was successfully completed and O otherwise. The overall

119

game score for each student ranged from 0 to 10. The Cronbach's alpha coefficient was

0.753. We also calculated the following scores based on the inspection of the submitted

code:

Conditional-Level and Loop-Level score. We assigned 1 for each successfully
completed level belonging to the “Conditionals” concept (Table 1) and 0 otherwise.
The overall Conditional-Level score for each student ranged from 0 to 3.
Accordingly, we assigned 1 for each successfully completed level belonging to the
“Loops” concept (Tablel) and 0 otherwise. The overall Loop-Level score for each

student ranged from 0 to 8.

Conditional-Use and Loop-Use score. We assigned 1 if the submitted code
contained Conditionals for each correctly completed level belonging to the
“Conditionals” concept and 0 otherwise. The overall Conditional-Use score for
each student ranged from 0 to 3. Accordingly, we assigned 1 if the submitted code
contained Loops for each correctly completed level belonging to the “Loops”
concept and 0 otherwise. The overall Loop-Use score for each student ranged from
0 to 8.

Conditional-Ratio and Loop-Ratio. We calculated the Conditional-Ratio as the
ratio between Conditional-Use score and Conditional-Level Score and the Loop-

Ratio as the ratio between Loop-Use score and Loop-Level score.

7.7 Scale of Attitudes towards Programming

A scale adapted from Kong (2018), was used to measure student’s attitudes towards

programming. The scale consisted of 13 items 5-point Likert scale, (1 = Strongly agree

and 5 = Strongly disagree). The score of each student was calculated as the sum of the 13

items and ranged from 13 to 65. 40 of the participants were filled in the attitudes towards

programming scale. The scale had a high level of internal consistency, as determined by a

Cronbach's alpha of 0.948 (Table 7-3). We classified the participants into three groups

based on their percentile value in the scale score distribution: Low-attitudes towards

programming students (n=13), Moderate-attitudes towards programming (n=14) and High-

attitudes towards programming students (n=13).

120

Table 7-3. Internal consistency of the scale of Attitudes towards Programming

Construct Number of items Cronbach's alpha
programming meaningfulness 4 0.921
programming self-efficacy 5 0.912
interest in programming 4 0.900
Entire scale 13 0.948

7.8 Does aMazeD have a positive impact on middle school students' CT

development?

The first research question was, “Does aMazeD have a positive impact on middle school
students' CT development?” Our hypothesis was that aMazeD would have a positive
impact on middle school students' CT development. A paired-samples t-test was used to
determine whether there was a statistically significant mean difference between the pre-
intervention CT scores and the post-intervention CT scores of the students. No outliers
were detected. The assumption of normality was not violated, as assessed by Shapiro-
Wilk's test (p = .612). We found a significant mean increase of 3.933, 95% CI [3.097,
4.769], t(44)=9.481,p<.001 between pre-intervention and post-intervention CT scores,
with a large effect size (Cohen's d=1.413). Students CT post-intervention scores were
higher (M=19.333, SD=4.772) compared to their CT pre-intervention scores (M=15.4,
SD=4.653). This result supports our hypothesis that aMazeD would have a positive impact

on students’ CT development.

7.9 Does aMazeD with scaffolding features have a greater impact on
middle school students’ CT development than the aMazeD version
without scaffolding features?

The second research question was “Does aMazeD with scaffolding features have a greater
impact on middle school students’ CT development than the aMazeD without

scaffolding?”. Our hypothesis was that the scaffolding version of aMazeD would have a

121

greater impact on students’ CT development. CT pre-scores and post-scores were
measured by the CTt (Roman-Gonzalez et al., 2017). An independent t-test showed that
the mean of the pre-test CT scores of the scaffolding group was not significantly higher
(M=15.727, SD=4.442) than that of the non-scaffolding group (M=15.087, SD=4.926); t
(43) =—.457, p=.650. Thus, we can conclude that the two groups were equivalent in terms
of students’ CT scores prior to the intervention. An ANCOVA was run to determine the
effect of the scaffolding version of the game on post-intervention CT scores after
controlling for pre-intervention CT scores. There was a linear relationship between pre-
intervention CT scores and post-intervention CT scores for each group, as assessed by
visual inspection of a scatter plot. There was homogeneity of regression slopes as the
interaction term was not statistically significant, F(1,41) = .180, p = .673. Standardized
residuals for the interventions and for the overall model were normally distributed, as
assessed by Shapiro-Wilk's test (p > .05). There was homoscedasticity and homogeneity
of variances, as assessed by visual inspection of a scatterplot and Levene's test of
homogeneity of variance (p = .911), respectively. There were no outliers in the data, as
assessed by no cases with standardized residuals greater than +3 standard deviations. After
adjustment for pre-intervention CT scores, there was a statistically significant difference
in post-intervention CT scores between the scaffolding and the non-scaffolding
group, F(1,42) = 5.657, p =.022.

We further analyze students’ log files. Mann-Whitney U test was run to determine
if there were differences in Conditional-Use scores between the non-scaffolding and
scaffolding group. Distributions of the Conditional-Use scores for the two groups were not
similar, as assessed by visual inspection. Conditional-Use scores for the scaffolding group
(mean rank = 29.30) were statistically significantly higher than for the non-scaffolding
group (mean rank = 16.98), U = 391.5, z = 3.409, p = .001. Respectively, Mann-Whitney
U test was run to determine if there were differences in Loop-Use Score between the non-
scaffolding and scaffolding group. Distributions of the Loop-Use Scores for the two groups
were not similar, as assessed by visual inspection. Loop-Use scores for the scaffolding
group (mean rank = 30.27) were statistically significantly higher than for the non-
scaffolding group (mean rank = 16.04), U =413, z = 3.695, p < .001.

122

7.10 Do attitudes towards programming have an impact on students’

CT?

The third research question was “Do attitudes towards programming have an impact on
middle school students’ CT?”. Our hypothesis was that positive attitudes towards
programming would have a greater impact on students’ CT scores. A one-way ANOVA
was conducted to determine if the students’ CT pre-test scores were different for the
low/moderate/high attitudes groups. There were no outliers, as assessed by boxplot; data
was normally distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and
there was homogeneity of variances, as assessed by Levene's test of homogeneity of
variances (p = .818). CT pre-test score increased from low (M=13.769, SD=4.902) to
moderate (M=15.429, SD=4.327) to high (M=17,154, SD=4.793) attitudes group, in that
order, but the differences between attitudes groups was not statistically significant, F(2,37)
= 1.706, p = .196. This result does not support the hypothesis that student’s attitudes

towards programming would have an impact on middle school students’ CT.

7.11 Do attitudes towards programming have an impact on students’ CT

Improvement?

The fourth research question was “Do attitudes towards programming have an impact on
students’ CT improvement?”. Our hypothesis was that attitudes towards programming
would have an impact on students’ CT development. A one-way ANOVA was conducted
to determine if the changes in students’ CT scores were different for the low/moderate/high
attitudes groups. There were no outliers, as assessed by boxplot; data was normally
distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and there was
homogeneity of variances, as assessed by Levene's test of homogeneity of variances
(p =.113). Changes in CT scores increased from moderate (M = 3.143, SD=3.348), to high
(M=3.539, SD=1.808), to low (M=4.462, SD=2.817) attitudes group, but the differences
were not statistically significant, F(2,37) = .807, p = .454. This result does not support the
hypothesis that student’s attitudes towards programming would have an impact on middle

school students’ CT development.

123

7.12 Discussion

Our first hypothesis was that aMazeD would have a positive impact on middle school
students’ CT. Data analysis and results seem to support this hypothesis. Participants
significantly improved their CT scores at the CTt after playing the aMazeD. This is
consistent with prior research showed that playing programming games could improve
students’ Computational Thinking (e.g., Hooshyar et al., 2021; Zhao & Shute, 2019).
However, since this is a one-group pretest-posttest design, it cannot be excluded that the
differences between the pre-test and post-test are due to threats such as maturation
(Fraenkel et al., 2012).

The second hypothesis was that aMazeD with scaffolding features would have a
greater impact on middle school students’ CT than the aMazeD version without scaffolding
features. Both groups experienced an improvement in their post-intervention CT scores,
but students who played the scaffolding version of the game had significantly higher CT
post-scores (Table 7-4). Furthermore, students in the scaffolding group not only did better
on the post-test, but they had significantly higher Conditional-Use and Loop-Use scores
(Table 7-5). The code they submitted to the game was of higher quality and included the
use of Conditionals and Loops. It is indicative that students in the scaffolding group who
used conditionals in all successful levels belonging to the “Conditional Concept” concept
amount to 18 out of 22 compared to 6 out of 23 students in the non-scaffolding group.
Respectively, students in the scaffolding group who used loops in all successful levels
belonging to the “Loop Concept” amount to 18 out of 22 compared to 4 out of 23 students
in the non-scaffolding group. These results suggest that scaffolding could be an effective
learning technique for developing students’ CT and help them understand the core
concepts of CT such as Conditionals and Loops. Prior research also shows results regarding
the relationship between scaffolding and CT development. Studies conclude that
scaffolding could have a positive impact on CT development. Specifically, Chen et al.
(2021) findings of their quasi-experimental study revealed that metacognitive prompts
significantly improved students’ CT outcomes. In the same line, Angeli and Valanides
(2020) found that students who participated in their study benefited from the scaffolding
techniques used. Furthermore, Chevalier et al. (2022) found that students in their study
benefited from guidance and feedback learning methods.

124

Table 7-4. Computational Thinking pre-scores and post-scores means by game

version
Game Version Means of Pre- Means of Post-intervention Means of CT scores
intervention Scores changes
Scores
Scaffolding version 15.727 20.546 4.818
Non-Scaffolding 15.087 18.174 3.087
version

Table 7-5. Computational Thinking Conditional-Level, Loop-Level, Conditional-Use,
Loop-Use scores, Conditional-Ratio and Loop-Ratio means by game version

Game Version Means of Means of Means of Means Means of Means
Conditional- Loop- Conditional- of Loop- Conditional- of
Level Scores Level Use Scores [0- Use Ratio Loop-
Scores 3] Scores Ratio
[0-3] [0-8]
[0-8]
Scaffolding 2.86 6.05 2.50 5.36 0.871 0.878
version
Non- 257 4.65 1.13 2.22 0.384 0.409
Scaffolding
version

The third hypothesis was that attitudes towards programming would have an impact
on students’ CT scores. No significant differences were found between the three groups
(low/moderate/high) in the results of students’ CT pre-tests. Although students’ pre-test
scores were very similar in general, as shown in Figure 7-1, the students of the low attitudes
group were less successful than students in the moderate and high attitudes group. Previous
studies indicate that Computational Thinking is related with attitudes towards
programming (Sun et al., 2022) and suggest that interest in programming could be an
important factor in the acquisition of CT (Kong et al., 2018), proposing interest-driven

strategies for CT teaching and learning (Kong, 2016).

125

25,004

20,00 S —

15,00

Mean Pre-test

10,00

5,00

0,00 T T
High Moderate Low

Group by Programming Attitudes

Error Bars: 95% Cl
Figure 7-1. Means of pre-tests scores by attitudes towards programming group

The fourth hypothesis was that attitudes towards programming would have an
impact on students’ CT development. Although this hypothesis was not confirmed as no
significant differences were found between the three groups (low/moderate/high) in
students’ CT improvement, the descriptive statistical analysis reveals interesting results.
As shown in Table 7-6, changes in students’ CT scores for the non-scaffolding version
increase from low (M= 1.600, SD=.872) to moderate (M=2.556, SD=1.069), to high
attitudes group (M=4.000, SD=5.35) (Figure 7-2). This result is consistent with other
studies (Sun et al., 2022) which have shown that students with negative attitudes towards
programming may find it more difficult to develop their Computational Thinking than
students with positive attitudes towards programming. Results indicate that students are
struggling to develop their Computational Thinking skills when they are not provided with
an appropriate learning strategy. This is in line with previous studies which suggest that
students face great difficulties without proper guidance (Denner et al., 2012). However,

this is not the case for students that experienced the scaffolding version. Changes in

126

students’ CT scores in the scaffolding version increase from high (M=3.000, SD=.894) to
moderate (M=4.200, SD=1.655) to low (M=6.250, SD=.491) attitudes group (Figure 7-3).
This result could have important implications in the design of appropriate learning
interventions regarding the choice of the learning strategies in relation to students’ attitudes
towards programming. Results suggest that students with low and moderate attitudes
towards programming tend to benefit more from the scaffolding strategy than students with
higher attitudes towards programming. The provision of scaffolding through semi-finished
programs and prompts could engage students who tend to have low interest in
programming and low programming self-efficacy, by reducing difficulty levels and

providing effective supplies for developing Computational Thinking.

Group hy Game Version: Non-Scaffolding

5,007

5,00 o

4,007 —_—

3,00

2,00

Mean Difference

1,007

0,00

-1,00 T T
High Moderate Low

Group by Programming Attitudes

Error Bars: 95% CI

Figure 7-2. Means of score changes by attitudes towards programming group for the

non-scaffolding group

127

Group by Game Version: Scaffolding

10,00

7,507 —

5,007

Mean Difference

2,50

0,007

T T
High Moderate Low

Group by Programming Attitudes

Error Bars: 95% CI

Figure 7-3. Means of score changes by attitudes towards programming group for the

scaffolding group

Table 7-6. Computational Thinking changes in pre-scores and post-scores means by

game version and attitudes towards programming group

Game Version Attitudes towards programming Means of Change in CT Scores
Group
Non-scaffolding version High 4.000
Moderate 2.556
Low 1.600
Scaffolding version High 3.000
Moderate 4.200
Low 6.250

128

The implication of these findings is important, as they provide support that
scaffolding in computational thinking games could be an effective strategy for teaching
and learning computational thinking to middle school students fostering a deeper
understanding of Computational Thinking concepts. In addition, when it comes to
students’ attitudes towards programming, students who perceive programming as less
meaningful, less interesting and have lower programming self-efficacy could particularly

benefit from scaffolding aspects in programming games.

7.13 Summary

This chapter presents the method and results of the fourth phase of this dissertation that
involves the investigation of the effects of a) scaffolding programming games and b)
attitudes towards programming, on the development of middle school students’
Computational Thinking. To this end, an experimental study was conducted. Students were
introduced to CT under two distinct experimental conditions: a scaffolding version of a
programming game and a non-scaffolding version of the same game. Results report
statistically significant differences between the pre-intervention and post-intervention CT
scores for all students and statistically significant improvement in learning outcomes in
favor of the scaffolding group. In addition, the study hypothesized that attitudes towards
programming would have an impact on students’ CT. Although this hypothesis has not
been confirmed, the results suggest that students who have a less positive attitude towards

programming could particularly benefit from scaffolding aspects in programming games.

129

8 Conclusions and direction for future research

8.1 Introduction

In the context of this dissertation, we developed a conceptual model of Computational
Thinking in K-12 education and extended it to higher education. We also investigated
specific instances of the models’ CT areas. The research was organized in the following

four phases:

Phase 1. Developing a Conceptual Model of Computational Thinking through
programming in K-12 education (CTPK-12).

Phase 2. Extending the Computational Thinking through Programming in K-12
Education (CTPK-12) Conceptual Model for Higher Education.

Phase 3. Designing and evaluating of a programming game to study the perceived

effects of a certain instance of the CTPK-12 Learning Strategies area.

Phase 4. Using the CTPK-12 model to design an empirical study to investigate

certain instances of the Learning Strategies and Factors model’s areas.

In this chapter we present the conclusions of these phases. The remainder of this
Chapter is organised as follows: Section 8.2 presents the conclusions of Phase 1. Section
8.3 presents the conclusions of Phase 2. Section 8.4 presents the conclusions of Phase 3.
Section 8.5 presents the conclusions of Phase 4. Section 8.6 suggests future research.

Section 8.7 presents the limitations of the research presented.

