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Summary (in English)

The aim of this thesis is twofold: first, to examine the features of Value Efficiency
Analysis (VEA) and second, to provide some innovative applications of it. VEA is a
performance evaluation method that incorporates managerial preferences in DEA
models through the Most Preferred Solution (MPS), namely a real or artificial efficient
DMU that has the most preferred input/output bundle or structure.

The thesis’ first part comprises of three empirical essays. In the first of them,
we use VEA for the assessing effectiveness, namely the extent that DMUs are “doing
the right things” such as following organizational objectives or abiding by agreements.
This is demonstrated by using VEA to assess the effectiveness of countries in utilizing
their income to develop their citizens’ social prosperity or human capabilities.

In the second empirical essay, we introduce VEA to pure inputs DEA models
by developing the VEA-Benefit-of-the-Doubt (BoD) model. This model is an
alternative to incorporating DM preferences in the construction of composite indicators
of socio-economic phenomena, and is used to re-estimate the United Nations Human
Development Index (HDI).

In the third empirical essay, we review the list of suggestions for choosing the
MPS in VEA and enlarge it with four additional ones. These are based on the relative
position of efficient DMUs on the DEA frontier, the notions of the Most Productive
Scale size (MPSS) and the Average Production Unit (APU), and common weights. We
also conduct comparative empirical analysis of the effect of alternative MPSs on the
VEA efficiency scores, the results of which provide useful information regarding the
MPS choices that are more likely to offer additional insights to management compared
to those of the DEA model, as well as those choices which are frequently similar to
each other in practice.

The second part of the thesis comprises of three theoretical essays. In the first
of them, we relate VEA to cross efficiency and show that the VEA model is equivalent
to the Targetted Benevolence (TB) cross efficiency model. This allows obtaining, for
the first time, the cross efficiency scores from the envelopment form of the VEA model,
while it provides shortcuts in the estimation of the TB cross efficiency matrix.

In the second theoretical essay, we show that the VEA model can be viewed as
a particular class of DEA models with production trade-offs or their dual weight
restrictions. The VEA efficiency scores can thus be interpreted as incorporating a
particular form of trade-off relations in a DEA model, while the efficiency scores of the
DEA models with these particular trade-offs can be viewed as reflecting the judgements
of a DM regarding the most preferred input/output structure.

In the third theoretical essay, we show that the VEA efficiency scores are
equivalent to those obtained from Cone-Ratio (CR) DEA models that incorporate
preferences about efficient DMUs that are considered as examples to follow (model
DMuUs) for the remaining DMUSs, or provide upper/lower bound approximations of
them. These relations allow obtaining or approximating the efficiency scores of CR-
DEA models by means of VEA models, which are less computationally intensive than
CR-DEA models.



Summary (in Greek)

To avtikeipevo g mapoHoag S18akTopikng dtoTptPng eivor n BewpnTiKn Kot EUTEPIKN
depedvnon ¢ nebodov g Awakng Avdivong Amoteleouatikotnrog (AAA). H
AAA givor por péB0d0G EKTIUNONG TNG GYETIKNG AMOTEAECUATIKOTNTOG TV MovAadmv
AMymg Andgaonc (MAA), n omoia Tephapfavel TV EVOOUATOON ETTALOV AS10K®OV
nepoplop®v oto vroderypo g [epipdriovcag Avérvong Asdopévov (ITAA), péow
mg emioyng g I[MAéov Ilpotipudpevng Avong (ITIIA). H IIIIA eivor o
arotedeopatik) MAA 1 évog amotelecuatikdg Ypoppkos cuvovacpog MAA, n ool
€xel To emBuunTod Pelypo EIGPODV/EKPOMV.

To mpmto pépog g datpPng amoteieiton and tpio epmelpkd apbpa. Xto
TPAOTO amd AT, TOpovclaleTor N xpnon s AAA wg epyareiov ylo TV EKTiUMON NG
amodoTikdTNTaG, dNAad Tov katd TOGo M Asrtovpyia TV alodoyobuevav MAA
ovpPadilet pe dedouEVous 6TOYOVS (OTMS 0PYOVAOTIKOTL GTOYO1, CLUPOVIES, K.0L.). XTIV
ouvéyela 1 AAA ypnoomoteitan yuo va ekTiun0el n omodoTIKOTNTO TOV YOPDV TOV
KOGLOV oIV Ypnoomoinon tov €Bvikod Tov €1000MUATOC Yoo TV €miTELEN NG
HEYIGTNG OLVOTHG KOWVOVIKNG EVTUEPTOS TOV TOMTAV TOVC.

210 0evTepo eumelpwcd ApBpo, . AAA ypnolomoteital ®G EVAALUKTIKY
péB0d0G Y TNV EVOMUAT®MOT 0EKAOV TEPIOPIGUAV GTNV KOTOOKELT GLVOETIKDOV
JEIKTAV. XuyKeKpLEVa, Kataokevaletal Eva vmodstypa AAA 1o omoio dtabétel povo
EKPOEG KO YPNOHOTOLEITOL Y100 TV EmOvEKTIUNGN Tov Agiktn AvOpdmivng AvamTuEng
tov Hvopévov EOvav.

210 TpiTo EUMEPIKO GPOPO, TPAYUATOTOIEITOL 0L AVAGKOTNOT TOV TPOTAGEMY
nov meptiapfavovior oty Piproypaeio g AAA yo v emroyn g [ITA xon
wpoteivovtal t€ooeplg VEES, ot omoieg Pacilovtol avTicToL o GTo YOPOKTNPIOTIKE TNG
Béong tov anotedecpatik®v MAA 6ty €v SLVALEL GLVAPTNOT LETACYNLATIGULOV, OTIG
évvoteg g Amotedecpatikng KAipakag IHapaywyng ko g Méong Iapaywywmng
Movédag, kol otV EKTIUNOT OATOTEAECUATIKOTNTAS HEGH KoMV HETaED Tov MAA
OYETIKOV OTOOMCEDV Y10 TIG EI0POEC KOL TIG EKPOEG. LTV CLUVEXEWL OVOAVETOL
YPNOLOTOIDVTAG EUTEIPIKA dedopéva 1 emidpacn tng emAoyns dwapopetikadv TTITA
otV ektiunfeica oyetikn anoteAecpatikOtNTo Lo TS AAA. ATd to omoteléspoTa
™G EUTEPIKNG avdAvong e&dyovtan yprioyio cvumepdopata yio g IITIA n xprion tov
omoimv odnyel o€ amoteAEGHOTO TOL OTTOT0 TAPEYOLV EMTAEOV TANPOPOPNOT GE GYEDT
pe avtd g [TAA, | onoia propel va ypnoipomomBei amd T1g S101KNTIKES VAN PEGIES Yo
TV AMYN ETYEPNUATIKOV OTTOPAGEDV, 0ALA Ko Yo TiG Otapopetikég [TITA ot omoieg
001 YOLV TPUKTIKA o€ Tapdpola amoteréopata AAA.

To debtepo pépog g datpiPng mepthapPdver tpio Bempntikd apbpa. Xt0
TPOTO Omd avTd, Olepevvdrtor M oxéon HeTaEy ™G AAA kot g peBddov g
OTOVPOEOOVS OTTOTEAEGUOTIKOTNTOS KO OTOOEIKVOETOL OTL TO LIOdEYUa TG AAA
elval 16000VAHO HE TO VWOOELYHO GTOYELVUEVOVL OATPOLIGUOL TNG GTOVPOELOOVGS
OTOTEAECUOTIKOTNTAG. ALT] 1M 100duvapios ETITPEMEL YOO TPOTN QOPA OTINV
Biproypapio v eKTiUNON CTAVPOEWODV ATOTELECUATIKOTTOV LEG® TOV SLIKOV-OVTI
TOV TPOTOPYLIKOV-LTOJEYHATOS TG AAA Kol 0dnyel o mo ochvroun OldIKAGio
EKTIUMONG TOV TIVOKO GTAVPOEW®OV OTOTEAEGUOTIKOTTMOV TOV  VLTOOELYHOTOC
GTOYEVUEVOV GATPOVICLOV.

Y10 dgvtepo BewpnTikd GpOpo, amodeikvietal OTL T0 VIOdelyua TG AAA
amotelel o ovykekpluévn katnyopio vmoderypdtov ITAA mov mepilaupdvouvv
TEPLOPIGUOVS OTIG GYETIKES OTAOUIGELS TOV EIGPOMV KoL TV ekpoddv. Katd cvvéneta,
umopel va e€aybel o emmAéov epunveion t@v amoteAecpdtov TG AAA, ©¢

Vi



anoteréopata [TAA TOV EVOOUATOVOLV L0 GUYKEKPULEVT] LOPPT] TEPLOPIGUADV OTIC
OXETIKEG  OTOOUIOE TOV €GP0V  KOL TOV EKPOMV, EVAO Ol  OCYETIKEG
OMOTEAECLOTIKOTNTES OO TO. OYETIKA LITodeiypota [TAA evompat®vouy TIg KpaToHoeg
OVTIMYELS GYETIKA [LE TO PEATIOTO PELYLO EIGPODV/EKPODV.

210 televtaio Bewpntikd ApHpo, amodekvietal 6TL Ta aroteAéopata g AAA
(oxetikég amoteleopatikdtreg yuoo TG MAA) sivoar eite 10060vopa pe  To
aroteAéopata vroderyudtov ITAA ta omoio EVeOUATOVOLY TANPOPOPIES GYETIKA UE
T1G amoteAecpatikéc MAA mov Bewpoldvion TpdTLma Y10 TIG VITOAOINES (EMTPETOVTOG
o070 SLOVOGLOTO TV CYETIKMOV OTUOUIGEMV TV EIGPOMV KOl EKPODV VO TOIPVOLV TIUES
Héoa o€ évo, TPoKaBoPIoUEVO VP0G / KOVO SLOVUGUATMV), EITE ATOTELODV TO AVAOTEPO
KOl TO KOTAOTEPO Op1o Yo avTd. Ot amoderybeicec LaOnUATIKEG OYECELS EMTPEMOVY TV
EKTIUMON N TNV TPOGEYYION TOV  OMOTEAECUATOV TeV vrodsypdtov ITAA
YPNOUOTOIOVTOG To VEodelypato AAA, to omolo evéyouv GYETIKA AydTtepn
VTOAOYIGTIKT] TOAVTAOKOTNTAL.
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CHAPTER 1

Introduction
1.1. Setting the stage

There are several occasions in the assessment of Decision Making Units’ (DMUSs)
performance, in which it is desired or necessary to incorporate external views and
preferences in the evaluation process. This need frequently arises in the public sector,
where a Decision Maker (DM), namely a social planner, regulator or supervising
agency coordinating the DMUSs’ operation, aims to monitor their performance and
redirect them towards a desired or mandated trajectory. Examples of such public and
centrally coordinated groups of DMUs include, but are not limited to, hospitals,
education institutions, research centers, as well as large infrastructure industries
benefiting from a natural monopoly such as water, electricity and gas networks. In
addition, the performance of privately owned entities such as networks of bank
branches or retail stores is often assessed by central management with regards to stated
organizational goals. These assessments aim to limit the occurrence of dysfunctional
incentives and strategic conflict, where the behavior of DMUs is inconsistent with one
that best supports overall organizational goals (Epstein and Henderson, 1989).

In the aforementioned cases, it is desired to augment the assessment models
with information on holding views over the types of the relatively best-performing
entities. When the DMUs have limited control over their resources, the results of such
assessments can be used for the redistribution of personnel or intangible inputs, while
in the case of more autonomous DMUSs the evaluation can be a means to incentivize
them towards meeting certain goals.

Popular notions of performance evaluation in which preferences and views are
frequently incorporated include, but are not limited to, the assessment of technical

efficiency and effectiveness, cost or revenue efficiency and cross efficiency. A DMU’s
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technical efficiency reflects the extent to which it produces the maximum possible
bundle of outputs given a bundle of resources and the available technology or,
alternatively, the extent to which a particular bundle of outputs is produced using the
least possible resources. In essence, technical efficiency measures the extent to which
the assessed DMUs are “doing things the right way” (Cooper et al., 2007a, p. 66).
Effectiveness is a notion related to that of technical efficiency, in which the ability of
DMUs to achieve desired goals or “do the right things” is assessed. These goals may
reflect several kinds of non-monetary objectives, such as directions or legislation set
out by management or supervising agencies, but also economic objectives such as cost
minimization and revenue maximization. In cross efficiency evaluation, the
performance of each DMU is assessed relative to that of its “peers” or the “reference”
DMUs. In particular, each DMU evaluates the remaining DMUs based on its own
“value system”, i.e., individual preferences on what constitutes good performance. This
is both desired and necessary in cases of group decision making in which transparency
matters considerably for stakeholders. These include, among others, budget allocation
in multinational companies and international organizations and the assessment of public

institutions such as schools or hospitals.

1.2. Data Envelopment Analysis, its extensions, and Value Efficiency Analysis

Data Envelopment Analysis (DEA) is one of the estimation methods used in applied
performance assessment. In DEA, the performance of each DMU is expressed as a
ratio of the weighted sum of its outputs to the weighted sum of its inputs, in which the
vector of input/output weights are selected by the DMU so as to present itself in the
best-possible light. The DMUs are assessed with regards to an envelope formed by
those DMUs for which the ratio of the weighted sum of outputs to the weighted sum of
inputs is the maximum possible across the sample.

Conventional DEA models measure radial technical efficiency (Charnes et al.,
1978; Banker et al., 1984). Extensions of these models have been developed for several
other performance evaluation cases, a fair share of which augment DEA models with
additional information regarding market prices and managerial preferences. In
particular, revenue, cost or profit efficiency is assessed by DEA models when price data
are available (see, e.g., Fire et al., 1985). Also, additional restrictions on the
input/output weighs have been appended in conventional DEA models to accommodate
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partial information on prices, stated preferences over the relative importance of inputs
and/or outputs, and DM perceptions about “good” and “bad” performing DMUs. These
may take several forms of linear inequality restrictions on the input/output weights
(see., e.g., Allen et al., 1997) and their dual production trade-offs (Podinovski, 2004)
which are special cases of the more general cone-ratio DEA (CR-DEA, see Charnes et
al., 1989), where the feasible input/output weight vectors for the evaluated DMUs are
restricted within suitably defined cones containing selected sets of input/output weight
vectors. The addition of such weight restrictions results in efficiency scores which are
lower than or equal compared to those of the conventional DEA model. As such, the
extent to which the performance of a particular DMU is aligned with the preferences
reflected in the additional restrictions can be assessed by examining the differences
between the efficiency scores of the conventional and the weight restricted DEA model.

Effectiveness is also assessed through DEA by means of several models, namely
by incorporating additional restrictions in conventional DEA models (see, e.g., Asmild
et al., 2007), two-stage processes involving the conversion of inputs to outputs and that
of outputs to outcomes, which reflect higher goals selected by the DM such as peace
and sovereignty or some form of behavioral objectives (Fersund, 2017), and pure output
DEA models (Prieto and Zofio, 2001). Pure output DEA models, along with pure input
models (see Karagiannis, 2021 for a review) are special cases of DEA models, in which
only inputs or outputs are considered. They have been extensively used, among others,
for the construction of composite indicators (see Cherchye et al., 2007a).

Furthermore, cross efficiency (see Sexton et al., 1986) is a methodology
developed for peer appraisal assessment by means of DEA. In that, each evaluated
DMU is the “reference” DMU in turn, namely assesses all other DMUSs as well as itself
by means of its own optimal vector of input/output weights. This results into a
multitude of efficiency scores for each DMU that form the cross efficiency matrix.
Based on that, DMs can identify all-around good-performers which should serve as role
models for the rest of DMUs and obtain a --frequently complete-- ranking of the DMUs
by aggregating the cross efficiency scores for each of them. Extensions of cross
efficiency models use secondary objectives to account for the existence of multiple
optimal vectors of weights for the efficient or inefficient DMUs (see, e.g., Doyle and
Green, 1994).



The focus of this thesis is Value Efficiency Analysis (VEA) (Halme et al.,
1999), which is an alternative method for incorporating preferences in DEA. In VEA
the views of a social planner, regulator, or manager are expressed through a
pseudoconcave value function (i.e., an indifference curve), which is assumed to be
strictly increasing in the outputs and strictly decreasing in the inputs. This function
may be related to some organizational objective, such as a cost minimization or profit
maximization, but it might also reveal other preferences than those related with prices
(Thanassoulis et al., 2008, p. 73). Thus, DM preferences in VEA are elicited by a
means commonly used in Multi Criteria Decision Analysis (MCDA), namely by
incorporating DM information on the desirable quantities for the inputs and outputs of
the assessed DMUs. More specifically, it is assumed that the DM’s value function is
tangent (i.e., is maximized) to the DEA efficient frontier at a point which reflects the
most desirable input/output structure by DM’s view and is referred to as the Most
Preferred Solution (MPS). The MPS is a non-dominated (i.e., strongly DEA-efficient)
DMU or a combination of DMUs located on the strongly efficient DEA frontier.!
Depending on the evaluation setting, the MPS may represent the structure according to
which the DM wishes to reorganize a portion of a country’s public sector (e.g., the
wastewater management network) or it might be viewed as a mentor, i.e., an example-
to-follow, for the other DMUs within a private organization. DMs reflect their
preferences in VEA by choosing a strongly DEA-efficient DMU or a combination of
such DMUSs to be the MPS.

The DM preferences are then incorporated in the DEA model by restricting the
choice of the optimal vector of input/output weights for each evaluated DMU only
among those input/output vectors that are optimal in the DEA model for the DMU or
the DMUs that constitute the MPS. In essence, this means that the marginal rates of
substitution of inputs or transformation of outputs imposed on the evaluated DMUs are
those observed on the DEA frontier in the neighborhood of the MPS. This essentially
defines a range of desirable input/output bundles, namely those that have at least one
optimal vector of input/output weights in common with the MPS. This range may be

viewed as the DM’s “margin of error”, in the sense that the DMUs contained in it are

! The strongly efficient DEA frontier is formed by DEA-efficient DMUs which are not associated with
nonzero slacks, i.e., input excesses or output shortfalls, and their linear combinations.
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those for which the input/output bundle or mix diverges from the most preferred one
(i.e., that of the MPS) to an extent that is considered tolerable by the DM. Such DMUs
receive a VEA efficiency score that is equal to their respective DEA score. For the
remaining DMUs VEA efficiency scores are lower that their corresponding DEA ones,
and the more a DMUs’ input/output structure diverges from that of the MPS, the lower
is its VEA score. The VEA efficient frontier is the lower envelope of the extended
efficient facets of the DEA frontier that intercept at the MPS, and in the VEA scores
are optimistic approximations of the scores which would be obtained if an explicit
functional form was available for the DM’s value function.

VEA provides a useful alternative for incorporating preferences in the
performance assessment of DMUs for a number of reasons: First, choosing the MPS
is a relatively less demanding process for DMs compared to including additional
restrictions on the weights. DMs are generally more keen on choosing desirable values
for inputs and outputs rather than weight bounds (Korhonen et al., 2002), and this
choice can be done without requiring familiarity with the DEA method. This can limit
considerably the possibility of DMs expressing their preferences incorrectly and
potentially giving rise to misleading evaluation results. Second, the range of desirable
input/output bundles defined by the MPS choice is less strict compared to e.g., setting
explicit targets for DMUSs on the efficient frontier, as it allows for tolerated divergences
from the most preferred bundle. This is useful in cases where management aims to
limit the ability of DMUs in setting their own priorities and identify those falling
considerably short of achieving organizational goals or stated norms. Policies can then
be designed based on these findings to redirect the DMUs’ operation towards the
desired trajectory. Third, incorporating the MPS in DEA requires only slight

modifications in the multiplier and envelopment form of the DEA model.

1.3. Motivation

The aim of this thesis is a more detailed theoretical and empirical examination of VEA.
This is motivated by the fact that, despite recent theoretical advancements in the
relevant literature, VEA has not been studied to the same extent as DEA (see Table
1.1). Also, the use of VEA in empirical applications is relatively scarce, despite the
abundance of performance evaluation cases and operational research problems in which
the incorporation of managerial preferences is desired or necessary.
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Table 1.1: Uses of DEA and VEA models for performance evaluation

Data Envelopment Analysis (DEA) Value Efficiency Analysis (VEA)

introduction Charnes et al. (1978), Banker et al. (1984)  Halme et al. (1999)

performance evaluation instances

weight restrictions (Thanassoulis and

incorporating DM _Dyson, 1988) MPS (Korhonen et al., 2002)
preferences when  production trade-offs (Podinovski, 2004) Chapter 6 (this thesis)

prices are not cone-ratio DEA (Charnes et al., 1989) Chapter 7 (this thesis)
known reviews: Allen et al. (1997), Thanassoulis

et al. (2004; 2008) Chapter 4 (this thesis)

(Sexton et al., 1986; Doyle and Green,

cross efficiency Chapter 5 (this thesis)

1994)
effectiveness Asmild et al. (2007), Prieto and Zofio _ _
assessment (2001), Chapter 2 (this thesis)
Foarsund (2017)
composite pure input and pure output DEA models
indicators (Van Puyenbroeck, 2018, Karagiannis,
construction 2021) Chapter 3 (this thesis)
Benefit-of-the Doubt (Cherchye et al.
(2007a)

More specifically, studies following the introduction of VEA in Halme et al. (1999)
examined the potential of obtaining VEA scores which are better approximations of the
scores that could be obtained if an explicit functional form was available for the DM’s
value function, and their interpretation in terms of value differences between the
assessed DMU and the MPS (see Joro et al., 2003; Korhonen and Syrjanen, 2005).
Furthermore, VEA has been applied for the evaluation of hospital departments (Halme
and Korhonen, 2000), higher education institutions (Korhonen et al., 2001), local
governments (Marshall and Shortle, 2005) and banks (Eskelinen et al., 2014).

On the other hand, the use of VEA models for several performance evaluation
instances for which it seems particularly suitable, such as cross efficiency and
effectiveness assessment, has to the best of our knowledge not been examined.
Furthermore, the relation of the VEA model with DEA models that introduce additional
restrictions on the input/output weights has not been extensively examined, despite the
relevant literature recognizes that such relations might exist (see e.g., Sarrico and
Dyson, 2004; Kao and Hung, 2005). Korhonen et al. (2001) incorporated additional
weight restrictions in VEA models, but did not engage in relating VEA and weight
restricted DEA models. Moreover, extensive research has been carried out regarding

different forms of restrictions on the input/output weights (see, e.g., Angulo-Meza and
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Estellita-Lins, 2002 and Thanassoulis et al., 2004;2008 for reviews), the preferences
these may represent, their economic interpretation (if any) and the effects of using
various forms of weight restrictions on efficiency scores (see Allen et al., 1997). On
the other hand, to the best of our knowledge no study has examined in detail the variety
of existing suggestions for choosing the MPS in VEA, their economic interpretation, as
well as the effects (if any) of using alternative MPSs on VEA efficiency scores.? Also,
pure input or output DEA models have been studied in detail (see e.g., Van
Puyenbroeck, 2018) and have had several empirical uses (see Karagiannis, 2021), the
most popular of which being the construction of composite indicators. For the latter
purpose, a DEA model known as the Benefit-Of-The-Doubt (BoD) model (Cherchye et
al., 2007a) is most frequently used. Corresponding VEA models to these have, to the
best of our knowledge, not yet been developed nor used to construct composite

indicators of performance.

1.4. Contribution

This thesis is divided in two parts and contributes to the VEA literature by (i) examining
the features of VEA in more detail, and (ii) presenting innovative empirical applications
of VEA models. More specifically, each of the six chapters that follow investigates in
detail an issue among those identified in the previous section which was not up to date
addressed in the VEA literature (see Table 1.1). The first part, namely chapters two to
four, consists of three empirical essays. In the first of them, we use VEA for the
assessment of effectiveness. In particular, we encapsulate the DMs views about the
DMUs that are “doing the right things” in the choice of the most desirable input/output
bundle, i.e., the MPS. Then, the scores obtained from the respective VEA model are
estimates of the DMUs’ effectiveness. These are decomposed into an efficiency
component capturing the extent of ‘doing things right” and a mix component capturing
the relative distance of the assessed DMUSs’ input/output bundle from the DM’s range
of desirable bundles, as the latter is defined by means of the MPS choice. The mix
component is residually estimated as the ratio of DEA and VEA efficiency scores. We

use this approach to provide an innovative application of VEA, namely assess the

2 Korhonen et al. (2002) suggest some alternatives for choosing the MPS in VEA, but do not investigate
any economic rationales related to these.
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effectiveness of countries in utilizing their economic prosperity (proxied by their
income) to further develop their citizens’ social prosperity or human capabilities
(proxied by achievements in terms of health and education) using UN data for the year
2015.

In the second empirical essay, we i) extend VEA towards pure input DEA
models and ii) use it as a means to incorporate DM preferences in the construction of
composite indicators, by combining the BoD model with VEA. The newly proposed
VEA-BoD model is then used to re-estimate the United Nations Human Development
Index (HDI). In this application, the MPS is selected based on the notion of uniformity.
This reflects an objective and normative overall goal, namely the equal prioritization
among the considered indicators (i.e., the achievements in terms of income, health, and
education), and means that the DM prefers countries with a relatively balanced
prioritization among health, education and income more compared to those with
unbalanced achievements. The former would be promoted as peers for improving
human capabilities in the latter.

In the third empirical essay, we first review various suggestions made for
choosing the MPS in VEA and the preferences these might reflect. We then propose
four new, which rely respectively on the relative position of frontier DMUs, the Most
Productive Scale size (MPSS), the Average Production Unit (APU), and common
vectors of input/output weights. These reflect overall organizational goals such as the
pursuit of scale economies and the maximization of structural efficiency, or the need to
assess DMUs against common standards because of limited control over the resources
allocated to them or autonomy in setting their own priorities. Using a dataset of Greek
cotton farms, we then provide comparative empirical results that illustrate the
implications of using different MPS choices for the VEA efficiency scores.

Part 11, namely chapters five to seven, consists of three theoretical essays. In
the first of them, we examine the potential relation between VEA and cross efficiency.
In particular, we show that the Targetted Benevolence (TB, see Oral et al., 1991) cross
efficiency model, is equivalent to the VEA model, provided that the “reference” DMU,
i.e., the one whose optimal multipliers are used to evaluate all other DMUs, in the TB
cross efficiency model, if it is an efficient one, or its radial projection on the DEA
frontier if it is inefficient, is used as the MPS in the VEA model. The TB model is one
among those adopting a secondary objective to account for the possibility of multiple
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optimal weight vectors in DEA for each “reference” DMU. According to this objective,
the evaluated DMU is allowed to select the weight vector that maximizes its cross
efficiency score, among those that are optimal in DEA for the “reference” DMU. The
identified equivalence implies that the TB cross efficiency scores can be obtained by
means of the envelopment form of VEA —which frequently involves fewer constraints
compared to its dual multiplier form-- and allows for the estimation of the TB cross
efficiency matrix using less linear models.

In the second theoretical essay, we explore the relationship between VEA and
DEA models with weight restrictions and their dual production trade-offs. In particular,
we show that the VEA model is equivalent to a DEA model with production trade-offs
as long as the trade-off coefficient vectors are equal to (i) the negative of the input and
output quantities of the DMUs constituting the MPS in VEA, under constant returns to
scale, and (ii) the deviations of all evaluated DMUs’ input and output quantities from
those of the DMUs chosen as the MPS, irrespectively of the returns-to-scale
assumption. These production trade-offs are in both cases dual to Type Il assurance
region weight restrictions (see Thompson et al., 1990). In addition, show that a similar
equivalence holds between pure output or input VEA models and DEA models with
production trade-offs if the above trade-offs are considered only for the inputs or the
outputs. These findings allow for an alternative interpretation of the VEA efficiency
scores and the scores of DEA models with production trade-offs and their dual weight
restrictions.

In the third theoretical essay, we relate VEA with CR- DEA models
incorporating preferences regarding efficient DMUs that management views as
examples to follow (model DMUSs) for the remaining DMUSs. In particular, we show
that as long as the model DMUs chosen in CR-DEA are those that constitute the MPS
in VEA, the VEA efficiency scores are i) equal to those obtained from a CR-DEA model
in which the cone of feasbile weight vectors is specified as the intersection of the sets
containing the weight vectors that are optimal in DEA for each model DMU, ii) provide
a lower bound to the scores obtained from a CR-DEA model in which the cone of
feasible weights is given as the union of the sets containing the optimal weight vectors
for each model DMU, and iii) constitute an upper bound for the efficiency scores of a
Fully-Dimensional-Efficient-Facet (FDEF) CR-DEA model in which the cone of
feasible weights contains only those weight vectors that are jointly optimal in DEA for
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all the model DMUs as well as strictly positive. These findings enable the estimation
or the approximation of CR-DEA efficiency scores by means of VEA models. These
are less computationally demanding as they do not require to a priori identify the cone
of feasible weight vectors, as is the case in the CR-DEA models.
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Part I: Empirical essays
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CHAPTER 2

Using VEA to assess effectiveness in the development of human
capabilities

2.1. Introduction

Efficiency and effectiveness are two distinct but related notions of performance
evaluation. Efficiency measures the extent to which a decision-making unit (DMU)
‘does things the right way’, namely whether it produces the maximum possible outputs
from given inputs or uses the minimum possible inputs to produce a given bundle of
outputs. Effectiveness, on the other hand, measures the ability of DMUs to state and
achieve desired goals (Cooper et al., 20073, p. 66) i.e., it examines the question of doing
the right things. The goals or ‘’right things’’ reflect behavioral or organizational
objectives of DMUs or their supervising agency, which can be either monetary or non-
monetary. The former refers to economic objectives, such as cost minimization or
revenue maximization, the extent of which can be assessed as long as price data are
available while the latter refers to managerial preferences about the production process
itself as well as targets to be achieved by the constituent DMUs (see e.g., Asmild et al.,
2007).

There are four different approaches in the literature to assess effectiveness. The
first of them uses a two-stage process (see Forsund (2017) and the references therein)
where at the first stage the efficiency of DMUs is assessed by focusing on the process
of converting inputs to outputs. Effectiveness, assessed at the second stage, reflects the

ability of DMUSs to convert outputs to outcomes.® Conventional DEA models are used

3 For example, in assessing effectiveness in transport industry, inputs usually refer to number of vehicles,
fuels and labor, outputs refer to the produced transport capacity (e.g., seat-miles) while outcomes refer
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in both stages and the behavioral objectives are expressed through the selection of
outcomes. Recently, Fersund (2017) and Hanson (2018) provide innovative
refinements of this approach, especially suitable for application related to public sector.
In the second, additional constraints reflecting behavioral objectives (see Asmild et al.,
2007) are introduced into conventional DEA model. If these are related to economic
objectives, such as cost minimization or revenue maximization, then effectiveness
coincides with the notion of overall efficiency. If the behavioral objectives reflect
managerial goals, then we need restrictions on the input and/or output multipliers to
incorporate them into the conventional DEA model.* The resulting model “evaluate(s)
both the technical inefficiency that arises from not fully exploiting production
possibilities and the inefficiency due either to lack of fulfillment of managerial goals or
to the departure from the specified value system of the inputs and outputs’’ (Cooper et
al., 2011, p. 101). In the third (see Prieto and Zofio, 2001), effectiveness is estimated
by means of pure output DEA models. Here the goals of DMUs are considered as given
and we concentrate in estimating the extent to which they are achieved regardless of
the amount of resources that might be needed to provide them. This follows the idea
of the Koopmans’ ‘helmsman’ that attempts to steer all the outputs towards their
maximum levels without considering the inputs used (see Lovell et al., 1995). In the
fourth approach, effectiveness is related to the distance of DMUs from target points on
the existing DEA efficiency frontier (see Golany et al., 1993). Such targets may
minimize the distance of DMUs from the DEA frontier, or maximize the outputs of a
DMU under a fixed resource allocation.

In this chapter we propose an alternative way to incorporate behavioral
objectives into conventional DEA in order to assess effectiveness. This is based on
Value Efficiency Analysis (VEA), where the behavior objectives reflect the preferences
of a Decision Maker or supervising agency, which provides the necessary information

regarding the right things to do by simply choosing a “model” DMU, instead of having

to the extent that produced capacity is consumed by customers (e.g. passenger-kilometer and ton-
kilometer) (Yu and Lin, 2008). Another example provided by Hanson (2018) is the assessment of
military forces effectiveness, where inputs refer to resources such as personnel and equipment, outputs
to countable services or goods such as the number of military units and the quality of their training, and
outcomes to country-wide valued states and public goods such as peace, sovereignty or freedom.

4 Different types of weight restrictions may be used, such as absolute or relative bounds on the multiplier
weights, resulting in a set of equal, common across DMUs, or DMU-specific input and output multipliers.
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to choose weight restrictions by means of absolute or relative bounds. According to
Korhonen et al. (2001), this is an easier method to reflect preferences for the Decision
Maker, who is more keen on picking a “model” DMU rather than engaging to the task
of choosing weight restriction bounds, which is a more technical issue. The “model”
DMU reflects the most-preferred solution (MPS) from the Decision Maker’s point of
view and is then used as a global benchmark that determines a range of preferred input
and output bundles which comply with her view of ‘doing the right things’ and provide
the base for estimating effectiveness. Efficiency is estimated by means of the
conventional DEA model and the two are related by a mix component. The latter serves
as a measure of the closeness of the actual input/output bundle of DMUs to the most-
preferred input/output bundle and can aid analysts and Decision Makers identify DMUs
with effective operating bundles (which can serve as models) and DMUs which need a
restructuring in order to comply with managerial preferences, social norms or
supervising agency directives.

We use the proposed approach to provide estimates of countries’ ability to
efficiently and effectively utilize their economic prosperity to enrich the lives of their
citizens using 2015 UNDP data. We rely on Sen’s capability approach that views
humans as the ultimate ends of the process of economic prosperity and development
itself as an expansion of their capabilities, in contrast with the Human Capital approach
which views humans as the primary means of economic development. Our empirical
models operationalize the differential treatment of income on the capability approach
as a means to a number of important ends, rather than an end in itself (Anand and Sen,
2000; Klugman et al., 2011). More specifically, we follow the DEA social efficiency
model (see Despotis, 2005a,b; Mariano and Rebelatto, 2014) and use income as an input
reflecting economic prosperity, with life expectancy, mean and expected years of
schooling as the outputs reflecting social prosperity. The empirical results help
classifying countries into groups displaying high and balanced social prosperity
provision (Leaders), countries with a balanced bundle but relatively lower
achievements, which could use their economic prosperity more efficiently (mix
efficient), countries with high but unbalanced provision of health and education
(Efficient), which could benefit moving towards a more balanced social prosperity
bundle, and finally Laggard countries with both low and unbalanced achievements.
Such results can prove useful to both national policy-makers to reshape national
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policies as well as to international organizations to better allocate development or
international aid funds.

The rest of the chapter is organized as follows: In the next section, we introduce
VEA and explain how it can be used to estimate effectiveness. The empirical
application is presented in the third section, while concluding remarks follow in the last

section.

2.2. Effectiveness assessment with VEA

VEA, developed by Halme et al. (1999), is a performance evaluation method that takes
into account Decision Maker preferences about managerial goals by means of a linear
value function (i.e., an indifference curve) that become tangent to the DEA efficient
frontier at the point of the most-preferred solution (MPS).> This point reflects the
Decision Maker’s choice of a virtual or real non-dominated (i.e., DEA-efficient) DMU
as a model DMU. Then, the VEA frontier is constructed by extending towards the axes
the hyperplanes of the DEA efficient facets intercepting at the MPS. As DEA facets
are generated by extreme-efficient DMUs, the MPS will in essence be either a single
extreme-efficient DMU or a combination of extreme-efficient DMUs that are jointly
efficient, in the sense that they generate at least one common facet.® In Figure 2.1(a),
by choosing for example DMU B as the MPS, the two efficient facets AB and BC are
extended towards the axes, creating the VEA frontier (the blue kinked line). The range
of preferred input/output bundles is given between rays OA and OC. All DMUs
producing within the preferred range receive a VEA score that is equal to their
respective DEA score whereas DMUs producing outside of the preferred range are
penalized by receiving VEA scores less than their corresponding DEA scores.

5 A detailed presentation of VEA can be found in Joro and Korhonen (2015).

& In Charnes et al. (1991a) the DMUs with a DEA efficiency score of one are classified into three
categories: (a) extreme-efficient DMUs (E) that reside at a point of the convex DEA frontier where more
than one facets intercept, (b) non-extreme-efficient DMUs (E'), namely DMUSs located on the interior of
a facet, and (c) weakly-efficient DMUs (F) that have at least one positive optimal value for an input or
output slack. If the DM chooses a DEA-inefficient or weakly-efficient (i.e., a dominated) DMU, or a
non-extreme-efficient DMU as the MPS, then the combination of the extreme-efficient DMUs that are
identified as its peers in DEA can be used as the MPS instead (see e.g., Halme et al., 1999). The use of
the peers of the DEA-inefficient DMU rather than its radial projection in the DEA frontier is advocated,
as the latter might be associated with input and/or output slacks and thus may not be a non-dominated
DMU. The same is the case for weakly efficient DMUs.
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Choosing the model DMU is a crucial step in VEA, as the chosen MPS affects
the preferred range of input and output bundles and consequently, the resulting VEA
scores.” Although Decision Makers are more inclined to simply choosing a DMU from
the set of DEA-efficient ones (see Korhonen et al., 2001) such as DMU B in Figure
6.1(a), they also have the freedom to choose an MPS that is DEA-inefficient (Korhonen
et al., 2002) or propose instead an artificially constructed MPS that may or may not be
efficient. In the latter case, the chosen DMUs are first projected on to the DEA efficient
frontier and then their peers are instead used as the MPS. In Figure 2.1(a), consider for
example DMUs H and G, which are DEA-inefficient and K which is an artificial DMU.
H and K are (for ease of presentation) both projected into point B of the DEA efficient
frontier. Then, their use as MPS implies instead the use of DMU B, their peer, as the
MPS. In a similar fashion, the use of G as the MPS, which is projected on the efficient
facet BC, implies the joint use of DMUs B and C as the MPS. Note that projecting an
artificial DMU such as K on the DEA frontier requires solving a superefficiency DEA
model (see Andersen and Petersen, 1993).

A variable-returns-to-scale formulation of the VEA model, in its multiplier form

is given as (Halme and Korhonen, 2000):

i=1
I
s.t. —Zu]@’y}‘+2v{’x{‘—uk20 k=1,.,Kk=+r
=1 i=1
i
—Euj‘-’y]-r+ vPxi —u"=0 r=1,..,R (2.1)
=1 i=1
]
Zu}’yf:l
=1
vy =0 =1,..,1
uf >0 j=1)
u®free

" See Korhonen et al. (2002) for more details regarding the several alternatives underlying the choice of
the model DMU.
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Figure 2.1:Effectiveness assessment based on different approaches
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where x and y refer to input and output quantities, ¢y g4 to the (inverse) of the VEA
efficiency score, v and u are parameters to be estimated, k is used to index DMUs (k =
1,..,0,..,K), iis used to index inputs (i =1, ...,1), j is used to index outputs (j =
1,..,J]) and r =1,...,R refers to the DMUs chosen as the MPS.  The above
formulation is only slightly different from the conventional DEA model: the restriction
corresponding to the MPS is turned from inequality to equality. This affects the optimal
values of the input/output multipliers and essentially determines the range of preferred
input/output bundles such as those between the rays OA and OB in Figure 2.1(a).

In this chapter we use VEA to estimate effectiveness and compare it to
efficiency which is estimated by means of DEA, in the sense that it reflects the
behavioral objectives of a Decision Maker or supervising agency, which provides the
necessary information regarding the “right things” by means of a “model” DMU, that
determines the MPS and the range of preferred input/output bundles. Then, the distance
of a DMU from the VEA frontier is used to measure effectiveness while its distance

from the DEA frontier is used to measure efficiency. Consider for example DMU F in

Figure 2.1(a) where % measures the extent to which DMU F “does the right things”

while % measures the extent to which the DMU F does “things the right way”. From

that we see that effectiveness and efficiency are related to each other as follows:

1 B 1 y OF' 2.2)
@ <PLF>EA Q_E_’,I .

effectiveness  efficiency  component
The second term in (2.2), i.e., the mix component, reflects the extent to which the DMU
operates inside the given range of preferred input/output bundles and it is given by the

ratio of the effectiveness to the efficiency score, taking values within the [0,1] range.®*®

When a DMU operates within the preferred range of bundles, effectiveness and

8 The mix component is similar (but not the same) to Filippetti and Peyrache (2011) compositional index
and to the Li and Zhao (2015) dimension mix index, with the main difference being that their non-DEA
frontiers result from a set of common (across DMUSs) weights which in terms of Figure 2.1 implies a
linear frontier; see Figure 2.1(c).

9 Effectiveness scores are never higher than efficiency scores, as the VEA frontier envelops the DEA
frontier.
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efficiency scores coincide (for example DMU G Figure 2.1(a)) and the mix component
is equal to one. This in general indicates that the particular DMU operates in a manner
that is in line with the behavioral objectives set out by the manager or the supervising
agency but has different implications when it occurs for efficient and inefficient DMUSs.
Inefficient DMUs with a mix component equal to one are on the “right operating path”
and their ineffectiveness is caused only by inefficient utilization of inputs to produce
outputs (i.e., inefficiency) while efficient DMUs producing within the preferred range
of bundles are classified as effective and receive a score of one in all three scores. Such
DMUs can serve as examples to follow for the rest of the group. On the other hand,
when production takes place outside of the preferred range (see DMU F in Figure
2.1(a)) effectiveness is lower than efficiency and the mix component is lower than
unity. This indicates that a DMU has diverged from the “right things” norm or mandate
and there is a need to change its operating bundle, while if the DMU is also inefficient,
additional actions are needed to eliminate technical inefficiencies.

The “right thighs” norm or mandate can include directions set out by the
management authorities of a corporation to its branches (e.g. in the case of a bank
branch), regulations set out by the government agencies regulating an economic sector
(e.g. in the case of financial sector regulations set out by Capital Market Commissions)
or the international organizations supporting and monitoring a nation’s actions (e.g. in
the case of a country being part of the European Monetary System, NATO or the UN).
This broad definition highlights the generality of our approach and the fact that it can
be applied in several real-world cases.

We can now compare the VEA formulation of effectiveness to those of the
second approach referred to in the Introduction, namely that of imposing behavioral
(e.g., economic or managerial) objectives. The use of economic objectives is depicted
in Figure 2.1(b) and that of managerial objectives by means of weight restrictions in
Figure 2.1(c). In Figure 2.1(b) the straight blue line refers to a known output price ratio
(i.e., iso-revenue line), which defines a single optimal output bunlde along the ray OB.

Effectiveness, which in this case coincides with the notion of overall (revenue)

efficiency, of DMU F is given by the ratio OOFF,, while (technical) efficiency is given by
the ratio %. In this case, the mix component, which is given by the ratio gTF'," coincides

with allocative efficiency. In Figure 2.1(c) we depict different cases of weight
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restrictions that are used to reflect “the right things to do”. The straight green and red
lines tangent to the DEA frontier in points B and C correspond respectively to a
common (across DMUs) and an equal weight scheme. Both define a single optimal
output bundle, although a common-weights scheme reflected into lines AB or BC
would define a range of preferred input/output bundles. The broken yellow line
corresponds to a form of relative weight bounds, which is similar to VEA frontier in
Figure 2.1(a), and both define a preferred range of bundles.?® Taking DMU F as an
example, in Figure 2.1(b) efficiency is defined by the ratio OF /OF!. Effectiveness is
defined as the ratio OF /OF'" for the common weights scheme, the ratio OF /OF"! for
the relative weights bounds scheme and the ratio OF /OF' for the equal weights
scheme. This indicates that effectiveness estimates for a DMU may differ when

different weighting schemes are used to reflect “the right things to do”.!*

2.3. Estimating effectiveness in the development of human capabilities
2.3.1. Methods and Materials

In this section, using 2015 UNDP data, we employ VEA to estimate the extent to which
countries utilize their economic prosperity efficiently and effectively to enhance the
development of human capabilities for their citizens, i.e., to increase their nations social
prosperity. Social prosperity is considered within the capability approach which
focuses on the ability of people to live the lives they have reason to value (Sen, 1999,
p. 293) and views development as a process that is “removing restrictions” (Fukunda-
Parr, 2003) and “enlarging people’s choices” (UNDP, 1990). People themselves are

the primary ends of the process of development, in addition to them being the principal

10 VEA can also lead to a common set of weights. If for example both DMUs A and B were chosen as
the MPS in Figure 2.1(a), the VEA frontier would extend only facet AB towards the axes, thus creating
a common set of weights that nevertheless defines again a range of preferred bundles. The same would
occur if the inefficient DMUs | or J were chosen to be the MPS, as for both of them the efficient peers
identified by DEA are DMUs A and B.

11 DMUs may be ‘favored’ by specific weight restrictions more or less than others, as e.g., DMUs J and
F: the former is more (less) favored by the green (red) line of common (equal) weights while the opposite
holds for the latter. However, the same holds for effectiveness by means of the VEA model, as some
DMUs are favored by the chosen MPS more or less than others: with DMU B as the MPS in Figure
2.1(a), DMU E is ineffective while if DMU D is chosen as the MPS the DMU E would be effective
instead.
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means of economic production and subsequent economic growth.*? This differs from
the human capital literature that tends to concentrate merely on the role of human beings
in augmenting production possibilities, i.¢., seeks what people “put into” development.
According to Sen (1999, p. 293-295) the latter is a narrower view that tells us nothing
about why economic growth is sought in the first place and can fit in the more inclusive
perspective of human capabilities, which seeks “what people get from development”
(Anand and Sen, 2000a). The two approaches are of course related to each other in a
causal way; see Ranis et al. (2000) and Suri et al. (2011).

Economic prosperity, which is usually reflected through a country’s per capita
income, is viewed by the capability approach as being merely a means to the ends of
human development rather than an end in itself (UNDP, 1990; Anand and Sen, 2000;
Fukunda-Parr, 2003; Alkire, 2005; Klugman et al., 2011). Nevertheless, Sen (1993)
noted that means of development such as income can indirectly influence the evaluation
of human well-being through their effects on variables included in the evaluative space
of human well-being (p. 33).* This brings forth the question of whether countries are
able to efficiently utilize their economic prosperity to enhance the social prosperity of
their people. The need to provide an answer to such a question is necessary because,
despite the high correlation of income levels with longevity and education outcomes,
“this tight relation does not obtain” (Sen, 2003, p. 3). There exist many examples of
countries with similar levels of income that achieve very different outcomes in terms
of basic capabilities such as being healthy and receiving adequate education (see e.g.,
Sen, 1983, pp. 753-754 and Sen, 2003, pp. 3-4) and for that reason, Sen (1983, p. 754)
noted that “not merely is it the case that economic growth is a means rather that an end,
it is also the case that for some important ends it is not a very efficient means either”.*

This line of reasoning was operationalized within the DEA framework by what

is now referred to as DEA social efficiency model (Despotis, 2005a,b; Marianno and

12 The capability approach is the underpinning of the construction of the Human Development Index
(HDI), which concentrates in a set of basic and universally valued capabilities-longevity and education
as well as gross national income.

13 “the income of a person can tell us a good deal about her ability to do things that she has reason to
value” (Anand and Sen, 20003, p. 100).

