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Abstract 

Computational Thinking (CT) through programming attracts increased attention as it is 

considered an ideal medium for the development of 21st century skills. CT initiatives have 

emerged around the world and there is a rapid increase in relevant research studies. The 

accumulation of research plethora leads to the need for a conceptual model of CT that 

could map the domain, facilitating comprehensive understanding of the domain’s 

challenges. The aim of this thesis is a) to develop a conceptual model based on a systematic 

literature review that maps CT through programming in K-12 and higher education and b) 

to investigate the relationships between certain instances of the model, namely of the 

effects of scaffolding programming games and attitudes towards programming, on the 

development of students’ Computational Thinking.  

Regarding the first aim of this thesis, the proposed Computational Thinking 

through Programming in K-12 education (CTPK-12) conceptual model emerges from the 

synthesis of 101 studies and the identification of CT Areas. The proposed model consists 

of six CT Areas (namely Knowledge Base, Learning Strategies, Assessment, Tools, 

Factors and Capacity Building) and their relationships. Some of the relationships between 

areas have not yet been sufficiently explored in the literature such as which learning 

strategies enable the development of CT. The revised model for higher education is derived 

from a systematic mapping of 41 studies. This model includes the same CT Areas and 

relationships as CTPK-12, however it differs in sub-areas and instances. Knowledge Base 

Area, Assessment Area and Tools Area have significantly evolved throughout the years, 

while Capacity Building Area has only recently emerged. In addition, the introduction of 

CT to undergraduate students and preservice teachers differs mainly in the tools used and 

the CT elements that are assessed. 

Regarding the second aim, students were introduced to CT under two distinct 

experimental conditions: a scaffolding version of a programming game and a non-

scaffolding version of the same game. Results report statistically significant differences 

between the pre-intervention and post-intervention CT scores for all students and 

statistically significant improvement in learning outcomes in favor of the scaffolding 

group. In addition, the study hypothesized that attitudes towards programming would have 
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an impact on students’ CT. Although this hypothesis has not been confirmed, the results 

suggest that students who have a less positive attitude towards programming could 

particularly benefit from scaffolding aspects in programming games. 

 

Keywords: Computational Thinking, programming, K-12 education, higher 

education, scaffolding, computational thinking games, attitudes towards programming 
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 1 Introduction 

1.1 Problem definition and research objectives 

Computational Thinking (CT) has its roots in 1980s with Papert’s (1980) attempts to 

introduce programming to young students. Later in 2006, Wing (2006) defines CT as a 

process that “involves solving problems, designing systems, and understanding human 

behavior, by drawing on the concepts fundamental to computer science”. CT is considered 

a necessary skill for everyone (Wing, 2006) and an ideal medium for the development of 

21st century skills (Lye & Koh, 2014; Grover & Pea, 2013).  

After about fifteen years of renewed interest in CT, the domain of CT research is 

beginning to mature. It is indicative that a large number of studies focusing on CT have 

been published in recent years (T.-C. Hsu, Chang, & Hung, 2018). This large body of 

literature indicates challenges in particular areas including (a) developing widely accepted 

assessment methods and frameworks that encompass the complexity of CT (Brennan & 

Resnick, 2012; Denner, Werner, & Ortiz, 2012; Denning, 2017; Fronza, Ioini, & Corral, 

2017; Grover et al., 2017; Grover, Pea, & Cooper, 2015; Moreno León, Robles, & Román 

González, 2015; Zhong, Wang, Chen, & Li, 2016), (b) designing theoretically-based 

approaches that align learning strategies with CT (Dolgopolovas, Dagienė, Jasutė, & 

Jevsikova, 2019) and (c) identifying the knowledge needed to teach CT (Angeli et al., 

2016; Cooper, Grover, Guzdial, & Simon, 2014) and methods by which support to teachers 

is provided (Yadav, Stephenson, & Hong, 2017).  

Several literature reviews examine the whole domain from different perspectives 

as well as propose frameworks and definitions. Researchers in these studies review the 

literature in order to derive insights on CT through programming for K-12 curriculum (Lye 

& Koh, 2014), to understand the development and application of CT in education (Hsu et 

al. 2018), to facilitate CT learning and assessment within K-12 curricula (Shute, Sun, & 

Asbell-Clarke, 2017), to review CT literature in higher education (Czerkawski & Lyman, 

2015) and to support educators in developing CT tasks and programs (Kalelioglu, 

Gulbahar, & Kukul, 2016). Despite all these efforts, a comprehensive mapping of the 

domain is still lacking. A comprehensive mapping of the domain would enable better 

understanding of challenges and guide future research. 
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Regarding the practical use of CT, efforts to integrate CT in schools and higher 

education are taking place worldwide responding to societal need for 21st century skills 

(Buitrago Flórez et al., 2017; Czerkawski & Lyman, 2015; Y.-C. Hsu, Irie, & Ching, 2019; 

Passey, 2017). At the same time, many undergoing initiatives promote CT by providing 

curriculum suggestions (Csizmadia et al., 2015), CT and programming tools and resources 

(García-Peñalvo & Mendes, 2018). However, educators do not have an overall map of the 

CT through programming domain to help them design CT curricula. This is evident from 

the fact that several studies underline that educators lack clear understanding of how CT 

could be effectively integrated into their educational practices (e.g., Denning, 2017; Grover 

& Pea, 2013; Yadav et al., 2017).  

When the research that has been conducted is mature and there is sufficient 

material, what often helps is the existence of a conceptual model. A conceptual model 

offers in developing domain understanding through aiding reasoning about the domain, 

communicating the domain details and documenting the domain for future reference 

(Gemino & Wand, 2004). In addition, a conceptual model could be an effective roadmap 

between what we know and what we need to know, providing a firm foundation for 

advancing the domain knowledge (Webster & Watson, 2002). Such a conceptual model of 

CT through programming education is still missing. Its existence could help researchers 

better understand the domain and its challenges through a holistic approach and identify 

areas that have already been covered by research and areas where more research is needed. 

In addition, a conceptual model serves as a point of agreement (Mylopoulos, 1992) and 

thus could support CT teaching and learning by providing a reference point for educators. 

1.2 Thesis Objectives and contribution 

Our aim is to develop a conceptual model of CT through programming. This model could 

aid domain understanding and serve as a basis for future studies. It could also support 

researchers to focus on significant research gaps in their CT studies, having an up-to-date 

synthesis of the relevant literature. In addition, it could support the integration of CT into 

educational practices, providing evidence to educators and policy-makers as well as 

bringing closer research, practice and policy. 
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Given that the bulk of the research concerns K-12 and that K-12 and higher 

education are often treated as related but distinct levels of education, we chose to base our 

model on K-12 and then extend it to higher education.  

We also aim to further investigate certain instances of the model namely, Learning 

Strategies and Factors areas. To do so a) we design and evaluate a CT tool and b) we design 

and conduct an experimental study. In this context, the following objectives and research 

questions guide the work carried out in this dissertation: 

O1: To develop a Conceptual Model of Computational Thinking through 

programming in K-12 education based on a Systematic Literature Review   

This involves investigating and analysing the literature in order to elicit the areas 

of Computational Thinking domain and their relationships. 

• RQ1.1. What are the areas of CT through programming in K-12 education 

domain? 

• RQ1.2 What are the sub-areas of each CT Area in K-12 education? 

• RQ 1.3 How do CT Areas relate to each other in K-12 education?  

O2: To expand the Conceptual Model of Computational Thinking through 

programming in K-12 education for Higher Education  

This involves studying the areas and relationships of the CTPK-12 conceptual 

model in the context of higher education. In addition, the analysis of these areas based on 

the following two dimensions is performed: a) their evolution over the years and b) the 

branches to which CT is applied. 

• RQ 2.1 What are the areas and sub-areas of teaching and learning CT through 

programming in higher education and how do they relate to each other?   

• RQ 2.2 How do these areas evolve over the years and how do they apply to 

various branches? 

O3: To design, develop and evaluate a Scaffolding Computational Thinking game  
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This involves the design, implementation and evaluation of a Scaffolding CT game. 

In this dissertation, the design and evaluation of the game are presented, while the 

implementation was done by Maria Mousiou during her master thesis (Mousiou, 2021). 

O3.1: To design the aMazeD Scaffolding Computational Thinking game 

• RQ 3.1.1 Which Computational Thinking concepts and perspectives should be 

covered by the aMazeD game? 

• RQ 3.1.2 Which scaffolding features should be included in the aMazeD game? 

• RQ 3.1.3 Which analytics should be included in the aMazeD game? 

O3.2: To evaluate the aMazeD Scaffolding Computational Thinking game 

• RQ 3.2.1 Do students perceive the aMazeD Scaffolding Computational 

Thinking Game as ease to use? 

• RQ 3.2.2 Do students perceive the Scaffolding Computational Thinking Game 

aMazeD as effective on learning Computational Thinking? 

• RQ 3.2.3 Do students perceive the scaffolding features of the Scaffolding 

Computational Thinking Game aMazeD as effective in learning Computational 

Thinking? 

O4: Using the CTPK-12 model to design and conduct an empirical study to 

investigate certain instances of the model namely, Learning Strategies and Factors 

areas. 

This involves the investigation of the effects of a) scaffolding programming games 

and b) attitudes towards programming, on the development of middle school students’ 

Computational Thinking. 

• RQ 4.1 Does the aMazeD programming game have a positive impact on middle 

school students' CT development? 
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• RQ 4.2 Does the scaffolding version of the aMazeD programming game have 

a greater impact on middle school students’ CT development than the version 

without scaffolding? 

• RQ 4.3 Do attitudes towards programming have an impact on middle school 

students’ CT? 

• RQ 4.4 Do attitudes towards programming have an impact on middle school 

students’ CT improvement? 

1.3 Thesis Contribution 

The development of a conceptual model for CT through programming aims to a) provide 

guidance to researchers in designing, delivering, and assessing CT studies and b) to provide 

guidance to educators in integrating CT into their educational practices. The benefits of 

utilizing such a conceptual model regard: 

• Mapping the Computational Thinking through programming domain for future 

reference and communicating the domain details. 

• Identifying areas that have already been covered by research and areas where more 

research is needed. 

• Serving as a basis for future studies. In particular, the model could serve as a basis 

for hypothesized research models that establish a direct link between theory and 

statistical estimations. 

• Providing evidence to teachers and policy-makers as well as bringing closer 

research, practice and policy. 

Towards the aforementioned goals, the contribution is summarized in the following 

parts: 

Developing a Computational Thinking through programming conceptual 

model: A conceptual model that presents the concepts and relationships of the domain and 

their visual representation. It comprises of six Computational Thinking Areas, namely 

Knowledge Base Area, Assessment Area, Learning Strategies Area, Factors Area, Tools 
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Area and Capacity Building Area. Each CT Area includes sub-areas that are populated 

with specific instances. Example of such sub-areas and instances include sub-areas of Self-

Report Methods, Tests, Artifact analysis, Observations and Assessment frameworks in 

Assessment Area and instances of scales, questionnaires, surveys, interviews, think-aloud 

protocol, journals and reflection reports in Self-Report sub-area. Finally, we identify 

relationships between the CT Areas. 

Utilizing the model to study certain CT Areas relationships:  The model was 

utilized to explore a) the relationship between the instance of Scaffolding (Learning 

Strategies Area) and CT concepts (Knowledge Base Area) and b) the relationship between 

the instance of Attitudes towards programming (Factors Area) and CT concepts 

(Knowledge Base Area). The effects of scaffolding programming games and students’ 

attitudes towards programming on the development of students’ Computational Thinking 

were explored. The implication of the study findings is important, as they provide support 

that scaffolding in CT games could be an effective strategy for teaching and learning CT 

to middle school students fostering a deeper understanding of CT concepts. In addition, 

when it comes to students’ attitudes towards programming, students who perceive 

programming as less meaningful, less interesting and have lower programming self-

efficacy could particularly benefit from scaffolding aspects in programming games. 

1.4 Structure  

The thesis is structured as follows: 

The first chapter is the introduction of the research carried out, while the second 

chapter provides background information on related work. More specifically, it presents a 

study conducted on Computational Thinking definition frameworks in order to derive 

terms that describe the components of Computational Thinking that are repeatedly raised 

in the literature. In addition, the main characteristics of the literature reviews focusing on 

the field of Computational Thinking are briefly presented. 

The third chapter presents the method followed during the Ph.D. research. 

Specifically, the research phases and the study designs that were followed are presented. 
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The fourth chapter presents the Computational Thinking through programming in 

K-12 (CTPK-12) education conceptual model that was designed based on a systematic 

literature review. In particular, the concepts and relationships of the model are presented, 

analysed and discussed in this chapter. 

The fifth chapter presents the extension of the CTPK-12 model to include higher 

education. Similar to the previous chapter, the concepts and relationships of the model are 

presented and discussed, albeit in the context of higher education. 

The sixth chapter presents the design and evaluation of a scaffolding programming 

game for Computational Thinking. In addition, the Computational Thinking concepts and 

practices covered by the game and the scaffolding framework on which it is based are 

presented. 

The seventh chapter presents the investigation of certain relationships of the CTPK-

12 model. Specifically, it presents an experimental study that exploits the scaffolding 

programming game presented in the previous chapter, to investigate the impact of the 

CPTK-12 model areas, namely “Learning Strategies” and “Factors”.  

The eighth chapter offers conclusions drawn and future work. 

1.5 Publications  

The scientific findings of this thesis have been published in international journals as 

follows:  

Chapter 4 

Tikva, C., & Tambouris, E. (2021a). Mapping computational thinking through 

programming in K-12 education: A conceptual model based on a systematic 

literature Review. Computers & Education, 162, 104083. 

https://doi.org/10.1016/j.compedu.2020.104083 [IF 11.82] 

Chapter 5 

https://doi.org/10.1016/j.compedu.2020.104083


 

8 

Tikva, C., & Tambouris, E. (2021b). A systematic mapping study on teaching and 

learning Computational Thinking through programming in higher education. 

Thinking Skills and Creativity, 41, 100849. 

https://doi.org/10.1016/j.tsc.2021.100849 [IF 3.652] 

Chapter 7 

Tikva, C., & Tambouris, E. (2022) The effect of scaffolding programming games and 

attitudes towards programming on the development of Computational Thinking. 

Education and Information Technologies. https://doi.org/10.1007/s10639-022-

11465-y [IF 3.605] 

Trakosas, D., Tikva, C., & Tambouris, E. Visual Programming and Computational 

Thinking Environments for K-9 Education: A Systematic Literature Review. 

International Journal of Learning Technology  (accepted for publication). 

https://doi.org/10.1016/j.tsc.2021.100849
https://doi.org/10.1007/s10639-022-11465-y
https://doi.org/10.1007/s10639-022-11465-y


 

9 

2 Background Work  

2.1 Introduction 

The aim of this Chapter is to present definitions, related introductory concepts and previous 

work conducted in the field of Computational Thinking for a better understanding of the 

subject. 

The remainder of this Chapter is organised as follows: Section 2.2 presents the 

definition of Computational Thinking according to previous research. Section 2.3 presents 

Computational Thinking frameworks that have been developed to provide an operational 

definition of Computational Thinking. The Section concludes with a summary of CT 

elements presented in the CT operational definitions. Section 2.4 presents literature 

reviews conducted in the field of Computational Thinking. Section 2.5 presents the 

summary of the Chapter. 

2.2 Computational Thinking 

Computational Thinking (CT) was firstly introduced by Papert (1980), who relates 

programming to procedural thinking skills. The term was reintroduced by Wing (2006) 

who defines CT as a process that “involves solving problems, designing systems, and 

understanding human behaviour, by drawing on the concepts fundamental to computer 

science” (Wing 2006, p.33). She points out that CT is a fundamental skill for everyone, 

not just for computer scientists and argues that “To writing and arithmetic, we should add 

CT to every child’s analytical ability” (Wing 2006, p.33). CT is the thought process that 

involves solving problems and designing model systems by utilizing Computer Science 

(CS) core concepts (Wing, 2008). Wing’s definition has subsequently become a reference 

point for discussion on CT. However, various other definitions have emerged in the 

literature (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013). Aho 

(2012) defines CT as “the thought processes involved in formulating problems so their 

solutions can be represented as computational steps and algorithms.”  Many other 

definitions exist in the literature. 

CT definitions can be classified into two main categories: generic definitions that 

focus on CT as a thought process (Román-González, Pérez-González, & Jiménez-
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Fernández, 2017) and operational definitions that describe what CT entails. The second 

category which comprises efforts that develop models describing CT elements, is 

presented in the next section. 

2.3 Computational Thinking operational definitions  

2.3.1 Angeli et al. (2016) 

Angeli et al. (2016) propose a conceptual framework that describes CT skills (Table 2-1). 

Based on this framework they also present specific examples (Table 2-2) for each CT skill 

taking into account the age of the students. 

Table 2-1. Computational Thinking skills (Angeli et al.,2016) 

Skill Definition 

Abstraction 

 

The skill to decide what information about an entity/object to keep and what to ignore 

(Wing, 2011). 

Generalization 

 

The skill to formulate a solution in generic terms so that it can be applied to different 

problems (Selby, 2014). 

Decomposition 

 

The skill to break a complex problem into smaller parts that are easier to understand and 

solve (National Research Council, 2010; Wing, 2011). 

Algorithms 

Sequencing 

Flow of 

control 

 

The skill to devise a step-by-step set of operations/actions of how to go about solving a 

problem (Selby, 2014). 

The skill to put actions in the correct sequence (Selby, 2014). 

The order in which instructions/actions are executed (Selby, 2014). 

Debugging 

 

The skill to identify, remove, and fix errors (Selby, 2014). 

Table 2-2. Computational thinking skills curriculum (Angeli et al., 2016) 

Skill K-2 (ages 6 to 8) 3-4 (ages 9 to 10)  5-6 (ages 11 to 12) 

Abstraction With the use of external reference 

systems, create a model/representation 

to solve a problem. 

Create a 

model/representation 

to solve a problem  

Create a new 

model/representation 

to solve a problem. 

Generalization  Identify common patterns between 

older and newer problem-solving tasks, 

and use sequences of instructions 

previously employed, to solve a new 

problem 

Remix and reuse (by 

extending if needed) 

resources that were 

previously created 

Remix and reuse (by 

extending if needed) 

resources that were 

previously created. 
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Decomposition Break a complex task into a series of 

simpler subtasks 

Break a complex task 

into simpler subtasks. 

Develop a solution by 

assembling together 

collections of smaller 

parts. 

Break a complex 

task into simpler 

subtasks. 

Develop a solution 

by assembling 

together collections 

of smaller parts. 

Algorithmic 

thinking 

Define a series of steps for a solution. 

Put instructions in the correct sequence. 

Define a series of 

steps for a solution. 

Put instructions in the 

correct sequence. 

Repeat the sequence 

several times 

(iteration). 

Define a series of 

steps for a solution. 

Put instructions in 

the correct sequence. 

Repeat the sequence 

several times 

(iteration). 

Make decisions 

based on conditions. 

Store, retrieve, and 

update variables. 

Formulate 

mathematical and 

logical expressions 

Debugging Recognize when instructions do not 

correspond to actions. 

Remove and fix errors. 

Recognize when 

instructions do not 

correspond to actions. 

Remove and fix errors. 

Recognize when 

instructions do not 

correspond to 

actions. 

Remove and fix 

errors. 

2.3.2 Barr & Stephenson (2011) 

Barr & Stephenson's (2011) presents CT concepts and capabilities in the context of K-12 

education. The framework practically approaches the integration of Computational 

Thinking in K-12 classrooms by providing tangible examples (Table 2-3). 

Table 2-3. Computational Thinking operational definition (Barr & Stephenson, 2011) 

CT Concept, 

Capability 

CS Math Science Social Studies Language 

Arts 
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data collection  find a data 

source for a 

problem area 

source for a 

problem area 

doing 

probability 

exercises, for 

example, 

flipping coins 

or throwing 

dice 

collect data 

from an 

experiment 

study battle 

statistics, or 

population 

data 

do linguistic 

analysis of 

sentences 

data analysis  write a 

program to do 

basic 

statistical 

calculations on 

a set of data 

count 

occurrences of 

flips, dice 

throws and 

analyzing 

results 

analyze data 

from an 

experiment 

identify trends 

in the data 

from the 

statistics 

identify 

patterns for 

different 

sentence types 

data 

representation 

and analysis 

use data 

structures such 

as array, 

linked list, 

stack, queue, 

graph, hash 

table, etc. 

use a 

histogram, pie 

chart, bar 

chart, etc. to 

represent data; 

use sets, lists, 

graphs, etc. to 

contain data 

summarize 

data from an 

experiment 

summarize 

and represent 

the trends 

represent 

patterns of 

different 

sentence types 

abstraction  use procedures 

to encapsulate 

a set of often 

repeated 

commands 

that perform a 

function  

use variables 

in Algebra; 

identifying 

essential facts 

in a word 

problem 

build a model 

of a physical 

entity 

summarize 

facts; deuced 

conclusions 

from facts 

use of simile 

and metaphor 

analysis and 

model 

validation 

validate 

random 

number 

generator 

curve fitting validate that 

the model is 

correct 

  

automation   use tools such 

as: Geometer 

Sketch Pad; 

Star Logo; 

Python code 

snippets 

use Prove ware use Excel use a spell 

checker 

testing and 

verification 

debug a 

program; wire 

unit tests; 

formal 

program 

verification 

do guess and 

check 

validate and 

clean data 
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algorithms & 

procedures 

study classic 

algorithms; 

implement an 

algorithm for a 

problem area 

do long 

division, 

factoring; do 

carries in 

addition/ 

subtraction 

do an 

experimental 

procedure 

 write 

instructions  

problem 

decomposition 

define objects 

and methods; 

define main 

and functions 

apply order of 

operations in 

an expression 

do a species 

classification 

 write an 

outline 

control 

structures  

use 

conditionals, 

loops, 

recursion, etc. 

study functions 

in algebra 

compared to 

functions in 

programming; 

use iteration to 

solve word 

problems  

  write a story 

with 

branches 

parallelization threading, 

pipelining, 

dividing up 

data or task in 

such a way to 

be processed 

in parallel 

solve linear 

systems; do 

matrix 

multiplication 

run 

experiments 

simultaneously 

with different 

parameters  

  

simulation algorithm 

animation, 

parameter 

sweeping 

graph a 

function in a 

Cartesian 

plane and 

modify values 

of the variables 

simulate 

movement of 

the solar 

system 

play Age of 

Empires; 

Oregon 

Trail do a re-

enactment 

from a story 

The framework also includes dispositions (Figure 2-1) and characteristics of a 

classroom culture (Figure 2-2) that could contribute to the development of Computational 

Thinking.  
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Figure 2-1. Computational Thinking dispositions (Barr & Stephenson, 2011) 

 

Figure 2-2. Classroom Culture Characteristics (Barr & Stephenson, 2011). 

Dispositions

Confidence in 
dealing with 
complexity

Persistence in 
working with 

difficult problem

The ability to 
handle ambiguity

The ability to deal 
with open-ended 

problems

Setting aside 
differences to work 

with others to 
achieve a common 
goal or solution,

Knowing one’s 
strengths and 

weaknesses when 
working with 

others

Classroom 
Culture

Increased use of 
computational 

vocabulary to describe 
problems and solutions

Acceptance of failed 
solution attempts, 

recognizing

that early failure can 
often put you on the 
path to a successful 

outcome

Team work by students, 
with explicit use of:

—decomposition
—abstraction
—negotiation

—consensus building
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2.3.3 Brennan & Resnick (2012) 

Brennan and Resnick (2012) introduced a Computational Thinking framework that 

describes CT concepts, practices and perspectives for young learners using Scratch to 

design applications. 

According to this framework there are three dimensions of Computational 

Thinking (Table 2-4): 

• Computational Concepts, the concepts that students use as they program. 

• Computational Practices, the practices that students develop as they program. 

• Computational Perceptions, the perceptions that students form about the world 

around them and about themselves. 

Table 2-4. Computational Thinking concepts, practices and perspectives (Brennan & 

Resnick, 2012) 

Dimension Element Description 

Computational 

Thinking 

Concepts 

Sequences 

A series of individual steps or 

instructions that can be executed by 

the computer. 

Loops 
A mechanism for running the same 

sequence multiple times. 

Parallelism 
Sequences of instructions 

happening at the same time. 

Events 

One thing causing another thing to 

happen – essential component of 

interactive media. 

Conditionals 

The ability to make decisions based 

on certain conditions, which 

supports the expression of multiple 

outcomes. 

Operators Operators provide support for 

mathematical, logical, and string 
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expressions, enabling the 

programmer to perform numeric 

and string manipulations. 

Data 
Data involves storing, retrieving, 

and updating values. 

Computational 

Practices 

Being incremental and iterative 

The design and implementation of 

a project is an evolutionary 

process. It consists of iterative 

cycles of design, development and 

execution of the program and its 

further development, based on the 

experiences gained and new ideas. 

Testing and debugging 

Development of strategies for 

dealing with and anticipating 

problems in the development of a 

project. 

Reusing and remixing 

Reuse, modify and mix projects 

created by others to create a more 

complex project that would not 

otherwise be possible. 

Abstraction and modularizing 

Creating a large project by 

combining collections from smaller 

sections. For example, code 

segmentation depending on the 

functionality of the commands. 

Computational 

Perspectives 

Expressing 

The use of technology not only as a 

consumer but as a means of design 

and expression. 

Connecting 
Interact with others in the context 

of social learning practice. 

Questioning 

Being encouraged to ask questions 

and challenge the obvious, in some 

cases, answering these questions 

with suggestions and designs. 
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2.3.4 Csizmadia et al. (2015) 

Csizmadia et al. (2015) suggest “Computational thinking is a cognitive or thought process 

involving logical reasoning by which problems are solved and artefacts, procedures and 

systems are better understood”. In addition, they propose a conceptual framework that 

describes Computational Thinking Concepts, Approaches (Figure 2-3) (Table 2-5) and 

Techniques (Table 2-6). 
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Figure 2-3. Computational Thinking Concepts and Approaches (Csizmadia et al., 

2015). 