8.2 Conclusions Phase 1

In this phase, a conceptual model of CT through programming in K-12 education (CTPK-
12) was developed. The proposed model was based on a systematic literature review and
the identification of CT Areas and their relationships. CT Areas are determined from the

recording of all topics of interest to researchers. CTPK-12 model provides an overall map

130

of the domain that aids domain understanding and could serve as a basis for future studies

as well as facilitate the integration of CT into K-12 educational practices.

The CTPK-12 model indicates that CT through programming in K-12 education
domain includes the following six areas: Knowledge Base, Learning Strategies,
Assessment, Tools, Factors and Capacity Building area that are related to each other. Some
of the relationships between the areas have not yet been sufficiently explored so far in the
scientific literature including (a) which tools support which learning strategies, (b) which
learning strategies enable the acquisition of CT, (c) which factors affect CT development,

and (d) how capacity building affects students’ CT levels.

The CTPK-12 model also reveals that although the focus on Assessment, Tools and
Factors area remains approximately constant over time, it increases for Learning Strategies
and Capacity Building area and decreases for Knowledge Base area. This marks a change
in the focus of research that could be interpreted as a shift to more tangible issues of
educational practice. The findings also indicate gaps and future directions regarding the

models’ areas and relationships that are presented in the following paragraphs.

Assessment area is at the forefront of CT research gathering the greatest interest of
researchers in the selected studies. However, CT assessment methods in the selected
studies include mostly methods based on particular activities and curricula and therefore
their use in different contexts is difficult. Efforts have been made to develop validated
methods for general use that allow researchers to document their results based on validated
instruments. Most of these methods are self-report methods; therefore, there is a need for
additional validated methods, which could be applied to various settings, providing

opportunities to standardize the CT assessment based on methods other than self-report.

Tools area is also one of the major topics investigated in the selected studies.
Several studies focus on the development of environments designed specifically to support
CT teaching and learning strategies. Although these environments are designed on the
basis of CT frameworks, they are not yet widely used in empirical studies or educational
practices aimed at developing CT. Instead, they appear only once in the literature in the
studies where they are introduced. Therefore, beyond the theoretical basis and

technicalities of CT tools, researchers need to consider issues of usability, student

131

motivation, teacher facilitation through available resources and frameworks, and ease of
assessment through built-in automated assessment methods. In addition, future studies
should explore the relationship between Tools and CT development providing insights on

which tools could better support which CT learning strategies.

Learning Strategies area has gained increasing interest in recent years. However,
several of the studies reviewed simply refer to the learning strategies applied without
further describing how they were implemented. Focusing on learning strategies, presenting
the relevant background and how they are implemented could support a more
comprehensive picture of the conditions and context of the proposed CT interventions.
Studies could also propose frameworks that support leveraging CT learning strategies. In
addition, future studies could explore the relationship between learning strategies and CT
development and provide insights on which learning strategies are most suitable for

students to acquire which CT elements.

Capacity Building is highlighted as a critical Area of CT presence within
educational settings and one of the rising areas in the domain research. Nevertheless,
studies still argue that teachers face significant challenges in incorporating CT practices
such as lack of technological infrastructure, lack of time for lesson plans and materials
preparation and limited instructional time (Adler & Kim, 2018; Bargury et al., 2012; Israel
et al., 2015; Ozturk, Dooley, & Welch, 2018; Sentance & Csizmadia, 2017). Most
important, teachers have low levels of CT content knowledge (Alfayez & Lambert, 2019;
Angeli et al., 2016; Bower et al., 2017; Israel et al., 2015; Kale, Akcaoglu, Cullen, & Goh,
2018) and knowledge about how to teach CT (Chalmers, 2018). Thus, more Capacity
Building interventions and frameworks are needed to support in-service and pre-service
teachers to successfully integrate CT into their teaching practices. In addition, the
relationship between capacity building and CT development could be investigated in future

studies.

Factors area has also been investigated in several of the selected studies. However,
some of the results of the studies are contradictory, so it is unclear whether and to what
extent these factors lead to higher or lower CT levels. As Angeli & Giannakos (2020) point
out, how CT skills, such as abstraction, problem decomposition, and data structures, map

to different abilities, grade level, disciplines, gender, and educational level is still missing

132

from the literature. Further studies in this direction could build clarity about factors that
may affect CT acquisition. With regard to how CT could be utilized to motivate
underrepresented groups, there are few studies (e.g., Kim & Kim, 2016; Leonard et al.,
2018; Pinkard, Martin, & Erete, 2019) specifically aimed at motivating girls and
underrepresented minorities. More studies are required to provide evidence of the
relationship between factors, learning strategies and tools and provide insights on if and
how learning strategies and tools could broaden participation in CT and address challenges

related to factors.

8.3 Conclusions Phase 2

The results of this phase indicate that several efforts have been emerged in CT through
programming in higher education research recently, although challenges remain in the six
areas identified in this review: Knowledge Base, Learning Strategies, Tools, Assessment,
Factors and Capacity Building. Future studies should address remaining challenges by
basing their design on clear definitions of CT as categorized and described in section
5.4.1.1. The assessment should be based on the recording of CT elements as previously
defined in the context of the studies. In addition, it is proposed to integrate direct
assessment methods in combination with self-report methods in order to provide a more
objective picture of the development of students' CT. The alignment of CT elements and
assessment methods could provide a more comprehensive understanding of students’ CT
development. Future research should also explore how different learning strategies could
support CT development. In addition, future research could focus on the development of
tools suitable for higher education, which would enable the exploitation of game design
strategies. Finally, studies should also focus on the investigation of how factors such as
gender, creativity, self-efficacy, motivation may affect CT and how professional
development of academic stuff could enhance the CT integration in higher education

context.

8.4 Conclusions Phase 3

In this phase, we design and evaluate a Scaffolding Computational Thinking game. The
game was designed to include scaffolding features and was evaluated by 28 middle school

students. The results regarding ease of use, usefulness, attitude, accessibility and overall

133

experience of the scaffolding game were promising. Specifically, students found
scaffolding features useful for solving the game and effective in learning Computational
Thinking.

8.5 Conclusions Phase 4

In this phase, we explored the effect of scaffolding programming games on the
development of middle school students’ Computational Thinking. In addition, herein we
explore the effect of students’ attitudes towards programming on their Computational
Thinking. Students were introduced to Computational Thinking under two distinct
experimental conditions: a scaffolding version of a programming game and a non-
scaffolding version of the same game. Results reported statistically significant learning
gains between the pre-intervention and post-intervention CT scores for all students and
statistically significant improvement in learning outcomes in favour of the scaffolding
group. Furthermore, students in the scaffolding group not only showed better learning
outcomes overall, but also submitted higher quality code in terms of using conditionals and
loops during the game. The findings support that scaffolding helps students develop
Computational Thinking and deepen their understanding of the related concepts. In
addition, the study hypothesized that attitudes towards programming would have an impact
on students’ Computational Thinking and Computational Thinking development.
However, this hypothesis was not confirmed from the results that report a non-statistically
significant difference in both cases. Nevertheless, students’ Computational Thinking in the
non-scaffolding group found to be higher for students with a more positive attitude towards
programming. Specifically, students in the high attitudes group had greater learning gains,
followed by students in the moderate attitudes group and students in the low attitudes group
for the non-scaffolding version of the game. On the other hand, students in the low attitudes
group had greater learning gains, followed by students in the moderate attitudes and

students in the high attitudes group for the scaffolding version of the game.

8.6 Limitations

The study developed a conceptual model for Computational Thinking and investigated

some of its instances, following four research phases. Despite its contributions, the findings

134

must be considered in light of the limitations of its research phases presented in Sections
4.2.3,5.2.3, 6.24 and 7.2.5 accordingly.

8.7 Future work

Future research could be organized into the following three objectives:

1) Investigate all model relationships. A full investigation of the relationships of the model
could contribute to a better understanding of learning and teaching of Computational
Thinking. Specifically, future research could focus on a) the relationship between Tools
and CT development and provide insights on which tools could better support which CT
learning strategies b) the relationship between learning strategies and CT development and
provide insights on which learning strategies are most appropriate for students to acquire
which CT elements c) the relationship between capacity building and CT development d)
the relationship between factors, learning strategies and tools and provide insights on if
and how learning strategies and tools could broaden participation in CT e) the relationship
between factors and CT development and build clarity about factors that may affect CT

acquisition.

ii) Extend the model. Future research could focus on extending the conceptual model to

include other approaches such as unplugged approaches.

iii) Use the model to create course designs. Future research could focus on studying design
principles that could lead to structured design courses that are based on the proposed CT

conceptual model.

135

Appendixes

Appendix A

Appendix A. List of selected studies (Chapter 4)

S1

S2

S3

S4

S5

S6

(CSTA), & (ISTE). (2011). Operational definition of computational thinking.
Retrieved from https://www.iste.org/explore/Solutions/Computational-thinking-

for-all

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational
thinking skills through modeling and simulations. Education and Information
Technologies, Vol. 23, pp. 1501-1514. https://doi.org/10.1007/s10639-017-9675-
1

Alfayez, A. A., & Lambert, J. (2019). Exploring Saudi Computer Science
Teachers’ Conceptual Mastery Level of Computational Thinking Skills.
Computers in the Schools, Vol. 36, pp. 143-166.
https://doi.org/10.1080/07380569.2019.1639593

Allsop, Y. (2019 Assessing computational thinking process using a multiple
evaluation approach. International Journal of Child-Computer Interaction, 19, 30—
55. https://doi.org/10.1016/j.ijcci.2018.10.004

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami,
J. (2016). A K-6 computational thinking curriculum framework: Implications for
teacher knowledge. Educational Technology and Society, Vol. 19, pp. 47-57.
Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85000838214 &partnerlD=40&md5=3f014c90dafb945e90c9552f5a6ef17f

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational
thinking skills through educational robotics: A study on age and gender relevant
differences. Robotics and Autonomous Systems, Vol. 75, pp. 661-670.
https://doi.org/10.1016/j.robot.2015.10.008

136

S7

S8

S9

S10

S11

S12

S13

S14

Bargury, I. Zur, Haberman, B., Cohen, A., Muller, O., Zohar, D., Levy, D., &
Hotoveli, R. (2012). Implementing a new Computer Science Curriculum for
middle school in Israel. Proceedings - Frontiers in Education Conference, FIE.
https://doi.org/10.1109/FIE.2012.6462365

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12:
What is involved and what is the role of the computer science education
community? ACM Inroads, 2(1), 48-54.
https://doi.org/10.1145/1929887.1929905

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S.
(2011). Recognizing computational thinking patterns. SIGCSE’11 - Proceedings
of the 42nd ACM Technical Symposium on Computer Science Education, 245—
250. https://doi.org/10.1145/1953163.1953241

Basogain, X., Olabe, M. A., Olabe, J. C., & Rico, M. J. (2018). Computational
Thinking in pre-university Blended Learning classrooms. Computers in Human
Behavior, Vol. 80, pp. 412-419. https://doi.org/10.1016/j.chb.2017.04.058

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive
scaffolding in a Computational Thinking-based science learning environment.
User Modeling and User-Adapted Interaction, Vol. 27, pp. 5-53.
https://doi.org/10.1007/s11257-017-9187-0

Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics
Environments for Supporting Complex Systems and Computational Thinking.
Journal of Science Education and Technology, Vol. 24, pp. 628-647.
https://doi.org/10.1007/s10956-015-9552-x

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum.
Computers and Education, Vol. 72, pp. 145-157.
https://doi.org/10.1016/j.compedu.2013.10.020

Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., & Lister, R. (2017). Improving

the computational thinking pedagogical capabilities of school teachers. Australian

137

S15

S16

S17

S18

S19

S20

S21

Journal of Teacher Education, 42(3), 53-72.
https://doi.org/10.14221/ajte.2017v42n3.4

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing
the development of computational thinking. Annual American Educational
Research Association Meeting, Vancouver, BC, Canada, 1-25. Retrieved from
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_ AERA2012_CT.pdf

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., &
Danies, G. (2017). Changing a Generation’s Way of Thinking: Teaching
Computational Thinking Through Programming. Review of Educational
Research, Vol. 87, pp. 834-860. https://doi.org/10.3102/0034654317710096

Carlborg, N., Tyrén, M., Heath, C., & Eriksson, E. (2019). The scope of
autonomy when teaching computational thinking in primary school. International
Journal of Child-Computer Interaction, 21, 130-139.
https://doi.org/10.1016/j.ijcci.2019.06.005

Chalmers, C. (2018). Robotics and computational thinking in primary school.
International Journal of Child-Computer Interaction, 17, 93-100.
https://doi.org/10.1016/j.ijcci.2018.06.005

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017).
Assessing elementary students’ computational thinking in everyday reasoning and
robotics programming. Computers and Education, VVol. 109, pp. 162-175.
https://doi.org/10.1016/j.compedu.2017.03.001

Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing Computational
Thinking with Educational Technologies for Young Learners. TechTrends, Vol.
62, pp. 563-573. https://doi.org/10.1007/s11528-018-0292-7

Clark, D. B., & Sengupta, P. (2019). Reconceptualizing games for integrating
computational thinking and science as practice: collaborative agent-based
disciplinarily-integrated games. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1636071

138

S22

S23

S24

S25

S26

S27

S28

S29

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). Education: A future for
computing education research. Communications of the ACM, 57(11), 34-36.
https://doi.org/10.1145/2668899

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., &
Woollard, J. (2015). Computational thinking: A guide for teachers. Retrieved
from Computing at Schools. website:

https://community.computingatschool.org.uk/resources/2324/single

Da Cruz Alves, N., Gresse Von Wangenheim, C., & Hauck, J. C. R. (2019).
Approaches to assess computational thinking competences based on code analysis
in K-12 education: A systematic mapping study. Informatics in Education, Vol.
18, pp. 17-39. https://doi.org/10.15388/infedu.2019.02

De Souza, A. A., Barcelos, T. S., Munoz, R., Villarroel, R., & Silva, L. A. (2019).
Data Mining Framework to Analyze the Evolution of Computational Thinking
Skills in Game Building Workshops. IEEE Access, Vol. 7, pp. 82848-82866.
https://doi.org/10.1109/ACCESS.2019.2924343

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle
school girls: Can they be used to measure understanding of computer science
concepts? Computers and Education, 58(1), 240-249.
https://doi.org/10.1016/j.compedu.2011.08.006

Denning, P. J. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33—39. https://doi.org/10.1145/2998438

Dolgopolovas, V., Dagieng, V., Jasuté, E., & Jevsikova, T. (2019). Design
science research for computational thinking in constructionist education: A
pragmatist perspective. Problemos, Vol. 95, pp. 144-159.
https://doi.org/10.15388/Problemos.95.12

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between
computational thinking skills and various variables with the structural equation
model. Computers and Education, 116, 191-202.
https://doi.org/10.1016/j.compedu.2017.09.004

139

S30

S31

S32

S33

S34

S35

S36

S37

Durak, H. Y., Yilmaz, F. G. K., & Bartin, R. Y. (2019). Computational thinking,
programming self-efficacy, problem solving and experiences in the programming
process conducted with robotic activities. Contemporary Educational
Technology, 10(2), 173-197. https://doi.org/10.30935/cet.554493

Fletcher, G. H. L., & Lu, J. J. (2009). Education: Human computing skills:
Rethinking the K-12 experience. Communications of the ACM, 52(2), 23-25.
https://doi.org/10.1145/1461928.1461938

Fronza, 1., El loini, N., & Corral, L. (2017). Teaching computational thinking
using agile software engineering methods: A framework for middle schools.
ACM Transactions on Computing Education, Vol. 17.
https://doi.org/10.1145/3055258

Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cardenas, L., Pantano, P., &
Bilotta, E. (2019). Lesson planning by computational thinking skills in Italian
pre-service teachers. Informatics in Education, Vol. 18, pp. 69-104.
https://doi.org/10.15388/infedu.2019.04