14 Anand and Sen (2000, p. 101) also referred to outlier countries that are “doing much more to enhance
life expectancy than their GNP per capita would suggest”. These outlier countries need to be identified
and used as benchmarks for other countries.
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Rebelatto, 2014) where income is treated as an input and life expectancy and
educational attainment as outputs.!>6, In the context of the DEA social efficiency
model, efficiency does not have a strictly production-oriented meaning, i.e., it does not
explicitly refer to producing a given set of outputs with the minimum possible inputs.
Instead, a ““socially efficient” country is one which manages to provide to its citizens
high social prosperity levels given its current economic prosperity levels in a relative
sense, i.e., given the achievements in social prosperity of other countries with similar
economic prosperity levels. This definition adheres to our earlier definition of
efficiency as “doing the right things” and does not include any considerations about the
relative composition of health and education indicator levels.

Nevertheless, additional information regarding “the right things to do”, i.e.,
norms about the preferred performance of nations should be considered. Examples
include institutional constraints laid down by international bodies, positive or negative
externalities pointing towards desirable performance and fairness or social conscience
(Golany and Thore, 1997). Such an example may be the intention to simultaneously
improve the provision of health and education services. Mishra and Nathan (2018)
refer to such a balanced realization of performance as the uniformity axiom and state
that it is a desirable property for any index of material well-being and capabilities. Also,
from a policy perspective, such a balanced prioritization norm between health and
education provision, if followed, would aid the country to exploit possible spillover

effects existing between the two.!” We adopt this equal prioritization norm to define

15 DEA is a non-parametric methodology for estimating production frontiers and measuring efficiency.
Compared to its parametric counterpart, Stochastic Frontier Analysis (SFA), there are advantages and
disadvantages. The main advantage of using DEA is that it does not require any information more than
input and output quantities, while SFA requires an explicit specification of a functional form for the
production function and an explicit distributional assumption for the inefficiency terms. Also, in DEA
all deviations from the frontier are readily attributed to inefficiencies, i.e., it does not incorporate
stochastic noise in the data as is done by SFA. The latter is a particularly important advantage when
additional restrictions are incorporated in the model (as is the case of this chapter), as the extension of
the DEA frontier by the extra restrictions (see e.g., Figure 6.1(a)) is not guaranteed to take place in the
presence of stochastic noise.

16 All previous studies using this model assumed variable returns to scale, in order to reflect the
diminishing returns as income increases and used an output orientation to gauge efficiency. Output
orientation displays a focus towards increasing the current provision of health and education given the
resources currently available. It also reflects the views of Ranis et al. (2000) and Suri et al. (2011) that
improving levels of education and health should have priority or at least move together with direct efforts
to enhance growth.

7 Ranis et al. (2000, p. 200) offer an example of such a spillover effect, citing studies that provide
evidence that “education, especially female, tends to improve infant survival and nutrition”.
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effectiveness and to choose our “model” country for the VEA model. Thus, a country
should not only manage to provide to its citizens high social prosperity levels given its
current economic prosperity, but also to equally prioritize between the provision of
health and education services. We chose Norway which is the country that ranked 1%
in the 2015 version of the UN HDI and it is a good example of balanced prioritization
among health and education provision. Norway is a DEA-inefficient country and thus
the units comprising its reference set, namely the efficient countries Australia,
Switzerland and Hong-Kong, are instead used as MPS in its place.8

Our empirical models use the natural logarithm of GNI per capita in 2011 PPP
$ as the single input. We consider three outputs, the first of which is life expectancy at
birth, a proxy for health provision. To proxy educational attainment, we follow Lozano
and Gutiérrez (2008) and Sayed et al. (2015) and use the indicators of mean and
expected years of schooling as two separate outputs instead of taking their arithmetic
average, to better reflect their different focus on the future expectations of education
versus the current realizations of it. Such a choice is also grounded on recent statistical
results by Canning et al. (2013) who found that combining the two variables into a
composite causes a substantial loss of information. The data were normalized using the
distance-to-the-leader scheme, as suggested by Herrero et al. (2012). This
normalization scheme retains the unit invariance property for our models, while also
leads to normalized values that necessarily lie within the [0,1] range.'® Descriptive
statistics of the model variables are given in Table 2.1.

The decomposition of effectiveness estimates into efficiency and the mix
component, as in (2.2), allows the classification of countries into five groups based on
their relative ability to provide an increased as well as a balanced provision of health
and education to their citizens. The “Leaders” group contains those DMUs which score
above 99% in both efficiency and the mix component and therefore are considered as
effective. The “mix efficient” group contains those DMUs that have a mix component
score higher than 99% but an inefficiency score less than 99%. The reverse occurs for

“efficient” DMUs which have efficiency scores higher than 99%, but lower mix

18 In terms of Figure 2.1, Norway corresponds to DMU J.
1% This normalization scheme also avoids the process of truncating normalized values to unity, which is
criticized by Lind (2019, p, 410) since it “suggests that human development has an upper limit”.
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Table 2.1: Descriptive statistics of model variables

Variable min Max star_1de_1rd median average
deviation
raw variables
Life expectancy 48.943 84.163 8.297 73.415 71.353
at birth (Swaziland) (Hong Kong)
Expected years of 4.872 20.433 2.897 13.140 12.983
schooling (South Sudan) (Australia)
Mean years of 1.442 13.370 3.097 8.656 8.372
schooling (Burkina Faso) (Switzerland)
GNI per capita 587.474 129915.601  19069.312 10415.970 17313.866
(Central African (Qatar)
Republic)

Note: The country in parenthesis indicates where the respective minimum/maximum is found.

component scores. The group of “Laggards” consists of the relatively worst performing
countries, which achieve efficiency and mix component scores below a certain
threshold, which was set at 80%. Thus, we consider inefficiencies below 80% as
significant enough to raise alarms to supervising agencies. The remaining DMUs are
relatively inefficient with respect to both measures to some extent, but not as severely
as the Laggards, i.e., their efficiency scores and mix component are both below 99%

but at least one is above 80%. These were altogether grouped as “inefficient”.
2.3.2. Empirical Results

Estimates of effectiveness, efficiency and the mix component by group, income class
and geographical region are given in Table 2.2. The arithmetic average and aggregate
values of efficiency scores and the mix component for the full sample of 188 countries
are 0.927 and 0.906 respectively, indicating that ineffectiveness is caused more by
countries’ imbalanced prioritization on health and education provision (captured by the
mix component) than by having relatively low achievements relative to their economic
prosperity levels (inefficiency).?’ This is clearly reflected in the shape of the kernel

distributions of efficiency scores (see Figure 2.2) where the mix component distribution

2 According to Fire and Karagiannis (2017), the aggregate values are computed using potential output
shares. However, as we have more than one outputs for which there are no market prices, we have to
approximate their “market” shares. Here we follow the approximation suggested by Fére and Zelenuyk
(2003) that assumes that the value of the total amount of any output is the same as the value of the total
amount of any other output. This implies that the aggregation weights are equal to the unweighted

average of the shares of the individual countries corresponding to each output, i.e., %Zle(y}‘/zle y}‘).
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Table 2.2: Estimates of effectiveness, efficiency and the mix component

effectiveness efficiency mix component
maximum 1.000 1.000 1.000
World (188 countries) minimum 0.587 0.704 0.594
average 0.841 0.927 0.906
aggregate 0.849 0.930 0.913
by cluster
maximum 1.000 1.000 1.000
minimum 0.989 0.996 0.991
leaders
average 0.995 0.999 0.996
aggregate 0.995 0.999 0.996
maximum 0.989 0.989 1.000
. . minimum 0.885 0.893 0.991
mix efficient
average 0.963 0.966 0.996
aggregate 0.963 0.967 0.996
maximum 0.988 1.000 0.988
- minimum 0.594 0.991 0.594
efficient
average 0.840 0.998 0.841
aggregate 0.850 0.998 0.852
maximum 0.968 0.988 0.990
T minimum 0.588 0.704 0.706
inefficient
average 0.822 0.910 0.903
aggregate 0.829 0.911 0.909
maximum 0.595 0.789 0.790
minimum 0.587 0.743 0.749
laggards
average 0.591 0.765 0.773
aggregate 0.591 0.766 0.772
by income class
maximum 1.000 1.000 1.000
Lo minimum 0.845 0.857 0.913
high income
average 0.948 0.963 0.984
aggregate 0.949 0.964 0.984
maximum 0.951 1.000 0.980
. . minimum 0.588 0.704 0.829
upper-middle income
average 0.855 0.908 0.941
aggregate 0.855 0.909 0.940
maximum 0.897 1.000 0.961
. . minimum 0.595 0.707 0.779
lower-middle income
average 0.794 0.911 0.871
aggregate 0.796 0.913 0.872
maximum 0.801 1.000 0.826
. minimum 0.587 0.743 0.594
low income
average 0.691 0.918 0.755
aggregate 0.692 0.918 0.754
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(Table 2.2 continued)

effectiveness efficiency mix component
by geographical region
maximum 0.990 1.000 0.994
North America and the Caribbean 1M 0.728 0.857 0.791
average 0.884 0.940 0.940
aggregate 0.886 0.940 0.942
maximum 1.000 1.000 1.000
minimum 0.890 0.916 0.913
Europe (all)
average 0.949 0.968 0.980
aggregate 0.949 0.968 0.980
maximum 0.988 1.000 1.000
Europe (EU) minimum 0.890 0.916 0.913
average 0.948 0.966 0.981
aggregate 0.948 0.966 0.981
maximum 1.000 1.000 1.000
Europe (non-EU) minimum 0.892 0.934 0.945
average 0.951 0.972 0.978
aggregate 0.952 0.973 0.979
maximum 0.879 0.948 0.949
North Africa minimum 0.833 0.885 0.909
average 0.855 0.917 0.933
aggregate 0.856 0.916 0.934
maximum 1.000 1.000 1.000
South, East Asia and Oceania minimum 0.720 0.856 0.784
average 0.861 0.944 0.912
aggregate 0.868 0.947 0.916
maximum 0.969 1.000 0.969
South America minimum 0.785 0.842 0.879
average 0.874 0.924 0.945
aggregate 0.874 0.925 0.945
maximum 0.883 1.000 0.977
Sub-Saharan Africa minimum 0.587 0.704 0.594
average 0.700 0.872 0.807
aggregate 0.702 0.862 0.814
maximum 0.991 1.000 0.991
North, West and Central Asia minimum 0.694 0.812 0.783
average 0.861 0.935 0.921
aggregate 0.864 0.936 0.923

has a higher density that the technical efficiency one for lower values of estimates
(below 0.85). Also, from the 20 countries that DEA identifies as offering the highest
possible social prosperity relative to their economic prosperity (i.e., the efficient

countries) only four (namely Australia, Hong Kong, Japan and Switzerland) are denoted
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Figure 2.2: Kernel density estimates for the efficiency, effectiveness and mix

component, 2015.
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by VEA as 100% effective.?l These countries receive a score of one for all three
measures.

Eight countries in total (Australia, Hong Kong, Japan and Switzerland which
are efficient and Norway, Denmark, Singapore and Sweden which are inefficient) have
a mix component equal to one, i.e., their DEA and VEA scores are equal to each other.
The inefficient countries with a mix component equal to one manage to offer to their
citizens a high balance in the provision of health and education services, but not the
“highest possible” amount relative to their economic prosperity, as there are other
countries having slightly higher social achievements with the same levels of economic
prosperity. The lowest efficiency score among those four countries is 0.972, by
Denmark. Nevertheless, the negative skewness for the three measures (see Figure 2.2)
along with the minimum scores indicates the existence of highly inefficient countries,

which are in dire need of restructuring actions. Such actions could include increases in

2L The efficient countries are (in alphabetical order) Australia, Burundi, Central African Republic, Cuba,
Georgia, Hong Kong, Iceland, Italy, Israel, Japan, Kyrgyzstan, Liberia, Moldova, Nepal, Republic of
Congo, Solomon Islands, Switzerland, Tajikistan, United Kingdom and Uzbekistan.
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health and education expenditures and a better management in order to decrease
resource waste. For countries with low mix component scores, budget redistribution
could also be an action leading to increased levels of future social prosperity.
In the second panel of Table 2.2 we present the results for the clustering of countries
according to their efficiency and mix component scores. This clustering is also
portrayed depicted in Figure 2.3 and Table 2.3 presents in more detail the countries in
each cluster. Note that in Table 2.3 we have split the inefficient group into six sub-
groups based on an additional threshold set at 95% for technical efficiency and the mix
component. The Leader group of countries outperforms on average all other groups in
all three measures. The eight Leader countries (see Table 2.3) include industrialized
and well-performing countries in terms of social prosperity such as Canada, Australia
and Japan. These are the ones doing ‘the right things’ and can be considered by the
supervising agency (e.g. the UN) as undeniable best performers whose behavior should
be copied by other countries in the future. The 17 “mix efficient” countries include 12
European ones, among which we find most of the Nordic countries along with many
EU members such as France, Ireland and Belgium. The group is filled with two Asian
(Korea, Singapore) and three Arabic countries (Qatar, Saudi Arabia and United Arab
Emirates). These countries, which provide to their citizens the highest possible balance
in social prosperity outcomes (i.e., the operate within the preferred range of bundles set
out by the “model” country), are also providing very high levels of social prosperity
relative to their economic prosperity (their average efficiency score is 0.966) and
consequently they display high effectiveness (average 0.963).
On the contrary, the 22 countries of the “efficient” group, which display the “highest
possible” social prosperity achievements relative to their economic prosperity, are not
concentrated on a specific region but are scattered across the world, including countries
as diverse as USA, Chile and Uzbekistan. Furthermore, this group of countries is well
performing only with respect to efficiency while having mediocre average
performances in terms of balance in the provision of social prosperity (the groups’ mix
component varies from the low 59.4% in Central African Republic to the well-
performing 98.8% in lItaly) and consequently, in terms of effectiveness. This group
should focus disproportionately more in improving balance in their social prosperity
outcomes through gradual changes in their mix. The inefficient countries slightly
outperform the efficient countries in terms of the mix component (average estimate
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Figure 2.3: Country clusters by means of efficiency and the mix component
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0.903 compared to 0.841). The three Laggard countries, namely Chad, Lesotho and
Sierra-Leone (see Table 2.3) belong to the Sub-Saharan African region. For those
countries there seems to be vast room for future improvement, as they are displaying
both very low as well as very unbalanced social prosperity achievements relative to
their levels of economic prosperity. The average estimates of efficiency (0.765) and
mix component (0.773) are the lowest across groups and lead to an average
effectiveness score of 59.1%, also the lowest among all groups.

The performance of countries by income class is given in the third panel of
Table 2.2 and in Figure 2.4 we plot effectiveness, efficiency and the mix component
against GNI per capita.?? Effectiveness and the mix component seem to follow an S-
curve with respect to income, which is more intense in the mix component case. As
income increases average effectiveness and the mix component also increase, with the
highest shift in average values being between low and lower-middle income classes.
This suggests that a small initial “’push’’ in a country’s income can spark significant

improvements in the provision of health and education services, i.e., that returns to

22 The respective information for the 2015 country clustering by income class was retrieved from the
World Bank.
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Table 2.3: Classifying countries by means of efficiency and the mix component

mix component

[1-0.99]

(0.99-0.95]

(0.95-0.8]

(0.8-0]

efficiency

[1-0.99]

Australia, Canada, Hong
Kong (China, SAR), Iceland,
Israel, Japan, New Zealand,
Switzerland

Chile, Cuba, Germany, Italy, Spain,
United Kingdom, United States

Georgia, Kyrgyzstan, Moldova (Republic of),
Nepal, Tajikistan, Tonga, Uzbekistan, Vanuatu

Burundi, Central African
Republic, Congo (Democratic
Republic of), Liberia, Malawi,
Solomon Islands, Togo

(0.99-0.95]

Austria, Belgium, Cyprus,
Denmark, Finland, France,
Ireland, Korea (Republic of),
Liechtenstein, Luxembourg,
Netherlands, Norway,
Singapore, Sweden

Andorra, Argentina, Costa Rica, Czech
Republic, Estonia, Greece, Malta,
Portugal, Slovenia

Albania, Bangladesh, Belarus, Bosnia and
Herzegovina, Cabo Verde, Dominica, Fiji,
Grenada, Honduras, Lebanon, Lithuania,

Maldives, Micronesia (Federated States of),
Nicaragua, Palau, Palestine (State of), Samoa,

Syrian Arab Republic, Ukraine, Viet Nam

Comoros, Ethiopia,
Madagascar, Niger, Rwanda

Qatar, Saudi Arabia, United
Arab Emirates

Antigua and Barbuda, Azerbaijan,
Bahamas, Bahrain, Barbados, Brunei
Darussalam, Bulgaria, Croatia, Hungary,
Iran (Islamic Republic of), Jordan,
Kuwait, Latvia, Malaysia, Mauritius,

Algeria, Armenia, Belize, Bhutan, Bolivia, Brazil,
Cambodia, China, Colombia, Congo, Djibouti,

Dominican Republic, Ecuador, Egypt, El

Salvador, Ghana, Guatemala, Guyana, India,
Indonesia, Iraq, Jamaica, Kazakhstan, Kenya,

Afghanistan, Benin, Burkina
Faso, Eritrea, Gambia, Guinea,
Guinea-Bissau, Haiti, Mali,
Mozambique, Senegal, South
Sudan, Uganda, Zimbabwe

g Mexico, Montenegro, North Macedonia, Kiribati, Lao People's Democratic Republic,

g‘ Oman, Panama, Peru, Poland, Romania, Libya, Mauritania, Mongolia, Morocco,

S Saint Kitts and Nevis, Serbia, Seychelles, Myanmar, Namibia, Pakistan, Papua New Guinea,

= Slovakia, Sri Lanka, Suriname, Thailand,  Paraguay, Philippines, Russian Federation, Saint
Trinidad and Tobago, Turkey, Lucia, Saint Vincent and the Grenadines, Sao
Turkmenistan, Uruguay, Venezuela Tome and Principe ,South Africa, Sudan,
(Bolivarian Republic of) Tanzania (United Republic of), Timor-Leste,

Tunisia, Yemen, Zambia

= Botswana, Equatorial Guinea, Gabon Angola, Cameroon, Cote d'Ivoire, Nigeria, Chad, Lesotho, Sierra Leone

% } Swaziland

e
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income are increasing in lower income levels. After a certain level of GNI per capita
(around 12.000 $ which is close to the threshold between upper-middle and high-
income class) the curvature changes and the returns to income in social prosperity
become decreasing, indicating that further economic prosperity increases improve only
slightly a country’s achievements in terms of social prosperity. There is no high-
income country that departs more than 8.7% from the preferred range of health and
education bundles, as the minimum estimate of the mix component for a high-income
country is as high as 0.913 (see Table 2.2). Thus, the virtually zero gain in human
development and well-being when income surpasses a certain threshold that is found
by Kahneman and Deaton (2010) can be partly explained by that fact that most high-
income countries are already displaying both very high as well as highly balanced
achievements in terms of social prosperity relative to their (also high) levels of
economic prosperity. They are prioritizing relatively even between health and
education provision and exploiting heavily the spillovers between simultaneous
improvements in both of them.

For efficiency however there does not seem to be a particular pattern. There is
no significant difference between low- and the two middle-income classes in terms of
efficiency while the high-income countries are on average only 6% more efficient that
the low-income countries. Thus, a low level of economic prosperity does not appear to
prevent a country from exploiting it to the highest possible extent to provide social
prosperity outcomes (i.e., “’doing things right’’) as efficiency is realized for a wide
range of income levels, from the extremely low-income Central African Republic (GNI
per capita 587.474 $ in 2015) to high-income Switzerland (PPP GNI per capita
56,363.958 $ in 2015). On the other hand, equal prioritization and efficient resource
use seem to be associated with higher income levels. High-income countries seem to
have the know-how about ‘’doing the right things’’ in terms of enhancing social
prosperity and further developing the capabilities of their citizens.

The lower panel of Table 2.2 we present the results by geographical region.
From there we can see: first, North-Central America and the Caribbean is a rather
diverse region whose good average efficiency and mix component performance is
mainly supported by the two North American countries, USA and Canada. Most
Central American and Caribbean countries are classified as inefficient. Second, South
American countries on average appears to provide slightly less social prosperity
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achievements relative to their economic prosperity, compared to their Northern
neighbors (average efficiency in South America is 0.842 compared to 0.857 in North
America) but on the same time, offering considerably more balanced provision of health
and education (the average mix component in South America is 0.879 while that of
North America is 0.791). Third, South American countries located north or south of
the tropical Amazon rainforest seem, to offer a more balanced mix of health and
education outcomes compared to countries in the center of South America (e.g. Brazil,
Argentina, and Paraguay, see also Table 2.3). Fourth, Europe is the best performing
region on average in all three measures, while EU-member countries slightly
outperform the non-EU countries in terms of balance in the provision of social
prosperity but lag slightly behind in terms of efficiency. Fifth, three of the Nordic
countries (Norway, Denmark, Sweden) have a mix component equal to one, with the
rest of the Nordic group (Iceland and Finland) following suit with scores greater than
0.99. On the opposite, the worst performing European countries in terms of the mix
component are three Balkan countries (North Macedonia, Albania, Bosnia and
Herzegovina) and two Eastern European countries (Estonia and Lithuania). Sixth, the
Sub-Saharan African (SSA) group of countries is the worst performing region on
average in all three measures. The majority of the SSA countries score below 90% in
terms of the mix component while half of them (26) score below the threshold of 80%.
This poor performance suggests that the SSA region is in urgent need of restructuring
actions, such as shifting the allocation of natural resources revenues from recruitment
and administrative to health and education expenditures (Raheem et al., 2018) or using

the same revenues in order to boost human capital (Oyinlola et al., 2020).

2.3.3. Robustness checks

We next present a robustness check by (a) considering two alternative MPS choices for
the year 2015, namely Australia (the country that ranked second in the 2015 HDI) and
an artificial country comprised by the average of the five efficient countries with the
highest ranks in the 2015 HDI, namely Australia, Switzerland, Iceland, Hong-Kong and
United Kingdom and (b) extending the period under consideration to 2014-2018, using
our initial “model” country.

The use of Australia as the “model” country for the year 2015 results into
relatively higher effectiveness and mix component scores relative to Norway being the
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“model” country, mostly because it results to a wider range of preferred bundles. This
is to be expected as Australia was a DEA-efficient country while Norway was not. This
is also clear from Figure 2.1(a) if we consider DMU J as Norway and DMU B as
Australia. Using DMU B as the MPS expands both facets AB and BC (blue line) and
results into more countries attaining a score of one for the mix component and
consequently, to higher effectiveness scores compared to the use of DMU J as the MPS,
which expands only facet AB (the red line). The average effectiveness score with
Australia as the “model” country was 0.917 (compared to 0.841 with Norway as the
“model” country) while the number of “mix efficient” countries was 126 (compared to
17 in the case of Norway). On the other hand, using as “model” country the artificial
“average best performing” country was operationalized by using its efficient peers as
the MPS, i.e., Australia, Switzerland, Hong-Kong and Japan. This set of peers is the
same as that for Norway with the addition of Japan. Adding Japan in the set of MPS
brings virtually no changes to effectiveness and mix component scores with respect to
the case of Norway being the “model” country; all average scores as well as the
classification of countries remains the same. Referring again to Figure 2.1(a), let
Norway and the artificial average country correspond respectively to DMUs J and I,
which both are projected in facet AB and therefore, their use as MPS extends the same
facet.

Estimates of effectiveness, technical efficiency and mix components scores for
years 2014, 2017 and 2018 using Norway as the “model” country are given in Table
2.4 and their kernel density distributions are portrayed in Figure 2.5. Overall, the results
across years remain relatively stable. The only notable change occurs in 2017, where
the distribution of the mix component became more skewed towards unity compared to
other years (see Table 2.4). This is due to changes in the set of peers for Norway. More
specifically, Norway’s peers were the same in 2014 and 2015 (namely, Australia,
Switzerland and Hong-Kong), while in 2017 changed to Australia, Hong-Kong and
Japan. The exclusion of Switzerland, a country with a relatively narrower preferred
range of bundles, caused the preferred bundle range to widen in 2017 relative to other
years. Referring to Figure 2.1(a), this is as the preferred range of bundles temporarily
moved from OA-OB to OA-OC. In 2018, Norway’s peers are Australia, Switzerland
and Japan, highlighting a return to a narrower preferred range of bundles which is
similar to those of years 2014 and 2015, as it can be seen from Table 2.4.
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Table 2.4: Distribution of effectiveness, technical efficiency and mix component scores, 2014, 2015, 2017 and 2018 with the same MPS choice

(Norway)
2014 2015 2017 2018 2014 2015 2017 2018 2014 2015 2017 2018
effectiveness efficiency mix component
(zero) 0 0 0 0 0 0 0 0 0 0 0 0
(0,0.2) 0 0 0 0 0 0 0 0 0 0 0 0
[0.1,0.2) 0 0 0 0 0 0 0 0 0 0 0 0
[0.2,0.3) 0 0 0 0 0 0 0 0 0 0 0 0
[0.3,0.4) 0 0 0 0 0 0 0 0 0 0 0 0
[0.4-0.5) 0 0 0 0 0 0 0 0 0 0 0 0
[0.5,0.6) 2 5 0 3 0 0 0 0 0 1 0 0
[0.6,0.7) 16 19 7 23 1 0 0 0 1 2 1 3
[0.7,0.8) 37 37 33 37 11 11 6 6 20 26 5 26
[0.8,0.9) 65 71 64 69 41 40 43 46 42 40 36 43
[0.9,1) 64 52 82 53 117 117 125 124 119 112 134 108
1 4 4 3 4 18 20 15 13 6 7 13 9
maximum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
minimum 0.596 0.587 0.644 0.571 0.685 0.704 0704 0.714 0.610 0594 0.652  0.658
average 0.850 0.841 0.871 0.838 0924 0927 0925 0.928 0918 0906 0.941  0.900
aggregate 0.859 0.849 0.880 0.847 0928 0930 0.929 0.932 0925 0913 0947  0.909
standard deviation ~ 0.104 0.107 0.086 0.108 0.067 0.066 0.060  0.058 0.078 0.085 0.064 0.086
median 0.875 0.867 0.891 0.867 0938 0939 0934 0.944 0951 0943 0.969 0.920
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Figure 2.5:Kernel density estimates for the efficiency, effectiveness and mix
component, 2014, 2015, 2017 and 2018 with the same MPS choice (Norway)

core estimates

score estimates

60) 2017 ‘ (d) 2018

2.4. Concluding remarks

In this chapter we use VEA to assess effectiveness. VEA captures the extent of ’doing
the right things’” through the choice of a “model” DMU which defines a preferred range
of input/output bundles. DMUs operating within that range are perceived as effective
by managerial authorities, while DMUs operating outside the preferred range should be
directed towards mix changes and restructuring. Effectiveness was then decomposed
to two measures reflecting the extent of “’doing things the right way’’ (efficiency) and
producing out of the given range of input and output mixes’ (mix component

The proposed approach could be utilized in many real-world instances where an
evaluation of units is sought and managerial preferences need to be taken into account
along with efficiency issues. At a micro level, our approach could aid firm owners,
CEOs or HR departments to make decisions upon hiring, promoting or allocating

personnel based on both their operating efficiency and effectiveness or allocate pay-
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for-performance funds within a firm. Similarly at a macro level, international
organizations such as the International Development Association, Development Banks,
the World Bank or the European Union could utilize such a tool with the aim of
allocating several kinds of funds towards countries or regions which are either the best
(if the funds act as rewards) or the worst performers (if the funds act as aid).?® A final
note regards the sensitivity of the method to the choice of the MPS. As the chosen MPS
unit defines the preferred range of bundles, it certainly affects the effectiveness scores
and their decomposition into efficiency and the mix component.

In the case of the development of human capabilities considered in the empirical
application, the use of a “model” country to assess the effectiveness of converting
economic to social prosperity allows us to identify the countries providing
inappropriate mixes of health and education services and those providing an
inappropriate amount of the suggested mixes of health and education services. The
former may use policies to correct their deficiencies such as redistributing government
expenditures more evenly across health and education in their future balance sheets or
directly targeting “priority areas”, i.e. the service provision sector which is the relatively
most neglected among health and education, through the creation of infrastructure
(schools, hospitals) or the implementation of new regulations (e.g. population
immunization policies through mandatory vaccination).?* The latter can benefit from
policies that redistribute government expenditures from other uses (e.g. administrative
expenditures) to health and education to further improve their achievements, i.e.
increase their HD-allocation ratio (see Ranis et al., 2000), as well as from policies that
enhance the efficient use of those expenditures, such as better monitoring mechanisms
for government officials that handle the relevant contracts.

23 A case of reward-funds is considered by Golany and Thore (1997): the evaluation by the World Bank
or some UN agency of loan requests made by developing countries.

24 Ranis et al. (2000) refer to the proportion of government expenditures for sectors related to human
development that is attributed to such priority areas as HD priority ratio and argue that the latter is
affected positively by the extent of government decentralization.
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CHAPTER 3

A VEA Benefit-of-the-Doubt model for the HDI

3.1. Introduction

The Benefit-of-the-Doubt (BoD) as an input-oriented Data Envelopment Analysis
(DEA) model with a single constant input, mainly used for constructing composite
indicators (CI) (see OECD, 2008) but also applied to several multi criteria decision
making problems such as supplier selection, inventory classification, quality
perception, preference voting, location selection, etc. (see Karagiannis (2021) and the
references therein), has the advantages and disadvantages of DEA models. Among
them is the flexibility of weights that may vary across DMUs and indicators in such a
way so as to maximize the overall achievement of each evaluated Decision-Making
Unit (DMU). This flexibility may in some cases imply that DMUs are rated as efficient
by doing well only on a single performance dimension. In such a case, zero weights
are assigned to all but one indicator. However, more often, DMUs are evaluated based
only on a subset of the considered indicators (most notably those in which they perform
relatively better), implying that the rest have no effect on the CI. As this subset of
indicators may differ across DMUs, it makes their multilateral comparison difficult or

even inappropriate.?>28

% For example, consider two countries A and B being evaluated on the basis of two indicators, namely
I, (patents) and I, (research grants, in thousand $). If country A outperforms B in terms of patents but
is outperformed by B in terms of research grants, the BoD model will base the composite indicator of
country A only on the patents indicator and assign a zero weight on the research grants indicator, while
the reverse will occur for country B. Comparing the performance of the two countries using these
composite indices, would be deemed inappropriate.

% The benefit-of-the-doubt weighting might also be criticized for dismissing one of the three basic
requirements in social choice theory in response to Arrow’s theorem, namely anonymity or the
assignment of equal weights to all indicators. Nevertheless, OECD (2008, p. 105) argue that anonymity
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To avoid this kind of issues when implementing the BoD model several
researchers have restricted weight flexibility by imposing different type of restrictions.
These may take the form of (i) absolute weight bounds (see e.g., Rogge and Self, 2019),
(i) relative restrictions in the form of assurance regions (Gaaoul and Khalfallah, 2014),
(iii) ordinal ranking of indicators’ importance (see e.g., Cherchye et al. 2007b), and (iv)
pie shares (Cherchye et al., 2007a; Gonzalez et al., 2018). Such forms of weights
restrictions require experts, stakeholders or social planners to set the absolute or relative
bounds or shares, a task that can be proved to be difficult and time-consuming since
usually experts may have diverging opinions regarding the relative importance of
indicators.

An alternative way to incorporate value judgments in BoD is by means of Value
Efficiency Analysis (VEA), developed by Halme et al. (1999). This alternative has
been suggested in OECD (2008, p. 92), where it is noted that “the benchmark could
also be determined by a hypothetical decision maker ... who would locate the target in
the efficiency frontier with the most preferred combination of individual indicators’’,
but to the best of our knowledge it has not been implemented so far. In VEA, the views
of an expert, a decision maker (DM) or a supervising agency are reflected in the choice
of a “model” DMU that determines the Most-Preferred Solution (MPS) from their point
of view. This alternative in gauging preferences might be proven to be more appealing
to Decision Makers, as the latter might be more keen on choosing one DMU to serve
as a benchmark, rather than engage in the task of selecting weight restriction bounds
(Korhonen et al., 2002).2” The choice of the “model” DMU restricts the weights that
the evaluated DMUs can select by determining a preferred range of indicator bundles.

In this chapter we use the VEA-BoD model to re-estimate the United Nations
(UN) Human Development Index (HDI) using data for 2015. For these purposes we
rely on the notion of uniformity, namely the intension for equal prioritization among

the considered indicators, to choose the “model” country. Based on this objective and

is not an essential requirement in the construction of a composite indicator, as equal weighting is usually
only one of the possible weighting schemes.

27 We should emphasize that the chapter’s aim is to provide an alternative approach to that of weight
restrictions in incorporating DM preferences to the conventional BoD model, rather than an approach
that performs better in restricting the flexibility of weights in conventional BoD, compared to weight
restrictions.
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normative argument, countries with a relatively balanced prioritization among health,
education and income would be promoted as peers for improving human capabilities in
the rest of the countries. The latter may need a shift of focus towards policies aimed at
improving their most deprived human development dimensions.

The rest of the chapter proceeds as follows: In the next section we briefly
discuss the conventional BoD model and we introduce the VEA-BoD model. In the
third section, we present the empirical results for the HDI based on the VEA-BoD

model. Concluding remarks follow in the last section.

3.2. The Conventional and the VEA BoD models

The BoD is a model facilitating the (linear) aggregation of a number of quantitative
indicators into a single Cl when exact knowledge of the weights is not available.?® The
model endogenously selects the best possible weights for each DMU, assuming
implicitly that the DMUs attach less (more) importance to those indicators on which
they perform relatively weak (strong) compared to the other evaluated units. The model
is a special case of the input-oriented constant-returns-to-scale DEA model with a
single constant input that takes the value of one for all DMUs (see Karagiannis, 2021).

Its multiplier and envelopment forms are given as:

J K
max zujoyjo r%n Zlg (=069
VA ko=t
/ K (3.1)
s.t Zuj’y]"31 k=1,..,K s.t AZy}‘Zy;’ ji=1,..,]
j:]_ k=1
u}‘?go j=1.,] Ay =0 k=1,..,K

2 The BoD is one of the four approaches proposed by OECD (2008) for constructing composite
indicators. However, CI construction is a constantly expanding research field, in which several new
methodological advancements exist. Some of these contributions are related to the BoD model, others
make use of multicriteria decision-making approaches, such as goal-programming and non-
compensatory approaches, while there are also mixed or hybrid approaches combining different
methodologies to construct a composite indicator. A review of these approaches is a task out of the scope
of this chapter, and the interested reader is referred to Greco et al. (2019) and El Gibari et al. (2019) for
recent reviews.
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where y refers to the component indicators, u to their relative weights (multipliers), 8
to the efficiency score, 4 to the intensity variables, j = 1, ..., ] is used to index indicators
andk (k=1,...,0,..,K) to index DMUs.

Expert judgments, DM’s mandates or public opinion and social planner norms
regarding the performance of the evaluated DMUs are not a priori incorporated in the
conventional form of the BoD model in (3.1). As a result, each DMU has the benefit-
of-the-doubt in the selection of its relative weights in order to maximize the value of its
CIl. This allows DMUs that dominate all others in a single indicator to be rated as
efficient even though they perform relatively weak in terms of all other indicators. The
Cl values resulting from (3.1) are thus the most optimistic for each DMU.

VEA takes into account DM’s preferences or public opinion about desired
norms and managerial or social goals by means of a pseudo-concave value function
(i.e., an indifference curve) that becomes tangent to the DEA efficient frontier at a point
referred to as the MPS. This point, ultimately chosen by a DM or a supervising agency,
corresponds to a virtual or real DEA-efficient DMU, which is viewed as the “model”
DMU having the most preferred input/output bundle. The VEA frontier is constructed
by extending towards the axes the hyperplanes of the DEA efficient facets intercepting
at the MPS, a process that naturally results in efficiency scores that are lower or equal
to those of the conventional DEA model. This is depicted in Figure 3.1 for the case of
two indicators. Choosing for example DMU B as the MPS extends facets AB and BC
towards the axes, creating the VEA frontier (the red kinked line). This defines a range
of preferred bundles given between rays OA and OC. As a result, the DEA benchmark
profiles complying with the desired norms are now limited to facets AB and BC. For
all inefficient DMUs which are radially projected in these two facets, the CI value that
results from the VEA-BoD model is equal to that of the conventional BoD model while
inefficient DMUs projected elsewhere on the BoD frontier and thus using a bundle
outside of the preferred range are “penalized” and their CI value is less than that
obtained from the conventional BoD model.

Following Halme et al. (1999), the VEA formulation of the BoD model in (3.1)

is given, in its multiplier and envelopment form, as follows:

41



J K
0,0 i 0
max ) W, min ) 2
g =]

J K
s.t. Zu}’yfﬁl k=1,..,Kk#r st zlﬂy]kzyjp Jj=1..]

4 ] (3.2)
]

Zu;?y]lf=1 k=r A2 =0 k=1.,Kk+r

j=1 Ay, free k=r
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in which r refers to the DMU chosen as the MPS.

As we can see there are only slight differences between (3.1) and (3.2): in the
multiplier form, the restriction corresponding to the MPS is turned from an inequality
to a strict equality in order the range of acceptable weights to be restricted into those
that are optimal for the “model” DMU. This in turn restricts the preferred range of
bundles to be between rays OA and OC in Figure 3.1, if DMU B is chosen as the MPS.
This corresponds in to removing the non-negativity restriction from the intensity
variable corresponding to the MPS in the envelopment form of (3.2.), thus forcing the
MPS to be peer for all evaluated DMUSs.

In practical settings, the most crucial step in VEA is the choice of the MPS, as
it affects the resulting frontier and, consequently, the derived efficiency scores.
Nevertheless, no general rule of thumb exists for choosing the MPS, but several
suggestions have been proposed. These involve the choice of either a real (usually
DEA-efficient) DMU or a combination of DEA-efficient DMUs. The latter case can
be operationalized as long as the combined DMUSs generate at least one common facet,
in which case the resulting VEA frontier expands only those common facets. If the
chosen MPS units do not generate a common facet, then their average will not be DEA
efficient and thus its DEA efficient peers would be used as the MPS. The same is true
if the DM chooses a DEA-inefficient DMU as the MPS. For example, in Figure 3.1,
the average of DMUs B and C lies on facet BC and limits the preferred input/output
bundles between rays OB and OC. On the other hand, the average of DMUs A and E,
denoted as AE, is DEA-inefficient and its peers (i.e., DMUs B and C) are used as the
MPS.

Many of the proposed suggestions for choosing the MPS involve the subjective

judgments of a DM. Such examples include using the DM’s personal judgments to
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Figure 3.1: Composite indicator construction based on BoD and VEA-BoD models

BoD frontier —_—
VEA (B) frontier — se—
VEA (C) frontier s

1.0
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choose the MPS (Halme et al., 2014), choosing the DMU performing the best in a
particular model dimension (Marshal and Shortle, 2005), and using interactive
multiobjective algorithms (see Halme et al., 1999). This inherent subjectivity makes
the task of choosing an MPS less transparent and raises concerns as it might
compromise the evaluation process in the case of malevolent DMs who wish to curb
the results in favor of certain DMUs.?°

Nevertheless, there are other, relatively objective alternatives, the use of which
can make the MPS choice as transparent as possible from the viewpoint of stakeholders
or the public. They can also provide compromise solutions in cases where a DM is
absent or unable to point at a preferred DMU and in cases of disagreement among a

board of DMs.®® These include: first, averaging inputs and outputs over more than one

2% We emphasize that such subjectivity is also inherent in several stages of the composite indicator
construction process, such as the choice of the relevant indicators to be included in the composite and
the normalization scheme. It is frequently present in the choice of weight bounds in weight-restricted
BoD as well. Thus, malevolent DMs can also choose weight bounds that will curb the BoD efficiency
frontier, resulting in an evaluation process that favors certain DMUs.

30 Some MPS choices might prove to be as time-consuming as the process of choosing weight restriction
bounds. Nevertheless, as Korhonen et al. (2002) ague, DMs are more keen on simply pointing at a DMU
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DMUs selected by the same or different DMs and using the resulting artificial DMU as
a compromise solution MPS (Korhonen et al., 2002). Second, using a participatory
approach such as the Analytic Hierarchy Process (AHP, Saaty, 1988) or the Budget
Allocation Process (BAP, see OECD, 2008).3! Third, using an established criterion for
ranking the DEA-efficient DMUs such as superefficiency scores (see Halme and
Korhonen, 2015). Fourth, choosing the MPS on the basis of a strong normative
argument, which mandates what the preferred performance of DMUs “ought to be”
within the particular evaluation context. This alternative is followed in the empirical
application of this chapter, in which MPS choice is based on the notion of uniformity.
Fifth, using an ideally-performing virtual DMU, i.e., one that utilizes the maximum
observed indicator values across DMUs. As such an Ideal DMU usually lies beyond
the DEA efficient frontier, its DEA-efficient peers should be identified through a

superefficiency model and be used as the MPS its place.*?

3.3. Re-estimating the Human Development Index
3.3.1. Variables and modeling choices

In this section we use the VEA-BoD model to re-estimate UN’s HDI for the year 2015.
The HDI is a CI reflecting country achievements in human development, the
underpinnings of which can be found in Sen’s capability approach.®® The capability
approach views people as the main recipients (the “ends”) of the development process
and development itself as a process which expands people’s choices, thereby placing
the emphasis on “what people get from development, not only what they put into it”
(Anand and Sen, 2000b, p. 84). The HDI contains three basic and universally valued
capabilities, namely to be knowledgeable, to live a healthy life, and to have adequate
command over resources in order to enjoy a decent standard of living (Anand and Sen,

rather that engaging in the task of choosing weight bounds, meaning that the concept of the MPS is
generally easier to understand and to select, compared to absolute or relative weight bounds.

31 The use of AHP for choosing the MPS was proposed in Korhonen et al. (1998).

32 This alternative is inspired from the multicriteria TOPSIS (Technique for Ordered Similarity to Ideal
Solution, see Huang and Yoon, 1981) technique. TOPSIS also involves an Anti-ldeal DMU, namely one
utilizing the minimum observed indicator values across DMUs, but such a benchmark choice is not
suggested as an MPS as it would be more likely to represent the least rather that the most preferred
solution.

33 For a recent review of the underpinnings and development of the HDI see Hirai (2017).
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2000b). Ever since the first Human Development Report in 1990, there has been a quite
long literature regarding (i) the choice of the capabilities to be included in the index,
(ii) their relevant proxy variables, (iii) the normalization of these variables, (iv) the
choice of the aggregator function, and (v) the selection of aggregation weights. We
next consider these steps in sequence.

First, several important aspects of human development such as environmental
sustainability, political rights and freedom, income or gender inequality as well as other
demographic factors are not included in the current specification of the HDI (see e.g.,
Desai (1991), Ranis et al. (2006) and Klugman et al. (2011)) and several attempts (see
e.g., Hicks (1997), Sagar and Najam (1998), Neumayer (2001) and Herrero et al.
(2019)) have been made to incorporate them. For the purpose of this chapter, we keep
the current HDI specification for both the capabilities considered and the variables used
to proxy them. That is, we use life expectancy at birth as a proxy for living a healthy
life, the arithmetic average of the mean and the expected years of schooling as a proxy
for being knowledgeable, and the logarithm of GNI per capita in 2011 $ PPP to a proxy
for the standard of living.3*

Second, the HDI is based on the min-max normalization with the goalposts
(minimum and maximum) values for each indicator being those of 1994.3% This has
been criticized as the normalized indicators and the resulting CI depend on the choice
of these minimum and maximum values (Noorbakhsh, 1998a; Panigrahi and
Sivramkrishna, 2002). Several alternatives have been proposed: in particular,
Mazumdar (2003) and Chakravarty (2003) used sample minimum and maximum
goalpost values, Noorbakhsh (1998a; b) employed the z-score normalization, Herrero
etal. (2012) relied on the distance-to-the-leader normalization (i.e., divide each variable
with its maximum value across countries), while Luque et al. (2016) suggested a
normalization with two reference points, an aspiration point reflecting the desired level
and a reservation point beyond which performance is not acceptable.®® For the BoD
model, the distance-to-the-leader is the appropriate normalization in order to ensure

34 There is a long discussion in the literature about the logarithmic transformation of the income variable;
see Kelley (1991), Chakravarty (2011), Ravallion (2012), and Herrero et al. (2012).

% Prior to 1994, the goalposts were set by the sample minimum and maximum values.

3 For comparative results regarding the first three of these normalizations for the HDI see Karagiannis
and Karagiannis (2020).
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unit invariance, required in any DEA model. Notice that unit invariance is violated
with the min-max normalization (Filippetti and Peyrache, 2011).

Third, the UNDP initially (1990-2009) used an arithmetic aggregation function
but as of 2010 it has switched to a geometric aggregation function.®” The main reason
behind this switch is the implied perfect substitutability between the component
indicators in the arithmetic aggregation (see Klugman et al. (2011) and the references
therein). However, as argued by Ravallion (2012), arithmetic aggregation implies
perfect substitutability between the considered indicators but not between capabilities
due to the logarithmic transformation of the income variable. Both the BoD and the
VEA-BoD models assume arithmetic aggregation of the component indicators.
Previous attempts to estimate the HDI by means of a multiplicative BoD model, with
the logarithm instead of the actual values of the component indicators, have been
criticized (Tofallis, 2014) as they do not satisfy unit invariance.

Fourth, choice of the weights for aggregating the component indicators is
probably the most debated step. The UNDP used equal weights, which implies that
each indicator and its corresponding capability are of equal importance to human
development (Klugman et al., 2011). Even though this has been criticized as arbitrary
(see e.g., Desai, 1991), there are several studies that support the equal weights scheme
either on the basis of the principle of parsimony (Hopkins, 1991) or empirical evidence
based on Principal Components Analysis (Owgang, 1994; Noorbakhsh, 1998a, b;
Owgang and Abdou, 2003; Nguefack-Tsangue et al., 2011), expert opinion surveys
(Chowdhury and Squire, 2006), or statistical criteria from Information Theory
(Stapleton and Garrod, 2007). On the other hand, several other studies have called for
variable weights: Srinivasan (1994, p. 240) noted that relative weights “need not be the
same across individuals, countries, and socioeconomics groups”. Along the same line,

Fukunda-Parr (2003, p.306) referred that “the relative importance of capabilities can

37 Sagar and Najam (1998), Prados de la Escosura (2010), Herrero et al. (2010), and Zhou et al. (2010)
have also used geometric aggregation while Noorbakhsh (1998a; b) used the L, distance of each country
from an ideal country that has the sample maximum value of indicators, Luque et al. (2016) and
Krishnakumar (2018) set the HDI equal to the minimum of the three indicators (a scheme that allows for
no substitutability), and Noorbakhsh (1998a) used the Borda’s aggregation rule.

