
iii

UNIVERSITY OF MACEDONIA
SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

Computational Thinking through Programming: A conceptual

model for teaching and learning Computational Thinking

Ph.D. Dissertation

Christina Tikva

THESSALONIKI, GREECE
MAY, 2023

iv

Computational Thinking through Programming: A conceptual

model for teaching and learning Computational Thinking

Christina Tikva

Bachelor’s Degree (BSc) in Applied Informatics, University of Macedonia, 2007

Master’s Degree (MSc) in Computer Science and Management, Department of Computer Science

of the Aristotle University, 2009

Ph.D. Dissertation

SUPERVISOR

Efthimios Tambouris

Professor, Department of Applied Informatics, University of Macedonia

ADVISORY COMMITTEE

Efthimios Tambouris

Professor, Department of Applied Informatics, University of Macedonia

Maria Satratzemi

Professor, Department of Applied Informatics, University of Macedonia

Nikolaos Fachantidis

Associate Professor, Department of Educational & Social Policy, University of

Macedonia

v

EXAMINATION COMMITTEE

Efthimios Tambouris

Professor, Department of Applied Informatics, University of Macedonia

Maria Satratzemi

Professor, Department of Applied Informatics, University of Macedonia

Nikolaos Fachantidis

Associate Professor, Department of Educational & Social Policy, University of

Macedonia

Stavros Demetriadis

Professor, Department of Informatics, Aristotle University of Thessaloniki

Spyridon Doukakis

Assistant Professor, Department of Informatics, Ionian University

Stylianos Xinogalos

Professor, Department of Applied Informatics, University of Macedonia

Avgoustos Tsinakos

Professor, Department of Computer Science, International Hellenic University

vi

Abstract

Computational Thinking (CT) through programming attracts increased attention as it is

considered an ideal medium for the development of 21st century skills. CT initiatives have

emerged around the world and there is a rapid increase in relevant research studies. The

accumulation of research plethora leads to the need for a conceptual model of CT that

could map the domain, facilitating comprehensive understanding of the domain’s

challenges. The aim of this thesis is a) to develop a conceptual model based on a systematic

literature review that maps CT through programming in K-12 and higher education and b)

to investigate the relationships between certain instances of the model, namely of the

effects of scaffolding programming games and attitudes towards programming, on the

development of students’ Computational Thinking.

Regarding the first aim of this thesis, the proposed Computational Thinking

through Programming in K-12 education (CTPK-12) conceptual model emerges from the

synthesis of 101 studies and the identification of CT Areas. The proposed model consists

of six CT Areas (namely Knowledge Base, Learning Strategies, Assessment, Tools,

Factors and Capacity Building) and their relationships. Some of the relationships between

areas have not yet been sufficiently explored in the literature such as which learning

strategies enable the development of CT. The revised model for higher education is derived

from a systematic mapping of 41 studies. This model includes the same CT Areas and

relationships as CTPK-12, however it differs in sub-areas and instances. Knowledge Base

Area, Assessment Area and Tools Area have significantly evolved throughout the years,

while Capacity Building Area has only recently emerged. In addition, the introduction of

CT to undergraduate students and preservice teachers differs mainly in the tools used and

the CT elements that are assessed.

Regarding the second aim, students were introduced to CT under two distinct

experimental conditions: a scaffolding version of a programming game and a non-

scaffolding version of the same game. Results report statistically significant differences

between the pre-intervention and post-intervention CT scores for all students and

statistically significant improvement in learning outcomes in favor of the scaffolding

group. In addition, the study hypothesized that attitudes towards programming would have

vii

an impact on students’ CT. Although this hypothesis has not been confirmed, the results

suggest that students who have a less positive attitude towards programming could

particularly benefit from scaffolding aspects in programming games.

Keywords: Computational Thinking, programming, K-12 education, higher

education, scaffolding, computational thinking games, attitudes towards programming

viii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Professor Efthimios

Tambouris for the continuous support of my Ph.D. studies, for his patience, motivation,

and knowledge. His guidance helped me in all the time of research and writing of this

thesis. I’d also like to extend my gratitude to Associate Professor Nikolaos Fachantidis and

Professor Maya Satratzemi for their valuable and constructive advice.

Special mention goes to Dimitris Trakosas for his collaboration in publishing an article

and to Maria Mousiou for the development of the Amazed scaffolding game (Mousiou

2021). Ι would also like to thank Marcos Román- González who shared with us the full

version and the specification table sheet of the Computational Thinking Test (CTt)

(Román-González et al., 2017).

Most importantly, none of this would have been possible without my family, my husband

Ioannis and our two kids Euanthe and Vasilis. They have been a constant source of joy and

fullness. Last but not least, I would like to thank my mother and father for supporting me

always. I thank them for their unconditional love and the constant encouragement to

continue and complete my studies.

ix

Table of contents

1 Introduction 1

1.1 Problem definition and research objectives 1

1.2 Thesis Objectives and contribution 2

1.3 Thesis Contribution 5

1.4 Structure 6

1.5 Publications 7

2 Background Work 9

2.1 Introduction 9

2.2 Computational Thinking 9

2.3 Computational Thinking operational definitions 10

2.3.1 Angeli et al. (2016) 10

2.3.2 Barr & Stephenson (2011) 11

2.3.3 Brennan & Resnick (2012) 15

2.3.4 Csizmadia et al. (2015) 17

2.3.5 International Society for Technology in Education (ISTE) and Computer

Science Teacher Association (CSTA) (2011) 22

2.3.6 Kalelioglu, Gulbahar, & Kukul (2016) 22

2.3.7 Selby (2013) 23

2.3.8 Shute et al. (2017) 24

2.3.9 Sondakh et al. (2020) 25

x

2.3.10 Weintrop et al. (2016) 26

2.3.11 Computational Thinking elements 27

2.4 Computational Thinking Literature Reviews 29

2.5 Summary 32

3 Methodology 33

3.1 Phase 1. Developing a Conceptual Model of Computational Thinking through

programming in K-12 education (CTPK-12) 33

3.2 Phase 2. Extending the Computational Thinking through Programming in K-12

Education (CTPK-12) Conceptual Model for Higher Education 34

3.3 Phase 3. Designing and evaluating of a Scaffolding Computational Thinking

game. 34

3.4 Phase 4. Investigating certain instances of the Learning Strategies and Factors

CTPK-12 model’s areas. 35

4 Computational Thinking through programming in K-12 Education (CTPK-12)

Conceptual Model 36

4.1 Introduction 36

4.2 Study design 36

4.2.1 Study goal and research questions 36

4.2.2 Method 37

4.2.2.1 Elicitation of the domain knowledge 37

4.2.2.2 Visualization of the domain knowledge 41

4.2.3 Study limitations 42

4.3 The CTPK-12 model 42

xi

4.3.1 CT Areas 46

4.3.1.1 Knowledge Base Area 46

4.3.1.2 Assessment Area 49

4.3.1.3 Learning Strategies Area 51

4.3.1.4 Factors Area 52

4.3.1.5 Tools Area 55

4.3.1.6 Capacity Building Area 56

4.3.2 CT Areas Relationships 58

4.4 Discussion 60

4.5 Summary 65

5 Extending the CTPK-12 model for higher education 66

5.1 Introduction 66

5.2 Study design 66

5.2.1 Study goal 66

5.2.2 Method 66

5.2.2.1 Definition of Research Questions 67

5.2.2.2 Conduct search for primary studies 67

5.2.2.3 Screening of studies 68

5.2.2.4 Classification Scheme Identification 68

5.2.2.5 Data extraction and mapping process 68

5.2.3 Study Limitations 69

xii

5.3 Overview of Computational Thinking through programming studies in higher

education. 69

5.3.1 Studies by year 69

5.3.2 Interventions for CT development in higher education. 70

5.4 The revised conceptual model for CT through programming in higher education

(CTPHE) 74

5.4.1 CT areas in higher education 75

5.4.1.1 Knowledge Base 75

5.4.1.2 Learning Strategies 78

5.4.1.3 Tools 82

5.4.1.4 Assessment 85

5.4.1.5 Factors 88

5.4.1.6 Capacity Building 89

5.5 Discussion 90

5.6 Summary 94

6 Designing and evaluating a Computational Thinking tool 95

6.1 Introduction 95

6.2 Study design 95

6.2.1 Study goal and research questions 95

6.2.2 Research design and Participants 96

6.2.3 Instrument 96

6.2.4 Study Limitations 96

xiii

6.3 The aMazeD Scaffolding Computational Thinking Game 97

6.3.1 aMazeD General Description 97

6.3.2 Computational Thinking Concepts and Practices Covered by the Scaffolding

Computational Thinking Game 99

6.3.3 aMazeD Scaffolding Features 100

6.3.4 aMazeD Analytics Features 102

6.4 Results 102

6.4.1 Demographic Data of the Participants 102

6.4.2 Perceived ease of use (PE) 103

6.4.3 Perceived usefulness (PU) 104

6.4.4 Attitude (AT) 106

6.4.5 Accessibility (AC) 107

6.4.6 Overall experience 108

6.5 Discussion 109

6.6 Summary 110

7 Τhe effect of scaffolding programming games and attitudes towards programming on

the development of Computational Thinking 111

7.1 Introduction 111

7.2 Related Work 111

7.2.1 Scaffolding strategies in Computational Thinking research 113

7.2.2 Attitudes towards programming/Computer Science in Computational

Thinking research 114

xiv

7.3 Study design 116

7.3.1 Study goal and research questions 116

7.3.2 Research design 117

7.3.3 Intervention instrument 118

7.3.4 Data collection 118

7.3.5 Study Limitations 118

7.4 Demographics 119

7.5 CTt 119

7.6 Analytics 119

7.7 Scale of Attitudes towards Programming 120

7.8 Does aMazeD have a positive impact on middle school students' CT

development? 121

7.9 Does aMazeD with scaffolding features have a greater impact on middle school

students’ CT development than the aMazeD version without scaffolding features? 121

7.10 Do attitudes towards programming have an impact on students’ CT? 123

7.11 Do attitudes towards programming have an impact on students’ CT

improvement? 123

7.12 Discussion 124

7.13 Summary 129

8 Conclusions and direction for future research 130

8.1 Introduction 130

8.2 Conclusions Phase 1 130

xv

8.3 Conclusions Phase 2 133

8.4 Conclusions Phase 3 133

8.5 Conclusions Phase 4 134

8.6 Limitations 134

8.7 Future work 135

Appendixes 136

Appendix A 136

Appendix B 150

Appendix C 157

References 202

xvi

List of Figures

Figure 2-1. Computational Thinking dispositions (Barr & Stephenson, 2011) 14

Figure 2-2. Classroom Culture Characteristics (Barr & Stephenson, 2011). 14

Figure 2-3. Computational Thinking Concepts and Approaches (Csizmadia et al., 2015).

 .. 18

Figure 2-4. Definition of holistic Computational Thinking (Sondakh et al., 2020). 26

Figure 2-5. Computational Thinking in Mathematics and Science definition (Weintrop et

al., 2016) ... 27

Figure 3-1. Method followed in this thesis ... 33

Figure 4-1. Method ... 37

Figure 4-2. Process applied for study selection adapted by Moher et al. (2009) 38

Figure 4-3. Example of elements recording and sub-areas identification 41

Figure 4-4. Example of evidence recording and relationship identification 41

Figure 4-5. Computational Thinking through Programming in K-12 education (CTPK-12)

model .. 43

Figure 4-6. Percentage of studies by CT Areas to which they contribute in the periods

2006-2014 and 2015-2019. References to 2019 actually refer to period January 2019

to October 2019 .. 45

Figure 4-7. Number of studies by CT element appearing more than twice in the examined

studies ... 49

Figure 4-8. Number of studies by the most common learning strategies 52

Figure 4-9. Number of studies by tool ... 56

Figure 4-10. Example of a hypothesized research model based on CTPK-12 model 64

xvii

Figure 4-11. CTPK-12 model application in K-12 educational practice.......................... 65

Figure 5-1. Systematic mapping process, adapted from Petersen et al. (2008)................ 67

Figure 5-2. Studies by year ... 70

Figure 5-3. Percentage of studies by branch in periods 2006-2016 and 2017-2020 73

Figure 5-4. The revised conceptual model for CT through programming in higher

education (CTPHE) .. 74

Figure 5-5. Distribution of CT Knowledge Base elements sub-categories by time period

 .. 77

Figure 5-6. Distribution of learning strategies sub-categories by time period 81

Figure 5-7. Distribution of tools sub-categories by period... 84

Figure 5-8. Distribution of assessment sub-categories by period 87

Figure 6-1. The aMazeD game environment .. 98

Figure 6-2. Semi-finished instructions ... 101

Figure 6-3. Demographic data of the participants .. 103

Figure 6-4. Results on PE1 ... 103

Figure 6-5. Results on PE2 ... 104

Figure 6-6. Results on PU1 .. 104

Figure 6-7. Results on PU2 .. 105

Figure 6-8. Results on PU3 .. 105

Figure 6-9. Results on PU4 .. 105

Figure 6-10. Results on PU5 .. 106

Figure 6-11. Results on AT1 .. 106

xviii

Figure 6-12. Results on AT2 .. 107

Figure 6-13. Results on AC .. 107

Figure 7-1. Means of pre-tests scores by attitudes towards programming group 126

Figure 7-2. Means of score changes by attitudes towards programming group for the non-

scaffolding group .. 127

Figure 7-3. Means of score changes by attitudes towards programming group for the

scaffolding group .. 128

xix

List of Tables

Table 2-1. Computational Thinking skills (Angeli et al.,2016) 10

Table 2-2. Computational thinking skills curriculum (Angeli et al., 2016) 10

Table 2-3. Computational Thinking operational definition (Barr & Stephenson, 2011) . 11

Table 2-4. Computational Thinking concepts, practices and perspectives (Brennan &

Resnick, 2012) .. 15

Table 2-5. Computational Thinking Concepts (Csizmadia et al., 2015) 18

Table 2-6. Computational Thinking Techniques (Csizmadia et al.,2015) 21

Table 2-7. Framework for Computational Thinking as a Problem-Solving Process

(Kalelioglu, Gulbahar, & Kukul, 2016).. 23

Table 2-8. Computational Thinking components (Shute et al., 2017) 24

Table 2-9. CT elements in CT operational definitions ... 28

Table 2-10. Literature Reviews in CT domain ... 30

Table 4-1. Approaches to Literature Reviews adopted from Webster and Watson (2002)

 .. 40

Table 4-2. CT Areas ... 43

Table 4-3. CT Areas’ relationships .. 45

Table 4-4. Knowledge Base sub-areas ... 47

Table 4-5. Assessment sub-areas .. 50

Table 4-6. Learning strategies sub-areas .. 51

Table 4-7. Factors sub-areas ... 54

Table 4-8. Tools sub-areas ... 56

xx

Table 4-9. Capacity Building sub-areas ... 58

Table 5-1. Inclusion and exclusion criteria .. 68

Table 5-2. Interventions for CT development in higher education 70

Table 5-3. Classification of branches ... 72

Table 5-4. CT Knowledge Base sub-categories ... 76

Table 5-5. Percentage of studies’ CT Knowledge Base elements sub-categories by

classified branch ... 77

Table 5-6. Learning strategies sub-categories .. 79

Table 5-7. Percentage of learning strategies sub-categories by classified branch 81

Table 5-8. Tools sub-categories ... 83

Table 5-9. Percentage of tools sub-categories by classified branch 84

Table 5-10. Assessment sub-categories .. 86

Table 5-11. Percentage of assessment sub-categories by classified branch 88

Table 5-12. Factors investigated in the selected studies... 89

Table 5-13. Capacity Building methods ... 90

Table 6-1. CT Concepts and practices per aMazeD level .. 99

Table 7-1. Attitudes towards programming/CS found in the literature 115

Table 7-2. Distribution of participants by grade and gender .. 119

Table 7-3. Internal consistency of the scale of Attitudes towards Programming 121

Table 7-4. Computational Thinking pre-scores and post-scores means by game version

 .. 125

xxi

Table 7-5. Computational Thinking Conditional-Level, Loop-Level, Conditional-Use,

Loop-Use scores, Conditional-Ratio and Loop-Ratio means by game version 125

Table 7-6. Computational Thinking changes in pre-scores and post-scores means by game

version and attitudes towards programming group .. 128

1

 1 Introduction

1.1 Problem definition and research objectives

Computational Thinking (CT) has its roots in 1980s with Papert’s (1980) attempts to

introduce programming to young students. Later in 2006, Wing (2006) defines CT as a

process that “involves solving problems, designing systems, and understanding human

behavior, by drawing on the concepts fundamental to computer science”. CT is considered

a necessary skill for everyone (Wing, 2006) and an ideal medium for the development of

21st century skills (Lye & Koh, 2014; Grover & Pea, 2013).

After about fifteen years of renewed interest in CT, the domain of CT research is

beginning to mature. It is indicative that a large number of studies focusing on CT have

been published in recent years (T.-C. Hsu, Chang, & Hung, 2018). This large body of

literature indicates challenges in particular areas including (a) developing widely accepted

assessment methods and frameworks that encompass the complexity of CT (Brennan &

Resnick, 2012; Denner, Werner, & Ortiz, 2012; Denning, 2017; Fronza, Ioini, & Corral,

2017; Grover et al., 2017; Grover, Pea, & Cooper, 2015; Moreno León, Robles, & Román

González, 2015; Zhong, Wang, Chen, & Li, 2016), (b) designing theoretically-based

approaches that align learning strategies with CT (Dolgopolovas, Dagienė, Jasutė, &

Jevsikova, 2019) and (c) identifying the knowledge needed to teach CT (Angeli et al.,

2016; Cooper, Grover, Guzdial, & Simon, 2014) and methods by which support to teachers

is provided (Yadav, Stephenson, & Hong, 2017).

Several literature reviews examine the whole domain from different perspectives

as well as propose frameworks and definitions. Researchers in these studies review the

literature in order to derive insights on CT through programming for K-12 curriculum (Lye

& Koh, 2014), to understand the development and application of CT in education (Hsu et

al. 2018), to facilitate CT learning and assessment within K-12 curricula (Shute, Sun, &

Asbell-Clarke, 2017), to review CT literature in higher education (Czerkawski & Lyman,

2015) and to support educators in developing CT tasks and programs (Kalelioglu,

Gulbahar, & Kukul, 2016). Despite all these efforts, a comprehensive mapping of the

domain is still lacking. A comprehensive mapping of the domain would enable better

understanding of challenges and guide future research.

2

Regarding the practical use of CT, efforts to integrate CT in schools and higher

education are taking place worldwide responding to societal need for 21st century skills

(Buitrago Flórez et al., 2017; Czerkawski & Lyman, 2015; Y.-C. Hsu, Irie, & Ching, 2019;

Passey, 2017). At the same time, many undergoing initiatives promote CT by providing

curriculum suggestions (Csizmadia et al., 2015), CT and programming tools and resources

(García-Peñalvo & Mendes, 2018). However, educators do not have an overall map of the

CT through programming domain to help them design CT curricula. This is evident from

the fact that several studies underline that educators lack clear understanding of how CT

could be effectively integrated into their educational practices (e.g., Denning, 2017; Grover

& Pea, 2013; Yadav et al., 2017).

When the research that has been conducted is mature and there is sufficient

material, what often helps is the existence of a conceptual model. A conceptual model

offers in developing domain understanding through aiding reasoning about the domain,

communicating the domain details and documenting the domain for future reference

(Gemino & Wand, 2004). In addition, a conceptual model could be an effective roadmap

between what we know and what we need to know, providing a firm foundation for

advancing the domain knowledge (Webster & Watson, 2002). Such a conceptual model of

CT through programming education is still missing. Its existence could help researchers

better understand the domain and its challenges through a holistic approach and identify

areas that have already been covered by research and areas where more research is needed.

In addition, a conceptual model serves as a point of agreement (Mylopoulos, 1992) and

thus could support CT teaching and learning by providing a reference point for educators.

1.2 Thesis Objectives and contribution

Our aim is to develop a conceptual model of CT through programming. This model could

aid domain understanding and serve as a basis for future studies. It could also support

researchers to focus on significant research gaps in their CT studies, having an up-to-date

synthesis of the relevant literature. In addition, it could support the integration of CT into

educational practices, providing evidence to educators and policy-makers as well as

bringing closer research, practice and policy.

3

Given that the bulk of the research concerns K-12 and that K-12 and higher

education are often treated as related but distinct levels of education, we chose to base our

model on K-12 and then extend it to higher education.

We also aim to further investigate certain instances of the model namely, Learning

Strategies and Factors areas. To do so a) we design and evaluate a CT tool and b) we design

and conduct an experimental study. In this context, the following objectives and research

questions guide the work carried out in this dissertation:

O1: To develop a Conceptual Model of Computational Thinking through

programming in K-12 education based on a Systematic Literature Review

This involves investigating and analysing the literature in order to elicit the areas

of Computational Thinking domain and their relationships.

• RQ1.1. What are the areas of CT through programming in K-12 education

domain?

• RQ1.2 What are the sub-areas of each CT Area in K-12 education?

• RQ 1.3 How do CT Areas relate to each other in K-12 education?

O2: To expand the Conceptual Model of Computational Thinking through

programming in K-12 education for Higher Education

This involves studying the areas and relationships of the CTPK-12 conceptual

model in the context of higher education. In addition, the analysis of these areas based on

the following two dimensions is performed: a) their evolution over the years and b) the

branches to which CT is applied.

• RQ 2.1 What are the areas and sub-areas of teaching and learning CT through

programming in higher education and how do they relate to each other?

• RQ 2.2 How do these areas evolve over the years and how do they apply to

various branches?

O3: To design, develop and evaluate a Scaffolding Computational Thinking game

4

This involves the design, implementation and evaluation of a Scaffolding CT game.

In this dissertation, the design and evaluation of the game are presented, while the

implementation was done by Maria Mousiou during her master thesis (Mousiou, 2021).

O3.1: To design the aMazeD Scaffolding Computational Thinking game

• RQ 3.1.1 Which Computational Thinking concepts and perspectives should be

covered by the aMazeD game?

• RQ 3.1.2 Which scaffolding features should be included in the aMazeD game?

• RQ 3.1.3 Which analytics should be included in the aMazeD game?

O3.2: To evaluate the aMazeD Scaffolding Computational Thinking game

• RQ 3.2.1 Do students perceive the aMazeD Scaffolding Computational

Thinking Game as ease to use?

• RQ 3.2.2 Do students perceive the Scaffolding Computational Thinking Game

aMazeD as effective on learning Computational Thinking?

• RQ 3.2.3 Do students perceive the scaffolding features of the Scaffolding

Computational Thinking Game aMazeD as effective in learning Computational

Thinking?

O4: Using the CTPK-12 model to design and conduct an empirical study to

investigate certain instances of the model namely, Learning Strategies and Factors

areas.

This involves the investigation of the effects of a) scaffolding programming games

and b) attitudes towards programming, on the development of middle school students’

Computational Thinking.

• RQ 4.1 Does the aMazeD programming game have a positive impact on middle

school students' CT development?

5

• RQ 4.2 Does the scaffolding version of the aMazeD programming game have

a greater impact on middle school students’ CT development than the version

without scaffolding?

• RQ 4.3 Do attitudes towards programming have an impact on middle school

students’ CT?

• RQ 4.4 Do attitudes towards programming have an impact on middle school

students’ CT improvement?

1.3 Thesis Contribution

The development of a conceptual model for CT through programming aims to a) provide

guidance to researchers in designing, delivering, and assessing CT studies and b) to provide

guidance to educators in integrating CT into their educational practices. The benefits of

utilizing such a conceptual model regard:

• Mapping the Computational Thinking through programming domain for future

reference and communicating the domain details.

• Identifying areas that have already been covered by research and areas where more

research is needed.

• Serving as a basis for future studies. In particular, the model could serve as a basis

for hypothesized research models that establish a direct link between theory and

statistical estimations.

• Providing evidence to teachers and policy-makers as well as bringing closer

research, practice and policy.

Towards the aforementioned goals, the contribution is summarized in the following

parts:

Developing a Computational Thinking through programming conceptual

model: A conceptual model that presents the concepts and relationships of the domain and

their visual representation. It comprises of six Computational Thinking Areas, namely

Knowledge Base Area, Assessment Area, Learning Strategies Area, Factors Area, Tools

6

Area and Capacity Building Area. Each CT Area includes sub-areas that are populated

with specific instances. Example of such sub-areas and instances include sub-areas of Self-

Report Methods, Tests, Artifact analysis, Observations and Assessment frameworks in

Assessment Area and instances of scales, questionnaires, surveys, interviews, think-aloud

protocol, journals and reflection reports in Self-Report sub-area. Finally, we identify

relationships between the CT Areas.

Utilizing the model to study certain CT Areas relationships: The model was

utilized to explore a) the relationship between the instance of Scaffolding (Learning

Strategies Area) and CT concepts (Knowledge Base Area) and b) the relationship between

the instance of Attitudes towards programming (Factors Area) and CT concepts

(Knowledge Base Area). The effects of scaffolding programming games and students’

attitudes towards programming on the development of students’ Computational Thinking

were explored. The implication of the study findings is important, as they provide support

that scaffolding in CT games could be an effective strategy for teaching and learning CT

to middle school students fostering a deeper understanding of CT concepts. In addition,

when it comes to students’ attitudes towards programming, students who perceive

programming as less meaningful, less interesting and have lower programming self-

efficacy could particularly benefit from scaffolding aspects in programming games.

1.4 Structure

The thesis is structured as follows:

The first chapter is the introduction of the research carried out, while the second

chapter provides background information on related work. More specifically, it presents a

study conducted on Computational Thinking definition frameworks in order to derive

terms that describe the components of Computational Thinking that are repeatedly raised

in the literature. In addition, the main characteristics of the literature reviews focusing on

the field of Computational Thinking are briefly presented.

The third chapter presents the method followed during the Ph.D. research.

Specifically, the research phases and the study designs that were followed are presented.

7

The fourth chapter presents the Computational Thinking through programming in

K-12 (CTPK-12) education conceptual model that was designed based on a systematic

literature review. In particular, the concepts and relationships of the model are presented,

analysed and discussed in this chapter.

The fifth chapter presents the extension of the CTPK-12 model to include higher

education. Similar to the previous chapter, the concepts and relationships of the model are

presented and discussed, albeit in the context of higher education.

The sixth chapter presents the design and evaluation of a scaffolding programming

game for Computational Thinking. In addition, the Computational Thinking concepts and

practices covered by the game and the scaffolding framework on which it is based are

presented.

The seventh chapter presents the investigation of certain relationships of the CTPK-

12 model. Specifically, it presents an experimental study that exploits the scaffolding

programming game presented in the previous chapter, to investigate the impact of the

CPTK-12 model areas, namely “Learning Strategies” and “Factors”.

The eighth chapter offers conclusions drawn and future work.

1.5 Publications

The scientific findings of this thesis have been published in international journals as

follows:

Chapter 4

Tikva, C., & Tambouris, E. (2021a). Mapping computational thinking through

programming in K-12 education: A conceptual model based on a systematic

literature Review. Computers & Education, 162, 104083.

https://doi.org/10.1016/j.compedu.2020.104083 [IF 11.82]

Chapter 5

https://doi.org/10.1016/j.compedu.2020.104083

8

Tikva, C., & Tambouris, E. (2021b). A systematic mapping study on teaching and

learning Computational Thinking through programming in higher education.

Thinking Skills and Creativity, 41, 100849.

https://doi.org/10.1016/j.tsc.2021.100849 [IF 3.652]

Chapter 7

Tikva, C., & Tambouris, E. (2022) The effect of scaffolding programming games and

attitudes towards programming on the development of Computational Thinking.

Education and Information Technologies. https://doi.org/10.1007/s10639-022-

11465-y [IF 3.605]

Trakosas, D., Tikva, C., & Tambouris, E. Visual Programming and Computational

Thinking Environments for K-9 Education: A Systematic Literature Review.

International Journal of Learning Technology (accepted for publication).

https://doi.org/10.1016/j.tsc.2021.100849
https://doi.org/10.1007/s10639-022-11465-y
https://doi.org/10.1007/s10639-022-11465-y

9

2 Background Work

2.1 Introduction

The aim of this Chapter is to present definitions, related introductory concepts and previous

work conducted in the field of Computational Thinking for a better understanding of the

subject.

The remainder of this Chapter is organised as follows: Section 2.2 presents the

definition of Computational Thinking according to previous research. Section 2.3 presents

Computational Thinking frameworks that have been developed to provide an operational

definition of Computational Thinking. The Section concludes with a summary of CT

elements presented in the CT operational definitions. Section 2.4 presents literature

reviews conducted in the field of Computational Thinking. Section 2.5 presents the

summary of the Chapter.

2.2 Computational Thinking

Computational Thinking (CT) was firstly introduced by Papert (1980), who relates

programming to procedural thinking skills. The term was reintroduced by Wing (2006)

who defines CT as a process that “involves solving problems, designing systems, and

understanding human behaviour, by drawing on the concepts fundamental to computer

science” (Wing 2006, p.33). She points out that CT is a fundamental skill for everyone,

not just for computer scientists and argues that “To writing and arithmetic, we should add

CT to every child’s analytical ability” (Wing 2006, p.33). CT is the thought process that

involves solving problems and designing model systems by utilizing Computer Science

(CS) core concepts (Wing, 2008). Wing’s definition has subsequently become a reference

point for discussion on CT. However, various other definitions have emerged in the

literature (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013). Aho

(2012) defines CT as “the thought processes involved in formulating problems so their

solutions can be represented as computational steps and algorithms.” Many other

definitions exist in the literature.

CT definitions can be classified into two main categories: generic definitions that

focus on CT as a thought process (Román-González, Pérez-González, & Jiménez-

10

Fernández, 2017) and operational definitions that describe what CT entails. The second

category which comprises efforts that develop models describing CT elements, is

presented in the next section.

2.3 Computational Thinking operational definitions

2.3.1 Angeli et al. (2016)

Angeli et al. (2016) propose a conceptual framework that describes CT skills (Table 2-1).

Based on this framework they also present specific examples (Table 2-2) for each CT skill

taking into account the age of the students.

Table 2-1. Computational Thinking skills (Angeli et al.,2016)

Skill Definition

Abstraction

The skill to decide what information about an entity/object to keep and what to ignore

(Wing, 2011).

Generalization

The skill to formulate a solution in generic terms so that it can be applied to different

problems (Selby, 2014).

Decomposition

The skill to break a complex problem into smaller parts that are easier to understand and

solve (National Research Council, 2010; Wing, 2011).

Algorithms

Sequencing

Flow of

control

The skill to devise a step-by-step set of operations/actions of how to go about solving a

problem (Selby, 2014).

The skill to put actions in the correct sequence (Selby, 2014).

The order in which instructions/actions are executed (Selby, 2014).

Debugging

The skill to identify, remove, and fix errors (Selby, 2014).

Table 2-2. Computational thinking skills curriculum (Angeli et al., 2016)

Skill K-2 (ages 6 to 8) 3-4 (ages 9 to 10) 5-6 (ages 11 to 12)

Abstraction With the use of external reference

systems, create a model/representation

to solve a problem.

Create a

model/representation

to solve a problem

Create a new

model/representation

to solve a problem.

Generalization Identify common patterns between

older and newer problem-solving tasks,

and use sequences of instructions

previously employed, to solve a new

problem

Remix and reuse (by

extending if needed)

resources that were

previously created

Remix and reuse (by

extending if needed)

resources that were

previously created.

11

Decomposition Break a complex task into a series of

simpler subtasks

Break a complex task

into simpler subtasks.

Develop a solution by

assembling together

collections of smaller

parts.

Break a complex

task into simpler

subtasks.

Develop a solution

by assembling

together collections

of smaller parts.

Algorithmic

thinking

Define a series of steps for a solution.

Put instructions in the correct sequence.

Define a series of

steps for a solution.

Put instructions in the

correct sequence.

Repeat the sequence

several times

(iteration).

Define a series of

steps for a solution.

Put instructions in

the correct sequence.

Repeat the sequence

several times

(iteration).

Make decisions

based on conditions.

Store, retrieve, and

update variables.

Formulate

mathematical and

logical expressions

Debugging Recognize when instructions do not

correspond to actions.

Remove and fix errors.

Recognize when

instructions do not

correspond to actions.

Remove and fix errors.

Recognize when

instructions do not

correspond to

actions.

Remove and fix

errors.

2.3.2 Barr & Stephenson (2011)

Barr & Stephenson's (2011) presents CT concepts and capabilities in the context of K-12

education. The framework practically approaches the integration of Computational

Thinking in K-12 classrooms by providing tangible examples (Table 2-3).

Table 2-3. Computational Thinking operational definition (Barr & Stephenson, 2011)

CT Concept,

Capability

CS Math Science Social Studies Language

Arts

12

data collection find a data

source for a

problem area

source for a

problem area

doing

probability

exercises, for

example,

flipping coins

or throwing

dice

collect data

from an

experiment

study battle

statistics, or

population

data

do linguistic

analysis of

sentences

data analysis write a

program to do

basic

statistical

calculations on

a set of data

count

occurrences of

flips, dice

throws and

analyzing

results

analyze data

from an

experiment

identify trends

in the data

from the

statistics

identify

patterns for

different

sentence types

data

representation

and analysis

use data

structures such

as array,

linked list,

stack, queue,

graph, hash

table, etc.

use a

histogram, pie

chart, bar

chart, etc. to

represent data;

use sets, lists,

graphs, etc. to

contain data

summarize

data from an

experiment

summarize

and represent

the trends

represent

patterns of

different

sentence types

abstraction use procedures

to encapsulate

a set of often

repeated

commands

that perform a

function

use variables

in Algebra;

identifying

essential facts

in a word

problem

build a model

of a physical

entity

summarize

facts; deuced

conclusions

from facts

use of simile

and metaphor

analysis and

model

validation

validate

random

number

generator

curve fitting validate that

the model is

correct

automation use tools such

as: Geometer

Sketch Pad;

Star Logo;

Python code

snippets

use Prove ware use Excel use a spell

checker

testing and

verification

debug a

program; wire

unit tests;

formal

program

verification

do guess and

check

validate and

clean data

13

algorithms &

procedures

study classic

algorithms;

implement an

algorithm for a

problem area

do long

division,

factoring; do

carries in

addition/

subtraction

do an

experimental

procedure

 write

instructions

problem

decomposition

define objects

and methods;

define main

and functions

apply order of

operations in

an expression

do a species

classification

 write an

outline

control

structures

use

conditionals,

loops,

recursion, etc.

study functions

in algebra

compared to

functions in

programming;

use iteration to

solve word

problems

 write a story

with

branches

parallelization threading,

pipelining,

dividing up

data or task in

such a way to

be processed

in parallel

solve linear

systems; do

matrix

multiplication

run

experiments

simultaneously

with different

parameters

simulation algorithm

animation,

parameter

sweeping

graph a

function in a

Cartesian

plane and

modify values

of the variables

simulate

movement of

the solar

system

play Age of

Empires;

Oregon

Trail do a re-

enactment

from a story

The framework also includes dispositions (Figure 2-1) and characteristics of a

classroom culture (Figure 2-2) that could contribute to the development of Computational

Thinking.