Table 2-5. Computational Thinking Concepts (Csizmadia et al., 2015) 

 

Element Description In classroom  

Examples of learner 

behavior that may be 

observed in the 

classroom 

Logic: 
predicting & 
analysing

Algorithms: 
making steps & 
rules

Decompotition: 
Breaking down 
into parts

Patterns: 
Spotting and 
using 
similarities

Abstraction: 
Removing 
unnecessary 
detail

Evaluation: 
making 
judgement

CT Concepts

Tinkering: 
Experimenting 
& playing

Creating: 
Designing and 
making

Debugging: 
finding & fixing 
errors

Persevering: 
keeping going

Collaborating: 
working 
together

CT 
Approaches
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Logic: the ability to 

think in terms of 

logical reasoning 

the ability to analyze and 

control facts through thinking 

clearly and accurately to draw 

conclusions 

 

Algorithms: the ability 

to think 

algorithmically 

the ability of getting to a 

solution through a clear 

definition of the steps 

formulating 

instructions to achieve 

a desired effect 

using an appropriate 

notation to write code 

to represent the 

formulated 

instructions 

designing algorithmic 

solutions that take into 

account the abilities, 

limitations and desires 

of the people who will 

use them 

Decomposition: the 

ability to think in 

terms of 

decomposition 

the ability of splitting a whole 

into separate elements, thus 

reducing the level of difficulty 

in solving, understanding or 

designing 

breaking down 

artefacts into 

constituent parts to 

make them easier to 

work with 

breaking down a 

problem into simpler 

versions of the same 

problem that can be 

solved in the same 

way 

Patterns: the ability to 

think in 

generalisations, 

identifying and 

making use of patterns 

the ability of identifying 

patterns, similarities and 

connections, and exploiting 

those features 

identifying patterns 

and commonalities in 

artefacts. 

adapting solutions, or 

parts of solutions, so 

they apply to a whole 

class of similar 

problems 

transferring ideas and 

solutions from one 



 

20 

problem area to 

another. 

Abstraction: the 

ability to think in 

abstractions, choosing 

good representations 

the ability of reducing 

unnecessary detail, so that a 

problem becomes easier or a 

concept simpler, without 

losing anything important. 

Choosing a way to 

represent an artefact, 

to allow it to be 

manipulated in useful 

ways 

hiding the full 

complexity of an 

artefact (hiding 

functional 

complexity) 

hiding complexity in 

data, for example by 

using data structures. 

Identifying 

relationships between 

abstractions. 

Filtering information 

when developing 

solutions. 

Evaluation: the ability 

to think in terms of 

evaluation 

ensuring that a solution, 

whether an algorithm, system, 

or process, is a good one: that 

it is fit for purpose 

assessing that an 

artefact is fit for 

purpose, is functional 

correct, is good 

enough, is easy for 

people to use and 

gives an appropriately 

positive experience 

when used 

designing and running 

test plans and 

interpreting the results 

(testing) 

comparing the 

performance of 

artefacts that do the 

same thing 

making trade-offs 

between conflicting 

demands 
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stepping through 

processes or 

algorithms/code step-

by-step to work out 

what they do (dry 

run/tracing) 

 

Table 2-6. Computational Thinking Techniques (Csizmadia et al.,2015) 

 

Element Description 

C
o

m
p

u
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ti
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n
a

l 
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h
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k
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g
 T

e
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n
iq

u
es

 

reflecting making evaluations that have value 

coding converting a plan into code and ensure 

that it produces the right result under any 

circumstances; debugging is the ability of 

evaluating, testing and verifying the 

outcome 

designing creating representations of the design such 

as flowcharts, storyboards, pseudo-code, 

systems diagrams, etc. It involves further 

activities of decomposition, abstraction 

and algorithm design. 

analysing breaking down into component parts 

(decomposition), reducing the unnecessary 

complexity (abstraction), identifying the 

processes (algorithms) and seeking 

commonalities or patterns 

(generalisation); using logical thinking 

both to better understand things and to 

evaluate them as fit for purpose 

applying adoption of pre-existing solutions to meet 

the requirements of another context 
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2.3.5 International Society for Technology in Education (ISTE) and Computer 

Science Teacher Association (CSTA) (2011) 

International Society for Technology in Education (ISTE) and Computer Science Teacher 

Association (CSTA) (2011) developed an operational definition that includes, the 

following elements:  

(a) formulating problems in a way that enables us to use a computer and other tools to help 

solve them,  

(b) logically organizing and analyzing data,  

(c) representing data through abstractions such as models and simulations,  

(d) automating solutions through algorithmic thinking (a series of ordered steps),  

(e) identifying, analyzing, and implementing possible solutions with the goal of achieving 

the most efficient and effective combination of steps and resources; and  

(f) generalizing and transferring this problem-solving process to a wide variety of 

problems.  

In addition to these elements (ISTE) and (CSTA) include the following attitudes to 

their operational definition:  

(a) confidence in dealing with complexity,  

(b) persistence in working with difficult problems,  

(c) tolerance for ambiguity,  

(d) the ability to deal with open ended problems; and  

(e) the ability to communicate and work with others to achieve a common goal or solution. 

2.3.6 Kalelioglu, Gulbahar, & Kukul (2016) 

Kalelioglu, Gulbahar, & Kukul (2016) develop a framework (Table 2-7) that describes CT 

skills, considering CT to be a problem-solving process. 
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Table 2-7. Framework for Computational Thinking as a Problem-Solving Process 

(Kalelioglu, Gulbahar, & Kukul, 2016) 

Identify the 

problem  

Gathering, 

representing and 

analysing data  

Generate, select 

and plan 

solutions  

Implement 

solutions  

Assessing 

solutions and 

continue for 

improvement  

Abstraction  

Decomposition  

Data collection  

Data analysis  

Pattern 

recognition 

Conceptualising 

Data 

representation  

Mathematical 

reasoning 

Building 

algorithms and 

procedures 

Parallelisation  

Automation  

Modelling and 

simulations 

Testing 

Debugging 

Generalisation  

Each element of this framework is related to the process of solving a problem. For 

example, the problem must first be identified. Using subtraction and decomposition one 

can locate the structural elements of a problem. This is followed by data collection, 

representation and analysis. In the second phase, solutions that require mathematical 

reasoning and algorithmic reasoning must be designed. These solutions must be 

implemented using automation, modeling and simulations. Finally follows the evaluation 

of the implemented solutions using testing of the designed plans, debugging the code and 

generalization of the solutions. 

2.3.7 Selby (2013) 

Selby (2013) review the literature, analyzing the Computational Thinking terms previously 

proposed. She suggests Abstraction and Decomposition be at the heart of Computational 

Thinking and classifies the various terms found in the literature into four main categories: 

Thinking terms, Problem-solving terms, Computer Science terms and Imitation terms. 

After analyzing these terms, she proposes to exclude broad terms that are not well-defined 

and terms related to skills demonstrations, defining CT as a though process that involves 

the following elements:  
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(a) the ability to think in abstractions, 

(b) the ability to think in terms of decomposition, 

(c) the ability to think algorithmically,  

(d) the ability to think in terms of evaluations; and  

(e) the ability to think in generalizations.  

2.3.8 Shute et al. (2017) 

Shute et al. (2017) reviewed definitions and CT models and define CT as “the conceptual 

foundation required to solve problems effectively and efficiently (i.e., algorithmically, 

with or without the assistance of computers) with solutions that are reusable in different 

contexts.” They propose an operational definition that underlines the relationship between 

Computational Thinking and problem solving and includes six main dimensions presented 

in Table 2-8. 

Table 2-8. Computational Thinking components (Shute et al., 2017) 

Facet  Description 

Decomposition Dissect a complex problem/system into manageable parts. The divided parts are not 

random pieces, but functional elements that collectively comprise the whole 

system/problem. 

Abstraction Extract the essence of a (complex) system. Abstraction has three subcategories: 

(a) Data collection and analysis: Collect the most relevant and important information 

from multiple sources and understand the 

relationships among multilayered datasets; 

(b) Pattern recognition: Identify patterns/rules underlying the data/information 

structure; 

(c) Modeling: Build models or simulations to represent how a system operates, and/or 

how a system will function in the future. 
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Algorithms Design logical and ordered instructions for rendering a solution to a problem. The 

instructions can be carried out by a human or 

computer. There are four sub-categories: 

(a) Algorithm design: Create a series of ordered steps to solve a problem; 

(b) Parallelism: Carry out a certain number of steps at the same time; 

(c) Efficiency: Design the fewest number of steps to solve a problem, removing 

redundant and unnecessary steps; 

(d) Automation: Automate the execution of the procedure when required to solve similar 

problems. 

Debugging Detect and identify errors, and then fix the errors, when a solution does not work as it 

should. 

Iteration Repeat design processes to refine solutions, until the ideal result is achieved. 

Generalization Transfer CT skills to a wide range of situations/domains to solve problems effectively 

and efficiently. 

2.3.9 Sondakh et al. (2020) 

Sondakh et al. (2020) proposed a CT definition (Figure 2-4) based on the fuzzy Delphi 

method. Experts from Computer Science and Technology Industry participated in the study 

validating terms found in the literature. They describe the main components of CT as skills, 

attitudes and spiritual intelligence. 
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Figure 2-4. Definition of holistic Computational Thinking (Sondakh et al., 2020). 

2.3.10 Weintrop et al. (2016) 

Weintrop et al. (2016) proposed a definition (Figure 2-5) for Computational Thinking with 

an emphasis on mathematics and science. Their model consists of the following 

interrelated practices: data practices, modeling and simulation practices, computational 

problem-solving practices, and systems thinking practices. In addition, each category 

further consists of a subset of practices. 

Holistic 

Computational 

Thinking 

Spiritual 

Intelligence 

Self-awareness 

Integrity 

Attitudes 

Problem Solving 

Teamwork 

Communication 

Skill (Knowledge) 

Abstraction 

Algorithmic 

thinking 

Decomposition 

Debugging 

Evaluation 
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Figure 2-5. Computational Thinking in Mathematics and Science definition 

(Weintrop et al., 2016) 

2.3.11 Computational Thinking elements  

Each definition presented above contributes to the understanding and clarification of the 

Computational Thinking construct in relation to the elements of which it consists. This 

subsection presents a summary of CT elements (Table 2-9) described in some of the 

definitions presented in the previous sub-sections. We select to present the specific 

definitions as they are highly cited in the literature, cover an extensive period of time and 

are developed based on different approaches (e.g., systematic literature review, previous 

authors' studies, literature summary, meeting procedures). 

Data Practices

Collecting Data

Creating Data

Manipulating Data

Analyzing Data

Visualizing Data

Modeling & 
Simulation Practices

Using Computational 
Models to Understand 

a Concept

Using Computational 
Models to Find and 

Test Solutions

Assessing 
Computational Models

Designing 
Computational Models

Constructing 
Computational Models

Computational 
Problem Solving 

Practices

Preparing Problems for 
Computational 

Solutions

Programming

Choosing Effective 
Computational Tools

Assessing Different 
Approaches/Solutions 

to a Problem

Developing Modular 
Computational 

Solutions

Creating 
Computational 

Abstractions

Troubleshooting and 
Debugging

System Thinking 
Practices

Investigating a 
Complex System as a 

Whole

Understanding the 
Relationships within a 

System

Thinking in Levels

Communicating 
Information about a 

System

Defining Systems and 
Managing Complexity



 

28 

Table 2-9. CT elements in CT operational definitions 

Barr & 

Stephenson 

(2011) 

Brennan & 

Resnick (2012) 

Selby (2013) Angeli et al. 

(2016) 

Shute et al. (2017) 

Abstraction 

Analysis and 

Model validation 

Simulation 

Data collection, 

analysis and 

representation 

Abstracting and 

modularizing 

Ability to think 

in abstractions 

Abstraction Abstraction 

Data collection and 

analysis 

Pattern recognition  

Modeling 

Problem 

decomposition 

Ability to think 

in terms of 

decomposition 

 

Decomposition 

 

Decomposition 

Algorithms and 

procedures 

Control structures 

Parallelization 

Automation 

Computational 

concepts (mapping 

to Scratch 

programming 

blocks such as 

sequences, loops 

etc.)  

 

Ability to think 

algorithmically  

 

Algorithms 

Sequencing 

Flow of control 

Algorithms 

Algorithm design  

Parallelism 

Efficiency 

Automation 

Testing and 

verification 

 

Testing and 

debugging 

Ability to think 

in terms of 

evaluations 

Debugging 

 

Debugging 
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  Ability to think 

in terms of 

generalizations 

 

Generalization 

 

Generalization 

 Being incremental 

and iterative 

  Iteration 

 Reusing and 

remixing 

   

 Expressing    

 Connecting    

 Questioning    

2.4 Computational Thinking Literature Reviews  

Many of the above definitions come from studies that review the literature, investigating 

Computational Thinking terms. Despite the strong interest in defining Computational 

Thinking, a growing number of literature reviews focusing on the teaching and learning of 

Computational Thinking can be also found. Some of these reviews focus on a specific topic 

of CT domain, such as assessment, while others cover multiple topics. Reviews that cover 

multiple topics can be classified in three categories: a) studies aiming to develop a 

definition (e.g. Kalelioglu et al., 2016; Shute et al.; 2017) b) studies reviewing the literature 

to provide insights on teaching and learning CT (e.g. Grover & Pea 2013; Lye & Koh, 

2014; Buitrago Flórez et al., 2017) and c) studies aiming to analyze CT research (e.g. Hsu 

et al., 2018). Despite all this work reviewing various aspects of CT through programming 

in K-12 education, a conceptual model of the domain is still missing. Table 2-10 presents 

recent Computational Thinking studies that review the literature 
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Table 2-10. Literature Reviews in CT domain 

Review Main Contribution Scope CT 

approach 

Main focus 

on 

educational 

level 

Studies 

included 

(Grover & 

Pea, 2013) 

Review CT 

definitions, the 

rationale for 

integrating CT into 

K-12 education, 

tools for CT 

development and 

assessment, and 

provide information 

on what CT entails 

and how is integrated 

in K-12 education. 

General Programming K-12 Undefined 

(Lye & Koh, 

2014) 

Review the trends of 

empirical research in 

the development of 

CT through 

programming in K-

12 education such as 

programming 

environments, 

learning outcomes 

and approaches, and 

derive insights on K-

12 curriculum. 

General Programming K-12 Empirical higher 

education and 

K-12 articles 

(Kalelioglu et 

al., 2016) 

Review theoritical 

basis, definition, CT 

elements, population, 

type of research 

design, and develop 

General Programming 

and 

unplugged 

methods 

K-12 Higher 

education and 

K-12 articles 
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a framework that 

includes notion, 

scope and elements 

of CT. 

(Buitrago 

Flórez et al., 

2017) 

Review challenges 

faced by early 

programmers, 

programming 

languages and 

pedagogical tools, 

and provide an 

overview of how 

programming is 

being taught in K-12 

and higher 

education. 

General Programming K-12 and 

higher 

Journal articles, 

reviews, 

proceedings, 

short 

communications, 

and 

governmental 

standards 

(Shute et al., 

2017) 

Review CT 

definitions and 

characteristics, 

interventions, 

assessments and 

models, and develop 

a CT competency 

model. 

General Programming 

and other 

approaches 

K-12 Conceptual 

papers and 

empirical studies 

(T.-C. Hsu et 

al., 2018) 

Review learning 

strategies, teaching 

instruments, 

programming 

languages and course 

types, and analyze 

the evolution of CT 

research. 

General Programming 

and other 

approaches 

All 

educational 

levels 

SCI and SSCI 

journal articles 
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(Ching, Hsu, 

& Baldwin, 

2018) 

Review the 

technologies used for 

developing CT in 

young learners. 

Focused on 

technologies 

Programming 

and other 

approaches 

K-12 Undefined 

(Da Cruz 

Alves, Gresse 

Von 

Wangenheim, 

& Hauck, 

2019) 

Review the 

automatic 

assessment tools 

used to analyze 

artifacts in order to 

assess CT skills.  

Focused on 

automatic 

assessment 

Programming K-12 K-12 and higher 

education 

articles 

(Zhang & 

Nouri, 2019) 

Review the CT skills 

that can be obtained 

through Scratch in 

K-9 education and 

extend Brennan & 

Resnick's (2012) 

framework. 

Focused on 

CT 

elements 

Scratch 

programming 

K-9 K-9 empirical 

studies 

2.5 Summary 

This Chapter presents definitions, related introductory concepts and previous work 

conducted in the field of Computational Thinking for a better understanding of the subject. 

Specifically, definitions and frameworks of Computational Thinking are presented and 

synthesized. In addition, literature reviews conducted in the field of Computational 

Thinking, are presented. 
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3 Methodology 

Τhe research was organized in the following four phases guided (Figure 3-1) by the 

respective research objectives presented in Section 1.1. 

Phase 1. Developing a Conceptual Model of Computational Thinking through 

programming in K-12 education (CTPK-12). 

Phase 2. Expanding the Computational Thinking through Programming in K-12 

Education (CTPK-12) Conceptual Model for Higher Education. 

Phase 3. Designing and evaluating of a Scaffolding Computational Thinking 

game to to be further used in the fourth phase of this dissertation. 

Phase 4. Using the CTPK-12 model to design an empirical study to investigate 

certain instances of the Learning Strategies and Factors model’s areas. 

 

Figure 3-1. Method followed in this thesis 

3.1 Phase 1. Developing a Conceptual Model of Computational 

Thinking through programming in K-12 education (CTPK-12)  

In order to develop a Conceptual Model of Computational Thinking through programming 

in K-12 education we elicited the domain knowledge and we subsequently visualized this 

knowledge as proposed by Wand and Weber (2002). To gain the knowledge of the domain, 

we systematically reviewed the literature. To this end, we followed the Webster and 

Watson’s (2002) method, widely used in conducting literature reviews. The method 

Invetigation of the 
relationship 

between instanses 
of  CT - Learning 

Strategies - Factors 
areas

Design and 
evaluation of a 

Scaffolding CT tool

Extension of the 
CT conceptual to 
higher education 

CT conceptual 
model 

development for 
K-12
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involves a rigorous approach to the selection of cases to be included in the review and a 

concept-centric approach to the presentation of results. In addition, in order to further 

enhance the systematic selection of studies and to reduce subjectivity as much as possible, 

we applied the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman, 2009). The steps 

of the method followed in this phase are further elaborated in Section 4.2.2. 

3.2 Phase 2. Extending the Computational Thinking through 

Programming in K-12 Education (CTPK-12) Conceptual Model for 

Higher Education  

This phase aims to extend the CT conceptual model to include higher education as well. 

For this purpose, we followed a systematic mapping method proposed by Petersen et al. 

(2008). They propose systematic mapping as a method that could contribute in research 

development by providing a structured type of research that has been conducted. The steps 

of the method followed in this phase are further elaborated in Section 5.2.2. 

3.3 Phase 3. Designing and evaluating of a Scaffolding Computational 

Thinking game. 

This phase aims to design and evaluate a Scaffolding Computational Thinking game. The 

decision to design a simple tool with scaffolding features instead of using a pre-existing 

tool was based on the need for customization. We based the design of the tool on the results 

of the literature review conducted in the previous phases. Specifically, we designed the 

tool in order to cover CT components included in Brennan and Resnicks’ (2012) 

framework. The tool that includes features for scaffolding, also offers the ability to create 

log files for CT assessment. In order to evaluate the tool, we investigated how students 

perceive its effectiveness, paying particular attention to the scaffolding features. To do so, 

we collected data form students through a survey and analyzed their answers using 

descriptive statistics and thematic analysis. The research design of this phase is further 

elaborated in Section 6.2. 
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3.4 Phase 4. Investigating certain instances of the Learning Strategies 

and Factors CTPK-12 model’s areas. 

This phase aims to investigate certain instances of the Learning Strategies and Factors 

Areas presented in the CPTK-12 model. More specifically, this phase aims to investigate 

the effect of scaffolding programming games on middle school students’ Computational 

Thinking acquisition. An additional goal is to investigate the effect of middle school 

students’ attitudes towards programming in their Computational Thinking development. 

For this purpose, we designed and conducted an experimental study where students were 

randomly assigned to two groups. The students of the experimental group were introduced 

to Computational Thinking through the Scaffolding Computational Thinking tool, while 

the students of the control group were introduced using the same tool but without 

scaffolding features. Data were collected through tests, questionaries and log files and were 

analyzed through descriptive and inferential statistics. The research design of this phase is 

further elaborated in Section 7.3.  



 

36 

4 Computational Thinking through programming in K-12 

Education (CTPK-12) Conceptual Model  

4.1 Introduction  

The aim of this Chapter is to present one of the main theoretical results of this research, 

the Computational Thinking through programming in K-12 Education (CTPK-12) 

conceptual model.  

The CTPK-12 could aid domain understanding and serve as a basis for future 

studies. It could also support researchers to focus on significant research gaps in their CT 

studies, having an up-to-date synthesis of the relevant literature. In addition, it could 

support the integration of CT into K-12 educational practices, providing evidence to 

teachers and policy-makers as well as bringing closer research, practice and policy. 

The remainder of this Chapter is organised as follows: Section 4.2 presents the 

design of the study for the development of the CTPK-12 model. Section 4.3 presents the 

CTPK-12 model. Section 4.4 further discusses the CTPK-12 model areas and its potential 

uses. Section 4.5 presents the summary of the chapter. 

4.2 Study design 

4.2.1 Study goal and research questions 

This phase aims to the development of a conceptual model for CT through programming 

in K-12 education. The model aims to describe the CT Areas and the relationships between 

them. Τhe conditions in which CT is integrated in K-12 education such as policies and 

issues regarding national curricula are falling out of scope of the model. 

The research questions are: 

RQ1. What are the areas of CT through programming in K-12 education domain? 

RQ2. What are the sub-areas of each CT Area? 

RQ3. How do CT Areas relate to each other?  
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4.2.2 Method 

In order to develop a conceptual model for CT through programming in K-12 education 

we proceed to the following two steps proposed by (Wand & Weber, 2002): a) elicit the 

domain knowledge and b) visualize the domain knowledge.  Figure 4-1 presents the study 

method in terms of steps conducted and relevant results. We apply the Webster and 

Watson’s (2002) systematic literature review approach for the elicitation of the domain 

knowledge (CT Areas and their relationships). This includes a structured approach to 

identifying sources and a concept-centric approach to presenting the results. We started by 

applying the PRISMA Statement (Moher et al., 2009) for the study selection phase. We 

then, proceed to the coding scheme identification phase, in which we identify the CT Areas 

that serve as a coding scheme for the data extraction phase. The data extraction phase aims 

to identify the sub-areas of each CT Area and the CT Areas’ relationships. The process 

concludes with the visualization of the data extraction phase results. The whole process 

evolved into iterative phases where searches led to new selected studies that were being 

analyzed, leading to revised CT areas, sub-areas and relationships. The steps followed in 

this study are further elaborated below. 

 

Figure 4-1. Method 

4.2.2.1 Elicitation of the domain knowledge 

Study selection 

We carry out the study selection presented in (Figure 4-2), adapting the PRISMA 

Statement (Moher et al., 2009). Specifically, we adapt the PRISMA flow diagram (Figure 
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4-2) by placing additional records identified in included phase, as we identified these 

studies by examining the selected studies as proposed by Webster & Watson (2002).  

The selection of studies included is a critical factor for the validity of the study. For 

this reason, the authors identified the search keywords and criteria together but worked 

individually to screen the studies and apply the inclusion and exclusion criteria. During 

this process a few conflicts emerged, which were solved through discussions until 

agreement was reached. 

The sub-steps of study selection phase are outlined in the following sub-sections. 

 

Figure 4-2. Process applied for study selection adapted by Moher et al. (2009) 

Identification 

The relevant studies were detected using keywords in the scientific databases Web 

of Science and Scopus. Specifically, we searched the phrase “computational thinking”, 

quotations included, with a time constraint of 2006 onwards. The year 2006 was chosen as 

it was then that the term “Computational Thinking” was re-introduced by Wing (2006). In 

Scopus we included title, abstracts, keywords and in Web of Science we defined category 

as Education Educational Research. In both databases we included only articles and 

reviews. Searches took place from March 2018 to October 2019 maintaining the 

aforementioned structure. In total, three searches took place that resulted in 759 studies, 

499 articles in Scopus database and 260 in Web of Science database. 
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Screening  

In this sub-step we screened the studies retrieved from the previous step after we 

removed 173 duplicates. To this end, we read all the titles and abstracts and we removed 

the studies that were not written in English or were not fully available. We also excluded 

short papers. This sub-step resulted in 308 studies remaining. 

Eligibility 

During this sub-step we filtered out the studies retrieved from the screening process 

by examining the full-texts and applying the following inclusion and exclusion criteria.  

The Inclusion Criteria suggest: a) studies should be published in journals; b) studies 

can be conceptual papers, opinion articles and empirical studies, as the incorporation of 

conceptual papers in addition to empirical studies broadens the scope of the study by 

including theoretical frameworks and future directions; c) the focus should be on CT in K-

12 education and should involve programming; d) in the case of empirical CT studies, in 

addition participants should be K-12 students, K-12 pre-service teachers or K-12 in-service 

teachers. 

The Exclusion Criteria suggest studies are excluded when a) they do not 

specifically focus on CT in K-12 education, such as studies that focus on higher education 

b) they do not specifically focus on CT through programming, such as studies where 

examination approaches focus on tangible artifacts, board games, exhibits etc., and c) they 

refer to CT only in their introduction or background and not in their results or they measure 

something other than CT. 

 Included 

Subsequently, the studies were further processed by reviewing their citations 

(backward) and identifying articles that cite them (forward). The process resulted in the 

collection of 14 additional studies including 2 gray literature materials. Finally, 101 studies 

were included in the study. 
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4.2.2.1.1 Coding scheme identification 

To determine the areas of CT through programming in K-12 domain that serve as our 

coding scheme, we apply conventional content analysis. Conventional content analysis is 

suggested when existing theory is limited and does not involve a predefined coding scheme 

but one that derives from text analysis (Hsieh & Shannon, 2005). We choose conventional 

content analysis because of the lack of a conceptual model describing the domain. Initially, 

we read all full-text articles in order to approach the domain as a whole. Then we carefully 

read each article and highlight keywords that imply a concept/area. Keywords are 

combined together, providing categories of the coding scheme. For example, keywords 

“assessing the development of Computational Thinking”, “assessment” (Brennan & 

Resnick, 2012), “assess and evaluate”, “assessment” (Zhong et al., 2016) are grouped and 

eventually led to adding “Assessment Area” in the coding scheme. Subsequently, we sort 

the studies in these categories. During this phase the coding scheme evolves by adding new 

categories or merging and splitting existing ones. The phase leads to the identification of 

the final categories, which from now on will be referred to as CT Areas and serve as the 

coding scheme and as the concepts of the conceptual model. 

