

Master in Business Analytics and Data Science

Department of Business Administration

Master Thesis

Traffic Forecasting with Graph Neural Networks

Petros Ioannis Brimos

February 2023

2

Abstract

In recent years, there has been a growing interest in traffic forecasting using Graph Neural

Networks (GNNs). These models manage to capture the complex topology in the non –

Euclidean space by using Graph convolutions, while dynamic temporal dependencies are

captured by recurrent networks. Moreover, the efficiency of such models mostly depends on

the availability of cleansed and trustworthy mobility data. However, the access to such data

is limited or restricted in most cases. Over the last decades, governments and the public sector

publish their data, including dynamic traffic data, freely accessible by all citizens without

any restrictions. These vast amounts of Open Government Data (OGD) have the potential to

be exploited by data intelligence applications, such as Graph Neural Networks for traffic

forecasting. To that end, this study focuses on a single case using open traffic data of the

Greek OGD portal for predicting future traffic flows. More precisely, data exploration and

analysis demonstrated that the OGD dataset contains many missing values and anomalies for

the first two years of operation. The quality of the traffic data improves significantly after

August 2022 where the experiments of this thesis were conducted. Two GNN models are

implemented for the selected time window namely: Temporal Graph Convolutional Network

(TGCN) and Diffusion Convolutional Recurrent Neural Network (DCRNN). The two GNN

– based models achieved approximately 50% decrease on all error metrics compared with

other baseline models, demonstrating high prediction precision. The TGCN model

specifically achieved the best performance in traffic flow prediction among all prediction

horizons and all metrics compared with all other models. To the author’s knowledge this is

the first time a study exploited OGD traffic data for traffic forecasting with Graph Neural

Networks.

Keywords: Graph Neural Networks, Open Government Data, traffic forecasting, deep

learning on graphs, spatial – temporal prediction, Open traffic data, deep learning

3

Acknowledgements

First and foremost, I would like to express my gratitude to my thesis supervisor, Asst. Prof.

Evangelos Kalampokis, for his support, guidance and encouragement throughout my MSc

program. His wealth of knowledge and expertise, but above all his support inspired me to get

involved in research.

I would also like to thank my colleague in the Information Systems lab Ms Areti Karamanou

for her help on these critical first steps.

Finally, special thanks to Ms Maria Kallipoliti for being a constant source of emotional and

moral support during the writing of this thesis.

4

Contents

Abstract ... 2

Acknowledgements ... 3

Contents .. 4

ABBREVIATIONS .. 6

1. Introduction... 7

2. Background .. 11

2.1 Dynamic Open Government Data ... 11

2.1.1 Open Traffic Data ... 13

2.2 Traffic Forecasting ... 15

2.2.1 Baseline methods ... 16

2.2.2 Deep learning approaches ... 17

2.3 Graph Neural Networks .. 20

2.3.1 Graph Definition ... 20

2.3.2 Machine Learning on Graphs ... 22

2.3.3 GNN layers .. 27

2.3.4 Spectral methods ... 33

2.3.5 Sampling methods .. 36

2.3.6 Attention – based methods. ... 38

2.4 Methods on improving GNN performace ... 41

2.5 Activation functions .. 42

2.6 Stacking multiple GNN layers .. 45

2.7 Training a Graph Neural Network ... 50

2.8 The loss function – evaluation metrics for GNNs .. 52

2.9 Time Series on Graphs ... 54

3 Related works ... 58

3.1 Open traffic graphs .. 60

3.2 GNNs for traffic forecasting .. 62

4. Research approach .. 71

5. Case study ... 73

5.1 Data exploration .. 73

5.2 Data pre - processing .. 78

5

5.2.1 Missing values .. 78

5.2.2 Flow – speed correlation analysis .. 81

6. Traffic flow forecasting .. 87

6.1 Forecasting model creation ... 87

6.2 Forecasting model evaluation ... 91

7. Conclusion and future work .. 98

APPENDIX .. 102

A. Adjacency Matrix – Graph creation .. 102

B. Temporal Graph Convolutional Network (TGCN) ... 105

C. Diffusion Convolutional Recurrent Neural Network (DCRNN) .. 109

REFERENCES .. 117

6

ABBREVIATIONS

AI Artificial Intelligence

API application programming interface

CNN Convolutional Neural Network

DCRNN Diffusion Convolutional Recurrent Neural Network

EU European Union

GNN Graph Neural Networks

GRU Gated Recurrent Unit

LSTM Long Shor Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean squared error

NN Neural Networks

OGD Open Government Data

RMSE Root Mean squared error

RNN Recurrent Neural Network

TGCN Temporal Graph Convolutional Network

7

1. Introduction

Estimates indicate that cities and large urban areas are responsible for 75% of global carbon

dioxide (CO2) emissions, while transport and buildings are the top contributors. Given the

fact that there is more than 50% chance of exceeding the 1.5 Celsius Degree threshold within

the next few years, governments are committed to reduce emissions to net – zero, pledged to

the Paris – agreement [1]. According to the United Nations, predictions show that

urbanization will increase from today’ s 56.2% to 60.4 % by 2030 [2].

Urbanization and population growth has a significant impact on public health leading to

excessive energy consumption, air pollution and economic disruption, affecting urban

mobility. Furthermore, between 2014 and 2020 European Union has increased its financial

support to member states by 50% for sustainable urban mobility taking into consideration

that many European cities suffer from air pollution caused by road transport. Traffic

congestion, a phenomenon located mainly in urban areas, has the most significant negative

impact on sustainable urban mobility with a huge financial cost to society (estimated 270

billion euros in the EU) [3]. In addition, traffic congestion is one of the main causes of

massive air pollution in cities, being the major source of mono nitrogen oxides (NO and NO2)

emissions and carbon monoxide emissions, with the 23% of carbon dioxide emissions

coming from road transport [4].

Towards this direction, strategies for overcoming these major environmental and economic

problems in urban areas, focus on a shift towards more sustainable means of transport

(reduction of private car usage, more public transport use), better urban planning with focus

on infrastructure for cycling or walking for citizens and managing huge traffic flows more

efficiently. The first two strategies rely on government, political and social actions, long –

term commitments and generally massive changes in the public infrastructure and road

network of the cities. On the other hand, the recent development of Intelligent Transportation

Systems (ITS) brings many solutions for the traffic congestion problem of urban areas

leading the way for sustainable urban mobility and sustainable Smart Cities. One of the key

components for deploying ITS infrastructure in smart cities are Internet of Things devices

such as traffic sensors, surveilance cameras and emissions sensors [5]. Nowadays, there is a

8

significant increase of available data collected from these sensors, harnessing the growth of

computing capabilities and big data processing platforms. This type of data facilitates the

delivery of public services in the Smart City context, improving the quality of citizens’ life

and stimulating economic growth [64].

These vast amounts of data, which apart from temporal and spatial information, also contain

data from external factors (such as weather data, accident data) can be exploited for Data

Intelligence Applications. In the context of Smart Cities, data intelligence applications may

include efficient vehicle design [65], behavior and vehicle dynamics risk analysis [66],

mobile agents for data management in vehicular networks [67], roadway control

environmental footprint [68], road traffic operation [69], OD matrix generation [70], route

planning services optimisation [71], detection of incidents into public infrastructure [72],

anomaly detection [61] and traffic prediction using Machine and Deep learning models [73].

Traffic flow prediction is a crucial task in the field of Intelligent transportation as it provides

valuable information to individuals, businesses, and government agencies. The aim of traffic

flow prediction is to improve travel decisions, reduce traffic congestion, lower carbon

emissions, and enhance traffic operation efficiency. With the growth of intelligent

transportation systems, traffic flow prediction has gained more attention as it is a crucial

component of advanced traveler information systems, traffic management systems, public

transportation systems, and commercial vehicle operations. The accuracy of traffic flow

prediction depends on the historical and real-time traffic data collected from various sources

such as inductive loops, cameras, mobile GPS, crowdsourcing, and social media. With the

increasing generation of traditional and new traffic sensor technologies, traffic data has

become abundant, leading to a data-driven approach in transportation management and

control [74], [75]. Despite the presence of many traffic flow prediction systems, they are still

limited due to the use of shallow statistical models. Therefore, the availability of such vast

amounts of traffic data has led the research community to rethink the traffic prediction

problem based on deep learning architectures.

Furthermore, the availability of accurate and comprehensive data is crucial for the

development of effective traffic forecasting models. Without access to high-quality data, it

becomes difficult to understand transportation patterns and make predictions about future

9

trends. This is where open data, and particularly open government data (OGD) comes into

play. The term "open" in the context of open data refers to the availability of information that

is free and accessible to anyone who wants to use it, modify it, or share it for any purpose.

Open Government data has many benefits for both the public and private sector [76], [77],

[78]. Governments should make a concerted effort to release this information in machine-

readable formats that are easy to use. In recent years, many countries have started to take

advantage of this by creating national repositories of public transportation data. By making

data readily available in machine-readable and easily consumable formats, governments can

greatly enhance the accuracy of traffic forecasting models. This can lead to more informed

decision-making, improved transportation planning, and ultimately, better outcomes for

citizens.

The objective of this work is to leverage the benefits of open traffic data obtained from open

government data portals to develop a cutting-edge, state-of-the art deep learning model for

traffic flow forecasting. Therefore, by utilizing the free and open - access traffic data, the

purpose of this thesis is to highlight the development of a model that is capable of accurately

predicting future traffic patterns. In addition, the goal is to demonstrate the potential of open

government data in creating high-quality forecasting models, which can ultimately help to

improve transportation planning and decision-making. At the same time, through this work,

the importance of open data in shaping the future of traffic flow forecasting is highlighted.

To this end, this study is focused on a single case, namely the traffic data of the Region of

Attica that are provided through data.gov.gr, the official Greek OGD portal. This case was

selected because it involves the use of an API that allows immediate availability and regular

updates of the data.

This study’s research approach involves the exploration and collection of the provided open

traffic data for the deployment and evaluation of a traffic forecasting model based on Graph

Representation Learning. In recent years, Graph Neural Networks have emerged as the

frontier of deep learning research, demonstrating exceptional performance across various

applications [79]. GNNs are particularly well-suited for traffic forecasting because of their

ability to capture spatial dependencies, which can be represented using non-Euclidean graph

structures. For instance, a road network can be represented as a graph, with intersections as

10

nodes and road connections as edges. Several GNN-based models have been shown to

outperform previous methods in road traffic flow and speed forecasting, such as the diffusion

convolutional recurrent neural network (DCRNN) [29] and the Graph WaveNet [32] models.

This thesis is organized as follows: Section 2 presents the background knowledge required

to understand the content of this work. To this end the context of Section 2 includes Open

Government Data and open traffic data information, traffic forecasting using baseline and

deep learning models and Graph Neural Networks theoretical background. In section 3 the

related research studies and works are described. Section 4 describes in detail the steps and

methodology followed in this research. Section 5 provides the details of the case study of this

work and explores the Greek open traffic data. Two GNN models, namely Temporal Graph

Convolutional Networks (TGCN) [80] and Diffusion Convolutional Recurrent Neural

Network (DCRNN) [29] are evaluated on the final processed traffic dataset from the previous

section. Finally, Section 6 discusses the results of this work as well as future directions.

11

2. Background
This section presents in detail the theoretical background knowledge that is required to

understand the content of this work. In particular, it describes dynamic Open Government

Data and specifically open traffic data, traffic forecasting methods and Graph Neural

Networks theory.

2.1 Dynamic Open Government Data
Open Government Data (OGD) is data published by the public sector and made freely

available to all citizens without restrictions [81], allowing for its unrestricted use,

modification, and sharing by all individuals and businesses [82, 83]. OGD portals, such as

the European Data Portal (data.europa.eu), offer vast amounts of data, with the European

Data Portal alone providing 1,538,031 datasets across 13 themes, including transport,

economy and finance, environment, population and society. Greece contributes 0.75% of the

total with 10,667 datasets. Dynamic data, including environmental, traffic, satellite,

meteorological, and sensor-generated data, are an important aspect of OGD [84, 85].

Immediate transmission of dynamic data after collection through an Application

Programming Interface (API) is crucial for creating value-added services and applications.

OGD has been a political priority in many countries for the last decade to harness the

multifaceted benefits of enhancing evidence-based policy making and stimulating economic

growth. As a result, OGD is a crucial aspect of smart cities [86 ,87]. Although definitions of

smart cities vary, they generally involve the use of Information and Communication

Technologies (ICT) for managing livable and sustainable urban environments [88]. The vast

amounts of dynamic OGD produced daily in urban ecosystems facilitate the creation of

innovative products and applications for monitoring and analyzing data to improve public

value delivery and ensure a better quality of life.

Numerous studies in the literature utilize OGD for various purposes, such as exploring how

diverse data sources can be integrated to facilitate smart city development [90], managing

disasters [91], explaining the fundamental concepts and building blocks of smart cities [92],

and realizing public value enhancements in the context of smart city environments [64]. In

12

recent years, many countries have prioritized OGD as a political objective to leverage its

numerous benefits, including promoting evidence-based policymaking and fostering

economic growth. A considerable portion of OGD available online is statistical in nature and

comprises highly structured numerical data. Therefore, OGD plays a vital role in the realm

of smart cities [99, 100].

13

2.1.1 Open Traffic Data

Traffic data, which includes real-time information on traffic such as vehicle counts and

average speed, are dynamic data usually generated by sensors and have been recently

recognized by the European Union as a part of Open Government Data that has a huge

potential economic value and facilitates the creation of added value data-driven services and

applications. Therefore, Open traffic data could be utilized to create applications that predict

traffic flow, traffic speed, and traffic demand, enhancing public services, improving citizens'

lives and promoting economic growth.

However, access to Open Traffic Data is not always straightforward, as not all OGD portals

provide data in real-time and offer Application Programming Interface (API) access. Some

portals only update traffic data every hour, day or week, and only provide historical data,

making it difficult for data intelligence applications to exploit the information. In addition,

only a few of the OGD portals provide streaming traffic data, i.e., updated traffic

measurements every minute. In most cases, the traffic data are available in standard formats

such as the JavaScript Object Notation—JSON, or eXtensible Markup Language, XML

formats.

For example, the Norwegian Public Roads Administrations' Traffic Data API

(https://www.vegvesen.no/trafikkdata/api), provides hourly aggregated traffic data since

2019 and is accessible through a Graphical User Interface (GUI) or programming languages

including traffic volumes, spatial data and number of lanes. Another example of open traffic

data is the Swedish OGD portal (https://api.trafikinfo.trafikverket.se/) that contains minutely

updated streaming data including traffic flows, arrivals and departures of ferries, road

condition information, weather information etc. Furthermore, it provides a GUI for querying

streaming traffic data with the POST method for API. The data are returned in XML or JSON

format and contain traffic flow data, arrivals and departures of ferries, road condition

information, weather information etc. The open API from Helsinki (https://helsinki-

public.azurewebsites.net/) offers sensor traffic data such as the volume of vehicles, their

average speed and type. The open API is updated every 5 minutes and returns data from the

past hour aggregated in 5-minute, 1 hour, or 1-day intervals in JSON format.

https://www.vegvesen.no/trafikkdata/api
https://api.trafikinfo.trafikverket.se/

14

A notable OGD initiative that provides streaming traffic data in one - minute intervals is the

Swiss OGD portal (https://opentransportdata.swiss/en/cookbook/rt-road-traffic-counters/).

The Swiss OGD traffic dataset contains traffic measures from the country’s most important

roads near significant urban regions and national highways. The dataset uses the DATEX II,

a standard for the exchange of road traffic data based on a specific XML schema. The

advantage of this portal is that it returns real-time streaming data every minute. New

incoming data replace the last published data, while historical data are not available in this

portal. To the authors’ knowledge, the Swiss OGD portal is the only European open portal

that provides streaming data using 1 min intervals. The data can be downloaded in JSON

format with an http POST request using an API key (token) after a user’s registration. Finally,

in this study traffic forecasting models are evaluated on data from the Greek OGD portal

(https://www.data.gov.gr/datasets/road_traffic_attica/). The portal offers hourly aggregated

traffic data including counted vehicles and average speed measured by several loop detectors

and traffic sensors across the urban area of Athens. The traffic data can be downloaded freely

via an API using authorization keys (tokens) in CSV or JSON format.

15

2.2 Traffic Forecasting
The traffic forecasting problem is one of the most challenging research fields in the time –

series prediction domain because it refers to huge amounts of data with high dimensionality

involving complex spatial and temporal dependencies. Generally, traffic forecasting is a non-

linear problem because of the interaction of a large number of vehicles, depending on

seasonality and other temporal dependencies. The traffic states in a certain urban area may

present complex spatial dependencies since they are affected not only by nearby areas, but

the entire network topology. There are three basic traffic states that forecasting models

attempt to predict: traffic flow, traffic speed and traffic demand [6]. Traffic flow is the

number of vehicles passing a single point (road segment, traffic sensor) in a specific period

of time (vehicles per hour, x minutes). Traffic speed is defined as the average speed of all

vehicles passing a specific spatial point in a given time period. Traffic speed prediction is

considered to be very useful for estimated time of arrival (ETA) for web mapping services

such as Google Maps [7]. Traffic demand forecasting predicts the resulting demand for travel

in the future. As a result, it is a very useful method for taxi and ride – hailing services (such

as Uber or taxi – call platforms) for driver or vehicle scheduling allowing those services to

allocate their resources to areas with big demand.

Traffic forecasting models can be categorized into baseline methods and deep learning

methods. Baseline methods, such as traditional linear time series models (autoregressive

models), do not model the spatial dependency while deep learning and machine learning

methods (neural networks) manage to model this dependency [8]. Both of these large families

of algorithms are considered to be the main toolbox for traffic forecasting. Traditional data –

driven approaches generally manage to predict future values of time series in a stochastic

way using past data. The recent development of deep learning in fields like image recognition

[9], speech recognition [10] and natural language processing [11] indicates that large amounts

of data can be processed and trained through deep learning algorithms with application in the

traffic forecasting domain. This application is ensured with the large volume of open data

sets that smart cities obtain over the last decades.

16

2.2.1 Baseline methods

Autoregressive models have been frequently used for traffic forecasting since the early 90s.

They are time series stochastic models consisting of three main frameworks: Statistical

modeling, which involves autocorrelation functions for detection of correlation in time series,

parameter estimation, using techniques such as Least Mean Square Error and finally the

forecasting framework containing the future values of time series and some accuracy metrics

[12]. The auto regressive integrated moving average models (ARIMA) are classical statistical

techniques that involve spatial independence making them inadequate for modeling traffic

forecasting [13]. Seasonal ARIMA is a parametric model that estimates that traffic data series

are stationary, through seasonal differencing, allowing forecasts using linear state transition

equations recursively applied. This method outperforms the classical traffic statistical

methods such as Random Walk Forecast and Historical Average Forecast, but still fails to

adapt the complex spatial and temporal patterns in traffic data [14].

Furthermore, non - parametric regression models are considered in the literature such as the

K – nearest neighbor method which is based on the optimal search of the kth nearest neighbor

in the historical data in order to predict the future traffic flow [15]. K – NN has high accuracy

among the short - term traffic flow prediction methods, but still is unable to reach high

standard performance in terms of accuracy metrics. Another stochastic approach for short

term traffic prediction is the Hidden Markov Model which defines the traffic states taking

into consideration the dynamic changes in the traffic network with state transition

probabilities [16]. All of these methods are able to extract the linear connection between

different traffic states, while traffic networks are characterized by a nonlinear and complex

spatial dependency.

17

2.2.2 Deep learning approaches

Deep learning is related to a certain family of machine learning models that are capable of

learning various representations hidden in large data sets using the backpropagation

algorithm to compose complex non - linear features on the higher layers by combining

simpler features from the lower layers. The essence of this representation learning technique

is that humans do not design these complex layers manually, which would require

computational time and excessive human effort, but they are learned from the data itself.

Deep learning is using an analogy from the human brain and biological neurons that receive

and pass signals to other neurons. This biologically – inspired analogy is deployed through

neural networks, computational models that are implemented as pattern classifiers, consisting

of a set of nodes (artificial neurons), connected with directed weighted edges. In image

processing, for example, the learned features of the first layer detect the edges of pixels in

the image while the second and the third layers detect patterns of specific edges, trying to

detect objects that are familiar combinations of these parts of edges [17], [18]. Because of

this strong representation ability and the wide application in many fields (as explained

above), deep learning techniques have been truly successful in traffic forecasting.

Based on the deep and representation learning fundamentals, neural networks are introduced

as learning models affected by the biological neurons of the human brain. Neural networks

use two main functions: the aggregation function which computes the sum of the input data

and the activation function which is responsible for the outputs. Furthermore, a deep neural

network is trained, using the back propagation algorithm, with hidden layers adding more

training parameters leading to state – of - the art results in terms of prediction accuracy (this

can lead to overfitting that is dealt with normalization techniques). Many types of neural

networks have evolved in recent years, which can model complicated patterns in various

traffic tasks. Because of the recent excessive increase in computational power and sufficient

traffic data collected from government, authorities or researchers, deep learning methods are

considered to be state – of – the – art techniques in the majority of traffic prediction tasks.

Recurrent Neural Networks and Convolutional Neural Networks are the first architectures

being deployed for traffic prediction tasks, adapting the temporal and spatial dependencies,

respectively.

18

Recurrent Neural Network (RNN) is a deep neural network architecture, the fundamental

structure of LSTM network (Long Short-Term Memory) [93]. The only difference between

RNN and LSTM network is the replacement of the hidden layer with an LSTM memory cell

which. Because of its gated structure, it can compute long term dependencies among the data.

The LSTM cell contains an input, a forget and an output gate [19]. The main purpose of

replacement of the RNN unit is to avoid the vanishing gradient problem of this framework.