14

Figure 2-1. Computational Thinking dispositions (Barr & Stephenson, 2011)

Figure 2-2. Classroom Culture Characteristics (Barr & Stephenson, 2011).

Dispositions

Confidence in
dealing with
complexity

Persistence in
working with

difficult problem

The ability to
handle ambiguity

The ability to deal
with open-ended

problems

Setting aside
differences to work

with others to
achieve a common
goal or solution,

Knowing one’s
strengths and

weaknesses when
working with

others

Classroom
Culture

Increased use of
computational

vocabulary to describe
problems and solutions

Acceptance of failed
solution attempts,

recognizing

that early failure can
often put you on the
path to a successful

outcome

Team work by students,
with explicit use of:

—decomposition
—abstraction
—negotiation

—consensus building

15

2.3.3 Brennan & Resnick (2012)

Brennan and Resnick (2012) introduced a Computational Thinking framework that

describes CT concepts, practices and perspectives for young learners using Scratch to

design applications.

According to this framework there are three dimensions of Computational

Thinking (Table 2-4):

• Computational Concepts, the concepts that students use as they program.

• Computational Practices, the practices that students develop as they program.

• Computational Perceptions, the perceptions that students form about the world

around them and about themselves.

Table 2-4. Computational Thinking concepts, practices and perspectives (Brennan &

Resnick, 2012)

Dimension Element Description

Computational

Thinking

Concepts

Sequences

A series of individual steps or

instructions that can be executed by

the computer.

Loops
A mechanism for running the same

sequence multiple times.

Parallelism
Sequences of instructions

happening at the same time.

Events

One thing causing another thing to

happen – essential component of

interactive media.

Conditionals

The ability to make decisions based

on certain conditions, which

supports the expression of multiple

outcomes.

Operators Operators provide support for

mathematical, logical, and string

16

expressions, enabling the

programmer to perform numeric

and string manipulations.

Data
Data involves storing, retrieving,

and updating values.

Computational

Practices

Being incremental and iterative

The design and implementation of

a project is an evolutionary

process. It consists of iterative

cycles of design, development and

execution of the program and its

further development, based on the

experiences gained and new ideas.

Testing and debugging

Development of strategies for

dealing with and anticipating

problems in the development of a

project.

Reusing and remixing

Reuse, modify and mix projects

created by others to create a more

complex project that would not

otherwise be possible.

Abstraction and modularizing

Creating a large project by

combining collections from smaller

sections. For example, code

segmentation depending on the

functionality of the commands.

Computational

Perspectives

Expressing

The use of technology not only as a

consumer but as a means of design

and expression.

Connecting
Interact with others in the context

of social learning practice.

Questioning

Being encouraged to ask questions

and challenge the obvious, in some

cases, answering these questions

with suggestions and designs.

17

2.3.4 Csizmadia et al. (2015)

Csizmadia et al. (2015) suggest “Computational thinking is a cognitive or thought process

involving logical reasoning by which problems are solved and artefacts, procedures and

systems are better understood”. In addition, they propose a conceptual framework that

describes Computational Thinking Concepts, Approaches (Figure 2-3) (Table 2-5) and

Techniques (Table 2-6).

18

Figure 2-3. Computational Thinking Concepts and Approaches (Csizmadia et al.,

2015).

Table 2-5. Computational Thinking Concepts (Csizmadia et al., 2015)

Element Description In classroom

Examples of learner

behavior that may be

observed in the

classroom

Logic:
predicting &
analysing

Algorithms:
making steps &
rules

Decompotition:
Breaking down
into parts

Patterns:
Spotting and
using
similarities

Abstraction:
Removing
unnecessary
detail

Evaluation:
making
judgement

CT Concepts

Tinkering:
Experimenting
& playing

Creating:
Designing and
making

Debugging:
finding & fixing
errors

Persevering:
keeping going

Collaborating:
working
together

CT
Approaches

19

C
o

m
p

u
ta

ti
o

n
a

l
T

h
in

k
in

g
 C

o
n

ce
p

ts

Logic: the ability to

think in terms of

logical reasoning

the ability to analyze and

control facts through thinking

clearly and accurately to draw

conclusions

Algorithms: the ability

to think

algorithmically

the ability of getting to a

solution through a clear

definition of the steps

formulating

instructions to achieve

a desired effect

using an appropriate

notation to write code

to represent the

formulated

instructions

designing algorithmic

solutions that take into

account the abilities,

limitations and desires

of the people who will

use them

Decomposition: the

ability to think in

terms of

decomposition

the ability of splitting a whole

into separate elements, thus

reducing the level of difficulty

in solving, understanding or

designing

breaking down

artefacts into

constituent parts to

make them easier to

work with

breaking down a

problem into simpler

versions of the same

problem that can be

solved in the same

way

Patterns: the ability to

think in

generalisations,

identifying and

making use of patterns

the ability of identifying

patterns, similarities and

connections, and exploiting

those features

identifying patterns

and commonalities in

artefacts.

adapting solutions, or

parts of solutions, so

they apply to a whole

class of similar

problems

transferring ideas and

solutions from one

20

problem area to

another.

Abstraction: the

ability to think in

abstractions, choosing

good representations

the ability of reducing

unnecessary detail, so that a

problem becomes easier or a

concept simpler, without

losing anything important.

Choosing a way to

represent an artefact,

to allow it to be

manipulated in useful

ways

hiding the full

complexity of an

artefact (hiding

functional

complexity)

hiding complexity in

data, for example by

using data structures.

Identifying

relationships between

abstractions.

Filtering information

when developing

solutions.

Evaluation: the ability

to think in terms of

evaluation

ensuring that a solution,

whether an algorithm, system,

or process, is a good one: that

it is fit for purpose

assessing that an

artefact is fit for

purpose, is functional

correct, is good

enough, is easy for

people to use and

gives an appropriately

positive experience

when used

designing and running

test plans and

interpreting the results

(testing)

comparing the

performance of

artefacts that do the

same thing

making trade-offs

between conflicting

demands

21

stepping through

processes or

algorithms/code step-

by-step to work out

what they do (dry

run/tracing)

Table 2-6. Computational Thinking Techniques (Csizmadia et al.,2015)

Element Description

C
o

m
p

u
ta

ti
o

n
a

l
T

h
in

k
in

g
 T

e
ch

n
iq

u
es

reflecting making evaluations that have value

coding converting a plan into code and ensure

that it produces the right result under any

circumstances; debugging is the ability of

evaluating, testing and verifying the

outcome

designing creating representations of the design such

as flowcharts, storyboards, pseudo-code,

systems diagrams, etc. It involves further

activities of decomposition, abstraction

and algorithm design.

analysing breaking down into component parts

(decomposition), reducing the unnecessary

complexity (abstraction), identifying the

processes (algorithms) and seeking

commonalities or patterns

(generalisation); using logical thinking

both to better understand things and to

evaluate them as fit for purpose

applying adoption of pre-existing solutions to meet

the requirements of another context

22

2.3.5 International Society for Technology in Education (ISTE) and Computer

Science Teacher Association (CSTA) (2011)

International Society for Technology in Education (ISTE) and Computer Science Teacher

Association (CSTA) (2011) developed an operational definition that includes, the

following elements:

(a) formulating problems in a way that enables us to use a computer and other tools to help

solve them,

(b) logically organizing and analyzing data,

(c) representing data through abstractions such as models and simulations,

(d) automating solutions through algorithmic thinking (a series of ordered steps),

(e) identifying, analyzing, and implementing possible solutions with the goal of achieving

the most efficient and effective combination of steps and resources; and

(f) generalizing and transferring this problem-solving process to a wide variety of

problems.

In addition to these elements (ISTE) and (CSTA) include the following attitudes to

their operational definition:

(a) confidence in dealing with complexity,

(b) persistence in working with difficult problems,

(c) tolerance for ambiguity,

(d) the ability to deal with open ended problems; and

(e) the ability to communicate and work with others to achieve a common goal or solution.

2.3.6 Kalelioglu, Gulbahar, & Kukul (2016)

Kalelioglu, Gulbahar, & Kukul (2016) develop a framework (Table 2-7) that describes CT

skills, considering CT to be a problem-solving process.

23

Table 2-7. Framework for Computational Thinking as a Problem-Solving Process

(Kalelioglu, Gulbahar, & Kukul, 2016)

Identify the

problem

Gathering,

representing and

analysing data

Generate, select

and plan

solutions

Implement

solutions

Assessing

solutions and

continue for

improvement

Abstraction

Decomposition

Data collection

Data analysis

Pattern

recognition

Conceptualising

Data

representation

Mathematical

reasoning

Building

algorithms and

procedures

Parallelisation

Automation

Modelling and

simulations

Testing

Debugging

Generalisation

Each element of this framework is related to the process of solving a problem. For

example, the problem must first be identified. Using subtraction and decomposition one

can locate the structural elements of a problem. This is followed by data collection,

representation and analysis. In the second phase, solutions that require mathematical

reasoning and algorithmic reasoning must be designed. These solutions must be

implemented using automation, modeling and simulations. Finally follows the evaluation

of the implemented solutions using testing of the designed plans, debugging the code and

generalization of the solutions.

2.3.7 Selby (2013)

Selby (2013) review the literature, analyzing the Computational Thinking terms previously

proposed. She suggests Abstraction and Decomposition be at the heart of Computational

Thinking and classifies the various terms found in the literature into four main categories:

Thinking terms, Problem-solving terms, Computer Science terms and Imitation terms.

After analyzing these terms, she proposes to exclude broad terms that are not well-defined

and terms related to skills demonstrations, defining CT as a though process that involves

the following elements:

24

(a) the ability to think in abstractions,

(b) the ability to think in terms of decomposition,

(c) the ability to think algorithmically,

(d) the ability to think in terms of evaluations; and

(e) the ability to think in generalizations.

2.3.8 Shute et al. (2017)

Shute et al. (2017) reviewed definitions and CT models and define CT as “the conceptual

foundation required to solve problems effectively and efficiently (i.e., algorithmically,

with or without the assistance of computers) with solutions that are reusable in different

contexts.” They propose an operational definition that underlines the relationship between

Computational Thinking and problem solving and includes six main dimensions presented

in Table 2-8.

Table 2-8. Computational Thinking components (Shute et al., 2017)

Facet Description

Decomposition Dissect a complex problem/system into manageable parts. The divided parts are not

random pieces, but functional elements that collectively comprise the whole

system/problem.

Abstraction Extract the essence of a (complex) system. Abstraction has three subcategories:

(a) Data collection and analysis: Collect the most relevant and important information

from multiple sources and understand the

relationships among multilayered datasets;

(b) Pattern recognition: Identify patterns/rules underlying the data/information

structure;

(c) Modeling: Build models or simulations to represent how a system operates, and/or

how a system will function in the future.

25

Algorithms Design logical and ordered instructions for rendering a solution to a problem. The

instructions can be carried out by a human or

computer. There are four sub-categories:

(a) Algorithm design: Create a series of ordered steps to solve a problem;

(b) Parallelism: Carry out a certain number of steps at the same time;

(c) Efficiency: Design the fewest number of steps to solve a problem, removing

redundant and unnecessary steps;

(d) Automation: Automate the execution of the procedure when required to solve similar

problems.

Debugging Detect and identify errors, and then fix the errors, when a solution does not work as it

should.

Iteration Repeat design processes to refine solutions, until the ideal result is achieved.

Generalization Transfer CT skills to a wide range of situations/domains to solve problems effectively

and efficiently.

2.3.9 Sondakh et al. (2020)

Sondakh et al. (2020) proposed a CT definition (Figure 2-4) based on the fuzzy Delphi

method. Experts from Computer Science and Technology Industry participated in the study

validating terms found in the literature. They describe the main components of CT as skills,

attitudes and spiritual intelligence.

26

Figure 2-4. Definition of holistic Computational Thinking (Sondakh et al., 2020).

2.3.10 Weintrop et al. (2016)

Weintrop et al. (2016) proposed a definition (Figure 2-5) for Computational Thinking with

an emphasis on mathematics and science. Their model consists of the following

interrelated practices: data practices, modeling and simulation practices, computational

problem-solving practices, and systems thinking practices. In addition, each category

further consists of a subset of practices.

Holistic

Computational

Thinking

Spiritual

Intelligence

Self-awareness

Integrity

Attitudes

Problem Solving

Teamwork

Communication

Skill (Knowledge)

Abstraction

Algorithmic

thinking

Decomposition

Debugging

Evaluation

27

Figure 2-5. Computational Thinking in Mathematics and Science definition

(Weintrop et al., 2016)

2.3.11 Computational Thinking elements

Each definition presented above contributes to the understanding and clarification of the

Computational Thinking construct in relation to the elements of which it consists. This

subsection presents a summary of CT elements (Table 2-9) described in some of the

definitions presented in the previous sub-sections. We select to present the specific

definitions as they are highly cited in the literature, cover an extensive period of time and

are developed based on different approaches (e.g., systematic literature review, previous

authors' studies, literature summary, meeting procedures).

Data Practices

Collecting Data

Creating Data

Manipulating Data

Analyzing Data

Visualizing Data

Modeling &
Simulation Practices

Using Computational
Models to Understand

a Concept

Using Computational
Models to Find and

Test Solutions

Assessing
Computational Models

Designing
Computational Models

Constructing
Computational Models

Computational
Problem Solving

Practices

Preparing Problems for
Computational

Solutions

Programming

Choosing Effective
Computational Tools

Assessing Different
Approaches/Solutions

to a Problem

Developing Modular
Computational

Solutions

Creating
Computational

Abstractions

Troubleshooting and
Debugging

System Thinking
Practices

Investigating a
Complex System as a

Whole

Understanding the
Relationships within a

System

Thinking in Levels

Communicating
Information about a

System

Defining Systems and
Managing Complexity

28

Table 2-9. CT elements in CT operational definitions

Barr &

Stephenson

(2011)

Brennan &

Resnick (2012)

Selby (2013) Angeli et al.

(2016)

Shute et al. (2017)

Abstraction

Analysis and

Model validation

Simulation

Data collection,

analysis and

representation

Abstracting and

modularizing

Ability to think

in abstractions

Abstraction Abstraction

Data collection and

analysis

Pattern recognition

Modeling

Problem

decomposition

Ability to think

in terms of

decomposition

Decomposition

Decomposition

Algorithms and

procedures

Control structures

Parallelization

Automation

Computational

concepts (mapping

to Scratch

programming

blocks such as

sequences, loops

etc.)

Ability to think

algorithmically

Algorithms

Sequencing

Flow of control

Algorithms

Algorithm design

Parallelism

Efficiency

Automation

Testing and

verification

Testing and

debugging

Ability to think

in terms of

evaluations

Debugging

Debugging

29

 Ability to think

in terms of

generalizations

Generalization

Generalization

 Being incremental

and iterative

 Iteration

 Reusing and

remixing

 Expressing

 Connecting

 Questioning

2.4 Computational Thinking Literature Reviews

Many of the above definitions come from studies that review the literature, investigating

Computational Thinking terms. Despite the strong interest in defining Computational

Thinking, a growing number of literature reviews focusing on the teaching and learning of

Computational Thinking can be also found. Some of these reviews focus on a specific topic

of CT domain, such as assessment, while others cover multiple topics. Reviews that cover

multiple topics can be classified in three categories: a) studies aiming to develop a

definition (e.g. Kalelioglu et al., 2016; Shute et al.; 2017) b) studies reviewing the literature

to provide insights on teaching and learning CT (e.g. Grover & Pea 2013; Lye & Koh,

2014; Buitrago Flórez et al., 2017) and c) studies aiming to analyze CT research (e.g. Hsu

et al., 2018). Despite all this work reviewing various aspects of CT through programming

in K-12 education, a conceptual model of the domain is still missing. Table 2-10 presents

recent Computational Thinking studies that review the literature

30

Table 2-10. Literature Reviews in CT domain

Review Main Contribution Scope CT

approach

Main focus

on

educational

level

Studies

included

(Grover &

Pea, 2013)

Review CT

definitions, the

rationale for

integrating CT into

K-12 education,

tools for CT

development and

assessment, and

provide information

on what CT entails

and how is integrated

in K-12 education.

General Programming K-12 Undefined

(Lye & Koh,

2014)

Review the trends of

empirical research in

the development of

CT through

programming in K-

12 education such as

programming

environments,

learning outcomes

and approaches, and

derive insights on K-

12 curriculum.

General Programming K-12 Empirical higher

education and

K-12 articles

(Kalelioglu et

al., 2016)

Review theoritical

basis, definition, CT

elements, population,

type of research

design, and develop

General Programming

and

unplugged

methods

K-12 Higher

education and

K-12 articles

31

a framework that

includes notion,

scope and elements

of CT.

(Buitrago

Flórez et al.,

2017)

Review challenges

faced by early

programmers,

programming

languages and

pedagogical tools,

and provide an

overview of how

programming is

being taught in K-12

and higher

education.

General Programming K-12 and

higher

Journal articles,

reviews,

proceedings,

short

communications,

and

governmental

standards

(Shute et al.,

2017)

Review CT

definitions and

characteristics,

interventions,

assessments and

models, and develop

a CT competency

model.

General Programming

and other

approaches

K-12 Conceptual

papers and

empirical studies

(T.-C. Hsu et

al., 2018)

Review learning

strategies, teaching

instruments,

programming

languages and course

types, and analyze

the evolution of CT

research.

General Programming

and other

approaches

All

educational

levels

SCI and SSCI

journal articles

32

(Ching, Hsu,

& Baldwin,

2018)

Review the

technologies used for

developing CT in

young learners.

Focused on

technologies

Programming

and other

approaches

K-12 Undefined

(Da Cruz

Alves, Gresse

Von

Wangenheim,

& Hauck,

2019)

Review the

automatic

assessment tools

used to analyze

artifacts in order to

assess CT skills.

Focused on

automatic

assessment

Programming K-12 K-12 and higher

education

articles

(Zhang &

Nouri, 2019)

Review the CT skills

that can be obtained

through Scratch in

K-9 education and

extend Brennan &

Resnick's (2012)

framework.

Focused on

CT

elements

Scratch

programming

K-9 K-9 empirical

studies

2.5 Summary

This Chapter presents definitions, related introductory concepts and previous work

conducted in the field of Computational Thinking for a better understanding of the subject.

Specifically, definitions and frameworks of Computational Thinking are presented and

synthesized. In addition, literature reviews conducted in the field of Computational

Thinking, are presented.

33

3 Methodology

Τhe research was organized in the following four phases guided (Figure 3-1) by the

respective research objectives presented in Section 1.1.

Phase 1. Developing a Conceptual Model of Computational Thinking through

programming in K-12 education (CTPK-12).

Phase 2. Expanding the Computational Thinking through Programming in K-12

Education (CTPK-12) Conceptual Model for Higher Education.

Phase 3. Designing and evaluating of a Scaffolding Computational Thinking

game to to be further used in the fourth phase of this dissertation.

Phase 4. Using the CTPK-12 model to design an empirical study to investigate

certain instances of the Learning Strategies and Factors model’s areas.

Figure 3-1. Method followed in this thesis

3.1 Phase 1. Developing a Conceptual Model of Computational

Thinking through programming in K-12 education (CTPK-12)

In order to develop a Conceptual Model of Computational Thinking through programming

in K-12 education we elicited the domain knowledge and we subsequently visualized this

knowledge as proposed by Wand and Weber (2002). To gain the knowledge of the domain,

we systematically reviewed the literature. To this end, we followed the Webster and

Watson’s (2002) method, widely used in conducting literature reviews. The method

Invetigation of the
relationship

between instanses
of CT - Learning

Strategies - Factors
areas

Design and
evaluation of a

Scaffolding CT tool

Extension of the
CT conceptual to
higher education

CT conceptual
model

development for
K-12

34

involves a rigorous approach to the selection of cases to be included in the review and a

concept-centric approach to the presentation of results. In addition, in order to further

enhance the systematic selection of studies and to reduce subjectivity as much as possible,

we applied the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman, 2009). The steps

of the method followed in this phase are further elaborated in Section 4.2.2.

3.2 Phase 2. Extending the Computational Thinking through

Programming in K-12 Education (CTPK-12) Conceptual Model for

Higher Education

This phase aims to extend the CT conceptual model to include higher education as well.

For this purpose, we followed a systematic mapping method proposed by Petersen et al.

(2008). They propose systematic mapping as a method that could contribute in research

development by providing a structured type of research that has been conducted. The steps

of the method followed in this phase are further elaborated in Section 5.2.2.

3.3 Phase 3. Designing and evaluating of a Scaffolding Computational

Thinking game.

This phase aims to design and evaluate a Scaffolding Computational Thinking game. The

decision to design a simple tool with scaffolding features instead of using a pre-existing

tool was based on the need for customization. We based the design of the tool on the results

of the literature review conducted in the previous phases. Specifically, we designed the

tool in order to cover CT components included in Brennan and Resnicks’ (2012)

framework. The tool that includes features for scaffolding, also offers the ability to create

log files for CT assessment. In order to evaluate the tool, we investigated how students

perceive its effectiveness, paying particular attention to the scaffolding features. To do so,

we collected data form students through a survey and analyzed their answers using

descriptive statistics and thematic analysis. The research design of this phase is further

elaborated in Section 6.2.

35

3.4 Phase 4. Investigating certain instances of the Learning Strategies

and Factors CTPK-12 model’s areas.

This phase aims to investigate certain instances of the Learning Strategies and Factors

Areas presented in the CPTK-12 model. More specifically, this phase aims to investigate

the effect of scaffolding programming games on middle school students’ Computational

Thinking acquisition. An additional goal is to investigate the effect of middle school

students’ attitudes towards programming in their Computational Thinking development.

For this purpose, we designed and conducted an experimental study where students were

randomly assigned to two groups. The students of the experimental group were introduced

to Computational Thinking through the Scaffolding Computational Thinking tool, while

the students of the control group were introduced using the same tool but without

scaffolding features. Data were collected through tests, questionaries and log files and were

analyzed through descriptive and inferential statistics. The research design of this phase is

further elaborated in Section 7.3.

36

4 Computational Thinking through programming in K-12

Education (CTPK-12) Conceptual Model

4.1 Introduction

The aim of this Chapter is to present one of the main theoretical results of this research,

the Computational Thinking through programming in K-12 Education (CTPK-12)

conceptual model.

The CTPK-12 could aid domain understanding and serve as a basis for future

studies. It could also support researchers to focus on significant research gaps in their CT

studies, having an up-to-date synthesis of the relevant literature. In addition, it could

support the integration of CT into K-12 educational practices, providing evidence to

teachers and policy-makers as well as bringing closer research, practice and policy.

The remainder of this Chapter is organised as follows: Section 4.2 presents the

design of the study for the development of the CTPK-12 model. Section 4.3 presents the

CTPK-12 model. Section 4.4 further discusses the CTPK-12 model areas and its potential

uses. Section 4.5 presents the summary of the chapter.

4.2 Study design

4.2.1 Study goal and research questions

This phase aims to the development of a conceptual model for CT through programming

in K-12 education. The model aims to describe the CT Areas and the relationships between

them. Τhe conditions in which CT is integrated in K-12 education such as policies and

issues regarding national curricula are falling out of scope of the model.

The research questions are:

RQ1. What are the areas of CT through programming in K-12 education domain?

RQ2. What are the sub-areas of each CT Area?

RQ3. How do CT Areas relate to each other?

37

4.2.2 Method

In order to develop a conceptual model for CT through programming in K-12 education

we proceed to the following two steps proposed by (Wand & Weber, 2002): a) elicit the

domain knowledge and b) visualize the domain knowledge. Figure 4-1 presents the study

method in terms of steps conducted and relevant results. We apply the Webster and

Watson’s (2002) systematic literature review approach for the elicitation of the domain

knowledge (CT Areas and their relationships). This includes a structured approach to

identifying sources and a concept-centric approach to presenting the results. We started by

applying the PRISMA Statement (Moher et al., 2009) for the study selection phase. We

then, proceed to the coding scheme identification phase, in which we identify the CT Areas

that serve as a coding scheme for the data extraction phase. The data extraction phase aims

to identify the sub-areas of each CT Area and the CT Areas’ relationships. The process

concludes with the visualization of the data extraction phase results. The whole process

evolved into iterative phases where searches led to new selected studies that were being

analyzed, leading to revised CT areas, sub-areas and relationships. The steps followed in

this study are further elaborated below.

Figure 4-1. Method

4.2.2.1 Elicitation of the domain knowledge

Study selection

We carry out the study selection presented in (Figure 4-2), adapting the PRISMA

Statement (Moher et al., 2009). Specifically, we adapt the PRISMA flow diagram (Figure

38

4-2) by placing additional records identified in included phase, as we identified these

studies by examining the selected studies as proposed by Webster & Watson (2002).

The selection of studies included is a critical factor for the validity of the study. For

this reason, the authors identified the search keywords and criteria together but worked

individually to screen the studies and apply the inclusion and exclusion criteria. During

this process a few conflicts emerged, which were solved through discussions until

agreement was reached.

The sub-steps of study selection phase are outlined in the following sub-sections.

Figure 4-2. Process applied for study selection adapted by Moher et al. (2009)

Identification

The relevant studies were detected using keywords in the scientific databases Web

of Science and Scopus. Specifically, we searched the phrase “computational thinking”,

quotations included, with a time constraint of 2006 onwards. The year 2006 was chosen as

it was then that the term “Computational Thinking” was re-introduced by Wing (2006). In

Scopus we included title, abstracts, keywords and in Web of Science we defined category

as Education Educational Research. In both databases we included only articles and

reviews. Searches took place from March 2018 to October 2019 maintaining the

aforementioned structure. In total, three searches took place that resulted in 759 studies,

499 articles in Scopus database and 260 in Web of Science database.

39

Screening

In this sub-step we screened the studies retrieved from the previous step after we

removed 173 duplicates. To this end, we read all the titles and abstracts and we removed

the studies that were not written in English or were not fully available. We also excluded

short papers. This sub-step resulted in 308 studies remaining.

Eligibility

During this sub-step we filtered out the studies retrieved from the screening process

by examining the full-texts and applying the following inclusion and exclusion criteria.

The Inclusion Criteria suggest: a) studies should be published in journals; b) studies

can be conceptual papers, opinion articles and empirical studies, as the incorporation of

conceptual papers in addition to empirical studies broadens the scope of the study by

including theoretical frameworks and future directions; c) the focus should be on CT in K-

12 education and should involve programming; d) in the case of empirical CT studies, in

addition participants should be K-12 students, K-12 pre-service teachers or K-12 in-service

teachers.

The Exclusion Criteria suggest studies are excluded when a) they do not

specifically focus on CT in K-12 education, such as studies that focus on higher education

b) they do not specifically focus on CT through programming, such as studies where

examination approaches focus on tangible artifacts, board games, exhibits etc., and c) they

refer to CT only in their introduction or background and not in their results or they measure

something other than CT.

 Included

Subsequently, the studies were further processed by reviewing their citations

(backward) and identifying articles that cite them (forward). The process resulted in the

collection of 14 additional studies including 2 gray literature materials. Finally, 101 studies

were included in the study.

40

4.2.2.1.1 Coding scheme identification

To determine the areas of CT through programming in K-12 domain that serve as our

coding scheme, we apply conventional content analysis. Conventional content analysis is

suggested when existing theory is limited and does not involve a predefined coding scheme

but one that derives from text analysis (Hsieh & Shannon, 2005). We choose conventional

content analysis because of the lack of a conceptual model describing the domain. Initially,

we read all full-text articles in order to approach the domain as a whole. Then we carefully

read each article and highlight keywords that imply a concept/area. Keywords are

combined together, providing categories of the coding scheme. For example, keywords

“assessing the development of Computational Thinking”, “assessment” (Brennan &

Resnick, 2012), “assess and evaluate”, “assessment” (Zhong et al., 2016) are grouped and

eventually led to adding “Assessment Area” in the coding scheme. Subsequently, we sort

the studies in these categories. During this phase the coding scheme evolves by adding new

categories or merging and splitting existing ones. The phase leads to the identification of

the final categories, which from now on will be referred to as CT Areas and serve as the

coding scheme and as the concepts of the conceptual model.

Consequently, we compile a concept-matrix or CT Area-matrix, which is a matrix

listing the CT Areas where each article contributes. In this way we transit from an author-

centric to a concept-centric approach, as suggested by Webster and Watson (2002) (Table

4-1).

Table 4-1. Approaches to Literature Reviews adopted from Webster and Watson

(2002)

Concept-centric Author-centric

Concept X [Author A, Author B]

Concept Y [Author A, Author C]

Author A [Concept X, Concept Y]

Author B [Concept X, Concept W]

4.2.2.1.2 Data extraction

During this phase, we sort the selected studies into the coding scheme. In this respect, we

use a table for each CT Area. When we insert a study into the table, we also record the

area’s elements that appear in the study (Figure 4-3). Subsequently, we compare every

element with all other elements. The elements with clear match with other elements

41

constitute a sub-area. For example, in Assessment Area, “project analysis” (Brennan &

Resnick, 2012) and “examination of artifacts for CT patterns” (Denner et al., 2012) are

included in the “Artifact analysis” sub-area. Sub-areas consisting of only one element and

low-frequency (<2 studies) sub-areas, are not included in the model.

Subsequently, we use a table for each CT Area in order to record evidence in studies

that suggest relationships between sub-areas (Fig. 4) and therefore Areas. We then group

these evidences and conclude to the relationships between areas.

Figure 4-3. Example of elements recording and sub-areas identification

Figure 4-4. Example of evidence recording and relationship identification

4.2.2.2 Visualization of the domain knowledge

4.2.2.2.1 Concept mapping

In this step, we use concept mapping as proposed by Siau & Tan, (2005) for visualizing

the concepts (CT Areas) and relationships of the domain, the identification of which is

described in section 4.2.2.1.1. We create a visualization of the conceptual model depicting

CT Areas as nodes. At each node, we note the sub-areas of each CT Area, identified in the

 Elements

(Brennan &
Resnick, 2012)

Project analysis

Artifact-based interviews

Design scenarios

(Denner,
Werner, & Ortiz,
2012)

Examination of artifacts based on three
categories: programming, documentation
and understanding of software, and design
for usability.

…..
…

Evidence of relationships

(Brennan &
Resnick, 2012)

Project analysis (Assessment sub-area) of the CT
concepts within Scratch projects (Knowledge base
sub-area)

….
….

Relationship between

Assessment Area &

Knowledge Base Area

42

previous phase. Finally, we depict the relationships between CT Areas as links. We then

place a label to each link to explain the relationship.

4.2.3 Study limitations

We acknowledge that this study has a number of limitations. First, the proposed model is

based on the analysis of studies written in English. Second, searches for studies were

conducted in only two scientific databases, namely Web of Science and Scopus. Third,

searches included only articles published in journals. Although, we eventually included

some conference papers and gray literature identified through manual inspection of the

references of the selected studies, still the majority of the selected literature includes

journal articles. Fourth, searches were conducted with a time constraint of 2006 onwards.

Thus, the model is based exclusively on the research conducted since 2006 and not on the

initial stages of CT research. Fifth, non-inclusion of studies on the basis of quality criteria

prevents the presentation of all conducted research. Finally, subjectivity combined with

the small number of authors (only two) constitutes an additional limitation of the study.

Although we applied a systematic method (presented in Section 4.2.2) we had to make

subjective choices regarding e.g., grouping the elements, defining the relationships based

on the recorded evidence, naming the CT Areas and sub-areas, and defining exclusion

criteria for selecting sub-areas that are finally included in the model.

4.3 The CTPK-12 model

The proposed Computational Thinking through Programming in K-12 education (CPTK-

12) conceptual model (Figure 4-5) is based on the extracted CT Areas and their

relationships presented in detail in Sections 4.3.1 and 4.3.2 respectively.

43

Figure 4-5. Computational Thinking through Programming in K-12 education

(CTPK-12) model

The analysis of the 101 studies during the coding scheme identification phase

resulted in the determination of six CT Areas finally included in the model (Table 4-2). CT

studies attempt to address the challenges of CT through programming in K-12 education

domain by focusing on these areas that repeatedly appear in the selected studies.

Table 4-2. CT Areas

Knowledge Base CT measurable elements and their classification.

Assessment Assessment methods and frameworks for measuring CT

through programming in K-12 education.

Learning Strategies Learning strategies leveraged to enhance students' CT

learning through programming in K-12 education.

Factors Factors related to CT through programming acquisition in K-

12 education.

Tools Tools that are used or specifically developed for teaching and

learning CT through programming in K-12 education.

44

Capacity Building Capacity building needed for teaching CT through

programming in K-12 competently.

The percentage of studies by CT Areas to which they contribute is depicted in

Figure 4-6. We categorize the studies into two groups 2006-2014 and 2015-2019. As

shown in Figure 4-6, Assessment and Tools are the two most popular areas that gather the

greatest interest of researchers in both periods. Assessment Area is coming first across the

two timelines (27.9% in period 2006-2014, 25.6% in period 2015-2019) followed by Tools

Area (20.9% in both periods). During period 2006-2014 Knowledge Base Area is coming

third (18.6%) while in period 2015-2019 the percentages of studies aimed at defining CT

fall to 8.5% placing the area as the one with the least interest. On the contrary, the

percentage of studies that focus on Learning Strategies increases from 9.3% during period

2006-2014 to 17.1% during period 2015-2019, placing Learning Strategies in the third

place of researchers’ interest in the selected studies. Respectively for the Capacity Building

Area the percentage of studies that focus on this area increases from 9.3% during period

2006-2014 to 14.7% during period 2015-2019, placing Capacity Building in the fourth

place of interest followed by Factors. These results indicate that as the field matures efforts

still focus on assessment and tools but the focus shifts beyond the definition of CT on more

tangible issues such as Learning Strategies, Capacity Building and Factors.

45

Figure 4-6. Percentage of studies by CT Areas to which they contribute in the periods

2006-2014 and 2015-2019. References to 2019 actually refer to period January 2019

to October 2019

The CTPK-12 depicts the areas of Computational Thinking through programming

in K-12 education (CT Areas) and the dominant relations (Table 4-3) between CT Areas

as they emerge from the selected studies.

Table 4-3. CT Areas’ relationships

Capacity

Building

R1. Supports teachers to facilitate students understand and acquire

CT.

Learning

Strategies

R2. Enable students understand and acquire CT.

R3. Increase the motivational levels of underrepresented students,

thereby broadening CT participation and addressing underrepresentation due

to socio-economic, cultural and gender differences.

Tools R4. Allow students to acquire CT through supporting learning

strategies.

46

R5. Address the challenges encountered in learning programming and

reinforce underrepresented students’ motivation.

Factors R6. Affect the acquisition of CT.

Assessment R7. Measures CT and provides a means for deep understanding of

students’ learning.