38 Tofallis (2013) used a multiplicative BoD model that satisfies both unit and scale invariance but which,
according to van Puyenbroeck and Rogge (2017), can be no longer considered as a geometric weighted
average of indicators, as it violates the linear homogeneity property.
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vary with social context-from one community or country to another and from one point
of time to another”, Klugman et al. (2011, p. 261) suggested that in an ideal situation
the relative weights “should be traced either to individual preferences, some collective
social choice process or to a strong normative argument’’, and Noorbakhsh (1998a, p.
593) argued that “an alternative way is to derive these weights from the data”.
Following these considerations, several studies favored the use of variable
weights that vary either across countries or across both indicators and countries. In the
former case, Lind (2010) used revealed preferences to obtain such a set of common
across countries but unequal weights, Pinar et al. (2013, 2017) employed non-
parametric stochastic dominance techniques, Karagiannis and Karagiannis (2020)
relied on Shannon entropy, Despotis (2005a), Hatefi and Torabi (2010) and Sayed et
al. (2015) used goal programming, and Tofallis (2013) a regression model with the CI
obtained from the conventional BoD model as dependent variable and the component

indicators as independent variables. °

In the latter case, Mahlberg and Obensteiner
(2001) used a normalized variant of the BoD model, Despotis (2005) employed the
conventional BoD model in (3.1), Bougnol et al. (2010) considered a BoD model with
weighted restrictions, and Lozano and Gutierrez (2008) relied on the range-adjusted-
measure (RAM) BoD model.*

The VEA-BoD model used in this chapter allows weights to vary across both
indicators and countries but only within a certain range, which is determined by the
“model” country. This is in line with Sen (1999, p. 78) who mentioned that weights for
each capability can be chosen from a specified range on which there is agreement. We
base our choice of the “model” country on the notion of uniformity. Following Mishra
and Nathan (2018), uniformity implies that, between two countries with the same
average attainment across indicators, the CI should favor the most balanced country,
i.e., the country with the minimum dispersion across indicators. Palazzi and Lauri
(1998, p.196) also favored such a choice by postulating that “there are explicit or
potential endogenous forces working to move the values of the single variables towards

a more balanced relation”. In Figure 3.1, by choosing a country such as C, which

3% The procedure is repeated in Lind (2019) using world data for the years 1990-2017. The findings
differentiate from the 2010 study in that the weight of income is now the lowest.

40 |n the normalized variant of the BoD model, ¥_. u* = 1 in addition to other restrictions in (3.1).

j=1"Jj

47



displays balanced performance, implies that the preferred range of input/output bundles
lies between rays OB and OD. For any country within this range, the conventional and
the VEA-BoD model scores coincide while the farther a country’s bundle is from those
between OB and OD rays, the lower its VEA-BoD score will be compared to its BoD
score.

We consider three alternatives for choosing a balanced MPS country: first, the
country that is ranked first in 2015 UN HDI, namely Norway; second, the country with
the minimum dispersion across indicators, namely Lithuania; and third, an artificial
country with all indicators set at 0.5.#* Norway is also a BoD-efficient country and thus
it can serve as MPS by its own. The other two alternatives, namely Lithuania and the
artificial country, are BoD-inefficient but share the same peers, namely Norway and
Australia, and thus result in the same VEA-BoD model.

3.3.2. Empirical Results

The empirical results for the conventional BoD model in (3.1) and the two VEA-BoD
models with Norway and Norway and Australia as MPS are presented in Table 3.1.
The average CI value for the BoD model is 0.861, with five countries receiving Cl
scores of one, namely Norway, Australia, Singapore, Hong-Kong and Qatar.*? As it
was expected, VEA-BoD results on average into relatively lower scores and less DMUs
as being efficient. From the BoD-efficient countries, Hong-Kong drops from the list
when Norway is chosen as MPS while Hong-Kong and Qatar drop from the list when
Norway and Australia are chosen as MPS. Qatar had an extremely unbalanced bundle
that implicitly places higher importance on the “command over resources” indicator,
for which it ranks 1% compared to education (82" and longevity (39"). Hong-Kong,
on the other hand, implicitly places a higher importance on the longevity indicator, for
which it ranks 1% (see Table 3.2).

“1 The artificial country with all indicators set at 0.5 is a multiple of the “Ideal DMU” country, for which
all indicator values are equal to one. Hence, the radial projection of the Ideal DMU on the efficient
frontier and, consequently, its DEA-efficient peers, coincide with those of the artificial country (i.e.,
Norway and Australia). Thus, the use of an “Ideal DMU” country as the MPS will produce the same
results with our second and third proposed alternatives.

42 Notice that, as Karagiannis (2017) has shown, the average accurately reflects the aggregate in the case
of the BoD and thus, the numbers in the following Tables and Figures can be seen as aggregate values.
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Table 3.1: Cl estimates and efficient countries, BoD and VEA models

Model BoD VEA (a) VEA (b/c)
composite indicator estimates

maximum 1.000 1.000 1.000

minimum 0.611 0.574 0.574

average 0.861 0.834 0.833

median 0.880 0.856 0.856

standard deviation 0.094 0.106 0.106

Q1 0.793 0.748 0.747

Q3 0.926 0.913 0.913

efficient countries
# of efficient countries (Cl=1) 5 4 3
efficient country names Norway, Australia, Norway, Australia,
Singapore, Hong- Norway, Australia, Singapore
Kong, Qatar Singapore, Qatar

The HDI frequency distributions of the three estimated models are portrayed in
Figure 3.2. Based on Banker tests (see e.g., Banker and Natarajan, 2011) we can
confirm that both the VEA-BoD distributions of efficiency scores differ, in a
statistically significant way, from that of the conventional BoD. The same is not
however true when we are comparing the efficiency scores from the two VEA-BoD

models to each other, for which there are no statistically significant differences. This
is also evident from the average rank shift, given as R = (%) ij=1|rank{ — rank]|

(Saisana et al., 2005), which is roughly 1.4 positions when we are comparing the scores
of the two VEA-BoD models while it is around 9 positions when we comparing the
BoD and the VEA-BoD efficiency scores (see Table 3.3). In addition, relatively large
rank shifts (more than ten positions) occur for 70 and 68 countries respectively when
we are comparing the BoD with the two VEA-BoD scores, whereas it is limited to only
three countries when comparing the two VEA-BoD scores. This rank variability is all
but uniform across countries: country-specific Mean Absolute Deviation in ranks
(Cillingirtiirk and Kogak, 2018) in Figure 3.2(b) shows that countries in the middle rank
positions, as identified by the BoD model, exhibit relatively higher rank variability
compared to top or bottom ranked countries. In order to verify the latter, we constructed
rolling country subsamples of size 40. More specifically, the first subsample consisted
of the top-40 ranked countries by the BoD model. From that, we constructed the second
subsample by dropping the country ranked 1% and including the country ranked 41"
Each following subsample was constructed likewise, and the last one consisted of the
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Table 3.2: HDI and indicator values and ranks, BoD-efficient DMUs

DMU Longevity education index  income HDI 2015 times as peer®
Norway 0.971(17)  0.905 (6) 0.945 (6) 0.949 (1) 23
Australia 0.981 (9)? 1.000 (1) 0.906 (20)  0.939 (2) 49
Singapore 0.989 (4) 0.803 (37) 0.957 (2) 0.925 (6) 54
Hong-Kong (HK)  1.000 (1) 0.811 (30) 0.926 (10)  0.917 (12) 145
Qatar 0.931(39) 0.689(82) 1.000 (1) 0.856 (35) 30

Notes: (a). Numbers in parentheses denote the country’s rank position, (b). The last column denotes
the time that each efficient country serves as a peer for inefficient ones in model (2) calculations.

bottom-40 ranked countries by the BoD model. The average rank shift between pairs
of models for each subsample is plotted in Figure 3.2(c), where we see that the average
rank variability between the BoD and the two VEA-BoD scores is considerably higher
in subsamples including mostly middle-ranked countries, whereas this pattern is absent
when we are comparing the two VEA-BoD scores, which on average displays minor
rank differences.

The above results suggest that the VEA-BoD model has a moderate impact on
HDI scores compared to the conventional BoD model but a significant impact on
country rankings, which is magnified for middle-ranked countries. This finding may
however be affected by the choice of MPS, for which so far we have based on the notion
of uniformity, i.e., relatively balanced achievements. We next examine the sensitivity
of our results to MPS choices that go beyond balanced achievements. In the absence
of a general consensus, potential candidates for MPS might be all countries found to be
BoD-efficient: namely, Norway, Australia, Singapore, Hong-Kong and Qatar.
Summary results of the VEA models using each or combinations of the above countries
as MPS are given in Table 3.4 and their frequency distributions are portrayed in Figure
3.3, where are plotted against the BoD distribution of efficiency scores.

Consider first the cases where each of the BoD-efficient countries is chosen as
the MPS. The differences between the BoD and the VEA-BoD scores depends on the
extent of the preferred range of indicator bundles implied by each MPS, which in turn
is closely related to the number of times an efficient country is used as a peer. For
example, in the case of Hong-Kong, which serves as a peer for 145 of the 193 BoD-
inefficient countries (see Table 3.2), the differences between the conventional BoD HDI
and the VEA-BoD HDI using Hong-Kong as the MPS are minimal (see Figure 3.3) and

in fact, statistically insignificant (see Table 3.5). The same is essentially true when
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Figure 3.2: Comparison of distributions and rankings, BoD, VEA (a) and VEA (b/c)

Mean Absolute Deviation in rank (BoD, VEA(a) and VEA(blc) models)
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Table 3.3: Average rank shifts, large rank shifts, and statistical tests of equality
between pairs of BoD, VEA(a) and VEA(b/c) models

Average rank Large rank shifts , ,
Pair shgift (>fo positions) Banker’s F1 - Banker’s F2
BoD-VEA(a) 9.202 70 1.214** 1.438***
BoD-VEA(b/c) 8.952 68 1.229** 1.467***
VEA(a)-VEA(b/c) 1.388 3 1.012 1.020

Note: The F1 (F2) test assumes an exponential (half-normal) distribution of the inefficiency scores, following
Banker et al (2010). Both tests compare the initial DEA to the respective VEA distribution and the alternative
hypothesis for all cases was that the respective VEA model exhibits higher inefficiency scores. Three, two
and one stars denote statistical significance at 1%, 5% and 10% respectively.

Australia (which serves as a peer 49 times) or Singapore (which serves as a peer 54
times) are considered as the MPS.** On the other hand, MPS choices such as Norway
and Qatar result in statistically significant differences between the conventional BoD
and the VEA-BoD models (see Figure 3.3 and Table 3.5). Norway’s bundle displays,
as we have mentioned, a relatively high balance that is absent from the majority of
countries while Qatar’s mix placed considerably higher importance on the “command
over resources” indicator.** In Figure 3.4, we plot the values of Mean Absolute
Deviation for the VEA-BoD models using each BoD-efficient country as the MPS. The
average value of 4.59 (dashed line) indicates that varying the MPS can induce relatively
moderate shifts in ranking. Nevertheless, rank variability appears to be higher for
countries in the middle of the rankings, whereas top and bottom ranked countries appear
to be relatively less affected by the chosen MPS.

When considering cases with jointly efficient pairs and triads of BoD-efficient
countries as MPS (see Table 3.4 and Figure 3.3), several interesting findings emerge
from these results: first, VEA-BoD models with two or three countries forming the
MPS resemble more or less the behavior of the country with the most extreme indicator
bundle. See for example the VEA-BoD models based on Norway alone and on Norway
and Hong-Kong as the MPS. Second, VEA-BoD models with pairs and triads of

43 In terms of Figure 3.1, we may think of Hong-Kong as being DMU A, for which the preferred range
of mixes (between the I, axis and OB) is very wide and unbalanced. On the other hand, we may think of
Singapore and Australia as being DMUs B and D respectively, the preferred mix ranges of which are
slightly less wide but relatively more balanced compared to that of DMU A.

4 In terms of Figure 3.1, we may think of Norway as being DMU C that displays the most balanced
performance but has a relatively narrow preferred mix range, potentially serving as a peer for a few
inefficient DMUs and of Qatar as being DMU F whose mix favors extremely indicator 2.
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Table 3.4: Composite indicator estimates, model (3.2), alternative MPS selections

efficient
standard countries
MPS selection maximum minimum average median deviation Q1 Q3 (CI=))
Norway 1.000 0.574 0.834  0.856 0.106  0.748 0.913 4
Australia 1.000 0.596 0.852  0.875 0.100 0.780 0.923 4
Singapore 1.000 0.605 0.852  0.872 0.096 0.786 0.921 5
Hong-Kong (HK) 1.000 0.611 0.856  0.875 0.097  0.790 0.924 3
Qatar 1.000 0.589 0.836  0.850 0.099  0.759 0.905 3
Norway-Australia 1.000 0.574 0.833  0.856 0.106  0.747 0.913 3
Norway-Singapore 1.000 0.574 0.833  0.856 0.106  0.747 0.913 4
Norway-Qatar 1.000 0.565 0.823  0.840 0.109  0.739 0.905 3
Australia-Singapore 1.000 0.589 0.843  0.864 0.103  0.763 0.916 4
Australia-HK 1.000 0.596 0.848 0.871 0.102  0.772 0.917 3
Singapore-HK 1.000 0.605 0.848  0.866 0.099 0.776 0.918 3
Singapore-Qatar 1.000 0.589 0.835 0.850 0.099  0.757 0.905 3
Norway-Australia-Singapore 1.000 0.574 0.831  0.856 0.107  0.747 0.913 3
Norway-Singapore-Qatar 1.000 0.565 0.822 0.840 0.109  0.729 0.905 3
Australia-Singapore-HK 1.000 0.589 0.841  0.862 0.104 0.762 0.914 3

countries constituting the MPS do not differ in a statistically significant sense with

VEA-BoD models with the most extreme (in terms of indicator bundle) of these
countries as the MPS but they statistically differ from VEA-BoD models with other

BoD-efficient countries as the MPS if the pair or triad includes a country with a

relatively extreme bundle compared to the rest of the sample (i.e., Norway and Qatar)

(see Table 3.6). Third, pairing countries with similar preferred ranges of indicator

bundles to form the MPS (e.g., Hong-Kong and Singapore) seems to result in negligible

differences compared to the VEA-BoD models with each of these countries as a single

MPS (see Figure 3.3 and Table 3.6).

This demonstrated sensitivity of the models’ estimates to the chosen MPS might

pose difficulties to select among alternative evaluation results those that will be

ultimately presented to stakeholders or the public and used for policy-designing

purposes. As this situation is similar to the initial choice of the MPS, a first option for

indecisive practitioners or DMs would be to use the evaluation results stemming from

an objective and transparent MPS choice among those presented in the previous section,

such as AHP or BAP. A second option would be to choose the evaluation results that

fit the most the DMs’ perceptions of “good” and “bad” performing DMUs in the

sample. Lastly, MPS choice can also be based on the variability between the BOD and

VEA-BoD estimates. For example, DMs opting for the least (most) rank variability

between HDI estimates of the two models would select the evaluation results based on
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Figure 3.3:

Kernel density distributions, model (3.1) vs. model (3.2), alternative MPS choices
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Figure 3.3 (cont.)
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Figure 3.3 (cont.)
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Table 3.5:Average rank shifts, large rank shifts, and statistical tests of equality, model

(3.1) vs. model (3.2) for alternative MPS selections

Average Large rank

rank shifts Banker’s Banker’s
MPS selection shift (>10 positions) F1 F2
Norway 9.202 70 1.214** 1.438***
Australia 3.362 4 1.074 1.159
Singapore 4.532 13 1.068 1.118
Hong-Kong (HK) 4.144 14 1.043 1.091
Qatar 10.537 84 1.195** 1.341**
Norway-Australia 8.952 68 1.229** 1.467***
Norway-Singapore 8.872 66 1.222** 1.452%**
Norway-Qatar 12.559 88 1.309***  1.630***
Australia-Singapore 6.128 30 1.148* 1.300**
Australia-HK 4.963 14 1.103 1.222*
Singapore-HK 6.133 24 1.101 1.190
Singapore-Qatar 10.101 80 1.204** 1.360**
Norway-Australia-
Singapore 8.654 65 1.241** 1.495***
Norway-Singapore-Qatar 12.271 87 1.316***  1.644***
Australia-Singapore-HK 6.899 34 1.163* 1.334**

Note: The F1 (F2) test assumes an exponential (half-normal) distribution of the inefficiency scores,
following Banker and Natarajan (2011). Both tests compare the initial DEA to the respective VEA
distribution and the alternative hypothesis for all cases was that the respective VEA model exhibits
higher inefficiency scores. Three, two and one stars denote statistical significance at 1%, 5% and
10% respectively.

Australia (Norway and Qatar) as the MPS.

Last but not least, we examine the sensitivity of our results with respect to
different modeling choices regarding the education indicator. Several authors (e.g.,
Mabhlberg and Obensteiner, 2001; Lozano and Gutiérrez, 2008; Sayed et al., 2015)
suggested using the mean and the expected years of schooling as separate indicators
while Herrero et al. (2012) proposed using only the expected years of schooling.*® The
comparative results concerning these two alternative formulations of the education
variable are presented in Table 3.7. There seem to be no significant differences with
our benchmark formulation of using the average of the mean and the expected years of
schooling. The most notable difference is that now the VEA-BoD models are based on

different countries for the MPS, namely Norway, Australia and Singapore and Norway

5 The former choice is also supported by empirical findings indicating that using the average of the two
variables results in substantial information loss (Canning et al., 2013).
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Figure 3.4: Country-specific Mean Absolute Deviation between VEA models based on different BoD-efficient DMUs as the MPS

Mean Absolute Deviation (single-MPS VEA models)
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Table 3.6: Average rank shifts and statistical tests of equality, model (3.2) for alternative MPS selections

average rank shift

MPS selection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.Norway 8.617 6.170 11.452 4.016 1.388 0.830 3.835 5.596 10.122 8.346 4.314 2.559 3.665 6.771
2.Australia 4.660 4.505 10.463 7.888 8213  12.197 4.702 2.814 5.229 9.973 7.580 11.888 5.186
3.Singapore 6.261 7.037 5739 5.766 9.186 3.202 5.654 3.133 6.388 5.090 8.846  3.984
4.Hong-Kong (HK) 12.777 10.649 11.037 14.745 6.633 2777 4309 12170 9.968 14426  5.691
5.Qatar 4702 4.335 3.883 7.548 12.053 9.117 1.074 5.383 3.755 8511
6.Norway-Australia 1.239 4.723 4.686 9.309 7.447 4.681 1.266 4457 5777
7.Norway-Singapore 4.303 5.074 9.686 7.910 4.080 1.803 3931 6.229
8.Norway-Qatar 8.920 13.670 11.160  4.404 5.511 0.681  9.883
9.Australia-Singapore 5.250 3.676 6.878 3.878 8,559 1.516
10.Australia-HK 3.894 11447  8.649 13.351  4.298
11.Singapore-HK 8.383 6.649 10.777  2.723
12.Singpore-Qatar 4.755 4032 7.798
13.Norway-Australia-Singapore 5117  4.936
14.Norway-Singapore-Qatar 9.511
15.Australia-Singapore-HK

Banker’s F1 test
1.Norway 1.130 1.137 1.164* 1.016 1.012 1.006 1.078 1.058 1.101 1.103 1.008 1.022 1.083 1.044
2.Australia 1.241* 1.006 1.030 1112 1.143* 1137 1.218** 1.068 1.026 1.025 1.121  1.155*  1.224** 1.083
3.Singapore 1.286** 1.037 1.024 1119  1.150* 1.144* 1.225** 1.075 1.033 1.031 1128 1.162*  1.232** 1.089
4.Hong-Kong (HK) 1.318** 1.063 1.025 1.146* 1.178* 1.171* 1.255** 1.100 1.057 1.056 1.155* 1.190** 1.261** 1.115
5.Qatar 1.072 1.157 1.199 1.229* 1.028 1.022 1.095 1.041 1.084 1.085 1.008  1.039 1.101 1.027
6.Norway-Australia 1.020 1.265* 1.312**  1.345**  1.094 1.006  1.065 1.071 1.114 1.116 1.020 1.010 1.071 1.056
7.Norway-Singapore 1.010 1.253* 1.299**  1.331** 1.083 1.01 1.071 1.065 1.108 1.110 1.014 1.016 1.077 1.050
8.Norway-Qatar 1.133 1.406***  1.458***  1.494*** 1215* 1111 1122 1.140 1.187* 1.188** 1.086 1.054 1.005 1.125
9.Australia-Singapore 1.107 1.121 1.162 1.192 1.032 1128 1117  1.254* 1.041 1.042 1.049  1.082 1.146* 1.014
10.Australia-HK 1.177 1.054 1.092 1.120 1.098 1.201 1189 1.334** 1.064 1.002 1.092 1.126 1.193** 1.055
11.Singapore-HK 1.209*  1.026 1.064 1.091 1127  1.233* 1.220* 1.370** 1.092 1.027 1.094 1.127 1.195** 1.056
12.Singpore-Qatar 1.058 1.173 1.216* 1.247* 1.014 1078 1.068 1.198 1.046 1.113 1.143 1.031 1.092 1.035
13.Norway-Australia-Singapore  1.039 1.289**  1.337**  1.37** 1115 1.019 1.029 1.090 1.150 1.224*  1.256*  1.099 1.060 1.067
14.Norway-Singapore-Qatar 1.143 1.418***  1.470*** 1507*** 1.226* 1.121 1.132 1.009 1.265* 1.346** 1.381** 1.209* 1.100 1.131
15.Australia-Singapore-HK 1.078 1.151 1.193 1.223* 1.005 1.100 1.089 1.222* 1.026 1.092 1.121 1.020 1.121 1.232*

Banker’s F2 test

Note: The F1 (F2) test assumes an exponential (half-normal) distribution of the inefficiency scores, following Banker and Natarajan (2011). The tests in this table compare the efficiency distributions
of the respective row and column VEA models. Three, two and one stars denote statistical significance at 1%, 5% and 10% respectively.
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Table 3.7: Robustness tests: Alternative formulations for the education indicator

formulation
average of two two separate education only expected years of
education variables variables schooling
BoD
Average 0.861 0.864 0.861
# of countries with Cl=1 5 8 5
VEA (a) (MPS: country ranked the highest in the official HDI-ranking of 2015)
MPS Norway Norway Norway
Average 0.834 0.840 0.836
# of countries with Cl=1 4 6 4
VEA (b) (MPS: country with minimum dispersion)
MPS Lithuania* Ireland* Ireland*
(Norway-Australia)  (Norway-Australia-Singapore)  (Norway-Australia-Singapore)
Average 0.833 0.836 0.833
# of countries with Cl=1 3 4 3
VEA (c) (MPS: virtual country with all normalized indicators equal to 0.5*)
MPS (Norway-Australia) (Norway-Australia) (Norway-Australia)
Average 0.833 0.839 0.835
# of countries with Cl=1 3 4 3

Note: An asterisk denotes an inefficient country based on the BoD model. The countries in parentheses below it are its
efficient peers and are used in its place as the MPS.

and Australia. Nevertheless, this change affects only slightly the HDI values.

3.4. Concluding Remarks

In this chapter, we use the VEA formulation of the BoD model, which integrates DM
or expert opinion to the conventional BoD model through the choice of a “model“ DMU
that serves as benchmark for all evaluated units. The “model” DMU defines a preferred
range of indicator bundles and for DMUs operating within (outside of) this preferred
range, VEA-BoD scores are equal to (lower than) the BoD scores. The proposed model
is sensitive to the choice of the MPS. Models with MPS BoD-efficient units featuring
a wider range of indicator bundles (as indicated by the times they are used as peers) or
with bundles closer to the majority of the evaluated DMUs result in VEA-BoD scores
that differ less from the BoD scores. In addition, VEA-BoD scores tend to differ more
(less) from each other if their chosen MPSs have highly dissimilar (similar) bundles,
while VEA-BoD models with more than one DMU as the MPS resemble closely the
pattern of the most extreme of those DMUs. In our empirical application regarding the
HDI, the VEA-BoD model causes moderate changes regarding the scores but
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significant changes in country rankings compared to the conventional BoD model,
especially for middle-ranked countries which displayed on average higher rank
variability compared to top and bottom performing countries.

The proposed model can be applied to a wide range of social and economic
indicators and it could be useful to both the evaluated entities as well as DMs, since it
allows pursuing the best-possible aggregation weights but to the extent that these
weights comply with managerial goals. Nevertheless, the proposed model is not
without limitations, as its current form inherits certain deficiencies of the conventional
BoD and DEA models. More specifically, it is sensitive to the presence of outliers-
which could also affect the MPS choice- and it fails to account for the effect of
background ‘contextual’ variables which are not under the direct control of DMUs but
can create favorable operating conditions for some of them and unfavorable for others.
Hence, the present work could be further extended through a robust order-m framework
(see Cazals et al., 2002) to mitigate the impact of outlying observations and through a
conditional DEA framework (see Daraio and Simar, 2005) in order to account for the
effect of contextual variables. In addition, the present model can be readily extended
to cases where DMUs select the worst possible aggregation weights by means of the
inverted BoD model. In such a case, managerial goals regarding the least preferred

indicator bundle would be considered.
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CHAPTER 4

In search for the Most Preferred Solution in Value efficiency Analysis

4.1. Introduction

In several occasions where the performance of Decision Making Units (DMUSs) is
evaluated by means of Data Envelopment Analysis (DEA, Charnes et al., 1978), it is
desired or necessary to consider the preferences of central management, supervising
agencies or Decision Makers (DMs) that coordinate the operation of DMUs.*®  This
need might arise for purposes of performance monitoring, i.e., measuring the extent to
which the performance of DMUs complies with overall behavioral or organizational
objectives, as well as for performance control and future planning, namely designing
mechanisms that redirect DMUs towards the achievement of managerial goals or
normative performance standards.*’

Preferences in DEA studies are often elicited by means commonly used in
Multiple Objective Linear Programming (MOLP), namely by incorporating expert
information on the desirable input and output values for the evaluated DMUs
(Korhonen et al., 2002). One form this might take is that of the Most Preferred Solution
(MPS).*  The MPS is a non-dominated (i.e., strongly DEA-efficient) DMU or a

46 Such centrally managed and coordinated groups of DMUs (which may have either limited or enhanced
control over the resources allocated to them, and autonomy in setting their own priorities) might include
privately (e.g., bank branches, retail stores) or publicly owned entities (hospitals, education institutions).
They may also be DMUs benefiting from a natural monopoly such as large infrastructure industries, e.g.,
water, electricity and gas networks (Afsharian et al., 2019).

47 These organizational goals might either be monetary (e.g., profit maximization) or non-monetary, such
as targets set for overall output production. Normative standards for performance might arise, for
example, from contract agreements signed by a group of DMUs and the supervising agency (Ruiz and
Sirvent, 2019).

48 Other forms might include targets set separately for each DMU, which may correspond to aspiration
values or long-term goals set by management (Stewart, 2010).
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combination of DMUs, which has the most desirable structure in DM’s view, in the
sense of maximizing his/her value (Korhonen, 2002) or utility function (Yang et al.,
2009).%° It may represent the structure according to which management in a firm wishes
to reorganize its branches or it might be viewed as a mentor from which other DMUs
can learn. The MPS was incorporated into DEA by Halme et al. (1999), in an approach
coined Value Efficiency Analysis (VEA). In VEA, the DMUs are assessed against a
frontier consisting of the extended DEA efficient facets intercepting at the MPS, which
is chosen by the DM in a prior step. In essence, the marginal rates of substitution
(MRSs) of inputs or transformation (MRTS) of outputs imposed on the evaluated DMUs
are those observed on the DEA frontier for the MPS.

Choosing the MPS is an important issue in VEA, as it affects the resulting
efficiency frontier and, consequently, the DMUs’ efficiency scores (Korhonen et al.,
2001). A suitably chosen MPS can yield valuable insights regarding the extent to which
current DMUSs’ performance complies with managerial preferences or organizational
goals, and provides the basis for a cost-saving or revenue-increasing restructuring. On
the other hand, an inappropriate MPS choice might provide questionable efficiency
scores, which may subsequently give rise to poor managerial decisions, such as an
unnecessary and costly resource reallocation. Nevertheless, there seems to be no
general rule for choosing the MPS in VEA. Instead, several suggestions have been
made up to date. In many of these, the MPS is not chosen on the basis of some overall
managerial objective and thus it is difficult to come up with an intuitive explanation for
the DM’s choice, while in others the chosen MPS may favor specialization in the
production of a few outputs or in the use of a few inputs, which is often deemed
unsatisfactory by managers (Epstein and Henderson, 1989). Other MPS choices may
compare DMUs with exceptionally performing benchmarks, assess them against a
DMU operating with non-technically optimal scale, or zero and undefined values for
MRSs and MPTs.®® In addition, no empirical work has been done so far on how
alternatively chosen MPSs may affect the VEA efficiency scores.

49 Strongly DEA-efficient DMUs are those not associated with input or output slacks (Charnes et al.,
1985).

%0 These occur when an optimal vector of input/output weights for the MPS in the multiplier form of a
DEA model includes zero values (Olesen and Petersen, 2003), i.e., when a weakly efficiency facet is
adjacent to the MPS.
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The objective of this chapter is twofold: First, to expand the set of MPS choices.
We first advocate that the DM could make a more informed choice of the MPS among
the efficient DMUs, by paying attention on their position on the efficient frontier. In
particular, we propose that prior to MPS choice the efficient DMUs are clustered based
on whether they appear in the reference sets of other DMUs in DEA and whether they
reside in frontier edges (Edvardsen et al., 2008). This clustering can provide additional
information to the DM about the DMUs for which there is strong evidence of good
relative performance, those that are potentially overspecialized, and those that may be
associated with zero and/or undefined marginal rates. Alternatively, one may choose
the MPS among those with Most Productive Scale Size (MPSS), i.e., those achieving
maximal average productivity for their input/output bundle. This will ensure that the
DMUs are assessed against a technically optimal scale, the achievement of which is a
long-term organizational goal, which interests both individual DMUs as well as central
management (Fersund and Hjalmarsson, 1979). Our third proposed MPS is the
combination of peers of the Average Production Unit (APU). The APU is an artificial
DMU that operates with the group means quantities of inputs and outputs, and its
technical efficiency score reflects the structural efficiency of the whole group of DMUs
when resource allocation is centrally coordinated.® Its structure reflects the one that
each DMU should have in order for the group as a whole to realize its full potential
output production, and the resulting VEA scores may be particularly useful for guiding
future performance planning. Another proposal is to assess DMUs using on a common
vector of strictly positive input/output weights in VEA, by choosing a combination of
DMUs that generate a unique Fully Dimensional Efficient Facet (FDEF) as the MPS.
This results in evaluating all DMUs against a common standard and well-defined MRSs
and MRTs and could be useful in several cases where the assessed DMUs perform
essentially the same task or have limited autonomy in setting their own priorities and
objectives (i.e., choose individually the values of input/output weights).

The chapter’s second objective is to provide comparative empirical evidence on
how alternative MPS choices may affect the estimated VEA efficiency scores. More

specifically, using data for 526 Greek cotton farms, we compare the efficiency

51 Structural efficiency was termed by Farrell (1957, p. 262) as ‘the extent to which an industry keeps up
with the performance of its own best firms’.
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estimates obtained by the DEA model and those of VEA models with alternative MPS
choices. The results of this analysis provide useful insights regarding the MPS choices
that are more likely to result in excessive or negligible differences between the DEA
and the VEA distributions of efficiency scores.

The rest of the chapter unfolds as follows: In the second section, we present the
VEA model while in the third section, we review the MPSs proposed previously in
VEA and suggest four new. In the fourth and the fifth section, we illustrate how the
choice of the MPS may affect VEA efficiency scores. Concluding remarks follow in

the last section.

4.2. Materials and methods

In VEA, DM preferences are reflected through an implicitly known pseudo-concave
value function (i.e., an indifference curve), that becomes tangent to the DEA efficient
frontier at the point where the MPS is located. This value function might reflect some
organizational objective, i.e., be a cost or a profit function, but it might also reveal
preferences other than those related with prices (Thanassoulis et al., 2008, p. 73). The
empirical VEA frontier is then constructed as the lower envelope of the extended
efficient facets intercepting at the MPS. As DEA facets are generated by extreme-
efficient DMUs, the MPS will in essence be either a single extreme-efficient DMU or
a combination of extreme-efficient DMUs that are jointly efficient, in the sense that
they generate at least one common facet. In the latter case, only those common efficient
facets are extended to obtain the VEA frontier.

Introducing the MPS requires only slight modifications to the conventional
DEA model. Let us consider a set of K DMUs (k = 1, ..., o, ..., K), that operate under
the same technology and use | (i = 1, ...,I) inputs to produce J (j = 1, ...,J) outputs.
The input and output vectors of each DMU are assumed to be semi-positive, that is,
each DMU uses at least one input to produce at least one output. Further, we assume
that the DM has select aset R (r = 1, ..., R) of extreme-efficient DMUSs as the MPS.5?

52 Note that the number of extreme-efficient DMUs constituting the MPS cannot be more than (1+J-1) in
DEA models with constant returns to scale (CRS) and (1+J) in DEA models with variable returns to scale
(VRS), as this is the maximum number of extreme-efficient DMUs that may generate an efficient facet
of the DEA surface (see Olesen and Petersen, 2003).
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An output-oriented, variable-returns-to-scale (VRS) VEA model in its multiplier and

envelopment form is given as (Halme and Korhonen, 2015):
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where 6,4 € (0,1] is the efficiency score. The constant-returns-to-scale (CRS) form
of (4.1) and (4.2) are obtained by removing the free variable and the convexity

constraint from their multiplier and envelopment forms, respectively.>®

58 The CRS counterpart of (4.2), in its multiplier form, appears for the first time in Oral and Yolalan
(1990) and Oral et al. (1992), where it is used to compare every DMU’s performance to that of a
particular efficient DMU, which is selected at a previous step.
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The envelopment form of the models in (4.1) and (4.2) differs from those of
conventional DEA in that the sign of the intensity variable corresponding to the MPS
is free instead of restricted to be non-negative (Halme et al., 1999). In the multiplier
form of the models, this corresponds to turning from inequality to equality the
restriction referring to the MPS. This restricts the choice of input/output weights for
the evaluated DMUs only to those that are optimal for the MPS.%* In essence, the
choice of the MPS results in evaluating every DMU using the MRSs and MRTSs that
are observed on the DEA frontier in the neighborhood of the MPS.>® The DM may
view these marginal rates as adequate enough to apply globally as they reflect his/her
own valuation of inputs and outputs. The evaluated DMUs for which at least one
optimal vector of weights in DEA is also optimal for the MPS receive the most
optimistic VEA score possible, namely one that is equal to their DEA efficiency score.
The remaining DMUSs, the input/output structure of which “deviates too much” from
the one of the MPS (Korhonen et al., 2002, p. 59), are forced to accept less favorable
weights in VEA compared to DEA, and their VEA scores are lower than the
corresponding DEA ones.

The facet extensions in VEA are illustrated in Figure 4.1 in the case of one-
input-two-outputs technology. Choosing DMU D as the MPS implies the dashed line
frontier by extending facets CD and DE. If the output price ratio ranges between the
slopes of the two facets intercepting at D, the resulting VEA scores might be viewed as
providing approximate estimates of overall (i.e., cost, revenue, or profit)
efficiency(Joro and Korhonen, 2015 p. 100). If the DM wishes to prioritize the
production of the second output compared to that of the first one, he/she might choose

5 Such equality restrictions have been used for incorporating expert views in DEA in other studies as
well, without referring explicitly to VEA. Zhu (2001) uses the CRS counterpart of (4.2) in its multiplier
form to benchmark the quality of life of 20 cities against a set of peer DMUs that would necessarily
contain three pre-selected cities identified by Fortune magazine as the top-three best cities in terms of
quality of life (see his equation (8)). Furthermore, Cook et al. (2004) used input-oriented CRS and VRS
VEA models under the name “fixed benchmark model” in order to measure the performance of out-of-
sample DMUs (see their equations (9) and (10)). Also, Wang and Luo (2006) used a model that is
equivalent to the input-oriented CRS VEA model, in which the frontier projection of an artificially
constructed ideal DMU (IDMU), namely one that consumes the minimum sample quantities for each
input while producing the maximum sample quantities for each output, corresponds to the MPS (see their
equation (4)). The DEA frontier projection of the IDMU was obtained via a super-efficiency model.

5 Ratios of optimal values of input and/or output DEA weights reflect marginal rates of substitution
between inputs, transformation among outputs, and marginal products between inputs and outputs that
are observable on the frontier (Charnes et al., 1985).
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Figure 4.1:Extending efficient facets through VEA
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DMU B as MPS, which would extend facets AB and BC. On the other hand, if the
DMUs operate in a relatively uniform environment (e.g., are employees within the same
organizational department), the DM may wish to evaluate them based on a common
value system. This could be done, for instance, by choosing both C and D as MPS.
Then, only the common facet between C and D is expanded, and DMUs are evaluated
by using a common vector of weights (the one that is normal to facet CD). If, however,
DMU G is chosen as the MPS, the VEA frontier will also include the vertical segment
(weakly efficient facet) between DMU G and the horizontal axis, for which the MRT
between the two outputs is undefined. This will allow the inefficient DMU H to assign

a zero value to the weights of the first output in its evaluation by VEA.

4.3. MPS choice

This section is divided into a literature review subsection, where we present and
evaluate previously suggested MPSs, and a subsection where we make four new

suggestions for MPS choice.
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4.3.1. Literature review

In this section we present nine suggestions used previously in the literature and discuss
the rationale associated with each one and characteristics that may encourage or

discourage its use by managers.

4.3.1.1. DM personal judgment

In this case, DMs fully exert their judgments and obtain evaluation results that
correspond to their legitimate priorities. The DM may choose a single or several DMUs
for this purpose. In the latter case, Korhonen et al. (2002) suggested to form a virtual
DMU by averaging over the input and output quantities of the chosen DMUs.>® The so
constructed DMU may be inefficient, indicating that the DM has conflicting
preferences, and in this case its set of DEA peers should be used as MPS (see Joro and
Korhonen, 2015, p. 124).

4.3.1.2. Prior or external information

Prior or external information, regarding previous evaluation results or achievements,
may be used by DMs to choose a single or a set of MPS. Marshall and Shortle (2005)
made this suggestion but its usefulness depends on the accuracy of the relevant
information. As these might refer to a different sample of DMUs, another set of inputs
and outputs, and different “environmental” conditions, they might not be representative

for the evaluated DMUs at hand.

4.3.1.3. Best-in-input or best-in-output DMUs

Korhonen et al. (1998) suggested choosing as the MPS a best-in-input DMU, namely
one that uses the smallest quantity of a particular input, or a best-in-output DMU, i.e.,

one that produces the largest quantity for a given output.®” In a multiple-input-multiple-

%6 This is suggested if the DM views the most preferred structure as a combination of the chosen DMUs
(Korhonen et al., 2002). If the DM views each of the chosen DMUSs as representing a different type of
good performance, this may indicate that there are non-homogeneous sub-samples of DMUs, which may
be fairer to evaluate separately from each other.

57 Marshall and Shortle (2005) defined as “super-achievers” those DMUSs that have the largest (smallest)
sample quantity for a particular output (input) but also outperform the DMU with the second largest
(smallest) quantity by a large margin. As the extent of this margin was not formally defined, we consider
only best-input and best-in-output DMUs from now on.

69



output setting, there will be more than one best-in-input and best-in-output DMUJs, in
which case one of them should be chosen as the MPS. The choice may be facilitated if
the DM views a particular input or output as overwhelmingly more important than all
other inputs or outputs (as e.g., is the case with employee salaries in public services,
see Joro and Viitala, 2004). Such views could however be reflected directly in the
specification of inputs and outputs by excluding all other inputs or outputs from the
analysis.

The use of a best-in-input or a best-in-output DMU may result in assessing the
DMUs against a technically non-optimal scale. This is because a best-in-input DMU is
usually of very small size and possibly of sub-optimal scale, and a best-in-output DMU
is often large-sized and has supra-optimal scale. Also, the choice of a best-in-output
MPS might imply a management directive towards increasing production disregarding
the costs this may incur, while a best-in-input MPS might reflect the need for urgent
budget cuts, without considering whether the resulting decreased production will be

able to meet demand in the future.

4.3.1.4. 1DMU

The IDMU uses the sample minimum quantities of each input to produce the sample
maximum quantities of each output. It is thus “best” in all inputs and outputs. If it is
not among the evaluated DMUSs, it cannot be used as the MPS, but its DEA frontier
projection could be. For this purpose, one may estimate its efficiency score by means
of a super-efficiency DEA model and use its efficient projection of inputs and outputs
as MPS (Wang and Luo, 2006). Since the frontier projection of the IDMU may contain
slacks, the set of IMDU peers may instead be used as MPS, to ensure that it is a non-
dominated DMU. In several occasions, the IDMU may look as a suitable MPS choice
but its input/output bundle is likely to differ from most of the evaluated DMUs. This
in turn may result in VEA efficiency scores that differ significantly from the DEA
efficiency scores.

4.3.1.5. Most frequent peer

In this case, the MPS is the efficient DMU appearing the most times as a peer in the

DEA model. This DMU is an example-to-follow for most of the DMUs, and it may be

viewed as reasonable benchmark or “global leader” (Oral and Yolalan, 1990); Oral et
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al., 1992) for them. Then, the VEA efficiency scores for most of the DMUs will be
equivalent to their DEA ones, and thus the use of VEA will not provide additional
insights to central management compared to the results of the DEA model.®® In
addition, a DMU acting as a peer for a large number of DMUs could be a potential
outlier if it performs extremely better in relative terms compared to the DMUs it
influences (Bogetoft and Otto, 2011, p. 147), in which case it should be excluded from
the sample rather than being used as MPS.

4.3.1.6. Maximum (or infinite) super-efficiency

Halme and Korhonen (2015) suggested choosing as the MPS the DMU with the
maximum super-efficiency score. In a CRS setting, the DEA super-efficiency model
always results in finite scores, in which case it is rather straightforward to choose the
MPS. On the other hand, the VRS super-efficiency DEA model may result in an
infeasible solution for some DMUs. One may then choose as the MPS either the DMU
with the maximum finite super-efficiency score or one among the DMUs for which the
super-efficiency model has an infeasible solution. The DMU with the maximum super-
efficiency score will frequently be among those that exert the most influence on the
other DMUs’ efficiency scores (Wilson, 1995), in the sense that it already appears as a
peer for quite many DMUs. Then, the VEA model is not likely to provide additional
insights to management. Also, DMUs with very large super-efficiency scores are often
regarded as outliers (Wilson, 1995; Banker and Chang, 2006) that showcase
extraordinary or very specialized performance, in which case such a DMU should not
be used as MPS. On the other hand, DMUs for which the VRS super-efficiency model
has an infeasible solution are usually located at some “end-point” of the DEA frontier
(Seiford and Zhu, 1999), i.e., are likely overly specialized and are associated with
MRSs and MRTSs that are not well-defined (as DMUs A and G in Figure 4.1). If they
are used as MPS, the VEA efficiency scores are likely to differ significantly from those
of the DEA model and one or more of the inputs and the outputs will likely be assigned

zero weights.

%8 This is noted by Oral and Yolalan (1990) and Oral et al. (1992), who interpreted the presence of
insignificant differences as the choice of the “global leader” was quite realistic.
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4.3.1.7. Minimum average Coefficient-of-Variation of weight vectors

According to Gonzalez et al. (2010), the efficient DMU with the minimum variability
across its different optimal weight vectors is chosen as the MPS. To identify it, one
needs first to estimate a VEA model using in sequence every efficient DMU as the
MPS. For each of these models, one should calculate the Coefficient-of-Variation (CV)
for the optimal values of every input and output weight and then take their average
value. The MPS is chosen as the efficient DMU for which the average CV in the
corresponding VEA model is the minimum. This might be appealing for DMs that want
to avoid highly dissimilar optimal weight vectors among the evaluated DMUSs in the
VEA model but it can be relatively time-consuming. Furthermore, a common vector
of weights across DMUs, which would reflect the greatest possible congruence
(Gonzalez et al., 2010), i.e., the minimum variability, among DMUs in selecting their
optimal weights, is not guaranteed.

4.3.1.8. AHP importance weights

The Analytic Hierarchy Process (AHP) is suggested as another means to choose the
MPS in VEA (Korhonen et al., 1998). It may be used to obtain the “best” combination
among all the DEA-efficient DMUs, or among a subset of them. The chosen DMUs
are used as alternatives in AHP and the DM performs pairwise comparisons among
them. The MPS is then obtained as a combination of the chosen DMUs using the
importance weights derived from AHP. This might be a time-consuming process if
there is a large number of chosen DMUs. In addition, the resulting DMU might be
inefficient, indicating poor judgment in the initial selection of DMUs. In this case, its
set of DEA peers should be used as MPS.

4.3.1.9. Interactive optimization

Halme et al. (1999) suggested the use of multi-criteria interactive optimization
algorithms to choose the MPS. These algorithms enable the DM to search the efficient
frontier and identify different non-dominated solutions. Halme et al. (1999) use the
Pareto Race (see Korhonen and Wallenius, 1988), in which a MOLP problem is
iteratively solved to obtain an efficient input/output combination, which has the
maximum (minimum) possible value for each output (input). In each iteration, the DM

reviews the resulting combination and can prioritize which input (output) should be
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further decreased (increased) at the expense of others, i.e., determine the direction on
which the next (and possibly more preferred) input/output combination will be searched
for. The algorithm stops when the DM decides that the last identified input/output
combination is the MPS. In most of the cases, this is a combination of efficient DMUs.

An alternative proposed by Korhonen et al. (2002) is the Visual Interactive
Method for Discrete Alternatives (VIMDA) (see Korhonen, 1988). It is similar to
Pareto Race but in each iteration it identifies an input/output combination
corresponding to an existing DMU rather than a combination of DMUs. Such
algorithms can be time-consuming and require a DM that is willing to participate and
direct the algorithm according to his/her preferences (Thiele et al., 2009). This may
increase management workload and the risk of providing a poor judgment. Also, in
practical applications DMs usually view the existing DMUs as more reliable

benchmarks compared to combinations of DMUs (Korhonen et al., 2002).

4.3.2. Some new suggestions

In this section we expand the set of MPS choices in VEA by suggesting four new, each

of which may be useful to managers for certain reasons.

4.3.2.1. Informed personal judgment

In the first of our suggestions the DM exerts his/her personal judgments by explicitly
considering the position of DMUs on the DEA efficient frontier. Some of the efficient
DMUs reside closer to most of the sample DMUs while others use a somewhat more
extreme input/output bundle. In addition, some efficient DMUs are associated with
zero or undefined marginal rates while others are not, some can remain efficient even
if their input/output bundle changes, and for some there do not exist DMUs with similar
input/output structure in the sample. Classifying the DMUs based on such features may
aid the DM in making a more informed personal judgment when choosing the MPS.
We consider two main classifications of the efficient DMUs based on their
position on the frontier. In the first one, the DMUs are classified as either active or
self-evaluators (Edvardsen et al., 2008). The former are efficient DMUSs that appear as

peers for at least one inefficient DMU, while the latter appear as peers only for
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themselves.>® Each of the active and self-evaluator DMUs can be further classified as
an interior or an exterior. For an exterior DMU, at least one among its adjacent facets
is weakly efficient, while for an interior this is not true.®® An interior active DMU
resides closer to most of the sample DMUs and its use as MPS might result in moderate
(and even insignificant) differences between the DEA and the VEA efficiency scores.
An exterior active DMU may use a more extreme input/output bundle, and if used as
MPS, a zero weight will be assigned to one or more inputs and/or outputs for some of
the evaluated DMUs. The interior self-evaluators are “alone in the crowd”, while the
exterior self-evaluators are “far out”, located at an “end-point”, i.e., use an extreme
input/output bundle and be very small- or large-scaled (Edvardsen et al., 2008). In both
cases, significant differences should be expected between the DEA and VEA efficiency
scores. In addition, some inputs and/or outputs are more likely to have a zero weight if
an exterior self-evaluator is used as the MPS.