Consequently, we compile a concept-matrix or CT Area-matrix, which is a matrix 

listing the CT Areas where each article contributes. In this way we transit from an author-

centric to a concept-centric approach, as suggested by Webster and Watson (2002) (Table 

4-1).  

Table 4-1. Approaches to Literature Reviews adopted from Webster and Watson 

(2002) 

Concept-centric Author-centric 

Concept X [Author A, Author B] 

Concept Y [Author A, Author C] 

Author A [Concept X, Concept Y] 

Author B [Concept X, Concept W] 

4.2.2.1.2 Data extraction  

During this phase, we sort the selected studies into the coding scheme. In this respect, we 

use a table for each CT Area. When we insert a study into the table, we also record the 

area’s elements that appear in the study (Figure 4-3). Subsequently, we compare every 

element with all other elements. The elements with clear match with other elements 
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constitute a sub-area. For example, in Assessment Area, “project analysis” (Brennan & 

Resnick, 2012) and “examination of artifacts for CT patterns” (Denner et al., 2012) are 

included in the “Artifact analysis” sub-area. Sub-areas consisting of only one element and 

low-frequency (<2 studies) sub-areas, are not included in the model. 

Subsequently, we use a table for each CT Area in order to record evidence in studies 

that suggest relationships between sub-areas (Fig. 4) and therefore Areas. We then group 

these evidences and conclude to the relationships between areas. 

 

Figure 4-3. Example of elements recording and sub-areas identification 

 

Figure 4-4. Example of evidence recording and relationship identification 

4.2.2.2 Visualization of the domain knowledge 

4.2.2.2.1 Concept mapping 

In this step, we use concept mapping as proposed by Siau & Tan, (2005) for visualizing 

the concepts (CT Areas) and relationships of the domain, the identification of which is 

described in section 4.2.2.1.1. We create a visualization of the conceptual model depicting 

CT Areas as nodes. At each node, we note the sub-areas of each CT Area, identified in the 

 

 Elements 

(Brennan & 
Resnick, 2012) 

Project analysis 

Artifact-based interviews 

Design scenarios 

(Denner, 
Werner, & Ortiz, 
2012) 

Examination of artifacts based on three 
categories: programming, documentation 
and understanding of software, and design 
for usability. 

….. 
… 

 

 

 
Evidence of relationships 

(Brennan & 
Resnick, 2012) 

Project analysis (Assessment sub-area) of the CT 
concepts within Scratch projects (Knowledge base 
sub-area) 

…. 
…. 

 

Relationship between 

Assessment Area & 

Knowledge Base Area 
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previous phase. Finally, we depict the relationships between CT Areas as links. We then 

place a label to each link to explain the relationship. 

4.2.3 Study limitations 

We acknowledge that this study has a number of limitations. First, the proposed model is 

based on the analysis of studies written in English. Second, searches for studies were 

conducted in only two scientific databases, namely Web of Science and Scopus. Third, 

searches included only articles published in journals. Although, we eventually included 

some conference papers and gray literature identified through manual inspection of the 

references of the selected studies, still the majority of the selected literature includes 

journal articles. Fourth, searches were conducted with a time constraint of 2006 onwards. 

Thus, the model is based exclusively on the research conducted since 2006 and not on the 

initial stages of CT research. Fifth, non-inclusion of studies on the basis of quality criteria 

prevents the presentation of all conducted research. Finally, subjectivity combined with 

the small number of authors (only two) constitutes an additional limitation of the study. 

Although we applied a systematic method (presented in Section 4.2.2) we had to make 

subjective choices regarding e.g., grouping the elements, defining the relationships based 

on the recorded evidence, naming the CT Areas and sub-areas, and defining exclusion 

criteria for selecting sub-areas that are finally included in the model. 

 

4.3 The CTPK-12 model 

The proposed Computational Thinking through Programming in K-12 education (CPTK-

12) conceptual model (Figure 4-5) is based on the extracted CT Areas and their 

relationships presented in detail in Sections 4.3.1 and 4.3.2 respectively.  
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Figure 4-5. Computational Thinking through Programming in K-12 education 

(CTPK-12) model 

The analysis of the 101 studies during the coding scheme identification phase 

resulted in the determination of six CT Areas finally included in the model (Table 4-2). CT 

studies attempt to address the challenges of CT through programming in K-12 education 

domain by focusing on these areas that repeatedly appear in the selected studies.  

Table 4-2. CT Areas 

Knowledge Base  CT measurable elements and their classification. 

Assessment  Assessment methods and frameworks for measuring CT 

through programming in K-12 education. 

Learning Strategies  Learning strategies leveraged to enhance students' CT 

learning through programming in K-12 education.  

Factors  Factors related to CT through programming acquisition in K-

12 education. 

Tools  Tools that are used or specifically developed for teaching and 

learning CT through programming in K-12 education. 
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Capacity Building  Capacity building needed for teaching CT through 

programming in K-12 competently.  

The percentage of studies by CT Areas to which they contribute is depicted in 

Figure 4-6. We categorize the studies into two groups 2006-2014 and 2015-2019. As 

shown in Figure 4-6, Assessment and Tools are the two most popular areas that gather the 

greatest interest of researchers in both periods. Assessment Area is coming first across the 

two timelines (27.9% in period 2006-2014, 25.6% in period 2015-2019) followed by Tools 

Area (20.9% in both periods). During period 2006-2014 Knowledge Base Area is coming 

third (18.6%) while in period 2015-2019 the percentages of studies aimed at defining CT 

fall to 8.5% placing the area as the one with the least interest. On the contrary, the 

percentage of studies that focus on Learning Strategies increases from 9.3% during period 

2006-2014 to 17.1% during period 2015-2019, placing Learning Strategies in the third 

place of researchers’ interest in the selected studies. Respectively for the Capacity Building 

Area the percentage of studies that focus on this area increases from 9.3% during period 

2006-2014 to 14.7% during period 2015-2019, placing Capacity Building in the fourth 

place of interest followed by Factors. These results indicate that as the field matures efforts 

still focus on assessment and tools but the focus shifts beyond the definition of CT on more 

tangible issues such as Learning Strategies, Capacity Building and Factors. 
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Figure 4-6. Percentage of studies by CT Areas to which they contribute in the periods 

2006-2014 and 2015-2019. References to 2019 actually refer to period January 2019 

to October 2019 

The CTPK-12 depicts the areas of Computational Thinking through programming 

in K-12 education (CT Areas) and the dominant relations (Table 4-3) between CT Areas 

as they emerge from the selected studies. 

Table 4-3. CT Areas’ relationships 

Capacity 

Building 

R1. Supports teachers to facilitate students understand and acquire 

CT. 

Learning 

Strategies 

R2. Enable students understand and acquire CT.  

R3. Increase the motivational levels of underrepresented students, 

thereby broadening CT participation and addressing underrepresentation due 

to socio-economic, cultural and gender differences. 

Tools  R4. Allow students to acquire CT through supporting learning 

strategies. 
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R5. Address the challenges encountered in learning programming and 

reinforce underrepresented students’ motivation.  

Factors R6. Affect the acquisition of CT. 

Assessment R7. Measures CT and provides a means for deep understanding of 

students’ learning. 

4.3.1 CT Areas 

4.3.1.1 Knowledge Base Area 

Knowledge Base Area is at the core of the domain. 57 of the 101 studies are included in 

this CT Area. Researchers in these studies either propose a framework or a definition to 

identify and classify measurable elements of CT, or simply assess CT elements in order to 

assess CT. Based on CT frameworks we examined CT elements in the selected studies. 

We classify Knowledge Base Area in five sub-areas: concepts, skills, practices, 

perspectives and attitudes (Table 4-4). Figure 4-7 presents the number of studies by CT 

element.  

The results of the CT knowledge base analysis in the selected studies, include 

various CT elements and terms describing classifications of CT elements such as skills, 

capabilities, perspectives, attitudes, practices, characteristics, concepts, facets and thought 

processes. Some of these terms are often presented with different meaning.   

In addition, several CT elements such as Abstraction, Algorithms, Decomposition, 

Data representation, Testing, Evaluation, Debugging, Generalization, Iteration appear to 

be classified in various ways including CT skills, CT concepts, CT practices or thought 

processes. For example, abstraction occurs as the thought process of “the ability to think 

in abstractions” (Selby, 2013), as “the skill to decide what information about an 

entity/object to keep and what to ignore” (Angeli et al., 2016), and as the practice of 

Abstracting and modularizing, that is “building something large by putting together 

collections of smaller parts” (Brennan & Resnick, 2012). 

The analysis of the reviewed studies reveals the following CT practices according 

to Brennan & Resnick’s (2012) framework: Testing and Debugging, Remixing and 



 

47 

Reusing code, Being incremental and iterative, Abstracting and Modularizing. In addition, 

elements such as Design for usability, Code organization and documentation, and 

Programming efficiency proposed by Denner et al. (2012) as key competences for 

engaging in CT are also evident.  

CT concepts as defined by Brennan & Resnick (2012) that repeatedly arouse in the 

examined studies are Sequences, Conditionals, Loops, Events, Parallelism, Variables 

(Data), and Operators. Functions, Synchronization blocks and User Interactivity blocks 

that are not included in Brennan & Resnick's (2012) framework, are also evident. 

Researchers (e.g., Moreno León et al., 2015; von Wangenheim et al., 2018) in the reviewed 

empirical studies often match these concepts with other CT elements. For example, von 

Wangenheim et al. (2018) assign abstraction to the use of more than one script and the 

definition of custom blocks in Snap!. 

The examination of the studies also reveals the presence of elements such as Logic, 

Collaboration, Cooperativity, Problem solving, Creativity, Communication, Critical 

Thinking, Self-efficacy and others that appear once or twice and are not included in CT 

frameworks. The presence of these elements could be explained since some validated 

general assessment methods such as Dr. Scratch (Moreno León et al., 2015) and CTS 

(Korkmaz, Çakir, & Özden, 2017) assess these skills. These general methods are adopted 

by other studies (Durak, Yilmaz, & Bartin, 2019; Gabriele et al., 2019; Garneli & 

Chorianopoulos, 2018, Garneli & Chorianopoulos 2019; Günbatar, 2019; Korkmaz & Bai, 

2019; Marcelino, Pessoa, Vieira, Salvador, & Mendes, 2018), resulting in a strong 

presence of these elements in the reviewed empirical studies.  

CT attitudes and perspectives appear less frequently in the reviewed studies and 

include mainly Connecting and Expressing as described by Brennan & Resnick (2012). 

Table 4-4. Knowledge Base sub-areas 

CT elements 

classification 

Description CT frameworks 

Concepts Concepts (programming elements) 

encountered during programming. 

Brennan & Resnick 

(2012) 
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Skills The ability and capacity to carry out 

CT thought processes. 

CSTA & ISTE (2011), 

Angeli et al. (2016), Shute et al. 

(2017) 

Practices Thinking and learning processes 

developed during programming. 

Brennan & Resnick 

(2012) 

Perspectives Perception of oneself, his/her 

relationship with others and the digital world. 

Brennan & Resnick 

(2012) 

Attitudes Dispositions and mindsets. CSTA & ISTE (2011), 

Barr & Stephenson (2011) 
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Figure 4-7. Number of studies by CT element appearing more than twice in the 

examined studies 

4.3.1.2 Assessment Area 

CT assessment is examined in 53 studies. Researchers in the examined studies develop and 

validate assessment methods, propose frameworks or measure students’ CT in order to 

achieve deep understanding of students’ learning (Fronza et al., 2017) through various 

assessment methods. We classify Assessment Area into five sub-areas: Self-report 

methods; Tests; Artifact Analysis; Observations; and Frameworks. Tests, Artifact Analysis 

and Observations measure directly CT, in contrary with self-report methods that measure 

CT indirectly through recording self-reflection. Table 4-5 presents the classification of 

Assessment.  
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CT assessment methods in the examined studies are mainly based on the specific 

content of each study. However, there are some efforts to develop general assessment 

methods. These efforts include development and validation of tests (Chen et al., 2017; 

Román-González et al., 2017), self-report scales (Kong, Chiu, & Lai, 2018; Korkmaz et 

al., 2017; Kukul & Karataş, 2019; Yağcı, 2019) for general use in CT assessment and 

automatic artifact analysis instruments (Moreno León et al., 2015). Artifact analysis 

involves examining students’ programs to detect evidence of CT. Automatic artifact 

analysis allows teachers and researchers to focus on assessment methods such as 

observations and interviews to gain a complete picture of students’ understanding (Da Cruz 

Alves et al., 2019).  

Assessment frameworks usually propose optimal combinations of assessment 

methods. Frameworks that have been proposed involve data mining techniques (De Souza, 

Barcelos, Munoz, Villarroel, & Silva, 2019), hypothesis-driven approaches (Grover et al., 

2017) and Evidence-Centered-Design (ECD) methods (Snow, Rutstein, Basu, Bienkowski, 

& Everson, 2019). 

Table 4-5. Assessment sub-areas 

 Studies 

Indirect  

Methods 

Self-Report 

Methods 

scales, questionnaires, 

surveys, interviews, think-

aloud protocol, journals, 

reflection reports 

S2,S4,S6,S12,S13,S18,S30,S35,S36,S3

9,S40,S47,S48,S55,S56,S57,S59,S60,S

61,S66,S70,S79,S88,S95,S97,S101 

Direct  

Methods 

Tests  

multiple-choice tests, 

quizzes, open-ended and 

other tasks, tasks and 

assignments with rubrics, 

semi-finished programs, 

projects, design scenarios 

S3,S6,S9,S10,S11,S12,S13,S15,S19,S3

2,S39,S53,S70,S75,S76,S77,S79,S84,S

85,S90,S93,S95,S100,S101 

Artifact 

analysis 

automatic analysis, manually 

inspection of artifacts for CT 

evidence, examination of 

artifacts for CT patterns, log 

data 

S4,S10,S13,S15,S25,S26,S32,S33,S35,

S36,S37,S44,S46,S54,S63,S65,S66,S7

2,S86,S88 

Observations 

observations of students’ 

actions, screen recordings, 

learning analytics, camera 

recordings, researchers’ 

notes, structure-based 

observations 

S4,S6,S10,S12,S35,S37,S70,S79 
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Frameworks frameworks for CT assessment 
S4,S10,S15,S25,S32,S37,S39,S84,S90,

S101 

4.3.1.3 Learning Strategies Area 

Learning strategies are mentioned in 37 studies. We classify the most common learning 

strategies in six sub-areas: Game Based Related Strategies, Modeling & Simulations Based 

Related Strategies, Problem Solving Related Strategies, Project Based Related Strategies, 

Scaffolding Related Strategies and Collaborative Related Strategies (Table 4-6). 

Scaffolding Related Strategies are classified as a separate sub-area, as they are particularly 

emphasized in the selected studies. Other strategies involve hands-on, aesthetic design 

through media design, storytelling and guided-discovery. Figure 4-8 presents the number 

of CT studies by most common strategies. 

Studies focusing on learning strategies either propose a pedagogical framework for 

CT or apply learning strategies to motivate students and enable them acquire CT. Many of 

these strategies are linked to constructionism (Papert, 1980) grounded in Piaget’s (1970) 

constructivist theory, and/or Vygotsky’s (1978) Ζone of Proximal Development. 

Additionally, learning strategies are implemented in traditional classroom settings, at 

distance or in blended environments (e.g., Basogain et al., 2018; Grover et al., 2015) that 

take advantage of the presence of teachers and the services provided by virtual learning 

environments. Researchers in selected studies often use multiple learning strategies to take 

advantage of their benefits. Out of the 37 studies included in this CT Area, 15 apply or 

propose more than one learning strategy. 

Table 4-6. Learning strategies sub-areas 

  Studies 

Game Based Related 

Strategies 

Game Based Related Strategies involve game design 

and digital/video game development, programming 

games and any strategy that exploits games and 

programming.  

S4,S25,S26,S35,

S36,S46,S48,S53,

S60,S72,S89, 

S100 

Modeling & Simulations 

Based Related Strategies 

Modeling & Simulations Based Related Strategies 

involve designing of scientific models and simulations 

through strategies such as scientific inquiry and learning 

by design. 

S2,S11,S28,S35,

S72,S81 
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Problem Solving Related 

Strategies 

Problem Solving Related Strategies involve Problem 

Based Learning and problem-solving learning strategies 

in general.  

S5,S39,S51 

Project Based Related 

Strategies 

Project Based Related Strategies involve the 

engagement with authentic projects set around real 

challenges and problems.  

S32,S53,S69,S70,

S79 

Scaffolding Related 

Strategies  

Scaffolding Related Strategies involve strategies that 

offer support to students as they learn, including 

instructional scaffolding, support/guidance, and 

adaptive, peer-, resource- scaffolding. 

S6,S11,S13,S17,

S26,S36,S39,S45,

S70,S72,S81,S93 

Collaborative Related 

Strategies 

Collaborative Related Strategies involve strategies 

where students actively interact during the learning 

process including collaborative learning, teamwork, 

pair programming and strategies based on student’s 

collaboration. 

S6,S30,S33,S45,

S48,S70 

 

Figure 4-8. Number of studies by the most common learning strategies 

4.3.1.4 Factors Area 

CT-related factors are discussed in 22 studies. We classify Factors Area in two sub-areas: 

Demographic factors and Cognitive & non-cognitive factors presented in Table 4-7. 

Demographic factors have the strongest presence in the selected studies with gender being 

discussed in 17 and grade level in 7 out of 22 examined studies.  

Several studies investigate the relationship between CT and grade level. Some of 

them (Atmatzidou & Demetriadis, 2016; Werner, Denner, Campe, & Kawamoto, 2012) 

conclude that CT acquisition is not grade-related (or age-related). Several other studies 

conclude that there is a significant relationship. However, their results on the type of this 

relationship are contradictory. On the one hand, some studies conclude that there is a 

positive relationship between grade level or age and CT. More specifically, Román-
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González, Pérez-González, & Jiménez-Fernández (2017) assessed 1,251 students’ CT 

using Computational Thinking Test (CTt). They concluded that CT levels increased with 

the grade, thus suggesting that this finding may be related to the cognitive problem-solving 

aspect of CT. This finding is in line with the results reported by Durak et al. (2019).  On 

the other hand, there are studies providing evidence that there is a negative relationship 

between age (grade level) and CT. More specifically, Durak & Saritepeci (2018) found 

that grade level negatively predicted CT, suggesting that as the students’ grade level 

increases their CT levels are negatively affected. However, they note that this finding may 

be related to participants’ prior experience, which was different depending on the grade 

level. A negative relationship between CT (elements of programming empowerment) and 

grade level has also been reported in Kong, Chiu, & Lai’s, (2018). However, authors 

emphasize that other factors such as less personalized instruction and differences in the 

level of difficulty may have affected students’ CT acquisition. Israel-Fishelson & 

Hershkovitz (2019) go further by comparing students’ achievement in specific CT 

elements between their different grade levels. The authors emphasize that students at 

different grade levels performed better on different concepts, suggesting that the design of 

a CT approach should take into account “the fit between CT concepts and grade level” 

(Israel-Fishelson & Hershkovitz, 2019). 

Studies that investigate gender relationship with CT are also contradictory. Some 

of them conclude that learning CT is gender-related, while others (Atmatzidou & 

Demetriadis, 2016; Werner et al., 2012) find that there is no significant relationship 

between gender and CT learning. Studies that conclude that CT is gender-related are also 

contradictory. Some of them (e.g., Durak & Saritepeci, 2018; Durak et al., 2019) found CT 

level differentiation in favor of female while others (e.g., Kong et al., 2018; Román-

González et al., 2017) in favor of male students. Studies (e.g., Cooper et al., 2014; Fletcher 

& Lu, 2009; Repenning et al., 2015) also discuss challenges related to demographic factors 

(e.g., gender, socio-economic) such as underrepresentation in CS and students’ low 

motivation.  

Creativity appears in the selected studies in the light of two different perspectives. 

Several studies (Allsop, 2019; Kim & Kim, 2016; Korkmaz et al., 2017; Yağcı, 2019; 

Zhong et al., 2016) place creativity in the core of CT along with other elements. However, 
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other studies approach creativity as a separate construct and examine its relationship to 

CT. Teachers who participated in Nouri, Zhang, Mannila, & Norén (2019) reported 

creativity as one of the skills occurred during CT learning. Kim & Kim (2016) found that 

students’ creativity was improved after they participated in their CT intervention. On the 

contrary, Hershkovitz et al. (2019) found no relationship between CT and creativity. 

However, they suggest that this may relate to specific features of the learning platform 

used.  

Self-efficacy is an additional factor that appears in the selected studies in the light 

of the two aforementioned perspectives. Román-González, Pérez-González, Moreno-

León, & Robles (2018) found that CT was positively related to CT self-efficacy. In 

addition, they suggested that fostering students' self-efficacy through positive and personal 

learning experiences might be effective in acquiring CT. A significant relationship 

between CT and programming self-efficacy was also reported by Durak et al. (2019). 

Other factors addressed in the selected studies include aspects of personality 

(Román-González et al., 2018), persistence (Israel-Fishelson & Hershkovitz, 2019), 

attitudes toward and interest in programming, (Kong et al., 2018; Witherspoon & Schunn, 

2019) attitudes toward collaboration (Kong et al., 2018), academic success and attitude 

against various school subjects (Durak & Saritepeci, 2018), challenges in learning 

programming (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013) and teachers’ 

instructional goals (Witherspoon & Schunn, 2019).  

Cognitive factors such as verbal, spatial, reasoning, numerical and problem-solving 

ability (Román-González et al., 2017), ways of thinking (Durak & Saritepeci, 2018), and 

reflective thinking (Durak et al., 2019) are also investigated in the literature. 

Table 4-7. Factors sub-areas 

  Studies 

Demographic factors Grade level, gender, socio-economic and cultural 

background 

S4,S6,S22,S29,S30,S31,S4

3,S45,S49,S53,S55,S56,S7

0,S72,S76,S77,S90 

Non-Cognitive and 

Cognitive factors 

Personal traits, attitudes and motivations such as 

aspects of personality, creativity, self-efficacy, 

persistence, attitudes toward programming and 

S29,S30,S42,S46,S55,S66,

S76,S77,S81,S90, S93 
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attitudes toward collaboration; academic 

performance, challenges in learning programming 

Factors that involve cognitive functions and mental 

abilities such as verbal, spatial, reasoning & 

numerical ability and problem-solving ability 

4.3.1.5 Tools Area 

Researchers in 47 studies use or develop tools for CT teaching and learning. We classify 

tools leveraged for teaching and learning CT through programming in K-12 education in 

three sub-areas: programming tools & communities, robotics & microcontrollers, and tools 

specifically developed for CT. Table 4-8 presents the classification of tools. Figure 4-9 

presents the number of studies by tool. 

Students in the selected studies are mainly engaged with programming concepts 

and practices through programming tools. According to Brennan & Resnick (2012), the 

concepts and practices that students encounter during programming could be considered 

as CT concepts and practices as well. Most of the tools recorded in the selected studies are 

visual programming tools. Furthermore, even when text programming is used, the outcome 

of programming is often visualized through animations. Agent-based programming 

paradigm is also widely applied. In addition, communities are proposed by authors (e.g., 

Clark & Sengupta, 2019; Kafai, 2016) who argue that CT and programming are social 

practices. Students in the selected studies share their programs and use socialization 

features of communities that according to Xing (2019) can lead to CT development. 

Robotics are used for teaching and learning CT in some of the selected studies. 

Students in these studies encounter CT concepts and practices during programming robots 

to interact with the environment. Among other tools educational robotics kits have the 

strongest presence (e.g., Atmatzidou & Demetriadis, 2016; Chalmers, 2018). 

Microcontrollers are also evident in studies (e.g., Carlborg, Tyrén, Heath, & Eriksson, 

2019; Durak et al., 2019) where students program automations or complex robotic devices. 

Several studies develop tools in order to support a CT theoretical framework or 

curriculum. Most of the developed tools are visual programming tools and involve game 

play (e.g., Clark & Sengupta, 2019; Weintrop, Holbert, Horn, & Wilensky, 2016) and/or 
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modeling (e.g., Basu, Biswas, & Kinnebrew, 2017; Clark & Sengupta, 2019; Kynigos & 

Grizioti, 2018; Sengupta et al., 2013).  

Table 4-8. Tools sub-areas 

 
 

Studies 

Programming tools 

& Communities 

Visual & text programming tools. 

Communities that provide users with the 

opportunity to interact with other 

programmers. 

S2,S4,S5,S10,S15,21,S26,S30,S3

2,S33,S35,S36,S37,S39,S42,S44,

S45,S46,S48,S49,S53,S54,S58,S

60,S63,S70,S71,S72,S75,S79,S8

6,S94,S101 

Robotics & 

Microcontrollers 

Programmable robot constructs including 

educational robotics kits, physical & 

virtual robots. 

Automations, control devices, 

interactive physical systems. 

S6,S12,S13,S17,S18,S19,S30,S6

0,S93 

Tools specifically 

developed for CT 

Tools developed to support a CT 

theoretical framework or curriculum. 
S11,S21,S47,S59,S81,S89, S93, 

S100 

 

Figure 4-9. Number of studies by tool 

4.3.1.6 Capacity Building Area 

https://en.wikipedia.org/wiki/Physical_system
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Providing guidance and support to teachers is discussed in 19 studies. We classify Capacity 

Building Area in three sub-areas: Knowledge for teaching CT, Teacher Education and 

Professional Development (Table 4-9).  

The specification of knowledge for teaching CT is a prerequisite for teacher support 

(Angeli et al., 2016; Cooper et al., 2014) and thus, we classify it as a separate sub-area in 

Capacity Building Area. Technological Pedagogical Content Knowledge (TPCK or 

TPACK) is proposed for specifying this knowledge in the selected studies (e.g., Angeli et 

al., 2016; Mouza, Yang, Pan, Yilmaz Ozden, & Pollock, 2017). TPCK interweaves the 

knowledge of technology (TK), content (CK) and pedagogy (PK) (Koehler & Mishra, 

2006). Angeli et al. (2016) define TPCK for CT as the knowledge that enables teachers to 

identify creative and authentic CT projects; identify technologies that provide the 

necessary technological means for practicing/teaching the whole range of CT; and use 

representations in order to make CT comprehensible for all. Other researchers (e.g., Mouza 

et al. 2017) place CT into the Technology Knowledge (TK), suggesting that teachers 

should understand this knowledge and draw connections with PK and disciplinary content 

(CK), such as math, language, art. 