Garcia-Pefalvo, F. J., & Mendes, A. J. (2018). Exploring the computational
thinking effects in pre-university education. Computers in Human Behavior, 80,
407-411. https://doi.org/10.1016/j.chb.2017.12.005

Garneli, V., & Chorianopoulos, K. (2018). Programming video games and
simulations in science education: exploring computational thinking through code
analysis. Interactive Learning Environments, VVol. 26, pp. 386-401.
https://doi.org/10.1080/10494820.2017.1337036

Garneli, V., & Chorianopoulos, K. (2019). The effects of video game making
within science content on student computational thinking skills and performance.
Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-11-
2018-0097

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017).
A framework for using hypothesis-driven approaches to support data-driven

learning analytics in measuring computational thinking in block-based

140

programming environments. ACM Transactions on Computing Education, Vol.
17. https://doi.org/10.1145/3105910

S38 Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the
State of the Field. Educational Researcher, Vol. 42, pp. 38-43.
https://doi.org/10.3102/0013189X12463051

S39 Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a
blended computer science course for middle school students. Computer Science
Education, 25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142

S40 Gunbatar, M. S. (2019). Computational thinking within the context of
professional life: Change in CT skill from the viewpoint of teachers. Education
and Information Technologies, Vol. 24, pp. 2629-2652.
https://doi.org/10.1007/s10639-019-09919-x

S41 Hickmott, D., & Prieto-Rodriguez, E. (2018). To assess or not to assess: Tensions
negotiated in six years of teaching teachers about computational thinking.
Informatics in Education, Vol. 17, pp. 229-244.
https://doi.org/10.15388/infedu.2018.12

S42 Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguiluz, A., Garaizar, P., &
Guenaga, M. (2019). Creativity in the acquisition of computational thinking.
Interactive Learning Environments, VVol. 27, pp. 628-644.
https://doi.org/10.1080/10494820.2019.1610451

S43 Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach
computational thinking: Suggestions based on a review of the literature.
Computers and Education, Vol. 126, pp. 296-310.
https://doi.org/10.1016/j.compedu.2018.07.004

S44 loannidou, A., Bennett, V., Repenning, A., Koh, H., & Basawapatna, A. (2011).
Computational Thinking Patterns Human Creativity and the Power of
Technology: Computational Thinking in the K-12 Classroom. Annual Meeting of
the American Educational Research Association (AERA), 2. Retrieved from

http://www.agentsheets.com

141

S45

S46

S47

S48

S49

S50

S51

S52

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015).
Supporting all learners in school-wide computational thinking: A cross-case
qualitative analysis. Computers and Education, Vol. 82, pp. 263-279.
https://doi.org/10.1016/j.compedu.2014.11.022

Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence in a Game-Based
Learning Environment: The Case of Elementary School Students Learning
Computational Thinking. Journal of Educational Computing Research.
https://doi.org/10.1177/0735633119887187

Jeong, Y.-S., & Sung, Y.-H. (2019). The effect of network-based PUMA
teaching-learning model on information literacy, computational thinking, and
communication skills. Universal Journal of Educational Research, Vol. 7, pp.
103-113. https://doi.org/10.13189/ujer.2019.071512

Jun, S., Han, S., & Kim, S. (2017). Effect of design-based learning on improving
computational thinking. Behaviour and Information Technology, Vol. 36, pp. 43—
53. https://doi.org/10.1080/0144929X.2016.1188415

Kafai, Y. B. (2016). From computational thinking to computational participation
in K-12 education. Communications of the ACM, Vol. 59, pp. 26-27.
https://doi.org/10.1145/2955114

Kale, U., Akcaoglu, M., Cullen, T., & Goh, D. (2018). Contextual Factors
Influencing Access to Teaching Computational Thinking. Computers in the
Schools, Vol. 35, pp. 69-87. https://doi.org/10.1080/07380569.2018.1462630

Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N., & Grise, K.
(2018). Computational What? Relating Computational Thinking to Teaching.
TechTrends, Vol. 62, pp. 574-584. https://doi.org/10.1007/s11528-018-0290-9

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A Framework for
Computational Thinking Based on a Systematic Research Review. Baltic Journal
Of Modern Computing, 4(3), 583-596.

142

S53

S54

S55

S56

S57

S58

S59

S60

Kim, Y.-M., & Kim, J.-H. (2016). Application of a software education program
developed to improve computational thinking in elementary school girls. Indian
Journal of Science and Technology, Vol. 9.
https://doi.org/10.17485/ijst/2016/v9i44/105102

Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the
automatic recognition of computational thinking for adaptive visual language
learning. Proceedings - 2010 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2010, (December), 59-66.
https://doi.org/10.1109/VLHCC.2010.17

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’
interest, collaboration attitude, and programming empowerment in computational
thinking education. Computers and Education, VVol. 127, pp. 178-189.
https://doi.org/10.1016/j.compedu.2018.08.026

Korkmaz, O., & Bai, X. (2019). Adapting computational thinking scale (CTS) for
chinese high school students and their thinking scale skills level. Participatory
Educational Research, 6(1), 10-26. https://doi.org/10.17275/per.19.2.6.1

Korkmaz, O., Cakir, R., & Ozden, M. Y. (2017). A validity and reliability study
of the computational thinking scales (CTS). Computers in Human Behavior, 72,
558-569. https://doi.org/10.1016/j.chb.2017.01.005

Kukul, V., & Karatas, S. (2019). Computational thinking self-efficacy scale:
Development, validity and reliability. Informatics in Education, Vol. 18, pp. 151—
164. https://doi.org/10.15388/infedu.2019.07

Kynigos, C., & Grizioti, M. (2018). Programming approaches to computational
thinking: Integrating turtle geometry, dynamic manipulation and 3D space.
Informatics in Education, Vol. 17, pp. 321-340.
https://doi.org/10.15388/infedu.2018.17

Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-Hill, J.,
Robinson, R., & Hester-Croff, C. (2018). Preparing Teachers to Engage Rural
Students in Computational Thinking Through Robotics, Game Design, and

143

S61

S62

S63

S64

S65

S66

S67

Culturally Responsive Teaching. Journal of Teacher Education, VVol. 69, pp. 386—
407. https://doi.org/10.1177/0022487117732317

Ling, U. L., Saibin, T. C., Labadin, J., & Aziz, N. A. (2018.). Preliminary
Investigation: Teachers’ Perception on Computational Thinking Concepts.
Journal of Telecommunication, Electronic and Computer Engineering, 9(2-9), 23-
29.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: What is next for K-12? Computers
in Human Behavior, Vol. 41, pp. 51-61.
https://doi.org/10.1016/j.chb.2014.09.012

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018).
Learning Computational Thinking and scratch at distance. Computers in Human
Behavior, Vol. 80, pp. 470-477. https://doi.org/10.1016/j.chb.2017.09.025

Mishra, P., Cain, W., Sawaya, S., & Henriksen, D. (2013). Rethinking
Technology & Creativity in the 21st Century: A Room of Their Own.
TechTrends, 57(4), 5-9. https://doi.org/10.1007/s11528-013-0668-7

Monteiro, I. T., Salgado, L. C. de C., Mota, M. P., Sampaio, A. L., & de Souza,
C. S. (2017). Signifying software engineering to computational thinking learners
with AgentSheets and PoliFacets. Journal of Visual Languages and Computing,
40, 91-112. https://doi.org/10.1016/j.jvlc.2017.01.005

Moreno Leon, J., Robles, G., & Roman Gonzalez, M. (2015). Dr. Scratch:
Automatic Analysis of Scratch Projects to Assess and Foster Computational
Thinking. RED: Revista de Educacion a Distancia, (46), 6.

Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017).
Resetting educational technology coursework for pre-service teachers: A
computational thinking approach to the development of technological
pedagogical content knowledge (TPACK). Australasian Journal of Educational
Technology, Vol. 33, pp. 61-76. https://doi.org/10.14742/ajet.3521

144

S68

S69

S70

S71

S72

S73

S74

S75

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2019). Development of
computational thinking, digital competence and 21st century skills when learning
programming in K-9. Education Inquiry.
https://doi.org/10.1080/20004508.2019.1627844

Ozturk, Z., Dooley, C. M. M., & Welch, M. (2018). Finding the Hook: Computer
Science Education in Elementary Contexts. Journal of Research on Technology in
Education, 50(2), 149-163. https://doi.org/10.1080/15391523.2018.1431573

Pinkard, N., Martin, C. K., & Erete, S. (2019). Equitable approaches:
opportunities for computational thinking with emphasis on creative production
and connections to community. Interactive Learning Environments, 0(0), 1-15.
https://doi.org/10.1080/10494820.2019.1636070

Repenning, A., Basawapatna, A. R., & Escherle, N. A. (2017). Emerging
Research, Practice, and Policy on Computational Thinking. Emerging Research,
Practice, and Policy on Computational Thinking, 291-305.
https://doi.org/10.1007/978-3-319-52691-1

Repenning, A., Grover, R., Gutierrez, K., Repenning, N., Webb, D. C., Koh, K.
H., ... Gluck, F. (2015). Scalable Game Design. ACM Transactions on
Computing Education, 15(2), 1-31. https://doi.org/10.1145/2700517

Repenning, A., Webb, D., & loannidou, A. (2010). Scalable game design and the
development of a checklist for getting computational thinking into public schools.
SIGCSE’10 - Proceedings of the 41st ACM Technical Symposium on Computer
Science Education, 265-269. https://doi.org/10.1145/1734263.1734357

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E.,
Brennan, K., ... Kafai, Y. (2009). Scratch: Programming for all. Communications
of the ACM, 52(11), 60-67. https://doi.org/10.1145/1592761.1592779

Rodriguez-Martinez, J. A., Gonzalez-Calero, J. A., & Saez-Lopez, J. M. (2019).
Computational thinking and mathematics using Scratch: an experiment with
sixth-grade students. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1612448

145

S76

S77

S78

S79

S80

S81

S82

S83

Roméan-Gonzélez, M., Pérez-Gonzélez, J.-C., & Jiménez-Fernandez, C. (2017).
Which cognitive abilities underlie computational thinking? Criterion validity of
the Computational Thinking Test. Computers in Human Behavior, Vol. 72, pp.
678-691. https://doi.org/10.1016/j.chb.2016.08.047

Romén-Gonzélez, M., Pérez-Gonzélez, J. C., Moreno-Ledn, J., & Robles, G.
(2018). Extending the nomological network of computational thinking with non-
cognitive factors. Computers in Human Behavior, 80, 441-459.
https://doi.org/10.1016/j.chb.2017.09.030

Roman-gonzalez, M., Pérez-gonzalez, J., & Moreno-ledn, J. (2018). Can
computational talent be detected? Predictive validity of the Computational
Thinking Test. International Journal of Child-Computer Interaction, 18, 47-58.
https://doi.org/10.1016/j.ijcci.2018.06.004

Séez-Lopez, J. M., Roman-Gonzalez, M., & Vazquez-Cano, E. (2016). Visual
programming languages integrated across the curriculum in elementary school: A
two-year case study using “scratch” in five schools. Computers and Education,

97, 129-141. https://doi.org/10.1016/j.compedu.2016.03.003

Selby, C. (2013). Computational Thinking: The Developing Definition. ITICSE
Conference 2013, 5-8.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013).
Integrating computational thinking with K-12 science education using agent-
based computation: A theoretical framework. Education and Information
Technologies, Vol. 18, pp. 351-380. https://doi.org/10.1007/s10639-012-9240-x

Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges

and strategies from a teacher’s perspective. Education and Information

Technologies, 22(2), 469-495. https://doi.org/10.1007/s10639-016-9482-0

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational
thinking. Educational Research Review, Vol. 22, pp. 142-158.
https://doi.org/10.1016/j.edurev.2017.09.003

146

S84

S85

S86

S87

S88

S89

S90

S91

Snow, E., Rutstein, D., Basu, S., Bienkowski, M., & Everson, H. T. (2019).
Leveraging Evidence-Centered Design to Develop Assessments of Computational
Thinking Practices. International Journal of Testing, Vol. 19, pp. 103-127.
https://doi.org/10.1080/15305058.2018.1543311

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules:
exploring the impact of teaching styles on young children’s programming
knowledge in ScratchJr. International Journal of Technology and Design
Education, 28(2), 347-376. https://doi.org/10.1007/s10798-017-9400-9

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz
Alves, N., Barbosa, H., & Azevedo, L. F. (2018). CodeMaster - Automatic
assessment and grading of app inventor and snap! Programs. Informatics in
Education, 17(1), 117-150. https://doi.org/10.15388/infedu.2018.08

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational
thinking in compulsory education: Towards an agenda for research and practice.
Education and Information Technologies, Vol. 20, pp. 715-728.
https://doi.org/10.1007/s10639-015-9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &
Wilensky, U. (2016). Defining Computational Thinking for Mathematics and
Science Classrooms. Journal of Science Education and Technology, Vol. 25, pp.
127-147. https://doi.org/10.1007/s10956-015-9581-5

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational
thinking in constructionist video games. International Journal of Game-Based
Learning, Vol. 6, pp. 1-17. https://doi.org/10.4018/1JGBL.2016010101

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). Werner, Linda
Denner, Jill Campe, Shannon Kawamoto, Damon Chizuru. Proceedings of the
43rd ACM Technical Symposium on Computer Science Education, 215-220.

https://doi.org/10.3758/BF03196322

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35.

147

S92

S93

S94

S95

S96

S97

S98

S99

S100

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717-3725.
https://doi.org/10.1098/rsta.2008.0118

Witherspoon, E. B., & Schunn, C. D. (2019). Teachers’ goals predict
computational thinking gains in robotics. Information and Learning Science, Vol.
120, pp. 308-326. https://doi.org/10.1108/1LS-05-2018-0035

Xing, W. (2019). Large-scale path modeling of remixing to computational
thinking. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1573199

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher education. ACM
Transactions on Computing Education, Vol. 14. https://doi.org/10.1145/2576872

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for
teacher education. Communications of the ACM, Vol. 60, pp. 55-62.
https://doi.org/10.1145/2994591

Yagci, M. (2019). A valid and reliable tool for examining computational thinking
skills. Education and Information Technologies, Vol. 24, pp. 929-951.
https://doi.org/10.1007/s10639-018-9801-8

Yasar, O. (2018). Viewpoint a new perspective on computational thinking:
Addressing its cognitive essence, universal value, and curricular practices.
Communications of the ACM, 61(7), 33—-39. https://doi.org/10.1145/3214354

Zhang, L. C., & Nouri, J. (2019). A systematic review of learning computational
thinking through Scratch in K-9. Computers and Education, 141(June), 103607.
https://doi.org/10.1016/j.compedu.2019.103607

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational
thinking skills? Computers and Education, 141(July), 103633.
https://doi.org/10.1016/j.compedu.2019.103633

148

S101 Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-
dimensional integrated assessment for computational thinking. In Journal of
Educational Computing Research (Vol. 53).
https://doi.org/10.1177/0735633115608444

149

https://doi.org/10.1177/0735633115608444

Appendix B

Appendix B. List of selected studies (Chapter 5)

PS1

pPS2

PS3

PS4

PSS

PS6

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational
thinking skills through modeling and simulations. Education and Information
Technologies, Vol. 23, pp. 1501-1514. https://doi.org/10.1007/s10639-017-9675-
1

Bui, L. D., Kim, Y. G., Ho, W., Thi, H., Ho, T., & Pham, N. K. (2018).
Developing WebQuest 2.0 model for promoting computational thinking skill. In
International Journal of Engineering & Technology (Vol. 7). Retrieved from
http://bit.ly/2JHIKT2.