In traffic forecasting, LSTM enhances the prediction accuracy on peak – hour forecasting

when traffic congestion is on its maximum levels [20].

Convolutional Neural Networks (CNN) are effective deep learning algorithms for image

processing in two - dimensional space, using convolutional layers which are not fully

connected, meaning that output neurons are only connected to their neighbor input neurons.

Each neuron or filter performs a convolution operation with the so – called max pooling

layers which reduce the total parameters of the model. CNNs can be applied in traffic

forecasting, by simulating an entire city as a grid and performing a CNN model transforming

the traffic network into images. For example, a city map can be transformed to a N x M grid

map adapting the geospatial data such as longitude and latitude. This deep learning method

outperforms the baseline methods (ARIMA and HA) [21].

In addition, a traffic network with time and space dimensions can be transformed into the

two dimensions of an image. The input model is the image generated from a traffic network

with spatiotemporal features and the final extraction of traffic features is a combination of

convolution and pooling layers [22]. The recent evolution in deep learning and the success

of specific representation and learning techniques (such as CNNs and RNNs), has led the

research community to generalize neural networks to other structures such as graph networks.

Many surveys introduced a new group of neural networks, called Graph Neural Networks,

which analyze graph structured data for supervised or unsupervised tasks [53], [54], [55].

Traffic prediction tasks are characterized by complex spatial – temporal data. The terms

spatial and temporal dependencies are frequently used in this thesis. Temporal dependency

is defined as the correlation between historical observations in traffic data, and the predicted

traffic states in the future. Spatial dependency refers to the local or global correlation between

different stations on the network. For example, neighbor regions in a network are usually

19

highly relative to each other, while on the contrary, different regions may be globally

influenced at a network scale approach [56]. Furthermore, in the traffic prediction domain,

to predict a traffic state in a specific region of the network, the region's previous traffic states

(temporal dependence) and the condition of adjacent regions (spatial dependence) are

important variables for the prediction. The next section analyzes the general architecture of

a Graph Neural Network, before examining the implementation of GNNs on traffic

forecasting problems.

20

2.3 Graph Neural Networks

2.3.1 Graph Definition

In graph theory, Graphs are mathematical structures that are used to model relations between

entities or objects. Generally, a graph is defined as G = (V, E) where V is the set of vertices

(or nodes) and E is the set of edges (or links, connections). Edges are labeled as pairs (i, j) ∈

E, suggesting that i can be influenced by j. Moreover, a graph is defined as G = (V, E, W)

where W is the set of weights, with 𝑤𝑖𝑗 ∈ R values associated with edges (i, j) suggesting the

amount of influence of j on i. Graphs can be weighted or unweighted (𝑤𝑖𝑗 = 1), and directed

or undirected. On directed graphs there are orientations between vertices and edge (i, j) is

different from edge (j, i) (also 𝑤𝑖𝑗 ≠ 𝑤𝑗𝑖). A graph is symmetric or undirected when edges

(i, j) ∈ E and (j, i) ∈ E and weights 𝑤𝑖𝑗 = 𝑤𝑗𝑖 for every (i, j) ∈ E. The adjacency matrix of a

weighted graph G = (V, E, W), is a matrix 𝐴𝑗𝑖 where (i, j) ∈ E. In figure 1 an example of a

symmetric graph is given where the adjacency matrix A is also symmetric and A = AT. In

case the graph is unweighted 𝐴𝑗𝑖 = 1, for every (i, j) ∈ E.

𝛢 =

[

0 𝑤12 0 𝑤14 0 0 0 0
𝑤21 0 𝑤23 0 0 𝑤25 0 0
0 𝑤32 0 0 0 𝑤36 0 0

𝑤41 0 0 0 𝑤45 0 𝑤47 0
0 𝑤52 0 𝑤54 0 𝑤56 0 0
0 0 𝑤63 0 𝑤65 0 0 𝑤68

0 0 0 𝑤74 0 0 0 𝑤78

0 0 0 0 0 𝑤86 𝑤87 0]

 𝛢 =

[

0 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0]

21

Figure 1: Weighted and unweighted graphs with their corresponding adjacency matrices

The neighborhood N(i) of a node i is the set of nodes adjacent to i, N(i) := {j:(i, j) ∈ E}.

Degree 𝑑𝑖 of node i is the sum of the weights of its incident edges, where 𝑑𝑖 =

 ∑𝑗∈ 𝑁(𝑖) 𝑤𝑖𝑗 . For example, the neighborhood of node 3 is N(3) = {2,6} and the degree

of node 3 is 𝑑3 = 𝑤32 + 𝑤36. Moreover, the degree matrix D is a diagonal matrix that consists

of the degrees of all nodes on the graph. Another important matrix representation for graphs

is the Laplacian matrix of a graph G (with an adjacency matrix A), L = D – A. For the

unweighted graph of the above example the degree matrix D and the Laplacian matrix L are

defined as:

𝐷 =

[

2 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2]

 𝐿 =

[

2 −1 0 −1 0 0 0 0
−1 3 −1 0 0 −1 0 0
0 −1 2 0 0 −1 0 0

−1 0 0 3 −1 0 −1 0
0 −1 0 −1 3 −1 0 0
0 0 −1 0 −1 3 0 −1
0 0 0 −1 0 0 2 −1
0 0 0 0 0 −1 −1 2]

In order to avoid significant node - degree differences among the adjacency and Laplacian

matrices, the normalization method is introduced with the normalized adjacency and

Laplacian matrix respectively: Ā = D-1/2 AD-1/2 (where ĀT = Ā if the graph is symmetric) and

Ĺ = D-1/2LD-1/2. The entries of a normalized matrix are more homogeneous.

22

2.3.2 Machine Learning on Graphs

Graph Neural Networks are the main deep learning tools for implementing machine learning

on graphs. They apply the same principle as Convolutional Neural Networks that are made

of layers composed of convolutional filters with pointwise non linearities. GNNs are

generalizations of CNNs with stacked layers and graph filters using pointwise non linearities.

For example, several time steps and their time signals can be represented by a line graph (fig.

2) while in image classification, a grid graph is used to describe space signals (fig.2). Those

examples prove the general idea that graphs are generic representations of a line graph that

represents adjacent points through time and a grid graph that represents adjacent points in

space.

Figure 2: Time representation with a line graph and image representation with a grid graph

For both of these examples, time and space signals x are used to compute several polynomials

as convolutions on a respective adjacency matrix A. On graphs the same procedure is applied

with graph signals that are associated to nodes and edges using graph convolutions as

polynomials on various matrix representations. Modern deep learning methods on images or

on text / speech recognition are perfect for simple sequences or grids, but networks and

graphs have arbitrary size and a complex topological structure with dynamic features (fig. 3)

23

Figure 3. Modeling the topology of networks, images, and text sequences. Networks follow

an arbitrary framework, while images and texts follow the grid Euclidean structure.

Supervised Machine learning is defined as a set of tasks and statistical learning methods

applied on input data x in order to predict a set of labels y. The input data can be images

(matrices), sequences (text, natural language), graphs or generally vectors of real numbers.

The task is formulated as the minimization of the loss function minθ = L (y , f(x)) where:

θ: is the set of the parameters that are going to be optimized

L: is the loss function L = ||y – f(x)||2 , the difference between the true values of y and the

predicted values. f(x) is the objective function that needs to be optimized over the parameters

θ in order to get the minimum output of the loss function (the lower the loss, the closer the

predictions are to reality). The total loss over all training examples is defined as :

Ĺ = ∑ 𝐿(𝑦, 𝑓(𝑥))𝑥,𝑦 ∈𝑇 (1)

where T is the training set of all (x, y) pairs of data and labels. Moreover, depending on the

prediction task, in terms of the predicted label whether it is a classification or a regression

problem, the loss could be the Cross entropy (CE) loss or the mean squared error loss (L2)

respectively:

CE = −((𝑝) + (1 − 𝑦)𝑙𝑜𝑔 (1 − 𝑝) (2)

L2 =
1

𝑚
∑ (𝑦(𝑖) − 𝑚

𝑖=1 ŷ(𝑖))2 (3)

24

where 𝑦(𝑖) the true value for the i – th training example and ŷ(𝑖) the predicted label for the

i – thn training example.

A method to optimize the minimization of the loss function is gradient descent, an algorithm

for finding the global or local minimum of a multivariable function such as L. Gradient

descend is one of the most successful optimization algorithms of a machine learning problem,

that updates the parameters W (weights) and b (biases) and minimize the cost function by

searching an optimal solution, such as Stochastic gradient descent, Momentum, RMS Prop

or Adam. The gradient vector is a set of partial derivatives of the loss function over parameter

set , 𝛻𝜃𝐿 = (𝜕𝐿
𝜕𝜃1

, 𝜕𝐿
𝜕𝜃2

,) that represents the rate of change of L to the gradient vector.

The iterative algorithm is training (optimizing) iteratively the parameters θ, in the opposite

direction of gradients in order to terminate over the zero gradient (at a global minimum) (Fig.

4) Because this algorithm is applied on the entire dataset, it is considered computationally

expensive particularly for the large datasets needed in deep learning frameworks. A solution

to this problem is the stochastic approach for gradient descent, where at every algorithm step,

a subset of the dataset is computed, called mini batch, rather than computing the loss over all

training examples. In neural networks and deep learning frameworks, the objective function

is more complex so back propagation is introduced by using the chain rule to propagate

gradients of intermediate steps and obtain gradient of L over the parameters θ of the model.

In order to compute the gradient (the derivatives) back propagation starts from the loss

(which is the final output of the model) using a hidden layer which is an intermediate

representation for the input x. A very simple example of back propagation is given for a linear

neural network composed of 2 layers over a linear f(x) objective function.

f(x) = A(Vx) where A and V are the parameters of the model (matrices where θ = {Α, V},

25

Ĺ = ∑ 𝐿(𝑦, 𝑓(𝑥))𝑥,𝑦 ∈𝑇 sums the loss over a batch B and h(x) = Vx is used to denote

a hidden layer so that f(x) = Ah(x). In the same way g(h(x)) is denoted so that f(x) = g(h(x)

= AVx:

Forward propagation is used to compute the loss starting from the input x1, x2,….xn. :

In back propagation the chain rule for derivatives is used in order to compute the gradient of

the loss backwards. So the gradient of Loss is computed first with respect to the parameter A

and then for V (using the chain rule for derivatives) :
𝜕𝐿

𝜕𝐴
=

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝐴
 and

𝜕𝐿

𝜕𝑉
 =

𝜕𝐿

𝜕𝑓

𝜕𝑓

𝜕𝐴

𝜕𝐴

𝜕𝑉
 .

26

Mini – batch and stochastic gradient descent are optimization algorithms that do not converge

to the global optimum in a straight line, but they oscillate, slowing down the learning process.

Momentum gradient descent is a technique that reduces oscillations of gradients, taking into

account the past values of gradients. Moreover, it stores the values of the direction of the

previous gradients to a special parameter using the moving average technique (a statistical

method implemented in time – series problems) called the exponentially weighted average

of the gradients in previous steps.

Figure 4: Gradient descent optimizer. The algorithm oscillates during the learning process,

converging to a global minimum.

This example is used to explain the backpropagation gradient descent algorithm applied on

a simple network where f(x) is a linear function. In deep learning frameworks non –

linearities are introduced increasing the complexity of the network. Examples of nonlinear

activation functions are ReLu function (Rectified linear unit) and the sigmoid function.

27

2.3.3 GNN layers

The introduction of non-linearities leads to the traditional framework of a neural network

which is also called multi – layer perceptron (MLP). MLP applies the typical linear

transformation of the input x, as the simple linear example f(x) = Ax, and adds a non –

linearity in every layer:

x(i+1) = σ(Αx(i) + b(i)) (4)

where A is a matrix that transforms hidden representations at layer i to layer i +1, b is called

the bias of layer i and σ is the non – linearity function such as the sigmoid. Deep learning on

graphs borrows some intuition from convolutional neural networks and computer vision, and

generalizes this intuition on graphs. As mentioned previously, a convolutional neural

network is representing an image as a grid where the processing begins for example from the

top left corner of the image with a convolutional operator. This operator is sliding over the

image from the top left corner to the right and is composed of a matrix containing the

respective nodes of the grid. This sliding window operator cannot be applied on graph

networks because the structure of a graph is more complex, there is no fixed notion of locality

on the network. The operator may begin on a 5 by 5 operator (five nodes of the network

identified) but on the next step it might cover many more nodes. For instance, a single

convolutional layer composed of a 5 x 5 filter takes an area of the grid structured image,

applies a transformation and creates a new pixel. This operator will then slide over the image

and apply the same transformation, computing a new pixel. A similar procedure can be

applied on graphs where the operator centers a specific node. Then it tries to aggregate the

features of the neighboring nodes (fig. 5) This aggregated information from the neighbors is

then summed in order to create a new message (message passing through nodes).

28

Figure 5: On the left the convolutional perceptron captures an area of the input image,

creating the first convolutional layer with a 5 x 5 filter. The graph convolutional perceptron

centers a node of interest, aggregating the features of its neighborhood to update its own

embedding on the network.

This operation is called convolution on graphs, and the main idea is (at a node prediction

level) to generate node embeddings based on the neighbor of the target node (prediction

node). The structure of the neighbor of the node defines a new graph that gives information

of the adjacent nodes and the nodes adjacent to them and so on. This computation graph is a

neural network that aggregates all the information and messages passed from the adjacent

nodes to the final input of all the layers. In figure 6, a very brief example is given that includes

8 nodes. Each node, due to the network structure around it, corresponds to a neural network

that essentially passes information and aggregates the features of all neighbors to a final

output of the node.

29

Figure 6: A Graph Neural Network. Each node’s embedding on the network is defined by

graph signal transformations and aggregations from the adjacent nodes.

Specifically, every node corresponds to a different neural network (its own graph

computation) based on the structure of the neighborhood around the given node, and the

training method will be applied on each different architecture simultaneously. Furthermore,

each neural network, each computation inside every layer consists of information that is

aggregated and combined from neighbors in order to output one final feature node prediction.

It is very important to notice that this aggregate operator (neighborhood aggregation

function) is permutation invariant, since every node of a graph is arbitrary – constructed. As

a result, the aggregation process will be the same, regardless of the input order of the nodes.

To sum up, the general principle is that the messages obtained from the initial inputs (from

the children nodes) are aggregated and a neural network is applied, by applying, for example,

a linear transformation followed by a non – linearity. This basic deep neural network

principle is presented in the next rows, initializing the input layer as the zero – layer (in deep

learning the input layer is denoted as superscript 0, x(0)).

𝑎𝑖
0

 = xi, where 𝑎𝑖
0

 is the initial layer equal to the features of the node i,

30

𝛼𝑖
(𝑙+1)

= 𝜎 (𝑊𝑙 ∑
𝑎𝑗

𝑙

|𝑁(𝑖)|
+ 𝐵𝑙𝑎𝑖

𝑙
𝑗∈𝑁(𝑖)) , ∀ 𝑙 ∈ {0,… . . , 𝐿 − 1},

 where the embeddings of the nodes from the previous layer are multiplied with a bias matrix

B added to the sums of all the neighbors’ embeddings and average them over the neighbor

of the target node N(i). 𝑊𝑙 is the transformation matrix and σ is the non – linearity such as

ReLu.

𝑧𝑖 = 𝑎𝑖
𝐿, is the final embedding after L number of layers with neighborhood aggregations.

This representation of layers on a graph neural network is also called deep encoder because

of the implementation of the hidden layer, which encodes the information of the previous

layer’s node (initial layer), averages the features of the neighbors of the particular node,

applies transformations with W and B, and finally applies non – linearity which is used as an

input on the next layer. The trainable parameters of this model are the matrices Wl and Bl.

Therefore, the node embeddings are feeded into a loss function, with parameters W and B

being trained with a stochastic gradient descent algorithm. Because graphs are represented

with matrix formulation, as mentioned at the start of this section, the aggregations from

neighbors are computed efficiently through matrix multiplications and linear algebra

operations. Thus, the updated computation of the l+1 layer in a matrix form is :

 𝑎(𝑙+1) = 𝜎(𝐷−1𝐴 𝑎𝑙𝑊𝑙
𝑇 + 𝑎𝑙𝐵𝑙

𝑇) (5)

where 𝐷−1 is the inverse diagonal matrix and A the adjacency matrix of the corresponding

graph. This notation of layers on a graph neural network is generally applied on various

frameworks such as attention networks, convolutional graph networks etc. These techniques

differ from each other in terms of the neighbor aggregation method (message passing through

nodes), the learning objective (whether it is supervised / unsupervised) and prediction level

(node, edge graph level). Particularly, a GNN layer is composed of a message transformation

function, which passes the message from the adjacent nodes to the target node, and the

aggregation function which aggregates the set of messages to the target node. To sum up, the

main operations occurring on a GNN layer are the message transformations from the lower

layers (the input layers) and the message aggregations. The set of messages obtained from

the input layers (the adjacent nodes) are combined in order to create the next level embedding

31

of the node of interest (fig.8). Each node creates a message (a signal) that will be passed to

the nodes of the next layer. This signal transformation is computed through a linear function

as demonstrated in this section. An example of signal passing through nodes is defined as the

multiplication of the previous layer embedding of the node with the matrix W:

 𝑆𝑗
𝑙= 𝑊𝑙𝑆𝑗

(𝑙−1)
 (linear transformation). Furthermore, in order to aggregate the signals

passed from the node’s neighbors and compress them to a single matrix, summation or

average aggregators can be applied on the transformed signals. It is important to note that

besides the information collected from the previous layers, the GNN lth layer includes the

representation of the target node itself. Finally the aggregation process is followed by the

activation function, which involves the non – linearity and extends the expressiveness of the

prediction.

Figure 7: Graph signal processing. The GNN layer outputs a final node embedding,

transforming and aggregating the messages (signals) from the node’ s neighbors.

The message transformation and aggregation methods are categorized to spectral methods,

sampling-based methods and attention methods. Traditional GNN frameworks differ from

each other based on the transformation and aggregation method they use, such as Graph

Convolutional Networks, graph SAGE and the Graph Attention Networks (GATs).

32

Moreover, these models are reviewed from the perspective of the receptive field.

Convolutional neural networks are learning complex representations from the input data, by

performing convolution operators. The size of the region in the input that produces a feature,

where convolutional operators are performed is called the receptive field. For example, the

receptive field of a convolutional layer is the region in a 2 – D pixel grid, connecting the

neurons of the specific layer to a specific region, its receptive field. (fig. 8). In order to

generalize convolutional operators from Euclidean domain to non – Euclidean and complex

graph data structure, several Graph Convolutional models are proposed that determine the

appropriate receptive field for every prediction task, such as link prediction or node

classification.

Figure 8: The receptive field of a convolutional layer. Three neurons are “connected” to their

receptive field, a specific area on the image structure where convolutional operators map the

main features of the layer.

33

2.3.4 Spectral methods

The spectral methods are widely used in graph analysis, using the Graph Fourier

Transformation, a tool for analyzing graph information systems [43]. For that reason,

eigenvectors vi and eigenvalues λi are introduced to apply GFT, projecting a graph signal x

on the eigenspace. The output of Fourier transformation on graphs is a representation of a

graph signal x in the graph frequency domain.

 Eigenvector matrix V of the normalized Laplacian matrix is defined as, V = [v1, v2, ……vn]

and eigenvalue matrix Λ, the diagonal matrix of its eigenvalue is defined as Λ = diag([λ1, λ2,

….., λn]). The spectral convolution operation is defined as the multiplication of graph filters

in the Fourier domain applied on the input graph signal x and the spectral graph filters fθ:

fθ * x = V fθ Λ VT x (6),

where fθ is denoted as fθ = diag(θ), is the spectral graph filters over the parameters of the

graph prediction problem θ. * is the convolution operator in the Fourier domain that

transforms effectively a graph signal from the complex vertex domain. Because of the

multiplication of x with the V matrix, the cost to filter a graph signal x is high with O(n2)

operations and cannot be applied to large scale graph analysis [45]. A proposed method to

solve this problem, is called ChebNet using the Chebyshev polynomials, to compute a better

approximation of fθ :

 fθ = ∑ 𝜃𝑘𝛵𝑘(𝛬)𝐾
𝑘=0 (7)

where the parameter θ is a vector of Chebyshev coefficients and 𝛵𝑘(𝛬) a Chebyshev

polynomial of order k. In addition, the Cheb – net method that uses the K – th localized

convolution, can be simplified using normalization techniques over the Chebyshev

coefficients avoiding numerical instabilities like exploding or vanishing gradients,

minimizing the computational operations per layer. A very common technique that is used to

simplify the spectral convolutions is:

g = D-1/2 A D-1/2X Θ (8)

34

where X is the graph signal matrix, Θ is the graph filter parameters and g is the convolved

signal matrix. This normalization technique applied on spectral convolutions utilizes the

receptive field of a GCN that can obtain K – hop neighbors for a node i (prediction node).

The receptive field of a target node of a k – layer Graph Convolutional Network is the node’s

whole k – hop neighbors. (fig. 9) The graph signal (information obtained from neighbors) in

the range of the corresponding receptive field is diffused in each layer by D-1/2 A D-1/2.

Figure 9: The receptive field of a Graph Convolutional Network. The target node is specified

by the GCN with a 2 – layer network, 2 hops away from the target node.

