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Summary (in English) 
 

The aim of this thesis is twofold: first, to examine the features of Value Efficiency 

Analysis (VEA) and second, to provide some innovative applications of it.  VEA is a 

performance evaluation method that incorporates managerial preferences in DEA 

models through the Most Preferred Solution (MPS), namely a real or artificial efficient 

DMU that has the most preferred input/output bundle or structure.   

The thesis’ first part comprises of three empirical essays.  In the first of them, 

we use VEA for the assessing effectiveness, namely the extent that DMUs are “doing 

the right things” such as following organizational objectives or abiding by agreements. 

This is demonstrated by using VEA to assess the effectiveness of countries in utilizing 

their income to develop their citizens’ social prosperity or human capabilities.   

In the second empirical essay, we introduce VEA to pure inputs DEA models 

by developing the VEA-Benefit-of-the-Doubt (BoD) model.  This model is an 

alternative to incorporating DM preferences in the construction of composite indicators 

of socio-economic phenomena, and is used to re-estimate the United Nations Human 

Development Index (HDI).   

In the third empirical essay, we review the list of suggestions for choosing the 

MPS in VEA and enlarge it with four additional ones. These are based on the relative 

position of efficient DMUs on the DEA frontier, the notions of the Most Productive 

Scale size (MPSS) and the Average Production Unit (APU), and common weights. We 

also conduct comparative empirical analysis of the effect of alternative MPSs on the 

VEA efficiency scores, the results of which provide useful information regarding the 

MPS choices that are more likely to offer additional insights to management compared 

to those of the DEA model, as well as those choices which are frequently similar to 

each other in practice.   

The second part of the thesis comprises of three theoretical essays.  In the first 

of them, we relate VEA to cross efficiency and show that the VEA model is equivalent 

to the Targetted Benevolence (TB) cross efficiency model.  This allows obtaining, for 

the first time, the cross efficiency scores from the envelopment form of the VEA model, 

while it provides shortcuts in the estimation of the TB cross efficiency matrix.  

In the second theoretical essay, we show that the VEA model can be viewed as 

a particular class of DEA models with production trade-offs or their dual weight 

restrictions.  The VEA efficiency scores can thus be interpreted as incorporating a 

particular form of trade-off relations in a DEA model, while the efficiency scores of the 

DEA models with these particular trade-offs can be viewed as reflecting the judgements 

of a DM regarding the most preferred input/output structure.   

In the third theoretical essay, we show that the VEA efficiency scores are 

equivalent to those obtained from Cone-Ratio (CR) DEA models that incorporate 

preferences about efficient DMUs that are considered as examples to follow (model 

DMUs) for the remaining DMUs, or provide upper/lower bound approximations of 

them. These relations allow obtaining or approximating the efficiency scores of CR-

DEA models by means of VEA models, which are less computationally intensive than 

CR-DEA models. 
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Summary (in Greek) 
 

Το αντικείμενο της παρούσας διδακτορικής διατριβής είναι η θεωρητική και εμπειρική 

διερεύνηση της μεθόδου της Αξιακής Ανάλυσης Αποτελεσματικότητας (ΑΑΑ). Η 

ΑΑΑ είναι μια μέθοδος εκτίμησης της σχετικής αποτελεσματικότητας των Μονάδων 

Λήψης Απόφασης (ΜΛΑ), η οποία περιλαμβάνει την ενσωμάτωση επιπλέον αξιακών 

περιορισμών στο υπόδειγμα της Περιβάλλουσας Ανάλυσης Δεδομένων (ΠΑΔ), μέσω 

της επιλογής της Πλέον Προτιμώμενης Λύσης (ΠΠΛ). Η ΠΠΛ είναι μια 

αποτελεσματική ΜΛΑ ή ένας αποτελεσματικός γραμμικός συνδυασμός ΜΛΑ, η οποία 

έχει το επιθυμητό μείγμα εισροών/εκροών.  

Το πρώτο μέρος της διατριβής αποτελείται από τρία εμπειρικά άρθρα. Στο 

πρώτο από αυτά, παρουσιάζεται η χρήση της ΑΑΑ ως εργαλείου για την εκτίμηση της 

αποδοτικότητας, δηλαδή του κατά πόσο η λειτουργία των αξιολογούμενων ΜΛΑ 

συμβαδίζει με δεδομένους στόχους (όπως οργανωτικοί στόχοι, συμφωνίες, κ.α.). Στην 

συνέχεια η ΑAΑ χρησιμοποιείται για να εκτιμηθεί η αποδοτικότητα των χωρών του 

κόσμου στην χρησιμοποίηση του εθνικού του εισοδήματος για την επίτευξη της 

μέγιστης δυνατής κοινωνικής ευημερίας των πολιτών τους.   

Στο δεύτερο εμπειρικό άρθρο, η ΑΑΑ χρησιμοποιείται ως εναλλακτική 

μέθοδος για την ενσωμάτωση αξιακών περιορισμών στην κατασκευή συνθετικών 

δεικτών. Συγκεκριμένα, κατασκευάζεται ένα υπόδειγμα ΑΑΑ το οποίο διαθέτει μόνο 

εκροές και χρησιμοποιείται για την επανεκτίμηση του Δείκτη Ανθρώπινης Ανάπτυξης 

των Ηνωμένων Εθνών.   

Στο τρίτο εμπειρικό άρθρο, πραγματοποιείται μια ανασκόπηση των προτάσεων 

που περιλαμβάνονται στην βιβλιογραφία της ΑΑΑ για την επιλογή της ΠΠΛ και 

προτείνονται τέσσερις νέες, οι οποίες βασίζονται αντίστοιχα στα χαρακτηριστικά της 

θέσης των αποτελεσματικών ΜΛΑ στην εν δυνάμει συνάρτηση μετασχηματισμού, στις 

έννοιες της Αποτελεσματικής Κλίμακας Παραγωγής και της Μέσης Παραγωγικής 

Μονάδας, και στην εκτίμηση αποτελεσματικότητας μέσω κοινών μεταξύ των ΜΛΑ 

σχετικών σταθμίσεων για τις εισροές και τις εκροές.  Στην συνέχεια αναλύεται 

χρησιμοποιώντας εμπειρικά δεδομένα η επίδραση της επιλογής διαφορετικών ΠΠΛ 

στην εκτιμηθείσα σχετική αποτελεσματικότητα μέσω της ΑΑΑ.  Από τα αποτελέσματα 

της εμπειρικής ανάλυσης  εξάγονται χρήσιμα συμπεράσματα για τις ΠΠΛ η χρήση των 

οποίων οδηγεί σε αποτελέσματα τα οποία παρέχουν επιπλέον πληροφόρηση σε σχέση 

με αυτά της ΠΑΔ, η οποία μπορεί να χρησιμοποιηθεί από τις διοικητικές υπηρεσίες για 

την λήψη επιχειρηματικών αποφάσεων, αλλά και για τις διαφορετικές ΠΠΛ οι οποίες 

οδηγούν πρακτικά σε παρόμοια αποτελέσματα ΑΑΑ.  

Το δεύτερο μέρος της διατριβής περιλαμβάνει τρία θεωρητικά άρθρα. Στο 

πρώτο από αυτά, διερευνάται η σχέση μεταξύ της ΑΑΑ και της μεθόδου της 

σταυροειδούς αποτελεσματικότητας και αποδεικνύεται ότι το υπόδειγμα της ΑΑΑ 

είναι ισοδύναμο με το υπόδειγμα στοχευμένου αλτρουισμού της σταυροειδούς 

αποτελεσματικότητας. Αυτή η ισοδυναμία επιτρέπει για πρώτη φορά στην 

βιβλιογραφία την εκτίμηση σταυροειδών αποτελεσματικοτήτων μέσω του δυικού-αντί 

του πρωταρχικού-υποδείγματος της ΑΑΑ και οδηγεί σε πιο σύντομη διαδικασία 

εκτίμησης του πίνακα σταυροειδών αποτελεσματικοτήτων του υποδείγματος 

στοχευμένου αλτρουισμού.  

Στο δεύτερο θεωρητικό άρθρο, αποδεικνύεται ότι το υπόδειγμα της ΑΑΑ 

αποτελεί μια συγκεκριμένη κατηγορία υποδειγμάτων ΠΑΔ που περιλαμβάνουν 

περιορισμούς στις σχετικές σταθμίσεις των εισροών και των εκροών.  Κατά συνέπεια, 

μπορεί να εξαχθεί μια επιπλέον ερμηνεία των αποτελεσμάτων της ΑΑΑ, ως 
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αποτελέσματα ΠΑΔ που ενσωματώνουν μια συγκεκριμένη μορφή περιορισμών στις 

σχετικές σταθμίσεις των εισροών και των εκροών, ενώ οι σχετικές 

αποτελεσματικότητες από τα σχετικά υποδείγματα ΠΑΔ ενσωματώνουν τις κρατούσες 

αντιλήψεις σχετικά με το βέλτιστο μείγμα εισροών/εκροών.  

Στο τελευταίο θεωρητικό άρθρο, αποδεικνύεται ότι τα αποτελέσματα της ΑΑΑ 

(σχετικές αποτελεσματικότητες για τις ΜΛΑ) είναι είτε ισοδύναμα με τα 

αποτελέσματα υποδειγμάτων ΠΑΔ τα οποία ενσωματώνουν πληροφορίες σχετικά με 

τις αποτελεσματικές ΜΛΑ που θεωρούνται πρότυπα για τις υπόλοιπες (επιτρέποντας 

στα διανύσματα των σχετικών σταθμίσεων των εισροών και εκροών να παίρνουν τιμές 

μέσα σε ένα προκαθορισμένο εύρος / κώνο διανυσμάτων), είτε αποτελούν το ανώτερο 

και το κατώτερο όριο για αυτά. Οι αποδειχθείσες μαθηματικές σχέσεις επιτρέπουν την 

εκτίμηση ή την προσέγγιση των  αποτελεσμάτων των υποδειγμάτων ΠΑΔ 

χρησιμοποιώντας τα υποδείγματα ΑΑΑ, τα οποία ενέχουν σχετικά λιγότερη 

υπολογιστική πολυπλοκότητα. 
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CHAPTER 1 
 

Introduction 
 

1.1. Setting the stage 

 

There are several occasions in the assessment of Decision Making Units’ (DMUs) 

performance, in which it is desired or necessary to incorporate external views and 

preferences in the evaluation process.  This need frequently arises in the public sector, 

where a Decision Maker (DM), namely a social planner, regulator or supervising 

agency coordinating the DMUs’ operation, aims to monitor their performance and 

redirect them towards a desired or mandated trajectory.  Examples of such public and 

centrally coordinated groups of DMUs include, but are not limited to, hospitals, 

education institutions, research centers, as well as large infrastructure industries 

benefiting from a natural monopoly such as water, electricity and gas networks.  In 

addition, the performance of privately owned entities such as networks of bank 

branches or retail stores is often assessed by central management with regards to stated 

organizational goals.  These assessments aim to limit the occurrence of dysfunctional 

incentives and strategic conflict, where the behavior of DMUs is inconsistent with one 

that best supports overall organizational goals (Epstein and Henderson, 1989).    

In the aforementioned cases, it is desired to augment the assessment models 

with information on holding views over the types of the relatively best-performing 

entities.  When the DMUs have limited control over their resources, the results of such 

assessments can be used for the redistribution of personnel or intangible inputs, while 

in the case of more autonomous DMUs the evaluation can be a means to incentivize 

them towards meeting certain goals.   

Popular notions of performance evaluation in which preferences and views are 

frequently incorporated include, but are not limited to, the assessment of technical 

efficiency and effectiveness, cost or revenue efficiency and cross efficiency. A DMU’s 
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technical efficiency reflects the extent to which it produces the maximum possible 

bundle of outputs given a bundle of resources and the available technology or, 

alternatively, the extent to which a particular bundle of outputs is produced using the 

least possible resources.  In essence, technical efficiency measures the extent to which 

the assessed DMUs are “doing things the right way” (Cooper et al., 2007a, p. 66).  

Effectiveness is a notion related to that of technical efficiency, in which the ability of 

DMUs to achieve desired goals or “do the right things” is assessed.  These goals may 

reflect several kinds of non-monetary objectives, such as directions or legislation set 

out by management or supervising agencies, but also economic objectives such as cost 

minimization and revenue maximization.  In cross efficiency evaluation, the 

performance of each DMU is assessed relative to that of its “peers” or the “reference” 

DMUs. In particular, each DMU evaluates the remaining DMUs based on its own 

“value system”, i.e., individual preferences on what constitutes good performance.  This 

is both desired and necessary in cases of group decision making in which transparency 

matters considerably for stakeholders.  These include, among others, budget allocation 

in multinational companies and international organizations and the assessment of public 

institutions such as schools or hospitals. 

 

1.2. Data Envelopment Analysis, its extensions, and Value Efficiency Analysis 

 

Data Envelopment Analysis (DEA) is one of the estimation methods used in applied 

performance assessment.  In DEA, the performance of each DMU is expressed as a 

ratio of the weighted sum of its outputs to the weighted sum of its inputs, in which the 

vector of input/output weights are selected by the DMU so as to present itself in the 

best-possible light.  The DMUs are assessed with regards to an envelope formed by 

those DMUs for which the ratio of the weighted sum of outputs to the weighted sum of 

inputs is the maximum possible across the sample.  

Conventional DEA models measure radial technical efficiency (Charnes et al., 

1978; Banker et al., 1984).  Extensions of these models have been developed for several 

other performance evaluation cases, a fair share of which augment DEA models with 

additional information regarding market prices and managerial preferences.  In 

particular, revenue, cost or profit efficiency is assessed by DEA models when price data 

are available (see, e.g., Färe et al., 1985).  Also, additional restrictions on the 

input/output weighs have been appended in conventional DEA models to accommodate 
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partial information on prices, stated preferences over the relative importance of inputs 

and/or outputs, and DM perceptions about “good” and “bad” performing DMUs.  These 

may take several forms of linear inequality restrictions on the input/output weights 

(see., e.g., Allen et al., 1997) and their dual production trade-offs (Podinovski, 2004) 

which are special cases of the more general cone-ratio DEA (CR-DEA, see Charnes et 

al., 1989), where the feasible input/output weight vectors for the evaluated DMUs are 

restricted within suitably defined cones containing selected sets of input/output weight 

vectors.  The addition of such weight restrictions results in efficiency scores which are 

lower than or equal compared to those of the conventional DEA model.  As such, the 

extent to which the performance of a particular DMU is aligned with the preferences 

reflected in the additional restrictions can be assessed by examining the differences 

between the efficiency scores of the conventional and the weight restricted DEA model.    

Effectiveness is also assessed through DEA by means of several models, namely 

by incorporating additional restrictions in conventional DEA models (see, e.g., Asmild 

et al., 2007), two-stage processes involving the conversion of inputs to outputs and that 

of outputs to outcomes, which reflect higher goals selected by the DM such as peace 

and sovereignty or some form of behavioral objectives (Førsund, 2017), and pure output 

DEA models (Prieto and Zofio, 2001).  Pure output DEA models, along with pure input 

models (see Karagiannis, 2021 for a review) are special cases of DEA models, in which 

only inputs or outputs are considered.   They have been extensively used, among others, 

for the construction of composite indicators (see Cherchye et al., 2007a).   

Furthermore, cross efficiency (see Sexton et al., 1986) is a methodology 

developed for peer appraisal assessment by means of DEA.  In that, each evaluated 

DMU is the “reference” DMU in turn, namely assesses all other DMUs as well as itself 

by means of its own optimal vector of input/output weights.  This results into a 

multitude of efficiency scores for each DMU that form the cross efficiency matrix.  

Based on that, DMs can identify all-around good-performers which should serve as role 

models for the rest of DMUs and obtain a --frequently complete-- ranking of the DMUs 

by aggregating the cross efficiency scores for each of them.  Extensions of cross 

efficiency models use secondary objectives to account for the existence of multiple 

optimal vectors of weights for the efficient or inefficient DMUs (see, e.g., Doyle and 

Green, 1994).    
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The focus of this thesis is Value Efficiency Analysis (VEA) (Halme et al., 

1999), which is an alternative method for incorporating preferences in DEA.  In VEA 

the views of a social planner, regulator, or manager are expressed through a 

pseudoconcave value function (i.e., an indifference curve), which is assumed to be 

strictly increasing in the outputs and strictly decreasing in the inputs.  This function 

may be related to some organizational objective, such as a cost minimization or profit 

maximization, but it might also reveal other preferences than those related with prices 

(Thanassoulis et al., 2008, p. 73).  Thus, DM preferences in VEA are elicited by a 

means commonly used in Multi Criteria Decision Analysis (MCDA), namely by 

incorporating DM information on the desirable quantities for the inputs and outputs of 

the assessed DMUs.  More specifically, it is assumed that the DM’s value function is 

tangent (i.e., is maximized) to the DEA efficient frontier at a point which reflects the 

most desirable input/output structure by DM’s view and is referred to as the Most 

Preferred Solution (MPS).  The MPS is a non-dominated (i.e., strongly DEA-efficient) 

DMU or a combination of DMUs located on the strongly efficient DEA frontier.1  

Depending on the evaluation setting, the MPS may represent the structure according to 

which the DM wishes to reorganize a portion of a country’s public sector (e.g., the 

wastewater management network) or it might be viewed as a mentor, i.e., an example-

to-follow, for the other DMUs within a private organization.  DMs reflect their 

preferences in VEA by choosing a strongly DEA-efficient DMU or a combination of 

such DMUs to be the MPS. 

The DM preferences are then incorporated in the DEA model by restricting the 

choice of the optimal vector of input/output weights for each evaluated DMU only 

among those input/output vectors that are optimal in the DEA model for the DMU or 

the DMUs that constitute the MPS.  In essence, this means that the marginal rates of 

substitution of inputs or transformation of outputs imposed on the evaluated DMUs are 

those observed on the DEA frontier in the neighborhood of the MPS.  This essentially 

defines a range of desirable input/output bundles, namely those that have at least one 

optimal vector of input/output weights in common with the MPS.  This range may be 

viewed as the DM’s “margin of error”, in the sense that the DMUs contained in it are 

 

 

1 The strongly efficient DEA frontier is formed by DEA-efficient DMUs which are not associated with 

nonzero slacks, i.e., input excesses or output shortfalls, and their linear combinations. 



5 

 

 

those for which the input/output bundle or mix diverges from the most preferred one 

(i.e., that of the MPS) to an extent that is considered tolerable by the DM.  Such DMUs 

receive a VEA efficiency score that is equal to their respective DEA score.  For the 

remaining DMUs VEA efficiency scores are lower that their corresponding DEA ones, 

and the more a DMUs’ input/output structure diverges from that of the MPS, the lower 

is its VEA score.  The VEA efficient frontier is the lower envelope of the extended 

efficient facets of the DEA frontier that intercept at the MPS, and in the VEA scores 

are optimistic approximations of the scores which would be obtained if an explicit 

functional form was available for the DM’s value function. 

VEA provides a useful alternative for incorporating preferences in the 

performance assessment of DMUs for a number of reasons:  First, choosing the MPS 

is a relatively less demanding process for DMs compared to including additional 

restrictions on the weights. DMs are generally more keen on choosing desirable values 

for inputs and outputs rather than weight bounds (Korhonen et al., 2002), and this 

choice can be done without requiring familiarity with the DEA method.  This can limit 

considerably the possibility of DMs expressing their preferences incorrectly and 

potentially giving rise to misleading evaluation results.  Second, the range of desirable 

input/output bundles defined by the MPS choice is less strict compared to e.g., setting 

explicit targets for DMUs on the efficient frontier, as it allows for tolerated divergences 

from the most preferred bundle.  This is useful in cases where management aims to 

limit the ability of DMUs in setting their own priorities and identify those falling 

considerably short of achieving organizational goals or stated norms.  Policies can then 

be designed based on these findings to redirect the DMUs’ operation towards the 

desired trajectory.  Third, incorporating the MPS in DEA requires only slight 

modifications in the multiplier and envelopment form of the DEA model. 

 

1.3. Motivation 

 

The aim of this thesis is a more detailed theoretical and empirical examination of VEA.  

This is motivated by the fact that, despite recent theoretical advancements in the 

relevant literature, VEA has not been studied to the same extent as DEA (see Table 

1.1).  Also, the use of VEA in empirical applications is relatively scarce, despite the 

abundance of performance evaluation cases and operational research problems in which 

the incorporation of managerial preferences is desired or necessary.   
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Table 1.1: Uses of DEA and VEA models for performance evaluation 

 

  Data Envelopment Analysis (DEA) Value Efficiency Analysis (VEA) 

introduction Charnes et al. (1978), Banker et al. (1984) Halme et al. (1999) 

performance evaluation instances 

incorporating DM 

preferences when 

prices are not 

known 

weight restrictions (Thanassoulis and 

Dyson, 1988)  MPS (Korhonen et al., 2002) 

production trade-offs (Podinovski, 2004) Chapter 6 (this thesis) 

cone-ratio DEA (Charnes et al., 1989) Chapter 7 (this thesis) 

reviews: Allen et al. (1997), Thanassoulis 

et al. (2004; 2008) 
Chapter 4 (this thesis) 

cross efficiency  
(Sexton et al., 1986; Doyle and Green, 

1994) 
Chapter 5 (this thesis) 

effectiveness 

assessment 

Asmild et al. (2007), Prieto and Zofio 

(2001),  

Førsund (2017) 

 Chapter 2 (this thesis) 

composite 

indicators 

construction 

pure input and pure output DEA models 

(Van Puyenbroeck, 2018, Karagiannis, 

2021) Chapter 3 (this thesis) 

  

Benefit-of-the Doubt (Cherchye et al. 

(2007a) 

 

More specifically, studies following the introduction of VEA in Halme et al. (1999) 

examined the potential of obtaining VEA scores which are better approximations of the 

scores that could be obtained if an explicit functional form was available for the DM’s 

value function, and their interpretation in terms of value differences between the 

assessed DMU and the MPS (see Joro et al., 2003; Korhonen and Syrjanen, 2005).  

Furthermore, VEA has been applied for the evaluation of hospital departments (Halme 

and Korhonen, 2000), higher education institutions (Korhonen et al., 2001), local 

governments (Marshall and Shortle, 2005) and banks (Eskelinen et al., 2014). 

On the other hand, the use of VEA models for several performance evaluation 

instances for which it seems particularly suitable, such as cross efficiency and 

effectiveness assessment, has to the best of our knowledge not been examined.  

Furthermore, the relation of the VEA model with DEA models that introduce additional 

restrictions on the input/output weights has not been extensively examined, despite the 

relevant literature recognizes that such relations might exist (see e.g., Sarrico and 

Dyson, 2004; Kao and Hung, 2005).  Korhonen et al. (2001) incorporated additional 

weight restrictions in VEA models, but did not engage in relating VEA and weight 

restricted DEA models.  Moreover, extensive research has been carried out regarding 

different forms of restrictions on the input/output weights (see, e.g., Angulo-Meza and 
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Estellita-Lins, 2002 and Thanassoulis et al., 2004;2008 for reviews), the preferences 

these may represent, their economic interpretation (if any) and the effects of using 

various forms of weight restrictions on efficiency scores (see Allen et al., 1997).  On 

the other hand, to the best of our knowledge no study has examined in detail the variety 

of existing suggestions for choosing the MPS in VEA, their economic interpretation, as 

well as the effects (if any) of using alternative MPSs on VEA efficiency scores.2  Also, 

pure input or output DEA models have been studied in detail (see e.g., Van 

Puyenbroeck, 2018) and have had several empirical uses (see Karagiannis, 2021), the 

most popular of which being the construction of composite indicators.  For the latter 

purpose, a DEA model known as the Benefit-Of-The-Doubt (BoD) model (Cherchye et 

al., 2007a) is most frequently used.  Corresponding VEA models to these have, to the 

best of our knowledge, not yet been developed nor used to construct composite 

indicators of performance.  

 

1.4. Contribution 

 

This thesis is divided in two parts and contributes to the VEA literature by (i) examining 

the features of VEA in more detail, and (ii) presenting innovative empirical applications 

of VEA models.  More specifically, each of the six chapters that follow investigates in 

detail an issue among those identified in the previous section which was not up to date 

addressed in the VEA literature (see Table 1.1).  The first part, namely chapters two to 

four, consists of three empirical essays.  In the first of them, we use VEA for the 

assessment of effectiveness.  In particular, we encapsulate the DMs views about the 

DMUs that are “doing the right things” in the choice of the most desirable input/output 

bundle, i.e., the MPS.  Then, the scores obtained from the respective VEA model are 

estimates of the DMUs’ effectiveness.  These are decomposed into an efficiency 

component capturing the extent of ‘doing things right’ and a mix component capturing 

the relative distance of the assessed DMUs’ input/output bundle from the DM’s range 

of desirable bundles, as the latter is defined by means of the MPS choice.  The mix 

component is residually estimated as the ratio of DEA and VEA efficiency scores.  We 

use this approach to provide an innovative application of VEA, namely assess the 

 

 

2 Korhonen et al. (2002) suggest some alternatives for choosing the MPS in VEA, but do not investigate 

any economic rationales related to these. 
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effectiveness of countries in utilizing their economic prosperity (proxied by their 

income) to further develop their citizens’ social prosperity or human capabilities 

(proxied by achievements in terms of health and education) using UN data for the year 

2015. 

In the second empirical essay, we i) extend VEA towards pure input DEA 

models and ii) use it as a means to incorporate DM preferences in the construction of 

composite indicators, by combining the BoD model with VEA.  The newly proposed 

VEA-BoD model is then used to re-estimate the United Nations Human Development 

Index (HDI). In this application, the MPS is selected based on the notion of uniformity.  

This reflects an objective and normative overall goal, namely the equal prioritization 

among the considered indicators (i.e., the achievements in terms of income, health, and 

education), and means that the DM prefers countries with a relatively balanced 

prioritization among health, education and income more compared to those with 

unbalanced achievements.  The former would be promoted as peers for improving 

human capabilities in the latter. 

In the third empirical essay, we first review various suggestions made for 

choosing the MPS in VEA and the preferences these might reflect.  We then propose 

four new, which rely respectively on the relative position of frontier DMUs, the Most 

Productive Scale size (MPSS), the Average Production Unit (APU), and common 

vectors of input/output weights.  These reflect overall organizational goals such as the 

pursuit of scale economies and the maximization of structural efficiency, or the need to 

assess DMUs against common standards because of limited control over the resources 

allocated to them or autonomy in setting their own priorities.  Using a dataset of Greek 

cotton farms, we then provide comparative empirical results that illustrate the 

implications of using different MPS choices for the VEA efficiency scores. 

Part II, namely chapters five to seven, consists of three theoretical essays.  In 

the first of them, we examine the potential relation between VEA and cross efficiency.  

In particular, we show that the Targetted Benevolence (TB, see Oral et al., 1991) cross 

efficiency model, is equivalent to the VEA model, provided that the “reference” DMU, 

i.e., the one whose optimal multipliers are used to evaluate all other DMUs, in the TB 

cross efficiency model, if it is an efficient one, or its radial projection on the DEA 

frontier if it is inefficient, is used as the MPS in the VEA model.  The TB model is one 

among those adopting a secondary objective to account for the possibility of multiple 
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optimal weight vectors in DEA for each “reference” DMU.  According to this objective, 

the evaluated DMU is allowed to select the weight vector that maximizes its cross 

efficiency score, among those that are optimal in DEA for the “reference” DMU.  The 

identified equivalence implies that the TB cross efficiency scores can be obtained by 

means of the envelopment form of VEA –which frequently involves fewer constraints 

compared to its dual multiplier form-- and allows for the estimation of the TB cross 

efficiency matrix using less linear models. 

In the second theoretical essay, we explore the relationship between VEA and 

DEA models with weight restrictions and their dual production trade-offs.  In particular, 

we show that the VEA model is equivalent to a DEA model with production trade-offs 

as long as the trade-off coefficient vectors are equal to (i) the negative of the input and 

output quantities of the DMUs constituting the MPS in VEA, under constant returns to 

scale, and (ii) the deviations of all evaluated DMUs’ input and output quantities from 

those of the DMUs chosen as the MPS, irrespectively of the returns-to-scale 

assumption.  These production trade-offs are in both cases dual to Type II assurance 

region weight restrictions (see Thompson et al., 1990).  In addition, show that a similar 

equivalence holds between pure output or input VEA models and DEA models with 

production trade-offs if the above trade-offs are considered only for the inputs or the 

outputs.  These findings allow for an alternative interpretation of the VEA efficiency 

scores and the scores of DEA models with production trade-offs and their dual weight 

restrictions.   

In the third theoretical essay, we relate VEA with CR- DEA models 

incorporating preferences regarding efficient DMUs that management views as 

examples to follow (model DMUs) for the remaining DMUs.  In particular, we show 

that as long as the model DMUs chosen in CR-DEA are those that constitute the MPS 

in VEA, the VEA efficiency scores are i) equal to those obtained from a CR-DEA model 

in which the cone of feasbile weight vectors is specified as the intersection of the sets 

containing the weight vectors that are optimal in DEA for each model DMU, ii) provide 

a lower bound to the scores obtained from a CR-DEA model in which the cone of 

feasible weights is given as the union of the sets containing the optimal weight vectors 

for each model DMU, and iii) constitute an upper bound for the efficiency scores of a 

Fully-Dimensional-Efficient-Facet (FDEF) CR-DEA model in which the cone of 

feasible weights contains only those weight vectors that are jointly optimal in DEA for 
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all the model DMUs as well as strictly positive. These findings enable the estimation 

or the approximation of CR-DEA efficiency scores by means of VEA models. These 

are less computationally demanding as they do not require to a priori identify the cone 

of feasible weight vectors, as is the case in the CR-DEA models.   
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CHAPTER 2 
 

Using VEA to assess effectiveness in the development of human 

capabilities 
 

 

2.1. Introduction 

 

Efficiency and effectiveness are two distinct but related notions of performance 

evaluation.  Efficiency measures the extent to which a decision-making unit (DMU) 

‘does things the right way’, namely whether it produces the maximum possible outputs 

from given inputs or uses the minimum possible inputs to produce a given bundle of 

outputs.  Effectiveness, on the other hand, measures the ability of DMUs to state and 

achieve desired goals (Cooper et al., 2007a, p. 66) i.e., it examines the question of doing 

the right things.  The goals or ‘’right things’’ reflect behavioral or organizational 

objectives of DMUs or their supervising agency, which can be either monetary or non-

monetary.  The former refers to economic objectives, such as cost minimization or 

revenue maximization, the extent of which can be assessed as long as price data are 

available while the latter refers to managerial preferences about the production process 

itself as well as targets to be achieved by the constituent DMUs (see e.g., Asmild et al., 

2007).  

There are four different approaches in the literature to assess effectiveness. The 

first of them uses a two-stage process (see Førsund (2017) and the references therein) 

where at the first stage the efficiency of DMUs is assessed by focusing on the process 

of converting inputs to outputs.  Effectiveness, assessed at the second stage, reflects the 

ability of DMUs to convert outputs to outcomes.3  Conventional DEA models are used 

 

 

3 For example, in assessing effectiveness in transport industry, inputs usually refer to number of vehicles, 

fuels and labor, outputs refer to the produced transport capacity (e.g., seat-miles) while outcomes refer 
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in both stages and the behavioral objectives are expressed through the selection of 

outcomes.  Recently, Førsund (2017) and Hanson (2018) provide innovative 

refinements of this approach, especially suitable for application related to public sector.  

In the second, additional constraints reflecting behavioral objectives (see Asmild et al., 

2007) are introduced into conventional DEA model.  If these are related to economic 

objectives, such as cost minimization or revenue maximization, then effectiveness 

coincides with the notion of overall efficiency.  If the behavioral objectives reflect 

managerial goals, then we need restrictions on the input and/or output multipliers to 

incorporate them into the conventional DEA model.4  The resulting model “evaluate(s) 

both the technical inefficiency that arises from not fully exploiting production 

possibilities and the inefficiency due either to lack of fulfillment of managerial goals or 

to the departure from the specified value system of the inputs and outputs’’ (Cooper et 

al., 2011, p. 101).  In the third (see Prieto and Zofio, 2001), effectiveness is estimated 

by means of pure output DEA models.  Here the goals of DMUs are considered as given 

and we concentrate in estimating the extent to which they are achieved regardless of 

the amount of resources that might be needed to provide them.  This follows the idea 

of the Koopmans’ ‘helmsman’ that attempts to steer all the outputs towards their 

maximum levels without considering the inputs used (see Lovell et al., 1995).  In the 

fourth approach, effectiveness is related to the distance of DMUs from target points on 

the existing DEA efficiency frontier (see Golany et al., 1993).  Such targets may 

minimize the distance of DMUs from the DEA frontier, or maximize the outputs of a 

DMU under a fixed resource allocation.  

In this chapter we propose an alternative way to incorporate behavioral 

objectives into conventional DEA in order to assess effectiveness.  This is based on 

Value Efficiency Analysis (VEA), where the behavior objectives reflect the preferences 

of a Decision Maker or supervising agency, which provides the necessary information 

regarding the right things to do by simply choosing a “model” DMU, instead of having 

 

 

to the extent that produced capacity is consumed by customers (e.g. passenger-kilometer and ton-
kilometer) (Yu and Lin, 2008).  Another example provided by Hanson (2018) is the assessment of 

military forces effectiveness, where inputs refer to resources such as personnel and equipment, outputs 

to countable services or goods such as the number of military units and the quality of their training, and 

outcomes to country-wide valued states and public goods such as peace, sovereignty or freedom. 
4 Different types of weight restrictions may be used, such as absolute or relative bounds on the multiplier 

weights, resulting in a set of equal, common across DMUs, or DMU-specific input and output multipliers. 
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to choose weight restrictions by means of absolute or relative bounds.  According to 

Korhonen et al. (2001), this is an easier method to reflect preferences for the Decision 

Maker, who is more keen on picking a “model” DMU rather than engaging to the task 

of choosing weight restriction bounds, which is a more technical issue.  The “model” 

DMU reflects the most-preferred solution (MPS) from the Decision Maker’s point of 

view and is then used as a global benchmark that determines a range of preferred input 

and output bundles which comply with her view of ‘doing the right things’ and provide 

the base for estimating effectiveness.  Efficiency is estimated by means of the 

conventional DEA model and the two are related by a mix component.  The latter serves 

as a measure of the closeness of the actual input/output bundle of DMUs to the most-

preferred input/output bundle and can aid analysts and Decision Makers identify DMUs 

with effective operating bundles (which can serve as models) and DMUs which need a 

restructuring in order to comply with managerial preferences, social norms or 

supervising agency directives. 

We use the proposed approach to provide estimates of countries’ ability to 

efficiently and effectively utilize their economic prosperity to enrich the lives of their 

citizens using 2015 UNDP data.  We rely on Sen’s capability approach that views 

humans as the ultimate ends of the process of economic prosperity and development 

itself as an expansion of their capabilities, in contrast with the Human Capital approach 

which views humans as the primary means of economic development.  Our empirical 

models operationalize the differential treatment of income on the capability approach 

as a means to a number of important ends, rather than an end in itself (Anand and Sen, 

2000; Klugman et al., 2011).  More specifically, we follow the DEA social efficiency 

model (see Despotis, 2005a,b; Mariano and Rebelatto, 2014) and use income as an input 

reflecting economic prosperity, with life expectancy, mean and expected years of 

schooling as the outputs reflecting social prosperity.  The empirical results help 

classifying countries into groups displaying high and balanced social prosperity 

provision (Leaders), countries with a balanced bundle but relatively lower 

achievements, which could use their economic prosperity more efficiently (mix 

efficient), countries with high but unbalanced provision of health and education 

(Efficient), which could benefit moving towards a more balanced social prosperity 

bundle, and finally Laggard countries with both low and unbalanced achievements.  

Such results can prove useful to both national policy-makers to reshape national 
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policies as well as to international organizations to better allocate development or 

international aid funds. 

The rest of the chapter is organized as follows: In the next section, we introduce 

VEA and explain how it can be used to estimate effectiveness.  The empirical 

application is presented in the third section, while concluding remarks follow in the last 

section. 

 

2.2. Effectiveness assessment with VEA 

 

VEA, developed by Halme et al. (1999), is a performance evaluation method that takes 

into account Decision Maker preferences about managerial goals by means of a linear 

value function (i.e., an indifference curve) that become tangent to the DEA efficient 

frontier at the point of the most-preferred solution (MPS).5  This point reflects the 

Decision Maker’s choice of a virtual or real non-dominated (i.e., DEA-efficient) DMU 

as a model DMU. Then, the VEA frontier is constructed by extending towards the axes 

the hyperplanes of the DEA efficient facets intercepting at the MPS.  As DEA facets 

are generated by extreme-efficient DMUs, the MPS will in essence be either a single 

extreme-efficient DMU or a combination of extreme-efficient DMUs that are jointly 

efficient, in the sense that they generate at least one common facet.6  In Figure 2.1(a), 

by choosing for example DMU B as the MPS, the two efficient facets AB and BC are 

extended towards the axes, creating the VEA frontier (the blue kinked line).  The range 

of preferred input/output bundles is given between rays OA and OC.  All DMUs 

producing within the preferred range receive a VEA score that is equal to their 

respective DEA score whereas DMUs producing outside of the preferred range are 

penalized by receiving VEA scores less than their corresponding DEA scores. 

 

 

5 A detailed presentation of VEA can be found in Joro and Korhonen (2015). 
6 In Charnes et al. (1991a) the DMUs with a DEA efficiency score of one are classified into three 

categories: (a) extreme-efficient DMUs (E) that reside at a point of the convex DEA frontier where more 

than one facets intercept, (b) non-extreme-efficient DMUs (E'), namely DMUs located on the interior of 

a facet, and (c) weakly-efficient DMUs (F) that have at least one positive optimal value for an input or 

output slack.  If the DM chooses a DEA-inefficient or weakly-efficient (i.e., a dominated) DMU, or a 

non-extreme-efficient DMU as the MPS, then the combination of the extreme-efficient DMUs that are 

identified as its peers in DEA can be used as the MPS instead (see e.g., Halme et al., 1999). The use of 

the peers of the DEA-inefficient DMU rather than its radial projection in the DEA frontier is advocated, 

as the latter might be associated with input and/or output slacks and thus may not be a non-dominated 

DMU.  The same is the case for weakly efficient DMUs. 
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Choosing the model DMU is a crucial step in VEA, as the chosen MPS affects 

the preferred range of input and output bundles and consequently, the resulting VEA 

scores.7  Although Decision Makers are more inclined to simply choosing a DMU from 

the set of DEA-efficient ones (see Korhonen et al., 2001) such as DMU B in Figure 

6.1(a), they also have the freedom to choose an MPS that is DEA-inefficient (Korhonen 

et al., 2002) or propose instead an artificially constructed MPS that may or may not be 

efficient.  In the latter case, the chosen DMUs are first projected on to the DEA efficient 

frontier and then their peers are instead used as the MPS.  In Figure 2.1(a), consider for 

example DMUs H and G, which are DEA-inefficient and K which is an artificial DMU.  

H and K are (for ease of presentation) both projected into point B of the DEA efficient 

frontier.  Then, their use as MPS implies instead the use of DMU B, their peer, as the 

MPS.  In a similar fashion, the use of G as the MPS, which is projected on the efficient 

facet BC, implies the joint use of DMUs B and C as the MPS.  Note that projecting an 

artificial DMU such as K on the DEA frontier requires solving a superefficiency DEA 

model (see Andersen and Petersen, 1993).  

 A variable-returns-to-scale formulation of the VEA model, in its multiplier form 

is given as (Halme and Korhonen, 2000): 

 

     

min
𝑣𝑖

𝑜,𝑢𝑗
𝑜,𝑢𝑜 

𝜑𝑉𝐸𝐴
𝑜 = ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑜

𝐼

𝑖=1

− 𝑢𝑜 

   𝑠. 𝑡.              − ∑ 𝑢𝑗
𝑜

𝐽

𝑗=1

𝑦𝑗
𝑘 + ∑ 𝑣𝑖

𝑜

𝐼

𝑖=1

𝑥𝑖
𝑘 − 𝑢𝑘 ≥ 0 𝑘 = 1, … , 𝐾, 𝑘 ≠ 𝑟

                         − ∑ 𝑢𝑗
𝑜

𝐽

𝑗=1

𝑦𝑗
𝑟 + ∑ 𝑣𝑖

𝑜

𝐼

𝑖=1

𝑥𝑖
𝑟 − 𝑢𝑟 = 0 𝑟 = 1, … , 𝑅

                             ∑ 𝑢𝑗
𝑜

𝐽

𝑗=1

𝑦𝑗
𝑜 = 1

                            𝑣𝑖
𝑜 ≥ 0 𝑖 = 1, … , 𝐼

                            𝑢𝑗
𝑜 ≥ 0 𝑗 = 1, … , 𝐽

                            𝑢𝑜𝑓𝑟𝑒𝑒

           (2.1) 

 

 

 

7 See Korhonen et al. (2002) for more details regarding the several alternatives underlying the choice of 

the model DMU. 
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Figure 2.1:Effectiveness assessment based on different approaches 

 

   
Panel (a): Reflecting managerial preferences 

through VEA 

Panel (b): Known prices, effectiveness coincides 

with overall efficiency 

Panel (c): Approximating prices with weight 

restrictions 
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where x and y refer to input and output quantities, 𝜑𝑉𝐸𝐴 to the (inverse) of the VEA 

efficiency score, v and u are parameters to be estimated, k is used to index DMUs (𝑘 =

1, … , 𝑜, … , 𝐾), i is used to index inputs (𝑖 = 1, … , 𝐼) , j is used to index outputs (𝑗 =

1, … , 𝐽) and 𝑟 = 1, … , 𝑅 refers to the DMUs chosen as the MPS.   The above 

formulation is only slightly different from the conventional DEA model: the restriction 

corresponding to the MPS is turned from inequality to equality.  This affects the optimal 

values of the input/output multipliers and essentially determines the range of preferred 

input/output bundles such as those between the rays OA and OB in Figure 2.1(a). 

In this chapter we use VEA to estimate effectiveness and compare it to 

efficiency which is estimated by means of DEA, in the sense that it reflects the 

behavioral objectives of a Decision Maker or supervising agency, which provides the 

necessary information regarding the “right things” by means of a “model” DMU, that 

determines the MPS and the range of preferred input/output bundles.  Then, the distance 

of a DMU from the VEA frontier is used to measure effectiveness while its distance 

from the DEA frontier is used to measure efficiency.  Consider for example DMU F in 

Figure 2.1(a) where 
𝑂𝐹

𝑂𝐹′′ measures the extent to which DMU F “does the right things” 

while 
𝑂𝐹

𝑂𝐹′  measures the extent to which the DMU F does “things the right way”.  From 

that we see that effectiveness and efficiency are related to each other as follows:   

 

                                      
1

𝜑𝑉𝐸𝐴
𝐹⏟

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠

=
1

𝜑𝐷𝐸𝐴
𝐹⏟
 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

×
𝑂𝐹′

𝑂𝐹′′⏟
𝑚𝑖𝑥 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

                                        (2.2) 

 

The second term in (2.2), i.e., the mix component, reflects the extent to which the DMU 

operates inside the given range of preferred input/output bundles and it is given by the 

ratio of the effectiveness to the efficiency score, taking values within the [0,1] range.8,9  

When a DMU operates within the preferred range of bundles, effectiveness and 

 

 

8 The mix component is similar (but not the same) to Filippetti and Peyrache (2011) compositional index 

and to the Li and Zhao (2015) dimension mix index, with the main difference being that their non-DEA 

frontiers result from a set of common (across DMUs) weights which in terms of Figure 2.1 implies a 

linear frontier; see Figure 2.1(c).   
9 Effectiveness scores are never higher than efficiency scores, as the VEA frontier envelops the DEA 

frontier. 
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efficiency scores coincide (for example DMU G Figure 2.1(a)) and the mix component 

is equal to one.  This in general indicates that the particular DMU operates in a manner 

that is in line with the behavioral objectives set out by the manager or the supervising 

agency but has different implications when it occurs for efficient and inefficient DMUs.  

Inefficient DMUs with a mix component equal to one are on the “right operating path” 

and their ineffectiveness is caused only by inefficient utilization of inputs to produce 

outputs (i.e., inefficiency) while efficient DMUs producing within the preferred range 

of bundles are classified as effective and receive a score of one in all three scores.  Such 

DMUs can serve as examples to follow for the rest of the group.  On the other hand, 

when production takes place outside of the preferred range (see DMU F in Figure 

2.1(a)) effectiveness is lower than efficiency and the mix component is lower than 

unity.  This indicates that a DMU has diverged from the “right things” norm or mandate 

and there is a need to change its operating bundle, while if the DMU is also inefficient, 

additional actions are needed to eliminate technical inefficiencies.   

The “right thighs” norm or mandate can include directions set out by the 

management authorities of a corporation to its branches (e.g. in the case of a bank 

branch), regulations set out by the government agencies regulating an economic sector 

(e.g. in the case of financial sector regulations set out by Capital Market Commissions) 

or the international organizations supporting and monitoring a nation’s actions (e.g. in 

the case of a country being part of the European Monetary System, NATO or the UN).  

This broad definition highlights the generality of our approach and the fact that it can 

be applied in several real-world cases. 

We can now compare the VEA formulation of effectiveness to those of the 

second approach referred to in the Introduction, namely that of imposing behavioral 

(e.g., economic or managerial) objectives.  The use of economic objectives is depicted 

in Figure 2.1(b) and that of managerial objectives by means of weight restrictions in 

Figure 2.1(c).  In Figure 2.1(b) the straight blue line refers to a known output price ratio 

(i.e., iso-revenue line), which defines a single optimal output bunlde along the ray OB.  

Effectiveness, which in this case coincides with the notion of overall (revenue) 

efficiency, of DMU F is given by the ratio 
𝑂𝐹

𝑂𝐹′′ while (technical) efficiency is given by 

the ratio 
𝑂𝐹

𝑂𝐹′
.   In this case, the mix component, which is given by the ratio 

𝑂𝐹′

𝑂𝐹′′
, coincides 

with allocative efficiency.  In Figure 2.1(c) we depict different cases of weight 
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restrictions that are used to reflect “the right things to do”.  The straight green and red 

lines tangent to the DEA frontier in points B and C correspond respectively to a 

common (across DMUs) and an equal weight scheme.  Both define a single optimal 

output bundle, although a common-weights scheme reflected into lines AB or BC 

would define a range of preferred input/output bundles.  The broken yellow line 

corresponds to a form of relative weight bounds, which is similar to VEA frontier in 

Figure 2.1(a), and both define a preferred range of bundles.10  Taking DMU F as an 

example, in Figure 2.1(b) efficiency is defined by the ratio 𝑂𝐹 𝑂𝐹𝐼⁄ .  Effectiveness is 

defined as the ratio 𝑂𝐹 𝑂𝐹𝐼𝐼⁄  for the common weights scheme, the ratio 𝑂𝐹 𝑂𝐹𝐼𝐼𝐼⁄  for 

the relative weights bounds scheme and the ratio 𝑂𝐹 𝑂𝐹𝐼𝑉⁄  for the equal weights 

scheme.  This indicates that effectiveness estimates for a DMU may differ when 

different weighting schemes are used to reflect “the right things to do”.11 

 

2.3. Estimating effectiveness in the development of human capabilities  

 

2.3.1. Methods and Materials 

 

In this section, using 2015 UNDP data, we employ VEA to estimate the extent to which 

countries utilize their economic prosperity efficiently and effectively to enhance the 

development of human capabilities for their citizens, i.e., to increase their nations social 

prosperity.  Social prosperity is considered within the capability approach which 

focuses on the ability of people to live the lives they have reason to value (Sen, 1999, 

p. 293) and views development as a process that is “removing restrictions” (Fukunda-

Parr, 2003) and “enlarging people’s choices” (UNDP, 1990).  People themselves are 

the primary ends of the process of development, in addition to them being the principal 

 

 

10 VEA can also lead to a common set of weights.  If for example both DMUs A and B were chosen as 

the MPS in Figure 2.1(a), the VEA frontier would extend only facet AB towards the axes, thus creating 

a common set of weights that nevertheless defines again a range of preferred bundles. The same would 

occur if the inefficient DMUs I or J were chosen to be the MPS, as for both of them the efficient peers 

identified by DEA are DMUs A and B. 
11 DMUs may be ‘favored’ by specific weight restrictions more or less than others, as e.g., DMUs J and 

F: the former is more (less) favored by the green (red) line of common (equal) weights while the opposite 

holds for the latter. However, the same holds for effectiveness by means of the VEA model, as some 

DMUs are favored by the chosen MPS more or less than others: with DMU B as the MPS in Figure 

2.1(a), DMU E is ineffective while if DMU D is chosen as the MPS the DMU E would be effective 

instead. 
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means of economic production and subsequent economic growth.12  This differs from 

the human capital literature that tends to concentrate merely on the role of human beings 

in augmenting production possibilities, i.e., seeks what people “put into” development.  

According to Sen (1999, p. 293-295) the latter is a narrower view that tells us nothing 

about why economic growth is sought in the first place and can fit in the more inclusive 

perspective of human capabilities, which seeks “what people get from development” 

(Anand and Sen, 2000a).  The two approaches are of course related to each other in a 

causal way; see Ranis et al. (2000) and Suri et al. (2011). 

Economic prosperity, which is usually reflected through a country’s per capita 

income, is viewed by the capability approach as being merely a means to the ends of 

human development rather than an end in itself (UNDP, 1990; Anand and Sen, 2000; 

Fukunda-Parr, 2003; Alkire, 2005; Klugman et al., 2011).  Nevertheless, Sen (1993) 

noted that means of development such as income can indirectly influence the evaluation 

of human well-being through their effects on variables included in the evaluative space 

of human well-being (p. 33).13  This brings forth the question of whether countries are 

able to efficiently utilize their economic prosperity to enhance the social prosperity of 

their people.  The need to provide an answer to such a question is necessary because, 

despite the high correlation of income levels with longevity and education outcomes, 

“this tight relation does not obtain” (Sen, 2003, p. 3).  There exist many examples of 

countries with similar levels of income that achieve very different outcomes in terms 

of basic capabilities such as being healthy and receiving adequate education (see e.g., 

Sen, 1983, pp. 753-754 and Sen, 2003, pp. 3-4) and for that reason, Sen (1983, p. 754) 

noted that “not merely is it the case that economic growth is a means rather that an end, 

it is also the case that for some important ends it is not a very efficient means either”.14 

This line of reasoning was operationalized within the DEA framework by what 

is now referred to as DEA social efficiency model (Despotis, 2005a,b; Marianno and 

 

 

12 The capability approach is the underpinning of the construction of the Human Development Index 

(HDI), which concentrates in a set of basic and universally valued capabilities-longevity and education 

as well as gross national income. 
13 “the income of a person can tell us a good deal about her ability to do things that she has reason to 

value” (Anand and Sen, 2000a, p. 100). 
14 Anand and Sen (2000, p. 101) also referred to outlier countries that are “doing much more to enhance 

life expectancy than their GNP per capita would suggest”. These outlier countries need to be identified 

and used as benchmarks for other countries. 
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Rebelatto, 2014) where income is treated as an input and life expectancy and 

educational attainment as outputs.15,16.  In the context of the DEA social efficiency 

model, efficiency does not have a strictly production-oriented meaning, i.e., it does not 

explicitly refer to producing a given set of outputs with the minimum possible inputs. 

Instead, a “socially efficient” country is one which manages to provide to its citizens 

high social prosperity levels given its current economic prosperity levels in a relative 

sense, i.e., given the achievements in social prosperity of other countries with similar 

economic prosperity levels.  This definition adheres to our earlier definition of 

efficiency as “doing the right things” and does not include any considerations about the 

relative composition of health and education indicator levels.   

Nevertheless, additional information regarding “the right things to do”, i.e., 

norms about the preferred performance of nations should be considered.  Examples 

include institutional constraints laid down by international bodies, positive or negative 

externalities pointing towards desirable performance and fairness or social conscience 

(Golany and Thore, 1997).  Such an example may be the intention to simultaneously 

improve the provision of health and education services.  Mishra and Nathan (2018) 

refer to such a balanced realization of performance as the uniformity axiom and state 

that it is a desirable property for any index of material well-being and capabilities. Also, 

from a policy perspective, such a balanced prioritization norm between health and 

education provision, if followed, would aid the country to exploit possible spillover 

effects existing between the two.17  We adopt this equal prioritization norm to define 

 

 

15 DEA is a non-parametric methodology for estimating production frontiers and measuring efficiency.  

Compared to its parametric counterpart, Stochastic Frontier Analysis (SFA), there are advantages and 

disadvantages.  The main advantage of using DEA is that it does not require any information more than 

input and output quantities, while SFA requires an explicit specification of a functional form for the 

production function and an explicit distributional assumption for the inefficiency terms. Also, in DEA 

all deviations from the frontier are readily attributed to inefficiencies, i.e., it does not incorporate 

stochastic noise in the data as is done by SFA. The latter is a particularly important advantage when 

additional restrictions are incorporated in the model (as is the case of this chapter), as the extension of 

the DEA frontier by the extra restrictions (see e.g., Figure 6.1(a)) is not guaranteed to take place in the 

presence of stochastic noise. 
16 All previous studies using this model assumed variable returns to scale, in order to reflect the 

diminishing returns as income increases and used an output orientation to gauge efficiency.  Output 

orientation displays a focus towards increasing the current provision of health and education given the 

resources currently available.  It also reflects the views of Ranis et al. (2000) and Suri et al. (2011) that 

improving levels of education and health should have priority or at least move together with direct efforts 

to enhance growth. 
17 Ranis et al. (2000, p. 200) offer an example of such a spillover effect, citing studies that provide 

evidence that “education, especially female, tends to improve infant survival and nutrition”. 
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effectiveness and to choose our “model” country for the VEA model.  Thus, a country 

should not only manage to provide to its citizens high social prosperity levels given its 

current economic prosperity, but also to equally prioritize between the provision of 

health and education services.  We chose Norway which is the country that ranked 1st 

in the 2015 version of the UN HDI and it is a good example of balanced prioritization 

among health and education provision.  Norway is a DEA-inefficient country and thus 

the units comprising its reference set, namely the efficient countries Australia, 

Switzerland and Hong-Kong, are instead used as MPS in its place.18 

Our empirical models use the natural logarithm of GNI per capita in 2011 PPP 

$ as the single input.  We consider three outputs, the first of which is life expectancy at 

birth, a proxy for health provision.  To proxy educational attainment, we follow Lozano 

and Gutiérrez (2008) and Sayed et al. (2015) and use the indicators of mean and 

expected years of schooling as two separate outputs instead of taking their arithmetic 

average, to better reflect their different focus on the future expectations of education 

versus the current realizations of it.  Such a choice is also grounded on recent statistical 

results by Canning et al. (2013) who found that combining the two variables into a 

composite causes a substantial loss of information. The data were normalized using the 

distance-to-the-leader scheme, as suggested by Herrero et al. (2012).  This 

normalization scheme retains the unit invariance property for our models, while also 

leads to normalized values that necessarily lie within the [0,1] range.19  Descriptive 

statistics of the model variables are given in Table 2.1. 

The decomposition of effectiveness estimates into efficiency and the mix 

component, as in (2.2), allows the classification of countries into five groups based on 

their relative ability to provide an increased as well as a balanced provision of health 

and education to their citizens.  The “Leaders” group contains those DMUs which score 

above 99% in both efficiency and the mix component and therefore are considered as 

effective.  The “mix efficient” group contains those DMUs that have a mix component 

score higher than 99% but an inefficiency score less than 99%.  The reverse occurs for 

“efficient” DMUs which have efficiency scores higher than 99%, but lower mix 

 

 

18 In terms of Figure 2.1, Norway corresponds to DMU J. 
19 This normalization scheme also avoids the process of truncating normalized values to unity, which is 

criticized by Lind (2019, p, 410) since it “suggests that human development has an upper limit”. 
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Table 2.1: Descriptive statistics of model variables 

 

Variable min Max 
standard 

deviation 
median average 

raw variables 

Life expectancy 

at birth 

48.943 

(Swaziland) 

84.163 

(Hong Kong) 

8.297 73.415 71.353 

Expected years of 

schooling  

4.872 

(South Sudan) 

20.433 

(Australia) 

2.897 13.140 12.983 

Mean years of 

schooling 

1.442 

(Burkina Faso) 

13.370  

(Switzerland) 

3.097 8.656 8.372 

GNI per capita 587.474 

(Central African 

Republic) 

129915.601 

(Qatar) 

19069.312 10415.970 17313.866 

Note: The country in parenthesis indicates where the respective minimum/maximum is found.  

 

component scores.  The group of “Laggards” consists of the relatively worst performing 

countries, which achieve efficiency and mix component scores below a certain 

threshold, which was set at 80%.  Thus, we consider inefficiencies below 80% as 

significant enough to raise alarms to supervising agencies.  The remaining DMUs are 

relatively inefficient with respect to both measures to some extent, but not as severely 

as the Laggards, i.e., their efficiency scores and mix component are both below 99% 

but at least one is above 80%.  These were altogether grouped as “inefficient”. 