Cachero C., Barra P., Melia S., Lopez O.,"Impact of Programming Exposure on
the Development of Computational Thinking Capabilities: An Empirical
Study",2020,"|EEE
Access”,"10.1109/ACCESS.2020.2987254","https://www.scopus.com/inward/rec
ord.uri?eid=2-s2.0-
85084334725&d0i=10.1109%2fACCESS.2020.2987254&partnerID=40&md5=1
333d67d45be18c0a20chc955aa580d6"

Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring
Utilization of Scratch. Journal of Educational Computing Research, Vol. 54, pp.
997-1021. https://doi.org/10.1177/0735633116642774

Chao, P. Y. (2016). Exploring students’ computational practice, design and
performance of problem-solving through a visual programming environment.
Computers and Education, 95, 202-215.
https://doi.org/10.1016/j.compedu.2016.01.010

Choi, S.-Y. (2019). Development of an instructional model based on
constructivism for fostering computational thinking. International Journal of
Innovative Technology and Exploring Engineering, Vol. 8, pp. 381-385.
Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85064633190&partnerlD=40&md5=9c6da0548c789dfbb24134edc2cbfdc7

150

pPS7

PS8

PS9

PS10

PS11

PS12

PS13

Cutumisu, M., & Guo, Q. (2019). Using Topic Modeling to Extract Pre-Service
Teachers’ Understandings of Computational Thinking From Their Coding
Reflections. IEEE Transactions on Education.
https://doi.org/10.1109/TE.2019.2925253

Dolgopolovas, V., & Jevsikova, T. (2015). On Evaluation of computational
thinking of software engineering novice students. Proceedings of The, 4(2), 105-
112. https://doi.org/10.13140/RG.2.1.2855.9206

Fang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on
blending learning flipped class model in colleges and universities based on
computational thinking - “Database principles” for example. Eurasia Journal of
Mathematics, Science and Technology Education, Vol. 13, pp. 5747-5755.
https://doi.org/10.12973/eurasia.2017.01024a

Fernandez, J. M., Zufiiga, M. E., Rosas, M. V., & Guerrero, R. A. (2018).
Experiences in Learning Problem-Solving through Computational Thinking.
Journal of Computer Science and Technology, 18(02), e15.
https://doi.org/10.24215/16666038.18.e15

Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cardenas, L., Pantano, P., &
Bilotta, E. (2019). Lesson planning by computational thinking skills in Italian
pre-service teachers. Informatics in Education, VVol. 18, pp. 69-104.
https://doi.org/10.15388/infedu.2019.04

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009).
A multidisciplinary approach towards computational thinking for science majors.
SIGCSE Bulletin Inroads, Vol. 41, pp. 183-187.
https://doi.org/10.1145/1539024.1508931

Hou H.-Y., Agrawal S., Lee C.-F.,"Computational thinking training with
technology for non-information undergraduates™,2020,"Thinking Skills and
Creativity","10.1016/j.tsc.2020.100720","https://www.scopus.com/inward/record.
uri?eid=2-s2.0-

151

85090228702&d0i=10.1016%2fj.tsc.2020.100720&partnerD=40&md5=a6¢007f
a4e1130f69a15118167520743"

PS14 Huang, X.-P., & Leng, J. (2019). Design of database teaching model based on
computational thinking training. International Journal of Emerging Technologies
in Learning, Vol. 14, pp. 52-69. https://doi.org/10.3991/ijet.v14i08.10495

PS15 Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary
Preservice Teachers’ Self-Efficacy, Science Learning, and Computational
Thinking. Journal of Science Education and Technology, Vol. 26, pp. 175-192.
https://doi.org/10.1007/s10956-016-9663-z

PS16 Jeon, Y., & Kim, T. (2017). The effects of the computational thinking-based
programming class on the computer learning attitude of non-major students in the
teacher training college. Journal of Theoretical and Applied Information
Technology, 95(17), 4330-4339.

PS17 Kang Y., Lee K.,"Designing technology entrepreneurship education using
computational thinking™,2020,"Education and Information
Technologies","10.1007/s10639-020-10231-

2" ,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85085371936&d0i=10.1007%2fs10639-020-10231-
2&partnerlD=40&md5=72af666d82419c9dc434410144fb7e18"

PS18 Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious
Game for Developing Computational Thinking and Learning Introductory
Computer Programming. Procedia - Social and Behavioral Sciences, 47, 1991—
1999. https://doi.org/10.1016/j.sbspro.2012.06.938

PS19 Katai Z.,"Promoting computational thinking of both sciences- and humanities-
oriented students: an instructional and motivational design
perspective™,2020,"Educational Technology Research and
Development”,"10.1007/s11423-020-09766-

5" "https://www.scopus.com/inward/record.uri?eid=2-s2.0-

152

PS20

PS21

pPS22

PS23

PS24

PS25

PS26

85083359163&d0i=10.1007%2fs11423-020-09766-
5&partnerD=40&md5=d27baf0027852e2a276dfd1c052f9fe7"

Kilig S., Gokoglu S., Oztiirk M.,"A Valid and Reliable Scale for Developing
Programming-Oriented Computational Thinking",2020,"Journal of Educational
Computing
Research","10.1177/0735633120964402","https://www.scopus.com/inward/recor
d.uri?eid=2-s2.0-
85092671278&d0i=10.1177%2f0735633120964402&partnerID=40&md5=a767d
80ae448790747589c61c0fe8ac6"

Korkmaz, O., Cakir, R., & Ozden, M. Y. (2017). A validity and reliability study
of the computational thinking scales (CTS). In Computers in Human Behavior
(Vol. 72, pp. 558-569). https://doi.org/10.1016/j.chb.2017.01.005

Kwon, J., & Kim, J. (2018). A study on the design and effect of computational
thinking and software education. KSII Transactions on Internet and Information
Systems, Vol. 12, pp. 4057-4071. https://doi.org/10.3837/tiis.2018.08.028

Lee, Y., & Cho, J. (2019). Knowledge representation for computational thinking
using knowledge discovery computing. Information Technology and
Management. https://doi.org/10.1007/s10799-019-00299-9

Li, M., & Hou, D. (2014). Network autonomous learning based on computational
thinking. World Transactions on Engineering and Technology Education, Vol.
12, pp. 576-580. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84916237711&partnerlD=40&md5=3d31af2cb32278ebb421efode6f7271f

Lin, P. H., & Chen, S. Y. (2020). Design and Evaluation of a Deep Learning
Recommendation Based Augmented Reality System for Teaching Programming
and Computational Thinking. IEEE Access, 8, 45689-45699.
https://doi.org/10.1109/ACCESS.2020.2977679

Ma, J. Bin, Teng, G. F., Zhou, G. H., & Sun, C. X. (2017). Practical teaching

reform on computational thinking training for undergraduates of computer major.

153

pPS27

PS28

PS29

PS30

PS31

PS32

Eurasia Journal of Mathematics, Science and Technology Education, 13(10),
7121-7130. https://doi.org/10.12973/ejmste/78738

Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices
for a computational thinking-enabled engineering workforce. Computer
Applications in Engineering Education, 25(1), 62—78.
https://doi.org/10.1002/cae.21779

Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017).
Resetting educational technology coursework for pre-service teachers: A
computational thinking approach to the development of technological
pedagogical content knowledge (TPACK). Australasian Journal of Educational
Technology, Vol. 33, pp. 61-76. https://doi.org/10.14742/ajet.3521

Page, R., & Gamboa, R. (2013). How Computers Work: Computational Thinking
for Everyone. Electronic Proceedings in Theoretical Computer Science,
106(Tfpie 2012), 1-19. https://doi.org/10.4204/eptcs.106.1

Pala, F. K., & Mihg1 Tiirker, P. (2019). The effects of different programming
trainings on the computational thinking skills. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1635495

Qin, H. (2009). Teaching computational thinking through bioinformatics to
biology students. SIGCSE Bulletin Inroads, Vol. 41, pp. 188-191.
https://doi.org/10.1145/1539024.1508932

Rodriguez-Garcia J.D., Moreno-Ledn J., Roméan-Gonzalez M., Robles
G.,"LearningML.: A tool to foster computational thinking skills through practical
artificial intelligence projects",2020,"Revista de Educacion a
Distancia”,"10.6018/RED.410121""https://www.scopus.com/inward/record.uri?e
id=2-s2.0-
85085603174&d0i=10.6018%2fRED.410121&partnerlD=40&md5=8629359de3
25467d947de6634fd4b859"

154

PS33

PS34

PS35

PS36

PS37

PS38

PS39

Romero M, Lepage A, Lille B. Computational thinking development through
creative programming in higher education. International Journal of Educational
Technology in Higher Education. 2017 Dec;14(42): 1-15

Rubinstein, A., & Chor, B. (2014). Computational Thinking in Life Science
Education. PLoS Computational Biology, Vol. 10.
https://doi.org/10.1371/journal.pcbi.1003897

Shih, H., Jackson, J. M., Hawkins-Wilson, C. L., & Yuan, P.-C. (2015).
Promoting computational thinking skills in an emergency management class with
MIT app inventor. Computers in Education Journal, VVol. 6, pp. 82-91. Retrieved
from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85052799029&partnerID=40&md5=df2b3b5al3cfeb93ab789a443cd5d7dd

Sondakh D.E., Osman K., Zainudin S.,"A proposal for holistic assessment of
computational thinking for undergraduate: Content validity",2020,"European
Journal of Educational Research","10.12973/eu-
jer.9.1.33","https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85082097163&d0i=10.12973%2feu-
jer.9.1.33&partnerID=40&md5=54d1017f4af582d22b1edc9970ecd68f"

Taylor, N. G., Moore, J., Visser, M., & Drouillard, C. (2018). Incorporating
computational thinking into library graduate course goals and objectives. School
Library Research, Vol. 21. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85053260681 &partnerD=40&md5=15815233f96a5912185346fe719f6496

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational
thinking in collaborative programming: A quantitative ethnography approach.
Journal of Computer Assisted Learning, Vol. 35, pp. 421-434.
https://doi.org/10.1111/jcal.12348

Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’
computational thinking skills in a data-driven computing class. ACM
Transactions on Computing Education, Vol. 14. https://doi.org/10.1145/2676660

155

PS40

PS41

Zha, S., Jin, Y., Moore, Gaston J. (2020). Hopscotch into Coding: Introducing
Pre-Service Teachers Computational Thinking. TechTrends, 64, 17-28.
https://doi.org/10.1007/s11528-019-00423-0

Zha S., Jin Y., Moore P., Gaston J. (2020). A cross-institutional investigation of a
flipped module on preservice teachers’ interest in teaching computational
thinking (2020), Journal of Digital Learning in Teacher Education.
https://doi.org/10.1080/21532974.2019.1693941

156

https://doi.org/10.1080/21532974.2019.1693941

Appendix C

Appendix C. Research instruments.
Instrument adapted from Park (2009).
Anuoypogira Zroyeio.

1. Xvuminpooete 10 6yolko cog email *

2. TaEn™*

No emonuoivetar uovo uio EAAerym.

IMuvaciovA
IMuvaciovB

[IMvpvaciovl”

3. DVAlo*
No. emonuoiveton puovo pio EALerym.

Avyopt

Kopitot

4. TIponyoduevn eumeipio TPOYPUUUOTIGHLOD *

Na emonuoivetar povo uio ErAerym.
Naw
O
Evxolio Xpnong

1. Bphka 10 Toryvidt TPOYPOUUOTIGHOD KOl LTOAOYIOTIKNG okéyng aMazeD
€0KOLO TN Yp1IOM. *

No. emonuoivetar uovo pio EAdeyn.

Awpove éviova

157

2OUQOVO EVTOova

2. Tovo pabo va xpnoomold va moryviol TPOYPUUUATIGUOD KOl VITOAOYIGTIKNG
oKEYMG 1voil EDKOAO Yo Epéva. *

No. emonuoivetar uovo uio EAeLym.

Awpove éviova

Y0HQOVO Eviova
Xpnowotnta

1. To mouyvidl TpoypOUUATIGHOD Kot VTOAOYISTIKNG okéyng aMazeD pmopet va
pe BonBnoet va kataldPo Tig EVVOLEG KoL TIG TPUKTIKEG TPOYPUULOTIGLOD Kot

VTOAOYIGTIKNG OKEYNC. *

Na emonuaiveror puovo uio EALeryn.

Alopove éviova

158

2OUQOVO EVTOova

To mouyvidt TPOYPUUUATIGHOD Kot VITOAOYIGTIKTG okéyng aMazeD pumopet va
KOVEL EDKOAOTEP TNV LEAETN TOV EVVOLOV KOL TOV TPUKTIKOV

TPOYPOUUOTIGHOD KO VTTOAOYIGTIKNG OKEYNG. ™

No. emonuoivetar uovo uio EALELy.

Awoved éviova

Y0HQOVO Eviova

Ot cvpPoviéc mov pov mapeiye To Toyviol oy ETapPKEig yio va pe fondncovv

vo EMAVC® To enimeda. *
Noa emonuaiveton uovo pio. EAerym.

Aopove éviova

159

20UQOVO EVTOova

4. Ot ovpPovAég Tov pov apeiye To mayviol NTav ¥PHGILES Vi Vo, Le fondncovy
Vo EMAVo® T emimeda. *

Na emionuoiveton povo uio ElLe1ym.

Awoove éviova

1
2
3
4
5
2VUPOVO EVTOVa
S. Ot ovpPoviég mov pov mapeiye to moyvidt pe Bondncav vo Kotavoncm Tic

Booucéc Evvoleg TPOYPOULOTIGHOD KOl VTTOAOYIOTIKNG OKEYNG. *

No. emonuoivetar uovo uio EAerym.

Awpoveo éviova

YVHQOVO EvTova

2tdon

160

1. H pelémm mpoypoppatiopold Kot VTOAOYIGTIKNG OKEYNG MECH TALYVIOIDV

omwg o aMazeD eivou pio ko 10€a. *

Na emonuaiveton uovo uio. EAewym.

Alpove viova

1
2
3
4
5
2VHQOVO EVTOova
2. Elpor Oetikdg/Betikn amévovit oto mouyvidle TPOYPOUUATICHOD KoL

VTOAOYIGTIKNG OKEYNG. *

No. emonuoivetar uovo uio EALELy.

Awove éviova

2UUQOVO EVTOVa
Ilpoaitotno.
Agv ovTIHETOMICO KOpio OuoKOMo ot ypnom
TPOYPOUUOTIGHOD. *

Na emonuaiveton uovo uio. EAewym.

Aopove éviova

161

TO0V

TOLLYVIO100

20UQOVO EVTOova
2vvodikn Eumeipio

Ipayte Alya Aoy yro v gumepia cag amd to moryvidt. Ticag dpece 1) dgv cog dpeoe; Ti cog
€Kave evtommon;*

162

Scale of Attitudes towards Programming adapted from Kong (2018)

1. Svuminpooete 10 6olko cog email *

2. TaEn*

No. emionuaivetar uovo uio EAlenym.

IMvpvaciovA
IMpvaciovB
INvpvaciovl”

3. ®OMo*

No. emonuoivetor uovo uio EAeryn.

Avyopt

Kopitot

Meaningfulness

1. O mpoypoppotiopog etvot xpnoog ylo epéva. *

Noa emonuaiveton uovo pio. EAerym.

ZOUEOVED OTOAVTOL

o b~ W N

Aopovd andivto

2. O mpoypoppoticrdc Ba pe Bondnoet va TeTOY® TOVS GTOYOVG LoV, *

Na emonuaiveton uovo uio. EAewym.

SVUPOVO OTOALTO

163

a B~ wWwu DN

Aopovd amndivto

3. O&o va yive KaAdg GTOV TPOYPOUUATIGHE. *

Na emonuaiveron uovo uio. EAewym.

2VUQOVO OTOALTO

(62 B N CC N\

Awoved andivta

4. O mpoypopUaTIcHog eivor onpavTikdg yio péva. *

Na emonuaiveton uovo pio. EAerym.

YVUQOVO OTOALTO

o B~ W DN

Alopove arolvTta
Programming self-efficacy

1. Mmnopd va pdbow ntog va mpoypoppotilo. *
Na emonuaiveton uovo pio EAerym.

164

ZOHEOVED omTOAVTOL

a B~ wu DN

Aopove amndivto

Eipot kaAdg oTov mpoypappaticpno. *

No. emonuoivetar uovo uio EALELy.