 In Graph Convolutional Networks (GCN), a typical GNN framework which is the basic

approach that the other GNN methods extend, the signal passing and aggregating framework

is defined as:

 𝑎𝑖
𝑙 = 𝜎(∑ 𝑊𝑙

𝑗∈𝑁(𝑖)

𝑎𝑗
𝑙−1

|𝑁(𝑖)|
), where the embedding of node i at layer l is the average

of the embeddings of nodes j (the neighbors of node i), normalized by the degree of node i,

35

transformed with a weight matrix W and computed with a non – linearity. Considering all

of these, the main contribution of Graph Convolutional Networks on graph prediction tasks,

is: spectral formulation on convolutions on graphs established as a tool for graph signal

processing, localized graph filters in a radius K from the target node (k – hops from node i)

and low efficient computation complexity using less resources and avoiding overfitting.

36

2.3.5 Sampling methods

Sampling methods in graph analysis produce representations of nodes based on the

aggregations of the features of the node’ s neighborhood. GraphSAGE is a typical sampling

based method used in graph machine learning, that gets a set of neighbors by evenly sampling

their features and then computes aggregation functions over those features:

 𝑎𝑗
𝑙 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑙 (𝑎𝑗

𝑙−1, ∀ 𝑗 ∈ 𝑁(𝑖)) (9)

𝑎𝑖
𝑙 = 𝜎(𝑊𝑙 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸[𝑎𝑖

𝑙−1||𝑎𝑗
𝑙]) (10)

Where AGGREGATE denotes the aggregation function and || the concatenation of features

from adjacent nodes. Literature proposes three aggregating functions that have the highest

representation capability as well as training capabilities [44]. The mean aggregator takes the

mean of hidden states from the selected node’s neighborhood and do not perform

concatenation operators by skipping the connection between different layers (𝑎𝑖
𝑙−1, 𝑎𝑗

𝑙).

LSTM (Long Short Memory) aggregators are also used in cases where the input data are in

sequential mode, where the nodes are represented randomly in an unordered set. Finally

pooling aggregators enables every neighbor’s matrix to be computed with a normalized fully

– connected neural network. The aggregation process occurs with a max – pooling operation

over the entire neighbor set:

𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑙
𝑝𝑜𝑜𝑙

= 𝑚𝑎𝑥 [𝜎(𝑊𝑝𝑜𝑜𝑙𝑎𝑖
𝑙 + 𝑏), ∀ 𝑗 ∈ 𝑁(𝑖)] (11)

Pooling layers are commonly used in convolutional neural networks and they are followed

by a fully connected layer. Pooling is reducing the dimensionality of feature maps by

reducing the number of weights and controlling the amount of parameters that are critical for

the network. As a result, by reducing the number of parameters and keeping the useful

information, pooling methods succeed in minimizing the computational cost and efficiently

prevent overfitting. There are several pooling methods considered in the literature, such as

average pooling, max pooling (12), mixed pooling and stochastic pooling [46].

37

GraphSAGE are inductive methods with a receptive field that is defined by the adjacent

nodes (the neighbors) which are randomly selected in each layer. These methods, compared

to Graph Convolutional Networks, are more expressive models with a receptive field that

ismore compact, being able to apply convolutional operations directly on the spatial domain

and generalize to multi – graphs. (fig. 10) In this way GraphSAGE methods are able to

predict the embeddings of a target node inductively by learning the aggregator functions

given the target node’s neighbor features.

Figure 10: The receptive field of a GraphSAGE network. The sampling method is able to

identify the target node’s embedding by aggregating the features of the adjacent nodes.

38

2.3.6 Attention – based methods.

Another traditional GNN framework is the Graph Attention Networks. The signal

transformation that aggregates messages from the neighbors for attention networks is defined

as:

𝑎𝑖
𝑙 = 𝜎(∑ 𝑡𝑖𝑗𝑗∈𝑁(𝑖) 𝑊𝑙𝑎𝑗

𝑙−1) (12)

where tensor 𝑡𝑖𝑗 associates every node i with its neighbors j. This tensor is called attention

weight and it shows the level of importance of the neighbors of node i. (how important are

the messages passed from the node j to i). In GCN this tensor is already implicitly noted as

𝑡𝑖𝑗 =
1

|𝑁(𝑖)|
, a weighting factor indicating the importance of a signal coming from j to

node i. Particularly, this weight depends only on the degree of node i, not on j (the adjacent

nodes). All neighbors j ∈ N are equally important to node i when aggregating messages in

GCN and generally in all the frameworks of GNNs that do not involve attention mechanisms

in their models. This notion of importance is called attention and the attention weight 𝑡𝑖𝑗

focuses on the important parts of the input data while ignoring the rest. The general intuition

behind this method is that the Neural Network devotes more computing power (gives more

attention) to the important part of the input data. The selection of that important part of data

is learned through the model training process and by the definition of the attention

mechanism. The key advantage of attention mechanism is that it specifies different

importance values (𝑡𝑖𝑗) to different neighbors. The computation of attentional coefficients

is efficient because they can be parallelized across all the incoming graph signals (across all

the edges of a graph) while the attention function 𝑡𝑖𝑗 only depends on the embedding of one

node and the embedding of the adjacent node in the previous layer. (Aggregation is

parallelized across all nodes). The attention mechanism is defined by computing the attention

coefficients 𝑒𝑖𝑗 across pairs of nodes i, j based on their messages. This mechanism is defined

by a function f that will take the embedding of node j at previous layer, embedding of node i

at previous layer, transformed with a weight matrix:

𝑒𝑖𝑗 = 𝑓(𝑊𝑙𝑎𝑗
𝑙−1, 𝑊𝑙𝑎𝑖

𝑙−1), (13)

39

where 𝑒𝑖𝑗 indicates the importance of node’s j message to node i. In order to compute the

final attention weight 𝑡𝑖𝑗, the attention co – eficients 𝑒𝑖𝑗 are normalized with the application

of a softmax function so that these attention weights are going to sum to 1:

𝑡𝑖𝑗 =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑒𝑖𝑗)

∑𝑘∈𝑁(𝑖) 𝑒𝑥𝑝 (𝑒𝑖𝑘)
 (14)

The parameters of the attention mechanism are learned together with the weight matrices of

the network, adding more complex variables on the learning process. A way to stabilize

learning processes of the attention mechanism is the expansion of this notion of attention to

what is called, a multi – head attention. The idea is to create multiple attention scores, each

with a different set of parameters, for a given edge ij. For example, 4 attention mechanisms

𝑡𝑖𝑗 are going to be learned simultaneously, so that 4 different attention co – efficient (weights)

for a given edge ij will be aggregated and finally get an output of 4 aggregated messages

from the neighbors. These messages will be further aggregated into a single message,

allowing the model to have a more efficient prediction taking into consideration the multiple

attention mechanisms that are initialized for every edge.

1: 𝑎𝑖
𝑙 = 𝜎(∑ 𝑡𝑖𝑗

1
𝑗∈𝑁(𝑖) 𝑊𝑙𝑎𝑗

𝑙−1)

2: 𝑎𝑖
𝑙 = 𝜎(∑ 𝑡𝑖𝑗

2
𝑗∈𝑁(𝑖) 𝑊𝑙𝑎𝑗

𝑙−1)

3: 𝑎𝑖
𝑙 = 𝜎(∑ 𝑡𝑖𝑗

3
𝑗∈𝑁(𝑖) 𝑊𝑙𝑎𝑗

𝑙−1)

4: 𝑎𝑖
𝑙 = 𝜎(∑ 𝑡𝑖𝑗

4
𝑗∈𝑁(𝑖) 𝑊𝑙𝑎𝑗

𝑙−1) (15)

The final output with the aggregated multiple attention mechanisms:

𝑎𝑖
𝑙 = 𝐴𝐺𝐺(1: 𝑎𝑖

𝑙 , 2: 𝑎𝑖
𝑙 , 3: 𝑎𝑖

𝑙 , 4: 𝑎𝑖
𝑙) (16)

The learning process of those 4 attention functions is going to converge to a local minimum

and their final aggregation will allow the model to be more robust and make the optimization

process more simple. This method is applying multiple attention weights on the same edge,

separately computes message aggregation for each weight, and finally the last message for a

40

node will be the aggregation, the average of these individual attention – based aggregations.

Finally, the receptive field of Graph Attention Networks as shown in fig. 11, is consisting of

all the immediate neighbors of the target node. All of these adjacent nodes to the target have

different weights due to their corresponding attention co – efficients. The efficiency of GATs

is very high from the perspective of the receptive field, but as spectral methods and sampling

methods, they suffer from representing the target node in more shallow way.

Figure 11: The receptive field of Graph Attention Network. All the immediate neighbors of

the target nodes are defined.

Although Graph Neural Networks have managed to transform the 2 – d convolutions from

Euclidean domain to non – Euclidean domain, they still suffer from over – smoothing

problems, especially for graph neural networks with multiple stacked layers. In the next

section some methods, like regularization methods, are introduced in order to enhance the

training and predicting efficiency of GNNs and compose the final framework of a graph

neural network layer.

41

2.4 Methods on improving GNN performace
A typical graph neural network model includes several learning parameters apart from linear

transformations, spectral convolutions, aggregating techniques and attention mechanisms.

Generally, those techniques are implemented into a GNN in order to achieve better

performance and design an effective architecture for a graph prediction task. This typical

(there are many alternative frameworks) GNN layer consists of the batch normalization that

is used to stabilize the training process, the Dropout technique which prevents overfitting,

the attention / gating mechanisms that (as mentioned above) control the importance of a graph

message and activation functions that add non – linearity on the output of each neuron. Batch

normalization is used in order to stabilize the training process of GNNs on a given batch of

inputs, a batch of data points or, in the case of graph neural networks, a batch of node

embeddings. The main purpose of this deep learning module is to re – center the node

embeddings to zero mean and scale them in order to have unit variance. Particularly, for some

input points X ∈ 𝑅𝑁 of a mini - batch, where N are node embeddings, the mean and the

variance over those embeddings can be computed in order to standardize the data by

subtracting the mean and divided by the standard deviation (zero mean and variance of one,

unit variance). The final output of batch normalization for every coordinate X of a mini batch

is a linear transformation of X along every dimension by learning on some parameters a and

b:

Ẋ𝑖𝑗 =
𝑋𝑖𝑗−𝜇𝑗

√𝜎2 +𝑒
, 𝑌𝑖𝑗 = 𝑎𝑗Ẋ𝑖𝑗 + 𝑏𝑗 (17)

where Ẋ𝑖𝑗 are the zero mean and unit variance data points and 𝑌𝑖𝑗 is the final output of batch

normalization that linearly transform Ẋ𝑖𝑗 over the parameters 𝑎𝑗 and 𝑏𝑗. Another technique

implemented on a GNN layer is called Dropout, a regularization technique that prevents

overfitting on a neural network. Dropout randomly sets some neurons of the network to zero

given a small probability p, extracting them from the computation process during training. In

addition, on the test set, all the neurons are used for the computation task allowing the model

to be more robust, preventing overfitting on the training set. The next critical component of

a graph neural network is the selection of the appropriate non - linear activation function.

42

2.5 Activation functions
In deep learning, the neural networks compute linear transformations over the input data with

weight matrices W and biases b. The activation functions are used to convert these linear

transformations into non – linear output for more complex computation enabling the network

to learn hidden patterns in data [41]. A critical property of activation functions is that they

are differentiable, so they are used during back propagation and gradient descent algorithms.

Moreover, activation functions can be used on hidden layers of a neural network or on the

output layer depending on the prediction task. When activation functions are positioned on

the hidden layers, they convert the learned linear parameters into non – linear outputs, while

in the output layer they perform predictions. Thus, the prediction problem affects the

selection of the activation function of the output layer, whether it’s a classification or a

regression problem. The selection of a proper activation function is very important especially

for networks with deep, multiple hidden layers due to vanishing and exploding gradients

problem. As the back propagation algorithm computes gradients using the chain rule from

the output layer towards the input layer, there are cases where the gradients are getting

smaller, often approaching zero, being unable to converge to the optimum. This problem is

called vanishing gradients. The model is unable to learn the features from the input data since

the parameters of the initial layers result in very small gradients, which in some cases get to

zero. On the other hand, exploding gradients refer to the problem of gradients getting larger

as the back propagation algorithm evolves, causing the gradient descent to diverge. The

parameters of weights and biases grow exponentially during propagation becoming

extremely large resulting in very large derivatives.

This section highlights several activation functions that are deployed on GNN frameworks

and generally to the majority of modern deep learning techniques. The sigmoid function

appears mainly in the output layers of deep learning frameworks, applied in binary

classification problems following the logistic regression model. The output of a sigmoid

function, given an input x, is computing a prediction probability, mathematically is a

differentiable real function with positive derivatives. The output of the sigmoid function

ranges between 1 and 0, making it the ideal choice for prediction probability tasks. It is

suggested by the literature that the sigmoid activation function suffers from slow

convergence causing the gradient descent to propagate in different directions and sometimes

43

stopping the training process [40]. Moreover, the graph of sigmoid (fig. 12) indicates that

when the input value x is very small or very big the slope of the curve tends to be zero, so

does the derivative, leading to vanishing gradients (the learning process is ended). The

sigmoid function is given by the equation: 𝑓(𝑥) = (
1

1+𝑒𝑥𝑝−𝑥
)

Another type of activation function used in GNNs is the hyperbolic tangent function, Tanh,

a zero centered function with range between -1 and 1 (in contrast with the sigmoid with a

range between 0 and 1). Thus, the tanh function is a preferred activation function compared

to the sigmoid, enabling a better training performance while the negative inputs will be

mapped as negative and the zero inputs will be mapped near zero (an advantage compared to

the sigmoid function). Similar to the sigmoid, the tanh function suffers from the vanishing

gradient problem because the derivatives of these functions are very small, with the updated

weights being small too, leading to the vanishing gradient problem. The tanh function is

given by the relationship:

 𝑓(𝑥) = (
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
) (18)

Softmax is an activation function used for multivariate classification tasks (on multiple

dimensions), while the sigmoid is used on binary classification [40]. It computes a probability

distribution from a vector of real numbers and outputs a range of values between 0 and 1,

with the sum of probabilities equal to 1:

𝑓(𝑥𝑖) =
𝑒𝑥𝑝 (𝑥𝑖)

∑𝑗 𝑒𝑥𝑝 (𝑥𝑗)
 (19)

 The SoftMax function is usually deployed on the last output of a multi – hidden layer neural

network in order to normalize the final output into a probability distribution over predicted

output classes.

The vanishing gradient problem observed on typical activation functions like sigmoid and

tanh, is eliminated by the Rectified Linear Unit (ReLU) function. The ReLU is one of the

most successful activation functions deployed on many neural network architectures. The

advantage of this function is that it sets every input value less than zero to zero, and has the

properties of linear functions, eliminating the vanishing / exploding gradients problem. ReLU

44

is linear for the positive input of data and non – linear for the negative input, taking the

properties of both types of functions. As a nearly linear function, ReLU rectifies the inputs

less than zero and improves the learning process of all optimization algorithms, enabling the

fastest computation among other more complex functions. Τhe implementation of the linear

unit is based on the principle that linear models are easier to optimize. The main disadvantage

of this function is that it leads to overfitting the data, compared to sigmoid and tanh. This

limitation is reduced by techniques like the dropout, which diminishes the overfitting effect

of ReLU. Another disadvantage is that during optimization the gradient is zero when the unit

is not active, leading to cases where units are not activated, because some weights are not

initialized by the inactive unit [42]. As a solution, the leaky – ReLU is proposed, a function

with a small slope to the ReLU that introduces a solution to the dead neuron problem of the

linear rectifier. The gradient is computed with a very small value of a parameter α that gives

non – zero gradients over the optimization process. The equations for ReLU (10) and the

nearly identical leaked – ReLU (11) are:

𝑓(𝑥) = (0, 𝑥) = {𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≥ 0 0, 𝑖𝑓 𝑥𝑖 < 0 (20) ,

𝑓(𝑥) = 𝛼𝑥 + 𝑥 = {𝑥𝑖 , 𝑖𝑓 𝑥𝑖 > 0 0, 𝑖𝑓 𝑥𝑖 ≤ 0 (21)

Figure 12: Activation functions. They add non linearities to the inputs of the previous layers

45

Figure 13: The GNN layer pipeline

2.6 Stacking multiple GNN layers
In order to construct a completed GNN framework, multiple GNN layers, as the one shown

in fig.13, are stacked together sequentially. Although deep neural networks are defined as

learning algorithms with a significant depth of increased number of hidden layers, Graph

Neural Networks suffer from over – smoothing problems. Unlike other neural networks

architectures (such as Convolutional Neural networks for computer vision), over smoothing

problems restrict GNN frameworks adding too many stacked layers together. The cause of

46

over-smoothing problems, such as node embeddings converging into the same value, in

GNNs is better described by their receptive field. As mentioned previously in this section,

the receptive field refers to the size of the region in input that produces a feature (a set of

neurons). The receptive field of GNNs is the set of nodes that determine the embedding of

the target node. In a l – layer GNN, each node has a receptive field of l – hop neighborhood.

For instance, for a single node prediction task, the receptive field at 1 – layer is 1 – hop away,

a few numbers of adjacent nodes (fig. 14). Next, in the 2 – layer GNN the receptive field is

2 – hop away from the target node, including the neighbors of the neighbors demonstrated in

layer 1. Finally, for the given graph in fig. 14, in the 3 – layer GNN, the majority of nodes

are identified as neighbors, meaning that the target node is collecting information (aggregates

features) from every other node in the network to determine its own embedding. The number

of neighbors connected to the target node grows very rapidly as the number of hops is

increased in the neural network. If the nodes of a given graph have highly over – lapped

receptive fields, their embeddings will be very similar (it is difficult to distinguish between

different nodes), leading to the over-smoothing problem that prevents GNNs from stacking

many layers together.

Figure 14: The receptive field for each GNN layer. Deep GNNs suffer from over-smoothing.

The target node fails to identify its own embedding, its receptive field on the 3rd layer is the

entire graph.

47

 In order to determine the proper number of layers for a GNN, it is important to analyze the

corresponding receptive field, the depth of the GNN, and find the balance between this depth

(compute the diameter of the graph) and the amount of information the network is

aggregating depending on the prediction task. For instance, if the depth of the network is too

big, the receptive field of a target node may be the entire graph. The importance of the notion

of receptive fields is significant, so the number of layers L should not be very large. This

means that GNNs are shallow networks due to the fact that the number of layers should be

small compared with the majority of deep learning algorithms with multiple hidden layers.

In order to add expressiveness to shallow GNNs, several layers are added to the GNN

framework. These layers are pre – processing layers that are placed before GNN layers to

transform the input data and MLPs (multilayer perceptron) that encode node features.

 Moreover, additional (deep) layers may cause over – smoothing problems due to overlapping

receptive fields for several nodes. Thus, the decision of picking the right number of layers

(GNN layers, MLPs) is very critical for analysts, enabling GNNs adding deep hidden layers

for prediction power and in the same time, avoiding over – smoothing (or overfitting)

problems when the prediction task still needs many GNN layers to be efficient. As mentioned

previously, from the perspective of receptive fields, earlier layers have increased impact on

the final node embeddings and additional layers may prevent the algorithm to differentiate

nodes. A solution to this problem is to add the notion of skip connections, shortcuts within

the GNN framework that enhance the impact of earlier layers making the network shallower.

Basically, skip connections bypass layers between the initial layers and final GNN layers.

These methods, introduced in Residual Networks for image processing [47], are extremely

efficient in dealing with the exploding/vanishing gradients problem.

As mentioned in the previous section, the more layers added on a deep neural network the

more multiplications are added in backward propagation to compute the gradients. Skip

connections alleviate these problems by skipping intermediate operations in between layers,

both in forward and backward propagation. For instance, if the output of an early layer in a

neural network is xi the typical forward propagation operation is (biases are omitted for

simplicity) :

z1 = W1xi + b1 → a1 = σ (z1) → z2 = W2a1 + b2 → a2 = σ (z2)

48

The skip connection enables the output from earlier layer i, xi to bypass operations a1 and z2

that are still performed, and finally implemented to the output of the second activation

function a2 by a simple addition : a2 = σ (z2 + xi). Assuming the intermediate operations in a

residual block are noted as F(xi) as shown in fig. and the operation that allows xi to skip these

calculations as G(xi) so that it is added to F(xi) : G(xi) = F(xi) + xi. Thus, the network is able

to ignore the mapping of some layers using the identity mapping (the identity function in

algebra is the function that returns the value that is used as argument so that f(x) = x). The

residual blocks are also useful during the back propagation algorithm such as the gradient

descent. For the 2 layer example demonstrated above, the backpropagation algorithm using

the chain rule for a cost function J is:

𝜕𝐽

𝜕𝑥𝑖
=

𝜕𝐽

𝜕𝑎2

𝜕𝑎2

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑥𝑖
 (22)

by replacing the intermediate operations with F(x) and adding the residual block function

G(x), the final mathematical representation of residual learning is:

𝜕𝐽

𝜕𝑥𝑖
=

𝜕𝐽

𝜕𝐺(𝑥𝑖)

𝜕𝐺(𝑥𝑖)

𝜕𝑥𝑖
 =

𝜕𝐽

𝜕𝐺(𝑥𝑖)
 (

𝜕𝐹(𝑥𝑖)

𝜕𝑥𝑖
 + 1) =

𝜕𝐽

𝜕𝐺(𝑥𝑖)

𝜕𝐹(𝑥𝑖)

𝜕𝑥𝑖
+

𝜕𝐽

𝜕𝐺(𝑥𝑖)
 ,

 due to the fact that the derivative of x with respect to x is equal to 1.

49

Figure 15: Skip connections or residual blocks, deal with the oversmoothing problem

enabling GNN models to implement deep networks.