 

2.3.2. Empirical Results 

 

Estimates of effectiveness, efficiency and the mix component by group, income class 

and geographical region are given in Table 2.2.  The arithmetic average and aggregate 

values of efficiency scores and the mix component for the full sample of 188 countries 

are 0.927 and 0.906 respectively, indicating that ineffectiveness is caused more by 

countries’ imbalanced prioritization on health and education provision (captured by the 

mix component) than by having relatively low achievements relative to their economic 

prosperity levels (inefficiency).20  This is clearly reflected in the shape of the kernel 

distributions of efficiency scores (see Figure 2.2) where the mix component distribution  

 

 

20 According to Färe and Karagiannis (2017), the aggregate values are computed using potential output 

shares.  However, as we have more than one outputs for which there are no market prices, we have to 

approximate their “market” shares.  Here we follow the approximation suggested by Färe and Zelenuyk 

(2003) that assumes that the value of the total amount of any output is the same as the value of the total 

amount of any other output. This implies that the aggregation weights are equal to the unweighted 

average of the shares of the individual countries corresponding to each output, i.e., 
1

𝐾
∑ (𝑦𝑗

𝑘 ∑ 𝑦𝑗
𝑘𝐾

𝑘=1⁄ )𝐽
𝑗=1 . 
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Table 2.2: Estimates of effectiveness, efficiency and the mix component 

 
  effectiveness efficiency mix component 

World (188 countries) 

maximum 1.000 1.000 1.000 

minimum 0.587 0.704 0.594 

average 0.841 0.927 0.906 

aggregate 0.849 0.930 0.913 

by cluster 

leaders 

maximum 1.000 1.000 1.000 

minimum 0.989 0.996 0.991 

average 0.995 0.999 0.996 

aggregate 0.995 0.999 0.996 

mix efficient 

maximum 0.989 0.989 1.000 

minimum 0.885 0.893 0.991 

average 0.963 0.966 0.996 

aggregate 0.963 0.967 0.996 

efficient 

maximum 0.988 1.000 0.988 

minimum 0.594 0.991 0.594 

average 0.840 0.998 0.841 

aggregate 0.850 0.998 0.852 

inefficient 

maximum 0.968 0.988 0.990 

minimum 0.588 0.704 0.706 

average 0.822 0.910 0.903 

aggregate 0.829 0.911 0.909 

laggards 

maximum 0.595 0.789 0.790 

minimum 0.587 0.743 0.749 

average 0.591 0.765 0.773 

aggregate 0.591 0.766 0.772 

by income class 

high income 

maximum 1.000 1.000 1.000 

minimum 0.845 0.857 0.913 

average 0.948 0.963 0.984 

aggregate 0.949 0.964 0.984 

upper-middle income 

maximum 0.951 1.000 0.980 

minimum 0.588 0.704 0.829 

average 0.855 0.908 0.941 

aggregate 0.855 0.909 0.940 

lower-middle income 

maximum 0.897 1.000 0.961 

minimum 0.595 0.707 0.779 

average 0.794 0.911 0.871 

aggregate 0.796 0.913 0.872 

low income 

maximum 0.801 1.000 0.826 

minimum 0.587 0.743 0.594 

average 0.691 0.918 0.755 

aggregate 0.692 0.918 0.754 
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(Table 2.2 continued) 

  effectiveness efficiency mix component 

by geographical region 

North America and the Caribbean 

maximum 0.990 1.000 0.994 

minimum 0.728 0.857 0.791 

average 0.884 0.940 0.940 

aggregate 0.886 0.940 0.942 

Europe (all) 

maximum 1.000 1.000 1.000 

minimum 0.890 0.916 0.913 

average 0.949 0.968 0.980 

aggregate 0.949 0.968 0.980 

Europe (EU) 

maximum 0.988 1.000 1.000 

minimum 0.890 0.916 0.913 

average 0.948 0.966 0.981 

aggregate 0.948 0.966 0.981 

Europe (non-EU) 

maximum 1.000 1.000 1.000 

minimum 0.892 0.934 0.945 

average 0.951 0.972 0.978 

aggregate 0.952 0.973 0.979 

North Africa 

maximum 0.879 0.948 0.949 

minimum 0.833 0.885 0.909 

average 0.855 0.917 0.933 

aggregate 0.856 0.916 0.934 

South, East Asia and Oceania 

maximum 1.000 1.000 1.000 

minimum 0.720 0.856 0.784 

average 0.861 0.944 0.912 

aggregate 0.868 0.947 0.916 

South America 

maximum 0.969 1.000 0.969 

minimum 0.785 0.842 0.879 

average 0.874 0.924 0.945 

aggregate 0.874 0.925 0.945 

Sub-Saharan Africa 

maximum 0.883 1.000 0.977 

minimum 0.587 0.704 0.594 

average 0.700 0.872 0.807 

aggregate 0.702 0.862 0.814 

North, West and Central Asia 

maximum 0.991 1.000 0.991 

minimum 0.694 0.812 0.789 

average 0.861 0.935 0.921 

aggregate 0.864 0.936 0.923 

 

has a higher density that the technical efficiency one for lower values of estimates 

(below 0.85).  Also, from the 20 countries that DEA identifies as offering the highest 

possible social prosperity relative to their economic prosperity (i.e., the efficient 

countries) only four (namely Australia, Hong Kong, Japan and Switzerland) are denoted 
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Figure 2.2: Kernel density estimates for the efficiency, effectiveness and mix 

component, 2015. 

 

 

by VEA as 100% effective.21  These countries receive a score of one for all three 

measures.   

Eight countries in total (Australia, Hong Kong, Japan and Switzerland which 

are efficient and Norway, Denmark, Singapore and Sweden which are inefficient) have 

a mix component equal to one, i.e., their DEA and VEA scores are equal to each other.  

The inefficient countries with a mix component equal to one manage to offer to their 

citizens a high balance in the provision of health and education services, but not the 

“highest possible” amount relative to their economic prosperity, as there are other 

countries having slightly higher social achievements with the same levels of economic 

prosperity.  The lowest efficiency score among those four countries is 0.972, by 

Denmark.  Nevertheless, the negative skewness for the three measures (see Figure 2.2) 

along with the minimum scores indicates the existence of highly inefficient countries, 

which are in dire need of restructuring actions.  Such actions could include increases in 

 

 

21 The efficient countries are (in alphabetical order) Australia, Burundi, Central African Republic, Cuba, 

Georgia, Hong Kong, Iceland, Italy, Israel, Japan, Kyrgyzstan, Liberia, Moldova, Nepal, Republic of 

Congo, Solomon Islands, Switzerland, Tajikistan, United Kingdom and Uzbekistan. 



28 

 

 

health and education expenditures and a better management in order to decrease 

resource waste.  For countries with low mix component scores, budget redistribution 

could also be an action leading to increased levels of future social prosperity.  

In the second panel of Table 2.2 we present the results for the clustering of countries 

according to their efficiency and mix component scores.  This clustering is also 

portrayed depicted in Figure 2.3 and Table 2.3 presents in more detail the countries in 

each cluster.  Note that in Table 2.3 we have split the inefficient group into six sub-

groups based on an additional threshold set at 95% for technical efficiency and the mix 

component.  The Leader group of countries outperforms on average all other groups in 

all three measures.  The eight Leader countries (see Table 2.3) include industrialized 

and well-performing countries in terms of social prosperity such as Canada, Australia 

and Japan.  These are the ones doing ‘the right things’ and can be considered by the 

supervising agency (e.g. the UN) as undeniable best performers whose behavior should 

be copied by other countries in the future.  The 17 “mix efficient” countries include 12 

European ones, among which we find most of the Nordic countries along with many 

EU members such as France, Ireland and Belgium. The group is filled with two Asian 

(Korea, Singapore) and three Arabic countries (Qatar, Saudi Arabia and United Arab 

Emirates).  These countries, which provide to their citizens the highest possible balance 

in social prosperity outcomes (i.e., the operate within the preferred range of bundles set 

out by the “model” country), are also providing very high levels of social prosperity 

relative to their economic prosperity (their average efficiency score is 0.966) and 

consequently they display high effectiveness (average 0.963).  

On the contrary, the 22 countries of the “efficient” group, which display the “highest 

possible” social prosperity achievements relative to their economic prosperity, are not 

concentrated on a specific region but are scattered across the world, including countries 

as diverse as USA, Chile and Uzbekistan.  Furthermore, this group of countries is well 

performing only with respect to efficiency while having mediocre average 

performances in terms of balance in the provision of social prosperity (the groups’ mix 

component varies from the low 59.4% in Central African Republic to the well-

performing 98.8% in Italy) and consequently, in terms of effectiveness.  This group 

should focus disproportionately more in improving balance in their social prosperity 

outcomes through gradual changes in their mix.  The inefficient countries slightly 

outperform the efficient countries in terms of the mix component (average estimate  
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Figure 2.3: Country clusters by means of efficiency and the mix component 

 

 
 

0.903 compared to 0.841).  The three Laggard countries, namely Chad, Lesotho and 

Sierra-Leone (see Table 2.3) belong to the Sub-Saharan African region.  For those 

countries there seems to be vast room for future improvement, as they are displaying 

both very low as well as very unbalanced social prosperity achievements relative to 

their levels of economic prosperity.  The average estimates of efficiency (0.765) and 

mix component (0.773) are the lowest across groups and lead to an average 

effectiveness score of 59.1%, also the lowest among all groups.  

The performance of countries by income class is given in the third panel of 

Table 2.2 and in Figure 2.4 we plot effectiveness, efficiency and the mix component 

against GNI per capita.22  Effectiveness and the mix component seem to follow an S-

curve with respect to income, which is more intense in the mix component case.  As 

income increases average effectiveness and the mix component also increase, with the 

highest shift in average values being between low and lower-middle income classes.  

This suggests that a small initial ‘’push’’ in a country’s income can spark significant 

improvements in the provision of health and education services, i.e., that returns to   

 

 

22 The respective information for the 2015 country clustering by income class was retrieved from the 

World Bank. 
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Table 2.3: Classifying countries by means of efficiency and the mix component 

   
mix component 

 
  [1-0.99] (0.99-0.95] (0.95-0.8] (0.8-0] 

 e
ff

ic
ie

n
cy

 

[1
-0

.9
9
] Australia, Canada, Hong 

Kong (China, SAR), Iceland, 

Israel, Japan, New Zealand, 

Switzerland 

Chile, Cuba, Germany, Italy, Spain, 

United Kingdom, United States 

Georgia, Kyrgyzstan, Moldova (Republic of), 

Nepal, Tajikistan, Tonga, Uzbekistan, Vanuatu 

Burundi, Central African 

Republic, Congo (Democratic 

Republic of), Liberia, Malawi, 

Solomon Islands, Togo 

(0
.9

9
-0

.9
5
] 

Austria, Belgium, Cyprus, 

Denmark, Finland, France, 

Ireland, Korea (Republic of), 

Liechtenstein, Luxembourg, 

Netherlands, Norway, 

Singapore, Sweden 

Andorra, Argentina, Costa Rica, Czech 

Republic, Estonia, Greece, Malta, 

Portugal, Slovenia 

Albania, Bangladesh, Belarus, Bosnia and 

Herzegovina, Cabo Verde, Dominica, Fiji, 

Grenada, Honduras, Lebanon, Lithuania, 

Maldives, Micronesia (Federated States of), 

Nicaragua, Palau, Palestine (State of), Samoa, 

Syrian Arab Republic, Ukraine, Viet Nam 

Comoros, Ethiopia, 

Madagascar, Niger, Rwanda 

(0
.9

5
-0

.8
] 

Qatar, Saudi Arabia, United 

Arab Emirates 

Antigua and Barbuda, Azerbaijan, 

Bahamas, Bahrain, Barbados, Brunei 

Darussalam, Bulgaria, Croatia, Hungary, 

Iran (Islamic Republic of), Jordan, 

Kuwait, Latvia, Malaysia, Mauritius, 

Mexico, Montenegro, North Macedonia, 

Oman, Panama, Peru, Poland, Romania, 

Saint Kitts and Nevis, Serbia, Seychelles, 

Slovakia, Sri Lanka, Suriname, Thailand, 

Trinidad and Tobago, Turkey, 

Turkmenistan, Uruguay, Venezuela 

(Bolivarian Republic of) 

Algeria, Armenia, Belize, Bhutan, Bolivia, Brazil, 

Cambodia, China, Colombia, Congo, Djibouti, 

Dominican Republic, Ecuador, Egypt, El 

Salvador, Ghana, Guatemala, Guyana, India, 

Indonesia, Iraq, Jamaica, Kazakhstan, Kenya, 

Kiribati, Lao People's Democratic Republic, 

Libya, Mauritania, Mongolia, Morocco, 

Myanmar, Namibia, Pakistan, Papua New Guinea, 

Paraguay, Philippines, Russian Federation, Saint 

Lucia, Saint Vincent and the Grenadines, Sao 

Tome and Principe ,South Africa, Sudan, 

Tanzania (United Republic of), Timor-Leste, 

Tunisia, Yemen, Zambia 

Afghanistan, Benin, Burkina 

Faso, Eritrea, Gambia, Guinea, 

Guinea-Bissau, Haiti, Mali, 

Mozambique, Senegal, South 

Sudan, Uganda, Zimbabwe 

(0
.8

-0
] 

- 

Botswana, Equatorial Guinea, Gabon Angola, Cameroon, Côte d'Ivoire, Nigeria, 

Swaziland 

Chad, Lesotho, Sierra Leone 
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Figure 2.4: Relation between income and performance 
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income are increasing in lower income levels.  After a certain level of GNI per capita 

(around 12.000 $ which is close to the threshold between upper-middle and high-

income class) the curvature changes and the returns to income in social prosperity 

become decreasing, indicating that further economic prosperity increases improve only 

slightly a country’s achievements in terms of social prosperity.  There is no high-

income country that departs more than 8.7% from the preferred range of health and 

education bundles, as the minimum estimate of the mix component for a high-income 

country is as high as 0.913 (see Table 2.2).  Thus, the virtually zero gain in human 

development and well-being when income surpasses a certain threshold that is found 

by Kahneman and Deaton (2010) can be partly explained by that fact that most high-

income countries are already displaying both very high as well as highly balanced 

achievements in terms of social prosperity relative to their (also high) levels of 

economic prosperity. They are prioritizing relatively even between health and 

education provision and exploiting heavily the spillovers between simultaneous 

improvements in both of them.  

For efficiency however there does not seem to be a particular pattern. There is 

no significant difference between low- and the two middle-income classes in terms of 

efficiency while the high-income countries are on average only 6% more efficient that 

the low-income countries. Thus, a low level of economic prosperity does not appear to 

prevent a country from exploiting it to the highest possible extent to provide social 

prosperity outcomes (i.e., ‘’doing things right’’) as efficiency is realized for a wide 

range of income levels, from the extremely low-income Central African Republic (GNI 

per capita 587.474 $ in 2015) to high-income Switzerland (PPP GNI per capita 

56,363.958 $ in 2015). On the other hand, equal prioritization and efficient resource 

use seem to be associated with higher income levels. High-income countries seem to 

have the know-how about ‘’doing the right things’’ in terms of enhancing social 

prosperity and further developing the capabilities of their citizens.  

The lower panel of Table 2.2 we present the results by geographical region.   

From there we can see: first, North-Central America and the Caribbean is a rather 

diverse region whose good average efficiency and mix component performance is 

mainly supported by the two North American countries, USA and Canada.  Most 

Central American and Caribbean countries are classified as inefficient.  Second, South 

American countries on average appears to provide slightly less social prosperity 
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achievements relative to their economic prosperity, compared to their Northern 

neighbors (average efficiency in South America is 0.842 compared to 0.857 in North 

America) but on the same time, offering considerably more balanced provision of health 

and education (the average mix component in South America is 0.879 while that of 

North America is 0.791).  Third, South American countries located north or south of 

the tropical Amazon rainforest seem, to offer a more balanced mix of health and 

education outcomes compared to countries in the center of South America (e.g. Brazil, 

Argentina, and Paraguay, see also Table 2.3).  Fourth, Europe is the best performing 

region on average in all three measures, while EU-member countries slightly 

outperform the non-EU countries in terms of balance in the provision of social 

prosperity but lag slightly behind in terms of efficiency.  Fifth, three of the Nordic 

countries (Norway, Denmark, Sweden) have a mix component equal to one, with the 

rest of the Nordic group (Iceland and Finland) following suit with scores greater than 

0.99. On the opposite, the worst performing European countries in terms of the mix 

component are three Balkan countries (North Macedonia, Albania, Bosnia and 

Herzegovina) and two Eastern European countries (Estonia and Lithuania).  Sixth, the 

Sub-Saharan African (SSA) group of countries is the worst performing region on 

average in all three measures.  The majority of the SSA countries score below 90% in 

terms of the mix component while half of them (26) score below the threshold of 80%.  

This poor performance suggests that the SSA region is in urgent need of restructuring 

actions, such as shifting the allocation of natural resources revenues from recruitment 

and administrative to health and education expenditures (Raheem et al., 2018) or using 

the same revenues in order to boost human capital (Oyinlola et al., 2020). 

 

2.3.3. Robustness checks 

 

We next present a robustness check by (a) considering two alternative MPS choices for 

the year 2015, namely Australia (the country that ranked second in the 2015 HDI) and 

an artificial country comprised by the average of the five efficient countries with the 

highest ranks in the 2015 HDI, namely Australia, Switzerland, Iceland, Hong-Kong and 

United Kingdom and (b) extending the period under consideration to 2014-2018, using 

our initial “model” country. 

The use of Australia as the “model” country for the year 2015 results into 

relatively higher effectiveness and mix component scores relative to Norway being the 
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“model” country, mostly because it results to a wider range of preferred bundles. This 

is to be expected as Australia was a DEA-efficient country while Norway was not.  This 

is also clear from Figure 2.1(a) if we consider DMU J as Norway and DMU B as 

Australia.  Using DMU B as the MPS expands both facets AB and BC (blue line) and 

results into more countries attaining a score of one for the mix component and 

consequently, to higher effectiveness scores compared to the use of DMU J as the MPS, 

which expands only facet AB (the red line).  The average effectiveness score with 

Australia as the “model” country was 0.917 (compared to 0.841 with Norway as the 

“model” country) while the number of “mix efficient” countries was 126 (compared to 

17 in the case of Norway).  On the other hand, using as “model” country the artificial 

“average best performing” country was operationalized by using its efficient peers as 

the MPS, i.e., Australia, Switzerland, Hong-Kong and Japan.  This set of peers is the 

same as that for Norway with the addition of Japan. Adding Japan in the set of MPS 

brings virtually no changes to effectiveness and mix component scores with respect to 

the case of Norway being the “model” country; all average scores as well as the 

classification of countries remains the same.  Referring again to Figure 2.1(a), let 

Norway and the artificial average country correspond respectively to DMUs J and I, 

which both are projected in facet AB and therefore, their use as MPS extends the same 

facet. 

Estimates of effectiveness, technical efficiency and mix components scores for 

years 2014, 2017 and 2018 using Norway as the “model” country are given in Table 

2.4 and their kernel density distributions are portrayed in Figure 2.5.  Overall, the results 

across years remain relatively stable.  The only notable change occurs in 2017, where 

the distribution of the mix component became more skewed towards unity compared to 

other years (see Table 2.4).  This is due to changes in the set of peers for Norway.  More 

specifically, Norway’s peers were the same in 2014 and 2015 (namely, Australia, 

Switzerland and Hong-Kong), while in 2017 changed to Australia, Hong-Kong and 

Japan.  The exclusion of Switzerland, a country with a relatively narrower preferred 

range of bundles, caused the preferred bundle range to widen in 2017 relative to other 

years.  Referring to Figure 2.1(a), this is as the preferred range of bundles temporarily 

moved from OA-OB to OA-OC.  In 2018, Norway’s peers are Australia, Switzerland 

and Japan, highlighting a return to a narrower preferred range of bundles which is 

similar to those of years 2014 and 2015, as it can be seen from Table 2.4. 
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Table 2.4: Distribution of effectiveness, technical efficiency and mix component scores, 2014, 2015, 2017 and 2018 with the same MPS choice 

(Norway) 

 

 2014 2015 2017 2018  2014 2015 2017 2018  2014 2015 2017 2018 

  effectiveness  efficiency   mix component 

(zero) 0 0 0 0  0 0 0 0  0 0 0 0 

(0,0.1) 0 0 0 0  0 0 0 0  0 0 0 0 

[0.1,0.2) 0 0 0 0  0 0 0 0  0 0 0 0 

[0.2,0.3) 0 0 0 0  0 0 0 0  0 0 0 0 

[0.3,0.4) 0 0 0 0  0 0 0 0  0 0 0 0 

[0.4-0.5) 0 0 0 0  0 0 0 0  0 0 0 0 

[0.5,0.6) 2 5 0 3  0 0 0 0  0 1 0 0 

[0.6,0.7) 16 19 7 23  1 0 0 0  1 2 1 3 

[0.7,0.8) 37 37 33 37  11 11 6 6  20 26 5 26 

[0.8,0.9) 65 71 64 69  41 40 43 46  42 40 36 43 

[0.9,1) 64 52 82 53  117 117 125 124  119 112 134 108 

1 4 4 3 4  18 20 15 13   6 7 13 9 

maximum 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

minimum 0.596 0.587 0.644 0.571  0.685 0.704 0.704 0.714  0.610 0.594 0.652 0.658 

average 0.850 0.841 0.871 0.838  0.924 0.927 0.925 0.928  0.918 0.906 0.941 0.900 

aggregate 0.859 0.849 0.880 0.847  0.928 0.930 0.929 0.932  0.925 0.913 0.947 0.909 

standard deviation 0.104 0.107 0.086 0.108  0.067 0.066 0.060 0.058  0.078 0.085 0.064 0.086 

median 0.875 0.867 0.891 0.867  0.938 0.939 0.934 0.944   0.951 0.943 0.969 0.920 
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Figure 2.5:Kernel density estimates for the efficiency, effectiveness and mix 

component, 2014, 2015, 2017 and 2018 with the same MPS choice (Norway) 

 

  
(a) 2014 (b) 2015 

  
(c) 2017 (d) 2018 

 

2.4. Concluding remarks 

 

In this chapter we use VEA to assess effectiveness.  VEA captures the extent of ‘’doing 

the right things’’ through the choice of a “model” DMU which defines a preferred range 

of input/output bundles. DMUs operating within that range are perceived as effective 

by managerial authorities, while DMUs operating outside the preferred range should be 

directed towards mix changes and restructuring.  Effectiveness was then decomposed 

to two measures reflecting the extent of ‘’doing things the right way’’ (efficiency) and 

producing out of the given range of input and output mixes’ (mix component 

The proposed approach could be utilized in many real-world instances where an 

evaluation of units is sought and managerial preferences need to be taken into account 

along with efficiency issues.  At a micro level, our approach could aid firm owners, 

CEOs or HR departments to make decisions upon hiring, promoting or allocating 

personnel based on both their operating efficiency and effectiveness or allocate pay-
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for-performance funds within a firm. Similarly at a macro level, international 

organizations such as the International Development Association, Development Banks, 

the World Bank or the European Union could utilize such a tool with the aim of 

allocating several kinds of funds towards countries or regions which are either the best 

(if the funds act as rewards) or the worst performers (if the funds act as aid).23  A final 

note regards the sensitivity of the method to the choice of the MPS. As the chosen MPS 

unit defines the preferred range of bundles, it certainly affects the effectiveness scores 

and their decomposition into efficiency and the mix component. 

In the case of the development of human capabilities considered in the empirical 

application, the use of a “model” country to assess the effectiveness of converting 

economic to social prosperity allows us to identify the countries providing 

inappropriate mixes of health and education services and those providing an 

inappropriate amount of the suggested mixes of health and education services.  The 

former may use policies to correct their deficiencies such as redistributing government 

expenditures more evenly across health and education in their future balance sheets or 

directly targeting “priority areas”, i.e. the service provision sector which is the relatively 

most neglected among health and education, through the creation of infrastructure 

(schools, hospitals) or the implementation of new regulations (e.g. population 

immunization policies through mandatory vaccination).24  The latter can benefit from 

policies that redistribute government expenditures from other uses (e.g. administrative 

expenditures) to health and education to further improve their achievements, i.e. 

increase their HD-allocation ratio (see Ranis et al., 2000), as well as from policies that 

enhance the efficient use of those expenditures, such as better monitoring mechanisms 

for government officials that handle the relevant contracts. 

 

 

 

 

23 A case of reward-funds is considered by Golany and Thore (1997): the evaluation by the World Bank 

or some UN agency of loan requests made by developing countries. 
24 Ranis et al. (2000) refer to the proportion of government expenditures for sectors related to human 

development that is attributed to such priority areas as HD priority ratio and argue that the latter is 

affected positively by the extent of government decentralization. 
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CHAPTER 3 
 

A VEA Benefit-of-the-Doubt model for the HDI 
 

 

3.1. Introduction 

 

The Benefit-of-the-Doubt (BoD) as an input-oriented Data Envelopment Analysis 

(DEA) model with a single constant input, mainly used for constructing composite 

indicators (CI) (see OECD, 2008) but also applied to several multi criteria decision 

making problems such as supplier selection, inventory classification, quality 

perception, preference voting, location selection, etc. (see Karagiannis (2021) and the 

references therein), has the advantages and disadvantages of DEA models.  Among 

them is the flexibility of weights that may vary across DMUs and indicators in such a 

way so as to maximize the overall achievement of each evaluated Decision-Making 

Unit (DMU).  This flexibility may in some cases imply that DMUs are rated as efficient 

by doing well only on a single performance dimension.  In such a case, zero weights 

are assigned to all but one indicator.  However, more often, DMUs are evaluated based 

only on a subset of the considered indicators (most notably those in which they perform 

relatively better), implying that the rest have no effect on the CI.  As this subset of 

indicators may differ across DMUs, it makes their multilateral comparison difficult or 

even inappropriate.25,26   

 

 

25 For example, consider two countries A and B being evaluated on the basis of two indicators, namely 

𝐼1 (patents) and 𝐼2 (research grants, in thousand $).  If country A outperforms B in terms of patents but 

is outperformed by B in terms of research grants, the BoD model will base the composite indicator of 

country A only on the patents indicator and assign a zero weight on the research grants indicator, while 

the reverse will occur for country B. Comparing the performance of the two countries using these 

composite indices, would be deemed inappropriate. 
26 The benefit-of-the-doubt weighting might also be criticized for dismissing one of the three basic 

requirements in social choice theory in response to Arrow’s theorem, namely anonymity or the 

assignment of equal weights to all indicators.  Nevertheless, OECD (2008, p. 105) argue that anonymity 
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To avoid this kind of issues when implementing the BoD model several 

researchers have restricted weight flexibility by imposing different type of restrictions.  

These may take the form of (i) absolute weight bounds (see e.g., Rogge and Self, 2019), 

(ii) relative restrictions in the form of assurance regions (Gaaoul and Khalfallah, 2014), 

(iii) ordinal ranking of indicators’ importance (see e.g., Cherchye et al. 2007b), and (iv) 

pie shares (Cherchye et al., 2007a; Gonzalez et al., 2018).  Such forms of weights 

restrictions require experts, stakeholders or social planners to set the absolute or relative 

bounds or shares, a task that can be proved to be difficult and time-consuming since 

usually experts may have diverging opinions regarding the relative importance of 

indicators. 

An alternative way to incorporate value judgments in BoD is by means of Value 

Efficiency Analysis (VEA), developed by Halme et al. (1999).  This alternative has 

been suggested in OECD (2008, p. 92), where it is noted that “the benchmark could 

also be determined by a hypothetical decision maker … who would locate the target in 

the efficiency frontier with the most preferred combination of individual indicators’’, 

but to the best of our knowledge it has not been implemented so far.  In VEA, the views 

of an expert, a decision maker (DM) or a supervising agency are reflected in the choice 

of a “model” DMU that determines the Most-Preferred Solution (MPS) from their point 

of view.  This alternative in gauging preferences might be proven to be more appealing 

to Decision Makers, as the latter might be more keen on choosing one DMU to serve 

as a benchmark, rather than engage in the task of selecting weight restriction bounds 

(Korhonen et al., 2002).27  The choice of the “model” DMU restricts the weights that 

the evaluated DMUs can select by determining a preferred range of indicator bundles. 

In this chapter we use the VEA-BoD model to re-estimate the United Nations 

(UN) Human Development Index (HDI) using data for 2015.  For these purposes we 

rely on the notion of uniformity, namely the intension for equal prioritization among 

the considered indicators, to choose the “model” country.  Based on this objective and 

 

 

is not an essential requirement in the construction of a composite indicator, as equal weighting is usually 

only one of the possible weighting schemes. 
27 We should emphasize that the chapter’s aim is to provide an alternative approach to that of weight 

restrictions in incorporating DM preferences to the conventional BoD model, rather than an approach 

that performs better in restricting the flexibility of weights in conventional BoD, compared to weight 

restrictions. 
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normative argument, countries with a relatively balanced prioritization among health, 

education and income would be promoted as peers for improving human capabilities in 

the rest of the countries.  The latter may need a shift of focus towards policies aimed at 

improving their most deprived human development dimensions. 

The rest of the chapter proceeds as follows:  In the next section we briefly 

discuss the conventional BoD model and we introduce the VEA-BoD model.  In the 

third section, we present the empirical results for the HDI based on the VEA-BoD 

model.  Concluding remarks follow in the last section.  

 

3.2. The Conventional and the VEA BoD models 

 

The BoD is a model facilitating the (linear) aggregation of a number of quantitative 

indicators into a single CI when exact knowledge of the weights is not available.28  The 

model endogenously selects the best possible weights for each DMU, assuming 

implicitly that the DMUs attach less (more) importance to those indicators on which 

they perform relatively weak (strong) compared to the other evaluated units.  The model 

is a special case of the input-oriented constant-returns-to-scale DEA model with a 

single constant input that takes the value of one for all DMUs (see Karagiannis, 2021).  

Its multiplier and envelopment forms are given as: 
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28 The BoD is one of the four approaches proposed by OECD (2008) for constructing composite 

indicators.  However, CI construction is a constantly expanding research field, in which several new 

methodological advancements exist.  Some of these contributions are related to the BoD model, others 

make use of multicriteria decision-making approaches, such as goal-programming and non-

compensatory approaches, while there are also mixed or hybrid approaches combining different 

methodologies to construct a composite indicator.  A review of these approaches is a task out of the scope 

of this chapter, and the interested reader is referred to Greco et al. (2019) and El Gibari et al. (2019) for 

recent reviews. 
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where y refers to the component indicators, u to their relative weights (multipliers), θ 

to the efficiency score, λ to the intensity variables, 𝑗 = 1, … , 𝐽 is used to index indicators 

and k (𝑘 = 1, … , 𝑜, … , 𝐾) to index DMUs. 

Expert judgments, DM’s mandates or public opinion and social planner norms 

regarding the performance of the evaluated DMUs are not a priori incorporated in the 

conventional form of the BoD model in (3.1).  As a result, each DMU has the benefit-

of-the-doubt in the selection of its relative weights in order to maximize the value of its 

CI.  This allows DMUs that dominate all others in a single indicator to be rated as 

efficient even though they perform relatively weak in terms of all other indicators.  The 

CI values resulting from (3.1) are thus the most optimistic for each DMU.   

VEA takes into account DM’s preferences or public opinion about desired 

norms and managerial or social goals by means of a pseudo-concave value function 

(i.e., an indifference curve) that becomes tangent to the DEA efficient frontier at a point 

referred to as the MPS.  This point, ultimately chosen by a DM or a supervising agency, 

corresponds to a virtual or real DEA-efficient DMU, which is viewed as the “model” 

DMU having the most preferred input/output bundle.  The VEA frontier is constructed 

by extending towards the axes the hyperplanes of the DEA efficient facets intercepting 

at the MPS, a process that naturally results in efficiency scores that are lower or equal 

to those of the conventional DEA model.  This is depicted in Figure 3.1 for the case of 

two indicators.  Choosing for example DMU B as the MPS extends facets AB and BC 

towards the axes, creating the VEA frontier (the red kinked line).   This defines a range 

of preferred bundles given between rays OA and OC.  As a result, the DEA benchmark 

profiles complying with the desired norms are now limited to facets AB and BC.  For 

all inefficient DMUs which are radially projected in these two facets, the CI value that 

results from the VEA-BoD model is equal to that of the conventional BoD model while 

inefficient DMUs projected elsewhere on the BoD frontier and thus using a bundle 

outside of the preferred range are “penalized” and their CI value is less than that 

obtained from the conventional BoD model.   

Following Halme et al. (1999), the VEA formulation of the BoD model in (3.1) 

is given, in its multiplier and envelopment form, as follows:  
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in which r refers to the DMU chosen as the MPS. 

As we can see there are only slight differences between (3.1) and (3.2): in the 

multiplier form, the restriction corresponding to the MPS is turned from an inequality 

to a strict equality in order the range of acceptable weights to be restricted into those 

that are optimal for the “model” DMU.  This in turn restricts the preferred range of 

bundles to be between rays OA and OC in Figure 3.1, if DMU B is chosen as the MPS.  

This corresponds in to removing the non-negativity restriction from the intensity 

variable corresponding to the MPS in the envelopment form of (3.2.), thus forcing the 

MPS to be peer for all evaluated DMUs. 

In practical settings, the most crucial step in VEA is the choice of the MPS, as 

it affects the resulting frontier and, consequently, the derived efficiency scores.  

Nevertheless, no general rule of thumb exists for choosing the MPS, but several 

suggestions have been proposed.  These involve the choice of either a real (usually 

DEA-efficient) DMU or a combination of DEA-efficient DMUs.  The latter case can 

be operationalized as long as the combined DMUs generate at least one common facet, 

in which case the resulting VEA frontier expands only those common facets.  If the 

chosen MPS units do not generate a common facet, then their average will not be DEA 

efficient and thus its DEA efficient peers would be used as the MPS.  The same is true 

if the DM chooses a DEA-inefficient DMU as the MPS.  For example, in Figure 3.1, 

the average of DMUs B and C lies on facet BC and limits the preferred input/output 

bundles between rays OB and OC.  On the other hand, the average of DMUs A and E, 

denoted as AE, is DEA-inefficient and its peers (i.e., DMUs B and C) are used as the 

MPS.  

Many of the proposed suggestions for choosing the MPS involve the subjective 

judgments of a DM.  Such examples include using the DM’s personal judgments to 
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Figure 3.1: Composite indicator construction based on BoD and VEA-BoD models 

 

 
 

choose the MPS (Halme et al., 2014), choosing the DMU performing the best in a 

particular model dimension (Marshal and Shortle, 2005), and using interactive 

multiobjective algorithms (see Halme et al., 1999).  This inherent subjectivity makes 

the task of choosing an MPS less transparent and raises concerns as it might 

compromise the evaluation process in the case of malevolent DMs who wish to curb 

the results in favor of certain DMUs.29   

Nevertheless, there are other, relatively objective alternatives, the use of which 

can make the MPS choice as transparent as possible from the viewpoint of stakeholders 

or the public. They can also provide compromise solutions in cases where a DM is 

absent or unable to point at a preferred DMU and in cases of disagreement among a 

board of DMs.30  These include: first, averaging inputs and outputs over more than one 

 

 

29 We emphasize that such subjectivity is also inherent in several stages of the composite indicator 

construction process, such as the choice of the relevant indicators to be included in the composite and 

the normalization scheme.  It is frequently present in the choice of weight bounds in weight-restricted 

BoD as well. Thus, malevolent DMs can also choose weight bounds that will curb the BoD efficiency 

frontier, resulting in an evaluation process that favors certain DMUs. 
30 Some MPS choices might prove to be as time-consuming as the process of choosing weight restriction 

bounds.  Nevertheless, as Korhonen et al. (2002) ague, DMs are more keen on simply pointing at a DMU 
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DMUs selected by the same or different DMs and using the resulting artificial DMU as 

a compromise solution MPS (Korhonen et al., 2002).  Second, using a participatory 

approach such as the Analytic Hierarchy Process (AHP, Saaty, 1988) or the Budget 

Allocation Process (BAP, see OECD, 2008).31  Third, using an established criterion for 

ranking the DEA-efficient DMUs such as superefficiency scores (see Halme and 

Korhonen, 2015).  Fourth, choosing the MPS on the basis of a strong normative 

argument, which mandates what the preferred performance of DMUs “ought to be” 

within the particular evaluation context.  This alternative is followed in the empirical 

application of this chapter, in which MPS choice is based on the notion of uniformity. 

Fifth, using an ideally-performing virtual DMU, i.e., one that utilizes the maximum 

observed indicator values across DMUs.  As such an Ideal DMU usually lies beyond 

the DEA efficient frontier, its DEA-efficient peers should be identified through a 

superefficiency model and be used as the MPS its place.32   

 

3.3. Re-estimating the Human Development Index 

 

3.3.1. Variables and modeling choices 

 

In this section we use the VEA-BoD model to re-estimate UN’s HDI for the year 2015.  

The HDI is a CI reflecting country achievements in human development, the 

underpinnings of which can be found in Sen’s capability approach.33  The capability 

approach views people as the main recipients (the “ends”) of the development process 

and development itself as a process which expands people’s choices, thereby placing 

the emphasis on “what people get from development, not only what they put into it” 

(Anand and Sen, 2000b, p. 84).  The HDI contains three basic and universally valued 

capabilities, namely to be knowledgeable, to live a healthy life, and to have adequate 

command over resources in order to enjoy a decent standard of living (Anand and Sen, 

 

 

rather that engaging in the task of choosing weight bounds, meaning that the concept of the MPS is 

generally easier to understand and to select, compared to absolute or relative weight bounds.   
31 The use of AHP for choosing the MPS was proposed in Korhonen et al. (1998). 
32 This alternative is inspired from the multicriteria TOPSIS (Technique for Ordered Similarity to Ideal 

Solution, see Huang and Yoon, 1981) technique. TOPSIS also involves an Anti-Ideal DMU, namely one 

utilizing the minimum observed indicator values across DMUs, but such a benchmark choice is not 

suggested as an MPS as it would be more likely to represent the least rather that the most preferred 

solution. 
33 For a recent review of the underpinnings and development of the HDI see Hirai (2017). 
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2000b).  Ever since the first Human Development Report in 1990, there has been a quite 

long literature regarding (i) the choice of the capabilities to be included in the index, 

(ii) their relevant proxy variables, (iii) the normalization of these variables, (iv) the 

choice of the aggregator function, and (v) the selection of aggregation weights.  We 

next consider these steps in sequence. 

First, several important aspects of human development such as environmental 

sustainability, political rights and freedom, income or gender inequality as well as other 

demographic factors are not included in the current specification of the HDI (see e.g., 

Desai (1991), Ranis et al. (2006) and Klugman et al. (2011)) and several attempts (see 

e.g., Hicks (1997), Sagar and Najam (1998), Neumayer (2001) and Herrero et al. 

(2019)) have been made to incorporate them.  For the purpose of this chapter, we keep 

the current HDI specification for both the capabilities considered and the variables used 

to proxy them.  That is, we use life expectancy at birth as a proxy for living a healthy 

life, the arithmetic average of the mean and the expected years of schooling as a proxy 

for being knowledgeable, and the logarithm of GNI per capita in 2011 $ PPP to a proxy 

for the standard of living.34  

Second, the HDI is based on the min-max normalization with the goalposts 

(minimum and maximum) values for each indicator being those of 1994.35  This has 

been criticized as the normalized indicators and the resulting CI depend on the choice 

of these minimum and maximum values (Noorbakhsh, 1998a; Panigrahi and 

Sivramkrishna, 2002).  Several alternatives have been proposed: in particular, 

Mazumdar (2003) and Chakravarty (2003) used sample minimum and maximum 

goalpost values, Noorbakhsh (1998a; b) employed the z-score normalization, Herrero 

et al. (2012) relied on the distance-to-the-leader normalization (i.e., divide each variable 

with its maximum value across countries), while Luque et al. (2016) suggested a 

normalization with two reference points, an aspiration point reflecting the desired level 

and a reservation point beyond which performance is not acceptable.36  For the BoD 

model, the distance-to-the-leader is the appropriate normalization in order to ensure 

 

 

34 There is a long discussion in the literature about the logarithmic transformation of the income variable; 

see Kelley (1991), Chakravarty (2011), Ravallion (2012), and Herrero et al. (2012). 
35 Prior to 1994, the goalposts were set by the sample minimum and maximum values. 
36 For comparative results regarding the first three of these normalizations for the HDI see Karagiannis 

and Karagiannis (2020). 
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unit invariance, required in any DEA model.  Notice that unit invariance is violated 

with the min-max normalization (Filippetti and Peyrache, 2011).   

Third, the UNDP initially (1990-2009) used an arithmetic aggregation function 

but as of 2010 it has switched to a geometric aggregation function.37  The main reason 

behind this switch is the implied perfect substitutability between the component 

indicators in the arithmetic aggregation (see Klugman et al. (2011) and the references 

therein).  However, as argued by Ravallion (2012), arithmetic aggregation implies 

perfect substitutability between the considered indicators but not between capabilities 

due to the logarithmic transformation of the income variable.  Both the BoD and the 

VEA-BoD models assume arithmetic aggregation of the component indicators.  

Previous attempts to estimate the HDI by means of a multiplicative BoD model, with 

the logarithm instead of the actual values of the component indicators, have been 

criticized (Tofallis, 2014) as they do not satisfy unit invariance.38  

Fourth, choice of the weights for aggregating the component indicators is 

probably the most debated step.  The UNDP used equal weights, which implies that 

each indicator and its corresponding capability are of equal importance to human 

development (Klugman et al., 2011).  Even though this has been criticized as arbitrary 

(see e.g., Desai, 1991), there are several studies that support the equal weights scheme 

either on the basis of the principle of parsimony (Hopkins, 1991) or empirical evidence 

based on Principal Components Analysis (Owgang, 1994; Noorbakhsh, 1998a, b; 

Owgang and Abdou, 2003; Nguefack-Tsangue et al., 2011), expert opinion surveys 

(Chowdhury and Squire, 2006), or statistical criteria from Information Theory 

(Stapleton and Garrod, 2007).  On the other hand, several other studies have called for 

variable weights: Srinivasan (1994, p. 240) noted that relative weights “need not be the 

same across individuals, countries, and socioeconomics groups”.  Along the same line, 

Fukunda-Parr (2003, p.306) referred that “the relative importance of capabilities can 

 

 

37 Sagar and Najam (1998), Prados de la Escosura (2010), Herrero et al. (2010), and Zhou et al. (2010) 

have also used geometric aggregation while Noorbakhsh (1998a; b) used the L2 distance of each country 

from an ideal country that has the sample maximum value of indicators, Luque et al. (2016) and 

Krishnakumar (2018) set the HDI equal to the minimum of the three indicators (a scheme that allows for 

no substitutability), and Noorbakhsh (1998a) used the Borda’s aggregation rule. 
38 Tofallis (2013) used a multiplicative BoD model that satisfies both unit and scale invariance but which, 

according to van Puyenbroeck and Rogge (2017), can be no longer considered as a geometric weighted 

average of indicators, as it violates the linear homogeneity property.   
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vary with social context-from one community or country to another and from one point 

of time to another”, Klugman et al. (2011, p. 261) suggested that in an ideal situation 

the relative weights “should be traced either to individual preferences, some collective 

social choice process or to a strong normative argument’’, and Noorbakhsh (1998a, p. 

593) argued that “an alternative way is to derive these weights from the data”.   

Following these considerations, several studies favored the use of variable 

weights that vary either across countries or across both indicators and countries.  In the 

former case, Lind (2010) used revealed preferences to obtain such a set of common 

across countries but unequal weights, Pinar et al. (2013, 2017) employed non-

parametric stochastic dominance techniques, Karagiannis and Karagiannis (2020) 

relied on Shannon entropy, Despotis (2005a), Hatefi and Torabi (2010) and Sayed et 

al. (2015) used goal programming, and Tofallis (2013) a regression model with the CI 

obtained from the conventional BoD model as dependent variable and the component 

indicators as independent variables. 39  In the latter case, Mahlberg and Obensteiner 

(2001) used a normalized variant of the BoD model, Despotis (2005) employed the 

conventional BoD model in (3.1), Bougnol et al. (2010) considered a BoD model with 

weighted restrictions, and Lozano and Gutierrez (2008) relied on the range-adjusted-

measure (RAM) BoD model.40  

The VEA-BoD model used in this chapter allows weights to vary across both 

indicators and countries but only within a certain range, which is determined by the 

“model” country.  This is in line with Sen (1999, p. 78) who mentioned that weights for 

each capability can be chosen from a specified range on which there is agreement.  We 

base our choice of the “model” country on the notion of uniformity.  Following Mishra 

and Nathan (2018), uniformity implies that, between two countries with the same 

average attainment across indicators, the CI should favor the most balanced country, 

i.e., the country with the minimum dispersion across indicators.  Palazzi and Lauri 

(1998, p.196) also favored such a choice by postulating that “there are explicit or 

potential endogenous forces working to move the values of the single variables towards 

a more balanced relation”.  In Figure 3.1, by choosing a country such as C, which 

 

 

39 The procedure is repeated in Lind (2019) using world data for the years 1990-2017. The findings 

differentiate from the 2010 study in that the weight of income is now the lowest. 
40 In the normalized variant of the BoD model, ∑ 𝑢𝑗

𝑘𝐽
𝑗=1 = 1 in addition to other restrictions in (3.1). 
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displays balanced performance, implies that the preferred range of input/output bundles 

lies between rays OB and OD.  For any country within this range, the conventional and 

the VEA-BoD model scores coincide while the farther a country’s bundle is from those 

between OB and OD rays, the lower its VEA-BoD score will be compared to its BoD 

score. 

We consider three alternatives for choosing a balanced MPS country: first, the 

country that is ranked first in 2015 UN HDI, namely Norway; second, the country with 

the minimum dispersion across indicators, namely Lithuania; and third, an artificial 

country with all indicators set at 0.5.41  Norway is also a BoD-efficient country and thus 

it can serve as MPS by its own.  The other two alternatives, namely Lithuania and the 

artificial country, are BoD-inefficient but share the same peers, namely Norway and 

Australia, and thus result in the same VEA-BoD model.    

 

3.3.2. Empirical Results 

 

The empirical results for the conventional BoD model in (3.1) and the two VEA-BoD 

models with Norway and Norway and Australia as MPS are presented in Table 3.1.  

The average CI value for the BoD model is 0.861, with five countries receiving CI 

scores of one, namely Norway, Australia, Singapore, Hong-Kong and Qatar.42  As it 

was expected, VEA-BoD results on average into relatively lower scores and less DMUs 

as being efficient.  From the BoD-efficient countries, Hong-Kong drops from the list 

when Norway is chosen as MPS while Hong-Kong and Qatar drop from the list when 

Norway and Australia are chosen as MPS.  Qatar had an extremely unbalanced bundle 

that implicitly places higher importance on the “command over resources” indicator, 

for which it ranks 1st compared to education (82nd) and longevity (39th).  Hong-Kong, 

on the other hand, implicitly places a higher importance on the longevity indicator, for 

which it ranks 1st (see Table 3.2).   

 

 

 

41 The artificial country with all indicators set at 0.5 is a multiple of the “Ideal DMU” country, for which 

all indicator values are equal to one.  Hence, the radial projection of the Ideal DMU on the efficient 

frontier and, consequently, its DEA-efficient peers, coincide with those of the artificial country (i.e., 

Norway and Australia).  Thus, the use of an “Ideal DMU” country as the MPS will produce the same 

results with our second and third proposed alternatives. 
42 Notice that, as Karagiannis (2017) has shown, the average accurately reflects the aggregate in the case 

of the BoD and thus, the numbers in the following Tables and Figures can be seen as aggregate values. 
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Table 3.1: CI estimates and efficient countries, BoD and VEA models 

 

Model BoD VEA (a) VEA (b/c) 

composite indicator estimates 

maximum 1.000 1.000 1.000 

minimum 0.611 0.574 0.574 

average 0.861 0.834 0.833 

median 0.880 0.856 0.856 

standard deviation 0.094 0.106 0.106 

Q1 0.793 0.748 0.747 

Q3 0.926 0.913 0.913 

efficient countries 

# of efficient countries (CI=1) 5 4 3 

efficient country names Norway, Australia, 

Singapore, Hong-

Kong, Qatar 

Norway, Australia, 

Singapore, Qatar 

Norway, Australia, 

Singapore 

 

The HDI frequency distributions of the three estimated models are portrayed in 

Figure 3.2.  Based on Banker tests (see e.g., Banker and Natarajan, 2011) we can 

confirm that both the VEA-BoD distributions of efficiency scores differ, in a 

statistically significant way, from that of the conventional BoD.  The same is not 

however true when we are comparing the efficiency scores from the two VEA-BoD 

models to each other, for which there are no statistically significant differences.  This 

is also evident from the average rank shift, given as 𝑅 = (
1

𝑁
) ∑ |𝑟𝑎𝑛𝑘1

𝑗
− 𝑟𝑎𝑛𝑘2

𝑗
|𝑁

𝑗=1  

(Saisana et al., 2005), which is roughly 1.4 positions when we are comparing the scores 

of the two VEA-BoD models while it is around 9 positions when we comparing the 

BoD and the VEA-BoD efficiency scores (see Table 3.3).  In addition, relatively large 

rank shifts (more than ten positions) occur for 70 and 68 countries respectively when 

we are comparing the BoD with the two VEA-BoD scores, whereas it is limited to only 

three countries when comparing the two VEA-BoD scores.  This rank variability is all 

but uniform across countries: country-specific Mean Absolute Deviation in ranks 

(Ḉillingirtürk and Koҫak, 2018) in Figure 3.2(b) shows that countries in the middle rank 

positions, as identified by the BoD model, exhibit relatively higher rank variability 

compared to top or bottom ranked countries.  In order to verify the latter, we constructed 

rolling country subsamples of size 40.  More specifically, the first subsample consisted 

of the top-40 ranked countries by the BoD model.  From that, we constructed the second 

subsample by dropping the country ranked 1st and including the country ranked 41th.  

Each following subsample was constructed likewise, and the last one consisted of the  



50 

 

 

Table 3.2: HDI and indicator values and ranks, BoD-efficient DMUs 

 

DMU Longevity education index income HDI 2015 times as peerb 

Norway 0.971 (17) 0.905 (6) 0.945 (6) 0.949 (1) 23 

Australia 0.981 (9)a 1.000 (1) 0.906 (20) 0.939 (2) 49 

Singapore  0.989 (4) 0.803 (37) 0.957 (2) 0.925 (6) 54 

Hong-Kong (HK)  1.000 (1) 0.811 (30) 0.926 (10) 0.917 (12) 145 

Qatar 0.931 (39) 0.689 (82) 1.000 (1) 0.856 (35) 30 

Notes: (a). Numbers in parentheses denote the country’s rank position, (b). The last column denotes 

the time that each efficient country serves as a peer for inefficient ones in model (2) calculations. 

 

bottom-40 ranked countries by the BoD model.  The average rank shift between pairs 

of models for each subsample is plotted in Figure 3.2(c), where we see that the average 

rank variability between the BoD and the two VEA-BoD scores is considerably higher 

in subsamples including mostly middle-ranked countries, whereas this pattern is absent 

when we are comparing the two VEA-BoD scores, which on average displays minor 

rank differences. 

The above results suggest that the VEA-BoD model has a moderate impact on 

HDI scores compared to the conventional BoD model but a significant impact on 

country rankings, which is magnified for middle-ranked countries.  This finding may 

however be affected by the choice of MPS, for which so far we have based on the notion 

of uniformity, i.e., relatively balanced achievements.  We next examine the sensitivity 

of our results to MPS choices that go beyond balanced achievements.  In the absence 

of a general consensus, potential candidates for MPS might be all countries found to be 

BoD-efficient: namely, Norway, Australia, Singapore, Hong-Kong and Qatar.  

Summary results of the VEA models using each or combinations of the above countries 

as MPS are given in Table 3.4 and their frequency distributions are portrayed in Figure 

3.3, where are plotted against the BoD distribution of efficiency scores.  

Consider first the cases where each of the BoD-efficient countries is chosen as 

the MPS.  The differences between the BoD and the VEA-BoD scores depends on the 

extent of the preferred range of indicator bundles implied by each MPS, which in turn 

is closely related to the number of times an efficient country is used as a peer.  For 

example, in the case of Hong-Kong, which serves as a peer for 145 of the 193 BoD-

inefficient countries (see Table 3.2), the differences between the conventional BoD HDI 

and the VEA-BoD HDI using Hong-Kong as the MPS are minimal (see Figure 3.3) and 

in fact, statistically insignificant (see Table 3.5).  The same is essentially true when  
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Figure 3.2: Comparison of distributions and rankings, BoD, VEA (a) and VEA (b/c) 

HDI 

 

 
Panel (a): kernel density distributions, BoD, VEA (a) and VEA (b/c) HDI. 

 
Panel (b): Country specific Mean Absolute Deviation between BoD, VEA (a) and VEA (b/c) HDI. 

 
Panel (c): Average rank shift between pairs of models, moving country subsamples (n=40) 
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Table 3.3: Average rank shifts, large rank shifts, and statistical tests of equality 

between pairs of BoD, VEA(a) and VEA(b/c) models 

 

Pair 

Average rank 

shift 

Large rank shifts  

(>10 positions) 
Banker’s F1 Banker’s F2 

BoD-VEA(a) 9.202 70 1.214** 1.438*** 

BoD-VEA(b/c) 8.952 68 1.229** 1.467*** 

VEA(a)-VEA(b/c) 1.388 3 1.012 1.020 
Note: The F1 (F2) test assumes an exponential (half-normal) distribution of the inefficiency scores, following 

Banker et al (2010). Both tests compare the initial DEA to the respective VEA distribution and the alternative 

hypothesis for all cases was that the respective VEA model exhibits higher inefficiency scores. Three, two 

and one stars denote statistical significance at 1%, 5% and 10% respectively. 
 

Australia (which serves as a peer 49 times) or Singapore (which serves as a peer 54 

times) are considered as the MPS.43  On the other hand, MPS choices such as Norway 

and Qatar result in statistically significant differences between the conventional BoD 

and the VEA-BoD models (see Figure 3.3 and Table 3.5).  Norway’s bundle displays, 

as we have mentioned, a relatively high balance that is absent from the majority of 

countries while Qatar’s mix placed considerably higher importance on the “command 

over resources” indicator.44  In Figure 3.4, we plot the values of Mean Absolute 

Deviation for the VEA-BoD models using each BoD-efficient country as the MPS.  The 

average value of 4.59 (dashed line) indicates that varying the MPS can induce relatively 

moderate shifts in ranking.  Nevertheless, rank variability appears to be higher for 

countries in the middle of the rankings, whereas top and bottom ranked countries appear 

to be relatively less affected by the chosen MPS. 

When considering cases with jointly efficient pairs and triads of BoD-efficient 

countries as MPS (see Table 3.4 and Figure 3.3), several interesting findings emerge 

from these results:  first, VEA-BoD models with two or three countries forming the 

MPS resemble more or less the behavior of the country with the most extreme indicator 

bundle.  See for example the VEA-BoD models based on Norway alone and on Norway 

and Hong-Kong as the MPS.  Second, VEA-BoD models with pairs and triads of  

 

 

43 In terms of Figure 3.1, we may think of Hong-Kong as being DMU A, for which the preferred range 

of mixes (between the I2 axis and OB) is very wide and unbalanced.  On the other hand, we may think of 

Singapore and Australia as being DMUs B and D respectively, the preferred mix ranges of which are 

slightly less wide but relatively more balanced compared to that of DMU A. 
44 In terms of Figure 3.1, we may think of Norway as being DMU C that displays the most balanced 

performance but has a relatively narrow preferred mix range, potentially serving as a peer for a few 

inefficient DMUs and of Qatar as being DMU F whose mix favors extremely indicator 2. 
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Table 3.4: Composite indicator estimates, model (3.2), alternative MPS selections 

  

MPS selection maximum minimum average median 

standard 

deviation Q1 Q3 

efficient 

countries 

(CI=1) 

Norway 1.000 0.574 0.834 0.856 0.106 0.748 0.913 4 

Australia 1.000 0.596 0.852 0.875 0.100 0.780 0.923 4 

Singapore 1.000 0.605 0.852 0.872 0.096 0.786 0.921 5 

Hong-Kong (HK) 1.000 0.611 0.856 0.875 0.097 0.790 0.924 3 

Qatar 1.000 0.589 0.836 0.850 0.099 0.759 0.905 3 

Norway-Australia 1.000 0.574 0.833 0.856 0.106 0.747 0.913 3 

Norway-Singapore 1.000 0.574 0.833 0.856 0.106 0.747 0.913 4 

Norway-Qatar 1.000 0.565 0.823 0.840 0.109 0.739 0.905 3 

Australia-Singapore 1.000 0.589 0.843 0.864 0.103 0.763 0.916 4 

Australia-HK 1.000 0.596 0.848 0.871 0.102 0.772 0.917 3 

Singapore-HK 1.000 0.605 0.848 0.866 0.099 0.776 0.918 3 

Singapore-Qatar 1.000 0.589 0.835 0.850 0.099 0.757 0.905 3 

Norway-Australia-Singapore 1.000 0.574 0.831 0.856 0.107 0.747 0.913 3 

Norway-Singapore-Qatar 1.000 0.565 0.822 0.840 0.109 0.729 0.905 3 

Australia-Singapore-HK 1.000 0.589 0.841 0.862 0.104 0.762 0.914 3 

 

countries constituting the MPS do not differ in a statistically significant sense with 

VEA-BoD models with the most extreme (in terms of indicator bundle) of these 

countries as the MPS but they statistically differ from VEA-BoD models with other 

BoD-efficient countries as the MPS if the pair or triad includes a country with a 

relatively extreme bundle compared to the rest of the sample (i.e., Norway and Qatar) 

(see Table 3.6).  Third, pairing countries with similar preferred ranges of indicator 

bundles to form the MPS (e.g., Hong-Kong and Singapore) seems to result in negligible 

differences compared to the VEA-BoD models with each of these countries as a single 

MPS (see Figure 3.3 and Table 3.6).   