Teacher Education could be based on revised educational technology courses that 

provide pre-service teachers with CT opportunities and methods courses that focus on 

teaching and learning and facilitate the integration of CT into pre-service teachers’ future 

educational practices (Yadav et al., 2017). Along these lines, studies in this sub-area 

introduce CT to pre-service teachers through technology courses (Angeli et al. 2016, 

Gabriele et al., 2019; Mouza et al., 2017; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 

2014) and methods courses. For example, Adler & Kim (2018) incorporated CT into a 

science methods course for pre-service teachers. A high percentage of participants (90%) 

who engaged with CT through simulations consider that CT and simulations could be 

integrated into the classroom environment.  Participants in Gabriele et al. ‘s (2019) study 

developed projects in Scratch and subsequently incorporated them into their teaching 

practices during their internship. 

Professional Development aims to support teachers in understanding and 

integrating CT into their practices (Alfayez & Lambert, 2019; Bower, Wood, Lai, Howe, 

& Lister, 2017). Hickmott & Prieto-Rodriguez (2018) propose that Professional 
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Development should (a) provide activities relevant to both CT tools and CT learning 

strategies; (b) include both step-by-step exercises and self-directed projects; (c) take into 

account teachers’ prior knowledge; (d) provide resources that can be directly integrated 

into teaching practices; and (e) assess teachers’ knowledge acquisition through direct 

assessment methods. Kale et al. (2018) argue that when Professional Development focuses 

on the application of CT in different domains and problem solving, it allows teachers to 

recognize the importance of CT and integrate the knowledge gained into their teaching. 

Ongoing professional development that involves workshops, embedded coaching, 

administrative support, co-planning lessons and co-teaching, could also provide in-service 

teachers with valuable assistance and thereby expanding their participation in CT (Israel, 

Pearson, Tapia, Wherfel, & Reese, 2015). 

Table 4-9. Capacity Building sub-areas 

  Studies 

Knowledge for 

teaching CT 

Models for specifying the knowledge that teachers 

need for teaching CT. 

S5,S18,S22,S67,S96 

Teacher 

education  

Undergraduate courses such as educational 

technology and methods courses that promote CT 

learning and teaching.   

S2,S33,S34,S67,S95,S96 

Professional 

development 

Variety of tools such as workshops, training, courses 

designed to help teachers improve their professional 

knowledge. 

S8,S14,S18,S41,S44,S45,

S50,S61,S63,S69,S82 

4.3.2 CT Areas Relationships 

CT Areas Relationships are depicted as arrows between the CT Areas in Figure 4-5 and 

descripted in Table 4-3. R6 and R7 model’s relationships could be considered plausible 

and are widely reflected in the studies included in the respective CT Areas described in 

section (4.3.1). The same is true for R1, while this relationship is not widely tested 

empirically in the selected studies. The remaining relationships are further elaborated in 

this section. 

R2. Several studies attribute the success of the proposed interventions to the applied 

strategies. Grover et al. (2015) place particular emphasis on the pedagogical design of their 

strategy, which eventually led to the students' understanding of CT concepts (algorithmic 

constructs). Repenning et al. (2015) also found that Scalable Game Design strategy that 
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involves game design, simulations and scaffolding allowed students to develop CT skills, 

highlighting the important role of pedagogy in the strategy. Sáez-López, Román-González, 

& Vázquez-Cano (2016) implemented an active pedagogical approach, concluding that 

primary school students who participated in their study improved their CT levels in regard 

to CT concepts, logic and CT practices. In addition, there are also findings that support the 

assumption that learning strategies such as Game Design (Garneli & Chorianopoulos, 

2019), Project Based Learning enhanced with software agile methods (Fronza et al., 2017) 

and Modeling & Simulations (Garneli & Chorianopoulos, 2018) enable the acquisition of 

CT. 

R3. Studies also discuss the role of learning strategies in relation to challenges 

posed by demographic factors (e.g., gender, socio-economic background) such as 

underrepresentation in CS and students’ low motivation (Cooper et al., 2014; Fletcher & 

Lu, 2009), arguing that CT teaching and learning motivates learners, especially females 

and underrepresented students. More specifically, Ioannidou, Bennett, Repenning, Koh, & 

Basawapatna (2011) and Repenning et al. (2015) suggest that Scalable Game Design 

learning strategy leads in broadening participation in CS. Out of over 4000 students who 

participated in Scalable Game Design Project, 56 % were minority students and 45% were 

female. 64% of the participated girls were interested in continuing their CT activities. In 

addition, ethnic minority factor did not affect students’ interest in continuing involving 

with CT (Repenning et al., 2015). Teachers who participated in Israel’s et al. (2015) study, 

used teaching CT through collaborative problem solving, modeling, explicit instruction, 

peer collaboration, and guided discovery in order to make CS accessible to students with 

low financial backgrounds and disabilities. 

R4. Learning strategies are supported by tools. Out of 32 empirical student-

centered studies, 21 utilize tools as a means of supporting learning strategies to introduce 

students to CT. Specific features of tools could support different learning strategies. For 

example, a strategy that involves modeling is supported among others, by tools that include 

a modeling environment such as CTSiM (Basu et al., 2017; Sengupta et al., 2013). A game 

design strategy is often supported in the selected studies by tools such as Scratch (Resnick 

et al., 2009) that allows students of all ages to develop games through its low floor 

environment.  
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Furthermore, there is evidence that engaging with tools without a learning strategy 

is not enough to gain knowledge of CT. Denner et al. (2012) analyze 108 games created 

by middle school students in Creator, finding lack of code organization, documentation 

and design for usability. Since they found that participated students faced challenges in 

designing their games and understanding several programming concepts, they suggested 

that proper guidance is critical to enable students’ motivation. Brennan & Resnick (2012) 

noted that interviewee students that developed projects in Scratch, sometimes could not 

explain their programs, although they had incorporated several programming constructs 

into them. Zhao and Shute (2019) examined the development of students’ CT through a 

game environment they developed, noting that a non-trivial part of the students’ 

improvement in CT could be attributed to increased familiarity with the environment. 

R5. There is also evidence that tools enhance underrepresented students’ 

engagement in programming and CS. In a study by Kim & Kim (2016), participating 

elementary female students reduced their negative attitudes towards software education 

after following a CT course and designing games in App Inventor.  

In addition, several studies emphasize (e.g., Fronza et al., 2017; García-Peñalvo & 

Mendes, 2018; Lye & Koh, 2014; Repenning, Basawapatna, & Escherle, 2017; Sengupta 

et al., 2013) that certain tool features (e.g., visual interfaces) eliminate the challenges 

related to the nature of programming, such as difficulty of learning a complex 

programming syntax. 

4.4 Discussion 

The analysis of Knowledge Base Area reveals that recent years' efforts to identify 

measurable elements of CT have led to various terms describing classifications of CT 

elements such as concepts, practices, skills, attitudes, perspectives. These terms are often 

presented with different meaning. In addition, several CT elements proposed by 

frameworks appear to be classified in various ways. For example, abstraction occurs as the 

thought process of “the ability to think in abstractions” (Selby, 2013), as the skill “to decide 

what information about an entity/object to keep and what to ignore” (Angeli et al., 2016), 

and as the practice of Abstracting and modularizing, that is “building something large by 

putting together collections of smaller parts” (Brennan & Resnick, 2012).  
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During the analysis of the studies, we recorded more than 60 different CT elements 

proposed by frameworks and definitions or simply assessed in empirical studies. Some of 

them are not included in definition frameworks. This could be explained by the evolution 

of the domain. As research in the domain progresses, empirical studies introduce further 

CT elements in their assessments in addition to those proposed by the respective 

frameworks. The strong presence of some of these elements in the reviewed studies is due 

to the fact that they are included in assessment methods such as Dr. Scratch (Moreno León 

et al., 2015) and CTS (Korkmaz et al., 2017) that have been adopted by other studies (e.g., 

Durak, Yilmaz, & Bartin, 2019; Gabriele et al., 2019; Garneli & Chorianopoulos, 2018, 

Garneli & Chorianopoulos 2019; Günbatar, 2019; Korkmaz & Bai, 2019; Marcelino, 

Pessoa, Vieira, Salvador, & Mendes, 2018). 

Many of the reviewed empirical studies assess CT as a skill. This could be 

explained, since CT was introduced as a skill and attitude by the widely accepted definition 

of Wing (2006). In addition, the term CT skills emerges from definitions and frameworks 

such as (Angeli et al., 2016) and (CSTA & ISTE, 2011). Programming constructs or CT 

concepts as described by Brennan & Resnick (2012) are also frequently assessed. This 

finding is consistent with the results presented by Zhang & Nouri (2019). This is likely 

because CT concepts can be assessed by direct assessment methods and in addition some 

of these methods provide automation facilitating the assessment process. On the contrary, 

it is likely that the difficulty to assess perspectives and attitudes through direct assessment 

methods leads to its low presence in the reviewed studies.  

CT assessment methods mainly assess CT through pretest/posttest, self-report and 

artifact analysis. In order to gain a complete picture of the learning process, several studies 

include observations in their assessment. CT assessment methods are mainly based on the 

specific content of each study although there are some efforts to develop assessment 

methods for general use. Most of these methods are self-report methods assessing CT 

indirectly, proposing CT elements that are absent in definition models. Thus, we can 

conclude that there is no agreement on what and how to assess CT. This is consistent with 

several studies (Brennan & Resnick, 2012; Denning, 2017; Fronza et al., 2017; Grover et 

al., 2017, Grover et al., 2015; Moreno León et al., 2015; Werner et al., 2012; Zhong et al., 

2016) that highlight the challenge of CT assessment. 
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The examination of the studies also reveals that the most common proposed 

learning strategies are Game Based Related Strategies and Modeling & Simulations 

Related Strategies leveraging scaffolding and collaborative strategies. This could be 

explained as game design increases the motivational level of students while modeling & 

and simulations facilitates processes that are core to CT such as Abstraction and 

Evaluation. There is evidence that learning strategies that enhance students’ CT learning 

are essential, as there is research that reveals that introducing CT to young students without 

considering appropriate learning strategies leads to difficulties for students to acquire CT.  

Tools in the reviewed studies provide environments and communities where 

students are engaged with programming constructs and practices. Most of them share the 

common feature of visual programming. Scratch is the most commonly used tool and is 

usually used for game and media design. This is likely due to the combination of the 

following reasons: a) Scratch is proposed as a tool to support CT development by its 

designers (Resnick et al., 2009), b) Brennan & Resnick's (2012) framework in which CT 

elements are defined in relation with Scratch, facilitates researchers to use Scratch in their 

studies and c) the assessment of CT through projects developed in Scratch is facilitated by 

automatic assessment methods such as Dr. Scratch (Moreno León et al., 2015). 

Several studies examine CT-related factors including cognitive, non-cognitive and 

demographic factors. Determining the relationship between these factors and CT could 

indicate the most appropriate approaches for each case depending on the presence of these 

factors. Most of the studies examine gender and socio-economic factors and challenges 

that arise from them such as students’ underrepresentation and gender and social 

differences. The examination of the selected studies indicates that while factors may affect 

CT development, teaching and learning CT could address low enrollment in CS and 

increase interest of underrepresented students. Researchers and teachers in the examined 

studies are not particularly concerned about challenges that could affect CT acquisition 

due to the nature of programming as discussed in (Buitrago Flórez et al., 2017). This could 

be explained as the tools used have features that eliminate these difficulties.  

Capacity Building has gained attention especially after 2015. Teacher education, 

professional development and the knowledge that teachers need in order to teach CT are 

the main issues discussed in the selected studies. Many of these studies are surveys that 
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examine the challenges faced by teachers. Other studies propose frameworks or discuss 

professional development and teacher education interventions. 

The proposed CTPK-12 conceptual model is developed to aid domain 

understanding, communicate domain details and document CT through programming in 

K-12 domain for future reference. The CTPK-12 conceptual model can be expanded to 

include higher education or other approaches than programming, such as kinesthetic 

approaches. Thus, it has the potential to serve as a basis for future studies by including CT 

Areas or sub-areas as the domain evolves.  

In addition, the CTPK-12 model could serve as a basis for hypothesized research 

models that establish a direct link between theory and statistical estimations. An example 

is presented in (Figure 4-10) where research hypothesis is developed between some CT 

Areas of the model. Research hypothesis in the specific example includes H1 (Between 

Learning Strategies Area and Knowledge Base Area): Game design enables the acquisition 

of CT skills. H2 (Between Learning Strategies Area and Factors Area): Game design 

motivates female students, addressing gender differences. H3 (Between Tools and 

Learning Strategies): Scratch provides opportunities for game development, supporting 

game design. H4 (Between Tools and Factors): Scratch motivates female students, 

addressing gender differences. H5 (Between Factors and Knowledge Base): Female and 

male students acquire a different level of CT skills. 
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Figure 4-10. Example of a hypothesized research model based on CTPK-12 model 

We suggest using the CTPK-12 conceptual model to design empirical interventions 

aimed at teaching and learning CT through programming in K-12 education to investigate 

as many CT Areas as possible. Furthermore, we assert that empirical studies that explicitly 

define the targeted elements of the CT knowledge base, the learning strategies applied, the 

assessment methods used, the tools used, the factors that may affect CT based on the profile 

of participants, and the capacity building of teachers involved, provide a complete picture 

of the intervention being attempted.  

In addition, the CTPK-12 conceptual model could be combined with models for 

CT activities such as the scope of autonomy model (Carlborg et al., 2019) and the 

constructionism matrix (Csizmadia, Standl, & Waite, 2019). The CTPK-12 model could 

be used as a guide to designing teachers' lessons, providing them with evidence-based 

results and detailed information on CT through programming in K-12 education and 

facilitating them to integrate CT into their educational practices. The models’ areas and 

their relationships could be taken into account during designing of curricula as well as CT 

teaching and learning process to improve effectiveness. In addition, CTPK-12 model could 

inform policy makers on their decision-making regarding CT and integration into K-12 

education. It should be noted that the application of the CTPK-12 model in practice should 

take into account the settings under which CT will be incorporated. These settings include 
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parameters such as course type (optional or compulsory) or whether CT will be employed 

into other courses in the curriculum or as a separate course. Further elaboration of these 

settings is outside the scope of this study. Figure 4-11 presents the possible application of 

CTPK-12 model in educational practice. 

 

Figure 4-11. CTPK-12 model application in K-12 educational practice 

4.5 Summary 

This chapter presents the method and results of the firs phase of this dissertation that 

involves investigating and analysing the literature in order to elicit the areas of 

Computational Thinking domain and their relationships. The purpose of this phase was to 

develop a conceptual model based on a systematic literature review that maps the CT 

through programming in K-12 education domain. The proposed Computational Thinking 

through Programming in K-12 education (CTPK-12) conceptual model emerges from the 

synthesis of 101 studies and the identification of CT Areas. The proposed model consists 

of six CT Areas (namely Knowledge Base, Learning Strategies, Assessment, Tools, 

Factors and Capacity Building) and their relationships. 
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5  Extending the CTPK-12 model for higher education  

5.1 Introduction  

In the previous Chapter we present the development of the (CTPK-12) Computational 

Thinking through Programming in K-12 Education conceptual model. We thoroughly 

analyse the concepts (CT Areas) and relationships of the model. In this Chapter, we 

proceed to extend the proposed CTPK-12 model to include higher education to develop a 

holistic model covering CT teaching and learning from early years until graduation. 

The remainder of this Chapter is organised as follows: Section 5.2 presents the 

design of the study followed for the extension of the CTPK-12 model. Section 5.3 presents 

an overview of Computational Thinking through programming studies in higher education. 

Section 5.4 presents the CTPHE model which is the extension of the CTPK-12 for higher 

education. Section 5.5 further discusses the CTPHE model areas. Section 5.6 presents a 

summary of the chapter. 

5.2 Study design 

5.2.1 Study goal 

The study goal is to expand the Computational Thinking through Programming in K-12 

education (CTPK-12) Conceptual model for higher education. 

5.2.2 Method 

In order to achieve the study goal, we apply a Systematic Mapping Study based on 

Petersen’s et al. (2008) methodology. This includes the following adapted steps. 

Step1. Definition of research questions: Definition of research questions based on 

the study goal (Section 5.2.1) 

Step2. Conduct search for primary studies: Conducting a structured search based 

on relevant search strings on scientific databases (Section 5.2.2). 

Step3. Screening of Studies: Applying exclusion and inclusion criteria (Section 

5.2.3). 
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Step4. Classification scheme Identification: Definition of the classification scheme 

(Section 5.2.4). 

Step5. Data Extraction and mapping process: Shorting the studies into the 

classification scheme and provide visualizations of the results. Figure 5-1 presents the 

study method in terms of steps conducted and relevant outcomes. 

 

 

Figure 5-1. Systematic mapping process, adapted from Petersen et al. (2008) 

5.2.2.1 Definition of Research Questions 

The research questions are the following: 

RQ1. What are the areas and sub-areas of teaching and learning CT through 

programming in higher education?   

RQ2. How do these areas evolve over the years and how do they apply to various 

branches? 

5.2.2.2  Conduct search for primary studies 

We structured the search string driven by the research study goal. Specifically, we used 

the search string TITLE-ABS-KEY (“computational thinking”) AND PUBYEAR > 2005 

AND (LIMIT-TO (DOCTYPE ,  “ar”)  OR LIMIT-TO (DOCTYPE ,  “r” )) AND (LIMIT-

TO (LANGUAGE, “English”)) in Scopus database and TITLE: (“computational 

thinking”) Refined by: DOCUMENT TYPES: (ARTICLE OR REVIEW) AND 

LANGUAGES: (ENGLISH) Timespan: 2006-2020. Indexes: SCI-EXPANDED, SSCI, 

A&HCI, ESCI in Web of Science database. Searches include articles published between 

January 2006 and December 2020. Searches took place on January 2021 and resulted in 

993 studies, 707 articles in Scopus database and 286 in Web of Science database.  
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5.2.2.3 Screening of studies 

During this step we removed 249 duplicates and studies that were not fully availably. 

Subsequently, we applied inclusion and exclusion criteria to exclude studies that were not 

relevant to answering the research questions. Table 5-1 presents the exclusion and 

inclusion criteria defined. Finally, we included 39 primary studies and 2 additional primary 

studies that we identified through backward (reviewing citations) and forward searching. 

Appendix B present the total of 41 studies included. 

Table 5-1. Inclusion and exclusion criteria 

Inclusion Criteria Exclusion Criteria 

Empirical CT studies in which participants 

are undergraduate students, postgraduate students 

and academic staff. 

Empirical CT studies that focus on CT 

through programming. 

Studies which discuss/apply CT through 

other means than programming. 

  

5.2.2.4 Classification Scheme Identification 

We use as base for the classification scheme the areas of the CTPK-12 model presented in 

Chapter 4. Each Area of the model corresponds to one category in the classification 

scheme. Petersen et al. (2008) propose the extraction of the classification scheme based on 

keywording of abstracts of the selected studies. For this purpose, we read all the abstracts 

of the selected articles and wrote down keywords. Each keyword was assigned to one of 

the classification scheme categories in order to determine if there were any additional 

categories that could be included in the classification scheme. 

5.2.2.5 Data extraction and mapping process 

In this step we classify the selected primary studies into the classification scheme. 

According to Petersen et al. (2008) the classification scheme evolves while data extraction 

is performed. When sorting the selected primary studies into the categories, new sub-

categories appear, while others remain unused. We used an Excel table per category to 
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document the different instances of sub-categories in each primary study and the evolution 

of the classification scheme. When listing a primary study into a particular category and 

sub-category, we provide a brief rational for why the study should be located in that 

particular category/sub-category. The final tables show the distribution of primary studies 

into sub-categories and calculate the relevant frequencies. The analysis of the results 

focuses on comparing frequencies between different time periods and different targeted 

groups. This allows us to identify the categories and sub-categories highlighted in CT 

through programming in higher education research and therefore understand its 

evolvement and application. 

5.2.3 Study Limitations 

We acknowledge that this study has some limitations. First, the study includes only studies 

written in English. Second, searches were conducted in only two scientific databases, 

namely Web of Science and Scopus. Third, searches were conducted with a time constraint 

of 2006 onwards. Thus, the study maps the research conducted since 2006 and not on the 

initial stages of CT research. Finally, the small number of authors (only two) combined 

with subjectivity constitutes an additional limitation of the study. Although we applied a 

systematic mapping method, we had to make subjective choices regarding the evolution of 

the classification scheme. 

5.3 Overview of Computational Thinking through programming 

studies in higher education. 

5.3.1 Studies by year 

The distribution of studies by year (Figure 5-2) reveals an upward trend in the number of 

studies. This is particularly true from 2017 onwards when the number of studies increases, 

suggesting that the field is generally beginning to mature. For this reason, we analyze the 

evolution of the field based on the two time periods 2006-2016 and 2017-2020. 
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Figure 5-2. Studies by year 

5.3.2 Interventions for CT development in higher education. 

CT through programming empirical interventions in higher education (Table 5-2) mainly 

focus on Education majors, Natural Sciences majors and Computer Science (CS) majors. 

Table 5-3 presents the classification of branches based on the selected studies. The intense 

interest in Education branch led us to classify it as a separate branch in the context of this 

study. Figure 5-3 presents the percentage of studies by branch in periods 2006-2016 and 

2017-2020. 

Table 5-2. Interventions for CT development in higher education 

Study Content Branch Participants 

(Adler & Kim, 

2018) 

Science methods 

course 

Education 19 graduate and 13 

undergraduate 

preservice teachers 

(Bui et al., 2018) Mindmaps and 

Scratch programming 

Mathematics Education 50 preservice teachers 

(Cachero et al., 

2020) 

Programming training Health Information Systems, 

Psychology 

104 undergraduate 

students 

(Chao, 2016) Principles and 

methods of C++ 

language 

programming 

Information Communication 158 undergraduate 

students 

2

1 1
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2 2
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7

1
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(Choi, 2019) Java programming 

class 

 

Undefined 28 undergraduate 

students 

(Cutumisu & 

Guo, 2019) 

Educational 

Technology course 

Education 139 preservice teachers 

(Cetin, 2016) Programming 

language course 

Education 56 pre-service teachers 

(Dolgopolovas & 

Jevsikova, 2015) 

Structured 

programming (SP) 

course 

Software Engineering 65 undergraduate 

students 

(Fang et al., 

2017) 

Database Principles 

course 

Computer Science and 

Technology 

24 undergraduate 

students 

(Fernandez et al., 

2018) 

Workshop Education 21 in-service and pre-

service teachers 

(Fernandez et al., 

2018) 

Start to Programming 

course 

Physics, Mathematics and 

Natural Sciences 

22 undergraduate 

students 

(Gabriele et al., 

2019) 

Programming course Primary Education 141 preservice teachers 

(Hambrusch et 

al., 2009) 

Introduction to CT Physics and Chemistry 13 undergraduate 

students 

(Hou et al., 

2020) 

Programming course Beauty Science 40 sophomore students 

(Jaipal-Jamani & 

Angeli, 2017) 

Science education 

methods course 

Elementary Teacher Education 21 preservice teachers 

(Jeon & Kim, 

2017) 

CT-based 

programming course 

applicable to liberal 

arts 

Education 110 preservice teachers 

(Kang & Lee, 

2020) 

Project-based 

learning course 

Non-engineering majors Undergraduate students 

(Kazimoglu et 

al., 2012) 

Introductory 

computer 

programming 

Computer Science 25 undergraduate 

students 

(Katai, 2020) Sorting algorithms Humanities, Science 48 undergraduate 

students 

(Kwon & Kim, 

2018) 

CT and Software 

Coding & Problem 

Solving and 

Algorithm courses 

Humanities, Social sciences 

and Arts 

250 undergraduate 

students 

(Lee & Cho, 

2020) 

Computer 

programming 

 

Undefined 151 undergraduate 

students 

(Lin & Chen, 

2020) 

Program Logic 

Thinking Education 

 

Arts, Music, Chinese, Public 

Administration 

 

97 undergraduate 

students 
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(Mouza et al., 

2017) 

Integrating 

Technology in 

Education program 

Education 21 preservice teachers 

(Page & 

Gamboa, 2013) 

How Computers 

Work: Logic in 

Action 

 

Science, Engineering, History, 

Letters, Philosophy, 

Linguistics, Economics, 

Drama, Business, Psychology, 

Business, Computer Science, 

Computer Engineering 

36 undergraduate 

students 

(Pala & Mıhçı 

Türker, 2019) 

Programming-I Education 33 preservice teachers 

(Qin, 2009) Introduction to 

Bioinformatics 

 

Biology  Undefined 

(Rodríguez-

García et al., 

2020) 

AI, ML and its 

societal implications 

workshop 

Computer Science 14 students 

(Romero et al., 

2017) 

StorytoCode creative 

challenge 

 

Elementary School Education 120 preservice teachers 

(Rubinstein & 

Chor, 2014) 

Computational 

Approaches for Life 

Scientists 

 

Biology 25 graduate and 

undergraduate students 

(Shih et al., 

2015) 

Computer 

Applications in 

Emergency 

Management 

Emergency Management 

Technology 

18 undergraduate 

students 

(Wu et al., 2019) Introduction to C++ 

programming 

 

Education 47 preservice teachers 

(Yuen & 

Robbins, 2014) 

Introductory 

computer science 

course (data-driven) 

 

Biology 5 undergraduate 

students 

(Zha et al., 

2020a) 

Educational 

Technology course 

Education 59 preservice teachers 

(Zha et al., 

2020b) 

Educational 

Technology course 

Education 15 preservice teachers 

Table 5-3. Classification of branches 

Branch sub-

category 

Description 
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Majors (CS) Computer Science including Computer Science and Technology, Computer 

Science, Computer Engineering, Software Engineering 

Education majors Education including Mathematics Education, Primary Education, Elementary 

School Education, Secondary Education 

Non-majors in CS Natural Sciences including Chemistry, Biology, Physics 

Humanities, Social sciences and Arts including History, Letters, Philosophy, 

Linguistics, Economics, Drama, Business, Psychology, Business, Arts, Music, 

Chinese, Public Administration. 