A typical graph convolutional layer without a skip connection is the following:

𝛼𝑖
(𝑙)

= 𝜎 (𝑊𝑙 ∑
𝑎𝑗

𝑙−1

|𝑁(𝑖)|𝑗∈𝑁(𝑖)), where the terms inside the parenthesis are denoted as

F(x) in residual skip connection notation, while a graph convolutional layer with a skip

connection is: 𝛼𝑖
(𝑙)

= 𝜎 (𝑊𝑙 ∑
𝑎𝑗

𝑙−1

|𝑁(𝑖)|𝑗∈𝑁(𝑖) + 𝛼𝑖
(𝑙−1)

), where the terms inside the

parenthesis are denoted as F(x) + x, representing a skip connection to a single GNN layer.

50

Figure 16: A deep graph encoder. From the input graph, through compex operations, to the

final node embeddings.

2.7 Training a Graph Neural Network
So far, the general framework of a GNN is demonstrated (fig. 16), where the GNN produces

an output, a set of node embeddings: {𝑎𝑖
𝐿 , ∀ 𝑖 ∈ 𝐺}, where L is the final layer of the graph

neural network. These representations are vectors of features attached to the nodes of the

network. The output of the final layer, depending on the prediction task, can be node – level

prediction task, edge – level and graph - level. For node – level prediction tasks, the

predictions are based on node embeddings for a classification problem or a regression

problem. The former refers to the classification of nodes among k different classes or

categories and the latter refers to the regression of k different characteristics or features of a

node.

The learning objective of the training process of a graph neural network is to produce a

predicted value �̂� so that �̂� = 𝑊 𝑎𝑖
𝐿, and to define a loss function at the supervised nodes

using the gradient descent method: update iteratively 𝑎𝑖
𝐿 until a convergence criterion is

reached by calculating the gradients of the loss with respect to the weights W (the mappings

of node embeddings), updating those weights W. Supervised learning on graphs refers to

problems where the labels are distinguishably supervised and have distinct values, such as

users on social networks are interested in different topics, molecules represented on a graph

51

have toxic or not toxic effects etc. On the other hand, unsupervised learning on graphs refers

to the tasks where the signal comes from the graph itself. For instance, link prediction is an

unsupervised learning task where the prediction is whether a pair of nodes are connected.

Therefore, external labels are not needed for this task, just information about the graph itself

(pairs of nodes that are connected and pairs of nodes that are not connected).

Both optimization methods differentiate due to external or internal supervision of the labels.

(whether the labels are supervised from external factors or the graph itself). Supervised labels

are defined based on the specific prediction task they are used for. Thus, for node – level

prediction tasks, the supervised labels are defined from a specific case – study. For example,

in a citation network the labels can be the subject area where a node belongs to or in a traffic

network each node is labeled with the aggregated speed of vehicles calculated for this node.

In edge prediction tasks labels are paired – wised, such as yij. An example of link prediction

labels is whether an edge is fraudulent on a transaction network. Finally, examples of graph

– level prediction tasks are molecular graphs, where the graph labels could be the drug

likeness or toxicity of molecules of the corresponding graph.

In Unsupervised graph learning the learned graph topology is optimized by graph data

structure itself without external supervision (labels). For instance, a node – level prediction

task could be the prediction of node statistics such as clustering co – efficient on molecular

graphs to predict some properties of a node such as the type of atom that this node belongs

to. Unsupervised learning on graphs is often defined as a self – supervised problem, without

the inference of any external labels. Several methods that investigate the problem of

unsupervised graph structure learning are proposed [48], which leverage graph data itself to

create optimal graph structures. Moreover, an interesting unsupervised task on graph – level

prediction, is to predict the similarity of two graphs or if two graphs are isomorphic. Spectral

clustering is a well – known unsupervised method for examining the strongly connected

communities on a graph [49].

52

2.8 The loss function – evaluation metrics for GNNs
Following the definitions of predictions and labels in the GNN training pipeline, this section

introduces the notion of loss function which is used to measure the discrepancy between the

predictions and labels. As a typical deep neural network architecture, GNN deploys back

propagation to optimize the loss and update the parameters of the model. As mentioned

before, GNNs can be applied to both classification and regression taks. The former category

generates predictions �̂�𝑖
𝑙 with labels 𝑦𝑖

𝑙 have discrete categorical values, such as the topic a

user of a social network likes, what is the category a specific node belongs to (binary or multi

– class prediction). In regression the labels 𝑦𝑖
𝑙
 have continuous values, such as the toxicity

level of a molecule or the number of vehicles passed through a single node (sensor).

The standard training pipeline of a Neural Network defines a loss function that measures the

efficiency of the classification / regression task, by comparing the predicted values to the

ground truth. Furthermore, errors between the predictions and the true labels are calculated

over the training set (over the training examples) and aggregated into a scalar, called the loss

(or the Cost, the summation over all training examples). This mathematical computation of

the loss is called forward propagation and so far, it does not introduce any training concept.

The actual training of the neural network occurs in the back propagation phase, where the

gradients of the loss are computed with respect to the parameters, updating these parameters

to the optimal solution. The gradients are calculated using the chain rule, beginning from the

partial derivatives of the loss, with respect to the representations.

As mentioned in the previous section, the most common classification loss is the cross –

entropy loss (CE). It is a probability – based loss function, a generalization of logistic

regression applied to multiple class prediction tasks and was firstly proposed by J. S. Bridle.

[50]. Based on the prediction task, the cross entropy is also referred to as, negative log –

likelihood, softmax loss, mutual information loss etc [51]. The mathematical formulation of

CE loss is :

C𝐸(𝑦(𝑖), �̂�(𝑖)) = −∑ 𝑦𝑗
(𝑖)𝐾

𝑗=1 log (�̂�𝑗
(𝑖)

), (23)

53

where j denotes the number of different classes to a maximum number of K classes. (i) here

denotes the number of training examples, so for N data points the cross entropy loss over the

entire training set is:

Cost = ∑ 𝐶𝐸(𝑦(𝑖), �̂�(𝑖))𝑁
𝑖=1 , (24)

Popular evaluation metrics for classification tasks are the multi – class classification

accuracy:
[𝑎𝑟𝑔𝑚𝑎𝑥(�̂�(𝑖)= 𝑦(𝑖))]

𝑁
 and binary classification metrics that are sensitive to a

threshold, such as accuracy, precision, recall, F1 scores. These methods are sensitive to a

threshold, for example if the range of the prediction is [0, 1], 0.5 can be set as a threshold.

The standard loss function for regression tasks is the Mean Squared Error (MSE) (or the L2

loss). For all K real valued vectors of targets and predictions 𝑦(𝑖), �̂�(𝑖) ∈ 𝑅𝑘
The loss is

defined as the sum over all the K data points, of the difference between the true value and

the predicted value. The loss will be minimized when 𝑦(𝑖) 𝑎𝑛𝑑 �̂�(𝑖) are as aligned as

possible:

𝑀𝑆𝐸(𝑦(𝑖), �̂�(𝑖)) = −∑ (𝑦𝑗
(𝑖)

− �̂�𝑗
(𝑖)

)
2

𝐾
𝑗=1 (25)

The total loss over all N training examples: Cost = ∑ 𝑀𝑆𝐸(𝑦(𝑖), �̂�(𝑖))𝑁
𝑖=1 .. Evaluation metrics

for GNN regression models are analogous to the regression loss that is optimized during the

back propagation phase. Similar to the majority of supervised machine learning tasks, the

performance of a model is evaluated using:

Root Mean square Error (RMSE): √∑
(𝑦(𝑖)− �̂�(𝑖))

2

𝑁
𝑁
𝑖=1 (26)

Mean Absolute Error (MAE):
∑ |𝑦(𝑖)− �̂�(𝑖) |𝑁

𝑖=1

𝑁
 (27)

54

2.9 Time Series on Graphs
Several prediction tasks have a sequential nature, especially those that detect patterns on time

series data. For instance, traffic data collected from sensors or surveillance cameras is used

to perform predictions on the future. Other sequential problems are speech recognition tasks

[51] as well as machine translation problems [52]. All of these tasks are making predictions

on a sequence of data depending on the historical observations: �̂� = 𝐹(𝑥𝑡 , 𝑥𝑡−1, … . . , 𝑥1)

Figure 17: A typical time – series prediction problem. Make predictions given a sequence of

time steps and historical observations.

A stochastic approach that has a wide range of applications on sequential data is called

Hidden Markov Model. Hidden Markov models are probabilistic statistical models that

introduce the hidden state in a sequence of data, setting up the basis for the implementation

of several machine learning techniques and neural network architectures. The main idea

behind Markov models, is that the observed variables are dependent on an unobserved hidden

state 𝑧𝑡, which follows the Markov rule indicating that the conditional probability of the next

state depends only on the present state (also called a memoryless Markov stochastic model):

p(𝑧𝑡+1|𝑧1:𝑡) = 𝑝(𝑧𝑡+1|𝑧𝑡) and p(𝑥𝑡|𝑧𝑡) = 𝑝(𝑥𝑡|𝑧0:𝑡), where 𝑧𝑡 is a memoryless

Markov process (the hidden state), 𝑥𝑡 is the observed state conditionally independent, while

it depends only on the current hidden state 𝑧𝑡.

On the contrary, Recurrent Neural Networks (RNNs) are a specific class of neural networks

that represent temporal sequences using internal memory cells [57]. They are called recurrent

networks because they feedback hidden states 𝑧𝑡 as inputs for the next time step. As shown

55

in fig. 18, the output of the network 𝑦𝑡 is using the current hidden state 𝑧𝑡 which receives

input from the current state 𝑥𝑡 and the previous hidden state 𝑧𝑡−1. These recurrent

connections between hidden units leverage time dependency between adjacent time steps,

while hidden units are sequentially and deterministic computed by an activation function

with respect to some weights A, B, C:

𝑓1(𝑥𝑡, 𝑧𝑡−1) = 𝜎(𝐴𝑥𝑡 + 𝐵𝑧𝑡−1) and 𝑓2(𝑧𝑡) = �̂� = 𝜎(𝐶𝑧𝑡), where A and C

represent the weight matrices between the hidden units for the input and output respectively

and B is the weight matrix between adjacent time steps (biases are excluded for simplicity).

Figure 18: A single recurrent neural network layer.

In most cases, time series prediction tasks use large amounts of sequence data, over a large

period of time. Although RNNs manage to memorize the input information over past time

steps, they suffer from the exploding / vanishing gradients problem due to the exponential

chain of multiplications of weight matrices. For instance, if the RNN have to model long

term dependencies of length T, at time t = T the hidden unit 𝑧𝑡 depends on the chain

multiplications of weight matrices W, particularly on the Tth power of W, WT. Therefore, if

the eigenvalues of W are very small after the multiplications, the gradient will vanish

56

exponentially. On the contrary if the eigenvalues of W are very big (>>1), the gradients will

explode exponentially. To address the problem of vanishing / exploding gradients, gated

mechanisms are proposed, in order to extract long – term dependencies from the sequence

data. Gates are scalars in the range [0, 1], that control the amount of past time information

that should be taken as input at next time steps. Thus, the value of each gate is updated at

every step of the sequence, allowing the model to adjust its paths through time avoiding the

exploding / vanishing problem. The most common RNN architecture that uses gated

mechanisms is the Long Short – Term Memory cell [58]. [59]. It consists of three gates : the

forget gate 𝑓𝑡 , the input gate 𝑖𝑡 and the output gate 𝑜𝑡, where 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 ∈ [0, 1]. Assuming

𝑥𝑡 is the input state, 𝑧𝑡 the hidden state and 𝜇𝑡 is defined as the internal memory of the LSTM

cell so that:

𝜇𝑡 = 𝑓𝑡𝜇𝑡−1 + 𝑖𝑡𝜎(𝛢𝑥𝑡 + 𝐵𝑧𝑡−1), where the internal memory 𝜇𝑡 is updated by

applying forget gate to 𝜇𝑡−1 and the input gate to the activation of the hidden state. For the

hidden state 𝑧𝑡, the output gate is applied on the internal memory cell 𝜇𝑡: 𝑧𝑡 = 𝑜𝑡𝜎(𝜇𝑡).

Because LSTM models are using a complex structure, the training process may be long due

to large internal memory requirements. For that reason, Chung et al [60] proposed another

gated version of RNN, the Gated Recurrent Unit (GRU). GRU is a slight variation of LSTM

that, instead of using 3 gates (LSTM), it has only two gates improving the training speed.

GRU reduces the tensor operations during training and consists of a single update gate and a

reset gate:

57

𝑧𝑡 = 𝑢𝑡𝑧𝑡−1 + (1 − 𝑢𝑡)𝜎(𝛢𝑥𝑡 + 𝑟𝑡𝐵𝑧𝑡−1), where 𝑢𝑡 ∈ [0, 1] is the updated gate

which is used as an input and forget gate at the same time, and 𝑟𝑡 ∈ [0, 1] is the reset gate

that controls the contribution of previous state 𝑧𝑡−1 to the updated state.

Figure 19: Different graph signals on various time steps.

RNN, LSTM and GRU are effective models that manage to capture the complex temporal

dependencies of a time series problem, such as traffic prediction. They are combined with

GNNs to a fully – connected neural network to make predictions on graph structured data

(fig. 19). Every graph signal corresponds to a discrete time step.

58

3 Related works
Naturally, a road network can be represented as a Graph with road segments as the nodes and

road connections (streets) as the edges. As demonstrated in the above analysis the spatial and

temporal dependencies in the traffic network are so far modeled with standard statistical time

– series models or Neural Networks (CNNs and RNNs). The autoregressive models can only

extract the linear connection between different traffic states which is not the case in the

complex non – linear spatial dependency in the traffic network. Moreover, CNNs approach

advances the learning process for several traffic states but is strictly bound to the Euclidean

data structure (such as the 2 – dimensional data structure of an image), unable to adapt the

complex topological dependencies of a road network. Recently, a family of deep learning

models has been deployed called Graph Neural Networks. These models apply machine

learning on graph data structures such as semi supervised node classification on citation

networks and on knowledge graphs using convolutional neural networks directly on graphs

[23].

Because graphs are data structures capable of representing interactions between different

entities (nodes), there are various applications of deep learning on graphs in chemistry, such

as molecular design with graph auto – encoders. Those architectures achieve state – of – the

art molecule generation for Quantitative Estimate of Drug – Likeness prediction [24]. Graph

Neural Networks (GNNs) are naturally ideal models for traffic prediction tasks because they

can be applied on graphs, modeling effectively the complex topological dependencies of a

transportation network, outperforming the classical deep NN approaches that can only be

applied on Euclidean data. As mentioned in the previous section, GNNs follow a

neighborhood aggregation scheme where node embeddings are operated by sampling and

aggregating features of the adjacent nodes. Because traffic data is defined by non – linear,

spatial, and temporal dependencies, in the non – Euclidean space, there are many graph

convolution methods considered in the literature that adapt those complex features. Traffic

forecasting techniques such as DCRNNs [29] consider the traffic flow as a diffusion process

that uses bidirectional random walks on graphs. Moreover, STGCN [28] combines spatial

and temporal blocks to capture those dependencies, simultaneously, using a synchronous

mechanism that consists of convolutional operators on traffic graphs along with LSTM

59

blocks to capture the temporal information. ASTGCN [31] introduces attention mechanisms

that capture the important spatial and temporal correlations enhancing the training speed of

the GNN. All these methods and many more considered in the literature, attempt to capture

the spatial – temporal relationship of graph – structured traffic data, using deep GNNs.

Moreover, these different approaches extend the basics of machine learning on graphs

demonstrated in the previous sections with the combination of time – series analysis on traffic

forecasting, offering a wide space for future studies in the field. In the next sections, typical

graph data sets for traffic forecasting are described and significant graph neural network

models for traffic forecasting that have been developed so far, are presented.

60

3.1 Open traffic graphs
A graph is defined as G = (V, E, A) where V is the set of nodes, E is the set of edges and A

is the adjacency matrix. Elements of the adjacency matrix can take binary values 0 or 1, when

there is a connection between node i and j then aij = 1, while when there is no connection

element aij = 0. In traffic forecasting problems the nodes are associated with several traffic

states (speed, flow) and edges represent the connection between those nodes. Because the

traffic states are collected in discrete time steps, the Xt ∈ R N x d is defined as the node

feature matrix in a single time step on the graph G where N is the number of nodes and d the

number of traffic states [6]. The general formula of traffic forecasting problem is to predict

traffic states of the nodes several time steps in the future. This formula can be defined as y =

f(χ; ε; G), where y is the predicted state, χ is the historical traffic state, G is the traffic graph

and ε refers to the external factors that are added to the prediction task, since traffic states are

highly affected by factors such as temperature, weather conditions, accidents, holidays etc.

Various graph structures are considered in the literature, with sensor – graphs being the most

used. Sensor graphs represent a sensor (loop detector) network where each sensor is a node,

and each edge is the road link connecting those sensors. Sensors may be installed in road

intersections or in various points among the transportation network and provide large datasets

of historical data for traffic states in a specific time period (usually traffic speed and counted

cars). Depending on the forecasting problem, there are many other traffic graph structures

such as road segment graphs [25], Origin – Destination graphs [26], sub – way station graphs

[27]. This work is focused on the sensor graph approach for traffic forecasting.

Historical traffic data such as traffic volume and speed can be collected from sensors e.g.,

loop detectors located in various spots of the road network. This type of data is widely used

among the traffic prediction models using GNNs, while traffic information collected can be

used directly as attributes for the nodes of a traffic graph. Most of GNNs in the surveyed

studies are being experimented in two sensor data sets: METR – LA and Performance

Measurement System (PeMS).

PeMS data - set contains traffic data collected from various areas of California between 2001

and 2019, using various vehicle detectors such as inductive loops, magnetometers and radars.

The data is aggregated in 5 - minute intervals and contains information about station ID,

61

direction, flow of cars and average speed. In particular there are 5 subsets of PeMs dataset

and specific frequently used time periods on GNNs models in literature: PeMS – BAY

containing data from 325 sensors between January 1st and June 30th 2017, PeMSD3

containing data from 358 sensors from September 1st to November 30th 2018, PeMSD4 using

data from 307 sensors in San Francisco Bay from January 1st to February 28th 2018, PeMSD7

using data from 883 sensors in LA with studied period between May and June 2012 and

PeMSD8 with data from 170 sensors in San Bernardino from July to August 2016.

METR – LA dataset contains data collected from 207 sensors (loop detectors) located in the

highway network of LA County. The dataset includes information about speed and volume

and all samples are aggregated in 5 – minutes interval. The most widely used time period

used in GNNs for traffic prediction for this dataset is between March and June 2012.

62

3.2 GNNs for traffic forecasting
In this section graph neural network models for traffic forecasting are presented and

compared from other related studies in GNN traffic forecasting. It is well known that there

are many different works including different datasets, data preprocessing and various

prediction techniques. The main objective of this section is to present the state – of – the –

art algorithms deployed in sensor traffic datasets, in order to align the on - going relevant

research with this work. To the author’s knowledge this is the first attempt that exploits the

Greek OGD for traffic flow forecasting using Graph Neural Networks.

In traffic forecasting modeling, accurately capturing the complex spatial dependencies is a

major challenge. Traditional Convolutional Neural Networks (CNNs) can only be used with

data in Euclidean space, such as images or regular grids. However, the structure of an urban

road network is in the form of a graph, rather than a two-dimensional grid, making it difficult

for a CNN to accurately reflect its complex topology. To address this issue, the Graph

Convolutional Network (GCN) [23] has been developed to handle graph-structured data. The

GCN model uses a filter in the Fourier domain to capture the spatial features between nodes

in the graph. The GCN model is built by stacking multiple convolutional layers, which allows

it to learn the topological structure of the road network and the attributes of the roads. By

using the GCN model, we can obtain spatial dependencies by encoding the relationship

between roads in the network.

Temporal dependence is another critical issue in traffic forecasting. Currently, the most

commonly used neural network model for handling sequence data is the recurrent neural

network (RNN). However, traditional RNNs have limitations for long-term predictions due

to issues such as gradient disappearance and gradient explosion [92]. To address these

problems, Long Short Memory and Gated Recurrent Unit models have been developed as

variations of the RNN and have been demonstrated to be effective. Both LSTM and GRU

[93, 94] use a gated mechanism to preserve as much long-term information as possible and

are equally effective in various tasks. However, GRU has a simpler structure, fewer

parameters, and faster training time.

The authors in [80] proposed Temporal Graph Convolutional Network (T-GCN), a model

that combines Graph Convolutions and gated recurrent units. The GCN is used to capture the

63

spatial dependencies on the traffic graph and the gated unit is used to capture the dynamic

variation of traffic, effectively obtaining the temporal dependence (fig 20). The authors

evaluate this novel GNN model on two graph structured time series datasets, namely SZ-taxi

that consists of taxi trajectories and a loop-detector (sensors) dataset in the city of Los

Angeles. Their results showed that T-GCN achieved the best predictions among various

forecasting horizons compared with baseline models and other non graph deep learning

techniques.

Figure 20. The overall high-level architecture of T-GCN as depicted in the study of [80].

Historic traffic signals are passed through a spatial component the GCN into the temporal

component GRU for the final prediction.

Diffusion Convolutional Recurrent Neural Network (DCRNN) is a GNN model for traffic

forecasting that extracts the spatial dependency by deploying random walks on graphs while

the temporal dependency is captured using the encoder – decoder method [29]. This

technique applies the diffusion process for capturing the spatial dependencies on the network

using the random walk process on a graph G which is represented as:

 𝑃 = ∑ 𝛼(1 − 𝛼)𝑘(𝐷0
−1𝑊)k ∞

𝑘=0 , (28)

where k is the diffusion step and α ∈ [0, 1] the restart probability of random walk on G. The

diffusion convolution layer is trained with the stochastic gradient method and learns every

spatial representation from the input graph data. As for the temporal dependency this model

64

also proposes the Gated Recurrent Units (GRU) introducing the encoder and decoder which

are both Recurrent Neural Networks. The encoder is fed with input graph signals, trained

with Diffusion Convolutional Recurrent Layers and then initializes the decoder which is

making the predictions (fig 21.)