This demonstrated sensitivity of the models’ estimates to the chosen MPS might 

pose difficulties to select among alternative evaluation results those that will be 

ultimately presented to stakeholders or the public and used for policy-designing 

purposes.  As this situation is similar to the initial choice of the MPS, a first option for 

indecisive practitioners or DMs would be to use the evaluation results stemming from 

an objective and transparent MPS choice among those presented in the previous section, 

such as AHP or BAP.  A second option would be to choose the evaluation results that 

fit the most the DMs’ perceptions of “good” and “bad” performing DMUs in the 

sample.  Lastly, MPS choice can also be based on the variability between the BOD and 

VEA-BoD estimates.  For example, DMs opting for the least (most) rank variability 

between HDI estimates of the two models would select the evaluation results based on
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Figure 3.3: Kernel density distributions, model (3.1) vs. model (3.2), alternative MPS choices 

 

   
(1) Norway (2) Australia (3) Singapore 

   

(4) Hong-Kong (HK) (5) Qatar (6) Norway-Australia 
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Figure 3.3 (cont.) 

 

   
(7) Norway-Singapore (8) Norway-Qatar (9) Australia-Singapore 

   

(10) Australia-HK (11) Singapore-HK (12) Singapore-Qatar 
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Figure 3.3 (cont.) 

 

   

(13) Norway-Australia-Singapore (14) Australia-Singapore-HK (15) Norway-Singapore-Qatar 
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Table 3.5:Average rank shifts, large rank shifts, and statistical tests of equality, model 

(3.1) vs. model (3.2) for alternative MPS selections 

 

MPS selection 

Average 

rank 

shift 

Large rank 

shifts  

(>10 positions) 

Banker’s 

F1 

Banker’s 

F2 

Norway 9.202 70 1.214** 1.438*** 

Australia 3.362 4 1.074 1.159 

Singapore 4.532 13 1.068 1.118 

Hong-Kong (HK) 4.144 14 1.043 1.091 

Qatar 10.537 84 1.195** 1.341** 

Norway-Australia 8.952 68 1.229** 1.467*** 

Norway-Singapore 8.872 66 1.222** 1.452*** 

Norway-Qatar 12.559 88 1.309*** 1.630*** 

Australia-Singapore 6.128 30 1.148* 1.300** 

Australia-HK 4.963 14 1.103 1.222* 

Singapore-HK 6.133 24 1.101 1.190 

Singapore-Qatar 10.101 80 1.204** 1.360** 

Norway-Australia-

Singapore 8.654 65 1.241** 1.495*** 

Norway-Singapore-Qatar 12.271 87 1.316*** 1.644*** 

Australia-Singapore-HK 6.899 34 1.163* 1.334** 
Note: The F1 (F2) test assumes an exponential (half-normal) distribution of the inefficiency scores, 

following Banker and Natarajan (2011). Both tests compare the initial DEA to the respective VEA 

distribution and the alternative hypothesis for all cases was that the respective VEA model exhibits 

higher inefficiency scores. Three, two and one stars denote statistical significance at 1%, 5% and 

10% respectively. 
 

Australia (Norway and Qatar) as the MPS. 

Last but not least, we examine the sensitivity of our results with respect to 

different modeling choices regarding the education indicator.  Several authors (e.g., 

Mahlberg and Obensteiner, 2001; Lozano and Gutiérrez, 2008; Sayed et al., 2015) 

suggested using the mean and the expected years of schooling as separate indicators 

while Herrero et al. (2012) proposed using only the expected years of schooling.45  The 

comparative results concerning these two alternative formulations of the education 

variable are presented in Table 3.7.  There seem to be no significant differences with 

our benchmark formulation of using the average of the mean and the expected years of 

schooling.  The most notable difference is that now the VEA-BoD models are based on 

different countries for the MPS, namely Norway, Australia and Singapore and Norway  

 

 

45 The former choice is also supported by empirical findings indicating that using the average of the two 

variables results in substantial information loss (Canning et al., 2013). 



58 

 

 

Figure 3.4: Country-specific Mean Absolute Deviation between VEA models based on different BoD-efficient DMUs as the MPS 
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Table 3.6: Average rank shifts and statistical tests of equality, model (3.2) for alternative MPS selections 

 
  average rank shift 

MPS selection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1.Norway  8.617 6.170 11.452 4.016 1.388 0.830 3.835 5.596 10.122 8.346 4.314 2.559 3.665 6.771 

2.Australia   4.660 4.505 10.463 7.888 8.213 12.197 4.702 2.814 5.229 9.973 7.580 11.888 5.186 

3.Singapore    6.261 7.037 5.739 5.766 9.186 3.202 5.654 3.133 6.388 5.090 8.846 3.984 

4.Hong-Kong (HK)     12.777 10.649 11.037 14.745 6.633 2.777 4.309 12.170 9.968 14.426 5.691 

5.Qatar      4.702 4.335 3.883 7.548 12.053 9.117 1.074 5.383 3.755 8.511 

6.Norway-Australia       1.239 4.723 4.686 9.309 7.447 4.681 1.266 4.457 5.777 

7.Norway-Singapore        4.303 5.074 9.686 7.910 4.080 1.803 3.931 6.229 

8.Norway-Qatar         8.920 13.670 11.160 4.404 5.511 0.681 9.883 

9.Australia-Singapore          5.250 3.676 6.878 3.878 8.559 1.516 

10.Australia-HK           3.894 11.447 8.649 13.351 4.298 

11.Singapore-HK            8.383 6.649 10.777 2.723 

12.Singpore-Qatar             4.755 4.032 7.798 

13.Norway-Australia-Singapore              5.117 4.936 

14.Norway-Singapore-Qatar               9.511 

15.Australia-Singapore-HK                               

 Banker’s F1 test 

1.Norway 
 

1.130 1.137 1.164* 1.016 1.012 1.006 1.078 1.058 1.101 1.103 1.008 1.022 1.083 1.044 

2.Australia 1.241* 
 

1.006 1.030 1.112 1.143* 1.137 1.218** 1.068 1.026 1.025 1.121 1.155* 1.224** 1.083 

3.Singapore 1.286** 1.037 
 

1.024 1.119 1.150* 1.144* 1.225** 1.075 1.033 1.031 1.128 1.162* 1.232** 1.089 

4.Hong-Kong (HK) 1.318** 1.063 1.025 
 

1.146* 1.178* 1.171* 1.255** 1.100 1.057 1.056 1.155* 1.190** 1.261** 1.115 

5.Qatar 1.072 1.157 1.199 1.229* 
 

1.028 1.022 1.095 1.041 1.084 1.085 1.008 1.039 1.101 1.027 

6.Norway-Australia 1.020 1.265* 1.312** 1.345** 1.094 
 

1.006 1.065 1.071 1.114 1.116 1.020 1.010 1.071 1.056 

7.Norway-Singapore 1.010 1.253* 1.299** 1.331** 1.083 1.01 
 

1.071 1.065 1.108 1.110 1.014 1.016 1.077 1.050 

8.Norway-Qatar 1.133 1.406*** 1.458*** 1.494*** 1.215* 1.111 1.122 
 

1.140 1.187* 1.188** 1.086 1.054 1.005 1.125 

9.Australia-Singapore 1.107 1.121 1.162 1.192 1.032 1.128 1.117 1.254* 
 

1.041 1.042 1.049 1.082 1.146* 1.014 

10.Australia-HK 1.177 1.054 1.092 1.120 1.098 1.201 1.189 1.334** 1.064 
 

1.002 1.092 1.126 1.193** 1.055 

11.Singapore-HK 1.209* 1.026 1.064 1.091 1.127 1.233* 1.220* 1.370** 1.092 1.027 
 

1.094 1.127 1.195** 1.056 

12.Singpore-Qatar 1.058 1.173 1.216* 1.247* 1.014 1.078 1.068 1.198 1.046 1.113 1.143 
 

1.031 1.092 1.035 

13.Norway-Australia-Singapore 1.039 1.289** 1.337** 1.37** 1.115 1.019 1.029 1.090 1.150 1.224* 1.256* 1.099 
 

1.060 1.067 

14.Norway-Singapore-Qatar 1.143 1.418*** 1.470*** 1.507*** 1.226* 1.121 1.132 1.009 1.265* 1.346** 1.381** 1.209* 1.100 
 

1.131 

15.Australia-Singapore-HK 1.078 1.151 1.193 1.223* 1.005 1.100 1.089 1.222* 1.026 1.092 1.121 1.020 1.121 1.232* 
 

  Banker’s F2 test 

Note: The F1 (F2) test assumes an exponential (half-normal) distribution of the inefficiency scores, following Banker and Natarajan (2011). The tests in this table compare the efficiency distributions 

of  the respective row and column VEA models. Three, two and one stars denote statistical significance at 1%, 5% and 10% respectively. 
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Table 3.7: Robustness tests: Alternative formulations for the education indicator 

 
formulation 

  
average of two 

education variables 

two separate education 

variables 

only expected years of 

schooling 

BoD 

Average 0.861 0.864 0.861 

# of countries with CI=1 5 8 5 

VEA (a) (MPS: country ranked the highest in the official HDI-ranking of 2015)  

MPS Norway Norway Norway 

Average 0.834 0.840 0.836 

# of countries with CI=1 4 6 4 

VEA (b) (MPS: country with minimum dispersion)  

MPS  Lithuania*  Ireland*  Ireland*  
 (Norway-Australia) (Norway-Australia-Singapore) (Norway-Australia-Singapore) 

Average 0.833 0.836 0.833 

# of countries with CI=1 3 4 3 

VEA (c) (MPS: virtual country with all normalized indicators equal to 0.5*)  

MPS (Norway-Australia) (Norway-Australia) (Norway-Australia) 

Average 0.833 0.839 0.835 

# of countries with CI=1 3 4 3 

Note: An asterisk denotes an inefficient country based on the BoD model. The countries in parentheses below it are its 

efficient peers and are used in its place as the MPS. 

 

and Australia.  Nevertheless, this change affects only slightly the HDI values. 

 

3.4. Concluding Remarks 

 

In this chapter, we use the VEA formulation of the BoD model, which integrates DM 

or expert opinion to the conventional BoD model through the choice of a “model“ DMU 

that serves as benchmark for all evaluated units.  The “model” DMU defines a preferred 

range of indicator bundles and for DMUs operating within (outside of) this preferred 

range, VEA-BoD scores are equal to (lower than) the BoD scores.  The proposed model 

is sensitive to the choice of the MPS.  Models with MPS BoD-efficient units featuring 

a wider range of indicator bundles (as indicated by the times they are used as peers) or 

with bundles closer to the majority of the evaluated DMUs result in VEA-BoD scores 

that differ less from the BoD scores.  In addition, VEA-BoD scores tend to differ more 

(less) from each other if their chosen MPSs have highly dissimilar (similar) bundles, 

while VEA-BoD models with more than one DMU as the MPS resemble closely the 

pattern of the most extreme of those DMUs.  In our empirical application regarding the 

HDI, the VEA-BoD model causes moderate changes regarding the scores but 
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significant changes in country rankings compared to the conventional BoD model, 

especially for middle-ranked countries which displayed on average higher rank 

variability compared to top and bottom performing countries. 

The proposed model can be applied to a wide range of social and economic 

indicators and it could be useful to both the evaluated entities as well as DMs, since it 

allows pursuing the best-possible aggregation weights but to the extent that these 

weights comply with managerial goals.  Nevertheless, the proposed model is not 

without limitations, as its current form inherits certain deficiencies of the conventional 

BoD and DEA models.  More specifically, it is sensitive to the presence of outliers-

which could also affect the MPS choice- and it fails to account for the effect of 

background ‘contextual’ variables which are not under the direct control of DMUs but 

can create favorable operating conditions for some of them and unfavorable for others.  

Hence, the present work could be further extended through a robust order-m framework 

(see Cazals et al., 2002) to mitigate the impact of outlying observations and through a 

conditional DEA framework (see Daraio and Simar, 2005) in order to account for the 

effect of contextual variables.  In addition, the present model can be readily extended 

to cases where DMUs select the worst possible aggregation weights by means of the 

inverted BoD model.  In such a case, managerial goals regarding the least preferred 

indicator bundle would be considered.  
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CHAPTER 4 
 

In search for the Most Preferred Solution in Value efficiency Analysis 
 

 

4.1. Introduction 

 

In several occasions where the performance of Decision Making Units (DMUs) is 

evaluated by means of Data Envelopment Analysis (DEA, Charnes et al., 1978), it is 

desired or necessary to consider the preferences of central management, supervising 

agencies or Decision Makers (DMs) that coordinate the operation of DMUs.46  This 

need might arise for purposes of performance monitoring, i.e., measuring the extent to 

which the performance of DMUs complies with overall behavioral or organizational 

objectives, as well as for performance control and future planning, namely designing 

mechanisms that redirect DMUs towards the achievement of managerial goals or 

normative performance standards.47 

Preferences in DEA studies are often elicited by means commonly used in 

Multiple Objective Linear Programming (MOLP), namely by incorporating expert 

information on the desirable input and output values for the evaluated DMUs 

(Korhonen et al., 2002).  One form this might take is that of the Most Preferred Solution 

(MPS).48  The MPS is a non-dominated (i.e., strongly DEA-efficient) DMU or a 

 

 

46 Such centrally managed and coordinated groups of DMUs (which may have either limited or enhanced 

control over the resources allocated to them, and autonomy in setting their own priorities) might include 

privately (e.g., bank branches, retail stores) or publicly owned entities (hospitals, education institutions).  

They may also be DMUs benefiting from a natural monopoly such as large infrastructure industries, e.g., 

water, electricity and gas networks (Afsharian et al., 2019). 
47 These organizational goals might either be monetary (e.g., profit maximization) or non-monetary, such 

as targets set for overall output production. Normative standards for performance might arise, for 

example, from contract agreements signed by a group of DMUs and the supervising agency (Ruiz and 

Sirvent, 2019). 
48 Other forms might include targets set separately for each DMU, which may correspond to aspiration 

values or long-term goals set by management (Stewart, 2010). 
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combination of DMUs, which has the most desirable structure in DM’s view, in the 

sense of maximizing his/her value (Korhonen, 2002) or utility function (Yang et al., 

2009).49  It may represent the structure according to which management in a firm wishes 

to reorganize its branches or it might be viewed as a mentor from which other DMUs 

can learn.  The MPS was incorporated into DEA by Halme et al. (1999), in an approach 

coined Value Efficiency Analysis (VEA).  In VEA, the DMUs are assessed against a 

frontier consisting of the extended DEA efficient facets intercepting at the MPS, which 

is chosen by the DM in a prior step.  In essence, the marginal rates of substitution 

(MRSs) of inputs or transformation (MRTs) of outputs imposed on the evaluated DMUs 

are those observed on the DEA frontier for the MPS. 

Choosing the MPS is an important issue in VEA, as it affects the resulting 

efficiency frontier and, consequently, the DMUs’ efficiency scores (Korhonen et al., 

2001).  A suitably chosen MPS can yield valuable insights regarding the extent to which 

current DMUs’ performance complies with managerial preferences or organizational 

goals, and provides the basis for a cost-saving or revenue-increasing restructuring.  On 

the other hand, an inappropriate MPS choice might provide questionable efficiency 

scores, which may subsequently give rise to poor managerial decisions, such as an 

unnecessary and costly resource reallocation.  Nevertheless, there seems to be no 

general rule for choosing the MPS in VEA.  Instead, several suggestions have been 

made up to date.  In many of these, the MPS is not chosen on the basis of some overall 

managerial objective and thus it is difficult to come up with an intuitive explanation for 

the DM’s choice, while in others the chosen MPS may favor specialization in the 

production of a few outputs or in the use of a few inputs, which is often deemed 

unsatisfactory by managers (Epstein and Henderson, 1989).  Other MPS choices may 

compare DMUs with exceptionally performing benchmarks, assess them against a 

DMU operating with non-technically optimal scale, or zero and undefined values for 

MRSs and MPTs.50  In addition, no empirical work has been done so far on how 

alternatively chosen MPSs may affect the VEA efficiency scores. 

 

 

49 Strongly DEA-efficient DMUs are those not associated with input or output slacks (Charnes et al., 

1985). 
50 These occur when an optimal vector of input/output weights for the MPS in the multiplier form of a 

DEA model includes zero values (Olesen and Petersen, 2003), i.e., when a weakly efficiency facet is 

adjacent to the MPS.   
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The objective of this chapter is twofold: First, to expand the set of MPS choices.  

We first advocate that the DM could make a more informed choice of the MPS among 

the efficient DMUs, by paying attention on their position on the efficient frontier.  In 

particular, we propose that prior to MPS choice the efficient DMUs are clustered based 

on whether they appear in the reference sets of other DMUs in DEA and whether they 

reside in frontier edges (Edvardsen et al., 2008).  This clustering can provide additional 

information to the DM about the DMUs for which there is strong evidence of good 

relative performance, those that are potentially overspecialized, and those that may be 

associated with zero and/or undefined marginal rates.  Alternatively, one may choose 

the MPS among those with Most Productive Scale Size (MPSS), i.e., those achieving 

maximal average productivity for their input/output bundle.  This will ensure that the 

DMUs are assessed against a technically optimal scale, the achievement of which is a 

long-term organizational goal, which interests both individual DMUs as well as central 

management (Førsund and Hjalmarsson, 1979). Our third proposed MPS is the 

combination of peers of the Average Production Unit (APU).  The APU is an artificial 

DMU that operates with the group means quantities of inputs and outputs, and its 

technical efficiency score reflects the structural efficiency of the whole group of DMUs 

when resource allocation is centrally coordinated.51  Its structure reflects the one that 

each DMU should have in order for the group as a whole to realize its full potential 

output production, and the resulting VEA scores may be particularly useful for guiding 

future performance planning.  Another proposal is to assess DMUs using on a common 

vector of strictly positive input/output weights in VEA, by choosing a combination of 

DMUs that generate a unique Fully Dimensional Efficient Facet (FDEF) as the MPS.  

This results in evaluating all DMUs against a common standard and well-defined MRSs 

and MRTs and could be useful in several cases where the assessed DMUs perform 

essentially the same task or have limited autonomy in setting their own priorities and 

objectives (i.e., choose individually the values of input/output weights). 

The chapter’s second objective is to provide comparative empirical evidence on 

how alternative MPS choices may affect the estimated VEA efficiency scores.  More 

specifically, using data for 526 Greek cotton farms, we compare the efficiency 

 

 

51 Structural efficiency was termed by Farrell (1957, p. 262) as ‘the extent to which an industry keeps up 

with the performance of its own best firms’. 



65 

 

 

estimates obtained by the DEA model and those of VEA models with alternative MPS 

choices.  The results of this analysis provide useful insights regarding the MPS choices 

that are more likely to result in excessive or negligible differences between the DEA 

and the VEA distributions of efficiency scores. 

The rest of the chapter unfolds as follows: In the second section, we present the 

VEA model while in the third section, we review the MPSs proposed previously in 

VEA and suggest four new.  In the fourth and the fifth section, we illustrate how the 

choice of the MPS may affect VEA efficiency scores.  Concluding remarks follow in 

the last section. 

 

4.2. Materials and methods 

 

In VEA, DM preferences are reflected through an implicitly known pseudo-concave 

value function (i.e., an indifference curve), that becomes tangent to the DEA efficient 

frontier at the point where the MPS is located.  This value function might reflect some 

organizational objective, i.e., be a cost or a profit function, but it might also reveal 

preferences other than those related with prices (Thanassoulis et al., 2008, p. 73).  The 

empirical VEA frontier is then constructed as the lower envelope of the extended 

efficient facets intercepting at the MPS.  As DEA facets are generated by extreme-

efficient DMUs, the MPS will in essence be either a single extreme-efficient DMU or 

a combination of extreme-efficient DMUs that are jointly efficient, in the sense that 

they generate at least one common facet.  In the latter case, only those common efficient 

facets are extended to obtain the VEA frontier. 

Introducing the MPS requires only slight modifications to the conventional 

DEA model.  Let us consider a set of K DMUs (𝑘 = 1, … , 𝑜, … , 𝐾), that operate under 

the same technology and use I (𝑖 = 1, … , 𝐼) inputs to produce J (𝑗 = 1, … , 𝐽) outputs.  

The input and output vectors of each DMU are assumed to be semi-positive, that is, 

each DMU uses at least one input to produce at least one output.  Further, we assume 

that the DM has select a set ℛ (𝑟 = 1, … , 𝑅) of extreme-efficient DMUs as the MPS.52  

 

 

52 Note that the number of extreme-efficient DMUs constituting the MPS cannot be more than (I+J-1) in 

DEA models with constant returns to scale (CRS) and (I+J) in DEA models with variable returns to scale 

(VRS), as this is the maximum number of extreme-efficient DMUs that may generate an efficient facet 

of the DEA surface (see Olesen and Petersen, 2003). 



66 

 

 

An output-oriented, variable-returns-to-scale (VRS) VEA model in its multiplier and 

envelopment form is given as (Halme and Korhonen, 2015): 

 

min
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

 ∑ 𝑣𝑖
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𝑟

𝐼

𝑖=1
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                ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

= 1

                𝑢𝑗
𝑜 ≥ 0                                               𝑗 = 1, … , 𝐽

                𝑣𝑖
𝑜 ≥ 0                                               𝑖 = 1, … , 𝐼   

                𝑢𝑜 𝑓𝑟𝑒𝑒 

max
𝜑𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
   𝜑𝑉𝐸𝐴

𝑜

𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝜑𝑉𝐸𝐴
𝑜 𝑦𝑗

𝑜   𝑗 = 1, … , 𝐽 

          ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

≥ 𝑥𝑖
𝑜            𝑖 = 1, … , 𝐼

          ∑ 𝜆𝑘
𝑜

𝐾

𝑘=1

= 1

     

     𝜆𝑘
𝑜 ≥ 0                         𝑘 = 1, … , 𝐾, 𝑘 ≠ 𝑟

     𝜆𝑟
𝑜  𝑓𝑟𝑒𝑒                        𝑟 = 1, … , 𝑅

    𝜑𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒

     

 (4.1) 

 

where x and y are input and output quantities, 1 𝜑𝑉𝐸𝐴⁄  ∈ (0,1] is the efficiency score, 

λ the intensity variables, and v, u and 𝑢𝑜 are parameters to be estimated.  The input-

oriented counterpart of (4.1) is given as: 

 

max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

 ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜 +

𝐽

𝑗=1

𝑢𝑜                                                        

   𝑠. 𝑡.    ∑ 𝑢𝑗
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𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑜 ≤ 0   𝑘 = 1, … , 𝐾, 𝑘 ≠ 𝑟

              ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑟

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑟

𝐼

𝑖=1

+ 𝑢𝑜 = 0    𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑜 ≥ 0                                               𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑜 ≥ 0                                               𝑖 = 1, … , 𝐼   

              𝑢𝑜 𝑓𝑟𝑒𝑒

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
  𝜃𝑉𝐸𝐴

𝑜                                              

     𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜             𝑗 = 1, … , 𝐽 

               ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

≥ 𝜃𝑉𝐸𝐴
𝑜 𝑥𝑖

𝑜   𝑖 = 1, … , 𝐼

               ∑ 𝜆𝑘
𝑜

𝐾

𝑘=1

= 1

     

          𝜆𝑘
𝑜 ≥ 0                          𝑘 = 1, … , 𝐾, 𝑘 ≠ 𝑟

          𝜆𝑟
𝑜  𝑓𝑟𝑒𝑒                         𝑟 = 1, … , 𝑅

          𝜃𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒

 (4.2) 

 

where 𝜃𝑉𝐸𝐴 ∈ (0,1] is the efficiency score.  The constant-returns-to-scale (CRS) form 

of (4.1) and (4.2) are obtained by removing the free variable and the convexity 

constraint from their multiplier and envelopment forms, respectively.53 

 

 

53 The CRS counterpart of (4.2), in its multiplier form, appears for the first time in Oral and Yolalan 

(1990) and Oral et al. (1992), where it is used to compare every DMU’s performance to that of a 

particular efficient DMU, which is selected at a previous step.   
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The envelopment form of the models in (4.1) and (4.2) differs from those of 

conventional DEA in that the sign of the intensity variable corresponding to the MPS 

is free instead of restricted to be non-negative (Halme et al., 1999).  In the multiplier 

form of the models, this corresponds to turning from inequality to equality the 

restriction referring to the MPS.  This restricts the choice of input/output weights for 

the evaluated DMUs only to those that are optimal for the MPS.54   In essence, the 

choice of the MPS results in evaluating every DMU using the MRSs and MRTs that 

are observed on the DEA frontier in the neighborhood of the MPS.55  The DM may 

view these marginal rates as adequate enough to apply globally as they reflect his/her 

own valuation of inputs and outputs.  The evaluated DMUs for which at least one 

optimal vector of weights in DEA is also optimal for the MPS receive the most 

optimistic VEA score possible, namely one that is equal to their DEA efficiency score.  

The remaining DMUs, the input/output structure of which “deviates too much” from 

the one of the MPS (Korhonen et al., 2002, p. 59), are forced to accept less favorable 

weights in VEA compared to DEA, and their VEA scores are lower than the 

corresponding DEA ones.  

The facet extensions in VEA are illustrated in Figure 4.1 in the case of one-

input-two-outputs technology.  Choosing DMU D as the MPS implies the dashed line 

frontier by extending facets CD and DE.  If the output price ratio ranges between the 

slopes of the two facets intercepting at D, the resulting VEA scores might be viewed as 

providing approximate estimates of overall (i.e., cost, revenue, or profit) 

efficiency(Joro and Korhonen, 2015 p. 100).  If the DM wishes to prioritize the 

production of the second output compared to that of the first one, he/she might choose 

 

 

54 Such equality restrictions have been used for incorporating expert views in DEA in other studies as 

well, without referring explicitly to VEA.  Zhu (2001) uses the CRS counterpart of (4.2) in its multiplier 

form to benchmark the quality of life of 20 cities against a set of peer DMUs that would necessarily 

contain three pre-selected cities identified by Fortune magazine as the top-three best cities in terms of 

quality of life (see his equation (8)).  Furthermore, Cook et al. (2004) used input-oriented CRS and VRS 

VEA models under the name “fixed benchmark model” in order to measure the performance of out-of-

sample DMUs (see their equations (9) and (10)).  Also, Wang and Luo (2006) used a model that is 

equivalent to the input-oriented CRS VEA model, in which the frontier projection of an artificially 

constructed ideal DMU (IDMU), namely one that consumes the minimum sample quantities for each 

input while producing the maximum sample quantities for each output, corresponds to the MPS (see their 

equation (4)). The DEA frontier projection of the IDMU was obtained via a super-efficiency model. 
55 Ratios of optimal values of input and/or output DEA weights reflect marginal rates of substitution 

between inputs, transformation among outputs, and marginal products between inputs and outputs that 

are observable on the frontier (Charnes et al., 1985). 
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Figure 4.1:Extending efficient facets through VEA 

 

 
 

 DMU B as MPS, which would extend facets AB and BC.  On the other hand, if the 

DMUs operate in a relatively uniform environment (e.g., are employees within the same 

organizational department), the DM may wish to evaluate them based on a common 

value system.  This could be done, for instance, by choosing both C and D as MPS.  

Then, only the common facet between C and D is expanded, and DMUs are evaluated 

by using a common vector of weights (the one that is normal to facet CD).  If, however, 

DMU G is chosen as the MPS, the VEA frontier will also include the vertical segment 

(weakly efficient facet) between DMU G and the horizontal axis, for which the MRT 

between the two outputs is undefined.  This will allow the inefficient DMU H to assign 

a zero value to the weights of the first output in its evaluation by VEA.  

 

4.3. MPS choice 

 

This section is divided into a literature review subsection, where we present and 

evaluate previously suggested MPSs, and a subsection where we make four new 

suggestions for MPS choice.  
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4.3.1.  Literature review 

 

In this section we present nine suggestions used previously in the literature and discuss 

the rationale associated with each one and characteristics that may encourage or 

discourage its use by managers. 

 

4.3.1.1. DM personal judgment 

 

In this case, DMs fully exert their judgments and obtain evaluation results that 

correspond to their legitimate priorities.  The DM may choose a single or several DMUs 

for this purpose.  In the latter case, Korhonen et al. (2002) suggested to form a virtual 

DMU by averaging over the input and output quantities of the chosen DMUs.56  The so 

constructed DMU may be inefficient, indicating that the DM has conflicting 

preferences, and in this case its set of DEA peers should be used as MPS (see Joro and 

Korhonen, 2015, p. 124). 

 

4.3.1.2. Prior or external information 

 

Prior or external information, regarding previous evaluation results or achievements, 

may be used by DMs to choose a single or a set of MPS.  Marshall and Shortle (2005) 

made this suggestion but its usefulness depends on the accuracy of the relevant 

information.  As these might refer to a different sample of DMUs, another set of inputs 

and outputs, and different “environmental” conditions, they might not be representative 

for the evaluated DMUs at hand. 

 

4.3.1.3. Best-in-input or best-in-output DMUs 

 

Korhonen et al. (1998) suggested choosing as the MPS a best-in-input DMU, namely 

one that uses the smallest quantity of a particular input, or a best-in-output DMU, i.e., 

one that produces the largest quantity for a given output.57  In a multiple-input-multiple-

 

 

56 This is suggested if the DM views the most preferred structure as a combination of the chosen DMUs 

(Korhonen et al., 2002).  If the DM views each of the chosen DMUs as representing a different type of 

good performance, this may indicate that there are non-homogeneous sub-samples of DMUs, which may 

be fairer to evaluate separately from each other. 
57 Marshall and Shortle (2005) defined as “super-achievers” those DMUs that have the largest (smallest) 

sample quantity for a particular output (input) but also outperform the DMU with the second largest 

(smallest) quantity by a large margin.  As the extent of this margin was not formally defined, we consider 

only best-input and best-in-output DMUs from now on. 
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output setting, there will be more than one best-in-input and best-in-output DMUs, in 

which case one of them should be chosen as the MPS.  The choice may be facilitated if 

the DM views a particular input or output as overwhelmingly more important than all 

other inputs or outputs (as e.g., is the case with employee salaries in public services, 

see Joro and Viitala, 2004).  Such views could however be reflected directly in the 

specification of inputs and outputs by excluding all other inputs or outputs from the 

analysis. 

The use of a best-in-input or a best-in-output DMU may result in assessing the 

DMUs against a technically non-optimal scale. This is because a best-in-input DMU is 

usually of very small size and possibly of sub-optimal scale, and a best-in-output DMU 

is often large-sized and has supra-optimal scale.  Also, the choice of a best-in-output 

MPS might imply a management directive towards increasing production disregarding 

the costs this may incur, while a best-in-input MPS might reflect the need for urgent 

budget cuts, without considering whether the resulting decreased production will be 

able to meet demand in the future. 

 

4.3.1.4. IDMU 

 

The IDMU uses the sample minimum quantities of each input to produce the sample 

maximum quantities of each output.  It is thus “best” in all inputs and outputs.  If it is 

not among the evaluated DMUs, it cannot be used as the MPS, but its DEA frontier 

projection could be.  For this purpose, one may estimate its efficiency score by means 

of a super-efficiency DEA model and use its efficient projection of inputs and outputs 

as MPS (Wang and Luo, 2006).  Since the frontier projection of the IDMU may contain 

slacks, the set of IMDU peers may instead be used as MPS, to ensure that it is a non-

dominated DMU.  In several occasions, the IDMU may look as a suitable MPS choice 

but its input/output bundle is likely to differ from most of the evaluated DMUs.  This 

in turn may result in VEA efficiency scores that differ significantly from the DEA 

efficiency scores. 

 

4.3.1.5. Most frequent peer 

 

In this case, the MPS is the efficient DMU appearing the most times as a peer in the 

DEA model.  This DMU is an example-to-follow for most of the DMUs, and it may be 

viewed as reasonable benchmark or “global leader” (Oral and Yolalan, 1990); Oral et 
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al., 1992) for them.  Then, the VEA efficiency scores for most of the DMUs will be 

equivalent to their DEA ones, and thus the use of VEA will not provide additional 

insights to central management compared to the results of the DEA model.58  In 

addition, a DMU acting as a peer for a large number of DMUs could be a potential 

outlier if it performs extremely better in relative terms compared to the DMUs it 

influences (Bogetoft and Otto, 2011, p. 147), in which case it should be excluded from 

the sample rather than being used as MPS. 

 

4.3.1.6. Maximum (or infinite) super-efficiency 

 

Halme and Korhonen (2015) suggested choosing as the MPS the DMU with the 

maximum super-efficiency score.  In a CRS setting, the DEA super-efficiency model 

always results in finite scores, in which case it is rather straightforward to choose the 

MPS.  On the other hand, the VRS super-efficiency DEA model may result in an 

infeasible solution for some DMUs.  One may then choose as the MPS either the DMU 

with the maximum finite super-efficiency score or one among the DMUs for which the 

super-efficiency model has an infeasible solution.  The DMU with the maximum super-

efficiency score will frequently be among those that exert the most influence on the 

other DMUs’ efficiency scores (Wilson, 1995), in the sense that it already appears as a 

peer for quite many DMUs.  Then, the VEA model is not likely to provide additional 

insights to management.  Also, DMUs with very large super-efficiency scores are often 

regarded as outliers (Wilson, 1995; Banker and Chang, 2006) that showcase 

extraordinary or very specialized performance, in which case such a DMU should not 

be used as MPS. On the other hand, DMUs for which the VRS super-efficiency model 

has an infeasible solution are usually located at some “end-point” of the DEA frontier 

(Seiford and Zhu, 1999), i.e., are likely overly specialized and are associated with 

MRSs and MRTs that are not well-defined (as DMUs A and G in Figure 4.1).  If they 

are used as MPS, the VEA efficiency scores are likely to differ significantly from those 

of the DEA model and one or more of the inputs and the outputs will likely be assigned 

zero weights.  

 

 

 

58 This is noted by Oral and Yolalan (1990) and Oral et al. (1992), who interpreted the presence of 

insignificant differences as the choice of the “global leader” was quite realistic. 
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4.3.1.7. Minimum average Coefficient-of-Variation of weight vectors 

 

According to Gonzalez et al. (2010), the efficient DMU with the minimum variability 

across its different optimal weight vectors is chosen as the MPS. To identify it, one 

needs first to estimate a VEA model using in sequence every efficient DMU as the 

MPS.  For each of these models, one should calculate the Coefficient-of-Variation (CV) 

for the optimal values of every input and output weight and then take their average 

value. The MPS is chosen as the efficient DMU for which the average CV in the 

corresponding VEA model is the minimum.  This might be appealing for DMs that want 

to avoid highly dissimilar optimal weight vectors among the evaluated DMUs in the 

VEA model but it can be relatively time-consuming.  Furthermore, a common vector 

of weights across DMUs, which would reflect the greatest possible congruence 

(Gonzalez et al., 2010), i.e., the minimum variability, among DMUs in selecting their 

optimal weights, is not guaranteed. 

 

4.3.1.8. AHP importance weights 

 

The Analytic Hierarchy Process (AHP) is suggested as another means to choose the 

MPS in VEA (Korhonen et al., 1998).  It may be used to obtain the “best” combination 

among all the DEA-efficient DMUs, or among a subset of them.  The chosen DMUs 

are used as alternatives in AHP and the DM performs pairwise comparisons among 

them.  The MPS is then obtained as a combination of the chosen DMUs using the 

importance weights derived from AHP. This might be a time-consuming process if 

there is a large number of chosen DMUs.  In addition, the resulting DMU might be 

inefficient, indicating poor judgment in the initial selection of DMUs.  In this case, its 

set of DEA peers should be used as MPS. 

 

4.3.1.9. Interactive optimization 

 

Halme et al. (1999) suggested the use of multi-criteria interactive optimization 

algorithms to choose the MPS.  These algorithms enable the DM to search the efficient 

frontier and identify different non-dominated solutions.  Halme et al. (1999) use the 

Pareto Race (see Korhonen and Wallenius, 1988), in which a MOLP problem is 

iteratively solved to obtain an efficient input/output combination, which has the 

maximum (minimum) possible value for each output (input).  In each iteration, the DM 

reviews the resulting combination and can prioritize which input (output) should be 
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further decreased (increased) at the expense of others, i.e., determine the direction on 

which the next (and possibly more preferred) input/output combination will be searched 

for.  The algorithm stops when the DM decides that the last identified input/output 

combination is the MPS.  In most of the cases, this is a combination of efficient DMUs.   

An alternative proposed by Korhonen et al. (2002) is the Visual Interactive 

Method for Discrete Alternatives (VIMDA) (see Korhonen, 1988).  It is similar to 

Pareto Race but in each iteration it identifies an input/output combination 

corresponding to an existing DMU rather than a combination of DMUs. Such 

algorithms can be time-consuming and require a DM that is willing to participate and 

direct the algorithm according to his/her preferences (Thiele et al., 2009).  This may 

increase management workload and the risk of providing a poor judgment. Also, in 

practical applications DMs usually view the existing DMUs as more reliable 

benchmarks compared to combinations of DMUs (Korhonen et al., 2002). 

 

4.3.2. Some new suggestions 

 

In this section we expand the set of MPS choices in VEA by suggesting four new, each 

of which may be useful to managers for certain reasons.   

 

4.3.2.1. Informed personal judgment 

 

In the first of our suggestions the DM exerts his/her personal judgments by explicitly 

considering the position of DMUs on the DEA efficient frontier.  Some of the efficient 

DMUs reside closer to most of the sample DMUs while others use a somewhat more 

extreme input/output bundle.  In addition, some efficient DMUs are associated with 

zero or undefined marginal rates while others are not, some can remain efficient even 

if their input/output bundle changes, and for some there do not exist DMUs with similar 

input/output structure in the sample.  Classifying the DMUs based on such features may 

aid the DM in making a more informed personal judgment when choosing the MPS.  

We consider two main classifications of the efficient DMUs based on their 

position on the frontier.  In the first one, the DMUs are classified as either active or 

self-evaluators (Edvardsen et al., 2008).  The former are efficient DMUs that appear as 

peers for at least one inefficient DMU, while the latter appear as peers only for 
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themselves.59  Each of the active and self-evaluator DMUs can be further classified as 

an interior or an exterior.  For an exterior DMU, at least one among its adjacent facets 

is weakly efficient, while for an interior this is not true.60  An interior active DMU 

resides closer to most of the sample DMUs and its use as MPS might result in moderate 

(and even insignificant) differences between the DEA and the VEA efficiency scores. 

An exterior active DMU may use a more extreme input/output bundle, and if used as 

MPS, a zero weight will be assigned to one or more inputs and/or outputs for some of 

the evaluated DMUs.  The interior self-evaluators are “alone in the crowd”, while the 

exterior self-evaluators are “far out”, located at an “end-point”, i.e., use an extreme 

input/output bundle and be very small- or large-scaled (Edvardsen et al., 2008).  In both 

cases, significant differences should be expected between the DEA and VEA efficiency 

scores.  In addition, some inputs and/or outputs are more likely to have a zero weight if 

an exterior self-evaluator is used as the MPS. 

The second classification partitions the efficient DMUS into terminal and non-

terminal ones (Krivonozhko et al., 2015).  A terminal DMU will remain efficient even 

if the quantity of one of its inputs (outputs) is increased (decreased), while for a non-

terminal one this is not true.61  Each terminal DMU may be further classified as being 

either interior or exterior, but all non-terminal DMUs are interior.62  An exterior 

terminal DMU is more likely to be located on “end-points” of the frontier compared to 

an interior terminal DMU, but Krivonozhko et al. (2015) note that both classes may 

 

 

59 Self-evaluators are those for which the maximum optimal values of the intensity variables are equal to 

zero for every inefficient DMU.  If at least one such value is positive, the efficient DMU is classified as 

active (Edvardsen et al., 2008).  An alternative is to estimate the referencing share (see Torgensen et al., 

1996) for each efficient DMU, which captures the relative contribution of an efficient DMU in the total 

output expansion (input contraction) of all the inefficient DMUs for each specific output (input). DMUs 

with a zero referencing share are classified as self-evaluators. 
60 The classification of efficient DMUs into exteriors or interiors is obtained by enveloping the efficient 

DMUs “from below” (Edvardsen et al., 2008) through a modified version of the Additive DEA model in 

which inputs are treated as outputs and vice versa.  A DMU with a zero (positive) optimal value is 

classified as an exterior (interior). 
61 Terminal DMUs are adjacent to at least one-dimensional facet (Krivonozhko et al., 2015). They are 

identified by estimating a series of linear programs, one for each different input and output, each of which 

aims at maximizing the value of the intensity variable of a given extreme-efficient DMU while allowing 

for the particular input (output) of the DMU to increase (decrease) along a one-dimensional ray.  A DMU 

is classified as terminal if the optimal value of its intensity variable equals one in at least one of those 

linear programs.  Otherwise, it is non-terminal. 
62 Krivonozhko et al. (2015) show that the set of terminal DMUs contains that of exterior DMUs as a 

subset, i.e., each exterior DMU is also a terminal DMU, but a terminal DMU may be either an interior 

or an exterior. 
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contain quite normal efficient units.  Thus, the use of an exterior terminal DMU may 

result in significant or insignificant differences between the DEA and VEA efficiency 

scores, and the same may be the case when an interior terminal DMU is the MPS.  On 

the other hand, the use of a non-terminal DMU as MPS will not result in assessing the 

DMUs against unacceptable marginal rates, while when using a terminal DMU this is 

expected to occur. 

   

4.3.2.2. Most Productive Scale Size 

 

Our second suggestion is to choose a DMU with MPSS as MPS.  Such DMUs operate 

with technically optimal scale, namely maximize average productivity for their 

input/output mix.63  Each such DMU is efficient under both a CRS and a VRS DEA 

model, i.e., resides on a frontier segment in which CRS prevails and scale elasticity 

equals one (Banker, 1984).  The use of an MPSS DMU as the MPS in VEA ensures 

that DMUs are assessed against a technically optimal scale.  The resulting VEA scores 

could yield useful insights for central management.  They might be used for 

reorganizing or incentivizing the DMUs so that they adjust to the optimal scale, the 

pursuit of which constitutes a long-term organizational goal. 

In several cases, there are multiple MPSS DMUs, each of which operates with 

the technically optimal scale for its own input/output bundle (Banker and Thrall, 1992).  

In this case Banker (1984) noted that obtaining the overall optimal scale for the 

underlying technology requires the use of additional knowledge or information. This 

can be provided by the DM by means of choosing one DMU or a combination of DMUs 

among those with MPSS as the MPS.  The chosen input/output bundle might be close 

to that of most DMUs in the sample, in which case the VEA efficiency scores may 

differ only moderately from their DEA counterparts.  Alternatively, there might be 

significant differences between the DEA and VEA efficiency scores if the DM chooses 

an MPSS DMU with somewhat extreme mix of inputs and outputs. 

 

4.3.2.3. Average Production Unit 

 

 

 

63 Technically optimal scale in production theory was first discussed in Førsund and Hjalmarsson (1979) 

in single-output-multiple-input settings and was generalized for multiple inputs and outputs in Banker 

(1984).  
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Our next suggestion is to use the combination of DMUs that are the peers of the Average 

Production Unit (APU), namely an artificially constructed DMU that operates with the 

sample means quantities of inputs and outputs, as the MPS.  This reflects the objective 

of maximizing the structural efficiency of an overall entity that coordinates a set of 

DMUs.64,65  This entity might be either a firm operating through a network of multiple 

branches or plants, or an industry of similar firms.  Structural efficiency is a normative 

rather than a positive measure (Karagiannis, 2015), in the sense that it assesses the 

extent of potential improvement of the entity (firm or industry) as a whole, as if it were 

a single DMU utilizing and coordinating (through centralized resource allocation) the 

total quantities of inputs and outputs.  The maximum potential output for the entity 

could be realized if each of the coordinated DMUs had the input/output structure of the 

APU and then removed its technical inefficiencies (Kittelsen and Førsund, 1992; 

Karagianis, 2015) as well as input and/or output slacks.   

When the APU peers are used as the MPS, the VEA efficiency scores reflect 

the relative performance of DMUs from the perspective of fully centralized 

management and can provide useful insights to managers that coordinate a firms’ 

branches or to authorities planning a sectoral reorganization.  The APU input/output 

bundle is relatively close to that of many DMUs, and thus one might expect moderate 

changes in the efficiency scores in VEA compared to DEA.  However, the efficiency 

scores of DMUs using extreme input/output bundles may decrease considerably.  For 

example, in Figure 4.1 where the APU is radially projected on the efficient facet CD 

and thus its DEA-efficient peers are DMUs C and D, VEA evaluates all DMUs 

compared to the extended facet CD, and the DMUs A, G and H exhibit large decreases 

in efficiency compared to their corresponding DEA scores.   

 

4.3.2.4. Common weights 

 

Our fourth suggestion concerns evaluating all DMUs using a common vector of strictly 

positive input/output weights.  This results in evaluating all DMUs based on a common 

 

 

64 Førsund and Hjalmarsson (1979) were the first to argue that the extent of structural efficiency in a 

sample of DMUs is equal to the technical efficiency score of the APU, an argument formally proved by 

Li and Ng (1995). 
65 Using the sample average DMU as the MPS generalizes in a sense the suggestion made by Korhonen 

et al. (2002) to obtain the MPS by averaging across a pre-selected subset of efficient DMUs. 
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standard (Kao and Hung, 2005) and might thus be preferred when DMs wish to prevent 

individual DMUs from setting and pursuing their own priorities.66  This could be the 

case if the DMUs are homogeneous enough, operate under a common policy framework 

(Cook et al., 2019), and/or in the same environment (e.g., professors engaging in 

teaching and research activities within the same university faculty).  Potential 

discrepancies between the results using common weights and conventional DEA should 

then indicate the effect of special circumstances under which a DMU operates (Roll et 

al., 1991), or a DMU that may be prioritizing its own objectives over those of the 

organization.  This suggestion for choosing the MPS is, to the best of our knowledge, 

the only one securing the assessment of DMUs against well-defined MRSs and MRTs.  

Common and strictly positive weights across DMUs are guaranteed in VEA 

when a single FDEF of the DEA frontier is extended.  This will occur if the unique 

combination of (𝐼 + 𝐽 − 1) extreme efficient DMUs that supports an FDEF when CRS 

is assumed (or (𝐼 + 𝐽) DMUs in VRS models) (Olesen and Petersen, 2003; 2015) is 

chosen as the MPS, provided that at least one FDEF exists.67  In most cases, the DEA 

frontier is generated by multiple FDEFs.  The DM should then choose one among those 

FDEFs to be extended in the VEA model.  The choice can be facilitated if one identifies 

all the FDEFs of the DEA efficient surface and the combinations of DMUs spanning 

each, which is frequently done using mixed-integer linear programs (Olesen and 

Petersen, 2003; Fukuyama and Sekitani, 2012; Davtalab-Olyaie et al. (2014).68  The 

DM can then review these results and choose the FDEF against which DMUs will be 

assessed.  The use of common weights in VEA will more likely result in efficiency 

scores that differ, in a statistically significant sense, from those of the DEA model.  

More specifically, only DMUs which are already projected by DEA in the chosen 

 

 

66 Common weights are frequently adopted in the DEA literature (see Afsharian et al., 2021 for a recent 

review) and they reflect the greatest possible congruence among DMUs in selecting their optimal 

weights.   
67 FDEFs are associated with a unique normal vector of input/output weights with strictly positive values 

(Olesen and Petersen, 2015). Olesen and Petersen (1996) referred to the absence of at least one FDEF in 

the DEA frontier as an indication of an ill-conditioned dataset. 
68 Olesen and Petersen (2003) proposed a cutting plane binary optimization algorithm, which requires, 

as a prior step, to identify the set of DMUs that can be rendered efficient in a convex combination with 

each of the extreme-efficient DMU.  Mixed-integer linear programs are then solved to identify, for each 

extreme-efficient DMU, all FDEFs generated by it.  Fukuyama and Sekitani (2012) and Davtalab-Olyaie 

et al. (2014) proposed similar binary optimization algorithms.  The former identifies both FDEFs and 

non-FDEFs, while the latter does not require the prior step that is necessary in the approach of Olesen 

and Petersen (2003).   
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FDEF, i.e., those for which the combination of efficient DMUs generating the FDEF 

coincides with their set of peers, will retain the same efficiency score, while the 

remaining ones will exhibit at least slight decreases in efficiency.  The differences can 

be on average large if a DMU with a relatively extreme input/output bundle is among 

those generating the chosen FDEF.  

 

4.4. Data, variables and modeling choices 

 

For our empirical application we use data for 526 Greek cotton farms obtained from the 

Farm Accounting Data Network (FADN).  The FADN covers large entrepreneurial 

farms as defined in the farms structure survey of the EU, in which each farm is classified 

by commodity according to its main source of revenue.  That is, a farm is classified as 

a cotton producer if at least two thirds of its revenue come from the production of 

cotton.   

Output orientation is usually considered as the more appropriate choice when 

measuring efficiency in agriculture, in which input choices are made well in advance 

of output realization. (Karagiannis, 2014).  We also assume that input and output prices 

are uniform across DMUs, since the agricultural sector is widely considered as a rather 

competitive one, where there is usually a large number of farmers specializing on the 

production of a particular commodity and facing similar prices for the resources used 

and their final product.  In this case, input and output data expressed both in terms of 

quantities and in terms of values (i.e., costs and revenues) can be used to assess 

technical efficiency (see Portela, 2014).  We use four inputs, namely land measured in 

ha, labor (including family and hired workers) measured in annual working hours, 

intermediate inputs (i.e., fertilizer, pesticides, etc.) measured in euros, and capital stock 

(including machinery and buildings) measured in terms of the end-of-the-year book 

values (in euros) and a single output, measured in terms of total gross revenue (in 

euros). 

Average values of the model variables are given in Table 4.1.  In that, we also 

include information on additional farm characteristics.  These are farm size, the 

farmer’s age, the geographic region in which each farm is located, the percentages of 

own and irrigated land, the percentage of family labor employed, as well each farm’s  
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Table 4.1:Sample average estimates of model variables 

 

revenue (in euros) 6434.103 

land (in ha) 1188.139 

labor (in annual working hours) 2045.654 

intermediate inputs (in euros) 2369.776 

capital (in euros) 5703.852 

number of farms in the sample 526 

farms from Northern Greece 123 

farms from Western Greece 7 

farms from Central Greece 294 

farms from South-Eastern Greece 102 

small size farms 45 

medium size farms 207 

large size farms 274 

farms owned by younger farmers 67 

farms owned by middle-aged farmers 386 

farms owned by older farmers 73 

own land (%) 0.662 

irrigated land (%) 0.829 

family labor (%) 0.870 

specialization index 0.736 

 

degree of specialization in the production of cotton.69  Such variables account for 

important factors which affect the operating conditions of farms and consequently, their 

input/output structure and can provide insights regarding the closeness of the MPS’s 

structure compared to that of the majority of the sample farms 

Most of our sample farms are located in Central Greece (i.e., Thessaly, 55.9% 

of the sample), while the rest are almost equally divided between Northern (Macedonia 

and Thrace) and Southeastern (namely Sterea Ellada and Aegean Islands) Greece 

(23.4% and 19.4% respectively).  Only a small fraction (1.3%) of farms is located at 

Western (Epirus and Peloponnesus) Greece.  On average, the sample farms are 

relatively specialized in the production of cotton, rent about 44% of their land, while 

 

 

69 In FADN, farm size is defined in terms of gross value added.  FADN defines nine size classes, which 

are grouped here into three categories, namely small, medium, and large farms.  We also define three 

different age bands, namely younger (less than 40 years old), middle-aged (between 40 and 60 years) 

and older farmers (over 60 years old). The degree of specialization is measured by the Herfindhal 

concentration index (defined as 𝐻𝑘 = ∑ 𝑠𝑗𝑘
2

𝑗 , where 𝑠𝑗𝑘 is the share of the jth output in total production of 

the kth farm). A value of H equal to unity indicates complete specialization, whereas smaller values reflect 

increased diversification 
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most of them are of large size according to FADN standards and are operated by 

middle-aged farmers (see Table 4.1). 

 

4.5. Empirical results 

 

This section provides the first thorough comparative empirical analysis of the 

variability in VEA efficiency scores for alternative MPS choices.  For these purposes 

several models were estimated.  More specifically, technical and scale efficiency scores 

for the sample DMUs (including the APU) were obtained by estimating conventional 

CRS and VRS DEA models.  We find 12 farms to be both technical and scale efficient 

(i.e., have MPSS), while there were 21 technically efficient farms, most of which (17) 

operating with increasing returns-to-scale (RTS).70  The complete set of the efficient 

farms is given in Table 4.2.  On average, inefficiency is more due to producing below 

the frontier rather than operating at non-optimal scale (average technical and scale 

efficiency equal 0.598 and 0.947, respectively), while supra-optimal scale farms appear 

to operate closer to optimal scale compared to sub-optimal scale farms. 

In addition, we estimated super-efficiency CRS and VRS DEA models.  For eight farms 

the VRS model resulted in an infeasible solution.  Separate super-efficiency DEA 

models were estimated for the IDMU by including it in the sample, among which the 

one assuming VRS resulted in an infeasible solution.  We also estimated CRS and VRS 

VEA models using each of the efficient farms as the MPS, to identify the farm for which 

the variability across the optimal input and output weight vectors is minimum, as 

suggested in Gonzalez et al. (2010).  The FDEFs generating the CRS and VRS DEA 

frontiers (14 FDEFs in the CRS frontier and 68 FDEFs in the VRS one) were identified 

using the mixed integer binary optimization algorithm of Davtalab-Olyaie et al. (2014). 

 

4.5.1. Choice of MPS 

 

A two-step procedure was used to choose the MPS for the CRS and VRS VEA models.  

In that, we considered all the MPS choices discussed in the third section apart from 

external information, interactive optimization, personal judgments and the AHP.  This  

 

 

70 An additional DMU having an efficiency score of one with CRS was identified as weakly efficient, 

namely having positive slacks, and was not further considered. All other DMUs with an efficiency score 

of one either with CRS or with VRS are extreme-efficient. 
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Table 4.2: Extreme-efficient DMUs selected as the MPS by alternative choices 

 
 farm (in coded numbers)  

MPS choice 32 37 69 91 119 130 142 143 145 147 154 160 178 183 197 201 203 216 226 235 241 252 267 273 275 293 314 368 404 410 411 415 524 suma 

CRS 

most times as peer in DEA                      ■b     
  

   
 

 1 

maximum finite 

superefficiency 
            ■              

  

   

 

 1 

infeasible superefficiency                                                                   - 

best-in-output                      ■     
  

   
 

 1 

best-in-input                                                                   0 

minimum average CV             
 ■                    1 

IDMU  ■    
 

    
 

 ■  
 

 
     

 
    

 ■    
 

 1 

interior active                     □     □               □       ■   □           5 

interior self-evaluator                                                                   - 

exterior active  □    ■     
 □ □  

 □      
 

   
 □  

   □  7 

exterior self-evaluator                                                                   - 

interior terminal                     ■     □               □           □           4 

exterior terminal  □    ■     
 □ □  

 □      
 

   
 □  

   □  7 

non-terminal                                                   ■               1 

MPSS  □    ■     □ □ □ □  □      □    □ □ □    □  12 

APU              
 

 
 

     ■    ■ ■     ■  1 

FDEF   □       ■         □ □ ■ □   □           ■       □ □ □       ■   14 

times suggested as MPS   5       4         4 4 6 5   4           7       5 5 5       5    

VRS 

most times as peer in DEA                      ■            1 

largest finite 

superefficiency             
■ 

                    
1 

infeasible superefficiency   ■  □    □      □    □ □   □      □     8 

best-in-output                      ■            1 

best-in-input   ■  □               □         □     4 

minimum average CV       ■                           1 

IDMU                                                                   - 

interior active           ■   □ □ □ □   □ □     □   □       □ □ □ □ □ □ □ □ □ □   19 

interior self-evaluator       □           ■                2 

exterior active ■ □ □ □  
      □   □ □    □ □ □           □ 11 

exterior self-evaluator         ■                                                         1 

interior terminal           ■   □ □   □   □ □     □ □ □       □ □ □ □ □ □ □ □ □ □   19 

exterior terminal □ □ □ □ □       □   □ □    □ ■ □           □ 12 

non-terminal             □     ■                                               2 

MPSS  □    ■    
 □ □ □ □  □      □    □ □ □    □  12 

APU      ■                ■    ■ ■       1 

FDEF   □       ■ □ □ □ □ □ □ □ □ □ □ □   □ □ □ ■ □ □ □ ■ ■ □ □ □ □ ■ □ 68 

times suggested as MPS 2 4 4 2 4 5 4 3 4 4 4 4 5 4 4 4 3 2 4 5 3 7 4 3 3 5 5 4 5 3 3 4 3  

Notes: (a) In the case of the IDMU, the APU, and the FDEF, the last column refers to the number of combinations of DMUs that serve as peers for the IDMU and the APU (one) and the number 

of FDEFs identified in the CRS and VRS DEA models (14 with CRS and 68 with VRS). (b) Each rectangle highlights that the corresponding farm is identified as MPS by the respective choice. 

The filled rectangles refer to the DMUs or combinations of DMUs chosen as the MPS in the application of this chapter.    
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is because external information is not available while the other three suggestions require 

the presence of a DM.  In the first step, we identified the DMUs that could be the MPS 

in each case assuming CRS and VRS.  These are indicated by a rectangle in their 

corresponding cell in Table 4.2, the last column of which shows the number of different 

MPSs indicated by each choice.   