2VUQOVO OTOALTO

o B~ W DN

AwQoved andivta

ZKEPTOUOL TOV E0VTO HOV MG KATOL0V TOL UTOPEL vaL TPOYpaUaTioEL. *

No. emonuoivetar uovo uio EAerym.

2VUQOVO OTOALTO

o B~ wWwN

Alpove amolvTta

165

4. 'Eyo 5e&l0TTEG TPOYPOUUOTIONOD. *

Na emonuaiveron uovo uio. EAewym.

SOUPOVO OTOALTO

aa b~ W N

Awoved andlvta

5. 'Exo gpmiotosivn oty ikavottd pov va TpoypoppotiCo. *

No. emionuoivetar uovo uio EAerym.

ZOUEOVAD OTOAVTOL

a b wWw N

Aoved andlvta
Interest in programming

1. O mpoypappatiopds stvor evolopépmv. *

No. emonuoivetar uovo uio EAerym.

SVUPOVO OTOALTO

A~ W

166

Alpove amoAvTa

Eipon mepiepyog yio 10 mepieyOeVo 10V TPOYPOUUATIGHOD. *

Na emionuoiveton povo uio ElLe1ym.

SVUPOVE OTOALTO

a b~ W N

Awoved andivta

Nopilw 611 0 TpoypoppaTiopds eivar S10oKESUGTIKOG. *

No. emonuoivetar uovo uio EAeLym.

ZOUEOVE OTOAVTOL

a b wWw N

AwQoved andivta

Me gvatapEpovy TOAD 01 dpacTNPIOTNTES TPOYPUUUATICHOD VITOLOYICTOV. *

No emonuoivetor puovo uio E1ewym.

ZOUEOVED oTOAVTOL

167

Al0pove amoAvTa

168

Computational Thinking Test (CTt) adopted from Roméan-Gonzalez et al.

(2017)
Kolog pbate otn dokipacio Yrorloylotikng Zkéyng!

* YodekvhEL OMOLTOVUEVT) EPMOTNON

1. AwedBuvon niektpovikov Toyvdpopeiov *

2. ®OAO*

Na emionuaivetar povo uio Errerym.
Ayopt
Kopitot

3. Takn*

No. emonuoivetor uovo uio EAeryn.

INvpvaciovA
INvpvaciovB

TIMopvaciovl”

Odnyieg

H doxpacia anoteieiton and 28 epotoeig, o€ 7 oehideg pe 4 epmtnoeig n Kabegpia.

Olec o1 gpotioetg Exovv 4 emhoyég amavtnoswv (A, B, C 1N D) and tig omoieg povo pia

elvalcmot.

‘Exete 45 Aemtd va kdvere 10 koAOTEPO MOL Umopeite. Aev givor amapaitmto va

OTOVTCETEGE OAES TIC EPMOTNGELS.

[Ma va tpoympricete o emdpevn oehida emhélte "Luvéyela" 610 KdTm PEPOG TG oeAidaC.
I[TOAY ZHMANTIKO: 6tav oAokANp®oETE TN 00KILOGI0 1] 0 YpOVOG oG TEAEUDGEL Bal

npéneiva petakivndeite oty tedevtaio oerida kot va emAégete "YmoBoAn".

[Ipwv Eextvnoete T doKipacio pmopeite vo 0iTe TOPAKAT® TAPUELYLOTO EPOTICEDV

oav ouTd Tov B TPETEL VAL ATOVTI|GETE.

‘Pac-Man’ Ghost
169

Artist

[Mopaderypa 1
e avT0o T0 Topadetypo cog {nteitatl vo ddoete 00MYyieg £161 dote To Pac-man va
ovvavtnoel 1o pavtacua (ghost) péc® Tov KiTptvoy HOVOTaTION.

H ocwotm) andvnon sivar 1o B.

[Mapdoerypa 1. IToeg odnyieg mpémel va 600oHv 6to Pac-man étol wote va petafet 6to
eavtacpa (ghost) péow Tov Kitptvov povomatiov;

Which instructions take 'Pac-Man' to the ghost by the path marked out? Option A

»3y

Option B

-

- »tt

Option D

>3y

[Mopaderypa 1 *

EniiéEte v andvinon B
No. emonuaiveton puovo uio EAMerym.

A

B
C
D

170

Mopaderypo 2.

Kot og avto 10 mapdderypa cog {nteital va dmoete odnyieg £to1 dote 10 Pac-man va
uetaPet oto pavracpa (ghost) pésm tov kitpvov povoratiov. ESd 6pmg ot amovinoelg
Topovctalovtatl Mg odnyieg Kot Oyt g PEAN.

H cwot andvinon eivar to C.

[Mopaderypa 2. Tloteg 0dnyieg mpémetl va doBovv 6to Pac-man 1ot dote va petaPet oto
eavtacpa (ghost) péow Tov Kitpvov HovoroTiov;

Which instructions take Pac-Man' to the ghost by the path marked out?

V kivijoou [T Ut hs
iy ompive (EIED

‘ 7 KIVIjoou m KIViioOU
w ‘ 7 krvr‘;oou KM’\UOU | JTTPOOTG ¥ |

Kivioou fTut ks
Kivijoou T TacRs

otpiye (EILED
Kivioou [T Kivioou (Tuflu e

[Mopaderypo 2 *

EmnéEre v amdvnon C.

No emonuaivetor uovo uio EAeryn.

A C D

B ()
c C
p C

171

Mopaderypo 3
Yo [Mapaderypa 3 cog {nteitan va ddoete 0dnyieg £161 date 0 KoAhtéyvng (artist) va
oyedldoel To oo T 006vNg.

Me v evtod] KINHZOY o kodtéyvng (artist) mpoympd kot {oypapicel evd pe tnv
evtom] METABAXH o kaAlttéyvng (artist) tnda yopic va {oypoeilet.

To yxpt Bérog delyver v KatevBuvon ekkivnong tov kaditéxvn. H coot andvinon
etvar o A.

[Mopaderypa 3. Tloteg 0dnyieg mpémetl va 0000V 6TOV KOAATEYV £TG1 MGTE VO GYEIACEL
T0 TapoKato oynua; H pikpn mhevpd etvar 50 eicovootoyyeia ko 1 peydin100.

Which instructions should the artist follow: to draw the shape? The
short side measures 50 pixels and the long side measures 100
pixels
xviyoou (TR ER xond | E35) exovooroneia xrioou MRS xond | El) exovooroneia
owpipe (IEIAR kand | €19) poipe ompige [EEER Xad || K1) poipeg
xviyoou FTLNTIEIER xonG | (18} ewovoorozia saviono (TSR xond | (1Y) oxovoosonteia
—
Option C Option D
poara v Bh< BN SO BN L A1) exovoaronzia
opne EEITIED vart | 5] poipec orpipe CNED kand | ER) poipeg
oo (TR word | (GE) cwcveoroixdo rvioow (Tl xord | ER) ewovoooneia
A *
[Mopaderypo 3

Enilééte v amdvinon A.

No emonuaivetor puovo uio EAerym.

A C D

B ()
c C
p C

172

Epotoeig 1-4
Epdtnon 1. IToteg 0onyieg odnyovv 1o Pac-Man oto pdavtacuo ard 1o Kitptvo LovomdTt,

Which instructions take Pac-Man' to the ghost by the path marked out?

Option A

e 4

Option B

& »3y

Option C

>3y

Option D

L4 g

Epdton 1

EnéEre) cwot andvnon
No. emonuaiveton puovo pio EAerym.

A

B
C
D

173

Epdtnon 2. Tlowo Prua Aeimel otig mapakdtem odnyiec yia vo petafei to Pac-Man oto

edvtocuo and To Kitptvo LOVOTATL,

Which step is missing in the instructions below to take Pac-Man’ to the ghost by | Option A
the path marked out?

cat: Do

¥

tion B

g

*

tion C

g

B
»

tion D

N
2

-

Epodtnon 2

EniléEte t oot amdvinon
No emonuaivetor puovo pio EAMerym.

A

B
C
D

174

Epdnon 3. Ot 0dnyieg mpémet va odnyncovy to Pac-Man 6to gavtacpa amd 1o kitpvo
LLOVOTATL. X€ TTO10 Pripol TV 0dNY1OV LITdpyEL Komoto AdBog;

The instructions should take Pac-Man’ to the ghost by the path marked out. In
which step of the instructions is there a mistake?

Sy | G | SR | G| S | G)) G

S| | | [ﬁ' el QU pTTPO0TA ¥ §| s Bripia A

b | |) - |- T APIOTERG ¥ | weedy Bijpa B

e i 1 T ripoord +
CULE mpootd v | == Brina
G piorepd v i = BiikaD
kivioou LTS

Epotnon 3

EnéEre to Prina oo omoio vapyet Adbog
No emonuaivetor puovo uio EAenym.

A

B
C
D

0000

175

Epdnon 4. Toteg 0dnyieg mpémetl va akolovbncel 0 KaAMTEXVNG Y10l VO, GYESLAGEL TNV
mhateio; Kébe pio amd tig mhevpéc tov tetpaymvou €xetl péyebog 100 eikovootoryeia.

Which instructions should the artist follow: to draw the square? Each of the sides of
the square measures 100 pivels,

o LOOER w0 | (LD peipeg
PN Lrcoant v Lo BN 100 R e

Option B

Avov exreAshm

awooy (TETECES womd - 1 cxovooonen
ophpe LI wondt | €)oo

oviooy (IDTIIRER wont | 53 ewovoomssatn

e oot | E0) poles
ovioou [TETs Kl vt | 53 owovoomoyoio
omphpe LETER xond | ED) pobes

wviooy (TTTTIES wond | ER) emovoosenia

iy (SIS wnd | €9 T
orpige LIZTRD wond | £ nolpec
wretyooy (CITEOEN wont | E3) owsvoownit:

rppe LECED xond | £4) polpeg
(CITEER wond | E1) emavoosnits

00 xond |) poieg
R T Lrpoasd « EETLIIE S0 RS R

Epotnon 4

EméEre) cwot) andvinon
No emonuaivetor uovo uio EAeryn.

A

B
C
D

J0a00

176

Ontion D

RN ripoco + Rnu BN 100 B
opkpe (ETRR ant | £5) wbeg
vty (TR Ko 00 M

o LIED vars | €03 pbec
ooy (ETERTED x| (0 exovodoomio
owhpe IR xord | £ wbeg
arviiooy (TS «md | (1) extwostoneio

Epomoeig 5-8
Epdtnon 5. Toteg 0omyieg odnyovv 1o Pac-Man oto pdavtacuo and 1o Kitptvo LovomdTt,

Which instructions take 'Pac-Man' to the ghost by the path marked out?

Option A Option B
x5 x 3 ‘
1 @
Option C Option D
x 4 X2

Epdton 5

EmiléEte t cowotr| amdvinon
No emonuaiveton puovo pio EAMerym.

A

B
C
D

177

Epodton 6. [16cec popég mpémet va emovoinedet | axolovbia yio va 0dnyndet to Pac-
Man oto @dvtacpa omd To KiTpvo LOVOTATL;

How many times must the sequence be repeated to take ‘Pac-Man’ to the ghost by

the path marked out? Option A

@ ‘ X 2

‘ Option B

X 1

(< Option C
X 4

Option D

X 3

Epdtnon 6

EmiléEte t cowotr| amdvinon
Na emonuaivetar povo uia Eierym.

A

B
C
D

178

Epdtnon 7. Ot 0dnyieg mpémet va kévouy tov KaAMTEXVT Vo 60140l TO akOAoVO0
opBoydvio pia eopd (mAdtog 50 gucovootoryeia kot Vyog 100 eikovootoryein). Xemolo
Brpo Tov 0dNY1HV vITdpyEL KAmoto AdB0og;

The instructions should make the artist draw the following
rectangle once (50 pivels wide and 100 pixels high). In which
step of the instructions is there a mistake?

Brjpa A

emovadaBe | £ popé

ROVE | kvijoou (TTTEICRS kavd |) exovooroiyeia * Brijpa B
DICTERG 4 | E {
otphpe CTTOCTIRS kord | €0 | polpec » Biiac
xviioou (M7 kard | (0] exovootoitia : Bijpa D
oTphpe EILICTIIRE Ko | € | poipeg
—

Epdton 7

EméEre to Pripa oto omoio vdpyet Adbog

No emonuaiveton uovo uio EAeryn.

A

B
C
D

J0aoo

179

Epdnon 8. Tloteg 0dnyieg odnyovv 1o Pac-Man oto @dvtacua ond 10 Kitpivo Lovorartt;

Which instructions take Pac-Man' to the ghost by the path marked out?
Option A

B

EO \mpoota v
owphye LZTED
I

|
-
[DD CEEE

L0 L0 oIl ¥ |

Option B

0 imooaa v

—

orpipe (ED
-

L TR prpods v |

Option D
Grav exeAoiTon

enovaAaRe £ gopéc

KAVE | TIPOXWEPNGE PTIROOTIN

emuavihafe K3 popéc

xave: (oipive CECIIRD
i

TIPOXWPNOE PUNPOCTd

Epodtnon 8

EméEre) cwot) andvinon
No emonuaiveton uovo uio EAeryn.

A

B
C
D

J000

180

Epomoeig 9-12

Epdtnon 9. TToteg 0onyieg odnyovv 1o Pac-Man oto pavtacuo and 1o Kitptvo LovomdTt,

Which instructions take Pac-Man' to the ghost by the path marked out?

&

Option A Option B
Enavéiape I Enavalafe
Mixpe.. EXPL.... [

(-] "

Option C Option [}

r
Enavihafe Enavidafe
M“txp""‘ ﬁ MéxpL.... ‘m]
{ L

Epdton 9

EmiléEte t cowotr| amdvinon

No emonuaiveton puovo uio EAMerym.

A

B
C
D

181

Epodnon 10. [Moteg odnyieg 0dnyovv to Pac-Man 6to gavtacua and 1o Kitpvo
LOVOTTATL,

Option A Option B

|) | bl | = Option C Option D

‘ Aev AeimeL koo Brjpa.

©¢

n
R_odl

Ep®ton 10

EmiléEte t cwotr| amdvinon
No emonuaivetor uovo uio EAeryn.

A

B
C
D

J000

182

Epdtnon 11. O 0dnyieg mpénetl va odnyncovv 1o Pac-Man oto @dvtacua amd to kitptvo
LOVOTATL. X€ TO10 Prpa TV 00N YLDV LITAPYEL KOmTolo AdOog;

The instructions should take Pac-Man’ to the ghost by the path marked out. In
which step of the instructions is there a mistake?

|I
el | lie . 4 ~alf IS

Epodton 11

EnéEre to Prina oo omoio vapyet Adbog

No. emonuaiveror povo uio. EALeryn.

U O W >

J000

183

Epodtnon 12. Ioteg 0dnyieg mpémet va 60000V 6TOV KAAMTEXVN Y10, VO GYESIACEL TN
OKOAO TTOL POIVETOL GTNV TOPOKAT® KOV, Avapecsa o€ Kabe okaAl pecorafet kevo 30

glKovooToyEia.

Which instructions should the artist follow to
draw the ladder that reaches the flower? There
are 20 pixels between each rung.

Option A

KNE | eatioou (TISIRER komd | KD)

EROVOOTONEK

owige LETED xost || E1) yoipe
=

perafann (TR xord | EL) pixels

ooy (TR xord
opipe LETER kot || €8] poipes
-

(120 QT

perdiBaan (TR xond | B pieals
-

Option C

xvfioou (EEEREER xod
orpige LTED vené | E5) poipeg
-

L2 exovoarontia

penifoon (T7arRd xard | €2 phels

Option D

£ wpopt
el 0% 5T ympoana v
owphpe LETRD xond | €10 pobeg
-

El) oxovootogeka

poofaon (LR LI 210 B E
—

Epoton 12

EnéEre) cwot andvinon

No emonuaiveton uovo uio EAeryn.