Engineering 

Mathematics 

Health Information Systems  

Information Communication  

Beauty Science 

 

 

Figure 5-3. Percentage of studies by branch in periods 2006-2016 and 2017-2020 

During period 2006-2016 a percentage of 69,23% focuses on Computer Science, 

Engineering and Natural Sciences while only 7.69% focuses on Education majors. During 

the next period 2017-2020 the focus shifts from the aforementioned branches to Education. 

A 54,17% of interventions for CT through programming focus mainly on preservice 
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teachers’ preparation. Thus, we can conclude that there is an upward research trend for 

interventions aimed at Teacher Education. 

5.4 The revised conceptual model for CT through programming in 

higher education (CTPHE) 

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning 

Strategies, Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12 

model also cover teaching and learning CT through programming in higher education. 

However, different sub-areas emerge in CT areas, while some of the model’s sub-areas do 

not exist in the selected higher education studies. The following sections present the areas 

and sub-areas found in studies aimed at higher education. Figure 5-4 presents the revised 

CTPK-12 model that corresponds to CT through programming in higher education. The 

CTPK-12 model also depicts the relationships between the areas of teaching and learning 

CT through programming as links between the areas shown in Figure 5-4. The revised 

model could be use in order to develop research questions between the areas of teaching 

and learning CT through programming in higher education. For example, which learning 

strategies could be more appropriate for teaching CT domain specific elements, which for 

CT programming elements and which for CT higher-order skills.  

 

Figure 5-4. The revised conceptual model for CT through programming in higher 

education (CTPHE) 
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5.4.1 CT areas in higher education 

The classification scheme identification phase revealed that there are no additional areas 

in the selected studies other than those indicated by the CTPK-12 model. Therefore, the 

areas of CT through programming in higher education which are analyzed and synthesized 

in the following sections are the following: Knowledge Base, Learning Strategies, Tools, 

Assessment, Factors, Capacity Building. 

5.4.1.1 Knowledge Base 

15 studies discuss elements of CT including domain specific elements, programming 

elements and higher-order skills. Table 5-4 presents the classification of CT elements in 

the selected studies. Figure 5-5 presents the distribution of CT Knowledge Base sub-

categories by periods 2006-2016 and 2017-2020. Table 5-5 presents the distribution of CT 

Knowledge Base sub-categories by classified branch. 

Chao (2016) investigates Computational practice (Sequence, Selection, Simple 

iteration, Nested iteration, Testing), Computational design (Problem decomposition, 

Abutment composition, Nesting composition) and Computational problem-solving 

performance (Goal attainment, Program size). Wu et al. (2019) adapts Brennan & 

Resnick’s framework (2012), proposing Concepts (Sequence, Loops, Conditions, 

Operators, Data), Practices (Incremental and Iterative, Testing and Debugging, Reusing 

and Remixing, Abstracting and Modularizing) and Identities (Expressing, Questioning). In 

the same line, Cutumisu & Guo (2019) adopts Brennan & Resnick’s framework (2012) for 

assessing CT concepts, practices and perspectives. Cetin (2016) investigates variables, 

conditional and selection statements, loops, arrays, and functions as CT elements. Yuen & 

Robbins (2014) investigates students’ CT based on a coding scheme that includes 

Organization (Coding style, Data organization), Construction (Following procedures, 

Visualizing data) and Analysis (Interpretation and Conclusions). Jaipal-Jamani & Angeli 

(2017) investigate correct sequence, decisions on the flow of control and debugging.  

Qin (2009) propose Multilevel abstraction and conceptualization, Iteration, 

recursion and backtracking, Modularization, Assessment and error corrections, 

Optimization and Simulation among other CT skill sets that are domain specific, derived 

from mapping CT skills to specific bioinformatics topics. In the same line, Rubinstein & 
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Chor (2014) propose Abstraction, Generalization, Modular design and decomposition, 

Data structures and Computational models among other domain specific computational 

concepts and processes.  

Other studies propose skills such as Abstraction, Decomposition, Recognition of 

Patterns and Algorithms (Fernández et al., 2018; Hou et al., 2020), Creativity, Algorithmic 

Thinking, Cooperativity, Critical Thinking and Problem Solving (Korkmaz et al., 2017; 

Lin & Chen, 2020; Pala & Mıhçı Türker, 2019). Sondakh et al. (2020) propose a holistic 

CT framework that includes the skills of Abstraction, Algorithmic Thinking, 

Decomposition, Debugging, Evaluation, Generalization and the attitudes of Problem 

solving, Teamwork and communication. 

Table 5-4. CT Knowledge Base sub-categories 

Knowledge 

Base sub category 

Description Studies 

Domain 

Specific elements 

CT concepts, skills and processes mapped 

to specific domains. 

PS31, PS34 

Programming 

elements 

Programming related concepts, practices, 

identities and designs.  

PS4, PS5, 

PS7, PS11, PS15, PS38, 

PS39 

Higher-order 

elements 

Higher-order thinking skills and 

competencies. 

PS10, PS13, 

PS21, PS24, PS29, 

PS36 
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Figure 5-5. Distribution of CT Knowledge Base elements sub-categories by time 

period 

Domain-specific elements are discussed in studies during period 2006-2016 while 

in period 2017-2020 these elements are absent. Higher-order elements are introduced 

during period 2017-2020 with a percentage of 60% in the selected studies of this period. 

Programming elements are discussed throughout the years. 

Table 5-5. Percentage of studies’ CT Knowledge Base elements sub-categories by 

classified branch 

Knowledge Base sub-category Non-majors in CS Education majors 

Programming elements 33,33% 66,67% 

Higher-order elements 33,33% 33,33% 

Domain Specific elements 33,33% 0,00% 

 

100,00% 100,00% 

 

Domain Specific elements are discussed only in studies targeted non-majors in CS. 

Programming elements have the strongest presence in the selected studies and particularly 

in Education majors. 

Programming elements Higher-order elements
Domain Specific

elements

2006-2016 60,00% 0,00% 40,00%

2017-2020 44,44% 55,56% 0,00%
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5.4.1.2 Learning Strategies 

Researchers in 24 studies discuss, propose or apply teaching and learning strategies for CT 

through programming in higher education. Out of these studies, seven apply more than one 

learning strategy or practice. We classify learning strategies in nine sub-categories, 

namely, Game Based Strategies, Modeling & Simulations Based Strategies, Problem 

Solving Strategies, Project Based Strategies, Scaffolding Practices, Collaborative 

Strategies, Flipped Classroom, Hands-on strategies and Lectures. Table 5-6 presents 

studies by each sub-category. Figure 5-6 presents the distribution of learning strategies 

sub-categories by time periods 2016-2016 and 2017-2020. Table 5-7 presents the 

distribution of learning strategies sub-categories by classified branch. 

Six studies discuss Problem Solving Strategies (Cetin, 2016; Hambrusch et al., 

2009; Jeon & Kim, 2017; Kang and Lee, 2020; Lee & Cho, 2010; Yuen & Robbins, 2014). 

For example, Yuen & Robbins (2014) examine how undergraduate students develop CT 

skills during a data-driven programming course that encompasses problem-solving 

iterative processes. Lee & Cho (2020) exploit problem-solving methods to improve 

students’ CT skills and logical thinking ability. Hambrusch et al. (2009) developed a course 

aimed at introducing students to CT based on a problem-driven format. 

Four studies discuss Collaborative Strategies: Pair programming (Choi, 2019), 

Think-Pair-Share practice (Choi, 2019), Collaborative programming (Wu et al., 2019), 

teamwork (Jaipal-Jamani & Angeli, 2017; Zha et al., 2020b). Collaborative programming 

is proposed as an effective learning strategy to enhance students’ CT in higher education 

(Wu et al., 2019). For example, Choi (2019) develops an instructional model that exploits 

Think-Pair-Share Strategy and pair programming. The results of this study show that 

collaborative strategies could help students learn CT and programming. 

Three studies discuss Project Based Strategies (Ma et al., 2017; Wu et al., 2019). 

Wu et al. (2019) support that project-based learning contexts can help novice students 

develop different learning pathways to learn CT. In the same line, Ma et al. (2017) propose 

using project-driven learning strategies to enable students to acquire CT. 

Three studies discuss Scaffolding strategies (Chao, 2016; Jaipal-Jamani & Angeli, 

2017; Yuen & Robbins, 2014) usually combined with other strategies. Yuen & Robbins 
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(2014) propose scaffolding as an effective learning strategy in order to enable students to 

focus on higher-order computational concepts without struggling with coding process in a 

text programming language such as MATLAB.  In the same line, Chao (2016) argues that 

scaffolding may facilitate students to develop programming strategies and skills. Jaipal-

Jamani & Angeli (2017) also found that the scaffolding programming instructional strategy 

they applied in their study, helped students to acquire CT. 

Two studies discuss Modeling & Simulations Based Strategies (Adler & Kim, 

2018; Magana & Silva Coutinho, 2017), two studies Flipped classroom (Zha et al.,2020a, 

Zha et al. 2020b) and one study Game Based Strategies (Kazimoglu et al., 2012). 

Specifically, Kazimoglu et al. (2012) propose a serious game where students develop their 

game strategies through programming based on an educational game framework for CT. 

Two researchers choose to give hands-on activities (Qin, 2009; Rubinstein & Chor, 

2014) and three use lectures (Cetin, 2016; Gabriele et al., 2019; Jaipal-Jamani & Angeli, 

2017). Other strategies involve reflective learning (Choi, 2019), storytelling (Romero et 

al., 2017) and network autonomous learning (Li & Hou, 2014). Additionally, learning 

strategies are implemented in traditional classroom settings or in blended environments 

(Fernández et al., 2018; Mouza et al., 2017; Zha et al., 2020b).  

Table 5-6. Learning strategies sub-categories 

Learning 

Strategies sub-category 

Description Studies 

Game Based 

Strategies 

Game Based Related Strategies 

involve game design and digital/video game 

development, programming games and any 

strategy that exploits games and 

programming. 

PS18 

Modeling & 

Simulations Based Strategies 

Modeling & Simulations Based 

Related Strategies involve designing of 

scientific models and simulations. 

PS1, PS26 
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Problem Solving  

Strategies 

Problem Solving Related Strategies 

involve Problem Based Learning and 

problem-solving learning strategies in 

general.  

PS4, PS12, 

PS16, PS23, PS26, 

PS39 

Project Based 

Strategies 

Project Based Related Strategies 

involve the engagement with authentic 

projects set around real challenges and 

problems.  

PS26, PS38 

Scaffolding 

Strategies  

Scaffolding Related Strategies 

involve practices that offer support to 

students as they learn. 

PS6, PS15, 

PS39 

Collaborative 

Strategies 

Collaborative Related Practices 

involve practices where students actively 

interact during the learning process including 

Pair programming, Think-Pair-Share practice 

and any practice based on student’s 

collaboration and cooperation. 

PS5, PS15, 

PS38, PS40 

Flipped Classroom 

Strategies 

Flipped classroom Strategies 

involve strategies that reverse the traditional 

model of classroom instruction. 

PS40, PS41 

Hands-On Strategies Hands-on activities PS31, PS34 

Lectures Theoretical lectures PS4, PS11, 

PS15 
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Figure 5-6. Distribution of learning strategies sub-categories by time period 

During period 2006-2016 problem solving Strategies have the strongest presence 

(36.36%), while during period 2017-2020 almost all learning strategies sub-categories 

occupy the same percentage (13.33%) with the exception of Game Based Strategies which 

has no presence at all and Collaborative Strategies which have a slightly stronger presence 

than the rest (20%).  

Table 5-7. Percentage of learning strategies sub-categories by classified branch 

Learning strategies 

sub-category 

CS majors Educatio

n majors 

Non-majors 

Collaborative Related 

Strategies 

0,00% 23,08% 12,50% 

Game Based Related 

Strategies 

33,33% 0,00% 0,00% 

Hands-On Strategies 0,00% 0,00% 25,00% 

Lectures 0,00% 23,08% 12,50% 
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Modeling & 

Simulations Based Related 

Strategies 

0,00% 7,69% 0,00% 

Problem Solving 

Related Strategies 

33,33% 15,38% 25,00% 

Project Based 

Related Strategies 

33,33% 7,69% 12,50% 

Scaffolding Related 

Strategies  

0,00% 7,69% 12,50% 

Flipped classroom 0,00% 15,38% 0,00% 

 

100,00% 100,00% 100,00% 

No strategy seems to be dominant in any of the classified branches. In addition, as 

shown in Table 5-7. Percentage of learning strategies sub-categories by classified branch, 

in studies aimed at preservice teachers and non-majors, a greater variety of studies is 

applied than in studies aimed CS majors. 

5.4.1.3  Tools  

Researchers in 37 studies discuss, propose or exploit tools for CT teaching and learning in 

higher education. We classify tools in five sub-categories, namely, Programming tools, 

Robotics & Microcontrollers, Augmented Reality Systems, Machine Learning tools and 

tools specifically developed for CT. Table 5-8 presents tools sub-categories leveraged in 

the selected studies. Figure 5-7 presents the distribution of tools sub-categories in periods 

2006-2016 and 2017-2020. Table 5-9 presents the distribution of tools sub-categories by 

classified branch. 

Eight studies exploit Scratch (Adler & Kim, 2018; Bui et al., 2018; Cetin, 2016; 

Gabriele et al., 2019; Hou et al., 2020, Mouza et al., 2017; Romero et al., 2017, Zha et al., 

2020a), two studies Hour of Code (Adler & Kim, 2018; Mouza et al., 2017), one study 

Code.org (Cutumisu & Guo, 2019), one study App Inventor (Shih et al., 2015), one study 
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ARDUINO IDE (Pala & Mıhçı Türker, 2019), one study LEGO® WeDo robotics (Jaipal-

Jamani & Angeli, 2017), one study Java (Choi, 2019), one study Hopscotch (Zha et al., 

2020b), one study HTML5 and CSS3 (Jeon & Kim, 2017) nine studies Python (Cachero  

et al., 2020; Dolgopolovas & Jevsikova, 2015; Hambrusch et al., 2009; Kang & Lee, 2020; 

Kwon & Kim, 2018; Lee & Cho, 2020; Magana & Silva Coutinho, 2017; Pala & Mıhçı 

Türker, 2019; Rubinstein & Chor, 2014), one study ACL programming language (Page & 

Gamboa, 2013), two studies C++ (Pala & Mıhçı Türker, 2019; Wu et al., 2019), three 

studies SQL (Huang & Leng, 2019; Qin, 2009; Fang et al., 2017), two studies MATLAB 

(Magana & Silva Coutinho, 2017; Yuen & Robbins, 2014), and four (Chao, 2016; Katai, 

2020; Kazimoglu et al., 2012; Lin & Chen, 2020)  studies develop a tool. For example, 

Chao (2016) develops a problem-solving programming environment and Lin & Chen 

(2020) develop a deep learning recommendation based augmented reality system. 

Table 5-8. Tools sub-categories 

Tools sub-category Studies 

Programming 

tools  

Visual programming & PS1, PS2, PS4, 

PS5, PS7, PS11, PS13, 

PS18, PS19, PS28, PS33, 

PS35, PS39, PS40 

 Text programming tools. PS3, PS6, PS8, 

PS9, PS12, PS14, PS16, 

PS17, PS22, PS23, PS27, 

PS29, PS30, PS31, PS34, 

PS35, PS38, PS39 

Robotics & Microcontrollers  PS15, PS30 

Augmented Reality systems PS25 

Machine Learning tools PS32 

Tools specifically developed to support a CT strategy PS5, PS18, PS25, 

PS19 



 

84 

 

 

Figure 5-7. Distribution of tools sub-categories by period 

During period 2006-2016 text programming tools have the strongest presence 

(57.14%) while 28.57% of studies investigates visual programming. Subsequently during 

period 2017-2020 a 40% of studies investigating visual programming. Thus, an upward 

trend in visual programming is revealed. In addition, new tools such as Microcontrollers, 

Robotics, Machine Learning tools and Augmented Reality systems are introduced. 

Table 5-9. Percentage of tools sub-categories by classified branch 

Tools sub-category CS 

majors 

Education 

majors 

Non-majors 

in CS 

Tools developed for 

CT 

20,00% 0,00% 12,50% 

Microcontrollers & 

Robotics 

0,00% 13,33% 0,00% 

Visual programming 20,00% 66,67% 25,00% 

Text programming 40,00% 20,00% 56,25% 

Augmented Reality  0,00% 0,00% 6,25% 

Text
programming

Tools
developed for

CT

Visual
programming

Microcontroll
ers &

Robotics

Augmented
Reality

Machine
Learning

2006-2016 57,14% 14,29% 28,57% 0,00% 0,00% 0,00%

2017-2020 40,00% 4,00% 40,00% 8,00% 4,00% 4,00%

0,00%

20,00%

40,00%

60,00%
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Machine learning 20,00% 0,00% 0,00% 

Total 100,00

% 

100,00% 100,00% 

Visual programming is investigated mainly in studies that focus on preservice-

teachers while it is not prevalent in studies that target Non-majors and CS majors. Text-

programing is investigated in all branches while it is prevalent in studies that target Non-

majors in CS (56,25%) and CS majors (40%). 

5.4.1.4 Assessment 

29 studies discuss CT through programming assessment methods. Assessment methods are 

classified in four sub-categories, namely, Self-report methods, Tests, Artifact analysis and 

Observations. Table 5-10 presents assessment methods applied in the selected studies. 

Figure 5-8 presents the distribution of assessment sub-categories in periods 2006-2016 and 

2017-2020. Table 5-11 presents the distribution of assessment sub-categories by classified 

branch. 

Four of the selected studies involve observations. Wu et al. (2019) record students’ 

actions and conversations (screen and video recording) to examine how novice 

programmers develop CT by interacting with each other during collaborative programming 

and problem solving. More specifically, they investigate students’ trajectories and their 

different CT development pathways. Screen recording is used to capture the programming 

process while video recording is used to capture student’s conversations. Yuen & Robbins 

(2014) collect field notes during participants interviews. 

Six of the selected studies involve artifact analysis. Chao (2016) collects log data 

about the participants' practice, strategies, and performance of computational problem-

solving activities. Choi (2019) evaluates students’ programming artifacts. Yuen & Robbins 

(2014) collect source code from students’ in-class activities. Romero et al. (2017) analyze 

students’ projects through Dr. Scratch (Moreno-Leon et al., 2015) and manual inspection 

based on entities, events, code blocks and errors. Gabriele et al. (2019) analyzed students’ 

Scratch files through manual inspection for programming concepts, code organization and 



 

86 

designing for usability adapted by Denner et al. (2012) and automatic inspection through 

Dr. Scratch.  

23 studies exploit self-report assessment methods. Five studies exploit scales, three 

surveys, seven interviews, eight questionnaires and one study students’ reflections. Yuen 

& Robbins (2014) use interviews as their primary method for data collection. Shih et al. 

(2015) survey students’ perceptions about programming and their experiences with the 

applied CT intervention. Mouza et al. (2017) assess students’ CT knowledge based on a 

pre/post scale. Cutumisu & Guo (2019) used topic modeling techniques to extract 

participants CT understanding through their reflections. Researchers also develop and 

validate self-report scales in their studies. For example, Korkmaz et al. (2017) developed 

the CTS scale in order to assess students’ CT skills. The scale includes the items of 

Creativity, Algorithmic Thinking, Critical Thinking, Problem Solving and Cooperativity. 

Sondakh et al. (2020) propose a scale for CT assessment validated through Fuzzy Delphi 

Method that includes the items of Abstraction, Algorithmic Thinking, Decomposition, 

Debugging, Evaluation, Generalization, Problem solving, Teamwork, Communication and 

spiritual intelligence. In the same line, Kılıç et al. (2020) developed and validated a scale 

that includes the items of Conceptual Knowledge, Algorithmic Thinking and Evaluation. 

Finally, ten studies assess students’ CT through tests and assignments. For example, Jaipal-

Jamani & Angeli (2017) used programming worksheets with completed, semi-completed 

and new programming tasks. Lin & Chen (2020) used multiple-choice and fill-in-the-blank 

questions to assess students’ programming understanding. 

Table 5-10. Assessment sub-categories 

Assessment 

sub-category 

Description Studies 

Self-Report 

Methods 

scales, questionnaires, surveys, 

interviews, reports, reflections 

PS1, PS2, PS3, 

PS4, PS5, PS7, PS10, PS11, 

PS15, PS16, PS17, PS20, 

PS21, PS22, PS28, PS29, 

S30, PS31, PS34, PS35, 

PS36, PS39, PS40 
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Tests  multiple choice and open-ended 

tests, quizzes, tasks, assignments 

PS3, PS4, PS15, 

PS18, PS25, PS31, PS32, 

PS34, PS39, PS40 

Artifact 

analysis 

automatic analysis, manually 

inspection of artifacts, log data 

PS5, PS11, PS19, 

PS33, PS38, PS39 

Observations observations of students’ actions, 

screen recordings, camera recordings, field 

notes 

PS2, PS37, PS39, 

PS40 

 

 

Figure 5-8. Distribution of assessment sub-categories by period 

During period 2017-2020 an upward trend in the use of observations (+4,04%) and 

self-report methods (+10.47%) and a downward trend in the use of tests (-15.47%) is 

revealed in the assessment of CT. Artifact analysis shows a very small increase of 1.48%.  

Artifact Analysis Observations Tests Self-Report Methods

2006-2016 13,33% 6,67% 33,33% 46,67%

2017-2020 14,29% 10,71% 17,86% 57,14%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%
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Table 5-11. Percentage of assessment sub-categories by classified branch 

Assessment sub-

category 

CS 

majors 

Education 

majors 

Non-majors 

in CS 

Artifact Analysis 0,00% 15,79% 14,29% 

Observations 0,00% 15,79% 7,14% 

Tests 50,00% 10,53% 28,57% 

Self-Report 

Methods 

50,00% 57,89% 50,00% 

Total 100,00% 100,00% 100,00% 

Self-report methods have the strongest presence compared to other methods in 

studies targeted Non-majors in CS (50%) and education majors (57.89%). 

5.4.1.5 Factors 

Nine studies discuss factors that affect CT. Table 5-12 presents factors discussed in the 

selected studies. The effects that CT could have on interest in Computing and attitudes 

toward programming (Cetin, 2016; Hambrusch et al., 2009; Shih et al., 2015), self-efficacy 

(Jaipal-Jamani & Angeli, 2017; Kwon & Kim, 2018), creativity (Romero et al., 2017), 

interest in CT (Zha et al., 2020a), motivational impact (Katai, 2020), enrollment in CS 

courses (Hambrusch et al., 2009) and occupational change (Kwon & Kim, 2018) are 

discussed in the selected studies. CT-related factors are discussed through the years, 

33.33% of the studies are published during 2006-2016 and another 66.67% during 2017-

2020. Furthermore, studies that investigate CT-related factors focus on both Education 

Majors (57.14%) and Non-majors in CS (71.43%). 

Hambrusch’s et al. (2009) study reveals that the problem-driven approach focused 

on computational principles and scientific discovery they applied, increased students’ 

interest in CS. In the same line, Shih et al. (2015) found a positively change in students’ 

perceptions about computing after they attended a course aimed to encourage students to 
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apply CT and problem-solving skills to authentic problems. On the contrary, Cetin (2016) 

found no significant difference between control and experimental group students in terms 

of their attitudes towards programing. However, he suggests that this this is probably due 

to the short duration of the intervention and the difficulty of changing students’ already 

high attitudes. Kwon & Kim (2018) conclude that a software education curriculum based 

on CT can stimulate students’ intrinsic motivation and improve students’ self-efficacy. In 

the same line, Jaipal-Jamani & Angeli (2017) found that after participated in a CT robotics 

program students’ self-efficacy related to robotics and interest in learning robotics 

significantly increased. Kwon & Kim’s (2018) study reveals that integrating CT could 

affect students’ perspectives about their future occupation. 

Table 5-12. Factors investigated in the selected studies 

Factors Description Studies 

Non-

Cognitive factors 

Personal traits, attitudes and motivations such as 

attitudes toward programming, self-efficacy, creativity, 

interest in CS, perspective about future occupation. 

PS4, PS12, 

PS15, PS19, PS22, 

PS27, PS33, PS35, 

PS41 

 

5.4.1.6 Capacity Building 

Only three of the selected studies discuss academic faculty training and professional 

development and they are all published in period 2017-2019. Table 5-13 presents methods 

regarding capacity building discussed in the selected studies.  

Magana & Silva Coutinho (2017) survey industry and academia experts to identify 

the challenges facing academic staff in integrating CT at undergraduate level. Ma et al. 

(2017) suggest ways to improve university student’s CT skills, including faculty 

professional training based on two principles: the mobility of academic staff and the 

organization of training programs. Taylor et al (2018) emphasize the role of collaboration 

between institutions as a means of motivating academic staff to redesign courses to 

integrate new concepts such as CT and coding. 
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Table 5-13. Capacity Building methods 

5.5 Discussion 

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning 

Strategies, Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12 

model also cover teaching and learning CT through programming in higher education. 

However, different sub-areas emerge in CT areas, while some of the model’s sub-areas do 

not exist in the selected higher education studies.  

Furthermore, as CT applications become more mature these areas evolve. Early 

attempts often link CT to domain-related elements, drawing on topics and activities related 

to specific courses and disciplines. However, in the coming years, CT is considered as a 

construct that is more associated with high-level skills such as abstraction and 

decomposition. Elements related to programming are most prevalent and evident 

throughout the years. This is plausible as CT draws from CS concepts according to Wing’s 

(2006) definition. 

CT through programming in higher education is traditionally implemented through 

text programming environments. However, the analysis of the selected studies revealed an 

upward trend in visual programming. This could be explained as visual programming is 

often applied to teacher education courses that have been at the forefront of CT higher 

education in recent years. In addition, tools such as Microcontrollers, Robotics and 

Augmented reality systems have recently emerged. 

CT assessment is generally considered difficult to achieve by several authors 

(Brennan & Resnick, 2012; Denning, 2017; Fronza et al., 2017; Werner et al., 2012; Zhong 

et al. 2016). While self-report methods are the most common, the analysis of the selected 

Capacity 

Building 

Description Studies 

Professional 

development 

Variety of tools such as training 

programs, mobility of academic staff, 

collaboration between institutions. 