More specifically, the farm appearing the most times as peer in the CRS and 

VRS DEA models, the best-in-output farm and the four best-in-input farms were 

identified.  With CRS, only the best-in-output farm is efficient, while with VRS the 

best-in-input farms are efficient as well.  We also identified the farms with the minimum 

average CV, those having the maximum finite super-efficiency score with CRS and 

VRS, as well as those for which the VRS DEA super-efficiency model resulted in an 

infeasible solution.71 The peers of the APU and the IDMU were identified, albeit for 

the latter only with CRS.  Each farm was also classified based on its position on the 

DEA frontier, following the two classification schemes presented in the third section.  

From Table 2 we see that at least one farm is included in every group with VRS, while 

with CRS there are no self-evaluators.  Also, a farm may be classified in a different 

group with CRS and with VRS.  In addition, we identified the combinations of efficient 

farms generating the 14 FDEFs of the CRS frontier and the 68 FDEFs of the VRS one.  

With CRS, each efficient farm generates at least one FDEF, while this is not the case 

with VRS.   

The second step involved choosing one DMU or a combination of DMUs to use 

in the empirical application when more than one DMUs or combination of DMUs could 

be the MPS.  This is more likely to be the case when the DM chooses the MPS among 

(i) interior active, (ii) exterior active, (iii) self-evaluators, (iv) interior terminal, (v) 

exterior terminal, (vi) non-terminal, (vii) MPSS, (vii) best-in-input and best-in-output 

DMUs, (viii) the DMUs for which the VRS super-efficiency model has an infeasible 

solution and (ix) the combinations of DMUs generating an FDEF.  See the last column 

in Table 4.2, where for most of these choices there are multiple alternatives for the 

MPS.72  For each of these choices, we chose as the MPS the farm for which land 

 

 

71 This could not occur with CRS, and thus there is a dash in the corresponding cell in the last column of 

Table 4.2. 
72 On the other hand, there is one combination of peers for the IDMU and the APU.  It is also likely that 

only one DMU appears the most times as a peer in the DEA model, one DMU has the maximum finite 
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quantity was closest to the average quantity of land among those farms indicated as 

potential MPSs by the choice.  A similar procedure was followed in the case of common 

weights, namely to choose one combination of farms generating an FDEF.  We ranked 

the efficient farms in terms of their deviation from the sample average land quantity 

and chose the farm with the minimum deviation.  If the farm ranked second shared a 

common facet with the one ranked first, we considered it for the combination.  

Otherwise, we bypassed it and moved to the next farm in the ranking.  This process 

ended when a combination of farms generating an FDEF was obtained. After the MPS 

choice, a VEA model was estimated for each of the alternative MPSs with CRS and 

with VRS. 

The farms or the combination of farms chosen as the MPS are indicated by a 

filled rectangle in the respective cell of Table 4.2.  From that we see that a particular 

MPS choice may result in choosing a different MPS with CRS and with VRS (see the 

average CV).  In addition, some farms are frequently suggested as the MPS: with CRS 

two farms are suggested as the MPS (either solely or within a combination of farms) 

six and seven times respectively, while with VRS case one farm is suggested as the 

MPS seven times while six farms are suggested five times each.  This can be attributed 

to the fact that for many of the MPS choices multiple DMUs could be the MPS.  

The economic and socio-demographic characteristics of the chosen MPS are given in 

Table 4.3.  Most of these are medium or large in size, are located in Central Greece and 

operated by middle-aged farmers (ages 40 to 60).  On the other hand, only a few chosen 

MPSs are located in Northern Greece.  More specifically, farm #32 is a medium-sized 

farm located in Northern Greece that is chosen as an exterior active MPS with VRS.  It 

operates with a sub-optimal scale and it owns and irrigates very low percentages of its 

land compared to the average.  Farm #69 is located in Northern Greece, operates with 

sub-optimal scale and uses the lowest quantity of land in the sample (best-in-input), 

while it is also chosen as MPS among the farms with an infeasible VRS super-efficiency 

model. It is thus possibly located at an “end point” of the frontier.  The same is likely 

the case for farm #119, which is a sub-optimal scale farm located in Northern Greece 

and chosen as an exterior self-evaluator MPS.  On the other hand, the chosen interior  

 

 

super-efficiency score and one DMU is selected based on the minimum “average CV”, but ties among 

DMUs are also possible for these suggestions. 
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Table 4.3:Economic and socio-demographic characteristics of the MPSs 

 
farm (in 

coded 

number) 

revenue  

(in 

euros) 

land  

(in ha) 

labor  

(in annual 

working hours) 

intermediate 

inputs  

(in euros) 

capital  

(in euros) region 

farm 

size 

farmer 

age 

own 

land (%) 

irrigated 

land (%) 

family 

labor (%) 

specialization 

indexc RTS 

32 3160 1050 554 717 6384 Northern medium 41 0.457 0.267 1.000 0.541 irs 

37 6090 1620 1673 1975 458 Northern large 59 0.133 0.620 0.727 0.762 crs 

69 2029 360 321 689 3091 Northern small 56 1.000 1.000 1.000 0.500 irs 

119 1067 255 1267 279 1499 Northern small 48 1.000 0.686 1.000 0.446 irs 

130 7760 1240 3070 1070 3510 Western large 46 0.290 1.000 0.961 0.607 crs 

142 1670 210 1323 386 487 Central small 64 1.000 1.000 1.000 0.693 irs 

147 6741 670 955 1717 1527 Central medium 55 0.701 1.000 1.000 1.000 crs 

154 13578 1480 1029 3663 3337 Central large 45 0.243 0.946 0.979 0.976 crs 

178 4050 300 2222 776 162 Central medium 33 1.000 1.000 0.734 0.546 crs 

183 3393 420 820 1344 320 Central medium 43 0.833 1.000 1.000 1.000 crs 

216 9839 1360 640 2726 3971 Central large 51 0.279 0.735 1.000 0.784 irs 

241 13470 970 3679 5872 8257 Central large 39 0.381 1.000 0.952 0.280 drs 

252 31726 3130 1494 5808 10037 Central large 60 0.284 0.831 0.871 0.907 crs 

293 11799 1000 1800 2146 4703 Central large 54 1.000 1.000 1.000 1.000 crs 

314 13123 1060 1700 2406 8300 Central large 57 1.000 1.000 1.000 1.000 crs 

368 4902 695 917 1367 723 Central medium 27 0.115 0.806 1.000 0.648 crs 

415 3661 410 1664 531 1750 Central medium 55 0.756 1.000 0.784 0.856 crs 

average 6434.103 1188.139 2045.654 2369.776 5703.852      0.662 0.829  0.870  0.736   
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self-evaluator farm #216 is of sub-optimal scale but large in size and located in Central 

Greece, as most of the sample DMUs.  It is thus more likely to be “alone in the crowd”. 

Farm #130 is a large size, optimal-scale farm located in Western Greece and 

operated by a middle aged-farmer that is chosen as the MPS multiple times (as exterior 

active and exterior terminal with VRS, as interior active and interior terminal with VRS, 

and as MPSS).  Its input-output bundle is somewhat similar to the average, suggesting 

that it is located close to most of the farms in the sample.  The same is likely for farm 

#293, which has a similar structure, operates with technically optimal scale and is 

chosen as interior active and non-terminal MPS with CRS.  On the other hand, the non-

terminal MPS with VRS (farm #147) is a medium-sized one, although it has similar 

socio-demographic characteristics with farm #293 and is also of optimal scale. The 

other farms chosen based on their frontier location (farm #154 as interior terminal with 

CRS and farm #241 as exterior terminal with VRS) are both large-sized and located in 

Central Greece.  Farm #241 is however of supra-optimal scale and is operated by a 

young farmer, while farm #154 operates with technically optimal scale. 

The best-in-output farm #252 is a large-sized, relatively capital-intensive farm 

located in Central Greece which appears the most times as a peer with CRS and with 

VRS. It is thus a very influential peer, as is likely the case for farm #178, which is the 

one with the maximum finite super-efficiency score for both model specifications.  It 

is located in Central Greece but is of medium size and relatively more labor-intensive.  

On the other hand, the two farms suggested as the MPS with the minimum variability 

in their optimal weights with CRS (farm #183) and with VRS (farm #142) have a very 

small scale compared to the average.  Both are located in Central Greece but the latter 

operates with a technically sub-optimal scale and appears as a peer only for itself, 

suggesting that it is located at an “end-point” of the frontier.     

In the case of the APU, a combination of four farms is the MPS either with CRS 

or with VRS.  Each farm in these combinations is MPSS, while most of these are large-

sized farms located Central Greece and operated from middle-aged farmers.  The same 

is the case for the combinations of farms (four with CRS and five in VRS) selected as 

MPS in the case of common weights.  Most of the farms in these combinations have an 

input/output bundle relatively close to the average.  For the case for common weights 

this is a result of the process we followed to select the associated FDEF.  On the other 

hand, the IDMU peers are three MPSS farms, which utilize very low capital quantities 
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compared to the average.  One of these is located in Northern Greece, while two of 

them own excessively low proportions of their cultivated land. 

 

4.5.2. Comparative results between DEA and VEA models 

 

The VEA efficiency scores are always less than or equal to the corresponding DEA 

scores.  This implies a decrease in average efficiency compared to the DEA model (see 

Table 4.4), and a left ward shift of the VEA distribution of efficiency scores compared 

to that of DEA (see Figure 4.2).  For some of the MPS choices these shifts are large, 

for others there are only moderate, while for some MPS choices the VEA distribution 

of efficiency scores is not statistically different from that of the DEA scores (see Table 

4.5) based on average shifts in rank (given as 𝑅 =
1

𝑘
(∑ |𝑟𝑎𝑛𝑘𝐴(𝑦𝑘) − 𝑟𝑎𝑛𝑘𝐵(𝑦𝑘)|𝐾

𝑘=1 ), 

see Saisana et al., 2005) and distribution equality tests (Banker and Natarajan, 2011). 

More specifically, the use as the MPS of (i) the farm that appears the most times 

as a peer, (i) the one with the maximum finite super-efficiency score, and (iii) the best-

in-output farm results in efficiency distributions that do not differ, in a statistically 

significant way, between DEA and VEA, irrespective of the RTS assumption (see Table 

4.5). The same is essentially true with CRS for the non-terminal and the interior-active 

MPS, which are the same farm.  In these cases, the results from the VEA model do not 

offer some additional insights to managers compared to those of the DEA model.  This 

should be expected for the first two MPS choices, as they are based on influential 

DMUs appearing as peers for a large proportion of farms.  For the other choices, it is 

explained by the fact that the farms chosen as MPSs have an input/output bundle that 

is close to that of most of the sample farms.  Note also that when the non-terminal DMU 

is the MPS, all inputs are important for the estimation of efficiency, in the sense that all 

farms assign a positive value to the weights attached to each input.  

On the other hand, when the MPS is an (interior or exterior) self-evaluator there 

are statistically significant (see Table 4.5) differences between the VEA and the DEA 

distributions of efficiency scores, and the same holds with VRS for the minimum 

“average CV” choice.  In these cases, we observe the largest left ward shifts in the VEA 

distribution of efficiency scores compared to that of DEA.  This is expected to occur in 

most cases where the MPS is either an interior self-evaluator that is located “alone in 

the crowd”, or an exterior self-evaluator located on an “end-point” of the frontier, as 

these DMUs appear as peers only for themselves.  It also occurs in our case for the CRS   
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Table 4.4: Efficiency scores for alternative MPS choices 

 

model   average 

  

minimum 

  

median 

 standard 

deviation 

efficient 

farms 

    CRS VRS CRS VRS CRS VRS CRS VRS CRS VRS 

DEA   0.562 0.598 0.091 0.091 0.575 0.607 0.207 0.225 12 33 

VEA MPS choice                     

1 most times as peer in DEA 0.555 0.586 0.090 0.091 0.565 0.593 0.206 0.219 11 23 

2 
maximum finite 

superefficiency 
0.551 0.576 0.091 0.091 0.559 0.580 0.205 0.219 12 26 

3 infeasible superefficiency - 0.363 - 0.043 - 0.346 - 0.188 - 5 

4 best-in-output 0.555 0.586 0.090 0.091 0.565 0.593 0.206 0.219 11 23 

5 best-in-input - 0.363 - 0.043 - 0.346 - 0.188 - 5 

6 minimum average CV 0.373 0.288 0.038 0.044 0.346 0.282 0.194 0.145 5 6 

7 IDMU 0.373 - 0.039 - 0.351 - 0.192 - 4 - 

8 interior active 0.540 0.524 0.090 0.078 0.557 0.537 0.200 0.195 6 7 

9 interior self-evaluator - 0.208 - 0.016 - 0.168 - 0.159 - 5 

10 exterior active 0.508 0.417 0.077 0.060 0.520 0.416 0.190 0.185 4 4 

11 exterior self-evaluator - 0.201 - 0.027 - 0.194 - 0.118 - 4 

12 interior terminal 0.415 0.524 0.046 0.078 0.391 0.537 0.202 0.195 6 7 

13 exterior terminal 0.508 0.498 0.077 0.087 0.520 0.515 0.190 0.196 4 6 

14 non-terminal 0.540 0.477 0.090 0.061 0.557 0.463 0.200 0.210 6 11 

15 MPSS 0.508 0.524 0.077 0.078 0.520 0.537 0.190 0.195 4 7 

16 APU 0.498 0.499 0.079 0.078 0.513 0.514 0.184 0.186 4 5 

17 FDEF 0.482 0.497 0.071 0.078 0.494 0.514 0.184 0.185 4 5 
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Table 4.5: Statistical tests between DEA and VEA 

 

    

 average rank 

shift 

  

Mann Whitney 

  

Banker F1a 

  

Banker F2 

VEA MPS choice CRS VRS CRS VRS CRS VRS CRS VRS 

1 most times as peer in DEA 9.167 12.522 0.639 0.814 1.021 1.03 1.031 1.032 

2 
maximum finite 

superefficiency 
11.579 17.512 0.959 1.600 1.032 1.062 1.046 1.081 

3 infeasible superefficiency - 78.899 - 16.262***b - 1.915*** - 2.847*** 

4 best-in-output 9.167 12.522 0.639 0.814 1.021 1.03 1.031 1.032 

5 best-in-input - 78.899 - 16.262*** - 1.915*** - 2.847*** 

6 minimum average CV 75.662 55.558 13.865*** 20.985*** 1.714*** 2.264*** 2.507*** 3.686*** 

7 IDMU 75.579 - 14.283*** - 1.709*** - 2.488*** - 

8 interior active 16.924 49.307 1.675* 5.512*** 1.061 1.212*** 1.086 1.279*** 

9 interior self-evaluator - 99.032 - 23.529*** - 3.027*** - 6.655*** 

10 exterior active 40.820 68.930 4.455*** 13.209*** 1.153** 1.631*** 1.223** 2.107*** 

11 exterior self-evaluator - 62.406 - 24.320*** - 2.864*** - 5.589*** 

12 interior terminal 68.685 49.307 11.418*** 5.512*** 1.528*** 1.212*** 2.051*** 1.279*** 

13 exterior terminal 40.820 60.338 4.455*** 7.359*** 1.153** 1.314*** 1.223** 1.472*** 

14 non-terminal 16.924 58.622 1.675* 8.909*** 1.061 1.415*** 1.086 1.706*** 

15 MPSS 40.820 49.307 4.455*** 5.512*** 1.153** 1.212*** 1.223** 1.279*** 

16 APU 39.169 55.605 5.329*** 7.452*** 1.183*** 1.294*** 1.265*** 1.401*** 

17 FDEF 41.169 55.442 6.647*** 7.564*** 1.236*** 1.298*** 1.365*** 1.409*** 
Notes: (a) F1 (F2) test compares the DEA and VEA distributions of efficiency scores, assuming an exponential (half-normal) distribution of the efficiency scores (see Banker 

and Natarajan, 2011). (b) Three, two and one stars denote statistical significance at 1%, 5% and 10% respectively. 
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Figure 4.2: DEA and VEA distributions of efficiency scores. 
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Figure 4.2 (Cont.) 
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Figure 4.2 (Cont.) 
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Figure 4.2 (Cont.) 
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VEA model with the minimum “average CV” MPS choice as well, as the chosen farm 

is also an interior self-evaluator (see Table 4.2).  In all three cases, the correlation 

between the VEA and the DEA efficiency scores is particularly low (see Table 4.6).  In 

addition, when an exterior self-evaluator farm is the MPS, some of the inputs are 

irrelevant for the estimation of efficiency.  More specifically, a zero value is assigned 

to the weights attached to land and capital by all farms. 

Large leftward shifts in the VEA distribution of efficiency scores compared to DEA are 

observed for a series of other MPS choices.  These are (i) the best-in-input farm and the 

farm for which the VRS super-efficiency model results in an infeasible solution (which 

in this case is the same farm), (ii) the farm with the minimum average CV with CRS, 

(iii) the IDMU peers, (iv) an interior terminal farm when CRS is assumed, and (iv) an 

exterior active farm with VRS.  In all these cases, the VEA efficiency scores decrease, 

on average, by more than 30% compared to DEA (see Table 4.4).  This suggests that 

the input/output bundle used by the MPS in each case is quite dissimilar from the 

bundles used by most of the farms.  For MPSs with infeasible super-efficiency scores 

or the IDMU peers, this may often be expected, as the former are usually located at an 

“end-point” of the frontier, while the latter is likely to use a rather extreme input/output 

bundle.73  In these two cases some of the inputs are irrelevant for the estimation of 

efficiency.  This is true for capital in the case of the MPS with infeasible super-

efficiency score and for land in the case of the IDMU peers, indicating that the farms 

are assessed by means of non-well defined marginal rates.  For the remaining choices 

in this group, large differences between the DEA and the VEA efficiency scores may 

or may not be the case.  For example, in our case there are large differences between 

the VEA and DEA distributions of efficiency scores not only when the chosen best-

input farm is the MPS, but also if some of the other three best-in-input farms are used 

as the MPS instead.74  This however may not occur in a different sample and/or model 

specifications.  

 

 

73 The other seven efficient farms for which the VRS DEA super-efficiency model results in an infeasible 

solution (see Table 4.2) have similar economic and socio-demographic characteristics to the selected 

MPS. When each of these farms is used as the MPS, the VEA distribution of efficiency scores differs in 

a statistically significant way from the DEA one. 
74 The other three VRS efficient farms that use the lowest quantities of land, capital and intermediate 

inputs (see Table 4.2) are have similar economic and socio-demographic characteristics to the selected 
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Table 4.6:Simple and rank correlation coefficients between DEA and VEA models 

 

    

 simple 

correlation 

Spearman rank 

correlation 

VEA MPS choice CRS VRS CRS VRS 

1 most times as peer in DEA 0.998 0.996 0.992 0.974 

2 
maximum finite 

superefficiency 
0.998 0.995 0.991 0.979 

3 infeasible superefficiency - 0.855 - 0.730 

4 best-in-output 0.998 0.996 0.992 0.974 

5 best-in-input - 0.855 - 0.730 

6 minimum average CV 0.839 0.938 0.781 0.863 

7 IDMU 0.843 - 0.782 - 

8 interior active 0.993 0.972 0.981 0.888 

9 interior self-evaluator - 0.669 - 0.603 

10 exterior active 0.979 0.920 0.921 0.795 

11 exterior self-evaluator - 0.933 - 0.820 

12 interior terminal 0.869 0.972 0.815 0.888 

13 exterior terminal 0.979 0.914 0.921 0.836 

14 non-terminal 0.993 0.925 0.981 0.850 

15 MPSS 0.979 0.972 0.921 0.888 

16 APU 0.979 0.960 0.922 0.847 

17 FDEF 0.975 0.960 0.920 0.847 
 

Lastly, the VEA distribution of efficiency scores differs only moderately from 

DEA for the following MPS choices: (i) an exterior active farm in the CRS model, (ii) 

either an interior active or an interior terminal farm with VRS, (iii) the MPSS choice 

for both model specifications, (iv) an exterior terminal and a non-terminal farm with 

VRS, (v) common weights and (vi) the APU peers with CRS and VRS.  In the first 

three of these cases, the same farm #130 is used as the MPS, while in all of them the 

differences between the DEA and the VEA distributions of efficiency scores are 

significant in a statistical sense (see Table 4.5).  This indicates that, even though the 

changes in efficiency are moderate, the use of VEA does result in additional insights to 

management with respect to the results obtained from the DEA model.  Among those 

cases, significant differences between the DEA and the VEA efficiency scores may be 

expected when the APU’s peers are used as the MPS and in common weights VEA, but 

not necessarily for the other cases.  In common weights VEA, only 21 (with CRS) and 

seven farms (with VRS) have efficiency scores equal to their corresponding DEA 

 

 

farm.  When they are used as the MPS, large and statistically significant differences are observed between 

the VEA and DEA efficiency scores. 
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scores, while for the remaining farms VEA efficiency scores decrease at least slightly 

compared to their DEA counterparts.  The differences are moderate as the farms 

forming the chosen combination have input/output bundles that are similar to those of 

most DMUs in the sample but could be larger if a farm with a somewhat extreme bundle 

was chosen in the combination.  When the APU’s peers are the MPS, farms with an 

input/output structure that is close to the average, i.e., that of the APU, exhibit slight or 

no decreases in efficiency in the VEA model, while the scores of farms with extreme 

bundles efficiency scores decrease considerably.  In addition, in the case of a non-

terminal MPS, no inputs are irrelevant for the for the estimation of efficiency, while 

when an (interior or exterior) terminal farm is the MPS (either with CRS or with VRS) 

some farms assign a zero weight to one or more of the land, labor, and/or capital inputs. 

 

4.5.3. Comparative results among VEA models 

 

Comparing the efficiency distributions among VEA models with alternative MPSs can 

provide additional insights.  No doubt, the VEA distributions of efficiency scores are 

the same among those MPS choices for which the same farm is used as the MPS.  In 

our case, these are (i) a farm with an infeasible super-efficiency scores and a best-in-

input farm, (ii) an exterior active, an exterior terminal and an MPSS farm with CRS, 

(iii) an interior active, an interior terminal and an MPSS farm with VRS, (iv), an interior 

active and a non-terminal farm with CRS, and (v) the farm appearing the most times as 

a peer in DEA and the best-in-output farm, for both model specifications (see Table 

4.2). 

In addition, based on Banker’s (see Tables 4.7 and 4.8) and Mann-Whitney tests 

(Table 4.9),75 correlation analysis (Tables 4.10 and 4.11), and shifts in rank (Table 

4.12), we can infer that there are no significant differences among the efficiency scores 

of VEA models when the MPS is either (i) the farm appearing the most times as a peer 

in DEA, (ii) the farm with the maximum finite super-efficiency score, (iii) the best-in-

output farm (both with CRS and with VRS), (iv) an interior active or (v) a non-terminal 

farm with CRS.  This is to be expected in our case, as the VEA distributions of  

 

 

75 In the case of pairwise comparisons among different VEA models, the Banker test statistics are 

calculated by placing in the numerator the VEA model for which the sum of the logarithms of its 

inefficiency scores is the largest. This guarantees that the test statistic is always greater than or equal to 

one. 
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Table 4.7: Banker statistical tests among VEA models, constant-returns-to-scale 

 

                    VEA                  

VEA MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 most times as peer in DEA   1.010 - 1.000 - 1.678*** 1.674*** 1.039 - 1.129** - 1.496*** 1.129** 1.039 1.129** 1.158*** 1.210*** 

2 
lowest finite 

superinefficiency 1.015   - 1.010 - 1.662*** 1.657*** 1.028 - 1.117** - 1.481*** 1.117** 1.028 1.117** 1.146** 1.198*** 

3 
infeasible 

superinefficiency - -   - - - - - - - - - - - - - - 

4 best-in-output 1.000 1.015 -   - 1.678*** 1.674*** 1.039 - 1.129** - 1.496*** 1.129** 1.039 1.129** 1.158*** 1.210*** 

5 best-in-input - - - -   - - - - - - - - - - - - 

6 minimum average CV 2.432*** 2.397*** - 2.432*** -   1.003 1.616*** - 1.487*** - 1.122** 1.487*** 1.616*** 1.487*** 1.449*** 1.387*** 

7 IDMU 2.413*** 2.379*** - 2.413*** - 1.008   1.612*** - 1.483*** - 1.119** 1.483*** 1.612*** 1.483*** 1.445*** 1.383*** 

8 interior active 
1.054 1.039 - 1.054 - 2.307*** 2.290***   - 1.087* - 1.441*** 1.087* 1.000 1.087* 1.115** 1.165*** 

9 interior self-evaluator 
- - - - - - - -   - - - - - - - - 

10 exterior active 
1.187** 1.17** - 1.187** - 2.050*** 2.034*** 1.126* -   - 1.325*** 1.000 1.087* 1.000 1.026 1.072 

11 exterior self-evaluator 
- - - - - - - - - -   - - - - - - 

12 interior terminal 
1.989*** 1.961*** - 1.989*** - 1.223** 1.213** 1.887*** - 1.677*** -   1.325*** 1.441*** 1.325*** 1.292*** 1.236*** 

13 exterior terminal 
1.187** 1.170** - 1.187** - 2.050*** 2.034*** 1.126* - 1.000 - 1.677***   1.087* 1.000 1.026 1.072 

14 non-terminal 1.054 1.039 - 1.054 - 2.307*** 2.290*** 1.000 - 1.126* - 1.887*** 1.126*   1.087* 1.115** 1.165*** 

15 DMU with MPSS 1.187** 1.170** - 1.187** - 2.050*** 2.034*** 1.126* - 1.000 - 1.677*** 1.000 1.126*   1.026 1.072 

16 APU 1.227*** 1.209** - 1.227*** - 1.982*** 1.967*** 1.164** - 1.034 - 1.621*** 1.034 1.164** 1.034   1.045 

17 FDEF 1.324*** 1.305*** - 1.324*** - 1.837*** 1.822*** 1.256*** - 1.116 - 1.502*** 1.116 1.256*** 1.116 1.079   

Notes: (a) F1 (F2) test compares the VEA efficiency distributions of efficiency scores with each other assuming an exponential (half-normal) distribution of the efficiency 

scores (see Banker and Natarajan, 2011). (b) Results from the F1 (F2) test are depicted in the upper (lower) diagonal. (c) Three, two and one stars denote statistical significance 

at 1%, 5% and 10% respectively. 
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Table 4.8: Banker statistical tests among VEA models, variable-returns-to-scale 

 

                   VEA                  

MPS selection criterion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 most times as peer in DEA   1.031 1.859*** 1.000 1.859*** 2.198*** - 1.177*** 2.938*** 1.583*** 2.780*** 1.177*** 1.275*** 1.373*** 1.177*** 1.255*** 1.260*** 

2 
lowest finite 

superinefficiency 1.048   1.803*** 1.031 1.803*** 2.132*** - 1.141** 2.850*** 1.536*** 2.697*** 1.141** 1.237*** 1.332*** 1.141** 1.218*** 1.222*** 

3 
infeasible 

superinefficiency 2.759*** 2.632***   1.859*** 1.000 1.182*** - 1.580*** 1.581*** 1.174*** 1.495*** 1.580*** 1.458*** 1.354*** 1.580*** 1.481*** 1.476*** 

4 best-in-output 1.000 1.048 2.759***   1.859*** 2.198*** - 1.177*** 2.938*** 1.583*** 2.78*** 1.177*** 1.275*** 1.373*** 1.177*** 1.255*** 1.260*** 

5 best-in-input 2.759*** 2.632*** 1.000 2.759***   1.182*** - 1.580*** 1.581*** 1.174*** 1.495*** 1.580*** 1.458*** 1.354*** 1.58*** 1.481*** 1.476*** 

6 minimum average CV 3.572*** 3.409*** 1.295*** 3.572*** 1.295***   - 1.868*** 1.337*** 1.388*** 1.265*** 1.868*** 1.724*** 1.601*** 1.868*** 1.751*** 1.745*** 

7 IDMU - - - - - -  - - - - - - - - - - 

8 interior active 
1.240*** 1.183** 2.225*** 1.240*** 2.225*** 2.881*** -   2.497*** 1.345*** 2.363*** 1.000 1.084* 1.167*** 1.000 1.067 1.071 

9 interior self-evaluator 
6.450*** 6.154*** 2.338*** 6.450*** 2.338*** 1.805*** - 5.202***   1.856*** 1.057 2.497*** 2.304*** 2.14*** 2.497*** 2.341*** 2.333*** 

10 exterior active 
2.042*** 1.948*** 1.351*** 2.042*** 1.351*** 1.75*** - 1.647*** 3.159***   1.756*** 1.345*** 1.241*** 1.153** 1.345*** 1.261*** 1.257*** 

11 exterior self-evaluator 
5.417*** 5.168*** 1.963*** 5.417*** 1.963*** 1.516*** - 4.368*** 1.191** 2.653***   2.363*** 2.18*** 2.025*** 2.363*** 2.215*** 2.207*** 

12 interior terminal 
1.240*** 1.183** 2.225*** 1.240*** 2.225*** 2.881*** - 1.000 5.202*** 1.647*** 4.368***   1.084* 1.167*** 1.000 1.067 1.071 

13 exterior terminal 
1.427*** 1.361*** 1.934*** 1.427*** 1.934*** 2.504*** - 1.151* 4.521*** 1.431*** 3.797*** 1.151*   1.077 1.084* 1.016 1.012 

14 non-terminal  1.653*** 1.577*** 1.669*** 1.653*** 1.669*** 2.161*** - 1.333*** 3.902*** 1.235*** 3.277*** 1.333*** 1.159**   1.167*** 1.094** 1.09** 

15 MPSS 1.240*** 1.183** 2.225*** 1.240*** 2.225*** 2.881*** - 1.000 5.202*** 1.647*** 4.368*** 1.000 1.151* 1.333***   1.067 1.071 

16 APU 1.358*** 1.295*** 2.032*** 1.358*** 2.032*** 2.631*** - 1.095 4.751*** 1.504*** 3.99*** 1.095 1.051 1.218** 1.095   1.004 

17 FDEF 1.365*** 1.303*** 2.021*** 1.365*** 2.021*** 2.616*** - 1.101 4.724*** 1.495*** 3.967*** 1.101 1.045 1.211** 1.101 1.006   

Notes: (a) F1 (F2) test compares the VEA efficiency distributions of efficiency scores with each other assuming an exponential (half-normal) distribution of the efficiency 

scores (see Banker and Natarajan, 2011). (b) Results from the F1 (F2) test are depicted in the upper (lower) diagonal. (c) Three, two and one stars denote statistical significance 

at 1%, 5% and 10% respectively. 
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Table 4.9: Mann-Whitney statistical tests among VEA models 

 

                    VEA                  

VEA MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 most times as peer in DEA   0.807 15.844*** 0.000 15.844*** 20.738*** - 4.471*** 23.383*** 12.668*** 24.320*** 4.471*** 6.663*** 8.273*** 4.471*** 6.747*** 6.863*** 

2 
lowest finite 

superinefficiency 0.321   15.322*** 0.807 15.322*** 20.408*** - 3.914*** 23.171*** 12.016*** 24.117*** 3.914*** 5.869*** 7.577*** 3.914*** 5.912*** 6.025*** 

3 
infeasible 

superinefficiency - -   15.844*** 0.000 6.629*** - 13.070*** 14.555*** 5.064*** 15.456*** 13.070*** 11.131*** 8.957*** 13.070*** 11.671*** 11.589*** 

4 best-in-output 
0.000 0.321 -   15.844*** 20.738*** - 4.771*** 23.383*** 12.668*** 24.320*** 4.771***\ 6.663*** 8.273*** 4.771*** 6.747*** 6.863*** 

5 best-in-input 
- - - -   6.629*** - 13.070*** 14.555*** 5.064*** 15.456*** 13.070*** 11.131*** 8.957*** 13.070*** 11.671*** 11.589*** 

6 minimum average CV 
13.864*** 13.690*** - 13.864*** -   - 19.015*** 10.424*** 12.123*** 12.129*** 19.015*** 17.302*** 15.396*** 19.015*** 18.045*** 17.993*** 

7 IDMU 
13.867*** 13.689*** - 13.867*** - 0.887   - - - - - - - - - - 

8 interior active 
1.028 0.687 - 1.028 - 13.207*** 13.969***   22.298*** 9.165*** 23.492*** 0.000 2.178** 4.292*** 0.000 2.145** 2.274** 

9 interior self-evaluator 
- - - - - - - -   18.189*** 1.675* 22.298*** 21.299*** 20.171*** 22.298*** 21.738*** 21.704*** 

10 exterior active 
3.796*** 3.489*** - 3.796*** - 11.483*** 11.481*** 2.796*** -   19.852*** 9.165*** 6.958*** 4.534*** 9.165*** 7.402*** 7.309*** 

11 exterior self-evaluator 
- - - - - - - - - -   23.492*** 22.568*** 21.538*** 23.492*** 23.049*** 23.016*** 

12 interior terminal 
10.920*** 10.735*** - 10.920*** - 3.616*** 3.559*** 10.179*** - 8.144*** -   2.178** 4.292*** 0.000 2.145** 2.274** 

13 exterior terminal 
3.796*** 3.489*** - 3.796*** - 11.483*** 11.481*** 2.796*** - 0.000 - 8.144***   2.175** 2.178** 0.126 0.006 

14 non-terminal  
1.028 0.687 - 1.028 - 13.207*** 13.969*** 0.000 - 2.796*** - 10.179*** 2.796***   4.292*** 2.456** 2.346** 

15 MPSS 
3.796*** 3.489*** - 3.796*** - 11.483*** 11.481*** 2.796*** - 0.000 - 8.144*** 0.000 2.796***   2.145** 2.274** 

16 APU 
4.764*** 4.341*** - 4.764*** - 10.926*** 10.936*** 3.678*** - 0.879 - 7.510*** 0.879 3.678*** 0.879   0.141 

17 FDEF 
6.014*** 5.728*** - 6.014*** - 9.823*** 9.815*** 5.075*** - 2.386** - 6.268*** 2.386** 5.075*** 2.386** 1.533   

Notes: (a) Results for constant-returns-to-scale models are depicted in the lower diagonal, while those of variable-returns-to-scale models are depicted in the upper diagonal. 

(b) Three, two and one stars denote statistical significance at 1%, 5% and 10% respectively. 
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Table 4.10: Simple and rank correlation coefficients among VEA models, constant-returns-to-scale 

 

  VEA 

VEA MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 most times as peer in DEA   0.981 - 1.000 - 0.806 0.808 0.979 - 0.929 - 0.840 0.929 0.979 0.929 0.928 0.931 

2 maximum finite superefficiency 0.995   - 0.981 - 0.813 0.812 0.980 - 0.906 - 0.845 0.906 0.980 0.906 0.914 0.923 

3 infeasible superefficiency - -   - - - - - - - - - - - - - - 

4 best-in-output 1.000 0.995 -   - 0.806 0.808 0.979 - 0.929 - 0.840 0.929 0.979 0.929 0.928 0.931 

5 best-in-input - - - -   - - - - - - - - - - - - 

6 minimum average CV 0.849 0.852 - 0.849 -   0.997 0.774 - 0.709 - 0.996 0.709 0.774 0.709 0.699 0.809 

7 IDMU 0.853 0.855 - 0.853 - 0.999   0.771 - 0.727 - 0.991 0.727 0.771 0.727 0.710 0.824 

8 interior active 0.992 0.992 - 0.992 - 0.837 0.839   - 0.918 - 0.814 0.918 1.000 0.918 0.944 0.932 

9 interior self-evaluator - - - - - - - -   - - - - - - - - 

10 exterior active 0.981 0.974 - 0.981 - 0.817 0.828 0.976 -   - 0.740 1.000 0.918 1.000 0.985 0.976 

11 exterior self-evaluator - - - - - - - - - -   - - - - - - 

12 interior terminal 0.879 0.883 - 0.879 - 0.997 0.995 0.870 - 0.846 -   0.740 0.814 0.740 0.738 0.835 

13 exterior terminal 0.981 0.974 - 0.981 - 0.817 0.828 0.976 - 1.000 - 0.846   0.918 1.000 0.985 0.976 

14 non-terminal 0.992 0.992 - 0.992 - 0.837 0.839 1.000 - 0.976 - 0.870 0.976   0.918 0.944 0.932 

15 MPSS 0.981 0.974 - 0.981 - 0.817 0.828 0.976 - 1.000 - 0.846 1.000 0.976   0.985 0.976 

16 APU 0.980 0.976 - 0.980 - 0.812 0.819 0.986 - 0.995 - 0.844 0.995 0.986 0.995   0.973 

17 FDEF 0.978 0.975 - 0.978 - 0.881 0.889 0.977 - 0.991 - 0.903 0.991 0.977 0.991 0.989   

Note: Simple correlation coefficients are depicted in the lower diagonal, while Spearman rank correlation coefficients are depicted in the upper diagonal. 
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Table 4.11: Simple and rank correlation coefficients among VEA models, variable-returns-to-scale 

 

  VEA 

VEA MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 most times as peer in DEA   0.954 0.785 1.000 0.785 0.838 - 0.912 0.666 0.840 0.808 0.912 0.864 0.872 0.912 0.883 0.883 

2 maximum finite superefficiency 0.991   0.696 0.954 0.696 0.901 - 0.878 0.572 0.764 0.791 0.878 0.870 0.895 0.878 0.852 0.852 

3 infeasible superefficiency 0.871 0.842   0.785 1.000 0.670 - 0.699 0.961 0.965 0.680 0.699 0.737 0.779 0.699 0.703 0.709 

4 best-in-output 1.000 0.991 0.871   0.785 0.838 - 0.912 0.666 0.840 0.808 0.912 0.864 0.872 0.912 0.883 0.883 

5 best-in-input 0.871 0.842 1.000 0.871   0.670 - 0.699 0.961 0.965 0.680 0.699 0.737 0.779 0.699 0.703 0.709 

6 minimum average CV 0.932 0.955 0.811 0.932 0.811   - 0.753 0.565 0.728 0.758 0.753 0.842 0.903 0.753 0.745 0.747 

7 IDMU - - - - - -   - - - - - - - - - - 

8 interior active 0.976 0.968 0.846 0.976 0.846 0.911 -   0.533 0.821 0.892 1.000 0.786 0.760 1.000 0.979 0.979 

9 interior self-evaluator 0.693 0.658 0.940 0.693 0.940 0.645 - 0.635   0.870 0.490 0.533 0.662 0.729 0.533 0.546 0.552 

10 exterior active 0.930 0.909 0.977 0.930 0.977 0.872 - 0.932 0.850   0.820 0.821 0.754 0.789 0.821 0.813 0.819 

11 exterior self-evaluator 0.930 0.927 0.830 0.930 0.830 0.890 - 0.969 0.595 0.927   0.892 0.618 0.649 0.892 0.845 0.848 

12 interior terminal 0.976 0.968 0.846 0.976 0.846 0.911 - 1.000 0.635 0.932 0.969   0.786 0.760 1.000 0.979 0.979 

13 exterior terminal 0.920 0.927 0.819 0.920 0.819 0.936 - 0.886 0.695 0.851 0.801 0.886   0.879 0.786 0.840 0.840 

14 non-terminal 0.929 0.943 0.856 0.929 0.856 0.960 - 0.891 0.751 0.882 0.828 0.891 0.924   0.760 0.756 0.759 

15 MPSS 0.976 0.968 0.846 0.976 0.846 0.911 - 1.000 0.635 0.932 0.969 1.000 0.886 0.891   0.979 0.979 

16 APU 0.967 0.958 0.844 0.967 0.844 0.913 - 0.993 0.640 0.925 0.950 0.993 0.915 0.890 0.993   1.000 

17 FDEF 0.967 0.958 0.847 0.967 0.847 0.914 - 0.993 0.642 0.927 0.952 0.993 0.914 0.890 0.993 1.000   

Note: Simple correlation coefficients are depicted in the lower diagonal, while Spearman rank correlation coefficients are depicted in the upper diagonal. 
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Table 4.12: Average shifts in rank among VEA models 

 

                     VEA                

VEA MPS choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 most times as peer in DEA  22.004  71.713  0.000  71.713  59.446  - 44.461  92.600  61.522  63.991  44.461  56.157  55.061  44.461  49.108  48.945  

2 

lowest finite 

superinefficiency 15.298   85.120  22.004  85.120  46.336  - 49.586  103.975  74.157  65.985  49.586  52.727  49.370  49.586  54.376  54.201  

3 

infeasible 

superinefficiency - -  71.713  0.000  92.746  - 84.448  33.015  27.440  88.220  84.448  81.169  75.389  84.448  83.841  83.180  

4 best-in-output 0.000  15.298  -  71.713  59.446  - 44.461  92.600  61.522  63.991  44.461  56.157  55.061  44.461  49.108  48.945  

5 best-in-input - - - -  92.746  - 84.448  33.015  27.440  88.220  84.448  81.169  75.389  84.448  83.841  83.180  

6 minimum average CV 71.061  69.201  - 71.061  -  - 75.710  108.632  82.380  75.269  75.710  59.165  45.727  75.710  77.632  77.324  

7 IDMU 70.715  69.283  - 70.715  - 7.552   - - - - - - - - - - 

8 interior active 17.188  17.036  - 17.188  - 76.040  76.400   112.011  62.782  46.581  0.000  73.068  76.254  0.000  20.106  19.905  

9 interior self-evaluator - - - - - - - -  59.509  117.685  112.011  92.814  85.256  112.011  110.309  109.748  

10 exterior active 38.732  44.040  - 38.732  - 86.395  83.059  41.387  -  64.774  62.782  78.584  73.564  62.782  64.076  63.165  

11 
exterior self-evaluator 

- - - - - - - - - -  46.581  97.507  92.850  46.581  56.626  55.844  

12 interior terminal 63.998  62.207  - 63.998  - 9.778  14.615  68.431  - 81.214  -  73.068  76.254  0.000  20.106  19.905  

13 exterior terminal 38.732  44.040  - 38.732  - 86.395  83.059  41.387  - 0.000  - 81.214   50.584  73.068  62.135  62.343  

14 non-terminal 17.188  17.036  - 17.188  - 76.040  76.400  0.000  - 41.387  - 68.431  41.387   76.254  75.632  75.385  

15 MPSS 38.732  44.040  - 38.732  - 86.395  83.059  41.387  - 0.000  - 81.214  0.000  41.387   20.106  19.905  

16 APU 37.643  41.681  - 37.643  - 87.822  85.806  32.951  - 17.313  - 81.507  17.313  32.951  17.313   1.484  

17 FDEF 38.288  40.674  - 38.288  - 69.400  66.190  38.516  - 22.302  - 64.334  22.302  38.516  22.302  24.203    

Note: Results for constant-returns-to-scale models are depicted in the lower diagonal, while those of variable-returns-to-scale models are depicted in the upper diagonal. 
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efficiency scores for these MPS choices do not differ significantly from that of DEA.  

In our case, the best-in-output farm appears also as a peer for most farms, and the 

interior active and the non-terminal farms used as MPS are the in fact same farm.  Also, 

the VEA efficiency scores do not differ in a statistically significant sense when the 

chosen MPS is based either on (i) the APU, (ii) an MPSS farm, or (iii) common weights.  

This is explained by the fact that the combinations of farms in the common weights and 

the APU choices in our case are similar to each other and include in most cases the 

MPSS farm #130, which however may not be the case with other datasets. 

On the other hand, the VRS VEA distributions of efficiency scores differ in a 

statistically significant way from one another when the MPS is either (i) an interior self-

evaluator farm, (ii) an exterior self-evaluator farm or (iii) a farm for which the super-

efficiency score is infeasible.  This indicates that statistically significant differences 

between VEA distributions of efficiency scores were found when the MPS choices 

reflect DMUs with a rather extreme input/output bundles.  In these cases, as we have 

seen before, the VEA efficiency scores for each of these MPS choices are significantly 

different from those of DEA.  

 

4.6. Concluding remarks 

 

VEA can be a very useful tool for performance evaluation, providing guidance towards 

informed decision-making.  The efficient frontier against which the DMUs are assessed 

in VEA depends on the chosen MPS.  In this chapter, we first reviewed several MPS 

choices previously used in the literature.  For some of these, there is a difficulty to 

intuitively explain the DMs’ choice, as they do not explicitly consider some overall 

organizational objective, while others may compare DMUs against exceptionally 

performing benchmarks or inappropriate MRSs and MRTs.  We then made four new 

suggestions for choosing the MPS: First, to make a more informed personal choice by 

explicitly considering the relative position of efficient DMUs on the DEA frontier.  

Second, choose a DMU with MPSS as the MPS, which results in assessing the DMUs 

against the technically optimal scale in DM’s view.  Third, choose the set of APU’s 

peers as the MPS.  In this case the resulting VEA scores resemble the extent of 

efficiency from the perspective of fully centralized management, and can be useful for 

DMs who coordinate resource allocation and pursue the objective of structural 

efficiency maximization.  Fourth, to evaluate all DMUs based on common and strictly 
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positive (i.e., well defined) weights, by choosing as the MPS a unique combination of 

DMUs generating an FDEF.  This results in evaluating the DMUs against a common 

standard, which may be a prerequisite when management wishes to fully limit the 

assessed DMUs’ autonomy in setting their own objectives.  

The empirical comparative analysis using data on Greek cotton farmers 

provides useful results on how MPS choice may affect the VEA efficiency scores:  

First, the use of an influential peer as the MPS (the DMU appearing the most times as 

a peer and the one with the maximum finite super-efficiency score) does not offer 

additional insights to managers compared to the results obtain from the DEA model.  

Second, MPSs that are frequently located on “end-points” of the DEA frontier (those 

with an infeasible super-efficiency score and interior- or exterior-self-evaluators) 

appear to result in large differences on efficiency scores between the DEA and VEA 

models and in some of the inputs being irrelevant for the estimation of the VEA 

efficiency scores.  Third, the use of both an (interior or exterior) terminal as well as a 

non-terminal DMU as MPS may result in significant differences between the DEA and 

VEA efficiency scores, but in the latter case all inputs were important for the estimation 

of efficiency while in the former case, zero optimal weights were assigned to some 

inputs.  Fourth, both MPS choices pursuing minimum variability among the DMUs’ 

optimal weights (minimum average CV and common weights) resulted in significant 

differences between the DEA and VEA efficiency scores.  This may often be the case 

for the common weights choice.  Fifth, the VEA scores when the MPS is either the APU 

or an MPSS DMU differ significantly, in a statistical sense, from that of the DEA 

model, which may often be the case for the APU.   

On the other hand, the same VEA efficiency scores were obtained from different 

MPS choices for which the same DMU was used as the MPS, while similar scores were 

obtained from alternative MPS choices in which an influential peer is the MPS, namely 

the DMU appearing the most times as a peer and the DMU with the maximum finite 

super-efficiency score.  Similarly, the VEA efficiency scores when the MPS was chosen 

based either on the APU, an MPSS farm, or common weights were not statistically 

different from each other.  However, choices in which the MPS may often be a DMU 

with a rather extreme input/output bundle, namely self-evaluators and DMUs with 

infeasible super-efficiency scores, resulted in significantly different VEA scores with 

one another. 
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The empirical analysis conducted in this study provided the first thorough 

overview on the effect of MPS choice on the VEA scores.  As our empirical findings 

may be data specific, a promising task for future research would to empirically assess 

the effect of MPS choice on VEA scores using data from other sectors and countries.  

Such studies could provide valuable insights that would complement those of the 

present study.  Furthermore, as the incorporation of the MPS in VEA models restricts 

the assessed DMUs’ choice of optimal values of input/output weights in a manner 

similar to that of introducing weight restrictions in DEA models, another avenue for 

future research would be to explore the relationship between VEA and weight-restricted 

DEA models in more detail.  
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CHAPTER 5 
 

On Value Efficiency Analysis and Cross Efficiency 
 

 

5.1. Introduction 

 

Peer appraisal of Decision Making Units (DMUs) is involved in several cases of 

performance evaluation.  These include, among others, cases of (a) participatory 

decision making (Oral, 2012), such as budget allocation; (b) zero-sum type of 

decisional contexts, where each DMU evaluates the remaining DMUs based on its own 

“value system”; and (c) instances in which transparency matters considerably for 

stakeholders, as with decision-making in international organizations or national 

government bodies (Oral, 2010) and faculty or institution appraisal in higher education 

(Oral et al., 2014).  In addition, peer appraisal may be desirable or necessary in the 

cases of players evaluation in sports and in the assessment of alternative portfolios of 

financial institutions.   

Within Data Envelopment Analysis (DEA), cross efficiency (see Sexton et al., 

1986) and Value Efficiency Analysis (VEA) (see Halme et al., 1999) are two popular 

frameworks used for peer appraisal assessments.  In the former, the whole set of 

evaluated DMUs is involved, while in the latter only a subset, which are considered as 

the Most Preferred Solution (MPS) by an external Decision Maker (DM) or a central 

planner.  Both these alternative peer appraisal frameworks rely on the input/output 

multipliers estimated by the conventional DEA model.  In cross efficiency, each DMU 

is evaluated by using the vector of optimal multipliers of all other DMUs.  For some 

DMUs, this vector may not be unique and to resolve this problem several secondary 

goal formulations have been proposed.  These include the popular benevolent, 

aggressive (Sexton et al., 1986; Doyle and Green, 1994; 1995), and neutral 

formulations (Wang and Chin, 2010a), which select one vector of multipliers among 
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those optimal for the “reference” DMU and use it to obtain the cross efficiency scores 

of the remaining DMUs, as well as the less known Targeted Benevolence (TB) (Oral et 

al., 1991) formulation.76  In this less often employed but definitely useful formulation, 

all vectors of optimal multipliers of the “reference” DMU are used in the evaluation 

process as the remaining DMUs have the option of selecting the one maximizing their 

cross efficiency score.77  This affirmative and appreciative form of appraisal enhances 

fairness and transparency in the evaluation process and provides each DMU with the 

most optimistic cross efficiency score.  However, the estimation of the TB cross 

efficiency matrix is more complicated compared to that of other secondary goal 

formulations, and for this reason Doyle and Green (1995) felt that the use of TB may 

increase if shortcuts on its implementation are introduced.  On the other hand, in VEA, 

each DMU is evaluated by means of a vector of multipliers selected among those that 

are optimal for the DMU(s) considered as the MPS, i.e., those reflecting better the DM’s 

preferences about input and/or output mixes.78 

In this paper, we examine how cross efficiency and VEA may be related to each 

other.  By doing so we show that these two seemingly unrelated frameworks of peer 

appraisal are equivalent to each other for a particular formulation of cross efficiency, 

namely the TB.  More specifically, we verify that the TB formulation is equivalent to 

VEA if either (i) an efficient “reference” DMU, i.e., the one whose vector of optimal 

multipliers is used to evaluate all other DMUs in the TB formulation, is also chosen as 

the MPS in VEA, or (ii) the radial projection of an inefficient “reference” DMU on the 

DEA frontier is also chosen as the MPS in VEA.  This result implies that alternative 

interpretations of the TB and VEA efficiency scores can be derived and also, that one 

can obtain the matrix of the TB cross efficiency scores through a series of envelopment 

 

 

76 The term Targeted Benevolence was coined by Doyle and Green (1995) but it has also been referred 

to as the “Most Resonated Appreciative (MRA)” model by Oral et al. (2015) and as the “positively 

targeted peer-evaluation” model by Davtalab-Olyaie et al. (2021). 
77 TB has been used for, among others, project selection (Oral et al., 1991; Oral, 2010), faculty evaluation 

in higher education (Oral et al., 2014) and players evaluation in sports (Oukil and Govindaluri, 2017).  

The TB cross efficiency scores have also been employed (albeit usually referred to as “maximum cross 

efficiency scores”) as an input to (i) approaches aiming to obtain a complete ranking of DMUs via cross 

efficiency (see Yang et al., 2012; Oukil, 2020) and (ii) refinements of the conventional aggressive and 

benevolent formulations (Wu et al., 2016a). 
78 Recent applications of VEA include, but are not limited to, the evaluation of hospital departments 

(Halme and Korhonen, 2000), academic institutions (Korhonen et al., 2001) as well as bank branches 

(Eskelinen et al., 2014). 
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form VEA models, each of which uses a different DMU or its efficient projection as 

the MPS.  Besides of using the envelopment instead of the multiplier form, we show 

that the estimation of the TB cross efficiency matrix can be simplified further --if there 

are inefficient DMUs that are projected on the strongly efficient frontier and have the 

same set of peers.  We provide the necessary steps for obtaining the TB cross efficiency 

matrix by means of VEA and we illustrate the usefulness of our findings using a number 

of examples. 

The rest of this paper is organized as follows: In the next section we present the 

materials and methods used in the paper.  The paper’s main results are reported in the 

third section.  The steps for estimating the TB cross efficiency matrix are given in the 

fourth section, while concluding remarks follow in the last section.  

 

5.2. Materials and methods 

 

5.2.1. Cross efficiency 

 

Let us consider a set of K DMUs (k=1,…o,…,,K) operating under the same technology 

and producing a set of J (j=1,…,J) outputs by utilizing I (i=1,…,I) inputs.  The fractional 

programming form of an input-oriented constant-returns-to-scale (CRS) DEA model 

for the oth DMU is given as (Charnes et al., 1978):79  

 

                                      

max
𝜉𝑗

𝑜,𝜔𝑖
𝑜

 ∑ 𝜉𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

⁄

 𝑠. 𝑡.  ∑ 𝜉𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

∑ 𝜔𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

⁄ ≤ 1       𝑘 = 1, … , 𝑜, … , 𝐾

          𝜉𝑗
𝑜 ≥ 0                                          𝑗 = 1, … , 𝐽

         𝜔𝑖
𝑜 ≥ 0                                          𝑖 = 1, … , 𝐼   

                            (5.1) 

 

where x and y are respectively the quantities of inputs and outputs and ω and ξ are their 

multipliers.  Using the Charnes and Cooper (1962) transformation, (5.1) can be 

converted into the following linear model: 

 

 

 

79 We focus on input-oriented CRS DEA models but the extension of our results to output-oriented and 

variable-returns-to-scale (VRS) models is straightforward. 
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max
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           ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

           𝑢𝑗
𝑜 ≥ 0                                     𝑗 = 1, … , 𝐽

           𝑣𝑖
𝑜 ≥ 0                                     𝑖 = 1, … , 𝐼   

                                (5.2) 

 

where 𝑢𝑗
𝑜 = 𝛽𝜉𝑗

𝑜, 𝑣𝑖
𝑜 = 𝛽𝜔𝑖

𝑜 and 𝛽 = (∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜𝐼
𝑖=1 )−1. 

The vector of optimal input/output multipliers provided by (5.2) is used to 

obtain the self-appraisal DEA efficiency score of the oth DMU, 𝐸𝑜
𝑜 =

∑ 𝑣𝑗
𝑜𝑦𝑗

𝑜𝐽
𝑗=1 ∑ 𝑢𝑖

𝑜𝑥𝑖
𝑜𝐼

𝑖=1⁄ , and the peer-appraisal or cross efficiency score of the 

remaining DMUs, i.e., 𝐸𝑜
ℎ = ∑ 𝑣𝑗

𝑜𝑦𝑗
ℎ𝐽

𝑗=1 ∑ 𝑢𝑖
𝑜𝑥𝑖

ℎ𝐼
𝑖=1⁄ .80  By estimating (5.2) for each 

DMU we obtain the elements of the cross efficiency matrix, where each row contains a 

particular DMU’s self-appraisal efficiency score (diagonal element) and the peer-

appraisal efficiency scores of all other DMUs when appraised by that DMU (off-

diagonal elements).  If the values of all the optimal input/output multipliers are strictly 

positive, 𝐸𝑜
ℎ can be interpreted as the conventional efficiency score relative to an 

extended facet reference technology based only on the input/output combinations of the 

DMUs residing in the efficient facet that is normal to this particular multiplier vector 

(Olesen, 2018). 

The vector of optimal multipliers may not however be unique for the efficient 

DMUs (𝐸𝑜
𝑜 = 1), and, in rare occasions, for some inefficient DMUs (𝐸𝑜

𝑜 < 1) as well 

(Cooper et al., 2007, p. 32).  In these cases, there are multiple cross efficiency scores 

for the remaining DMUs, each of which is based on a different vector of multipliers 

among those that are optimal for the “reference” DMU.  This poses a problem on which 

vector of multipliers to be used for peer appraisal purposes.  The use of the one obtained 

from (5.2) for the “reference” DMU, as proposed by Sexton et al. (1986), is rather 

 

 

80 Notice that in 𝐸𝑜
ℎ the superscript denotes the DMU being evaluated and the subscript the “reference” 

DMU whose optimal multipliers are used for peer appraisal purposes. 
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unsatisfactory, because it depends on arbitrary factors such as the order with which the 

data are entered into the linear optimization software used (Doyle and Green, 1994).   