A

B
C
D

J000

184

Epomoeig 13-16

Epdton 13. Tloteg 0dnyieg odnyovv to Pac-Man oto gdvtacua amd 1o Kitptvo
LOVOTTATL,

Which instructions take Pac-Man' to the ghost by the path Option A Option B

marked out?
E AGp TAVEAGE
Mixpe. g Méw-«m

IR

l '; . Option C Option D

ETtave Frravalap
D | L | L | e | — Mtxpl...“ Mlm«.n

Epdtnon 13

EmiléEte t cowotr| amdvinon
No. emonuaiveror povo uio. EALeryn.

A

B
C
D

0000

185

Epodnon 14. Ioeg odnyieg 0dnyovv to Pac-Man oto eavtacuo and 1o Kitpvo

LLOVOTLATL,

Which instructions take Pac-Man' to the ghost by the path
marked out?

U@~U;Ef ;

TIPOXLPNOE prpoatd

()

LIE
L

o Biadpop) (TS
opive (LIRS

aanidha
emovahaBe péxp [‘1
xave | orpiye LETTED
ov SoBpoys ETEACKLRD
TIROXWPNOE LITpOaTa

B |
L
CEE
Al

e
LIl

L
L
LIIE
]
I
[

e pexol[=]

TTPOXUWPNGE UTTPOOTA

av habpopr] ENSEEETED
L opiotepd O v

[
I e

["orav exreaehar |
- Be pé X‘)_[.-ﬂ
TIPOXUWPNTE PpoaTd
R GLTTL B T1pOG T GpIoTEpa ¥ |
(LT aploTepa O v |

Epotnon 14

EnéEre) cwot andvnon
No emonuaivetor uovo uio EAeyn.

A

J000

B
C
D

186

Epdtnon 15. [oeg odnyieg Aeimovv étol dote o Pac-Man va petafei oto pdviacpo
omd To KiTptvo HovomdaTt;

What is missing in the instructions below to take ‘Pac-Man' to the ghost by the Option A
path marked out?
|Erevirage
AV
e
Option B
tion C
‘a}
& t-:
Option D
Kat to A kat to C eivat owotd.
7 o

Epdton 15

EmiléEte t cowotr| amdvinon
Na emionuaivetor povo uio éAerym.

A

B
C
D

J000

187

Epdtnon 16. Ot 0dnyieg mpénetl va odnyncovv to Pac-Man oto pdvtacpo amd to kitptvo
LLOVOTATL. X€ TTO10 Pripol TV 0dNY1OV LITdpyEL Komoto AdBog;

In which step of the instructions is there a mistake?

[o
0 e

I

LI

T_[E:

|
|
=
L

L

|

l

LIE
I

LEE

()

The instructions should take ‘Pac-Man’ to the ghost by the path marked out.

(orov e’
emavahaBe péxpt [(.:1
KAve 7 :

TIPOXWPNOE UTTPOOTd

RNV TTPOG T CIPIGTEPG ¥ |
T cpoTzpd 0 v) e °H

wéx&bpopr} | TIPOG TCt DEIC ¥ |

TIPOXWPNTE UTTPOOTC

Bjpa A

Brjpa C

Brjpa D

!

Epoton 16

EméEre to Prina oto omoio vapyet Adbog
No emonuaivetor uovo uio EAeym.

A

B
C
D

J000

188

Epomoeig 17-20

Epdnon 17. Ioweg 0dnyieg 0dnyovv to Pac-Man 6to edavtacua and 1o kitpvo

LOVOTTATL,

Which instructions take Pac-Man' to the ghost by the path)
marked out? Option A

|
|
|
|
|
|
|
|

()

|
|
I

Kdve Jpoxu')pqot HTTpooTa

|
|
|
|

Option B
etroviaBe pexpl

Kdve Jpoxu‘)moc PITpOoTa

QAMDG Jpoxu’;mcs UITpooTd

xave | onpipe [IETEORS

S~

alig :poxd;mo: ynpoara

Epdmon 17

EméEre) cwot) andvinon
No emonuaivetor puovo uio EAerym.

A

B
C
D

J0a0

189

Epanon 18. Ioteg 0dnyieg 0dnyovv to Pac-Man 6to eavtacua and 1o Kitpvo
LLOVOTLATL,

Which instructions take Pac-Man' to the ghost by the path

marked out?

&

|

Option A

emovdrafe péypu| ©

Kave TPOXWPINUE PTPOCTa
-

Optim! B
drav exrehehios

(d

Kave Emm’ﬂ"."“ .‘ BEEN)
xove (‘ompipe (EZICRD
—

GANG | TIpOXWIPNOE UTpaaTa
—

Kave
kave | orpiye ETTUEIORD
—

aMwg anoxu‘.\pnoe. grpoaTa

Ep®ton 18

EméEre) cwot) andvinon

No emonuaivetor puovo uio EAerym.

A

B
C
D

J0a00

190

Epdtnon 19. Ot 0dnyieg mpémetl va odnynoovv to Pac-Man oto pdvtacpo amd to kitpvo
LLOVOTATL. X€ TTO10 Pripol TV 0dNY1OV LITdpyEL Komoto AdBog;

The instructions should take ‘Pac-Man’ to the ghost by the path marked out. In which
step of the instructions is there a mistake?

| ks I
PN

emavaioBe piypt

Kave TIPOYWPNJTE NTIPOTTa
~—

SR £y uniapxel povoTian oetid © v | Bripa B
R | A | L | L | Kave | owipe CIISTTICED QPTG

anves | orphye EZTIEED JELTTEY
~—

()

Epodton 19

EnéEre to Prina oo omoio vapyet Adbog
No emonuaivetor uovo uio EAeyn.

A

B
C
D

J000

191

Epodtnon 20. [Towo frpa odnyidv Aeinet €161 dote 1o Pac-Man va petafel oto pdvtacuo
oo TO KITPVO LOVOTATL,

the path marked out?

Kéve JDOXU)OHGC LTpOCTG

2

Which step is missing in the instructions below: to take ‘Pac-Man’ to the ghost by

Option A Option B

opiye CELITRD

Option C Option D

Asv Aelnel kavéva Bripa

Epodton 20

EnéEre) cwot andvnon

No. emionuoivetor povo pio A eryy.

A

B
C
D

Joaoo

192

Epotmoeig 21-21

YHMANTIKO: AIABAXTE I[TPOZEKTIKA

2T1G TOPOKATO EPOTNOELS ELPOVILETOL 1] EIKOVO PG PpAovAag HEGH OE £Vl
TeTpdy®vo.To teTpdywvo Katw deE1d eppavilel 1OGeg PPAOVAES VITAPYOLY GTO
TETPAYWOVO.

O ApBuoc dpdouvAwy
n (strawberries) mou

Bplokovtat oto TeETpdywvo

193

Epatnon 21. TToteg 0dnyieg 0dnyovv to Pac-Man otig ppdovieg amd to Kitptvo
LLOVOTIATL Kot TOV AEVE va pdiel OAES TIC PpAovAEG TOL eppavilovtat,

Which instructions take ‘Pac-Man’ to the strawberries by the path
marked cut and tell ‘Pac-Man' to eat all the strawberries shown? . .
: ! Option A Option B
' 1 ' drov exzAzhal
[| -
= _..‘ == 1= = _l __J 7= | 000 UIdoX L povoTam 00 UndpyEL povordn
r‘@!‘ r KAvE Jpoxwpqo: pmpooTd Kéve :DOXWO‘WC YTTPOOTa
s 3 || — enavaioBe &3 popéc gmovahaBe &) popés
‘ ‘ KavE \3’“ 1 dpdovia Kave \‘M(1 dpdovda
I 1
0
| |
| ‘] i | | 000 UNApYEL povondn, Q00 URAPYEL LOVOTTATL
Kave Jpoxwpm pmpogTd TIPOXWPNOE PIIPOaTa
| ‘ | | = eraviAaBe £ eopic
sy | e | ey |) | e | e | e | EMavaAnE: 9 Popes
: ; KOVE | dék 1 dpdovia
[KAVE $de 1 dpdovia -
| | —
Epoton 21

EméEre) cwot) andvinon
No emonuaivetor puovo uio EAerym.

A

B
C
D

J0a0

194

Epodtnon 22. IMoteg 0dnyieg 0dnyovv to Pac-Man otig opdovieg amd 1o KiTpvo LOVOTATL
KoL TOV AEVE VoL PAEL OAES TIG PPAovAEG TOV gpeavilovtar,

Which instructions take ‘Pac-Man’ to the strawberries by the path
marked cut and tell ‘Pac-Man' to eat all the strawberries shoun?

Option A
ftav exrehsion

Option B
aray EXTEAElTTI

| | | | | 000 UTApXEL provonam, 000 URAPYEL HOVOTAT
|] el | I) B | e | e | e xave | emavdiaPe B3 eopék 7 -
= Kave | T W) € 00T
‘ "! \ K&ve | TIPOYWPNOE HTR0OTA Jiatscelsidd s
I A 3 3 3 3 3 || - emavdahaBe & popéc
I T enavaiaBe 3 gopéc < r
| ‘ ; KGve | ¢as 1 dppaovia
[l || KaVe (pae 1 gpdouda —
| ‘ | el | Lomtt] | Nl
[tion C tion D
|] aray exTeAsiTon
() |) | e | L | b | I | I | L 600 UTAPYEL HOVOATL
‘ KAVE | TIPOXWPNOE UITPOOTa
| | | | S
|] erravihaBe) popec enavaraBe K popéc
| : E
| | | KOVE - / >
o | Nt | D] | o) | M | e | il | ks Gie 1 dpdovia KGVe | ‘pée 1 pphovla
,
Epoton 22

EnéEre) cwot andvnon
No emonuaivetor puovo uio EAenym.

A

B
C
D

0000

195

Epdnon 23. [oieg odnyieg Aeimovv étol dote o Pac-Man va petafei otig ppdovieg
a0 TO KITPVO LLOVOTATL KO VO PAEL OAES TIG PPEovAES TOV gpeavilovtan,

What is missing in the instructions below to take Pac-Man’ to the strawberries by the path marked | Option A

out and tell Pac-Man' to eat all the strawberries shown?
oo v ’
Grov axteAcial 1 ®opa

600 UNAPYEL HOVOTATL

Kdve | emavihaBe BEEEEERd dopic

Option B
KGVE | TIPOXIPIOE PITPOOT 2 0 8'
EQV LI t OU ¢ p q
KGVE | bée 1 dpplovia
N
Option C

et 1 Tet 3 gopés

S S TR By e E———y p———— — Option D

e 5 popc

Epoton 23

EméEre) cwot) andvinon
No emonuaivetor uovo uio EAeyn.

A

B
C
D

J000

196

Epdnon 24. [oieg odnyieg Aeimovv étol dote o Pac-Man va petafei otig ppdovieg
0to TO KITPVO LOVOTATL KOt VO AEL OAES TIG PPAOVAES TTOV gpavilovtal (ayvdoTov
apOpov);

000 UTUILOYEL LIOVOTHIT Opﬁon A
KOVE | 222722292292922299929299377
Option B

Kave | $éel dpdovia
N

500 SEV UNTAPYXEL HOVOTTIATL

Option C

] Bl il | Bl | b |] | |) 000 UTIAPXOUV DPAOUAEG

Option D

000 SeV UNAPYOUV PPAOUAEG

Epotnon 24

EnéEre) cwot andvinon
No emonuaivetor puovo uio EAerym.

A

J000

B
C
D

197

Epomoeig 25 - 28

Epdnon 25. [oeg 0dnyieg mpémet va akoAovONGeL 0 KOAMTEYVNG Yo VO GYEOAGEL TO
mopokdto oynua; To chvoro odnyidv Tov epeavileTal 6To aploTeEPOd HEPOG TNG EIKOVAG
ovopaletar ovvaptnon (function) kot Coypaeilet éva tetpdywvo pe Tigvpd 100

glKovooToyEia.

wrviiooe (TA0RD x| {55 exovomonek

iphpe LR wom
o

£ poipeg

enaviaaBe | &) @opic

KOVE | TEIpaYWVO | €
—_

orpipe (EITED koG | {F) poipeg

Option B

enmavaABe B Popic
KOVE | TEpayWvo | e

| omiye LT kart | (EY) poipeg

emavasae

€) oopic

KOvE | fErpdytovo | et
-

ompiye EETRD koma | ER) poipeg

tnavaAats

8 vopé
KOVE: | ¥eIpaywvo | oridiovooio

arpiye LIETIRD xend | E1) | poipeg
e

Epoton 25

EnéEre) cwot andvinon

No. emonuaivetor puovo uio EAerym.

A

B
C
D

0000

198

Epodtnon 26. Ot mapakdtm odnyieg TpEmeL vo KAVOLV TOV KOAALTEYV VO GYESIACEL TO
nopokdto oynpa. [loo voduepo Aeinet otic 0dnyleg; H cvvaptnon mov gppavileror oto
aplotepd PEPOGC NG ekdvag (wypapilet éva tpiymvo pe mhevpd 50 siovootoryeia.

The following set of instructions is called ‘my function’, and draws one triangle
of 50 pixels each side:

enavéAaBe | K eopé

| raviyoou (IR kard. | (EERER exovoqToeio
LU aparepa v EEUEN 120 JEEEES
—

Option A

15

Optien B

The instructions below should make the artist draw the following design. Fach side
of each triangle measures 50 pivels, What is missing in the instructions?

eravaiaBe | EEE) wopic

KOVE | 1piyeavo | emetepyoala

perdBoon (TINEE RS xord | ER) pixels
~—

Option C

4

Option D

3

Epodton 26

EnéEre) cwot andvinon
No emonuaivetor uovo uio EAeryn.

A

B
C
D

J000

199

Epatnon 27. Ioteg 0dnyieg 0dnyovv to Pac-Man otig ppdovieg amd 1o KiTpvo LOVOTATL

KoL TOV AEVE VoL PaeL OLES TIG PplovAeg TTov ppavilovTat;

Nahof3e B

Sas 1 $pdovia

TPOXWPNTE UMpoaTd

naoe 5

Option B

[drov exverelion
TTPOXWRNTE PITPoaTa
aipipe (CRD

TIPOY(ONTE LITPOOTd

Option C

—
TPOXWPNOE LIMPooTa

opiye LETIIRD

Be ERS popég
TTROXWHNUE PTTpoaTa

nape 5

Option D
TTPOXWPNUE PITPoaTa

kéve | nape$

TIPOXWPNOE UITPOaTa

Epoton 27

EnéEre) cwot andvnon
No emonuaivetor puovo uio EAenym.

A

B
C
D

J0a00

200

Epdnon 28. [oteg odnyieg Aeimovv étol dote o Pac-Man va petafei otig ppdovieg

a0 TO KITPVO LLOVOTATL KO VO PAEL OAES TIG PPEovAES TOV gpeavilovtan,

ﬂmvemm

emavahapBe EEER POpES

KAVE | mpoXwpa Kat nape 4

Epotnon 28

TIPOXWPNOE LMPOOTH
oiplye LETIEED

TIPOXWPNOE PTTPOoTa

ermavinaBe BN wopéc

1 ppdouia

Option A

Option B

Option C

Option D

EméEre) cwot) andvinon

No emonuaivetor puovo uio EAerym.