Figure 21. The DCRNN overall architecture proposed by [29]. Input graph time series are

encoded with the Diffusion process and the decoder outputs the final predictions.

Following the Graph Convolution theory based on graph Fourier transformations on the

spectral domain, Yu et al extended this approach to overcome expensive computational costs.

To reduce the number of parameters the Chebyshev Polynomials Approximation is

introduced using the Chebyshev coefficients to operate convolutions on graphs extracting the

spatial features of the input data (see section 2.3.2 Spectral methods). Moreover, for

extracting the temporal features, the proposed model employs convolutional structures on the

time axis to capture temporal dynamic dependencies of traffic flows. Instead of using the

traditional RNN approach for sequential data, the model implements CNNs in time series,

avoiding the time - consuming iterations of Recurrent Networks. The temporal convolution

explores K neighbors for each node of the graph using a temporal layer followed by gated

linear units for non - linearities. The general architecture of STGCN is shown in figure 13.

In order to adapt both spatial and temporal dependencies, authors proposed the creation of a

Spatio-Temporal convolution block to process graph structured time series. Two ST-conv

blocks are stacked followed by the output layer, a fully connected temporal convolution layer.

65

Each ST-conv block consists of two gated temporal convolution units and a spatial

convolution layer stacked between them (middle of figure). According to the authors the

spatial layer in the middle “bridges” the two temporal layers achieving spatial propagation

from graph to temporal convolutions. The temporal convolutional layer contains a 1 - D

convolution layer followed by the GLU (non-linearity). The final output of the model maps

outputs of the last ST-conv block to a single prediction of the counted cars for each node

(sensor).

Figure 22: The STGCN architecture as depicted by Yu et al [28], Spatio-Temporal Graph

Convolutional Networks: A Deep Learning Framework for Traffic Forecasting.

The main characteristic of the proposed model is that it combines graph convolutions with

temporal convolutions, extracting the most useful patterns from the spatial and temporal

domain. It is entirely dependent on convolution structures allowing computation efficiency

during the training phase, learning fewer parameters and has many similarities with the T-

GCN approach.

The deployment of convolutions on graphs can be combined with the so - called Attention

Mechanisms in order to adapt the dynamic temporal and spatial patterns in traffic data. The

Attention Mechanisms are widely used in various deep learning tasks due to their ability to

detect patterns from the input data, which are critical for the prediction task [30].

66

Spatial - Temporal Graph Attention Network (STGAT) introduced by [62]. As demonstrated

in section 3.3.4 attention-based techniques are considered highly efficient among other

methods (spectral methods and sampling methods) for processing graph signals. In recent

years, attention-based methods are extensively used for traffic prediction tasks overcoming

existing state-of-the-art techniques. The proposed model uses Graph Attention Networks to

learn attention among nodes (sensors) and apply them for updating hidden features. GAT

extends GCNs (graph convolutional networks) by applying attention mechanisms during the

learning process, replacing the standardized sum of the features of adjacent nodes with an

attention mechanism. The standard graph convolution includes the sum of features of the

immediate neighbors of node i, fitted in a non - linear activation function (see section 3.3.1):

 𝑎𝑖
𝑙 = 𝜎(∑ 𝑊𝑙 𝑎𝑗

𝑙−1

|𝑁(𝑖)|

.
𝑗∈𝑁(𝑖) , (29)

On the contrary, GAT introduces the attention coefficients to retain the topological

information of the graph. As demonstrated on section 3.3.3. the receptive field of a GAT is

the immediate neighborhood of the target node, thus the computation of the attention

coefficients is calculated for the target node and its first hop neighbors. The above

convolutional operation on the l layer of the network is updated with the attention

mechanism:

𝑎𝑖
𝑙 = 𝜎(∑ 𝑡𝑖𝑗𝑊

𝑙𝑎𝑗
𝑙−1.

𝑗∈𝑁(𝑖)), (30)

where 𝑡𝑖𝑗 is the attention mechanism applied on the attention coefficients of each node 𝑒𝑖𝑗:

𝑡𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝑒𝑖𝑗)). To enhance the capability of the model, multi-head

attention mechanisms are applied by averaging the concatenation of feature representation

defined by K independent attention mechanisms (heads). The theoretical background and

details of this method are described in section 2.3.3. For extracting the temporal features, the

authors propose a Recurrent Network (RNN) block with 2-layer LSTM networks that handle

the input time series data. The architecture of the model is shown in figure 23. Specifically,

the STGAT model contains a Graph Attention network (GAT) block for spatial correlation

and extraction implementing the multi-head attention that enables the model to learn spatial

dependencies through multiple independent attention blocks. For the temporal dependencies

67

the proposed model uses a variant of the Recurrent Neural Network, the LSTM network. As

described on the section 3.9, LSTMs introduce gating units to control the vanishing gradient

problem in time series prediction, especially RNNs. The gated units are namely the input, the

forget and the output unit. These units perform element wise multiplications and activation

functions to each unit in order to decide which information will be added to the state output

and eventually to the hidden layer output.

Figure 23: The STGAT architecture as depicted by Zhang et al [62], Spatial-Temporal Graph

Attention Networks: A Deep Learning Approach for Traffic Forecasting

The final output of STGAT is computed after the deployment of a fully connected layer

which uses the output of the last LSTM as input for linear transformation. The proposed

model is trained using the L2 loss (or MSE) similar to the STGCN model.

ST-GAT extends the standardized graph convolutional processing to the graph attention-

based approach, that manages to adapt spatial and temporal dependencies accurately. For the

attention computation the model introduces a Sequence to vector approach for feature

representation, converting time series data (sequential data) to vectorized features, opposed

to the traditional sequence to sequence method.

The combination of convolutions on graphs with spectral graph analysis and attention

mechanisms is proposed on the Attention Based Spatial – Temporal Graph Convolutional

Networks (ASTGCN). The framework of this method is defined by the spatial attention

which is responsible for capturing the dynamic correlations and different impacting weights

between nodes. Similarly, the temporal attention adapts the correlations in time series with

68

temporal correlation matrices using the attention mechanism [31]. ASTGCN manages to

adapt the correlation between close sensors in the real topology of the road network because

of the attention mechanism which gives this algorithm an interpretability advantage [31].

Graph WaveNet is a GNN framework applied on sensor data, constructed by stacked spatial

– temporal layers. Each layer consists of a graph convolutional layer and a Gated temporal

convolution layer with two parallel temporal convolution layers. WaveNet can adapt

complex spatial dependencies at different temporal levels. This model can learn through node

embedding with stacked 1D convolutions and is able to predict traffic states through long

time sequences. This is achieved by designing the receptive field size of Graph WaveNet

equally to the sequence length of the input data in a way that in the last spatial – temporal

layer the temporal dimension of outputs equals to one [32].

Another interesting GNN framework is the 3D Temporal Graph Convolutional Network (3D

– TGCN) [33]. This model introduces a new way of creating the road graph, instead of using

spatial information, the graph is learned from the model by comparing the similarities

between time series for each road. For example, while traditional GNNs propose the

construction of an adjacency matrix, 3D – TGCN is learning the temporal patterns of the

roads by calculating the distance between their time series. The architecture of this

framework consists of four 3D graph convolutional blocks, each of which contains two graph

convolutional layers and a normalization layer, and one output block similarly to other graph

convolution frameworks. The advantage of this method relies to the construction of the

temporal adjacency matrix (not the traditional spatial matrix) which leverages the ability to

learn temporal patterns of the traffic network.

The inductive node classification method is widely used in Graph theory. During the training

process the validation and test nodes cannot be observed while the goal is to predict the

features of the unobserved testing nodes. Gated Attention Networks (GaAN) are very

effective models for these problems, introducing the gated attention aggregator instead of the

multi – head attention aggregator. In this way, an additional soft gate is computed to assign

different importance for each head. Furthermore, GaAN is applied on traffic speed prediction

as a building block in combination with a Graph Gated Recurrent Unit (GGRU) [34].

69

Similar to the Graph Convolutional networks, Structure Learning Convolutional Neural

Networks (SLCNN) [35] are able to learn the graph data under the convolutional operation

using a flexible mechanism for learning the spatial dependencies. On top of that architecture,

a Pseudo three - dimensional convolution network (P3D) is combined with the SLCNN in

order to capture the temporal dependencies in data. Classical convolutions are transformed

into structure learning convolutions, while each layer in the framework is defined as a

summation of global and local P3D – SLCNN and learns different global and local graph

structures. Traditional GCNN methods use the same graph structure in each layer which is

not representing the real traffic conditions.

Spatial – Temporal Fusion Graph Neural Network (SFTGNN) is a data – driven method for

traffic forecasting which involves the generation of a temporal graph in order to adapt several

correlations in traffic states that spatial graph does not reflect. By learning from both temporal

and spatial graphs SFTGNNs combine a fusion graph module with a gated convolution

module into a layer, being able to learn complex spatial and temporal data from long

sequences. Its main framework consists of an input layer, stacked SFTGNN layers and an

output layer. The input and output layers are fully connected followed by an activation

function such as ReLu and every SFTGNN layer includes a Gated CNN module with two 1D

convolutional blocks [36].

As mentioned above, attention mechanisms are used for deep learning on graphs because

they effectively focus on the most relevant features of the input data capturing complex

dependencies. Graph Multi Attention Network (GMAN) is another attention - based model

that uses the encoder – decoder method. Both encoder and decoder consist of various spatial

– temporal attention block to adapt those dependencies respectively, while encoder encodes

the input traffic states the decoder predicts them. In particular, the framework consists of a

Spatial Temporal Attention Block that includes spatial and temporal attention mechanism

and a gated fusion. In order to decrease the error propagation effect between different time

steps, a Transform Attention layer is added between the encoder and decoder. Finally, the

decoder stacks spatial – temporal attention layers on the transformed sequence and generates

the output with the fully connected layers [37].

70

Adaptive Graph Convolutional Recurrent Network (AGCRN) is an evolved method of GCN.

Most GNNs for traffic forecasting involve the construction of an adjacency matrix A for the

graph convolution. Graph is defined by A according to a distance function which represents

the real distance between nodes (sensors) or by a similarity function which defines the node

proximity. This graph modeling through an adjacency matrix may be ineffective at capturing

the dependencies on traffic networks in a complete manner. An enhanced method is the

introduction of a Data Adaptive Graph Generation (DAGG) module and a Node Adaptive

Parameter Learning (NAPL) module in order to capture specific node patterns. On top of

those modules the AGCRN is able to perform specific node spatial and temporal correlations

without the construction of pre – defined graphs. This framework can automatically detect

the inter – dependency in different associated series from input data, improving the

performance of forecasting problems that cannot pre – define a graph easily [38].

Spatial-Temporal Graph Ordinary Differential Equation Networks (STGODE) introduce

ordinary differential equations (ODE) applied on node classification traffic forecasting, in

order to capture long – range dependencies on traffic data, which typical GNNs ignore [39].

This technique consists of two spatial – temporal (ODE) layers, a pooling layer and an output

layer. The ODE spatial – temporal layer is applied to capture the deeper, long – range spatial

and temporal correlations in data, simultaneously with the temporal blocks. In particular,

ODE solver manages to learn those hidden node features through a spatial temporal tensor

which is multiplied with the regularized adjacency matrix. A neural ODE model can be

considered as:

𝑥(𝑡) = 𝑥(0) + ∫
𝑑𝑥

𝑑𝜏

𝑡

0
= 𝑥(0) + ∫ 𝑓(𝑥(𝜏), 𝜏)𝑑𝜏

𝑡

0
 (31)

where f(x(τ),τ) will be parametrized by spatial – temporal neural networks to adapt the hidden

dependencies. Pooling methods play a crucial role in convolutional neural networks by

reducing the features learned, avoiding parameter overfitting. A pooling layer is deployed

right after the standard convolutional layers but cannot be applied on graph – structured data

because of their complex spatial representation (there are not distinct neighbors on graphs).

71

4. Research approach
The research approach of this work uses five steps, namely (1) data collection and data

exploration, (2) data pre-processing, (3) forecasting model creation and evaluation using two

GNN models and two baselines.

(1) Data collection and exploration. In this step, available traffic data from data.gov.gr are

collected using the data.gov.gr API. These data have been produced by sensors that are

located in the Attica Region in Greece. In addition, the position of the sensors is specified

and mapped to latitude and longitude geographic coordinates in order to be able to present

data in map visualizations. Moreover, the manual mapping of the exact location of sensors is

a requirement for the creation of the adjacency matrix of the modeled graph.

Data exploration. In this step statistical analysis and visualizations are used to explore the

collected traffic data for better understanding. Measurements such as the number of sensors

that were active during each month and the InterQuartile Range (IQR) of the vehicles

measured by each sensor are demonstrated. Furthermore, the Pearson correlation coefficient

for the number of vehicles counted each hour of the day by each sensor is examined. The

Pearson correlation is a commonly used measurement for searching correlations between

time series, dividing the correlation among two variables for the product of the square of their

variance. Sensors that are located nearby one another or three other sensors, i.e., their distance

is lower than 2000 m, and that have a Pearson correlation coefficient greater than 0.8 are

considered strongly correlated sensors. Weakly correlated sensors have a Pearson correlation

coefficient greater than 0.7.

(2) Data pre - processing. Traffic sensors are prone to malfunctions, occasionally transmitting

erroneous data. In order to effectively test and evaluate a machine learning model on such

data, the traffic dataset must be examined for missing values or extreme outliers. Since the

traffic data are dynamic data collected by sensors, there is a chance that some observations

may be missing due to various reasons such as failures of sensors, network faults, and other

issues. In this context, this step searches for observations that are missing from the traffic

data based on two dimensions; (i) the time, and (ii) the sensors. The first case searches for

the missing observations per day. To this end, we calculate for each day the number of

72

observations that should be available for all sensors, and then we subtract this number from

the number of available observations. This analysis was used to select the “best” time window

for the traffic data, i.e., the time window with the least missing observations. For the second

case, the total number of missing values per sensor is calculated. Additional statistical

analyses are employed in order to explore the distribution of the sensors’ missing

observations. Finally, after the time window with the least missing observations is selected,

the missing values are imputed using the linear interpolation method. In the second step of

the cleaning procedure, extreme outliers (anomalies) are detected using the flow - speed

correlation analysis on the selected time window of the previous step. This is a decisive step

for the final selection of sensors that are going to be used by the GNN models. To this end,

the flow - speed correlation threshold is calculated per sensor in order to determine the exact

number of sensors that will contribute to the creation of the traffic graph.

(3) Traffic forecasting model creation and evaluation. After determining the optimal time

window and sensors, in terms of the least missing values and outliers, on the previous step,

these sensors can form the final graph for the implementation of the experiments. Most

studies described in Section 2 create the adjacency matrix based on the Euclidean distances

between sensors. If a certain distance kernel is greater than a threshold the sensors are

considered adjacent. To this end, the distances between all sensors are calculated using their

geographic coordinates. In this final step the graph structured traffic dataset is used for traffic

flow prediction using two GNN models: Temporal Graph Convolutional Network (TGCN)

and Diffusion Convolutional Recurrent Network (DCRNN). Both models predict the future

traffic flow (counted vehicles per hour) using the 12 past observations on 3 future horizons:

the next 3, 6 and 9 observations. Each model is trained on different hyperparameters and they

are compared to traditional baseline models for traffic forecasting.

73

5. Case study

5.1 Data exploration
In the Attica region of Greece, traffic information is gathered by traffic sensors located in the

urban area of Athens and Piraeus. These sensors transmit information regarding the number

of vehicles traveling on specific roads in Attica, along with their speed, at regular one - hour

intervals. The aggregation of data on an hourly basis ensures that individual vehicle

information is not captured, reducing the risk of privacy concerns.

4,230,819 records were obtained through the API provided by data.gov.gr (fig), covering a

26-month span from November 5, 2020, to December 12, 2022. Each record comprises of

the following details: (a) a unique identifier of the sensor, such as MS134, (b) the road on

which the sensor is located, including (c) a textual description of its location, (d) the date and

time of the measurement, (e) the total number of vehicles detected by the sensor during the

hour of measurement, and (f) the average speed of the vehicles in kilometers per hour. The

precise location of the sensor is described in Greek and typically includes information such

as the type of road (e.g., main or side road), the direction of the road (e.g., toward the center),

the location of the sensor (e.g., exit or entrance ramp), and the distance from main roads (e.g.,

"200 m from Vasilisis Sofias avenue").

74

Figure 24: The graphical interface for the API request on the data.gov.gr portal. By selecting

a specific period of time, traffic measurements from 420 sensors across the city of Athens

(counted cars and average speed) can be downloaded in .csv or .json format.

The traffic data that was collected was generated by 420 sensors (fig 24, 25). To be able to

display the data on a map and later compute the distances between sensors for the creation

of the adjacency matrix, the sensor positions were manually transformed to latitude and

longitude geographic coordinates. Unfortunately, in some cases there was insufficient

information about the exact location details of some sensors, such as "MS339", making it

impossible to determine its coordinates accurately.

75

Figure 25: The sensor traffic network in Athens. Each point in the map represents a sensor

(420 sensors). Red color marks represent sensors with higher percentages of counted vehicles

(between 05/11/2020 and 30/06/2022), blue marks represent sensors with lower percentages

of counted vehicles.

Data exploration analysis showed that the sensors did not begin producing traffic data

simultaneously, and some of them stopped recording before the end of the use case collection

period. Figure 26 depicts the number of sensors that generated traffic data each month. Most

of the sensors (370 or 87%) started producing data from the first month (November 2020),

and then the number of sensors increased gradually, reaching 420 sensors in June 2021.

During that month, 25 new sensors were introduced, but two sensors stopped recording data.

In July 2021, an additional sensor started producing data, bringing the total to 421 sensors,

but then one sensor stopped recording, bringing the total back down to 420. Finally, in

December 2021, two more sensors began producing data, but two others stopped, keeping

the number of sensors at 420 until the end of June 2022. Therefore, sensors that stopped

producing data were excluded from our analysis, including those with Device IDs 'MS136',

'MS137', 'MS858', 'MS1000', and 'MS1001'. As a result, the total number of observations are

4,228,021 regarding 420 sensors. Moreover, figure 27 shows the right skewed distribution of

76

Interquartile Rate (IQR) meaning that there are some sensors with high values of counted

vehicles.

Figure 26: Number of sensors that transmit data each month.

Figure 27: Distribution of the IQR of counted vehicles per number of sensors.

The data exploration step concludes by calculating the Pearson correlation coefficient for the

number of vehicles recorded per hour by each sensor. The Pearson correlation coefficient is

77

a measure of the linear correlation between two variables. In the context of time series data,

it can be used to determine the correlation between two time series signals. The Pearson

correlation coefficient ranges from -1 to 1, where -1 indicates a strong negative correlation,

0 indicates no correlation, and 1 indicates a strong positive correlation. The Pearson

correlation coefficient is calculated as the covariance of the two time series signals divided

by the product of their standard deviations. In this work, two sensors are considered

correlated if their distance is less than 2000 meters and their Pearson correlation coefficient

is greater than 0.8, as demonstrated in Table 1. Based on this standard, 417 out of the 425

sensors had at least three correlated sensors, with an average of 40.76 correlated sensors per

sensor. Among these sensors, 404 had a Pearson correlation coefficient greater than 0.8, and

410 had a Pearson correlation coefficient greater than 0.7. Six sensors had only one or two

correlated sensors, and two sensors were isolated.

Table 1.The correlation of sensors, with correlated sensors defined as having a distance of

2000 meters or less and more than three correlations, strongly correlated sensors as having a

Pearson coefficient greater than or equal to 0.8, weakly correlated sensors as having a

Pearson coefficient greater than or equal to 0.7, and loosely correlated sensors as having a

distance of 2000 meters or less and one or two correlations..

 Correlation

Total number of sensors 425

Correlated sensors 417

Strongly correlated sensors 404

Weakly correlated sensors 410

Loosely correlated sensors 6

Isolated sensors 2

78

5.2 Data pre - processing
Data pre - processing is an essential step in this study, as it helps to ensure that the data is of

high quality and suitable for further analysis. The process of data cleaning involves two main

steps: missing values exploration and imputation, and anomaly detection.

5.2.1 Missing values

Missing values exploration and imputation involves identifying any missing or incomplete

values in the data and determining the most appropriate method for imputing or replacing

those values. Towards this end, the number of missing observations per day and the number

of missing observations per sensor are calculated in order to determine the best time window

for the final experiments.

Between November 5, 2020, and December 18, 2022, the total potential observations from

the 420 sensors would be 7,922,880. 13.47% of the observations, or 1,067,211, are missing.

Figure 28 presents the number of missing observations per day. The number of missing

observations gradually increases until the end of May 2021, but then experiences a sharp

decrease starting in June 2021. Finally, the number of missing recordings begins to reduce

after January 2. Therefore, the period before that date is not considered reliable for further

analysis due to the large amount of missing recordings.

Figure 28: The total number of missing records per day

79

The median percent of missing observations is 33.1%, meaning that half of the sensors have

less than or equal percentages of missing observations to the median. In total, 50% of the

sensors have a percentage of missing observations in the range of 15.5–33.43% (interquartile

range box). In addition, according to the whiskers of the boxplot (fig 29) (bottom 25% and

top 25% of the data values, excluding outliers), the percent of missing observations of each

sensor may be as low as 10.3% and as high as 56.8%. In addition, based on our calculations,

only eight sensors have less than 10% missing observations. Finally, only one sensor has a

percentage of missing observations above 60%.