Several approaches have been developed to resolve this problem: (i) the 

secondary goal formulations, which include the aggressive and benevolent, the TB, 

weight profiles and ranking optimization approaches, (ii) the game theoretic approaches 

which comprise of the pareto optimality, non-cooperative game theory and the 

bargaining approaches, and (iii) the prospect theory approach. An overview of these 

approaches including the main references is provided in Table 5.1.81  

In the secondary goal approaches, such as the benevolent and aggressive 

formulations, introduced in Doyle and Green (1995), the problem of non-unique 

optimal multiplier vectors for the “reference” DMU is resolved by modifying 

accordingly the objective function in (5.2) in order to result in a unique vector of 

optimal input and output multipliers, which is then used for peer appraisal of the 

remaining DMUs.  More specifically, the benevolent (aggressive) formulation selects 

the vector of multipliers that maximizes (minimizes) the average cross efficiency score 

of the remaining DMUs, or the efficiency score of a composite DMU that is obtained 

by aggregating the inputs and the outputs of the remaining DMUs.  In the latter case, 

the following linear programming model is solved for the benevolent formulation: 
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                     (5.3) 

 

 

 

 

81 Recent theoretical extensions of cross efficiency measurement to other performance evaluation 

problems include, among others, cases where input/output data are uncertain (Pan et al., 2021), clustering 

(Chen et al., 2022), and economic efficiency evaluation (Aparicio and Zofio, 2021). 
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Table 5.1: Overview of approaches for estimating the DEA cross efficiency matrix 

 
1. Using the optimal set of input/output multipliers 

obtained from the DEA model 
Sexton et al. (1986) 

2. Secondary goal models  

2.1. Aggressive/benevolent  

min/max the sum of cross efficiency scores or the score 

of an aggregate DMU 

Doyle and Green (1995) 

max/min the sum of deviations of cross efficiency 

scores from unity 

Liang et al. (2008a) 

max/min the sum of deviations of cross efficiency 

scores from DEA scores 

Wang and Chin (2010a) 

min(max) the best (worst) cross efficiency score Lim (2012) 

min or max the sum of deviations of cross efficiency 

scores from the maximum or minimum possible scores 

Wu et al. (2016a; b) 

lexicographic min/max the cross efficiency scores Chen (2018) 

min/max the number of DMUs for which cross 

efficiency score equals the DEA score 

Lam (2010); Davtalab-Olyaie (2019)  

2.2. Targetted Benevolence Oral et al. (1991; 2015); Oral (2010) 

2.3. Neutral Wang and Chin (2010b); Wang et al. 

(2011a) 

2.4. Weights profiles methods   

least dissimilar weights Ramon et al. (2010) 

common least dissimilar weights Ramon et al. (2011) 

percentage deviation from the mean Lam and Bai (2011) 

goal programming 
Ӧrkcü and Bal (2011); Al-Siyabi et al. 

(2019) 

Ideal/Anti-ideal DMU method Wang et al. (2011b); Carrillo and Jorge 

(2018); Shi et al. (2019) 

minimum disparity between weight vectors Wang et al. (2012) 

iterative method Lin et al. (2016) 

efficient facets approach Dellnitz et al. (2021) 

interval reference point method Shi et al. (2021) 

hypervolume maximization Alcaraz et al. (2022) 

2.5. Ordinal evaluations/ranking optimization Wu et al. (2009a); Contreras (2012) 

3. Game theoretic approaches  

3.1. Pareto optimality Wu et al. (2016c); Davtalab-Olyaie et al. 

(2021) 

3.2. Non-cooperative game theory Liang et al. (2008b); Wu et al. (2009b); 

Liu et al. (2017) 

3.3. Bargaining approaches Wu et al. (2009c); Contreras et al. (2021) 

4. Prospect theory Liu et al. (2019) 

 

in which the hth DMU is the “reference” DMU, 𝑌𝑗
ℎ = ∑ 𝑦𝑗

𝑘
𝑘≠ℎ , 𝑗 = 1, … , 𝐽 , 𝑋𝑗

ℎ =

∑ 𝑥𝑖
𝑘

𝑘≠ℎ , 𝑖 = 1, … , 𝐼 and �̂�𝑖
ℎ = 𝐸ℎ

ℎ𝑥𝑖
ℎ.  The second constraint in (5.3) forces the 

optimization procedure to maintain the efficiency score of the “reference” DMU on its 
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self-appraisal level while maximizing the efficiency score of the aggregate DMU.82  

Essentially, (5.3) evaluates this aggregate DMU against a reference technology 

consisting of the lower envelope of the extended efficient facets of the DEA frontier 

that intercept to each other at the point where the “reference” DMU is (if it is efficient) 

or where it is projected by the DEA model, if it is inefficient (Olesen, 2018).  The 

resulting efficiency score can be interpreted as the minimum proportional input 

reduction required for the aggregate DMU to reach the frontier but is however of no 

particular use.  Instead, the optimal vector of multipliers obtained from (5.3) is used to 

compute the cross efficiency scores for the remaining DMUs when the hth DMU is the 

“reference” DMU.  For the corresponding aggressive formulation, the objective 

function in (5.3) is changed from maximization to minimization. 

On the other hand, in the TB cross efficiency formulation, each DMU is allowed 

to use that vector of optimal input/output multipliers of the “reference” DMU, among 

those in (5.2), that maximizes its cross efficiency score.  Oral et al. (1991) modelled 

this by means of the following fractional programming model: 

 

 

 

                        

max
𝜉𝑗

𝑜,𝜔𝑖
𝑜

 ∑ 𝜉𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

⁄

 𝑠. 𝑡.  ∑ 𝜉𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

∑ 𝜔𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

⁄ ≤ 1    𝑘 = 1, … , 𝑜, … , 𝐾,   𝑘 ≠ ℎ

          ∑ 𝜉𝑗
𝑜𝑦𝑗

ℎ

𝐽

𝑗=1

∑ 𝜔𝑖
𝑜𝑥𝑖

ℎ

𝐼

𝑖=1

⁄ = 𝐸ℎ
ℎ

          𝜉𝑗
𝑜 ≥ 0                                      𝑗 = 1, … , 𝐽

          𝜔𝑖
𝑜 ≥ 0                                      𝑖 = 1, … , 𝐼   

                             (5.4) 

 

which, using the Charnes and Cooper (1962) transformation, can be converted into a 

linear model as follows: 

 

 

 

82 Notice that using an “average” instead of an aggregate DMU, i.e., replacing 𝑌𝑗
ℎ with �̅�𝑗

ℎ =

(1 𝐾 − 1⁄ ) ∑ 𝑦𝑗
𝑘

𝑘≠ℎ , 𝑗 = 1, … , 𝐽 and 𝑋𝑗
ℎ with �̅�𝑗

ℎ = (1 𝐾 − 1⁄ ) ∑ 𝑥𝑖
𝑘

𝑘≠ℎ , 𝑖 = 1, … , 𝐼 will not affect the 

results, as long as CRS is maintained 
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max
𝑢𝑗

𝑜,𝑣𝑖
𝑜

 ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

  𝑠. 𝑡.  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

≤ 0          𝑘 = 1, … , 𝑜, … , 𝐾,   𝑘 ≠ ℎ

           ∑ 𝑢𝑗
𝑜𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

ℎ

𝐼

𝑖=1

= 0

           ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

           𝑢𝑗
𝑜 ≥ 0                                              𝑗 = 1, … , 𝐽 

           𝑣𝑖
𝑜 ≥ 0                                              𝑖 = 1, … , 𝐼

                      (5.5) 

 

where  �̂�𝑖
ℎ = 𝐸ℎ

ℎ𝑥𝑖
ℎ.  As in (5.3), the second constraint in (5.5) forces the optimization 

procedure to maintain the efficiency score of the “reference” DMU on its self-appraisal 

level.  However, in contrast with (5.3), (5.5) aims at maximizing the cross efficiency 

score of the evaluated DMU (Oral et al., 1991).  Thus, (5.5) evaluates each of the 

remaining DMUs against the frontier which is used in (5.3) to evaluate the aggregate 

DMU.  In other words, (5.5) applies the basic principle of DEA (i.e., selection of the 

most favorable multipliers) in cross efficiency as well, allowing for an affirmative, fair, 

and transparent peer appraisal.  The cross efficiency scores obtained from (5.5) are 

greater than or equal to the corresponding scores from any other secondary goal 

formulation (Davtalab-Olyaie et al., 2021); that is, the TB cross efficiency scores 

provide the most optimistic peer appraisal evaluation.83  The resulted efficiency scores 

can also be interpreted as the minimum proportional input reduction required by each 

of the remaining DMUs to reach the frontier consisting of the lower envelope of the 

extended efficient facets of the DEA efficient frontier that are normal to the vectors of 

multipliers optimal for the “reference” DMU.  In contrast to the benevolent and the 

aggressive secondary goal formulations, (5.5) needs to be solved 𝐾 × (𝐾 − 1) times to 

obtain the cross efficiency matrix (Oral, 2010).  For this reason, Doyle and Green 

(1995) stressed the need to “spot where shortcuts may be taken” in estimating the TB 

cross efficiency matrix. 

 

 

 

83 See Davtalab-Olyaie et al. (2021) Theorem 1.   
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5.2.2. Value Efficiency Analysis 

 

In VEA, peer appraisal is conducted by evaluating the performance of all other DMUs 

with respect to the chosen MPS.  The MPS reflects DM preferences over the most 

desirable input/output structure, in that it maximizes the DM’s implicitly known 

pseudoconcave value function (Korhonen et al., 2002).84  In practice, it is explicitly 

chosen by the DM, and several criteria have been used in the VEA literature for 

choosing the MPS (see the fourth chapter in this Thesis for a review).  DM preferences 

on the most desirable structure are then incorporated in the VEA model by essentially 

forcing the chosen MPS to be in the set of peers for every DMU.  This is accomplished 

by simply turning the inequality constraint corresponding to the MPS in (5.2) to a strict 

equality.  Assuming that the hth DMU has been chosen as the MPS, the input-oriented 

CRS VEA model for the oth DMU is given as (Halme et al., 1999):  

 

                   

max
𝑢𝑗

𝑜,𝑣𝑖
𝑜

 ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

 𝑠. 𝑡.  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

≤ 0   𝑘 = 1, … , 𝑜, … , 𝐾,   𝑘 ≠ ℎ

          ∑ 𝑢𝑗
𝑜𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

ℎ

𝐼

𝑖=1

= 0

          ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

          𝑢𝑗
𝑜 ≥ 0                                      𝑗 = 1, … , 𝐽       

          𝑣𝑖
𝑜 ≥ 0                                      𝑖 = 1, … , 𝐼       

                                (5.6) 

 

The second constraint in (5.6) essentially forces the evaluated DMU to choose, among 

the (possibly multiple) vectors of input/output multipliers that are optimal for the MPS 

in (5.2), the one maximizing its efficiency score.  As each of these vectors is normal to 

an efficient facet generated (partly) by the MPS, the resulting VEA frontier is in essence 

the lower envelope of the extended efficient facets intercepting at the MPS.  If the oth 

DMU shares at least one optimal vector of input/output multipliers with the MPS, its 

peer-appraisal score obtained from (5.6) will be the most optimistic, i.e., equal to its 

 

 

84 See Joro and Korhonen (2015) for a detailed treatment of VEA. 
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self-appraisal DEA efficiency score 𝐸𝑜
𝑜.  Otherwise, (5.6) will assign to the DMU a 

score lower than 𝐸𝑜
𝑜. 

Model (5.6) does not have a feasible solution if the chosen MPS is not a DEA-

efficient unit.  To avoid this, one may either use its peers identified by the dual form of 

(5.2) as the MPS (Halme et al., 1999) and turn their respective inequality constraints in 

(5.2) into equalities or rely on its radial projection (Joro and Korhonen, 2015, p. 176), 

i.e., substitute 𝑥𝑖
ℎ by 𝐸ℎ

ℎ𝑥𝑖
ℎ in the second constraint in (5.6).  Both result in the same 

efficiency scores if the inefficient DMU chosen as the MPS is radially projected on a 

part of the strongly DEA efficient frontier.  These DMUs can be identified by estimating 

the so-called Phase II DEA model than maximizes the sum of input and output slacks 

for each evaluated DMU while substituting 𝑥𝑖
𝑜 by 𝐸𝑜

𝑜𝑥𝑖
𝑜 (see, e.g., Cooper et al., 2007a, 

pp. 44-45).  For each such DMU, the optimal sum of slacks will be equal to zero, 

meaning that the coordinates of its radial projection (𝐸ℎ
ℎ𝑥𝑖

ℎ , 𝑦𝑗
ℎ) are equal to a linear 

combination of the input and output values of its peers.  Then turning the inequality 

constraint into an equality for the radial projection of the hth DMU in (5.6) is equivalent 

to turning the inequality constraint into an equality for each of its peers.  If instead the 

hth DMU is projected on a part of the weakly efficient DEA frontier, each vector of 

optimal multipliers is associated with at least a zero value for an input or an output, and 

the coordinates of its radial projection is not equal to a linear combination of the input 

and output values of its peers.  For the latter, there are optimal multiplier vectors in 

which all values are strictly positive. Then, using in (5.6) the radial projection of the hth 

DMU and its peers as the MPS does not result in evaluating the DMUs using the same 

vectors of optimal multipliers, and, consequently, (5.6) will not necessarily produce the 

same efficiency scores for each DMU. 

 

5.2.3. A motivating example 

 

To illustrate the notion of peer appraisal through cross efficiency and VEA and the 

relations between them, let us consider a small numerical example with 8 DMUs each 

using two inputs to produce a single output.  The relevant data are given in columns (2) 

to (4) of Table 5.2, the efficiency scores are given in column (5), ), the vectors of the 

(normalized) input and output multipliers (
𝑢1

𝑜

𝑣𝑜 ,
𝑢1

𝑜

𝑣𝑜 , 1.000) are given in columns (6) to 

(8) along with the efficient facet to which each of these vectors is normal to (column 
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Table 5.2: Data and efficiency scores for the illustrative example 

 

data DEA optimal solution 

DMU 𝑥1 𝑥2 𝑦 𝜃 𝑢1
𝑜 𝑣𝑜⁄  𝑢1

𝑜 𝑣𝑜⁄  facet peers 

A 1 7 1 1.000 0.417 0.083 𝐹2 A 

B 1.5 4.5 1 1.000 0.267 0.133 𝐹3 B 

C 2.5 2.5 1 1.000 0.267 0.133 𝐹3 C 

D 4.5 1.5 1 1.000 0.133 0.267 𝐹4 D 

E 7 1 1 1.000 0.083 0.417 𝐹5 E 

F 1.2 9 1 0.833 1.000 0.000 𝐹1 A 

G 5 5 1 0.500 0.267 0.133 𝐹3 C 

H 1.5 6.5 1 0.857 0.417 0.083 𝐹2 A, B 

 

(9)), while the DMUs’ peers identified by estimating the dual of (5.2) are given in 

column (10).  The resulting efficient frontier is portrayed in Figure 5.1a and consists of 

six facets identified by 𝐹𝑙 , 𝑙 = 1, . . , 6.  The supporting hyperplanes for these facets are 

depicted by the colored dashed lines.  Estimating (5.2) for the extreme-efficient DMU 

A results in an optimal multiplier vector (
𝑢1

𝐴

𝑣𝐴 ,
𝑢1

𝐴

𝑣𝐴 , 1.000) = (0.417, 0.083, 1.000) that 

is normal to facet 𝐹2.  An alternative optimal solution for DMU A corresponds to the 

multiplier vector (1.000, 0.000, 1.000) that is normal to facet 𝐹1.  In a similar manner, 

alternative optimal solutions exist for all the remaining extreme-efficient DMUs (i.e., 

B, C, D, and E) and the DEA-inefficient DMU G.  For G, this occurs because it is 

projected on point C, in which two facets intercept.  In contrast, a single optimal 

multiplier vector exists for the DEA-inefficient DMUs F and H. 

Using the optimal multiplier vectors obtained from (5.2) for each DMU to 

compute the peer appraisal cross efficiency scores for the remaining DMUs results in 

the cross efficiency matrix given in the upper panel of Table 5.3.  For example, the first 

column corresponding to DMU A as the “reference” DMU, is obtained using the vector 

(0.417, 0.083, 1.000) as 𝐸𝐴
𝑘 = 1 (0.417𝑥1

𝑘 + 0.083𝑦2
𝑘)⁄ , 𝑘 ≠ 𝐴.  However, the 

alternative optimal multiplier vector for DMU A could have been used instead to obtain 

𝐸𝐴
𝑘, 𝑘 ≠ 𝐴.  This is also true for DMUs B, C, D, E, and G.   

The TB cross efficiency matrix is given in the lower panel of Table 5.3, while 

the procedure for obtaining the TB cross efficiency scores is portrayed in Figure 5.1b.  

For example, when the DEA-efficient DMU C is the “reference” DMU, (5.5) allows 

each of the remaining DMUs to choose among the multiplier vectors normal to facets  
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Figure 5.1: Efficient frontier and geometric representation of the TB secondary goal 

formulation 

 

 
(a) Efficient frontier and efficient facets 

 
(b) The TB formulation 

 

𝐹3 and 𝐹4, the one maximizing their cross efficiency score.  For some DMUs (i.e., A, B, 

F and H) this is the vector normal to 𝐹3 while for others (i.e., D, E) it is the one normal 

to 𝐹4.  Thus, the DMUs are in essence evaluated against the lower envelope of the 

extended facets 𝐹3 and 𝐹4 (the yellow solid piecewise linear frontier).85 When the 

 

 

85 In the benevolent formulation instead, the DMUs in this case would be evaluated against only the 

extended facet 𝐹3.  Model (5.3) would be used to identify which of the multiplier vectors normal to 𝐹3 
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Table 5.3: Cross efficiency matrices for the illustrative example 

 

 reference DMU 

  A B C D E F G H 

multiplier sets obtained from DEA 

A 1.000 0.833 0.833 0.500 0.333 1.000 0.833 1.000 

B 1.000 1.000 1.000 0.714 0.500 0.667 1.000 1.000 

C 0.800 1.000 1.000 1.000 0.800 0.400 1.000 0.800 

D 0.500 0.714 0.714 1.000 1.000 0.222 0.714 0.500 

E 0.333 0.500 0.500 0.833 1.000 0.143 0.500 0.333 

F 0.800 0.658 0.658 0.391 0.260 0.833 0.658 0.800 

G 0.400 0.500 0.500 0.500 0.400 0.200 0.500 0.400 

H 0.857 0.789 0.789 0.517 0.353 0.667 0.789 0.857 

TB secondary goal 

A 1.000 1.000 0.833 0.500 0.143 1.000 0.833 1.000 

B 1.000 1.000 1.000 0.714 0.222 0.667 1.000 1.000 

C 0.800 1.000 1.000 1.000 0.400 0.400 1.000 0.800 

D 0.500 0.714 1.000 1.000 0.667 0.222 1.000 0.500 

E 0.333 0.500 0.833 1.000 1.000 0.143 0.833 0.333 

F 0.833 0.800 0.658 0.391 0.111 0.833 0.658 0.800 

G 0.400 0.500 0.500 0.500 0.200 0.200 0.500 0.400 

H 0.857 0.857 0.789 0.517 0.154 0.667 0.789 0.857 

 

DEA-inefficient DMU K is the “reference” DMU, we take its radial projection.  This is 

on the interior of facet 𝐹2 and thus there is only one optimal multiplier vector for DMU 

K.  The associated TB cross efficiency scores reflect the radial reduction of inputs for 

the remaining DMUs to reach the extended facet 𝐹2 (the blue solid line).  In a similar 

manner, DMU G is projected on facet 𝐹1 and thus the TB cross efficiency scores of the 

remaining DMUs are obtained as the radial distance to the extended facet 𝐹1 (the red 

solid line).  On the contrary, the projection of DMU H to the efficient frontier coincides 

with DMU C which is on the intersection of facets 𝐹3 and 𝐹4.  Thus, when H is the 

“reference” DMU, the remaining DMUs can choose between the multiplier vectors that 

are normal to 𝐹3 and 𝐹4 the one maximizing their efficiency scores.  

On the contrary, when VEA is used for peer appraisal purposes, one needs first  

 

 

and 𝐹4 maximizes the efficiency of the DMU constructed as the average input and output quantities of 

all sample DMUs except C (the white dot in Figure 5.1a). This artificial DMU is projected on the interior 

of 𝐹3, and thus the associated multiplier vector would be used to compute the peer appraisal scores of all 

other DMUs when DMU C is the “reference” DMU. In a similar fashion, the aggressive formulation 

would evaluate all DMUs against the extended facet 𝐹4. 
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to choose the MPS.  This is frequently chosen among the DEA-efficient DMUs, i.e., 

DMUs A, B, C, D, and E.  The VEA efficiency scores when each of these DMUs is the 

MPS are given in columns (2) to (6) of Table 5.4.  The VEA efficient frontier is 

portrayed, when DMU C is chosen as the MPS, by the solid yellow piecewise line in 

Figure 5.2a.  In this case, turning the inequality constraint corresponding to C into an 

equality in (5.6) forces the evaluated DMUs to maximize their efficiency score by 

choosing a multiplier vector among those optimal for C (i.e., a vector that is normal to 

either 𝐹3 or 𝐹4).  

Alternatively, one of the DEA-inefficient DMUs F, G, and H could be chosen 

as the MPS, in which case their peers or their radial projection on the DEA frontier 

should be used as the MPS instead.  DMUs H and G are projected on the strongly 

efficient frontier and thus, for these DMUs the two options result in the same VEA 

scores.  DMU H’s projection is on the interior of facet 𝐹2 and if used as the MPS in 

(5.6) the resulting VEA frontier is the extended facet 𝐹2 (the solid blue line in Figure 

5.2a).  Using DMU H’s peers (A and B) as the MPS, it results in the same efficiency 

scores (see columns (7) and (8) of Table 5.4).  This is because turning in (5.6) the 

inequality constraints corresponding to both A and B into equalities means that the 

evaluated DMUs are forced to choose a multiplier vector that is optimal for both A and 

B.86  There is only one such vector and is normal to 𝐹2.  Similarly, when DMU G is 

chosen as the MPS, using its projection as the MPS in (5.6) results in the same VEA 

scores (given in column (9) of Table 5.4) as using its peer (DMU C) as the MPS.  On 

the other hand, DMU F is projected on facet 𝐹1, that is not part of the strongly efficient 

frontier.  The VEA scores when its radial projection is used as the MPS in (5.6) (given 

in column (10) of Table 5.4) are different from the ones resulting when its peer (DMU 

A) is chosen as the MPS.  In the former case, the VEA frontier is the extended facet 𝐹1 

(red solid line, see Figure 2b) while in the latter case it is the lower envelope of the 

extended), facets 𝐹1 and 𝐹2 (piecewise linear blue line).  

A comparison of Tables 5.3 and 5.4 shows that the TB cross efficiency scores 

are related to those resulting from VEA for particular MPS choices.  More specifically,  

 

 

86 In other words, the equality constraint in (5.6) concerning the projection of DMU H can be expressed 

as a convex combination of (and replaced by) two similar equalities concerning DMUs A and B, as H’s 

projection is in essence a combination of A and B. 
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Table 5.4: VEA efficiency scores based on different MPS specifications for the 

illustrative example 

 
 MPS 

 A B C D E 𝐻′ {𝐴, 𝐵} 𝐺′ 𝐹′ 

A 1.000 1.000 0.833 0.500 0.143 1.000 1.000 0.833 1.000 

B 1.000 1.000 1.000 0.714 0.222 1.000 1.000 1.000 0.667 

C 0.800 1.000 1.000 1.000 0.400 0.800 0.800 1.000 0.400 

D 0.500 0.714 1.000 1.000 0.667 0.500 0.500 1.000 0.222 

E 0.333 0.500 0.833 1.000 1.000 0.333 0.333 0.833 0.143 

F 0.833 0.800 0.658 0.391 0.111 0.800 0.800 0.658 0.833 

G 0.400 0.500 0.500 0.500 0.200 0.400 0.400 0.500 0.200 

H 0.857 0.857 0.789 0.517 0.154 0.857 0.857 0.789 0.667 
Note: An apostrophe denotes a DMU’s radial projection on the DEA frontier. 

 

the TB cross efficiency scores when each of the DEA-efficient DMUs A, B, C, D, and 

E is the “reference” DMU are equal to the VEA scores when each of these DMUs is 

used as the MPS.  The TB cross efficiency scores when the DEA-inefficient DMU G is 

the “reference” DMU are also equal to the VEA scores when G’s radial projections (or 

its peers) is the MPS, and the same holds for DMU H.  These two DMUs are projected 

on a part of the strongly efficient DEA frontier.  This is not however the case for the 

DEA-inefficient DMU F.  When F --which is projected on a part of the weakly efficient 

frontier-- is the is the “reference” DMU, the TB cross efficiency scores are equal to the 

VEA scores when F’s projection is used as the MPS but are different from the scores 

obtained using F’s peer (DMU A) as the MPS. 

 

5.3. Theoretical results and implications 

 

From the above example, it seems that the TB formulation in (5.5) and the VEA model 

in (5.6) result in the same efficiency score when the same DMU is chosen as the 

“reference” DMU in the former and as the MPS in the latter, provided that for a DEA-

inefficient DMU its radial projection is used as the MPS in VEA.  In this section, we 

provide a theoretical proof for this equivalence and explore its implications.  In 

particular, we show that the following Proposition holds: 

 

PROPOSITION 5.1: The TB formulation is equivalent to VEA, if either (i) an efficient 

“reference” DMU in the TB formulation is chosen as the MPS in VEA, or (ii) the radial 

projection of an inefficient “reference” DMU in the TB formulation is chosen as the 

MPS in VEA 



121 

 

 

Figure 5.2: Geometric representation of Value Efficiency Analysis 

 

 
(a) VEA for alternative MPS specifications 

 
(b) Using a DEA-inefficient DMU that is associated with 

slacks as the MPS 

 

Proof: Case (i): If the “reference’ DMU in the TB formulation is an efficient DMU then 

�̂�𝑖
ℎ = 𝑥𝑖

ℎ and the equality constraint in (55.) may be re-written as: 
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                                                              ∑ 𝑢𝑗
𝑜𝑦𝑗

ℎ

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

ℎ

𝐼

𝑖=1

= 0                                                    (5.7) 

 

Then, (5.5) and (5.6) are equivalent to each other.  Case (ii): If the DMU chosen as the 

MPS in VEA is inefficient and its radial projection is used as the MPS, 𝑥𝑖
ℎ in the first 

equality constraint in (5.6) should be replaced by 𝐸ℎ
ℎ𝑥𝑖

ℎ to ensure a feasible solution.  

Then, (5.5) and (5.6) are also equivalent to each other.   

Notice that, if variable returns to scale are assumed (see Banker et al., 1984), a free 

variable 𝑢𝑜 is simply introduced in the objective function and the first two sets of 

constraints in (5.5) and (5.6) without affecting the above results.87  In a similar fashion, 

if increasing (decreasing) returns to scale are assumed, then the introduced variable 𝑢𝑜 

is further restricted to be less-than-or-equal (greater-than-or-equal) to zero. This 

completes the proof. □ 

 

Two immediate implications of this result are the following: first, we can derive 

alternative interpretations of the VEA and TB efficiency scores.  In particular, the VEA 

scores can be interpreted as the most favorable (i.e., the TB) cross-efficiency scores 

from the perspective of a particular “reference” DMU, namely the one chosen as the 

MPS in VEA, while the TB cross-efficiency scores when a particular DMU is used as 

a “reference” reflect also the judgements of a DM that this “reference” DMU has the 

most desirable input/output structure.   

Second, the scores in the oth column of the TB cross efficiency matrix, i.e., the 

peer appraisal scores of the oth DMU by all the other DMUs, can be obtained by 

estimating a series of VEA linear programs using each DMU, if it is efficient or its 

radial projection on the DEA frontier if it is inefficient, as the MPS.  Repeating this for 

all DMUs we can obtain the matrix of the TB cross efficiency scores.  Consequently, 

the TB cross efficiency scores can be obtained from the envelopment form of VEA, 

namely: 

 

 

87 It has been shown that, in VRS models, some cross efficiency scores may be equal to zero or even take 

negative values (see Soares de Mello et al. (2013) for further elaboration on this matter).  The occurrence 

of such peculiar efficiency scores does not affect the validity of our results.  Instead, according to our 

Proposition, if the TB cross efficiency scores for a particular “reference” DMU include some peculiar 

values, these will also occur to the corresponding VRS VEA model.  Korhonen et al. (2002) were the 

first to notice that negative scores may occur in VRS VEA. 
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min
𝐸ℎ

𝑜,𝜆𝑜
𝑘
  𝐸ℎ

𝑜

 𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜         𝑗 = 1, … , 𝐽

          ∑ 𝜆𝑘
𝑜𝑥𝑖

𝑘

𝑘≠ℎ

+ 𝜆ℎ
𝑜𝑥𝑖

ℎ ≤ 𝐸ℎ
𝑜𝑥𝑖

𝑜    𝑖 = 1, … , 𝐼

     

     𝜆𝑘
𝑜 ≥ 0                       𝑘 = 1, … 𝑘, … , 𝐾,   𝑘 ≠ ℎ

     𝜆ℎ
𝑜   𝑓𝑟𝑒𝑒

     𝐸ℎ
𝑜 𝑓𝑟𝑒𝑒

                                        (5.8) 

 

if the MPS is a DEA-efficient DMU.  In (5.8), the intensity variable corresponding to 

the MPS is a free variable instead of being non-negative as in conventional DEA 

models.  If, on the other hand, the MPS is a DEA-inefficient DMU, then the 

envelopment form of VEA becomes: 

 

                             

min
𝐸ℎ

𝑜,𝜆𝑜
𝑘
  𝐸ℎ

𝑜

 𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜         𝑗 = 1, … , 𝐽

          ∑ 𝜆𝑘
𝑜𝑥𝑖

𝑘

𝑘≠ℎ

+ 𝜆ℎ
𝑜 �̂�𝑖

ℎ ≤ 𝐸ℎ
𝑜𝑥𝑖

𝑜    𝑖 = 1, … , 𝐼

     

     𝜆𝑘
𝑜 ≥ 0                       𝑘 = 1, … 𝑘, … , 𝐾,   𝑘 ≠ ℎ

     𝜆ℎ
𝑜   𝑓𝑟𝑒𝑒

     𝐸ℎ
𝑜 𝑓𝑟𝑒𝑒

                                        (5.9) 

 

where  �̂�𝑖
ℎ = 𝐸ℎ

ℎ𝑥𝑖
ℎ.  This is, to the best of our knowledge, the first time that cross 

efficiency scores can be obtained from the envelopment form. 

Using the envelopment instead of the multiplier form to obtain the TB cross 

efficiency scores allows to simplify the process of estimation.  This is made possible 

by noticing that the columns of the cross efficiency matrix (namely, the peer appraisal 

scores of all DMUs when appraised by a particular DMU) are the same when DEA-

inefficient DMUs, chosen as the MPS, are projected on the same part of the strongly 

DEA efficient frontier and thus, have the same peers. In this case, the cross efficiency 

scores may be obtained by estimating (5.9) for only one among those DMUs.  This 

means that obtaining the TB cross efficiency matrix through VEA involves estimating 

at most the same number of linear programs as those required by the TB formulation, 
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but using the envelopment form.  This provides the necessary shortcuts, hoped for by 

Doyle and Green (1995), in estimating the TB cross efficiency matrix. 

 

5.4. An algorithm for estimating the TB cross efficiency scores 

 

The proposed algorithm for estimating the TB cross efficiency scores by means of VEA 

consists of the following steps: 

 

Step 1: Estimate the DEA model in (5.2) and then classify the DMUs into three 

mutually exclusive groups: group 𝔸 containing the DEA-efficient DMUs, group 𝔹 

containing the DEA-inefficient DMUs that are projected on a part of the strongly 

efficient DEA frontier, and group ℂ containing the DEA-inefficient DMUs that are 

projected on a part of the weakly efficient DEA frontier.  Let 𝒜, ℬ and 𝒞 denote the 

number of DMUs in each of these groups.  

Step 2: Using each of the DMUs in group 𝔸 as the MPS, estimate the TB cross 

efficiency scores of the remaining DMUs by using (5.8).  

Step 3: Obtain the set of peers for each of the DMUs in group 𝔹.  Let there be a number 

of ℱ ≤ ℬ different sets of peers 𝑆𝑓 , (𝑓 = 1, … , ℱ) each of which corresponds to 

possibly several DMUs.  Let 𝔹𝑓 (𝑓 = 1, … , ℱ) be the subset of 𝔹 containing the DMUs 

having 𝑆𝑓 as their set of peers, where ⋃ 𝔹𝑓
ℱ
𝑓=1 = 𝔹.  Estimate (5.7) using the DMUs in 

each of the sets 𝑆𝑓 as the MPS.  The resulting scores are the TB cross efficiency scores 

when each of the DMUs in group 𝔹𝑓 is the “reference” DMU.  

Step 4: For each DMU in group ℂ, obtain its radial projection on the DEA frontier, 

namely ℎ̂ = (�̂�𝑖
ℎ, �̂�𝑗

ℎ) = (𝐸ℎ
ℎ𝑥𝑖

ℎ, 𝑦𝑗
ℎ).  Then, the TB cross efficiency scores of the 

remaining DMUs when the hth DMU is the “reference” DMU are obtained by (5.9).  

 

The number of linear programs needed to obtain the TB cross efficiency matrix through 

this algorithm is equal to (𝒜 + ℱ + 𝒞) ∗ (𝐾 − 1)).  If ℱ < ℬ, namely when there are 

at least two inefficient DMUs that are projected on the same part of the strongly 

efficient DEA frontier, then this number is smaller than (𝐾 ∗ (𝐾 − 1)).  If, on the other 

hand, each DMU in class 𝔹 is projected on a different part of the strongly efficient DEA 

frontier, i.e., ℱ = ℬ, or if there are no DMUs in class 𝔹, i.e., ℬ = 0, then the same 
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number of linear programs is needed to obtain the TB cross efficiency matrix by means 

of VEA and the TB formulation itself. 

From the above, it should be clear that the “shortcuts” for obtaining the TB cross 

efficiency matrix via VEA depend on (i) the number of DMUs in group 𝔹, (ii) the 

difference between this number and the number of different sets of peers for these 

DMUs, and (iii) the difference between the number of inputs and outputs and the 

number of evaluated DMUs.  More specifically, the larger is the number of DMUs in 

group 𝔹, the more likely is that some of them may share the same set of peers.  On the 

other hand, the larger the difference between the number of DMUs in group 𝔹 and the 

number of different sets of peers identified for them, the smaller the number of linear 

programs needed to obtain the TB cross efficiency matrix by means of VEA, compared 

to that of the TB formulation.   

 

5.5. Empirical implementation and discussion 

 

To demonstrate the simplifications in estimating the TB cross efficiency matrix by 

means of VEA, we use seven datasets referring to respectively nursing homes (Sexton 

et al., 1986), university departments (Wong and Beasly, 1990), R&D programs (Oral 

et al. (1991), manufacturing systems (Shang and Sueyoshi, 1995; Baker and Talluri, 

1997), university faculty members (Oral et al., 2014), and cotton farms (see the fourth 

chapter in this Thesis).  The number of DMUs (K), of inputs (I), and of outputs (J) 

involved in each dataset are given in columns (2) to (4) of Table 5.5. The number of 

DMUs in each of the groups 𝔸, 𝔹, and ℂ is given in columns (5) to (7), while the number 

of different sets of peers for the DMUs in group 𝔹 is given in column (8). The number 

of linear programs needed to obtain the TB cross efficiency matrix by means of (5.6) is 

given in column (9), while the respective figures when the TB cross efficiency scores 

are obtained by means of VEA, following the estimation steps outlined above, are given 

in column (10).   

From these empirical results we see that, in four of the cases when assuming 

CRS and in five of them when assuming VRS, there are no DMUs in group 𝔹, and thus 

the number of linear programs needed to obtain the cross efficiency matrix by means 

of VEA and the TB formulation is the same.  For example, in the case of the 37 R&D 

projects considered in Oral et al. (1991), there are two DEA-efficient DMUs and 35 

DEA-inefficient DMUs with CRS, each of which is associated with slacks, while in 
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Table 5.5: Number of linear models estimated to obtain the TB cross efficiency matrix 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

     DMUs in group  Number of linear programs 

 study 

DMUs 
(𝐾) 

inputs 
(𝐼) 

outputs 
(𝐽) 𝔸 𝔹 ℂ 

sets of peers 

in group 𝔹 TB model VEA model 

constant returns to scale 

1 Sexton et al. (1986) 6 2 2 4 2 0 1 30 25 

2 Wong and Beasly (1990) 7 3 3 6 0 1 - 42 42 

3 Oral et al. (1991) 37 1 5 2 0 35 - 1,332 1,332 

4 Shang and Sueyoshi (1995) 12 2 4 7 0 5 - 132 132 

5 Baker and Talluri (1997) 27 2 2 9 14 4 5 702 468 

6 Oral et al. (2014) 32 1 5 11 0 21 - 992 992 

7 Chapter 4, this Thesis 526 4 1 12 209 305 13 276,150 173,250 

variable returns to scale 

1 Sexton et al. (1986) 6 2 2 5 0 1 - 30 30 

2 Wong and Beasly (1990) 7 3 3 6 0 1 - 42 42 

3 Oral et al. (1991) 37 1 5 12 0 25 - 1,332 1,332 

4 Shang and Sueyoshi (1995) 12 2 4 10 0 2 - 132 132 

5 Baker and Talluri (1997) 27 2 2 11 9 7 8 702 676 

6 Oral et al. (2014) 32 1 5 16 0 16 - 992 992 

7 Chapter 4, this Thesis 526 4 1 33 89 404 28 276,150 244,125 
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VRS the respective figures are equal to 12 and 25.  In the remaining three datasets, we 

have found DMUs in group 𝔹 and thus the number of different sets of peers is smaller 

than the number of DMUs.  In these cases, the number of times the VEA model needs 

to be estimated to obtain the cross efficiency matrix is less than that for the TB model.  

For example, in the case of the 526 cotton farms considered in the fourth chapter of this 

Thesis, obtaining the cross efficiency matrix with CRS by means of VEA involves the 

estimation of 173,250 linear programs compared to 276,150 in the TB model.  

The number of DMUs in group 𝔹 is indirectly affected by the modelling choices 

related to the number of inputs and outputs and the nature of returns to scale, as these 

affect the number of efficient DMUs in DEA.   Other things being equal, increasing the 

number of inputs and outputs naturally increases the number of efficient DMUs, and 

thus the number of DMUs in groups 𝔹 and ℂ is reduced, while the same occurs when 

VRS is assumed instead of CRS.  In the case of Baker and Talluri (1997) and regardless 

of the returns-to-scale assumption, there are DMUs in group 𝔹, while this does not 

occur for any DMU in Oral et al. (2014).  These two studies have roughly the same 

number of DMUs, but the number of inputs and outputs in the latter is six compared to 

four in the former.  On the other hand, when VRS is assumed rather than CRS, the only 

inefficient DMU in Sexton et al. (1986) is in group ℂ.  Thus, the number of VRS linear 

programs needed to obtain the cross efficiency matrix by means of VEA and the TB 

formulation is the same, in contrast to when CRS is assumed.  In addition, in the case 

of Baker and Talluri (1997), the number of DMUs in group 𝔹 are reduced to eight in 

VRS compared to 14 when CRS is assumed, and thus more VRS VEA linear programs 

are needed to obtain the cross efficiency matrix compared to those in CRS (676 vs. 

368).  Nevertheless, these figures are smaller than those of the TB model irrespective 

of the returns to scale.   

On the other hand, increasing the number of DMUs for a given number of inputs 

and outputs, is expected to increase the DMUs classified as inefficient, at least to a 

larger extent compared to those that are rendered efficient.  This may or may not result 

in an increase in the number of DMUs that are projected on the same part of the strongly 

efficient frontier, as this depends on the DMUs’ relative position in the input-output 

space and cannot be explicitly related to a modelling choice.  For instance, the number 

of inputs and outputs is four in both Baker and Talluri (1997) and Sexton et al. (1986) 

(see Table 5.5).  In the former, in which the number of DMUs is more than four times 
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larger compared to the latter, the DMUs in group 𝔹 are much more when CRS is 

assumed.  On the other hand, in the cases of Wong and Beasly (1990) and Oral et al. 

(1991), the number of inputs and outputs is also the same, i.e., six, but the DMUs 

included in the latter are roughly five times more compared to the former.  Nevertheless, 

in both cases and regardless of the returns-to-scale assumption, no DMU is included in 

group 𝔹.  

 

5.6. Concluding remarks 

 

Cross efficiency and VEA are two DEA frameworks used for peer appraisal purposes, 

which so far have run in parallel lines in the efficiency literature. In this paper, we show 

that these two lines of literature meet each other for a particular formulation of cross 

efficiency, namely the TB.  In particular, we show that the TB formulation of cross 

efficiency is equivalent to VEA if either (i) an efficient “reference” DMU, i.e., the one 

whose optimal multipliers are used to evaluate all other DMUs in the TB formulation, 

is chosen as the MPS in VEA, or (ii) the radial projection of an inefficient “reference” 

DMU on the DEA frontier is chosen as the MPS in VEA.  The implication of this is 

that the matrix of the TB cross efficiency scores can be obtained by estimating a 

sequence of VEA envelopment rather than multiplier form models, as it is common in 

cross efficiency.  This involves estimating at most the same number of linear programs 

and thus simplifies the problem of obtaining the TB cross-efficiency matrix. Thus, it 

may prompt a more extensive use of this definitely useful but so far less often employed 

cross efficiency formulation due to its complicated estimation process.  In addition, this 

equivalence gives rise to alternative interpretations for both the TB cross efficiency 

scores and the VEA efficiency scores. 

The results of this paper can be used in several cases of performance assessment, 

in which peer appraisal seems appropriate.  These include, but are not limited to, faculty 

member or institution appraisal in higher education, assessment of player performance 

in sports, evaluation of alternative portfolios and investment projects, but also cases of 

participatory decision-making such as budget allocation and R&D project selection and 

group decision-making in international organizations (e.g., EU, NATO, the IMF, or the 

World Bank) and national government bodies such as parliamentary committees and 

municipal councils. 
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CHAPTER 6 
 

On VEA, production trade-offs and weights restrictions 
 

 

6.1. Introduction 

 

Production trade-offs, their dual weights restrictions, and Value Efficiency Analysis 

(VEA) are alternative ways of incorporating preference information in Data 

Envelopment Analysis (DEA).  In particular, Decision Maker’s (DM) preferences are 

used to restrict the admissible values of the input/output multipliers in a DEA model.  

Production trade-offs reflect acceptable marginal changes in inputs and/or outputs that 

modify their target values for each evaluated Decision Making Unit (DMU) in the 

envelopment form of DEA models (Podinovski, 2004).  Their dual counterpart are the 

well-known weights restrictions, namely additional linear inequalities in the multiplier 

form of DEA models that restrict the flexibility of input/output weights based on DM’s 

knowledge, value judgements or in general, holding views for their relative importance 

(see e.g., Allen et al, 1997).  DEA models including production trade-offs have been 

used, among others, for the assessment of efficiency in healthcare (Amado and Dyson, 

2009), education (Khalili et al., 2010a), electricity distributors (Santos et al., 2011), and 

farmers (Atici and Podinovski, 2015).  On the other hand, in VEA, the performance of 

each DMU is assessed relative to the Most Preferred Solution (MPS), namely a non-

dominated (i.e., efficient) DMU or a combination of DMUs that has the most desirable 

input/output structure by view of a DM or reflects DM’s preferences about input/output 

mixes (Halme et al., 1999).  In such a case, each DMU’s input/output weights are 

restricted to values among only those that are optimal for the MPS in DEA. This in turn 

results in extending the DEA efficient facets generated by it. Recent applications of 

VEA include, but are not limited to, the evaluation of hospital departments (Halme and 
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Korhonen, 2000), academic institutions (Korhonen et al., 2001), retail stores (Korhonen 

et al., 2002) as well as bank branches (Halme et al., 2014). 

Several studies in the literature have examined the effect of including 

production trade-offs or their dual weight restrictions in DEA models.  For example, 

Podinovski (2005) demonstrated the effects of using additional restrictions such as 

weight bounds in the evaluation results of DEA models, Asmild et al. (2006) 

investigated the potential relation of DEA models with trade-offs to models assessing 

economic (i.e., cost, revenue, or profit) efficiency, and Podinovski (2007a) developed 

a procedure for obtaining efficient targets in DEA models with production trade-offs.  

Also, Podinovski and Forsund (2010) assessed the effects of introducing production 

trade-offs in the indication of returns-to-scale (i.e., whether a DMU exhibits constant, 

increasing or decreasing returns to scale) and the scale elasticity estimates of DMUs, 

while Podinovski and Bouzdine-Chameeva (2013) developed linear programs for 

testing whether the use of a particular set of production trade-offs in DEA models 

results in violating production assumptions.  On the other hand, the similarities between 

VEA and various forms of weight restrictions have been noted in the literature, but not 

yet thoroughly examined.  For instance, Sarrico and Dyson (2004, p. 18) considered 

VEA as ‘’another alternative to incorporating the decision maker’s preferences into the 

assessment of DMUs’’, while Kao and Hung (2005, p. 1197) noted that VEA is 

‘’essentially an approach of weight restrictions’’.  Angulo-Meza and Estellita-Lins 

(2002, p. 225) viewed VEA and weights restrictions as methodologies incorporating 

“information provided by a decision maker or expert into the model”, while Adler et al. 

(2002) referred to VEA as one of the methods that use “preference information to 

further refine the discriminatory power of DEA models”.88  Nevertheless, none of these 

studies have explicitly related VEA to DEA models including weights restrictions, as 

well as their dual production trade-offs.  Such explicit relationships, if any, have, to the 

best of our knowledge, not yet been investigated. 

The purpose of this chapter is to explore the relation between VEA and DEA 

models including production trade-offs and their dual weights restrictions in a detailed 

manner.  More specifically, we show that, under constant returns to scale, the VEA 

 

 

88 This is also one of the main reasons motivating the incorporation of weights restrictions. 
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model is equivalent to a DEA model including production trade-offs, for which the 

trade-off coefficient vectors are given by the negative of the input and output quantities 

of the DMUs chosen as the MPS in VEA.  We also show that, regardless of the nature 

of returns to scale, the VEA model is equivalent to a DEA model with production trade-

offs, for which the trade-offs coefficient vectors are given by the deviations of every 

DMU’s input and output quantities from those of the MPS.  These production trade-

offs result in extending certain facets of the DEA frontier and in both cases are dual to 

Type II Assurance Region (AR-II) weight restrictions (see Thompson et al., 1990). 

Considering the above trade-offs for only inputs or outputs we can prove a similar 

equivalence between pure input or output VEA and DEA models.  The dual form of 

these trade-offs, which refer only to inputs or outputs, are type I Assurance Region 

(AR-I) weight restrictions (Thompson et al., 1986). 

The rest of the chapter unfolds as follows:  In the second section we discuss 

VEA and DEA models with production trade-offs.  The chapters’ main results are 

presented in the third section, while an empirical application follows in the fourth 

section. Concluding remarks follow in the last section. 

 

6.2. Materials and methods 

 

Production trade-offs are the dual form of weights restrictions that are usually appended 

in the multiplier form of DEA models. They refer to marginal changes between inputs 

and/or outputs that take place at some point at the conventional DEA frontier and 

enlarge the feasible space with additional input/output possibilities (Podinovski, 2004).  

These changes represent perceptions regarding the normative substitution rates between 

inputs or transformation rates between outputs, or simply judgements about the relative 

importance of different inputs and outputs.  They are considered as acceptable by all 

evaluated DMUs, in the sense that it is unanimously agreed that they result in feasible 

(technologically possible) input/output combinations.  Then, one may argue that the 

targets identified for inefficient DMUs on the enlarged parts of the DEA frontier are in 

principle technologically realistic or feasible (Podinovski, 2007b). 

Let us consider a set of K DMUs (𝑘 = 1, … , 𝑜, … , 𝐾) using the same technology 

and producing a set of J (𝑗 = 1, … , 𝐽) outputs utilizing I (𝑖 = 1, … , 𝐼) inputs.  Assume 

further that there exists a number of R (𝑟 = 1, … , 𝑅) trade-off relations among inputs 

and/or outputs, which may be represented as:  
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𝑃𝑟 = [𝑝1

𝑟, … , 𝑝𝑖
𝑟 , … , 𝑝𝐼

𝑟]𝑇 ,   𝑟 = 1, … , 𝑅

𝑄𝑟 = [𝑞1
𝑟, … , 𝑞𝑗

𝑟, … , 𝑞𝑗
𝑟]

𝑇
,    𝑟 = 1, … , 𝑅

                                       (6.1) 

 

Each of the trade-offs in (6.1) refers to an agreed postulate among DMUs that by 

changing the level of each of a DMU’s inputs by the trade-off coefficient 𝑝𝑖
𝑟 and each 

of its outputs by the trade-off coefficient 𝑞𝑗
𝑟 results in a new unobserved input/output 

combination that is feasible.  Thus, the vectors 𝑃𝑟 and 𝑄𝑟 modify respectively the target 

values of inputs and outputs in the envelopment form of a DEA model, which in turn 

results in enlarging the DEA efficient frontier with additional linear segments, i.e., 

facets.   

The multiplier and envelopment form of an input-oriented, constant returns to 

scale (CRS) DEA model including trade-offs as in (6.1) is given as (Podinovski, 

2004):89 
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𝑟=1

≤ 𝜃𝑇𝑂
𝑜 𝑥𝑖

𝑜    𝑖 = 1, … , 𝐼

     

       𝜆𝑘
𝑜 ≥ 0                                               𝑘 = 1, … , 𝐾

      𝜋𝑟
𝑜  ≥ 0                                               𝑟 = 1, … , 𝑅

       𝜃𝑇𝑂
𝑜  𝑓𝑟𝑒𝑒

  (6.2) 

 

where x and y are respectively the quantities of inputs and outputs, v and u are their 

input and output weights, θ is the efficiency score, λ are the intensity variables, and π 

are the proportions by which each of the trade-offs is applied to modify the input and 

output targets.  On the other hand, the variable returns to scale (VRS) counterpart of 

(6.2) is given as:  

 

 

 

89 We focus on the input-oriented model, but our results can be straightforwardly extended to the output-

oriented model. 
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max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

 ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 𝑢𝑜

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑜 ≤ 0    𝑘 = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑜𝑞𝑗

𝑟

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑝𝑖

𝑟

𝐼

𝑖=1

≤ 0                𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑜 ≥ 0                                                  𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑜 ≥ 0                                                  𝑖 = 1, … , 𝐼

              𝑢𝑜  𝑓𝑟𝑒𝑒

 

min
𝜃𝑇𝑂

𝑜 ,𝜆𝑘
𝑜
𝜃𝑇𝑂

𝑜

  𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑟
𝑜𝑞𝑗

𝑟

𝑅

𝑟=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽 

            ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑟
𝑜𝑝𝑖

𝑟

𝑅

𝑟=1

≤ 𝜃𝑇𝑂
𝑜 𝑥𝑖

𝑜    𝑖 = 1, … , 𝐼

            ∑ 𝜆𝑘
𝑜

𝐾

𝑘=1

= 1

     

       𝜆𝑘
𝑜 ≥ 0                                               𝑘 = 1, … , 𝐾

      𝜋𝑟
𝑜  ≥ 0                                               𝑟 = 1, … , 𝑅

       𝜃𝑇𝑂
𝑜  𝑓𝑟𝑒𝑒

  (6.3) 

 

in which the free variable 𝑢𝑜 is dual to the convexity constraint in the envelopment 

form of (6.3).  

From (6.2) and (6.3) we can see that incorporation of trade-offs such as in (6.1) 

into the envelopment form of the DEA model is equivalent to imposing the following 

set of homogeneous weight restrictions in its multiplier form:90 

 

                                                  ∑ 𝑢𝑗
𝑜𝑞𝑗

𝑟

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑝𝑖

𝑟

𝐼

𝑖=1

≤ 0,   𝑟 = 1, … , 𝑅                                       (6.4) 

 

The weight restrictions in (6.4) concern value judgments regarding (i) only inputs, if 

𝑞𝑗
𝑟 = 0 for 𝑗 = 1, … , 𝐽, (ii) only outputs, if 𝑝𝑖

𝑟 = 0 for 𝑖 = 1, … , 𝐼, or (iii) both inputs 

and outputs, if 𝑞𝑗
𝑟 ≠ 0 for at least one 𝑗 = 1, … , 𝐽 and 𝑝𝑖

𝑟 ≠ 0 for at least one 𝑖 =

1, … , 𝐼.91  In the former two cases they are referred to as AR-I (Thompson et al., 1986), 

while in the latter case as AR-II weight restrictions (Thompson et al., 1990). 

On the other hand, in VEA, a DM expresses his/her preferences over the 

desirable input/output structure or mix by choosing a DMU or a combination of DMUs 

as the MPS (Halme et al., 1999).  This might be a more appealing way of expressing 

preferences, as DMs are usually more keen to choose desirable values for the inputs 

and outputs rather that weight bounds (Korhonen et al., 2002).  The VEA frontier is 

 

 

90 Podinovski (2004) has shown that non-homogeneous linear weight restrictions, i.e., those for which 

the right-hand side of (6.4) is non-zero, can also be represented in the form of production trade-offs in 

the envelopment form of the DEA model 
91 Cases (i) and (ii) may also refer to a subset of inputs and outputs if respectively 𝑝𝑖

𝑟 = 0 for some i in 

Case (i) and  𝑞𝑗
𝑟 = 0 for some j in Case (ii). 
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then constructed as the lower envelope of the extended DEA efficient facets 

intercepting at the MPS.  As the facets of the DEA efficient frontier are generated by 

extreme-efficient DMUs, the MPS will in essence be either a single extreme-efficient 

DMU or a combination of extreme-efficient DMUs that are jointly efficient, in the sence 

that they generate at least one common facet.  VEA then extends only these common 

facets among the DMUs comprising the MPS.   

The input-oriented CRS VEA model in its multiplier and envelopment form is 

given as:  

 

   max
𝑢𝑗

𝑜,𝑣𝑖
𝑜

  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

   𝑠. 𝑡.     ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

≤ 0    𝑘 = 1, … , 𝐾,   𝑘 ≠ 𝑟

               ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

= 0    𝑘 =  𝑟 = 1, … , 𝑅

               ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1 

                𝑢𝑗
𝑜 ≥ 0                                     𝑗 = 1, … , 𝐽

                𝑣𝑖
𝑜 ≥ 0                                     𝑖 = 1, … , 𝐼   

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
 𝜃𝑉𝐸𝐴

𝑜                                                 

    𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽 

             ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

≤ 𝜃𝑉𝐸𝐴
𝑜 𝑥𝑖

𝑜  𝑖 = 1, … , 𝐼

     

        𝜆𝑘
𝑜 ≥ 0                         𝑘 = 1, … , 𝐾,   𝑘 ≠ 𝑟

        𝜆𝑘
𝑜      𝑓𝑟𝑒𝑒                    𝑘 =  𝑟 = 1, … , 𝑅

        𝜃𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒

 (6.5) 

 

 

 

where the set ℛ (𝑟 = 1, … , 𝑅) contains the DMUs comprising the MPS.  On the other 

hand, the input-oriented VRS VEA model in its multiplier and envelopment form is 

given as:    

 

max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

 ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜 +

𝐽

𝑗=1

𝑢𝑜

    𝑠. 𝑡.    ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑜 ≤ 0   𝑘 = 1, … , 𝐾,   𝑘 ≠ 𝑟

               ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑜 = 0   𝑘 =  𝑟 = 1, … , 𝑅

               ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

               𝑢𝑗
𝑜 ≥ 0                                              𝑗 = 1, … , 𝐽

               𝑣𝑖
𝑜 ≥ 0                                             𝑖 = 1, … , 𝐼

               𝑢𝑜 𝑓𝑟𝑒𝑒

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
 𝜃𝑉𝐸𝐴

𝑜

    𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽

              ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

≤ 𝜃𝑉𝐸𝐴
𝑜 𝑥𝑖

𝑜  𝑖 = 1, … , 𝐼

              ∑ 𝜆𝑘
𝑜

𝐾

𝑘=1

= 1 

     

         𝜆𝑘
𝑜 ≥ 0                         𝑘 = 1, … , 𝐾,   𝑘 ≠ 𝑟

         𝜆𝑘
𝑜      𝑓𝑟𝑒𝑒                   𝑘 =  𝑟 = 1, … , 𝑅

         𝜃𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒                 

 (6.6) 

 

where the free variable 𝑢𝑜 and the convexity constraint for the intensity variables are 

added in the multiplier and envelopment form, respectively.  In the envelopment form 
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of (6.5) and (6.6), the non-negativity restrictions are removed from the intensity 

variables of the DMUs comprising the MPS (Halme et al., 1999).  This in turn implies 

that the inequalities referring to these DMUs should change into strict equalities in the 

multiplier form of the model, essentially restricting each evaluated DMU to choose 

input and output weights only among those that are optimal (in the conventional DEA 

model) for the DMU or the combination of DMUs chosen as the MPS. 