A

B
C
D

J0a0d0

201

References

Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with
educational robotics: An interaction effect between gender and scaffolding strategy.
Computers in Human Behavior, 105. https://doi.org/10.1016/j.chb.2019.03.018

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ CT skills through modeling
and simulations. Education and Information Technologies, 23, 1501-1514.
https://doi.org/10.1007/s10639-017-9675-1

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, VVol. 55, pp.
832-835. https://doi.org/10.1093/comjnl/bxs074

Alfayez, A. A., & Lambert, J. (2019). Exploring Saudi Computer Science Teachers’
Conceptual Mastery Level of CT Skills. Computers in the Schools, 36, 143-166.
https://doi.org/10.1080/07380569.2019.1639593

Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation
approach. International Journal of Child-Computer Interaction, 19, 30-55.
https://doi.org/10.1016/j.ijcci.2018.10.004

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges.
Computers in Human Behavior, 105. https://doi.org/10.1016/j.chb.2019.106185

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A
K-6 CT curriculum framework: Implications for teacher knowledge. Educational
Technology and Society, 19, 47-57. https:// doi.org/10.1016/j.chb.2019.106185

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ CT skills through educational
robotics: A study on age and gender relevant differences. Robotics and Autonomous
Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008

202

Atmatzidou, S., Demetriadis, S., & Nika, P. (2018). How Does the Degree of Guidance
Support Students’ Metacognitive and Problem Solving Skills in Educational Robotics?
Journal of Science Education and Technology, 27(1), 70-85.
https://doi.org/10.1007/s10956-017-9709-x

Bargury, 1. Zur, Haberman, B., Cohen, A., Muller, O., Zohar, D., Levy, D., & Hotoveli, R.
(2012). Implementing a new Computer Science Curriculum for middle school in Israel.
Proceedings - Frontiers in Education Conference, FIE.
https://doi.org/10.1109/FIE.2012.6462365

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved
and what is the role of the computer science education community? ACM Inroads,
2(1), 48-54. https://doi.org/10.1145/1929887.1929905

Basogain, X., Olabe, M. A., Olabe, J. C., & Rico, M. J. (2018). Computational Thinking in
pre-university Blended Learning classrooms. Computers in Human Behavior, 80, 412—
419. https://doi.org/10.1016/j.chb.2017.04.058

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in
a Computational Thinking-based science learning environment. User Modeling and
User-Adapted Interaction, Vol. 27, pp. 5-53. https://doi.org/10.1007/s11257-017-9187-
0

Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., & Lister, R. (2017). Improving the CT
pedagogical capabilities of school teachers. Australian Journal of Teacher Education,
42(3), 53-72. https://doi.org/10.14221/ajte.2017v42n3.4

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Annual American Educational Research
Association Meeting, Vancouver, BC, Canada, 1-25.
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_ AERA2012_CT.pdf

203

Bui, L. D., Kim, Y. G., Ho, W., Ho, H. T. T., & Pham, N. K. (2018). Developing WebQuest
2.0 model for promoting CT skill. International Journal of Engineering and Technology
(UAE), 7(2), 140-144. https://doi.org/10.14419/ijet.v7i2.29.13304

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., & Danies, G. (2017).
Changing a Generation’s Way of Thinking: Teaching Computational Thinking
Through Programming. Review of Educational Research, VVol. 87, pp. 834-860.
https://doi.org/10.3102/0034654317710096

Cachero, C., Barra, P., Melia, S., & Lopez, O. (2020). Impact of Programming Exposure on
the Development of Computational Thinking Capabilities: An Empirical Study. IEEE
ACCESS, 8, 72316-72325. https://doi.org/10.1109/ACCESS.2020.2987254

Carlborg, N., Tyrén, M., Heath, C., & Eriksson, E. (2019). The scope of autonomy when
teaching computational thinking in primary school. International Journal of Child-
Computer Interaction, 21, 130—139. https://doi.org/10.1016/j.ijcci.2019.06.005

Cetin, I., & Ozden, M. (2015). Development of computer programming attitude scale for
university students. Computer Applications in Engineering Education, 23, 667-672.
https://doi. org/10. 1002/cae.21639

Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring Utilization of
Scratch. Journal of Educational Computing Research, 54, 997-1021.
https://doi.org/10.1177/0735633116642774

Chalmers, C. (2018). Robotics and computational thinking in primary school. International
Journal of Child-Computer Interaction, 17, 93—-100.
https://doi.org/10.1016/j.ijcci.2018.06.005

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of
problem-solving through a visual programming environment. Computers and
Education, 95, 202-215. https://doi.org/10.1016/j.compedu.2016.01.010

204

Chen, C. H., Liu, T. K. and Huang, K. (2021). ‘Scaffolding vocational high school students’
computational thinking with cognitive and metacognitive prompts in learning about
programmable logic controllers’, Journal of Research on Technology in Education,
0(0), pp. 1-18. https://doi. org/10.1080/15391 523. 2021.1983894

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing
elementary students’ computational thinking in everyday reasoning and roboticS
programming. Computers and Education, Vol. 109, pp. 162-175.
https://doi.org/10.1016/j.compedu.2017.03.001

Chevalier, M., et al. (2022). The role of feedback and guidance as intervention methods to
foster computational thinking in educational robotics learning activities for primary
school. Computers and Education, 180, 104431.
https://www.sciencedirect.com/science/article/pii/S0360131522000021

Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing Computational Thinking with
Educational Technologies for Young Learners. TechTrends, Vol. 62, pp. 563-573.
https://doi.org/10.1007/s11528-018-0292-7

Choli, S.-Y. (2019). Development of an instructional model based on constructivism for
fostering CT. International Journal of Innovative Technology and Exploring
Engineering, 8, 381-385. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85064633190&partnerlD=40&md5=9c¢6da0548c789dfbb24134edc2cbfdc7

Clark, D. B., & Sengupta, P. (2019). Reconceptualizing games for integrating computational
thinking and science as practice: collaborative agent-based disciplinarily-integrated
games. In Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1636071

205

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). Education: A future for computing
education research. Communications of the ACM, 57(11), 34-36.
https://doi.org/10.1145/2668899

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J.
(2015). Computational thinking: A guide for teachers. Retrieved from Computing at
Schools. website: https://community.computingatschool.org.uk/resources/2324/single

Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the constructionist learning theory
with computational thinking classroom activities. Informatics in Education, Vol. 18,
pp. 41-67. https://doi.org/10.15388/infedu.2019.03

CSTA & ISTE. (2011). Operational definition of computational thinking. Retrieved from

https://www.iste.org/explore/Solutions/Computational-thinking-for-all.

Cutumisu, M., & Guo, Q. (2019). Using Topic Modeling to Extract Pre-Service Teachers’
Understandings of CT From Their Coding Reflections. 62(4), IEEE Transactions on
Education, 62(4), 325-332. https://doi.org/10.1109/TE.2019.2925253

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring Issues About CT in Higher Education.
TechTrends, 59, 57-65. https://doi.org/10.1007/s11528-015-0840-3

Da Cruz Alves, N., Gresse Von Wangenheim, C., & Hauck, J. C. R. (2019). Approaches to
assess computational thinking competences based on code analysis in K-12 education:
A systematic mapping study. Informatics in Education, Vol. 18, pp. 17-39.
https://doi.org/10.15388/infedu.2019.02

De Souza, A. A., Barcelos, T. S., Munoz, R., Villarroel, R., & Silva, L. A. (2019). Data
Mining Framework to Analyze the Evolution of Computational Thinking Skills in
Game Building Workshops. IEEE Access, Vol. 7, pp. 82848-82866.
https://doi.org/10.1109/ACCESS.2019.2924343

206

https://doi.org/10.1145/2668899
https://doi.org/10.1145/2668899
https://doi.org/10.1145/2668899

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls:
Can they be used to measure understanding of computer science concepts? Computers
and Education, 58(1), 240-249. https://doi.org/10.1016/j.compedu.2011.08.006

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications
of the ACM, 60(6), 33—-39. https://doi.org/10.1145/2998438

Dolgopolovas, V., & Jevsikova, T. (2015). On Evaluation of CT of software engineering
novice students. Proceedings of The IFIP TC3 Working Conference “A New Culture of
Learning: Computing and next Generations” At: Vilnius, 4(2), 105-112.
https://doi.org/10.13140/RG.2.1.2855.9206

Dolgopolovas, V., Dagiené, V., Jasuté, E., & Jevsikova, T. (2019). Design science research for
computational thinking in constructionist education: A pragmatist perspective .
Problemos, Vol. 95, pp. 144-159. https://doi.org/10.15388/Problemos.95.12

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational
thinking skills and various variables with the structural equation model. Computers and
Education, 116, 191-202. https://doi.org/10.1016/j.compedu.2017.09.004

Durak, H. Y., Yilmaz, F. G. K., & Bartin, R. Y. (2019). Computational thinking, programming
self-efficacy, problem solving and experiences in the programming process conducted
with robotic activities. Contemporary Educational Technology, 10(2), 173-197.
https://doi.org/10.30935/cet.554493

Fang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on blending
learning flipped class model in colleges and universities based on CT - “Database

principles” for example. Eurasia Journal of Mathematics, Science and Technology

Education, 13, 5747-5755. https://doi.org/10.12973/eurasia.2017.01024a

207

Ferndndez, J. M., ZUhiga, M. E., Rosas, M. V., & Guerrero, R. A. (2018). Experiences in
Learning Problem-Solving through CT. Journal of Computer Science and Technology,
18(02). https://doi.org/10.24215/16666038.18.e15

Fletcher, G. H. L., & Lu, J. J. (2009). Education: Human computing skills: Rethinking the K-
12 experience. Communications of the ACM, 52(2), 23-25.
https://doi.org/10.1145/1461928.1461938

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in
education (8th ed.). Mc Graw Hill.

Fronza, 1., El loini, N., & Corral, L. (2017). Teaching computational thinking using agile
software engineering methods: A framework for middle schools. ACM Transactions on
Computing Education, 17. https://doi.org/10.1145/3055258

Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cardenas, L., Pantano, P., & Bilotta, E.
(2019). Lesson planning by CT skills in Italian pre-service teachers. Informatics in
Education, 18, 69-104. https://doi.org/10.15388/infedu.2019.04

Garcia-Pefialvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in
pre-university education. Computers in Human Behavior, 80, 407-411.
https://doi.org/10.1016/j.chb.2017.12.005

Garneli, V., & Chorianopoulos, K. (2018). Programming video games and simulations in
science education: exploring computational thinking through code analysis. Interactive
Learning Environments, Vol. 26, pp. 386—401.
https://doi.org/10.1080/10494820.2017.1337036

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual
modeling techniques. Requirements Engineering, 9(4), 248-260.
https://doi.org/10.1007/s00766-004-0204-6

208

Giannakos, M. N., Doukakis, S., Pappas, I. O., Adamopoulos, N., & Giannopoulou, P. (2015).
Investigating teachers’ confidence on technological pedagogical and content
knowledge: an initial validation of TPACK scales in K-12 computing education
context. Journal of Computers in Education, 2(1), 43-59.
https://doi.org/10.1007/s40692-014-0024-8Grover, S., & Pea, R. (2013).
Computational Thinking in K-12: A Review of the State of the Field. Educational
Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the
Field. Educational Researcher, VVol. 42, pp. 38-43.
https://doi.org/10.3102/0013189X12463051

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017). A
framework for using hypothesis-driven approaches to support data-driven learning
analytics in measuring computational thinking in block-based programming
environments. ACM Transactions on Computing Education, Vol. 17.
https://doi.org/10.1145/3105910

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer
science course for middle school students. Computer Science Education, 25(2), 199—
237. https://doi.org/10.1080/08993408.2015.1033142

Gunbatar, M. S. (2019). Computational thinking within the context of professional life:
Change in CT skill from the viewpoint of teachers. Education and Information
Technologies, Vol. 24, pp. 2629-2652. https://doi.org/10.1007/s10639-019-09919-x

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A
multidisciplinary approach towards CT for science majors. SIGCSE Bulletin Inroads,
41, 183-187. https://doi.org/10.1145/1539024.1508931

209

Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguiluz, A., Garaizar, P., & Guenaga, M.
(2019). Creativity in the acquisition of computational thinking. Interactive Learning
Environments, Vol. 27, pp. 628-644. https://doi.org/10.1080/10494820.2019.1610451

Hickmott, D., & Prieto-Rodriguez, E. (2018). To assess or not to assess: Tensions negotiated
in six years of teaching teachers about computational thinking. Informatics in
Education, Vol. 17, pp. 229-244. https://doi.org/10.15388/infedu.2018.12

Hooshyar, D., Malva, L., Yang, Y., Pedaste, M., Wang, M., & Lim, H. (2021). An adaptive
educational computer game: Effects on students’ knowledge and learning attitude in
computational thinking. Computers in Human Behavior, 114.
https://doi.org/10.1016/j.chb.2020.106575

Hou, H.-Y., Agrawal, S., & Lee, C.-F. (2020). Computational thinking training with
technology for non-information undergraduates. Thinking Skills and Creativity, 38.
https://doi.org/10.1016/j.tsc.2020.100720

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis.
Qualitative Health Research, 15(9), 1277-1288.
https://doi.org/10.1177/1049732305276687

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational
thinking: Suggestions based on a review of the literature. Computers and Education,
Vol. 126, pp. 296-310. https://doi.org/10.1016/j.compedu.2018.07.004

Hsu, Y.-C., Irie, N. R., & Ching, Y.-H. (2019). Computational Thinking Educational Policy
Initiatives (CTEPI) Across the Globe. TechTrends. https://doi.org/10.1007/s11528-
019-00384-4

Huang, X.-P., & Leng, J. (2019). Design of database teaching model based on CT training.
International Journal of Emerging Technologies in Learning, 14, 52—69.
https://doi.org/10.3991/ijet.v14i08.10495

210

loannidou, A., Bennett, V., Repenning, A., Koh, H., & Basawapatna, A. (2011).
Computational Thinking Patterns Human Creativity and the Power of Technology:
Computational Thinking in the K-12 Classroom. Annual Meeting of the American
Educational Research Association (AERA), 2. Retrieved from

http://www.agentsheets.com

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all
learners in school-wide computational thinking: A cross-case qualitative analysis.
Computers and Education, Vol. 82, pp. 263-279.
https://doi.org/10.1016/j.compedu.2014.11.022

Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence in a Game-Based Learning
Environment: The Case of Elementary School Students Learning Computational
Thinking. Journal of Educational Computing Research.
https://doi.org/10.1177/0735633119887187

Israel-Fishelson, R., & Hershkovitz, A. (2020). Persistence in a Game-Based Learning
Environment: The Case of Elementary School Students Learning Computational
Thinking. Journal of Educational Computing Research, 58(5), 891-918.
https://doi.org/10.1177/0735633119887187

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary Preservice Teachers’
Self-Efficacy, Science Learning, and CT. Journal of Science Education and
Technology, 26, 175-192. https://doi.org/10.1007/s10956-016-9663-z

Jenson, J., & Droumeva, M. (2016). Exploring media literacy and CT: A game maker
curriculum study. Electronic Journal of E-Learning, 14, 111-121. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84968835202&partnerlD=40&md5=b2d18e2de52058bda3b76bcadb55a25e

211

Jeon, Y., & Kim, T. (2017). The effects of the CT-based programming class on the computer
learning attitude of non-major students in the teacher training college. Journal of
Theoretical and Applied Information Technology, 95(17), 4330-4339.

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12
education. Communications of the ACM, Vol. 59, pp. 26-27.
https://doi.org/10.1145/2955114

Kale, U., Akcaoglu, M., Cullen, T., & Goh, D. (2018). Contextual Factors Influencing Access
to Teaching Computational Thinking. Computers in the Schools, Vol. 35, pp. 69-87.
https://doi.org/10.1080/07380569.2018.1462630

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A Framework for Computational Thinking
Based on a Systematic Research Review. Baltic Journal Of Modern Computing, 4(3),
583-596.

Kang, Y., & Lee, K. (2020). Designing technology entrepreneurship education using
computational thinking. Education and Information Technologies, 25(6), 5357-5377.
https://doi.org/10.1007/s10639-020-10231-2

Karakasis, C. and Xinogalos, S. (2020) ‘BlocklyScript: Design and Pilot Evaluation of an RPG
Platform Game for Cultivating Computational Thinking Skills to Young Students’,
Informatics in Education, 19(4), pp. 641-668. doi: 10.15388/INFEDU.2020.28.