4.3.1 CT Areas

4.3.1.1 Knowledge Base Area

Knowledge Base Area is at the core of the domain. 57 of the 101 studies are included in

this CT Area. Researchers in these studies either propose a framework or a definition to

identify and classify measurable elements of CT, or simply assess CT elements in order to

assess CT. Based on CT frameworks we examined CT elements in the selected studies.

We classify Knowledge Base Area in five sub-areas: concepts, skills, practices,

perspectives and attitudes (Table 4-4). Figure 4-7 presents the number of studies by CT

element.

The results of the CT knowledge base analysis in the selected studies, include

various CT elements and terms describing classifications of CT elements such as skills,

capabilities, perspectives, attitudes, practices, characteristics, concepts, facets and thought

processes. Some of these terms are often presented with different meaning.

In addition, several CT elements such as Abstraction, Algorithms, Decomposition,

Data representation, Testing, Evaluation, Debugging, Generalization, Iteration appear to

be classified in various ways including CT skills, CT concepts, CT practices or thought

processes. For example, abstraction occurs as the thought process of “the ability to think

in abstractions” (Selby, 2013), as “the skill to decide what information about an

entity/object to keep and what to ignore” (Angeli et al., 2016), and as the practice of

Abstracting and modularizing, that is “building something large by putting together

collections of smaller parts” (Brennan & Resnick, 2012).

The analysis of the reviewed studies reveals the following CT practices according

to Brennan & Resnick’s (2012) framework: Testing and Debugging, Remixing and

47

Reusing code, Being incremental and iterative, Abstracting and Modularizing. In addition,

elements such as Design for usability, Code organization and documentation, and

Programming efficiency proposed by Denner et al. (2012) as key competences for

engaging in CT are also evident.

CT concepts as defined by Brennan & Resnick (2012) that repeatedly arouse in the

examined studies are Sequences, Conditionals, Loops, Events, Parallelism, Variables

(Data), and Operators. Functions, Synchronization blocks and User Interactivity blocks

that are not included in Brennan & Resnick's (2012) framework, are also evident.

Researchers (e.g., Moreno León et al., 2015; von Wangenheim et al., 2018) in the reviewed

empirical studies often match these concepts with other CT elements. For example, von

Wangenheim et al. (2018) assign abstraction to the use of more than one script and the

definition of custom blocks in Snap!.

The examination of the studies also reveals the presence of elements such as Logic,

Collaboration, Cooperativity, Problem solving, Creativity, Communication, Critical

Thinking, Self-efficacy and others that appear once or twice and are not included in CT

frameworks. The presence of these elements could be explained since some validated

general assessment methods such as Dr. Scratch (Moreno León et al., 2015) and CTS

(Korkmaz, Çakir, & Özden, 2017) assess these skills. These general methods are adopted

by other studies (Durak, Yilmaz, & Bartin, 2019; Gabriele et al., 2019; Garneli &

Chorianopoulos, 2018, Garneli & Chorianopoulos 2019; Günbatar, 2019; Korkmaz & Bai,

2019; Marcelino, Pessoa, Vieira, Salvador, & Mendes, 2018), resulting in a strong

presence of these elements in the reviewed empirical studies.

CT attitudes and perspectives appear less frequently in the reviewed studies and

include mainly Connecting and Expressing as described by Brennan & Resnick (2012).

Table 4-4. Knowledge Base sub-areas

CT elements

classification

Description CT frameworks

Concepts Concepts (programming elements)

encountered during programming.

Brennan & Resnick

(2012)

48

Skills The ability and capacity to carry out

CT thought processes.

CSTA & ISTE (2011),

Angeli et al. (2016), Shute et al.

(2017)

Practices Thinking and learning processes

developed during programming.

Brennan & Resnick

(2012)

Perspectives Perception of oneself, his/her

relationship with others and the digital world.

Brennan & Resnick

(2012)

Attitudes Dispositions and mindsets. CSTA & ISTE (2011),

Barr & Stephenson (2011)

49

Figure 4-7. Number of studies by CT element appearing more than twice in the

examined studies

4.3.1.2 Assessment Area

CT assessment is examined in 53 studies. Researchers in the examined studies develop and

validate assessment methods, propose frameworks or measure students’ CT in order to

achieve deep understanding of students’ learning (Fronza et al., 2017) through various

assessment methods. We classify Assessment Area into five sub-areas: Self-report

methods; Tests; Artifact Analysis; Observations; and Frameworks. Tests, Artifact Analysis

and Observations measure directly CT, in contrary with self-report methods that measure

CT indirectly through recording self-reflection. Table 4-5 presents the classification of

Assessment.

50

CT assessment methods in the examined studies are mainly based on the specific

content of each study. However, there are some efforts to develop general assessment

methods. These efforts include development and validation of tests (Chen et al., 2017;

Román-González et al., 2017), self-report scales (Kong, Chiu, & Lai, 2018; Korkmaz et

al., 2017; Kukul & Karataş, 2019; Yağcı, 2019) for general use in CT assessment and

automatic artifact analysis instruments (Moreno León et al., 2015). Artifact analysis

involves examining students’ programs to detect evidence of CT. Automatic artifact

analysis allows teachers and researchers to focus on assessment methods such as

observations and interviews to gain a complete picture of students’ understanding (Da Cruz

Alves et al., 2019).

Assessment frameworks usually propose optimal combinations of assessment

methods. Frameworks that have been proposed involve data mining techniques (De Souza,

Barcelos, Munoz, Villarroel, & Silva, 2019), hypothesis-driven approaches (Grover et al.,

2017) and Evidence-Centered-Design (ECD) methods (Snow, Rutstein, Basu, Bienkowski,

& Everson, 2019).

Table 4-5. Assessment sub-areas

 Studies

Indirect

Methods

Self-Report

Methods

scales, questionnaires,

surveys, interviews, think-

aloud protocol, journals,

reflection reports

S2,S4,S6,S12,S13,S18,S30,S35,S36,S3

9,S40,S47,S48,S55,S56,S57,S59,S60,S

61,S66,S70,S79,S88,S95,S97,S101

Direct

Methods

Tests

multiple-choice tests,

quizzes, open-ended and

other tasks, tasks and

assignments with rubrics,

semi-finished programs,

projects, design scenarios

S3,S6,S9,S10,S11,S12,S13,S15,S19,S3

2,S39,S53,S70,S75,S76,S77,S79,S84,S

85,S90,S93,S95,S100,S101

Artifact

analysis

automatic analysis, manually

inspection of artifacts for CT

evidence, examination of

artifacts for CT patterns, log

data

S4,S10,S13,S15,S25,S26,S32,S33,S35,

S36,S37,S44,S46,S54,S63,S65,S66,S7

2,S86,S88

Observations

observations of students’

actions, screen recordings,

learning analytics, camera

recordings, researchers’

notes, structure-based

observations

S4,S6,S10,S12,S35,S37,S70,S79

51

Frameworks frameworks for CT assessment
S4,S10,S15,S25,S32,S37,S39,S84,S90,

S101

4.3.1.3 Learning Strategies Area

Learning strategies are mentioned in 37 studies. We classify the most common learning

strategies in six sub-areas: Game Based Related Strategies, Modeling & Simulations Based

Related Strategies, Problem Solving Related Strategies, Project Based Related Strategies,

Scaffolding Related Strategies and Collaborative Related Strategies (Table 4-6).

Scaffolding Related Strategies are classified as a separate sub-area, as they are particularly

emphasized in the selected studies. Other strategies involve hands-on, aesthetic design

through media design, storytelling and guided-discovery. Figure 4-8 presents the number

of CT studies by most common strategies.

Studies focusing on learning strategies either propose a pedagogical framework for

CT or apply learning strategies to motivate students and enable them acquire CT. Many of

these strategies are linked to constructionism (Papert, 1980) grounded in Piaget’s (1970)

constructivist theory, and/or Vygotsky’s (1978) Ζone of Proximal Development.

Additionally, learning strategies are implemented in traditional classroom settings, at

distance or in blended environments (e.g., Basogain et al., 2018; Grover et al., 2015) that

take advantage of the presence of teachers and the services provided by virtual learning

environments. Researchers in selected studies often use multiple learning strategies to take

advantage of their benefits. Out of the 37 studies included in this CT Area, 15 apply or

propose more than one learning strategy.

Table 4-6. Learning strategies sub-areas

 Studies

Game Based Related

Strategies

Game Based Related Strategies involve game design

and digital/video game development, programming

games and any strategy that exploits games and

programming.

S4,S25,S26,S35,

S36,S46,S48,S53,

S60,S72,S89,

S100

Modeling & Simulations

Based Related Strategies

Modeling & Simulations Based Related Strategies

involve designing of scientific models and simulations

through strategies such as scientific inquiry and learning

by design.

S2,S11,S28,S35,

S72,S81

52

Problem Solving Related

Strategies

Problem Solving Related Strategies involve Problem

Based Learning and problem-solving learning strategies

in general.

S5,S39,S51

Project Based Related

Strategies

Project Based Related Strategies involve the

engagement with authentic projects set around real

challenges and problems.

S32,S53,S69,S70,

S79

Scaffolding Related

Strategies

Scaffolding Related Strategies involve strategies that

offer support to students as they learn, including

instructional scaffolding, support/guidance, and

adaptive, peer-, resource- scaffolding.

S6,S11,S13,S17,

S26,S36,S39,S45,

S70,S72,S81,S93

Collaborative Related

Strategies

Collaborative Related Strategies involve strategies

where students actively interact during the learning

process including collaborative learning, teamwork,

pair programming and strategies based on student’s

collaboration.

S6,S30,S33,S45,

S48,S70

Figure 4-8. Number of studies by the most common learning strategies

4.3.1.4 Factors Area

CT-related factors are discussed in 22 studies. We classify Factors Area in two sub-areas:

Demographic factors and Cognitive & non-cognitive factors presented in Table 4-7.

Demographic factors have the strongest presence in the selected studies with gender being

discussed in 17 and grade level in 7 out of 22 examined studies.

Several studies investigate the relationship between CT and grade level. Some of

them (Atmatzidou & Demetriadis, 2016; Werner, Denner, Campe, & Kawamoto, 2012)

conclude that CT acquisition is not grade-related (or age-related). Several other studies

conclude that there is a significant relationship. However, their results on the type of this

relationship are contradictory. On the one hand, some studies conclude that there is a

positive relationship between grade level or age and CT. More specifically, Román-

53

González, Pérez-González, & Jiménez-Fernández (2017) assessed 1,251 students’ CT

using Computational Thinking Test (CTt). They concluded that CT levels increased with

the grade, thus suggesting that this finding may be related to the cognitive problem-solving

aspect of CT. This finding is in line with the results reported by Durak et al. (2019). On

the other hand, there are studies providing evidence that there is a negative relationship

between age (grade level) and CT. More specifically, Durak & Saritepeci (2018) found

that grade level negatively predicted CT, suggesting that as the students’ grade level

increases their CT levels are negatively affected. However, they note that this finding may

be related to participants’ prior experience, which was different depending on the grade

level. A negative relationship between CT (elements of programming empowerment) and

grade level has also been reported in Kong, Chiu, & Lai’s, (2018). However, authors

emphasize that other factors such as less personalized instruction and differences in the

level of difficulty may have affected students’ CT acquisition. Israel-Fishelson &

Hershkovitz (2019) go further by comparing students’ achievement in specific CT

elements between their different grade levels. The authors emphasize that students at

different grade levels performed better on different concepts, suggesting that the design of

a CT approach should take into account “the fit between CT concepts and grade level”

(Israel-Fishelson & Hershkovitz, 2019).

Studies that investigate gender relationship with CT are also contradictory. Some

of them conclude that learning CT is gender-related, while others (Atmatzidou &

Demetriadis, 2016; Werner et al., 2012) find that there is no significant relationship

between gender and CT learning. Studies that conclude that CT is gender-related are also

contradictory. Some of them (e.g., Durak & Saritepeci, 2018; Durak et al., 2019) found CT

level differentiation in favor of female while others (e.g., Kong et al., 2018; Román-

González et al., 2017) in favor of male students. Studies (e.g., Cooper et al., 2014; Fletcher

& Lu, 2009; Repenning et al., 2015) also discuss challenges related to demographic factors

(e.g., gender, socio-economic) such as underrepresentation in CS and students’ low

motivation.

Creativity appears in the selected studies in the light of two different perspectives.

Several studies (Allsop, 2019; Kim & Kim, 2016; Korkmaz et al., 2017; Yağcı, 2019;

Zhong et al., 2016) place creativity in the core of CT along with other elements. However,

54

other studies approach creativity as a separate construct and examine its relationship to

CT. Teachers who participated in Nouri, Zhang, Mannila, & Norén (2019) reported

creativity as one of the skills occurred during CT learning. Kim & Kim (2016) found that

students’ creativity was improved after they participated in their CT intervention. On the

contrary, Hershkovitz et al. (2019) found no relationship between CT and creativity.

However, they suggest that this may relate to specific features of the learning platform

used.

Self-efficacy is an additional factor that appears in the selected studies in the light

of the two aforementioned perspectives. Román-González, Pérez-González, Moreno-

León, & Robles (2018) found that CT was positively related to CT self-efficacy. In

addition, they suggested that fostering students' self-efficacy through positive and personal

learning experiences might be effective in acquiring CT. A significant relationship

between CT and programming self-efficacy was also reported by Durak et al. (2019).

Other factors addressed in the selected studies include aspects of personality

(Román-González et al., 2018), persistence (Israel-Fishelson & Hershkovitz, 2019),

attitudes toward and interest in programming, (Kong et al., 2018; Witherspoon & Schunn,

2019) attitudes toward collaboration (Kong et al., 2018), academic success and attitude

against various school subjects (Durak & Saritepeci, 2018), challenges in learning

programming (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013) and teachers’

instructional goals (Witherspoon & Schunn, 2019).

Cognitive factors such as verbal, spatial, reasoning, numerical and problem-solving

ability (Román-González et al., 2017), ways of thinking (Durak & Saritepeci, 2018), and

reflective thinking (Durak et al., 2019) are also investigated in the literature.

Table 4-7. Factors sub-areas

 Studies

Demographic factors Grade level, gender, socio-economic and cultural

background

S4,S6,S22,S29,S30,S31,S4

3,S45,S49,S53,S55,S56,S7

0,S72,S76,S77,S90

Non-Cognitive and

Cognitive factors

Personal traits, attitudes and motivations such as

aspects of personality, creativity, self-efficacy,

persistence, attitudes toward programming and

S29,S30,S42,S46,S55,S66,

S76,S77,S81,S90, S93

55

attitudes toward collaboration; academic

performance, challenges in learning programming

Factors that involve cognitive functions and mental

abilities such as verbal, spatial, reasoning &

numerical ability and problem-solving ability

4.3.1.5 Tools Area

Researchers in 47 studies use or develop tools for CT teaching and learning. We classify

tools leveraged for teaching and learning CT through programming in K-12 education in

three sub-areas: programming tools & communities, robotics & microcontrollers, and tools

specifically developed for CT. Table 4-8 presents the classification of tools. Figure 4-9

presents the number of studies by tool.

Students in the selected studies are mainly engaged with programming concepts

and practices through programming tools. According to Brennan & Resnick (2012), the

concepts and practices that students encounter during programming could be considered

as CT concepts and practices as well. Most of the tools recorded in the selected studies are

visual programming tools. Furthermore, even when text programming is used, the outcome

of programming is often visualized through animations. Agent-based programming

paradigm is also widely applied. In addition, communities are proposed by authors (e.g.,

Clark & Sengupta, 2019; Kafai, 2016) who argue that CT and programming are social

practices. Students in the selected studies share their programs and use socialization

features of communities that according to Xing (2019) can lead to CT development.

Robotics are used for teaching and learning CT in some of the selected studies.

Students in these studies encounter CT concepts and practices during programming robots

to interact with the environment. Among other tools educational robotics kits have the

strongest presence (e.g., Atmatzidou & Demetriadis, 2016; Chalmers, 2018).

Microcontrollers are also evident in studies (e.g., Carlborg, Tyrén, Heath, & Eriksson,

2019; Durak et al., 2019) where students program automations or complex robotic devices.

Several studies develop tools in order to support a CT theoretical framework or

curriculum. Most of the developed tools are visual programming tools and involve game

play (e.g., Clark & Sengupta, 2019; Weintrop, Holbert, Horn, & Wilensky, 2016) and/or

56

modeling (e.g., Basu, Biswas, & Kinnebrew, 2017; Clark & Sengupta, 2019; Kynigos &

Grizioti, 2018; Sengupta et al., 2013).

Table 4-8. Tools sub-areas

Studies

Programming tools

& Communities

Visual & text programming tools.

Communities that provide users with the

opportunity to interact with other

programmers.

S2,S4,S5,S10,S15,21,S26,S30,S3

2,S33,S35,S36,S37,S39,S42,S44,

S45,S46,S48,S49,S53,S54,S58,S

60,S63,S70,S71,S72,S75,S79,S8

6,S94,S101

Robotics &

Microcontrollers

Programmable robot constructs including

educational robotics kits, physical &

virtual robots.

Automations, control devices,

interactive physical systems.

S6,S12,S13,S17,S18,S19,S30,S6

0,S93

Tools specifically

developed for CT

Tools developed to support a CT

theoretical framework or curriculum.
S11,S21,S47,S59,S81,S89, S93,

S100

Figure 4-9. Number of studies by tool

4.3.1.6 Capacity Building Area

https://en.wikipedia.org/wiki/Physical_system

57

Providing guidance and support to teachers is discussed in 19 studies. We classify Capacity

Building Area in three sub-areas: Knowledge for teaching CT, Teacher Education and

Professional Development (Table 4-9).

The specification of knowledge for teaching CT is a prerequisite for teacher support

(Angeli et al., 2016; Cooper et al., 2014) and thus, we classify it as a separate sub-area in

Capacity Building Area. Technological Pedagogical Content Knowledge (TPCK or

TPACK) is proposed for specifying this knowledge in the selected studies (e.g., Angeli et

al., 2016; Mouza, Yang, Pan, Yilmaz Ozden, & Pollock, 2017). TPCK interweaves the

knowledge of technology (TK), content (CK) and pedagogy (PK) (Koehler & Mishra,

2006). Angeli et al. (2016) define TPCK for CT as the knowledge that enables teachers to

identify creative and authentic CT projects; identify technologies that provide the

necessary technological means for practicing/teaching the whole range of CT; and use

representations in order to make CT comprehensible for all. Other researchers (e.g., Mouza

et al. 2017) place CT into the Technology Knowledge (TK), suggesting that teachers

should understand this knowledge and draw connections with PK and disciplinary content

(CK), such as math, language, art.

Teacher Education could be based on revised educational technology courses that

provide pre-service teachers with CT opportunities and methods courses that focus on

teaching and learning and facilitate the integration of CT into pre-service teachers’ future

educational practices (Yadav et al., 2017). Along these lines, studies in this sub-area

introduce CT to pre-service teachers through technology courses (Angeli et al. 2016,

Gabriele et al., 2019; Mouza et al., 2017; Yadav, Mayfield, Zhou, Hambrusch, & Korb,

2014) and methods courses. For example, Adler & Kim (2018) incorporated CT into a

science methods course for pre-service teachers. A high percentage of participants (90%)

who engaged with CT through simulations consider that CT and simulations could be

integrated into the classroom environment. Participants in Gabriele et al. ‘s (2019) study

developed projects in Scratch and subsequently incorporated them into their teaching

practices during their internship.

Professional Development aims to support teachers in understanding and

integrating CT into their practices (Alfayez & Lambert, 2019; Bower, Wood, Lai, Howe,

& Lister, 2017). Hickmott & Prieto-Rodriguez (2018) propose that Professional

58

Development should (a) provide activities relevant to both CT tools and CT learning

strategies; (b) include both step-by-step exercises and self-directed projects; (c) take into

account teachers’ prior knowledge; (d) provide resources that can be directly integrated

into teaching practices; and (e) assess teachers’ knowledge acquisition through direct

assessment methods. Kale et al. (2018) argue that when Professional Development focuses

on the application of CT in different domains and problem solving, it allows teachers to

recognize the importance of CT and integrate the knowledge gained into their teaching.

Ongoing professional development that involves workshops, embedded coaching,

administrative support, co-planning lessons and co-teaching, could also provide in-service

teachers with valuable assistance and thereby expanding their participation in CT (Israel,

Pearson, Tapia, Wherfel, & Reese, 2015).

Table 4-9. Capacity Building sub-areas

 Studies

Knowledge for

teaching CT

Models for specifying the knowledge that teachers

need for teaching CT.

S5,S18,S22,S67,S96

Teacher

education

Undergraduate courses such as educational

technology and methods courses that promote CT

learning and teaching.

S2,S33,S34,S67,S95,S96

Professional

development

Variety of tools such as workshops, training, courses

designed to help teachers improve their professional

knowledge.

S8,S14,S18,S41,S44,S45,

S50,S61,S63,S69,S82

4.3.2 CT Areas Relationships

CT Areas Relationships are depicted as arrows between the CT Areas in Figure 4-5 and

descripted in Table 4-3. R6 and R7 model’s relationships could be considered plausible

and are widely reflected in the studies included in the respective CT Areas described in

section (4.3.1). The same is true for R1, while this relationship is not widely tested

empirically in the selected studies. The remaining relationships are further elaborated in

this section.

R2. Several studies attribute the success of the proposed interventions to the applied

strategies. Grover et al. (2015) place particular emphasis on the pedagogical design of their

strategy, which eventually led to the students' understanding of CT concepts (algorithmic

constructs). Repenning et al. (2015) also found that Scalable Game Design strategy that

59

involves game design, simulations and scaffolding allowed students to develop CT skills,

highlighting the important role of pedagogy in the strategy. Sáez-López, Román-González,

& Vázquez-Cano (2016) implemented an active pedagogical approach, concluding that

primary school students who participated in their study improved their CT levels in regard

to CT concepts, logic and CT practices. In addition, there are also findings that support the

assumption that learning strategies such as Game Design (Garneli & Chorianopoulos,

2019), Project Based Learning enhanced with software agile methods (Fronza et al., 2017)

and Modeling & Simulations (Garneli & Chorianopoulos, 2018) enable the acquisition of

CT.

R3. Studies also discuss the role of learning strategies in relation to challenges

posed by demographic factors (e.g., gender, socio-economic background) such as

underrepresentation in CS and students’ low motivation (Cooper et al., 2014; Fletcher &

Lu, 2009), arguing that CT teaching and learning motivates learners, especially females

and underrepresented students. More specifically, Ioannidou, Bennett, Repenning, Koh, &

Basawapatna (2011) and Repenning et al. (2015) suggest that Scalable Game Design

learning strategy leads in broadening participation in CS. Out of over 4000 students who

participated in Scalable Game Design Project, 56 % were minority students and 45% were

female. 64% of the participated girls were interested in continuing their CT activities. In

addition, ethnic minority factor did not affect students’ interest in continuing involving

with CT (Repenning et al., 2015). Teachers who participated in Israel’s et al. (2015) study,

used teaching CT through collaborative problem solving, modeling, explicit instruction,

peer collaboration, and guided discovery in order to make CS accessible to students with

low financial backgrounds and disabilities.

R4. Learning strategies are supported by tools. Out of 32 empirical student-

centered studies, 21 utilize tools as a means of supporting learning strategies to introduce

students to CT. Specific features of tools could support different learning strategies. For

example, a strategy that involves modeling is supported among others, by tools that include

a modeling environment such as CTSiM (Basu et al., 2017; Sengupta et al., 2013). A game

design strategy is often supported in the selected studies by tools such as Scratch (Resnick

et al., 2009) that allows students of all ages to develop games through its low floor

environment.

60

Furthermore, there is evidence that engaging with tools without a learning strategy

is not enough to gain knowledge of CT. Denner et al. (2012) analyze 108 games created

by middle school students in Creator, finding lack of code organization, documentation

and design for usability. Since they found that participated students faced challenges in

designing their games and understanding several programming concepts, they suggested

that proper guidance is critical to enable students’ motivation. Brennan & Resnick (2012)

noted that interviewee students that developed projects in Scratch, sometimes could not

explain their programs, although they had incorporated several programming constructs

into them. Zhao and Shute (2019) examined the development of students’ CT through a

game environment they developed, noting that a non-trivial part of the students’

improvement in CT could be attributed to increased familiarity with the environment.

R5. There is also evidence that tools enhance underrepresented students’

engagement in programming and CS. In a study by Kim & Kim (2016), participating

elementary female students reduced their negative attitudes towards software education

after following a CT course and designing games in App Inventor.

In addition, several studies emphasize (e.g., Fronza et al., 2017; García-Peñalvo &

Mendes, 2018; Lye & Koh, 2014; Repenning, Basawapatna, & Escherle, 2017; Sengupta

et al., 2013) that certain tool features (e.g., visual interfaces) eliminate the challenges

related to the nature of programming, such as difficulty of learning a complex

programming syntax.

4.4 Discussion

The analysis of Knowledge Base Area reveals that recent years' efforts to identify

measurable elements of CT have led to various terms describing classifications of CT

elements such as concepts, practices, skills, attitudes, perspectives. These terms are often

presented with different meaning. In addition, several CT elements proposed by

frameworks appear to be classified in various ways. For example, abstraction occurs as the

thought process of “the ability to think in abstractions” (Selby, 2013), as the skill “to decide

what information about an entity/object to keep and what to ignore” (Angeli et al., 2016),

and as the practice of Abstracting and modularizing, that is “building something large by

putting together collections of smaller parts” (Brennan & Resnick, 2012).

61

During the analysis of the studies, we recorded more than 60 different CT elements

proposed by frameworks and definitions or simply assessed in empirical studies. Some of

them are not included in definition frameworks. This could be explained by the evolution

of the domain. As research in the domain progresses, empirical studies introduce further

CT elements in their assessments in addition to those proposed by the respective

frameworks. The strong presence of some of these elements in the reviewed studies is due

to the fact that they are included in assessment methods such as Dr. Scratch (Moreno León

et al., 2015) and CTS (Korkmaz et al., 2017) that have been adopted by other studies (e.g.,

Durak, Yilmaz, & Bartin, 2019; Gabriele et al., 2019; Garneli & Chorianopoulos, 2018,

Garneli & Chorianopoulos 2019; Günbatar, 2019; Korkmaz & Bai, 2019; Marcelino,

Pessoa, Vieira, Salvador, & Mendes, 2018).

Many of the reviewed empirical studies assess CT as a skill. This could be

explained, since CT was introduced as a skill and attitude by the widely accepted definition

of Wing (2006). In addition, the term CT skills emerges from definitions and frameworks

such as (Angeli et al., 2016) and (CSTA & ISTE, 2011). Programming constructs or CT

concepts as described by Brennan & Resnick (2012) are also frequently assessed. This

finding is consistent with the results presented by Zhang & Nouri (2019). This is likely

because CT concepts can be assessed by direct assessment methods and in addition some

of these methods provide automation facilitating the assessment process. On the contrary,

it is likely that the difficulty to assess perspectives and attitudes through direct assessment

methods leads to its low presence in the reviewed studies.

CT assessment methods mainly assess CT through pretest/posttest, self-report and

artifact analysis. In order to gain a complete picture of the learning process, several studies

include observations in their assessment. CT assessment methods are mainly based on the

specific content of each study although there are some efforts to develop assessment

methods for general use. Most of these methods are self-report methods assessing CT

indirectly, proposing CT elements that are absent in definition models. Thus, we can

conclude that there is no agreement on what and how to assess CT. This is consistent with

several studies (Brennan & Resnick, 2012; Denning, 2017; Fronza et al., 2017; Grover et

al., 2017, Grover et al., 2015; Moreno León et al., 2015; Werner et al., 2012; Zhong et al.,

2016) that highlight the challenge of CT assessment.

62

The examination of the studies also reveals that the most common proposed

learning strategies are Game Based Related Strategies and Modeling & Simulations

Related Strategies leveraging scaffolding and collaborative strategies. This could be

explained as game design increases the motivational level of students while modeling &

and simulations facilitates processes that are core to CT such as Abstraction and

Evaluation. There is evidence that learning strategies that enhance students’ CT learning

are essential, as there is research that reveals that introducing CT to young students without

considering appropriate learning strategies leads to difficulties for students to acquire CT.

Tools in the reviewed studies provide environments and communities where

students are engaged with programming constructs and practices. Most of them share the

common feature of visual programming. Scratch is the most commonly used tool and is

usually used for game and media design. This is likely due to the combination of the

following reasons: a) Scratch is proposed as a tool to support CT development by its

designers (Resnick et al., 2009), b) Brennan & Resnick's (2012) framework in which CT

elements are defined in relation with Scratch, facilitates researchers to use Scratch in their

studies and c) the assessment of CT through projects developed in Scratch is facilitated by

automatic assessment methods such as Dr. Scratch (Moreno León et al., 2015).

Several studies examine CT-related factors including cognitive, non-cognitive and

demographic factors. Determining the relationship between these factors and CT could

indicate the most appropriate approaches for each case depending on the presence of these

factors. Most of the studies examine gender and socio-economic factors and challenges

that arise from them such as students’ underrepresentation and gender and social

differences. The examination of the selected studies indicates that while factors may affect

CT development, teaching and learning CT could address low enrollment in CS and

increase interest of underrepresented students. Researchers and teachers in the examined

studies are not particularly concerned about challenges that could affect CT acquisition

due to the nature of programming as discussed in (Buitrago Flórez et al., 2017). This could

be explained as the tools used have features that eliminate these difficulties.

Capacity Building has gained attention especially after 2015. Teacher education,

professional development and the knowledge that teachers need in order to teach CT are

the main issues discussed in the selected studies. Many of these studies are surveys that

63

examine the challenges faced by teachers. Other studies propose frameworks or discuss

professional development and teacher education interventions.

The proposed CTPK-12 conceptual model is developed to aid domain

understanding, communicate domain details and document CT through programming in

K-12 domain for future reference. The CTPK-12 conceptual model can be expanded to

include higher education or other approaches than programming, such as kinesthetic

approaches. Thus, it has the potential to serve as a basis for future studies by including CT

Areas or sub-areas as the domain evolves.

In addition, the CTPK-12 model could serve as a basis for hypothesized research

models that establish a direct link between theory and statistical estimations. An example

is presented in (Figure 4-10) where research hypothesis is developed between some CT

Areas of the model. Research hypothesis in the specific example includes H1 (Between

Learning Strategies Area and Knowledge Base Area): Game design enables the acquisition

of CT skills. H2 (Between Learning Strategies Area and Factors Area): Game design

motivates female students, addressing gender differences. H3 (Between Tools and

Learning Strategies): Scratch provides opportunities for game development, supporting

game design. H4 (Between Tools and Factors): Scratch motivates female students,

addressing gender differences. H5 (Between Factors and Knowledge Base): Female and

male students acquire a different level of CT skills.

64

Figure 4-10. Example of a hypothesized research model based on CTPK-12 model

We suggest using the CTPK-12 conceptual model to design empirical interventions

aimed at teaching and learning CT through programming in K-12 education to investigate

as many CT Areas as possible. Furthermore, we assert that empirical studies that explicitly

define the targeted elements of the CT knowledge base, the learning strategies applied, the

assessment methods used, the tools used, the factors that may affect CT based on the profile

of participants, and the capacity building of teachers involved, provide a complete picture

of the intervention being attempted.

In addition, the CTPK-12 conceptual model could be combined with models for

CT activities such as the scope of autonomy model (Carlborg et al., 2019) and the

constructionism matrix (Csizmadia, Standl, & Waite, 2019). The CTPK-12 model could

be used as a guide to designing teachers' lessons, providing them with evidence-based

results and detailed information on CT through programming in K-12 education and

facilitating them to integrate CT into their educational practices. The models’ areas and

their relationships could be taken into account during designing of curricula as well as CT

teaching and learning process to improve effectiveness. In addition, CTPK-12 model could

inform policy makers on their decision-making regarding CT and integration into K-12

education. It should be noted that the application of the CTPK-12 model in practice should

take into account the settings under which CT will be incorporated. These settings include

65

parameters such as course type (optional or compulsory) or whether CT will be employed

into other courses in the curriculum or as a separate course. Further elaboration of these

settings is outside the scope of this study. Figure 4-11 presents the possible application of

CTPK-12 model in educational practice.

Figure 4-11. CTPK-12 model application in K-12 educational practice

4.5 Summary

This chapter presents the method and results of the firs phase of this dissertation that

involves investigating and analysing the literature in order to elicit the areas of

Computational Thinking domain and their relationships. The purpose of this phase was to

develop a conceptual model based on a systematic literature review that maps the CT

through programming in K-12 education domain. The proposed Computational Thinking

through Programming in K-12 education (CTPK-12) conceptual model emerges from the

synthesis of 101 studies and the identification of CT Areas. The proposed model consists

of six CT Areas (namely Knowledge Base, Learning Strategies, Assessment, Tools,

Factors and Capacity Building) and their relationships.

66

5 Extending the CTPK-12 model for higher education

5.1 Introduction

In the previous Chapter we present the development of the (CTPK-12) Computational

Thinking through Programming in K-12 Education conceptual model. We thoroughly

analyse the concepts (CT Areas) and relationships of the model. In this Chapter, we

proceed to extend the proposed CTPK-12 model to include higher education to develop a

holistic model covering CT teaching and learning from early years until graduation.

The remainder of this Chapter is organised as follows: Section 5.2 presents the

design of the study followed for the extension of the CTPK-12 model. Section 5.3 presents

an overview of Computational Thinking through programming studies in higher education.

Section 5.4 presents the CTPHE model which is the extension of the CTPK-12 for higher

education. Section 5.5 further discusses the CTPHE model areas. Section 5.6 presents a

summary of the chapter.

5.2 Study design

5.2.1 Study goal

The study goal is to expand the Computational Thinking through Programming in K-12

education (CTPK-12) Conceptual model for higher education.

5.2.2 Method

In order to achieve the study goal, we apply a Systematic Mapping Study based on

Petersen’s et al. (2008) methodology. This includes the following adapted steps.

Step1. Definition of research questions: Definition of research questions based on

the study goal (Section 5.2.1)

Step2. Conduct search for primary studies: Conducting a structured search based

on relevant search strings on scientific databases (Section 5.2.2).

Step3. Screening of Studies: Applying exclusion and inclusion criteria (Section

5.2.3).

67

Step4. Classification scheme Identification: Definition of the classification scheme

(Section 5.2.4).

Step5. Data Extraction and mapping process: Shorting the studies into the

classification scheme and provide visualizations of the results. Figure 5-1 presents the

study method in terms of steps conducted and relevant outcomes.

Figure 5-1. Systematic mapping process, adapted from Petersen et al. (2008)

5.2.2.1 Definition of Research Questions

The research questions are the following:

RQ1. What are the areas and sub-areas of teaching and learning CT through

programming in higher education?

RQ2. How do these areas evolve over the years and how do they apply to various

branches?