The second classification partitions the efficient DMUS into terminal and non-
terminal ones (Krivonozhko et al., 2015). A terminal DMU will remain efficient even
if the quantity of one of its inputs (outputs) is increased (decreased), while for a non-
terminal one this is not true.%! Each terminal DMU may be further classified as being
either interior or exterior, but all non-terminal DMUs are interior.®? An exterior
terminal DMU is more likely to be located on “end-points” of the frontier compared to
an interior terminal DMU, but Krivonozhko et al. (2015) note that both classes may

%9 Self-evaluators are those for which the maximum optimal values of the intensity variables are equal to
zero for every inefficient DMU. If at least one such value is positive, the efficient DMU is classified as
active (Edvardsen et al., 2008). An alternative is to estimate the referencing share (see Torgensen et al.,
1996) for each efficient DMU, which captures the relative contribution of an efficient DMU in the total
output expansion (input contraction) of all the inefficient DMUs for each specific output (input). DMUs
with a zero referencing share are classified as self-evaluators.

80 The classification of efficient DMUs into exteriors or interiors is obtained by enveloping the efficient
DMUs “from below” (Edvardsen et al., 2008) through a modified version of the Additive DEA model in
which inputs are treated as outputs and vice versa. A DMU with a zero (positive) optimal value is
classified as an exterior (interior).

61 Terminal DMUs are adjacent to at least one-dimensional facet (Krivonozhko et al., 2015). They are
identified by estimating a series of linear programs, one for each different input and output, each of which
aims at maximizing the value of the intensity variable of a given extreme-efficient DMU while allowing
for the particular input (output) of the DMU to increase (decrease) along a one-dimensional ray. A DMU
is classified as terminal if the optimal value of its intensity variable equals one in at least one of those
linear programs. Otherwise, it is non-terminal.

62 Krivonozhko et al. (2015) show that the set of terminal DMUs contains that of exterior DMUs as a
subset, i.e., each exterior DMU is also a terminal DMU, but a terminal DMU may be either an interior
or an exterior.
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contain quite normal efficient units. Thus, the use of an exterior terminal DMU may
result in significant or insignificant differences between the DEA and VEA efficiency
scores, and the same may be the case when an interior terminal DMU is the MPS. On
the other hand, the use of a non-terminal DMU as MPS will not result in assessing the
DMUs against unacceptable marginal rates, while when using a terminal DMU this is

expected to occur.

4.3.2.2. Most Productive Scale Size

Our second suggestion is to choose a DMU with MPSS as MPS. Such DMUs operate
with technically optimal scale, namely maximize average productivity for their
input/output mix.%® Each such DMU is efficient under both a CRS and a VRS DEA
model, i.e., resides on a frontier segment in which CRS prevails and scale elasticity
equals one (Banker, 1984). The use of an MPSS DMU as the MPS in VEA ensures
that DMUs are assessed against a technically optimal scale. The resulting VEA scores
could yield useful insights for central management. They might be used for
reorganizing or incentivizing the DMUs so that they adjust to the optimal scale, the
pursuit of which constitutes a long-term organizational goal.

In several cases, there are multiple MPSS DMUJs, each of which operates with
the technically optimal scale for its own input/output bundle (Banker and Thrall, 1992).
In this case Banker (1984) noted that obtaining the overall optimal scale for the
underlying technology requires the use of additional knowledge or information. This
can be provided by the DM by means of choosing one DMU or a combination of DMUs
among those with MPSS as the MPS. The chosen input/output bundle might be close
to that of most DMUs in the sample, in which case the VEA efficiency scores may
differ only moderately from their DEA counterparts. Alternatively, there might be
significant differences between the DEA and VEA efficiency scores if the DM chooses

an MPSS DMU with somewhat extreme mix of inputs and outputs.

4.3.2.3. Average Production Unit

8 Technically optimal scale in production theory was first discussed in Fersund and Hjalmarsson (1979)
in single-output-multiple-input settings and was generalized for multiple inputs and outputs in Banker
(1984).
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Our next suggestion is to use the combination of DMUSs that are the peers of the Average
Production Unit (APU), namely an artificially constructed DMU that operates with the
sample means quantities of inputs and outputs, as the MPS. This reflects the objective
of maximizing the structural efficiency of an overall entity that coordinates a set of
DMUs.%485 This entity might be either a firm operating through a network of multiple
branches or plants, or an industry of similar firms. Structural efficiency is a normative
rather than a positive measure (Karagiannis, 2015), in the sense that it assesses the
extent of potential improvement of the entity (firm or industry) as a whole, as if it were
a single DMU utilizing and coordinating (through centralized resource allocation) the
total quantities of inputs and outputs. The maximum potential output for the entity
could be realized if each of the coordinated DMUs had the input/output structure of the
APU and then removed its technical inefficiencies (Kittelsen and Fersund, 1992;
Karagianis, 2015) as well as input and/or output slacks.

When the APU peers are used as the MPS, the VEA efficiency scores reflect
the relative performance of DMUs from the perspective of fully centralized
management and can provide useful insights to managers that coordinate a firms’
branches or to authorities planning a sectoral reorganization. The APU input/output
bundle is relatively close to that of many DMUs, and thus one might expect moderate
changes in the efficiency scores in VEA compared to DEA. However, the efficiency
scores of DMUs using extreme input/output bundles may decrease considerably. For
example, in Figure 4.1 where the APU is radially projected on the efficient facet CD
and thus its DEA-efficient peers are DMUs C and D, VEA evaluates all DMUs
compared to the extended facet CD, and the DMUs A, G and H exhibit large decreases
in efficiency compared to their corresponding DEA scores.

4.3.2.4. Common weights

Our fourth suggestion concerns evaluating all DMUs using a common vector of strictly
positive input/output weights. This results in evaluating all DMUs based on a common

8 Forsund and Hjalmarsson (1979) were the first to argue that the extent of structural efficiency in a
sample of DMUs is equal to the technical efficiency score of the APU, an argument formally proved by
Li and Ng (1995).

8 Using the sample average DMU as the MPS generalizes in a sense the suggestion made by Korhonen
et al. (2002) to obtain the MPS by averaging across a pre-selected subset of efficient DMUs.
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standard (Kao and Hung, 2005) and might thus be preferred when DMs wish to prevent
individual DMUs from setting and pursuing their own priorities.?® This could be the
case if the DMUs are homogeneous enough, operate under a common policy framework
(Cook et al., 2019), and/or in the same environment (e.g., professors engaging in
teaching and research activities within the same university faculty). Potential
discrepancies between the results using common weights and conventional DEA should
then indicate the effect of special circumstances under which a DMU operates (Roll et
al., 1991), or a DMU that may be prioritizing its own objectives over those of the
organization. This suggestion for choosing the MPS is, to the best of our knowledge,
the only one securing the assessment of DMUs against well-defined MRSs and MRTs.

Common and strictly positive weights across DMUs are guaranteed in VEA
when a single FDEF of the DEA frontier is extended. This will occur if the unique
combination of (I + J — 1) extreme efficient DMUs that supports an FDEF when CRS
is assumed (or (I +J) DMUs in VRS models) (Olesen and Petersen, 2003; 2015) is
chosen as the MPS, provided that at least one FDEF exists.®” In most cases, the DEA
frontier is generated by multiple FDEFs. The DM should then choose one among those
FDEFs to be extended in the VEA model. The choice can be facilitated if one identifies
all the FDEFs of the DEA efficient surface and the combinations of DMUs spanning
each, which is frequently done using mixed-integer linear programs (Olesen and
Petersen, 2003; Fukuyama and Sekitani, 2012; Davtalab-Olyaie et al. (2014).%% The
DM can then review these results and choose the FDEF against which DMUs will be
assessed. The use of common weights in VEA will more likely result in efficiency
scores that differ, in a statistically significant sense, from those of the DEA model.

More specifically, only DMUs which are already projected by DEA in the chosen

% Common weights are frequently adopted in the DEA literature (see Afsharian et al., 2021 for a recent
review) and they reflect the greatest possible congruence among DMUs in selecting their optimal
weights.

57 FDEFs are associated with a unique normal vector of input/output weights with strictly positive values
(Olesen and Petersen, 2015). Olesen and Petersen (1996) referred to the absence of at least one FDEF in
the DEA frontier as an indication of an ill-conditioned dataset.

8 QOlesen and Petersen (2003) proposed a cutting plane binary optimization algorithm, which requires,
as a prior step, to identify the set of DMUs that can be rendered efficient in a convex combination with
each of the extreme-efficient DMU. Mixed-integer linear programs are then solved to identify, for each
extreme-efficient DMU, all FDEFs generated by it. Fukuyama and Sekitani (2012) and Davtalab-Olyaie
et al. (2014) proposed similar binary optimization algorithms. The former identifies both FDEFs and
non-FDEFs, while the latter does not require the prior step that is necessary in the approach of Olesen
and Petersen (2003).
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FDEF, i.e., those for which the combination of efficient DMUs generating the FDEF
coincides with their set of peers, will retain the same efficiency score, while the
remaining ones will exhibit at least slight decreases in efficiency. The differences can
be on average large if a DMU with a relatively extreme input/output bundle is among

those generating the chosen FDEF.

4.4. Data, variables and modeling choices

For our empirical application we use data for 526 Greek cotton farms obtained from the
Farm Accounting Data Network (FADN). The FADN covers large entrepreneurial
farms as defined in the farms structure survey of the EU, in which each farm is classified
by commaodity according to its main source of revenue. That is, a farm is classified as
a cotton producer if at least two thirds of its revenue come from the production of
cotton.

Output orientation is usually considered as the more appropriate choice when
measuring efficiency in agriculture, in which input choices are made well in advance
of output realization. (Karagiannis, 2014). We also assume that input and output prices
are uniform across DMUs, since the agricultural sector is widely considered as a rather
competitive one, where there is usually a large number of farmers specializing on the
production of a particular commodity and facing similar prices for the resources used
and their final product. In this case, input and output data expressed both in terms of
quantities and in terms of values (i.e., costs and revenues) can be used to assess
technical efficiency (see Portela, 2014). We use four inputs, namely land measured in
ha, labor (including family and hired workers) measured in annual working hours,
intermediate inputs (i.e., fertilizer, pesticides, etc.) measured in euros, and capital stock
(including machinery and buildings) measured in terms of the end-of-the-year book
values (in euros) and a single output, measured in terms of total gross revenue (in
euros).

Average values of the model variables are given in Table 4.1. In that, we also
include information on additional farm characteristics. These are farm size, the
farmer’s age, the geographic region in which each farm is located, the percentages of

own and irrigated land, the percentage of family labor employed, as well each farm’s
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Table 4.1:Sample average estimates of model variables

revenue (in euros) 6434.103
land (in ha) 1188.139
labor (in annual working hours) 2045.654
intermediate inputs (in euros) 2369.776
capital (in euros) 5703.852
number of farms in the sample 526
farms from Northern Greece 123
farms from Western Greece 7

farms from Central Greece 294
farms from South-Eastern Greece 102
small size farms 45
medium size farms 207

large size farms 274
farms owned by younger farmers 67

farms owned by middle-aged farmers 386
farms owned by older farmers 73

own land (%) 0.662
irrigated land (%) 0.829
family labor (%) 0.870
specialization index 0.736

degree of specialization in the production of cotton.%® Such variables account for
important factors which affect the operating conditions of farms and consequently, their
input/output structure and can provide insights regarding the closeness of the MPS’s
structure compared to that of the majority of the sample farms

Most of our sample farms are located in Central Greece (i.e., Thessaly, 55.9%
of the sample), while the rest are almost equally divided between Northern (Macedonia
and Thrace) and Southeastern (namely Sterea Ellada and Aegean Islands) Greece
(23.4% and 19.4% respectively). Only a small fraction (1.3%) of farms is located at
Western (Epirus and Peloponnesus) Greece. On average, the sample farms are
relatively specialized in the production of cotton, rent about 44% of their land, while

% In FADN, farm size is defined in terms of gross value added. FADN defines nine size classes, which
are grouped here into three categories, namely small, medium, and large farms. We also define three
different age bands, namely younger (less than 40 years old), middle-aged (between 40 and 60 years)
and older farmers (over 60 years old). The degree of specialization is measured by the Herfindhal
concentration index (defined as Hy, = }; sjzk, where s is the share of the j" output in total production of
the k" farm). A value of H equal to unity indicates complete specialization, whereas smaller values reflect
increased diversification
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most of them are of large size according to FADN standards and are operated by

middle-aged farmers (see Table 4.1).

4.5. Empirical results

This section provides the first thorough comparative empirical analysis of the
variability in VEA efficiency scores for alternative MPS choices. For these purposes
several models were estimated. More specifically, technical and scale efficiency scores
for the sample DMUs (including the APU) were obtained by estimating conventional
CRS and VRS DEA models. We find 12 farms to be both technical and scale efficient
(i.e., have MPSS), while there were 21 technically efficient farms, most of which (17)
operating with increasing returns-to-scale (RTS).”° The complete set of the efficient
farms is given in Table 4.2. On average, inefficiency is more due to producing below
the frontier rather than operating at non-optimal scale (average technical and scale
efficiency equal 0.598 and 0.947, respectively), while supra-optimal scale farms appear
to operate closer to optimal scale compared to sub-optimal scale farms.

In addition, we estimated super-efficiency CRS and VRS DEA models. For eight farms
the VRS model resulted in an infeasible solution. Separate super-efficiency DEA
models were estimated for the IDMU by including it in the sample, among which the
one assuming VRS resulted in an infeasible solution. We also estimated CRS and VRS
VEA models using each of the efficient farms as the MPS, to identify the farm for which
the variability across the optimal input and output weight vectors is minimum, as
suggested in Gonzalez et al. (2010). The FDEFs generating the CRS and VRS DEA
frontiers (14 FDEFs in the CRS frontier and 68 FDEFs in the VRS one) were identified
using the mixed integer binary optimization algorithm of Davtalab-Olyaie et al. (2014).

45.1. Choice of MPS

A two-step procedure was used to choose the MPS for the CRS and VRS VEA models.
In that, we considered all the MPS choices discussed in the third section apart from

external information, interactive optimization, personal judgments and the AHP. This

0 An additional DMU having an efficiency score of one with CRS was identified as weakly efficient,
namely having positive slacks, and was not further considered. All other DMUs with an efficiency score
of one either with CRS or with VRS are extreme-efficient.
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Table 4.2: Extreme-efficient DMUs selected as the MPS by alternative choices

farm (in coded numbers)

MPS choice 32 37 69 91 119 130 142 143 145 147 154 160 178 183 197 201 203 216 226 235 241 252 267 273 275 293 314 368 404 410 411 415 524 sum
CRS

most times as peer in DEA w’ 1
maximum finite

_ [ ] 1
superefficiency
infeasible superefficiency -
best-in-output [] 1
best-in-input 0
minimum average CV [] 1
IDMU u u [ 1
interior active o m] m] [] o 5
interior self-evaluator -
exterior active o [] o m] o o u] 7
exterior self-evaluator -
interior terminal ] m] m] u] 4
exterior terminal [m] [] o [m] o o o 7
non-terminal [ 1
MPSS [m] [] o o [m] [m] o [s] [s] o o o 12
APU | ] | ] ] [ ] 1
FDEF u] u m] m] u [u] m] u [u] m] m] [ 14
times suggested as MPS 5 4 4 4 6 5 4 7 5 5 5 5

VRS

most times as peer in DEA [] 1
largest finite

_ n 1
superefficiency
infeasible superefficiency [] u] u] o o o o s] 8
best-in-output [ 1
best-in-input [] u] o s] 4
minimum average CV ] 1
IDMU -
interior active [ ] u] u} [u} u] [u} [u} [u} u] u] u] [u} [u} u] [m] [u} [u} [m] 5] 19
interior self-evaluator =] [] 2
exterior active [] o o o u] u] u] u] [u} [u} 8] 11
exterior self-evaluator [ 1
interior terminal [] =] u] o m] m] m] m] o o o [m] [m] o u] s] s] u] u] 19
exterior terminal u} u} u} u] u} u] u] u] u] [ ] [u} 8] 12
non-terminal =] [ 2
MPSS o ] m} m} u] u] m} o [u} u] [m] [m] 12
APU [] [] [] [ ] 1
FDEF u] n m] m] u] [u] O O [u] [u] O O [u] O O [u] u O O [u] u u O O O O u O 68
times suggested as MPS 2 4 4 2 4 5 4 3 4 4 4 4 5 4 4 4 3 2 4 5 3 7 4 3 3 5 5 4 5 3 3 4 3

Notes: (a) In the case of the IDMU, the APU, and the FDEF, the last column refers to the number of combinations of DMUs that serve as peers for the IDMU and the APU (one) and the number
of FDEFs identified in the CRS and VRS DEA models (14 with CRS and 68 with VRS). (b) Each rectangle highlights that the corresponding farm is identified as MPS by the respective choice.

The filled rectangles refer to the DMUs or combinations of DMUSs chosen as the MPS in the application of this chapter.
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is because external information is not available while the other three suggestions require
the presence of a DM. In the first step, we identified the DMUs that could be the MPS
in each case assuming CRS and VRS. These are indicated by a rectangle in their
corresponding cell in Table 4.2, the last column of which shows the number of different
MPSs indicated by each choice.

More specifically, the farm appearing the most times as peer in the CRS and
VRS DEA models, the best-in-output farm and the four best-in-input farms were
identified. With CRS, only the best-in-output farm is efficient, while with VRS the
best-in-input farms are efficient as well. We also identified the farms with the minimum
average CV, those having the maximum finite super-efficiency score with CRS and
VRS, as well as those for which the VRS DEA super-efficiency model resulted in an
infeasible solution.”* The peers of the APU and the IDMU were identified, albeit for
the latter only with CRS. Each farm was also classified based on its position on the
DEA frontier, following the two classification schemes presented in the third section.
From Table 2 we see that at least one farm is included in every group with VRS, while
with CRS there are no self-evaluators. Also, a farm may be classified in a different
group with CRS and with VRS. In addition, we identified the combinations of efficient
farms generating the 14 FDEFs of the CRS frontier and the 68 FDEFs of the VRS one.
With CRS, each efficient farm generates at least one FDEF, while this is not the case
with VRS.

The second step involved choosing one DMU or a combination of DMUSs to use
in the empirical application when more than one DMUs or combination of DMUs could
be the MPS. This is more likely to be the case when the DM chooses the MPS among
(i) interior active, (ii) exterior active, (iii) self-evaluators, (iv) interior terminal, (v)
exterior terminal, (vi) non-terminal, (vii) MPSS, (vii) best-in-input and best-in-output
DMUs, (viii) the DMUs for which the VRS super-efficiency model has an infeasible
solution and (ix) the combinations of DMUs generating an FDEF. See the last column
in Table 4.2, where for most of these choices there are multiple alternatives for the

MPS.”2 For each of these choices, we chose as the MPS the farm for which land

"L This could not occur with CRS, and thus there is a dash in the corresponding cell in the last column of
Table 4.2.

2. On the other hand, there is one combination of peers for the IDMU and the APU. It is also likely that
only one DMU appears the most times as a peer in the DEA model, one DMU has the maximum finite
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quantity was closest to the average quantity of land among those farms indicated as
potential MPSs by the choice. A similar procedure was followed in the case of common
weights, namely to choose one combination of farms generating an FDEF. We ranked
the efficient farms in terms of their deviation from the sample average land quantity
and chose the farm with the minimum deviation. If the farm ranked second shared a
common facet with the one ranked first, we considered it for the combination.
Otherwise, we bypassed it and moved to the next farm in the ranking. This process
ended when a combination of farms generating an FDEF was obtained. After the MPS
choice, a VEA model was estimated for each of the alternative MPSs with CRS and
with VRS.

The farms or the combination of farms chosen as the MPS are indicated by a
filled rectangle in the respective cell of Table 4.2. From that we see that a particular
MPS choice may result in choosing a different MPS with CRS and with VRS (see the
average CV). In addition, some farms are frequently suggested as the MPS: with CRS
two farms are suggested as the MPS (either solely or within a combination of farms)
six and seven times respectively, while with VRS case one farm is suggested as the
MPS seven times while six farms are suggested five times each. This can be attributed
to the fact that for many of the MPS choices multiple DMUs could be the MPS.

The economic and socio-demographic characteristics of the chosen MPS are given in
Table 4.3. Most of these are medium or large in size, are located in Central Greece and
operated by middle-aged farmers (ages 40 to 60). On the other hand, only a few chosen
MPSs are located in Northern Greece. More specifically, farm #32 is a medium-sized
farm located in Northern Greece that is chosen as an exterior active MPS with VRS. It
operates with a sub-optimal scale and it owns and irrigates very low percentages of its
land compared to the average. Farm #69 is located in Northern Greece, operates with
sub-optimal scale and uses the lowest quantity of land in the sample (best-in-input),
while it is also chosen as MPS among the farms with an infeasible VRS super-efficiency
model. It is thus possibly located at an “end point” of the frontier. The same is likely
the case for farm #119, which is a sub-optimal scale farm located in Northern Greece

and chosen as an exterior self-evaluator MPS. On the other hand, the chosen interior

super-efficiency score and one DMU is selected based on the minimum “average CV”, but ties among
DMUs are also possible for these suggestions.
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Table 4.3:Economic and socio-demographic characteristics of the MPSs

farm (in  revenue labor intermediate
coded (in land (in annual inputs capital farm farmer own irrigated  family specialization

number)  euros) (in ha) working hours)  (in euros) (ineuros)  region size age land (%) land (%) labor (%) indext RTS
32 3160 1050 554 717 6384 Northern medium 41 0.457 0.267 1.000 0.541 irs
37 6090 1620 1673 1975 458 Northern large 59 0.133 0.620 0.727 0.762 crs
69 2029 360 321 689 3091 Northern  small 56 1.000 1.000 1.000 0.500 irs
119 1067 255 1267 279 1499 Northern  small 48 1.000 0.686 1.000 0.446 irs
130 7760 1240 3070 1070 3510 Western  large 46 0.290 1.000 0.961 0.607 crs
142 1670 210 1323 386 487 Central small 64 1.000 1.000 1.000 0.693 irs
147 6741 670 955 1717 1527 Central medium 55 0.701 1.000 1.000 1.000 crs
154 13578 1480 1029 3663 3337 Central large 45 0.243 0.946 0.979 0.976 crs
178 4050 300 2222 776 162 Central medium 33 1.000 1.000 0.734 0.546 crs
183 3393 420 820 1344 320 Central medium 43 0.833 1.000 1.000 1.000 crs
216 9839 1360 640 2726 3971 Central  large 51 0.279 0.735 1.000 0.784 irs
241 13470 970 3679 5872 8257 Central large 39 0.381 1.000 0.952 0.280 drs
252 31726 3130 1494 5808 10037 Central  large 60 0.284 0.831 0.871 0.907 crs
293 11799 1000 1800 2146 4703 Central large 54 1.000 1.000 1.000 1.000 crs
314 13123 1060 1700 2406 8300 Central large 57 1.000 1.000 1.000 1.000 crs
368 4902 695 917 1367 723 Central medium 27 0.115 0.806 1.000 0.648 crs
415 3661 410 1664 531 1750 Central medium 55 0.756 1.000 0.784 0.856 crs

average  6434.103 1188.139 2045.654 2369.776 5703.852 0.662 0.829 0.870 0.736
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self-evaluator farm #216 is of sub-optimal scale but large in size and located in Central
Greece, as most of the sample DMUs. It is thus more likely to be “alone in the crowd”.

Farm #130 is a large size, optimal-scale farm located in Western Greece and
operated by a middle aged-farmer that is chosen as the MPS multiple times (as exterior
active and exterior terminal with VRS, as interior active and interior terminal with VRS,
and as MPSS). Its input-output bundle is somewhat similar to the average, suggesting
that it is located close to most of the farms in the sample. The same is likely for farm
#293, which has a similar structure, operates with technically optimal scale and is
chosen as interior active and non-terminal MPS with CRS. On the other hand, the non-
terminal MPS with VRS (farm #147) is a medium-sized one, although it has similar
socio-demographic characteristics with farm #293 and is also of optimal scale. The
other farms chosen based on their frontier location (farm #154 as interior terminal with
CRS and farm #241 as exterior terminal with VRS) are both large-sized and located in
Central Greece. Farm #241 is however of supra-optimal scale and is operated by a
young farmer, while farm #154 operates with technically optimal scale.

The best-in-output farm #252 is a large-sized, relatively capital-intensive farm
located in Central Greece which appears the most times as a peer with CRS and with
VRS. It is thus a very influential peer, as is likely the case for farm #178, which is the
one with the maximum finite super-efficiency score for both model specifications. It
is located in Central Greece but is of medium size and relatively more labor-intensive.
On the other hand, the two farms suggested as the MPS with the minimum variability
in their optimal weights with CRS (farm #183) and with VRS (farm #142) have a very
small scale compared to the average. Both are located in Central Greece but the latter
operates with a technically sub-optimal scale and appears as a peer only for itself,
suggesting that it is located at an “end-point” of the frontier.

In the case of the APU, a combination of four farms is the MPS either with CRS
or with VRS. Each farm in these combinations is MPSS, while most of these are large-
sized farms located Central Greece and operated from middle-aged farmers. The same
is the case for the combinations of farms (four with CRS and five in VRS) selected as
MPS in the case of common weights. Most of the farms in these combinations have an
input/output bundle relatively close to the average. For the case for common weights
this is a result of the process we followed to select the associated FDEF. On the other
hand, the IDMU peers are three MPSS farms, which utilize very low capital quantities
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compared to the average. One of these is located in Northern Greece, while two of

them own excessively low proportions of their cultivated land.

4.5.2. Comparative results between DEA and VEA models

The VEA efficiency scores are always less than or equal to the corresponding DEA
scores. This implies a decrease in average efficiency compared to the DEA model (see
Table 4.4), and a left ward shift of the VEA distribution of efficiency scores compared
to that of DEA (see Figure 4.2). For some of the MPS choices these shifts are large,
for others there are only moderate, while for some MPS choices the VEA distribution

of efficiency scores is not statistically different from that of the DEA scores (see Table
4.5) based on average shifts in rank (given as R = %(ZfﬂlrankA (y®) — rankz (y*))),

see Saisana et al., 2005) and distribution equality tests (Banker and Natarajan, 2011).

More specifically, the use as the MPS of (i) the farm that appears the most times
as a peer, (i) the one with the maximum finite super-efficiency score, and (iii) the best-
in-output farm results in efficiency distributions that do not differ, in a statistically
significant way, between DEA and VEA, irrespective of the RTS assumption (see Table
4.5). The same is essentially true with CRS for the non-terminal and the interior-active
MPS, which are the same farm. In these cases, the results from the VEA model do not
offer some additional insights to managers compared to those of the DEA model. This
should be expected for the first two MPS choices, as they are based on influential
DMUs appearing as peers for a large proportion of farms. For the other choices, it is
explained by the fact that the farms chosen as MPSs have an input/output bundle that
is close to that of most of the sample farms. Note also that when the non-terminal DMU
is the MPS, all inputs are important for the estimation of efficiency, in the sense that all
farms assign a positive value to the weights attached to each input.

On the other hand, when the MPS is an (interior or exterior) self-evaluator there
are statistically significant (see Table 4.5) differences between the VEA and the DEA
distributions of efficiency scores, and the same holds with VRS for the minimum
“average CV” choice. In these cases, we observe the largest left ward shifts in the VEA
distribution of efficiency scores compared to that of DEA. This is expected to occur in
most cases where the MPS is either an interior self-evaluator that is located “alone in
the crowd”, or an exterior self-evaluator located on an “end-point” of the frontier, as

these DMUs appear as peers only for themselves. It also occurs in our case for the CRS
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Table 4.4: Efficiency scores for alternative MPS choices

standard efficient

model average minimum median deviation farms
CRS VRS CRS VRS CRS VRS CRS VRS CRS VRS

DEA 0.562 0.598 0.091 0.091 0.575 0.607 0.207 0.225 12 33

VEA MPS choice

1 most times as peer in DEA 0.555 0.586 0.090 0.091 0.565 0.593 0.206 0.219 11 23
maximum finite

- 0.551 0576 0.091 0.091 0.559 0.580 0.205 0.219 12 26
superefficiency

3 infeasible superefficiency - 0.363 - 0.043 - 0.346 - 0.188 - 5
4 best-in-output 0.555 0.586 0.090 0.091 0.565 0.593 0.206 0.219 11 23
5 best-in-input - 0.363 - 0.043 - 0.346 - 0.188 - 5
6 minimum average CV 0.373 0.288 0.038 0.044 0.346 0.282 0.194 0.145 5 6
7 IDMU 0.373 - 0.039 - 0.351 - 0.192 - 4 -
8 interior active 0.540 0.524 0.090 0.078 0.557 0.537 0.200 0.195 6 7
9 interior self-evaluator - 0.208 - 0.016 - 0.168 - 0.159 - 5
10  exterior active 0.508 0.417 0.077 0.060 0.520 0.416 0.190 0.185 4 4
11  exterior self-evaluator - 0.201 - 0.027 - 0.194 - 0.118 - 4
12 interior terminal 0.415 0524 0.046 0.078 0.391 0.537 0.202 0.195 6 7
13 exterior terminal 0.508 0.498 0.077 0.087 0520 0.515 0.190 0.196 4 6
14 non-terminal 0.540 0.477 0.090 0.061 0.557 0.463 0.200 0.210 6 11
15  MPSS 0.508 0.524 0.077 0.078 0.520 0.537 0.190 0.195 4 7
16  APU 0.498 0.499 0.079 0.078 0.513 0.514 0.184 0.186 4 5
17  FDEF 0.482 0.497 0.071 0.078 0.494 0.514 0.184 0.185 4 5
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Table 4.5: Statistical tests between DEA and VEA

average rank

shift Mann Whitney Banker F1? Banker F2
VEA MPS choice CRS VRS CRS VRS CRS VRS CRS VRS

1 most times as peer in DEA 9.167 12.522 0.639 0.814 1.021 1.03 1.031 1.032

maximum finite 11579 17.512 0.959 1.600 1.032 1.062 1.046 1.081

superefficiency
3  infeasible superefficiency - 78.899 - 16.262%**b - 1.915%** - 2.847***
4 best-in-output 9.167 12.522 0.639 0.814 1.021 1.03 1.031 1.032
5  best-in-input - 78.899 - 16.262*** - 1.915%** - 2.847***
6  minimum average CV 75.662 55.558 13.865*** 20.985*** 1.714*** 2264*** 2507*** 3.686***
7 IDMU 75.579 - 14.283*** - 1.709*** - 2.488*** -
8 interior active 16.924 49.307 1.675* 5.512***  1.061 1.212*** 1.086 1.279%**
9 interior self-evaluator - 99.032 - 23.529*** - 3.027*** - 6.655***
10  exterior active 40.820 68.930 4.455***  13.209*** 1.153** 1.631*** 1.223** 2.107***
11  exterior self-evaluator - 62.406 - 24.320*** - 2.864*** - 5.589***
12 interior terminal 68.685 49.307 11.418*** 5512*** 1.528*** 1.212*** 2.051*** 1,279***
13  exterior terminal 40.820 60.338 4.455***  7.359*** 1 153** 1.314*** 1.223** 1472***
14  non-terminal 16.924 58.622 1.675* 8.909***  1.061 1.415*** 1.086 1.706***
15 MPSS 40.820 49.307 4.455*** 5512***  1153** 1.212*** 1.223** 1.279***
16 APU 39.169 55.605 5.329***  7.452*** 1 183*** 1.294*** 1.265*** 1401***
17 FDEF 41.169 55.442 6.647***  7.564***  1.236*** 1.298*** 1.365*** 1.409***

Notes: (a) F1 (F2) test compares the DEA and VEA distributions of efficiency scores, assuming an exponential (half-normal) distribution of the efficiency scores (see Banker

and Natarajan, 2011). (b) Three, two and one stars denote statistical significance at 1%, 5% and 10% respectively.
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Figure 4.2: DEA and VEA distributions of efficiency scores.
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Figure 4.2 (Cont.)
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Figure 4.2 (Cont.)
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VEA model with the minimum “average CV”” MPS choice as well, as the chosen farm
is also an interior self-evaluator (see Table 4.2). In all three cases, the correlation
between the VEA and the DEA efficiency scores is particularly low (see Table 4.6). In
addition, when an exterior self-evaluator farm is the MPS, some of the inputs are
irrelevant for the estimation of efficiency. More specifically, a zero value is assigned
to the weights attached to land and capital by all farms.

Large leftward shifts in the VEA distribution of efficiency scores compared to DEA are
observed for a series of other MPS choices. These are (i) the best-in-input farm and the
farm for which the VRS super-efficiency model results in an infeasible solution (which
in this case is the same farm), (ii) the farm with the minimum average CV with CRS,
(iii) the IDMU peers, (iv) an interior terminal farm when CRS is assumed, and (iv) an
exterior active farm with VRS. In all these cases, the VEA efficiency scores decrease,
on average, by more than 30% compared to DEA (see Table 4.4). This suggests that
the input/output bundle used by the MPS in each case is quite dissimilar from the
bundles used by most of the farms. For MPSs with infeasible super-efficiency scores
or the IDMU peers, this may often be expected, as the former are usually located at an
“end-point” of the frontier, while the latter is likely to use a rather extreme input/output
bundle.”® In these two cases some of the inputs are irrelevant for the estimation of
efficiency. This is true for capital in the case of the MPS with infeasible super-
efficiency score and for land in the case of the IDMU peers, indicating that the farms
are assessed by means of non-well defined marginal rates. For the remaining choices
in this group, large differences between the DEA and the VEA efficiency scores may
or may not be the case. For example, in our case there are large differences between
the VEA and DEA distributions of efficiency scores not only when the chosen best-
input farm is the MPS, but also if some of the other three best-in-input farms are used
as the MPS instead.” This however may not occur in a different sample and/or model

specifications.

3 The other seven efficient farms for which the VRS DEA super-efficiency model results in an infeasible
solution (see Table 4.2) have similar economic and socio-demographic characteristics to the selected
MPS. When each of these farms is used as the MPS, the VEA distribution of efficiency scores differs in
a statistically significant way from the DEA one.

4 The other three VRS efficient farms that use the lowest quantities of land, capital and intermediate
inputs (see Table 4.2) are have similar economic and socio-demographic characteristics to the selected
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Table 4.6:Simple and rank correlation coefficients between DEA and VEA models

simple Spearman rank
correlation correlation
VEA MPS choice CRS VRS CRS VRS
1 most times as peer in DEA 0.998 0.996 0.992 0.974
maximum finite 0.998  0.995 0.991 0.979
superefficiency

3  infeasible superefficiency - 0.855 - 0.730
4 best-in-output 0.998 0.996 0.992 0.974
5  best-in-input - 0.855 - 0.730
6  minimum average CV 0.839 0.938 0.781 0.863

7 IDMU 0.843 - 0.782 -
8 interior active 0.993 0.972 0.981 0.888
9 interior self-evaluator - 0.669 - 0.603
10  exterior active 0.979 0.920 0.921 0.795
11  exterior self-evaluator - 0.933 - 0.820
12 interior terminal 0.869 0.972 0.815 0.888
13 exterior terminal 0.979 0.914 0.921 0.836
14  non-terminal 0.993 0.925 0.981 0.850
15 MPSS 0.979 0.972 0.921 0.888
16 APU 0.979 0.960 0.922 0.847
17 FDEF 0.975 0.960 0.920 0.847

Lastly, the VEA distribution of efficiency scores differs only moderately from
DEA for the following MPS choices: (i) an exterior active farm in the CRS model, (ii)
either an interior active or an interior terminal farm with VRS, (iii) the MPSS choice
for both model specifications, (iv) an exterior terminal and a non-terminal farm with
VRS, (v) common weights and (vi) the APU peers with CRS and VRS. In the first
three of these cases, the same farm #130 is used as the MPS, while in all of them the
differences between the DEA and the VEA distributions of efficiency scores are
significant in a statistical sense (see Table 4.5). This indicates that, even though the
changes in efficiency are moderate, the use of VEA does result in additional insights to
management with respect to the results obtained from the DEA model. Among those
cases, significant differences between the DEA and the VEA efficiency scores may be
expected when the APU’s peers are used as the MPS and in common weights VEA, but
not necessarily for the other cases. In common weights VEA, only 21 (with CRS) and

seven farms (with VRS) have efficiency scores equal to their corresponding DEA

farm. When they are used as the MPS, large and statistically significant differences are observed between
the VEA and DEA efficiency scores.

94



scores, while for the remaining farms VEA efficiency scores decrease at least slightly
compared to their DEA counterparts. The differences are moderate as the farms
forming the chosen combination have input/output bundles that are similar to those of
most DMUs in the sample but could be larger if a farm with a somewhat extreme bundle
was chosen in the combination. When the APU’s peers are the MPS, farms with an
input/output structure that is close to the average, i.e., that of the APU, exhibit slight or
no decreases in efficiency in the VEA model, while the scores of farms with extreme
bundles efficiency scores decrease considerably. In addition, in the case of a non-
terminal MPS, no inputs are irrelevant for the for the estimation of efficiency, while
when an (interior or exterior) terminal farm is the MPS (either with CRS or with VRS)

some farms assign a zero weight to one or more of the land, labor, and/or capital inputs.

4.5.3. Comparative results among VEA models

Comparing the efficiency distributions among VEA models with alternative MPSs can
provide additional insights. No doubt, the VEA distributions of efficiency scores are
the same among those MPS choices for which the same farm is used as the MPS. In
our case, these are (i) a farm with an infeasible super-efficiency scores and a best-in-
input farm, (ii) an exterior active, an exterior terminal and an MPSS farm with CRS,
(iii) an interior active, an interior terminal and an MPSS farm with VRS, (iv), an interior
active and a non-terminal farm with CRS, and (v) the farm appearing the most times as
a peer in DEA and the best-in-output farm, for both model specifications (see Table
4.2).

In addition, based on Banker’s (see Tables 4.7 and 4.8) and Mann-Whitney tests
(Table 4.9),”® correlation analysis (Tables 4.10 and 4.11), and shifts in rank (Table
4.12), we can infer that there are no significant differences among the efficiency scores
of VEA models when the MPS is either (i) the farm appearing the most times as a peer
in DEA, (ii) the farm with the maximum finite super-efficiency score, (iii) the best-in-
output farm (both with CRS and with VRS), (iv) an interior active or (v) a non-terminal

farm with CRS. This is to be expected in our case, as the VEA distributions of

S In the case of pairwise comparisons among different VEA models, the Banker test statistics are
calculated by placing in the numerator the VEA model for which the sum of the logarithms of its
inefficiency scores is the largest. This guarantees that the test statistic is always greater than or equal to
one.
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Table 4.7: Banker statistical tests among VEA models, constant-returns-to-scale

VEA
VEA _ MPS choice 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 most times as peer in DEA 1.010 1.000 - 1678%%*  1674%** 1039 - 1.129%* - 1.496%**  1129%* 1039 1.129%%  1158%%x 1 210%**
2 lowest finite
superinefficiency 1.015 1.010 - 1.662%%%  1657*** 1028 - 1.117%* - 1.481%** 1117** 1028 1117%%  1146%%  1.108%%*
3 infeasible
superinefficiency - - - - - - - - - - - - - - - -
4 best-in-output 1.000 1.015 - 1.678%*  1674*** 1,039 - 1.129%* - 1.496%**  1129** 1,039 1.129%*  1.158%*%*  1.210%**
5  best-in-input - - - ; ; ; i, i, - - - - - - -
6 minimum average CV 2.432%%% 2 397*** 2.432%% - 1.003 1.616%** - 1487 - 1.122%% 1487  1B16%**  1A487***  1.449*** ] 387***
7 IbMU 2413%%*  2.379%** 2413** - 1,008 LOL2¥ * - 1483 - L110%%  1483%%%  1GI2%F  1483%F%  1445%%%  ]383%r*
g Interioractive 1054 1039 1.054 S 2307%%% 2000 - 1087 - 1441 1087% 1000 1087%  1115%%  1165%*
g interior self-evaluator ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
lo exterioractive 1187%% 117 1187 - 2080%%%  2034%%*  1126% - - 13254 1000  1087* 1000 1026 1072
11  exterior self-evaluator ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
12 interior terminal 1.989%%*  1.961%%* 1989%%% - 1223%  1213%% 18870 - LETTA* - 1325%%%  1441%%%  1325%%%  1202%%% 1236+
13 exterior terminal 1187 1.170%* 1.187%* - 2.080%%  2034%* 1126 - 1.000 - LETTe 1.087*  1.000 1.026 1.072
14 non-terminal 1.054 1.039 1.054 - 2.307*%*  2.290*** 1,000 - 1.126* - 1.887***  1.126* 1.087* 1.115%*  1.165%**
15 DMU with MPSS 1.187%%  1.170%* 1.187%* - 2.050%*%*  2.034%** 1126% - 1.000 - 1.677%%* 1,000 1.126* 1.026 1.072
16 APU 1.227%%%  1.209%* 1.227%%* - 1.982%%*%  1.967***  1164%* - 1.034 - 1.621%** 1034 1.164** 1034 1.045
17 FDEF 1.324%%%  1.305%** 1.324%** - 1.837%**  1.822%*% 1 256%*x - 1.116 - 1.502%** 1116 1.256%** 1116 1.079

Notes: (a) F1 (F2) test compares the VEA eff|C|ency distributions of efficiency scores with each other assuming an exponential (half-normal) distribution of the efficiency
scores (see Banker and Natarajan, 2011). (b) Results from the F1 (F2) test are depicted in the upper (lower) diagonal. (c) Three, two and one stars denote statistical significance

at 1%, 5% and 10% respectively.
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Table 4.8: Banker statistical tests among VEA models, variable-returns-to-scale

VEA
MPS  selection criterion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 most times as peer in DEA 1.031 1.859%** 1,000 1.85g%s*  2108%x . 1177k 203@%ex [ 5@3ERE  D780%k 11774k [ 75wk 1373%kx [ 177H%k 1 25Ewex ] pQeRE
2 ;ﬁvggfit_nzpflit;ency 1.048 1.803*** 1031 1.803%%%  2132%% . 1141%%  2850%%% 1536wk 2607F  1141%%  1237%%  1330%kx [ 141%%  1218%ex 120wk
3 Is:fpe;rsilnb;:ﬁciency 2.759%%% 2,632k 1.859%** 1000 1182%%% . 1580%*  15GLRF  1174%ex 1495k 1580%E* 1 45GERk 1 354%ex 1 5GORREX [ ABLRR 1 A4TGR
4 best-in-output 1.000 1.048 2.759%** 1.859%**  2,198%** - 1A77%%%  2,038%** | Bg3Fk*k 2 7Gkkk | |77RRX ] Q7GRRK ] JTFRRX ] |TTRRE ] QEGRRK ] DFQRRX
5 best-in-input 2.759%%*  2.632%** 1,000 2.759%%* 1182%%% . 1580%*  15GLRE  1174%kx 1495k 15G0%E* 1 4BGERk 1 354%ex 1 5gRex [ AGLRRR 1 ATGR
6 minimum average CV 3572%%%  3400%**  1205%** 3 57Q%kx ] DQ5wkk - 1.868%**  1.337%%%  1388%**% 1 265%F* 1 868%**  1.724%** 1 B0L***  1.868***  1751FF*F 1745%**
7 IDMU . . . . . . . . . . . . . . . .
g Interior active 1240%%%  1183%*%  2.225%%%  1240%%  2.225%%x  288LRwk - 2407*%%  1345%%%  2.363*%* 1000 1.084*  1167*** 1.000 1.067 1.071
9 interior self-evaluator B.AS0%**  G154%E*  233g%R%  GASORF  2.33g%Rx 1 805FF . 5202%%* 1.856%** 1057 2407%%%  2304%%  2L4%Ex  DAQTRE* 234L%R% 2333k
10 exterior active 2.042%%%  1948%% 1351k 2042%%  135IxRx ] 75w - LEATM* 3150wk 1756%%%  1345%%%  1241%%% 1 153%% 1 345%ex 1 2GLRk 1257
11 exterior self-evaluator BALT*%  516G%* 19630 5AITFR* 19630 1516% - 43680 1101%* 2,653+ 23630 218 2025%%%  2363%%  2.215%k% 2207
12 interior terminal 1240%%%  1183%%  2.225%%%  1240%*% 2225%%% 2881** . 1000 5.202%%%  1BATF*  4.368%%* 1.084*  1167*** 1.000 1.067 1.071
13 exterior terminal LA27%%%  1361%%  1.934%%%  1427%%  1934%%%  2504%%% . 1151%  4521%% 14310k 3797+ 1151 1.077 1.084* 1016 1.012
14 non-terminal 1653 %% 1577%0%  166O%** 1 653F%  1660%F*  216LFF . 13330k 3002k 1235%kx 3277wk 1333%x ] 150% 1167 1004%*  1,09%
15 MPSs 1240%%%  1183%%  2.225%%%  1240%%% 2225%%% 2881** . 1000 5.202%%%  1647%%%  4.368*** 1000 1151 1.333%%* 1.067 1.071
16 APU 1.358%%%  1205%% 2,032%%%  1358%%  2032%%% 2631%* . 1005 4751%%%  1504%*  399%* 1005 1.051 1218** 1095 1.004
17 FDEF 1.365%%*%  1.303%%*  2.021%%%  1365%%%  2.021%**  2.616%** 1.101 47247 1.495%%*  3.967***  1.101 1.045 1.211% 1101 1.006

Notes: (a) F1 (F2) test compares the VEA efficiency distributions of eff|C|ency scores with each other assuming an exponential (half-normal) distribution of the efficiency
scores (see Banker and Natarajan, 2011). (b) Results from the F1 (F2) test are depicted in the upper (lower) diagonal. (c) Three, two and one stars denote statistical significance
at 1%, 5% and 10% respectively.
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Table 4.9: Mann-Whitney statistical tests among VEA models

VEA
VEA  MPS choice 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
1 most times as peer in DEA 0.807 15.844*** 0,000 15.844%%*  20,738%** - Q.471%%%  23383%F*  12.668%**  24.320%%%  4ATI*X 6663 B273FRR  AATIRRH BTATFFF 6.863FFF
lowest finite
2 superinefficiency 0.321 15.322%**  0.807 15.322%%*  20.408%** - 3.014%%%  23171%*%  12016%%%  24.117%%%  3.914%**  5gEOFK*  TET7RAX 3 QlAxkx G QIpRkk 6 025%**
infeasible
3 superinefficiency - - 15.844%*% 0,000 6.629%** - 13.070%%%  14555%*%  50B4***x  15456%F*  13.070%%*  11.131%**  8.957%**  13.070%**  11671%**  11589%**
4 best-in-output 0.000 0.321 - 15.844%**  20.738%** - ATTI%%*%  23383%%%  12.668%**  24.320%%%  AJTLRRN\ §E63FFX  B2TIFRR ATTIMF BTATRF* B.8E3FFF
5 best-in-input - - - - 6.629%** - 13.070%%%  14555%*%  50B4***x  15456%**  13.070%%*  11.131%**  8.957%**  13.070%**  11671%**  11589%**
6 minimum average CV 13.864***  13.690%** - 13.864%** - - 19.015%**  10.424%%%  12123%%*  12.120%**  19.015%**  17.302%%*  15306%**  19.015%**  18.045%**  17.993%**
7 IDMU
13.867%%%  13,689%** - 13.867%%* - 0.887 - - - - - - - - - -
interior active
8 1.028 0.687 - 1.028 - 13.207%**  13.969%** 22.208%%%  Q165%**  23.492***  0.000 2.178%* 4.292%**  0.000 2.145%* 2.274%%
9 interior self-evaluator
- - - - - - - - 18.189%**  1.675% 22.008%%%  21209%%%  20.171%**  22.208%*%*  21738%**  21.704%**
exterior active
10 3.796%%%  3.489%** - 3.796%+* - 11.483%%% 1] 4B1%**  2796%** - 19.852%%% 9 1B5*** G058 4534%Rk  QB5RRR  7A02%F*  7.309%*
1 exterior self-evaluator
- - - - - - - - - - 23.492%%% 22 5GG*** 21538 23.492%%*  23.049%**  23.016%**
interior terminal
12 10.920%%%  10.735%** - 10.920%** - 3.616%%%  3E5QRRX  10.179%** - 8.144%x* - 2.178%* 4.292%**  0.000 2.145%* 2.274%%
13 exterior terminal
3.796%%*%  3.489%** - 3.796%+* - 11.483%**  11.481%**  2.796%** - 0.000 - 8.144%x* 2.175%* 2.178%* 0.126 0.006
14 non-terminal 1.028 0.687 - 1.028 - 13.207***  13.969%**  0.000 - 2.796%+* - 10.179%**  2.796%** 4.202%%%  2.456%* 2.346%*
15 MPSS 3.796%%*%  3.489%** - 3.796%** - 11.483%**  11.481%**  2.796%** - 0.000 - 8.144%** 0,000 2.796%** 2.145%* 2.274%%
16 APU 4764%%%  4.341%% - 4.764%%* - 10.926%*%  10.936%**  3.678%** - 0.879 - 75104  0.879 3.678%  0.879 0.141
17 FDEF 6.014***  5.7g%** 6.014%** 0.823***  9.815%** 5 (75%** 2.386™* 6.268%**  2.386™* 5.075%%*  2.386™* 1,533