 

6.3. Main results 

 

6.3.1.  Production trade-offs dual to AR-II type of weight restrictions 

 

To relate the VEA models in (6.5) and (6.6) to the DEA models with production-trade-

offs and their dual weight restrictions in (6.2) and (6.3), notice that each of the side 

equality restrictions in (6.5) and (6.6) can be broken up into the following equivalent 

pair of inequalities: ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑘𝐼

𝑖=1 ≤ 0 and ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑘𝐼

𝑖=1 ≥ 0 for 

(6.5) and ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑘𝐼

𝑖=1 + 𝑢𝑜 ≤ 0 and ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘𝐽
𝑗=1 − ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑘𝐼

𝑖=1 + 𝑢𝑜 ≥ 0 

for (6.6).  Based on these, (6.5) and (6.6) may be rewritten as: 

 

   max
𝑢𝑗

𝑜,𝑣𝑖
𝑜

 ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

≤ 0               𝑘 = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑜(−𝑦𝑗

𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜(−𝑥𝑖

𝑟)

𝐼

𝑖=1

≤ 0  𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑜 ≥ 0                                                  𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑜 ≥ 0                                                 𝑖 = 1, … , 𝐼

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
 𝜃𝑉𝐸𝐴

𝑜                                                                          

     𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑟
𝑜(−𝑦𝑗

𝑟)

𝑅

𝑟=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽 

              ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑟
𝑜(−𝑥𝑖

𝑟)

𝑅

𝑟=1

≤ 𝜃𝑉𝐸𝐴
𝑜 𝑥𝑖

𝑜  𝑖 = 1, … , 𝐼

     

         𝜆𝑘
𝑜 ≥ 0                                                      𝑘 = 1, … , 𝐾

        𝜋𝑟
𝑜  ≥ 0                                                     𝑟 = 1, … , 𝑅

         𝜃𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒

 (6.7) 

 

 

 

and as: 
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max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜 + 𝑢𝑜

𝐽

𝑗=1

     𝑠. 𝑡.  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑜 ≤ 0                 𝑘 = 1, … , 𝐾

              ∑ 𝑢𝑗
𝑜(−𝑦𝑗

𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜(−𝑥𝑖

𝑟)

𝐼

𝑖=1

− 𝑢𝑜 ≤ 0   𝑟 = 1, … , 𝑅

              ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

              𝑢𝑗
𝑜 ≥ 0                                                             𝑗 = 1, … , 𝐽

              𝑣𝑖
𝑜 ≥ 0                                                             𝑖 = 1, … , 𝐼   

              𝑢𝑜 𝑓𝑟𝑒𝑒

 

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
 𝜃𝑉𝐸𝐴

𝑜

     𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦𝑗

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑟
𝑜(−𝑦𝑗

𝑟)

𝑅

𝑟=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽 

               ∑ 𝜆𝑘
𝑜 𝑥𝑖

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑟
𝑜(−𝑥𝑖

𝑟)

𝑅

𝑟=1

≥ 𝜃𝑉𝐸𝐴
𝑜 𝑥𝑖

𝑜  𝑖 = 1, … , 𝐼

               ∑ 𝜆𝑘
𝑜

𝐾

𝑘=1

− ∑ 𝜋𝑟
𝑜

𝑅

𝑟=1

= 1

     

          𝜆𝑘
𝑜 ≥ 0                                                     𝑘 = 1, … , 𝐾

         𝜋𝑟
𝑜  ≥ 0                                                    𝑟 = 1, … , 𝑅

          𝜃𝑉𝐸𝐴 𝑓𝑟𝑒𝑒

 (6.8) 

 

 

 

Then one can easily verify that (6.5) and (6.7) and (6.6) and (6.8) are equivalent to each 

other. 

The additional restrictions in the multiplier form of (6.7) and (6.8) result in new 

terms in the left-hand sides of the inequalities in the envelopment form.  These terms 

contain the negative of the input and output quantities of the DMUs constituting the 

MPS.  We may thus view (6.7) and (6.8) as models with (𝐾 + 𝑅) DMUs, where inputs 

and outputs take negative values for the DMUs in the set of the MPS (the R additional 

ones) and positive values for the sample DMUs.  By using Emrouznejad et al. (2010) 

data transformations, (6.7) and (6.8) may be seen as semi-oriented DEA models with 

(𝐾 + 𝑅) DMUs. Specifically, we may redefine the input and output variables in (6.7) 

and (6.8) as: 

 

𝑥1𝑖
𝑘 = {

𝑥𝑖
𝑘,   𝑘 = 1, … , 𝐾

0 ,   𝑟 = 1, … , 𝑅
  𝑎𝑛𝑑 𝑥2𝑖

𝑘 = {
  0,     𝑘 = 1, … , 𝐾
−𝑥𝑖

𝑟 ,   𝑟 = 1, … , 𝑅
   𝑖 = 1, . . , 𝐼 

 

and: 

 

𝑦1𝑗
𝑘 = {

𝑦𝑗
𝑘,   𝑘 = 1, … , 𝐾

0 ,   𝑟 = 1, … , 𝑅
  𝑎𝑛𝑑 𝑦2𝑗

𝑘 = {
  0,     𝑘 = 1, … , 𝐾
−𝑦𝑗

𝑟 ,   𝑟 = 1, … , 𝑅    𝑗 = 1, . . , 𝐽 

 

Then, (6.7) and (6.8) are respectively be written as: 
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max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

∑ 𝑢1𝑗
𝑜 𝑦1𝑗

𝑜

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑜 𝑦2𝑗

𝑜

𝐽

𝑗=1

     𝑠. 𝑡.  ∑ 𝑢1𝑗
𝑜 𝑦1𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑜 𝑦2𝑗

𝑘

𝐽

𝑗=1

−

            − ∑ 𝑣1𝑖
𝑜 𝑥1𝑖

𝑘

𝐼

𝑖=1

+ ∑ 𝑣2𝑖
𝑜 𝑥2𝑖

𝑘

𝐼

𝑖=1

≤ 0         𝑘 = 1, … , 𝐾 + 𝑅

              ∑ 𝑣1𝑖
𝑜 𝑥1𝑖

𝑘

𝐼

𝑖=1

− ∑ 𝑣2𝑖
𝑜 𝑥2𝑖

𝑘

𝐼

𝑖=1

= 1

              𝑢1𝑗
𝑜 ≥ 0                                               𝑗 = 1, … , 𝐽

              𝑢2𝑗
𝑜 ≥ 0                                               𝑗 = 1, … , 𝐽

              𝑣2𝑖
𝑜 ≥ 0                                                𝑖 = 1, … , 𝐼   

              𝑣2𝑖
𝑜 ≥ 0                                                 𝑖 = 1, … , 𝐼

 

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
 𝜃𝑉𝐸𝐴

𝑜                                                                          

     𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦1𝑗

𝑘

𝐾+𝑅

𝑘=1

≥ 𝑦1𝑗
𝑜              𝑗 = 1, … , 𝐽 

              ∑ 𝜆𝑘
𝑜 𝑦2𝑗

𝑘

𝐾+𝑅

𝑘=1

≤ 𝑦2𝑗
𝑜              𝑗 = 1, … , 𝐽

              ∑ 𝜆𝑘
𝑜 𝑥1𝑖

𝑘

𝐾+𝑅

𝑘=1

≤ 𝜃𝑉𝐸𝐴
𝑜 𝑥1𝑖

𝑜    𝑖 = 1, … , 𝐼

              ∑ 𝜆𝑘
𝑜 𝑥2𝑖

𝑘

𝐾+𝑅

𝑘=1

≥ 𝜃𝑉𝐸𝐴
𝑜 𝑥2𝑖

𝑜    𝑖 = 1, … , 𝐼

     
         𝜆𝑘

𝑜 ≥ 0                              𝑘 = 1, … , 𝐾 + 𝑅

         𝜃𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒

 (6.9) 

 

 

 

and  

 

max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑢𝑜

∑ 𝑢1𝑗
𝑜 𝑦1𝑗

𝑜

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑜 𝑦2𝑗

𝑜 + 𝑢𝑜

𝐽

𝑗=1

     𝑠. 𝑡.  ∑ 𝑢1𝑗
𝑜 𝑦1𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑢2𝑗
𝑜 𝑦2𝑗

𝑘

𝐽

𝑗=1

−

            − ∑ 𝑣1𝑖
𝑜 𝑥1𝑖

𝑘

𝐼

𝑖=1

+ ∑ 𝑣2𝑖
𝑜 𝑥2𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑜 ≤ 0       𝑘 = 1, … , 𝐾 + 𝑅

              ∑ 𝑣1𝑖
𝑜 𝑥1𝑖

𝑘

𝐼

𝑖=1

− ∑ 𝑣2𝑖
𝑜 𝑥2𝑖

𝑘

𝐼

𝑖=1

= 1

              𝑢1𝑗
𝑜 ≥ 0                                                       𝑗 = 1, … , 𝐽

              𝑢2𝑗
𝑜 ≥ 0                                                       𝑗 = 1, … , 𝐽

              𝑣2𝑖
𝑜 ≥ 0                                                        𝑖 = 1, … , 𝐼   

              𝑣2𝑖
𝑜 ≥ 0                                                        𝑖 = 1, … , 𝐼

              𝑢𝑜 𝑓𝑟𝑒𝑒

 

 

min
𝜃𝑉𝐸𝐴

𝑜 ,𝜆𝑘
𝑜
 𝜃𝑉𝐸𝐴

𝑜                                                                          

     𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜 𝑦1𝑗

𝑘

𝐾+𝑅

𝑘=1

≥ 𝑦1𝑗
𝑜              𝑗 = 1, … , 𝐽 

              ∑ 𝜆𝑘
𝑜 𝑦2𝑗

𝑘

𝐾+𝑅

𝑘=1

≤ 𝑦2𝑗
𝑜              𝑗 = 1, … , 𝐽

              ∑ 𝜆𝑘
𝑜 𝑥1𝑖

𝑘

𝐾+𝑅

𝑘=1

≤ 𝜃𝑉𝐸𝐴
𝑜 𝑥1𝑖

𝑜    𝑖 = 1, … , 𝐼

              ∑ 𝜆𝑘
𝑜 𝑥2𝑖

𝑘

𝐾+𝑅

𝑘=1

≥ 𝜃𝑉𝐸𝐴
𝑜 𝑥2𝑖

𝑜    𝑖 = 1, … , 𝐼

              ∑ 𝜆𝑘
𝑜

𝐾+𝑅

𝑘=1

= 1

     
         𝜆𝑘

𝑜 ≥ 0                              𝑘 = 1, … , 𝐾 + 𝑅

         𝜃𝑉𝐸𝐴
𝑜  𝑓𝑟𝑒𝑒

 (6.10) 

 

 

 

where k is used to index all DMUs, i.e., 𝑘 = 1, … , (𝐾 + 𝑅).  

We can now provide sufficient conditions under which the DEA model 

including production trade-offs or their dual weight restrictions is equivalent to the 

VEA model.  Under CRS, a comparison of (6.2) and (6.7) shows that the two models 

are equivalent to each other if the number of trade-offs in the former is equal to the 

number of DMUs constituting the MPS in the latter and the trade-off coefficient vectors 

are given as:  
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𝑃𝑟 = [−𝑥1

𝑟, … , −𝑥𝑖
𝑟, … , −𝑥𝐼

𝑟]𝑇 ,   𝑟 = 1, … , 𝑅

𝑄𝑟 = [−𝑦1
𝑟, … , −𝑦𝑗

𝑟, … , −𝑦𝑗
𝑟]

𝑇
,    𝑟 = 1, … , 𝑅

                                    (6.11) 

 

where (𝑥𝑖
𝑟 , 𝑦𝑗

𝑟) correspond to the inputs and outputs of each of the DMUs (r=1,…,R) 

constituting the MPS.  The trade-offs in (6.11) are dual to the following set of AR-II 

type weight restrictions: 

 

                                           ∑ 𝑢𝑗
𝑜(−𝑦𝑗

𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜(−𝑥𝑖

𝑟)

𝐼

𝑖=1

≤ 0,   𝑟 = 1, … , 𝑅                             (6.12) 

 

which are essentially the same as the second set of restrictions in the multiplier form of 

(6.7).  Thus, we have: 

 

PROPOSITION 6.1: Under constant returns to scale, the VEA model is equivalent to a 

DEA model including production trade-offs, for which the trade-off coefficient vectors 

contain the negative of the input and output quantities of the DMUs constituting the 

MPS in VEA. 

 

When VRS is assumed, substituting (6.11) or its dual (6.12) into (6.3) will not result in 

a model equivalent to (6.8), since the convexity constraints in the envelopment form of 

(6.3) and (6.8) are different from each other.   

However, we can show that the VEA model is related to the DEA model 

including another form of trade-offs: 

 

PROPOSITION 6.2: Regardless of the nature of the returns to scale, the VEA model is 

equivalent to a DEA model including production trade-offs, for which the trade-off 

coefficient vectors contain the deviations of each DMU’s input and output quantities 

from those of each of the DMUs constituting the MPS. 

 

To show this, consider the following trade-offs: 

 

                     
𝑃𝑟

𝑘 = [(𝑥1
𝑘 − 𝑥1

𝑟), … , (𝑥𝐼
𝑘 − 𝑥𝐼

𝑟)]
𝑇

,   𝑘 = 1, … , 𝐾,   𝑟 = 1, … , 𝑅 

𝑄𝑟
𝑘 = [(𝑦1

𝑘 − 𝑦1
𝑟), … , (𝑦𝐽

𝑘 − 𝑦𝐽
𝑟)]

𝑇
,   𝑘 = 1, … , 𝐾,   𝑟 = 1, … , 𝑅

                       (6.13) 

 

which are dual to the following set of AR-II type of weight restrictions: 

 



139 

 

 

               ∑ 𝑢𝑗
𝑜(𝑦𝑗

𝑘 − 𝑦𝑗
𝑟)

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜(𝑥𝑖

𝑘 − 𝑥𝑖
𝑟)

𝐼

𝑖=1

≤ 0,   𝑘 = 1, … , 𝐾,   𝑟 = 1, … , 𝑅               (6.14) 

 

Let’s assume, initially, that 𝑟 = 1, i.e., the MPS is a single DMU.  Then, (6.13) consists 

of K trade-off coefficient vectors given as the deviations of each DMU’s (k=1,…,K) 

input and output quantities of from those of the MPS.  That is, 𝑝𝑖
𝑘 = (𝑥𝑖

𝑘 − 𝑥𝑖
𝑟), 𝑖 =

1, … , 𝐼, 𝑘 = 1, … , 𝐾 and 𝑞𝑗
𝑘 = (𝑦𝑗

𝑘 − 𝑦𝑗
𝑟), 𝑗 = 1, … , 𝐽, 𝑘 = 1, … , 𝐾. In such a case, the 

envelopment form of the VRS DEA model in (6.3) is given as:  

 

                      

min
𝜃𝑇𝑂

𝑜 ,𝜆𝑘
𝑜,𝜋𝑘

𝑜
  𝜃𝑇𝑂

𝑜

      𝑠. 𝑡.   ∑ 𝜆𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑘
𝑜(𝑦𝑗

𝑘 − 𝑦𝑗
𝑟)

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽 

                ∑ 𝜆𝑘
𝑜𝑥𝑖

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑘
𝑜(𝑥𝑖

𝑘 − 𝑥𝑖
𝑟)

𝐾

𝑘=1

≤ 𝜃𝑇𝑂
𝑜 𝑥𝑖

𝑜    𝑖 = 1, … , 𝐼

                ∑ 𝜆𝑘
𝑜

𝐾

𝑘=1

= 1

     

           𝜆𝑘
𝑜 ≥ 0                                                               𝑘 = 1, … , 𝐾

          𝜋𝑘
𝑜  ≥ 0                                                               𝑘 = 1, … , 𝐾

          𝜃𝑇𝑂
𝑜     𝑓𝑟𝑒𝑒

                       (6.15) 

 

or equivalently as:  

 

                    

min
𝜃𝑇𝑂

𝑜 ,𝛿𝑘
𝑜,𝛾𝑜

 𝜃𝑇𝑂
𝑜

       𝑠. 𝑡.  ∑ 𝛿𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

+ 𝛾𝑜(−𝑦𝑗
𝑟) ≥ 𝑦𝑗

𝑜           𝑗 = 1, … , 𝐽

                ∑ 𝛿𝑘
𝑜𝑥𝑖

𝑘

𝐾

𝑘=1

+ 𝛾𝑜(−𝑥𝑖
𝑟) ≤ 𝜃𝑇𝑂

𝑜 𝑥𝑖
𝑜    𝑖 = 1, … , 𝐼

                 ∑ 𝛿𝑘
𝑜

𝐾

𝑘=1

− 𝛾𝑜 = 1

     

            𝛿𝑘
𝑜 ≥ 0                                                 𝑘 = 1, … , 𝐾

            𝛾𝑜 ≥ 0

           𝜃𝑇𝑂
𝑜       𝑓𝑟𝑒𝑒

                                     (6.16) 

 

where 𝛿𝑘
𝑜 = (𝜆𝑘

𝑜 + 𝜋𝑘
𝑜) ≥ 0 and ∑ 𝜋𝑘

𝑜𝐾
𝑘=1 = 𝛾𝑜 ≥ 0.  Then (6.16) is equivalent to the 

envelopment form in (6.8) if the rth DMU is chosen as the MPS.  If 𝑟 > 1, namely that 

the MPS is a combination of several DMUs, then (6.13) consists of 𝐾 × 𝑅 trade-off 

coefficient vectors given as the deviations of each DMU’s (k=1,…,K) input and output 
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quantities from those of each DMU (r=1,…,R) comprising the MPS.  As a result, the 

second term in the left hand side of the first two inequality restrictions in (6.15) reflect 

summations over both k (k=1,…,K) and r (r=1,…,R) and 𝜋𝑘
𝑜 should be changed to 𝜋𝑘𝑟

𝑜 .  

Moreover, by defining 𝛿𝑘
𝑜 = (𝜆𝑘

𝑜 + ∑ 𝜋𝑘𝑟
𝑜𝑅

𝑟=1 ) ≥ 0 and 𝛾𝑟
𝑜 = ∑ 𝜋𝑘

𝑜𝐾
𝑘=1 ≥ 0 we may 

obtain a model similar to (16) in which the second term in the left hand side of the first 

two inequality restrictions reflect summations over r (r=1,…,R) and the third restriction 

is stated as ∑ 𝛿𝑘
𝑜𝐾

𝑘=1 − ∑ 𝛾𝑟
𝑜𝑅

𝑟=1 = 1.  This model is equivalent to the envelopment form 

in (6.8) if the set of R (r=1,…,R)  DMUs comprise the MPS.  In a similar fashion, if 

increasing (decreasing) returns to scale are assumed, then the equality sign in the third 

restriction of the envelopment forms in (6.3) and (6.8) and in (6.15) and (6.16) is simply 

changed to a less-than-or-equal (greater-than-or-equal) sign, while if constant returns 

to scale are assumed, the third restriction in the envelopment forms in (6.3) and (6.8) 

and in (6.15) and (6.16) should be dropped.   

From the above, it is also clear that, under CRS, the DEA model with R trade-

off coefficient vectors, given as the negative of the input and output quantities of the 

DMUs chosen as the MPS in VEA, is equivalent to the DEA model with (𝐾 × 𝑅) trade-

off coefficient vectors, given as the deviations of each DMU’s (k=1,…,K) input and 

output quantities from those of each of the DMUs chosen as the MPS in VEA.  This is 

evident as long as the trade-off coefficient vectors in (6.2) are given as in either (6.11) 

or (6.13).  Let’s assume, initially, that 𝑟 = 1, i.e., the MPS is a single DMU.  Then, the 

envelopment form of (6.2) when the trade-off coefficient vectors are given by (6.13) is:  

 

                  

min
𝜃𝑇𝑂

𝑜 ,𝜆𝑘
𝑜,𝜋𝑘

𝑜
  𝜃𝑇𝑂

𝑜

      𝑠. 𝑡.   ∑ 𝜆𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑘
𝑜(𝑦𝑗

𝑘 − 𝑦𝑗
𝑟)

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜           𝑗 = 1, … , 𝐽 

                ∑ 𝜆𝑘
𝑜𝑥𝑖

𝑘

𝐾

𝑘=1

+ ∑ 𝜋𝑘
𝑜(𝑥𝑖

𝑘 − 𝑥𝑖
𝑟)

𝐾

𝑘=1

≤ 𝜃𝑇𝑂
𝑜 𝑥𝑖

𝑜    𝑖 = 1, … , 𝐼

     

           𝜆𝑘
𝑜 ≥ 0                                                               𝑘 = 1, … , 𝐾

          𝜋𝑘
𝑜  ≥ 0                                                               𝑘 = 1, … , 𝐾

          𝜃𝑇𝑂
𝑜     𝑓𝑟𝑒𝑒

                            (6.18) 

 

while when the trade-off coefficient vectors are given by (6.11), it is as follows: 
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min
𝜃𝑇𝑂

𝑜 ,𝜁𝑘
𝑜,𝛾𝑜

 𝜃𝑇𝑂
𝑜

       𝑠. 𝑡.  ∑ 휁𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

+ 𝛽𝑜(−𝑦𝑗
𝑟) ≥ 𝑦𝑗

𝑜           𝑗 = 1, … , 𝐽

                 ∑ 휁𝑘
𝑜𝑥𝑖

𝑘

𝐾

𝑘=1

+ 𝛽𝑜(−𝑥𝑖
𝑟) ≤ 𝜃𝑇𝑂

𝑜 𝑥𝑖
𝑜    𝑖 = 1, … , 𝐼

     

            휁𝑘
𝑜 ≥ 0                                                 𝑘 = 1, … , 𝐾

           𝛽𝑜  ≥ 0

           𝜃𝑇𝑂
𝑜       𝑓𝑟𝑒𝑒

                                     (6.19) 

 

If 휁𝑘
𝑜 = (𝜆𝑘

𝑜 + 𝜋𝑘
𝑜) ≥ 0 and ∑ 𝜋𝑘

𝑜𝐾
𝑘=1 = 𝛽𝑜 ≥ 0, then (6.18) is equivalent to (6.19).  If 

𝑟 > 1, then (6.13) consists of (𝐾 × 𝑅) trade-off coefficient vectors given as  𝑝𝑖
𝑘𝑟 =

(𝑥𝑖
𝑘 − 𝑥𝑖

𝑟), 𝑖 = 1, … , 𝐼, 𝑘 = 1, … , 𝐾, 𝑟 = 1, … , 𝑅 and 𝑞𝑗
𝑘𝑟 = (𝑦𝑗

𝑘 − 𝑦𝑗
𝑟), 𝑗 = 1, … , 𝐽,

ℎ = 1, … , 𝐾, 𝑟 = 1, … , 𝑅.  Thus, the second terms in the left hand side of the first two 

inequality restrictions in (6.18) reflect summations over both k (k=1,…,K) and r 

(r=1,…,R) and 𝜋𝑘
𝑜 should be changed to 𝜋𝑘𝑟

𝑜 .  Furthermore, (6.11) consists of 𝑅 trade-

off coefficient vectors given by the negative of the input and output quantities of the 

DMUs chosen as the MPS in VEA.  Thus, the second terms in the left hand side of the 

first two inequality restrictions in (6.19) reflect summations over r (r=1,…,R) and 𝛽𝑜 

should be changed to 𝛽𝑟
𝑜.  Then, by defining 휁𝑘

𝑜 = (𝜆𝑘
𝑜 + ∑ 𝜋𝑘𝑟

𝑜𝑅
𝑟=1 ) ≥ 0 and 𝛽𝑟

𝑜 =

∑ 𝜋𝑘
𝑜𝐾

𝑘=1 ≥ 0, (6.18) is equivalent to (6.19).  Consequently, a CRS DEA model 

augmented with the trade-offs as in (6.11) and a CRS DEA model augmented with the 

trade-offs as in (6.13) are equivalent to each other. 

The above results indicate that, under certain circumstances, the DM 

preferences underlying the evaluation of DMUs in the VEA model may be seen as a 

particular form of trade-offs or AR-II type of weight restrictions and vice versa.  This 

provides an alternative interpretation of the efficiency scores obtained from both the 

VEA model and the DEA model including production trade-offs.  

The production trade-offs in (6.11) and (6.13) and their dual weight restrictions 

in (6.12) and (6.14) enlarge the DEA efficient frontier by extending certain of its 

existing facets, in particular, those associated with the DMU or the combination of 

DMUs comprising the MPS, instead of introducing new linear segments.92  The 

 

 

92 Weight restrictions that result in extending facets of the DEA frontier are discussed in Portela and 

Thanassoulis (2006), but are not related to VEA. 
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implications of this are: (i) (6.11) and (6.13) do not introduce additional information in 

the envelopment form of the DEA model other than that already implicit in the data, 

namely the rates of substitution between inputs, the rates of transformation among 

outputs, and the marginal products between inputs and outputs that are reflected in each 

of the extended facets, and (ii) the efficiency scores from the multiplier form of the 

DEA models with (6.12) and (6.14) do not underestimate the true efficiency of the 

evaluated DMUs, as may occur in several other cases where additional restrictions of 

the general form in (6.4) are imposed in DEA models (see Tracy and Chen, 2005; 

Khalili et al., 2010b).  This is because each facet of the DEA frontier enlarged with 

(6.12) or (6.14) is already tangent to the conventional DEA frontier at some point. 

 

6.3.2.  Production trade-offs dual to AR-I type of weight restrictions 

 

In the previous section we considered production trade-offs related to both inputs and 

outputs, which are dual to AR-II type of weight restrictions.  In this section we consider 

weight restrictions of the AR-I type, and we restrict our attention to pure input or output 

models, i.e., models that contain respectively no inputs and outputs.  

Consider first the DEA model without inputs, which is equivalent to a DEA 

model with a single or multiple constant (unitary) inputs (Lovell and Pastor, 1999).93  

The latter is known as the Benefit-of-the-Doubt model (BoD) and its multiplier and 

envelopment form are given as (Cherchye et al., 2007a): 

 

   max
𝑢𝑗

𝑜,𝑣𝑖
𝑜

  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

≤ 1    𝑘 = 1, … , 𝐾

              𝑢𝑗
𝑜 ≥ 0                 𝑗 = 1, … , 𝐽

 

min
𝜆𝑘

𝑜
∑ 𝜆𝑘

𝑜

𝐾

𝑘=1

  𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜        𝑗 = 1, … , 𝐽 

     
       𝜆𝑘

𝑜 ≥ 0                       𝑘 = 1, … , 𝐾

       𝜃𝑜  𝑓𝑟𝑒𝑒

       (6.20) 

 

The model in (6.20) is obtained from (6.2) by dropping the terms associated with the 

(input and output) trade-offs or their dual weight restrictions, and by considering that 

 

 

93 Note that when we consider only outputs it makes no sense to have an input-oriented model.  Also, as 

Lovell and Pastor (1999) have shown, a pure-output CRS output-oriented DEA model rates all DMUs as 

infinitely inefficient, while an input-oriented VRS DEA model with a single constant input rates all 

DMUs as efficient. 
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𝑖 = 1, 𝑥𝑘 = 1, 𝑘 = 1, … , 𝐾 which implies that 𝑣𝑜 = 1.94  The BoD model has recently 

been adapted to a VEA framework (see the third chapter in this Thesis) and its 

multiplier and envelopment form are given as:  

 

   max
𝑢𝑗

𝑜
  ∑ 𝑢𝑗

𝑜𝑦𝑗
𝑜

𝐽

𝑗=1

    𝑠. 𝑡.   ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

≤ 1    𝑘 = 1, … , 𝐾,   𝑘 ≠ 𝑟

              ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

= 1    𝑘 = 𝑟 = 1, … , 𝑅

              𝑢𝑗
𝑜 ≥ 0                 𝑗 = 1, … , 𝐽

 

min
𝜆𝑘

𝑜
  ∑ 𝜆𝑘

𝑜

𝐾

𝑘=1

  𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜𝑦𝑗

𝑘

𝐾

𝑘=1

≥ 𝑦𝑗
𝑜       𝑗 = 1, … , 𝐽 

    
       𝜆𝑘

𝑜 ≥ 0                      𝑘 = 1, … , 𝐾,   𝑘 ≠ 𝑟

       𝜆𝑘
𝑜  𝑓𝑟𝑒𝑒                    𝑘 = 𝑟 = 1, … , 𝑅

(6.21) 

 

where 𝑟 = 1, … , 𝑅 refers to the DMUs comprising the MPS.   

For 𝑖 = 1 and 𝑥𝑘 = 1, 𝑘 = 1, … , 𝐾, (𝑥𝑘 − 𝑥𝑟 ) = 0, 𝑘 = 1, … , 𝐾, 𝑟 =

1, … , 𝑅,  and thus the vector 𝑃𝑟
𝑘 in (6.13) is a scalar with a value equal to zero.  

Consequently, the associated weight restrictions in (6.14) consider only outputs, i.e., 

are of the AR-I type, as the second component in each of the relations in (6.14) is equal 

to zero. In a similar fashion, the vector 𝑃𝑟  in (6.11) is a scalar with a value equal to −1 

and the second component in each of the associated weight restrictions in (6.12) is also 

equal to −1, namely (6.12) considers only outputs.  Thus, we can show the following: 

 

PROPOSITION 6.3: The VEA BoD model is equivalent to a BoD model including 

production trade-offs, for which the trade-off coefficient vectors contain either (i) the 

negative of the output quantities of the DMUs constituting the MPS, or (ii) the 

deviations of each DMU’s output quantities from those of each of the DMUs 

constituting the MPS. 

  

Next, consider the DEA model without outputs, which is equivalent to a DEA 

model with a single or multiple constant (unitary) outputs (Lovell and Pastor, 1999).95  

 

 

94 Variants of (6.20) including weight restrictions have been employed in, among others, the construction 

of composite indicators of environmental performance (Zanella et al., 2013), the re-estimation of the 

Technology Achievement Index (Cherchye et al., 2008), and the aggregation of several measures of 

money into a synthetic indicator (Sahoo and Acharya, 2010). 
95 Note that when we consider only inputs it makes no sense to have an output-oriented model.  Also, as 

Lovell and Pastor (1999) have shown, a pure-input CRS input-oriented DEA model rates all DMUs as 
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The latter is known as the Inverted BoD model and its multiplier and envelopment form 

are given as (Färe and Karagiannis, 2014): 96 

 

   min
𝑣𝑖

𝑜
  ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑜

𝐼

𝑖=1

    𝑠. 𝑡.   ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

≥ 1    𝑘 = 1, … , 𝐾

              𝑣𝑖
𝑜 ≥ 0                 𝑖 = 1, … , 𝐼

 

max
𝜆𝑘

𝑜
∑ 𝜆𝑘

𝑜

𝐾

𝑘=1

  𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜𝑥𝑖

𝑘

𝐾

𝑘=1

≤ 𝑥𝑖
𝑜           𝑖 = 1, … , 𝐼 

            𝜆𝑘
𝑜 ≥ 0                        𝑘 = 1, … , 𝐾

         (6.22) 

 

The model in (6.22) is obtained from the output-oriented counterpart of (6.2) by 

dropping the terms associated with the (input and output) trade-offs or their dual weight 

restrictions, and by assuming that 𝑗 = 1, 𝑦𝑘 = 1, 𝑘 = 1, … , 𝐾, which implies that 

𝑢𝑜 = 1.  Compared to the BoD model, the Inverted BoD model provides a pessimistic 

perspective of performance evaluation (Karagiannis, 2021).  Consider now a set of R 

DMUs reflecting the most desirable input bundle from DM’s point of view.  Then, the 

multiplier and envelopment form of the Inverted VEA BoD model will be given as: 

 

   min
𝑣𝑖

𝑜
  ∑ 𝑣𝑖

𝑜𝑥𝑖
𝑜

𝐼

𝑖=1

    𝑠. 𝑡.   ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

≥ 1    𝑘 = 1, … , 𝐾, 𝑘 ≠ 𝑟

              ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

= 1    𝑘 = 𝑟 = 1, … , 𝑅

              𝑣𝑖
𝑜 ≥ 0                 𝑖 = 1, … , 𝐼

 

max
𝜆𝑘

𝑜
∑ 𝜆𝑘

𝑜

𝐾

𝑘=1

  𝑠. 𝑡.  ∑ 𝜆𝑘
𝑜𝑥𝑖

𝑘

𝐾

𝑘=1

≤ 𝑥𝑖
𝑜    𝑖 = 1, … , 𝐼 

     
      𝜆𝑘

𝑜 ≥ 0                   𝑘 = 1, … , 𝐾, 𝑘 ≠ 𝑟

      𝜆𝑘
𝑜  𝑓𝑟𝑒𝑒                 𝑘 = 𝑟 = 1, … , 𝑅

         (6.23) 

 

Then for 𝑗 = 1 and 𝑦𝑘 = 1, 𝑘 = 1, … , 𝐾, we have that (𝑦𝑘 − 𝑦𝑟 ) = 0, 𝑘 =

1, … , 𝐾, 𝑟 = 1, … , 𝑅 and thus the vector 𝑄𝑟
𝑘 in (6.13) is a scalar than takes the value of 

zero.  Thus, the weights restrictions dual to the production trade-offs in (6.13) are AR-

I, as the first component in each of the relations in (6.14) is equal to zero.  Similarly, 

the vector 𝑄𝑟  in (6.11) is a scalar with a value equal to −1 and the same holds for the 

 

 

infinitely inefficient, while an output-oriented VRS DEA model with a single constant output rates all 

DMUs as efficient 
96 Variants of (6.22) including weight restrictions have been used by, among others, Zhou et al. (2007) 

to construct a sustainable energy index, and Rogge (2012) to re-estimate the Environmental Performance 

Index. 
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first component in each of the associated weight restrictions in (6.12).  Thus, we can 

show that:  

 

PROPOSITION 6.4: The Inverted BoD VEA model is equivalent to an Inverted BoD 

model including production trade-offs, for which the trade-off coefficient vectors 

contain either (i) the negative of the input quantities of the DMUs constituting the MPS, 

or (ii) the deviations of each DMU’s input quantities from those of each of the DMUs 

constituting the MPS. 

 

6.4. An empirical application 

 

To illustrate the usefulness of our findings, we consider the case of a DM evaluating 

alternatives in a technology selection problem, using the dataset of 27 industrial robots 

in Khouja (1995) and Baker and Talluri (1997).97  For the purposes of this chapter, we 

may consider the DM assessing these 27 DMUs as either a potential buyer, i.e., the 

manager of an industrial plant, or a technology manufacturer, namely the owner of a 

company producing one of the assessed DMUs. 

Data for the 27 DMUs are given in columns 2 to 5 of Table 6.1.  Four among 

the most important performance features of industrial robots are considered, which are 

(i) the robots’ cost (in 10.000$), (ii) repeatability, namely a measure of the distance (in 

mm) covered by the robot in repeated trials, (iii) the robot’s payload capacity (in kg) 

and (iv) its minimum possible velocity (in m/s).  For the former two features lower 

values indicate better performance, and hence they are treated as inputs, while larger 

values are more preferable for capacity and velocity and these are treated as outputs 

(Khouja, 1995).  Efficiency estimates based on the input-oriented CRS and VRS DEA 

models are given in columns 6 and 9 of Table 6.1. From these, we can see that nine 

DMUs are efficient with CRS, while other two DMUs are added to the list of efficient 

DMUs in the VRS model.  The assumption of VRS results in a noticeable increase in 

average efficiency (0.801 compared to 0.725 in the CRS model).

 

 

97 The applications of DEA and other multi-criteria decision-making methods in technology selection are 

nowadays voluminous and include, but are not limited to, the selection of flexible manufacturing 

systems, industrial robots, and dispatching rules.  A review of such applications is a task out of the scope 

of this chapter, and the interested reader is referred to Hamzeh and Xu (2019), for a recent review. 
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Table 6.1:Data and efficiency estimates for the illustrative example.  

 
DMU inputs outputs  CRS models  VRS models 

 

Cost  

(in 10.000$) 

Repeatability  

(in mm) 

Load capacity  

(in kg) 

Velocity  

(in m/s) 

 

DEA  

VEA  

(MPS: #19) 

VEA  

(MPS: #20) 

 

DEA 

VEA  

(MPS: #19) 

VEA  

(MPS: #20) 

1 7.200 0.150 60.000 1.350  1.000 0.871 0.479  1.000 1.000 0.512 

2 4.800 0.050 6.000 1.100  0.904 0.511 0.417  0.907 0.868 0.437 

3 5.000 1.270 45.000 1.270  0.529 0.465 0.529  0.667 0.507 0.568 

4 7.200 0.030 1.500 0.660  1.000 0.195 0.167  1.000 1.000 0.196 

5 9.600 0.250 50.000 0.050  0.592 0.392 0.108  0.594 0.594 0.177 

6 1.070 0.100 1.000 0.300  0.482 0.414 0.482  0.865 0.865 0.865 

7 1.760 0.100 5.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

8 3.200 0.100 15.000 1.000  0.783 0.783 0.618  0.783 0.783 0.618 

9 6.720 0.200 10.000 1.100  0.378 0.362 0.306  0.383 0.376 0.315 

10 2.400 0.050 6.000 1.000  1.000 0.891 0.758  1.000 1.000 0.759 

11 2.880 0.500 30.000 0.900  0.671 0.671 0.669  0.677 0.677 0.677 

12 6.900 1.000 13.600 0.150  0.102 0.099 0.069  0.142 0.142 0.142 

13 3.200 0.050 10.000 1.200  1.000 0.874 0.701  1.000 0.990 0.744 

14 4.000 0.050 30.000 1.200  1.000 1.000 0.658  1.000 1.000 0.691 

15 3.680 1.000 47.000 1.000  0.613 0.561 0.613  0.624 0.607 0.623 

16 6.880 1.000 80.000 1.000  0.604 0.592 0.437  0.604 0.604 0.441 

17 8.000 2.000 15.000 2.000  0.405 0.272 0.405  1.000 0.362 0.525 

18 6.300 0.200 10.000 1.000  0.365 0.355 0.299  0.367 0.367 0.299 

19 0.940 0.050 10.000 0.300  1.000 1.000 0.733  1.000 1.000 1.000 

20 0.160 2.000 1.500 0.800  1.000 0.169 1.000  1.000 1.000 1.000 

21 2.810 2.000 27.000 1.700  0.852 0.397 0.852  1.000 0.774 1.000 

22 3.800 0.050 0.900 1.000  0.829 0.509 0.476  0.913 0.906 0.477 

23 1.250 0.100 2.500 0.500  0.694 0.648 0.694  0.923 0.923 0.923 

24 1.370 0.100 2.500 0.500  0.636 0.606 0.636  0.847 0.847 0.847 

25 3.630 0.200 10.000 1.000  0.553 0.553 0.511  0.556 0.556 0.511 

26 5.300 1.270 70.000 1.250  0.581 0.581 0.577  0.771 0.582 0.613 

27 4.000 2.030 205.000 0.750  1.000 1.000 1.000  1.000 1.000 1.000 

average 4.224 0.589 28.315 0.929  0.725 0.584 0.563  0.801 0.753 0.628 

Note: The data are taken from Baker and Talluri (1997). 
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For our purposes let’s assume that DMU #19 is chosen as the MPS.  The DM 

in this case may be the manager of a manufacturing plant that operates using this 

particular robot, or be a potential buyer for which this robot has an attractive 

combination of low cost and low repeatability. The CRS and VRS VEA efficiency 

scores when DMU #19 is chosen as the MPS are given in columns 7 and 10 of Table 

6.1. In the CRS case, five DMUs drop from the list of efficient DMUs compared to 

DEA, while when VRS is assumed the efficient DMUs are reduced to eight, compared 

to 11 in DEA.  By Proposition 2, the same efficiency scores would result from 

respectively a CRS and a VRS DEA model including the following set of weight 

restrictions: 

 

                  

50.000𝑢1
𝑘 +1.050𝑢2

𝑘 −6.260𝑣1
𝑘 −0.100𝑣2

𝑘 ≤ 0 (DMU #1)

−4.000𝑢1
𝑘 +0.800𝑢2

𝑘 −3.860𝑣1
𝑘 ≤ 0 (DMU #2)

35.000𝑢1
𝑘 +0.970𝑢2

𝑘 −4.060𝑣1
𝑘 −1.220𝑣2

𝑘 ≤ 0 (DMU #3)

−8.500𝑢1
𝑘 +0.360𝑢2

𝑘 −6.260𝑣1
𝑘 +0.025𝑣2

𝑘 ≤ 0 (DMU #4)

40.000𝑢1
𝑘 −0.250𝑢2

𝑘 −8.660𝑣1
𝑘 −0.200𝑣2

𝑘 ≤ 0 (DMU #5)

−9.000𝑢1
𝑘 −0.130𝑣1

𝑘 −0.050𝑣2
𝑘 ≤ 0 (DMU #6)

−5.000𝑢1
𝑘 +0.700𝑢2

𝑘 −0.820𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #7)

5.000𝑢1
𝑘 +0.700𝑢2

𝑘 −2.260𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #8)

+0.800𝑢2
𝑘 −5.780𝑣1

𝑘 −0.150𝑣2
𝑘 ≤ 0 (DMU #9)

−4.000𝑢1
𝑘 +0.700𝑢2

𝑘 −1.460𝑣1
𝑘 ≤ 0 (DMU #10)

20.000𝑢1
𝑘 +0.600𝑢2

𝑘 −1.940𝑣1
𝑘 −0.450𝑣2

𝑘 ≤ 0 (DMU #11)

3.600𝑢1
𝑘 −0.150𝑢2

𝑘 −5.960𝑣1
𝑘 −0.950𝑣2

𝑘 ≤ 0 (DMU #12)

0.900𝑢2
𝑘 −2.260𝑣1

𝑘 ≤ 0 (DMU #13)

20.000𝑢1
𝑘 +0.900𝑢2

𝑘 −3.060𝑣1
𝑘 ≤ 0 (DMU #14)

37.000𝑢1
𝑘 +0.700𝑢2

𝑘 −2.740𝑣1
𝑘 −0.950𝑣2

𝑘 ≤ 0 (DMU #15)

70.000𝑢1
𝑘 +0.700𝑢2

𝑘 −5.940𝑣1
𝑘 −0.950𝑣2

𝑘 ≤ 0 (DMU #16)

5. 000𝑢1
𝑘 +1.700𝑢2

𝑘 −7.060𝑣1
𝑘 −1.950𝑣2

𝑘 ≤ 0 (DMU #17)

0.700𝑢2
𝑘 −5.360𝑣1

𝑘 −0.150𝑣2
𝑘 ≤ 0 (DMU #18)

−8.500𝑢1
𝑘 +0.500𝑢2

𝑘 +0.780𝑣1
𝑘 −1.950𝑣2

𝑘 ≤ 0 (DMU #20)

17.000𝑢1
𝑘 +1.400𝑢2

𝑘 −1.870𝑣1
𝑘 −1.950𝑣2

𝑘 ≤ 0 (DMU #21)

−9.100𝑢1
𝑘 +0.700𝑢2

𝑘 −2.860𝑣1
𝑘 ≤ 0 (DMU #22)

−7.500𝑢1
𝑘 +0.200𝑢2

𝑘 −0.310𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #23)

−7.500𝑢1
𝑘 +0.200𝑢2

𝑘 −0.430𝑣1
𝑘 −0.050𝑣2

𝑘 ≤ 0 (DMU #24)

0.700𝑢2
𝑘 −2.690𝑣1

𝑘 −0.150𝑣2
𝑘 ≤ 0 (DMU #25)

60.000𝑢1
𝑘 +0.950𝑢2

𝑘 −4.360𝑣1
𝑘 −1.220𝑣2

𝑘 ≤ 0 (DMU #26)

195.000𝑢1
𝑘 +0.450𝑢2

𝑘 −3.060𝑣1
𝑘 −1.980𝑣2

𝑘 ≤ 0 (DMU #27)

                              

 

The figures attached to the input and output weights in each of the above restrictions 

are equal to the deviations of the input and output quantities corresponding to the 

evaluated DMU listed in parentheses, from those of DMU #19.  This set of restrictions 

forces the marginal rates of substitution and transformation for the evaluated DMUs to 
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take values only within the range of marginal rates prevailing on the efficient frontier 

in the neighborhood of DMU #19.  Note that by Proposition 1 the CRS VEA efficiency 

scores could also be obtained through a DEA model including the following weight 

restriction: 

 

                            −10. 000𝑢1
𝑘 −0.300𝑢2

𝑘 +0.940𝑣1
𝑘 +0.050𝑣2

𝑘 ≤ 0                                     
 

the coefficients of which are the negative of the input and output quantities of DMU 

#19. 

Let us now assume that the following trade-off is included in the envelopment 

form of the CRS DEA model in (6.1): 

 

                                                         
𝑃 = [−0.160, −2.000]𝑇

𝑄 = [−1.500, −0.800]𝑇                                                            

 

This trade-off implies that, if the DM is willing to accept a decrease in load capacity by 

1.500 kg and in velocity by 0.800 m/s, then the robot’s cost and repeatability could be 

decreased by at most 1600$ and 2.000 mm respectively.  The above trade-off coefficient 

vectors are equal to the negative of the input and output quantities of the DEA-efficient 

DMU #20.  Thus, by Proposition 1, a CRS DEA model augmented with this trade-off 

is equivalent to a CRS VEA model in which DMU #20 is chosen as the MPS.  The 

resulting efficiency scores when either the above trade-off is included in the CRS DEA 

model, or DMU #20 is the MPS in the CRS VEA model are given in column 8 of Table 

6.1.  Compared to the DEA results, we see that only three DMUs remain efficient in 

the VEA model, while average efficiency decreases to 0563.  

The efficiency scores from a VRS VEA model in which DMU #20 is used as 

the MPS are given in column 11 of Table 6.1.  By Proposition 2, these scores can be 

obtained via a DEA model including production trade-offs the coefficient vectors of 

which contain the deviations of each DMU’s input and output quantities from those of 

DMU #20. 

 

6.5. Concluding remarks 

 

In this chapter, we have examined the links between DEA models with weights 

restrictions or their dual production trade-offs and VEA and we showed that VEA may 

be viewed as a class of DEA models with particular trade-offs.  More specifically, we 
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showed that, irrespective of the nature of the returns to scale, the VEA model is 

equivalent to the DEA model including production trade-offs, for which the trade-off 

coefficient vectors are given by the deviations of the input and output quantities of each 

sample DMU from those of DMUs chosen as the MPS.  In addition, with CRS, the 

VEA model is equivalent to the DEA model with trade-off coefficient vectors given by 

the negative of the input and output quantities of the DMUs chosen as the MPS in VEA. 

These trade-offs are dual to AR-II weight restrictions.  In addition, we showed that, 

when we are considering these particular trade-offs only for the inputs or the outputs, a 

similar equivalence results between the pure output or input VEA models and their 

DEA counterparts including trade-offs.  In these cases, the dual forms of the trade-offs 

are AR-I weight restrictions.  

The results in this chapter indicate that the DM preferences about the most 

preferred input/output structure as reflected in the MPS in the VEA model may be seen 

as a particular form of trade-offs or their dual AR-II or AR-I type of weight restrictions 

and vice versa.  This provides an alternative interpretation of the efficiency scores 

obtained from both the VEA model and its equivalent DEA model including production 

trade-offs.  In particular, the VEA efficiency scores can also be interpreted as including 

restrictions in the acceptable values of the marginal rates of substitution and 

transformation, while it may be said that the efficiency scores obtained from the DEA 

model including production trade-offs reflect the DM’s judgements about the most 

preferred input/output structure.   
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CHAPTER 7 
 

On Value Efficiency Analysis and Cone-Ratio DEA models 
 

 

7.1. Introduction 

 

Weight restrictions, their dual production trade-offs, Cone ratio Data Envelopment 

Analysis (CR-DEA) and Value Efficiency Analysis (VEA) are alternative and 

seemingly unrelated ways for incorporating Decision Maker’s (DM) preferences in 

DEA models.  In the literature there is a long interest about their inter-relations, from 

which several useful results have emerged. First, Charnes et al. (1990) demonstrated 

that CR-DEA models including absolute or relative bounds on the input/output 

multipliers are equivalent to DEA models with Assurance Region type I or II weight 

restrictions.  Second, Olesen and Petersen (2003) inferred that, in the case of a single 

model DMU, a CR-DEA model, in which the set of feasible weights consists of all the 

weight vectors that are optimal in DEA for the model DMU provides the same 

efficiency scores with a VEA model in which the model DMU is chosen as the Most 

Preferred Solution (MPS).98  In addition, they stated that in the case of multiple model 

DMUs the efficiency scores of a CR-DEA model, in which the set of feasible weights 

is the union of the sets of the weight vectors that are optimal in DEA for each of the 

model DMUs, are given by the maximum among the scores of a series of VEA models, 

each of which uses one among the model DMUs as the MPS. Third, Podinovski 

(2004;2005) showed that DEA models with non-homogeneous weight restrictions are 

equivalent to DEA models including a particular form of production trade-offs. Fourth, 

Ravanos and Karagiannis (2022a) have illustrated that the choice of the MPS in VEA 

 

 

98 Model DMUs are DEA-efficient DMUs viewed as exceptional performers by the DM (Charnes et al., 

1990). 
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models can be viewed as a particular form of trade-offs or AR-II type of weight 

restrictions and vice versa.   

In this paper, we elaborate more on the relations between VEA and CR-DEA 

models following two distinct routes: first, for the case of multiple model DMUs, we 

consider in addition the case of CR-DEA models, in which the feasible weight vectors 

are given by the intersection of the sets of the weight vectors that are optimal in DEA 

for each of the model DMUs.  In this case, all the model DMUs will be rendered 

efficient when each DMU is evaluated, whereas in the case of Olesen and Petersen 

(2003), where the set of feasible weights is the union of the sets of the weight vectors 

that are optimal in DEA for each of the model DMUs, at least one of the model DMUs 

will be efficient.  The proposed formulation can accommodate cases where the DM 

wishes to compare each evaluated DMU with all chosen model DMUs, which in some 

empirical applications may be a valuable option.  Second, we extend the comparison 

between VEA and CR-DEA models by considering a formulation of the CR-DEA 

model in which the set of feasible weight vectors contains only those vectors with 

strictly positive components, each of which is optimal in DEA for the (single or the 

multiple) model DMUs.  This model essentially extends each Fully Dimensional 

Efficient Facet (FDEF) jointly generated by all the model DMUs.  

Our theoretical results indicate that, in the case of multiple model DMUs, the 

efficiency score of a CR-DEA model, in which the feasible weight vectors are given as 

the intersection of the sets of weight vectors that are optimal in DEA for each of the 

model DMUs, is equal to that of a VEA model in which the chosen model DMUs are 

also considered as the MPS.  The former is also lower than or equal to the minimum 

among the efficiency scores obtained from a number of VEA models, each of which 

uses a single model DMU as the MPS.  On the other hand, we verify that the efficiency 

score of a CR-DEA model, in which the feasible weight vectors are given as the union 

of the sets of weight vectors that are optimal in DEA for each of the model DMUs, is 

greater than or equal to that of a VEA model in which the MPS comprises of all the 

model DMUs.  We also show that the efficiency score of a CR-DEA model, in which 

the set of feasible weight vectors contains only those vectors with strictly positive 

components, each of which is optimal in DEA for the (single or multiple) model DMUs 

is lower than or equal to that of a VEA model in which the chosen model DMUs are 

also considered as the MPS. 
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An immediate implication of our theoretical results is that the efficiency scores 

of the alternative CR-DEA models can be estimated or approximated by means of either 

a single VEA model in which the chosen model DMUs are also considered as the MPS 

or a series of VEA models that use different model DMUs as the MPS.  We expect that 

this will facilitate the empirical applications of the CR-DEA models, which are 

appropriate for several study cases.  For example, in assessing the performance in the 

banking industry where certain banks or bank branches are viewed as excellent 

performers or “global leaders”.  Agreement on the set of model banks may be 

unanimous or not, as DMs might have diverging views on what constitutes good 

performance, or the chosen banks are viewed as different types of examples to follow.  

Another case could concern the assessment of higher education institutions in terms of 

their research quality and teaching excellence, in which the set of model institutions 

may be unanimously viewed as top-performing or excel in different evaluation 

dimensions.  The use of CR-DEA models in such cases has remained up to date limited 

as their estimation required identifying all the efficient facets generated by each of the 

model DMUs and the weight vectors normal to each of them (Olesen and Petersen, 

2003; Portela and Thanassoulis, 2006). This can only be done via complex non-linear 

programs or additional software that can prove to be quite complicated and time 

consuming (Zhu et al., 2022).  In contrast, VEA models --which can be used to estimate 

or approximate CR-DEA scores--involve only changing some linear inequalities in the 

multiplier form of a DEA model to equalities.   

We illustrate the usefulness of our findings using data from Japanese regional 

banks.  Using various sets of model DMUs we illustrate how the CR-DEA efficiency 

scores can be obtained or approximated by VEA.  We also discuss the intuition behind 

the choice of different sets of model DMUs, which is useful for empirical applications. 

The rest of the paper unfolds as follows:  A literature review follows in the next section, 

while in the third section we present the CR-DEA and VEA models.  The papers’ main 

results are presented in the fourth section, while the empirical application is discussed 

in the fifth section.  Finally, concluding remarks follow in the last section. 

 

7.2.  CR-DEA and VEA: A brief overview 
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CR-DEA models were developed by Charnes et al. (1989; 1990) to cope with 

unsatisfactory results from conventional DEA, which identified “notoriously inefficient 

[DMUs] as efficient” (Charnes et al., 1990, p. 74).99  In the multiplier form of these 

models, the range of optimal input/output weight vectors is restricted to cones smaller 

than the non-negative orthant.  These cones can reflect preferences over the relative 

importance of inputs and/or outputs, information about the variation of their prices, or 

alternatively they can be defined based on the weight vectors that are optimal for a 

certain set of model DMUs that DMs view as exceptional performers (Charnes et al., 

1990).  In both cases, this information is used to define transformation matrices that 

modify the input/output quantities of the evaluated DMUs in the envelopment form of 

these models. 

In CR-DEA models using information about price variation or views over 

input/output importance, separate cones may be used to restrict the input and the output 

weight sub-vectors, or a cone can be defined for the input/output weight vector.  When 

separate cones are used, the input and the output weight sub-vector of each DMU are 

allowed to vary independently from each other in the multiplier form of the model and 

separate transformation matrices are used to modify input and output quantities in its 

envelopment form (Portela and Thanassoulis, 2006).  Charnes et al. (1990) have shown 

that in this case the CR-DEA model is equivalent to DEA models including AR-I type 

of weight restrictions (Thompson et al., 1986).  Empirical applications of such CR-

DEA models include the assessment of primary care physicians (Chilingerian and 

Sherman, 1997), textile factories (Zhu, 1996), and manufacturing technologies (Talluri 

and Yoon, 2000).  Recently, Ding et al. (2015) introduced such restrictions in a network 

DEA model with shared resources.  When a single cone is used to restrict the 

input/output weight vector, there are also restrictions linking input and output weights 

that correspond to AR-II type restrictions (Thompson et al., 1990).  Thompson et al. 

(1994) used information on input and output prices and costs to determine upper and 

lower bounds for ratios of input, output and input and output multipliers in an evaluation 

of oil companies.  Subsequent applications of such CR-DEA models include the 

 

 

99 From now on, when a quotation is used, the words in brackets and the underlying are our own additions. 
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evaluation of coal mines (Thompson et al, 1995) and US banks (Thompson et al., 

1996).  

When preference information concerns model DMUs, which is the focus of this 

paper, the cone of feasible weights contains only weight vectors which are optimal for 

the chosen model DMUs in the DEA model (Olesen and Petersen, 2003).  In this case, 

“the [weights] are restricted to lie in hyperplanes” (Charnes et al., 1991b, p. 2070), 

which implies that the resulting efficient frontier is defined by extending the DEA facets 

generated by the model DMUs.  Charnes et al. (1990, p. 79) used the optimal weight 

vectors (“efficient basic duals”) obtained from the linear DEA model for each of the 

model DMUs to define the cone of feasible weights.  Notice that each such weight 

vector is optimal for one of the model DMUs but not necessarily for the others as well, 

and that it may contain zero components.  It is thus hard to tell whether Charnes et al. 

(1990) intention was to include only weight vectors that are optimal for all the chosen 

model DMUs or to account for every weight vector that is optimal for at least one of 

the model DMUs.  Clarifying this issue has important implications for empirical 

applications.  The same holds for whether optimal weight vectors containing zero 

components should be included in the cone or not.100  In addition, Charnes et al. (1990) 

defined the cone of feasible weights in such a way that the input and the output weight 

sub-vectors were allowed to vary independently from each other within separately 

defined cones.  Empirical applications of this form of CR-DEA models include 

performance assessment in the banking sector (see Charnes et al., 1990 and Brockett et 

al., 1997).  Later, Tone (1997) noted that for each model DMU there exist multiple 

optimal weight vectors and developed three linear programs to choose one among those 

vectors for each model DMU to use in defining the cone of feasible weights. 

The process followed by Charnes et al. (1990) to define the cone of feasible 

weights was thoroughly challenged by Olesen and Petersen (2003), in that i) each model 

DMU generates more than one efficient facets and thus there exist multiple vectors of 

optimal weights for it, all of which should be considered in the cone of feasible weights, 

and ii) allowing the input and the output weight sub-vectors to vary independently from 

 

 

100 Charnes et al. (1990) used weight vectors with strictly positive components to define the cone of 

feasible weights in their application. On the other hand, Brockett et al. (1997) included weight vectors 

containing zero components as well. 
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each other may result in the evaluated DMUs adopting optimal input weights referring 

to one model DMU and optimal output weights associated with another, and thus a 

single cone should be defined using the input/output weight vectors instead of separate 

cones for input and output weight sub-vectors.  They noted (p. 357) that the efficient 

frontier of the CR-DEA model can be estimated by extending facets with well-defined 

rates of input substitution (MRSs) and output transformation (MRTs) and “other” facets 

(i.e., the cone of feasible weights can be defined using both weight vectors with strictly 

positive components and vectors having zero components).  Thus, to properly 

incorporate preferences regarding a set of model DMUs in CR-DEA, one needs to 

identify all the facets of the DEA frontier generated by the model DMUs and the weight 

vectors that are normal to each of them (Portela and Thanassoulis, 2006).  This requires 

identifying all the facets of the DEA frontier (Thanassoulis, et al. 2008). 