Figure 29. Percent of missing values per sensor in a box plot showing the lower (Q1) and

upper (Q3) quartile, the median and mean values. Data falling outside the lower (Q1)–upper

(Q3) quartile range are plotted as outliers of the data.

In order to deploy a GNN algorithm on a time series dataset, the missing values can be

replaced with numerical values using an imputation method. Imputation methods for missing

values are categorized to prediction methods, interpolation methods, and statistical learning

methods. In this work, the simple linear interpolation method to fill the missing values from

the sensor data was implemented. Linear interpolation method estimates the missing value

by assuming a linear relationship between the missing and non – missing values. It estimates

80

the missing value based on the values of the adjacent data points to the interpolated data

point:

𝑦 = 𝑦𝑏 + (𝑦𝑎 − 𝑦𝑏) ∗ (𝑥 − 𝑥𝑏) / (𝑥𝑎 − 𝑥𝑏)

Figure 30. Missing values percentage aggregated across all sensors. Red color marks higher

percentages of missing values, blue shows low percentage.

.

where (x, y) is the point with the missing value y and (𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏) are the adjacent

points prior and after the missing value.

81

The missing values analysis showed that the dataset has a lot of missing values, especially

the first year of data.gov.gr data collection. To this end, the “best” time window selected for

the next steps in this study’s analysis is from 2 January 2022 to 18 December 2022.

5.2.2 Flow – speed correlation analysis

The main objective of this thesis is to introduce the graph machine learning approach for

traffic forecasting based on a real dataset, using real life measurements. Thus, effective

prediction requires trustworthy and reliable data. For this reason, apart from the missing

values analysis, the data set must be examined for extreme traffic observations or traffic

anomalies. The proposed method is based on the approach demonstrated by [61], for

detection of traffic sensor anomalies. [61] proposed a methodology for detecting the records

that exceed a certain threshold based on the flow - speed correlation metric. In particular, the

number of cars counted by a sensor and their average speed are highly correlated.

Considering that each sensor measures data that pass from one or more lanes, the maximum

number of vehicles that can pass in all lanes in one hour can be calculated as:

𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 ∗ 1000

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ +
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑

3.6

 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑒𝑠

where average_speed is the average speed provided by the sensors measured in km per hour

and average_vehicle_length is the average length of the different types of vehicles which is

set to 4 meters, the fraction average_speed /3.6 represents the “safe driving distance” that

should be kept between vehicles and is based on the vehicle speed, and number_of_lanes is

the number of lanes in the road each sensor is positioned. When the number of cars measured

by a sensor in an hour is higher than this value, then the measurement is considered as an

anomaly or outlier. The flow - speed correlation analysis was divided into 2 periods: the first

time period between January 2, 2022, and July 31, 2022 and the second period between

August, 02, 2022 and December 17 2022. This division of the anomaly detection technique

was implemented because it was observed that the total amount of counted vehicles (traffic

flow) significantly decreased after August 2022 (fig 31) according to the information

provided by the OGD portal

82

Figure 31. Graph of total daily traffic flow detected by all sensors as provided by data.gov.gr.

There is a significant decrease of traffic flow after August 2022.

Figure 32. The number of records with very large values according to the flow – speed

correlation analysis between November 2020 and August 2022.

The flow – speed correlation analysis regarding the period between November 2020 and

August 2022 (fig. 32) showed that most of sensors measured extremely high values of traffic

flow (counted vehicles). As a result, the application of this metric on the entire dataset for

the first selected time window showed that 59.4% of total observations (1,230,928 records)

83

is considered fault, exceeding the flow - speed correlation filter. Among 420 sensors there

are only 9 with less than 10% anomalous records (table 2). As mentioned previously, Graph

Neural Networks cannot operate correctly using faulty data since the vast majority of the

OGD data set contains erroneous sensor measurements. Furthermore, a GNN cannot

effectively predict traffic flow in a small graph that contains only 9 nodes. The receptive field

of the convolution operation will consist of the entire graph. Towards this direction, the 9

sensors that have only 10% anomalous measurements cannot be selected for the experiment

and the construction of a graph.

Table 2. Sensors with less than 10% detected anomalies using flow speed correlation analysis

between 02/01/2022 and 31/07/2022.

Device ID Hours of Anomaly Percentage of Anomalies

(%)

MS346 378 9.1

MS121 321 7.73

MS941 308 7.41

MS309 295 7.10

MS944 178 4.28

MS145 48 1.15

MS134 18 0.43

MS502 14 0.33

MS734 8 0.19

On the contrary, the quality of data on the second time period is significantly different in

terms of anomalies using flow - speed correlation analysis. Table 3 shows the 10 sensors with

the greatest number of anomalies and the corresponding percentages. For example, the sensor

with the largest hours of anomalies is “MS884” with only 23 hours of anomalies (or 0.00674

%).

84

Table 3. The 5 sensors with the largest number of anomalies between 02/08/2022 and

17/12/2022.

Device ID Hours of Anomaly Percentage of Anomalies

(%)

MS967_A 4 0.001174

MS939 4 0.001174

MS979 3 0.000880

MS985 3 0.000880

MS631 3 0.000880

The analysis of missing values and flow speed correlation in open government data from the

period between 2020 and July 2022 reveals that significant issues were encountered. The data

showed an alarming trend of increasing missing values, which would lead to inaccurate

results and hindered the validity of the findings. In addition, the speed - correlation analysis

also indicated that there were anomalies in the data, suggesting that it was not collected or

recorded accurately.

Figure 33. The number of missing values per day between August and December 2022.

85

Figure 34. The number of records with very large values according to the flow – speed

correlation analysis between August 2022 and December 2022

.

Figure 35. The number of records with very large values according to the flow – speed

correlation analysis between August 2022 and December 2022

86

These problems in open government data can have far-reaching consequences for both

government agencies and the public. The quality of data is critical for informed decision-

making and to ensure that the government operates efficiently and effectively. It is therefore

imperative that measures are put in place to address these issues and to ensure that future data

is collected, recorded and processed accurately. To this end, the second period between

August 2022 and December 2022 is selected for the GNN experiments in the next section.

Figures 33, 34, depict the missing values per day as well as the extreme values measured by

sensors per day while fig 35 shows the right – skewed IQR distribution as well as the small

number of sensors with very large values of traffic flow.

87

6. Traffic flow forecasting

6.1 Forecasting model creation
In this thesis, experiments were conducted on data.gov.gr traffic graph to evaluate the

performance of two different GNN models: TGCN [80] and DCRNN [29]. TGCN, short for

Temporal Graph Convolutional Network, is a graph-based model that takes advantage of

both graph convolution and temporal convolution (GRU) to handle complex data structures

and time-varying relationships. On the other hand, DCRNN, or Diffusion Convolutional

Recurrent Neural Network, is a deep learning model that uses graph convolution with

diffusion process and random walks to capture spatial dependencies and recurrent neural

networks to capture temporal dependencies in sequential data. The goal of these experiments

was to compare the performance of the TGCN and DCRNN models in terms of accuracy, but

also compare these models with other traditional, non-parametric models in order to highlight

the efficiency of graph machine learning (GNNs) in spatio-temporal problems. In the

experiments, the performance of the TGCN and DCRNN models was compared in terms of

their ability to accurately predict traffic flow in a traffic graph. The results of these

experiments will provide valuable insights into the strengths and weaknesses of these models

and will help to guide future research in this area.

The adjacency matrix of sensors (nodes) of the road network is generated based on [28] and

[62] approaches. As mentioned in section 3.1 a graph is mathematically defined by the

adjacency matrix which represents the topology of the graph network. The weighted

adjacency matrix W used in [28] and [62] calculates the weights 𝑤𝑖𝑗 of each node (sensor)

based on the Gaussian kernel method, taking values 1 or 0. The matrix of the road graph is

computed based on the distances among the traffic sensors:

𝑤𝑖𝑗 = {
exp(

𝑑𝑖𝑗
2

𝜎2
) , i ≠ j and exp (

𝑑𝑖𝑗
2

𝜎2
) ≥ 𝜀

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

88

where 𝑤𝑖𝑗 is the edge weight between node i and node j which depends on their Euclidean

distance 𝑑𝑖𝑗 . Moreover, σ2 and ε are thresholds that control the distribution and density of

matrix W. For the next experiments these values are set to 10 and 0.5 respectively, following

the proposed method for both [28] and [62]. Taking into consideration the majority of works

on defining the sensor graph network, the graph is considered undirected. The adjacency

matrix of an undirected graph (as mentioned in section 3.1) is symmetrical with weights of

the edges: 𝑤𝑖𝑗 = 𝑤𝑗𝑖 . Finally, the distance 𝑑𝑖𝑗 between two sensors i and j is estimated using

the haversine formula based on the geographic coordinates of each sensor. Since there in no

record of the corresponding distances in the graph network, haversine distance, which

determines the angular distance between two points on a sphere, is considered a good

estimation. To validate the final distances, several samples were compared with Google Maps

distances.

These models are validated on the data.gov.gr dataset. The prediction task is defined as a

supervised traffic flow prediction problem. The downloaded measurements of the sensors

(counted cars) are normalized using min - max standardization for enhancing the

computational efficiency of the proposed models. All the experiments use the 12 observed

historical data points to forecast the next 3 (short term prediction), 6 (mid - term prediction)

and 9 data points (long term prediction). It is important to notice that the data.gov.gr dataset

contains aggregated measures of the corresponding traffic within an hour. Most of the

prediction tasks for traffic forecasting using GNNs in the literature, are deployed on the

PEMS and METR-LA datasets. These datasets include measurements within 5 minute

intervals, thus the experiments use 12 observed data points (an hour) to conduct predictions

for the next 3 (15 minutes), 6 (half an hour) and 9 (45 minutes) data points. Towards this end,

the prediction task for the data.gov.gr open portal is formulated by using the 12 observed

data points (the aggregated traffic counts from 12 previous hours) to forecast the traffic

within the next 3, 6 and 9 hours. Thus, the prediction result is referring to an hourly

aggregated value of the traffic flow. The difference here is that instead of 5 minutes

aggregation, the proposed models forecast traffic for 1 hour aggregation measurements.

89

The experiments are conducted on the undirected sensor graph from the data.gov.gr dataset.

As explained in section 4.2.2 the experiments are deployed on the time window between

02/08/2022 and 17/12/2022. Furthermore, as a preprocessing step, sensors that have more

than 10% of NaN and zeros are excluded from the modeling. This is done to prevent the

occurrence of NaN loss or division by zero errors during training, which can lead to biased

or incorrect results. Therefore, the sensors used for prediction are 406 forming a graph of 406

nodes and 23938 edges (no self-connections are considered in the graph).

The dataset of counted vehicles is spitted into train, validation and test set using the following

proportions of the original dataset respectively: 70%, 10%, 20%. The TGCN model is

deployed using the TensorFlow framework (https://www.tensorflow.org/) with the

contribution of the high level Keras API (https://keras.io/). These frameworks provide

powerful libraries to produce and train machine learning models, especially neural networks.

The model uses a sequence of historical data (12 data points) to make predictions for the next

3-, 6- and 9-time steps. For the adjacency matrix the existence of an edge between two nodes

is defined by the equation in section 4.3. TensorFlow operations are used to define the graph

convolutions and the temporal layers, in compliance with the described architecture. The

graph convolution layers are responsible for computing and aggregating information from

neighbors while gated units process the information over time. The hyperparameters and

parameters of the model are:

- batch size = 50, the number of training examples utilized in one iteration

- epochs = 100, the number of complete passes through the entire dataset, forward and

backward

- lr = 0.01, the learning rate. The hyperparameter for controlling the rate of the learning

process, the speed of training procedure. It determines the step size of the gradient

descent algorithm towards a minimum for the loss function.

- opt = RMSProp, RMSprop (similar to Adam optimizer, see section 2.2) is an

extension of the gradient descent algorithm, using momentum. It reduces the

oscillations during the learning phase reaching the optimal convergence for the loss

function increasing the learning rate of the model.

- Graph convolution layer sizes: 64 and 10 respectively

90

- Graph convolutional activation functions for both layers: ReLu

- LSTM layer sizes: 256 for both layers

- LSTM activation functions: Tanh activation on both layers

The results of the proposed model on the data.gov.gr dataset are demonstrated in the next

section, together with the results of DCRNN model and baseline methods for detailed

comparison.

For the implementation of the DCRNN model PyTorch framework (https://pytorch.org/) and

PyTorch Geometric (PyG) (https://pytorch-geometric.readthedocs.io/en/latest/) are used.

Pytorch is an open-source machine learning framework that is used for various deep learning

tasks such as computer vision and natural language processing. Pytorch defines several

classes, the most important being the Tensor class similar to the Python Numpy library.

pytorch. Tensors are used to store and operate multidimensional arrays of numbers being

very efficient for neural network computations (back and forward propagations). In addition,

Pytorch introduced a library called PyTorch Geometric. PyG is a library built on top of

Pytorch for training Graph Neural Networks. It utilizes a tensor-centric API and covers many

state-of-the-art GNN architectures.

The past time window is 12 hours (12 historical data points) and they are used to predict the

future traffic flow in the next 3 (3 data points), 6 and 9 hours. DCRNN is trained based on

the following hyper parameters and parameters:

- batch size = 50, the number of training examples utilized in one iteration

- epochs = 200, the number of complete passes through the entire dataset, forward and

backward

- lr = 0.01, the learning rate. The hyperparameter for controlling the rate of the learning

process, the speed of training procedure. It determines the step size of the gradient

descent algorithm towards a minimum for the loss function.

- optimizer = Adam optimizer [63], (see section 2.2) an extension of the gradient

descent algorithm, using momentum. It reduces the oscillations during the learning

phase reaching the optimal convergence for the loss function increasing the learning

rate of the model.

https://pytorch-geometric.readthedocs.io/en/latest/

91

- Encoder and decoder layer sizes: Both encoder and decoder consist of 2 recurrent

layers. Each layer consists of 64 units.

- Maximum steps of random walks K: 3 (followed the paper definition)

6.2 Forecasting model evaluation
The two proposed GNN models, TGCN and DCRNN, are compared with each other as well

as with other two baseline methods for traffic forecasting namely ARIMA and HA. Towards

this direction, to evaluate the learning models, the standard regression evaluation metrics,

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute

Percentage Error (MAPE), are computed for each model:

𝑅𝑀𝑆𝐸 = √∑(𝑦𝑡 − ŷ 𝑡)2

𝑛

𝑖=1

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − ŷ 𝑡|

𝑛

𝑖=1

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡 − ŷ 𝑡|

𝑦𝑡

𝑛

𝑖=1

where ŷ denotes the predicted value of traffic flow, y the observed traffic flow in time t.

The error metrics are averaged on the entire graph network including all the sensors of the

graph. For example, the overall RMSE refers to the mean error of all 406 sensor time series

on the test set. To this end the evaluation metrics that are going to be presented as “prediction

performance results” in this section, refer to the overall evaluation, the overall error

calculated (averaged) across all sensors.

92

Figure 36. Learning curve of TGCN which is trained for 100 epochs.

Figures 36 and 37 show the learning curves of the two GNN models. DCRNN has a much

higher validation error than TGCN, which shows the effectiveness of the more recent and

updated with Gated Units TGCN model. Figures 38, 39 depict the results of prediction on

the short-term forecasting horizon (3 steps) on the test set of sensor MS121. Both models

manage to effectively predict traffic compared to the ground truth traffic labels. However,

the hourly aggregated data do not allow in-depth analysis of the results in terms of prediction

accuracy in high or low peaks (e.g., peak traffic hours). Moreover, the models fail to predict

extreme high or low traffic values.

93

Figure 37. Learning curve of DCRNN trained for 200 epochs.

Figures 40, 41 show the visualization results of the two GNN algorithms for the 3 hours

forecasting horizon for sensors MS985 and MS109 between 16/12/2022 and 17/12/2022.

Firstly, both prediction curves of the GNN models effectively estimate traffic flow for the

selected time window. Specifically, the TGCN has a slightly better prediction performance

than DCRNN especially in high peaks of traffic flow. In addition, it is observed that the

TGCN prediction curve almost perfectly duplicates the ground – truth time series indicating

a ”close” to overfit behavior of the model in the test set. This is an indication that the overall

structure of TGCN (including parameters and hyper – parameters settings) defines a model

that is learning the spatial and temporal information of the traffic graph almost perfectly

94

Figure 38. Traffic prediction with DCRNN on the test set 3 data points into the future. Sensor

MS121

For this reason, a suggestion would be to increase the length of training set, with the addition

of more months of traffic observations. In the context of this study, the specific time window

for traffic flow forecasting (between August and December 2022) is selected due to quality

issues that occurred in the majority of observations stored in data.gov.gr before August 2022.

These quality issues, including extremely high values of traffic flow, exceeding the flow –

speed correlation threshold, prevented the training of the GNN models for a longer period of

time. The increase of the volume of the training set (including as a result, the test set) will

enhance the overall prediction performance and accuracy of the model (and for the DCRNN

model too) being able to generalize better to unseen data.

95

Figure 39. Traffic prediction with TGCN on the test set on 3 hours forecasting horizon for

Sensor MS121.

Figure 40. Traffic prediction with TGCN (left) and DCRNN (right) of sensor MS985

between 16/12/2022 and 17/12/2022

96

Figure 41. Traffic prediction with TGCN (left) and DCRNN (right) of sensor MS109

between 16/12/2022 and 17/12/2022.

The results of DCRNN and TCCN are compared with two baseline methods. Historical

Average (HA) [95], which uses the average traffic information in the historical time series as

the prediction and Autoregressive Integrated Moving Average [96], which uses parametric

modeling for traffic prediction.

Table 4 presents the performance comparison of the T-GCN and DCRNN models with other

baseline methods for 3 different prediction horizons (3 hours, 6 hours and 9 hours) on the

OGD traffic dataset. The results show that the T-GCN model outperforms the other methods

in all evaluation metrics for all prediction horizons. Overall, the results demonstrate the

effectiveness of the T-GCN model in spatiotemporal traffic forecasting. The graph neural

network - based models perform better in terms of prediction precision than the other two

baseline methods. For example, for the 3 data points forecasting horizon the RMSE error of

TGCN and DCRNN models is decreased by approximately 70.54% and 62.65% compared

to the HA model. The MAPE metric of TCGCN is also decreased by 43.61% compared to

the HA model. Furthermore, the RMSE error of TGCN and DCRNN models decreased by

approximately 58.42% and 47.06% compared to the ARIMA model. Additionally, the results

indicate that the prediction precision decreases with the increase of the prediction horizon.

Particularly, the RMSE of DCRNN is decreased by 43,15% compared with ARIMA and

56,3% compared with HA in the 6 time – step forecasting horizon. RMSE of TGCN is

decreased by 55,27% compared with ARIMA and 65,24% compared with HA. On the 9 hours

forecasting horizon the RMSE of DCRNN is decreased by 42,2% and 47,42% compared to

97

ARIMA and HA respectively, while the RMSE of TGCN is decreased by 61,83% and

64,64%. Regarding Mean Absolute Percentage Error, TGCB achieves the best performance

with 3,98% followed by ARIMA with 4,33%, HA 7,06% and DCRNN 7,75% in the 3 hours

forecasting horizon.

Table 4. The prediction results of the T-GCN and DCRNN models and other baseline

methods on Greek open traffic dataset (all metrics represent the overall error, the mean error

among all sensors for three forecasting horizons)

Forecasting

Horizon

Metric HA ARIMA TGCN DCRNN

3

RMSE 757.58 534.51 222.2 282.92

MAE 556.35 466.47 125.12 171.69

MAPE 7.06 % 4.33 % 3.98 % 7.75 %

6

RMSE 757.58 582.33 260.42 331.04

MAE 556.35 501.13 146.73 212.52

MAPE 7.06 % 7.02% 3.96 % 7.664 %

9

RMSE 757.58 690.12 267.88 398.31

MAE 556.35 589.98 156.06 263.54

MAPE 7.06 % 6.98% 4.01 % 7.8 %

However, The T-GCN model has a strong long-term prediction ability, as it consistently

performs well regardless of the prediction horizon. The T-GCN model demonstrates this

stability through its training, resulting in a low tendency for change within all the prediction

metrics. This means that the T-GCN model can be used for both short-term and long-term

predictions, being able to capture effectively the spatial and temporal patterns on the traffic

graph.

98

7. Conclusion and future work
In recent years, Graph Neural Networks (GNNs) have achieved state – of – the – art

performance in machine learning tasks on graph structured or relational data, becoming the

frontier of deep learning research. They offer novel solutions for traffic forecasting problems

because of their powerful ability to extract spatial information from non-Euclidean structured

data that is commonly encountered in the field of mobility data. The complex spatial

dependency of traffic networks can be captured using convolution and aggregation

operations on the input graph while temporal dynamics are extracted with the integration of

recurrent sequential models.

The availability of reliable and openly accessible data repositories is of immense importance

for improving the efficiency of GNN-based models in traffic prediction tasks. These models

require vast amounts of historical traffic data to effectively learn complex spatial-temporal

patterns and make accurate predictions. To this end, Open data repositories provide a

valuable resource for the research community to access and use in their models. With access

to high-quality data, researchers can develop more advanced and accurate models, leading to

improved traffic predictions and a better understanding of the underlying patterns and

dependencies. The importance of trustworthy open data repositories cannot be overstated, as

they play a crucial role in advancing the field of traffic forecasting and improving its impact

on society, business and public services. Over the last decades, the public sector and

governments have started to collect and store different kinds of data including dynamic traffic

data on their public, freely accessed repositories. As a result, Open Government Data can be

not only reused by citizens and private sector but also combined with other digital

technologies and assets, such as AI based applications to created new added value, modern

digital services and products.