Notes: (a) Results for constant-returns- to scale models are deplcted in the lower diagonal, while those of variable- returns to-scale models are depicted in the upper diagonal.
(b) Three, two and one stars denote statistical significance at 1%, 5% and 10% respectively.
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Table 4.10: Simple and rank correlation coefficients among VEA models, constant-returns-to-scale

VEA

VEA  MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 most times as peer in DEA 0981 - 1000 - 0.806 0.808 0.979 - 0929 - 0.840 0.929 0.979 00929 0.928 0.931
2 maximum finite superefficiency  0.995 - 0981 - 0813 0812 0980 - 0906 - 0.845 0.906 0.980 0.906 0.914 0.923
3 infeasible superefficiency - - - - - - - - - - - - - - - -
4 best-in-output 1.000 0.995 - - 0806 0.808 0979 - 0929 - 0840 0929 0979 0.929 00928 0.931
5 best-in-input - - - - - - - - - - - - - - - -
6 minimum average CV 0.849 0.852 - 0.849 - 0.997 0.774 - 0709 - 0.996 0709 0.774 0.709 0.699 0.809
7 IDMU 0.853 0.855 - 0.853 - 0.999 0771 - 0727 - 00991 0.727 0.771 0727 0.710 0.824
8 interior active 0.992 0992 - 0992 - 0.837 0.839 - 0918 - 0814 0918 1.000 0.918 00944 0.932
9 interior self-evaluator - - - - - - - - R - - - R R - -
10 exterior active 0981 0974 - 0981 - 0817 0828 0976 - - 0740 1.000 0.918 1.000 0.985 0.976
11 exterior self-evaluator R R R - R R R - R R - - R R - -
12  interior terminal 0.879 0.883 - 0.879 - 0997 0995 0.870 - 0.846 - 0.740 0.814 0.740 0.738 0.835
13  exterior terminal 0.981 0974 - 0981 - 0817 0.828 0976 - 1.000 - 0.846 0.918 1.000 0.985 0.976
14 non-terminal 0.992 0992 - 00992 - 0837 0839 1.000 - 0976 - 0.870 0.976 0.918 0.944 0.932
15 MPSS 0.981 0974 - 0981 - 0817 0828 0976 - 1.000 - 0.846 1.000 0.976 0.985 0.976
16 APU 0.980 0976 - 00980 - 0812 0.819 0986 - 0995 - 0.844 0.995 0.986 0.995 0.973
17 FDEF 0.978 0975 - 0978 - 0881 0.889 0977 - 0991 - 0903 0.991 00977 0.991 0.989

Note: Simple correlation coefficients are depicted in the lower diagonal, while Spearman rank correlation coefficients are depicted in the upper diagonal.
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Table 4.11: Simple and rank correlation coefficients among VEA models, variable-returns-to-scale

VEA

VEA MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 most times as peer in DEA 0.954 0.785 1.000 0.785 0.838 - 00912 0.666 0.840 0.808 00912 0.864 0.872 0.912 0.883 0.883
2 maximum finite superefficiency ~ 0.991 0.696 0954 0696 0.901 - 0.878 0572 0.764 0.791 0.878 0.870 0.895 0.878 0.852 0.852
3 infeasible superefficiency 0.871 0.842 0.785 1.000 0.670 - 0.699 0.961 0.965 0.680 0.699 0.737 0.779 0.699 0.703 0.709
4 best-in-output 1.000 0.991 0.871 0.785 0.838 - 0912 0.666 0.840 0.808 0.912 0.864 0.872 0.912 0.883 0.883
5 best-in-input 0.871 0.842 1.000 0.871 0670 - 0.699 0961 0.965 0.680 00699 0.737 0.779 0.699 0.703 0.709
6 minimum average CV 0.932 0.955 0.811 0.932 0.811 - 0.753 0565 0.728 0.758 0.753 0.842 0.903 0.753 0.745 0.747
7 IDMU - . - . . i . . _ . . _ _ . . _
g interior active 0.976 0.968 0.846 0976 0.846 0.911 - 0533 0.821 0.892 1.000 0.786 0.760 1.000 0.979 0.979
9 interior self-evaluator 0693 0.658 0940 0.693 0.940 0.645 - 0635 0.870 0.490 0533 0.662 0.729 0.533 0.546 0.552
10  exterior active 0.930 0.909 0.977 0930 0977 0.872 - 0.932 0.850 0.820 0.821 0.754 0.789 0.821 0.813 0.819
11 exterior self-evaluator 0.930 0.927 0.830 0.930 0.830 0.890 - 0.969 0.595 0.927 0.892 0.618 0.649 0.892 0.845 0.848
12 interior terminal 0976 0968 0.846 0.976 0.846 0911 - 1.000 0.635 0.932 0.969 0.786 0.760 1.000 0.979 0.979
13  exterior terminal 0.920 0.927 0.819 0920 0.819 0936 - 0.886 0.695 0.851 0.801 0.886 0.879 0.786 0.840 0.840
14 non-terminal 0.929 0.943 0.856 0.929 0.856 0.960 - 0.891 0.751 0.882 0.828 0.891 0.924 0.760 0.756 0.759
15 MPSS 0.976 0.968 0.846 0976 0.846 0911 - 1.000 0.635 00932 0.969 1.000 0.886 0.891 0.979 0.979
16 APU 0.967 0.958 0.844 0967 0.844 0913 - 0.993 0.640 0925 0950 0.993 0.915 0.890 0.993 1.000
17 FDEF 0.967 0.958 0.847 0.967 0.847 0914 - 0.993 0.642 0927 0.952 0.993 0.914 0.890 0.993 1.000

Note: Simple correlation coefficients are depicted in the lower diagonal, while Spearman rank correlation coefficients are depicted in the upper diagonal.
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Table 4.12: Average shifts in rank among VEA models

VEA
VEA  MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 most times as peer in DEA 22.004 71713 0.000 71713 59.446 - 44461 92600 61522 63991 44461  56.157 55061 44461  49.108  48.945
2 Ts?x\g:fit_nzpflitceiency 15.298 85.120 22.004 85120 46.336 - 49586 103.975 74.157 65985 49586 52727 49.370 49586 54376  54.201
3 Isr;];atgrsilnbell?ﬁciency - - 71713 0.000  92.746 - 84.448 33.015  27.440 88220  84.448 81169 75389 84448 83841  83.180
4  best-in-output 0.000  15.298 - 71.713  59.446 - 44461 92600 61522 63991 44461  56.157 55061 44461  49.108  48.945
5  best-in-input - - - - 92.746 - 84.448 33015 27440 88220  84.448 81169 75389 84.448  83.841  83.180
6 Mminimum average CV 71.061  69.201 - 71.061 - - 75.710 108.632 82380 75269 75710  59.165 45727 75710  77.632  77.324
7 IDMU 70.715  69.283 - 70.715 - 7.552 - - - - - - - - - -
g interior active 17.188  17.036 - 17.188 - 76.040  76.400 112.011 62.782 46581  0.000 73.068  76.254  0.000 20.106  19.905
g interior self-evaluator ; - - ; ; - ; - 50509 117.685 112011 92814 85256 112011 110309  109.748
10 exterior active 38.732  44.040 - 38.732 - 86.395 83.059 41.387 - 64.774  62.782 78584 73564 62.782  64.076  63.165
1 exterior self-evaluator ; - - ; ; ; ; ; ; - 46581 97507 92850 46581  56.626  55.844
12  interior terminal 63.998  62.207 - 63.998 - 9.778 14615 68.431 - 81.214 - 73.068 76.254  0.000 20.106  19.905
13 exterior terminal 38732 44.040 - 38.732 - 86.395 83.059 41.387 - 0.000 - 81.214 50.584 73.068  62.135  62.343
14  non-terminal 17.188  17.036 - 17.188 - 76.040  76.400  0.000 - 41.387 - 68.431  41.387 76.254 75632  75.385
15 MPSS 38.732  44.040 - 38.732 - 86.395 83.059 41.387 - 0.000 - 81.214  0.000  41.387 20.106  19.905
16 APU 37.643  41.681 - 37.643 - 87.822 85.806 32.951 - 17.313 - 81507  17.313 32951 17.313 1.484
17 FDEF 38.288  40.674 - 38.288 - 69.400 66.190  38.516 - 22.302 - 64.334 22302 38516 22302  24.203

Note: Results for constant-returns-to-scale models are depicted in the lower diagonal, while those of variable-returns-to-scale models are depicted in the upper diagonal.
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efficiency scores for these MPS choices do not differ significantly from that of DEA.
In our case, the best-in-output farm appears also as a peer for most farms, and the
interior active and the non-terminal farms used as MPS are the in fact same farm. Also,
the VEA efficiency scores do not differ in a statistically significant sense when the
chosen MPS is based either on (i) the APU, (ii) an MPSS farm, or (iii) common weights.
This is explained by the fact that the combinations of farms in the common weights and
the APU choices in our case are similar to each other and include in most cases the
MPSS farm #130, which however may not be the case with other datasets.

On the other hand, the VRS VEA distributions of efficiency scores differ in a
statistically significant way from one another when the MPS is either (i) an interior self-
evaluator farm, (ii) an exterior self-evaluator farm or (iii) a farm for which the super-
efficiency score is infeasible. This indicates that statistically significant differences
between VEA distributions of efficiency scores were found when the MPS choices
reflect DMUs with a rather extreme input/output bundles. In these cases, as we have
seen before, the VEA efficiency scores for each of these MPS choices are significantly
different from those of DEA.

4.6. Concluding remarks

VEA can be a very useful tool for performance evaluation, providing guidance towards
informed decision-making. The efficient frontier against which the DMUSs are assessed
in VEA depends on the chosen MPS. In this chapter, we first reviewed several MPS
choices previously used in the literature. For some of these, there is a difficulty to
intuitively explain the DMs’ choice, as they do not explicitly consider some overall
organizational objective, while others may compare DMUs against exceptionally
performing benchmarks or inappropriate MRSs and MRTs. We then made four new
suggestions for choosing the MPS: First, to make a more informed personal choice by
explicitly considering the relative position of efficient DMUs on the DEA frontier.
Second, choose a DMU with MPSS as the MPS, which results in assessing the DMUs
against the technically optimal scale in DM’s view. Third, choose the set of APU’s
peers as the MPS. In this case the resulting VEA scores resemble the extent of
efficiency from the perspective of fully centralized management, and can be useful for
DMs who coordinate resource allocation and pursue the objective of structural
efficiency maximization. Fourth, to evaluate all DMUs based on common and strictly
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positive (i.e., well defined) weights, by choosing as the MPS a unique combination of
DMUs generating an FDEF. This results in evaluating the DMUs against a common
standard, which may be a prerequisite when management wishes to fully limit the
assessed DMUs’ autonomy in setting their own objectives.

The empirical comparative analysis using data on Greek cotton farmers
provides useful results on how MPS choice may affect the VEA efficiency scores:
First, the use of an influential peer as the MPS (the DMU appearing the most times as
a peer and the one with the maximum finite super-efficiency score) does not offer
additional insights to managers compared to the results obtain from the DEA model.
Second, MPSs that are frequently located on “end-points” of the DEA frontier (those
with an infeasible super-efficiency score and interior- or exterior-self-evaluators)
appear to result in large differences on efficiency scores between the DEA and VEA
models and in some of the inputs being irrelevant for the estimation of the VEA
efficiency scores. Third, the use of both an (interior or exterior) terminal as well as a
non-terminal DMU as MPS may result in significant differences between the DEA and
VEA efficiency scores, but in the latter case all inputs were important for the estimation
of efficiency while in the former case, zero optimal weights were assigned to some
inputs. Fourth, both MPS choices pursuing minimum variability among the DMUs’
optimal weights (minimum average CV and common weights) resulted in significant
differences between the DEA and VEA efficiency scores. This may often be the case
for the common weights choice. Fifth, the VEA scores when the MPS is either the APU
or an MPSS DMU differ significantly, in a statistical sense, from that of the DEA
model, which may often be the case for the APU.

On the other hand, the same VEA efficiency scores were obtained from different
MPS choices for which the same DMU was used as the MPS, while similar scores were
obtained from alternative MPS choices in which an influential peer is the MPS, namely
the DMU appearing the most times as a peer and the DMU with the maximum finite
super-efficiency score. Similarly, the VEA efficiency scores when the MPS was chosen
based either on the APU, an MPSS farm, or common weights were not statistically
different from each other. However, choices in which the MPS may often be a DMU
with a rather extreme input/output bundle, namely self-evaluators and DMUs with
infeasible super-efficiency scores, resulted in significantly different VEA scores with
one another.
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The empirical analysis conducted in this study provided the first thorough
overview on the effect of MPS choice on the VEA scores. As our empirical findings
may be data specific, a promising task for future research would to empirically assess
the effect of MPS choice on VEA scores using data from other sectors and countries.
Such studies could provide valuable insights that would complement those of the
present study. Furthermore, as the incorporation of the MPS in VEA models restricts
the assessed DMUs’ choice of optimal values of input/output weights in a manner
similar to that of introducing weight restrictions in DEA models, another avenue for
future research would be to explore the relationship between VEA and weight-restricted

DEA models in more detail.
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Part I1: Theoretical essays
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CHAPTER 5

On Value Efficiency Analysis and Cross Efficiency

5.1. Introduction

Peer appraisal of Decision Making Units (DMUs) is involved in several cases of
performance evaluation. These include, among others, cases of (a) participatory
decision making (Oral, 2012), such as budget allocation; (b) zero-sum type of
decisional contexts, where each DMU evaluates the remaining DMUs based on its own
“value system”; and (c) instances in which transparency matters considerably for
stakeholders, as with decision-making in international organizations or national
government bodies (Oral, 2010) and faculty or institution appraisal in higher education
(Oral et al., 2014). In addition, peer appraisal may be desirable or necessary in the
cases of players evaluation in sports and in the assessment of alternative portfolios of
financial institutions.

Within Data Envelopment Analysis (DEA), cross efficiency (see Sexton et al.,
1986) and Value Efficiency Analysis (VEA) (see Halme et al., 1999) are two popular
frameworks used for peer appraisal assessments. In the former, the whole set of
evaluated DMUs is involved, while in the latter only a subset, which are considered as
the Most Preferred Solution (MPS) by an external Decision Maker (DM) or a central
planner. Both these alternative peer appraisal frameworks rely on the input/output
multipliers estimated by the conventional DEA model. In cross efficiency, each DMU
is evaluated by using the vector of optimal multipliers of all other DMUs. For some
DMUs, this vector may not be unique and to resolve this problem several secondary
goal formulations have been proposed. These include the popular benevolent,
aggressive (Sexton et al., 1986; Doyle and Green, 1994; 1995), and neutral
formulations (Wang and Chin, 2010a), which select one vector of multipliers among
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those optimal for the “reference” DMU and use it to obtain the cross efficiency scores
of the remaining DMUSs, as well as the less known Targeted Benevolence (TB) (Oral et
al., 1991) formulation.” In this less often employed but definitely useful formulation,
all vectors of optimal multipliers of the “reference” DMU are used in the evaluation
process as the remaining DMUs have the option of selecting the one maximizing their
cross efficiency score.”” This affirmative and appreciative form of appraisal enhances
fairness and transparency in the evaluation process and provides each DMU with the
most optimistic cross efficiency score. However, the estimation of the TB cross
efficiency matrix is more complicated compared to that of other secondary goal
formulations, and for this reason Doyle and Green (1995) felt that the use of TB may
increase if shortcuts on its implementation are introduced. On the other hand, in VEA,
each DMU is evaluated by means of a vector of multipliers selected among those that
are optimal for the DMU(s) considered as the MPS, i.e., those reflecting better the DM’s
preferences about input and/or output mixes.®

In this paper, we examine how cross efficiency and VEA may be related to each
other. By doing so we show that these two seemingly unrelated frameworks of peer
appraisal are equivalent to each other for a particular formulation of cross efficiency,
namely the TB. More specifically, we verify that the TB formulation is equivalent to
VEA if either (i) an efficient “reference” DMU, i.e., the one whose vector of optimal
multipliers is used to evaluate all other DMUs in the TB formulation, is also chosen as
the MPS in VEA, or (ii) the radial projection of an inefficient “reference” DMU on the
DEA frontier is also chosen as the MPS in VEA. This result implies that alternative
interpretations of the TB and VEA efficiency scores can be derived and also, that one
can obtain the matrix of the TB cross efficiency scores through a series of envelopment

6 The term Targeted Benevolence was coined by Doyle and Green (1995) but it has also been referred
to as the “Most Resonated Appreciative (MRA)” model by Oral et al. (2015) and as the “positively
targeted peer-evaluation” model by Davtalab-Olyaie et al. (2021).

"7 TB has been used for, among others, project selection (Oral et al., 1991; Oral, 2010), faculty evaluation
in higher education (Oral et al., 2014) and players evaluation in sports (Oukil and Govindaluri, 2017).
The TB cross efficiency scores have also been employed (albeit usually referred to as “maximum cross
efficiency scores”) as an input to (i) approaches aiming to obtain a complete ranking of DMUs via cross
efficiency (see Yang et al., 2012; Oukil, 2020) and (ii) refinements of the conventional aggressive and
benevolent formulations (Wu et al., 2016a).

8 Recent applications of VEA include, but are not limited to, the evaluation of hospital departments
(Halme and Korhonen, 2000), academic institutions (Korhonen et al., 2001) as well as bank branches
(Eskelinen et al., 2014).
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form VEA models, each of which uses a different DMU or its efficient projection as
the MPS. Besides of using the envelopment instead of the multiplier form, we show
that the estimation of the TB cross efficiency matrix can be simplified further --if there
are inefficient DMUs that are projected on the strongly efficient frontier and have the
same set of peers. We provide the necessary steps for obtaining the TB cross efficiency
matrix by means of VEA and we illustrate the usefulness of our findings using a number
of examples.

The rest of this paper is organized as follows: In the next section we present the
materials and methods used in the paper. The paper’s main results are reported in the
third section. The steps for estimating the TB cross efficiency matrix are given in the

fourth section, while concluding remarks follow in the last section.
5.2. Materials and methods

5.2.1. Cross efficiency

Let us consider a set of K DMUs (k=1, ..., ...,,K) operating under the same technology
and producing asetof J (j=1,...,J) outputs by utilizing | (i=1, ...,1) inputs. The fractional
programming form of an input-oriented constant-returns-to-scale (CRS) DEA model
for the 0" DMU is given as (Charnes et al., 1978):7®

j=1 i=1
] 1
s.t. ij‘?y]k a)f’x{‘ <1 k=1,..,0,..,K G.1
j=1 i=1
E}O 2 0 _] = 4 "]
w! >0 i =1,..,1

where x and y are respectively the quantities of inputs and outputs and w and ¢ are their
multipliers. Using the Charnes and Cooper (1962) transformation, (5.1) can be

converted into the following linear model:

9 We focus on input-oriented CRS DEA models but the extension of our results to output-oriented and
variable-returns-to-scale (VRS) models is straightforward.
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where u) = B¢?, v? = Bw{ and B = (T{-; wfx)) ™ .

The vector of optimal input/output multipliers provided by (5.2) is used to
obtain the self-appraisal DEA efficiency score of the o" DMU, E¢ =

] " ]y]"/Zl u?x?, and the peer-appraisal or cross efficiency score of the

remaining DMUs, i.e., E} = v/ /Ei- ufx[' 2 By estimating (5.2) for each

J =1 J
DMU we obtain the elements of the cross efficiency matrix, where each row contains a
particular DMU’s self-appraisal efficiency score (diagonal element) and the peer-
appraisal efficiency scores of all other DMUs when appraised by that DMU (off-
diagonal elements). If the values of all the optimal input/output multipliers are strictly
positive, E can be interpreted as the conventional efficiency score relative to an
extended facet reference technology based only on the input/output combinations of the
DMUs residing in the efficient facet that is normal to this particular multiplier vector
(Olesen, 2018).

The vector of optimal multipliers may not however be unique for the efficient
DMUs (E2 = 1), and, in rare occasions, for some inefficient DMUs (E2 < 1) as well
(Cooper et al., 2007, p. 32). In these cases, there are multiple cross efficiency scores
for the remaining DMUSs, each of which is based on a different vector of multipliers
among those that are optimal for the “reference” DMU. This poses a problem on which
vector of multipliers to be used for peer appraisal purposes. The use of the one obtained
from (5.2) for the “reference” DMU, as proposed by Sexton et al. (1986), is rather

80 Notice that in E? the superscript denotes the DMU being evaluated and the subscript the “reference”
DMU whose optimal multipliers are used for peer appraisal purposes.
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unsatisfactory, because it depends on arbitrary factors such as the order with which the
data are entered into the linear optimization software used (Doyle and Green, 1994).

Several approaches have been developed to resolve this problem: (i) the
secondary goal formulations, which include the aggressive and benevolent, the TB,
weight profiles and ranking optimization approaches, (ii) the game theoretic approaches
which comprise of the pareto optimality, non-cooperative game theory and the
bargaining approaches, and (iii) the prospect theory approach. An overview of these
approaches including the main references is provided in Table 5.1.8

In the secondary goal approaches, such as the benevolent and aggressive
formulations, introduced in Doyle and Green (1995), the problem of non-unique
optimal multiplier vectors for the “reference” DMU is resolved by modifying
accordingly the objective function in (5.2) in order to result in a unique vector of
optimal input and output multipliers, which is then used for peer appraisal of the
remaining DMUs. More specifically, the benevolent (aggressive) formulation selects
the vector of multipliers that maximizes (minimizes) the average cross efficiency score
of the remaining DMUSs, or the efficiency score of a composite DMU that is obtained
by aggregating the inputs and the outputs of the remaining DMUs. In the latter case,

the following linear programming model is solved for the benevolent formulation:

RS
S5
M-
\.20
S
>

Jj=1
J 1
s.t Zu]"yf—Zvloxl"SO k=1,..,0 ... Kk#+h
j=1 i=1
J 1 53
Zu]‘-’y]h— vl"flh=0 -3)
j=1 i=1
I
veXxt =1
i=1
u? >0 ] = i
] — ) )
v) =20 i =1,..,1

81 Recent theoretical extensions of cross efficiency measurement to other performance evaluation
problems include, among others, cases where input/output data are uncertain (Pan et al., 2021), clustering
(Chen et al., 2022), and economic efficiency evaluation (Aparicio and Zofio, 2021).
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Table 5.1: Overview of approaches for estimating the DEA cross efficiency matrix

1. Using the optimal set of input/output multipliers

obtained from the DEA model Sexton et al. (1986)

Secondary goal models

2.1. Aggressive/benevolent

min/max the sum of cross efficiency scores or the score  Doyle and Green (1995)
of an aggregate DMU

max/min the sum of deviations of cross efficiency
scores from unity

max/min the sum of deviations of cross efficiency
scores from DEA scores

min(max) the best (worst) cross efficiency score

min or max the sum of deviations of cross efficiency
scores from the maximum or minimum possible scores
lexicographic min/max the cross efficiency scores

min/max the number of DMUs for which cross

Liang et al. (2008a)
Wang and Chin (2010a)

Lim (2012)
Wau et al. (2016a; b)

Chen (2018)
Lam (2010); Davtalab-Olyaie (2019)

efficiency score equals the DEA score

2.2. Targetted Benevolence Oral et al. (1991; 2015); Oral (2010)

2.3. Neutral Wang and Chin (2010b); Wang et al.
(2011a)

2.4. Weights profiles methods

least dissimilar weights
common least dissimilar weights
percentage deviation from the mean

goal programming
Ideal/Anti-ideal DMU method

minimum disparity between weight vectors
iterative method

efficient facets approach

interval reference point method
hypervolume maximization

Ramon et al. (2010)
Ramon et al. (2011)

Lam and Bai (2011)

Orkcii and Bal (2011); Al-Siyabi et al.
(2019)

Wang et al. (2011b); Carrillo and Jorge
(2018); Shi et al. (2019)

Wang et al. (2012)
Lin et al. (2016)
Dellnitz et al. (2021)
Shi et al. (2021)
Alcaraz et al. (2022)

2.5.

Ordinal evaluations/ranking optimization

Wu et al. (2009a); Contreras (2012)

3. Game theoretic approaches

3.1. Pareto optimality Wau et al. (2016c); Davtalab-Olyaie et al.
(2021)

3.2. Non-cooperative game theory Liang et al. (2008b); Wu et al. (2009b);
Liu etal. (2017)

3.3. Bargaining approaches Wau et al. (2009¢); Contreras et al. (2021)

4. Prospect theory Liu et al. (2019)

in which the h™ DMU is the “reference” DMU, Y}h = Zk;thy}‘,j =1, ...,],th =

YrenXx¥,i=1,..,1 and £ = El'x!'. The second constraint in (5.3) forces the

optimization procedure to maintain the efficiency score of the “reference” DMU on its
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self-appraisal level while maximizing the efficiency score of the aggregate DMU.®2
Essentially, (5.3) evaluates this aggregate DMU against a reference technology
consisting of the lower envelope of the extended efficient facets of the DEA frontier
that intercept to each other at the point where the “reference” DMU is (if it is efficient)
or where it is projected by the DEA model, if it is inefficient (Olesen, 2018). The
resulting efficiency score can be interpreted as the minimum proportional input
reduction required for the aggregate DMU to reach the frontier but is however of no
particular use. Instead, the optimal vector of multipliers obtained from (5.3) is used to
compute the cross efficiency scores for the remaining DMUs when the h'" DMU is the
“reference” DMU. For the corresponding aggressive formulation, the objective
function in (5.3) is changed from maximization to minimization.

On the other hand, in the TB cross efficiency formulation, each DMU is allowed
to use that vector of optimal input/output multipliers of the “reference” DMU, among
those in (5.2), that maximizes its cross efficiency score. Oral et al. (1991) modelled

this by means of the following fractional programming model:

=1 i=1
I
s.t. ZE]‘-’y}‘/ w{’x{‘Sl k=1,..,0,..,.K, k+h
e & (5.4)
] I
Z oy / wfxl = Ef
j=1 i=1
f]o 2 0 ] = ) P_]
w? =0 i=1,..,1

which, using the Charnes and Cooper (1962) transformation, can be converted into a

linear model as follows:

82 Notice that using an “average” instead of an aggregate DMU, i.e., replacing )G.h with y}‘ =
(1/K = D) ¥penyf,j=1,...] and X with & = (1/K — 1) Xy xf i = 1,...,1 will not affect the
results, as long as CRS is maintained
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where ! = E'x*. Asin (5.3), the second constraint in (5.5) forces the optimization
procedure to maintain the efficiency score of the “reference” DMU on its self-appraisal
level. However, in contrast with (5.3), (5.5) aims at maximizing the cross efficiency
score of the evaluated DMU (Oral et al., 1991). Thus, (5.5) evaluates each of the
remaining DMUs against the frontier which is used in (5.3) to evaluate the aggregate
DMU. In other words, (5.5) applies the basic principle of DEA (i.e., selection of the
most favorable multipliers) in cross efficiency as well, allowing for an affirmative, fair,
and transparent peer appraisal. The cross efficiency scores obtained from (5.5) are
greater than or equal to the corresponding scores from any other secondary goal
formulation (Davtalab-Olyaie et al., 2021); that is, the TB cross efficiency scores
provide the most optimistic peer appraisal evaluation.2® The resulted efficiency scores
can also be interpreted as the minimum proportional input reduction required by each
of the remaining DMUSs to reach the frontier consisting of the lower envelope of the
extended efficient facets of the DEA efficient frontier that are normal to the vectors of
multipliers optimal for the “reference” DMU. In contrast to the benevolent and the
aggressive secondary goal formulations, (5.5) needs to be solved K x (K — 1) times to
obtain the cross efficiency matrix (Oral, 2010). For this reason, Doyle and Green
(1995) stressed the need to “spot where shortcuts may be taken” in estimating the TB

cross efficiency matrix.

8 See Davtalab-Olyaie et al. (2021) Theorem 1.
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5.2.2. Value Efficiency Analysis

In VEA, peer appraisal is conducted by evaluating the performance of all other DMUs
with respect to the chosen MPS. The MPS reflects DM preferences over the most
desirable input/output structure, in that it maximizes the DM’s implicitly known
pseudoconcave value function (Korhonen et al., 2002).3* In practice, it is explicitly
chosen by the DM, and several criteria have been used in the VEA literature for
choosing the MPS (see the fourth chapter in this Thesis for a review). DM preferences
on the most desirable structure are then incorporated in the VEA model by essentially
forcing the chosen MPS to be in the set of peers for every DMU. This is accomplished
by simply turning the inequality constraint corresponding to the MPS in (5.2) to a strict
equality. Assuming that the " DMU has been chosen as the MPS, the input-oriented
CRS VEA model for the 0" DMU is given as (Halme et al., 1999):

J
0,,0
mas ) W,
jri ST
j=1
J I
s.t Zu]"y]k —Zvl"xl" <0 k=1,..,0,..,.K, k#h
j=1 i=1
J 1 (5.6)
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The second constraint in (5.6) essentially forces the evaluated DMU to choose, among
the (possibly multiple) vectors of input/output multipliers that are optimal for the MPS
in (5.2), the one maximizing its efficiency score. As each of these vectors is normal to
an efficient facet generated (partly) by the MPS, the resulting VEA frontier is in essence
the lower envelope of the extended efficient facets intercepting at the MPS. If the o™
DMU shares at least one optimal vector of input/output multipliers with the MPS, its
peer-appraisal score obtained from (5.6) will be the most optimistic, i.e., equal to its

84 See Joro and Korhonen (2015) for a detailed treatment of VEA.
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self-appraisal DEA efficiency score EJ. Otherwise, (5.6) will assign to the DMU a
score lower than E2.

Model (5.6) does not have a feasible solution if the chosen MPS is not a DEA-
efficient unit. To avoid this, one may either use its peers identified by the dual form of
(5.2) as the MPS (Halme et al., 1999) and turn their respective inequality constraints in
(5.2) into equalities or rely on its radial projection (Joro and Korhonen, 2015, p. 176),
i.e., substitute x* by E*x[ in the second constraint in (5.6). Both result in the same
efficiency scores if the inefficient DMU chosen as the MPS is radially projected on a
part of the strongly DEA efficient frontier. These DMUs can be identified by estimating
the so-called Phase 1l DEA model than maximizes the sum of input and output slacks
for each evaluated DMU while substituting x; by E9x{ (see, e.g., Cooper et al., 20074,
pp. 44-45). For each such DMU, the optimal sum of slacks will be equal to zero,

meaning that the coordinates of its radial projection (Efx/*,y/*) are equal to a linear

combination of the input and output values of its peers. Then turning the inequality
constraint into an equality for the radial projection of the h!" DMU in (5.6) is equivalent
to turning the inequality constraint into an equality for each of its peers. If instead the
h™" DMU is projected on a part of the weakly efficient DEA frontier, each vector of
optimal multipliers is associated with at least a zero value for an input or an output, and
the coordinates of its radial projection is not equal to a linear combination of the input
and output values of its peers. For the latter, there are optimal multiplier vectors in
which all values are strictly positive. Then, using in (5.6) the radial projection of the h™"
DMU and its peers as the MPS does not result in evaluating the DMUs using the same
vectors of optimal multipliers, and, consequently, (5.6) will not necessarily produce the

same efficiency scores for each DMU.

5.2.3. A motivating example

To illustrate the notion of peer appraisal through cross efficiency and VEA and the

relations between them, let us consider a small numerical example with 8 DMUs each

using two inputs to produce a single output. The relevant data are given in columns (2)

to (4) of Table 5.2, the efficiency scores are given in column (5), ), the vectors of the
ug u

(normalized) input and output multipliers (— v—g 1.000) are given in columns (6) to

o’ po’

(8) along with the efficient facet to which each of these vectors is normal to (column
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Table 5.2: Data and efficiency scores for the illustrative example

data DEA optimal solution
DMU x, Xy y 0  ul/v° uf/v° facet peers
A 1 7 1 1000 0417 0.083 F, A
B 15 45 1 1000 0.267 0.133 F; B
C 25 25 1 1000 0.267 0.133 F; C
D 45 15 1 1000 0.133 0.267 F, D
E 7 1 1 1000 0.083 0417 F; E
F 1.2 9 1 0833 1.000 0.000 F; A
G 5 5 1 0500 0.267 0133 F; C
H 15 65 1 0857 0417 0083 F, A/B

(9)), while the DMUSs’ peers identified by estimating the dual of (5.2) are given in
column (10). The resulting efficient frontier is portrayed in Figure 5.1a and consists of
six facets identified by F;,[ = 1,..,6. The supporting hyperplanes for these facets are
depicted by the colored dashed lines. Estimating (5.2) for the extreme-efficient DMU

uf uf
vaA’pa’

A results in an optimal multiplier vector ( 1.000) = (0.417,0.083,1.000) that

is normal to facet F,. An alternative optimal solution for DMU A corresponds to the
multiplier vector (1.000,0.000, 1.000) that is normal to facet F;. In a similar manner,
alternative optimal solutions exist for all the remaining extreme-efficient DMUs (i.e.,
B, C, D, and E) and the DEA-inefficient DMU G. For G, this occurs because it is
projected on point C, in which two facets intercept. In contrast, a single optimal
multiplier vector exists for the DEA-inefficient DMUs F and H.

Using the optimal multiplier vectors obtained from (5.2) for each DMU to
compute the peer appraisal cross efficiency scores for the remaining DMUSs results in
the cross efficiency matrix given in the upper panel of Table 5.3. For example, the first
column corresponding to DMU A as the “reference” DMU, is obtained using the vector
(0.417,0.083,1.000) as EX =1/(0.417x¥ +0.083y%),k # A.  However, the
alternative optimal multiplier vector for DMU A could have been used instead to obtain
EX, k # A. Thisis also true for DMUs B, C, D, E, and G.

The TB cross efficiency matrix is given in the lower panel of Table 5.3, while
the procedure for obtaining the TB cross efficiency scores is portrayed in Figure 5.1b.
For example, when the DEA-efficient DMU C is the “reference” DMU, (5.5) allows
each of the remaining DMUs to choose among the multiplier vectors normal to facets
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Figure 5.1: Efficient frontier and geometric representation of the TB secondary goal
formulation

input2 / output

1 2 3 4 5 6 7 8 9
input 1 /output

(a) Efficient frontier and efficient facets

input2 / output
©

input 1 foutput

(b) The TB formulation

F5 and F,, the one maximizing their cross efficiency score. For some DMUSs (i.e., A, B,
F and H) this is the vector normal to F; while for others (i.e., D, E) it is the one normal
to F,. Thus, the DMUs are in essence evaluated against the lower envelope of the

extended facets F; and F, (the yellow solid piecewise linear frontier).8> When the

8 In the benevolent formulation instead, the DMUs in this case would be evaluated against only the
extended facet F;. Model (5.3) would be used to identify which of the multiplier vectors normal to F;
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Table 5.3: Cross efficiency matrices for the illustrative example

reference DMU
A B C D E F G H
multiplier sets obtained from DEA
1.000 0.833 0.833 0500 0.333 1.000 0.833 1.000
1.000 1.000 1.000 0.714 0500 0.667 1.000 1.000
0.800 1.000 1.000 1.000 0.800 0.400 1.000 0.800
0.500 0.714 0.714 1.000 1.000 0.222 0.714 0.500
0.333 0.500 0.500 0.833 1.000 0.143 0.500 0.333
0.800 0.658 0.658 0.391 0.260 0.833 0.658 0.800
0.400 0.500 0.500 0.500 0.400 0.200 0.500 0.400
0.857 0.789 0.789 0.517 0.353 0.667 0.789 0.857
TB secondary goal
1.000 1.000 0.833 0.500 0.143 1.000 0.833 1.000
1.000 1.000 1.000 0.714 0.222 0.667 1.000 1.000
0.800 1.000 1.000 1.000 0.400 0.400 1.000 0.800
0.500 0.714 1.000 1.000 0.667 0.222 1.000 0.500
0.333 0.500 0.833 1.000 1.000 0.143 0.833 0.333
0.833 0.800 0.658 0.391 0.111 0.833 0.658 0.800
0.400 0.500 0.500 0.500 0.200 0.200 0.500 0.400
0.857 0.857 0.789 0517 0.154 0.667 0.789 0.857

TITOTMMOO >

TOTMMOOW@>

DEA-inefficient DMU K is the “reference” DMU, we take its radial projection. This is
on the interior of facet F, and thus there is only one optimal multiplier vector for DMU
K. The associated TB cross efficiency scores reflect the radial reduction of inputs for
the remaining DMUs to reach the extended facet F, (the blue solid line). In a similar
manner, DMU G is projected on facet F; and thus the TB cross efficiency scores of the
remaining DMUs are obtained as the radial distance to the extended facet F; (the red
solid line). On the contrary, the projection of DMU H to the efficient frontier coincides
with DMU C which is on the intersection of facets F; and F,. Thus, when H is the
“reference” DMU, the remaining DMUs can choose between the multiplier vectors that
are normal to F; and F, the one maximizing their efficiency scores.

On the contrary, when VEA is used for peer appraisal purposes, one needs first

and F, maximizes the efficiency of the DMU constructed as the average input and output quantities of
all sample DMUs except C (the white dot in Figure 5.1a). This artificial DMU is projected on the interior
of F;, and thus the associated multiplier vector would be used to compute the peer appraisal scores of all
other DMUs when DMU C is the “reference” DMU. In a similar fashion, the aggressive formulation
would evaluate all DMUs against the extended facet F,.
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to choose the MPS. This is frequently chosen among the DEA-efficient DMU, i.e.,
DMUs A, B, C, D, and E. The VEA efficiency scores when each of these DMUs is the
MPS are given in columns (2) to (6) of Table 5.4. The VEA efficient frontier is
portrayed, when DMU C is chosen as the MPS, by the solid yellow piecewise line in
Figure 5.2a. In this case, turning the inequality constraint corresponding to C into an
equality in (5.6) forces the evaluated DMUs to maximize their efficiency score by
choosing a multiplier vector among those optimal for C (i.e., a vector that is normal to
either F; or F,).

Alternatively, one of the DEA-inefficient DMUs F, G, and H could be chosen
as the MPS, in which case their peers or their radial projection on the DEA frontier
should be used as the MPS instead. DMUs H and G are projected on the strongly
efficient frontier and thus, for these DMUs the two options result in the same VEA
scores. DMU H's projection is on the interior of facet F, and if used as the MPS in
(5.6) the resulting VEA frontier is the extended facet F, (the solid blue line in Figure
5.2a). Using DMU H’s peers (A and B) as the MPS, it results in the same efficiency
scores (see columns (7) and (8) of Table 5.4). This is because turning in (5.6) the
inequality constraints corresponding to both A and B into equalities means that the
evaluated DMUs are forced to choose a multiplier vector that is optimal for both A and
B.% There is only one such vector and is normal to F,. Similarly, when DMU G is
chosen as the MPS, using its projection as the MPS in (5.6) results in the same VEA
scores (given in column (9) of Table 5.4) as using its peer (DMU C) as the MPS. On
the other hand, DMU F is projected on facet F;, that is not part of the strongly efficient
frontier. The VEA scores when its radial projection is used as the MPS in (5.6) (given
in column (10) of Table 5.4) are different from the ones resulting when its peer (DMU
A) is chosen as the MPS. In the former case, the VEA frontier is the extended facet F;
(red solid line, see Figure 2b) while in the latter case it is the lower envelope of the
extended), facets F; and F, (piecewise linear blue line).

A comparison of Tables 5.3 and 5.4 shows that the TB cross efficiency scores
are related to those resulting from VEA for particular MPS choices. More specifically,

% In other words, the equality constraint in (5.6) concerning the projection of DMU H can be expressed
as a convex combination of (and replaced by) two similar equalities concerning DMUs A and B, as H’s
projection is in essence a combination of A and B.
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Table 5.4: VEA efficiency scores based on different MPS specifications for the
illustrative example

MPS
A B C D E H {AB} ¢ F'
1.000 1.000 0.833 0500 0.143 1.000 1.000 0.833 1.000
1.000 1.000 1.000 0714 0.222 1000 1.000 1.000 0.667
0.800 1.000 1.000 1.000 0.400 0.800 0.800 1.000 0.400
0500 0.714 1.000 1.000 0.667 0.500 0500 1.000 0.222
0.333 0500 0.833 1.000 1.000 0.333 0.333 0.833 0.143
0.833 0.800 0.658 0.391 0.111 0.800 0.800 0.658 0.833
0400 0500 0500 0.500 0.200 0.400 0.400 0.500 0.200

0.857 0.857 0.789 0.517 0.154 0.857 0.857 0.789 0.667
Note: An apostrophe denotes a DMU’s radial projection on the DEA frontier.

I OGTTMmMmOooOw>»

the TB cross efficiency scores when each of the DEA-efficient DMUs A, B, C, D, and
E is the “reference” DMU are equal to the VEA scores when each of these DMUs is
used as the MPS. The TB cross efficiency scores when the DEA-inefficient DMU G is
the “reference” DMU are also equal to the VEA scores when G’s radial projections (or
its peers) is the MPS, and the same holds for DMU H. These two DMUs are projected
on a part of the strongly efficient DEA frontier. This is not however the case for the
DEA-inefficient DMU F. When F --which is projected on a part of the weakly efficient
frontier-- is the is the “reference” DMU, the TB cross efficiency scores are equal to the
VEA scores when F’s projection is used as the MPS but are different from the scores
obtained using F’s peer (DMU A) as the MPS.

5.3. Theoretical results and implications

From the above example, it seems that the TB formulation in (5.5) and the VEA model
in (5.6) result in the same efficiency score when the same DMU is chosen as the
“reference” DMU in the former and as the MPS in the latter, provided that for a DEA-
inefficient DMU its radial projection is used as the MPS in VEA. In this section, we
provide a theoretical proof for this equivalence and explore its implications. In

particular, we show that the following Proposition holds:

PrRoPOSITION 5.1: The TB formulation is equivalent to VEA, if either (i) an efficient
“reference” DMU in the TB formulation is chosen as the MPS in VEA, or (ii) the radial
projection of an inefficient “reference” DMU in the TB formulation is chosen as the

MPS in VEA
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Figure 5.2: Geometric representation of Value Efficiency Analysis
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(a) VEA for alternative MPS specifications

input2 { output
©
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input 1 /output

(b) Using a DEA-inefficient DMU that is associated with
slacks as the MPS

Proof: Case (i): If the “reference’ DMU in the TB formulation is an efficient DMU then

£ = x] and the equality constraint in (55.) may be re-written as:
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Then, (5.5) and (5.6) are equivalent to each other. Case (ii): If the DMU chosen as the
MPS in VEA is inefficient and its radial projection is used as the MPS, x! in the first
equality constraint in (5.6) should be replaced by El'x" to ensure a feasible solution.
Then, (5.5) and (5.6) are also equivalent to each other.

Notice that, if variable returns to scale are assumed (see Banker et al., 1984), a free
variable u° is simply introduced in the objective function and the first two sets of
constraints in (5.5) and (5.6) without affecting the above results.®” In a similar fashion,
if increasing (decreasing) returns to scale are assumed, then the introduced variable u°
is further restricted to be less-than-or-equal (greater-than-or-equal) to zero. This

completes the proof. o

Two immediate implications of this result are the following: first, we can derive
alternative interpretations of the VEA and TB efficiency scores. In particular, the VEA
scores can be interpreted as the most favorable (i.e., the TB) cross-efficiency scores
from the perspective of a particular “reference” DMU, namely the one chosen as the
MPS in VEA, while the TB cross-efficiency scores when a particular DMU is used as
a “reference” reflect also the judgements of a DM that this “reference” DMU has the
most desirable input/output structure.

Second, the scores in the o column of the TB cross efficiency matrix, i.e., the
peer appraisal scores of the o" DMU by all the other DMUs, can be obtained by
estimating a series of VEA linear programs using each DMU, if it is efficient or its
radial projection on the DEA frontier if it is inefficient, as the MPS. Repeating this for
all DMUs we can obtain the matrix of the TB cross efficiency scores. Consequently,
the TB cross efficiency scores can be obtained from the envelopment form of VEA,

namely:

871t has been shown that, in VRS models, some cross efficiency scores may be equal to zero or even take
negative values (see Soares de Mello et al. (2013) for further elaboration on this matter). The occurrence
of such peculiar efficiency scores does not affect the validity of our results. Instead, according to our
Proposition, if the TB cross efficiency scores for a particular “reference” DMU include some peculiar
values, these will also occur to the corresponding VRS VEA model. Korhonen et al. (2002) were the
first to notice that negative scores may occur in VRS VEA.
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if the MPS is a DEA-efficient DMU. In (5.8), the intensity variable corresponding to
the MPS is a free variable instead of being non-negative as in conventional DEA
models. If, on the other hand, the MPS is a DEA-inefficient DMU, then the
envelopment form of VEA becomes:

min Eyp
EpAs

0.k osh 0,0 (5.9)
kxi +Ahxi < Ehxi L= 1,...,1

k#h
22> 0 k=1,..k ...K, k#h

Ay free
Ep free

where £ = E'x!. This is, to the best of our knowledge, the first time that cross
efficiency scores can be obtained from the envelopment form.

Using the envelopment instead of the multiplier form to obtain the TB cross
efficiency scores allows to simplify the process of estimation. This is made possible
by noticing that the columns of the cross efficiency matrix (namely, the peer appraisal
scores of all DMUs when appraised by a particular DMU) are the same when DEA-
inefficient DMUs, chosen as the MPS, are projected on the same part of the strongly
DEA efficient frontier and thus, have the same peers. In this case, the cross efficiency
scores may be obtained by estimating (5.9) for only one among those DMUs. This
means that obtaining the TB cross efficiency matrix through VEA involves estimating

at most the same number of linear programs as those required by the TB formulation,
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but using the envelopment form. This provides the necessary shortcuts, hoped for by

Doyle and Green (1995), in estimating the TB cross efficiency matrix.

5.4. An algorithm for estimating the TB cross efficiency scores

The proposed algorithm for estimating the TB cross efficiency scores by means of VEA

consists of the following steps:

Step 1: Estimate the DEA model in (5.2) and then classify the DMUs into three
mutually exclusive groups: group A containing the DEA-efficient DMUs, group B
containing the DEA-inefficient DMUs that are projected on a part of the strongly
efficient DEA frontier, and group C containing the DEA-inefficient DMUs that are
projected on a part of the weakly efficient DEA frontier. Let A, B and C denote the
number of DMUs in each of these groups.