Olesen and Petersen (1996; 2015) proposed the use of a mixed integer model to 

obtain CR-DEA efficiency scores when information on model DMUs is available. The 

cone of feasible weights in this model is defined using only weight vectors that contain 

strictly positive components.  The resulting efficient frontier is defined by extending 

facets with well-defined MRSs and MRTs generated by the model DMUs.  However, 

optimal weight vectors for model DMUs frequently contain zero components as well. 

Thus, this model is considered hereafter as a distinct variant of CR-DEA.  

On the other hand, VEA (Halme et al., 1999) accommodates DM preferences 

over the most favorable input/output structure by means of an implicitly known value 

function (i.e., an indifference curve), which is maximized at a point on the strongly 

efficient DEA frontier that constitutes the MPS.  The MPS essentially corresponds to 

either an extreme-efficient DMU or a combination of extreme-efficient DMUs that are 

jointly efficient, and is chosen by the DM by means of various criteria (see Korhonen 

et al. (2002) for an early exploration and the fourth chapter in this Thesis for a recent 

review).  In the multiplier form of the VEA model, each DMU is implicitly compared 

to the MPS by restricting the feasible weight vectors to those that are optimal in the 

DEA model for all the DMUs that constitute the MPS. This model appeared for the first 

time in Oral and Yolalan (1990), who used it to compare the performance of banks in 

terms of efficiency and profitability to that of a particular efficient bank (“global 

leader”). This bank was chosen at a previous step.  Subsequent studies explored the 

potential of obtaining VEA scores which are better approximations of the scores that 
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could be obtained if an explicit functional form was available for the DM’s value 

function, and their interpretation in terms of value differences between the assessed 

DMU and the MPS (see Joro et al., 2003; Korhonen and Syrjanen, 2005). Recent 

theoretical advancements include non-convex (Halme et al., 2014) and non-radial 

(Gerami et al., 2022) VEA models. Regarding empirical work, VEA has been applied 

for the evaluation of hospital departments (Halme and Korhonen, 2000), higher 

education institutions (Korhonen et al., 2001), local governments (Marshall and 

Shortle, 2005), banks (Halme et al., 2014; Eskelinen et al., 2014), and the construction 

of composite indicators (see the third chapter in this Thesis) 

 

7.3. Materials and methods 

 

7.3.1. Preliminaries  

 

Let us consider a set of K DMUs (k=1,…,K) that use the same technology to produce a 

set of J (j=1,…,J) different outputs utilizing I (i=1,…,I) different inputs.  The fractional 

programming form of an input-oriented variable-returns-to-scale (VRS) DEA model 

for the oth DMU is given as (Banker et al., 1984):101  

 

                             

max
𝜉𝑗

𝑜,𝜔𝑖
𝑜,𝜁𝑘

 (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 휁𝑜) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

⁄

 𝑠. 𝑡.       (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

+ 휁𝑜) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

⁄ ≤ 1   ∀ 𝑘

                𝜉𝑗
𝑜 ≥ 0                                                     ∀ 𝑗

               𝜔𝑖
𝑜 ≥ 0                                                     ∀ 𝑖    

               휁𝑜  𝑓𝑟𝑒𝑒

                                        (7.1) 

 

where x and y are respectively the quantities of inputs and outputs, ω and ξ are their 

weights, and ζ is a free variable to be estimated. The constant-returns-to-scale (CRS) 

counterpart of (7.1) is obtained by removing the free variable ζ (see Charnes et al., 

1978). 

Denote 𝔼 as the set containing the extreme efficient DMUs in model (1), namely 

those residing at a point of the convex DEA efficient frontier where more than one 

 

 

101 We limit our discussion to input-oriented DEA models. The extension of the results to output oriented 

models is straightforward. 
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facets intercept.  The polyhedral cone containing the feasible input/output weight 

vectors in (7.1) is given as (Räty, 2002; Olesen and Petersen, 2015, p. 155): 

 

ℱ = {(𝜉𝑗
𝑘 , −𝜔𝑖

𝑘 , 휁𝑘) ∈ ℝ+
𝐽

× ℝ−
𝐼 × ℝ ∶ ∑ 𝜉𝑗

𝑘𝑦𝑗
𝑘

𝐽

𝑗=1

− ∑ 𝜔𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

+ 휁𝑘 ≤ 0, (𝜉𝑗
𝑘 , 𝜔𝑖

𝑘) ≠ (0,0),   𝑘 ∈ 𝔼} (7.2) 

 

The cone in (7.2) is determined from the halfspace constraints in (7.1) and is 

represented as a collection, i.e., a set, of vectors (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘).102,103  It is expressed in 

terms of the extreme efficient DMUs only, since these generate the facets of the DEA 

efficient frontier and they are used to “evaluate all of the points that represent the 

performances of the DMUs that are to be evaluated” (Cooper et al., 2007b, p. 444).  In 

essence, this means that any weight vector that is feasible for a particular DMU will 

also be feasible for at least one extreme efficient DMU.  For this reason, all similar 

cones from now on will be expressed in terms of the extreme efficient DMUs. 

For efficient DMUs --and in rare occasions also for some inefficient DMUs--

there exist more than one weight vectors that are optimal in (7.1).  The cone containing 

all the weight vectors in ℱ which are optimal for a DMU 𝑘 ∈ 𝔼, (namely, render it 

efficient) is given as (Olesen and Petersen, 2015, p. 157): 

 

                       ℱ𝑘  = {(𝜉𝑗
𝑘 , −𝜔𝑖

𝑘, 휁𝑘) ∈ ℱ ∶ ∑ 𝜉𝑗
𝑘𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝜔𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

+ 휁𝑘 = 0 }                      (7.3) 

 

 

 

102 If a weight vector (𝜉𝑗
𝑘, 𝜔𝑖

𝑘 , 휁𝑘) is optimal for some DMU in (1) then (𝑎𝜉𝑗
𝑘 , 𝑎𝜔𝑖

𝑘 , 𝛼휁𝑘), 𝛼 > 0 will also 

be optimal for this DMU.  Thus, in the input/output weights space, ℱ is a polyhedral cone spanned by 

the weight vectors (𝜉𝑗
𝑘 , 𝜔𝑖

𝑘 , 휁𝑘) and containing all their multiples (𝑎𝜉𝑗
𝑘, 𝑎𝜔𝑖

𝑘 , 𝛼휁𝑘), 𝛼 > 0.  Notice that 

𝛼 could also be equal to 1 𝜉𝑗
𝑘⁄  for some j, or to 1 𝜔𝑖

𝑘⁄  for some i, in the sense that one of the positive 

input or output weights is used as a numeraire. 
103 In Olesen and Petersen (2015), the set 𝔼 contains the strongly efficient DMUs instead of the extreme 

efficient DMUs, while Räty (2002) uses the extreme efficient DMUs to define ℱ.  Strongly efficient 

DMUs are further classified into extreme efficient and non-extreme efficient DMUs. The latter reside in 

the interior of a facet of the strongly efficient frontier (Charnes et al., 1991a). Non-extreme efficient 

DMUs can be expressed as linear combinations of the extreme efficient DMUs generating the facet in 

which they reside.  In this sense, the weight vectors that are optimal for a non-extreme efficient DMU 

are also optimal for all the extreme efficient DMUs generating the facet in which it resides, and they are 

already included in ℱ. 
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Each weight vector contained in ℱ𝑘 is a generating normal vector for a supporting 

hyperplane of the DEA efficient frontier with DMU k located on it.104  It may contain 

only strictly positive input and output weight components or may be associated with at 

least one zero input or output weight.  In the former case, the vector is normal to a facet 

of the strongly DEA efficient frontier in which the MRSs and MRTs are well-defined 

and can thus be given an interpretation in terms of relative prices, while 휁𝑘 can be 

interpreted as a measure of local scale elasticity (Olesen and Petersen, 2015). Such 

facets are jointly generated --provided that certain regularity conditions are met-- by a 

unique combination of (𝐼 + 𝐽 − 1) extreme efficient DMUs in CRS DEA models and 

one of (𝐼 + 𝐽) extreme efficient DMUs when VRS is assumed (Olesen and Petersen, 

2003).  In the latter case, the weight vector (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) is normal to a facet of the 

weakly DEA efficient frontier, in the sense that MRSs and MRTs are not well-defined.  

Following Olesen and Petersen (1996; 2003; 2015), we term the former facets as Fully 

Dimensional Efficient Facets (FDEFs) and the latter as non-Fully Dimensional 

Efficient Facets (non FDEFs).105  It is possible that ℱ𝑘 contains only weight sets of the 

latter form, namely that the DMU 𝑘 does not contribute to generating an FDEF. 

Let us consider a subset ℛ ⊆ 𝔼 of extreme efficient DMUs.  The cone: 

 

  ℱ 𝕀
ℛ = ⋂ ℱ𝑘

𝑘∈ℛ
= {(𝜉𝑗

𝑘, −𝜔𝑖
𝑘, 휁𝑘) ∈ ℱ: ∑ 𝜉𝑗

𝑘𝑦𝑗
𝑘

𝐽

𝑗=1

− ∑ 𝜔𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

+ 휁𝑘 = 0 , ∀ 𝑘 ∈ ℛ}   (7.4) 

 

contains all the weight vectors, each of which is optimal for all the DMUs in ℛ, i.e., 

renders all of them efficient (Olesen and Petersen, 2015), where 𝕀 refers to intersection.  

Thus, each weight vector in ℱ 𝕀
ℛ is a generating normal vector for a supporting 

hyperplane of the (weakly or strongly) efficient frontier with each and every member 

of ℛ located on it (Banker et al., 1984).  ℱ 𝕀
ℛ ≠ ∅ implies the existence of at least one 

 

 

104 In a similar fashion with ℱ, in the input/output weights space, ℱ𝑘 is a polyhedral cone spanned by the 

weight vectors (𝜉𝑗
𝑘, 𝜔𝑖

𝑘 , 휁𝑘) and containing all their multiples.  See Olesen and Petersen (1996) for the 

CRS counterparts of (2) and (3). 
105 See Olesen and Petersen (1996) for a formal definition of FDEFs and non FDEFs and Olesen and 

Petersen (2015) for an interesting discussion on alternative definitions of efficient facets.  Linear models 

that test for the existence of at least one FDEF in the empirical CRS or VRS DEA frontier are provided 

in Olesen and Petersen (2015).  Given a set of ℛ extreme-efficient DMUs, one may investigate whether 

these jointly generate at least one FDEF by identifying all the FDEFs of the empirical DEA frontier. 
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weight vector (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) which renders all DMUs in set ℛ efficient, namely that the 

DMUs in ℛ jointly generate at least one facet of the DEA efficient frontier.  If ℱ 𝕀
ℛ = ∅ 

such a facet does not exist.  However, there might be facets generated by a subset of 

the DMUs in ℛ.  Furthermore, if the number of DMUs in ℛ equal to 𝐼 + 𝐽 − 1 (in CRS 

models) or to 𝐼 + 𝐽 (in VRS models), then ℱ 𝕀
ℛ ≠ ∅ only when the DMUs in ℛ jointly 

generate an FDEF, and it will contain only one vector with strictly positive input/output 

weights, namely the one that is normal to the FDEF generated by the DMUs in ℛ.  

Lastly, ℱ 𝕀
ℛ = ∅ when the number of DMUs in ℛ is greater than 𝐼 + 𝐽 − 1  (in CRS 

models) or 𝐼 + 𝐽 (in VRS models), since DEA facets cannot be spanned by more than 

(𝐼 + 𝐽 − 1) (in CRS models) and (𝐼 + 𝐽) DMUs (in VRS models). It is also evident 

from (7.4) that when the set ℛ contains only one DMU, then ℱ 𝕀
𝑘 ≡ ℱ𝑘.  

We may also define the following set: 

 

ℱ𝕌
ℛ = ⋃ ℱ𝑘

𝑘∈ℛ
= {(𝜉𝑗

𝑘 , −𝜔𝑖
𝑘 , 휁𝑘) ∈ ℱ ∶ ∑ 𝜉𝑗

𝑘𝑦𝑗
𝑘

𝐽

𝑗=1

− ∑ 𝜔𝑖
𝑘𝑥𝑖

𝑘

𝐼

𝑖=1

+ 휁𝑘 = 0 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑘 ∈ ℛ} (7.5) 

 

which contains each weight vector among those in ℱ that is optimal in the DEA model 

(1) for at least one of the extreme efficient DMUs in set ℛ, and 𝕌 refers to union.  Thus, 

a weight vector (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) ∈ ℱ𝕌
ℛ will be optimal for one --or more-- among the 

DMUs in ℛ, but may or may not be optimal for the others.  By comparing (7.4) and 

(7.5) we see that: i) ℱ 𝕀
ℛ is a subset of ℱ 𝕌

ℛ, ii) ℱ 𝕌
ℛ ≠ ∅ even if there does not exist a facet 

of the DEA efficient frontier generated by all the DMUs in ℛ, and iii) when ℛ contains 

only one DMU, then ℱ𝕌
𝑘 ≡ ℱ𝑘 ≡ ℱ 𝕀

𝑘.  Furthermore, it is evident from (8) that if ℛ ≡

𝔼, then ℱ 𝕌
𝔼 ≡ ℱ.  However, this is a sufficient but not a necessary condition for ℱ 𝕌

ℛ ≡

ℱ. 

The model in (7.1) can be converted to the following linear model: 
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max
𝑢𝑗

𝑜,𝑣𝑖
𝑜,𝑧𝑘

  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 𝑢𝑘

    𝑠. 𝑡.    ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0  ∀ 𝑘

               ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

               𝑢𝑗
𝑜 ≥ 0                                              ∀ 𝑗

               𝑣𝑖
𝑜 ≥ 0                                              ∀ 𝑖    

               𝑧𝑘   𝑓𝑟𝑒𝑒

                                        (7.6) 

 

where 𝜉𝑗
𝑜 = 𝑢𝑗

𝑜 𝛽𝑜⁄ , 𝜔𝑖
𝑜 = 𝑣𝑖

𝑜 𝛽𝑜⁄ , 휁𝑘 = 𝑢𝑘 𝛽𝑜⁄  and 𝛽𝑜 = (∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜𝐼
𝑖=1 )−1.  Then the 

set containing the weight vectors which are optimal for a DMU 𝑘 ∈ 𝔼 in (7.6) is given 

as: 

 

  ℱ̃𝑘 = {(𝑢𝑗
𝑘 , −𝑣𝑖

𝑘, 𝑢𝑘) = 𝛽𝑜(𝜉𝑗
𝑘, 𝜔𝑖

𝑘, 휁𝑘)|(𝜉𝑗
𝑘 , −𝜔𝑖

𝑘, 휁𝑘) ∈ ℱ𝑘 , 𝛽𝑜 = (∑ 𝜔𝑖
𝑘𝑥𝑖

𝑘𝐼
𝑖=1 )

−1
 }   (7.7) 

 

which contains the multiples of the weight vectors in ℱ𝑘 that satisfy the normalizing 

equality in the second constraint in (7.6) when 𝑘 is the evaluated DMU.  

To demonstrate the alternative sets of weight vectors discussed above, let’s 

consider an illustrative example involving 10 DMUs, each using two inputs to produce 

a single output.  Data for these DMUs are given in the upper panel of Table 7.1, while 

the middle and the lower panel contain the DMUs’ input-oriented CRS DEA efficiency 

scores, the normalized optimal vectors of input/output weights 𝐻𝜊 = (
𝑣1

𝑜

𝑢𝑜
,

𝑣2
𝑜

𝑢𝑜
, 1) =

(
𝜔1

𝑜

𝜉𝑜 ,
𝜔2

𝑜

𝜉𝑜 , 1) and the optimal values of the intensity variables.106  The DEA efficient 

frontier is given in Figure 7.1, where we see that DMUs A, B, C, and D are extreme-

efficient, while the remaining DMUs are inefficient.  As such, the set ℛ may contain 

only one of the extreme-efficient DMUs A, B, C, and D, or any combination of more 

than two of them. In the latter case, ℛ will be equal to either 

{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}, {𝐴, 𝐵, 𝐶}, {𝐴, 𝐵, 𝐷}, {𝐴, 𝐶, 𝐷}, {𝐵, 𝐶, 𝐷}, or 

 

 

 

106 Note that, since the DMUs in our example produce the same quantity of a single output, the CRS 

efficiency scores displayed in Table 1 are equivalent to those of a VRS DEA model (see Lovell and 

Pastor, 1999).   
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Table 7.1: Data and DEA optimal solutions for the illustrative example 

 

DMU A B C D  E  F G H I J 

𝑥1  1 2 3.5 6 1.2 2 4 5 6 9 

𝑥2  7 4 2 1.25 9.6 6 6 4 2 1.5 

𝑦  1 1 1 1 1 1 1 1 1 1 

optimal solution (1) from the DEA model 

𝜔1
∗ 𝜉∗⁄  0.300 0.200 0.200 0.098 1.000 0.300 0.200 0.200 0.098 0.000 

𝜔2
∗ 𝜉∗⁄   0.100 0.150 0.150 0.328 0.000 0.100 0.150 0.150 0.328 0.800 

𝜃∗  1.000 1.000 1.000 1.000 0.833 0.833 0.588 0.625 0.803 0.833 

𝜆∗  𝜆𝐴
∗ =1.000 𝜆𝐵

∗ =1.000 𝜆𝐶
∗ =1.000 𝜆𝐷

∗ =1.000 𝜆𝐴
∗ =1.000 

 

𝜆𝐴
∗ =0.333 

𝜆𝐵
∗ =0.667 

𝜆𝐵
∗ =0.765 

𝜆𝐶
∗ =0.235 

𝜆𝐵
∗ =0.250 

𝜆𝐶
∗ =0.750 

𝜆𝐶
∗ =0.474 

𝜆𝐷
∗ =0.526 

𝜆𝐸
∗ =1.000 

facet f2 f3 f3 f4 f1 f2 f3 f3 f4 f5 

optimal solution (2) from the DEA model 

𝜔1
∗ 𝜉∗⁄  1.000 0.300 0.098 0.000       

𝜔2
∗ 𝜉∗⁄   0.000 0.100 0.328 0.800       

𝜃∗  1.000 1.000 1.000 1.000       

𝜆∗  𝜆𝐴
∗ =1.000 𝜆𝐵

∗ =1.000 𝜆𝐶
∗ =1.000 𝜆𝐷

∗ =1.000       

facet f1 f2 f4 f5       
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Figure 7.1: The DEA efficient frontier for the Illustrative example 

 

 
 
{𝐴, 𝐵, 𝐶, 𝐷}.  From Table 7.1 we see that there are two input/output weight vectors 

which are optimal for each of the extreme-efficient DMUs.  For DMU A these are 𝛨1
𝐴 =

(1,0,1) = 𝛨1 and 𝛨2
𝐴 = (0.3, 0.1, 1), which are the vectors normal to the facets f1 and 

f2 respectively.  For DMU B, the optimal input/output weights vectors are𝛨1
𝐵 =

(0.3, 0.1, 1) = 𝛨2
𝐴 = 𝛨2 and 𝛨2

𝐵 = (0.2, 0.15,1).  The latter is normal to facet f3.  The 

optimal weight vectors for DMU C are 𝛨1
𝐶 = (0.2, 0.15,1) = 𝛨2

𝐵 = 𝛨3 and 𝛨2
𝐶 =

(0.098, 0.328,1), of which the latter is normal to facet f4.  Lastly, the two weight 

vectors that render DMU D efficient are 𝛨1
𝐷 = (0.098, 0.328,1) = 𝛨2

𝐶 = 𝛨4 and 𝛨2
𝐷 =

(0, 0.8,1) = 𝛨5, which are normal to facets f4 and f5, respectively.  Thus, the set ℱ is 

given as:   

 
                                                             ℱ = {𝛨1, 𝛨2, 𝛨3, 𝛨4, 𝛨5}                                                    

 

Among the five weight vectors in ℱ, 𝛨2, 𝛨3 and 𝛨4 are FDEFs, while 𝛨1 and 𝛨5 are 

non FDEFs. Furthermore, the sets ℱ𝑘, 𝑘 = 𝐴, 𝐵, 𝐶 𝑜𝑟 𝐷 containing the optimal vectors 

of weights for each of the extreme-efficient DMUs are defined as: 
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               ℱ 𝐴 = {𝛨1, 𝛨2},   ℱ𝐵 = { 𝛨2, 𝛨3},   ℱ𝐶 = {𝛨3, 𝛨4},   ℱ𝐷 = {𝛨4, 𝛨5}                     

 

On the other hand, there is only one optimal weight vector for each of the inefficient 

DMUs (see Table 1).  

The set ℱ 𝕀
ℛ is equal to ℱ 𝕀

𝐴 ≡ ℱ 𝐴, ℱ 𝕀
𝐵 ≡ ℱ𝐵, ℱ 𝕀

𝐶 ≡ ℱ𝐶, and ℱ 𝕀
𝐷 ≡ ℱ𝐷 when ℛ 

contains respectively only one of the DMUs A, B, C, and D.  The same holds for ℱ 𝕌
ℛ,  

i.e., ℱ 𝕌
𝐴 ≡ ℱ 𝐴 ≡ ℱ 𝕀

𝐴, ℱ 𝕌
𝐶 ≡ ℱ𝐵 ≡ ℱ 𝕀

𝐵, ℱ 𝕌
𝐶 ≡ ℱ𝐶 ≡ ℱ 𝕀

𝐶 , and ℱ 𝕌
𝐷 ≡ ℱ𝐷 ≡ ℱ 𝕀

𝐷.  On the 

other hand, for ℛ containing different combinations of the DMUs A, B, C, and D, set 

ℱ 𝕀
ℛ is given as: 

 

         ℱ 𝕀
𝐴𝐵 = { 𝛨2},   ℱ 𝕀

𝐴𝐶 = {∅},   ℱ 𝕀
𝐴𝐷 = {∅},   ℱ 𝕀

𝐵𝐶 = {𝛺3},   ℱ 𝕀
𝐵𝐷 = {∅},   ℱ 𝕀

𝐶𝐷 = {𝛨4}, 
         ℱ 𝕀

𝐴𝐵𝐶 = {∅},   ℱ 𝕀
𝐴𝐵𝐷 = {∅},   ℱ 𝕀

𝐴𝐶𝐷 = {∅},   ℱ 𝕀
𝐵𝐶𝐷 = {∅},   ℱ 𝕀

𝐴𝐵𝐶𝐷 = {∅} 

 

and ℱ 𝕌
ℛ is as follows:  

 

ℱ 𝕌
𝐴𝐵 = { 𝛨1, 𝛨2, 𝛨3}, ℱ 𝕌

𝐴𝐶 = {𝛨1, 𝛨2, 𝛨3, 𝛨4}, ℱ 𝕌
𝐴𝐷 = {𝛨1, 𝛨2, 𝛨4, 𝛨5}, ℱ 𝕌

𝐵𝐶 = {𝛨2, 𝛨3, 𝛨4}, 
ℱ 𝕌

𝐵𝐷 = {𝛨2, 𝛨3, 𝛨4, 𝛨5} ≡  ℱ 𝕌
𝐵𝐶𝐷,   ℱ 𝕌

𝐶𝐷 = {𝛨3, 𝛨4, 𝛨5},   ℱ 𝕌
𝐴𝐵𝐶 = {𝛨1, 𝛨2, 𝛨3, 𝛨4},  

ℱ 𝕌
𝐴𝐵𝐷 = {𝛨1, 𝛨2, 𝛨3, 𝛨4, 𝛨5} ≡ ℱ 𝕌

𝐴𝐶𝐷 ≡  ℱ 𝕌
𝐴𝐵𝐶𝐷 ≡ ℱ 

  

where the capital letters in the superscripts correspond to the DMUs in the set ℛ.107 

From these we see that: i) each of the sets ℱ 𝕀
ℛ is a subset of the corresponding 

set ℱ 𝕌
ℛ, ii) ℱ 𝕀

𝐴𝐵 , ℱ 𝕀
𝐵𝐶 , and ℱ 𝕀

𝐶𝐷  are non-empty sets, since the DMUs in ℛ jointly 

generate a DEA facet, while they contain only one vector of strictly positive 

input/output weights as in this case the number of DMUs in ℛ is equal to 𝐼 + 𝐽 − 1 =

2, iii) the sets ℱ 𝕀
𝐴𝐶  , ℱ 𝕀

𝐴𝐷 , and ℱ 𝕀
𝐵𝐷  are empty as there is not a facet jointly generated 

by the DMUs in ℛ, while the corresponding ℱ 𝕌
ℛ sets are non-empty, iv) ℱ 𝕀

𝐴𝐵𝐶  ≡

ℱ 𝕀
𝐴𝐵𝐷  ≡ ℱ 𝕀

𝐴𝐶𝐷  ≡ ℱ 𝕀
𝐵𝐶𝐷  ≡ ℱ 𝕀

𝐴𝐵𝐶𝐷  ≡ {∅} since in this case he number of DMUs in ℛ 

is equal to 3 > 𝐼 + 𝐽 − 1, while the corresponding ℱ 𝕌
ℛ sets are non-empty, and v) 

ℱ 𝕌
𝐴𝐵𝐶𝐷 is nonempty and is equivalent to ℱ as in this case ℛ ≡ 𝔼.  Note that this also 

holds for sets ℱ 𝕌
𝐴𝐵𝐷 and ℱ 𝕌

𝐴𝐶𝐷, for which ℛ ⊂ 𝔼. 

 

 

 

 

107 For instance, a superscript ABC refers to ℛ = {𝐴, 𝐵, 𝐶}. Other capital letter superscripts appearing in 

the illustrative example are elaborated in a similar fashion. 
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7.3.2. CR-DEA including preferences on model DMUs 

 

The fractional programming form of an input-oriented VRS CR-DEA model is given 

as:  

 

                                  

max
𝜉𝑗

𝑜,𝜔𝑖
𝑜,𝜁𝑘

 (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 휁𝑘) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

⁄

   𝑠. 𝑡.     (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

+ 휁𝑘) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

⁄ ≤ 1   ∀ 𝑘

                (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) ∈ 𝑊                                ∀ 𝑖, 𝑗

                                   (7.8) 

 

where 𝑊 ⊆ ℝ+
𝐽

× ℝ−
𝐼 × ℝ is a cone smaller than the non-negative orthant, which is 

essentially a collection of vectors that contains a subset of the weight vectors 

(𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) ∈ ℱ and their multiples.  The CRS counterpart of (7.8) is obtained by 

removing the free variable ζ.  The last constraint in (7.8) restricts the choice of optimal 

weights only among the weight vectors contained in 𝑊 and their multiples, instead of 

the larger set ℱ, which is the case for the DEA model in (7.1).  The model in (7.8) can 

be converted to the following linear program: 

 

                                        

max
𝑢𝑗

𝑜,𝑣𝑖
𝑜𝑧𝑘

  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 𝑢𝑘

    𝑠. 𝑡.    ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0   ∀ 𝑘

               ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

              (𝑢𝑗
𝑜, −𝑣𝑖

𝑜, 𝑧𝑘) ∈ 𝑊�̃�                        ∀ 𝑖, 𝑗

                                      (7.9) 

 

where 𝑊�̃� contains the multiples of the weight vectors in W that satisfy the normalizing 

equality for the evaluated DMU o in the second constraint in (7.8). The CRS counterpart 

of (7.9) is provided in Olesen and Petersen (2003) and can be obtained by removing the 

free variable u. 

Let us assume that the DM wishes to compare each evaluated DMU with some 

chosen model efficient DMUs having exceptional performance and let the set ℛ𝐶𝑅 ⊆ 𝔼 

contain these model DMUs.  In this case, W contains only weight vectors (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) 
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which are optimal for the model DMUs in the DEA model in (7.1) (Olesen and Petersen, 

2003).  Charnes et al. (1990) employed the CRS counterpart of (7.9) and used one 

among the --possibly multiple-- optimal vectors (𝑢𝑗
𝑜 , −𝑣𝑖

𝑜) for each of the model DMUs 

to define 𝑊�̃�, namely the one resulting from the DEA model.  In terms of the fractional 

model in (7.8), this means that W was defined by considering, for each DMU 𝑘 ∈ ℛ𝐶𝑅, 

one among the vectors (𝜉𝑗
𝑘 , −𝜔𝑖

𝑘) contained in ℱ𝑘, namely the one resulting from the 

CRS counterpart of (7.1).  Each such weight vector is optimal for one model DMU but 

it is not necessarily optimal for other model DMUs as well, while it may or may not 

contain strictly positive components.  This implies that the weight vectors contained in 

W are drawn from ℱ 𝕌
ℛ, namely the union of the sets containing the weight vectors that 

are optimal in the DEA model for each of the model DMUs.  The cone in Charnes et al. 

(1990) was also specified as restricting the input and the output weights separately, 

namely 𝑊�̃� was in the form [
𝑈 0
0 𝑉

], where the cones 𝑈 ⊆ ℝ+
𝐽

, 𝑉 ⊆ ℝ+
𝐼  were 

respectively defined using the optimal input and output weight sub-vectors. 

Olesen and Petersen (2003, p. 329) argued that the intention of Charnes et al. 

(1990) was to generate (i.e., extend) “all facets containing” certain excellent DMUs.  In 

this sense, they argue that W should be defined as a single cone using input/output 

weight vectors --instead of separate cones for input and output weight sub-vectors.  As 

such, the boundary of the feasible set in the input/output space for models (7.8) and 

(7.9) will be a piecewise linear frontier defined by the extended efficient facets 

generated by the weight vectors contained in W.  The authors note (p. 328) that W should 

account for all the multiple optimal weight vectors for each of the model DMUs, and 

that it should be ”suitable for defining the boundary of (…) a frontier with well defined 

(i.e., with strictly positive and finite) rates of substitution and transformation”, i.e., that 

it should contain vectors with strictly positive input and output weight components.  

However, they also point (p. 357) that vectors having zero components could also be 

included in W.108  These ultimately imply that cone of feasible weight vectors in the 

CR-DEA model in (7.8) should be defined as the union of the sets containing the weight 

 

 

108 See their footnote 7 in which they note that weights normal to facets that are not of full dimension 

could also be included in W. 
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vectors that are optimal in the DEA model (7.1) for each of the model DMUs, namely 

𝑊 ≡ ℱ 𝕌
ℛ. 

Alternatively, one could consider in W only those weight sets which are jointly 

optimal for all the chosen model DMUs, in which case W would be equal to the 

intersection of the sets containing the weight vectors that are optimal in the DEA model 

(7.1) for each of the model DMUs, namely 𝑊 ≡ ℱ 𝕀
ℛ.  We thus may define two variants 

of the CR-DEA model in (7.8).  In the first, termed CR(𝕀)-DEA, the cone of feasible 

weight vectors weights is specified as the intersection of the sets containing the weight 

vectors that are optimal in DEA for each of the model DMUs, i.e., as: 

 

                                                         ℱ𝐶𝑅(𝕀)
ℛ ≡ ℱ 𝕀

ℛ = ⋂ ℱ𝑘
𝑘∈ℛ                                                        (7.10) 

  

The efficient frontier in CR(𝕀)-DEA will be the lower envelope of the extended DEA 

efficient facets (both FDEFs and non FDEFs) that are jointly generated by all the model 

DMUs.  In the second variant, referred to as CR(𝕌)-DEA, the cone of feasible weights 

contains every weight vector that is optimal in the DEA model for at least one among 

the model DMUs, namely: 

 

                                                          ℱ𝐶𝑅(𝕌)
ℛ ≡ ℱ 𝕌

ℛ = ⋃ ℱ𝑘
𝑘∈ℛ                                                      (7.11) 

 

in which case the efficient frontier will be the lower envelope of the extended efficient 

facets (both FDEFs and non FDEFs) generated by at least one among the model DMUs.   

The distinction between these two variants of model (7.8) is made, to the best 

of our knowledge, for the first time.  Their main difference is that in CR(𝕀)-DEA, all 

the model DMUs will be rendered efficient when each DMU is evaluated, while in 

CR(𝕌)-DEA at least one among the model DMUs will be efficient, but not necessarily 

all of them.  Thus, the model DMUs should jointly generate at least one efficient facet 

in order for CR(𝕀)-DEA to have feasible solutions (as otherwise ℱ 𝕀
ℛ = ∅), while this is 

not a necessity for CR(𝕌)-DEA.  Irrespective of the choice of model DMUs, CR(𝕌)-

DEA results in efficiency scores that are greater than or equal to those obtained from 

CR(𝕀)-DEA, since it holds that  ℱ𝐶𝑅(𝕀)
ℛ ⊆ ℱ𝐶𝑅(𝕌)

ℛ .  More specifically, each evaluated 

DMU in the CR(𝕀)-DEA model can choose only among weight vectors that are optimal 

--in the DEA model-- for all the model DMUs.  In the CR(𝕌)-DEA model, each 

evaluated DMU can choose among both the weight vectors that are feasible in the 
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CR(𝕀)-DEA model as well as those that are optimal for one model DMU but not 

necessarily for the others. Thus, it may receive a larger efficiency score in the CR(𝕌)-

DEA model compared to its corresponding CR(𝕀)-DEA score.  Furthermore, if the 

number of DMUs in ℛ𝐶𝑅 is greater than 𝐼 + 𝐽 − 1 (in CRS models) or 𝐼 + 𝐽 (in VRS 

models) then ℱ 𝕀
ℛ = ∅ and ℱ 𝕌

ℛ ≠ ∅, and in this case the CR(𝕌)-DEA model will result 

in feasible solutions while the CR(𝕀)-DEA model will not.  Lastly, when there a single 

model DMU is considered, the two variants provide the same efficiency scores, as 

ℱ𝐶𝑅(𝕌)
𝑘 ≡ ℱ𝐶𝑅(𝕀)

𝑘 ≡ ℱ𝑘.   

The distinction between CR(𝕌)-DEA and CR(𝕀)-DEA is also important for 

possible empirical applications of CR-DEA models. For a particular choice of model 

DMUs, CR(𝕀)-DEA is a more restricted model than CR(𝕌)-DEA.  Thus, the former 

may be used when the DM opts for a more thorough performance assessment in which 

each DMU should be compared to all model DMUs, while the latter could be used in 

settings where comparison to one of the model DMUs is viewed as adequate enough.  

Alternatively, when more than one DMs (e.g., a council of stakeholders or an expert 

panel) choose the model DMUs, CR(𝕀)-DEA could be used when there is unanimity in 

the choice of model DMUs, while CR(𝕌)-DEA might be more preferrable when expert 

opinions on model DMUs diverge.  Furthermore, CR(𝕌)-DEA might be a more suitable 

modelling option compared to CR(𝕀)-DEA when each of the chosen model DMUs 

represents a different type of “good performance”.  This could be the case, for instance, 

in an evaluation of public and private education institutions or an assessment of rural 

and urban bank branches. The use of CR(𝕌)-DEA in such cases would not force the 

evaluated DMUs belonging to one type to be compared with the model DMU of the 

other type.   

Regardless of the number of model DMUs, estimating CR(𝕌)-DEA and CR(𝕀)-

DEA models requires to define cone W, namely to identify the weight vectors contained 

in ℱ 𝕀
ℛ or ℱ 𝕌

ℛ, in a prior step.  In particular, Portela and Thanassoulis (2006) note that 

once these weight vectors are identified, it is rather straightforward to obtain the 

efficiency scores of CR-DEA models by estimating, for each evaluated DMU, its 

efficiency score 𝜃𝑘
𝑜 = (∑ 𝜉𝑗

𝑘𝑦𝑗
𝑜𝐽

𝑗=1 + 휁𝑘) ∑ 𝜔𝑖
𝑘𝑥𝑖

𝑜𝐼
𝑖=1⁄  using each of the identified 

weight vectors (𝜉𝑗
𝑘, 𝜔𝑖

𝑘, 휁𝑘) ∈ 𝑊, and then choosing the maximum among these 

efficiency scores.  However, they argue that identifying the weight vectors is a difficult 
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process, as it requires to identify all the facets of the DEA frontier and the weight 

vectors that are normal to each.  This often involves the estimation of non-linear 

programs, such as those outlined in Olesen and Petersen (2003), Fukuyama and Sekitani 

(2012), and Davtalab-Olyaie et al. (2014).  An alternative advocated by Olesen and 

Petersen (2003) and Thanassoulis et al. (2008) is to use the software program Qhull.  It 

is however argued that this program is not developed exclusively for DEA and it is not 

always easy to use in DEA applications (see Aparicio et al., 2007; Zhu et al., 2022).   

Another facet-extending variant of CR-DEA was presented in Olesen and 

Petersen (2015, pp. 167-168).  This variant extends only FDEFs that are jointly 

generated by the model DMUs (hereafter referred to as EXFA-CR-DEA), provided that 

at least one such FDEF exists.109  Assuming VRS, it is given as the following mixed-

integer linear model: 

 

              

max
𝑣𝑖

𝑜,𝑢𝑗
𝑜,𝑏𝑘

𝑜,𝑠𝑘
𝑜,𝑧𝑘 

 ∑ 𝑢𝑗
𝑜

𝐽

𝑗=1

𝑦𝑗
𝑜 + 𝑢𝑘

            𝑠. 𝑡.     ∑ 𝑢𝑗
𝑜

𝐽

𝑗=1

𝑦𝑗
𝑘 − ∑ 𝑣𝑖

𝑜

𝐼

𝑖=1

𝑥𝑖
𝑘 + 𝑠𝑘

𝑜 + 𝑢𝑘 = 0    ∀ 𝑘 ∈ 𝔼

                        ∑ 𝑣𝑖
𝑜

𝐼

𝑖=1

𝑥𝑖
𝑜 = 1

                        𝑠𝑘
𝑜 − 𝑀𝑏𝑘

𝑜 ≤ 0                                              ∀ 𝑘 ∈ 𝔼

                       ∑ 𝑏𝑘
𝑜

𝑘∈𝔼

≤ 𝐸 − (𝐼 + 𝐽 − 1)  

                       𝑏𝑘
𝑜 = {0,1}                                                      ∀ 𝑘 ∈ 𝔼 ∖ ℛ𝐶𝑅

                       𝑏𝑘
𝑜 = 0                                                             ∀ 𝑘 ∈ ℛ𝐶𝑅

                      𝑠𝑘
𝑜 ≥ 0                                                              ∀ 𝑘 ∈ 𝔼

                      𝑣𝑖
𝑜 ≥ 휀                                                              ∀ 𝑖

                      𝑢𝑗
𝑜 ≥ 휀                                                              ∀ 𝑗

                      𝑢𝑘   𝑓𝑟𝑒𝑒

                   (7.12) 

 

where 𝐸 refers to the number of extreme efficient DMUs, 𝑏𝑘
𝑜 and 𝑠𝑘

𝑜 are additional 

variables to be estimated, and ε is a non-Archimedean number.  The CRS counterpart 

 

 

109 This CR-DEA variant is related to the Extended Facet (EXFA) efficiency model developed by Olesen 

and Petersen (1996; 2015), for evaluating efficiency relative to a technology spanned by FDEFs and the 

extensions of these facets; see the relations (6.27) and (6.40), as footnote 21 in Olesen and Petersen 

(2015, pp. 167-170). 
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of (7.12) is provided in Olesen and Petersen (2015, p. 168) and can be obtained by 

removing the free variable 𝑢𝑘 and changing the right-hand side in the fourth constraint 

to 𝐸 − (𝐼 + 𝐽 − 1). 

In (7.12), the first set of constraints considers only the extreme efficient DMUs, 

as only these may generate an FDEF.  Each binary variable corresponds to one extreme 

efficient DMU and is associated with a slack parameter 𝑠𝑘
𝑜.  When 𝑏𝑘

𝑜 = 0 and thus 

𝑠𝑘
𝑜 = 0, the extreme efficient DMU generates the FDEF at which the evaluated DMU 

is radially projected.  The fourth constraint in (7.12) is used to ensure than each DMU 

is evaluated against an FDEF.  The binary variables corresponding to each of the model 

DMUs are set as equal to zero.  This guarantees that all model DMUs should jointly 

generate the extended FDEF.  As is evident, if the model DMUs do not generate at least 

on FDEF of the DEA frontier, (7.12) will not have a feasible solution. 

When (7.12) reaches an optimal solution --provided that such a solution exists-

- the constraint  ∑ 𝑏𝑘
𝑜

𝑘∈𝔼 ≤ 𝐸 − (𝐼 + 𝐽) will be satisfied as a strict equality and exactly 

𝐼 + 𝐽 relations in the first set of constraints will be strict equalities, which means that 

the evaluated DMU will be projected on an FDEF of the DEA efficient frontier or on 

its extension (Olesen and Petersen, 2003).  Due to the sixth set of constraints in (7.12), 

this FDEF will be necessarily generated by all the model DMUs.  The optimal weight 

vector for the evaluated DMU will be the multiple (𝑢𝑗
𝑘, 𝑣𝑖

𝑘, 𝑢𝑘) = 𝛽𝑘(𝜉𝑗
𝑘, 𝜔𝑖

𝑘, 휁𝑘), 𝛽𝑘 =

(∑ 𝜔𝑖
𝑘𝑥𝑖

𝑜𝐼
𝑖=1 )

−1
 of the weight vector (𝜉𝑗

𝑘, 𝜔𝑖
𝑘, 휁𝑘) that is normal to the (extended) FDEF 

at which the DMU is projected.  This vector will contain only strictly positive input and 

output weight components, and hence each DMU will be assessed by means of well-

defined MRSs and MRTs.  Thus, in terms of the fractional weights (𝜉𝑗
𝑘, 𝜔𝑖

𝑘, 휁𝑘), the 

cone of feasible weight vectors in (7.12) contains only the weight vectors with strictly 

positive components (i.e., those normal to FDEFs) that are jointly optimal in the DEA 

model (7.1) for all the model DMUs.  It is thus a subset of ℱ𝐶𝑅(𝕀)
ℛ ≡ ℱ 𝕀

ℛ and may be 

written as: 

 

                        ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
ℛ = {(𝜉𝑗

𝑘 , 𝜔𝑖
𝑘, 휁𝑘) ∈ ℱ 𝕀

ℛ: 𝜉𝑗
𝑘 > 0,   ∀ 𝑗,   𝜔𝑖

𝑘 > 0, ∀ 𝑖}                       (7.13) 

 

which can be an empty set even if ℱ 𝕀
ℛ ≠ ∅.  This occurs when the chosen model DMUs 

jointly generate efficient facets of the DEA frontier but not one of full dimension.  In 

this case, the CR(𝕀)-DEA and CR(𝕌)-DEA variants of (7.8) have feasible solutions, but 
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(7.12) does not.  Following the suggestions in Portela and Thanassoulis (2006), the 

efficiency scores of the model in (7.12) could also be obtained in a similar fashion to 

those of the CR(𝕀)-DEA and CR(𝕌)-DEA models.  One would first need to identify the 

weight vectors contained in ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
ℛ  and then estimate, for each evaluated DMU, its 

efficiency score using each of the weight vectors (𝜉𝑗
𝑘, 𝜔𝑖

𝑘, 휁𝑘) ∈ ℱ𝐹𝐷𝐸𝐹−𝐶𝑅
ℛ .  The 

maximum among these scores would be the EXFA-CR-DEA efficiency score. 

In terms of our example in Figure 7.1, the three cone-ratio variants discussed 

above can be demonstrated as follows:  when the DM chooses one model DMU among 

those extreme-efficient i.e., 𝑘 is equal to either 𝐴, 𝐵, 𝐶, 𝑜𝑟 𝐷, then ℱ𝐶𝑅(𝕀)
𝑘 ≡ ℱ𝐶𝑅(𝕌)

𝑘 ≡ ℱ𝑘.  

If on the other hand there are more than one model DMUs, i.e., ℛ𝐶𝑅 is equal to either 

{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}, {𝐴, 𝐵, 𝐶}, {𝐴, 𝐵, 𝐷}, {𝐴, 𝐶, 𝐷}, {𝐵, 𝐶, 𝐷}, or 

{𝐴, 𝐵, 𝐶, 𝐷}, then the cones of feasible weight vectors for the CR(𝕀)-DEA and the 

CR(𝕌)-DEA models are given as: 

 

                   

ℱ𝐶𝑅(𝕀)
𝐴𝐵 ≡  ℱ 𝕀

𝐴𝐵 = { 𝐻2} ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐵 ≡  ℱ 𝕌

𝐴𝐵  = { 𝐻1, 𝐻2, 𝐻3}

ℱ𝐶𝑅(𝕀)
𝐴𝐶 ≡   ℱ 𝕀

𝐴𝐶 =     ∅   ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐶 ≡  ℱ 𝕌

𝐴𝐶 = {𝐻1, 𝐻2, 𝐻3, 𝐻4}

ℱ𝐶𝑅(𝕀)
𝐴𝐷 ≡   ℱ 𝕀

𝐴𝐷 =     ∅   ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐷 ≡  ℱ 𝕌

𝐴𝐷 = {𝐻1, 𝐻2, 𝐻4, 𝐻5}

ℱ𝐶𝑅(𝕀)
𝐵𝐶 ≡   ℱ 𝕀

𝐵𝐶 = { 𝐻3} ⊂ ℱ𝐶𝑅(𝕌)
𝐵𝐶 ≡  ℱ 𝕌

𝐵𝐶  = {𝐻2, 𝐻3, 𝐻4}

ℱ𝐶𝑅(𝕀)
𝐵𝐷 ≡   ℱ 𝕀

𝐵𝐷 =     ∅   ⊂ ℱ𝐶𝑅(𝕌)
𝐵𝐷 ≡  ℱ 𝕌

𝐵𝐷 = {𝐻2, 𝐻3, 𝐻4, 𝐻5}

ℱ𝐶𝑅(𝕀)
𝐶𝐷 ≡   ℱ 𝕀

𝐶𝐷 = { 𝐻4} ⊂ ℱ𝐶𝑅(𝕌)
𝐶𝐷 ≡  ℱ 𝕌

𝐶𝐷 = {𝐻3, 𝐻4, 𝐻5}

ℱ𝐶𝑅(𝕀)
𝐴𝐵𝐶 ≡ ℱ 𝕀

𝐴𝐵𝐶 =    ∅    ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐵𝐶 ≡ ℱ 𝕌

𝐴𝐵𝐶 = {𝐻1, 𝐻2, 𝐻3, 𝐻4}

ℱ𝐶𝑅(𝕀)
𝐴𝐵𝐷 ≡ ℱ 𝕀

𝐴𝐵𝐷 =    ∅    ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐵𝐷 ≡ ℱ 𝕌

𝐴𝐵𝐷 = {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5} ≡ ℱ

ℱ𝐶𝑅(𝕀)
𝐴𝐶𝐷 ≡ ℱ 𝕀

𝐴𝐶𝐷 =    ∅    ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐶𝐷 ≡ ℱ 𝕌

𝐴𝐶𝐷 = {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5} ≡ ℱ

ℱ𝐶𝑅(𝕀)
𝐵𝐶𝐷 ≡ ℱ 𝕀

𝐵𝐶𝐷 =    ∅    ⊂ ℱ𝐶𝑅(𝕌)
𝐵𝐶𝐷 ≡ ℱ 𝕌

𝐵𝐶𝐷 = {𝐻2, 𝐻3, 𝐻4, 𝐻5}

ℱ𝐶𝑅(𝕀)
𝐴𝐵𝐶𝐷 ≡ ℱ 𝕀

𝐴𝐵𝐶𝐷 =  ∅    ⊂ ℱ𝐶𝑅(𝕌)
𝐴𝐵𝐶𝐷 ≡ ℱ 𝕌

𝐴𝐵𝐶𝐷 = {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5} ≡ ℱ

                            

 

from which we can see that ℱ𝐶𝑅(𝕀)
ℛ  is always a subset of ℱ𝐶𝑅(𝕌)

ℛ  and thus the CR(𝕌)-

DEA efficiency scores will be greater than or equal to those of the CR(𝕀) DEA model.  

For example, when ℛ𝐶𝑅 = {𝐶, 𝐷}, then in the CR(𝕀)-DEA model each DMU is 

evaluated based only on the weight vector 𝐻4 that is normal to facet f4.  The frontier 

against which the DMUs are evaluated is thus the extended facet f4, which is portrayed 

as the orange dashed line in Figure 7.2a.  In that, DMUs for which at least one optimal 

weight vector is 𝛺4, i.e., DMUs C, D, and I, are indicated with a green color.  The 

remaining DMUs appear as red-colored points, meaning that they will be assigned an 

efficiency score lower than their corresponding DEA one.  On the other hand, in the  
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Figure 7.2: Efficient frontiers for CR(I)-DEA and CR(U)-DEA models (model DMUs: 

C and D) 

 

 
(a) CR(I)-DEA 

 
(b) CR(U)-DEA 

 

corresponding CR(𝕌)-DEA model, each DMU can choose among vectors 

𝐻3, 𝐻4 𝑎𝑛𝑑 𝐻5 the one that maximizes its efficiency score.  Thus, each DMU can secure 

at least an efficiency score equal to that obtained from the CR(𝕀)-DEA model, while it 

may also attain a larger score using one of the vectors  𝐻3 𝑎𝑛𝑑 𝐻5.  The frontier against 

which the DMUs are evaluated is the lower envelope of the extended facets f3, f4, and 

f5 which is portrayed as the orange dashed line in Figure 7.2b.  In this case only DMUs 

A, E, and F are indicated with a red color, in the sense that none of their optimal weight 



172 

 

 

vectors are contained in ℱ𝐶𝑅(𝕌)
𝐶𝐷 . Also, the CR(𝕌)-DEA model results in feasible 

solutions irrespective of the choice of model DMUs, while this is not the case for the 

CR(𝕀)-DEA model when ℛ𝐶𝑅 contains DMUs that do not jointly generate a facet of the 

DEA frontier.  This is the case, for example, when ℛ𝐶𝑅 = {𝐴, 𝐷}.  The associated 

CR(𝕌)-DEA frontier is given in Figure 7.3 as the lower envelope of the extended facets 

f1, f2, f4, and f5.  The inefficient DMU H will be assigned a score lower to that of the 

DEA model, since  ℱ𝐶𝑅(𝕌)
𝐴𝐷  does not include the weight vector 𝛺4. 

The sets containing the feasible weight vectors in the EXFA-CR-DEA model 

for alternative choices of the model DMUs in our example are given as: 

 

         

ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐴 = { 𝐻2},   ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐵 = { 𝐻2, 𝐻3},   ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐶 = { 𝐻3, 𝐻4},   ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐷 = { 𝐻4},

ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐴𝐵 = { 𝐻2}, ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐴𝐶 = ∅, ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐴𝐷 = ∅, ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐵𝐶 = { 𝛺3}, ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐵𝐷 = ∅,

ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐶𝐷 = { 𝐻4}, ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐴𝐵𝐶 ≡ ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐴𝐵𝐷 ≡ ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐴𝐶𝐷 ≡ ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐵𝐶𝐷 ≡ ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐴𝐵𝐶𝐷 = ∅

         

 

When non-empty, each of these sets consists only of weight vectors normal to FDEFs 

and is a subset of the corresponding ℱ 𝕀
ℛ set.  For example, when DMU A is the model 

DMU,  ℱ𝐶𝑅(𝕀)
𝐴  contains both vectors 𝐻1 and 𝐻2, while ℱ𝐸𝑋𝐹𝐴−𝐶𝑅

𝐴  contains only the latter, 

since the former is not of full dimension.  The efficient frontiers defined by the two 

models are given in Figures 7.4a and 7.4b respectively.  The CR(𝕀)-DEA frontier --

which in this case coincides with the CR(𝕌)-DEA frontier since there is one model 

DMU-- is the lower envelope of the extended facets f1 and f2.  In this case, the 

inefficient DMU E for which 𝛺1 is the only optimal weight vector in DEA, receives a 

score equal to its DEA one.  The EXFA-CR-DEA frontier consists only of the extended 

facet f2, and DMU E is now marked with red color since it is assigned an efficiency 

score lower than that of the DEA model.  

 

7.3.3. Value Efficiency Analysis 

 

In VEA, a DM expresses his/her preferences over the desirable input/output structure 

of DMUs by choosing a non-dominated (i.e., efficient) point on the DEA frontier that 

constitutes the MPS (Halme et al., 1999).  This point is assumed to maximize the DM’s 

implicitly known value function and will in essence be either a single extreme-efficient 

t DMU or a combination of extreme-efficient DMUs that are jointly efficient, in the 

sence that sense that they jointly generate at least one facet of the DEA efficient frontier.   
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Figure 7.3: Efficient frontier for the CR(𝕌)-DEA model (model DMUs: A and D) 

 

 
 

Let set ℛ𝑉 ⊆ 𝔼 contain the DMUs comprising the MPS.110   The fractional 

programming form of an input-oriented CRS VEA model for the oth DMU is given as:  

 

                        

max
𝜉𝑗

𝑜,𝜔𝑖
𝑜,𝜁𝑘

 (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 휁𝑘) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

⁄

     𝑠. 𝑡.  (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

+ 휁𝑘) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

⁄ ≤ 1   ∀ 𝑘 ∉ ℛ𝑉

              (∑ 𝜉𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

+ 휁𝑘) ∑ 𝜔𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

⁄ = 1   ∀ 𝑘 ∈  ℛ𝑉

               𝜉𝑗
𝑜 ≥ 0                                                    ∀ 𝑗

              𝜔𝑖
𝑜 ≥ 0                                                    ∀ 𝑖 

               휁𝑘 𝑓𝑟𝑒𝑒

                                    (7.14) 

 

which differs from the DEA model in (7.1) in that the inequality constraints associated 

with the DMUs constituting the MPS are turned to strict equalities.  This means that, 

when each DMU is evaluated, the optimal weight vector (𝜉𝑗
𝑜 , −𝜔𝑖

𝑜 , 휁𝑘) resulting from  

 

 

110 As in most cases not all the DMUs in 𝔼 are jointly efficient with each other, it frequently holds that 

ℛ𝑉 ⊂ 𝔼.  However, in rare cases there is a facet jointly generated by all the DMUs in 𝔼, in which case 

ℛ𝑉 ≡ 𝔼 can be a valid choice.   
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Figure 7.4: Efficient frontier for different Cone-ratio DEA models (model DMU: A) 

 

 
(a) CR(I)-DEA, CR(U)-DEA 

 
(b) EXFA-CR-DEA 

 

(7.14) should be such that all the DMUs constituting the MPS are rendered efficient.  

Thus, the polyhedral cone of feasible weight vectors in (7.14) contains only those which 

are optimal in model (7.1) for all the DMUs comprising the MPS, namely: 

 

                                                                              ℱ 𝑉
ℛ ≡ ℱ 𝕀

ℛ                                                              (7.15) 
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This follows from the fact that the second set of constraints in (7.14) is also the set of 

constraints that define the set ℱ 𝕀
ℛ in (7.4).  In the case where a single DMU 𝑘 ∈  𝔼 is 

the MPS, ℱ 𝑉
𝑘  coincides with ℱ𝑘.   

The weight vectors (𝜉𝑗
𝑘, −𝜔𝑖

𝑘, 휁𝑘) contained in ℱ 𝑉
ℛ are normal to the DEA facets 

(both FDEFs and non FDEFs) intercepting at the MPS, and the VEA frontier is 

constructed as the intersection (i.e., the lower envelope) of these extended facets.  As 

ℱ 𝑉
ℛ may contain more than one weight vectors, (7.14) gives to each evaluated DMU 

the benefit-of-the doubt to choose among them the one that maximizes its efficiency 

score.  Essentially, the VEA efficiency scores can be obtained in a similar process as 

that outlined by Portela and Thanassoulis for the CR-DEA models:  First, estimate (7.1) 

and identify all the DMUs in 𝔼 and the weight vectors that are optimal for each of them 

(i.e., obtain set ℱ𝑘 ∀ 𝑘 ∈ 𝔼).  Second, define the set ℛ containing the DMUs that 

comprise the MPS and obtain the intersection ℱ 𝕀
ℛ ≡ ℱ 𝑉

ℛ of their optimal weight 

vectors.  Notice that the DMUs comprising the MPS should be chosen such that ℱ 𝕀
ℛ ≡

ℱ 𝑉
ℛ ≠ ∅.  Third, for each evaluated DMU, estimate its efficiency score 𝜃𝑘

𝑜 =

(∑ 𝜉𝑗
𝑘𝑦𝑗

𝑜 + 휁𝑘𝐽
𝑗=1 ) ∑ 𝜔𝑖

𝑘𝑥𝑖
𝑜𝐼

𝑖=1⁄  using each of the weight vectors (𝜉𝑗
𝑘, 𝜔𝑖

𝑘, 휁𝑘) ∈ ℱ 𝕀
ℛ.  

The maximum among those efficiency scores will be the VEA score.  If the vector of 

optimal weights for the evaluated DMU in the DEA model in (7.1) is contained in 

(7.15), then the DMU’s VEA efficiency score is equal to its corresponding DEA one.  

Otherwise, the VEA score will be lower than that of the DEA model.  Also, when the 

number of DMUs in ℛ𝑉 is equal to 𝐼 + 𝐽 − 1 (in CRS models) or to 𝐼 + 𝐽 (in VRS 

models), then ℱ 𝑉
ℛ will be a non-empty set and (7.14) will have a feasible solution only 

if the chosen DMUs in ℛ𝑉 jointly generate an FDEF.  In this case, all DMUs will be 

evaluated based on a common vector of strictly positive weights, namely the vector 

normal to the FDEF generated by the DMUs in ℛ𝑉. 