5.2.2.2 Conduct search for primary studies

We structured the search string driven by the research study goal. Specifically, we used

the search string TITLE-ABS-KEY (“computational thinking”) AND PUBYEAR > 2005

AND (LIMIT-TO (DOCTYPE , “ar”) OR LIMIT-TO (DOCTYPE , “r”)) AND (LIMIT-

TO (LANGUAGE, “English”)) in Scopus database and TITLE: (“computational

thinking”) Refined by: DOCUMENT TYPES: (ARTICLE OR REVIEW) AND

LANGUAGES: (ENGLISH) Timespan: 2006-2020. Indexes: SCI-EXPANDED, SSCI,

A&HCI, ESCI in Web of Science database. Searches include articles published between

January 2006 and December 2020. Searches took place on January 2021 and resulted in

993 studies, 707 articles in Scopus database and 286 in Web of Science database.

68

5.2.2.3 Screening of studies

During this step we removed 249 duplicates and studies that were not fully availably.

Subsequently, we applied inclusion and exclusion criteria to exclude studies that were not

relevant to answering the research questions. Table 5-1 presents the exclusion and

inclusion criteria defined. Finally, we included 39 primary studies and 2 additional primary

studies that we identified through backward (reviewing citations) and forward searching.

Appendix B present the total of 41 studies included.

Table 5-1. Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

Empirical CT studies in which participants

are undergraduate students, postgraduate students

and academic staff.

Empirical CT studies that focus on CT

through programming.

Studies which discuss/apply CT through

other means than programming.

5.2.2.4 Classification Scheme Identification

We use as base for the classification scheme the areas of the CTPK-12 model presented in

Chapter 4. Each Area of the model corresponds to one category in the classification

scheme. Petersen et al. (2008) propose the extraction of the classification scheme based on

keywording of abstracts of the selected studies. For this purpose, we read all the abstracts

of the selected articles and wrote down keywords. Each keyword was assigned to one of

the classification scheme categories in order to determine if there were any additional

categories that could be included in the classification scheme.

5.2.2.5 Data extraction and mapping process

In this step we classify the selected primary studies into the classification scheme.

According to Petersen et al. (2008) the classification scheme evolves while data extraction

is performed. When sorting the selected primary studies into the categories, new sub-

categories appear, while others remain unused. We used an Excel table per category to

69

document the different instances of sub-categories in each primary study and the evolution

of the classification scheme. When listing a primary study into a particular category and

sub-category, we provide a brief rational for why the study should be located in that

particular category/sub-category. The final tables show the distribution of primary studies

into sub-categories and calculate the relevant frequencies. The analysis of the results

focuses on comparing frequencies between different time periods and different targeted

groups. This allows us to identify the categories and sub-categories highlighted in CT

through programming in higher education research and therefore understand its

evolvement and application.

5.2.3 Study Limitations

We acknowledge that this study has some limitations. First, the study includes only studies

written in English. Second, searches were conducted in only two scientific databases,

namely Web of Science and Scopus. Third, searches were conducted with a time constraint

of 2006 onwards. Thus, the study maps the research conducted since 2006 and not on the

initial stages of CT research. Finally, the small number of authors (only two) combined

with subjectivity constitutes an additional limitation of the study. Although we applied a

systematic mapping method, we had to make subjective choices regarding the evolution of

the classification scheme.

5.3 Overview of Computational Thinking through programming

studies in higher education.

5.3.1 Studies by year

The distribution of studies by year (Figure 5-2) reveals an upward trend in the number of

studies. This is particularly true from 2017 onwards when the number of studies increases,

suggesting that the field is generally beginning to mature. For this reason, we analyze the

evolution of the field based on the two time periods 2006-2016 and 2017-2020.

70

Figure 5-2. Studies by year

5.3.2 Interventions for CT development in higher education.

CT through programming empirical interventions in higher education (Table 5-2) mainly

focus on Education majors, Natural Sciences majors and Computer Science (CS) majors.

Table 5-3 presents the classification of branches based on the selected studies. The intense

interest in Education branch led us to classify it as a separate branch in the context of this

study. Figure 5-3 presents the percentage of studies by branch in periods 2006-2016 and

2017-2020.

Table 5-2. Interventions for CT development in higher education

Study Content Branch Participants

(Adler & Kim,

2018)

Science methods

course

Education 19 graduate and 13

undergraduate

preservice teachers

(Bui et al., 2018) Mindmaps and

Scratch programming

Mathematics Education 50 preservice teachers

(Cachero et al.,

2020)

Programming training Health Information Systems,

Psychology

104 undergraduate

students

(Chao, 2016) Principles and

methods of C++

language

programming

Information Communication 158 undergraduate

students

2

1 1

3

2 2

8

5

7

1
0

2 0 0 9 2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5 2 0 1 6 2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 0

71

(Choi, 2019) Java programming

class

Undefined 28 undergraduate

students

(Cutumisu &

Guo, 2019)

Educational

Technology course

Education 139 preservice teachers

(Cetin, 2016) Programming

language course

Education 56 pre-service teachers

(Dolgopolovas &

Jevsikova, 2015)

Structured

programming (SP)

course

Software Engineering 65 undergraduate

students

(Fang et al.,

2017)

Database Principles

course

Computer Science and

Technology

24 undergraduate

students

(Fernandez et al.,

2018)

Workshop Education 21 in-service and pre-

service teachers

(Fernandez et al.,

2018)

Start to Programming

course

Physics, Mathematics and

Natural Sciences

22 undergraduate

students

(Gabriele et al.,

2019)

Programming course Primary Education 141 preservice teachers

(Hambrusch et

al., 2009)

Introduction to CT Physics and Chemistry 13 undergraduate

students

(Hou et al.,

2020)

Programming course Beauty Science 40 sophomore students

(Jaipal-Jamani &

Angeli, 2017)

Science education

methods course

Elementary Teacher Education 21 preservice teachers

(Jeon & Kim,

2017)

CT-based

programming course

applicable to liberal

arts

Education 110 preservice teachers

(Kang & Lee,

2020)

Project-based

learning course

Non-engineering majors Undergraduate students

(Kazimoglu et

al., 2012)

Introductory

computer

programming

Computer Science 25 undergraduate

students

(Katai, 2020) Sorting algorithms Humanities, Science 48 undergraduate

students

(Kwon & Kim,

2018)

CT and Software

Coding & Problem

Solving and

Algorithm courses

Humanities, Social sciences

and Arts

250 undergraduate

students

(Lee & Cho,

2020)

Computer

programming

Undefined 151 undergraduate

students

(Lin & Chen,

2020)

Program Logic

Thinking Education

Arts, Music, Chinese, Public

Administration

97 undergraduate

students

72

(Mouza et al.,

2017)

Integrating

Technology in

Education program

Education 21 preservice teachers

(Page &

Gamboa, 2013)

How Computers

Work: Logic in

Action

Science, Engineering, History,

Letters, Philosophy,

Linguistics, Economics,

Drama, Business, Psychology,

Business, Computer Science,

Computer Engineering

36 undergraduate

students

(Pala & Mıhçı

Türker, 2019)

Programming-I Education 33 preservice teachers

(Qin, 2009) Introduction to

Bioinformatics

Biology Undefined

(Rodríguez-

García et al.,

2020)

AI, ML and its

societal implications

workshop

Computer Science 14 students

(Romero et al.,

2017)

StorytoCode creative

challenge

Elementary School Education 120 preservice teachers

(Rubinstein &

Chor, 2014)

Computational

Approaches for Life

Scientists

Biology 25 graduate and

undergraduate students

(Shih et al.,

2015)

Computer

Applications in

Emergency

Management

Emergency Management

Technology

18 undergraduate

students

(Wu et al., 2019) Introduction to C++

programming

Education 47 preservice teachers

(Yuen &

Robbins, 2014)

Introductory

computer science

course (data-driven)

Biology 5 undergraduate

students

(Zha et al.,

2020a)

Educational

Technology course

Education 59 preservice teachers

(Zha et al.,

2020b)

Educational

Technology course

Education 15 preservice teachers

Table 5-3. Classification of branches

Branch sub-

category

Description

73

Majors (CS) Computer Science including Computer Science and Technology, Computer

Science, Computer Engineering, Software Engineering

Education majors Education including Mathematics Education, Primary Education, Elementary

School Education, Secondary Education

Non-majors in CS Natural Sciences including Chemistry, Biology, Physics

Humanities, Social sciences and Arts including History, Letters, Philosophy,

Linguistics, Economics, Drama, Business, Psychology, Business, Arts, Music,

Chinese, Public Administration.

Engineering

Mathematics

Health Information Systems

Information Communication

Beauty Science

Figure 5-3. Percentage of studies by branch in periods 2006-2016 and 2017-2020

During period 2006-2016 a percentage of 69,23% focuses on Computer Science,

Engineering and Natural Sciences while only 7.69% focuses on Education majors. During

the next period 2017-2020 the focus shifts from the aforementioned branches to Education.

A 54,17% of interventions for CT through programming focus mainly on preservice

Beauty
Science

Health
Informati

on
Systems

Informati
on

Commun
ication

Emergen
cy

Manage
ment

Technolo
gy

Engineeri
ng

Mathem
atics

Compute
r Science

Natural
Sciences

Humaniti
es, Social
sciences
and Arts

Educatio
n

2006-2016 0,00% 0,00% 7,69% 7,69% 7,69% 0,00% 23,08% 38,46% 7,69% 7,69%

2017-2020 4,17% 4,17% 0,00% 0,00% 0,00% 4,17% 8,33% 8,33% 16,67% 54,17%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

74

teachers’ preparation. Thus, we can conclude that there is an upward research trend for

interventions aimed at Teacher Education.

5.4 The revised conceptual model for CT through programming in

higher education (CTPHE)

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning

Strategies, Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12

model also cover teaching and learning CT through programming in higher education.

However, different sub-areas emerge in CT areas, while some of the model’s sub-areas do

not exist in the selected higher education studies. The following sections present the areas

and sub-areas found in studies aimed at higher education. Figure 5-4 presents the revised

CTPK-12 model that corresponds to CT through programming in higher education. The

CTPK-12 model also depicts the relationships between the areas of teaching and learning

CT through programming as links between the areas shown in Figure 5-4. The revised

model could be use in order to develop research questions between the areas of teaching

and learning CT through programming in higher education. For example, which learning

strategies could be more appropriate for teaching CT domain specific elements, which for

CT programming elements and which for CT higher-order skills.

Figure 5-4. The revised conceptual model for CT through programming in higher

education (CTPHE)

75

5.4.1 CT areas in higher education

The classification scheme identification phase revealed that there are no additional areas

in the selected studies other than those indicated by the CTPK-12 model. Therefore, the

areas of CT through programming in higher education which are analyzed and synthesized

in the following sections are the following: Knowledge Base, Learning Strategies, Tools,

Assessment, Factors, Capacity Building.

5.4.1.1 Knowledge Base

15 studies discuss elements of CT including domain specific elements, programming

elements and higher-order skills. Table 5-4 presents the classification of CT elements in

the selected studies. Figure 5-5 presents the distribution of CT Knowledge Base sub-

categories by periods 2006-2016 and 2017-2020. Table 5-5 presents the distribution of CT

Knowledge Base sub-categories by classified branch.

Chao (2016) investigates Computational practice (Sequence, Selection, Simple

iteration, Nested iteration, Testing), Computational design (Problem decomposition,

Abutment composition, Nesting composition) and Computational problem-solving

performance (Goal attainment, Program size). Wu et al. (2019) adapts Brennan &

Resnick’s framework (2012), proposing Concepts (Sequence, Loops, Conditions,

Operators, Data), Practices (Incremental and Iterative, Testing and Debugging, Reusing

and Remixing, Abstracting and Modularizing) and Identities (Expressing, Questioning). In

the same line, Cutumisu & Guo (2019) adopts Brennan & Resnick’s framework (2012) for

assessing CT concepts, practices and perspectives. Cetin (2016) investigates variables,

conditional and selection statements, loops, arrays, and functions as CT elements. Yuen &

Robbins (2014) investigates students’ CT based on a coding scheme that includes

Organization (Coding style, Data organization), Construction (Following procedures,

Visualizing data) and Analysis (Interpretation and Conclusions). Jaipal-Jamani & Angeli

(2017) investigate correct sequence, decisions on the flow of control and debugging.

Qin (2009) propose Multilevel abstraction and conceptualization, Iteration,

recursion and backtracking, Modularization, Assessment and error corrections,

Optimization and Simulation among other CT skill sets that are domain specific, derived

from mapping CT skills to specific bioinformatics topics. In the same line, Rubinstein &

76

Chor (2014) propose Abstraction, Generalization, Modular design and decomposition,

Data structures and Computational models among other domain specific computational

concepts and processes.

Other studies propose skills such as Abstraction, Decomposition, Recognition of

Patterns and Algorithms (Fernández et al., 2018; Hou et al., 2020), Creativity, Algorithmic

Thinking, Cooperativity, Critical Thinking and Problem Solving (Korkmaz et al., 2017;

Lin & Chen, 2020; Pala & Mıhçı Türker, 2019). Sondakh et al. (2020) propose a holistic

CT framework that includes the skills of Abstraction, Algorithmic Thinking,

Decomposition, Debugging, Evaluation, Generalization and the attitudes of Problem

solving, Teamwork and communication.

Table 5-4. CT Knowledge Base sub-categories

Knowledge

Base sub category

Description Studies

Domain

Specific elements

CT concepts, skills and processes mapped

to specific domains.

PS31, PS34

Programming

elements

Programming related concepts, practices,

identities and designs.

PS4, PS5,

PS7, PS11, PS15, PS38,

PS39

Higher-order

elements

Higher-order thinking skills and

competencies.

PS10, PS13,

PS21, PS24, PS29,

PS36

77

Figure 5-5. Distribution of CT Knowledge Base elements sub-categories by time

period

Domain-specific elements are discussed in studies during period 2006-2016 while

in period 2017-2020 these elements are absent. Higher-order elements are introduced

during period 2017-2020 with a percentage of 60% in the selected studies of this period.

Programming elements are discussed throughout the years.

Table 5-5. Percentage of studies’ CT Knowledge Base elements sub-categories by

classified branch

Knowledge Base sub-category Non-majors in CS Education majors

Programming elements 33,33% 66,67%

Higher-order elements 33,33% 33,33%

Domain Specific elements 33,33% 0,00%

100,00% 100,00%

Domain Specific elements are discussed only in studies targeted non-majors in CS.

Programming elements have the strongest presence in the selected studies and particularly

in Education majors.

Programming elements Higher-order elements
Domain Specific

elements

2006-2016 60,00% 0,00% 40,00%

2017-2020 44,44% 55,56% 0,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

78

5.4.1.2 Learning Strategies

Researchers in 24 studies discuss, propose or apply teaching and learning strategies for CT

through programming in higher education. Out of these studies, seven apply more than one

learning strategy or practice. We classify learning strategies in nine sub-categories,

namely, Game Based Strategies, Modeling & Simulations Based Strategies, Problem

Solving Strategies, Project Based Strategies, Scaffolding Practices, Collaborative

Strategies, Flipped Classroom, Hands-on strategies and Lectures. Table 5-6 presents

studies by each sub-category. Figure 5-6 presents the distribution of learning strategies

sub-categories by time periods 2016-2016 and 2017-2020. Table 5-7 presents the

distribution of learning strategies sub-categories by classified branch.

Six studies discuss Problem Solving Strategies (Cetin, 2016; Hambrusch et al.,

2009; Jeon & Kim, 2017; Kang and Lee, 2020; Lee & Cho, 2010; Yuen & Robbins, 2014).

For example, Yuen & Robbins (2014) examine how undergraduate students develop CT

skills during a data-driven programming course that encompasses problem-solving

iterative processes. Lee & Cho (2020) exploit problem-solving methods to improve

students’ CT skills and logical thinking ability. Hambrusch et al. (2009) developed a course

aimed at introducing students to CT based on a problem-driven format.

Four studies discuss Collaborative Strategies: Pair programming (Choi, 2019),

Think-Pair-Share practice (Choi, 2019), Collaborative programming (Wu et al., 2019),

teamwork (Jaipal-Jamani & Angeli, 2017; Zha et al., 2020b). Collaborative programming

is proposed as an effective learning strategy to enhance students’ CT in higher education

(Wu et al., 2019). For example, Choi (2019) develops an instructional model that exploits

Think-Pair-Share Strategy and pair programming. The results of this study show that

collaborative strategies could help students learn CT and programming.

Three studies discuss Project Based Strategies (Ma et al., 2017; Wu et al., 2019).

Wu et al. (2019) support that project-based learning contexts can help novice students

develop different learning pathways to learn CT. In the same line, Ma et al. (2017) propose

using project-driven learning strategies to enable students to acquire CT.

Three studies discuss Scaffolding strategies (Chao, 2016; Jaipal-Jamani & Angeli,

2017; Yuen & Robbins, 2014) usually combined with other strategies. Yuen & Robbins

79

(2014) propose scaffolding as an effective learning strategy in order to enable students to

focus on higher-order computational concepts without struggling with coding process in a

text programming language such as MATLAB. In the same line, Chao (2016) argues that

scaffolding may facilitate students to develop programming strategies and skills. Jaipal-

Jamani & Angeli (2017) also found that the scaffolding programming instructional strategy

they applied in their study, helped students to acquire CT.

Two studies discuss Modeling & Simulations Based Strategies (Adler & Kim,

2018; Magana & Silva Coutinho, 2017), two studies Flipped classroom (Zha et al.,2020a,

Zha et al. 2020b) and one study Game Based Strategies (Kazimoglu et al., 2012).

Specifically, Kazimoglu et al. (2012) propose a serious game where students develop their

game strategies through programming based on an educational game framework for CT.

Two researchers choose to give hands-on activities (Qin, 2009; Rubinstein & Chor,

2014) and three use lectures (Cetin, 2016; Gabriele et al., 2019; Jaipal-Jamani & Angeli,

2017). Other strategies involve reflective learning (Choi, 2019), storytelling (Romero et

al., 2017) and network autonomous learning (Li & Hou, 2014). Additionally, learning

strategies are implemented in traditional classroom settings or in blended environments

(Fernández et al., 2018; Mouza et al., 2017; Zha et al., 2020b).

Table 5-6. Learning strategies sub-categories

Learning

Strategies sub-category

Description Studies

Game Based

Strategies

Game Based Related Strategies

involve game design and digital/video game

development, programming games and any

strategy that exploits games and

programming.

PS18

Modeling &

Simulations Based Strategies

Modeling & Simulations Based

Related Strategies involve designing of

scientific models and simulations.

PS1, PS26

80

Problem Solving

Strategies

Problem Solving Related Strategies

involve Problem Based Learning and

problem-solving learning strategies in

general.

PS4, PS12,

PS16, PS23, PS26,

PS39

Project Based

Strategies

Project Based Related Strategies

involve the engagement with authentic

projects set around real challenges and

problems.

PS26, PS38

Scaffolding

Strategies

Scaffolding Related Strategies

involve practices that offer support to

students as they learn.

PS6, PS15,

PS39

Collaborative

Strategies

Collaborative Related Practices

involve practices where students actively

interact during the learning process including

Pair programming, Think-Pair-Share practice

and any practice based on student’s

collaboration and cooperation.

PS5, PS15,

PS38, PS40

Flipped Classroom

Strategies

Flipped classroom Strategies

involve strategies that reverse the traditional

model of classroom instruction.

PS40, PS41

Hands-On Strategies Hands-on activities PS31, PS34

Lectures Theoretical lectures PS4, PS11,

PS15

81

Figure 5-6. Distribution of learning strategies sub-categories by time period

During period 2006-2016 problem solving Strategies have the strongest presence

(36.36%), while during period 2017-2020 almost all learning strategies sub-categories

occupy the same percentage (13.33%) with the exception of Game Based Strategies which

has no presence at all and Collaborative Strategies which have a slightly stronger presence

than the rest (20%).

Table 5-7. Percentage of learning strategies sub-categories by classified branch

Learning strategies

sub-category

CS majors Educatio

n majors

Non-majors

Collaborative Related

Strategies

0,00% 23,08% 12,50%

Game Based Related

Strategies

33,33% 0,00% 0,00%

Hands-On Strategies 0,00% 0,00% 25,00%

Lectures 0,00% 23,08% 12,50%

Collaborat
ive

Strategies

Game
Based

Strategies

Hands-On
Strategies

Lectures

Modeling
&

Simulation
s Based

Strategies

Problem
Solving

Strategies

Project
Based

Strategies

Scaffoldin
g

Strategies

Flipped
Classroom

2006-2016 9,09% 9,09% 18,18% 9,09% 0,00% 36,36% 9,09% 9,09% 0,00%

2017-2020 20,00% 0,00% 0,00% 13,33% 13,33% 13,33% 13,33% 13,33% 13,33%

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

82

Modeling &

Simulations Based Related

Strategies

0,00% 7,69% 0,00%

Problem Solving

Related Strategies

33,33% 15,38% 25,00%

Project Based

Related Strategies

33,33% 7,69% 12,50%

Scaffolding Related

Strategies

0,00% 7,69% 12,50%

Flipped classroom 0,00% 15,38% 0,00%

100,00% 100,00% 100,00%

No strategy seems to be dominant in any of the classified branches. In addition, as

shown in Table 5-7. Percentage of learning strategies sub-categories by classified branch,

in studies aimed at preservice teachers and non-majors, a greater variety of studies is

applied than in studies aimed CS majors.

5.4.1.3 Tools

Researchers in 37 studies discuss, propose or exploit tools for CT teaching and learning in

higher education. We classify tools in five sub-categories, namely, Programming tools,

Robotics & Microcontrollers, Augmented Reality Systems, Machine Learning tools and

tools specifically developed for CT. Table 5-8 presents tools sub-categories leveraged in

the selected studies. Figure 5-7 presents the distribution of tools sub-categories in periods

2006-2016 and 2017-2020. Table 5-9 presents the distribution of tools sub-categories by

classified branch.

Eight studies exploit Scratch (Adler & Kim, 2018; Bui et al., 2018; Cetin, 2016;

Gabriele et al., 2019; Hou et al., 2020, Mouza et al., 2017; Romero et al., 2017, Zha et al.,

2020a), two studies Hour of Code (Adler & Kim, 2018; Mouza et al., 2017), one study

Code.org (Cutumisu & Guo, 2019), one study App Inventor (Shih et al., 2015), one study

83

ARDUINO IDE (Pala & Mıhçı Türker, 2019), one study LEGO® WeDo robotics (Jaipal-

Jamani & Angeli, 2017), one study Java (Choi, 2019), one study Hopscotch (Zha et al.,

2020b), one study HTML5 and CSS3 (Jeon & Kim, 2017) nine studies Python (Cachero

et al., 2020; Dolgopolovas & Jevsikova, 2015; Hambrusch et al., 2009; Kang & Lee, 2020;

Kwon & Kim, 2018; Lee & Cho, 2020; Magana & Silva Coutinho, 2017; Pala & Mıhçı

Türker, 2019; Rubinstein & Chor, 2014), one study ACL programming language (Page &

Gamboa, 2013), two studies C++ (Pala & Mıhçı Türker, 2019; Wu et al., 2019), three

studies SQL (Huang & Leng, 2019; Qin, 2009; Fang et al., 2017), two studies MATLAB

(Magana & Silva Coutinho, 2017; Yuen & Robbins, 2014), and four (Chao, 2016; Katai,

2020; Kazimoglu et al., 2012; Lin & Chen, 2020) studies develop a tool. For example,

Chao (2016) develops a problem-solving programming environment and Lin & Chen

(2020) develop a deep learning recommendation based augmented reality system.

Table 5-8. Tools sub-categories

Tools sub-category Studies

Programming

tools

Visual programming & PS1, PS2, PS4,

PS5, PS7, PS11, PS13,

PS18, PS19, PS28, PS33,

PS35, PS39, PS40

 Text programming tools. PS3, PS6, PS8,

PS9, PS12, PS14, PS16,

PS17, PS22, PS23, PS27,

PS29, PS30, PS31, PS34,

PS35, PS38, PS39

Robotics & Microcontrollers PS15, PS30

Augmented Reality systems PS25

Machine Learning tools PS32

Tools specifically developed to support a CT strategy PS5, PS18, PS25,

PS19

84

Figure 5-7. Distribution of tools sub-categories by period

During period 2006-2016 text programming tools have the strongest presence

(57.14%) while 28.57% of studies investigates visual programming. Subsequently during

period 2017-2020 a 40% of studies investigating visual programming. Thus, an upward

trend in visual programming is revealed. In addition, new tools such as Microcontrollers,

Robotics, Machine Learning tools and Augmented Reality systems are introduced.

Table 5-9. Percentage of tools sub-categories by classified branch

Tools sub-category CS

majors

Education

majors

Non-majors

in CS

Tools developed for

CT

20,00% 0,00% 12,50%

Microcontrollers &

Robotics

0,00% 13,33% 0,00%

Visual programming 20,00% 66,67% 25,00%

Text programming 40,00% 20,00% 56,25%

Augmented Reality 0,00% 0,00% 6,25%

Text
programming

Tools
developed for

CT

Visual
programming

Microcontroll
ers &

Robotics

Augmented
Reality

Machine
Learning

2006-2016 57,14% 14,29% 28,57% 0,00% 0,00% 0,00%

2017-2020 40,00% 4,00% 40,00% 8,00% 4,00% 4,00%

0,00%

20,00%

40,00%

60,00%

85

Machine learning 20,00% 0,00% 0,00%

Total 100,00

%

100,00% 100,00%

Visual programming is investigated mainly in studies that focus on preservice-

teachers while it is not prevalent in studies that target Non-majors and CS majors. Text-

programing is investigated in all branches while it is prevalent in studies that target Non-

majors in CS (56,25%) and CS majors (40%).

5.4.1.4 Assessment

29 studies discuss CT through programming assessment methods. Assessment methods are

classified in four sub-categories, namely, Self-report methods, Tests, Artifact analysis and

Observations. Table 5-10 presents assessment methods applied in the selected studies.

Figure 5-8 presents the distribution of assessment sub-categories in periods 2006-2016 and

2017-2020. Table 5-11 presents the distribution of assessment sub-categories by classified

branch.

Four of the selected studies involve observations. Wu et al. (2019) record students’

actions and conversations (screen and video recording) to examine how novice

programmers develop CT by interacting with each other during collaborative programming

and problem solving. More specifically, they investigate students’ trajectories and their

different CT development pathways. Screen recording is used to capture the programming

process while video recording is used to capture student’s conversations. Yuen & Robbins

(2014) collect field notes during participants interviews.

Six of the selected studies involve artifact analysis. Chao (2016) collects log data

about the participants' practice, strategies, and performance of computational problem-

solving activities. Choi (2019) evaluates students’ programming artifacts. Yuen & Robbins

(2014) collect source code from students’ in-class activities. Romero et al. (2017) analyze

students’ projects through Dr. Scratch (Moreno-Leon et al., 2015) and manual inspection

based on entities, events, code blocks and errors. Gabriele et al. (2019) analyzed students’

Scratch files through manual inspection for programming concepts, code organization and

86

designing for usability adapted by Denner et al. (2012) and automatic inspection through

Dr. Scratch.

23 studies exploit self-report assessment methods. Five studies exploit scales, three

surveys, seven interviews, eight questionnaires and one study students’ reflections. Yuen

& Robbins (2014) use interviews as their primary method for data collection. Shih et al.

(2015) survey students’ perceptions about programming and their experiences with the

applied CT intervention. Mouza et al. (2017) assess students’ CT knowledge based on a

pre/post scale. Cutumisu & Guo (2019) used topic modeling techniques to extract

participants CT understanding through their reflections. Researchers also develop and

validate self-report scales in their studies. For example, Korkmaz et al. (2017) developed

the CTS scale in order to assess students’ CT skills. The scale includes the items of

Creativity, Algorithmic Thinking, Critical Thinking, Problem Solving and Cooperativity.

Sondakh et al. (2020) propose a scale for CT assessment validated through Fuzzy Delphi

Method that includes the items of Abstraction, Algorithmic Thinking, Decomposition,

Debugging, Evaluation, Generalization, Problem solving, Teamwork, Communication and

spiritual intelligence. In the same line, Kılıç et al. (2020) developed and validated a scale

that includes the items of Conceptual Knowledge, Algorithmic Thinking and Evaluation.

Finally, ten studies assess students’ CT through tests and assignments. For example, Jaipal-

Jamani & Angeli (2017) used programming worksheets with completed, semi-completed

and new programming tasks. Lin & Chen (2020) used multiple-choice and fill-in-the-blank

questions to assess students’ programming understanding.

Table 5-10. Assessment sub-categories

Assessment

sub-category

Description Studies

Self-Report

Methods

scales, questionnaires, surveys,

interviews, reports, reflections

PS1, PS2, PS3,

PS4, PS5, PS7, PS10, PS11,

PS15, PS16, PS17, PS20,

PS21, PS22, PS28, PS29,

S30, PS31, PS34, PS35,

PS36, PS39, PS40

87

Tests multiple choice and open-ended

tests, quizzes, tasks, assignments

PS3, PS4, PS15,

PS18, PS25, PS31, PS32,

PS34, PS39, PS40

Artifact

analysis

automatic analysis, manually

inspection of artifacts, log data

PS5, PS11, PS19,

PS33, PS38, PS39

Observations observations of students’ actions,

screen recordings, camera recordings, field

notes

PS2, PS37, PS39,

PS40

Figure 5-8. Distribution of assessment sub-categories by period

During period 2017-2020 an upward trend in the use of observations (+4,04%) and

self-report methods (+10.47%) and a downward trend in the use of tests (-15.47%) is

revealed in the assessment of CT. Artifact analysis shows a very small increase of 1.48%.

Artifact Analysis Observations Tests Self-Report Methods

2006-2016 13,33% 6,67% 33,33% 46,67%

2017-2020 14,29% 10,71% 17,86% 57,14%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

88

Table 5-11. Percentage of assessment sub-categories by classified branch

Assessment sub-

category

CS

majors

Education

majors

Non-majors

in CS

Artifact Analysis 0,00% 15,79% 14,29%

Observations 0,00% 15,79% 7,14%

Tests 50,00% 10,53% 28,57%

Self-Report

Methods

50,00% 57,89% 50,00%

Total 100,00% 100,00% 100,00%

Self-report methods have the strongest presence compared to other methods in

studies targeted Non-majors in CS (50%) and education majors (57.89%).

5.4.1.5 Factors

Nine studies discuss factors that affect CT. Table 5-12 presents factors discussed in the

selected studies. The effects that CT could have on interest in Computing and attitudes

toward programming (Cetin, 2016; Hambrusch et al., 2009; Shih et al., 2015), self-efficacy

(Jaipal-Jamani & Angeli, 2017; Kwon & Kim, 2018), creativity (Romero et al., 2017),

interest in CT (Zha et al., 2020a), motivational impact (Katai, 2020), enrollment in CS

courses (Hambrusch et al., 2009) and occupational change (Kwon & Kim, 2018) are

discussed in the selected studies. CT-related factors are discussed through the years,

33.33% of the studies are published during 2006-2016 and another 66.67% during 2017-

2020. Furthermore, studies that investigate CT-related factors focus on both Education

Majors (57.14%) and Non-majors in CS (71.43%).

Hambrusch’s et al. (2009) study reveals that the problem-driven approach focused

on computational principles and scientific discovery they applied, increased students’

interest in CS. In the same line, Shih et al. (2015) found a positively change in students’

perceptions about computing after they attended a course aimed to encourage students to

89

apply CT and problem-solving skills to authentic problems. On the contrary, Cetin (2016)

found no significant difference between control and experimental group students in terms

of their attitudes towards programing. However, he suggests that this this is probably due

to the short duration of the intervention and the difficulty of changing students’ already

high attitudes. Kwon & Kim (2018) conclude that a software education curriculum based

on CT can stimulate students’ intrinsic motivation and improve students’ self-efficacy. In

the same line, Jaipal-Jamani & Angeli (2017) found that after participated in a CT robotics

program students’ self-efficacy related to robotics and interest in learning robotics

significantly increased. Kwon & Kim’s (2018) study reveals that integrating CT could

affect students’ perspectives about their future occupation.

Table 5-12. Factors investigated in the selected studies

Factors Description Studies

Non-

Cognitive factors

Personal traits, attitudes and motivations such as

attitudes toward programming, self-efficacy, creativity,

interest in CS, perspective about future occupation.

PS4, PS12,

PS15, PS19, PS22,

PS27, PS33, PS35,

PS41

5.4.1.6 Capacity Building

Only three of the selected studies discuss academic faculty training and professional

development and they are all published in period 2017-2019. Table 5-13 presents methods

regarding capacity building discussed in the selected studies.

Magana & Silva Coutinho (2017) survey industry and academia experts to identify

the challenges facing academic staff in integrating CT at undergraduate level. Ma et al.

(2017) suggest ways to improve university student’s CT skills, including faculty

professional training based on two principles: the mobility of academic staff and the

organization of training programs. Taylor et al (2018) emphasize the role of collaboration

between institutions as a means of motivating academic staff to redesign courses to

integrate new concepts such as CT and coding.

90

Table 5-13. Capacity Building methods

5.5 Discussion

The analysis of the selected studies revealed that the areas of Knowledge Base, Learning

Strategies, Assessment, Tools, Factors and Capacity Building proposed by the CTPK-12

model also cover teaching and learning CT through programming in higher education.

However, different sub-areas emerge in CT areas, while some of the model’s sub-areas do

not exist in the selected higher education studies.

Furthermore, as CT applications become more mature these areas evolve. Early

attempts often link CT to domain-related elements, drawing on topics and activities related

to specific courses and disciplines. However, in the coming years, CT is considered as a

construct that is more associated with high-level skills such as abstraction and

decomposition. Elements related to programming are most prevalent and evident

throughout the years. This is plausible as CT draws from CS concepts according to Wing’s

(2006) definition.

CT through programming in higher education is traditionally implemented through

text programming environments. However, the analysis of the selected studies revealed an

upward trend in visual programming. This could be explained as visual programming is

often applied to teacher education courses that have been at the forefront of CT higher

education in recent years. In addition, tools such as Microcontrollers, Robotics and

Augmented reality systems have recently emerged.

CT assessment is generally considered difficult to achieve by several authors

(Brennan & Resnick, 2012; Denning, 2017; Fronza et al., 2017; Werner et al., 2012; Zhong

et al. 2016). While self-report methods are the most common, the analysis of the selected

Capacity

Building

Description Studies

Professional

development

Variety of tools such as training

programs, mobility of academic staff,

collaboration between institutions.

PS26, PS27,

PS37

91

studies also revealed a shift from tests to artifact analysis and observations in recent years.

These methods are incorporated in order to provide a more complete picture of the CT

acquisition.

Learning strategies and factors related to CT development such as personal traits,

attitudes and motivations are discussed throughout the years, while academic faculty

training and professional development gained attention only recently.

Teaching and learning CT through programming in higher education could be also

organized in two areas: CT development for Non-majors and CS majors; and Teacher

Education. The first concerns interventions and studies that propose the integration of

programming aiming to help Non-majors and CS majors to acquire CT. The second

concerns efforts to educate and support pre-service teachers with ultimate goal the

integration of CT in K-12 education. The two areas present differentiation mainly in the

tools used and the CT elements that are assessed with the second one to draw upon research

on CT contacted in K-12 settings. Implementation of CT through programming for pre-

service teachers is designed mainly on the basis of programming elements and includes

mainly visual programming.