The main contribution of this thesis is to demonstrate the potential of the recently emerged

Open Government Data (OGD), particularly open traffic data, on GNN based traffic

forecasting. More precisely, this work focuses on exploring whether historical traffic data

obtained by the Greek Open Government portal can be used for predicting future traffic flows

through the implementation of highly efficient Graph Neural Networks. To the authors’

knowledge, this is the first time a study has explored the creation of such state – of – the - art

99

models on Greek OGD dataset exploiting their discoverability, reusability and accessibility.

In this context, the research approach includes several steps, from data exploration, cleaning

(missing values exploration, anomaly detection) to graph modeling of the traffic network and

finally graph machine learning prediction. The proposed methodology can be applied to other

OGD portals or open traffic datasets especially the cleaning, exploration components and

graph modeling components.

The findings of this thesis showed that considering the time frame between 5 November 2020

and 18 December 2022 13.47% of the total observations are missing. The missing rate is

decreased after January 2022. Moreover, considering the time window between January and

July 2022, the flow – speed correlation analysis method detected 1,230,928 anomalies

(59.4% of the total observations). On the contrary, the flow speed correlation analysis results

on the final time window, between August and December 2022, showed a significant

improvement on the quality of the open data. For example, the maximum number of

observations exceeding the flow – speed threshold is only 4 for sensor “MS967_A”. In

conclusion, the analysis of missing values and flow speed correlations in open government

data highlights the need for increased attention to data quality and accuracy. The results of

this analysis serve as a call to action for all stakeholders involved in collecting and managing

government data to work towards improving the quality and reliability of the data.

Finally, the processed dataset is used for predicting future traffic states (flows), forming a

temporal graph consisting of 406 nodes. The graph structure of the traffic networks is

modelled using an adjacency matrix based on the distances between traffic sensors. For

modeling the spatial topology of the graph together with complex, nonlinear temporal

information, two GNN models are proposed for traffic prediction: Temporal Graph

Convolutional Network and Diffusion Convolutional Recurrent Network. Both models deal

with nonlinear temporal dependencies using different variations of Long Short Memory

networks and Gated Recurrent Units. They differ in spatial modeling of the graph using

Graph Convolutions (TGCN) and random walks (DCRNN). Overall, the TGCN model

achieves the best prediction results under different prediction horizons compared with

DCRNN and baselines. Both GNN models achieved more than 50% improvement among the

basic prediction metrics (RMSE, MAE, MAPE) highlighting the efficiency of capturing the

100

topological structure of the graph and ultimately determining the future traffic flow taking

into consideration not only the historical temporal dynamics but the also the underlined

topology. Compared to traditional nonparametric models (HA, ARIMA) GNNs manage to

learn the topology better: since traffic flow at a particular spatial counting unit (sensor,

intersection) is immediately affected by the adjacent traffic (within a certain distance).

In summary, the major findings of this thesis demonstrate that OGD traffic data may confront

major quality issues although they may be easily retrieved and frequently updated. Following

the proposed cleaning and preprocessing steps, they can be used for traffic prediction tasks

using advanced GNN algorithms. Evaluating the two proposed models on the cleansed data

set highlighted the promising, extremely efficient graph representation learning with Graph

Neural Networks.

Towards the implementation of this research, there were many questions and open points for

future work. As it is clearly stated on the related works section, most of the GNNs already

applied in research papers evaluate the novel models on traffic datasets with 5 – minutes

intervals. Unfortunately, the Greek OGD provides only hourly aggregated traffic attributes.

This issue mainly raises two problems: firstly, the traffic prediction task is not realistic and

efficiently applied on decision making when time is aggregated in such big intervals. As a

result, the GNN model learns patterns from an aggregated aspect, rather than analyzing deep

temporal signals within smaller intervals. Secondly, smaller intervals mean largest dataset

and biggest training size. The amount of data that, not only GNNs, but deep learning models

are also trained on is significant for enhancing the prediction results. To this end, it is of high

priority to further expand this study on Open Government Data portals that support the store

of protogenic, raw traffic data allowing the time aggregation to 5 minutes intervals according

to the vast majority of GNN traffic forecasting research. Data portals that also offer streaming

data is also a priority.

Another plan for future work is the search of explainable models that interpret graph machine

learning tasks [97, 98]. In the context of traffic forecasting with GNNs, it would be profitable

for example, to highlight which nodes (sensors) of the graph contributed the most on the

prediction task, along with their attributes (traffic flow, speed, weather) and also on the time

axis. Most of the related research works has focused in GNN explainabilty of node

101

classification and link prediction tasks. Although it is not challenging to apply these methods

for node regression tasks, such as traffic flow or speed, there are not yet sufficient research

papers on temporal graph regression tasks. For instance, the popular GNN explainer [103] or

Graph SVX [104] are graph explainers that are applied on tasks that are not related with the

temporal dimension. Therefore, explaining a temporal GNN is a research topic that have not

yet been explored. One direction towards explaining the predictions of a temporal GNN, is

the interpretation of attention weights of attention – based GNNs. By default, the structure

of an attention mechanism is based on the selection of nodes and attributes that mostly affect

the prediction result. Therefore, the corresponding attention weights could be used for model

explanations, for both spatial and temporal embeddings.

102

APPENDIX

A. Adjacency Matrix – Graph creation

Read traffic data
import pandas as pd

df_merged = pd.read_csv("data4.csv")

del df_merged["Unnamed: 0"]

df_merged

Read geospatial data (location of each sensor)
geo_df = pd.read_csv('geospatial data.csv')

df_merged =

df_merged[df_merged["deviceid"].isin(geo_df['Deviceid'])]

Compute the distance matrix for all sensors using

Haversine distance.
import numpy as np

from sklearn.neighbors import DistanceMetric

dist = DistanceMetric.get_metric('haversine')

distances_df =

pd.DataFrame(dist.pairwise(geo_df[['lat','long']].to_numpy())

*6373*1000, columns=geo_df.Deviceid.unique(),

index=geo_df.Deviceid.unique())

distances_df

import pandas as pd

import numpy as np

sensor_distances = pd.read_csv("distances406.csv",

header=None).to_numpy()

speeds_array = pd.read_csv('counted_piv406.csv',

header=None).to_numpy()

print(f"sensor_distances shape={sensor_distances.shape}")

print(f"speeds_array shape={speeds_array.shape}")

Function of the Adjacency Matrix
def compute_adjacency_matrix(

103

 sensor_distances: np.ndarray, sigma2: float, epsilon:

float

):

 """Computes the adjacency matrix from distances matrix.

 It uses the formula in

https://github.com/VeritasYin/STGCN_IJCAI-18#data-

preprocessing to

 compute an adjacency matrix from the distance matrix.

 The implementation follows that paper.

 Args:

 route_distances: np.ndarray of shape `(num_routes,

num_routes)`. Entry `i,j` of this array is the

 distance between roads `i,j`.

 sigma2: Determines the width of the Gaussian kernel

applied to the square distances matrix.

 epsilon: A threshold specifying if there is an edge

between two nodes. Specifically, `A[i,j]=1`

 if `np.exp(-w2[i,j] / sigma2) >= epsilon` and

`A[i,j]=0` otherwise, where `A` is the adjacency

 matrix and `w2=route_distances * route_distances`

 Returns:

 A boolean graph adjacency matrix.

 """

 num_routes = sensor_distances.shape[0]

 sensor_distances = sensor_distances / 10000.0

 w2, w_mask = (

 sensor_distances * sensor_distances,

 np.ones([num_routes, num_routes]) -

np.identity(num_routes),

)

 return (np.exp(-w2 / sigma2) >= epsilon) * w_mask

Traffic Graph Creation
import typing

class GraphInfo:

 def __init__(self, edges: typing.Tuple[list, list],

num_nodes: int):

 self.edges = edges

 self.num_nodes = num_nodes

sigma2 = 0.1

epsilon = 0.5

104

adjacency_matrix = compute_adjacency_matrix(sensor_distances,

sigma2, epsilon)

node_indices, neighbor_indices = np.where(adjacency_matrix ==

1)

graph = GraphInfo(

 edges=(node_indices.tolist(), neighbor_indices.tolist()),

 num_nodes=adjacency_matrix.shape[0],

)

print(f"number of nodes: {graph.num_nodes}, number of edges:

{len(graph.edges[0])}")

adj_df = pd.DataFrame(adjacency_matrix)

adj_df.to_csv('adj_csv406.csv', index = False, header = None)

import pandas as pd

import warnings

from IPython.display import clear_output

warnings.filterwarnings('ignore')

import numpy as np

from IPython.display import clear_output

def read_data(features_csv, adj_csv):

 urban_core_flows = pd.read_csv(features_csv, header=None)

 adj_matrix_df = pd.read_csv(adj_csv, header=None)

 adj_matrix = np.array(adj_matrix_df)

 flows_df = urban_core_flows

 flows = np.array(speeds_df)

 return adj_matrix_df, urban_core_flows, adj_matrix, flows

adj_matrix_df, urban_core_flows, adj_matrix, flows =

read_data(

 'counted_piv406.csv',

 'adj_csv406.csv')

105

B. Temporal Graph Convolutional Network (TGCN)

Split the data
test_split = 650

split = flows.shape[1] - test_split

split = int(speeds.shape[1] * train_test_split)

train_data = flows[:, :split]

test_data = flows[:, split:]

print("Train data: ", train_data.shape)

print("Test data: ", test_data.shape)

import matplotlib.pyplot as plt

plt.figure(figsize=(10,7))

plt.plot(range(len(train_data[2])), train_data[2], 'g',

label="Train Data")

plt.plot(range(len(train_data[2]), len(flows[2])),

test_data[2], 'b', label="Test Data")

plt.xlabel('Time')

plt.ylabel(Flow)

plt.legend(loc="upper left")

plt.show()

Min – max scaling
max_flow = train_data.max()

min_flow = train_data.min()

train_scaled = (train_data - min_speed) / (max_flow -

min_flow)

test_scaled = (test_data - min_speed) / (max_flow - min_flow)

plt.figure(figsize=(10,7))

plt.plot(range(len(train_data[2])), train_scaled[2], 'g',

label="Scaled Train Data")

plt.plot(range(len(train_data[2]), len(flows[2])),

test_scaled[2], 'b', label="Scaled Test Data")

plt.xlabel('Time')

plt.ylabel('Scaled Flow')

plt.legend(loc="upper left")

plt.show()

Time window definition, 12 past observations, 3 time

steps prediction horizon
seq_len = 12

pre_len = 3

106

def build_features_labels(seq_len, pre_len, train_data,

test_data):

 X_train, Y_train, X_test, Y_test = [], [], [], []

 for i in range(train_data.shape[1] - int(seq_len +

pre_len - 1)):

 a = train_data[:, i : i + seq_len + pre_len]

 X_train.append(a[:, :seq_len])

 Y_train.append(a[:, -1])

 for i in range(test_data.shape[1] - int(seq_len + pre_len

- 1)):

 b = test_data[:, i : i + seq_len + pre_len]

 X_test.append(b[:, :seq_len])

 Y_test.append(b[:, -1])

 X_train = np.array(X_train)

 Y_train = np.array(Y_train)

 X_test = np.array(X_test)

 Y_test = np.array(Y_test)

 return X_train, Y_train, X_test, Y_test

X_train, Y_train, X_test, Y_test =

build_features_labels(seq_len, pre_len, train_scaled,

test_scaled)

print(X_train.shape)

print(Y_train.shape)

print(X_test.shape)

print(Y_test.shape)

TGCN Model creation
from stellargraph.layer import GCN_LSTM

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import Sequential, Model

from tensorflow.keras.layers import LSTM, Dense, Dropout,

Input

def build_model():

 gcn_lstm = GCN_LSTM(

 seq_len=seq_len,

 adj=adj_matrix,

 gc_layer_sizes=[64, 10],

107

 gc_activations=["relu", "relu"],

 lstm_layer_sizes=[256, 256],

 lstm_activations=["tanh", "tanh"],

)

 x_input, x_output = gcn_lstm.in_out_tensors()

 model = Model(inputs=x_input, outputs=x_output)

 model.compile(optimizer="adam", loss="mse")

 return model

clear_output()

model = build_model()

model.summary()

Training TGCN
history = model.fit(X_train, Y_train, epochs=100,

batch_size=50, shuffle=True, verbose=1, validation_split=0.1)

loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(1, len(loss)+1)

plt.plot(epochs, loss, label='Train MSE')

plt.plot(epochs, val_loss, label='Val MSE')

plt.xlabel('Epoch')

plt.ylabel('MSE')

plt.legend(loc="upper left")

plt.show()

train_preds = model.predict(X_train)

test_preds = model.predict(X_test)

max_flow = train_data.max()

min_speed = train_data.min()

train_original = np.array(Y_train * max_flow)

test_original = np.array(Y_test * max_flow)

train_preds = np.array((train_preds) * max_flow)

test_preds = np.array((test_preds) * max_flow)

Visualize predictions for all sensors at time step

100
plt.figure(figsize=(10,7))

108

plt.plot(range(len(test_original[100])), test_original[100],

label='Ground Truth')

plt.plot(range(len(test_preds[100])), test_preds[100],

label='Predictions')

plt.xlabel('Sensor')

plt.ylabel('Speed')

plt.legend(loc="upper left")

plt.show()

Visualization of the predictions of sensor 100 at

the test set
plt.figure(figsize=(10,7))

plt.plot(range(len(test_original[:, 100])), test_original[:,

100], label='Ground Truth')

plt.plot(range(len(test_preds[:, 100])), test_preds[:, 100],

label='Predictions')

plt.xlabel('Time')

plt.ylabel('Flow')

plt.legend(loc="upper left")

plt.show()

Overall evaluation of TGCN among all sensors

(average error from all time series)
from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

def mean_absolute_percentage_error(y_true, y_pred):

 y_true, y_pred = np.array(y_true), np.array(y_pred)

 y_true += 1e-18 #add small values to true velocities to

avoid division by zeros

 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

print('RMSE: ', np.sqrt(mean_squared_error(test_original,

test_preds)))

print('MAE: ', mean_absolute_error(test_original,

test_preds))

print('MAPE: ', mean_absolute_percentage_error(test_original,

test_preds))

109

C. Diffusion Convolutional Recurrent Neural Network (DCRNN)

Import Packages
import torch

from IPython.display import clear_output

pt_version = torch.__version__

!pip install torch-scatter -f https://pytorch-

geometric.com/whl/torch-${pt_version}.html

!pip install torch-sparse -f https://pytorch-

geometric.com/whl/torch-${pt_version}.html

!pip install torch-cluster -f https://pytorch-

geometric.com/whl/torch-${pt_version}.html

!pip install torch-spline-conv -f https://pytorch-

geometric.com/whl/torch-${pt_version}.html

!pip install torch-geometric

!pip install torch-geometric-temporal

clear_output()

Read Traffic Data
import pandas as pd

df_merged = pd.read_csv("data4.csv")

del df_merged["Unnamed: 0"]

df_merged

Read Geospatial data
geo_df = pd.DataFrame(pd.read_csv("geospatial data.csv"

geo_df =

geo_df[geo_df['Deviceid'].isin(reshape_top_sensors.index)]

geo_df

Compute Distances for the Adjacency Matrix creation
import numpy as np

from sklearn.neighbors import DistanceMetric

dist = DistanceMetric.get_metric('haversine')

geo_df['lat'] = np.radians(geo_df['lat'])

geo_df['long'] = np.radians(geo_df['long'])

distances_df =

pd.DataFrame(dist.pairwise(geo_df[['lat','long']].to_numpy())

*6373*1000, columns=geo_df.Deviceid.unique(),

index=geo_df.Deviceid.unique())

110

distances_df

distances_df = distances_df.reset_index(drop = True)

distances_df.to_csv('distances406.csv', header=False,

index=False)

reshape_top_sensors = df_merged.pivot(index = 'deviceid',

columns = 'appprocesstime', values = 'countedcars')

Find the rows with a large number of zeros

zero_rows =

reshape_top_sensors[reshape_top_sensors.eq(0).sum(1) >

0.5*reshape_top_sensors.shape[1]]

print(f'Rows with a large number of zeros: {zero_rows}')

Find the rows with a large number of NaNs

nan_rows =

reshape_top_sensors[reshape_top_sensors.isna().sum(1) >

0.5*reshape_top_sensors.shape[1]]

print(f'Rows with a large number of NaNs: {nan_rows}')

Drop the rows with a large number of zeros

reshape_top_sensors =

reshape_top_sensors.drop(index=zero_rows.index)

Drop the rows with a large number of NaNs

reshape_top_sensors =

reshape_top_sensors.drop(index=nan_rows.index)

reshape_top_sensors =

reshape_top_sensors.interpolate(method='linear')

reshape_top_sensors

reshape_top_sensors.isnull().any().sum()

reshape_top_sensors.to_csv('counted_piv406.csv' , index =

False, header = None)

import numpy as np

import pandas as pd

def read_data(features_csv, adj_csv):

 urban_core_speeds = pd.read_csv(features_csv,

header=None)

 adj_matrix_df = pd.read_csv(adj_csv, header=None)

 adj_matrix = np.array(adj_matrix_df)

 speeds_df = urban_core_speeds

 speeds = np.array(speeds_df)

111

 return adj_matrix_df, urban_core_speeds, adj_matrix,

speeds

adj_matrix_df, urban_core_speeds, adj_matrix, speeds =

read_data(

 'counted_406.csv',

 'adj_406.csv')

"""Train test split the data"""

test_split = 650

val_split = 326

split = speeds.shape[1] - test_split

train_data = speeds[:, :split-int(val_split)]

test_data = speeds[:, split:]

val_data = speeds[:, split-int(val_split):split]

print("Train data: ", train_data.shape)

print("Test data: ", test_data.shape)

print("Val data: ", val_data.shape)

Min – max scaling of data
max_speed = train_data.max()

min_speed = train_data.min()

train_data = (train_data - min_speed) / (max_speed -

min_speed)

test_data = (test_data - min_speed) / (max_speed - min_speed)

val_data = (val_data - min_speed) / (max_speed - min_speed)

train_data.shape, test_data.shape, val_data.shape

adj_matrix_df = adj_matrix_df.iloc[1:]

adj_matrix_df = adj_matrix_df.iloc[:, 1:]

adj_matrix = np.array(adj_matrix_df)

Build the prediction window (12 past observations /

3 time steps prediction horizon)
sequence_len = 12

prediction_len = 3

def build_features_labels(sequence_len, prediction_len,

train_data, test_data, val_data):

 X_train, Y_train, X_test, Y_test, X_val, Y_val = [], [],

[], [], [], []

112

 for i in range(train_data.shape[1] - int(sequence_len +

prediction_len - 1)):

 a = train_data[:, i : i + sequence_len +

prediction_len]

 X_train.append(a[:, :sequence_len])

 Y_train.append(a[:,

sequence_len:sequence_len+prediction_len])

 for i in range(test_data.shape[1] - int(sequence_len +

prediction_len - 1)):

 b = test_data[:, i : i + sequence_len +

prediction_len]

 X_test.append(b[:, :sequence_len])

 Y_test.append(b[:,

sequence_len:sequence_len+prediction_len])

 for i in range(val_data.shape[1] - int(sequence_len +

prediction_len - 1)):

 b = val_data[:, i : i + sequence_len +

prediction_len]

 X_val.append(b[:, :sequence_len])

 Y_val.append(b[:,

sequence_len:sequence_len+prediction_len])

 X_train = np.array(X_train)

 Y_train = np.array(Y_train)

 X_test = np.array(X_test)

 Y_test = np.array(Y_test)

 X_val = np.array(X_val)

 Y_val = np.array(Y_val)

 return X_train, Y_train, X_test, Y_test, X_val, Y_val

X_train, Y_train, X_test, Y_test, X_val, Y_val =

build_features_labels(sequence_len,

prediction_len,

train_data,

test_data,

val_data)

print(X_train.shape)

print(Y_train.shape)

113

print(X_test.shape)

print(Y_test.shape)

print(X_val.shape)

print(Y_val.shape)

edges = np.nonzero(adj_matrix)

edges = np.vstack([edges, adj_matrix[edges]])

edge_index = edges[:2, :].astype(float)

edge_attr = edges[2, :].astype(float)

print('Edges shape: ', edge_index.shape, ', Attr shape:

',edge_attr.shape)

Create a PyTorch Temporal Graph
from torch_geometric_temporal.signal

import StaticGraphTemporalSignal

train_loader = StaticGraphTemporalSignal(edge_index,

edge_attr, X_train, Y_train)

test_loader = StaticGraphTemporalSignal(edge_index,

edge_attr, X_test, Y_test)

val_loader = StaticGraphTemporalSignal(edge_index, edge_attr,

X_val, Y_val)

next(iter(train_loader))

DCRNN Model Creation
import torch

import torch.nn.functional as F

from torch_geometric_temporal.nn.recurrent import DCRNN

class DCRNNModel(torch.nn.Module):

 def __init__(self, node_features, output_len):

 super(DCRNNModel, self).__init__()

 self.dcrnn = DCRNN(node_features, 32, 1)

 self.linear = torch.nn.Linear(32, output_len)

 def forward(self, x, edge_index, edge_weight):

 h = self.dcrnn(x, edge_index, edge_weight)

 h = F.relu(h)

 h = self.linear(h)

 return h

Model evaluation function
def evaluate_model(model, val_loader):

 loss = 0

 step = 0

 model.eval()