The model in (7.14) can be converted to the following linear model: 
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max
𝑢𝑗

𝑜,𝑣𝑖
𝑜

  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑜

𝐽

𝑗=1

+ 𝑢𝑘

  𝑠. 𝑡.  ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑘 ≤ 0   ∀ 𝑘 ∉ ℛ𝑉  

            ∑ 𝑢𝑗
𝑜𝑦𝑗

𝑘

𝐽

𝑗=1

− ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑘

𝐼

𝑖=1

+ 𝑢𝑘 = 0  ∀ 𝑘 ∈ ℛ𝑉

           ∑ 𝑣𝑖
𝑜𝑥𝑖

𝑜

𝐼

𝑖=1

= 1

           𝑢𝑗
𝑜 ≥ 0                                    ∀ 𝑗

           𝑣𝑖
𝑜 ≥ 0                                    ∀ 𝑖

           𝑢𝑘  𝑓𝑟𝑒𝑒

                                       (7.16) 

 

Then, the polyhedral cone containing the feasible weight vectors in (7.16) for the 

evaluated DMU is given as: 

 

ℱ̃𝑉
𝑜,ℛ = {(𝑢𝑗

𝑘 , 𝑣𝑖
𝑘, 𝑢𝑘) = 𝛽𝑜(𝜉𝑗

𝑘 , 𝜔𝑖
𝑘, 휁𝑘) ∶  (𝜉𝑗

𝑘 , 𝜔𝑖
𝑘, 휁𝑘) ∈ ℱ 𝑉

ℛ  ,   𝛽𝑜 = (∑ 𝜔𝑖
𝑘𝑥𝑖

𝑜

𝐼

𝑖=1

)

−1

} (7.17) 

 

where the first superscript in ℱ̃𝑉
𝑜,ℛ

 refers to the evaluated DMU and the second to the 

set of the DMUs comprising the MPS.  The set ℱ̃𝑉
𝑜,ℛ

 contains the multiples of the weight 

sets in ℱ 𝑉
ℛ that satisfy the normalizing equality in the second constraint in (7.16) for the 

evaluated DMU. 

Using the example in Table 7.1 to demonstrate the VEA model, notice that the 

MPS can be one of the DMUs A, B, C, and D, be a combination of DMUs A and B, a 

combination of DMUs B and C, or a combination of DMUs C and D, since only these 

pairs of DMUs jointly generate a DEA facet.  Let’s assume, without loss of generality, 

that the DM chooses DMU A as the MPS.  Then, each evaluated DMU in the VEA 

model can choose only among the weight vectors 𝐻1 and 𝐻2 which render DMU A 

efficient.  Thus, we have: 

 

                                                             ℱ 𝑉
𝐴 ≡ ℱ 𝕀

𝐴 ≡ ℱ 𝐴 = {𝐻1, 𝐻2}                                                     
 

and the VEA frontier is formed by extending facets f1 and f2 towards the axes (see 

Figure 7.5a).  The VEA scores for the efficient DMU B and the inefficient DMU E will 

be equivalent to their corresponding DEA ones, since at least one among the weight  
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Figure 7.5: VEA efficient frontier for different MPS specifications 

 

 
(c) MPS: DMU A 

 
(d) MPS: DMUs C and D 

 

vectors that are optimal for these DMUs in DEA are contained in ℱ 𝑉
𝐴.  On the other 

hand, this does not occur for the remaining DMUs, which are indicated by a red color 

in Figure 5a.  The VEA scores for these DMUs will be lower than those of the DEA 

model, meaning that DMUs C and D drop from the efficiency list.   

In a similar manner we can define: 

 

 
ℱ 𝑉

𝐵 ≡ ℱ 𝕀
𝐵 ≡ ℱ𝐵 = { 𝐻2, 𝐻3},   ℱ 𝑉

𝐶 ≡ ℱ 𝕀
𝐶 ≡ ℱ𝐶 = { 𝐻3, 𝐻4},   ℱ 𝑉

𝐷 ≡ ℱ 𝕀
𝐷 ≡ ℱ𝐷 = { 𝐻4, 𝐻5}  

ℱ 𝑉
𝐴𝐵 ≡ ℱ 𝕀

𝐴𝐵 = { 𝐻2},   ℱ 𝑉
𝐵𝐶 ≡ ℱ 𝕀

𝐵𝐶 = { 𝐻3},   ℱ 𝑉
𝐶𝐷 ≡ ℱ 𝕀

𝐶𝐷 = { 𝐻4}
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for the remaining options the DM has for choosing the MPS.  From that we can see that 

ℱ 𝑉
ℛ contains only a single vector of strictly positive weights, i.e., 𝐻2 or  𝐻3, when the 

MPS is a combination of two efficient DMUs, since in this case the number of DMUs 

in ℛ𝑉 is equal to 𝐼 + 𝐽 − 1 = 2.  The case where the DM chooses DMUs C and D as 

the MPS is portrayed in Figure 7.5b, in which where we see that, apart from DMUs C 

and D, only DMU I has an optimal weight vector contained in ℱ 𝑉
𝐶𝐷. 

 

7.4. Main results  

 

We may now relate the efficiency scores provided by the CR(𝕀)-DEA, the CR(𝕌)-DEA, 

and the EXFA-CR-DEA model to those of the VEA model, when the set of the model 

DMUs in CR-DEA coincides with that of the DMUs comprising the MPS in VEA, i.e., 

when ℛ𝐶𝑅 ≡ ℛ𝑉 ≡ ℛ ⊆ 𝔼.  In such a case, the four models have the same objective 

function but different feasible regions, which are however subsets of one another.  We 

consider between two cases, namely the case of a single model DMU and the case of 

multiple model DMUs, and we demonstrate these relations through our illustrative 

example in Table 1.   

 

7.4.1. Single model DMU 

 

In this case, it is evident from relations (7.3), (7.4) and (7.5) that ℱ𝕌
𝑘 ≡ ℱ𝑘 ≡ ℱ 𝕀

𝑘 and 

thus, the CR(𝕀)-DEA and CR(𝕌)-DEA models provide the same efficiency scores.  Let 

us assume, for example, that DMU A is chosen as the model DMU in CR-DEA and as 

the MPS in VEA.  Then, the sets of feasible weight vectors in the three variants of the 

CR-DEA model and the VEA model are related as follows: 

 

            ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐴 = { 𝐻2} ⊂  ℱ𝐶𝑅(𝕀)

𝐴 ≡ ℱ 𝕀
𝐴 ≡ ℱ 𝐴 ≡  ℱ 𝑉

𝐴 ≡  ℱ𝐶𝑅(𝕌)
𝐴 ≡ ℱ 𝕌

𝐴 = { 𝐻1, 𝐻2}           

 

from which we deduce that the same efficiency scores will be obtained from the CR-

DEA (CR(𝕀)-DEA or CR(𝕌)-DEA) and VEA models.  These scores will be greater than 

or equal to those obtained from the EXFA-CR-DEA model, since in that all DMUs are 

evaluated based only on the weight vector 𝐻2, while they may or may not secure a 

larger efficiency score based on the weight vector 𝐻3.  The same is the case when DMU 

D is the model DMU or the MPS: ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐷  contains only the weight vector 𝐻4, while 

the sets of feasible weight vectors for the other three models contain also 𝐻5.  On the 
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other hand, when ℛ = {𝐵}, the sets of feasible weight vectors in the three variants of 

the CR-DEA model and the VEA model are related as follows: 

 

                       ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐵 = { 𝐻2, 𝐻3} ≡  ℱ𝐶𝑅(𝕀)

𝐵 ≡ ℱ 𝕀
𝐵 ≡ ℱ𝐵 ≡  ℱ 𝑉

𝐵 ≡  ℱ𝐶𝑅(𝕌)
𝐵 ≡ ℱ 𝕌

𝐵                  

 

In this case we see that the set of feasible weight vectors for all four models coincide 

with each other, and the same efficiency scores will be obtained from each model.  The 

same is true when DMU C is the model DMU or the MPS.  Thus, when a single DMU 

𝑘 ∈ 𝔼 is chosen as the model DMU or as the MPS, the relation between the sets of 

feasible weights in the CR-DEA models and the VEA model is given as: 

 

                          ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝑘 ⊆  ℱ𝐶𝑅(𝕀)

𝑘 ≡ ℱ 𝕀
𝑘 ≡ ℱ𝑘 ≡  ℱ 𝑉

𝑘 ≡ ℱ𝐶𝑅(𝕌)
𝑘 ≡ ℱ 𝕌

𝑘                              (7.18) 

 

and the relation between the efficiency scores obtained, for each evaluated DMU, from 

these models is given as: 

 

                                            𝜃𝐸𝑋𝐹𝐴−𝐶𝑅
𝑜,𝑘 ≤ 𝜃𝐶𝑅(𝕀)

𝑜,𝑘 = 𝜃𝑉
𝑜,𝑘 = 𝜃𝐶𝑅(𝕌)

𝑜,𝑘                                          (7.19) 

 

where θ corresponds to the relevant efficiency scores.  Thus, we have: 

 

PROPOSITION 7.1 (Olesen and Petersen, 2003): Given a single model DMU or MPS, a 

VEA model provides equal efficiency scores to a CR-DEA model in which the set of 

feasible weight vectors is determined by those that are optimal in DEA for the model 

DMU 

 

which confirms the first inference in Olesen and Petersen (2003) about the relation of 

VEA and CR-DEA models.  Relation (7.18) is also deduced by comparing relations 

(7.10), (7.11), (7.13) and (7.15) when only one DMU is included in ℛ.   

Notice that in the general case given by relation (7.18) the model DMU may not 

generate at least one FDEF of the DEA frontier.  In this case ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝑘 = ∅ and the 

EXFA-CR-DEA model will not provide a feasible value for 𝜃𝐸𝑋𝐹𝐴−𝐶𝑅
𝑜,𝑘

. However, in the 

case where the model DMU generates at least one FDEF of the DEA frontier, then we 

have: 

 

PROPOSITION 7.2: Given a single model DMU that generates at least one FDEF, the 

efficiency scores of a VEA model in which this DMU is the MPS are greater than or 
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equal to the scores of a CR-DEA model in which the set of feasible weight vectors is 

given by those vectors with strictly positive input/output weight components, that are 

optimal in DEA for the model DMU. 

 

This establishes the relation between the scores of the VEA and the EXFA-CR-DEA 

models for the case of a single model DMU.  

 

7.4.2. Multiple model DMUs 

 

In this case one needs to distinguish between CR-DEA models, in which the set of 

feasible weight vectors is given by the intersection (i.e., CR(𝕀)-DEA) or the union 

(CR(𝕌)-DEA) of the sets of weights that are optimal in DEA for each of the model 

DMUs. This is because in this case it holds that  ℱ𝐶𝑅(𝕀)
ℛ ⊆ ℱ𝐶𝑅(𝕌)

ℛ  and thus the CR(𝕌)-

DEA model results in efficiency scores that are greater than or equal to those obtained 

from CR(𝕀)-DEA.  In particular, from the relations in (7.10), (7.11), (7.13) and (7.15), 

we obtain the following relation between the sets of feasible weights for the three CR-

DEA variants and VEA: 

 

                              ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
ℛ ⊆  ℱ𝐶𝑅(𝕀)

ℛ ≡ ℱ 𝕀
ℛ ≡  ℱ 𝑉

ℛ ⊆  ℱ𝐶𝑅(𝕌)
ℛ ≡ ℱ 𝕌

ℛ                           (7.20) 

 

This leads to the following: 

 

                                         𝜃𝐸𝑋𝐹𝐴−𝐶𝑅
𝑜,ℛ ≤ 𝜃𝐶𝑅(𝕀)

𝑜,ℛ = 𝜃𝑉
𝑜,ℛ ≤ 𝜃𝐶𝑅(𝕌)

𝑜,ℛ                                             (7.21) 

   

which establishes the relations between the efficiency scores obtained, for each 

evaluated DMU, from the three CR-DEA variants and VEA for the case of multiple 

model DMUs.   

In particular, considering first the CR(𝕌)-DEA and VEA models, we see from 

the relation in (7.21) that the VEA efficiency scores are lower than or equal to those 

provided by the model provides equal efficiency scores to the CR(𝕌)-DEA model.  To 

demonstrate this, consider for example, that ℛ = { 𝐴, 𝐵}, then the sets of feasible 

weight vectors for the evaluated DMUs in the CR(𝕌)-DEA and the VEA models are 

related as follows: 

 

             ℱ 𝑉
𝐴𝐵 = { 𝐻2} ⊂  ℱ𝐶𝑅(𝕌)

𝐴𝐵 ≡ ℱ 𝕌
𝐴𝐵 = { 𝐻1, 𝐻2, 𝐻3}            
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in which case the DMUs may secure a larger efficiency score in the CR(𝕌)-DEA model 

based on one of the weight vectors 𝐻1 and 𝐻3 compared to 𝐻2, which is the only choice 

in the VEA model.  The same is true when ℛ = {𝐵, 𝐶} and ℛ = {𝐶, 𝐷}, since these sets 

contain jointly efficient DMUs.  A similar relation cannot be provided when ℛ is equal 

to either {𝐴, 𝐶}, {𝐴, 𝐷}, or {𝐵, 𝐷}, since the DMUs in these sets do not jointly generate 

a DEA facet.  In these cases, only the CR(𝕌)-DEA model provides feasible solutions.  

Thus, we have: 

 

PROPOSITION 7.3: Given a set of model DMUs that are jointly efficient, a VEA model 

in which these DMUs comprise the MPS provides a lower bound for the efficiency 

score of a CR-DEA model in which the set of feasible weights is given as the union of 

the sets containing the weight vectors that are optimal in the DEA model for each of 

the model DMUs 

 

We now show that the inference in Olesen and Petersen (2003) about the relation of 

CR-DEA and VEA models for the case of multiple model DMUs, is true.  More 

specifically, when each of the extreme-efficient DMUs A, B, C, and D in our illustrative 

example is the MPS, the sets of feasible weight vectors in the VEA model are given as 

ℱ 𝑉
𝐴 = {𝐻1, 𝐻2}, ℱ 𝑉

𝐵 = { 𝐻2, 𝐻3}, ℱ 𝑉
𝐶 = { 𝐻3, 𝐻4} and ℱ 𝑉

𝐷 = { 𝐻4, 𝐻5} respectively.  

Furthermore, when DMUs A and B are chosen as model DMUs in a CR(𝕌)-DEA model, 

the set of feasible weight vectors is given as ℱ𝐶𝑅(𝕌)
𝐴𝐵 ≡  ℱ 𝕌

𝐴𝐵  = { 𝐻1, 𝐻2, 𝐻3}.  From 

these we obtain the following relation:   

 

                                        ℱ𝐶𝑅(𝕌)
𝐴𝐵 ≡  ℱ 𝕌

𝐴𝐵  = { 𝐻1, 𝐻2, 𝐻3} = ℱ 𝑉
𝐴 ∪ ℱ 𝑉

𝐵                                            

 

namely that the set of feasible weight vectors for the CR(𝕌)-DEA model is the union 

of sets containing the feasible weight vectors in the two VEA models in which DMUs 

A and B are respectively the MPS.  A similar relation can be deduced when any other 

combination of the DMUs A, B, C, and D is chosen as model DMUs in a CR(𝕌)-DEA 

model.  Thus, we have: 

  

                                                               ℱ𝐶𝑅(𝕌)
ℛ = ⋃ ℱ 𝑉

𝑘
𝑘∈ℛ                                                             (7.22)  
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namely that the set of feasible weight vectors for the CR(𝕌)-DEA model given a set ℛ 

of model DMUs is the union of sets containing the feasible optimal weight vectors in 

every VEA model in which one of the DMUs in set ℛ is used as the MPS.  This means 

that the efficiency score of the CR(𝕌)-DEA model can be obtained as follows:  

 

                                                              𝜃𝐶𝑅(𝕌)
𝑜,ℛ = max

𝑘∈ℛ
{𝜃𝑉

𝑜,𝑘}                                                         (7.23) 

  

Thus, we have: 

 

PROPOSITION 7.4 (Olesen and Petersen, 2003): Given a set ℛ of model DMUs, the 

efficiency scores of a CR-DEA model in which the set of feasible weights is the union 

of the sets containing the weight vectors that are optimal in the DEA model for each of 

the model DMUs can be obtained, for each evaluated DMU, as the maximum among 

the efficiency scores obtained from a number of VEA models equal to the number of 

DMUs in ℛ, each of which uses a single model DMU 𝑘 ∈ ℛ as the MPS 

 

The relation in (7.23) can be rewritten, using relation (7.19), as follows: 

 

                                              𝜃𝐶𝑅(𝕌)
𝑜,ℛ = max

𝑘∈ℛ
{𝜃𝐶𝑅(𝕀)

𝑜,𝑘 } = max
𝑘∈ℛ

{𝜃𝐶𝑅(𝕌)
𝑜,𝑘 }                                          (7.24) 

  

which demonstrates that, in the case of multiple model DMUs, the efficiency scores of 

the CR(𝕌)-DEA can also be obtained as the maximum among the efficiency scores of 

different CR-DEA models using one of the DMUs in set ℛ as the model DMU.  We 

thus have:  

  

PROPOSITION 7.5: Given a set ℛ of model DMUs, the efficiency scores of a CR-DEA 

model in which the set of feasible weight vectors is defined as the union of the sets 

containing the weight vectors that are optimal in the DEA model for each of the model 

DMUs can be obtained as the maximum among the efficiency scores obtained from a 

number of CR-DEA models equal to the number of DMUs in ℛ, each of which uses a 

single DMU 𝑘 ∈ ℛ as the model DMU. 

 

We now consider the relations between the CR(𝕀)-DEA and VEA models. From the 

relation in (7.21) we see that that the VEA model provides equal efficiency scores to 

the CR(𝕀)-DEA model, provided that the DMUs in set ℛ jointly generate at least one 

facet of the DEA frontier. Thus, we have:  
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PROPOSITION 7.6: Given a set of model DMUs that are jointly efficient, a VEA model 

in which these DMUs comprise the MPS provides equal efficiency scores to a CR-DEA 

model in which the set of feasible weight vectors is defined as the intersection of the 

sets containing the weight vectors that are optimal in the DEA model for each of the 

model DMUs 

 

We now show that relation similar to that deduced by Olesen and Petersen (2003) for 

the about the CR(𝕌)-DEA and the VEA model in the case of multiple model DMUs, 

can also be obtained for the CR(𝕀)-DEA and the VEA models. In particular, when 

DMUs A and B are chosen as model DMUs in a CR(𝕀)-DEA model, we obtain the 

following relation between the sets of feasible weight vectors in the CR(𝕀)-DEA model 

and in the VEA models in which either DMU A or B is the MPS:   

 

                                                     ℱ𝐶𝑅(𝕀)
𝐴𝐵 ≡  ℱ 𝕀

𝐴𝐵 = { 𝐻2} = ℱ 𝑉
𝐴 ∩ ℱ 𝑉

𝐵                                               

 

namely that the set of feasible weight vectors for the CR(𝕀)-DEA model is the 

intersection of the sets containing the feasible weight vectors in the two VEA models 

in which DMUs A and B are respectively the MPS.  A similar relation can be inferred 

when ℛ = {𝐵, 𝐶} and ℛ = {𝐶, 𝐷} in a CR(𝕀)-DEA model.  Thus, we have the following 

relation: 

  

                                                                  ℱ𝐶𝑅(𝕀)
ℛ = ⋂ ℱ 𝑉

𝑘
𝑘∈ℛ                                                          (7.25)  

 

For some for the evaluated DMUs, one of the weight vectors that are optimal (i.e., 

maximize the DMU’s efficiency) within each of the ℱ 𝑉
𝑘 , 𝑘 ∈ ℛ will also be included 

in ℱ𝐶𝑅(𝕀)
ℛ , in which case one can obtain the CR(𝕀)-DEA efficiency scores as 𝜃𝐶𝑅(𝕀)

𝑜,ℛ =

min
𝑘∈ℛ

{𝜃𝑉
𝑜,𝑘}.  For other DMUs, ℱ𝐶𝑅(𝕀)

ℛ  may not contain any of the weight vectors that are 

optimal within each of the ℱ 𝑉
𝑘 , 𝑘 ∈ ℛ. In these cases, 𝜃𝐶𝑅(𝕀)

𝑜,ℛ < min
𝑘∈ℛ

{𝜃𝑉
𝑜,𝑘}.  Thus, we 

have that:  

 

                                                                𝜃𝐶𝑅(𝕀)
𝑜,ℛ ≤ min

𝑘∈ℛ
{𝜃𝑉

𝑜,𝑘}                                                          (7.26) 

  

which leads to the following: 
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PROPOSITION 7.7: Given a set ℛ of model DMUs, the efficiency scores of a CR-DEA 

model in which the set of feasible weight vectors is the intersection of the sets 

containing the weight vectors that are optimal in the DEA model for each of the model 

DMUs are lower than or equal to the minimum among the efficiency scores obtained 

from a number of VEA models equal to the number of DMUs in ℛ, each of which uses 

a single model DMU 𝑘 ∈ ℛ as the MPS 

 

Thus, in the case of multiple model DMUs the minimum among a series of VEA 

models, each of which uses one of the model DMUs as the MPS, provides an upper 

bound for the efficiency scores of the CR(𝕀)-DEA model.  Notice that this upper bound 

can also be obtained using CR-DEA instead of VEA models.  In particular, we can use 

relation (7.19) to rewrite the inequality in (26) as 

 

                                             𝜃𝐶𝑅(𝕀)
𝑜,ℛ ≤ min

𝑘∈ℛ
{𝜃𝐶𝑅(𝕀)

𝑜,𝑘 } = min
𝑘∈ℛ

{𝜃𝐶𝑅(𝕌)
𝑜,𝑘 }                                             (7.27) 

  

We thus have:  

  

PROPOSITION 7.8: Given a set ℛ of model DMUs, the efficiency scores of a CR-DEA 

model in which the set of feasible weight vectors is defined as the intersection of the 

sets containing the weight vectors that are optimal in the DEA model for each of the 

model DMUs are lower than or equal to the minimum among the efficiency scores 

obtained from number of CR-DEA models equal to the number of DMUs in ℛ, each of 

which uses a single DMU 𝑘 ∈ ℛ as the model DMU. 

 

Considering the relation between the efficiency scores obtained from the VEA and the 

EXFA-CR-DEA model in the case of multiple model DMUs, note that for the EXFA-

CR-DEA model to result in feasible solutions, the model DMUs need not only to be 

jointly efficient but also jointly generate at least one FDEF.  In this case we have the 

following from relation (7.21): 

 

PROPOSITION 7.9: Given a set of model DMUs that are jointly efficient and generate at 

least one FDEF of the DEA frontier, a VEA model in which these DMUs comprise the 

MPS provides an upper bound for the efficiency score of a CR-DEA model in which 

the set of feasible weight vector contains only vectors with strictly positive input and 
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output weight components, each of which is optimal in the DEA model for all the model 

DMUs 

 

A special case of the above relation arises when the number of DMUs in set ℛ equals 

the largest number of DMUs that can jointly generate a facet of the DEA frontier.  In 

our illustrative example this number is equal to two DMUs.  If, for example, ℛ =

{𝐴, 𝐵}, then the sets of feasible weight vectors for the evaluated DMUs in the CR-DEA 

models and the VEA model are related as follows: 

 

            ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
𝐴𝐵 = { 𝐻2} =  ℱ𝐶𝑅(𝕀)

𝐴𝐵 ≡ ℱ 𝕀
𝐴𝐵 ≡  ℱ 𝑉

𝐴𝐵 ⊂  ℱ𝐶𝑅(𝕌)
𝐴𝐵 ≡ ℱ 𝕌

𝐴𝐵 = { 𝐻1, 𝐻2, 𝐻3}            

 

in which case the same efficiency scores are obtained from the EXFA-CR-DEA and 

the VEA models for each evaluated DMU, since both models will evaluate each DMU 

based on a common vector of strictly positive input and output weights.  The same is 

true when ℛ = {𝐵, 𝐶} and ℛ = {𝐶, 𝐷}, since these sets contain jointly efficient DMUs.  

A similar relation cannot be provided when ℛ is equal to either {𝐴, 𝐶}, {𝐴, 𝐷}, or {𝐵, 𝐷}, 

since the DMUs in these sets do not jointly generate a DEA facet.  Thus, when the set 

ℛ comprises of exactly 𝐼 + 𝐽 − 1 (in CRS models) or 𝐼 + 𝐽 jointly efficient DMUs (in 

VRS models), the relation between the sets of feasible weight vectors in the CR-DEA 

models and the VEA model is given as: 

 

                         ℱ𝐸𝑋𝐹𝐴−𝐶𝑅
ℛ ≡  ℱ𝐶𝑅(𝕀)

ℛ ≡  ℱ 𝕀
ℛ ≡  ℱ 𝑉

ℛ ⊂  ℱ𝐶𝑅(𝕌)
ℛ ≡ ℱ 𝕌

ℛ                               (7.28) 

  

and the relation between the efficiency scores obtained, for each evaluated DMU, from 

these models is given as: 

 

                                         𝜃𝐸𝑋𝐹𝐴−𝐶𝑅
𝑜,ℛ = 𝜃𝐶𝑅(𝕀)

𝑜,ℛ = 𝜃𝑉
𝑜,ℛ ≤ 𝜃𝐶𝑅(𝕌)

𝑜,ℛ                                            (7.29) 

 

respectively.  Thus, we have: 

 

COROLLARY: Given a set of 𝐼 + 𝐽 − 1 (𝐼 + 𝐽) jointly efficient model DMUs, a CRS 

(VRS) VEA model in which these DMUs comprise the MPS provides equal efficiency 

scores to a CRS (VRS) CR-DEA model in which the set of feasible weight vectors 

contains only vectors that (i) are optimal the DEA model for all the model DMUs, and 

(ii) contain strictly positive input and output weight components 
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Lastly, one can use the results in Propositions 7.6 and 7.7 to obtain a relation concerning 

the VEA efficiency scores in the case that multiple DMUs comprise the MPS.  In 

particular, combining relations (7.21) and (7.26), we obtain: 

 

                                                                  𝜃𝑉
𝑜,ℛ ≤ min

𝑘∈ℛ
{𝜃𝑉

𝑜,𝑘}                                                           (7.30) 

  

which results to the following Proposition: 

 

PROPOSITION 7.10: Given a set ℛ of jointly efficient DMUs, the efficiency scores of a 

VEA model in which these DMUs jointly comprise the MPS are lower than or equal to 

the minimum among the efficiency scores obtained from a number of VEA models 

equal to the number of DMUs in ℛ, each of which uses a single DMU 𝑘 ∈ ℛ the MPS. 

 

Lastly, from the relations in (7.21), (7.24), (7.27) and (7.30) we get the following: 

 

                
𝜃𝐹𝐷𝐸𝐹−𝐶𝑅

𝑜,ℛ ≤ 𝜃𝐶𝑅(𝕀)
𝑜,ℛ = 𝜃𝑉

𝑜,ℛ ≤ min
𝑘∈ℛ

{𝜃𝑉
𝑜,𝑘} = min

𝑘∈ℛ
{𝜃𝐶𝑅(𝕀)

𝑜,𝑘 } =                     

= min
𝑘∈ℛ

{𝜃𝐶𝑅(𝕌)
𝑜,𝑘 } ≤ max

𝑘∈ℛ
{𝜃𝑉

𝑜,𝑘} = max
𝑘∈ℛ

{𝜃𝐶𝑅(𝕀)
𝑜,𝑘 } = max

𝑘∈ℛ
{𝜃𝐶𝑅(𝕌)

𝑜,𝑘 } = 𝜃𝐶𝑅(𝕌)
𝑜,ℛ

             (7.31)  

 

which provides an overview of the identified relations between the three CR-DEA 

variants and VEA in the case that multiple DMUs are chosen as model DMUs or 

comprise the MPS. 

An immediate implication of our theoretical results is that, given an arbitrary 

set of model DMUs, the efficiency scores of different CR-DEA variants can be 

estimated or approximated by means of either a single VEA model or a series of VEA 

models.  In particular, the CR(𝕀)-DEA efficiency scores can be obtained by estimating 

a VEA model in which the model DMUs jointly comprise the MPS, while the CR(𝕌)-

DEA scores can be obtained by estimating a series of VEA models, each of which uses 

a different DMU among those in set ℛ as the MPS, and then choosing--for each 

evaluated DMU--the maximum among those VEA efficiency scores.  On the other 

hand, an upper bound for the EXFA-CR-DEA scores can be obtained by means of a 

VEA model in which the model DMUs jointly comprise the MPS, while if the number 

of DMUs in set ℛ is equal to 𝐼 + 𝐽 − 1 in CRS models (or 𝐼 + 𝐽 in VRS models) then 

the VEA model will provide efficiency scores that are equal  to those of the EXFA-CR-

DEA model.  The practical usefulness of these results for empirical applications is that 

the estimation process of CR-DEA efficiency scores is simplified.  In contrast to the 
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CR-DEA models, which would require identifying the facets of the DEA frontier in a 

prior step, the estimation of VEA models involves simply changing some linear 

inequalities in the DEA model in (7.1) to equalities.   

The discussion in this section concerned model DMUs or MPSs chosen among 

the set of extreme-efficient DMUs.  However, the above results also hold if the DM 

chooses a non-extreme efficient DMU as model DMU or as the MPS.  The same is true 

for choosing a weakly efficient DMU, except for the results concerning the EXFA-CR-

DEA model.  The cone of feasible weights in this model includes only vectors with 

positive input and output weight components.  Thus, this model will not have a feasible 

solution when a weakly efficient DMU --for which all optimal weight vectors in model 

(7.1) contain at least one zero input or output weight component-- is included in the set 

of model DMUs. 

In case the DM includes a DEA-inefficient DMU in the set of model DMUs, it 

is straightforward from the model in (7.14) that the VEA model will not provide feasible 

solutions, despite the fact that ℱ𝑘 for this DEA-inefficient DMU will include at least 

one weight vector.  This is because the model in (7.14) cannot provide feasible solutions 

if at least one among the DMUs comprising the MPS has an efficiency score lower than 

unity, as in this case the second set of restrictions would be violated.  However, this 

inconvenience can be circumvented by using as the MPS the chosen DMUs’ radial 

projection (𝑦𝑗
𝑘′, 𝑥𝑖

𝑘′) = (𝑦𝑗
𝑘, 𝜃𝐷𝐸𝐴

𝑘 𝑥𝑖
𝑘), where 𝜃𝐷𝐸𝐴

𝑘  is the efficiency score obtained by 

the model in (1) for the DMU. By definition, the set ℱ𝑘′ for (𝑦𝑗
𝑘′, 𝑥𝑖

𝑘′) contains the same 

weight vectors as the set ℱ𝑘.  Thus, the results in this paper hold also when a DEA-

inefficient DMU is among the set of model DMUs, provided that its radial projection is 

used as the MPS in the VEA models estimated in order to obtain the CR-DEA efficiency 

scores. 

 

7.5. Empirical application: Japanese regional banks 

 

7.5.1. Preliminaries 

 

In this section we demonstrate our theoretical findings by using a sample of Japanese 

regional banks. The Japanese banking sector has endured several hurdles in the last 

decades, including the busting of the real estate bubble in the 1990s, the global financial 

crisis of 2008 (Hoshi and Kashyap, 2010) and the Great East Japan Earthquake in 2011 
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(Kourtzidis et al., 2021). As such, it has undergone major changes including continuous 

government interventions to stabilize it.111  These changes, along with specificities in 

the Japanese banking system compared to that of other developed economies have 

attracted much scientific interest in assessing the performance of Japanese banks. The 

majority of these studies has used DEA models for evaluating efficiency.112 

 

7.5.2. Sample, variables and modelling choices 

 

Japanese regional banks usually operate with the boundaries of a specific prefecture. 

There are two distinct groups, namely those being members of the Regional Banks 

Association of Japan (hereafter Regional Banks I) and those comprising the Second 

Association of Regional Banks (Regional Banks II).113 The latter were originally joint 

stock companies (“Sogo Banks”), which were allowed to convert into ordinary regional 

banks in the end of the 1980s (Fukuyama, 1993).  The two groups of banks are 

nowadays very similar in their operations but differ in various aspects such as their size 

and the restructuring processes underwent in the past (see, e.g., Drake et al., 2003).  

For our purposes, we use a sample of 30 regional banks for the fiscal year 

2017.114  These comprise roughly 30% of the 105 regional banks (64 of Regional Banks 

I and 41 of Regional Banks II) operating in that year and their selection is based on 

their relative size expressed as their share of deposits over the total sample deposits.  In 

particular, among the banks for which complete data was available (51 of Regional 

Banks I and 23 of Regional Banks II) we have selected the 20 largest among the 

subsample of Regional Banks I and the 10 largest among the Regional Banks II 

subsample.  

 The selection of inputs and outputs follows the intermediation approach, in 

which banks are viewed as intermediates between borrowing and lending entities 

(Berger & Humphrey, 1992).  In particular, we use three inputs, namely the total 

number of employees and the stocks of fixed assets and deposits, and two outputs, 

namely the stocks of loans and security investments. All variables except the number 

 

 

111 See Fukuyama (1993) and Fukuyama and Weber (2002) for an overview of developments in the 

Japanese baking system since the 1990s reforms.   
112 See Kourtzidis et al. (2021) for a recent detailed review of these studies. 
113 A full list of members in those groups is provided in JBA (2019). 
114 The Japanese fiscal year begins on April 1st, end ends the following year on March 31st. 
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of employees are measured in million Yen and were collected from the banks’ balance 

sheets which are publicly provided by the Japanese Banks’ Association. Data for the 

number of employees are collected from DataStream. Descriptive statistics of the 

model’s variables are given in Table 7.2.  In line with the majority of studies using DEA 

to assess banking performance (see, e.g., Fethi and Pasiouras (2010) for a review) our 

models are input-oriented.  We adopt constant returns-to-scale, which is a reasonable 

modelling choice as the two groups of regional banks nowadays perform similar 

operations and operate under the same framework (Kourtzidis et al., 2021).  

 

7.5.3. Empirical results. 

 

The names of the selected banks are given in column (1) of Table 7.3, while column (2) 

portrays respectively each bank’s regional group (I or II).  The DEA efficiency scores 

are given in column (3).  The average efficiency score is 0.946, indicating that, on 

average, a bank could attain its given production of loans and securities with roughly 

5% less input usage.  This rather low level of inefficiency resonates with (i) latest 

evidence for improvements in Japanese banking performance in the years after the 2011 

Earthquake (Kourtzidis et al., 2021) and (ii) historical evidence that larger Japanese 

banks --which comprise our sample--perform relatively well (see, e.g., Fukuyama, 

1993; Drake and Hall, 2003).  Additional room for performance improvement appears 

to be larger for Regional Banks II, which are on average less efficient compared to those 

belonging to the first group (average score 0.918 versus 0.961).  There are 10 efficient 

banks, eight from group I and two from group II. 

Let us now assume that DMs (e.g., authorities such as the Bank of Japan) wish 

to compare the performance of each bank in the sample to that of some model banks by 

means of CR-DEA models. These model banks will be some among those technically 

efficient in Table 7.3, which are viewed as excellent performers.  For example, given 

that SMEs financing is a core part of the regional banks’ operations and also vital for 

the local economy (see, e.g., Fukuyama, 1993), excellence could be viewed as having 

an output mix relying heavily on loans.  In this case, Kansai Urban Banking Corporation 

should be chosen as the model, as it has the largest share of loans in its output mix 

among the efficient banks.  Alternatively, excellence might be viewed as receiving good 

ratings by international credit rating organisations.  Chiba bank is an efficient bank that  
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Table 7.2: Descriptive statistics of model variables 

 

 

fixed assets 

(bn ¥) 

employees 

(thousands) 

deposits 

(bn ¥) 

loans (bn 

¥) 

investment 

securities (bn ¥) 

average 50.011 2.767 4961.282 3755.226 1463.122 

minimum 23.871 1.448 1849.584 1385.955 154.340 

maximum 96.120 4.543 11565.778 9305.388 3242.629 

median 43.393 2.671 4649.862 3371.830 1459.670 

standard deviation 20.649 0.903 2263.679 1817.374 848.512 

 

had high credit ratings in the period prior to 2017 (Kourtzidis et al., 2021) and thus 

could be another choice for the model bank.   

To estimate the two CR-DEA models (CR(𝕀)-DEA or CR(𝕌)-DEA, as in these 

cases their scores are equivalent) in which the model bank is respectively Kansai Urban 

Banking Corporation and Chiba Bank, one would need to identify (possibly by means 

of the Qhull sofware) all facets generated by each of these two banks --irrespective of 

their dimension-- and the weight vectors associated with each facet.  Then, for each 

evaluated DMU, efficiency scores should be estimated using each different weight 

vector and the maximum among these scores would be the DMUs’ CR-DEA score.  By 

virtue of Proposition 7.1, these scores can be obtained by means of VEA models in 

which the model banks are the MPS.  The associated VEA efficiency scores are given 

in columns (4) and (5) of Table 7.3.  From that we see that six banks drops from the 

efficient frontier when Kansai Urban Banking Corporation is used as the model bank, 

all of which are Regional Banks I.  Average efficiency score drops to 0.918, while 21 

banks in total exhibit efficiency declines compared to the DEA model.  The authorities 

could advice these banks to shift their output mix more towards loan provision in the 

future.  On the other hand, when Chiba Bank is the model bank, average efficiency is 

equal to 0.908 and 20 out of the 30 sample banks have lower efficiency scores compared 

to their respective DEA ones.  

Alternatively, membership in the first or in the second Association of regional 

banks could be used as a criterion for choosing the model banks.  Although at present 

there are no functional differences between banks of the two Associations, the two 

groups differ in certain aspects.  For example, Regional Banks I are larger than those in 

group II and, as is the case in the resent study, they also tend to perform better on 

average (see e.g., Barros et al., 2012; Kourtzidis et al., 2021).  Based on this, DMs 

could opt for a model bank that is part of group I.  Second, banks of the Second Regional 
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Table 7.3: Empirical results from CR-DEA and VEA models for a sample of Japanese banks, 2017 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Bank          group DEA VEA VEA VEA VEA CR(U)-DEA VEA min{(8),(9)} EXFA-CR-DEA 

ID of model/MPS bank(s)   - {554} {134} {143} {525} {143, 525} {143, 525} - {143, 525} 

Chiba Bank I  1.000 0.985 1.000 1.000 0.985 1.000 0.981 0.985 0.981 

Shizuoka Bank I  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Joyo Bank I  0.983 0.937 0.983 0.971 0.942 0.971 0.940 0.942 0.940 

77 Bank I  1.000 0.866 1.000 1.000 0.901 1.000 0.901 0.901 0.901 

Hiroshima Bank I  0.981 0.978 0.981 0.960 0.979 0.979 0.960 0.960 0.960 

Bank of Kyoto I  1.000 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Gunma Bank I  1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Hachijuni Bank I  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Chugoku Bank I  1.000 0.936 0.974 1.000 0.982 1.000 0.982 0.982 0.970 

Juroku Bank I  0.883 0.879 0.855 0.883 0.883 0.883 0.883 0.883 0.883 

Toho Bank I  0.865 0.808 0.865 0.863 0.815 0.863 0.815 0.815 0.815 

Iyo Bank I  0.992 0.978 0.961 0.988 0.992 0.992 0.988 0.988 0.988 

Ogaki Kyoritsu Bank I  0.991 0.991 0.911 0.991 0.991 0.991 0.991 0.991 0.975 

Yamaguchi Bank I  0.890 0.890 0.747 0.890 0.890 0.890 0.890 0.890 0.859 

Nanto Bank I  0.895 0.869 0.885 0.895 0.895 0.895 0.895 0.895 0.895 

Hyakugo Bank I  1.000 0.845 0.864 0.950 0.926 0.950 0.926 0.926 0.895 

Shiga Bank I  0.960 0.953 0.952 0.956 0.960 0.960 0.956 0.956 0.956 

Daishi Bank I  0.937 0.898 0.913 0.937 0.935 0.937 0.935 0.935 0.929 

Higo Bank I  0.922 0.904 0.906 0.922 0.922 0.922 0.922 0.922 0.922 

Suruga Bank I  0.909 0.909 0.884 0.853 0.873 0.873 0.853 0.853 0.853 

Keiyo Bank II 0.933 0.932 0.931 0.908 0.933 0.933 0.908 0.908 0.908 

Kansai Urban Banking Corporation II 1.000 1.000 0.950 1.000 1.000 1.000 1.000 1.000 1.000 

Bank of Nagoya II 0.896 0.887 0.871 0.896 0.896 0.896 0.896 0.896 0.896 

Minato Bank II 0.893 0.893 0.793 0.893 0.893 0.893 0.893 0.893 0.877 

Aichi Bank II 0.951 0.843 0.859 0.905 0.897 0.905 0.894 0.897 0.877 

Tochigi Bank II 0.830 0.830 0.775 0.830 0.830 0.830 0.830 0.830 0.825 

Yachiyo Bank II 0.849 0.810 0.769 0.847 0.849 0.849 0.847 0.847 0.829 

Towa Bank II 0.884 0.829 0.791 0.884 0.884 0.884 0.884 0.884 0.857 

Ehime Bank II 0.948 0.924 0.879 0.941 0.948 0.948 0.941 0.941 0.931 

Higashi-Nippon Bank II 1.000 1.000 0.942 1.000 1.000 1.000 1.000 1.000 1.000 

efficient banks  10 4 6 9 6 9 6 6 6 

average   0.946 0.918 0.908 0.939 0.933 0.942 0.930 0.931 0.924 
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Association have undergone a different restructuring process in the turn of the century 

compared to Regional Banks I.  Both groups received capital injections but regional 

banks II had to cope with their bad loans by themselves.  On this basis, one could argue 

that the efficient regional banks II have accumulated significant managerial abilities as 

a result of enduring more turbulence over the years. 

Let us assume that DMs choose one model bank from each of the two groups 

(Hachijuni Bank from group I and Higashi-Nippon Bank from group II) and force each 

evaluated bank to be compared with at least one of the two model banks by means of a 

CR(𝕌)-DEA model.  This could be a compromise solution to disagreements among 

DMs on which of the two should be used as model bank.  It could also reflect the view 

that smaller banks (group II) should not be forced to compare their performance to that 

of a medium-sized bank (the group I model bank) and vice versa.  The CR(𝕌)-DEA 

efficiency scores can, by virtue of Proposition 7.4, be obtained without the need to 

identify the cone of feasible weights as the maximum among the efficiency scores of 

two different VEA models in which Hachijuni Bank and Higashi-Nippon Bank are 

respectively the MPS.  The scores of these two VEA models are given in columns (6) 

and (7) of Table 7.3, while the CR(𝕌)-DEA score (their maximum) is given in column 

(8).  From that we see that only one bank drops from the efficient frontier while the 

average efficiency score is only slightly below that of the DEA model (0.942 versus 

0.946). It is interesting to notice that, for three banks of the regional I group (Iyo Bank, 

Shiga Bank, and Suruga Bank) the CR(𝕌)-DEA efficiency score corresponds to the 

score of the VEA model in which the MPS is a group II bank (Higashi-Nippon Bank).  

The reverse holds for Aichi Bank which is part of the regional II group.  This could be 

taken as evidence that the operations of banks from different Regional Associations 

have over time converged enough, so that banks of the one Association can serve as 

benchmarks for banks in the other. 

The similarities in the operations of regional banks I and II is also indicated by 

the fact that banks of both Regional Associations appear as peers for inefficient banks 

in the DEA model.  This is the case for Hachijuni Bank and Higashi-Nippon Bank as 

well.  Thus, DMs could have also used a CR(𝕀)-DEA model in which the set of model 

DMUs includes both these banks for performance evaluation.  By virtue of Proposition 

7.6 the scores of such a model are equivalent to those of a VEA model in which 

Hachijuni Bank and Higashi-Nippon Bank jointly comprise the MPS and are given in 
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column (9) of Table 7.3.  We see that average efficiency declines slightly compared to 

that of the DEA model while four banks drop from the efficiency list, all of which are 

part of group I.  For comparison, the minimum among the scores of the two VEA 

models in which Hachijuni Bank and Higashi-Nippon Bank are used as the sole MPS 

(i.e., the minimum of the scores in columns (6) and (7) for each bank) is given in column 

(10).  A comparison among the scores in columns (9) and (10) reveals that, for each 

bank, the former score is lower than or equal to the latter.  In particular, there are three 

banks (Chiba Bank, Joyo Bank, and Aichi Bank) for which the VEA score in column 

(9) is lower than the minimum among the scores in columns (6) and (7). This is in 

accordance with Propositions 7.7, 7.8 and 7.10.  In addition, by comparing the scores 

in columns (8) and (9), we see that the efficiency scores of the VEA model, in which 

Hachijuni Bank and Higashi-Nippon Bank jointly comprise the MPS, are lower than or 

equal to those of the CR(𝕌)-DEA model, in which these two banks are the models. This 

is in accordance with Proposition 7.3.  

Lastly, let us assume that DMs choose as Hachijuni Bank and Higashi-Nippon 

Bank as the model banks but also wish to evaluate all banks based on well-defined input 

and output weights using an EXFA-CR-DEA model.  This would require estimating 

the mixed-integer model in (7.12).  Alternatively, following the approach outlined in 

Thanassoulis et al. (2008), one would need to identify all the FDEFs jointly generated 

by Hachijuni Bank and Higashi-Nippon Bank and the weight vectors that are normal to 

each of them, estimate the efficiency scores of each banks using each of these weight 

vectors and selecting the maximum among these scores.  Using the approach outlined 

in Davtablab-Olyaie et al. (2014), we identified three FDEFs jointly generated by the 

two model banks and the weight vectors normal to each of them.115  We estimated the 

efficiency scores of each evaluated bank using each of these weight vectors and selected 

the maximum among these scores, which is given in column (11) of Table 7.3.  

Comparing these with the scores of the VEA model in which the two model banks 

jointly comprise the MPS (column (9)), we see that the efficiency scores of VEA model 

 

 

115 These FDEFs are generated by Hachijuni Bank and Higashi-Nippon Bank jointly with (i) Shizuoka 

Bank and Gunma Bank, (ii) Shizuoka Bank and Kansai Urban Banking Corporation, and (iii) Bank of 

Kyoto and Gunma Bank. 
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constitute an upper bound for those of the EXFA-CR-DEA model.  This is in 

accordance with Proposition 7.9. 

 

7.6. Concluding remarks 

 

CR-DEA models are suitable for incorporating DM views about excellent performing 

DMUs that should serve as role-models for others.  However, their estimation has up 

to today remained rather complicated task as it required to identify all the efficient 

facets of the DEA frontier and the weight vectors normal to each of them. 

In this paper, we elaborated more on the relations between VEA and CR-DEA 

models including DM preferences in the form of model DMUs for two different 

specifications for the set of model DMUs, namely that it comprises of a single DMU 

and that it contains multiple DMUs.   In the latter specification we distinguished 

between two CR-DEA variants, namely CR(𝕀)-DEA and CR(𝕌)-DEA, in which the set 

of feasible weights is respectively specified as the intersection and the union of the sets 

containing the weight vectors that are optimal in DEA for each model DMU.  In 

addition, for both settings we considered the EXFA-CR-DEA model, for which the set 

of feasible weight vectors contains only those vectors with strictly positive components, 

each of which is optimal in DEA for all the model DMUs.  Our results suggest that in 

both specifications, EXFA-CR-DEA provides the minimum efficiency score among all 

four models, CR(𝕌)-DEA provides the maximum score, while VEA and CR(𝕀)-DEA 

provide equal scores to each other. In addition, the only difference in the four models’ 

relations across the two specifications lies in the relation between VEA and CR(𝕌)-

DEA. The two models provide equal efficiency scores for the case of a single model 

DMU, while when there are multiple model DMUs the CR(𝕌)-DEA efficiency scores 

are larger than or equal to those of VEA. 

The results of this paper provide a detailed overview of the relations between 

VEA and CR-DEA models.  These extend earlier inferences in the relevant literature 

and provide a means to simplify the estimation of CR-DEA models.  In particular, and 

regardless of the number of model DMUs chosen by the DM, estimating a VEA model 

or a series of VEA models suffices to obtain the efficiency scores of the CR(𝕀)-DEA 

and the CR(𝕌)-DEA models respectively.  Our results can accommodate the inclusion 

of a DEA-inefficient DMU in the set of model DMUs, while they also hold for different 

returns-to-scale assumptions.  As regards returns to scale, VRS VEA models have been 
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shown to provide unacceptable (e.g., zero and negative) efficiency scores (Korhonen et 

al., 2002).  A promising avenue for future research would be to investigate, based on 

the results identified in the paper, the implications of this for the efficiency scores of 

different CR-DEA models. 
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CHAPTER 8 
 

Concluding remarks 

 

8.1. Summary 

 

The aim of this thesis is to analyze several theoretical and empirical aspects of VEA.  

VEA is a method that uses the notion of the MPS to incorporate the preferences of a 

DM, namely a social planner, regulator, or manager, in the measurement of relative 

technical efficiency through DEA models.  Up to today, its use for decision-making 

problems in which DM preferences are frequently accounted for, such as the evaluation 

of effectiveness and cross efficiency, was not considered, while its potential 

relationships with other approaches incorporating preferences in DEA models were not 

thoroughly investigated. 

Chapters two to four, which comprise the first part of this thesis, are the 

empirical essays.  In the first of them, we used VEA as an alternative for effectiveness 

assessment by incorporating DMs’ views about the DMUs that are “doing the right 

things” in the choice of the MPS.  The VEA efficiency scores were then viewed as 

effectiveness estimates and further decomposed into one component capturing 

technical efficiency and another capturing the DMUs’ relative distance from the DM’s 

range of desirable structures.  We demonstrated the usefulness of the approach by using 

it to assess the effectiveness of countries in utilizing their income to develop their 

citizens’ social prosperity or human capabilities.   

In the second empirical essay, we proposed the use of VEA as a means to 

incorporate DM preferences in the construction of composite indicators, by developing 

the VEA-BoD model.  This was then used to re-estimate the UN HDI.   

In the third empirical essay, we assessed the implications of MPS choice for the 

VEA efficiency scores.  We reviewed the various suggestions proposed for choosing 

the MPS in the VEA literature and presented some new, which are based respectively 
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on the relative position of efficient DMUs on the DEA frontier, MPSS DMUs, the APU, 

and common weights.  Comparative empirical analysis regarding the effect of 

alternative MPS choices on the VEA efficiency scores was provided using a dataset of 

Greek cotton farms.  The results provide useful information regarding the MPS choices 

that are more likely to result in insignificant or excessive differences between the DEA 

and the VEA efficiency scores, and the choices which are frequently similar to each 

other in practice. 

The second part contains three theoretical essays and comprises of chapters five 

to seven.  In the first theoretical essay, we related VEA to cross efficiency, namely the 

notion of peer appraisal in DEA.  Particularly, we showed that the VEA model is 

equivalent to the TB cross efficiency model, provided that the “reference” DMU in the 

TB model if it is an efficient one, or its radial projection on the DEA frontier if it is 

inefficient, is chosen as the MPS in the VEA model.   

In the second theoretical essay, we examined the relationship between VEA and 

DEA models with weight restrictions and their dual production trade-offs and showed 

that the VEA model can be viewed as a particular class of DEA models with production 

trade-offs.   The coefficient vectors in these trade-offs, which are dual to Type II 

assurance region weight restrictions, are equal to the deviations of all evaluated DMUs’ 

input and output quantities from those of the DMUs chosen as the MPS.  We also 

showed that, if these Trade-Offs are considered only for the inputs or the output, then a 

similar equivalence holds between pure output or input VEA models and DEA models 

with production trade-offs.   

In the last theoretical essay, we elaborated more on the relationship between 

VEA and CR-DEA models that include preferences on efficient DMUs than DMs 

consider as examples (model DMUs) for the remaining DMUs.  We showed that, 

provided that the model DMUs in CR-DEA are those that constitute the MPS in VEA, 

the efficiency scores from a CR-DEA model in which the cone of feasible weight 

vectors is specified as the intersection of the sets containing the weight vectors that are 

optimal in DEA for each model DMU are equivalent to the VEA scores.  In addition, 

we showed that the VEA scores provide a lower and an upper bound for the scores 

obtained from two other CR-DEA models.  In the former case, the cone of feasible 

weights in the CR-DEA model is given as the union of the sets containing the optimal 
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weight vectors for each model DMU, while in the latter case it consists only of the 

strictly positive weight vectors that are jointly optimal in DEA for all the model DMUs. 

 

8.2. Implications  

 

The theoretical and empirical results obtained in the previous chapters have several 

implications:  first, the detailed and enlarged list of the various MPS choice presents 

DMs and practitioners with a variety of alternative options to choose the MPS in 

practice.  It also provides insights regarding the rationale related to each choice and its 

potential usefulness in particular performance evaluation cases.  For instance, in the 

case of a manager interested in reorganizing efficiently a group of retail branches, the 

use of the APU as the MPS could provide useful insights, as the resulting efficiency 

scores reflect the performance of DMUs from the perspective of centralized resource 

allocation.  On the other hand, the use of common weights in VEA may be preferred 

when the DMUs need to be assessed against a common standard or should follow 

organizational objectives rather than pursuing their own.  Lastly, when the DM views 

a particular input or output as the most important one in assessing performance, these 

preferences could be reflected through the use of a best-in-input or a best-in-output 

MPS.  

Second, DMs and practitioners are presented with insights regarding the 

practical implications of using alternative MPSs for the resulting efficiency scores.  For 

instance, using influential peers as the MPS in VEA is not expected to present DMs 

with useful additional insights compared to those of the DEA model, while alternative 

ways to select an influential peer as the MPS are also similar to each other in practice.  

On the other hand, the use of other MPSs (such as the APU, an MPSS DMU, or a 

combination of DMUs generating an FDEF) might offer interesting insights to 

management that would complement those of the DEA model.  Moreover, “end-point” 

MPSs are more likely to imply an input/output bundle that is very dissimilar compared 

to the bundles used by most DMUs, while different kinds of “end-point” MPSs might 

imply different kinds of extreme bundles from each other. 

Third, alternative economic interpretations are provided for the DMs’ 

judgements in VEA and the associated efficiency scores.  More specifically, through 

the equivalence of the VEA model with DEA models with production trade-offs, the 

DM’s choice of the MPS can be interpreted as incorporating a particular form of 
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additional trade-off relations in a DEA model.  These trade-offs aim to restrict the 

marginal rates of input substitution and output transformation for each assessed DMU 

to take values among those that are observed in the neighborhood of the selected MPS.  

On the other hand, one can also interpret the production trade-offs appended in DEA 

models, when the resulting linear model is equivalent to a VEA one for a particular 

MPS choice, as reflecting the judgements of a DM regarding the most preferred 

input/output bundle.  Thus, alternative interpretations can be provided for both the VEA 

efficiency scores and those of DEA models with production trade-offs and their dual 

weight restrictions.   

Through the equivalence of the VEA model to the TB cross efficiency model, 

the VEA scores can be interpreted as the most favorable (i.e., the TB) cross-efficiency 

scores from the perspective of a particular “reference” DMU, namely the one chosen as 

the MPS in VEA, while the TB cross-efficiency scores when a particular DMU is used 

as a “reference” reflect also the judgements of a DM that views this “reference” DMU 

has having the most desirable input/output bundle.   

Moreover, the VEA efficiency scores can also be interpreted as empirical 

estimates of the DMUs’ effectiveness, namely the extent that DMUs do the “right 

things” such as follow behavioral or organizational objectives, norms of mandates or 

abide by certain agreements set up with management.  In this case, the DMU or the set 

of DMUs chosen as the MPS are considered as those “doing the right things”, i.e., those 

aligned the most with the specified objectives or most closely following agreements 

and mandates.  

Fourth, we showed for the first time that cross efficiency scores can be obtained 

using the envelopment formulation of (VEA) linear models, rather than the multiplier 

formulation of DEA models, which was the only way to obtain cross efficiency scores 

up to today.  This holds for a particular form of cross efficiency scores, namely those 

obtained through the TB formulation, and is an implication of the equivalence of the 

VEA model to the TB cross efficiency model. 

Fifth, computational gains are provided in the estimation of particular DEA 

models that are rather complicated or their estimation is time-consuming.  More 

specifically, the relations identified between VEA and the three CR-DEA models in the 

seventh chapter allow estimating or approximating the efficiency scores of CR-DEA 

models by means of VEA.  The VEA models are less computationally demanding as 
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they do not require to a priori identify the cone of feasible weight vectors.  In addition, 

significant shortcuts can be obtained in the estimation of the TB cross efficiency matrix 

though the use of VEA models instead of the TB formulation by (i) providing the cross-

efficiency scores through the envelopment form of VEA rather than the multiplier one, 

and (ii) estimating fewer linear models when there exist inefficient DMUs that are 

projected on the same part of the strongly efficient DEA frontier. 

Sixth, the empirical applications of the VEA model presented in the previous 

chapters place VEA as a useful alternative for several cases of applied performance 

evaluation.  Particularly, as demonstrated in the second chapter, VEA can be used for 

assessing effectiveness, the measurement of which is crucial in cases of an entity 

centrally managing or coordinating a set of DMUs (such as branches of the same firm 

or firms operating within the same sector), where certain directions and mandates are 

given by the coordinating authority (the firm’s general manager or the sector’s planner) 

and abiding by those is essential for the performance of the entity (i.e., the firm or the 

sector) as a whole.  In addition, the VEA-BoD model introduced in the third chapter is 

a useful alternative for incorporating preference information in the construction of 

composite indicators.  The use of such indicators is increasingly widespread nowadays, 

mainly attributed to their ability to communicate multifaceted information regarding 

socio-economic phenomena in a reduced but concise form.  Their construction however 

frequently requires that the preferences of DMs, social planners, or even the public 

regarding the relative importance of a phenomenon’s dimensions is taken into account.  

This can be facilitated through the choice of the MPS in a VEA-BoD model.  
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