
Master in Business Analytics and Data Science
Department of Business Administration

Thesis Title

Combinatorial Optimization using Machine Learning

By
Vasileios Kostakis Kassandros

A thesis submitted for the degree of MSc in
Business Analytics and Data Science

December 2022

3

Acknoledgments
I feel the need to express how grateful I am to my supervisor Konstantinos Kaparis
for accepting my request to supervise my thesis and then proposing to work on this
beautiful and challenging research area. Moreover, his directions and help were
vital for the completion of my master’s studies. I also wholeheartedly thank my dear
friend Nikolas Feto with whom I had endless conversations regarding my thesis
subject which led to many improvements in the thesis content.

4

ABSTRACT

Combinatorial optimization is a subfield of mathematical optimization that con-
tains several hard problems with numerous real-life applications. The traditional
way of solving combinatorial optimization problems relies on decisions taken based
on expert knowledge and expert-designed heuristics. In recent years, a promising
research line has brought an alternative way to light. That way to automate decision-
making for combinatorial optimization using machine learning. In this thesis, we
provide general information on this research line but focus more on direct ways of
leveraging machine learning to solve combinatorial optimization problems. More-
over, we create a reinforcement learning framework that learns a greedy constructive
heuristic for the following graph combinatorial optimization problems: minimum
vertex cover, maximum independent set and travelling salesman. We discuss all the
necessary background in mathematics and machine learning in order to make this
work an independent study.

5

CONTENTS

Abstract . 4
Contents . 5
List of Figures . 6
List of Tables . 7
Chapter I: Introduction . 1
Chapter II: Prerequisites . 3

2.1 Graphs . 3
2.2 Complexity . 6

Chapter III: Combinatorial Optimization . 8
3.1 Prototypical Combinatorial Optimization Problems (COPs) 9
3.2 Solution Methods . 13

Chapter IV: Neural Networks . 18
4.1 Activation Functions . 20
4.2 Training neural networks . 22
4.3 Recurrent Neural Networks . 25
4.4 Gated Recurrent Neural Networks (GRNNs) 26
4.5 Attention Mechanism . 29
4.6 Graph Neural Networks . 31

Chapter V: Reinforcement Learning . 33
5.1 Algorithms . 36

Chapter VI: Solving combinatorial optimization problems via machine learning 46
Chapter VII: Experiments . 52

7.1 Training Details . 52
7.2 Training and evaluation data . 54
7.3 Results . 55
7.4 Conclusions . 62
7.5 Limitations . 62
7.6 Future work . 62

Bibliography . 64

6

LIST OF FIGURES

Number Page
2.1 A graph from [Wikipedia, 2022a] 4
4.1 Perceptron illustrated as in [Dong et al., 2020] 19
4.2 MLP illustration [Dong et al., 2020] 19
4.3 An illustration of an RNN unfolding [Wikipedia, 2022c] 25
4.4 GRU illustration as in [Zhang et al., 2021] 27
5.1 Interaction agent environment [1] 33
5.2 picture from [Sutton, 2022] . 40
6.1 [Joshi et al., 2019] . 47
6.2 Illustration from [Khalil et al., 2017] 47
6.3 Representation of a state [Gasse et al., 2019] 50
7.1 Returns during AC agent training 55
7.2 Duration of episodes during the training phase of the DQN algorithm

for the MVC problem . 56
7.3 Rolling mean of returns during actor critic agent training (time win-

dow = 50) . 57
7.4 Rolling mean of returns during training of DQN agent (time win-

dow=50) . 58
7.5 rolling mean of returns during training of our model(time window=50) 59
7.6 approximation ratio . 60
7.7 Episode rewards of the PPO agent 61
7.8 Episode rewards of the DQN agent 61

7

LIST OF TABLES

Number Page
3.1 First solutions to real TSP instances 13
7.1 Performance evaluation on 20-vertex graphs 56
7.2 Performance evaluation on 50-vertex graphs 56
7.3 Performance evaluation on 50-vertex graphs-MIS 58
7.4 Performance evaluation on 50-vertex graphs-MIS 58
7.5 Performance evaluation on 10-vertex graphs 59
7.6 Performance evaluation on 30-vertex graphs 59
7.7 Description of the KP instance . 60