Step 2: Using each of the DMUs in group A as the MPS, estimate the TB cross
efficiency scores of the remaining DMUs by using (5.8).

Step 3: Obtain the set of peers for each of the DMUSs in group B. Let there be a number
of F < B different sets of peers S, (f =1,...,F) each of which corresponds to
possibly several DMUs. Let By (f = 1, ..., F) be the subset of B containing the DMUs
having Sy as their set of peers, where Uf=1 B = B. Estimate (5.7) using the DMUs in
each of the sets Sy as the MPS. The resulting scores are the TB cross efficiency scores
when each of the DMUs in group By is the “reference” DMU.

Step 4: For each DMU in group C, obtain its radial projection on the DEA frontier,
namely h = (2,9 = (Efxl',y"). Then, the TB cross efficiency scores of the

remaining DMUs when the h'" DMU is the “reference” DMU are obtained by (5.9).

The number of linear programs needed to obtain the TB cross efficiency matrix through
this algorithm is equal to (A + F + C) * (K — 1)). If F < B, namely when there are
at least two inefficient DMUs that are projected on the same part of the strongly
efficient DEA frontier, then this number is smaller than (K * (K — 1)). If, on the other
hand, each DMU in class B is projected on a different part of the strongly efficient DEA

frontier, i.e., F = B, or if there are no DMUSs in class B, i.e., B = 0, then the same
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number of linear programs is needed to obtain the TB cross efficiency matrix by means
of VEA and the TB formulation itself.

From the above, it should be clear that the “shortcuts” for obtaining the TB cross
efficiency matrix via VEA depend on (i) the number of DMUs in group B, (ii) the
difference between this number and the number of different sets of peers for these
DMUs, and (iii) the difference between the number of inputs and outputs and the
number of evaluated DMUs. More specifically, the larger is the number of DMUs in
group B, the more likely is that some of them may share the same set of peers. On the
other hand, the larger the difference between the number of DMUs in group B and the
number of different sets of peers identified for them, the smaller the number of linear
programs needed to obtain the TB cross efficiency matrix by means of VEA, compared
to that of the TB formulation.

5.5. Empirical implementation and discussion

To demonstrate the simplifications in estimating the TB cross efficiency matrix by
means of VEA, we use seven datasets referring to respectively nursing homes (Sexton
et al., 1986), university departments (Wong and Beasly, 1990), R&D programs (Oral
et al. (1991), manufacturing systems (Shang and Sueyoshi, 1995; Baker and Talluri,
1997), university faculty members (Oral et al., 2014), and cotton farms (see the fourth
chapter in this Thesis). The number of DMUs (K), of inputs (1), and of outputs (J)
involved in each dataset are given in columns (2) to (4) of Table 5.5. The number of
DMUs in each of the groups A, B, and C is given in columns (5) to (7), while the number
of different sets of peers for the DMUs in group B is given in column (8). The number
of linear programs needed to obtain the TB cross efficiency matrix by means of (5.6) is
given in column (9), while the respective figures when the TB cross efficiency scores
are obtained by means of VEA, following the estimation steps outlined above, are given
in column (10).

From these empirical results we see that, in four of the cases when assuming
CRS and in five of them when assuming VRS, there are no DMUs in group B, and thus
the number of linear programs needed to obtain the cross efficiency matrix by means
of VEA and the TB formulation is the same. For example, in the case of the 37 R&D
projects considered in Oral et al. (1991), there are two DEA-efficient DMUs and 35

DEA-inefficient DMUs with CRS, each of which is associated with slacks, while in
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Table 5.5: Number of linear models estimated to obtain the TB cross efficiency matrix

() ()] @) 4 6 © O (8) 9) (10)
DMUs in group Number of linear programs
DMUs inputs outputs sets of peers
study (K) ) D) A B C ingroupB  TBmodel VEA model
constant returns to scale
1 Sexton et al. (1986) 2 2 4 2 0 1 30 25
2 Wong and Beasly (1990) 3 3 6 0 1 - 42 42
3 Oraletal. (1991) 37 1 5 2 0 35 - 1,332 1,332
4 Shang and Sueyoshi (1995) 12 2 4 7 0 - 132 132
5 Baker and Talluri (1997) 27 2 2 9 14 S 702 468
6 Oral etal. (2014) 32 1 5 11 0 21 - 992 992
7 Chapter 4, this Thesis 526 4 1 12 209 305 13 276,150 173,250
variable returns to scale
1 Sextonetal. (1986) 2 2 0 1 - 30 30
2 Wong and Beasly (1990) 3 3 0 1 - 42 42
3 Oraletal. (1991) 37 1 5 12 0 25 - 1,332 1,332
4 Shang and Sueyoshi (1995) 12 2 4 10 0 - 132 132
5 Baker and Talluri (1997) 27 2 2 1 9 8 702 676
6 Oral etal. (2014) 32 1 5 16 0 16 - 992 992
7 Chapter 4, this Thesis 526 4 1 33 89 404 28 276,150 244,125
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VRS the respective figures are equal to 12 and 25. In the remaining three datasets, we
have found DMUs in group B and thus the number of different sets of peers is smaller
than the number of DMUSs. In these cases, the number of times the VEA model needs
to be estimated to obtain the cross efficiency matrix is less than that for the TB model.
For example, in the case of the 526 cotton farms considered in the fourth chapter of this
Thesis, obtaining the cross efficiency matrix with CRS by means of VEA involves the
estimation of 173,250 linear programs compared to 276,150 in the TB model.

The number of DMUs in group B is indirectly affected by the modelling choices
related to the number of inputs and outputs and the nature of returns to scale, as these
affect the number of efficient DMUs in DEA. Other things being equal, increasing the
number of inputs and outputs naturally increases the number of efficient DMUs, and
thus the number of DMUs in groups B and C is reduced, while the same occurs when
VRS is assumed instead of CRS. In the case of Baker and Talluri (1997) and regardless
of the returns-to-scale assumption, there are DMUs in group B, while this does not
occur for any DMU in Oral et al. (2014). These two studies have roughly the same
number of DMUs, but the number of inputs and outputs in the latter is six compared to
four in the former. On the other hand, when VRS is assumed rather than CRS, the only
inefficient DMU in Sexton et al. (1986) is in group C. Thus, the number of VRS linear
programs needed to obtain the cross efficiency matrix by means of VEA and the TB
formulation is the same, in contrast to when CRS is assumed. In addition, in the case
of Baker and Talluri (1997), the number of DMUs in group B are reduced to eight in
VRS compared to 14 when CRS is assumed, and thus more VRS VEA linear programs
are needed to obtain the cross efficiency matrix compared to those in CRS (676 vs.
368). Nevertheless, these figures are smaller than those of the TB model irrespective
of the returns to scale.

On the other hand, increasing the number of DMUs for a given number of inputs
and outputs, is expected to increase the DMUs classified as inefficient, at least to a
larger extent compared to those that are rendered efficient. This may or may not result
in an increase in the number of DMUSs that are projected on the same part of the strongly
efficient frontier, as this depends on the DMUs’ relative position in the input-output
space and cannot be explicitly related to a modelling choice. For instance, the number
of inputs and outputs is four in both Baker and Talluri (1997) and Sexton et al. (1986)

(see Table 5.5). In the former, in which the number of DMUs is more than four times
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larger compared to the latter, the DMUs in group B are much more when CRS is
assumed. On the other hand, in the cases of Wong and Beasly (1990) and Oral et al.
(1991), the number of inputs and outputs is also the same, i.e., six, but the DMUs
included in the latter are roughly five times more compared to the former. Nevertheless,
in both cases and regardless of the returns-to-scale assumption, no DMU is included in

group B.

5.6. Concluding remarks

Cross efficiency and VEA are two DEA frameworks used for peer appraisal purposes,
which so far have run in parallel lines in the efficiency literature. In this paper, we show
that these two lines of literature meet each other for a particular formulation of cross
efficiency, namely the TB. In particular, we show that the TB formulation of cross
efficiency is equivalent to VEA if either (i) an efficient “reference” DMU, i.e., the one
whose optimal multipliers are used to evaluate all other DMUs in the TB formulation,
is chosen as the MPS in VEA, or (ii) the radial projection of an inefficient “reference”
DMU on the DEA frontier is chosen as the MPS in VEA. The implication of this is
that the matrix of the TB cross efficiency scores can be obtained by estimating a
sequence of VEA envelopment rather than multiplier form models, as it is common in
cross efficiency. This involves estimating at most the same number of linear programs
and thus simplifies the problem of obtaining the TB cross-efficiency matrix. Thus, it
may prompt a more extensive use of this definitely useful but so far less often employed
cross efficiency formulation due to its complicated estimation process. In addition, this
equivalence gives rise to alternative interpretations for both the TB cross efficiency
scores and the VEA efficiency scores.

The results of this paper can be used in several cases of performance assessment,
in which peer appraisal seems appropriate. These include, but are not limited to, faculty
member or institution appraisal in higher education, assessment of player performance
in sports, evaluation of alternative portfolios and investment projects, but also cases of
participatory decision-making such as budget allocation and R&D project selection and
group decision-making in international organizations (e.g., EU, NATO, the IMF, or the
World Bank) and national government bodies such as parliamentary committees and

municipal councils.
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CHAPTER 6

On VEA, production trade-offs and weights restrictions

6.1. Introduction

Production trade-offs, their dual weights restrictions, and Value Efficiency Analysis
(VEA) are alternative ways of incorporating preference information in Data
Envelopment Analysis (DEA). In particular, Decision Maker’s (DM) preferences are
used to restrict the admissible values of the input/output multipliers in a DEA model.
Production trade-offs reflect acceptable marginal changes in inputs and/or outputs that
modify their target values for each evaluated Decision Making Unit (DMU) in the
envelopment form of DEA models (Podinovski, 2004). Their dual counterpart are the
well-known weights restrictions, namely additional linear inequalities in the multiplier
form of DEA models that restrict the flexibility of input/output weights based on DM’s
knowledge, value judgements or in general, holding views for their relative importance
(see e.g., Allen et al, 1997). DEA models including production trade-offs have been
used, among others, for the assessment of efficiency in healthcare (Amado and Dyson,
2009), education (Khalili et al., 2010a), electricity distributors (Santos et al., 2011), and
farmers (Atici and Podinovski, 2015). On the other hand, in VEA, the performance of
each DMU is assessed relative to the Most Preferred Solution (MPS), namely a non-
dominated (i.e., efficient) DMU or a combination of DMUSs that has the most desirable
input/output structure by view of a DM or reflects DM’s preferences about input/output
mixes (Halme et al., 1999). In such a case, each DMU’s input/output weights are
restricted to values among only those that are optimal for the MPS in DEA. This in turn
results in extending the DEA efficient facets generated by it. Recent applications of
VEA include, but are not limited to, the evaluation of hospital departments (Halme and
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Korhonen, 2000), academic institutions (Korhonen et al., 2001), retail stores (Korhonen
et al., 2002) as well as bank branches (Halme et al., 2014).

Several studies in the literature have examined the effect of including
production trade-offs or their dual weight restrictions in DEA models. For example,
Podinovski (2005) demonstrated the effects of using additional restrictions such as
weight bounds in the evaluation results of DEA models, Asmild et al. (2006)
investigated the potential relation of DEA models with trade-offs to models assessing
economic (i.e., cost, revenue, or profit) efficiency, and Podinovski (2007a) developed
a procedure for obtaining efficient targets in DEA models with production trade-offs.
Also, Podinovski and Forsund (2010) assessed the effects of introducing production
trade-offs in the indication of returns-to-scale (i.e., whether a DMU exhibits constant,
increasing or decreasing returns to scale) and the scale elasticity estimates of DMUSs,
while Podinovski and Bouzdine-Chameeva (2013) developed linear programs for
testing whether the use of a particular set of production trade-offs in DEA models
results in violating production assumptions. On the other hand, the similarities between
VEA and various forms of weight restrictions have been noted in the literature, but not
yet thoroughly examined. For instance, Sarrico and Dyson (2004, p. 18) considered
VEA as “’another alternative to incorporating the decision maker’s preferences into the
assessment of DMUs’’, while Kao and Hung (2005, p. 1197) noted that VEA is
“’essentially an approach of weight restrictions’’. Angulo-Meza and Estellita-Lins
(2002, p. 225) viewed VEA and weights restrictions as methodologies incorporating
“information provided by a decision maker or expert into the model”, while Adler et al.
(2002) referred to VEA as one of the methods that use “preference information to
further refine the discriminatory power of DEA models”.88 Nevertheless, none of these
studies have explicitly related VEA to DEA models including weights restrictions, as
well as their dual production trade-offs. Such explicit relationships, if any, have, to the
best of our knowledge, not yet been investigated.

The purpose of this chapter is to explore the relation between VEA and DEA
models including production trade-offs and their dual weights restrictions in a detailed

manner. More specifically, we show that, under constant returns to scale, the VEA

8 This is also one of the main reasons motivating the incorporation of weights restrictions.
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model is equivalent to a DEA model including production trade-offs, for which the
trade-off coefficient vectors are given by the negative of the input and output quantities
of the DMUs chosen as the MPS in VEA. We also show that, regardless of the nature
of returns to scale, the VEA model is equivalent to a DEA model with production trade-
offs, for which the trade-offs coefficient vectors are given by the deviations of every
DMU’s input and output quantities from those of the MPS. These production trade-
offs result in extending certain facets of the DEA frontier and in both cases are dual to
Type 1l Assurance Region (AR-11) weight restrictions (see Thompson et al., 1990).
Considering the above trade-offs for only inputs or outputs we can prove a similar
equivalence between pure input or output VEA and DEA models. The dual form of
these trade-offs, which refer only to inputs or outputs, are type | Assurance Region
(AR-1) weight restrictions (Thompson et al., 1986).

The rest of the chapter unfolds as follows: In the second section we discuss
VEA and DEA models with production trade-offs. The chapters’ main results are
presented in the third section, while an empirical application follows in the fourth
section. Concluding remarks follow in the last section.

6.2. Materials and methods

Production trade-offs are the dual form of weights restrictions that are usually appended
in the multiplier form of DEA models. They refer to marginal changes between inputs
and/or outputs that take place at some point at the conventional DEA frontier and
enlarge the feasible space with additional input/output possibilities (Podinovski, 2004).
These changes represent perceptions regarding the normative substitution rates between
inputs or transformation rates between outputs, or simply judgements about the relative
importance of different inputs and outputs. They are considered as acceptable by all
evaluated DMUs, in the sense that it is unanimously agreed that they result in feasible
(technologically possible) input/output combinations. Then, one may argue that the
targets identified for inefficient DMUs on the enlarged parts of the DEA frontier are in
principle technologically realistic or feasible (Podinovski, 2007D).

Let us consider aset of KDMUs (k = 1, ..., o, ..., K) using the same technology
and producing aset of J (j = 1, ...,J) outputs utilizing | (i = 1, ..., 1) inputs. Assume
further that there exists a number of R (r = 1, ..., R) trade-off relations among inputs
and/or outputs, which may be represented as:
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P’ =1[pl,...o0,...of 1", r=1,..,R

T 6.1)
Qr = [q{, ...,q]r, ...,q]f] . r=1,..,R

Each of the trade-offs in (6.1) refers to an agreed postulate among DMUs that by
changing the level of each of a DMU’s inputs by the trade-off coefficient p; and each
of its outputs by the trade-off coefficient g} results in a new unobserved input/output
combination that is feasible. Thus, the vectors P" and Q" modify respectively the target
values of inputs and outputs in the envelopment form of a DEA model, which in turn
results in enlarging the DEA efficient frontier with additional linear segments, i.e.,
facets.

The multiplier and envelopment form of an input-oriented, constant returns to
scale (CRS) DEA model including trade-offs as in (6.1) is given as (Podinovski,
2004):8

(6.2)

J min 6%
max Y w0y 6707
10 9 ]yJ K R
) Rt
Jj=1 k —
] ; s.t. Z/liyj +Zn3q}2y}’ j=1..,]
k=1 =1
s.t. Zu]‘-’y]k—Zv{’xi"SO k=1,..,K K "R
= = Mk + ) P < 0037 1 =1,.00
h=1 r=1
Zuj’q}— vipi <0 r=1,..,R 22>0 k=1,..K
j=1 i=1 w2 =0 r=1,..,R
! 0% free
Z vix{ =1
i=1
u’ =0 j=1..,]
v? 20 i=1..,1

where x and y are respectively the quantities of inputs and outputs, v and u are their
input and output weights, @ is the efficiency score, A are the intensity variables, and =
are the proportions by which each of the trade-offs is applied to modify the input and
output targets. On the other hand, the variable returns to scale (VRS) counterpart of

(6.2) is given as:

8 We focus on the input-oriented model, but our results can be straightforwardly extended to the output-
oriented model.
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J min 67,
0,,0 o 9%0')“2
Jj= K _
J ; s.t. Zlﬁy] +anqj_y] j=1,..,]
k=1 =1
s. t. Zu]‘.’y}‘—Zv{’xl+u°S0 k=1,..,K K "
j=1 i=1 xk + anpl <0%xf i=1,
/ ! k=1 r=1
u]‘-’q]r— vPp] <0 r=1,..,R K
=1 i=1 ZA% =1
! k=1
Zv{’x{’zl A, =0 k=1,..,K
i=1 np =0 r=1,..,R
u? >0 j=1,..] 070 free
vy =0 =1,..,1
u® free

in which the free variable u° is dual to the convexity constraint in the envelopment
form of (6.3).

From (6.2) and (6.3) we can see that incorporation of trade-offs such as in (6.1)
into the envelopment form of the DEA model is equivalent to imposing the following

set of homogeneous weight restrictions in its multiplier form:*

I

Euj"q Zv{’plr <0, r=1,..

j=1 i=1

(6.4)

The weight restrictions in (6.4) concern value judgments regarding (i) only inputs, if

q; =0forj=1,..,J, (ii) only outputs, if p; =0 for i = 1,..., 1, or (iii) both inputs

and outputs, if gj # 0 for at least one j =1,...,J and p; # 0 for at least one i =

1,...,1.%% In the former two cases they are referred to as AR-I (Thompson et al., 1986),
while in the latter case as AR-I1 weight restrictions (Thompson et al., 1990).

On the other hand, in VEA, a DM expresses his/her preferences over the
desirable input/output structure or mix by choosing a DMU or a combination of DMUs
as the MPS (Halme et al.,
preferences, as DMs are usually more keen to choose desirable values for the inputs
2002). The VEA frontier is

1999). This might be a more appealing way of expressing

and outputs rather that weight bounds (Korhonen et al.,

% Podinovski (2004) has shown that non-homogeneous linear weight restrictions, i.e., those for which
the right-hand side of (6.4) is non-zero, can also be represented in the form of production trade-offs in
the envelopment form of the DEA model

%1 Cases (i) and (ii) may also refer to a subset of inputs and outputs if respectively p] = 0 for some i in
Case (i) and qj = 0 for some j in Case (ii).
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then constructed as the lower envelope of the extended DEA efficient facets
intercepting at the MPS. As the facets of the DEA efficient frontier are generated by
extreme-efficient DMUs, the MPS will in essence be either a single extreme-efficient
DMU or a combination of extreme-efficient DMUSs that are jointly efficient, in the sence
that they generate at least one common facet. VEA then extends only these common
facets among the DMUs comprising the MPS.

The input-oriented CRS VEA model in its multiplier and envelopment form is

given as:
J
0,,0
HEDRE ol OV
j=1 B
3 K 1 K s.t leoyk>yo j=1..]
s.t Zu]"y] —va’xl <0 k=1,..,K, k#r k7 =7 e
k=1
j=1 i=1 K
J i (6.5)
o,k 0.k Z’lzxikSGI‘/)EAxl i=1..,
Zujy]-— vix; =0 k=r=1,..,R =]
= =) 22 >0 k=1,..K k#r
% free k=r=1,.,R
vixp =1
Z Lt 00c4 free
=1
w’ =0 j=1.,]
vy =20 =1,..,1

=
Q)
=

=
-

<
~
i

where the set R (r = 1, ..., R) contains the DMUs comprising the MPS. On the other

hand, the input-oriented VRS VEA model in its multiplier and envelopment form is

given as:
J
0,,0
0 Z wyj +u’ oin, 0Va

-
i
Y

=

] 1 0.,k o —
Zu]"y]k—ZVf’xk+u°SO k=1,.,K k#r s-t ;Aky] =Y J=1)

j=1 i=1 K

/ ! Mxk<go. ,xi=1,..1
zu]"yf— vxk+u’=0 k=r=1,..,R ; o T VR

j=1 i=1 K

1 D=1

va’x{’=1 k=1

i=1 A, =0 k=1.,K, k+r
uw’ =0 J=1..] 2% free k=r=1,..,R
vy =0 =1,..,1 0954 free

u® free

where the free variable u° and the convexity constraint for the intensity variables are

added in the multiplier and envelopment form, respectively. In the envelopment form
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Y
o+

of (6.5) and (6.6), the non-negativity restrictions are removed from the intensity
variables of the DMUs comprising the MPS (Halme et al., 1999). This in turn implies
that the inequalities referring to these DMUs should change into strict equalities in the
multiplier form of the model, essentially restricting each evaluated DMU to choose
input and output weights only among those that are optimal (in the conventional DEA
model) for the DMU or the combination of DMUs chosen as the MPS.

6.3. Main results
6.3.1. Production trade-offs dual to AR-11 type of weight restrictions

To relate the VEA models in (6.5) and (6.6) to the DEA models with production-trade-
offs and their dual weight restrictions in (6.2) and (6.3), notice that each of the side

equality restrictions in (6.5) and (6.6) can be broken up into the following equivalent
pair of inequalities: $/_, wyf — ¥i_, v/xf < 0and ¥/_, ulyf — ¥i_, vfx} = 0 for

(6.5) and ¥/_, ulyf — ¥l vixf +u° <0 and TI_ wyf — Ti_ vlxf +u® =0

for (6.6). Based on these, (6.5) and (6.6) may be rewritten as:

M-
&
=
“Q

mm0 004
A9
VEA
K
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M -t
=
"R
|
<
=
=
Kl
I\
=)
=
Il
—_
=

Jj=1 =1
J 1 Z 0.k r o :
ARx; +Z 2(=x]) S O0pax? i=1,...,1

Dup(-y) =D v <07 =1,.,R £ ‘ ‘

j=1 i=1 /lk >0 k=1,..,
! e >0 r=1,..,
Zvlpr =1 004 free

i=1
u’ >0 j=1..]

vy =20 = 1

and as
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Then one can easily verify that (6.5) and (6.7) and (6.6) and (6.8) are equivalent to each
other.

The additional restrictions in the multiplier form of (6.7) and (6.8) result in new
terms in the left-hand sides of the inequalities in the envelopment form. These terms
contain the negative of the input and output quantities of the DMUs constituting the
MPS. We may thus view (6.7) and (6.8) as models with (K + R) DMUs, where inputs
and outputs take negative values for the DMUs in the set of the MPS (the R additional
ones) and positive values for the sample DMUs. By using Emrouznejad et al. (2010)
data transformations, (6.7) and (6.8) may be seen as semi-oriented DEA models with

(K + R) DMUs. Specifically, we may redefine the input and output variables in (6.7)

and (6.8) as:
k
kK _YXi), k ) ey k 0, k 1, ,K _
x“_{O, - . and x; { T or=1.,R i=1,..,1
and:
yvi, k=1,..,K k _ (0 k=1,..,K o
3’11 {6 r=1,..,R andyzj—{_yjr' r=1,..,R j=1..]

Then, (6.7) and (6.8) are respectively be written as:
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where k is used to index all DMUs, i.e., k =

] o
egmrio OvEa
VEAMK
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We can now provide sufficient conditions under which the DEA model

including production trade-offs or their dual weight restrictions is equivalent to the
VEA model. Under CRS, a comparison of (6.2) and (6.7) shows that the two models

are equivalent to each other if the number of trade-offs in the former is equal to the

number of DMUs constituting the MPS in the latter and the trade-off coefficient vectors

are given as:
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where (x{ y]r) correspond to the inputs and outputs of each of the DMUs (=1, ...,R)
constituting the MPS. The trade-offs in (6.11) are dual to the following set of AR-II

type weight restrictions:

I

J
Du(=y) - D ) <0, r=1,...R (6.12)
j=1

i=1

which are essentially the same as the second set of restrictions in the multiplier form of
(6.7). Thus, we have:

PROPOSITION 6.1: Under constant returns to scale, the VEA model is equivalent to a
DEA model including production trade-offs, for which the trade-off coefficient vectors
contain the negative of the input and output quantities of the DMUs constituting the
MPS in VEA.

When VRS is assumed, substituting (6.11) or its dual (6.12) into (6.3) will not result in
a model equivalent to (6.8), since the convexity constraints in the envelopment form of
(6.3) and (6.8) are different from each other.

However, we can show that the VEA model is related to the DEA model

including another form of trade-offs:

PROPOSITION 6.2: Regardless of the nature of the returns to scale, the VEA model is
equivalent to a DEA model including production trade-offs, for which the trade-off
coefficient vectors contain the deviations of each DMU’s input and output quantities
from those of each of the DMUs constituting the MPS.

To show this, consider the following trade-offs:

PE = [(xk = x7), .., (xk = 2)]", k=1,..,K, 7=1,..,R

T (6.13)
QF = [(y{c —ylr), ...,(y]k —y]r)] , k=1,..,K, r=1,..,R

which are dual to the following set of AR-II type of weight restrictions:
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J 1
Zu]‘-’(y}‘ -y/) - Zv{’(x{‘ -x[)<0, k=1,..,K, r=1,..,R (6.14)
j=1 i=1

Let’s assume, initially, that r = 1, i.e., the MPS is a single DMU. Then, (6.13) consists

of K trade-off coefficient vectors given as the deviations of each DMU’s (k=1,...,K)
input and output quantities of from those of the MPS. That is, pf = (xf —x7), i =
L.l k=1,.,Kandqf = (yf—y), j=1..,J, k=1,..,K. Insuchacase, the
envelopment form of the VRS DEA model in (6.3) is given as:
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= = (6.15)

or equivalently as:
min 62

070.8.¥° ro

K

s.t. Z SRyf+ve(=yf) zyf j=1,..,]
=1

Soxk +y°(—x) S 0%x? i=1,..,1

=

(6.16)

&
[

K

Z op —y° =1
k=1

80 =0
y® =20
070 free

A\

where 62 = (A% + ) = 0 and YXX_, m2 = y° = 0. Then (6.16) is equivalent to the
envelopment form in (6.8) if the r'" DMU is chosen as the MPS. If r > 1, namely that
the MPS is a combination of several DMUs, then (6.13) consists of K X R trade-off

coefficient vectors given as the deviations of each DMU’s (k=1,...,K) input and output
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quantities from those of each DMU (r=1,...,R) comprising the MPS. As a result, the
second term in the left hand side of the first two inequality restrictions in (6.15) reflect
summations over both k (k=7,...,K) and r (r=1,....,R) and my, should be changed to ry,.
Moreover, by defining 67 = (A + X¥_;mg,) =0 and y° = ¥k_; 7 = 0 we may
obtain a model similar to (16) in which the second term in the left hand side of the first
two inequality restrictions reflect summations over » (r=1, ...,R) and the third restriction
is stated as Y:X_, 62 — YR_, 2 = 1. This model is equivalent to the envelopment form
in (6.8) if the set of R (r=1,...,R) DMUs comprise the MPS. In a similar fashion, if
increasing (decreasing) returns to scale are assumed, then the equality sign in the third
restriction of the envelopment forms in (6.3) and (6.8) and in (6.15) and (6.16) is simply
changed to a less-than-or-equal (greater-than-or-equal) sign, while if constant returns
to scale are assumed, the third restriction in the envelopment forms in (6.3) and (6.8)
and in (6.15) and (6.16) should be dropped.

From the above, it is also clear that, under CRS, the DEA model with R trade-
off coefficient vectors, given as the negative of the input and output quantities of the
DMUSs chosen as the MPS in VEA, is equivalent to the DEA model with (K x R) trade-
off coefficient vectors, given as the deviations of each DMU’s (k=/,...,K) input and
output quantities from those of each of the DMUs chosen as the MPS in VEA. This is
evident as long as the trade-off coefficient vectors in (6.2) are given as in either (6.11)
or (6.13). Let’s assume, initially, that v = 1, i.e., the MPS is a single DMU. Then, the
envelopment form of (6.2) when the trade-off coefficient vectors are given by (6.13) is:

min 6%
090.A0m, 0

K K
s.t. Z Ayf+ Z R (yf—y) =y j=1,..,]
=1 =1
K

K
6.18
N agxd + Y mp ek —a) < 02070 i=1,.000 (6.18)
k=1 k=1
A =0 k=1,.. K
mp =20 k=1,.. K
070 free

while when the trade-off coefficient vectors are given by (6.11), it is as follows:
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min 67,
670,k ¥°

st Y yE -y 2y =l

k=1
S (6.19)
Y Gk + B < Ofoxf =1,
k=1
k=0 k=1,..,K
p° =0
020 free

If 2 = (A% +m2) = 0and YK_, w2 = B° > 0, then (6.18) is equivalent to (6.19). If
r > 1, then (6.13) consists of (K x R) trade-off coefficient vectors given as p*" =
(xf=x),i=1.,L k=1.,Kr=1.,R and qf = (¥ —y]), j=1..J,
h=1,..,K,r=1,...,R. Thus, the second terms in the left hand side of the first two
inequality restrictions in (6.18) reflect summations over both k (k=/,....K) and r
(r=1,...,R) and mry, should be changed to np,.. Furthermore, (6.11) consists of R trade-
off coefficient vectors given by the negative of the input and output quantities of the
DMUs chosen as the MPS in VEA. Thus, the second terms in the left hand side of the
first two inequality restrictions in (6.19) reflect summations over » (»=1,...,R) and 5°
should be changed to B2. Then, by defining ¢ = (A2 + YR, m2,) = 0 and B2 =

K_,m2 >0, (6.18) is equivalent to (6.19). Consequently, a CRS DEA model
augmented with the trade-offs as in (6.11) and a CRS DEA model augmented with the
trade-offs as in (6.13) are equivalent to each other.

The above results indicate that, under certain circumstances, the DM
preferences underlying the evaluation of DMUs in the VEA model may be seen as a
particular form of trade-offs or AR-II type of weight restrictions and vice versa. This
provides an alternative interpretation of the efficiency scores obtained from both the
VEA model and the DEA model including production trade-offs.

The production trade-offs in (6.11) and (6.13) and their dual weight restrictions
in (6.12) and (6.14) enlarge the DEA efficient frontier by extending certain of its
existing facets, in particular, those associated with the DMU or the combination of
DMUs comprising the MPS, instead of introducing new linear segments.”> The

92 Weight restrictions that result in extending facets of the DEA frontier are discussed in Portela and
Thanassoulis (2006), but are not related to VEA.
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implications of this are: (i) (6.11) and (6.13) do not introduce additional information in
the envelopment form of the DEA model other than that already implicit in the data,
namely the rates of substitution between inputs, the rates of transformation among
outputs, and the marginal products between inputs and outputs that are reflected in each
of the extended facets, and (ii) the efficiency scores from the multiplier form of the
DEA models with (6.12) and (6.14) do not underestimate the true efficiency of the
evaluated DMUs, as may occur in several other cases where additional restrictions of
the general form in (6.4) are imposed in DEA models (see Tracy and Chen, 2005;
Khalili et al., 2010b). This is because each facet of the DEA frontier enlarged with
(6.12) or (6.14) is already tangent to the conventional DEA frontier at some point.

6.3.2. Production trade-offs dual to AR-I type of weight restrictions

In the previous section we considered production trade-offs related to both inputs and
outputs, which are dual to AR-11 type of weight restrictions. In this section we consider
weight restrictions of the AR-I type, and we restrict our attention to pure input or output
models, i.e., models that contain respectively no inputs and outputs.

Consider first the DEA model without inputs, which is equivalent to a DEA
model with a single or multiple constant (unitary) inputs (Lovell and Pastor, 1999).%
The latter is known as the Benefit-of-the-Doubt model (BoD) and its multiplier and

envelopment form are given as (Cherchye et al., 2007a):

U K
max Zuj’y}’ mj}nZ A
i j=1 A k=1
] S (6.20)
k . )
s.t Zu]‘-’y}‘31 k=1,..,K s.t. zl%y,- >y?  j=1..]
j=1 k=1
o [—
u]OZO j=1.,] A =0 k=1,..,K
0° free

The model in (6.20) is obtained from (6.2) by dropping the terms associated with the

(input and output) trade-offs or their dual weight restrictions, and by considering that

% Note that when we consider only outputs it makes no sense to have an input-oriented model. Also, as
Lovell and Pastor (1999) have shown, a pure-output CRS output-oriented DEA model rates all DMUs as
infinitely inefficient, while an input-oriented VRS DEA model with a single constant input rates all
DMUs as efficient.
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i=1, x¥ =1,k =1, ..., K which implies that v° = 1.% The BoD model has recently
been adapted to a VEA framework (see the third chapter in this Thesis) and its

multiplier and envelopment form are given as:

K
min Z A
AO
k
k=1
K

~0

¥
i

N
&,
=

j=1
J
K - (6.21)

s.t Zuf’y}‘s1 k=1,.,K k+r St zllzyj Zy]f’ j=1..]

— =1

o 2220 k=1,.,K k#r

o — —

Zu]gyjkzl k=r=1..R " free k=r=1,..,R

=1

w’ =0 ji=1.,]

where r = 1, ..., R refers to the DMUs comprising the MPS.

Fori=1 and x*=1k=1,..,K, (xk —xr) =0k=1,..,K r=
1,..,R, and thus the vector P¥ in (6.13) is a scalar with a value equal to zero.
Consequently, the associated weight restrictions in (6.14) consider only outputs, i.e.,
are of the AR-I type, as the second component in each of the relations in (6.14) is equal
to zero. In a similar fashion, the vector B. in (6.11) is a scalar with a value equal to —1
and the second component in each of the associated weight restrictions in (6.12) is also

equal to —1, namely (6.12) considers only outputs. Thus, we can show the following:

PROPOSITION 6.3: The VEA BoD model is equivalent to a BoD model including
production trade-offs, for which the trade-off coefficient vectors contain either (i) the
negative of the output quantities of the DMUs constituting the MPS, or (ii) the
deviations of each DMU’s output quantities from those of each of the DMUs
constituting the MPS.

Next, consider the DEA model without outputs, which is equivalent to a DEA
model with a single or multiple constant (unitary) outputs (Lovell and Pastor, 1999).%

% Variants of (6.20) including weight restrictions have been employed in, among others, the construction
of composite indicators of environmental performance (Zanella et al., 2013), the re-estimation of the
Technology Achievement Index (Cherchye et al., 2008), and the aggregation of several measures of
money into a synthetic indicator (Sahoo and Acharya, 2010).

% Note that when we consider only inputs it makes no sense to have an output-oriented model. Also, as
Lovell and Pastor (1999) have shown, a pure-input CRS input-oriented DEA model rates all DMUs as
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The latter is known as the Inverted BoD model and its multiplier and envelopment form

are given as (Fére and Karagiannis, 2014): %

I K
min ZV{’x{’ maxz A9
vy Ak

=1 k=1

! K (6.22)
s.t voxf¥>1 k=1,..,K s.t. ZA%xf‘Sx{’ i=1,..,1

i=1 k=1

v? =0 i=1,..,1 2220 k=1,..K

The model in (6.22) is obtained from the output-oriented counterpart of (6.2) by
dropping the terms associated with the (input and output) trade-offs or their dual weight
restrictions, and by assuming that j =1, y* = 1,k = 1,...,K, which implies that
u® = 1. Compared to the BoD model, the Inverted BoD model provides a pessimistic
perspective of performance evaluation (Karagiannis, 2021). Consider now a set of R
DMUs reflecting the most desirable input bundle from DM’s point of view. Then, the

multiplier and envelopment form of the Inverted VEA BoD model will be given as:

I K

min Zv{’x{’ maxz A

vy Ak
=1 k=1
I K

st Y vOxk>1 k=1,.,Kk#r st Eazx{‘sﬁ i=1,..,1 (6.23)
i=1 k=1
I 9>0 k=1,...Kk+r
Zvl"xlkzl k=r=1,..,R A} free k=r=1,..,R
i=1
v) =20 i=1,.,1

Then for j=1 and y* =1,k=1,..,K, we have that (y* —y")=0k=
1,..,K,7 =1, .., R and thus the vector QF in (6.13) is a scalar than takes the value of
zero. Thus, the weights restrictions dual to the production trade-offs in (6.13) are AR-

I, as the first component in each of the relations in (6.14) is equal to zero. Similarly,

the vector Q,- in (6.11) is a scalar with a value equal to —1 and the same holds for the

infinitely inefficient, while an output-oriented VRS DEA model with a single constant output rates all
DMUs as efficient

% Variants of (6.22) including weight restrictions have been used by, among others, Zhou et al. (2007)
to construct a sustainable energy index, and Rogge (2012) to re-estimate the Environmental Performance
Index.
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first component in each of the associated weight restrictions in (6.12). Thus, we can

show that:

PROPOSITION 6.4: The Inverted BoD VEA model is equivalent to an Inverted BoD
model including production trade-offs, for which the trade-off coefficient vectors
contain either (i) the negative of the input quantities of the DMUs constituting the MPS,
or (ii) the deviations of each DMU’s input quantities from those of each of the DMUs
constituting the MPS.

6.4. An empirical application

To illustrate the usefulness of our findings, we consider the case of a DM evaluating
alternatives in a technology selection problem, using the dataset of 27 industrial robots
in Khouja (1995) and Baker and Talluri (1997).%” For the purposes of this chapter, we
may consider the DM assessing these 27 DMUSs as either a potential buyer, i.e., the
manager of an industrial plant, or a technology manufacturer, namely the owner of a
company producing one of the assessed DMUs.

Data for the 27 DMUs are given in columns 2 to 5 of Table 6.1. Four among
the most important performance features of industrial robots are considered, which are
(1) the robots’ cost (in 10.0009), (ii) repeatability, namely a measure of the distance (in
mm) covered by the robot in repeated trials, (iii) the robot’s payload capacity (in kg)
and (iv) its minimum possible velocity (in m/s). For the former two features lower
values indicate better performance, and hence they are treated as inputs, while larger
values are more preferable for capacity and velocity and these are treated as outputs
(Khouja, 1995). Efficiency estimates based on the input-oriented CRS and VRS DEA
models are given in columns 6 and 9 of Table 6.1. From these, we can see that nine
DMUs are efficient with CRS, while other two DMUs are added to the list of efficient
DMUs in the VRS model. The assumption of VRS results in a noticeable increase in
average efficiency (0.801 compared to 0.725 in the CRS model).

9 The applications of DEA and other multi-criteria decision-making methods in technology selection are
nowadays voluminous and include, but are not limited to, the selection of flexible manufacturing
systems, industrial robots, and dispatching rules. A review of such applications is a task out of the scope
of this chapter, and the interested reader is referred to Hamzeh and Xu (2019), for a recent review.
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Table 6.1:Data and efficiency estimates for the illustrative example.

DMU inputs outputs CRS models VRS models

Cost Repeatability Load capacity Velocity VEA VEA VEA VEA

(in 10.000$)  (in mm) (in kg) (in m/s) DEA (MPS: #19) (MPS: #20) DEA (MPS: #19) (MPS: #20)
1 7.200 0.150 60.000 1.350 1.000 0.871 0.479 1.000 1.000 0.512
2 4.800 0.050 6.000 1.100 0.904 0.511 0.417 0.907 0.868 0.437
3 5.000 1.270 45.000 1.270 0.529 0.465 0.529 0.667 0.507 0.568
4 7.200 0.030 1.500 0.660 1.000 0.195 0.167 1.000 1.000 0.196
5 9.600 0.250 50.000 0.050 0.592 0.392 0.108 0.594 0.594 0.177
6 1.070 0.100 1.000 0.300 0.482 0.414 0.482 0.865 0.865 0.865
7 1.760 0.100 5.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 3.200 0.100 15.000 1.000 0.783 0.783 0.618 0.783 0.783 0.618
9 6.720 0.200 10.000 1.100 0.378 0.362 0.306 0.383 0.376 0.315
10 2.400 0.050 6.000 1.000 1.000 0.891 0.758 1.000 1.000 0.759
11 2.880 0.500 30.000 0.900 0.671 0.671 0.669 0.677 0.677 0.677
12 6.900 1.000 13.600 0.150 0.102 0.099 0.069 0.142 0.142 0.142
13 3.200 0.050 10.000 1.200 1.000 0.874 0.701 1.000 0.990 0.744
14 4.000 0.050 30.000 1.200 1.000 1.000 0.658 1.000 1.000 0.691
15 3.680 1.000 47.000 1.000 0.613 0.561 0.613 0.624 0.607 0.623
16 6.880 1.000 80.000 1.000 0.604 0.592 0.437 0.604 0.604 0.441
17 8.000 2.000 15.000 2.000 0.405 0.272 0.405 1.000 0.362 0.525
18 6.300 0.200 10.000 1.000 0.365 0.355 0.299 0.367 0.367 0.299
19 0.940 0.050 10.000 0.300 1.000 1.000 0.733 1.000 1.000 1.000
20 0.160 2.000 1.500 0.800 1.000 0.169 1.000 1.000 1.000 1.000
21 2.810 2.000 27.000 1.700 0.852 0.397 0.852 1.000 0.774 1.000
22 3.800 0.050 0.900 1.000 0.829 0.509 0.476 0.913 0.906 0.477
23 1.250 0.100 2.500 0.500 0.694 0.648 0.694 0.923 0.923 0.923
24 1.370 0.100 2.500 0.500 0.636 0.606 0.636 0.847 0.847 0.847
25 3.630 0.200 10.000 1.000 0.553 0.553 0.511 0.556 0.556 0.511
26 5.300 1.270 70.000 1.250 0.581 0.581 0.577 0.771 0.582 0.613
27 4.000 2.030 205.000 0.750 1.000 1.000 1.000 1.000 1.000 1.000
average 4.224 0.589 28.315 0.929 0.725 0.584 0.563 0.801 0.753 0.628

Note: The data are taken from Baker and Talluri (1997).
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For our purposes let’s assume that DMU #19 is chosen as the MPS. The DM
in this case may be the manager of a manufacturing plant that operates using this
particular robot, or be a potential buyer for which this robot has an attractive
combination of low cost and low repeatability. The CRS and VRS VEA efficiency
scores when DMU #19 is chosen as the MPS are given in columns 7 and 10 of Table
6.1. In the CRS case, five DMUs drop from the list of efficient DMUs compared to
DEA, while when VRS is assumed the efficient DMUs are reduced to eight, compared
to 11 in DEA. By Proposition 2, the same efficiency scores would result from
respectively a CRS and a VRS DEA model including the following set of weight

restrictions:

50.000u¥ +1.050uf —6.260vF —0.100v5K <0 (DMU #1)
—4.000uf +0.800uf¥ —3.860vF <0 (DMU#2)
35.000u¥ +0.970u¥ —4.060vF —1.220vF <0 (DMU#3)
—8.500uf +0.360uf —6.260vF +0.025vK <0 (DMU #4)
40.000uf —0.250u¥ -8.660vF —0.200vF <0 (DMU #5)
—9.000uk —0.130vf —0.050vK <0 (DMU #6)
—5.000uf +0.700uf¥ —0.820vf —0.050v% <0 (DMU #7)
5.000u¥ +0.700uf —2.260vF —0.050v5K <0 (DMU #8)

+0.800u¥ —5.780vF —0.150vF <0 (DMU#9)
—4.000uf +0.700uf —1.460v¥ <0 (DMU #10)
20.000u¥ +0.600u¥ —1.940vF -0.450vF <0 (DMU#11)
3.600uf —0.150uf¥ —5.960vf —0.950vF <0 (DMU#12)

0.900u¥ —2.260vF <0 (DMU #13)
20.000u¥ +0.900u¥ —3.060vF <0 (DMU #14)
37.000uf¥ +0.700uf¥ —2.740vf —0.950v% <0 (DMU #15)
70.000u¥ +0.700uf —5.940vF —0.950v5K <0 (DMU #16)
5.000uf¥  +1.700uf —7.060vF —1.950vF <0 (DMU #17)

0.700u¥ —5360vF —0.150v% <0 (DMU #18)
—8.500uf +0.500u¥ +0.780vF —1.950vFK <0 (DMU #20)
17.000uf +1.400uf¥ -1.870vF —1.950vF <0 (DMU#21)
—9.100uf¥ +0.700uf¥ —2.860v¥ <0 (DMU #22)
—7.500uf +0.200uf¥ -0.310vf —0.050v%K <0 (DMU #23)
—7.500u¥ +0.200u¥ —0.430vF —0.050vF <0 (DMU #24)

0.700u¥ —2.690vF —0.150vf <0 (DMU #25)
60.000u¥ +0.950u¥ —4.360vF —1.220vF <0 (DMU #26)
195.000uf +0.450u¥ —3.060vF —1.980vF <0 (DMU#27)

The figures attached to the input and output weights in each of the above restrictions
are equal to the deviations of the input and output quantities corresponding to the
evaluated DMU listed in parentheses, from those of DMU #19. This set of restrictions

forces the marginal rates of substitution and transformation for the evaluated DMUs to
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take values only within the range of marginal rates prevailing on the efficient frontier
in the neighborhood of DMU #19. Note that by Proposition 1 the CRS VEA efficiency
scores could also be obtained through a DEA model including the following weight

restriction:

—10.000u¥ —0.300u¥ +0.940vF +0.050vF <0

the coefficients of which are the negative of the input and output quantities of DMU
#19.

Let us now assume that the following trade-off is included in the envelopment
form of the CRS DEA model in (6.1):

P =[-0.160,—2.000]7

Q = [-1.500,—-0.800]"
This trade-off implies that, if the DM is willing to accept a decrease in load capacity by
1.500 kg and in velocity by 0.800 m/s, then the robot’s cost and repeatability could be
decreased by at most 1600$ and 2.000 mm respectively. The above trade-off coefficient
vectors are equal to the negative of the input and output quantities of the DEA-efficient
DMU #20. Thus, by Proposition 1, a CRS DEA model augmented with this trade-off
is equivalent to a CRS VEA model in which DMU #20 is chosen as the MPS. The
resulting efficiency scores when either the above trade-off is included in the CRS DEA
model, or DMU #20 is the MPS in the CRS VEA model are given in column 8 of Table
6.1. Compared to the DEA results, we see that only three DMUs remain efficient in
the VEA model, while average efficiency decreases to 0563.

The efficiency scores from a VRS VEA model in which DMU #20 is used as
the MPS are given in column 11 of Table 6.1. By Proposition 2, these scores can be
obtained via a DEA model including production trade-offs the coefficient vectors of
which contain the deviations of each DMU’s input and output quantities from those of
DMU #20.

6.5. Concluding remarks

In this chapter, we have examined the links between DEA models with weights
restrictions or their dual production trade-offs and VEA and we showed that VEA may
be viewed as a class of DEA models with particular trade-offs. More specifically, we
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showed that, irrespective of the nature of the returns to scale, the VEA model is
equivalent to the DEA model including production trade-offs, for which the trade-off
coefficient vectors are given by the deviations of the input and output quantities of each
sample DMU from those of DMUs chosen as the MPS. In addition, with CRS, the
VEA model is equivalent to the DEA model with trade-off coefficient vectors given by
the negative of the input and output quantities of the DMUs chosen as the MPS in VEA.
These trade-offs are dual to AR-11 weight restrictions. In addition, we showed that,
when we are considering these particular trade-offs only for the inputs or the outputs, a
similar equivalence results between the pure output or input VEA models and their
DEA counterparts including trade-offs. In these cases, the dual forms of the trade-offs
are AR-1 weight restrictions.