Katai, Z. (2020). Promoting computational thinking of both sciences- and humanities-oriented
students: an instructional and motivational design perspective. ETR&D-
EDUCATIONAL TECHNOLOGY RESEARCH AND DEVELOPMENT, 68(5),
2239-2261. https://doi.org/10.1007/s11423-020-09766-5

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious Game for
Developing CT and Learning Introductory Computer Programming. Procedia - Social
and Behavioral Sciences, 47, 1991-1999. https://doi.org/10.1016/j.sbspro.2012.06.938

212

Kilig, S., Gokoglu, S., & Oztiirk, M. (2020). A Valid and Reliable Scale for Developing
Programming-Oriented Computational Thinking. Journal of Educational Computing
Research, 073563312096440. https://doi.org/10.1177/0735633120964402

Kim, Y.-M., & Kim, J.-H. (2016). Application of a software education program developed to
improve computational thinking in elementary school girls. Indian Journal of Science
and Technology, Vol. 9. https://doi.org/10.17485/ijst/2016/v9i44/105102

Koehler, M. J., & Mishra, P. (2006). Technological Pedagogical Content Knowledge: A
Framework for Teacher Knowledge PUNYA MISHRA. Teachers College Record,
108(6), 1017-1054. Retrieved from
http://one2oneheights.pbworks.com/f/MISHRA _PUNY A.pdf

Kong, S.-C. (2016). A framework of curriculum design for computational thinking
development in K-12 education. Journal of Computers in Education, 3(4), 377-394.
https://doi.org/10.1007/s40692-016-0076-z

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ interest,
collaboration attitude, and programming empowerment in computational thinking
education. In Computers and Education (Vol. 127, pp. 178-189).
https://doi.org/10.1016/j.compedu.2018.08.026

Korkmaz, O., & Bai, X. (2019). Adapting computational thinking scale (CTS) for chinese high
school students and their thinking scale skills level. Participatory Educational
Research, 6(1), 10-26. https://doi.org/10.17275/per.19.2.6.1

Korkmaz, O., Cakir, R., & Ozden, M. Y. (2017). A validity and reliability study of the
computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569.
https://doi.org/10.1016/j.chb.2017.01.005

213

Kukul, V., & Karatas, S. (2019). Computational thinking self-efficacy scale: Development,
validity and reliability. Informatics in Education, Vol. 18, pp. 151-164.
https://doi.org/10.15388/infedu.2019.07

Kwon, J., & Kim, J. (2018). A study on the design and effect of CT and software education.
KSII Transactions on Internet and Information Systems, 12, 4057-4071.
https://doi.org/10.3837/1iis.2018.08.028

Kynigos, C., & Grizioti, M. (2018). Programming approaches to computational thinking:
Integrating turtle geometry, dynamic manipulation and 3D space. Informatics in
Education, Vol. 17, pp. 321-340. https://doi.org/10.15388/infedu.2018.17

Lee, Y., & Cho, J. (2020). Knowledge representation for computational thinking using
knowledge discovery computing. Information Technology and Management, 21(1),
15-28. https://doi.org/10.1007/s10799-019-00299-9

Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-Hill, J., Robinson, R., &
Hester-Croff, C. (2018). Preparing Teachers to Engage Rural Students in
Computational Thinking Through Robotics, Game Design, and Culturally Responsive
Teaching. Journal of Teacher Education, VVol. 69, pp. 386-407.
https://doi.org/10.1177/0022487117732317

Li, M., & Hou, D. (2014). Network autonomous learning based on CT. World Transactions on
Engineering and Technology Education, 12, 576-580. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84916237711&partnerlD=40&md5=3d31af2ch32278ebb421efode6f7271f

Lin, P. H., & Chen, S. Y. (2020). Design and Evaluation of a Deep Learning Recommendation
Based Augmented Reality System for Teaching Programming and CT. IEEE Access, 8,
45689-45699. https://doi.org/10.1109/ACCESS.2020.2977679

214

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51—
61. https://doi.org/10.1016/j.chb.2014.09.012

Lyon, J. A., & Magana, J. A. (2020). Computational thinking in higher education: A review of
the literature. COMPUTER APPLICATIONS IN ENGINEERING EDUCATION,
28(5), 1174-1189. https://doi.org/10.1002/cae.22295

Ma, J. Bin, Teng, G. F., Zhou, G. H., & Sun, C. X. (2017). Practical teaching reform on CT
training for undergraduates of computer major. Eurasia Journal of Mathematics,
Science and Technology Education, 13(10), 7121-7130.
https://doi.org/10.12973/ejmste/78738

Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a CT-
enabled engineering workforce. Computer Applications in Engineering Education,
25(1), 62—78. https://doi.org/10.1002/cae.21779

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning
Computational Thinking and scratch at distance. Computers in Human Behavior, Vol.
80, pp. 470-477. https://doi.org/10.1016/j.chb.2017.09.025

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for
systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online),
339(7716), 332-336. https://doi.org/10.1136/bmj.b2535

Moreno Leon, J., Robles, G., & Roman Gonzélez, M. (2015). Dr. Scratch: Automatic Analysis
of Scratch Projects to Assess and Foster Computational Thinking. RED: Revista de

Educacién a Distancia, (46), 6.

Mousiou, M. (2021). Developing a Computational Thinking Environment through Learning
Programming [Master’s thesis, Hellenic Open University]. Hellenic Open University

Research Repository.https:// apoth esis. eap. gr/ handle/ repo/ 54054

215

Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017). Resetting
educational technology coursework for pre-service teachers: A computational thinking
approach to the development of technological pedagogical content knowledge
(TPACK). Australasian Journal of Educational Technology, Vol. 33, pp. 61-76.
https://doi.org/10.14742/ajet.3521

Mylopoulos, J. (1992). Conceptual modelling and Telos, in: P. Loucopoulos, R. Zicari.
Conceptual Modeling, Databases, and Case An Integrated View of Information

Systems Development. Wiley New York, 1992, pp. 49-68

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2019). Development of computational
thinking, digital competence and 21st century skills when learning programming in K-
9. Education Inquiry. https://doi.org/10.1080/20004508.2019.1627844

Ozturk, Z., Dooley, C. M. M., & Welch, M. (2018). Finding the Hook: Computer Science
Education in Elementary Contexts. Journal of Research on Technology in Education,
50(2), 149-163. https://doi.org/10.1080/15391523.2018.1431573

Page, R., & Gamboa, R. (2013). How Computers Work: CT for Everyone. Electronic
Proceedings in Theoretical Computer Science, 106, 1-19.
https://doi.org/10.4204/eptcs.106.1

Pala, F. K., & Mihg¢1 Tiirker, P. (2019). The effects of different programming trainings on the
CT skills. Interactive Learning Environments.
https://doi.org/10.1080/10494820.2019.1635495

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic
Books.

Park, S. Y. (2009) ‘An Analysis of the Technology Acceptance Model in Understanding
University Students > Behavioral Intention to Use e-Learning’, Journal of Educational

Technology & Society, 12(3), pp. 150-161.

216

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum:
Implications for future research. Education and Information Technologies, 22(2), 421—
443. https://doi.org/10.1007/s10639-016-9475-z

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in
software engineering. 12th International Conference on Evaluation and Assessment in
Software Engineering, EASE 2008, 1-10.

Piaget, J. (1970). Genetic Epistemology. New York: Columbia University Press.

Pinkard, N., Martin, C. K., & Erete, S. (2019). Equitable approaches: opportunities for
computational thinking with emphasis on creative production and connections to
community. Interactive Learning Environments, 0(0), 1-15.
https://doi.org/10.1080/10494820.2019.1636070

Qin, H. (2009). Teaching CT through bioinformatics to biology students. SIGCSE Bulletin
Inroads, 41, 188-191. https://doi.org/10.1145/1539024.1508932

Repenning, A., Basawapatna, A. R., & Escherle, N. A. (2017). Emerging Research, Practice,
and Policy on Computational Thinking. Emerging Research, Practice, and Policy on
Computational Thinking, 291-305. https://doi.org/10.1007/978-3-319-52691-1

Repenning, A., Grover, R., Gutierrez, K., Repenning, N., Webb, D. C., Koh, K. H., Nickerson,
H., Miller, S. B., Brand, C., Horses, I. H. M., Basawapatna, A., & Gluck, F. (2015).
Scalable Game Design. ACM Transactions on Computing Education, 15(2), 1-31.
https://doi.org/10.1145/2700517

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., ...
Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11),
60-67. https://doi.org/10.1145/1592761.1592779

Rodriguez-Garcia, J. D., Moreno-Leodn, J., Roman-Gonzalez, M., & Robles, G. (2020).

LearningML.: A tool to foster computational thinking skills through practical artificial

217

intelligence projects. Revista de Educacion a Distancia, 20(63).
https://doi.org/10.6018/RED.410121

Roman-Gonzélez, M., Pérez-Gonzalez, J. C., Moreno-Ledn, J., & Robles, G. (2018).
Extending the nomological network of computational thinking with non-cognitive
factors. Computers in Human Behavior, 80, 441-459.
https://doi.org/10.1016/j.chb.2017.09.030

Romén-Gonzélez, M., Pérez-Gonzélez, J.-C., & Jiménez-Fernandez, C. (2017). Which
cognitive abilities underlie computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human Behavior, Vol. 72, pp. 678-691.
https://doi.org/10.1016/j.chb.2016.08.047

Romero, M., Lepage, A., & Lille, B. (2017). CT development through creative programming
in higher education. International Journal of Educational Technology in Higher
Education, 14(42). https://doi.org/10.1186/s41239-017-0080-z

Rubinstein, A., & Chor, B. (2014). CT in Life Science Education. PLoS Computational
Biology, 10. https://doi.org/10.1371/journal.pcbi.1003897

Saez-Lopez, J. M., Roman-Gonzéalez, M., & Vazquez-Cano, E. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two year case study

using “scratch” in five schools. Computers and Education, 97, 129-141.

https://doi.org/10.1016/j.compedu.2016.03.003

Selby, C. (2013). Computational Thinking: The Developing Definition. ITICSE Conference
2013, 5-8.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based computation: A
theoretical framework. Education and Information Technologies, Vol. 18, pp. 351-380.
https://doi.org/10.1007/s10639-012-9240-x

218

Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies

from a teacher’s perspective. Education and Information Technologies, 22(2), 469—

495. https://doi.org/10.1007/s10639-016-9482-0

Shih, H., Jackson, J. M., Hawkins-Wilson, C. L., & Yuan, P.-C. (2015). Promoting CT skills
in an emergency management class with MIT app inventor. Computers in Education
Journal, 6, 82-91. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-
§2.0-85052799029&partnerID=40&md5=df2b3b5al3cfeb93ab789a443cd5d7dd

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, Vol. 22, pp. 142-158.
https://doi.org/10.1016/j.edurev.2017.09.003

Siau, K., & Tan, X. (2005). Improving the quality of conceptual modeling using cognitive
mapping techniques. Data and Knowledge Engineering, 55(3), 343-365.
https://doi.org/10.1016/j.datak.2004.12.006

Snow, E., Rutstein, D., Basu, S., Bienkowski, M., & Everson, H. T. (2019). Leveraging
Evidence-Centered Design to Develop Assessments of Computational Thinking
Practices. International Journal of Testing, Vol. 19, pp. 103-127.
https://doi.org/10.1080/15305058.2018.1543311

Sondakh, D. E., Osman, K., & Zainudin, S. (2020). A proposal for holistic assessment of
computational thinking for undergraduate: Content validity. European Journal of
Educational Research, 9(1), 33-50. https://doi.org/10.12973/eu-jer.9.1.33

Souza, M. R. d. A, Veado, L., Moreira, R. T., Figueiredo, E., & Costa, H. (2018). A
systematic mapping study on game-related methods for software engineering
education. Information and Software Technology, 95, 201-218.
https://doi.org/10.1016/j.infsof.2017.09.014

219

Sun, L., Hu, L., & Zhou, D. (2022). Programming attitudes predict computational thinking:
Analysis of differences in gender and programming experience. Computers and
Education, 181(27), 104457. https://doi.org/10.1016/j.compedu.2022.104457

Taylor, N. G., Moore, J., Visser, M., & Drouillard, C. (2018). Incorporating CT into library
graduate course goals and objectives. School Library Research, 21. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85053260681 &partnerlD=40&md5=15815233f96a5912185346fe719f6496

Tikva, C. & Tambouris, E. (2021a) ‘A systematic mapping study on teaching and learning
Computational Thinking through programming in higher education’, Thinking Skills
and Creativity, 41(December 2020), p. 100849. doi: 10.1016/j.tsc.2021.100849.

Tikva, C., & Tambouris, E. (2021b). Mapping computational thinking through programming
in K-12 education: A conceptual model based on a systematic literature Review.
Computers & Education, 162, 104083. https://doi.org/10.1016/j.compedu.2020.104083

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz Alves, N.,
Barbosa, H., & Azevedo, L. F. (2018). CodeMaster - Automatic assessment and
grading of app inventor and snap! Programs. Informatics in Education, 17(1), 117-150.
https://doi.org/10.15388/infedu.2018.08

Vygotsky, L. S. (1978). Mind inSociety: TheDevelopment ofHigher Psychological Processes.
Harvard University Press.

Wand, Y., & Weber, R. (2002). Research commentary: Information systems and conceptual
modeling - A research agenda. Information Systems Research.
https://doi.org/10.1287/isre.13.4.363.69

Webster, J., & Watson, R. (2002). Analyzing the past to prepare for the future: writing a
literature review. MIS Quarterly, 26(2), 13-23.

220

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining Computational Thinking for Mathematics and Science Classrooms. Journal of
Science Education and Technology, Vol. 25, pp. 127-147.
https://doi.org/10.1007/s10956-015-9581-5

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational thinking in
constructionist video games. International Journal of Game-Based Learning, Vol. 6, pp.
1-17. https://doi.org/10.4018/1JGBL.2016010101

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance
assessment: Measuring computational thinking in middle school. SIGCSE’12 -
proceedings of the 43rd ACM technical symposium on computer science education.
https://doi.org/10.1145/2157136.2157200

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118

Witherspoon, E. B., & Schunn, C. D. (2019). Teachers’ goals predict computational thinking
gainsin robotics. Information and Learning Science, 120(5-6), 308-326.
https://doi.org/10.1108/I1LS-05-2018-0035

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing CT in collaborative
programming: A quantitative ethnography approach. Journal of Computer Assisted
Learning, 35, 421-434. https://doi.org/10.1111/jcal.12348

Xing, W. (2019). Large-scale path modeling of remixing to computational thinking. Interactive
Learning Environments. https://doi.org/10.1080/10494820.2019.1573199

221

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational
thinking in elementary and secondary teacher education. ACM Transactions on
Computing Education, Vol. 14. https://doi.org/10.1145/2576872

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education.
Communications of the ACM, Vol. 60, pp. 55-62. https://doi.org/10.1145/2994591

Yagci, M. (2019). A valid and reliable tool for examining computational thinking skills.
Education and Information Technologies, 24(1), 929-951.
https://doi.org/10.1007/s10639-018-9801-8

Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’ CT skills in a data-
driven computing class. ACM Transactions on Computing Education, 14.
https://doi.org/10.1145/2676660

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020a). A cross-institutional investigation of a
flipped module on preservice teachers’ interest in teaching computational thinking.
Journal of Digital Learning in Teacher Education, 36(1), 32-45.
https://doi.org/10.1080/21532974.2019.1693941

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020b). Hopscotch into Coding: Introducing Pre-
Service Teachers Computational Thinking. TechTrends, 64(1), 17-28.
https://doi.org/10.1007/s11528-019-00423-0

Zhang, L. C. & Nouri, J. (2019) ‘A systematic review of learning computational thinking
through Scratch in K-9°, Computers and Education, 141(June), p. 103607. doi:
10.1016/j.compedu.2019.103607.

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational thinking
skills? Computers and Education, 141(July), 103633.
https://doi.org/10.1016/j.compedu.2019.103633

222

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional
integrated assessment for computational thinking. Journal of Educational Computing
Research, 53. https://doi.org/10.1177/0735633115608444

223