PS26, PS27, 

PS37 
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studies also revealed a shift from tests to artifact analysis and observations in recent years. 

These methods are incorporated in order to provide a more complete picture of the CT 

acquisition. 

Learning strategies and factors related to CT development such as personal traits, 

attitudes and motivations are discussed throughout the years, while academic faculty 

training and professional development gained attention only recently.  

Teaching and learning CT through programming in higher education could be also 

organized in two areas: CT development for Non-majors and CS majors; and Teacher 

Education. The first concerns interventions and studies that propose the integration of 

programming aiming to help Non-majors and CS majors to acquire CT. The second 

concerns efforts to educate and support pre-service teachers with ultimate goal the 

integration of CT in K-12 education. The two areas present differentiation mainly in the 

tools used and the CT elements that are assessed with the second one to draw upon research 

on CT contacted in K-12 settings. Implementation of CT through programming for pre-

service teachers is designed mainly on the basis of programming elements and includes 

mainly visual programming.  

The analysis of the selected studies reveals that the focus of CT research in higher 

education is mainly on re-designing courses to align disciplinary knowledge with CT core 

concepts and to provide instructional models. The development of frameworks for learning 

strategies, tools and assessment methods is not extensively discussed in the selected 

studies.  

Herein we also identify gaps that we discuss in the following paragraphs in an 

attempt to draw connections and implications from K-12 education where extensive efforts 

are being made worldwide to integrate CT. 

In terms of learning strategies, although previous research has revealed that game 

design is often selected to introduce software engineering to students Souza et al. (2018), 

this is not the case for CT in higher education. There is no study in the selected studies that 

focuses on the development of CT through programming that applies game design learning 

strategy. In contrary, in K-12 education, game design is one of the most common strategies 

applied in several studies such as (Garneli & Chorianopoulos, 2018; Repenning et al., 
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2015; Weintrop et al., 2016). This is probably due to the capabilities of the tools offered to 

different age groups. In K-12 education, various tools such as Scratch (Resnick et al., 

2009), and Agentsheets (Repenning et al., 2015) are utilized for game design and media 

computation, supporting the implementation of learning strategies that include game 

design learning. Although these tools are widely used in K-12 education and in higher 

education to prepare future teachers (Adler & Kim, 2018; Angeli et al., 2016; Gabriele et 

al., 2019), they are rarely used in interventions targeted other CS major or non-major 

students. Text programming languages that are mainly used in higher education pose 

challenges to students such as dealing with complex syntaxes and abstract concepts 

(Buitrago Flórez et al., 2017) and require deep programming learning and experience to 

enable students to develop a game.  

The importance of learning strategies in CT development is emphasized in both K-

12 and higher education studies. Denner et al. (2012) study reveals that introducing CT to 

young students without applying a learning strategy, causes difficulties in developing 

students’ CT skills. In the same line, Dolgopolovas & Jevsikova, (2015) argue that 

appropriate learning strategies should be exploited in order to facilitate CT skills 

development. They suggest that programming didactical approaches in higher education 

should focus on problem solving skills rather than language programming syntax. 

Only few studies (Lee & Cho, 2020; Li & Hou, 2014; Ma et al., 2017) focus on 

creating frameworks by aligning learning strategies with CT. The bulk of research in higher 

education focuses on the implementation of learning strategies within specific courses and 

the development of instructional models.  

Although there are studies that underline the role of communities in CT 

development (Xing, 2019) and the need to shift from tools to Communities (Clark & 

Sengupta, 2019; Kafai, 2016), as CT and programming are social practices, the 

exploitation of programming Communities in higher education is still lacking behind. 

Content-specific tools and mainly text programming languages are those applied in the 

higher education context. This in line with Magana & Silva Coutinho's (2017) study, 

showing that tools for teaching and learning CT in higher education are chosen on the basis 

of subjects rather than on their ability to support the acquisition of these skills. Exception 

are studies that focus on pre-service teachers that investigate mainly visual programming. 
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CT assessment in higher education applies the same assessment methods (Artifact 

Analysis, Observations, Tests and Self-report) as in K-12 education. However, the 

assessment is mainly carried out in the context of course evaluation. There are some efforts 

to develop universally accepted assessment methods but all of them are self-report 

methods. This is consistent with Lyon and Magana (2020) review that highlights the strong 

presence of self-report assessment methods in higher education CT studies. In addition, 

studies do not always attempt to validate the methods used and often do not yield 

quantitative results. Other challenges involve the small sample size and the lack of CT 

specific elements in the studies’ results.  

Moreover, often while studies present in the background various definitions of CT, 

they do not ultimately provide information on which elements of CT they focus on based 

on these definitions. Many times, they do not mention the CT context on which they are 

based, or display CT elements that are not based on a clear definition, are poorly 

documented and often vague. 

Females and minority groups are often underrepresented in computing, as well as 

in technology labor (Jenson & Droumeva, 2016). Cooper et al. (2014) suggest that research 

in computing education should focus on gender and other minority groups. In addition, 

Shute et al. (2017) review the literature highlighting that researchers consider utilizing CT 

to motivate learners, especially females and minorities. However, there are limited studies 

(e.g., Zha, 2020a) in higher education that discuss the use of CT through programming to 

address issues related to female or underrepresented students. In addition, although gender 

as a factor affecting CT acquisition is particularly discussed in K-12 education 

(Atmatzidou & Demetriadis, 2016; Durak & Saritepeci, 2018), this is not the case for 

higher education. Studies in higher education do not focus on examining the relationship 

between gender and other social factors with CT.  

Although teachers’ knowledge and needs and their preparation to support students’ 

understanding of CT are highly discussed in K-12 literature (e.g., Alfayez & Lambert, 

2019; Angeli et al., 2016; Bower et al., 2017; Giannakos et al., 2015; Israel et al., 2015; 

Mouza et al., 2017; Yadav et al., 2017), research in higher education rarely focuses on 

faculty preparation. Only two of the selected studies involve higher education faculty 
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(Magana & Silva Coutinho, 2017) or discuss opportunities for professional development 

(Ma et al., 2017). 

5.6 Summary 

This chapter presents the method and results of the second phase of this dissertation that 

involves (a) the study of the areas and relationships of the CTPK-12 conceptual model in 

the context of higher education and (b) the investigation of these areas based on the 

following two dimensions: i) their evolution over the years and ii) the branches to which 

CT is applied. For this purpose, a systematic mapping methodology was applied. Main 

results include the identification of the CT areas of Knowledge Base, Assessment, 

Learning Strategies, Tools, Factors and Capacity Building. Of these, Knowledge Base, 

Assessment and Tools have significantly evolved throughout the years, while Capacity 

Building has only recently emerged. In addition, the introduction of CT to undergraduate 

students and pre-service teachers differs mainly in the tools used and the CT elements that 

are assessed. 
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6 Designing and evaluating a Computational Thinking tool  

6.1 Introduction  

In this Chapter, we proceed to the design and evaluation of a Computational Thinking tool. 

The implementation of the tool was done by Maria Mousiou during her master thesis 

(Mousiou, 2021). We design a Computational Thinking game that incorporates scaffolding 

features and can further be parameterized to produce different versions that are used in the 

study presented in the next chapter. In addition, we evaluate the game and investigate the 

perceived effectiveness of its scaffolding features. 

The remainder of this Chapter is organised as follows: Section 6.2 presents the 

study design. Section 6.3 presents the Scaffolding Computational Thinking tool. Section 

6.4 presents the evaluation of the tool and the perceived effectiveness of its scaffolding 

features. Section 6.5 further discusses the chapters results. Section 6.6 presents a summary 

of the chapter. 

6.2 Study design 

6.2.1 Study goal and research questions 

This study aims to design and evaluate a Scaffolding Computational Thinking game. 

The research questions of the study are: 

RQ1. Do students perceive the aMazeD Scaffolding Computational Thinking Game as 

ease to use? 

RQ2. Do students perceive the aMazeD Scaffolding Computational Thinking Game as 

effective on learning Computational Thinking? 

RQ3. Do students perceive the scaffolding features of the aMazeD Scaffolding 

Computational Thinking Game as effective in learning Computational Thinking? 
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6.2.2 Research design and Participants 

To answer the research questions of the study, we adopted a survey research approach. For 

this purpose, we designed and conduct a study in a Greek school for students from grades 

7 to 9 (ages 13 to 15) that has been approved by the Ethics Committee of the university of 

the authors. The study was conducted during formal teaching hours and lasted one and a 

half hours (two teaching hours) for each grade. Students played the Scaffolding 

Computational Thinking Game for one hour and subsequently were asked to complete a 

questionnaire for about 30 minutes. Only students whose parents gave their written consent 

participated in the intervention. A total of 28 students were finally participated in the study.  

6.2.3 Instrument 

We adapted the instrument (Appendix C) developed by Park (Park, 2009) which is based 

on the technology acceptance model (TAM), in order to use it for the data collection.  

The questionnaire is divided in the following sections: 

• Perceived ease of use (PE)  

• Perceived usefulness (PU)  

• Attitude (AT) 

• Accessibility (AC) 

A 5-point Likert scale from 1 to 5 was used for, where 1 equal “Strongly Disagree”, 

2 equals “Disagree”, 3 equals “Indifferent”, 4 equals “Agree” and 5 equals “Strongly 

Agree. 

In addition to the above sections, a demographics section was included, as well as 

an open-ended question about the overall experience. 

6.2.4 Study Limitations 

We acknowledge that this study has some limitations. First, the study is designed to include 

only one research group. Second, the results are based on a self-report measure and capture 

student’s opinions and perceptions.  
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6.3 The aMazeD Scaffolding Computational Thinking Game 

6.3.1 aMazeD General Description 

The “aMazeD” scaffolding Computational Thinking game (Mousiou, 2021) consists of 10 

levels, most of which are adaptations of the Computational Thinking Test (CTt) questions 

developed by Román-González et al. (2017). The game is developed with Blockly and is 

based on Blockly Games Maze and Turtle. Each level belongs to one of the following 

categories: a) Maze and b) Turtle. 

On the one hand, the goal of the game in the levels belonging to the maze category 

is to guide the avatar from the beginning to the end following a certain path. On the other 

hand, the goal of the game at the levels belonging to the turtle category is to guide the 

avatar to draw the required shapes. In both cases, the player uses programming blocks to 

give the appropriate instructions to the avatar to complete the levels. 

The game environment consists of the following parts: the navigation bar, the 

instruction bar, the main game frame, the results box, the Blockly toolbox and the 

workspace (Figure 6-1). 

The level numbers are displayed in the navigation bar. The light purple color 

indicates the completed levels as well as the current level at which the user is. The player 

does not have the right to move to any level of his/her choice. The player starts from level 

1 and with the submission of his/her answer moves to each next level. In the left part of 

the navigation bar the player can select the desired language. In the workplace the player 

can stack the blocks in order to create the program that will finally solve the level. The 

Blockly toolbox contains the available blocks for each level. 
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Figure 6-1. The aMazeD game environment 

Below the main game frame there are the three buttons “Play”, “Reset” and 

“Submit”. By clicking the play button, the player can see the visual execution of the code 

inserted in the workspace. During code execution, the executed blocks are highlighted. No 

level output is displayed after the execution. The play button allows students to see the 

execution of their designed solutions, try them out and debug their code. By clicking the 

reset button, the character or brush moves to the beginning of the path or to the beginning 

of the shape. The game is restored to its original state. No code execution is taking place. 

By clicking the submit button the player can see the movement of the character or 

the brush depending on the instructions loaded in the workspace. During code execution, 

the executed instructions are highlighted. After the execution, a message is displayed with 

the level output. If the player manages to solve the level, a success message is displayed, 

otherwise a failure message is displayed. In both cases, the submitted instruction is 

translated to JavaScript and displayed in the screen, while the game moves to the next 
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level. The player is transferred to the next level regardless of whether the current level has 

been completed successfully. 

In the results box the message Success or Failure is displayed, in addition to the 

current level score and the player's overall score up to that level. The level output and the 

score of the level are displayed after the submission by the player. Furthermore, some 

additional information is displayed such as the time needed for completion and the times 

that the paly button was pressed. 

6.3.2 Computational Thinking Concepts and Practices Covered by the 

Scaffolding Computational Thinking Game 

The player must employ different Computational Thinking concepts and practices 

according to Brennan’s and Resnick’s framework (Brennan & Resnick, 2012) in order to 

solve each level. Computational Thinking concepts and Practices covered by the game are 

presented in Table 6-1. 

Table 6-1. CT Concepts and practices per aMazeD level 

Computational Thinking concepts adopted from Brennan and Resnick (2012) 

Concept Description  Application to aMazeD levels 

Sequences  Basic instructions and directions 

 

The player needs to design a 

sequence of steps in order to 

solve the level (Level 1,7) 

Loops Repeat a set of instructions for a 

specific number of times or until 

a condition becomes true 

 

The player needs to repeat a set 

of instructions in order to solve 

the level (Level 2-6, 8-10) 

 

Conditionals Constraints that allow the 

execution of different 

instructions 

The player needs to design a 

solution that involves the 

selection of a choice based on 

constraints (4-6) 
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Computational Thinking practices adopted from Brennan and Resnick (2012) 

Practice Description Application to aMazeD levels 

Testing and debugging 
Trial and error processes for 

correcting malfunctions 

The player needs to make 

corrections to a given set of 

instructions (Level 1-3, 5, 7) 

Being incremental and iterative 
 Design and implement solutions 

using iterative processes 

The player uses the play button 

in order to see the execution of 

the game and make changes to 

his/her solution until the final 

submission (Level 1-10) 

 

6.3.3 aMazeD Scaffolding Features 

The aMazeD game is designed and developed to support scaffolding based on a three-

dimension framework that includes: i) the provision of a semi-finished or semi-correct 

solution, ii) instructions and explanations of the Computational Thinking concepts required 

for the solution of the level and iii) the provision of support regarding the logic behind the 

solution design. 

The scaffolding game provides semi-finished preloaded workspace solutions for 

each level. This aims to make it easier for students to understand and use the concepts of 

Computational Thinking as they are asked to make small changes to pre-existing semi-

finished solutions rather than writing their own from scratch (Werner et al., 2012). In 

addition, the player has the ability to run the semi-finished solutions before even trying to 

solve the level so as to observe exactly how the avatar moves with the given instructions. 

In this way, he/she can better and more deeply understand how Computational Thinking 

concepts such as sequence, loops and conditions work. When the solution is executed for 

the first time, an explanation of the Computational Thinking concepts covered at the level 

is displayed. The explanation concerns the operation and use of the specific concepts of 

Computational Thinking. Subsequently, when the solution is executed for the second time, 

a prompt about the logic behind the solution of the level appears. This way, the player 
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could understand how he could use Computational Thinking concepts to solve the 

particular level. 

Following the above framework, we construct scaffolding for students, first 

ensuring the understanding of the concepts of Computational Thinking by providing them 

with incomplete solutions and explanations regarding the use of the concepts. We then 

provide support to students to help them understand how they could use these concepts to 

design effective solutions. 

  

Figure 6-2. Semi-finished instructions 

All game levels are designed based on the three-dimension framework described 

above. In the following paragraphs we present how the aforementioned framework is 

applied at Level 4.  

A semi-finished solution appears in the workspace when the level is loaded (Figure 

6-2). In addition, an instruction for correcting the given solution appears. When the 
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solution is executed for the first time, the following explanation about the “if” block is 

displayed: “The 'if' block will execute the 'do' block only if the condition is true. 

Subsequently, when the solution is executed for the second time, the following prompted 

is displayed: “Try to turn the avatar to the right direction if there is path to the right.”. 

6.3.4 aMazeD Analytics Features 

Logs are kept for assessment and self-assessment purposes. The data is stored locally at 

browser level and displayed on the results page where the teacher or student can download 

it in pdf or excel format. Except the total score of the game the following data is stored for 

each level:  

• Level outcome: the result of the level, Success or Failure  

• Score: the level score, zero if it was a failure 

• Time: the time it took the player to click "Submit" button 

• "Play" button: how many times the “Play” button was pressed  

• JavaScript code: the code submitted. 

6.4 Results 

6.4.1 Demographic Data of the Participants 

The students who participated in the study are in grade 7, 8 and 9. A high percentage of 

students (75%) stated that they have previous programming experience. This is important 

as they may be able to compare their previous experiences with the experience from the 

Scaffolding Computational Thinking Game and draw safer conclusions about it. The 

demographic data of the participants are presented in Figure 6-3. 
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Figure 6-3. Demographic data of the participants 

The scale had a good level of internal consistency, as determined by a Cronbach's 

alpha of 0.761. The following paragraphs present the results of each section of the scale. 

6.4.2 Perceived ease of use (PE) 

PE1. I find the aMazeD programming and Computational Thinking game easy to use.  

 

Figure 6-4. Results on PE1 

PE2. Learning how to use a programing and Computational Thinking game is easy 

for me. 
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Figure 6-5. Results on PE2 

Figure 6-4 and Figure 6-5 present the students’ answers to PE1 and PE2 

respectively. 64,3% of the students perceived the game as easy/very easy to use which is a 

slightly higher than the 60,7% who answered that they find easy/ very easy to learn how 

to use a Computational Thinking game. While only 3,6% answered that disagrees that the 

game is easy to use. 

6.4.3 Perceived usefulness (PU) 

PU1. The aMazeD game would improve my understanding of the concepts and practices 

of programming and Computational Thinking. 

 

Figure 6-6. Results on PU1 

Figure 6-6 presents the students’ answers to PU1. A high percentage of 92.9% of 

the students answered that the aMazeD game would improve their understanding of 

Computational Thinking practices. 

PU2. The aMazeD game could make it easier to study the concepts and practices 

of programming and Computational Thinking. 
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Figure 6-7. Results on PU2 

Figure 6-7 presents the students’ answers to PU2. 57.1% consider that the game 

could make it easier for them to study Computational Thinking concepts and practices, 

while 7.2% of students answered that they disagree/strongly disagree. 

PU3. The prompts the game provide me were enough to help me solve the levels. 

 

Figure 6-8. Results on PU3 

PU4. The prompts the game provide me were useful to help me solve the levels. 

 

Figure 6-9. Results on PU4 
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PU5. The prompts the game helped me understand the basic concepts of 

programming and Computational Thinking. 

 

Figure 6-10. Results on PU5 

Figure 6-8, Figure 6-9 and Figure 6-10 present the students’ answers to PU3, PU4 

and PU5 respectively. 75% of students answered that the prompts provided were enough 

to help them solved the levels. 67.9% found them useful and 53.6% found that the prompts 

helped them understand Computational Thinking concepts and practices. While only 

17.1% stated that they disagree/strongly disagree that the game helped to understand the 

basic programming and Computational Thinking concepts. 

6.4.4 Attitude (AT) 

AT1. Studying Computational Thinking and programming through games such as aMazeD 

is a good idea. 

 

Figure 6-11. Results on AT1 
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Figure 6-11 presents the students’ answers to AT1. 82.1% has a positive attitude 

towards learning Computational Thinking through games such as aMazeD. While only 

3.6% express a negative attitude.  

AT2. I'm positive about programming and computational thinking games. 

 

Figure 6-12. Results on AT2 

Figure 6-12 presents the students’ answers to AT2. 92.9% has a positive attitude 

towards Computational Thinking games, while 3.6% express a negative attitude. 

6.4.5 Accessibility (AC)  

AC. I have no difficulty accessing and using the aMazeD programming and Computational 

Thinking game  

 

Figure 6-13. Results on AC 

Figure 6-13 presents the students’ answers to AC. 60.7% had no difficulty in using 

the aMazeD Computational Thinking game, while 14.3% had difficulties. It is possible that 

the question wasn’t clear enough and  students answered in regard the level of difficulty 
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of the game and not the difficulty in using the game. We base this assumption on the fact 

that no student reported having difficulty in using the game in the open-ended question, 

with some students commenting on how challenging/difficult the game was. 

6.4.6 Overall experience 

Students were asked to answer the following open-ended question: “Write a few words 

about your experience of playing aMazeD. What did you like or dislike? What impressed 

you?”. 25 students answered this open-ended question while three left it blank. We coded 

their answers into two themes: Game overall and Game experience in relation to 

Computational Thinking and programming. 

Regarding how students perceived the game, students generally found the game 

nice, interesting and fun. 11 students stated that the game was “nice”/ “very nice” / 

“interesting” / “fun” / “challenging”.  

Three students focused on the ease of use of the game. For example, one student 

stated that “The game is very well designed and easy to use.” 

Three students focused on the prompts: 

• Student1: “I loved playing this game because of its ease of use. I was impressed by 

how helpful the tips were.” 

• Student2: “This is my second time doing programming, and the instructions given 

to us helped me to solve them [the levels] more easily.” 

• Student3: “I really liked the logic of the game. Also, the prompts were very 

interesting, although on most levels I did not need them. In addition, the 

environment was very friendly, simple and convenient. I have only a small 

objection to a very small detail: the "reset" button could have a repeat icon rather 

than an “X”. Also, the submit button could have a tick for icon. 

The majority of the students also perceived the game as effective on learning 

Computational Thinking and programming. This is supported by the following quotes: 
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• Student4: “It was a really nice experience. The game helps in thinking and 

creativity.” 

• Student5: “I liked that it helped me understand Computational Thinking a little bit.” 

• Student6:” I liked it and it helped me to understand some things.” 

• Student7: “The game was interesting to get acquainted with the programming.” 

• Student8: “I quite liked it because it is a fun way to learn things about 

programming”. 

• Student9: “The thought process helps you understand Computational Thinking 

concepts.” 

Finally, only two students express moderate or negative statements about the game. 

• Student10: “Although I did not find it very useful it was quite interesting.” 

• Student11: “I didn’t like it.” 

6.5 Discussion 

In this study we  design and evaluate a Scaffolding Computational Thinking game. We 

present the aMazeD game that provides Computational Thinking activities to students and 

includes scaffolding features. We also present the results of the evaluation of the game and 

its features. The aMazeD Computational Thinking game is developed to cover 

Computational Thinking core concepts and practices and to support scaffolding. The 

scaffolding features include a) the provision of semi-finished or incorrect solutions, b) the 

provision of explanations for the basic Computational Thinking concepts and c) the 

provision of prompts that explain the logic behind the solution of the game. 

The results of the evaluation regarding ease of use, usefulness, attitude, 

accessibility and overall experience are promising. Specifically, students seem to consider 

aMazeD and similar games as easy to use and accessible. What is also important is that 

students are in general positive to Computational Thinking games. The results in questions 

regarding how students perceive usefulness of the game indicate that Computational 
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Thinking and programming games could help students develop Computational Thinking. 

This is constant with prior research e.g. (Zhao & Shute, 2019; Karakasis & Xinogalos, 

2020) that found that programming games could be effectively utilized to help students 

develop their Computational Thinking. It is characteristic that a high percentage of 92% 

believe that the game could improve their Computational Thinking. Students also found 

scaffolding features and specifically prompts useful for solving the game and effective in 

learning Computational Thinking. This is reflected in their answers to the open-ended 

question where they evaluate the game and their experience as a whole. Almost all the 

comments are extremely positive, focusing on both the ease of use of the game and the 

effectiveness of its scaffolding features. 

6.6 Summary 

This chapter presents the method and results of the third phase of this dissertation that 

involves the design and evaluation of a Scaffolding Computational Thinking game. For 

this purpose, a Computational Thinking game with scaffolding features, was designed and 

evaluated by 28 middle school students. The study adopts a survey research approach. The 

results regarding ease of use, usefulness, attitude, accessibility and overall experience of 

the scaffolding game are promising. Specifically, students found scaffolding features 

useful for solving the game and effective in learning Computational Thinking. 
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7 Τhe effect of scaffolding programming games and attitudes 

towards programming on the development of 

Computational Thinking 

7.1 Introduction 

This chapter presents an experimental study that aims to investigate the effect of 

scaffolding programming games on the development of middle students’ Computational 

Thinking.  

The remainder of this Chapter is organised as follows: Section 7.2 presents 

literature review of scaffolding and attitudes investigated in Computational Thinking 

studies. This section has been added to provide basic concepts and previous work on 

scaffolding and attitudes towards programming for better understanding of the background 

theory of the study described in the chapter.  Section 7.3 presents the design of the 

experimental study. Sections 7.4-7.11 present the effects of scaffolding programming 

games on the development of middle students’ Computational Thinking. Section 7.12 

further discusses the chapters results. Section 7.13 presents a summary of the chapter. 

7.2 Related Work 

In the process of teaching and learning Computational Thinking, learning strategies play 

an important role. Efforts have been made to investigate several pedagogies and learning 

strategies for teaching Computational Thinking. Among them, game-based learning and 

scaffolding are widely adopted (Hsu et al., 2018). Game-based approaches can increase 

student motivation, address their disengagement, and foster the acquisition of 

Computational Thinking (Weintrop et al., 2016). Thus, they are exploited in several studies 

(e.g., de Souza et al., 2019; Garneli & Chorianopoulos, 2018, 2019; Israel-Fishelson & 

Hershkovitz, 2020; Zhao & Shute, 2019). In addition to game-based learning, scaffolding 

is proposed (Repenning et al., 2015) to increase motivation and student participation in 

Computational Thinking. Studies also (e.g., Angeli & Valanides, 2020) reveal that there is 

a need to scaffold students’ learning during their engagement with Computational 

Thinking. According to Denner et al. (2012), without proper guidance students face 
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significant challenges in developing Computational Thinking skills. Scaffolding helps 

students better understand Computational Thinking concepts, which they would not be 

able to assimilate if left alone to experiment in a programming environment (Grover et al., 

2015). The aforementioned efforts highlight the importance of feedback and guidance 

strategies in Computational Thinking approaches. However, more research is needed on 

how the absence versus presence of scaffolding strategies could affect students' cognitive 

Computational Thinking learning gains. 