The results in this chapter indicate that the DM preferences about the most
preferred input/output structure as reflected in the MPS in the VEA model may be seen
as a particular form of trade-offs or their dual AR-11 or AR-I type of weight restrictions
and vice versa. This provides an alternative interpretation of the efficiency scores
obtained from both the VEA model and its equivalent DEA model including production
trade-offs. In particular, the VEA efficiency scores can also be interpreted as including
restrictions in the acceptable values of the marginal rates of substitution and
transformation, while it may be said that the efficiency scores obtained from the DEA
model including production trade-offs reflect the DM’s judgements about the most

preferred input/output structure.
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CHAPTER 7

On Value Efficiency Analysis and Cone-Ratio DEA models

7.1. Introduction

Weight restrictions, their dual production trade-offs, Cone ratio Data Envelopment
Analysis (CR-DEA) and Value Efficiency Analysis (VEA) are alternative and
seemingly unrelated ways for incorporating Decision Maker’s (DM) preferences in
DEA models. In the literature there is a long interest about their inter-relations, from
which several useful results have emerged. First, Charnes et al. (1990) demonstrated
that CR-DEA models including absolute or relative bounds on the input/output
multipliers are equivalent to DEA models with Assurance Region type | or Il weight
restrictions. Second, Olesen and Petersen (2003) inferred that, in the case of a single
model DMU, a CR-DEA model, in which the set of feasible weights consists of all the
weight vectors that are optimal in DEA for the model DMU provides the same
efficiency scores with a VEA model in which the model DMU is chosen as the Most
Preferred Solution (MPS).% In addition, they stated that in the case of multiple model
DMUs the efficiency scores of a CR-DEA model, in which the set of feasible weights
is the union of the sets of the weight vectors that are optimal in DEA for each of the
model DMUs, are given by the maximum among the scores of a series of VEA models,
each of which uses one among the model DMUs as the MPS. Third, Podinovski
(2004;2005) showed that DEA models with non-homogeneous weight restrictions are
equivalent to DEA models including a particular form of production trade-offs. Fourth,
Ravanos and Karagiannis (2022a) have illustrated that the choice of the MPS in VEA

% Model DMUs are DEA-efficient DMUs viewed as exceptional performers by the DM (Charnes et al.,
1990).
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models can be viewed as a particular form of trade-offs or AR-II type of weight
restrictions and vice versa.

In this paper, we elaborate more on the relations between VEA and CR-DEA
models following two distinct routes: first, for the case of multiple model DMUs, we
consider in addition the case of CR-DEA models, in which the feasible weight vectors
are given by the intersection of the sets of the weight vectors that are optimal in DEA
for each of the model DMUs. In this case, all the model DMUs will be rendered
efficient when each DMU is evaluated, whereas in the case of Olesen and Petersen
(2003), where the set of feasible weights is the union of the sets of the weight vectors
that are optimal in DEA for each of the model DMUs, at least one of the model DMUs
will be efficient. The proposed formulation can accommodate cases where the DM
wishes to compare each evaluated DMU with all chosen model DMUs, which in some
empirical applications may be a valuable option. Second, we extend the comparison
between VEA and CR-DEA models by considering a formulation of the CR-DEA
model in which the set of feasible weight vectors contains only those vectors with
strictly positive components, each of which is optimal in DEA for the (single or the
multiple) model DMUs. This model essentially extends each Fully Dimensional
Efficient Facet (FDEF) jointly generated by all the model DMUs.

Our theoretical results indicate that, in the case of multiple model DMUs, the
efficiency score of a CR-DEA model, in which the feasible weight vectors are given as
the intersection of the sets of weight vectors that are optimal in DEA for each of the
model DMUs, is equal to that of a VEA model in which the chosen model DMUs are
also considered as the MPS. The former is also lower than or equal to the minimum
among the efficiency scores obtained from a number of VEA models, each of which
uses a single model DMU as the MPS. On the other hand, we verify that the efficiency
score of a CR-DEA model, in which the feasible weight vectors are given as the union
of the sets of weight vectors that are optimal in DEA for each of the model DMUs, is
greater than or equal to that of a VEA model in which the MPS comprises of all the
model DMUs. We also show that the efficiency score of a CR-DEA model, in which
the set of feasible weight vectors contains only those vectors with strictly positive
components, each of which is optimal in DEA for the (single or multiple) model DMUs
is lower than or equal to that of a VEA model in which the chosen model DMUs are
also considered as the MPS.
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An immediate implication of our theoretical results is that the efficiency scores
of the alternative CR-DEA models can be estimated or approximated by means of either
a single VEA model in which the chosen model DMUs are also considered as the MPS
or a series of VEA models that use different model DMUs as the MPS. We expect that
this will facilitate the empirical applications of the CR-DEA models, which are
appropriate for several study cases. For example, in assessing the performance in the
banking industry where certain banks or bank branches are viewed as excellent
performers or “global leaders”. Agreement on the set of model banks may be
unanimous or not, as DMs might have diverging views on what constitutes good
performance, or the chosen banks are viewed as different types of examples to follow.
Another case could concern the assessment of higher education institutions in terms of
their research quality and teaching excellence, in which the set of model institutions
may be unanimously viewed as top-performing or excel in different evaluation
dimensions. The use of CR-DEA models in such cases has remained up to date limited
as their estimation required identifying all the efficient facets generated by each of the
model DMUs and the weight vectors normal to each of them (Olesen and Petersen,
2003; Portela and Thanassoulis, 2006). This can only be done via complex non-linear
programs or additional software that can prove to be quite complicated and time
consuming (Zhu et al., 2022). In contrast, VEA models --which can be used to estimate
or approximate CR-DEA scores--involve only changing some linear inequalities in the
multiplier form of a DEA model to equalities.

We illustrate the usefulness of our findings using data from Japanese regional
banks. Using various sets of model DMUs we illustrate how the CR-DEA efficiency
scores can be obtained or approximated by VEA. We also discuss the intuition behind
the choice of different sets of model DMUs, which is useful for empirical applications.
The rest of the paper unfolds as follows: A literature review follows in the next section,
while in the third section we present the CR-DEA and VEA models. The papers’ main
results are presented in the fourth section, while the empirical application is discussed

in the fifth section. Finally, concluding remarks follow in the last section.

7.2. CR-DEA and VEA: A brief overview
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CR-DEA models were developed by Charnes et al. (1989; 1990) to cope with
unsatisfactory results from conventional DEA, which identified “notoriously inefficient
[DMUs] as efficient” (Charnes et al., 1990, p. 74).*° In the multiplier form of these
models, the range of optimal input/output weight vectors is restricted to cones smaller
than the non-negative orthant. These cones can reflect preferences over the relative
importance of inputs and/or outputs, information about the variation of their prices, or
alternatively they can be defined based on the weight vectors that are optimal for a
certain set of model DMUs that DMs view as exceptional performers (Charnes et al.,
1990). In both cases, this information is used to define transformation matrices that
modify the input/output quantities of the evaluated DMUs in the envelopment form of
these models.

In CR-DEA models using information about price variation or views over
input/output importance, separate cones may be used to restrict the input and the output
weight sub-vectors, or a cone can be defined for the input/output weight vector. When
separate cones are used, the input and the output weight sub-vector of each DMU are
allowed to vary independently from each other in the multiplier form of the model and
separate transformation matrices are used to modify input and output quantities in its
envelopment form (Portela and Thanassoulis, 2006). Charnes et al. (1990) have shown
that in this case the CR-DEA model is equivalent to DEA models including AR-I type
of weight restrictions (Thompson et al., 1986). Empirical applications of such CR-
DEA models include the assessment of primary care physicians (Chilingerian and
Sherman, 1997), textile factories (Zhu, 1996), and manufacturing technologies (Talluri
and Yoon, 2000). Recently, Ding et al. (2015) introduced such restrictions in a network
DEA model with shared resources. When a single cone is used to restrict the
input/output weight vector, there are also restrictions linking input and output weights
that correspond to AR-11 type restrictions (Thompson et al., 1990). Thompson et al.
(1994) used information on input and output prices and costs to determine upper and
lower bounds for ratios of input, output and input and output multipliers in an evaluation

of oil companies. Subsequent applications of such CR-DEA models include the

% From now on, when a quotation is used, the words in brackets and the underlying are our own additions.
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evaluation of coal mines (Thompson et al, 1995) and US banks (Thompson et al.,
1996).

When preference information concerns model DMUSs, which is the focus of this
paper, the cone of feasible weights contains only weight vectors which are optimal for
the chosen model DMUs in the DEA model (Olesen and Petersen, 2003). In this case,
“the [weights] are restricted to lie in hyperplanes” (Charnes et al., 1991b, p. 2070),
which implies that the resulting efficient frontier is defined by extending the DEA facets
generated by the model DMUs. Charnes et al. (1990, p. 79) used the optimal weight
vectors (“efficient basic duals) obtained from the linear DEA model for each of the
model DMUs to define the cone of feasible weights. Notice that each such weight
vector is optimal for one of the model DMUs but not necessarily for the others as well,
and that it may contain zero components. It is thus hard to tell whether Charnes et al.
(1990) intention was to include only weight vectors that are optimal for all the chosen
model DMUs or to account for every weight vector that is optimal for at least one of
the model DMUs. Clarifying this issue has important implications for empirical
applications. The same holds for whether optimal weight vectors containing zero
components should be included in the cone or not.*%° In addition, Charnes et al. (1990)
defined the cone of feasible weights in such a way that the input and the output weight
sub-vectors were allowed to vary independently from each other within separately
defined cones. Empirical applications of this form of CR-DEA models include
performance assessment in the banking sector (see Charnes et al., 1990 and Brockett et
al., 1997). Later, Tone (1997) noted that for each model DMU there exist multiple
optimal weight vectors and developed three linear programs to choose one among those
vectors for each model DMU to use in defining the cone of feasible weights.

The process followed by Charnes et al. (1990) to define the cone of feasible
weights was thoroughly challenged by Olesen and Petersen (2003), in that i) each model
DMU generates more than one efficient facets and thus there exist multiple vectors of
optimal weights for it, all of which should be considered in the cone of feasible weights,

and ii) allowing the input and the output weight sub-vectors to vary independently from

100 Charnes et al. (1990) used weight vectors with strictly positive components to define the cone of
feasible weights in their application. On the other hand, Brockett et al. (1997) included weight vectors
containing zero components as well.
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each other may result in the evaluated DMUs adopting optimal input weights referring
to one model DMU and optimal output weights associated with another, and thus a
single cone should be defined using the input/output weight vectors instead of separate
cones for input and output weight sub-vectors. They noted (p. 357) that the efficient
frontier of the CR-DEA model can be estimated by extending facets with well-defined
rates of input substitution (MRSs) and output transformation (MR Ts) and “other” facets
(i.e., the cone of feasible weights can be defined using both weight vectors with strictly
positive components and vectors having zero components). Thus, to properly
incorporate preferences regarding a set of model DMUs in CR-DEA, one needs to
identify all the facets of the DEA frontier generated by the model DMUs and the weight
vectors that are normal to each of them (Portela and Thanassoulis, 2006). This requires
identifying all the facets of the DEA frontier (Thanassoulis, et al. 2008).

Olesen and Petersen (1996; 2015) proposed the use of a mixed integer model to
obtain CR-DEA efficiency scores when information on model DMUs is available. The
cone of feasible weights in this model is defined using only weight vectors that contain
strictly positive components. The resulting efficient frontier is defined by extending
facets with well-defined MRSs and MRTs generated by the model DMUs. However,
optimal weight vectors for model DMUs frequently contain zero components as well.
Thus, this model is considered hereafter as a distinct variant of CR-DEA.

On the other hand, VEA (Halme et al., 1999) accommodates DM preferences
over the most favorable input/output structure by means of an implicitly known value
function (i.e., an indifference curve), which is maximized at a point on the strongly
efficient DEA frontier that constitutes the MPS. The MPS essentially corresponds to
either an extreme-efficient DMU or a combination of extreme-efficient DMUSs that are
jointly efficient, and is chosen by the DM by means of various criteria (see Korhonen
et al. (2002) for an early exploration and the fourth chapter in this Thesis for a recent
review). In the multiplier form of the VEA model, each DMU is implicitly compared
to the MPS by restricting the feasible weight vectors to those that are optimal in the
DEA model for all the DMUs that constitute the MPS. This model appeared for the first
time in Oral and Yolalan (1990), who used it to compare the performance of banks in
terms of efficiency and profitability to that of a particular efficient bank (“global
leader”). This bank was chosen at a previous step. Subsequent studies explored the
potential of obtaining VEA scores which are better approximations of the scores that
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could be obtained if an explicit functional form was available for the DM’s value
function, and their interpretation in terms of value differences between the assessed
DMU and the MPS (see Joro et al., 2003; Korhonen and Syrjanen, 2005). Recent
theoretical advancements include non-convex (Halme et al., 2014) and non-radial
(Gerami et al., 2022) VEA models. Regarding empirical work, VEA has been applied
for the evaluation of hospital departments (Halme and Korhonen, 2000), higher
education institutions (Korhonen et al., 2001), local governments (Marshall and
Shortle, 2005), banks (Halme et al., 2014; Eskelinen et al., 2014), and the construction

of composite indicators (see the third chapter in this Thesis)
7.3. Materials and methods

7.3.1. Preliminaries

Let us consider a set of K DMUs (k=1, ...,K) that use the same technology to produce a
set of J (j=1,...,J) different outputs utilizing | (i=1,...,1) different inputs. The fractional
programming form of an input-oriented variable-returns-to-scale (VRS) DEA model
for the o' DMU is given as (Banker et al., 1984):1%

] I
s, | Q657+ ¢ /Zw?xf’
j9

j=1
J
s.t. (2 7y +(°>/Za)"xk<1 vk (7.1)
§7=0 vj
w! >0 Vi
{° free

where x and y are respectively the quantities of inputs and outputs, @ and ¢ are their
weights, and (' is a free variable to be estimated. The constant-returns-to-scale (CRS)
counterpart of (7.1) is obtained by removing the free variable { (see Charnes et al.,
1978).

Denote E as the set containing the extreme efficient DMUs in model (1), namely

those residing at a point of the convex DEA efficient frontier where more than one

101 We limit our discussion to input-oriented DEA models. The extension of the results to output oriented
models is straightforward.
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facets intercept. The polyhedral cone containing the feasible input/output weight
vectors in (7.1) is given as (Raty, 2002; Olesen and Petersen, 2015, p. 155):

] I
F = {(5}2 —wk,{*) eR, XRLXR: Z eyl — Z wixf + 78 <0,(EF, wf) #(0,0), ke IE} (7.2)
i=1

j=1

The cone in (7.2) is determined from the halfspace constraints in (7.1) and is
represented as a collection, i.e., a set, of vectors (§f, —wf’, ¥).121%% It is expressed in
terms of the extreme efficient DMUs only, since these generate the facets of the DEA
efficient frontier and they are used to “evaluate all of the points that represent the
performances of the DMUs that are to be evaluated” (Cooper et al., 2007b, p. 444). In
essence, this means that any weight vector that is feasible for a particular DMU will
also be feasible for at least one extreme efficient DMU. For this reason, all similar
cones from now on will be expressed in terms of the extreme efficient DMUs.

For efficient DMUs --and in rare occasions also for some inefficient DMUs--
there exist more than one weight vectors that are optimal in (7.1). The cone containing
all the weight vectors in F which are optimal for a DMU k € E, (namely, render it

efficient) is given as (Olesen and Petersen, 2015, p. 157):

J 1
Fro= (kw0 e F Y gy =) wlak 4 gk =0 (7.3)
j=1 i=1

12 1f a weight vector (¢, wf, ¢¥) is optimal for some DMU in (1) then (a¢f, awf, al*), a > 0 will also
be optimal for this DMU. Thus, in the input/output weights space, F is a polyhedral cone spanned by
the weight vectors (£f, wf, ¢¥) and containing all their multiples (a¢, aw}, al*), a > 0. Notice that
a could also be equal to 1/51’-‘ for some j, or to 1/w¥ for some i, in the sense that one of the positive
input or output weights is used as a numeraire.

103 In QOlesen and Petersen (2015), the set E contains the strongly efficient DMUSs instead of the extreme
efficient DMUSs, while Rity (2002) uses the extreme efficient DMUSs to define F. Strongly efficient
DMUs are further classified into extreme efficient and non-extreme efficient DMUSs. The latter reside in
the interior of a facet of the strongly efficient frontier (Charnes et al., 1991a). Non-extreme efficient
DMUs can be expressed as linear combinations of the extreme efficient DMUs generating the facet in
which they reside. In this sense, the weight vectors that are optimal for a non-extreme efficient DMU
are also optimal for all the extreme efficient DMUs generating the facet in which it resides, and they are
already included in F.
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Each weight vector contained in F¥ is a generating normal vector for a supporting
hyperplane of the DEA efficient frontier with DMU k located on it.2%* It may contain
only strictly positive input and output weight components or may be associated with at
least one zero input or output weight. In the former case, the vector is normal to a facet
of the strongly DEA efficient frontier in which the MRSs and MRTs are well-defined
and can thus be given an interpretation in terms of relative prices, while ¢¥ can be
interpreted as a measure of local scale elasticity (Olesen and Petersen, 2015). Such
facets are jointly generated --provided that certain regularity conditions are met-- by a
unique combination of (I +J — 1) extreme efficient DMUs in CRS DEA models and
one of (I +J) extreme efficient DMUs when VRS is assumed (Olesen and Petersen,
2003). In the latter case, the weight vector (EJ’-‘, —wk, %) is normal to a facet of the
weakly DEA efficient frontier, in the sense that MRSs and MRTSs are not well-defined.
Following Olesen and Petersen (1996; 2003; 2015), we term the former facets as Fully
Dimensional Efficient Facets (FDEFs) and the latter as non-Fully Dimensional
Efficient Facets (non FDEFs).1% It is possible that ¥ contains only weight sets of the
latter form, namely that the DMU k does not contribute to generating an FDEF.

Let us consider a subset R < E of extreme efficient DMUs. The cone:

I

J
:Fﬂe:ﬂ Fk =1 (&k,—wk, R)E,‘F:EE}fy]l‘_zwgfxllc+(k:0'vkeR 7.4
kER _ _
=

=1

contains all the weight vectors, each of which is optimal for all the DMUs in R, i.e.,
renders all of them efficient (Olesen and Petersen, 2015), where 1 refers to intersection.
Thus, each weight vector in F¥ is a generating normal vector for a supporting
hyperplane of the (weakly or strongly) efficient frontier with each and every member

of R located on it (Banker et al., 1984). F¥ = @ implies the existence of at least one

104 In a similar fashion with F, in the input/output weights space, F, is a polyhedral cone spanned by the
weight vectors (E}"‘, w¥, %) and containing all their multiples. See Olesen and Petersen (1996) for the
CRS counterparts of (2) and (3).

105 See Olesen and Petersen (1996) for a formal definition of FDEFs and non FDEFs and Olesen and
Petersen (2015) for an interesting discussion on alternative definitions of efficient facets. Linear models
that test for the existence of at least one FDEF in the empirical CRS or VRS DEA frontier are provided
in Olesen and Petersen (2015). Given a set of R extreme-efficient DMUSs, one may investigate whether
these jointly generate at least one FDEF by identifying all the FDEFs of the empirical DEA frontier.
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weight vector (EJ’-‘, —w¥, 7¥) which renders all DMUs in set R efficient, namely that the
DMUs in R jointly generate at least one facet of the DEA efficient frontier. If F¥ = ¢
such a facet does not exist. However, there might be facets generated by a subset of
the DMUs in R. Furthermore, if the number of DMUs in R equalto I + ] — 1 (in CRS
models) or to I + J (in VRS models), then F¥ = @ only when the DMUs in R jointly
generate an FDEF, and it will contain only one vector with strictly positive input/output
weights, namely the one that is normal to the FDEF generated by the DMUs in R.
Lastly, ¥ = @ when the number of DMUs in R is greater than I + ] — 1 (in CRS
models) or I + J (in VRS models), since DEA facets cannot be spanned by more than
(I+]—1) (in CRS models) and (I +J) DMUs (in VRS models). It is also evident
from (7.4) that when the set R contains only one DMU, then F¥ = F¥,
We may also define the following set:

i=1

J 1
Fl = U Fk = {(E}‘,—wf‘,{k) EF: Zfﬁ’}( _Z wkxlf + ¥ =0 for at least one k € R} (7.5)
KkeR .
j=1

which contains each weight vector among those in F that is optimal in the DEA model
(1) for at least one of the extreme efficient DMUs in set R, and U refers to union. Thus,
a weight vector (E]’-‘, —wk, %) € FF will be optimal for one --or more-- among the
DMUs in R, but may or may not be optimal for the others. By comparing (7.4) and
(7.5) we see that: i) FF is a subset of F¥, i) F¥ # @ even if there does not exist a facet
of the DEA efficient frontier generated by all the DMUs in R, and iii) when R contains
only one DMU, then F¥ = F* = FX. Furthermore, it is evident from (8) that if R =
E, then FE = F. However, this is a sufficient but not a necessary condition for FX =
F.

The model in (7.1) can be converted to the following linear model:
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u;?,v-, =
I
s.t. Zu]‘-’y]k Zv"xk +uk <0 vk
11_1 i=1 (7.6)
Z vixl =1
i=1
u’ >0 vj
v) =20 Vi
zF free

where &7 =u?/B°, w) =vl/B°, (¥ = u¥/B° and B° = (X]_; w{x{)~". Then the
set containing the weight vectors which are optimal fora DMU k € E in (7.6) is given

as:

Fr= {uf, —vfuk) = po(gl, wf, ¢0)|(8F —wk, ¢ e ¥, B0 = (Biywfx) T} (7.7)

which contains the multiples of the weight vectors in F* that satisfy the normalizing
equality in the second constraint in (7.6) when k is the evaluated DMU.

To demonstrate the alternative sets of weight vectors discussed above, let’s
consider an illustrative example involving 10 DMUs, each using two inputs to produce
a single output. Data for these DMUs are given in the upper panel of Table 7.1, while

the middle and the lower panel contain the DMUs’ input-oriented CRS DEA efficiency

scores, the normalized optimal vectors of input/output weights H® = (Zl Ve 1)

o'uo'

(‘;j 7o 1) and the optimal values of the intensity variables.!® The DEA efficient
frontier is given in Figure 7.1, where we see that DMUs A, B, C, and D are extreme-
efficient, while the remaining DMUSs are inefficient. As such, the set R may contain
only one of the extreme-efficient DMUs A, B, C, and D, or any combination of more
than two of them. In the Ilatter case, R will be equal to either

{A,B},{A,C},{A D}, {B,C},{B,D},{C,D},{A,B,C},{A,B,D},{A,C,D},{B,C, D}, or

106 Note that, since the DMUs in our example produce the same quantity of a single output, the CRS
efficiency scores displayed in Table 1 are equivalent to those of a VRS DEA model (see Lovell and
Pastor, 1999).
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Table 7.1: Data and DEA optimal solutions for the illustrative example

DMU A B C D E F G H I J
X1 1 2 3.5 6 1.2 2 4 5 6 9
Xy 7 4 2 1.25 9.6 6 6 4 2 1.5
y 1 1 1 1 1 1 1 1 1 1

optimal solution (1) from the DEA model

Wi /& 0300  0.200 0200  0.098 1.000  0.300 0.200 0.200 0.098 0.000

wi/&* 0100  0.150 0.150  0.328 0.000  0.100 0.150 0.150 0.328 0.800

0" 1.000  1.000 1.000 1.000 0833  0.833 0.588 0.625 0.803 0.833

x 2,=1.000 25=1.000 A:=1.000 A;=1.000 A;=1.000 A;=0.333 13=0.765 13,=0.250 13=0.474 A3=1.000
15=0.667 1:=0.235 15=0.750 A;=0.526

facet  f2 3 3 4 fl f2 3 3 4 5

optimal solution (2) from the DEA model

wi/&* 1.000 0.300 0.098 0.000
w3/&* 0.000 0.100 0.328 0.800

0" 1.000 1.000 1.000 1.000

A A;=1.000 A5=1.000 A;=1.000 A;,=1.000
facet f1 f2 f4 5
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Figure 7.1: The DEA efficient frontier for the Illustrative example
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{A,B,C,D}. From Table 7.1 we see that there are two input/output weight vectors
which are optimal for each of the extreme-efficient DMUs. For DMU A these are H{! =
(1,0,1) = H, and H4 = (0.3,0.1, 1), which are the vectors normal to the facets f1 and
f2 respectively. For DMU B, the optimal input/output weights vectors areHZ =
(0.3,0.1,1) = H¥ = H, and H? = (0.2,0.15,1). The latter is normal to facet f3. The
optimal weight vectors for DMU C are H¢ = (0.2,0.15,1) = H? = H; and H =
(0.098,0.328,1), of which the latter is normal to facet f4. Lastly, the two weight
vectors that render DMU D efficient are H? = (0.098,0.328,1) = HS = H,and H? =
(0,0.8,1) = Hg, which are normal to facets f4 and f5, respectively. Thus, the set F is

given as:

F= {Hll H21H31H4—r HS}

Among the five weight vectors in F, H,, H; and H, are FDEFs, while H; and Hs are
non FDEFs. Furthermore, the sets F*, k = A, B, C or D containing the optimal vectors

of weights for each of the extreme-efficient DMUs are defined as:
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FA = {HI'HZ}; FB = {Hz;H3}; F¢ = {H3;H4}: FP = {H4;H5}

On the other hand, there is only one optimal weight vector for each of the inefficient
DMUs (see Table 1).

The set F¥ isequal to F¢ = F4, FE = FB, F¢ = F€, and F? = F? when R
contains respectively only one of the DMUs A, B, C, and D. The same holds for F¥,
e, Fi=FA=F, FS=FB =F8 FE=FC =F§, and F = FP = FP. On the
other hand, for R containing different combinations of the DMUs A, B, C, and D, set

FF is given as:

A2 = (Hy), F{° = (0}, F{° = (0}, FI€ = (05}, FIP = (0}, PP = (Hy),
FI%C = (0), F{™ = (0}, F{P = (0}, F{P = (0}, F{7P = (0}

and F¥ is as follows:

F3® = {Hy, Hy, H3}, Fi¢ = {Hy, Hy, Hs, Hy}, F (P = {Hy, Hy, Hy, Hs}, FE© = {Hp, Hs, Hy},
FEP = {H,, Hy, Hy Hs} = FEP, FSP = {Hs, Hy, Hs}, FUBC = {Hy, Hy, Hs, Hy),
F{PP = {Hy, Hy, H3, Hy Hs} = FP = FHPP = F
where the capital letters in the superscripts correspond to the DMUSs in the set R.1%
From these we see that: i) each of the sets F¥ is a subset of the corresponding
set FR, ii) F4B ,FBC and F§P are non-empty sets, since the DMUs in R jointly
generate a DEA facet, while they contain only one vector of strictly positive
input/output weights as in this case the number of DMUs in R isequalto I +] — 1 =
2, iii) the sets F£¢, F4P and FBP are empty as there is not a facet jointly generated
by the DMUs in R, while the corresponding F¥ sets are non-empty, iv) F4E¢ =
F4BD = FACD = FBCD = yABCD = (¢} since in this case he number of DMUs in R
is equal to 3 > 1+ ] — 1, while the corresponding F¥ sets are non-empty, and v)
FABCD is nonempty and is equivalent to F as in this case R = E. Note that this also

holds for sets F4BP and F 4¢P, for which R c E.

197 For instance, a superscript ABC refers to R = {4, B, C}. Other capital letter superscripts appearing in
the illustrative example are elaborated in a similar fashion.
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7.3.2. CR-DEA including preferences on model DMUs

The fractional programming form of an input-oriented VRS CR-DEA model is given

as:

=1
J I (7.8)
s.t. Zf]‘-’y}‘+{k>/2w?xf‘gl vk
j=1 i=1
(¢F,—wf, i) ew vi,j

where W € R}, x RL x R is a cone smaller than the non-negative orthant, which is
essentially a collection of vectors that contains a subset of the weight vectors
(¢, —wf,¢¥) € F and their multiples. The CRS counterpart of (7.8) is obtained by
removing the free variable {. The last constraint in (7.8) restricts the choice of optimal
weights only among the weight vectors contained in W and their multiples, instead of
the larger set F, which is the case for the DEA model in (7.1). The model in (7.8) can
be converted to the following linear program:

u] VS Z 1
J 1
K K 4 ok
s.t. Zuj‘-’yj —Ev{’xi +u*<0 Vk (7.9)
j=1 i=1
I
Zv{’x{’ =1
i=1
(uf, —v?,z*) e wo Vi,j

where W° contains the multiples of the weight vectors in W that satisfy the normalizing
equality for the evaluated DMU o in the second constraint in (7.8). The CRS counterpart
of (7.9) is provided in Olesen and Petersen (2003) and can be obtained by removing the
free variable u.

Let us assume that the DM wishes to compare each evaluated DMU with some
chosen model efficient DMUs having exceptional performance and let the set Rz € E

contain these model DMUs. In this case, W contains only weight vectors (¢F, —wf, {*)
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which are optimal for the model DMUs in the DEA model in (7.1) (Olesen and Petersen,
2003). Charnes et al. (1990) employed the CRS counterpart of (7.9) and used one

among the --possibly multiple-- optimal vectors (u‘-’, —v{’) for each of the model DMUs

to define W°, namely the one resulting from the DEA model. In terms of the fractional
model in (7.8), this means that W was defined by considering, for each DMU k € R,
one among the vectors (¢, —w]’) contained in F*, namely the one resulting from the

CRS counterpart of (7.1). Each such weight vector is optimal for one model DMU but
it is not necessarily optimal for other model DMUs as well, while it may or may not
contain strictly positive components. This implies that the weight vectors contained in
W are drawn from F¥, namely the union of the sets containing the weight vectors that
are optimal in the DEA model for each of the model DMUs. The cone in Charnes et al.

(1990) was also specified as restricting the input and the output weights separately,

u o
0o Vv

respectively defined using the optimal input and output weight sub-vectors.

namely W©° was in the form [ ] where the cones U < ]Rifr, V € RL were

Olesen and Petersen (2003, p. 329) argued that the intention of Charnes et al.
(1990) was to generate (i.e., extend) “all facets containing” certain excellent DMUs. In
this sense, they argue that W should be defined as a single cone using input/output
weight vectors --instead of separate cones for input and output weight sub-vectors. As
such, the boundary of the feasible set in the input/output space for models (7.8) and
(7.9) will be a piecewise linear frontier defined by the extended efficient facets
generated by the weight vectors contained in W. The authors note (p. 328) that W should
account for all the multiple optimal weight vectors for each of the model DMUs, and
that it should be “suitable for defining the boundary of (...) a frontier with well defined
(i.e., with strictly positive and finite) rates of substitution and transformation”, i.e., that
it should contain vectors with strictly positive input and output weight components.
However, they also point (p. 357) that vectors having zero components could also be
included in W.2% These ultimately imply that cone of feasible weight vectors in the

CR-DEA model in (7.8) should be defined as the union of the sets containing the weight

108 See their footnote 7 in which they note that weights normal to facets that are not of full dimension
could also be included in W.
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vectors that are optimal in the DEA model (7.1) for each of the model DMUs, namely
w = FE.

Alternatively, one could consider in W only those weight sets which are jointly
optimal for all the chosen model DMUs, in which case W would be equal to the
intersection of the sets containing the weight vectors that are optimal in the DEA model
(7.1) for each of the model DMUs, namely W = F¥. We thus may define two variants
of the CR-DEA model in (7.8). In the first, termed CR(I)-DEA, the cone of feasible
weight vectors weights is specified as the intersection of the sets containing the weight

vectors that are optimal in DEA for each of the model DMUs, i.e., as:

Flay = FF = Nier FX (7.10)

The efficient frontier in CR(I)-DEA will be the lower envelope of the extended DEA
efficient facets (both FDEFs and non FDEFs) that are jointly generated by all the model
DMuUs. In the second variant, referred to as CR(U)-DEA, the cone of feasible weights
contains every weight vector that is optimal in the DEA model for at least one among

the model DMUs, namely:

Flwy = FL = Urer F* (7.11)

in which case the efficient frontier will be the lower envelope of the extended efficient
facets (both FDEFs and non FDEFs) generated by at least one among the model DMUSs.

The distinction between these two variants of model (7.8) is made, to the best
of our knowledge, for the first time. Their main difference is that in CR(I)-DEA, all
the model DMUs will be rendered efficient when each DMU is evaluated, while in
CR(U)-DEA at least one among the model DMUs will be efficient, but not necessarily
all of them. Thus, the model DMUs should jointly generate at least one efficient facet
in order for CR(I)-DEA to have feasible solutions (as otherwise FF = @), while this is
not a necessity for CR(U)-DEA. Irrespective of the choice of model DMUs, CR(U)-
DEA results in efficiency scores that are greater than or equal to those obtained from

CR(I)-DEA, since it holds that FZ ) S Frw)- More specifically, each evaluated

DMU in the CR(I)-DEA model can choose only among weight vectors that are optimal
--in the DEA model-- for all the model DMUs. In the CR(U)-DEA model, each

evaluated DMU can choose among both the weight vectors that are feasible in the
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CR(I)-DEA model as well as those that are optimal for one model DMU but not
necessarily for the others. Thus, it may receive a larger efficiency score in the CR(U)-
DEA model compared to its corresponding CR(I)-DEA score. Furthermore, if the
number of DMUs in Ry is greater than I + ] — 1 (in CRS models) or I +J (in VRS
models) then F¥ = @ and FX # @, and in this case the CR(U)-DEA model will result
in feasible solutions while the CR(II)-DEA model will not. Lastly, when there a single
model DMU is considered, the two variants provide the same efficiency scores, as
:F(,I“CR([U) = T({‘CR(]]) = F*.

The distinction between CR(U)-DEA and CR(I)-DEA is also important for
possible empirical applications of CR-DEA models. For a particular choice of model
DMUs, CR(I)-DEA is a more restricted model than CR(U)-DEA. Thus, the former
may be used when the DM opts for a more thorough performance assessment in which
each DMU should be compared to all model DMUs, while the latter could be used in
settings where comparison to one of the model DMUSs is viewed as adequate enough.
Alternatively, when more than one DMs (e.g., a council of stakeholders or an expert
panel) choose the model DMUs, CR(I)-DEA could be used when there is unanimity in
the choice of model DMUs, while CR(U)-DEA might be more preferrable when expert
opinions on model DMUs diverge. Furthermore, CR(U)-DEA might be a more suitable
modelling option compared to CR(I)-DEA when each of the chosen model DMUs
represents a different type of “good performance”. This could be the case, for instance,
in an evaluation of public and private education institutions or an assessment of rural
and urban bank branches. The use of CR(U)-DEA in such cases would not force the
evaluated DMUs belonging to one type to be compared with the model DMU of the
other type.

Regardless of the number of model DMUs, estimating CR(U)-DEA and CR(I)-
DEA models requires to define cone W, namely to identify the weight vectors contained
in F¥ or £, in a prior step. In particular, Portela and Thanassoulis (2006) note that
once these weight vectors are identified, it is rather straightforward to obtain the

efficiency scores of CR-DEA models by estimating, for each evaluated DMU, its

efficiency score 6 = (X_, &fyP +¢*) /i, wfx{ using each of the identified
weight vectors (¢, wf,{*¥) € W, and then choosing the maximum among these
efficiency scores. However, they argue that identifying the weight vectors is a difficult
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process, as it requires to identify all the facets of the DEA frontier and the weight
vectors that are normal to each. This often involves the estimation of non-linear
programs, such as those outlined in Olesen and Petersen (2003), Fukuyama and Sekitani
(2012), and Davtalab-Olyaie et al. (2014). An alternative advocated by Olesen and
Petersen (2003) and Thanassoulis et al. (2008) is to use the software program Qhull. It
is however argued that this program is not developed exclusively for DEA and it is not
always easy to use in DEA applications (see Aparicio et al., 2007; Zhu et al., 2022).
Another facet-extending variant of CR-DEA was presented in Olesen and
Petersen (2015, pp. 167-168). This variant extends only FDEFs that are jointly
generated by the model DMUs (hereafter referred to as EXFA-CR-DEA), provided that
at least one such FDEF exists.!®® Assuming VRS, it is given as the following mixed-

integer linear model:

J
max E u? y? +uk
vPul.bpsp.zk £ 7
j =

J I
s. t. Zu}’y}‘—Zv{’x{‘+S,‘(’+uk=0 VkEE

j=1 i=1
I
vy xf =1
i=1
Zb;QSE—(1+1—1)
KEE
by ={0,1} Vk€E\Rc
by =0 Vk €Recp
sp =0 VkeEE
v) > ¢ Vi
ul > ¢ vj
u¥ free

where E refers to the number of extreme efficient DMUs, by and sp are additional

variables to be estimated, and ¢ is a non-Archimedean number. The CRS counterpart

109 This CR-DEA variant is related to the Extended Facet (EXFA) efficiency model developed by Olesen
and Petersen (1996; 2015), for evaluating efficiency relative to a technology spanned by FDEFs and the
extensions of these facets; see the relations (6.27) and (6.40), as footnote 21 in Olesen and Petersen
(2015, pp. 167-170).
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of (7.12) is provided in Olesen and Petersen (2015, p. 168) and can be obtained by
removing the free variable u* and changing the right-hand side in the fourth constraint
toE—(+]-1).

In (7.12), the first set of constraints considers only the extreme efficient DMUSs,
as only these may generate an FDEF. Each binary variable corresponds to one extreme
efficient DMU and is associated with a slack parameter sp. When by = 0 and thus
sp = 0, the extreme efficient DMU generates the FDEF at which the evaluated DMU
is radially projected. The fourth constraint in (7.12) is used to ensure than each DMU
is evaluated against an FDEF. The binary variables corresponding to each of the model
DMUs are set as equal to zero. This guarantees that all model DMUs should jointly
generate the extended FDEF. As is evident, if the model DMUs do not generate at least
on FDEF of the DEA frontier, (7.12) will not have a feasible solution.

When (7.12) reaches an optimal solution --provided that such a solution exists-
- the constraint Y., g by < E — (I +J) will be satisfied as a strict equality and exactly
I + ] relations in the first set of constraints will be strict equalities, which means that
the evaluated DMU will be projected on an FDEF of the DEA efficient frontier or on
its extension (Olesen and Petersen, 2003). Due to the sixth set of constraints in (7.12),

this FDEF will be necessarily generated by all the model DMUs. The optimal weight

vector for the evaluated DMU will be the multiple (uf, v, u¥) = B*(¢F, wf, ¢¥), B* =

(3i, wﬁ‘xf’)_l of the weight vector (¢, wf, ¢¥) that is normal to the (extended) FDEF
at which the DMU is projected. This vector will contain only strictly positive input and
output weight components, and hence each DMU will be assessed by means of well-
defined MRSs and MRTs. Thus, in terms of the fractional weights (¢§, wf, {¥), the
cone of feasible weight vectors in (7.12) contains only the weight vectors with strictly
positive components (i.e., those normal to FDEFs) that are jointly optimal in the DEA
model (7.1) for all the model DMUs. It is thus a subset of Tg;(ﬂ) = F¥ and may be

written as:

Fira—cr = {(Ef wf,{¥) e FEf >0, V), wf >0,v i} (7.13)

which can be an empty set even if F¥ = @. This occurs when the chosen model DMUs
jointly generate efficient facets of the DEA frontier but not one of full dimension. In

this case, the CR(II)-DEA and CR(U)-DEA variants of (7.8) have feasible solutions, but
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(7.12) does not. Following the suggestions in Portela and Thanassoulis (2006), the
efficiency scores of the model in (7.12) could also be obtained in a similar fashion to
those of the CR(II)-DEA and CR(U)-DEA models. One would first need to identify the
weight vectors contained in FX 4_cr and then estimate, for each evaluated DMU, its
efficiency score using each of the weight vectors (¢, wf,{%) € Ff,zp_cp. The

maximum among these scores would be the EXFA-CR-DEA efficiency score.

In terms of our example in Figure 7.1, the three cone-ratio variants discussed
above can be demonstrated as follows: when the DM chooses one model DMU among
those extreme-efficient i.e., k is equal to either 4, B, C, or D, then Ff ) = Flrwy = F-.
If on the other hand there are more than one model DMUSs, i.e., R is equal to either
{A,B},{A,C},{A D}, {B,C},{B,D},{C,D},{A,B,C},{A,B,D},{A,C,D},{B,C,D}, or
{A, B, C, D}, then the cones of feasible weight vectors for the CR(1)-DEA and the
CR(u)-DEA models are given as:

Férm = Fi? = {H} € Fégay = Fi© = {Hy, Hy, Hs)
TCR(H) = Fi‘= 9 c :FCR([U) F¢ = {Hy, Hp, Hs, Hy}
Féray = FiP = © < Flguy = Fi® = {Hy, Hy, Hy, Hs}
TCR(H) = T?C ={H3}c *TCR(IU) = T%C = {Hy, H3, Hy}
Férmy = Fi° = @ < F&uw) = FEP = (Hy Hy, Hy Hs)
Féray = Fi° = {Hs} € F&Ry = FiP = {H3, Hy, Hs)
Téq}%) = F{iPe 9 c ?5415(%) = F{°¢ = {Hy, Hy, Hs, Hy}

Féry =FIP = @ < Fery = FO°° = {Hy, Hy, Hy Hy Hs} = F
TélRC(Iﬁ) =F{?= ¢ c TéélRC(%) = F{°P = {Hy, Hp, Hy, Hy, Hg} =
TgRC(]ﬁ) =Fi"= ¢ c Tgac(lr)u) = Fi¢° = {Hy, H3, Hy, Hs}

Télzf(cﬂf =F{PP =9 c Té‘RB(%? = F(°P = {Hy, Hy, Hy, Hy, Hs} =

from which we can see that F, ;y is always a subset of F7; ;) and thus the CR(U)-

DEA efficiency scores will be greater than or equal to those of the CR(I) DEA model.
For example, when R = {C,D}, then in the CR(I)-DEA model each DMU s
evaluated based only on the weight vector H, that is normal to facet f4. The frontier
against which the DMUs are evaluated is thus the extended facet f4, which is portrayed
as the orange dashed line in Figure 7.2a. In that, DMUs for which at least one optimal
weight vector is £,, i.e., DMUs C, D, and I, are indicated with a green color. The
remaining DMUs appear as red-colored points, meaning that they will be assigned an

efficiency score lower than their corresponding DEA one. On the other hand, in the
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Figure 7.2: Efficient frontiers for CR(1)-DEA and CR(U)-DEA models (model DMUs:
Cand D)
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(b) CR(U)-DEA

corresponding CR(U)-DEA model, each DMU can choose among vectors
Hs, H, and Hs the one that maximizes its efficiency score. Thus, each DMU can secure
at least an efficiency score equal to that obtained from the CR(I)-DEA model, while it
may also attain a larger score using one of the vectors H; and Hg. The frontier against
which the DMUs are evaluated is the lower envelope of the extended facets f3, f4, and
5 which is portrayed as the orange dashed line in Figure 7.2b. In this case only DMUs

A, E, and F are indicated with a red color, in the sense that none of their optimal weight
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vectors are contained in TCC}?([U). Also, the CR(U)-DEA model results in feasible

solutions irrespective of the choice of model DMUSs, while this is not the case for the
CR(I)-DEA model when R contains DMUSs that do not jointly generate a facet of the
DEA frontier. This is the case, for example, when Rz = {4,D}. The associated
CR(U)-DEA frontier is given in Figure 7.3 as the lower envelope of the extended facets
f1, f2, f4, and f5. The inefficient DMU H will be assigned a score lower to that of the

DEA model, since Tg“,f(m) does not include the weight vector (2,.

The sets containing the feasible weight vectors in the EXFA-CR-DEA model

for alternative choices of the model DMUs in our example are given as:

TI:@XFA—CR = {H,}, ?EXFA—CR = { Hy, H3}, ?ECXFA—CR = { H3, H,4}, :FL?XFA—CR = { Ha},

Téq)?FA—CR = { H.}, ?fl)?FA—CR =0, TEA)?FA—CR =0, Tl?fFA—CR = {0}, TL?)?FA—CR =0,

Figra-cr = {Hal Féxtia-cr = Fixra-cr = Féxta-cr = Foxra-cr = Fixri-cr = 0
When non-empty, each of these sets consists only of weight vectors normal to FDEFs
and is a subset of the corresponding F¥ set. For example, when DMU A is the model

DMU, 7—"CAR(H) contains both vectors H; and H,, while F#yr4_cr contains only the latter,

since the former is not of full dimension. The efficient frontiers defined by the two
models are given in Figures 7.4a and 7.4b respectively. The CR(I)-DEA frontier --
which in this case coincides with the CR(U)-DEA frontier since there is one model
DMU-- is the lower envelope of the extended facets f1 and f2. In this case, the
inefficient DMU E for which (2, is the only optimal weight vector in DEA, receives a
score equal to its DEA one. The EXFA-CR-DEA frontier consists only of the extended
facet f2, and DMU E is now marked with red color since it is assigned an efficiency

score lower than that of the DEA model.

7.3.3. Value Efficiency Analysis

In VEA, a DM expresses his/her preferences over the desirable input/output structure
of DMUs by choosing a non-dominated (i.e., efficient) point on the DEA frontier that
constitutes the MPS (Halme et al., 1999). This point is assumed to maximize the DM’s
implicitly known value function and will in essence be either a single extreme-efficient
t DMU or a combination of extreme-efficient DMUs that are jointly efficient, in the

sence that sense that they jointly generate at least one facet of the DEA efficient frontier.
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Figure 7.3: Efficient frontier for the CR(U)-DEA model (model DMUs: A and D)
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Let set R, € E contain the DMUs comprising the MPS.®  The fractional

programming form of an input-oriented CRS VEA model for the 0" DMU is given as:
max

J I
04,0 4 gk /Zw*’x*’

0Dk Z iV it
§jwik j=1 i=1

]
s.t. ZE]‘-’y}‘+(k /

j=1 i
] I
Zf})YJk'i'(k /zw?xzkzl Vk e Ry
j:l i=1

1
wlxk<1 vikeRr,
=1

(7.14)

§7=0 v j
w! =0 Vi
¥ free

which differs from the DEA model in (7.1) in that the inequality constraints associated
with the DMUs constituting the MPS are turned to strict equalities. This means that,

when each DMU is evaluated, the optimal weight vector (¢9, —w?, {¥) resulting from

110 As in most cases not all the DMUs in E are jointly efficient with each other, it frequently holds that
RY < E. However, in rare cases there is a facet jointly generated by all the DMUs in E, in which case
RY = E can be a valid choice.
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Figure 7.4: Efficient frontier for different Cone-ratio DEA models (model DMU: A)
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(7.14) should be such that all the DMUs constituting the MPS are rendered efficient.
Thus, the polyhedral cone of feasible weight vectors in (7.14) contains only those which

are optimal in model (7.1) for all the DMUs comprising the MPS, namely:

FR=rFF (7.15)
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This follows from the fact that the second set of constraints in (7.14) is also the set of
constraints that define the set F¥ in (7.4). In the case where a single DMU k € E is
the MPS, F¥ coincides with F¥.