The analysis of the selected studies reveals that the focus of CT research in higher

education is mainly on re-designing courses to align disciplinary knowledge with CT core

concepts and to provide instructional models. The development of frameworks for learning

strategies, tools and assessment methods is not extensively discussed in the selected

studies.

Herein we also identify gaps that we discuss in the following paragraphs in an

attempt to draw connections and implications from K-12 education where extensive efforts

are being made worldwide to integrate CT.

In terms of learning strategies, although previous research has revealed that game

design is often selected to introduce software engineering to students Souza et al. (2018),

this is not the case for CT in higher education. There is no study in the selected studies that

focuses on the development of CT through programming that applies game design learning

strategy. In contrary, in K-12 education, game design is one of the most common strategies

applied in several studies such as (Garneli & Chorianopoulos, 2018; Repenning et al.,

92

2015; Weintrop et al., 2016). This is probably due to the capabilities of the tools offered to

different age groups. In K-12 education, various tools such as Scratch (Resnick et al.,

2009), and Agentsheets (Repenning et al., 2015) are utilized for game design and media

computation, supporting the implementation of learning strategies that include game

design learning. Although these tools are widely used in K-12 education and in higher

education to prepare future teachers (Adler & Kim, 2018; Angeli et al., 2016; Gabriele et

al., 2019), they are rarely used in interventions targeted other CS major or non-major

students. Text programming languages that are mainly used in higher education pose

challenges to students such as dealing with complex syntaxes and abstract concepts

(Buitrago Flórez et al., 2017) and require deep programming learning and experience to

enable students to develop a game.

The importance of learning strategies in CT development is emphasized in both K-

12 and higher education studies. Denner et al. (2012) study reveals that introducing CT to

young students without applying a learning strategy, causes difficulties in developing

students’ CT skills. In the same line, Dolgopolovas & Jevsikova, (2015) argue that

appropriate learning strategies should be exploited in order to facilitate CT skills

development. They suggest that programming didactical approaches in higher education

should focus on problem solving skills rather than language programming syntax.

Only few studies (Lee & Cho, 2020; Li & Hou, 2014; Ma et al., 2017) focus on

creating frameworks by aligning learning strategies with CT. The bulk of research in higher

education focuses on the implementation of learning strategies within specific courses and

the development of instructional models.

Although there are studies that underline the role of communities in CT

development (Xing, 2019) and the need to shift from tools to Communities (Clark &

Sengupta, 2019; Kafai, 2016), as CT and programming are social practices, the

exploitation of programming Communities in higher education is still lacking behind.

Content-specific tools and mainly text programming languages are those applied in the

higher education context. This in line with Magana & Silva Coutinho's (2017) study,

showing that tools for teaching and learning CT in higher education are chosen on the basis

of subjects rather than on their ability to support the acquisition of these skills. Exception

are studies that focus on pre-service teachers that investigate mainly visual programming.

93

CT assessment in higher education applies the same assessment methods (Artifact

Analysis, Observations, Tests and Self-report) as in K-12 education. However, the

assessment is mainly carried out in the context of course evaluation. There are some efforts

to develop universally accepted assessment methods but all of them are self-report

methods. This is consistent with Lyon and Magana (2020) review that highlights the strong

presence of self-report assessment methods in higher education CT studies. In addition,

studies do not always attempt to validate the methods used and often do not yield

quantitative results. Other challenges involve the small sample size and the lack of CT

specific elements in the studies’ results.

Moreover, often while studies present in the background various definitions of CT,

they do not ultimately provide information on which elements of CT they focus on based

on these definitions. Many times, they do not mention the CT context on which they are

based, or display CT elements that are not based on a clear definition, are poorly

documented and often vague.

Females and minority groups are often underrepresented in computing, as well as

in technology labor (Jenson & Droumeva, 2016). Cooper et al. (2014) suggest that research

in computing education should focus on gender and other minority groups. In addition,

Shute et al. (2017) review the literature highlighting that researchers consider utilizing CT

to motivate learners, especially females and minorities. However, there are limited studies

(e.g., Zha, 2020a) in higher education that discuss the use of CT through programming to

address issues related to female or underrepresented students. In addition, although gender

as a factor affecting CT acquisition is particularly discussed in K-12 education

(Atmatzidou & Demetriadis, 2016; Durak & Saritepeci, 2018), this is not the case for

higher education. Studies in higher education do not focus on examining the relationship

between gender and other social factors with CT.

Although teachers’ knowledge and needs and their preparation to support students’

understanding of CT are highly discussed in K-12 literature (e.g., Alfayez & Lambert,

2019; Angeli et al., 2016; Bower et al., 2017; Giannakos et al., 2015; Israel et al., 2015;

Mouza et al., 2017; Yadav et al., 2017), research in higher education rarely focuses on

faculty preparation. Only two of the selected studies involve higher education faculty

94

(Magana & Silva Coutinho, 2017) or discuss opportunities for professional development

(Ma et al., 2017).

5.6 Summary

This chapter presents the method and results of the second phase of this dissertation that

involves (a) the study of the areas and relationships of the CTPK-12 conceptual model in

the context of higher education and (b) the investigation of these areas based on the

following two dimensions: i) their evolution over the years and ii) the branches to which

CT is applied. For this purpose, a systematic mapping methodology was applied. Main

results include the identification of the CT areas of Knowledge Base, Assessment,

Learning Strategies, Tools, Factors and Capacity Building. Of these, Knowledge Base,

Assessment and Tools have significantly evolved throughout the years, while Capacity

Building has only recently emerged. In addition, the introduction of CT to undergraduate

students and pre-service teachers differs mainly in the tools used and the CT elements that

are assessed.

95

6 Designing and evaluating a Computational Thinking tool

6.1 Introduction

In this Chapter, we proceed to the design and evaluation of a Computational Thinking tool.

The implementation of the tool was done by Maria Mousiou during her master thesis

(Mousiou, 2021). We design a Computational Thinking game that incorporates scaffolding

features and can further be parameterized to produce different versions that are used in the

study presented in the next chapter. In addition, we evaluate the game and investigate the

perceived effectiveness of its scaffolding features.

The remainder of this Chapter is organised as follows: Section 6.2 presents the

study design. Section 6.3 presents the Scaffolding Computational Thinking tool. Section

6.4 presents the evaluation of the tool and the perceived effectiveness of its scaffolding

features. Section 6.5 further discusses the chapters results. Section 6.6 presents a summary

of the chapter.

6.2 Study design

6.2.1 Study goal and research questions

This study aims to design and evaluate a Scaffolding Computational Thinking game.

The research questions of the study are:

RQ1. Do students perceive the aMazeD Scaffolding Computational Thinking Game as

ease to use?

RQ2. Do students perceive the aMazeD Scaffolding Computational Thinking Game as

effective on learning Computational Thinking?

RQ3. Do students perceive the scaffolding features of the aMazeD Scaffolding

Computational Thinking Game as effective in learning Computational Thinking?

96

6.2.2 Research design and Participants

To answer the research questions of the study, we adopted a survey research approach. For

this purpose, we designed and conduct a study in a Greek school for students from grades

7 to 9 (ages 13 to 15) that has been approved by the Ethics Committee of the university of

the authors. The study was conducted during formal teaching hours and lasted one and a

half hours (two teaching hours) for each grade. Students played the Scaffolding

Computational Thinking Game for one hour and subsequently were asked to complete a

questionnaire for about 30 minutes. Only students whose parents gave their written consent

participated in the intervention. A total of 28 students were finally participated in the study.

6.2.3 Instrument

We adapted the instrument (Appendix C) developed by Park (Park, 2009) which is based

on the technology acceptance model (TAM), in order to use it for the data collection.

The questionnaire is divided in the following sections:

• Perceived ease of use (PE)

• Perceived usefulness (PU)

• Attitude (AT)

• Accessibility (AC)

A 5-point Likert scale from 1 to 5 was used for, where 1 equal “Strongly Disagree”,

2 equals “Disagree”, 3 equals “Indifferent”, 4 equals “Agree” and 5 equals “Strongly

Agree.

In addition to the above sections, a demographics section was included, as well as

an open-ended question about the overall experience.

6.2.4 Study Limitations

We acknowledge that this study has some limitations. First, the study is designed to include

only one research group. Second, the results are based on a self-report measure and capture

student’s opinions and perceptions.

97

6.3 The aMazeD Scaffolding Computational Thinking Game

6.3.1 aMazeD General Description

The “aMazeD” scaffolding Computational Thinking game (Mousiou, 2021) consists of 10

levels, most of which are adaptations of the Computational Thinking Test (CTt) questions

developed by Román-González et al. (2017). The game is developed with Blockly and is

based on Blockly Games Maze and Turtle. Each level belongs to one of the following

categories: a) Maze and b) Turtle.

On the one hand, the goal of the game in the levels belonging to the maze category

is to guide the avatar from the beginning to the end following a certain path. On the other

hand, the goal of the game at the levels belonging to the turtle category is to guide the

avatar to draw the required shapes. In both cases, the player uses programming blocks to

give the appropriate instructions to the avatar to complete the levels.

The game environment consists of the following parts: the navigation bar, the

instruction bar, the main game frame, the results box, the Blockly toolbox and the

workspace (Figure 6-1).

The level numbers are displayed in the navigation bar. The light purple color

indicates the completed levels as well as the current level at which the user is. The player

does not have the right to move to any level of his/her choice. The player starts from level

1 and with the submission of his/her answer moves to each next level. In the left part of

the navigation bar the player can select the desired language. In the workplace the player

can stack the blocks in order to create the program that will finally solve the level. The

Blockly toolbox contains the available blocks for each level.

98

Figure 6-1. The aMazeD game environment

Below the main game frame there are the three buttons “Play”, “Reset” and

“Submit”. By clicking the play button, the player can see the visual execution of the code

inserted in the workspace. During code execution, the executed blocks are highlighted. No

level output is displayed after the execution. The play button allows students to see the

execution of their designed solutions, try them out and debug their code. By clicking the

reset button, the character or brush moves to the beginning of the path or to the beginning

of the shape. The game is restored to its original state. No code execution is taking place.

By clicking the submit button the player can see the movement of the character or

the brush depending on the instructions loaded in the workspace. During code execution,

the executed instructions are highlighted. After the execution, a message is displayed with

the level output. If the player manages to solve the level, a success message is displayed,

otherwise a failure message is displayed. In both cases, the submitted instruction is

translated to JavaScript and displayed in the screen, while the game moves to the next

99

level. The player is transferred to the next level regardless of whether the current level has

been completed successfully.

In the results box the message Success or Failure is displayed, in addition to the

current level score and the player's overall score up to that level. The level output and the

score of the level are displayed after the submission by the player. Furthermore, some

additional information is displayed such as the time needed for completion and the times

that the paly button was pressed.

6.3.2 Computational Thinking Concepts and Practices Covered by the

Scaffolding Computational Thinking Game

The player must employ different Computational Thinking concepts and practices

according to Brennan’s and Resnick’s framework (Brennan & Resnick, 2012) in order to

solve each level. Computational Thinking concepts and Practices covered by the game are

presented in Table 6-1.

Table 6-1. CT Concepts and practices per aMazeD level

Computational Thinking concepts adopted from Brennan and Resnick (2012)

Concept Description Application to aMazeD levels

Sequences Basic instructions and directions

The player needs to design a

sequence of steps in order to

solve the level (Level 1,7)

Loops Repeat a set of instructions for a

specific number of times or until

a condition becomes true

The player needs to repeat a set

of instructions in order to solve

the level (Level 2-6, 8-10)

Conditionals Constraints that allow the

execution of different

instructions

The player needs to design a

solution that involves the

selection of a choice based on

constraints (4-6)

100

Computational Thinking practices adopted from Brennan and Resnick (2012)

Practice Description Application to aMazeD levels

Testing and debugging
Trial and error processes for

correcting malfunctions

The player needs to make

corrections to a given set of

instructions (Level 1-3, 5, 7)

Being incremental and iterative
 Design and implement solutions

using iterative processes

The player uses the play button

in order to see the execution of

the game and make changes to

his/her solution until the final

submission (Level 1-10)

6.3.3 aMazeD Scaffolding Features

The aMazeD game is designed and developed to support scaffolding based on a three-

dimension framework that includes: i) the provision of a semi-finished or semi-correct

solution, ii) instructions and explanations of the Computational Thinking concepts required

for the solution of the level and iii) the provision of support regarding the logic behind the

solution design.

The scaffolding game provides semi-finished preloaded workspace solutions for

each level. This aims to make it easier for students to understand and use the concepts of

Computational Thinking as they are asked to make small changes to pre-existing semi-

finished solutions rather than writing their own from scratch (Werner et al., 2012). In

addition, the player has the ability to run the semi-finished solutions before even trying to

solve the level so as to observe exactly how the avatar moves with the given instructions.

In this way, he/she can better and more deeply understand how Computational Thinking

concepts such as sequence, loops and conditions work. When the solution is executed for

the first time, an explanation of the Computational Thinking concepts covered at the level

is displayed. The explanation concerns the operation and use of the specific concepts of

Computational Thinking. Subsequently, when the solution is executed for the second time,

a prompt about the logic behind the solution of the level appears. This way, the player

101

could understand how he could use Computational Thinking concepts to solve the

particular level.

Following the above framework, we construct scaffolding for students, first

ensuring the understanding of the concepts of Computational Thinking by providing them

with incomplete solutions and explanations regarding the use of the concepts. We then

provide support to students to help them understand how they could use these concepts to

design effective solutions.

Figure 6-2. Semi-finished instructions

All game levels are designed based on the three-dimension framework described

above. In the following paragraphs we present how the aforementioned framework is

applied at Level 4.

A semi-finished solution appears in the workspace when the level is loaded (Figure

6-2). In addition, an instruction for correcting the given solution appears. When the

102

solution is executed for the first time, the following explanation about the “if” block is

displayed: “The 'if' block will execute the 'do' block only if the condition is true.

Subsequently, when the solution is executed for the second time, the following prompted

is displayed: “Try to turn the avatar to the right direction if there is path to the right.”.

6.3.4 aMazeD Analytics Features

Logs are kept for assessment and self-assessment purposes. The data is stored locally at

browser level and displayed on the results page where the teacher or student can download

it in pdf or excel format. Except the total score of the game the following data is stored for

each level:

• Level outcome: the result of the level, Success or Failure

• Score: the level score, zero if it was a failure

• Time: the time it took the player to click "Submit" button

• "Play" button: how many times the “Play” button was pressed

• JavaScript code: the code submitted.

6.4 Results

6.4.1 Demographic Data of the Participants

The students who participated in the study are in grade 7, 8 and 9. A high percentage of

students (75%) stated that they have previous programming experience. This is important

as they may be able to compare their previous experiences with the experience from the

Scaffolding Computational Thinking Game and draw safer conclusions about it. The

demographic data of the participants are presented in Figure 6-3.

103

Figure 6-3. Demographic data of the participants

The scale had a good level of internal consistency, as determined by a Cronbach's

alpha of 0.761. The following paragraphs present the results of each section of the scale.

6.4.2 Perceived ease of use (PE)

PE1. I find the aMazeD programming and Computational Thinking game easy to use.

Figure 6-4. Results on PE1

PE2. Learning how to use a programing and Computational Thinking game is easy

for me.

104

Figure 6-5. Results on PE2

Figure 6-4 and Figure 6-5 present the students’ answers to PE1 and PE2

respectively. 64,3% of the students perceived the game as easy/very easy to use which is a

slightly higher than the 60,7% who answered that they find easy/ very easy to learn how

to use a Computational Thinking game. While only 3,6% answered that disagrees that the

game is easy to use.

6.4.3 Perceived usefulness (PU)

PU1. The aMazeD game would improve my understanding of the concepts and practices

of programming and Computational Thinking.

Figure 6-6. Results on PU1

Figure 6-6 presents the students’ answers to PU1. A high percentage of 92.9% of

the students answered that the aMazeD game would improve their understanding of

Computational Thinking practices.

PU2. The aMazeD game could make it easier to study the concepts and practices

of programming and Computational Thinking.

105

Figure 6-7. Results on PU2

Figure 6-7 presents the students’ answers to PU2. 57.1% consider that the game

could make it easier for them to study Computational Thinking concepts and practices,

while 7.2% of students answered that they disagree/strongly disagree.

PU3. The prompts the game provide me were enough to help me solve the levels.

Figure 6-8. Results on PU3

PU4. The prompts the game provide me were useful to help me solve the levels.

Figure 6-9. Results on PU4

106

PU5. The prompts the game helped me understand the basic concepts of

programming and Computational Thinking.

Figure 6-10. Results on PU5

Figure 6-8, Figure 6-9 and Figure 6-10 present the students’ answers to PU3, PU4

and PU5 respectively. 75% of students answered that the prompts provided were enough

to help them solved the levels. 67.9% found them useful and 53.6% found that the prompts

helped them understand Computational Thinking concepts and practices. While only

17.1% stated that they disagree/strongly disagree that the game helped to understand the

basic programming and Computational Thinking concepts.

6.4.4 Attitude (AT)

AT1. Studying Computational Thinking and programming through games such as aMazeD

is a good idea.

Figure 6-11. Results on AT1

107

Figure 6-11 presents the students’ answers to AT1. 82.1% has a positive attitude

towards learning Computational Thinking through games such as aMazeD. While only

3.6% express a negative attitude.

AT2. I'm positive about programming and computational thinking games.

Figure 6-12. Results on AT2

Figure 6-12 presents the students’ answers to AT2. 92.9% has a positive attitude

towards Computational Thinking games, while 3.6% express a negative attitude.

6.4.5 Accessibility (AC)

AC. I have no difficulty accessing and using the aMazeD programming and Computational

Thinking game

Figure 6-13. Results on AC

Figure 6-13 presents the students’ answers to AC. 60.7% had no difficulty in using

the aMazeD Computational Thinking game, while 14.3% had difficulties. It is possible that

the question wasn’t clear enough and students answered in regard the level of difficulty

108

of the game and not the difficulty in using the game. We base this assumption on the fact

that no student reported having difficulty in using the game in the open-ended question,

with some students commenting on how challenging/difficult the game was.

6.4.6 Overall experience

Students were asked to answer the following open-ended question: “Write a few words

about your experience of playing aMazeD. What did you like or dislike? What impressed

you?”. 25 students answered this open-ended question while three left it blank. We coded

their answers into two themes: Game overall and Game experience in relation to

Computational Thinking and programming.

Regarding how students perceived the game, students generally found the game

nice, interesting and fun. 11 students stated that the game was “nice”/ “very nice” /

“interesting” / “fun” / “challenging”.

Three students focused on the ease of use of the game. For example, one student

stated that “The game is very well designed and easy to use.”

Three students focused on the prompts:

• Student1: “I loved playing this game because of its ease of use. I was impressed by

how helpful the tips were.”

• Student2: “This is my second time doing programming, and the instructions given

to us helped me to solve them [the levels] more easily.”

• Student3: “I really liked the logic of the game. Also, the prompts were very

interesting, although on most levels I did not need them. In addition, the

environment was very friendly, simple and convenient. I have only a small

objection to a very small detail: the "reset" button could have a repeat icon rather

than an “X”. Also, the submit button could have a tick for icon.

The majority of the students also perceived the game as effective on learning

Computational Thinking and programming. This is supported by the following quotes:

109

• Student4: “It was a really nice experience. The game helps in thinking and

creativity.”

• Student5: “I liked that it helped me understand Computational Thinking a little bit.”

• Student6:” I liked it and it helped me to understand some things.”

• Student7: “The game was interesting to get acquainted with the programming.”

• Student8: “I quite liked it because it is a fun way to learn things about

programming”.

• Student9: “The thought process helps you understand Computational Thinking

concepts.”

Finally, only two students express moderate or negative statements about the game.

• Student10: “Although I did not find it very useful it was quite interesting.”

• Student11: “I didn’t like it.”

6.5 Discussion

In this study we design and evaluate a Scaffolding Computational Thinking game. We

present the aMazeD game that provides Computational Thinking activities to students and

includes scaffolding features. We also present the results of the evaluation of the game and

its features. The aMazeD Computational Thinking game is developed to cover

Computational Thinking core concepts and practices and to support scaffolding. The

scaffolding features include a) the provision of semi-finished or incorrect solutions, b) the

provision of explanations for the basic Computational Thinking concepts and c) the

provision of prompts that explain the logic behind the solution of the game.

The results of the evaluation regarding ease of use, usefulness, attitude,

accessibility and overall experience are promising. Specifically, students seem to consider

aMazeD and similar games as easy to use and accessible. What is also important is that

students are in general positive to Computational Thinking games. The results in questions

regarding how students perceive usefulness of the game indicate that Computational

110

Thinking and programming games could help students develop Computational Thinking.

This is constant with prior research e.g. (Zhao & Shute, 2019; Karakasis & Xinogalos,

2020) that found that programming games could be effectively utilized to help students

develop their Computational Thinking. It is characteristic that a high percentage of 92%

believe that the game could improve their Computational Thinking. Students also found

scaffolding features and specifically prompts useful for solving the game and effective in

learning Computational Thinking. This is reflected in their answers to the open-ended

question where they evaluate the game and their experience as a whole. Almost all the

comments are extremely positive, focusing on both the ease of use of the game and the

effectiveness of its scaffolding features.

6.6 Summary

This chapter presents the method and results of the third phase of this dissertation that

involves the design and evaluation of a Scaffolding Computational Thinking game. For

this purpose, a Computational Thinking game with scaffolding features, was designed and

evaluated by 28 middle school students. The study adopts a survey research approach. The

results regarding ease of use, usefulness, attitude, accessibility and overall experience of

the scaffolding game are promising. Specifically, students found scaffolding features

useful for solving the game and effective in learning Computational Thinking.

111

7 Τhe effect of scaffolding programming games and attitudes

towards programming on the development of

Computational Thinking

7.1 Introduction

This chapter presents an experimental study that aims to investigate the effect of

scaffolding programming games on the development of middle students’ Computational

Thinking.

The remainder of this Chapter is organised as follows: Section 7.2 presents

literature review of scaffolding and attitudes investigated in Computational Thinking

studies. This section has been added to provide basic concepts and previous work on

scaffolding and attitudes towards programming for better understanding of the background

theory of the study described in the chapter. Section 7.3 presents the design of the

experimental study. Sections 7.4-7.11 present the effects of scaffolding programming

games on the development of middle students’ Computational Thinking. Section 7.12

further discusses the chapters results. Section 7.13 presents a summary of the chapter.

7.2 Related Work

In the process of teaching and learning Computational Thinking, learning strategies play

an important role. Efforts have been made to investigate several pedagogies and learning

strategies for teaching Computational Thinking. Among them, game-based learning and

scaffolding are widely adopted (Hsu et al., 2018). Game-based approaches can increase

student motivation, address their disengagement, and foster the acquisition of

Computational Thinking (Weintrop et al., 2016). Thus, they are exploited in several studies

(e.g., de Souza et al., 2019; Garneli & Chorianopoulos, 2018, 2019; Israel-Fishelson &

Hershkovitz, 2020; Zhao & Shute, 2019). In addition to game-based learning, scaffolding

is proposed (Repenning et al., 2015) to increase motivation and student participation in

Computational Thinking. Studies also (e.g., Angeli & Valanides, 2020) reveal that there is

a need to scaffold students’ learning during their engagement with Computational

Thinking. According to Denner et al. (2012), without proper guidance students face

112

significant challenges in developing Computational Thinking skills. Scaffolding helps

students better understand Computational Thinking concepts, which they would not be

able to assimilate if left alone to experiment in a programming environment (Grover et al.,

2015). The aforementioned efforts highlight the importance of feedback and guidance

strategies in Computational Thinking approaches. However, more research is needed on

how the absence versus presence of scaffolding strategies could affect students' cognitive

Computational Thinking learning gains.

Technologies and tools are also important. Thus, researchers focus on the

development of tools specific to support Computational Thinking learning through

programming. Sengupta et al. (2013) developed the CTSiM (Computational Thinking in

Simulation and Modelling) tool. CTSiM is a visual programming environment that

includes a modelling environment and supports low-threshold, high-ceiling, algorithm

visualization, scaffolding and constructivist learning activities. The second version of

CTSiM is developed to provide students with adaptive scaffolding based on modelling

learner’s domain knowledge, cognitive skills and interests (Basu et al., 2017). Weintrop et

al. (2016) developed a constructionist video game aiming to foster Computational

Thinking. RobotBuilder features a block-based programming language to allow students

to construct their game strategies. Clark and Sengupta (2019) developed the SURGE:

Gameblox, a Disciplinary-Integrated Game (DIG). SURGE: Gameblox exploits formal

representations (such as scientific graphs) and agent-based game programming in a

collaborative environment targeting on promoting Computational Thinking. Although the

aforementioned tools have been developed to include features that support specific

learning strategies, more empirical research that aims to investigate the relationship

between tools, learning strategies and Computational Thinking development (Tikva &

Tambouris, 2021b) is needed.

In addition to learning strategies and tools, research studies are interested in how

various factors influence the acquisition of Computational Thinking. Research (e.g., Kong

et al., 2018) has focused on exploring students’ attitudes towards programming in the

context of Computational Thinking. Particular interest has been paid on how several

Computational Thinking interventions could improve students’ attitudes towards

programming. For example, Cetin (2016) explored the effect of a Scratch-based

113

intervention on students’ attitudes towards programming. However, studies that explore

the relationship between attitudes towards programming and Computational Thinking

acquisition are scarce (Sun et al., 2022).

7.2.1 Scaffolding strategies in Computational Thinking research

Scaffolding strategies including instructional scaffolding, adaptive, peer-,

resource-scaffolding support/guidance, feedback and prompts have been explored in

several studies focusing on the development of Computational Thinking (Tikva &

Tambouris, 2021a). Chevalier et al. (2022) investigated the role of different types of

guidance and feedback in the development of Computational Thinking. To this end, they

designed an experimental study to investigate which of these methods fosters students’

Computational Thinking. They explored four experimental conditions for the different

combinations of with/without guidance and immediate/delayed feedback strategies. Their

results support that delayed feedback could be an effective intervention method for

Computational Thinking development. Angeli and Valanides (2020) investigated the

impact of two scaffolding techniques, designed with gender differences into consideration.

To this end, students were randomly assigned to two groups, each following a different

type of scaffolding. Their findings show that both sexes benefited from both scaffolding

techniques, while each gender benefited more from a different scaffolding technique. Chen

et al. (2021) designed a quasi-experimental study to investigate the effects of scaffolding

prompts on students’ Computational Thinking. Students were assigned to three groups,

each of which received cognitive prompts, metacognitive prompts and combination of

cognitive and metacognitive prompts respectively. Their findings support that

metacognitive scaffolding prompts could be an effective strategy to foster student’s

Computational Thinking. In the same line, Atmatzidou et al. (2018) explored the effects of

different types of guidance (minimal vs strong) on students’ metacognitive and problem-

solving skills. The findings of their quasi-experimental study support that strong guidance

could have a positive impact on students’ metacognitive and problem-solving skills.

114

7.2.2 Attitudes towards programming/Computer Science in Computational

Thinking research

Attitudes towards programming and Computer Science (CS) are of interest to

Computational Thinking studies. Attitudes towards programming are explored under two

major research questions: a) To what extent do specific interventions impact students’

attitudes towards programming/CS? and b) To what extent students’ attitudes towards

programming/CS affect their Computational Thinking? For example, Zhao and Shute

(2019) measure attitudes toward CS based on a survey that includes questions about how

students perceive computers such as “Computers are fun” and “Computing jobs are

boring”. Subsequently they explored if playing a programming video game could have an

impact on students’ attitudes, finding no statistically significant differences in students’

attitudes before and after the intervention. They point out that the short duration of the

intervention may have played a role in this outcome. In the same line, Cetin (2016)

explored the effects of a Scratch-based instruction on participants’ attitudes towards

programming, finding no statistically significant effect. They suggest that this could be

attributed to the limited duration of treatment, the participants' already high attitudes and

satisfaction with the quality of teaching.

Other studies focus on how students’ attitudes towards programming could affect

Computational Thinking acquisition. For example, Sun et al. (2022) define programming

attitude based on a framework that includes the elements of programming self-efficacy,

programming utility, social needs, perceptions of programmers, and programming interest.

Their results support that students’ attitudes towards programming could impact their

Computational Thinking, indicating them as an important factor in Computational

Thinking development. Kong et al. (2018) define programming empowerment as a

Computational Thinking perspective. They explore whether interest in programming and

attitude towards collaboration are related to programming empowerment. Their results

suggest that interest in programming could affect the acquisition of programming

empowerment.

Despite the interest in attitudes towards programming/CS, there is no unanimously

accepted definition by researchers. Computational Thinking studies explore various

attitudes, while focusing on developing scales for them (e.g., Cetin & Ozden, 2015). Table

115

7-1 presents attitudes that appear repeatedly in the literature. In the context of this study,

attitudes towards programming consist of the following three (3) dimensions:

programming self-efficacy, interest in programming and programming meaningfulness.

Table 7-1. Attitudes towards programming/CS found in the literature

Attitude Scale item example Study

Confidence/

Self-efficacy

programming self-

efficacy

I am good at programming (Kong et

al., 2018)

Kukul et al.,

2017

Kong et

al.,2018

Durak et al.,

2019

CS self-efficacy I feel confident about my ability to use

computers (Werner et al, 2012)

Werner et al.,

2012

Román-

González et al.,

2018

coding confidence

I am good at coding (Mason & Rich,

2020)

Mason & Rich,

2020

programming

confidence

I am confident to learn programming

(Sun et al.,2022)

Sun et al., 2022

Interest interest in

programming

I think the content of programming is

fun (Kong et al., 2018)

Kong et al. 2018

Sun et al., 2022

coding interest Solving coding problems seems fun

(Mason & Rich, 2020)

Mason & Rich,

2020

programming Programming is useful to me (Kong et Kong et al.,

116

Meaningfulness/Utility
meaningfulness al., 2018) 2018

coding utility Knowing how to code will help me to

create useful things (Mason & Rich,

2020)

Mason & Rich,

2020

programming

utility

Learning programming is very useful

(Sun et al, 2022)

Sun et al, 2022

Social influence/needs My parents think coding is important

(Mason & Rich, 2020)

Mason & Rich,

2020

Sun et al, 2022

Perception of coders/ programmers I think kids who can code spend less

time outdoors than other kids (Sun et

al, 2022)

Mason & Rich,

2020

Sun et al, 2022

7.3 Study design

7.3.1 Study goal and research questions

This study aims to investigate the effect of scaffolding programming games on the

development of middle students’ Computational Thinking (CT). An additional goal is to

investigate the effect of middle school students’ attitudes towards programming in their

Computational Thinking development. For this purpose, the “aMazeD” (Chapter 6) was

utilized. The scaffolding game is aligned with CT concepts and practices included in

Brenan’s and Resnik’s (2012) framework. In particular, we explore how the presence of

scaffolding features affect the acquisition of students’ Computational Thinking. In

addition, herein we investigate the effect of students’ attitudes towards programming on

their Computational Thinking improvement.

The following research questions are posed:

RQ1. Does aMazeD have a positive impact on middle school students' CT

development?

117

RQ2. Does aMazeD with scaffolding features have a greater impact on middle

school students’ CT development than the aMazeD version without scaffolding?

RQ3. Do attitudes towards programming have an impact on middle school

students’ CT?

RQ4. Do attitudes towards programming have an impact on middle school

students’ CT improvement?

7.3.2 Research design

In order to address the study goal, we conducted an experimental study. Ethical approval

from the university ethical committee of the authors’ university was obtained. In addition,

all students’ parents were informed and gave their consent to participate in the study.

Participants were 57 students in seventh, eighth and ninth grade. From them, 29 students

were randomly assigned to the experimental group where a scaffolding version of the

programming game was used as the learning approach, while the rest 28 students were

assigned to the control group where a version of the programming game that did not

include scaffolding features was used. In order to prevent potential influence of different

teachers on the outcome of the study, all students were taught by the same teacher using

the same technical equipment regardless of which group they belonged to. The experiment

was conducted in three phases and lasted three weeks. In the first phase, students were

asked to complete a pre-test for measuring their Computational Thinking and a

questionnaire measuring their attitudes towards programming. Both the pre-test and the

questionnaire lasted 45 minutes. Students completed the pre-test and the questionnaire on

two different days. In the second phase of the experiment, students participated in a 45-

minute intervention where they were introduced to Computational Thinking through the

two versions of the programming game, depending on the group they belonged to. During

the intervention, students encountered Computational Thinking concepts such as sequence,

loops, conditionals and Computational Thinking practices such as testing and debugging

and being incremental and iterative. Log files from the game were also collected. In the

last phase, students completed a post-test for measuring their Computational Thinking

which lasted 45 minutes.

118

7.3.3 Intervention instrument

The “aMazeD” scaffolding programming game presented in the previous Chapter was

utilized as the tool through which students were introduced to Computational Thinking.

7.3.4 Data collection

In this study, we measured students’ pre-intervention and post-intervention Computational

Thinking using the Computational Thinking Test (CTt). The CTt was developed and

validated by Román-González et al. (2017). A translated version of the CTt that authors

shared with us, is presented in Appendix C. The CTt is a direct assessment method that is

widely accepted as a reliable way to measure Computational Thinking. It consists of 28

multiple choice items. Questions are presented using the interface of Maze or Canvas and

the answers are presented as visual arrows or blocks.

We also collected the aMazeD log files that include the following information for

each student: a) the success or failure in each level and b) the code submitted for each

level.

An instrument for measuring attitudes towards programming was adapted from

Kong (2018). We used the following three constructs of the aforementioned instrument

translated in the students’ native language: programming meaningfulness, programming

self-efficacy and interest in programming to measure students’ attitudes towards

programming. The scale consists of 13 items and students were asked to indicate their level

of agreement with each item on a 5-point Likert scale (1=Strongly agree; 5=Strongly

disagree).

7.3.5 Study Limitations

This study has some limitations including the small sample size and the short duration of

the intervention. A longer duration could provide more insights on students’ learning gains.

In addition, we based our analysis only on tests, questionnaires and logs. Including

interviews and video recording could have provided a more holistic understanding of

students’ CT development. The inclusion of students from a single school could be also

considered as a limitation of the study

119

7.4 Demographics

57 students whose parents gave their consent to participate in the study were randomly

assigned to the control and experimental group. There were 5 students from the control

group and 7 from the experimental group who were absent either during the completion of

the tests or during the intervention. This resulted in a final sample of 45 students, of whom

23 belong to the control group and the rest 22 to the experimental group. The distribution

of students by grade and gender is shown in Table 7-2. Among participants, 23 (51%)

students were male and 22 (49%) were female. 13 (29%) were in 7th grade, 21 (47%) were

in 8th grade and 11 (24%) were in 9th grade.