Technologies and tools are also important. Thus, researchers focus on the 

development of tools specific to support Computational Thinking learning through 

programming. Sengupta et al. (2013) developed the CTSiM (Computational Thinking in 

Simulation and Modelling) tool. CTSiM is a visual programming environment that 

includes a modelling environment and supports low-threshold, high-ceiling, algorithm 

visualization, scaffolding and constructivist learning activities. The second version of 

CTSiM is developed to provide students with adaptive scaffolding based on modelling 

learner’s domain knowledge, cognitive skills and interests (Basu et al., 2017). Weintrop et 

al. (2016) developed a constructionist video game aiming to foster Computational 

Thinking. RobotBuilder features a block-based programming language to allow students 

to construct their game strategies. Clark and Sengupta (2019) developed the SURGE: 

Gameblox, a Disciplinary-Integrated Game (DIG). SURGE: Gameblox exploits formal 

representations (such as scientific graphs) and agent-based game programming in a 

collaborative environment targeting on promoting Computational Thinking. Although the 

aforementioned tools have been developed to include features that support specific 

learning strategies, more empirical research that aims to investigate the relationship 

between tools, learning strategies and Computational Thinking development (Tikva & 

Tambouris, 2021b) is needed.  

In addition to learning strategies and tools, research studies are interested in how 

various factors influence the acquisition of Computational Thinking. Research (e.g., Kong 

et al., 2018) has focused on exploring students’ attitudes towards programming in the 

context of Computational Thinking. Particular interest has been paid on how several 

Computational Thinking interventions could improve students’ attitudes towards 

programming. For example, Cetin (2016) explored the effect of a Scratch-based 
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intervention on students’ attitudes towards programming. However, studies that explore 

the relationship between attitudes towards programming and Computational Thinking 

acquisition are scarce (Sun et al., 2022). 

7.2.1 Scaffolding strategies in Computational Thinking research 

Scaffolding strategies including instructional scaffolding, adaptive, peer-, 

resource-scaffolding support/guidance, feedback and prompts have been explored in 

several studies focusing on the development of Computational Thinking (Tikva & 

Tambouris, 2021a). Chevalier et al. (2022) investigated the role of different types of 

guidance and feedback in the development of Computational Thinking. To this end, they 

designed an experimental study to investigate which of these methods fosters students’ 

Computational Thinking. They explored four experimental conditions for the different 

combinations of with/without guidance and immediate/delayed feedback strategies. Their 

results support that delayed feedback could be an effective intervention method for 

Computational Thinking development. Angeli and Valanides (2020) investigated the 

impact of two scaffolding techniques, designed with gender differences into consideration. 

To this end, students were randomly assigned to two groups, each following a different 

type of scaffolding. Their findings show that both sexes benefited from both scaffolding 

techniques, while each gender benefited more from a different scaffolding technique. Chen 

et al. (2021) designed a quasi-experimental study to investigate the effects of scaffolding 

prompts on students’ Computational Thinking. Students were assigned to three groups, 

each of which received cognitive prompts, metacognitive prompts and combination of 

cognitive and metacognitive prompts respectively. Their findings support that 

metacognitive scaffolding prompts could be an effective strategy to foster student’s 

Computational Thinking. In the same line, Atmatzidou et al. (2018) explored the effects of 

different types of guidance (minimal vs strong) on students’ metacognitive and problem-

solving skills. The findings of their quasi-experimental study support that strong guidance 

could have a positive impact on students’ metacognitive and problem-solving skills. 
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7.2.2 Attitudes towards programming/Computer Science in Computational 

Thinking research 

Attitudes towards programming and Computer Science (CS) are of interest to 

Computational Thinking studies. Attitudes towards programming are explored under two 

major research questions: a) To what extent do specific interventions impact students’ 

attitudes towards programming/CS? and b) To what extent students’ attitudes towards 

programming/CS affect their Computational Thinking? For example, Zhao and Shute 

(2019) measure attitudes toward CS based on a survey that includes questions about how 

students perceive computers such as “Computers are fun” and “Computing jobs are 

boring”. Subsequently they explored if playing a programming video game could have an 

impact on students’ attitudes, finding no statistically significant differences in students’ 

attitudes before and after the intervention. They point out that the short duration of the 

intervention may have played a role in this outcome. In the same line, Cetin (2016) 

explored the effects of a Scratch-based instruction on participants’ attitudes towards 

programming, finding no statistically significant effect. They suggest that this could be 

attributed to the limited duration of treatment, the participants' already high attitudes and 

satisfaction with the quality of teaching. 

Other studies focus on how students’ attitudes towards programming could affect 

Computational Thinking acquisition. For example, Sun et al. (2022) define programming 

attitude based on a framework that includes the elements of programming self-efficacy, 

programming utility, social needs, perceptions of programmers, and programming interest. 

Their results support that students’ attitudes towards programming could impact their 

Computational Thinking, indicating them as an important factor in Computational 

Thinking development. Kong et al. (2018) define programming empowerment as a 

Computational Thinking perspective. They explore whether interest in programming and 

attitude towards collaboration are related to programming empowerment. Their results 

suggest that interest in programming could affect the acquisition of programming 

empowerment.  

Despite the interest in attitudes towards programming/CS, there is no unanimously 

accepted definition by researchers. Computational Thinking studies explore various 

attitudes, while focusing on developing scales for them (e.g., Cetin & Ozden, 2015). Table 
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7-1 presents attitudes that appear repeatedly in the literature. In the context of this study, 

attitudes towards programming consist of the following three (3) dimensions: 

programming self-efficacy, interest in programming and programming meaningfulness. 

Table 7-1. Attitudes towards programming/CS found in the literature 

Attitude Scale item example Study 

Confidence/ 

Self-efficacy 

programming self-

efficacy 

 

I am good at programming (Kong et 

al., 2018) 

Kukul et al., 

2017 

Kong et 

al.,2018 

Durak et al., 

2019 

CS self-efficacy I feel confident about my ability to use 

computers (Werner et al, 2012) 

Werner et al., 

2012 

Román-

González et al., 

2018 

coding confidence 

 

I am good at coding (Mason & Rich, 

2020) 

Mason & Rich, 

2020 

programming 

confidence  

 

I am confident to learn programming 

(Sun et al.,2022) 

Sun et al., 2022 

 

Interest interest in 

programming 

I think the content of programming is 

fun (Kong et al., 2018) 

Kong et al. 2018 

Sun et al., 2022 

coding interest Solving coding problems seems fun 

(Mason & Rich, 2020) 

Mason & Rich, 

2020 

 

programming Programming is useful to me (Kong et Kong et al., 
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Meaningfulness/Utility 
meaningfulness al., 2018) 2018 

coding utility Knowing how to code will help me to 

create useful things (Mason & Rich, 

2020) 

Mason & Rich, 

2020 

 

programming 

utility 

Learning programming is very useful 

(Sun et al, 2022) 

Sun et al, 2022 

Social influence/needs My parents think coding is important 

(Mason & Rich, 2020) 

 

Mason & Rich, 

2020 

Sun et al, 2022 

Perception of coders/ programmers I think kids who can code spend less 

time outdoors than other kids (Sun et 

al, 2022) 

Mason & Rich, 

2020 

Sun et al, 2022 

7.3 Study design 

7.3.1 Study goal and research questions 

This study aims to investigate the effect of scaffolding programming games on the 

development of middle students’ Computational Thinking (CT). An additional goal is to 

investigate the effect of middle school students’ attitudes towards programming in their 

Computational Thinking development. For this purpose, the “aMazeD” (Chapter 6) was 

utilized. The scaffolding game is aligned with CT concepts and practices included in 

Brenan’s and Resnik’s (2012) framework. In particular, we explore how the presence of 

scaffolding features affect the acquisition of students’ Computational Thinking. In 

addition, herein we investigate the effect of students’ attitudes towards programming on 

their Computational Thinking improvement.  

The following research questions are posed: 

RQ1. Does aMazeD have a positive impact on middle school students' CT 

development? 
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RQ2. Does aMazeD with scaffolding features have a greater impact on middle 

school students’ CT development than the aMazeD version without scaffolding? 

RQ3. Do attitudes towards programming have an impact on middle school 

students’ CT? 

RQ4. Do attitudes towards programming have an impact on middle school 

students’ CT improvement? 

 

7.3.2 Research design 

In order to address the study goal, we conducted an experimental study. Ethical approval 

from the university ethical committee of the authors’ university was obtained. In addition, 

all students’ parents were informed and gave their consent to participate in the study. 

Participants were 57 students in seventh, eighth and ninth grade. From them, 29 students 

were randomly assigned to the experimental group where a scaffolding version of the 

programming game was used as the learning approach, while the rest 28 students were 

assigned to the control group where a version of the programming game that did not 

include scaffolding features was used.  In order to prevent potential influence of different 

teachers on the outcome of the study, all students were taught by the same teacher using 

the same technical equipment regardless of which group they belonged to. The experiment 

was conducted in three phases and lasted three weeks. In the first phase, students were 

asked to complete a pre-test for measuring their Computational Thinking and a 

questionnaire measuring their attitudes towards programming. Both the pre-test and the 

questionnaire lasted 45 minutes. Students completed the pre-test and the questionnaire on 

two different days. In the second phase of the experiment, students participated in a 45-

minute intervention where they were introduced to Computational Thinking through the 

two versions of the programming game, depending on the group they belonged to. During 

the intervention, students encountered Computational Thinking concepts such as sequence, 

loops, conditionals and Computational Thinking practices such as testing and debugging 

and being incremental and iterative. Log files from the game were also collected. In the 

last phase, students completed a post-test for measuring their Computational Thinking 

which lasted 45 minutes. 
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7.3.3 Intervention instrument 

The “aMazeD” scaffolding programming game presented in the previous Chapter was 

utilized as the tool through which students were introduced to Computational Thinking. 

7.3.4 Data collection 

In this study, we measured students’ pre-intervention and post-intervention Computational 

Thinking using the Computational Thinking Test (CTt). The CTt was developed and 

validated by Román-González et al. (2017). A translated version of the CTt that authors 

shared with us, is presented in Appendix C. The CTt is a direct assessment method that is 

widely accepted as a reliable way to measure Computational Thinking. It consists of 28 

multiple choice items. Questions are presented using the interface of Maze or Canvas and 

the answers are presented as visual arrows or blocks.  

We also collected the aMazeD log files that include the following information for 

each student: a) the success or failure in each level and b) the code submitted for each 

level. 

An instrument for measuring attitudes towards programming was adapted from 

Kong (2018). We used the following three constructs of the aforementioned instrument 

translated in the students’ native language: programming meaningfulness, programming 

self-efficacy and interest in programming to measure students’ attitudes towards 

programming. The scale consists of 13 items and students were asked to indicate their level 

of agreement with each item on a 5-point Likert scale (1=Strongly agree; 5=Strongly 

disagree). 

7.3.5 Study Limitations 

This study has some limitations including the small sample size and the short duration of 

the intervention. A longer duration could provide more insights on students’ learning gains. 

In addition, we based our analysis only on tests, questionnaires and logs. Including 

interviews and video recording could have provided a more holistic understanding of 

students’ CT development. The inclusion of students from a single school could be also 

considered as a limitation of the study 
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7.4 Demographics 

57 students whose parents gave their consent to participate in the study were randomly 

assigned to the control and experimental group. There were 5 students from the control 

group and 7 from the experimental group who were absent either during the completion of 

the tests or during the intervention. This resulted in a final sample of 45 students, of whom 

23 belong to the control group and the rest 22 to the experimental group. The distribution 

of students by grade and gender is shown in Table 7-2. Among participants, 23 (51%) 

students were male and 22 (49%) were female. 13 (29%) were in 7th grade, 21 (47%) were 

in 8th grade and 11 (24%) were in 9th grade. 

Table 7-2. Distribution of participants by grade and gender 

 Grade Gender 

7th 8th 9th Male Female 

Version Non-Scaffolding 7 10 6 14 9 

Percentage in the non-scaffolding group 30.4% 43.5% 26.1% 60.9% 39.1% 

Scaffolding 6 11 5 9 13 

 Percentage in the scaffolding group 27.3% 50% 22.7% 40.9% 59.1% 

7.5 CTt 

CTt (Román-González et al., 2017) was employed to measure CT pre-intervention and 

post-intervention scores. For each item we assigned 1 if it was correct and 0 if it was 

incorrect. The score for each test ranged from 0 to 28. The scale had an acceptable level of 

internal consistency, as determined by a Cronbach's alpha of .763 reported in the pre-

intervention data and an acceptable level of internal consistency as determined by a 

Cronbach’s alpha of .803 reported in the post-intervention data. 

7.6 Analytics 

We calculated the overall game score for each student based on aMazeD game logs. For 

each level we assigned 1 if it was successfully completed and 0 otherwise. The overall 
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game score for each student ranged from 0 to 10. The Cronbach's alpha coefficient was 

0.753. We also calculated the following scores based on the inspection of the submitted 

code:  

• Conditional-Level and Loop-Level score. We assigned 1 for each successfully 

completed level belonging to the “Conditionals” concept (Table 1) and 0 otherwise. 

The overall Conditional-Level score for each student ranged from 0 to 3. 

Accordingly, we assigned 1 for each successfully completed level belonging to the 

“Loops” concept (Table1) and 0 otherwise. The overall Loop-Level score for each 

student ranged from 0 to 8. 

• Conditional-Use and Loop-Use score. We assigned 1 if the submitted code 

contained Conditionals for each correctly completed level belonging to the 

“Conditionals” concept and 0 otherwise. The overall Conditional-Use score for 

each student ranged from 0 to 3. Accordingly, we assigned 1 if the submitted code 

contained Loops for each correctly completed level belonging to the “Loops” 

concept and 0 otherwise. The overall Loop-Use score for each student ranged from 

0 to 8. 

• Conditional-Ratio and Loop-Ratio. We calculated the Conditional-Ratio as the 

ratio between Conditional-Use score and Conditional-Level Score and the Loop-

Ratio as the ratio between Loop-Use score and Loop-Level score. 

7.7 Scale of Attitudes towards Programming  

A scale adapted from Kong (2018), was used to measure student’s attitudes towards 

programming. The scale consisted of 13 items 5-point Likert scale, (1 = Strongly agree 

and 5 = Strongly disagree). The score of each student was calculated as the sum of the 13 

items and ranged from 13 to 65. 40 of the participants were filled in the attitudes towards 

programming scale. The scale had a high level of internal consistency, as determined by a 

Cronbach's alpha of 0.948 (Table 7-3). We classified the participants into three groups 

based on their percentile value in the scale score distribution: Low-attitudes towards 

programming students (n=13), Moderate-attitudes towards programming (n=14) and High-

attitudes towards programming students (n=13). 
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Table 7-3. Internal consistency of the scale of Attitudes towards Programming 

Construct Number of items Cronbach's alpha 

programming meaningfulness  4 0.921 

programming self-efficacy 5 0.912 

interest in programming 4 0.900 

Entire scale 13 0.948 

 

7.8 Does aMazeD have a positive impact on middle school students' CT 

development? 

The first research question was, “Does aMazeD have a positive impact on middle school 

students' CT development?” Our hypothesis was that aMazeD would have a positive 

impact on middle school students' CT development. A paired-samples t-test was used to 

determine whether there was a statistically significant mean difference between the pre-

intervention CT scores and the post-intervention CT scores of the students. No outliers 

were detected. The assumption of normality was not violated, as assessed by Shapiro-

Wilk's test (p = .612). We found a significant mean increase of 3.933, 95% CI [3.097, 

4.769], t(44)=9.481,p<.001 between pre-intervention and post-intervention CT scores, 

with a large effect size (Cohen's d=1.413). Students CT post-intervention scores were 

higher (M=19.333, SD=4.772) compared to their CT pre-intervention scores (M=15.4, 

SD=4.653). This result supports our hypothesis that aMazeD would have a positive impact 

on students’ CT development. 

7.9 Does aMazeD with scaffolding features have a greater impact on 

middle school students’ CT development than the aMazeD version 

without scaffolding features? 

The second research question was “Does aMazeD with scaffolding features have a greater 

impact on middle school students’ CT development than the aMazeD without 

scaffolding?”. Our hypothesis was that the scaffolding version of aMazeD would have a 
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greater impact on students’ CT development. CT pre-scores and post-scores were 

measured by the CTt (Román-González et al., 2017). An independent t-test showed that 

the mean of the pre-test CT scores of the scaffolding group was not significantly higher 

(M=15.727, SD=4.442) than that of the non-scaffolding group (M=15.087, SD=4.926); t 

(43) =−.457, p=.650.  Thus, we can conclude that the two groups were equivalent in terms 

of students’ CT scores prior to the intervention. An ANCOVA was run to determine the 

effect of the scaffolding version of the game on post-intervention CT scores after 

controlling for pre-intervention CT scores. There was a linear relationship between pre-

intervention CT scores and post-intervention CT scores for each group, as assessed by 

visual inspection of a scatter plot. There was homogeneity of regression slopes as the 

interaction term was not statistically significant, F(1,41) = .180, p = .673. Standardized 

residuals for the interventions and for the overall model were normally distributed, as 

assessed by Shapiro-Wilk's test (p > .05). There was homoscedasticity and homogeneity 

of variances, as assessed by visual inspection of a scatterplot and Levene's test of 

homogeneity of variance (p = .911), respectively. There were no outliers in the data, as 

assessed by no cases with standardized residuals greater than ±3 standard deviations. After 

adjustment for pre-intervention CT scores, there was a statistically significant difference 

in post-intervention CT scores between the scaffolding and the non-scaffolding 

group, F(1,42) = 5.657, p = .022. 

We further analyze students’ log files. Mann-Whitney U test was run to determine 

if there were differences in Conditional-Use scores between the non-scaffolding and 

scaffolding group. Distributions of the Conditional-Use scores for the two groups were not 

similar, as assessed by visual inspection. Conditional-Use scores for the scaffolding group 

(mean rank = 29.30) were statistically significantly higher than for the non-scaffolding 

group (mean rank = 16.98), U = 391.5, z = 3.409, p = .001. Respectively, Mann-Whitney 

U test was run to determine if there were differences in Loop-Use Score between the non-

scaffolding and scaffolding group. Distributions of the Loop-Use Scores for the two groups 

were not similar, as assessed by visual inspection. Loop-Use scores for the scaffolding 

group (mean rank = 30.27) were statistically significantly higher than for the non-

scaffolding group (mean rank = 16.04), U = 413, z = 3.695, p < .001. 
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7.10 Do attitudes towards programming have an impact on students’ 

CT? 

The third research question was “Do attitudes towards programming have an impact on 

middle school students’ CT?”. Our hypothesis was that positive attitudes towards 

programming would have a greater impact on students’ CT scores. A one-way ANOVA 

was conducted to determine if the students’ CT pre-test scores were different for the 

low/moderate/high attitudes groups. There were no outliers, as assessed by boxplot; data 

was normally distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and 

there was homogeneity of variances, as assessed by Levene's test of homogeneity of 

variances (p = .818). CT pre-test score increased from low (M=13.769, SD=4.902) to 

moderate (M=15.429, SD=4.327) to high (M=17,154, SD=4.793) attitudes group, in that 

order, but the differences between attitudes groups was not statistically significant, F(2,37) 

= 1.706, p = .196. This result does not support the hypothesis that student’s attitudes 

towards programming would have an impact on middle school students’ CT. 

7.11 Do attitudes towards programming have an impact on students’ CT 

improvement? 

The fourth research question was “Do attitudes towards programming have an impact on 

students’ CT improvement?”. Our hypothesis was that attitudes towards programming 

would have an impact on students’ CT development. A one-way ANOVA was conducted 

to determine if the changes in students’ CT scores were different for the low/moderate/high 

attitudes groups. There were no outliers, as assessed by boxplot; data was normally 

distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and there was 

homogeneity of variances, as assessed by Levene's test of homogeneity of variances 

(p = .113). Changes in CT scores increased from moderate (M = 3.143, SD=3.348), to high 

(M=3.539, SD=1.808), to low (M=4.462, SD=2.817) attitudes group, but the differences 

were not statistically significant, F(2,37) = .807, p = .454. This result does not support the 

hypothesis that student’s attitudes towards programming would have an impact on middle 

school students’ CT development.  
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7.12 Discussion 

Our first hypothesis was that aMazeD would have a positive impact on middle school 

students' CT. Data analysis and results seem to support this hypothesis. Participants 

significantly improved their CT scores at the CTt after playing the aMazeD. This is 

consistent with prior research showed that playing programming games could improve 

students’ Computational Thinking (e.g., Hooshyar et al., 2021; Zhao & Shute, 2019). 

However, since this is a one-group pretest-posttest design, it cannot be excluded that the 

differences between the pre-test and post-test are due to threats such as maturation 

(Fraenkel et al., 2012).  

The second hypothesis was that aMazeD with scaffolding features would have a 

greater impact on middle school students’ CT than the aMazeD version without scaffolding 

features. Both groups experienced an improvement in their post-intervention CT scores, 

but students who played the scaffolding version of the game had significantly higher CT 

post-scores (Table 7-4). Furthermore, students in the scaffolding group not only did better 

on the post-test, but they had significantly higher Conditional-Use and Loop-Use scores 

(Table 7-5). The code they submitted to the game was of higher quality and included the 

use of Conditionals and Loops. It is indicative that students in the scaffolding group who 

used conditionals in all successful levels belonging to the “Conditional Concept” concept 

amount to 18 out of 22 compared to 6 out of 23 students in the non-scaffolding group. 

Respectively, students in the scaffolding group who used loops in all successful levels 

belonging to the “Loop Concept” amount to 18 out of 22 compared to 4 out of 23 students 

in the non-scaffolding group. These results suggest that scaffolding could be an effective 

learning technique for developing students’ CT and help them understand the core 

concepts of CT such as Conditionals and Loops. Prior research also shows results regarding 

the relationship between scaffolding and CT development. Studies conclude that 

scaffolding could have a positive impact on CT development. Specifically, Chen et al. 

(2021) findings of their quasi-experimental study revealed that metacognitive prompts 

significantly improved students’ CT outcomes. In the same line, Angeli and Valanides 

(2020) found that students who participated in their study benefited from the scaffolding 

techniques used. Furthermore, Chevalier et al. (2022) found that students in their study 

benefited from guidance and feedback learning methods. 
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Table 7-4. Computational Thinking pre-scores and post-scores means by game 

version 

Game Version Means of Pre-

intervention Scores 

Means of Post-intervention 

Scores 

Means of CT scores 

changes 

Scaffolding version 15.727 20.546 4.818 

Non-Scaffolding 

version 

15.087 18.174 3.087 

Table 7-5. Computational Thinking Conditional-Level, Loop-Level, Conditional-Use, 

Loop-Use scores, Conditional-Ratio and Loop-Ratio means by game version 

Game Version Means of 

Conditional-

Level Scores 

[0-3] 

Means of 

Loop-

Level 

Scores 

[0-8] 

Means of 

Conditional-

Use Scores [0-

3] 

Means 

of Loop-

Use 

Scores 

[0-8] 

Means of 

Conditional-

Ratio 

Means 

of 

Loop-

Ratio 

Scaffolding 

version 

2.86 6.05 2.50 5.36 0.871 0.878  

Non- 

Scaffolding 

version 

2.57 4.65 1.13 2.22 0.384 0.409 

 

The third hypothesis was that attitudes towards programming would have an impact 

on students’ CT scores. No significant differences were found between the three groups 

(low/moderate/high) in the results of students’ CT pre-tests. Although students’ pre-test 

scores were very similar in general, as shown in Figure 7-1, the students of the low attitudes 

group were less successful than students in the moderate and high attitudes group. Previous 

studies indicate that Computational Thinking is related with attitudes towards 

programming (Sun et al., 2022) and suggest that interest in programming could be an 

important factor in the acquisition of CT (Kong et al., 2018), proposing interest-driven 

strategies for CT teaching and learning (Kong, 2016).  
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Figure 7-1. Means of pre-tests scores by attitudes towards programming group 

The fourth hypothesis was that attitudes towards programming would have an 

impact on students’ CT development. Although this hypothesis was not confirmed as no 

significant differences were found between the three groups (low/moderate/high) in 

students’ CT improvement, the descriptive statistical analysis reveals interesting results. 

As shown in Table 7-6, changes in students’ CT scores for the non-scaffolding version 

increase from low (M= 1.600, SD=.872) to moderate (M=2.556, SD=1.069), to high 

attitudes group (M=4.000, SD=5.35) (Figure 7-2). This result is consistent with other 

studies (Sun et al., 2022) which have shown that students with negative attitudes towards 

programming may find it more difficult to develop their Computational Thinking than 

students with positive attitudes towards programming. Results indicate that students are 

struggling to develop their Computational Thinking skills when they are not provided with 

an appropriate learning strategy. This is in line with previous studies which suggest that 

students face great difficulties without proper guidance (Denner et al., 2012).  However, 

this is not the case for students that experienced the scaffolding version. Changes in 
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students’ CT scores in the scaffolding version increase from high (M=3.000, SD=.894) to 

moderate (M=4.200, SD=1.655) to low (M=6.250, SD=.491) attitudes group (Figure 7-3). 

This result could have important implications in the design of appropriate learning 

interventions regarding the choice of the learning strategies in relation to students’ attitudes 

towards programming. Results suggest that students with low and moderate attitudes 

towards programming tend to benefit more from the scaffolding strategy than students with 

higher attitudes towards programming. The provision of scaffolding through semi-finished 

programs and prompts could engage students who tend to have low interest in 

programming and low programming self-efficacy, by reducing difficulty levels and 

providing effective supplies for developing Computational Thinking. 

 

Figure 7-2. Means of score changes by attitudes towards programming group for the 

non-scaffolding group 
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Figure 7-3. Means of score changes by attitudes towards programming group for the 

scaffolding group 

Table 7-6. Computational Thinking changes in pre-scores and post-scores means by 

game version and attitudes towards programming group 

Game Version Attitudes towards programming 

Group  

Means of Change in CT Scores 

Non-scaffolding version High 4.000 

 Moderate 2.556 

 Low 1.600 

Scaffolding version High 3.000 

 Moderate 4.200 

 Low 6.250 
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The implication of these findings is important, as they provide support that 

scaffolding in computational thinking games could be an effective strategy for teaching 

and learning computational thinking to middle school students fostering a deeper 

understanding of Computational Thinking concepts. In addition, when it comes to 

students’ attitudes towards programming, students who perceive programming as less 

meaningful, less interesting and have lower programming self-efficacy could particularly 

benefit from scaffolding aspects in programming games. 