The weight vectors (¢, —wf, ¢¥) contained in 3 are normal to the DEA facets
(both FDEFs and non FDEFs) intercepting at the MPS, and the VEA frontier is
constructed as the intersection (i.e., the lower envelope) of these extended facets. As
F% may contain more than one weight vectors, (7.14) gives to each evaluated DMU
the benefit-of-the doubt to choose among them the one that maximizes its efficiency
score. Essentially, the VEA efficiency scores can be obtained in a similar process as
that outlined by Portela and Thanassoulis for the CR-DEA models: First, estimate (7.1)
and identify all the DMUs in E and the weight vectors that are optimal for each of them
(i.e., obtain set F* v k € E). Second, define the set R containing the DMUs that
comprise the MPS and obtain the intersection F¥ = F¥ of their optimal weight
vectors. Notice that the DMUs comprising the MPS should be chosen such that FF =

F¥ #@. Third, for each evaluated DMU, estimate its efficiency score 69 =

(Z_ &FyP + ¢¥)/Tis  wix? using each of the weight vectors (¢, wf, %) € FT.
The maximum among those efficiency scores will be the VEA score. If the vector of
optimal weights for the evaluated DMU in the DEA model in (7.1) is contained in
(7.15), then the DMU’s VEA efficiency score is equal to its corresponding DEA one.
Otherwise, the VEA score will be lower than that of the DEA model. Also, when the
number of DMUs in Ry, is equal to I +] — 1 (in CRS models) or to I +] (in VRS
models), then F¥ will be a non-empty set and (7.14) will have a feasible solution only
if the chosen DMUs in R, jointly generate an FDEF. In this case, all DMUs will be
evaluated based on a common vector of strictly positive weights, namely the vector
normal to the FDEF generated by the DMUs in Ry,.

The model in (7.14) can be converted to the following linear model:
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Then, the polyhedral cone containing the feasible weight vectors in (7.16) for the

evaluated DMU is given as:

I -1
= {(u]’-‘, v k) = Bo(8, i ) + (8 0f ) €FF, B0 = (Z wé‘x;’> }(7-17>
i=1

where the first superscript in :77"‘,"'7e refers to the evaluated DMU and the second to the
set of the DMUs comprising the MPS. The set :77"‘,‘"? contains the multiples of the weight
sets in F3 that satisfy the normalizing equality in the second constraint in (7.16) for the
evaluated DMU.

Using the example in Table 7.1 to demonstrate the VEA model, notice that the
MPS can be one of the DMUs A, B, C, and D, be a combination of DMUs A and B, a
combination of DMUs B and C, or a combination of DMUs C and D, since only these
pairs of DMU s jointly generate a DEA facet. Let’s assume, without loss of generality,
that the DM chooses DMU A as the MPS. Then, each evaluated DMU in the VEA
model can choose only among the weight vectors H, and H, which render DMU A

efficient. Thus, we have:

Fyp=Ff =F4={Hy, Hy)}

and the VEA frontier is formed by extending facets f1 and f2 towards the axes (see
Figure 7.5a). The VEA scores for the efficient DMU B and the inefficient DMU E will

be equivalent to their corresponding DEA ones, since at least one among the weight
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Figure 7.5: VEA efficient frontier for different MPS specifications
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vectors that are optimal for these DMUs in DEA are contained in F#. On the other
hand, this does not occur for the remaining DMUs, which are indicated by a red color
in Figure 5a. The VEA scores for these DMUs will be lower than those of the DEA

(d) MPS: DMUs C and D

model, meaning that DMUs C and D drop from the efficiency list.

In a similar manner we can define:

FE=FB =78 ={H, H;}, F, =F§=F¢={H;,H,}, FO=FP=FP={H, Hs}

FyP = FiP = (H,}, FY =FF¢ ={Hs}, F{P =F{P = {H,}
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for the remaining options the DM has for choosing the MPS. From that we can see that
F¥ contains only a single vector of strictly positive weights, i.e., H, or Hs, when the
MPS is a combination of two efficient DMUSs, since in this case the number of DMUs
inRy isequalto I +] — 1 = 2. The case where the DM chooses DMUs C and D as
the MPS is portrayed in Figure 7.5b, in which where we see that, apart from DMUs C

and D, only DMU 1 has an optimal weight vector contained in F&P.

7.4. Main results

We may now relate the efficiency scores provided by the CR(II)-DEA, the CR(U)-DEA,
and the EXFA-CR-DEA model to those of the VEA model, when the set of the model
DMuUs in CR-DEA coincides with that of the DMUs comprising the MPS in VEA, i.e.,
when R.g = Ry =R € E. In such a case, the four models have the same objective
function but different feasible regions, which are however subsets of one another. We
consider between two cases, namely the case of a single model DMU and the case of
multiple model DMUs, and we demonstrate these relations through our illustrative

example in Table 1.

7.4.1. Single model DMU

In this case, it is evident from relations (7.3), (7.4) and (7.5) that F = F¥ = F¥ and
thus, the CR(II)-DEA and CR(U)-DEA models provide the same efficiency scores. Let
us assume, for example, that DMU A is chosen as the model DMU in CR-DEA and as
the MPS in VEA. Then, the sets of feasible weight vectors in the three variants of the
CR-DEA model and the VEA model are related as follows:

Fiéxra-cr = {Ha} © ?élR(H)E?fIqETAE Fi = TéqR(U)E?%:{HIIHZ}

from which we deduce that the same efficiency scores will be obtained from the CR-
DEA (CR(I)-DEA or CR(U)-DEA) and VEA models. These scores will be greater than
or equal to those obtained from the EXFA-CR-DEA model, since in that all DMUs are
evaluated based only on the weight vector H,, while they may or may not secure a
larger efficiency score based on the weight vector H;. The same is the case when DMU
D is the model DMU or the MPS: F2,._.r contains only the weight vector H,, while

the sets of feasible weight vectors for the other three models contain also Hs. On the
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other hand, when R = {B}, the sets of feasible weight vectors in the three variants of
the CR-DEA model and the VEA model are related as follows:

TEBXFA—CR ={H, H3} = T(?R(H) = T? =FB = 7’5 = TgR(U) = T%

In this case we see that the set of feasible weight vectors for all four models coincide
with each other, and the same efficiency scores will be obtained from each model. The
same is true when DMU C is the model DMU or the MPS. Thus, when a single DMU
k € E is chosen as the model DMU or as the MPS, the relation between the sets of

feasible weights in the CR-DEA models and the VEA model is given as:

Fixra-cr S :FCI'CR(H) =Ff=F=Fj= Té"'R(U) =F (7.18)

and the relation between the efficiency scores obtained, for each evaluated DMU, from
these models is given as:

K k _ pok _ pok
Ogxra—cr < Ocray = O = 02y (7.19)

where 0 corresponds to the relevant efficiency scores. Thus, we have:

PRoOPOSITION 7.1 (Olesen and Petersen, 2003): Given a single model DMU or MPS, a
VEA model provides equal efficiency scores to a CR-DEA model in which the set of
feasible weight vectors is determined by those that are optimal in DEA for the model
DMU

which confirms the first inference in Olesen and Petersen (2003) about the relation of
VEA and CR-DEA models. Relation (7.18) is also deduced by comparing relations
(7.10), (7.11), (7.13) and (7.15) when only one DMU is included in R.

Notice that in the general case given by relation (7.18) the model DMU may not
generate at least one FDEF of the DEA frontier. In this case F¥yra_cr = @ and the
EXFA-CR-DEA model will not provide a feasible value for 2., _ .. However, in the
case where the model DMU generates at least one FDEF of the DEA frontier, then we

have:

PROPOSITION 7.2: Given a single model DMU that generates at least one FDEF, the
efficiency scores of a VEA model in which this DMU is the MPS are greater than or
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equal to the scores of a CR-DEA model in which the set of feasible weight vectors is
given by those vectors with strictly positive input/output weight components, that are
optimal in DEA for the model DMU.

This establishes the relation between the scores of the VEA and the EXFA-CR-DEA
models for the case of a single model DMU.

7.4.2. Multiple model DMUs

In this case one needs to distinguish between CR-DEA models, in which the set of
feasible weight vectors is given by the intersection (i.e., CR(I)-DEA) or the union
(CR(U)-DEA) of the sets of weights that are optimal in DEA for each of the model
DMUs. This is because in this case it holds that F, ) S FZy ) and thus the CR(U)-
DEA model results in efficiency scores that are greater than or equal to those obtained
from CR(I)-DEA. In particular, from the relations in (7.10), (7.11), (7.13) and (7.15),
we obtain the following relation between the sets of feasible weights for the three CR-
DEA variants and VEA:

Fora-cr € Flaqy EFT = FF S Floy =F (7.20)

This leads to the following:
R R _ R R
Opxra—cr < GER(H) =0y~ < GER([U) (7.21)

which establishes the relations between the efficiency scores obtained, for each
evaluated DMU, from the three CR-DEA variants and VEA for the case of multiple
model DMUs.

In particular, considering first the CR(U)-DEA and VEA models, we see from
the relation in (7.21) that the VEA efficiency scores are lower than or equal to those
provided by the model provides equal efficiency scores to the CR(U)-DEA model. To
demonstrate this, consider for example, that R = { 4, B}, then the sets of feasible
weight vectors for the evaluated DMUs in the CR(U)-DEA and the VEA models are
related as follows:

F9P ={Hy} c TE‘lRB(uJ) = F{® = { Hy, H,, Hs}
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in which case the DMUs may secure a larger efficiency score in the CR(U)-DEA model
based on one of the weight vectors H, and H; compared to H,, which is the only choice
in the VEA model. The same is true when R = {B,C} and R = {C, D}, since these sets
contain jointly efficient DMUs. A similar relation cannot be provided when R is equal
to either {4, C},{A, D}, or {B, D}, since the DMUs in these sets do not jointly generate
a DEA facet. In these cases, only the CR(U)-DEA model provides feasible solutions.

Thus, we have:

PRoOPOSITION 7.3: Given a set of model DMUs that are jointly efficient, a VEA model
in which these DMUs comprise the MPS provides a lower bound for the efficiency
score of a CR-DEA model in which the set of feasible weights is given as the union of
the sets containing the weight vectors that are optimal in the DEA model for each of
the model DMUs

We now show that the inference in Olesen and Petersen (2003) about the relation of
CR-DEA and VEA models for the case of multiple model DMUs, is true. More
specifically, when each of the extreme-efficient DMUs A, B, C, and D in our illustrative
example is the MPS, the sets of feasible weight vectors in the VEA model are given as
F4& ={H,H,}, F& ={H,,H;}, F$ = {H3, H,} and FD = {H, Hs} respectively.
Furthermore, when DMUs A and B are chosen as model DMUs in a CR(U)-DEA model,
the set of feasible weight vectors is given as F¢gyy = Fii® = { Hy, Hy, Hz}. From

these we obtain the following relation:
Férw = F® = (Hy Hy Hs} = FRUFY

namely that the set of feasible weight vectors for the CR(U)-DEA model is the union
of sets containing the feasible weight vectors in the two VEA models in which DMUs
A and B are respectively the MPS. A similar relation can be deduced when any other
combination of the DMUs A, B, C, and D is chosen as model DMUs in a CR(U)-DEA

model. Thus, we have:

Flhwy = Urer Fl (7.22)
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namely that the set of feasible weight vectors for the CR(U)-DEA model given a set R
of model DMUs is the union of sets containing the feasible optimal weight vectors in
every VEA model in which one of the DMUs in set R is used as the MPS. This means
that the efficiency score of the CR(U)-DEA model can be obtained as follows:

R _ k
Ocrw) = I,'?e%%‘{et? } (7.23)

Thus, we have:

PROPOSITION 7.4 (Olesen and Petersen, 2003): Given a set R of model DMUSs, the
efficiency scores of a CR-DEA model in which the set of feasible weights is the union
of the sets containing the weight vectors that are optimal in the DEA model for each of
the model DMUs can be obtained, for each evaluated DMU, as the maximum among
the efficiency scores obtained from a number of VEA models equal to the number of
DMUs in R, each of which uses a single model DMU k € R as the MPS

The relation in (7.23) can be rewritten, using relation (7.19), as follows:

oR  _ o,k _ ok
Ocrw) = ?E%({QCR(H)} = rl?e%é({gcR(uJ)} (7.24)

which demonstrates that, in the case of multiple model DMUSs, the efficiency scores of
the CR(U)-DEA can also be obtained as the maximum among the efficiency scores of
different CR-DEA models using one of the DMUs in set R as the model DMU. We

thus have:

PROPOSITION 7.5: Given a set R of model DMUSs, the efficiency scores of a CR-DEA
model in which the set of feasible weight vectors is defined as the union of the sets
containing the weight vectors that are optimal in the DEA model for each of the model
DMUs can be obtained as the maximum among the efficiency scores obtained from a
number of CR-DEA models equal to the number of DMUs in R, each of which uses a
single DMU k € R as the model DMU.

We now consider the relations between the CR(I)-DEA and VEA models. From the
relation in (7.21) we see that that the VEA model provides equal efficiency scores to
the CR(I)-DEA model, provided that the DMUs in set R jointly generate at least one

facet of the DEA frontier. Thus, we have:
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PROPOSITION 7.6: Given a set of model DMUs that are jointly efficient, a VEA model
in which these DMUs comprise the MPS provides equal efficiency scores to a CR-DEA
model in which the set of feasible weight vectors is defined as the intersection of the
sets containing the weight vectors that are optimal in the DEA model for each of the
model DMUs

We now show that relation similar to that deduced by Olesen and Petersen (2003) for
the about the CR(U)-DEA and the VEA model in the case of multiple model DMUSs,
can also be obtained for the CR(I)-DEA and the VEA models. In particular, when
DMUs A and B are chosen as model DMUs in a CR(I)-DEA model, we obtain the
following relation between the sets of feasible weight vectors in the CR(I)-DEA model
and in the VEA models in which either DMU A or B is the MPS:

Féam = Fi¥ ={H} =F)nFy

namely that the set of feasible weight vectors for the CR(I)-DEA model is the
intersection of the sets containing the feasible weight vectors in the two VEA models
in which DMUs A and B are respectively the MPS. A similar relation can be inferred
when R = {B,C}and R = {C, D} ina CR(I)-DEA model. Thus, we have the following

relation:

Flray = Nkex F (7.25)

For some for the evaluated DMUs, one of the weight vectors that are optimal (i.e.,

maximize the DMU’s efficiency) within each of the F%, k € R will also be included

in Tg;(ﬂ), in which case one can obtain the CR(I)-DEA efficiency scores as 93;3%1) =

l’krleijlél{e‘?'k}. For other DMUs, F%, ;; may not contain any of the weight vectors that are

optimal within each of the F}, k € R. In these cases, 6, < rlzlelglel{ggk} Thus, we

have that:
Ocray < min{6y*} (7.26)

which leads to the following:
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PROPOSITION 7.7: Given a set R of model DMUs, the efficiency scores of a CR-DEA
model in which the set of feasible weight vectors is the intersection of the sets
containing the weight vectors that are optimal in the DEA model for each of the model
DMUs are lower than or equal to the minimum among the efficiency scores obtained
from a number of VEA models equal to the number of DMUs in R, each of which uses
a single model DMU k € R as the MPS

Thus, in the case of multiple model DMUs the minimum among a series of VEA
models, each of which uses one of the model DMUs as the MPS, provides an upper
bound for the efficiency scores of the CR(I)-DEA model. Notice that this upper bound
can also be obtained using CR-DEA instead of VEA models. In particular, we can use
relation (7.19) to rewrite the inequality in (26) as

R . k . k
ggR(H) = gcrg}zl{ggR(H)} = r,\{gjgl{eg;z(m) (7.27)

We thus have:

PROPOSITION 7.8: Given a set R of model DMUSs, the efficiency scores of a CR-DEA
model in which the set of feasible weight vectors is defined as the intersection of the
sets containing the weight vectors that are optimal in the DEA model for each of the
model DMUs are lower than or equal to the minimum among the efficiency scores
obtained from number of CR-DEA models equal to the number of DMUs in R, each of
which uses a single DMU k € R as the model DMU.

Considering the relation between the efficiency scores obtained from the VEA and the
EXFA-CR-DEA model in the case of multiple model DMUs, note that for the EXFA-
CR-DEA model to result in feasible solutions, the model DMUs need not only to be
jointly efficient but also jointly generate at least one FDEF. In this case we have the

following from relation (7.21):

PROPOSITION 7.9: Given a set of model DMUs that are jointly efficient and generate at
least one FDEF of the DEA frontier, a VEA model in which these DMUs comprise the
MPS provides an upper bound for the efficiency score of a CR-DEA model in which

the set of feasible weight vector contains only vectors with strictly positive input and
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output weight components, each of which is optimal in the DEA model for all the model
DMUs

A special case of the above relation arises when the number of DMUs in set R equals
the largest number of DMUs that can jointly generate a facet of the DEA frontier. In
our illustrative example this number is equal to two DMUs. If, for example, R =
{A, B}, then the sets of feasible weight vectors for the evaluated DMUs in the CR-DEA

models and the VEA model are related as follows:

Fixra-cr = {Ha} = Fégay = Fi¥ = F§P © Féguy = FG® = {Hy, Ha Hs)

in which case the same efficiency scores are obtained from the EXFA-CR-DEA and
the VEA models for each evaluated DMU, since both models will evaluate each DMU
based on a common vector of strictly positive input and output weights. The same is
true when R = {B,C} and R = {C, D}, since these sets contain jointly efficient DMUs.
A similar relation cannot be provided when R is equal to either {4, C},{A, D}, or {B, D},
since the DMUs in these sets do not jointly generate a DEA facet. Thus, when the set
R comprises of exactly I + ] — 1 (in CRS models) or I + ] jointly efficient DMUs (in
VRS models), the relation between the sets of feasible weight vectors in the CR-DEA

models and the VEA model is given as:

FRra-cr = Tg%(ﬂ) = FR=Ffc Tg;(m =F¥ (7.28)

and the relation between the efficiency scores obtained, for each evaluated DMU, from

these models is given as:

R _ n0R _ poR R
Opxra-cr = HgR(n) =0y < BSR(U) (7.29)

respectively. Thus, we have:

COROLLARY: Given a set of I +] — 1 (I +]) jointly efficient model DMUs, a CRS
(VRS) VEA model in which these DMUs comprise the MPS provides equal efficiency
scores to a CRS (VRS) CR-DEA model in which the set of feasible weight vectors
contains only vectors that (i) are optimal the DEA model for all the model DMUs, and

(i) contain strictly positive input and output weight components
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Lastly, one can use the results in Propositions 7.6 and 7.7 to obtain a relation concerning
the VEA efficiency scores in the case that multiple DMUs comprise the MPS. In

particular, combining relations (7.21) and (7.26), we obtain:
o,R . o,k
Oy < rlgleljrel{ev } (7.30)
which results to the following Proposition:

PROPOSITION 7.10: Given a set R of jointly efficient DMUs, the efficiency scores of a
VEA model in which these DMUs jointly comprise the MPS are lower than or equal to
the minimum among the efficiency scores obtained from a number of VEA models
equal to the number of DMUs in R, each of which uses a single DMU k € R the MPS.

Lastly, from the relations in (7.21), (7.24), (7.27) and (7.30) we get the following:

o,R oR _ poR . o,k _ . o,k _
OrpEr-cr < Ocray = Oy < r,?eljrel{gv } = r,?eljrel{gc;a(n)} =

= min{6¢n )} < max{69*} = max{6%4 )} = max{02ky)} = 0%,

(7.31)

which provides an overview of the identified relations between the three CR-DEA
variants and VEA in the case that multiple DMUs are chosen as model DMUs or
comprise the MPS.

An immediate implication of our theoretical results is that, given an arbitrary
set of model DMUs, the efficiency scores of different CR-DEA variants can be
estimated or approximated by means of either a single VEA model or a series of VEA
models. In particular, the CR(I)-DEA efficiency scores can be obtained by estimating
a VEA model in which the model DMUs jointly comprise the MPS, while the CR(U)-
DEA scores can be obtained by estimating a series of VEA models, each of which uses
a different DMU among those in set R as the MPS, and then choosing--for each
evaluated DMU--the maximum among those VEA efficiency scores. On the other
hand, an upper bound for the EXFA-CR-DEA scores can be obtained by means of a
VEA model in which the model DMUs jointly comprise the MPS, while if the number
of DMUs in set R isequal to I + ] — 1 in CRS models (or I + J in VRS models) then
the VEA model will provide efficiency scores that are equal to those of the EXFA-CR-
DEA model. The practical usefulness of these results for empirical applications is that
the estimation process of CR-DEA efficiency scores is simplified. In contrast to the

186



CR-DEA models, which would require identifying the facets of the DEA frontier in a
prior step, the estimation of VEA models involves simply changing some linear
inequalities in the DEA model in (7.1) to equalities.

The discussion in this section concerned model DMUs or MPSs chosen among
the set of extreme-efficient DMUs. However, the above results also hold if the DM
chooses a non-extreme efficient DMU as model DMU or as the MPS. The same is true
for choosing a weakly efficient DMU, except for the results concerning the EXFA-CR-
DEA model. The cone of feasible weights in this model includes only vectors with
positive input and output weight components. Thus, this model will not have a feasible
solution when a weakly efficient DMU --for which all optimal weight vectors in model
(7.1) contain at least one zero input or output weight component-- is included in the set
of model DMUs.

In case the DM includes a DEA-inefficient DMU in the set of model DMUs, it
is straightforward from the model in (7.14) that the VEA model will not provide feasible
solutions, despite the fact that F* for this DEA-inefficient DMU will include at least
one weight vector. This is because the model in (7.14) cannot provide feasible solutions
if at least one among the DMUs comprising the MPS has an efficiency score lower than
unity, as in this case the second set of restrictions would be violated. However, this
inconvenience can be circumvented by using as the MPS the chosen DMUs’ radial
projection (v, x{") = (¥, 0fzax{), where 6f, is the efficiency score obtained by
the model in (1) for the DMU. By definition, the set F¥' for (y¥', x¥") contains the same

weight vectors as the set F*. Thus, the results in this paper hold also when a DEA-
inefficient DMU is among the set of model DMUs, provided that its radial projection is
used as the MPS in the VEA models estimated in order to obtain the CR-DEA efficiency

scores.
7.5. Empirical application: Japanese regional banks

7.5.1. Preliminaries

In this section we demonstrate our theoretical findings by using a sample of Japanese
regional banks. The Japanese banking sector has endured several hurdles in the last
decades, including the busting of the real estate bubble in the 1990s, the global financial
crisis of 2008 (Hoshi and Kashyap, 2010) and the Great East Japan Earthquake in 2011
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(Kourtzidis et al., 2021). As such, it has undergone major changes including continuous
government interventions to stabilize it.!** These changes, along with specificities in
the Japanese banking system compared to that of other developed economies have
attracted much scientific interest in assessing the performance of Japanese banks. The

majority of these studies has used DEA models for evaluating efficiency.'?

7.5.2. Sample, variables and modelling choices

Japanese regional banks usually operate with the boundaries of a specific prefecture.
There are two distinct groups, namely those being members of the Regional Banks
Association of Japan (hereafter Regional Banks 1) and those comprising the Second
Association of Regional Banks (Regional Banks 11).112 The latter were originally joint
stock companies (“Sogo Banks™), which were allowed to convert into ordinary regional
banks in the end of the 1980s (Fukuyama, 1993). The two groups of banks are
nowadays very similar in their operations but differ in various aspects such as their size
and the restructuring processes underwent in the past (see, e.g., Drake et al., 2003).

For our purposes, we use a sample of 30 regional banks for the fiscal year
2017.11* These comprise roughly 30% of the 105 regional banks (64 of Regional Banks
| and 41 of Regional Banks I1) operating in that year and their selection is based on
their relative size expressed as their share of deposits over the total sample deposits. In
particular, among the banks for which complete data was available (51 of Regional
Banks | and 23 of Regional Banks Il) we have selected the 20 largest among the
subsample of Regional Banks | and the 10 largest among the Regional Banks I
subsample.

The selection of inputs and outputs follows the intermediation approach, in
which banks are viewed as intermediates between borrowing and lending entities
(Berger & Humphrey, 1992). In particular, we use three inputs, namely the total
number of employees and the stocks of fixed assets and deposits, and two outputs,
namely the stocks of loans and security investments. All variables except the number

111 See Fukuyama (1993) and Fukuyama and Weber (2002) for an overview of developments in the
Japanese baking system since the 1990s reforms.

112 5ee Kourtzidis et al. (2021) for a recent detailed review of these studies.

113 A full list of members in those groups is provided in JBA (2019).

114 The Japanese fiscal year begins on April 1%, end ends the following year on March 31,
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of employees are measured in million Yen and were collected from the banks’ balance
sheets which are publicly provided by the Japanese Banks’ Association. Data for the
number of employees are collected from DataStream. Descriptive statistics of the
model’s variables are given in Table 7.2. In line with the majority of studies using DEA
to assess banking performance (see, e.g., Fethi and Pasiouras (2010) for a review) our
models are input-oriented. We adopt constant returns-to-scale, which is a reasonable
modelling choice as the two groups of regional banks nowadays perform similar
operations and operate under the same framework (Kourtzidis et al., 2021).

7.5.3. Empirical results.

The names of the selected banks are given in column (1) of Table 7.3, while column (2)
portrays respectively each bank’s regional group (I or II). The DEA efficiency scores
are given in column (3). The average efficiency score is 0.946, indicating that, on
average, a bank could attain its given production of loans and securities with roughly
5% less input usage. This rather low level of inefficiency resonates with (i) latest
evidence for improvements in Japanese banking performance in the years after the 2011
Earthquake (Kourtzidis et al., 2021) and (ii) historical evidence that larger Japanese
banks --which comprise our sample--perform relatively well (see, e.g., Fukuyama,
1993; Drake and Hall, 2003). Additional room for performance improvement appears
to be larger for Regional Banks 11, which are on average less efficient compared to those
belonging to the first group (average score 0.918 versus 0.961). There are 10 efficient
banks, eight from group I and two from group II.

Let us now assume that DMs (e.g., authorities such as the Bank of Japan) wish
to compare the performance of each bank in the sample to that of some model banks by
means of CR-DEA models. These model banks will be some among those technically
efficient in Table 7.3, which are viewed as excellent performers. For example, given
that SMEs financing is a core part of the regional banks’ operations and also vital for
the local economy (see, e.g., Fukuyama, 1993), excellence could be viewed as having
an output mix relying heavily on loans. In this case, Kansai Urban Banking Corporation
should be chosen as the model, as it has the largest share of loans in its output mix
among the efficient banks. Alternatively, excellence might be viewed as receiving good
ratings by international credit rating organisations. Chiba bank is an efficient bank that
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Table 7.2: Descriptive statistics of model variables

fixed assets employees  deposits loans (bn investment

(bn ¥) (thousands) (bn ¥) ¥ securities (bn ¥)
average 50.011 2.767 4961.282 3755.226 1463.122
minimum 23.871 1.448 1849.584 1385.955 154.340
maximum 96.120 4.543 11565.778 9305.388 3242.629
median 43.393 2.671 4649.862 3371.830 1459.670
standard deviation 20.649 0.903 2263.679 1817.374 848.512

had high credit ratings in the period prior to 2017 (Kourtzidis et al., 2021) and thus
could be another choice for the model bank.

To estimate the two CR-DEA models (CR(I)-DEA or CR(U)-DEA, as in these
cases their scores are equivalent) in which the model bank is respectively Kansai Urban
Banking Corporation and Chiba Bank, one would need to identify (possibly by means
of the Qhull sofware) all facets generated by each of these two banks --irrespective of
their dimension-- and the weight vectors associated with each facet. Then, for each
evaluated DMU, efficiency scores should be estimated using each different weight
vector and the maximum among these scores would be the DMUs’ CR-DEA score. By
virtue of Proposition 7.1, these scores can be obtained by means of VEA models in
which the model banks are the MPS. The associated VEA efficiency scores are given
in columns (4) and (5) of Table 7.3. From that we see that six banks drops from the
efficient frontier when Kansai Urban Banking Corporation is used as the model bank,
all of which are Regional Banks I. Average efficiency score drops to 0.918, while 21
banks in total exhibit efficiency declines compared to the DEA model. The authorities
could advice these banks to shift their output mix more towards loan provision in the
future. On the other hand, when Chiba Bank is the model bank, average efficiency is
equal to 0.908 and 20 out of the 30 sample banks have lower efficiency scores compared
to their respective DEA ones.

Alternatively, membership in the first or in the second Association of regional
banks could be used as a criterion for choosing the model banks. Although at present
there are no functional differences between banks of the two Associations, the two
groups differ in certain aspects. For example, Regional Banks | are larger than those in
group Il and, as is the case in the resent study, they also tend to perform better on
average (see e.g., Barros et al., 2012; Kourtzidis et al., 2021). Based on this, DMs

could opt for a model bank that is part of group I. Second, banks of the Second Regional
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Table 7.3: Empirical results from CR-DEA and VEA models for a sample of Japanese banks, 2017

1) (2) (3) 4 (5) (6) ) (8) 9) (10) (11)
Bank group DEA VEA VEA VEA VEA CR(U)-DEA VEA min{(8),(9)} EXFA-CR-DEA
ID of model/MPS bank(s) - {554} {134} {143} {525} {143,525} {143,525} - {143, 525}
Chiba Bank | 1.000 0.985 1.000 1.000 0.985 1.000 0.981 0.985 0.981
Shizuoka Bank | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Joyo Bank | 0.983 0.937 0.983 0.971 0.942 0.971 0.940 0.942 0.940
77 Bank | 1.000 0.866 1.000 1.000 0.901 1.000 0.901 0.901 0.901
Hiroshima Bank | 0.981 0.978 0.981 0960 0.979 0.979 0.960 0.960 0.960
Bank of Kyoto | 1.000 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Gunma Bank | 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Hachijuni Bank | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Chugoku Bank | 1.000 0.936 0.974 1.000 0.982 1.000 0.982 0.982 0.970
Juroku Bank | 0.883 0.879 0.855 0.883 0.883 0.883 0.883 0.883 0.883
Toho Bank | 0.865 0.808 0.865 0.863 0.815 0.863 0.815 0.815 0.815
lyo Bank | 0.992 0.978 0.961 0.988 0.992 0.992 0.988 0.988 0.988
Ogaki Kyoritsu Bank | 0.991 0991 0911 0991 0.991 0.991 0.991 0.991 0.975
Yamaguchi Bank | 0.890 0.890 0.747 0.890 0.890 0.890 0.890 0.890 0.859
Nanto Bank | 0.895 0.869 0.885 0.895 0.895 0.895 0.895 0.895 0.895
Hyakugo Bank | 1.000 0.845 0.864 0.950 0.926 0.950 0.926 0.926 0.895
Shiga Bank | 0.960 0.953 0.952 0.956 0.960 0.960 0.956 0.956 0.956
Daishi Bank | 0.937 0.898 0.913 0.937 0.935 0.937 0.935 0.935 0.929
Higo Bank | 0.922 0.904 0906 0.922 0.922 0.922 0.922 0.922 0.922
Suruga Bank | 0.909 0.909 0.884 0.853 0.873 0.873 0.853 0.853 0.853
Keiyo Bank 1l 0.933 0.932 0.931 0.908 0.933 0.933 0.908 0.908 0.908
Kansai Urban Banking Corporation 1l 1.000 1.000 0.950 1.000 1.000 1.000 1.000 1.000 1.000
Bank of Nagoya 1l 0.896 0.887 0.871 0.896 0.896 0.896 0.896 0.896 0.896
Minato Bank 1l 0.893 0.893 0.793 0.893 0.893 0.893 0.893 0.893 0.877
Aichi Bank 1l 0.951 0.843 0.859 0.905 0.897 0.905 0.894 0.897 0.877
Tochigi Bank 1l 0.830 0.830 0.775 0.830 0.830 0.830 0.830 0.830 0.825
Yachiyo Bank ] 0.849 0.810 0.769 0.847 0.849 0.849 0.847 0.847 0.829
Towa Bank ] 0.884 0.829 0.791 0.884 0.884 0.884 0.884 0.884 0.857
Ehime Bank ] 0.948 0.924 0.879 0941 0.948 0.948 0.941 0.941 0.931
Higashi-Nippon Bank ] 1.000 1.000 0.942 1.000 1.000 1.000 1.000 1.000 1.000
efficient banks 10 4 6 9 6 9 6 6 6
average 0.946 0.918 0.908 0.939 0.933 0.942 0.930 0.931 0.924

191



Association have undergone a different restructuring process in the turn of the century
compared to Regional Banks I. Both groups received capital injections but regional
banks Il had to cope with their bad loans by themselves. On this basis, one could argue
that the efficient regional banks 11 have accumulated significant managerial abilities as
a result of enduring more turbulence over the years.

Let us assume that DMs choose one model bank from each of the two groups
(Hachijuni Bank from group | and Higashi-Nippon Bank from group I1) and force each
evaluated bank to be compared with at least one of the two model banks by means of a
CR(U)-DEA model. This could be a compromise solution to disagreements among
DMs on which of the two should be used as model bank. It could also reflect the view
that smaller banks (group I1) should not be forced to compare their performance to that
of a medium-sized bank (the group | model bank) and vice versa. The CR(U)-DEA
efficiency scores can, by virtue of Proposition 7.4, be obtained without the need to
identify the cone of feasible weights as the maximum among the efficiency scores of
two different VEA models in which Hachijuni Bank and Higashi-Nippon Bank are
respectively the MPS. The scores of these two VEA models are given in columns (6)
and (7) of Table 7.3, while the CR(U)-DEA score (their maximum) is given in column
(8). From that we see that only one bank drops from the efficient frontier while the
average efficiency score is only slightly below that of the DEA model (0.942 versus
0.946). It is interesting to notice that, for three banks of the regional I group (lyo Bank,
Shiga Bank, and Suruga Bank) the CR(U)-DEA efficiency score corresponds to the
score of the VEA model in which the MPS is a group Il bank (Higashi-Nippon Bank).
The reverse holds for Aichi Bank which is part of the regional 11 group. This could be
taken as evidence that the operations of banks from different Regional Associations
have over time converged enough, so that banks of the one Association can serve as
benchmarks for banks in the other.

The similarities in the operations of regional banks I and Il is also indicated by
the fact that banks of both Regional Associations appear as peers for inefficient banks
in the DEA model. This is the case for Hachijuni Bank and Higashi-Nippon Bank as
well. Thus, DMs could have also used a CR(I)-DEA model in which the set of model
DMuUs includes both these banks for performance evaluation. By virtue of Proposition
7.6 the scores of such a model are equivalent to those of a VEA model in which

Hachijuni Bank and Higashi-Nippon Bank jointly comprise the MPS and are given in
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column (9) of Table 7.3. We see that average efficiency declines slightly compared to
that of the DEA model while four banks drop from the efficiency list, all of which are
part of group I. For comparison, the minimum among the scores of the two VEA
models in which Hachijuni Bank and Higashi-Nippon Bank are used as the sole MPS
(i.e., the minimum of the scores in columns (6) and (7) for each bank) is given in column
(10). A comparison among the scores in columns (9) and (10) reveals that, for each
bank, the former score is lower than or equal to the latter. In particular, there are three
banks (Chiba Bank, Joyo Bank, and Aichi Bank) for which the VEA score in column
(9) is lower than the minimum among the scores in columns (6) and (7). This is in
accordance with Propositions 7.7, 7.8 and 7.10. In addition, by comparing the scores
in columns (8) and (9), we see that the efficiency scores of the VEA model, in which
Hachijuni Bank and Higashi-Nippon Bank jointly comprise the MPS, are lower than or
equal to those of the CR(U)-DEA maodel, in which these two banks are the models. This
is in accordance with Proposition 7.3.

Lastly, let us assume that DMs choose as Hachijuni Bank and Higashi-Nippon
Bank as the model banks but also wish to evaluate all banks based on well-defined input
and output weights using an EXFA-CR-DEA model. This would require estimating
the mixed-integer model in (7.12). Alternatively, following the approach outlined in
Thanassoulis et al. (2008), one would need to identify all the FDEFs jointly generated
by Hachijuni Bank and Higashi-Nippon Bank and the weight vectors that are normal to
each of them, estimate the efficiency scores of each banks using each of these weight
vectors and selecting the maximum among these scores. Using the approach outlined
in Davtablab-Olyaie et al. (2014), we identified three FDEFs jointly generated by the
two model banks and the weight vectors normal to each of them.'*® We estimated the
efficiency scores of each evaluated bank using each of these weight vectors and selected
the maximum among these scores, which is given in column (11) of Table 7.3.
Comparing these with the scores of the VEA model in which the two model banks

jointly comprise the MPS (column (9)), we see that the efficiency scores of VEA model

115 These FDEFs are generated by Hachijuni Bank and Higashi-Nippon Bank jointly with (i) Shizuoka
Bank and Gunma Bank, (ii) Shizuoka Bank and Kansai Urban Banking Corporation, and (iii) Bank of
Kyoto and Gunma Bank.
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constitute an upper bound for those of the EXFA-CR-DEA model. This is in

accordance with Proposition 7.9.

7.6. Concluding remarks

CR-DEA models are suitable for incorporating DM views about excellent performing
DMUs that should serve as role-models for others. However, their estimation has up
to today remained rather complicated task as it required to identify all the efficient
facets of the DEA frontier and the weight vectors normal to each of them.

In this paper, we elaborated more on the relations between VEA and CR-DEA
models including DM preferences in the form of model DMUs for two different
specifications for the set of model DMUs, namely that it comprises of a single DMU
and that it contains multiple DMUs.  In the latter specification we distinguished
between two CR-DEA variants, namely CR(I)-DEA and CR(U)-DEA, in which the set
of feasible weights is respectively specified as the intersection and the union of the sets
containing the weight vectors that are optimal in DEA for each model DMU. In
addition, for both settings we considered the EXFA-CR-DEA model, for which the set
of feasible weight vectors contains only those vectors with strictly positive components,
each of which is optimal in DEA for all the model DMUs. Our results suggest that in
both specifications, EXFA-CR-DEA provides the minimum efficiency score among all
four models, CR(U)-DEA provides the maximum score, while VEA and CR(I)-DEA
provide equal scores to each other. In addition, the only difference in the four models’
relations across the two specifications lies in the relation between VEA and CR(U)-
DEA. The two models provide equal efficiency scores for the case of a single model
DMU, while when there are multiple model DMUs the CR(U)-DEA efficiency scores
are larger than or equal to those of VEA.

The results of this paper provide a detailed overview of the relations between
VEA and CR-DEA models. These extend earlier inferences in the relevant literature
and provide a means to simplify the estimation of CR-DEA models. In particular, and
regardless of the number of model DMUs chosen by the DM, estimating a VEA model
or a series of VEA models suffices to obtain the efficiency scores of the CR(I)-DEA
and the CR(U)-DEA models respectively. Our results can accommodate the inclusion
of a DEA-inefficient DMU in the set of model DMUs, while they also hold for different

returns-to-scale assumptions. As regards returns to scale, VRS VEA models have been
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shown to provide unacceptable (e.g., zero and negative) efficiency scores (Korhonen et
al., 2002). A promising avenue for future research would be to investigate, based on
the results identified in the paper, the implications of this for the efficiency scores of
different CR-DEA models.
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CHAPTER 8

Concluding remarks
8.1. Summary

The aim of this thesis is to analyze several theoretical and empirical aspects of VEA.
VEA is a method that uses the notion of the MPS to incorporate the preferences of a
DM, namely a social planner, regulator, or manager, in the measurement of relative
technical efficiency through DEA models. Up to today, its use for decision-making
problems in which DM preferences are frequently accounted for, such as the evaluation
of effectiveness and cross efficiency, was not considered, while its potential
relationships with other approaches incorporating preferences in DEA models were not
thoroughly investigated.

Chapters two to four, which comprise the first part of this thesis, are the
empirical essays. In the first of them, we used VEA as an alternative for effectiveness
assessment by incorporating DMs’ views about the DMUs that are “doing the right
things” in the choice of the MPS. The VEA efficiency scores were then viewed as
effectiveness estimates and further decomposed into one component capturing
technical efficiency and another capturing the DMUs’ relative distance from the DM’s
range of desirable structures. We demonstrated the usefulness of the approach by using
it to assess the effectiveness of countries in utilizing their income to develop their
citizens’ social prosperity or human capabilities.

In the second empirical essay, we proposed the use of VEA as a means to
incorporate DM preferences in the construction of composite indicators, by developing
the VEA-BoD model. This was then used to re-estimate the UN HDI.

In the third empirical essay, we assessed the implications of MPS choice for the
VEA efficiency scores. We reviewed the various suggestions proposed for choosing

the MPS in the VEA literature and presented some new, which are based respectively
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on the relative position of efficient DMUSs on the DEA frontier, MPSS DMUs, the APU,
and common weights. Comparative empirical analysis regarding the effect of
alternative MPS choices on the VEA efficiency scores was provided using a dataset of
Greek cotton farms. The results provide useful information regarding the MPS choices
that are more likely to result in insignificant or excessive differences between the DEA
and the VEA efficiency scores, and the choices which are frequently similar to each
other in practice.

The second part contains three theoretical essays and comprises of chapters five
to seven. In the first theoretical essay, we related VEA to cross efficiency, namely the
notion of peer appraisal in DEA. Particularly, we showed that the VEA model is
equivalent to the TB cross efficiency model, provided that the “reference” DMU in the
TB model if it is an efficient one, or its radial projection on the DEA frontier if it is
inefficient, is chosen as the MPS in the VEA model.

In the second theoretical essay, we examined the relationship between VEA and
DEA models with weight restrictions and their dual production trade-offs and showed
that the VEA model can be viewed as a particular class of DEA models with production
trade-offs.  The coefficient vectors in these trade-offs, which are dual to Type Il
assurance region weight restrictions, are equal to the deviations of all evaluated DMUs’
input and output quantities from those of the DMUs chosen as the MPS. We also
showed that, if these Trade-Offs are considered only for the inputs or the output, then a
similar equivalence holds between pure output or input VEA models and DEA models
with production trade-offs.

In the last theoretical essay, we elaborated more on the relationship between
VEA and CR-DEA models that include preferences on efficient DMUs than DMs
consider as examples (model DMUs) for the remaining DMUs. We showed that,
provided that the model DMUs in CR-DEA are those that constitute the MPS in VEA,
the efficiency scores from a CR-DEA model in which the cone of feasible weight
vectors is specified as the intersection of the sets containing the weight vectors that are
optimal in DEA for each model DMU are equivalent to the VEA scores. In addition,
we showed that the VEA scores provide a lower and an upper bound for the scores
obtained from two other CR-DEA models. In the former case, the cone of feasible
weights in the CR-DEA model is given as the union of the sets containing the optimal

197



weight vectors for each model DMU, while in the latter case it consists only of the

strictly positive weight vectors that are jointly optimal in DEA for all the model DMUs.

8.2. Implications

The theoretical and empirical results obtained in the previous chapters have several
implications: first, the detailed and enlarged list of the various MPS choice presents
DMs and practitioners with a variety of alternative options to choose the MPS in
practice. It also provides insights regarding the rationale related to each choice and its
potential usefulness in particular performance evaluation cases. For instance, in the
case of a manager interested in reorganizing efficiently a group of retail branches, the
use of the APU as the MPS could provide useful insights, as the resulting efficiency
scores reflect the performance of DMUs from the perspective of centralized resource
allocation. On the other hand, the use of common weights in VEA may be preferred
when the DMUs need to be assessed against a common standard or should follow
organizational objectives rather than pursuing their own. Lastly, when the DM views
a particular input or output as the most important one in assessing performance, these
preferences could be reflected through the use of a best-in-input or a best-in-output
MPS.

Second, DMs and practitioners are presented with insights regarding the
practical implications of using alternative MPSs for the resulting efficiency scores. For
instance, using influential peers as the MPS in VEA is not expected to present DMs
with useful additional insights compared to those of the DEA model, while alternative
ways to select an influential peer as the MPS are also similar to each other in practice.
On the other hand, the use of other MPSs (such as the APU, an MPSS DMU, or a
combination of DMUs generating an FDEF) might offer interesting insights to
management that would complement those of the DEA model. Moreover, “end-point”
MPSs are more likely to imply an input/output bundle that is very dissimilar compared
to the bundles used by most DMUs, while different kinds of “end-point” MPSs might
imply different kinds of extreme bundles from each other.

Third, alternative economic interpretations are provided for the DMs’
judgements in VEA and the associated efficiency scores. More specifically, through
the equivalence of the VEA model with DEA models with production trade-offs, the
DM’s choice of the MPS can be interpreted as incorporating a particular form of
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additional trade-off relations in a DEA model. These trade-offs aim to restrict the
marginal rates of input substitution and output transformation for each assessed DMU
to take values among those that are observed in the neighborhood of the selected MPS.
On the other hand, one can also interpret the production trade-offs appended in DEA
models, when the resulting linear model is equivalent to a VEA one for a particular
MPS choice, as reflecting the judgements of a DM regarding the most preferred
input/output bundle. Thus, alternative interpretations can be provided for both the VEA
efficiency scores and those of DEA models with production trade-offs and their dual
weight restrictions.

Through the equivalence of the VEA model to the TB cross efficiency model,
the VEA scores can be interpreted as the most favorable (i.e., the TB) cross-efficiency
scores from the perspective of a particular “reference” DMU, namely the one chosen as
the MPS in VEA, while the TB cross-efficiency scores when a particular DMU is used
as a “reference” reflect also the judgements of a DM that views this “reference” DMU
has having the most desirable input/output bundle.

Moreover, the VEA efficiency scores can also be interpreted as empirical
estimates of the DMUs’ effectiveness, namely the extent that DMUs do the “right
things” such as follow behavioral or organizational objectives, norms of mandates or
abide by certain agreements set up with management. In this case, the DMU or the set
of DMUs chosen as the MPS are considered as those “doing the right things”, i.e., those
aligned the most with the specified objectives or most closely following agreements
and mandates.

Fourth, we showed for the first time that cross efficiency scores can be obtained
using the envelopment formulation of (VEA) linear models, rather than the multiplier
formulation of DEA models, which was the only way to obtain cross efficiency scores
up to today. This holds for a particular form of cross efficiency scores, namely those
obtained through the TB formulation, and is an implication of the equivalence of the
VEA model to the TB cross efficiency model.

Fifth, computational gains are provided in the estimation of particular DEA
models that are rather complicated or their estimation is time-consuming. More
specifically, the relations identified between VEA and the three CR-DEA models in the
seventh chapter allow estimating or approximating the efficiency scores of CR-DEA
models by means of VEA. The VEA models are less computationally demanding as
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they do not require to a priori identify the cone of feasible weight vectors. In addition,
significant shortcuts can be obtained in the estimation of the TB cross efficiency matrix
though the use of VEA models instead of the TB formulation by (i) providing the cross-
efficiency scores through the envelopment form of VEA rather than the multiplier one,
and (ii) estimating fewer linear models when there exist inefficient DMUs that are
projected on the same part of the strongly efficient DEA frontier.

Sixth, the empirical applications of the VEA model presented in the previous
chapters place VEA as a useful alternative for several cases of applied performance
evaluation. Particularly, as demonstrated in the second chapter, VEA can be used for
assessing effectiveness, the measurement of which is crucial in cases of an entity
centrally managing or coordinating a set of DMUs (such as branches of the same firm
or firms operating within the same sector), where certain directions and mandates are
given by the coordinating authority (the firm’s general manager or the sector’s planner)
and abiding by those is essential for the performance of the entity (i.e., the firm or the
sector) as a whole. In addition, the VEA-BoD model introduced in the third chapter is
a useful alternative for incorporating preference information in the construction of
composite indicators. The use of such indicators is increasingly widespread nowadays,
mainly attributed to their ability to communicate multifaceted information regarding
socio-economic phenomena in a reduced but concise form. Their construction however
frequently requires that the preferences of DMs, social planners, or even the public
regarding the relative importance of a phenomenon’s dimensions is taken into account.

This can be facilitated through the choice of the MPS in a VEA-BoD model.
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