Table 7-2. Distribution of participants by grade and gender

 Grade Gender

7th 8th 9th Male Female

Version Non-Scaffolding 7 10 6 14 9

Percentage in the non-scaffolding group 30.4% 43.5% 26.1% 60.9% 39.1%

Scaffolding 6 11 5 9 13

 Percentage in the scaffolding group 27.3% 50% 22.7% 40.9% 59.1%

7.5 CTt

CTt (Román-González et al., 2017) was employed to measure CT pre-intervention and

post-intervention scores. For each item we assigned 1 if it was correct and 0 if it was

incorrect. The score for each test ranged from 0 to 28. The scale had an acceptable level of

internal consistency, as determined by a Cronbach's alpha of .763 reported in the pre-

intervention data and an acceptable level of internal consistency as determined by a

Cronbach’s alpha of .803 reported in the post-intervention data.

7.6 Analytics

We calculated the overall game score for each student based on aMazeD game logs. For

each level we assigned 1 if it was successfully completed and 0 otherwise. The overall

120

game score for each student ranged from 0 to 10. The Cronbach's alpha coefficient was

0.753. We also calculated the following scores based on the inspection of the submitted

code:

• Conditional-Level and Loop-Level score. We assigned 1 for each successfully

completed level belonging to the “Conditionals” concept (Table 1) and 0 otherwise.

The overall Conditional-Level score for each student ranged from 0 to 3.

Accordingly, we assigned 1 for each successfully completed level belonging to the

“Loops” concept (Table1) and 0 otherwise. The overall Loop-Level score for each

student ranged from 0 to 8.

• Conditional-Use and Loop-Use score. We assigned 1 if the submitted code

contained Conditionals for each correctly completed level belonging to the

“Conditionals” concept and 0 otherwise. The overall Conditional-Use score for

each student ranged from 0 to 3. Accordingly, we assigned 1 if the submitted code

contained Loops for each correctly completed level belonging to the “Loops”

concept and 0 otherwise. The overall Loop-Use score for each student ranged from

0 to 8.

• Conditional-Ratio and Loop-Ratio. We calculated the Conditional-Ratio as the

ratio between Conditional-Use score and Conditional-Level Score and the Loop-

Ratio as the ratio between Loop-Use score and Loop-Level score.

7.7 Scale of Attitudes towards Programming

A scale adapted from Kong (2018), was used to measure student’s attitudes towards

programming. The scale consisted of 13 items 5-point Likert scale, (1 = Strongly agree

and 5 = Strongly disagree). The score of each student was calculated as the sum of the 13

items and ranged from 13 to 65. 40 of the participants were filled in the attitudes towards

programming scale. The scale had a high level of internal consistency, as determined by a

Cronbach's alpha of 0.948 (Table 7-3). We classified the participants into three groups

based on their percentile value in the scale score distribution: Low-attitudes towards

programming students (n=13), Moderate-attitudes towards programming (n=14) and High-

attitudes towards programming students (n=13).

121

Table 7-3. Internal consistency of the scale of Attitudes towards Programming

Construct Number of items Cronbach's alpha

programming meaningfulness 4 0.921

programming self-efficacy 5 0.912

interest in programming 4 0.900

Entire scale 13 0.948

7.8 Does aMazeD have a positive impact on middle school students' CT

development?

The first research question was, “Does aMazeD have a positive impact on middle school

students' CT development?” Our hypothesis was that aMazeD would have a positive

impact on middle school students' CT development. A paired-samples t-test was used to

determine whether there was a statistically significant mean difference between the pre-

intervention CT scores and the post-intervention CT scores of the students. No outliers

were detected. The assumption of normality was not violated, as assessed by Shapiro-

Wilk's test (p = .612). We found a significant mean increase of 3.933, 95% CI [3.097,

4.769], t(44)=9.481,p<.001 between pre-intervention and post-intervention CT scores,

with a large effect size (Cohen's d=1.413). Students CT post-intervention scores were

higher (M=19.333, SD=4.772) compared to their CT pre-intervention scores (M=15.4,

SD=4.653). This result supports our hypothesis that aMazeD would have a positive impact

on students’ CT development.

7.9 Does aMazeD with scaffolding features have a greater impact on

middle school students’ CT development than the aMazeD version

without scaffolding features?

The second research question was “Does aMazeD with scaffolding features have a greater

impact on middle school students’ CT development than the aMazeD without

scaffolding?”. Our hypothesis was that the scaffolding version of aMazeD would have a

122

greater impact on students’ CT development. CT pre-scores and post-scores were

measured by the CTt (Román-González et al., 2017). An independent t-test showed that

the mean of the pre-test CT scores of the scaffolding group was not significantly higher

(M=15.727, SD=4.442) than that of the non-scaffolding group (M=15.087, SD=4.926); t

(43) =−.457, p=.650. Thus, we can conclude that the two groups were equivalent in terms

of students’ CT scores prior to the intervention. An ANCOVA was run to determine the

effect of the scaffolding version of the game on post-intervention CT scores after

controlling for pre-intervention CT scores. There was a linear relationship between pre-

intervention CT scores and post-intervention CT scores for each group, as assessed by

visual inspection of a scatter plot. There was homogeneity of regression slopes as the

interaction term was not statistically significant, F(1,41) = .180, p = .673. Standardized

residuals for the interventions and for the overall model were normally distributed, as

assessed by Shapiro-Wilk's test (p > .05). There was homoscedasticity and homogeneity

of variances, as assessed by visual inspection of a scatterplot and Levene's test of

homogeneity of variance (p = .911), respectively. There were no outliers in the data, as

assessed by no cases with standardized residuals greater than ±3 standard deviations. After

adjustment for pre-intervention CT scores, there was a statistically significant difference

in post-intervention CT scores between the scaffolding and the non-scaffolding

group, F(1,42) = 5.657, p = .022.

We further analyze students’ log files. Mann-Whitney U test was run to determine

if there were differences in Conditional-Use scores between the non-scaffolding and

scaffolding group. Distributions of the Conditional-Use scores for the two groups were not

similar, as assessed by visual inspection. Conditional-Use scores for the scaffolding group

(mean rank = 29.30) were statistically significantly higher than for the non-scaffolding

group (mean rank = 16.98), U = 391.5, z = 3.409, p = .001. Respectively, Mann-Whitney

U test was run to determine if there were differences in Loop-Use Score between the non-

scaffolding and scaffolding group. Distributions of the Loop-Use Scores for the two groups

were not similar, as assessed by visual inspection. Loop-Use scores for the scaffolding

group (mean rank = 30.27) were statistically significantly higher than for the non-

scaffolding group (mean rank = 16.04), U = 413, z = 3.695, p < .001.

123

7.10 Do attitudes towards programming have an impact on students’

CT?

The third research question was “Do attitudes towards programming have an impact on

middle school students’ CT?”. Our hypothesis was that positive attitudes towards

programming would have a greater impact on students’ CT scores. A one-way ANOVA

was conducted to determine if the students’ CT pre-test scores were different for the

low/moderate/high attitudes groups. There were no outliers, as assessed by boxplot; data

was normally distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and

there was homogeneity of variances, as assessed by Levene's test of homogeneity of

variances (p = .818). CT pre-test score increased from low (M=13.769, SD=4.902) to

moderate (M=15.429, SD=4.327) to high (M=17,154, SD=4.793) attitudes group, in that

order, but the differences between attitudes groups was not statistically significant, F(2,37)

= 1.706, p = .196. This result does not support the hypothesis that student’s attitudes

towards programming would have an impact on middle school students’ CT.

7.11 Do attitudes towards programming have an impact on students’ CT

improvement?

The fourth research question was “Do attitudes towards programming have an impact on

students’ CT improvement?”. Our hypothesis was that attitudes towards programming

would have an impact on students’ CT development. A one-way ANOVA was conducted

to determine if the changes in students’ CT scores were different for the low/moderate/high

attitudes groups. There were no outliers, as assessed by boxplot; data was normally

distributed for each group, as assessed by Shapiro-Wilk test (p > .05); and there was

homogeneity of variances, as assessed by Levene's test of homogeneity of variances

(p = .113). Changes in CT scores increased from moderate (M = 3.143, SD=3.348), to high

(M=3.539, SD=1.808), to low (M=4.462, SD=2.817) attitudes group, but the differences

were not statistically significant, F(2,37) = .807, p = .454. This result does not support the

hypothesis that student’s attitudes towards programming would have an impact on middle

school students’ CT development.

124

7.12 Discussion

Our first hypothesis was that aMazeD would have a positive impact on middle school

students' CT. Data analysis and results seem to support this hypothesis. Participants

significantly improved their CT scores at the CTt after playing the aMazeD. This is

consistent with prior research showed that playing programming games could improve

students’ Computational Thinking (e.g., Hooshyar et al., 2021; Zhao & Shute, 2019).

However, since this is a one-group pretest-posttest design, it cannot be excluded that the

differences between the pre-test and post-test are due to threats such as maturation

(Fraenkel et al., 2012).

The second hypothesis was that aMazeD with scaffolding features would have a

greater impact on middle school students’ CT than the aMazeD version without scaffolding

features. Both groups experienced an improvement in their post-intervention CT scores,

but students who played the scaffolding version of the game had significantly higher CT

post-scores (Table 7-4). Furthermore, students in the scaffolding group not only did better

on the post-test, but they had significantly higher Conditional-Use and Loop-Use scores

(Table 7-5). The code they submitted to the game was of higher quality and included the

use of Conditionals and Loops. It is indicative that students in the scaffolding group who

used conditionals in all successful levels belonging to the “Conditional Concept” concept

amount to 18 out of 22 compared to 6 out of 23 students in the non-scaffolding group.

Respectively, students in the scaffolding group who used loops in all successful levels

belonging to the “Loop Concept” amount to 18 out of 22 compared to 4 out of 23 students

in the non-scaffolding group. These results suggest that scaffolding could be an effective

learning technique for developing students’ CT and help them understand the core

concepts of CT such as Conditionals and Loops. Prior research also shows results regarding

the relationship between scaffolding and CT development. Studies conclude that

scaffolding could have a positive impact on CT development. Specifically, Chen et al.

(2021) findings of their quasi-experimental study revealed that metacognitive prompts

significantly improved students’ CT outcomes. In the same line, Angeli and Valanides

(2020) found that students who participated in their study benefited from the scaffolding

techniques used. Furthermore, Chevalier et al. (2022) found that students in their study

benefited from guidance and feedback learning methods.

125

Table 7-4. Computational Thinking pre-scores and post-scores means by game

version

Game Version Means of Pre-

intervention Scores

Means of Post-intervention

Scores

Means of CT scores

changes

Scaffolding version 15.727 20.546 4.818

Non-Scaffolding

version

15.087 18.174 3.087

Table 7-5. Computational Thinking Conditional-Level, Loop-Level, Conditional-Use,

Loop-Use scores, Conditional-Ratio and Loop-Ratio means by game version

Game Version Means of

Conditional-

Level Scores

[0-3]

Means of

Loop-

Level

Scores

[0-8]

Means of

Conditional-

Use Scores [0-

3]

Means

of Loop-

Use

Scores

[0-8]

Means of

Conditional-

Ratio

Means

of

Loop-

Ratio

Scaffolding

version

2.86 6.05 2.50 5.36 0.871 0.878

Non-

Scaffolding

version

2.57 4.65 1.13 2.22 0.384 0.409

The third hypothesis was that attitudes towards programming would have an impact

on students’ CT scores. No significant differences were found between the three groups

(low/moderate/high) in the results of students’ CT pre-tests. Although students’ pre-test

scores were very similar in general, as shown in Figure 7-1, the students of the low attitudes

group were less successful than students in the moderate and high attitudes group. Previous

studies indicate that Computational Thinking is related with attitudes towards

programming (Sun et al., 2022) and suggest that interest in programming could be an

important factor in the acquisition of CT (Kong et al., 2018), proposing interest-driven

strategies for CT teaching and learning (Kong, 2016).

126

Figure 7-1. Means of pre-tests scores by attitudes towards programming group

The fourth hypothesis was that attitudes towards programming would have an

impact on students’ CT development. Although this hypothesis was not confirmed as no

significant differences were found between the three groups (low/moderate/high) in

students’ CT improvement, the descriptive statistical analysis reveals interesting results.

As shown in Table 7-6, changes in students’ CT scores for the non-scaffolding version

increase from low (M= 1.600, SD=.872) to moderate (M=2.556, SD=1.069), to high

attitudes group (M=4.000, SD=5.35) (Figure 7-2). This result is consistent with other

studies (Sun et al., 2022) which have shown that students with negative attitudes towards

programming may find it more difficult to develop their Computational Thinking than

students with positive attitudes towards programming. Results indicate that students are

struggling to develop their Computational Thinking skills when they are not provided with

an appropriate learning strategy. This is in line with previous studies which suggest that

students face great difficulties without proper guidance (Denner et al., 2012). However,

this is not the case for students that experienced the scaffolding version. Changes in

127

students’ CT scores in the scaffolding version increase from high (M=3.000, SD=.894) to

moderate (M=4.200, SD=1.655) to low (M=6.250, SD=.491) attitudes group (Figure 7-3).

This result could have important implications in the design of appropriate learning

interventions regarding the choice of the learning strategies in relation to students’ attitudes

towards programming. Results suggest that students with low and moderate attitudes

towards programming tend to benefit more from the scaffolding strategy than students with

higher attitudes towards programming. The provision of scaffolding through semi-finished

programs and prompts could engage students who tend to have low interest in

programming and low programming self-efficacy, by reducing difficulty levels and

providing effective supplies for developing Computational Thinking.

Figure 7-2. Means of score changes by attitudes towards programming group for the

non-scaffolding group

128

Figure 7-3. Means of score changes by attitudes towards programming group for the

scaffolding group

Table 7-6. Computational Thinking changes in pre-scores and post-scores means by

game version and attitudes towards programming group

Game Version Attitudes towards programming

Group

Means of Change in CT Scores

Non-scaffolding version High 4.000

 Moderate 2.556

 Low 1.600

Scaffolding version High 3.000

 Moderate 4.200

 Low 6.250

129

The implication of these findings is important, as they provide support that

scaffolding in computational thinking games could be an effective strategy for teaching

and learning computational thinking to middle school students fostering a deeper

understanding of Computational Thinking concepts. In addition, when it comes to

students’ attitudes towards programming, students who perceive programming as less

meaningful, less interesting and have lower programming self-efficacy could particularly

benefit from scaffolding aspects in programming games.

7.13 Summary

This chapter presents the method and results of the fourth phase of this dissertation that

involves the investigation of the effects of a) scaffolding programming games and b)

attitudes towards programming, on the development of middle school students’

Computational Thinking. To this end, an experimental study was conducted. Students were

introduced to CT under two distinct experimental conditions: a scaffolding version of a

programming game and a non-scaffolding version of the same game. Results report

statistically significant differences between the pre-intervention and post-intervention CT

scores for all students and statistically significant improvement in learning outcomes in

favor of the scaffolding group. In addition, the study hypothesized that attitudes towards

programming would have an impact on students’ CT. Although this hypothesis has not

been confirmed, the results suggest that students who have a less positive attitude towards

programming could particularly benefit from scaffolding aspects in programming games.

130

8 Conclusions and direction for future research

8.1 Introduction

In the context of this dissertation, we developed a conceptual model of Computational

Thinking in K-12 education and extended it to higher education. We also investigated

specific instances of the models’ CT areas. The research was organized in the following

four phases:

Phase 1. Developing a Conceptual Model of Computational Thinking through

programming in K-12 education (CTPK-12).

Phase 2. Extending the Computational Thinking through Programming in K-12

Education (CTPK-12) Conceptual Model for Higher Education.

Phase 3. Designing and evaluating of a programming game to study the perceived

effects of a certain instance of the CTPK-12 Learning Strategies area.

Phase 4. Using the CTPK-12 model to design an empirical study to investigate

certain instances of the Learning Strategies and Factors model’s areas.

In this chapter we present the conclusions of these phases. The remainder of this

Chapter is organised as follows: Section 8.2 presents the conclusions of Phase 1. Section

8.3 presents the conclusions of Phase 2. Section 8.4 presents the conclusions of Phase 3.

Section 8.5 presents the conclusions of Phase 4. Section 8.6 suggests future research.

Section 8.7 presents the limitations of the research presented.

8.2 Conclusions Phase 1

In this phase, a conceptual model of CT through programming in K-12 education (CTPK-

12) was developed. The proposed model was based on a systematic literature review and

the identification of CT Areas and their relationships. CT Areas are determined from the

recording of all topics of interest to researchers. CTPK-12 model provides an overall map

131

of the domain that aids domain understanding and could serve as a basis for future studies

as well as facilitate the integration of CT into K-12 educational practices.

The CTPK-12 model indicates that CT through programming in K-12 education

domain includes the following six areas: Knowledge Base, Learning Strategies,

Assessment, Tools, Factors and Capacity Building area that are related to each other. Some

of the relationships between the areas have not yet been sufficiently explored so far in the

scientific literature including (a) which tools support which learning strategies, (b) which

learning strategies enable the acquisition of CT, (c) which factors affect CT development,

and (d) how capacity building affects students’ CT levels.

The CTPK-12 model also reveals that although the focus on Assessment, Tools and

Factors area remains approximately constant over time, it increases for Learning Strategies

and Capacity Building area and decreases for Knowledge Base area. This marks a change

in the focus of research that could be interpreted as a shift to more tangible issues of

educational practice. The findings also indicate gaps and future directions regarding the

models’ areas and relationships that are presented in the following paragraphs.

Assessment area is at the forefront of CT research gathering the greatest interest of

researchers in the selected studies. However, CT assessment methods in the selected

studies include mostly methods based on particular activities and curricula and therefore

their use in different contexts is difficult. Efforts have been made to develop validated

methods for general use that allow researchers to document their results based on validated

instruments. Most of these methods are self-report methods; therefore, there is a need for

additional validated methods, which could be applied to various settings, providing

opportunities to standardize the CT assessment based on methods other than self-report.

Tools area is also one of the major topics investigated in the selected studies.

Several studies focus on the development of environments designed specifically to support

CT teaching and learning strategies. Although these environments are designed on the

basis of CT frameworks, they are not yet widely used in empirical studies or educational

practices aimed at developing CT. Instead, they appear only once in the literature in the

studies where they are introduced. Therefore, beyond the theoretical basis and

technicalities of CT tools, researchers need to consider issues of usability, student

132

motivation, teacher facilitation through available resources and frameworks, and ease of

assessment through built-in automated assessment methods. In addition, future studies

should explore the relationship between Tools and CT development providing insights on

which tools could better support which CT learning strategies.

Learning Strategies area has gained increasing interest in recent years. However,

several of the studies reviewed simply refer to the learning strategies applied without

further describing how they were implemented. Focusing on learning strategies, presenting

the relevant background and how they are implemented could support a more

comprehensive picture of the conditions and context of the proposed CT interventions.

Studies could also propose frameworks that support leveraging CT learning strategies. In

addition, future studies could explore the relationship between learning strategies and CT

development and provide insights on which learning strategies are most suitable for

students to acquire which CT elements.

Capacity Building is highlighted as a critical Area of CT presence within

educational settings and one of the rising areas in the domain research. Nevertheless,

studies still argue that teachers face significant challenges in incorporating CT practices

such as lack of technological infrastructure, lack of time for lesson plans and materials

preparation and limited instructional time (Adler & Kim, 2018; Bargury et al., 2012; Israel

et al., 2015; Ozturk, Dooley, & Welch, 2018; Sentance & Csizmadia, 2017). Most

important, teachers have low levels of CT content knowledge (Alfayez & Lambert, 2019;

Angeli et al., 2016; Bower et al., 2017; Israel et al., 2015; Kale, Akcaoglu, Cullen, & Goh,

2018) and knowledge about how to teach CT (Chalmers, 2018). Thus, more Capacity

Building interventions and frameworks are needed to support in-service and pre-service

teachers to successfully integrate CT into their teaching practices. In addition, the

relationship between capacity building and CT development could be investigated in future

studies.

Factors area has also been investigated in several of the selected studies. However,

some of the results of the studies are contradictory, so it is unclear whether and to what

extent these factors lead to higher or lower CT levels. As Angeli & Giannakos (2020) point

out, how CT skills, such as abstraction, problem decomposition, and data structures, map

to different abilities, grade level, disciplines, gender, and educational level is still missing

133

from the literature. Further studies in this direction could build clarity about factors that

may affect CT acquisition. With regard to how CT could be utilized to motivate

underrepresented groups, there are few studies (e.g., Kim & Kim, 2016; Leonard et al.,

2018; Pinkard, Martin, & Erete, 2019) specifically aimed at motivating girls and

underrepresented minorities. More studies are required to provide evidence of the

relationship between factors, learning strategies and tools and provide insights on if and

how learning strategies and tools could broaden participation in CT and address challenges

related to factors.

8.3 Conclusions Phase 2

The results of this phase indicate that several efforts have been emerged in CT through

programming in higher education research recently, although challenges remain in the six

areas identified in this review: Knowledge Base, Learning Strategies, Tools, Assessment,

Factors and Capacity Building. Future studies should address remaining challenges by

basing their design on clear definitions of CT as categorized and described in section

5.4.1.1. The assessment should be based on the recording of CT elements as previously

defined in the context of the studies. In addition, it is proposed to integrate direct

assessment methods in combination with self-report methods in order to provide a more

objective picture of the development of students' CT. The alignment of CT elements and

assessment methods could provide a more comprehensive understanding of students’ CT

development. Future research should also explore how different learning strategies could

support CT development. In addition, future research could focus on the development of

tools suitable for higher education, which would enable the exploitation of game design

strategies. Finally, studies should also focus on the investigation of how factors such as

gender, creativity, self-efficacy, motivation may affect CT and how professional

development of academic stuff could enhance the CT integration in higher education

context.

8.4 Conclusions Phase 3

In this phase, we design and evaluate a Scaffolding Computational Thinking game. The

game was designed to include scaffolding features and was evaluated by 28 middle school

students. The results regarding ease of use, usefulness, attitude, accessibility and overall

134

experience of the scaffolding game were promising. Specifically, students found

scaffolding features useful for solving the game and effective in learning Computational

Thinking.

8.5 Conclusions Phase 4

In this phase, we explored the effect of scaffolding programming games on the

development of middle school students’ Computational Thinking. In addition, herein we

explore the effect of students’ attitudes towards programming on their Computational

Thinking. Students were introduced to Computational Thinking under two distinct

experimental conditions: a scaffolding version of a programming game and a non-

scaffolding version of the same game. Results reported statistically significant learning

gains between the pre-intervention and post-intervention CT scores for all students and

statistically significant improvement in learning outcomes in favour of the scaffolding

group. Furthermore, students in the scaffolding group not only showed better learning

outcomes overall, but also submitted higher quality code in terms of using conditionals and

loops during the game. The findings support that scaffolding helps students develop

Computational Thinking and deepen their understanding of the related concepts. In

addition, the study hypothesized that attitudes towards programming would have an impact

on students’ Computational Thinking and Computational Thinking development.

However, this hypothesis was not confirmed from the results that report a non-statistically

significant difference in both cases. Nevertheless, students’ Computational Thinking in the

non-scaffolding group found to be higher for students with a more positive attitude towards

programming. Specifically, students in the high attitudes group had greater learning gains,

followed by students in the moderate attitudes group and students in the low attitudes group

for the non-scaffolding version of the game. On the other hand, students in the low attitudes

group had greater learning gains, followed by students in the moderate attitudes and

students in the high attitudes group for the scaffolding version of the game.

8.6 Limitations

The study developed a conceptual model for Computational Thinking and investigated

some of its instances, following four research phases. Despite its contributions, the findings

135

must be considered in light of the limitations of its research phases presented in Sections

4.2.3, 5.2.3, 6.24 and 7.2.5 accordingly.

8.7 Future work

Future research could be organized into the following three objectives:

i) Investigate all model relationships. A full investigation of the relationships of the model

could contribute to a better understanding of learning and teaching of Computational

Thinking. Specifically, future research could focus on a) the relationship between Tools

and CT development and provide insights on which tools could better support which CT

learning strategies b) the relationship between learning strategies and CT development and

provide insights on which learning strategies are most appropriate for students to acquire

which CT elements c) the relationship between capacity building and CT development d)

the relationship between factors, learning strategies and tools and provide insights on if

and how learning strategies and tools could broaden participation in CT e) the relationship

between factors and CT development and build clarity about factors that may affect CT

acquisition.

ii) Extend the model. Future research could focus on extending the conceptual model to

include other approaches such as unplugged approaches.

iii) Use the model to create course designs. Future research could focus on studying design

principles that could lead to structured design courses that are based on the proposed CT

conceptual model.

136

Appendixes

Appendix A

Appendix A. List of selected studies (Chapter 4)

S1 (CSTA), & (ISTE). (2011). Operational definition of computational thinking.

Retrieved from https://www.iste.org/explore/Solutions/Computational-thinking-

for-all

S2 Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational

thinking skills through modeling and simulations. Education and Information

Technologies, Vol. 23, pp. 1501–1514. https://doi.org/10.1007/s10639-017-9675-

1

S3 Alfayez, A. A., & Lambert, J. (2019). Exploring Saudi Computer Science

Teachers’ Conceptual Mastery Level of Computational Thinking Skills.

Computers in the Schools, Vol. 36, pp. 143–166.

https://doi.org/10.1080/07380569.2019.1639593

S4 Allsop, Y. (2019 Assessing computational thinking process using a multiple

evaluation approach. International Journal of Child-Computer Interaction, 19, 30–

55. https://doi.org/10.1016/j.ijcci.2018.10.004

S5 Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami,

J. (2016). A K-6 computational thinking curriculum framework: Implications for

teacher knowledge. Educational Technology and Society, Vol. 19, pp. 47–57.

Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85000838214&partnerID=40&md5=3f014c90dafb945e90c9552f5a6ef17f

S6 Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational

thinking skills through educational robotics: A study on age and gender relevant

differences. Robotics and Autonomous Systems, Vol. 75, pp. 661–670.

https://doi.org/10.1016/j.robot.2015.10.008

137

S7 Bargury, I. Zur, Haberman, B., Cohen, A., Muller, O., Zohar, D., Levy, D., &

Hotoveli, R. (2012). Implementing a new Computer Science Curriculum for

middle school in Israel. Proceedings - Frontiers in Education Conference, FIE.

https://doi.org/10.1109/FIE.2012.6462365

S8 Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12:

What is involved and what is the role of the computer science education

community? ACM Inroads, 2(1), 48–54.

https://doi.org/10.1145/1929887.1929905

S9 Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S.

(2011). Recognizing computational thinking patterns. SIGCSE’11 - Proceedings

of the 42nd ACM Technical Symposium on Computer Science Education, 245–

250. https://doi.org/10.1145/1953163.1953241

S10 Basogain, X., Olabe, M. Á., Olabe, J. C., & Rico, M. J. (2018). Computational

Thinking in pre-university Blended Learning classrooms. Computers in Human

Behavior, Vol. 80, pp. 412–419. https://doi.org/10.1016/j.chb.2017.04.058

S11 Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive

scaffolding in a Computational Thinking-based science learning environment.

User Modeling and User-Adapted Interaction, Vol. 27, pp. 5–53.

https://doi.org/10.1007/s11257-017-9187-0

S12 Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics

Environments for Supporting Complex Systems and Computational Thinking.

Journal of Science Education and Technology, Vol. 24, pp. 628–647.

https://doi.org/10.1007/s10956-015-9552-x

S13 Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational

thinking and tinkering: Exploration of an early childhood robotics curriculum.

Computers and Education, Vol. 72, pp. 145–157.

https://doi.org/10.1016/j.compedu.2013.10.020

S14 Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., & Lister, R. (2017). Improving

the computational thinking pedagogical capabilities of school teachers. Australian

138

Journal of Teacher Education, 42(3), 53–72.

https://doi.org/10.14221/ajte.2017v42n3.4

S15 Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing

the development of computational thinking. Annual American Educational

Research Association Meeting, Vancouver, BC, Canada, 1–25. Retrieved from

http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

S16 Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., &

Danies, G. (2017). Changing a Generation’s Way of Thinking: Teaching

Computational Thinking Through Programming. Review of Educational

Research, Vol. 87, pp. 834–860. https://doi.org/10.3102/0034654317710096

S17 Carlborg, N., Tyrén, M., Heath, C., & Eriksson, E. (2019). The scope of

autonomy when teaching computational thinking in primary school. International

Journal of Child-Computer Interaction, 21, 130–139.

https://doi.org/10.1016/j.ijcci.2019.06.005

S18 Chalmers, C. (2018). Robotics and computational thinking in primary school.

International Journal of Child-Computer Interaction, 17, 93–100.

https://doi.org/10.1016/j.ijcci.2018.06.005

S19 Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017).

Assessing elementary students’ computational thinking in everyday reasoning and

robotics programming. Computers and Education, Vol. 109, pp. 162–175.

https://doi.org/10.1016/j.compedu.2017.03.001

S20 Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing Computational

Thinking with Educational Technologies for Young Learners. TechTrends, Vol.

62, pp. 563–573. https://doi.org/10.1007/s11528-018-0292-7

S21 Clark, D. B., & Sengupta, P. (2019). Reconceptualizing games for integrating

computational thinking and science as practice: collaborative agent-based

disciplinarily-integrated games. Interactive Learning Environments.

https://doi.org/10.1080/10494820.2019.1636071

139

S22 Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). Education: A future for

computing education research. Communications of the ACM, 57(11), 34–36.

https://doi.org/10.1145/2668899

S23 Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., &

Woollard, J. (2015). Computational thinking: A guide for teachers. Retrieved

from Computing at Schools. website:

https://community.computingatschool.org.uk/resources/2324/single

S24 Da Cruz Alves, N., Gresse Von Wangenheim, C., & Hauck, J. C. R. (2019).

Approaches to assess computational thinking competences based on code analysis

in K-12 education: A systematic mapping study. Informatics in Education, Vol.

18, pp. 17–39. https://doi.org/10.15388/infedu.2019.02

S25 De Souza, A. A., Barcelos, T. S., Munoz, R., Villarroel, R., & Silva, L. A. (2019).

Data Mining Framework to Analyze the Evolution of Computational Thinking

Skills in Game Building Workshops. IEEE Access, Vol. 7, pp. 82848–82866.

https://doi.org/10.1109/ACCESS.2019.2924343

S26 Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle

school girls: Can they be used to measure understanding of computer science

concepts? Computers and Education, 58(1), 240–249.

https://doi.org/10.1016/j.compedu.2011.08.006

S27 Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438

S28 Dolgopolovas, V., Dagienė, V., Jasutė, E., & Jevsikova, T. (2019). Design

science research for computational thinking in constructionist education: A

pragmatist perspective. Problemos, Vol. 95, pp. 144–159.

https://doi.org/10.15388/Problemos.95.12

S29 Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between

computational thinking skills and various variables with the structural equation

model. Computers and Education, 116, 191–202.

https://doi.org/10.1016/j.compedu.2017.09.004

140

S30 Durak, H. Y., Yilmaz, F. G. K., & Bartin, R. Y. (2019). Computational thinking,

programming self-efficacy, problem solving and experiences in the programming

process conducted with robotic activities. Contemporary Educational

Technology, 10(2), 173–197. https://doi.org/10.30935/cet.554493

S31 Fletcher, G. H. L., & Lu, J. J. (2009). Education: Human computing skills:

Rethinking the K-12 experience. Communications of the ACM, 52(2), 23–25.

https://doi.org/10.1145/1461928.1461938

S32 Fronza, I., El Ioini, N., & Corral, L. (2017). Teaching computational thinking

using agile software engineering methods: A framework for middle schools.

ACM Transactions on Computing Education, Vol. 17.

https://doi.org/10.1145/3055258

S33 Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., &

Bilotta, E. (2019). Lesson planning by computational thinking skills in Italian

pre-service teachers. Informatics in Education, Vol. 18, pp. 69–104.

https://doi.org/10.15388/infedu.2019.04

S34 García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational

thinking effects in pre-university education. Computers in Human Behavior, 80,

407–411. https://doi.org/10.1016/j.chb.2017.12.005

S35 Garneli, V., & Chorianopoulos, K. (2018). Programming video games and

simulations in science education: exploring computational thinking through code

analysis. Interactive Learning Environments, Vol. 26, pp. 386–401.

https://doi.org/10.1080/10494820.2017.1337036

S36 Garneli, V., & Chorianopoulos, K. (2019). The effects of video game making

within science content on student computational thinking skills and performance.

Interactive Technology and Smart Education. https://doi.org/10.1108/ITSE-11-

2018-0097

S37 Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017).

A framework for using hypothesis-driven approaches to support data-driven

learning analytics in measuring computational thinking in block-based

141

programming environments. ACM Transactions on Computing Education, Vol.

17. https://doi.org/10.1145/3105910

S38 Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the

State of the Field. Educational Researcher, Vol. 42, pp. 38–43.

https://doi.org/10.3102/0013189X12463051

S39 Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a

blended computer science course for middle school students. Computer Science

Education, 25(2), 199–237. https://doi.org/10.1080/08993408.2015.1033142

S40 Günbatar, M. S. (2019). Computational thinking within the context of

professional life: Change in CT skill from the viewpoint of teachers. Education

and Information Technologies, Vol. 24, pp. 2629–2652.

https://doi.org/10.1007/s10639-019-09919-x

S41 Hickmott, D., & Prieto-Rodriguez, E. (2018). To assess or not to assess: Tensions

negotiated in six years of teaching teachers about computational thinking.

Informatics in Education, Vol. 17, pp. 229–244.

https://doi.org/10.15388/infedu.2018.12

S42 Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., &

Guenaga, M. (2019). Creativity in the acquisition of computational thinking.

Interactive Learning Environments, Vol. 27, pp. 628–644.

https://doi.org/10.1080/10494820.2019.1610451

S43 Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach

computational thinking: Suggestions based on a review of the literature.

Computers and Education, Vol. 126, pp. 296–310.

https://doi.org/10.1016/j.compedu.2018.07.004

S44 Ioannidou, A., Bennett, V., Repenning, A., Koh, H., & Basawapatna, A. (2011).

Computational Thinking Patterns Human Creativity and the Power of

Technology: Computational Thinking in the K-12 Classroom. Annual Meeting of

the American Educational Research Association (AERA), 2. Retrieved from

http://www.agentsheets.com

142

S45 Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015).

Supporting all learners in school-wide computational thinking: A cross-case

qualitative analysis. Computers and Education, Vol. 82, pp. 263–279.

https://doi.org/10.1016/j.compedu.2014.11.022

S46 Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence in a Game-Based

Learning Environment: The Case of Elementary School Students Learning

Computational Thinking. Journal of Educational Computing Research.

https://doi.org/10.1177/0735633119887187

S47 Jeong, Y.-S., & Sung, Y.-H. (2019). The effect of network-based PUMA

teaching-learning model on information literacy, computational thinking, and

communication skills. Universal Journal of Educational Research, Vol. 7, pp.