114

 with torch.no_grad():

 for snapshot in val_loader:

 snapshot = snapshot.to(device)

 y_hat = model(snapshot.x, snapshot.edge_index,

snapshot.edge_attr)

 loss = loss + torch.mean(torch.abs(y_hat-

snapshot.y))

 step += 1

 loss = loss / (step + 1)

 print("Val MAE: {:.4f}".format(loss.item()))

 return loss

Training DCRNN
model = DCRNNModel(node_features = 12, output_len=3)

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

device = torch.device("cuda") if torch.cuda.is_available()

else torch.device("cpu")

train_losses, val_losses = [], []

for epoch in range(200):

 print('Epoch: ', epoch+1)

 print('==========')

 loss = 0

 model.train()

 for time, snapshot in enumerate(train_loader):

 snapshot = snapshot.to(device)

 y_hat = model(snapshot.x, snapshot.edge_index,

snapshot.edge_attr)

 loss = loss + torch.mean(torch.abs(y_hat-snapshot.y))

 loss = loss / (time+1)

 loss.backward()

 optimizer.step()

 optimizer.zero_grad()

 train_losses.append(loss.item())

 print("Train MAE: {:.4f}".format(loss.item()))

 va_loss = evaluate_model(model, val_loader)

 val_losses.append(va_loss.item())

115

Visualize Learning Curve

import matplotlib.pyplot as plt

plt.figure(figsize=(10,7))

plt.plot(range(1, len(train_losses)+1), train_losses, label='Train Loss')

plt.plot(range(1, len(val_losses)+1), val_losses, label='Val Loss')

plt.legend(loc="upper left")

plt.show()

max_speed = train_data.max()

min_speed = train_data.min()

Make predictions for test data
model.eval()

y_preds = list()

y_true = list()

for snapshot in test_loader:

 y = snapshot.y.cpu().numpy()

 y_pred = model(snapshot.x, snapshot.edge_index,

 snapshot.edge_attr).view(len(

 snapshot.x), -1).cpu().detach().numpy()

 y = np.array(y * (max_speed - min_speed) + min_speed)

 y_pred = np.array(y_pred * (max_speed - min_speed) +

min_speed)

 y_preds.extend(list(y_pred))

 y_true.extend(list(y))

y_preds = np.array(y_preds)

y_true = np.array(y_true)

y_preds = y_preds.reshape(int(y_preds.shape[0]/(406)), 406,

3)

y_true = y_true.reshape(int(y_true.shape[0]/(406)), 406, 3)

Prediction Visualization for all sensors at time

step 100
y_sample = y_true[:, 100, 0]

y_pred_sample = y_preds[:, 100, 0]

plt.figure(figsize=(10,7))

plt.plot(range(len(y_sample)), y_sample, label='Ground

Truth')

plt.plot(range(len(y_pred_sample)), y_pred_sample,

label='Predictions')

plt.xlabel('Time')

plt.ylabel('Speed')

plt.legend(loc="upper left")

116

plt.show()

Overall Evaluation of the prediction on the test

data (for all sensors)
from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

def mean_absolute_percentage_error(y_true, y_pred):

 y_true, y_pred = np.array(y_true), np.array(y_pred)

 y_true += 1e-18 #add small values to true velocities to

avoid division by zeros

 return np.mean(np.abs((y_true - y_pred) / y_true))

print('RMSE: ', np.sqrt(mean_squared_error(y_true.flatten(),

y_preds.flatten())))

print('MAE: ', mean_absolute_error(y_true.flatten(),

y_preds.flatten()))

print('MAPE: ',

mean_absolute_percentage_error(y_true.flatten(),

y_preds.flatten()), "%")

117

REFERENCES
[1] Emissions Gap Report 2021, United Nations Environment Programme.

[2] World Cities Report 2020, United Nations Human Settlements – Programme (UN –

Habitat)

[3] Special Report: Sustainable Urban Mobility in the EU 2020, European Court of Auditors

[4] Special report 23/2018: Air pollution: Our health still insufficiently protected

[5] Simon Elias Bibri , April 2018, The IoT for smart sustainable cities of the future: An

analytical framework for sensor-based big data applications for environmental sustainability

[6] Weiwei Jiang, Jiayun Luo, 2022, Graph Neural Network for Traffic Forecasting: A

Survey.

[7] Austin Derrow-Pinion et al, 2021, ETA Prediction with Graph Neural Networks in

Google Maps

[8] João Rico, José Barateiro, Arlindo Oliveira, 2019, GRAPH NEURAL NETWORKS FOR

TRAFFIC FORECASTING

[9] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012, ImageNet Classification with

Deep Convolutional Neural Networks

[10] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. Sainath, et al., Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups, IEEE Signal Processing Magazine,

vol. 29, no. 6, pp. 82– 97, 2012.

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural

Language Processing (Almost) from Scratch,” J. Mach. Learn. Res., vol. 12, no. Aug, pp.

2493–2537, 2011

[12] Doganalp Ergenc¸ Ertan Onur, 2019, On Network Traffic Forecasting using

Autoregressive Models

118

[13] Dmitry Pavlyuk, 16thConference on Reliability and Statistics in Transportation and

Communication, RelStat’2016, 19-22 October, 2016, Riga, Latvia, Short-Term Traffic

Forecasting Using Multivariate Autoregressive Models.

[14] Billy M. Williams, M.ASCE1 and Lester A. Hoel, 2014, Modeling and Forecasting

Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical

Results

[15] Lun Zhang, Qiuchen Liu, Wenchen Yang, Nai Wei, Decun Dong, 13th COTA

International Conference of Transportation Professionals (CICTP 2013), An Improved K-

nearest Neighbor Model for Short-term Traffic Flow Prediction

[16] Qi, Yan, Ishak, Sherif, 2014, A Hidden Markov Model for short term prediction of traffic

conditions on freeways

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436–444, May 2015.

[18] L. Deng and D. Yu, Deep learning: Methods and applications, Foundations and Trends

in Signal Processing, vol. 7, nos. 3&4, pp. 197–387, 2014

[19] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, Yinhai Wang, Stacked Bidirectional and

Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

[20] Rose Yu, Yaguang Li, Cyrus Shahabi, Ugur Demiryurek, Yan Liu, Deep Learning: A

Generic Approach for Extreme Condition Traffic Forecasting

[21] Weiwei Jiang and Lin Zhang, 2019, Geospatial Data to Images: A Deep-Learning

Framework for Traffic Forecasting

[22] Xiaolei Ma, Zhuang Dai, Zhengbing He, Jihui Ma, Yong Wang and Yunpeng Wang,

2017, Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale

Transportation Network Speed Prediction

[23] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph

convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

119

[24] Q. Liu, M. Allamanis, M. Brockschmidt, and A. Gaunt, “Constrained Graph Variational

Autoencoders for Molecule Design,” in Advances in Neural Information Processing Systems

31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

Eds. Curran Associates, Inc., 2018, pp. 7795 780

[25] Agafonov, A. (2020). Traffic flow prediction using graph convolutional neural

networks. In 2020 10th International Conference on Information Science and Technology

(ICIST) (pp. 91{95). IEEE.

[26] Ke, J., Qin, X., Yang, H., Zheng, Z., Zhu, Z., & Ye, J. (2021b). Predicting origin-

destination ride-sourcing demand with a spatio-temporal encoderdecoder residual multi-

graph convolutional network. Transportation Research Part C: Emerging Technologies, 122,

102858.

[27] Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., & Wang, H. (2020b). Constgat:

Contextual spatial temporal graph attention network for travel time estimation at baidu maps.

[28] Yu, Bing, Haoteng Yin, and Zhanxing Zhu. "Spatio-temporal graph convolutional

networks: A deep learning framework for traffic forecasting." arXiv preprint

arXiv:1709.04875 (2017).

[29] Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018b). Diffusion convolutional recurrent neural

network: Data-driven traffic forecasting. In the International Conference on Learning

Representations (ICLR ’18).

[30] Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; and

Bengio, Y. 2015. Show, attend and tell: Neural image caption generation with visual

attention. In International conference on machine learning, 2048–2057.

[31] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, Huaiyu Wan, The Thirty-Third

AAAI Conference on Artificial Intelligence (AAAI-19), Attention Based Spatial-Temporal

Graph Convolutional Networks for Traffic Flow Forecasting

[32] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-

temporal graph modeling. In Proceedings of the TwentyEighth International Joint

Conference on Artificial Intelligence, IJCAI-19 (pp. 1907–1913). International Joint

120

Conferences on Artificial Intelligence Organization. URL:

https://doi.org/10.24963/ijcai.2019/264. doi:10. 24963/ijcai.2019/264.

[33] Bing Yu, Mengzhang Li, Jiyong Zhang, Zhanxing Zhu, 2019, 3D Graph Convolutional

Networks with Temporal Graphs: A Spatial Information Free Framework For Traffic

Forecasting

[34] Jiani Zhang, Xingjian Shi , Junyuan Xie, Hao Ma, Irwin King, Dit-Yan Yeung, 2018,

GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs

[35] Qi Zhang, Jianlong Chang, Gaofeng Meng, Shiming Xiang, Chunhong Pan, The Thirty-

Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Spatio-Temporal Graph

Structure Learning for Traffic Forecasting.

[36] Mengzhang Li, Zhanxing Zhu, 2021, Spatial-Temporal Fusion Graph Neural Networks

for Traffic Flow Forecasting

[37] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, Jianzhong, The Thirty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-20), GMAN: A Graph Multi-Attention Network

for Traffic Prediction

[38] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, Can Wang, 2020, Adaptive Graph

Convolutional Recurrent Network for Traffic Forecasting

[39] Zheng Fang, Qingqing Long, Guojie Song, Kunqing Xie, 2021, Spatial-Temporal Graph

ODE Networks for Traffic Flow Forecasting

[40] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in International Conference on Artificial Intelligence and Statistics, vol. 9.

PLMR, 2010, pp. 249–256.

[41] Chigozie Enyinna Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen

Marshall, 2018, Activation Functions: Comparison of Trends in Practice and Research for

Deep Learning

[42] A. Maas, A. Hannun, and A. Ng, “Rectifier Nonlinearities Improve Neural Network

Acoustic Models,” in International Conference on Machine Learning (icml), 2013.

121

[43] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. (2017).

[44] Pei Quan Yong Shi, Minglong Lei, Jiaxu Leng, Tianlin Zhang, Lingfeng Niu, A Brief

Review of Receptive Fields in Graph Convolutional Networks

[45] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in neural

information processing systems. 3844–3852.

[46] Hossein Gholamalinezhad, Hossein Khosravi, Pooling Methods in Deep Neural

Networks, a Review, Faculty of Electrical & Robotics Engineering, Shahrood University of

Technology, 2020

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Microsoft Research Deep

Residual Learning for Image Recognition, 2015.

[48] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, Shirui Pa, 2022,

Towards Unsupervised Deep Graph Structure Learning

[49] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alipp, 2020, Spectral Clustering with

Graph Neural Networks for Graph Pooling

[50] J. S. Bridle, ‘‘Probabilistic interpretation of feedforward classification network outputs,

with relationships to statistical pattern recognition,’’ in Neurocomputing. Berlin, Germany:

Springer, 1990, pp. 227–236.

[51] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A. Kannan, R.

J. Weiss, K. Rao, E. Gonina, et al. State-of-the-art speech recognition with sequence-to-

sequence models. In 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4774–4778. IEEE, 2018.

[52] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to

align and translate. ICLR, 2015.

122

[53] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph

neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80,

2008.

[54] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-structured

data,” arXiv:1506.05163, 2015.

[55] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep generative

models of graphs,” arXiv:1803.03324, 2018.

[56] Jiexia Ye, Juanjuan Zhao, Kejiang Ye, IEEE Member, Chengzhong Xu, IEEE Fellow,

“How to Build a Graph-Based Deep Learning Architecture in Traffic Domain: A Survey”,

2020

[57] Larkin Liu, Yu-Chung Lin, Joshua Reid, “Improving the Performance of the LSTM and

HMM Model via Hybridization”, February 2021

[58] Yassin Khalifa, Danilo Mandic, Ervin Sejdic, “A review of Hidden Markov models and

Recurrent Neural Networks for event detection and localization in biomedical signals”, May

2021

[59] Achille Salaün, yohan Petetin, François Desbouvries. Comparing the modeling powers

of RNN and HMM. ICMLA 2019: 18th International Conference on Machine Learning and

Applications, Dec 2019, Boca Raton, FL, United States. pp.1496-1499. ffhal-02387002

[60] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent

neural networks on sequence modeling,” in NIPS Workshop, 2014.

[61] Bachechi, C., Rollo, F. & Po, L. Detection and classification of sensor anomalies for

simulating urban traffic scenarios. Cluster Comput 25, 2793–2817 (2022).

https://doi.org/10.1007/s10586-021-03445-7

[62] C. Zhang, J. J. Q. Yu and Y. Liu, "Spatial-Temporal Graph Attention Networks: A Deep

Learning Approach for Traffic Forecasting," in IEEE Access, vol. 7, pp. 166246-166256,

2019, doi: 10.1109/ACCESS.2019.2953888.

https://doi.org/10.1007/s10586-021-03445-7

123

[63] D. P. Kingma and J. Ba, ``Adam: A method for stochastic optimization,'' 2014,

arXiv:1412.6980. [Online]. Available: https://arxiv.org/abs/1412.6980

[64] Pereira, G.V.; Macadar, M.A.; Luciano, E.M.; Testa, M.G. Delivering public value

through open government data initiatives in a Smart City context. Inf. Syst. Front. 2017, 19,

213–229.

[65] Hosagrahara, A.: ‘Improving engine and vehicle design using Big engineering data

analytics and Matlab’ (MathWorks-Automotive Conference, Natick, 2015)

[66] Cui, Y.X., Sun, L., Li, H.S., et al.: ‘Interactive safety analysis framework of autonomous

intelligent vehicles’. MATEC Web of Conf., Hong Kong, 2016, vol. 44

[67] Urra, O., Ilarri, S., Trillo Lado, R.: ‘An approach driven by mobile agents for data

management in vehicular networks’, Inf. Sci., 2017, 381, pp. 55–77

[68] Louhghalam, A., Akbarian, M., Ulm, F.J.: ‘Carbon management of infrastructure

performance: integrated big data analytics and pavementvehicle-interactions’, J. Clean Prod.,

2017, 142, pp. 956–964

[69] Petrovska, N., Stevanovic, A., Furht, B.: ‘Innovative web applications for analyzing

traffic operations’ (Springer, London, 2016)

[70] Horn, C., Gursch, H., Kern, R., et al.: ‘QZTool automatically generated origin-

destination matrices from cell phone trajectories’, Adv. Hum. Aspects Transp., 2017, 484,

pp. 823–833

[71] Cerotti, D., Distefano, S., Merlino, G., et al.: ‘A crowd-cooperative approach for

intelligent transportation systems’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 1529–

1539

[72] Tien, I., Musaev, A., Benas, D., et al.: ‘Detection of damage and failure events of critical

public infrastructure using social sensor Big Data’. Proc. of Int. Conf. on Internet of Things

and Big Data, Rome, Italy, 2016

[73] Lv, Y., Duan, Y., Kang, W., et al.: ‘Traffic flow prediction with Big Data: a deep

learning approach’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 865–873

https://arxiv.org/abs/1412.6980

124

[74] J. Zhang et al., “Data-driven intelligent transportation systems: A survey,”

IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1624–1639, Dec. 2011.

[75] C. L. Philip Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques

and technologies: A survey on Big Data,” Inf. Sci., vol. 275, pp. 314–347, Aug. 2014

[76] Kalampokis, E.; Tambouris, E.; Tarabanis, K. A classification scheme for open

government data: Towards linking decentralised data. Int. J. Web Eng. Technol. 2011, 6,

266–285.

[77] Attard, J.; Orlandi, F.; Scerri, S.; Auer, S. A systematic review of open government data

initiatives. Gov. Inf. Q. 2015, 32, 399–418.

[78] Shadbolt, N.; O’Hara, K.; Berners-Lee, T.; Gibbins, N.; Glaser, H.; Hall, W.; schraefel,

M. Linked Open Government Data: Lessons from Data.gov.uk. IEEE Intell. Syst. 2012, 27,

16–24.

[79] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020b). A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning

Systems, .

[80] Zhao, Ling, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and

Haifeng Li. "T-gcn: A temporal graph convolutional network for traffic prediction." IEEE

transactions on intelligent transportation systems 21, no. 9 (2019): 3848-3858.

[81] Kalampokis, Evangelos, Efthimios Tambouris, and Konstantinos Tarabanis. "Open

government data: A stage model." In Electronic Government: 10th IFIP WG 8.5 International

Conference, EGOV 2011, Delft, The Netherlands, August 28–September 2, 2011.

Proceedings 10, pp. 235-246. Springer Berlin Heidelberg, 2011..

[82] Ubaldi, Barbara. "Open government data: Towards empirical analysis of open

government data initiatives." (2013).

[83] Zhang, Jing, Gabriel Puron-Cid, and J. Ramon Gil-Garcia. "Creating public value

through Open Government: Perspectives, experiences and applications." Information polity

20, no. 2-3 (2015): 97-101.

125

[84] Parliament, E. "Directive (EU) 2019/1024 of the European Parliament and of the

Council of 20 June 2019 on open data and the re-use of public sector information (recast).

Off." J. Eur. Union 172 (2019): 56-83.

[85] Sołtysik-Piorunkiewicz, Anna, and Iwona Zdonek. "How society 5.0 and industry 4.0

ideas shape the open data performance expectancy." Sustainability 13, no. 2 (2021): 917.

[86] Gil-Garcia, J.R., Helbig, N., Ojo, A.: Being smart: Emerging technologies and in-

novation in the public sector. Government Information Quarterly 31, I1–I8 (2014).

https://doi.org/10.1016/j.giq.2014.09.001, iCEGOV 2012 Supplement

[87] Isett, K.R., Hicks, D.M.: Providing public servants what they need: Revealing the

“unseen” through data visualization. Public Administration Review 78(3), 479– 485 (2018)

[88] Nations, U.: United nations e-government survey 2016: E-government in support of

sustainable development (2016).

[89] Neves, F.T., de Castro Neto, M., Aparicio, M.: The impacts of open data initiatives on

smart cities: A framework for evaluation and monitoring. Cities 106, 102860 (2020).

https://doi.org/10.1016/j.cities.2020.102860

[90] Zhang, D., Pee, L., Pan, S.L., Cui, L.: Big data analytics, resource orchestration, and

digital sustainability: A case study of smart city development. Government Information

Quarterly 39(1), 101626 (2022). https://doi.org/10.1016/j.giq.2021.101626

[91] Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart

cities by forecasting traffic plan using deep learning and gpus. In: Mehmood, R., Bhaduri,

B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and

Applications. pp. 139–154. Springer International Publishing, Cham (2018).

[92] Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Fl ̈otter ̈od, Y.P., Hilbrich, R.,

L ̈ucken, L., Rummel, J., Wagner, P., Wießner, E.: Microscopic traffic simulation using

sumo. In: 2018 21st international conference on intelligent transportation systems (ITSC).

pp. 2575–2582. IEEE (2018)

[92] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” IEEE Trans Neural Networks, vol. 5, no. 2, pp. 157–166, 2002.

https://doi.org/10.1016/j.cities.2020.102860
https://doi.org/10.1016/j.giq.2021.101626

126

[93] J. S. Sepp Hochreiter, “Long short-term memory,” Neural Computation, vol. 9, no. 8,

pp. 1735–1780, Dec. 1997.

[94] K. Cho, B. V. Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of neural

machine translation: Encoder-decoder approaches,” Computer Science, Sep. 2014.

[95] J. Liu and W. Guan, “A summary of traffic flow forecasting methods,” Journal of

Highway Transportation Research Development, Mar. 2004.

[96] M. S. Ahmed and A. R. Cook, “Analysis of freeway traffic time series data by using

box-jenkins techniques,” Transportation Research Board. no. 722, pp. 1-9, 1979.

[97] Baldassarre, F., & Azizpour, H. (2019). Explainability techniques for graph

convolutional networks. In International Conference on Machine Learning (ICML)

Workshops, 2019 Workshop on Learning and Reasoning with GraphStructured

Representations.

[98] Barredo-Arrieta, A., La˜na, I., & Del Ser, J. (2019). What lies beneath: A note on the

explainability of black-box machine learning models for road traffic forecasting. In 2019

IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 2232–2237). IEEE.

[99] Gil-Garcia, J.R., Helbig, N., Ojo, A.: Being smart: Emerging technologies and in-

novation in the public sector. Government Information Quarterly 31, I1–I8 (2014).

https://doi.org/10.1016/j.giq.2014.09.001, iCEGOV 2012 Supplement

[100] Kar, A.K., Ilavarasan, V., Gupta, M.P., Janssen, M., Kothari, R.: Moving beyond smart

cities: Digital nations for social innovation & sustainability. Information Systems Frontiers

21(3), 495–501 (Jun 2019). https://doi.org/10.1007/s10796-019- 09930-0

Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in

smart cities by forecasting traffic plan using deep learning and gpus. In: Mehmood,

[101] R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,

Technologies and Applications. pp. 139–154. Springer International Publishing, Cham

(2018)

https://doi.org/10.1007/s10796-019-%2009930-0

127

[102] Khatoun, R., Zeadally, S.: Smart cities: concepts, architectures, research opportunities.

Communications of the ACM 59(8), 46–57 (2016)

[103] Ying, Zhitao, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.

"Gnnexplainer: Generating explanations for graph neural networks." Advances in neural

information processing systems 32 (2019).

[104] Duval, Alexandre, and Fragkiskos D. Malliaros. "Graphsvx: Shapley value

explanations for graph neural networks." In Machine Learning and Knowledge Discovery in

Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain,

September 13–17, 2021, Proceedings, Part II 21, pp. 302-318. Springer International

Publishing, 2021.