7.13 Summary 

This chapter presents the method and results of the fourth phase of this dissertation that 

involves the investigation of the effects of a) scaffolding programming games and b) 

attitudes towards programming, on the development of middle school students’ 

Computational Thinking. To this end, an experimental study was conducted. Students were 

introduced to CT under two distinct experimental conditions: a scaffolding version of a 

programming game and a non-scaffolding version of the same game. Results report 

statistically significant differences between the pre-intervention and post-intervention CT 

scores for all students and statistically significant improvement in learning outcomes in 

favor of the scaffolding group. In addition, the study hypothesized that attitudes towards 

programming would have an impact on students’ CT. Although this hypothesis has not 

been confirmed, the results suggest that students who have a less positive attitude towards 

programming could particularly benefit from scaffolding aspects in programming games. 
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8 Conclusions and direction for future research 

8.1 Introduction  

In the context of this dissertation, we developed a conceptual model of Computational 

Thinking in K-12 education and extended it to higher education. We also investigated 

specific instances of the models’ CT areas. The research was organized in the following 

four phases: 

Phase 1. Developing a Conceptual Model of Computational Thinking through 

programming in K-12 education (CTPK-12). 

Phase 2. Extending the Computational Thinking through Programming in K-12 

Education (CTPK-12) Conceptual Model for Higher Education. 

Phase 3. Designing and evaluating of a programming game to study the perceived 

effects of a certain instance of the CTPK-12 Learning Strategies area. 

Phase 4. Using the CTPK-12 model to design an empirical study to investigate 

certain instances of the Learning Strategies and Factors model’s areas. 

In this chapter we present the conclusions of these phases. The remainder of this 

Chapter is organised as follows: Section 8.2 presents the conclusions of Phase 1. Section 

8.3 presents the conclusions of Phase 2. Section 8.4 presents the conclusions of Phase 3. 

Section 8.5 presents the conclusions of Phase 4. Section 8.6 suggests future research. 

Section 8.7 presents the limitations of the research presented. 

 

8.2 Conclusions Phase 1 

In this phase, a conceptual model of CT through programming in K-12 education (CTPK-

12) was developed. The proposed model was based on a systematic literature review and 

the identification of CT Areas and their relationships. CT Areas are determined from the 

recording of all topics of interest to researchers. CTPK-12 model provides an overall map 
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of the domain that aids domain understanding and could serve as a basis for future studies 

as well as facilitate the integration of CT into K-12 educational practices. 

The CTPK-12 model indicates that CT through programming in K-12 education 

domain includes the following six areas: Knowledge Base, Learning Strategies, 

Assessment, Tools, Factors and Capacity Building area that are related to each other. Some 

of the relationships between the areas have not yet been sufficiently explored so far in the 

scientific literature including (a) which tools support which learning strategies, (b) which 

learning strategies enable the acquisition of CT, (c) which factors affect CT development, 

and (d) how capacity building affects students’ CT levels.  

The CTPK-12 model also reveals that although the focus on Assessment, Tools and 

Factors area remains approximately constant over time, it increases for Learning Strategies 

and Capacity Building area and decreases for Knowledge Base area. This marks a change 

in the focus of research that could be interpreted as a shift to more tangible issues of 

educational practice. The findings also indicate gaps and future directions regarding the 

models’ areas and relationships that are presented in the following paragraphs. 

Assessment area is at the forefront of CT research gathering the greatest interest of 

researchers in the selected studies. However, CT assessment methods in the selected 

studies include mostly methods based on particular activities and curricula and therefore 

their use in different contexts is difficult. Efforts have been made to develop validated 

methods for general use that allow researchers to document their results based on validated 

instruments. Most of these methods are self-report methods; therefore, there is a need for 

additional validated methods, which could be applied to various settings, providing 

opportunities to standardize the CT assessment based on methods other than self-report. 

Tools area is also one of the major topics investigated in the selected studies. 

Several studies focus on the development of environments designed specifically to support 

CT teaching and learning strategies. Although these environments are designed on the 

basis of CT frameworks, they are not yet widely used in empirical studies or educational 

practices aimed at developing CT. Instead, they appear only once in the literature in the 

studies where they are introduced. Therefore, beyond the theoretical basis and 

technicalities of CT tools, researchers need to consider issues of usability, student 
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motivation, teacher facilitation through available resources and frameworks, and ease of 

assessment through built-in automated assessment methods. In addition, future studies 

should explore the relationship between Tools and CT development providing insights on 

which tools could better support which CT learning strategies. 

Learning Strategies area has gained increasing interest in recent years. However, 

several of the studies reviewed simply refer to the learning strategies applied without 

further describing how they were implemented. Focusing on learning strategies, presenting 

the relevant background and how they are implemented could support a more 

comprehensive picture of the conditions and context of the proposed CT interventions. 

Studies could also propose frameworks that support leveraging CT learning strategies. In 

addition, future studies could explore the relationship between learning strategies and CT 

development and provide insights on which learning strategies are most suitable for 

students to acquire which CT elements.  

Capacity Building is highlighted as a critical Area of CT presence within 

educational settings and one of the rising areas in the domain research. Nevertheless, 

studies still argue that teachers face significant challenges in incorporating CT practices 

such as lack of technological infrastructure, lack of time for lesson plans and materials 

preparation and limited instructional time (Adler & Kim, 2018; Bargury et al., 2012; Israel 

et al., 2015; Ozturk, Dooley, & Welch, 2018; Sentance & Csizmadia, 2017). Most 

important, teachers have low levels of CT content knowledge (Alfayez & Lambert, 2019; 

Angeli et al., 2016; Bower et al., 2017; Israel et al., 2015; Kale, Akcaoglu, Cullen, & Goh, 

2018) and knowledge about how to teach CT (Chalmers, 2018). Thus, more Capacity 

Building interventions and frameworks are needed to support in-service and pre-service 

teachers to successfully integrate CT into their teaching practices. In addition, the 

relationship between capacity building and CT development could be investigated in future 

studies. 

Factors area has also been investigated in several of the selected studies. However, 

some of the results of the studies are contradictory, so it is unclear whether and to what 

extent these factors lead to higher or lower CT levels. As Angeli & Giannakos (2020) point 

out, how CT skills, such as abstraction, problem decomposition, and data structures, map 

to different abilities, grade level, disciplines, gender, and educational level is still missing 
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from the literature. Further studies in this direction could build clarity about factors that 

may affect CT acquisition. With regard to how CT could be utilized to motivate 

underrepresented groups, there are few studies (e.g., Kim & Kim, 2016; Leonard et al., 

2018; Pinkard, Martin, & Erete, 2019) specifically aimed at motivating girls and 

underrepresented minorities. More studies are required to provide evidence of the 

relationship between factors, learning strategies and tools and provide insights on if and 

how learning strategies and tools could broaden participation in CT and address challenges 

related to factors. 

8.3 Conclusions Phase 2 

The results of this phase indicate that several efforts have been emerged in CT through 

programming in higher education research recently, although challenges remain in the six 

areas identified in this review: Knowledge Base, Learning Strategies, Tools, Assessment, 

Factors and Capacity Building. Future studies should address remaining challenges by 

basing their design on clear definitions of CT as categorized and described in section 

5.4.1.1. The assessment should be based on the recording of CT elements as previously 

defined in the context of the studies. In addition, it is proposed to integrate direct 

assessment methods in combination with self-report methods in order to provide a more 

objective picture of the development of students' CT. The alignment of CT elements and 

assessment methods could provide a more comprehensive understanding of students’ CT 

development. Future research should also explore how different learning strategies could 

support CT development. In addition, future research could focus on the development of 

tools suitable for higher education, which would enable the exploitation of game design 

strategies. Finally, studies should also focus on the investigation of how factors such as 

gender, creativity, self-efficacy, motivation may affect CT and how professional 

development of academic stuff could enhance the CT integration in higher education 

context. 

8.4 Conclusions Phase 3 

In this phase, we design and evaluate a Scaffolding Computational Thinking game. The 

game was designed to include  scaffolding features and was evaluated by 28 middle school 

students. The results regarding ease of use, usefulness, attitude, accessibility and overall 
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experience of the scaffolding game were promising. Specifically, students found 

scaffolding features useful for solving the game and effective in learning Computational 

Thinking. 

8.5 Conclusions Phase 4 

In this phase, we explored the effect of scaffolding programming games on the 

development of middle school students’ Computational Thinking. In addition, herein we 

explore the effect of students’ attitudes towards programming on their Computational 

Thinking. Students were introduced to Computational Thinking under two distinct 

experimental conditions: a scaffolding version of a programming game and a non-

scaffolding version of the same game. Results reported statistically significant learning 

gains between the pre-intervention and post-intervention CT scores for all students and 

statistically significant improvement in learning outcomes in favour of the scaffolding 

group. Furthermore, students in the scaffolding group not only showed better learning 

outcomes overall, but also submitted higher quality code in terms of using conditionals and 

loops during the game. The findings support that scaffolding helps students develop 

Computational Thinking and deepen their understanding of the related concepts. In 

addition, the study hypothesized that attitudes towards programming would have an impact 

on students’ Computational Thinking and Computational Thinking development. 

However, this hypothesis was not confirmed from the results that report a non-statistically 

significant difference in both cases. Nevertheless, students’ Computational Thinking in the 

non-scaffolding group found to be higher for students with a more positive attitude towards 

programming. Specifically, students in the high attitudes group had greater learning gains, 

followed by students in the moderate attitudes group and students in the low attitudes group 

for the non-scaffolding version of the game. On the other hand, students in the low attitudes 

group had greater learning gains, followed by students in the moderate attitudes and 

students in the high attitudes group for the scaffolding version of the game. 

8.6 Limitations 

The study developed a conceptual model for Computational Thinking and investigated 

some of its instances, following four research phases. Despite its contributions, the findings 
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must be considered in light of the limitations of its research phases presented in Sections 

4.2.3, 5.2.3, 6.24 and 7.2.5 accordingly. 

8.7 Future work 

Future research could be organized into the following three objectives: 

i) Investigate all model relationships. A full investigation of the relationships of the model 

could contribute to a better understanding of learning and teaching of Computational 

Thinking. Specifically, future research could focus on a) the relationship between Tools 

and CT development and provide insights on which tools could better support which CT 

learning strategies b) the relationship between learning strategies and CT development and 

provide insights on which learning strategies are most appropriate for students to acquire 

which CT elements c) the relationship between capacity building and CT development d) 

the relationship between factors, learning strategies and tools and provide insights on if 

and how learning strategies and tools could broaden participation in CT e) the relationship 

between factors and CT development and build clarity about factors that may affect CT 

acquisition. 

ii) Extend the model. Future research could focus on extending the conceptual model to 

include other approaches such as unplugged approaches. 

iii) Use the model to create course designs. Future research could focus on studying design 

principles that could lead to structured design courses that are based on the proposed CT 

conceptual model. 
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Appendix C 

Appendix C. Research instruments. 

Instrument adapted from Park (2009). 

Δημογραφικά Στοιχεία 

1. Συμπληρώσετε το σχολικό σας email * 

 

2. Τάξη * 

 

Να επισημαίνεται μόνο μία έλλειψη. 

ΓυμνασίουA  

Γυμνασίου Β  

Γυμνασίου Γ  

3. Φύλλο * 

Να επισημαίνεται μόνο μία έλλειψη. 

Αγόρι  

Κορίτσι 

4. Προηγούμενη εμπειρία προγραμματισμού * 

Να επισημαίνεται μόνο μία έλλειψη. 

Ναι  

Όχι 

Ευκολία Χρήσης 

1. Βρήκα το παιχνίδι προγραμματισμού και υπολογιστικής σκέψης aMazeD 

εύκολο στη χρήση. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 
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1 

2 

3 

4 

5 

Συμφωνώ έντονα 

2. Το να μάθω να χρησιμοποιώ ένα παιχνίδι προγραμματισμού και υπολογιστικής 

σκέψης είναι εύκολο για εμένα. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 

5 

Συμφωνώ έντονα 

Χρησιμότητα 

1. Το παιχνίδι προγραμματισμού και υπολογιστικής σκέψης aMazeD μπορεί να 

με βοηθήσει να καταλάβω τις έννοιες και τις πρακτικές προγραμματισμού και 

υπολογιστικής σκέψης. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 
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3 

4 

5 

Συμφωνώ έντονα 

2. Το παιχνίδι προγραμματισμού και υπολογιστικής σκέψης aMazeD μπορεί να 

κάνει ευκολότερη την μελέτη των εννοιών και των πρακτικών 

προγραμματισμού και υπολογιστικής σκέψης.* 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 

5 

Συμφωνώ έντονα 

3. Οι συμβουλές που μου παρείχε το παιχνίδι ήταν επαρκείς για να με βοηθήσουν  

να επιλύσω τα επίπεδα. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 
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5 

Συμφωνώ έντονα 

4. Οι συμβουλές που μου παρείχε το παιχνίδι ήταν χρήσιμες για να με βοηθήσουν  

να επιλύσω τα επίπεδα. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 

5 

Συμφωνώ έντονα 

5. Οι συμβουλές που μου παρείχε το παιχνίδι με βοήθησαν να κατανοήσω τις 

βασικές έννοιες προγραμματισμού και υπολογιστικής σκέψης. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 

5 

Συμφωνώ έντονα 

 

Στάση 
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1. Η μελέτη προγραμματισμού και υπολογιστικής σκέψης μέσω παιχνιδιών 

όπως το aMazeD είναι μια καλή ιδέα. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 

5 

Συμφωνώ έντονα 

2. Είμαι θετικός/θετική απέναντι στα παιχνίδια προγραμματισμού και

υπολογιστικής σκέψης. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 

1 

2 

3 

4 

5 

Συμφωνώ έντονα 

Προσιτότητα 

Δεν αντιμετώπισα καμία δυσκολία στη χρήση του παιχνιδιού

προγραμματισμού. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Διαφωνώ έντονα 
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1 

2 

3 

4 

5 

Συμφωνώ έντονα 

Συνολική Εμπειρία 

Γράψτε λίγα λόγια για την εμπειρία σας από το παιχνίδι. Τί σας άρεσε ή δεν σας άρεσε; Τί σας 

έκανε εντύπωση;* 
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Scale of Attitudes towards Programming adapted from Kong (2018) 

1. Συμπληρώσετε το σχολικό σας email * 

 

2. Τάξη * 

Να επισημαίνεται μόνο μία έλλειψη. 

ΓυμνασίουΑ  

Γυμνασίου Β  

Γυμνασίου Γ  

3. Φύλλο * 

Να επισημαίνεται μόνο μία έλλειψη. 

Αγόρι  

Κορίτσι 

 

Meaningfulness 

1. Ο προγραμματισμός είναι χρήσιμος για εμένα. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

2. Ο προγραμματισμός θα με βοηθήσει να πετύχω τους στόχους μου. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 
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1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

3. Θέλω να γίνω καλός στον προγραμματισμό. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

4. Ο προγραμματισμός είναι σημαντικός για μένα. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

Programming self-efficacy 

1. Μπορώ να μάθω πώς να προγραμματίζω. * 

Να επισημαίνεται μόνο μία έλλειψη. 
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Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

2. Είμαι καλός στον προγραμματισμό. * 

 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

3. Σκέφτομαι τον εαυτό μου ως κάποιον που μπορεί να προγραμματίσει. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 
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4. Έχω δεξιότητες προγραμματισμού. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

5. Έχω εμπιστοσύνη στην ικανότητά μου να προγραμματίζω. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

Interest in programming 

1. Ο προγραμματισμός είναι ενδιαφέρων. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 
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5 

Διαφωνώ απόλυτα 

2. Είμαι περίεργος για το περιεχόμενο του προγραμματισμού. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

3. Νομίζω ότι ο προγραμματισμός είναι διασκεδαστικός. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 

4 

5 

Διαφωνώ απόλυτα 

4. Με ενδιαφέρουν πολύ οι δραστηριότητες προγραμματισμού υπολογιστών. * 

Να επισημαίνεται μόνο μία έλλειψη. 

Συμφωνώ απόλυτα 

1 

2 

3 
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4 

5 

Διαφωνώ απόλυτα 
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Computational Thinking Test (CTt) adopted from Román-González et al. 

(2017) 

Καλώς ήρθατε στη δοκιμασία Υπολογιστικής Σκέψης! 

  * Υποδεικνύει απαιτούμενη ερώτηση 

1. Διεύθυνση ηλεκτρονικού ταχυδρομείου * 

 

2. Φύλλο * 

Να επισημαίνεται μόνο μία έλλειψη. 

 

  Αγόρι  

  Κορίτσι 

3. Τάξη * 

Να επισημαίνεται μόνο μία έλλειψη. 

ΓυμνασίουΑ  

Γυμνασίου Β  

Γυμνασίου Γ  

 

Οδηγίες 

Η δοκιμασία αποτελείται από 28 ερωτήσεις, σε 7 σελίδες με 4 ερωτήσεις η καθεμία. 

 

Όλες οι ερωτήσεις έχουν 4 επιλογές απαντήσεων (A, B, C ή D) από τις οποίες μόνο μία 

είναι  σωστή. 

 

Έχετε 45 λεπτά να κάνετε το καλύτερο που μπορείτε. Δεν είναι απαραίτητο να 

απαντήσετε σε όλες τις ερωτήσεις. 

 

Για να προχωρήσετε σε επόμενη σελίδα επιλέξτε "Συνέχεια" στο κάτω μέρος της σελίδας. 

ΠΟΛΥ ΣΗΜΑΝΤΙΚΟ: όταν ολοκληρώσετε τη δοκιμασία ή ο χρόνος σας τελειώσει θα 

πρέπει  να μετακινηθείτε στην τελευταία σελίδα και να επιλέξετε "Υποβολή". 

 

Πριν ξεκινήσετε τη δοκιμασία μπορείτε να δείτε παρακάτω παραδείγματα ερωτήσεων 

σαν    αυτά που θα πρέπει να απαντήσετε. 
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Παράδειγμα 1 

Σε αυτό το παράδειγμα σας ζητείται να δώσετε οδηγίες έτσι ώστε το Pac-man να 

συναντήσει το φάντασμα (ghost) μέσω του κίτρινου μονοπατιού. 

 

Η σωστή απάντηση είναι το B. 
 

Παράδειγμα 1. Ποιες οδηγίες πρέπει να δοθούν στο Pac-man έτσι ώστε να μεταβεί στο 

φάντασμα (ghost) μέσω του κίτρινου μονοπατιού; 

 

Παράδειγμα 1 * 

Επιλέξτε την απάντηση  Β 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Παράδειγμα 2. 

Και σε αυτό το παράδειγμα σας ζητείται να δώσετε οδηγίες έτσι ώστε το Pac-man να 

μεταβεί στο φάντασμα (ghost) μέσω του κίτρινου μονοπατιού. Εδώ όμως οι απαντήσεις 

παρουσιάζονται ως οδηγίες και όχι ως βέλη. 

 

Η σωστή απάντηση είναι το C. 

 

Παράδειγμα 2. Ποιες οδηγίες πρέπει να δοθούν στο Pac-man έτσι ώστε να μεταβεί στο 

φάντασμα (ghost) μέσω του κίτρινου μονοπατιού; 
 
 

 
 
 

Παράδειγμα 2 * 

Επιλέξτε την απάντηση C. 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Παράδειγμα 3 

Στο Παράδειγμα 3 σας ζητείται να δώσετε οδηγίες έτσι ώστε ο καλλιτέχνης (artist) να 

σχεδιάσει το σχήμα της οθόνης. 

 

Με την εντολή ΚΙΝΗΣΟΥ ο καλλιτέχνης (artist) προχωρά και ζωγραφίσει ενώ με την 

εντολή  ΜΕΤΑΒΑΣΗ ο καλλιτέχνης (artist) πηδά χωρίς να ζωγραφίζει. 

 

Tο γκρι βέλος δείχνει την κατεύθυνση εκκίνησης του καλλιτέχνη.  Η σωστή απάντηση 

είναι το Α. 

 

Παράδειγμα 3. Ποιες οδηγίες πρέπει να δοθούν στον καλλιτέχνη έτσι ώστε να σχεδιάσει 

το παρακάτω σχήμα; Η μικρή πλευρά είναι 50 εικονοστοιχεία και η μεγάλη100. 

 

 

Παράδειγμα 3 * 

Επιλέξτε την απάντηση Α. 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερωτήσεις 1-4 

Ερώτηση 1. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι; 
 
 

 
 

Ερώτηση 1 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 

  



 

174 

Ερώτηση 2. Ποιο βήμα λείπει στις παρακάτω οδηγίες για να μεταβεί το Pac-Man στο 

φάντασμα από το κίτρινο μονοπάτι; 

 

 
 
 
 

Ερώτηση 2 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 

  



 

175 

Ερώτηση 3. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος; 
 
 

 
 
 

Ερώτηση 3 

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 4. Ποιες οδηγίες πρέπει να ακολουθήσει ο καλλιτέχνης για να σχεδιάσει την 

πλατεία; Κάθε μία από τις πλευρές του τετραγώνου έχει μέγεθος 100 εικονοστοιχεία. 
 
 

 
 

 

Ερώτηση 4 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερωτήσεις 5-8 

Ερώτηση 5. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι; 
 
 

 
 
 

Ερώτηση 5 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 6. Πόσες φορές πρέπει να επαναληφθεί η ακολουθία για να οδηγηθεί το Pac-

Man στο φάντασμα από το κίτρινο μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 6 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B  

C 

 D 
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Ερώτηση 7. Οι οδηγίες πρέπει να κάνουν τον καλλιτέχνη να σχεδιάσει το ακόλουθο 

ορθογώνιο μία φορά (πλάτος 50 εικονοστοιχεία και ύψος 100 εικονοστοιχεία). Σεποιο 

βήμα των οδηγιών υπάρχει κάποιο λάθος; 
 
 

 
 

 

Ερώτηση 7 

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 8. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 8 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερωτήσεις 9-12 

Ερώτηση 9. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 9 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 10. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι; 
 
 

 
 
 

Ερώτηση 10 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B  

C 

 D 
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Ερώτηση 11. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος; 
 
 

 
 
 

Ερώτηση 11 

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερώτηση 12. Ποιες οδηγίες πρέπει να δοθούν στον καλλιτέχνη για να σχεδιάσει τη 

σκάλα που φαίνεται στην παρακάτω εικόνα; Ανάμεσα σε κάθε σκαλί μεσολαβεί κενό 30 

εικονοστοιχεία. 
 
 

 

 

Ερώτηση 12 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B  

C 

 D 
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Ερωτήσεις 13-16 

Ερώτηση 13. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 13 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 14. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 14 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 15. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στο φάντασμα 

από το κίτρινο μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 15 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερώτηση 16. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος; 
 
 

 
 
 

Ερώτηση 16 

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερωτήσεις 17-20 

Ερώτηση 17. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 17 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερώτηση 18. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι; 
 
 

 
 
 
 

Ερώτηση 18 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B  

C 

 D 
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Ερώτηση 19. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο 

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος; 
 
 

 
 
 
 

Ερώτηση 19 

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερώτηση 20. Ποιο βήμα οδηγιών λείπει έτσι ώστε το Pac-Man να μεταβεί στο φάντασμα 

από το κίτρινο μονοπάτι; 
 
 

 
 
 

Ερώτηση 20 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερωτήσεις 21-21 

 

 

ΣΗΜΑΝΤΙΚΟ: ΔΙΑΒΑΣΤΕ ΠΡΟΣΕΚΤΙΚΑ 

Στις παρακάτω ερωτήσεις εμφανίζεται η εικόνα μίας φράουλας μέσα σε ένα 

τετράγωνο. Το τετράγωνο κάτω δεξιά εμφανίζει πόσες φράουλες υπάρχουν στο 

τετράγωνο.
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Ερώτηση 21. Ποιες οδηγίες οδηγούν το Pac-Man στις φράουλες από το κίτρινο  

μονοπάτι και του λένε να φάει όλες τις φράουλες που εμφανίζονται; 

 

 
 

 

Ερώτηση 21 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B  

C 

 D 
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Ερώτηση 22. Ποιες οδηγίες οδηγούν το Pac-Man στις φράουλες από το κίτρινο μονοπάτι 

και του λένε να φάει όλες τις φράουλες που εμφανίζονται; 
 
 

 
 

 

Ερώτηση 22 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B  

C 

 D 
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Ερώτηση 23. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στις φράουλες 

από το κίτρινο μονοπάτι και να φάει όλες τις φράουλες που εμφανίζονται; 
 
 

 
 
 
 

Ερώτηση 23 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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Ερώτηση 24. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στις φράουλες 

από το κίτρινο μονοπάτι και να φάει όλες τις φράουλες που εμφανίζονται (αγνώστου 

αριθμού); 
 
 

 

 

Ερώτηση 24 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B  

C 

 D 
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Ερωτήσεις 25 - 28 

 
Ερώτηση 25. Ποιες οδηγίες πρέπει να ακολουθήσει ο καλλιτέχνης για να σχεδιάσει το 

παρακάτω σχήμα; Το σύνολο οδηγιών που εμφανίζεται στο αριστερό μέρος της εικόνας 

ονομάζεται συνάρτηση (function) και ζωγραφίζει ένα τετράγωνο με πλευρά 100 

εικονοστοιχεία. 

 

 
 

 

Ερώτηση 25 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B  

C 

 D 
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Ερώτηση 26. Οι παρακάτω οδηγίες πρέπει να κάνουν τον καλλιτέχνη να σχεδιάσει το 

παρακάτω σχήμα. Ποιο νούμερο λείπει στις οδηγίες; Η συνάρτηση που εμφανίζεται στο 

αριστερό μέρος της εικόνας ζωγραφίζει ένα τρίγωνο με πλευρά 50 εικονοστοιχεία. 

 

 

 

Ερώτηση 26 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A  

B 

 C 

 D 
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Ερώτηση 27. Ποιες οδηγίες οδηγούν το Pac-Man στις φράουλες από το κίτρινο μονοπάτι 

και του λένε να φάει όλες τις φράουλες που εμφανίζονται; 
 
 

 
 
 

Ερώτηση 27 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B  

C  

D 
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Ερώτηση 28. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στις φράουλες 

από το κίτρινο μονοπάτι και να φάει όλες τις φράουλες που εμφανίζονται;  
 
 

 
 
 

Ερώτηση 28 

Επιλέξτε τη σωστή απάντηση 

 

Να επισημαίνεται μόνο μία έλλειψη. 

 

A 

 B 

 C 

 D 
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