103–113. https://doi.org/10.13189/ujer.2019.071512

S48 Jun, S., Han, S., & Kim, S. (2017). Effect of design-based learning on improving

computational thinking. Behaviour and Information Technology, Vol. 36, pp. 43–

53. https://doi.org/10.1080/0144929X.2016.1188415

S49 Kafai, Y. B. (2016). From computational thinking to computational participation

in K-12 education. Communications of the ACM, Vol. 59, pp. 26–27.

https://doi.org/10.1145/2955114

S50 Kale, U., Akcaoglu, M., Cullen, T., & Goh, D. (2018). Contextual Factors

Influencing Access to Teaching Computational Thinking. Computers in the

Schools, Vol. 35, pp. 69–87. https://doi.org/10.1080/07380569.2018.1462630

S51 Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N., & Grise, K.

(2018). Computational What? Relating Computational Thinking to Teaching.

TechTrends, Vol. 62, pp. 574–584. https://doi.org/10.1007/s11528-018-0290-9

S52 Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A Framework for

Computational Thinking Based on a Systematic Research Review. Baltic Journal

Of Modern Computing, 4(3), 583–596.

143

S53 Kim, Y.-M., & Kim, J.-H. (2016). Application of a software education program

developed to improve computational thinking in elementary school girls. Indian

Journal of Science and Technology, Vol. 9.

https://doi.org/10.17485/ijst/2016/v9i44/105102

S54 Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the

automatic recognition of computational thinking for adaptive visual language

learning. Proceedings - 2010 IEEE Symposium on Visual Languages and Human-

Centric Computing, VL/HCC 2010, (December), 59–66.

https://doi.org/10.1109/VLHCC.2010.17

S55 Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’

interest, collaboration attitude, and programming empowerment in computational

thinking education. Computers and Education, Vol. 127, pp. 178–189.

https://doi.org/10.1016/j.compedu.2018.08.026

S56 Korkmaz, Ö., & Bai, X. (2019). Adapting computational thinking scale (CTS) for

chinese high school students and their thinking scale skills level. Participatory

Educational Research, 6(1), 10–26. https://doi.org/10.17275/per.19.2.6.1

S57 Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study

of the computational thinking scales (CTS). Computers in Human Behavior, 72,

558–569. https://doi.org/10.1016/j.chb.2017.01.005

S58 Kukul, V., & Karataş, S. (2019). Computational thinking self-efficacy scale:

Development, validity and reliability. Informatics in Education, Vol. 18, pp. 151–

164. https://doi.org/10.15388/infedu.2019.07

S59 Kynigos, C., & Grizioti, M. (2018). Programming approaches to computational

thinking: Integrating turtle geometry, dynamic manipulation and 3D space.

Informatics in Education, Vol. 17, pp. 321–340.

https://doi.org/10.15388/infedu.2018.17

S60 Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-Hill, J.,

Robinson, R., & Hester-Croff, C. (2018). Preparing Teachers to Engage Rural

Students in Computational Thinking Through Robotics, Game Design, and

144

Culturally Responsive Teaching. Journal of Teacher Education, Vol. 69, pp. 386–

407. https://doi.org/10.1177/0022487117732317

S61 Ling, U. L., Saibin, T. C., Labadin, J., & Aziz, N. A. (2018.). Preliminary

Investigation: Teachers’ Perception on Computational Thinking Concepts.

Journal of Telecommunication, Electronic and Computer Engineering, 9(2-9), 23-

29.

S62 Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of

computational thinking through programming: What is next for K-12? Computers

in Human Behavior, Vol. 41, pp. 51–61.

https://doi.org/10.1016/j.chb.2014.09.012

S63 Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018).

Learning Computational Thinking and scratch at distance. Computers in Human

Behavior, Vol. 80, pp. 470–477. https://doi.org/10.1016/j.chb.2017.09.025

S64 Mishra, P., Cain, W., Sawaya, S., & Henriksen, D. (2013). Rethinking

Technology & Creativity in the 21st Century: A Room of Their Own.

TechTrends, 57(4), 5–9. https://doi.org/10.1007/s11528-013-0668-7

S65 Monteiro, I. T., Salgado, L. C. de C., Mota, M. P., Sampaio, A. L., & de Souza,

C. S. (2017). Signifying software engineering to computational thinking learners

with AgentSheets and PoliFacets. Journal of Visual Languages and Computing,

40, 91–112. https://doi.org/10.1016/j.jvlc.2017.01.005

S66 Moreno León, J., Robles, G., & Román González, M. (2015). Dr. Scratch:

Automatic Analysis of Scratch Projects to Assess and Foster Computational

Thinking. RED: Revista de Educación a Distancia, (46), 6.

S67 Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017).

Resetting educational technology coursework for pre-service teachers: A

computational thinking approach to the development of technological

pedagogical content knowledge (TPACK). Australasian Journal of Educational

Technology, Vol. 33, pp. 61–76. https://doi.org/10.14742/ajet.3521

145

S68 Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2019). Development of

computational thinking, digital competence and 21st century skills when learning

programming in K-9. Education Inquiry.

https://doi.org/10.1080/20004508.2019.1627844

S69 Ozturk, Z., Dooley, C. M. M., & Welch, M. (2018). Finding the Hook: Computer

Science Education in Elementary Contexts. Journal of Research on Technology in

Education, 50(2), 149–163. https://doi.org/10.1080/15391523.2018.1431573

S70 Pinkard, N., Martin, C. K., & Erete, S. (2019). Equitable approaches:

opportunities for computational thinking with emphasis on creative production

and connections to community. Interactive Learning Environments, 0(0), 1–15.

https://doi.org/10.1080/10494820.2019.1636070

S71 Repenning, A., Basawapatna, A. R., & Escherle, N. A. (2017). Emerging

Research, Practice, and Policy on Computational Thinking. Emerging Research,

Practice, and Policy on Computational Thinking, 291–305.

https://doi.org/10.1007/978-3-319-52691-1

S72 Repenning, A., Grover, R., Gutierrez, K., Repenning, N., Webb, D. C., Koh, K.

H., … Gluck, F. (2015). Scalable Game Design. ACM Transactions on

Computing Education, 15(2), 1–31. https://doi.org/10.1145/2700517

S73 Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the

development of a checklist for getting computational thinking into public schools.

SIGCSE’10 - Proceedings of the 41st ACM Technical Symposium on Computer

Science Education, 265–269. https://doi.org/10.1145/1734263.1734357

S74 Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,

Brennan, K., … Kafai, Y. (2009). Scratch: Programming for all. Communications

of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779

S75 Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2019).

Computational thinking and mathematics using Scratch: an experiment with

sixth-grade students. Interactive Learning Environments.

https://doi.org/10.1080/10494820.2019.1612448

146

S76 Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017).

Which cognitive abilities underlie computational thinking? Criterion validity of

the Computational Thinking Test. Computers in Human Behavior, Vol. 72, pp.

678–691. https://doi.org/10.1016/j.chb.2016.08.047

S77 Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G.

(2018). Extending the nomological network of computational thinking with non-

cognitive factors. Computers in Human Behavior, 80, 441–459.

https://doi.org/10.1016/j.chb.2017.09.030

S78 Román-gonzález, M., Pérez-gonzález, J., & Moreno-león, J. (2018). Can

computational talent be detected? Predictive validity of the Computational

Thinking Test. International Journal of Child-Computer Interaction, 18, 47–58.

https://doi.org/10.1016/j.ijcci.2018.06.004

S79 Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual

programming languages integrated across the curriculum in elementary school: A

two-year case study using “scratch” in five schools. Computers and Education,

97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

S80 Selby, C. (2013). Computational Thinking: The Developing Definition. ITiCSE

Conference 2013, 5–8.

S81 Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013).

Integrating computational thinking with K-12 science education using agent-

based computation: A theoretical framework. Education and Information

Technologies, Vol. 18, pp. 351–380. https://doi.org/10.1007/s10639-012-9240-x

S82 Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges

and strategies from a teacher’s perspective. Education and Information

Technologies, 22(2), 469–495. https://doi.org/10.1007/s10639-016-9482-0

S83 Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational

thinking. Educational Research Review, Vol. 22, pp. 142–158.

https://doi.org/10.1016/j.edurev.2017.09.003

147

S84 Snow, E., Rutstein, D., Basu, S., Bienkowski, M., & Everson, H. T. (2019).

Leveraging Evidence-Centered Design to Develop Assessments of Computational

Thinking Practices. International Journal of Testing, Vol. 19, pp. 103–127.

https://doi.org/10.1080/15305058.2018.1543311

S85 Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules:

exploring the impact of teaching styles on young children’s programming

knowledge in ScratchJr. International Journal of Technology and Design

Education, 28(2), 347–376. https://doi.org/10.1007/s10798-017-9400-9

S86 von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz

Alves, N., Barbosa, H., & Azevedo, L. F. (2018). CodeMaster - Automatic

assessment and grading of app inventor and snap! Programs. Informatics in

Education, 17(1), 117–150. https://doi.org/10.15388/infedu.2018.08

S87 Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational

thinking in compulsory education: Towards an agenda for research and practice.

Education and Information Technologies, Vol. 20, pp. 715–728.

https://doi.org/10.1007/s10639-015-9412-6

S88 Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &

Wilensky, U. (2016). Defining Computational Thinking for Mathematics and

Science Classrooms. Journal of Science Education and Technology, Vol. 25, pp.

127–147. https://doi.org/10.1007/s10956-015-9581-5

S89 Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational

thinking in constructionist video games. International Journal of Game-Based

Learning, Vol. 6, pp. 1–17. https://doi.org/10.4018/IJGBL.2016010101

S90 Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). Werner, Linda

Denner, Jill Campe, Shannon Kawamoto, Damon Chizuru. Proceedings of the

43rd ACM Technical Symposium on Computer Science Education, 215–220.

https://doi.org/10.3758/BF03196322

S91 Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3),

33–35.

148

S92 Wing, J. M. (2008). Computational thinking and thinking about computing.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 366(1881), 3717–3725.

https://doi.org/10.1098/rsta.2008.0118

S93 Witherspoon, E. B., & Schunn, C. D. (2019). Teachers’ goals predict

computational thinking gains in robotics. Information and Learning Science, Vol.

120, pp. 308–326. https://doi.org/10.1108/ILS-05-2018-0035

S94 Xing, W. (2019). Large-scale path modeling of remixing to computational

thinking. Interactive Learning Environments.

https://doi.org/10.1080/10494820.2019.1573199

S95 Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).

Computational thinking in elementary and secondary teacher education. ACM

Transactions on Computing Education, Vol. 14. https://doi.org/10.1145/2576872

S96 Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for

teacher education. Communications of the ACM, Vol. 60, pp. 55–62.

https://doi.org/10.1145/2994591

S97 Yağcı, M. (2019). A valid and reliable tool for examining computational thinking

skills. Education and Information Technologies, Vol. 24, pp. 929–951.

https://doi.org/10.1007/s10639-018-9801-8

S98 Yasar, O. (2018). Viewpoint a new perspective on computational thinking:

Addressing its cognitive essence, universal value, and curricular practices.

Communications of the ACM, 61(7), 33–39. https://doi.org/10.1145/3214354

S99 Zhang, L. C., & Nouri, J. (2019). A systematic review of learning computational

thinking through Scratch in K-9. Computers and Education, 141(June), 103607.

https://doi.org/10.1016/j.compedu.2019.103607

S100 Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational

thinking skills? Computers and Education, 141(July), 103633.

https://doi.org/10.1016/j.compedu.2019.103633

149

S101 Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-

dimensional integrated assessment for computational thinking. In Journal of

Educational Computing Research (Vol. 53).

https://doi.org/10.1177/0735633115608444

https://doi.org/10.1177/0735633115608444

150

Appendix B

Appendix B. List of selected studies (Chapter 5)

PS1 Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational

thinking skills through modeling and simulations. Education and Information

Technologies, Vol. 23, pp. 1501–1514. https://doi.org/10.1007/s10639-017-9675-

1

PS2 Bui, L. D., Kim, Y. G., Ho, W., Thi, H., Ho, T., & Pham, N. K. (2018).

Developing WebQuest 2.0 model for promoting computational thinking skill. In

International Journal of Engineering & Technology (Vol. 7). Retrieved from

http://bit.ly/2jH9KT2.

PS3 Cachero C., Barra P., Melia S., Lopez O.,"Impact of Programming Exposure on

the Development of Computational Thinking Capabilities: An Empirical

Study",2020,"IEEE

Access","10.1109/ACCESS.2020.2987254","https://www.scopus.com/inward/rec

ord.uri?eid=2-s2.0-

85084334725&doi=10.1109%2fACCESS.2020.2987254&partnerID=40&md5=1

333d67d45be18c0a20cbc955aa580d6"

PS4 Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring

Utilization of Scratch. Journal of Educational Computing Research, Vol. 54, pp.

997–1021. https://doi.org/10.1177/0735633116642774

PS5 Chao, P. Y. (2016). Exploring students’ computational practice, design and

performance of problem-solving through a visual programming environment.

Computers and Education, 95, 202–215.

https://doi.org/10.1016/j.compedu.2016.01.010

PS6 Choi, S.-Y. (2019). Development of an instructional model based on

constructivism for fostering computational thinking. International Journal of

Innovative Technology and Exploring Engineering, Vol. 8, pp. 381–385.

Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85064633190&partnerID=40&md5=9c6da0548c789dfbb24134edc2cbfdc7

151

PS7 Cutumisu, M., & Guo, Q. (2019). Using Topic Modeling to Extract Pre-Service

Teachers’ Understandings of Computational Thinking From Their Coding

Reflections. IEEE Transactions on Education.

https://doi.org/10.1109/TE.2019.2925253

PS8 Dolgopolovas, V., & Jevsikova, T. (2015). On Evaluation of computational

thinking of software engineering novice students. Proceedings of The, 4(2), 105–

112. https://doi.org/10.13140/RG.2.1.2855.9206

PS9 Fang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on

blending learning flipped class model in colleges and universities based on

computational thinking - “Database principles” for example. Eurasia Journal of

Mathematics, Science and Technology Education, Vol. 13, pp. 5747–5755.

https://doi.org/10.12973/eurasia.2017.01024a

PS10 Fernández, J. M., Zúñiga, M. E., Rosas, M. V., & Guerrero, R. A. (2018).

Experiences in Learning Problem-Solving through Computational Thinking.

Journal of Computer Science and Technology, 18(02), e15.

https://doi.org/10.24215/16666038.18.e15

PS11 Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., &

Bilotta, E. (2019). Lesson planning by computational thinking skills in Italian

pre-service teachers. Informatics in Education, Vol. 18, pp. 69–104.

https://doi.org/10.15388/infedu.2019.04

PS12 Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009).

A multidisciplinary approach towards computational thinking for science majors.

SIGCSE Bulletin Inroads, Vol. 41, pp. 183–187.

https://doi.org/10.1145/1539024.1508931

PS13 Hou H.-Y., Agrawal S., Lee C.-F.,"Computational thinking training with

technology for non-information undergraduates",2020,"Thinking Skills and

Creativity","10.1016/j.tsc.2020.100720","https://www.scopus.com/inward/record.

uri?eid=2-s2.0-

152

85090228702&doi=10.1016%2fj.tsc.2020.100720&partnerID=40&md5=a6c007f

a4e1130f69a15118167520743"

PS14 Huang, X.-P., & Leng, J. (2019). Design of database teaching model based on

computational thinking training. International Journal of Emerging Technologies

in Learning, Vol. 14, pp. 52–69. https://doi.org/10.3991/ijet.v14i08.10495

PS15 Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary

Preservice Teachers’ Self-Efficacy, Science Learning, and Computational

Thinking. Journal of Science Education and Technology, Vol. 26, pp. 175–192.

https://doi.org/10.1007/s10956-016-9663-z

PS16 Jeon, Y., & Kim, T. (2017). The effects of the computational thinking-based

programming class on the computer learning attitude of non-major students in the

teacher training college. Journal of Theoretical and Applied Information

Technology, 95(17), 4330–4339.

PS17 Kang Y., Lee K.,"Designing technology entrepreneurship education using

computational thinking",2020,"Education and Information

Technologies","10.1007/s10639-020-10231-

2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85085371936&doi=10.1007%2fs10639-020-10231-

2&partnerID=40&md5=72af666d82419c9dc4344f0144fb7e18"

PS18 Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious

Game for Developing Computational Thinking and Learning Introductory

Computer Programming. Procedia - Social and Behavioral Sciences, 47, 1991–

1999. https://doi.org/10.1016/j.sbspro.2012.06.938

PS19 Katai Z.,"Promoting computational thinking of both sciences- and humanities-

oriented students: an instructional and motivational design

perspective",2020,"Educational Technology Research and

Development","10.1007/s11423-020-09766-

5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-

153

85083359163&doi=10.1007%2fs11423-020-09766-

5&partnerID=40&md5=d27baf0027852e2a276dfd1c052f9fe7"

PS20 Kılıç S., Gökoğlu S., Öztürk M.,"A Valid and Reliable Scale for Developing

Programming-Oriented Computational Thinking",2020,"Journal of Educational

Computing

Research","10.1177/0735633120964402","https://www.scopus.com/inward/recor

d.uri?eid=2-s2.0-

85092671278&doi=10.1177%2f0735633120964402&partnerID=40&md5=a767d

80ae448790747589c61c0fe8ac6"

PS21 Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study

of the computational thinking scales (CTS). In Computers in Human Behavior

(Vol. 72, pp. 558–569). https://doi.org/10.1016/j.chb.2017.01.005

PS22 Kwon, J., & Kim, J. (2018). A study on the design and effect of computational

thinking and software education. KSII Transactions on Internet and Information

Systems, Vol. 12, pp. 4057–4071. https://doi.org/10.3837/tiis.2018.08.028

PS23 Lee, Y., & Cho, J. (2019). Knowledge representation for computational thinking

using knowledge discovery computing. Information Technology and

Management. https://doi.org/10.1007/s10799-019-00299-9

PS24 Li, M., & Hou, D. (2014). Network autonomous learning based on computational

thinking. World Transactions on Engineering and Technology Education, Vol.

12, pp. 576–580. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84916237711&partnerID=40&md5=3d31af2cb32278ebb421ef9de6f7271f

PS25 Lin, P. H., & Chen, S. Y. (2020). Design and Evaluation of a Deep Learning

Recommendation Based Augmented Reality System for Teaching Programming

and Computational Thinking. IEEE Access, 8, 45689–45699.

https://doi.org/10.1109/ACCESS.2020.2977679

PS26 Ma, J. Bin, Teng, G. F., Zhou, G. H., & Sun, C. X. (2017). Practical teaching

reform on computational thinking training for undergraduates of computer major.

154

Eurasia Journal of Mathematics, Science and Technology Education, 13(10),

7121–7130. https://doi.org/10.12973/ejmste/78738

PS27 Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices

for a computational thinking-enabled engineering workforce. Computer

Applications in Engineering Education, 25(1), 62–78.

https://doi.org/10.1002/cae.21779

PS28 Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017).

Resetting educational technology coursework for pre-service teachers: A

computational thinking approach to the development of technological

pedagogical content knowledge (TPACK). Australasian Journal of Educational

Technology, Vol. 33, pp. 61–76. https://doi.org/10.14742/ajet.3521

PS29 Page, R., & Gamboa, R. (2013). How Computers Work: Computational Thinking

for Everyone. Electronic Proceedings in Theoretical Computer Science,

106(Tfpie 2012), 1–19. https://doi.org/10.4204/eptcs.106.1

PS30 Pala, F. K., & Mıhçı Türker, P. (2019). The effects of different programming

trainings on the computational thinking skills. Interactive Learning Environments.

https://doi.org/10.1080/10494820.2019.1635495

PS31 Qin, H. (2009). Teaching computational thinking through bioinformatics to

biology students. SIGCSE Bulletin Inroads, Vol. 41, pp. 188–191.

https://doi.org/10.1145/1539024.1508932

PS32 Rodríguez-García J.D., Moreno-León J., Román-González M., Robles

G.,"LearningML: A tool to foster computational thinking skills through practical

artificial intelligence projects",2020,"Revista de Educacion a

Distancia","10.6018/RED.410121","https://www.scopus.com/inward/record.uri?e

id=2-s2.0-

85085603174&doi=10.6018%2fRED.410121&partnerID=40&md5=8629359de3

25467d947de6634fd4b859"

155

PS33 Romero M, Lepage A, Lille B. Computational thinking development through

creative programming in higher education. International Journal of Educational

Technology in Higher Education. 2017 Dec;14(42): 1-15

PS34 Rubinstein, A., & Chor, B. (2014). Computational Thinking in Life Science

Education. PLoS Computational Biology, Vol. 10.

https://doi.org/10.1371/journal.pcbi.1003897

PS35 Shih, H., Jackson, J. M., Hawkins-Wilson, C. L., & Yuan, P.-C. (2015).

Promoting computational thinking skills in an emergency management class with

MIT app inventor. Computers in Education Journal, Vol. 6, pp. 82–91. Retrieved

from https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85052799029&partnerID=40&md5=df2b3b5a13cfeb93ab789a443cd5d7dd

PS36 Sondakh D.E., Osman K., Zainudin S.,"A proposal for holistic assessment of

computational thinking for undergraduate: Content validity",2020,"European

Journal of Educational Research","10.12973/eu-

jer.9.1.33","https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85082097163&doi=10.12973%2feu-

jer.9.1.33&partnerID=40&md5=54d1017f4af582d22b1edc9970ecd68f"

PS37 Taylor, N. G., Moore, J., Visser, M., & Drouillard, C. (2018). Incorporating

computational thinking into library graduate course goals and objectives. School

Library Research, Vol. 21. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85053260681&partnerID=40&md5=15815233f96a5912185346fe719f6496

PS38 Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational

thinking in collaborative programming: A quantitative ethnography approach.

Journal of Computer Assisted Learning, Vol. 35, pp. 421–434.

https://doi.org/10.1111/jcal.12348

PS39 Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’

computational thinking skills in a data-driven computing class. ACM

Transactions on Computing Education, Vol. 14. https://doi.org/10.1145/2676660

156

PS40 Zha, S., Jin, Y., Moore, Gaston J. (2020). Hopscotch into Coding: Introducing

Pre-Service Teachers Computational Thinking. TechTrends, 64, 17–28.

https://doi.org/10.1007/s11528-019-00423-0

PS41 Zha S., Jin Y., Moore P., Gaston J. (2020). A cross-institutional investigation of a

flipped module on preservice teachers’ interest in teaching computational

thinking (2020), Journal of Digital Learning in Teacher Education.

https://doi.org/10.1080/21532974.2019.1693941

https://doi.org/10.1080/21532974.2019.1693941

157

Appendix C

Appendix C. Research instruments.

Instrument adapted from Park (2009).

Δημογραφικά Στοιχεία

1. Συμπληρώσετε το σχολικό σας email *

2. Τάξη *

Να επισημαίνεται μόνο μία έλλειψη.

ΓυμνασίουA

Γυμνασίου Β

Γυμνασίου Γ

3. Φύλλο *

Να επισημαίνεται μόνο μία έλλειψη.

Αγόρι

Κορίτσι

4. Προηγούμενη εμπειρία προγραμματισμού *

Να επισημαίνεται μόνο μία έλλειψη.

Ναι

Όχι

Ευκολία Χρήσης

1. Βρήκα το παιχνίδι προγραμματισμού και υπολογιστικής σκέψης aMazeD

εύκολο στη χρήση. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

158

1

2

3

4

5

Συμφωνώ έντονα

2. Το να μάθω να χρησιμοποιώ ένα παιχνίδι προγραμματισμού και υπολογιστικής

σκέψης είναι εύκολο για εμένα. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

5

Συμφωνώ έντονα

Χρησιμότητα

1. Το παιχνίδι προγραμματισμού και υπολογιστικής σκέψης aMazeD μπορεί να

με βοηθήσει να καταλάβω τις έννοιες και τις πρακτικές προγραμματισμού και

υπολογιστικής σκέψης. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

159

3

4

5

Συμφωνώ έντονα

2. Το παιχνίδι προγραμματισμού και υπολογιστικής σκέψης aMazeD μπορεί να

κάνει ευκολότερη την μελέτη των εννοιών και των πρακτικών

προγραμματισμού και υπολογιστικής σκέψης.*

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

5

Συμφωνώ έντονα

3. Οι συμβουλές που μου παρείχε το παιχνίδι ήταν επαρκείς για να με βοηθήσουν

να επιλύσω τα επίπεδα. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

160

5

Συμφωνώ έντονα

4. Οι συμβουλές που μου παρείχε το παιχνίδι ήταν χρήσιμες για να με βοηθήσουν

να επιλύσω τα επίπεδα. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

5

Συμφωνώ έντονα

5. Οι συμβουλές που μου παρείχε το παιχνίδι με βοήθησαν να κατανοήσω τις

βασικές έννοιες προγραμματισμού και υπολογιστικής σκέψης. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

5

Συμφωνώ έντονα

Στάση

161

1. Η μελέτη προγραμματισμού και υπολογιστικής σκέψης μέσω παιχνιδιών

όπως το aMazeD είναι μια καλή ιδέα. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

5

Συμφωνώ έντονα

2. Είμαι θετικός/θετική απέναντι στα παιχνίδια προγραμματισμού και

υπολογιστικής σκέψης. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

1

2

3

4

5

Συμφωνώ έντονα

Προσιτότητα

Δεν αντιμετώπισα καμία δυσκολία στη χρήση του παιχνιδιού

προγραμματισμού. *

Να επισημαίνεται μόνο μία έλλειψη.

Διαφωνώ έντονα

162

1

2

3

4

5

Συμφωνώ έντονα

Συνολική Εμπειρία

Γράψτε λίγα λόγια για την εμπειρία σας από το παιχνίδι. Τί σας άρεσε ή δεν σας άρεσε; Τί σας

έκανε εντύπωση;*

163

Scale of Attitudes towards Programming adapted from Kong (2018)

1. Συμπληρώσετε το σχολικό σας email *

2. Τάξη *

Να επισημαίνεται μόνο μία έλλειψη.

ΓυμνασίουΑ

Γυμνασίου Β

Γυμνασίου Γ

3. Φύλλο *

Να επισημαίνεται μόνο μία έλλειψη.

Αγόρι

Κορίτσι

Meaningfulness

1. Ο προγραμματισμός είναι χρήσιμος για εμένα. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

2. Ο προγραμματισμός θα με βοηθήσει να πετύχω τους στόχους μου. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

164

1

2

3

4

5

Διαφωνώ απόλυτα

3. Θέλω να γίνω καλός στον προγραμματισμό. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

4. Ο προγραμματισμός είναι σημαντικός για μένα. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

Programming self-efficacy

1. Μπορώ να μάθω πώς να προγραμματίζω. *

Να επισημαίνεται μόνο μία έλλειψη.

165

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

2. Είμαι καλός στον προγραμματισμό. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

3. Σκέφτομαι τον εαυτό μου ως κάποιον που μπορεί να προγραμματίσει. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

166

4. Έχω δεξιότητες προγραμματισμού. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

5. Έχω εμπιστοσύνη στην ικανότητά μου να προγραμματίζω. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

Interest in programming

1. Ο προγραμματισμός είναι ενδιαφέρων. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

167

5

Διαφωνώ απόλυτα

2. Είμαι περίεργος για το περιεχόμενο του προγραμματισμού. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

3. Νομίζω ότι ο προγραμματισμός είναι διασκεδαστικός. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

4

5

Διαφωνώ απόλυτα

4. Με ενδιαφέρουν πολύ οι δραστηριότητες προγραμματισμού υπολογιστών. *

Να επισημαίνεται μόνο μία έλλειψη.

Συμφωνώ απόλυτα

1

2

3

168

4

5

Διαφωνώ απόλυτα

169

Computational Thinking Test (CTt) adopted from Román-González et al.

(2017)

Καλώς ήρθατε στη δοκιμασία Υπολογιστικής Σκέψης!

 * Υποδεικνύει απαιτούμενη ερώτηση

1. Διεύθυνση ηλεκτρονικού ταχυδρομείου *

2. Φύλλο *

Να επισημαίνεται μόνο μία έλλειψη.

 Αγόρι

 Κορίτσι

3. Τάξη *

Να επισημαίνεται μόνο μία έλλειψη.

ΓυμνασίουΑ

Γυμνασίου Β

Γυμνασίου Γ

Οδηγίες

Η δοκιμασία αποτελείται από 28 ερωτήσεις, σε 7 σελίδες με 4 ερωτήσεις η καθεμία.

Όλες οι ερωτήσεις έχουν 4 επιλογές απαντήσεων (A, B, C ή D) από τις οποίες μόνο μία

είναι σωστή.

Έχετε 45 λεπτά να κάνετε το καλύτερο που μπορείτε. Δεν είναι απαραίτητο να

απαντήσετε σε όλες τις ερωτήσεις.

Για να προχωρήσετε σε επόμενη σελίδα επιλέξτε "Συνέχεια" στο κάτω μέρος της σελίδας.

ΠΟΛΥ ΣΗΜΑΝΤΙΚΟ: όταν ολοκληρώσετε τη δοκιμασία ή ο χρόνος σας τελειώσει θα

πρέπει να μετακινηθείτε στην τελευταία σελίδα και να επιλέξετε "Υποβολή".

Πριν ξεκινήσετε τη δοκιμασία μπορείτε να δείτε παρακάτω παραδείγματα ερωτήσεων

σαν αυτά που θα πρέπει να απαντήσετε.

170

Παράδειγμα 1

Σε αυτό το παράδειγμα σας ζητείται να δώσετε οδηγίες έτσι ώστε το Pac-man να

συναντήσει το φάντασμα (ghost) μέσω του κίτρινου μονοπατιού.

Η σωστή απάντηση είναι το B.

Παράδειγμα 1. Ποιες οδηγίες πρέπει να δοθούν στο Pac-man έτσι ώστε να μεταβεί στο

φάντασμα (ghost) μέσω του κίτρινου μονοπατιού;

Παράδειγμα 1 *

Επιλέξτε την απάντηση Β

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

171

Παράδειγμα 2.

Και σε αυτό το παράδειγμα σας ζητείται να δώσετε οδηγίες έτσι ώστε το Pac-man να

μεταβεί στο φάντασμα (ghost) μέσω του κίτρινου μονοπατιού. Εδώ όμως οι απαντήσεις

παρουσιάζονται ως οδηγίες και όχι ως βέλη.

Η σωστή απάντηση είναι το C.

Παράδειγμα 2. Ποιες οδηγίες πρέπει να δοθούν στο Pac-man έτσι ώστε να μεταβεί στο

φάντασμα (ghost) μέσω του κίτρινου μονοπατιού;

Παράδειγμα 2 *

Επιλέξτε την απάντηση C.

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

172

Παράδειγμα 3

Στο Παράδειγμα 3 σας ζητείται να δώσετε οδηγίες έτσι ώστε ο καλλιτέχνης (artist) να

σχεδιάσει το σχήμα της οθόνης.

Με την εντολή ΚΙΝΗΣΟΥ ο καλλιτέχνης (artist) προχωρά και ζωγραφίσει ενώ με την

εντολή ΜΕΤΑΒΑΣΗ ο καλλιτέχνης (artist) πηδά χωρίς να ζωγραφίζει.

Tο γκρι βέλος δείχνει την κατεύθυνση εκκίνησης του καλλιτέχνη. Η σωστή απάντηση

είναι το Α.

Παράδειγμα 3. Ποιες οδηγίες πρέπει να δοθούν στον καλλιτέχνη έτσι ώστε να σχεδιάσει

το παρακάτω σχήμα; Η μικρή πλευρά είναι 50 εικονοστοιχεία και η μεγάλη100.

Παράδειγμα 3 *

Επιλέξτε την απάντηση Α.

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

173

Ερωτήσεις 1-4

Ερώτηση 1. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι;

Ερώτηση 1

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

174

Ερώτηση 2. Ποιο βήμα λείπει στις παρακάτω οδηγίες για να μεταβεί το Pac-Man στο

φάντασμα από το κίτρινο μονοπάτι;

Ερώτηση 2

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

175

Ερώτηση 3. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος;

Ερώτηση 3

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

176

Ερώτηση 4. Ποιες οδηγίες πρέπει να ακολουθήσει ο καλλιτέχνης για να σχεδιάσει την

πλατεία; Κάθε μία από τις πλευρές του τετραγώνου έχει μέγεθος 100 εικονοστοιχεία.

Ερώτηση 4

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

177

Ερωτήσεις 5-8

Ερώτηση 5. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι;

Ερώτηση 5

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

178

Ερώτηση 6. Πόσες φορές πρέπει να επαναληφθεί η ακολουθία για να οδηγηθεί το Pac-

Man στο φάντασμα από το κίτρινο μονοπάτι;

Ερώτηση 6

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

C

 D

179

Ερώτηση 7. Οι οδηγίες πρέπει να κάνουν τον καλλιτέχνη να σχεδιάσει το ακόλουθο

ορθογώνιο μία φορά (πλάτος 50 εικονοστοιχεία και ύψος 100 εικονοστοιχεία). Σεποιο

βήμα των οδηγιών υπάρχει κάποιο λάθος;

Ερώτηση 7

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

180

Ερώτηση 8. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι;

Ερώτηση 8

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

181

Ερωτήσεις 9-12

Ερώτηση 9. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο μονοπάτι;

Ερώτηση 9

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

182

Ερώτηση 10. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι;

Ερώτηση 10

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

C

 D

183

Ερώτηση 11. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος;

Ερώτηση 11

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

184

Ερώτηση 12. Ποιες οδηγίες πρέπει να δοθούν στον καλλιτέχνη για να σχεδιάσει τη

σκάλα που φαίνεται στην παρακάτω εικόνα; Ανάμεσα σε κάθε σκαλί μεσολαβεί κενό 30

εικονοστοιχεία.

Ερώτηση 12

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

C

 D

185

Ερωτήσεις 13-16

Ερώτηση 13. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι;

Ερώτηση 13

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

186

Ερώτηση 14. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι;

Ερώτηση 14

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

187

Ερώτηση 15. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στο φάντασμα

από το κίτρινο μονοπάτι;

Ερώτηση 15

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

188

Ερώτηση 16. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος;

Ερώτηση 16

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

189

Ερωτήσεις 17-20

Ερώτηση 17. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι;

Ερώτηση 17

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

190

Ερώτηση 18. Ποιες οδηγίες οδηγούν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι;

Ερώτηση 18

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

C

 D

191

Ερώτηση 19. Οι οδηγίες πρέπει να οδηγήσουν το Pac-Man στο φάντασμα από το κίτρινο

μονοπάτι. Σε ποιο βήμα των οδηγιών υπάρχει κάποιο λάθος;

Ερώτηση 19

Επιλέξτε το βήμα στο οποίο υπάρχει λάθος

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

192

Ερώτηση 20. Ποιο βήμα οδηγιών λείπει έτσι ώστε το Pac-Man να μεταβεί στο φάντασμα

από το κίτρινο μονοπάτι;

Ερώτηση 20

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

193

Ερωτήσεις 21-21

ΣΗΜΑΝΤΙΚΟ: ΔΙΑΒΑΣΤΕ ΠΡΟΣΕΚΤΙΚΑ

Στις παρακάτω ερωτήσεις εμφανίζεται η εικόνα μίας φράουλας μέσα σε ένα

τετράγωνο. Το τετράγωνο κάτω δεξιά εμφανίζει πόσες φράουλες υπάρχουν στο

τετράγωνο.

194

Ερώτηση 21. Ποιες οδηγίες οδηγούν το Pac-Man στις φράουλες από το κίτρινο

μονοπάτι και του λένε να φάει όλες τις φράουλες που εμφανίζονται;

Ερώτηση 21

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

C

 D

195

Ερώτηση 22. Ποιες οδηγίες οδηγούν το Pac-Man στις φράουλες από το κίτρινο μονοπάτι

και του λένε να φάει όλες τις φράουλες που εμφανίζονται;

Ερώτηση 22

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

C

 D

196

Ερώτηση 23. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στις φράουλες

από το κίτρινο μονοπάτι και να φάει όλες τις φράουλες που εμφανίζονται;

Ερώτηση 23

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

197

Ερώτηση 24. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στις φράουλες

από το κίτρινο μονοπάτι και να φάει όλες τις φράουλες που εμφανίζονται (αγνώστου

αριθμού);

Ερώτηση 24

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

C

 D

198

Ερωτήσεις 25 - 28

Ερώτηση 25. Ποιες οδηγίες πρέπει να ακολουθήσει ο καλλιτέχνης για να σχεδιάσει το

παρακάτω σχήμα; Το σύνολο οδηγιών που εμφανίζεται στο αριστερό μέρος της εικόνας

ονομάζεται συνάρτηση (function) και ζωγραφίζει ένα τετράγωνο με πλευρά 100

εικονοστοιχεία.

Ερώτηση 25

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

C

 D

199

Ερώτηση 26. Οι παρακάτω οδηγίες πρέπει να κάνουν τον καλλιτέχνη να σχεδιάσει το

παρακάτω σχήμα. Ποιο νούμερο λείπει στις οδηγίες; Η συνάρτηση που εμφανίζεται στο

αριστερό μέρος της εικόνας ζωγραφίζει ένα τρίγωνο με πλευρά 50 εικονοστοιχεία.

Ερώτηση 26

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

B

 C

 D

200

Ερώτηση 27. Ποιες οδηγίες οδηγούν το Pac-Man στις φράουλες από το κίτρινο μονοπάτι

και του λένε να φάει όλες τις φράουλες που εμφανίζονται;

Ερώτηση 27

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

C

D

201

Ερώτηση 28. Ποιες οδηγίες λείπουν έτσι ώστε το Pac-Man να μεταβεί στις φράουλες

από το κίτρινο μονοπάτι και να φάει όλες τις φράουλες που εμφανίζονται;

Ερώτηση 28

Επιλέξτε τη σωστή απάντηση

Να επισημαίνεται μόνο μία έλλειψη.

A

 B

 C

 D

202

References

Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with

educational robotics: An interaction effect between gender and scaffolding strategy.

Computers in Human Behavior, 105. https://doi.org/10.1016/j.chb.2019.03.018

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ CT skills through modeling

and simulations. Education and Information Technologies, 23, 1501–1514.

https://doi.org/10.1007/s10639-017-9675-1

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, Vol. 55, pp.

832–835. https://doi.org/10.1093/comjnl/bxs074

Alfayez, A. A., & Lambert, J. (2019). Exploring Saudi Computer Science Teachers’

Conceptual Mastery Level of CT Skills. Computers in the Schools, 36, 143–166.

https://doi.org/10.1080/07380569.2019.1639593

Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation

approach. International Journal of Child-Computer Interaction, 19, 30–55.

https://doi.org/10.1016/j.ijcci.2018.10.004

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges.

Computers in Human Behavior, 105. https://doi.org/10.1016/j.chb.2019.106185

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A

K-6 CT curriculum framework: Implications for teacher knowledge. Educational

Technology and Society, 19, 47–57. https:// doi.org/10.1016/j.chb.2019.106185

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ CT skills through educational

robotics: A study on age and gender relevant differences. Robotics and Autonomous

Systems, 75, 661–670. https://doi.org/10.1016/j.robot.2015.10.008

203

Atmatzidou, S., Demetriadis, S., & Nika, P. (2018). How Does the Degree of Guidance

Support Students’ Metacognitive and Problem Solving Skills in Educational Robotics?

Journal of Science Education and Technology, 27(1), 70–85.

https://doi.org/10.1007/s10956-017-9709-x

Bargury, I. Zur, Haberman, B., Cohen, A., Muller, O., Zohar, D., Levy, D., & Hotoveli, R.

(2012). Implementing a new Computer Science Curriculum for middle school in Israel.

Proceedings - Frontiers in Education Conference, FIE.

https://doi.org/10.1109/FIE.2012.6462365

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved

and what is the role of the computer science education community? ACM Inroads,

2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Basogain, X., Olabe, M. Á., Olabe, J. C., & Rico, M. J. (2018). Computational Thinking in

pre-university Blended Learning classrooms. Computers in Human Behavior, 80, 412–

419. https://doi.org/10.1016/j.chb.2017.04.058

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in

a Computational Thinking-based science learning environment. User Modeling and

User-Adapted Interaction, Vol. 27, pp. 5–53. https://doi.org/10.1007/s11257-017-9187-

0

Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., & Lister, R. (2017). Improving the CT

pedagogical capabilities of school teachers. Australian Journal of Teacher Education,

42(3), 53–72. https://doi.org/10.14221/ajte.2017v42n3.4

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. Annual American Educational Research

Association Meeting, Vancouver, BC, Canada, 1–25.

http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

204

Bui, L. D., Kim, Y. G., Ho, W., Ho, H. T. T., & Pham, N. K. (2018). Developing WebQuest

2.0 model for promoting CT skill. International Journal of Engineering and Technology

(UAE), 7(2), 140–144. https://doi.org/10.14419/ijet.v7i2.29.13304

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017).

Changing a Generation’s Way of Thinking: Teaching Computational Thinking

Through Programming. Review of Educational Research, Vol. 87, pp. 834–860.

https://doi.org/10.3102/0034654317710096

Cachero, C., Barra, P., Melia, S., & Lopez, O. (2020). Impact of Programming Exposure on

the Development of Computational Thinking Capabilities: An Empirical Study. IEEE

ACCESS, 8, 72316–72325. https://doi.org/10.1109/ACCESS.2020.2987254

Carlborg, N., Tyrén, M., Heath, C., & Eriksson, E. (2019). The scope of autonomy when

teaching computational thinking in primary school. International Journal of Child-

Computer Interaction, 21, 130–139. https://doi.org/10.1016/j.ijcci.2019.06.005

Cetin, I., & Ozden, M. (2015). Development of computer programming attitude scale for

university students. Computer Applications in Engineering Education, 23, 667–672.

https://doi. org/10. 1002/cae.21639

Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring Utilization of

Scratch. Journal of Educational Computing Research, 54, 997–1021.

https://doi.org/10.1177/0735633116642774

Chalmers, C. (2018). Robotics and computational thinking in primary school. International

Journal of Child-Computer Interaction, 17, 93–100.

https://doi.org/10.1016/j.ijcci.2018.06.005

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of

problem-solving through a visual programming environment. Computers and

Education, 95, 202–215. https://doi.org/10.1016/j.compedu.2016.01.010

205

Chen, C. H., Liu, T. K. and Huang, K. (2021). ‘Scaffolding vocational high school students’

computational thinking with cognitive and metacognitive prompts in learning about

programmable logic controllers’, Journal of Research on Technology in Education,

0(0), pp. 1–18. https://doi. org/10.1080/15391 523. 2021.1983894

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing

elementary students’ computational thinking in everyday reasoning and robotics

programming. Computers and Education, Vol. 109, pp. 162–175.

https://doi.org/10.1016/j.compedu.2017.03.001

Chevalier, M., et al. (2022). The role of feedback and guidance as intervention methods to

foster computational thinking in educational robotics learning activities for primary

school. Computers and Education, 180, 104431.

https://www.sciencedirect.com/science/article/pii/S0360131522000021

Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018). Developing Computational Thinking with

Educational Technologies for Young Learners. TechTrends, Vol. 62, pp. 563–573.

https://doi.org/10.1007/s11528-018-0292-7

Choi, S.-Y. (2019). Development of an instructional model based on constructivism for

fostering CT. International Journal of Innovative Technology and Exploring

Engineering, 8, 381–385. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85064633190&partnerID=40&md5=9c6da0548c789dfbb24134edc2cbfdc7

Clark, D. B., & Sengupta, P. (2019). Reconceptualizing games for integrating computational

thinking and science as practice: collaborative agent-based disciplinarily-integrated

games. In Interactive Learning Environments.

https://doi.org/10.1080/10494820.2019.1636071

206

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). Education: A future for computing

education research. Communications of the ACM, 57(11), 34–36.

https://doi.org/10.1145/2668899

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J.

(2015). Computational thinking: A guide for teachers. Retrieved from Computing at

Schools. website: https://community.computingatschool.org.uk/resources/2324/single

Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the constructionist learning theory

with computational thinking classroom activities. Informatics in Education, Vol. 18,

pp. 41–67. https://doi.org/10.15388/infedu.2019.03

CSTA & ISTE. (2011). Operational definition of computational thinking. Retrieved from

https://www.iste.org/explore/Solutions/Computational-thinking-for-all.

Cutumisu, M., & Guo, Q. (2019). Using Topic Modeling to Extract Pre-Service Teachers’

Understandings of CT From Their Coding Reflections. 62(4), IEEE Transactions on

Education, 62(4), 325-332. https://doi.org/10.1109/TE.2019.2925253

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring Issues About CT in Higher Education.

TechTrends, 59, 57–65. https://doi.org/10.1007/s11528-015-0840-3

Da Cruz Alves, N., Gresse Von Wangenheim, C., & Hauck, J. C. R. (2019). Approaches to

assess computational thinking competences based on code analysis in K-12 education:

A systematic mapping study. Informatics in Education, Vol. 18, pp. 17–39.

https://doi.org/10.15388/infedu.2019.02

De Souza, A. A., Barcelos, T. S., Munoz, R., Villarroel, R., & Silva, L. A. (2019). Data

Mining Framework to Analyze the Evolution of Computational Thinking Skills in

Game Building Workshops. IEEE Access, Vol. 7, pp. 82848–82866.

https://doi.org/10.1109/ACCESS.2019.2924343

https://doi.org/10.1145/2668899
https://doi.org/10.1145/2668899
https://doi.org/10.1145/2668899

207

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls:

Can they be used to measure understanding of computer science concepts? Computers

and Education, 58(1), 240–249. https://doi.org/10.1016/j.compedu.2011.08.006

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications

of the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438

Dolgopolovas, V., & Jevsikova, T. (2015). On Evaluation of CT of software engineering

novice students. Proceedings of The IFIP TC3 Working Conference “A New Culture of

Learning: Computing and next Generations” At: Vilnius, 4(2), 105–112.

https://doi.org/10.13140/RG.2.1.2855.9206

Dolgopolovas, V., Dagienė, V., Jasutė, E., & Jevsikova, T. (2019). Design science research for

computational thinking in constructionist education: A pragmatist perspective .

Problemos, Vol. 95, pp. 144–159. https://doi.org/10.15388/Problemos.95.12

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational

thinking skills and various variables with the structural equation model. Computers and

Education, 116, 191–202. https://doi.org/10.1016/j.compedu.2017.09.004

Durak, H. Y., Yilmaz, F. G. K., & Bartin, R. Y. (2019). Computational thinking, programming

self-efficacy, problem solving and experiences in the programming process conducted

with robotic activities. Contemporary Educational Technology, 10(2), 173–197.

https://doi.org/10.30935/cet.554493

Fang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on blending

learning flipped class model in colleges and universities based on CT - “Database

principles” for example. Eurasia Journal of Mathematics, Science and Technology

Education, 13, 5747–5755. https://doi.org/10.12973/eurasia.2017.01024a

208

Fernández, J. M., Zúñiga, M. E., Rosas, M. V., & Guerrero, R. A. (2018). Experiences in

Learning Problem-Solving through CT. Journal of Computer Science and Technology,

18(02). https://doi.org/10.24215/16666038.18.e15

Fletcher, G. H. L., & Lu, J. J. (2009). Education: Human computing skills: Rethinking the K-

12 experience. Communications of the ACM, 52(2), 23–25.

https://doi.org/10.1145/1461928.1461938

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in

education (8th ed.). Mc Graw Hill.

Fronza, I., El Ioini, N., & Corral, L. (2017). Teaching computational thinking using agile

software engineering methods: A framework for middle schools. ACM Transactions on

Computing Education, 17. https://doi.org/10.1145/3055258

Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., & Bilotta, E.

(2019). Lesson planning by CT skills in Italian pre-service teachers. Informatics in

Education, 18, 69–104. https://doi.org/10.15388/infedu.2019.04

García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in

pre-university education. Computers in Human Behavior, 80, 407–411.

https://doi.org/10.1016/j.chb.2017.12.005

Garneli, V., & Chorianopoulos, K. (2018). Programming video games and simulations in

science education: exploring computational thinking through code analysis. Interactive

Learning Environments, Vol. 26, pp. 386–401.

https://doi.org/10.1080/10494820.2017.1337036

Gemino, A., & Wand, Y. (2004). A framework for empirical evaluation of conceptual

modeling techniques. Requirements Engineering, 9(4), 248–260.

https://doi.org/10.1007/s00766-004-0204-6

209

Giannakos, M. N., Doukakis, S., Pappas, I. O., Adamopoulos, N., & Giannopoulou, P. (2015).

Investigating teachers’ confidence on technological pedagogical and content

knowledge: an initial validation of TPACK scales in K-12 computing education

context. Journal of Computers in Education, 2(1), 43–59.

https://doi.org/10.1007/s40692-014-0024-8Grover, S., & Pea, R. (2013).

Computational Thinking in K-12: A Review of the State of the Field. Educational

Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the

Field. Educational Researcher, Vol. 42, pp. 38–43.

https://doi.org/10.3102/0013189X12463051

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N., & Stamper, J. (2017). A

framework for using hypothesis-driven approaches to support data-driven learning

analytics in measuring computational thinking in block-based programming

environments. ACM Transactions on Computing Education, Vol. 17.

https://doi.org/10.1145/3105910

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer

science course for middle school students. Computer Science Education, 25(2), 199–

237. https://doi.org/10.1080/08993408.2015.1033142

Günbatar, M. S. (2019). Computational thinking within the context of professional life:

Change in CT skill from the viewpoint of teachers. Education and Information

Technologies, Vol. 24, pp. 2629–2652. https://doi.org/10.1007/s10639-019-09919-x

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A

multidisciplinary approach towards CT for science majors. SIGCSE Bulletin Inroads,

41, 183–187. https://doi.org/10.1145/1539024.1508931

210

Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., & Guenaga, M.

(2019). Creativity in the acquisition of computational thinking. Interactive Learning

Environments, Vol. 27, pp. 628–644. https://doi.org/10.1080/10494820.2019.1610451

Hickmott, D., & Prieto-Rodriguez, E. (2018). To assess or not to assess: Tensions negotiated

in six years of teaching teachers about computational thinking. Informatics in

Education, Vol. 17, pp. 229–244. https://doi.org/10.15388/infedu.2018.12

Hooshyar, D., Malva, L., Yang, Y., Pedaste, M., Wang, M., & Lim, H. (2021). An adaptive

educational computer game: Effects on students’ knowledge and learning attitude in

computational thinking. Computers in Human Behavior, 114.

https://doi.org/10.1016/j.chb.2020.106575

Hou, H.-Y., Agrawal, S., & Lee, C.-F. (2020). Computational thinking training with

technology for non-information undergraduates. Thinking Skills and Creativity, 38.

https://doi.org/10.1016/j.tsc.2020.100720

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis.

Qualitative Health Research, 15(9), 1277–1288.

https://doi.org/10.1177/1049732305276687

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational

thinking: Suggestions based on a review of the literature. Computers and Education,

Vol. 126, pp. 296–310. https://doi.org/10.1016/j.compedu.2018.07.004

Hsu, Y.-C., Irie, N. R., & Ching, Y.-H. (2019). Computational Thinking Educational Policy

Initiatives (CTEPI) Across the Globe. TechTrends. https://doi.org/10.1007/s11528-

019-00384-4

Huang, X.-P., & Leng, J. (2019). Design of database teaching model based on CT training.

International Journal of Emerging Technologies in Learning, 14, 52–69.

https://doi.org/10.3991/ijet.v14i08.10495

211

Ioannidou, A., Bennett, V., Repenning, A., Koh, H., & Basawapatna, A. (2011).

Computational Thinking Patterns Human Creativity and the Power of Technology:

Computational Thinking in the K-12 Classroom. Annual Meeting of the American

Educational Research Association (AERA), 2. Retrieved from

http://www.agentsheets.com

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all

learners in school-wide computational thinking: A cross-case qualitative analysis.

Computers and Education, Vol. 82, pp. 263–279.

https://doi.org/10.1016/j.compedu.2014.11.022

Israel-Fishelson, R., & Hershkovitz, A. (2019). Persistence in a Game-Based Learning

Environment: The Case of Elementary School Students Learning Computational

Thinking. Journal of Educational Computing Research.

https://doi.org/10.1177/0735633119887187

Israel-Fishelson, R., & Hershkovitz, A. (2020). Persistence in a Game-Based Learning

Environment: The Case of Elementary School Students Learning Computational

Thinking. Journal of Educational Computing Research, 58(5), 891–918.

https://doi.org/10.1177/0735633119887187

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary Preservice Teachers’

Self-Efficacy, Science Learning, and CT. Journal of Science Education and

Technology, 26, 175–192. https://doi.org/10.1007/s10956-016-9663-z

Jenson, J., & Droumeva, M. (2016). Exploring media literacy and CT: A game maker

curriculum study. Electronic Journal of E-Learning, 14, 111–121. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84968835202&partnerID=40&md5=b2d18e2de52058bda3b76bca4b55a25e

212

Jeon, Y., & Kim, T. (2017). The effects of the CT-based programming class on the computer

learning attitude of non-major students in the teacher training college. Journal of

Theoretical and Applied Information Technology, 95(17), 4330–4339.

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, Vol. 59, pp. 26–27.

https://doi.org/10.1145/2955114

Kale, U., Akcaoglu, M., Cullen, T., & Goh, D. (2018). Contextual Factors Influencing Access

to Teaching Computational Thinking. Computers in the Schools, Vol. 35, pp. 69–87.

https://doi.org/10.1080/07380569.2018.1462630

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A Framework for Computational Thinking

Based on a Systematic Research Review. Baltic Journal Of Modern Computing, 4(3),

583–596.

Kang, Y., & Lee, K. (2020). Designing technology entrepreneurship education using

computational thinking. Education and Information Technologies, 25(6), 5357–5377.

https://doi.org/10.1007/s10639-020-10231-2

Karakasis, C. and Xinogalos, S. (2020) ‘BlocklyScript: Design and Pilot Evaluation of an RPG

Platform Game for Cultivating Computational Thinking Skills to Young Students’,

Informatics in Education, 19(4), pp. 641–668. doi: 10.15388/INFEDU.2020.28.

Katai, Z. (2020). Promoting computational thinking of both sciences- and humanities-oriented

students: an instructional and motivational design perspective. ETR&D-

EDUCATIONAL TECHNOLOGY RESEARCH AND DEVELOPMENT, 68(5),

2239–2261. https://doi.org/10.1007/s11423-020-09766-5

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012). A Serious Game for

Developing CT and Learning Introductory Computer Programming. Procedia - Social

and Behavioral Sciences, 47, 1991–1999. https://doi.org/10.1016/j.sbspro.2012.06.938

213

Kılıç, S., Gökoğlu, S., & Öztürk, M. (2020). A Valid and Reliable Scale for Developing

Programming-Oriented Computational Thinking. Journal of Educational Computing

Research, 073563312096440. https://doi.org/10.1177/0735633120964402

Kim, Y.-M., & Kim, J.-H. (2016). Application of a software education program developed to

improve computational thinking in elementary school girls. Indian Journal of Science

and Technology, Vol. 9. https://doi.org/10.17485/ijst/2016/v9i44/105102

Koehler, M. J., & Mishra, P. (2006). Technological Pedagogical Content Knowledge: A

Framework for Teacher Knowledge PUNYA MISHRA. Teachers College Record,

108(6), 1017–1054. Retrieved from

http://one2oneheights.pbworks.com/f/MISHRA_PUNYA.pdf

Kong, S.-C. (2016). A framework of curriculum design for computational thinking

development in K-12 education. Journal of Computers in Education, 3(4), 377–394.

https://doi.org/10.1007/s40692-016-0076-z

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ interest,

collaboration attitude, and programming empowerment in computational thinking

education. In Computers and Education (Vol. 127, pp. 178–189).

https://doi.org/10.1016/j.compedu.2018.08.026

Korkmaz, Ö., & Bai, X. (2019). Adapting computational thinking scale (CTS) for chinese high

school students and their thinking scale skills level. Participatory Educational

Research, 6(1), 10–26. https://doi.org/10.17275/per.19.2.6.1

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the

computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569.

https://doi.org/10.1016/j.chb.2017.01.005

214

Kukul, V., & Karataş, S. (2019). Computational thinking self-efficacy scale: Development,

validity and reliability. Informatics in Education, Vol. 18, pp. 151–164.

https://doi.org/10.15388/infedu.2019.07

Kwon, J., & Kim, J. (2018). A study on the design and effect of CT and software education.

KSII Transactions on Internet and Information Systems, 12, 4057–4071.

https://doi.org/10.3837/tiis.2018.08.028

Kynigos, C., & Grizioti, M. (2018). Programming approaches to computational thinking:

Integrating turtle geometry, dynamic manipulation and 3D space. Informatics in

Education, Vol. 17, pp. 321–340. https://doi.org/10.15388/infedu.2018.17

Lee, Y., & Cho, J. (2020). Knowledge representation for computational thinking using

knowledge discovery computing. Information Technology and Management, 21(1),

15–28. https://doi.org/10.1007/s10799-019-00299-9

Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-Hill, J., Robinson, R., &

Hester-Croff, C. (2018). Preparing Teachers to Engage Rural Students in

Computational Thinking Through Robotics, Game Design, and Culturally Responsive

Teaching. Journal of Teacher Education, Vol. 69, pp. 386–407.

https://doi.org/10.1177/0022487117732317

Li, M., & Hou, D. (2014). Network autonomous learning based on CT. World Transactions on

Engineering and Technology Education, 12, 576–580. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84916237711&partnerID=40&md5=3d31af2cb32278ebb421ef9de6f7271f

Lin, P. H., & Chen, S. Y. (2020). Design and Evaluation of a Deep Learning Recommendation

Based Augmented Reality System for Teaching Programming and CT. IEEE Access, 8,

45689–45699. https://doi.org/10.1109/ACCESS.2020.2977679

215

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking

through programming: What is next for K-12? Computers in Human Behavior, 41, 51–

61. https://doi.org/10.1016/j.chb.2014.09.012

Lyon, J. A., & Magana, J. A. (2020). Computational thinking in higher education: A review of

the literature. COMPUTER APPLICATIONS IN ENGINEERING EDUCATION,

28(5), 1174–1189. https://doi.org/10.1002/cae.22295

Ma, J. Bin, Teng, G. F., Zhou, G. H., & Sun, C. X. (2017). Practical teaching reform on CT

training for undergraduates of computer major. Eurasia Journal of Mathematics,

Science and Technology Education, 13(10), 7121–7130.

https://doi.org/10.12973/ejmste/78738

Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a CT-

enabled engineering workforce. Computer Applications in Engineering Education,

25(1), 62–78. https://doi.org/10.1002/cae.21779

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning

Computational Thinking and scratch at distance. Computers in Human Behavior, Vol.

80, pp. 470–477. https://doi.org/10.1016/j.chb.2017.09.025

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for

systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online),

339(7716), 332–336. https://doi.org/10.1136/bmj.b2535

Moreno León, J., Robles, G., & Román González, M. (2015). Dr. Scratch: Automatic Analysis

of Scratch Projects to Assess and Foster Computational Thinking. RED: Revista de

Educación a Distancia, (46), 6.

Mousiou, M. (2021). Developing a Computational Thinking Environment through Learning

Programming [Master’s thesis, Hellenic Open University]. Hellenic Open University

Research Repository.https:// apoth esis. eap. gr/ handle/ repo/ 54054

216

Mouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017). Resetting

educational technology coursework for pre-service teachers: A computational thinking

approach to the development of technological pedagogical content knowledge

(TPACK). Australasian Journal of Educational Technology, Vol. 33, pp. 61–76.

https://doi.org/10.14742/ajet.3521

Mylopoulos, J. (1992). Conceptual modelling and Telos, in: P. Loucopoulos, R. Zicari.

Conceptual Modeling, Databases, and Case An Integrated View of Information

Systems Development. Wiley New York, 1992, pp. 49–68

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2019). Development of computational

thinking, digital competence and 21st century skills when learning programming in K-

9. Education Inquiry. https://doi.org/10.1080/20004508.2019.1627844

Ozturk, Z., Dooley, C. M. M., & Welch, M. (2018). Finding the Hook: Computer Science

Education in Elementary Contexts. Journal of Research on Technology in Education,

50(2), 149–163. https://doi.org/10.1080/15391523.2018.1431573

Page, R., & Gamboa, R. (2013). How Computers Work: CT for Everyone. Electronic

Proceedings in Theoretical Computer Science, 106, 1–19.

https://doi.org/10.4204/eptcs.106.1

Pala, F. K., & Mıhçı Türker, P. (2019). The effects of different programming trainings on the

CT skills. Interactive Learning Environments.

https://doi.org/10.1080/10494820.2019.1635495

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic

Books.

Park, S. Y. (2009) ‘An Analysis of the Technology Acceptance Model in Understanding

University Students ’ Behavioral Intention to Use e-Learning’, Journal of Educational

Technology & Society, 12(3), pp. 150–161.

217

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum:

Implications for future research. Education and Information Technologies, 22(2), 421–

443. https://doi.org/10.1007/s10639-016-9475-z

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in

software engineering. 12th International Conference on Evaluation and Assessment in

Software Engineering, EASE 2008, 1–10.

Piaget, J. (1970). Genetic Epistemology. New York: Columbia University Press.

Pinkard, N., Martin, C. K., & Erete, S. (2019). Equitable approaches: opportunities for

computational thinking with emphasis on creative production and connections to

community. Interactive Learning Environments, 0(0), 1–15.

https://doi.org/10.1080/10494820.2019.1636070

Qin, H. (2009). Teaching CT through bioinformatics to biology students. SIGCSE Bulletin

Inroads, 41, 188–191. https://doi.org/10.1145/1539024.1508932

Repenning, A., Basawapatna, A. R., & Escherle, N. A. (2017). Emerging Research, Practice,

and Policy on Computational Thinking. Emerging Research, Practice, and Policy on

Computational Thinking, 291–305. https://doi.org/10.1007/978-3-319-52691-1

Repenning, A., Grover, R., Gutierrez, K., Repenning, N., Webb, D. C., Koh, K. H., Nickerson,

H., Miller, S. B., Brand, C., Horses, I. H. M., Basawapatna, A., & Gluck, F. (2015).

Scalable Game Design. ACM Transactions on Computing Education, 15(2), 1–31.

https://doi.org/10.1145/2700517

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., …

Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11),

60–67. https://doi.org/10.1145/1592761.1592779

Rodríguez-García, J. D., Moreno-León, J., Román-González, M., & Robles, G. (2020).

LearningML: A tool to foster computational thinking skills through practical artificial

218

intelligence projects. Revista de Educacion a Distancia, 20(63).

https://doi.org/10.6018/RED.410121

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018).

Extending the nomological network of computational thinking with non-cognitive

factors. Computers in Human Behavior, 80, 441–459.

https://doi.org/10.1016/j.chb.2017.09.030

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which

cognitive abilities underlie computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human Behavior, Vol. 72, pp. 678–691.

https://doi.org/10.1016/j.chb.2016.08.047

Romero, M., Lepage, A., & Lille, B. (2017). CT development through creative programming

in higher education. International Journal of Educational Technology in Higher

Education, 14(42). https://doi.org/10.1186/s41239-017-0080-z

Rubinstein, A., & Chor, B. (2014). CT in Life Science Education. PLoS Computational

Biology, 10. https://doi.org/10.1371/journal.pcbi.1003897

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming

languages integrated across the curriculum in elementary school: A two year case study

using “scratch” in five schools. Computers and Education, 97, 129–141.

https://doi.org/10.1016/j.compedu.2016.03.003

Selby, C. (2013). Computational Thinking: The Developing Definition. ITiCSE Conference

2013, 5–8.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating

computational thinking with K-12 science education using agent-based computation: A

theoretical framework. Education and Information Technologies, Vol. 18, pp. 351–380.

https://doi.org/10.1007/s10639-012-9240-x

219

Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies

from a teacher’s perspective. Education and Information Technologies, 22(2), 469–

495. https://doi.org/10.1007/s10639-016-9482-0

Shih, H., Jackson, J. M., Hawkins-Wilson, C. L., & Yuan, P.-C. (2015). Promoting CT skills

in an emergency management class with MIT app inventor. Computers in Education

Journal, 6, 82–91. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-

s2.0-85052799029&partnerID=40&md5=df2b3b5a13cfeb93ab789a443cd5d7dd

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review, Vol. 22, pp. 142–158.

https://doi.org/10.1016/j.edurev.2017.09.003

Siau, K., & Tan, X. (2005). Improving the quality of conceptual modeling using cognitive

mapping techniques. Data and Knowledge Engineering, 55(3), 343–365.

https://doi.org/10.1016/j.datak.2004.12.006

Snow, E., Rutstein, D., Basu, S., Bienkowski, M., & Everson, H. T. (2019). Leveraging

Evidence-Centered Design to Develop Assessments of Computational Thinking

Practices. International Journal of Testing, Vol. 19, pp. 103–127.

https://doi.org/10.1080/15305058.2018.1543311

Sondakh, D. E., Osman, K., & Zainudin, S. (2020). A proposal for holistic assessment of

computational thinking for undergraduate: Content validity. European Journal of

Educational Research, 9(1), 33–50. https://doi.org/10.12973/eu-jer.9.1.33

Souza, M. R. d. A., Veado, L., Moreira, R. T., Figueiredo, E., & Costa, H. (2018). A

systematic mapping study on game-related methods for software engineering

education. Information and Software Technology, 95, 201–218.

https://doi.org/10.1016/j.infsof.2017.09.014

220

Sun, L., Hu, L., & Zhou, D. (2022). Programming attitudes predict computational thinking:

Analysis of differences in gender and programming experience. Computers and

Education, 181(27), 104457. https://doi.org/10.1016/j.compedu.2022.104457

Taylor, N. G., Moore, J., Visser, M., & Drouillard, C. (2018). Incorporating CT into library

graduate course goals and objectives. School Library Research, 21. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85053260681&partnerID=40&md5=15815233f96a5912185346fe719f6496

Tikva, C. & Tambouris, E. (2021a) ‘A systematic mapping study on teaching and learning

Computational Thinking through programming in higher education’, Thinking Skills

and Creativity, 41(December 2020), p. 100849. doi: 10.1016/j.tsc.2021.100849.

Tikva, C., & Tambouris, E. (2021b). Mapping computational thinking through programming

in K-12 education: A conceptual model based on a systematic literature Review.

Computers & Education, 162, 104083. https://doi.org/10.1016/j.compedu.2020.104083

von Wangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz Alves, N.,

Barbosa, H., & Azevedo, L. F. (2018). CodeMaster - Automatic assessment and

grading of app inventor and snap! Programs. Informatics in Education, 17(1), 117–150.

https://doi.org/10.15388/infedu.2018.08

Vygotsky, L. S. (1978). Mind inSociety: TheDevelopment ofHigher Psychological Processes.

Harvard University Press.

Wand, Y., & Weber, R. (2002). Research commentary: Information systems and conceptual

modeling - A research agenda. Information Systems Research.

https://doi.org/10.1287/isre.13.4.363.69

Webster, J., & Watson, R. (2002). Analyzing the past to prepare for the future: writing a

literature review. MIS Quarterly, 26(2), 13–23.

221

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining Computational Thinking for Mathematics and Science Classrooms. Journal of

Science Education and Technology, Vol. 25, pp. 127–147.

https://doi.org/10.1007/s10956-015-9581-5

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational thinking in

constructionist video games. International Journal of Game-Based Learning, Vol. 6, pp.

1–17. https://doi.org/10.4018/IJGBL.2016010101

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance

assessment: Measuring computational thinking in middle school. SIGCSE’12 -

proceedings of the 43rd ACM technical symposium on computer science education.

https://doi.org/10.1145/2157136.2157200

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Witherspoon, E. B., & Schunn, C. D. (2019). Teachers’ goals predict computational thinking

gainsin robotics. Information and Learning Science, 120(5–6), 308–326.

https://doi.org/10.1108/ILS-05-2018-0035

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing CT in collaborative

programming: A quantitative ethnography approach. Journal of Computer Assisted

Learning, 35, 421–434. https://doi.org/10.1111/jcal.12348

Xing, W. (2019). Large-scale path modeling of remixing to computational thinking. Interactive

Learning Environments. https://doi.org/10.1080/10494820.2019.1573199

222

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational

thinking in elementary and secondary teacher education. ACM Transactions on

Computing Education, Vol. 14. https://doi.org/10.1145/2576872

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education.

Communications of the ACM, Vol. 60, pp. 55–62. https://doi.org/10.1145/2994591

Yağcı, M. (2019). A valid and reliable tool for examining computational thinking skills.

Education and Information Technologies, 24(1), 929–951.

https://doi.org/10.1007/s10639-018-9801-8

Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’ CT skills in a data-

driven computing class. ACM Transactions on Computing Education, 14.

https://doi.org/10.1145/2676660

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020a). A cross-institutional investigation of a

flipped module on preservice teachers’ interest in teaching computational thinking.

Journal of Digital Learning in Teacher Education, 36(1), 32–45.

https://doi.org/10.1080/21532974.2019.1693941

Zha, S., Jin, Y., Moore, P., & Gaston, J. (2020b). Hopscotch into Coding: Introducing Pre-

Service Teachers Computational Thinking. TechTrends, 64(1), 17–28.

https://doi.org/10.1007/s11528-019-00423-0

Zhang, L. C. & Nouri, J. (2019) ‘A systematic review of learning computational thinking

through Scratch in K-9’, Computers and Education, 141(June), p. 103607. doi:

10.1016/j.compedu.2019.103607.

Zhao, W., & Shute, V. J. (2019). Can playing a video game foster computational thinking

skills? Computers and Education, 141(July), 103633.

https://doi.org/10.1016/j.compedu.2019.103633

223

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional

integrated assessment for computational thinking. Journal of Educational Computing

Research, 53. https://doi.org/10.1177/0735633115608444