1

C h a p t e r 1

INTRODUCTION

In optimization problems, the objective is to find an optimal solution. A solution
to an optimization problem can be a real number, a permutation of objects, or even
a graph. These problems are either continuous optimization problems or discrete
optimization problems. Continuous optimization problems are formulated using
variables from an interval of real numbers, whereas discrete optimization problems
are formulated using integer variables. Both categories of optimization problems
find application in industrial fields such as supply chain and logistics. In this thesis
we discuss discrete optimization problems. In particular we focus on combinatorial
optimization problems, a subcategory of discrete optimization problems. In these
problems the objective is to find an optimal combination of objects within a finite
collection of objects. Unfortunately, such optimization problems are hard to solve in
provable optimality, both in theory and practice, and belong among the "21 Karp’s
NP-hard problems"

A great deal of research is devoted to the construction of methods to solve these
problems. These methods fall into exact methods, approximation algorithms, and
heuristics. Each method class has its advantages and weaknesses. When the problem
scale is large, exact methods become inefficient. Approximation algorithms and
heuristics have shortcomings as well. Usually, they are case specific - designed and
not adaptable to multiple problems. In other words, one method for solving a specific
combinatorial optimization problem may be of no use for solving another. Moreover,
heuristics might not offer any quality guarantees for the obtained solution. Despite
these shortcomings, heuristics are of great importance to optimization experts.

In order to devise algorithms that are adaptable to solve multiple combinatorial
optimization problems, leveraging tools from an alternative scientific area seems
to be a promising way. This area is machine learning and it has been success-
fully applied in tackling combinatorial optimization problems. In 1985, Hopfield
[Hopfield and Tank, 1985] was the first to use an artificial neural network to solve
the travelling salesman problem, a well-known combinatorial optimization prob-
lem. However, this line of research became active in recent years and now has
various applications ranging from creating constructive greedy heuristics such as

2

[Khalil et al., 2017] to improving sub-routines and processes of state-of-the-art exact
solvers such as [Gasse et al., 2019]. Typically, either supervised learning or rein-
forcement learning is used. Supervised learning requires obtaining large amounts
of optima labels which is difficult when dealing with NP-hard optimization prob-
lems. For this reason, reinforcement learning, which works with the maximization
of reward functions, is often preferred.

In our work, we follow the reinforcement learning paradigm and devise a framework
to solve three combinatorial optimization problems. Moreover, we train an agent to
learn a constructive greedy heuristic for the following problems: maximum vertex
cover, maximum independent set, and travelling salesman problem. The algorithm
works as follows: a neural network predicts a value of utility for each graph node
that can join the partial solution, and then the node with the highest value joins the
partial solution. This process terminates when the target problem is solved. We
compare our algorithm with a similar RL- framework and standard heuristics like
the nearest neighbour heuristic for the TSP.

3

C h a p t e r 2

PREREQUISITES

This first chapter introduces some basic notions of mathematics which are necessary
for comprehending the following chapters. Nonetheless, we assume some familiarity
with basic terms of fields such as linear algebra, calculus, and probability theory.
Presenting the basics of those fields would lead to a drift from the original goal
of this work. So, what we will discuss here is restricted to a very limited list of
elements of graph theory. Furthermore, an even more limited list of elements of
computational complexity will also be discussed.

2.1 Graphs
Due to their nature, many CO problems have a graph representation and thus in
this introductory paragraph, we outline a few fundamental graph-related notions.
There is a whole field of mathematics dedicated to the study of graphs called graph
theory. Graphs offer a decent way to model abstract entities and their relationships.
Subsequently, graphs are quite useful to many sciences such as computer science,
physics, biology and even linguistics. A Graph is a mathematical structure that is
composed of edges and vertices. A more formal definition of graph is the following:

Definition 2.1 A graph is an ordered pair G=(V,E). Where V is the set of vertices
and E is the set of edges 𝐸 = {(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑉 𝑎𝑛𝑑 𝑥 ≠ 𝑦}

A definition along with a drawing of a graph will give a first intuition on graphs.
Usually, graphs are visualized as follows:

4

Figure 2.1: A graph from [Wikipedia, 2022a]

An edge (𝑥, 𝑦) joins two vertices of the graph. Graphs can be distinguished into two
categories: undirected graphs and directed graphs. The difference between those
two categories of graphs lies on the edges: Undirected graphs have symmetric edges
(that is, (𝑢, 𝑣) = (𝑣, 𝑢) for all edges), and directed graphs have asymmetric edges
((𝑢, 𝑣) and (𝑣, 𝑢) edges are distinct). From now on, when it is not stated whether
a graph is directed or undirected it is implied that it is undirected. Whenever two
vertices 𝑢, 𝑣 are joined by an edge 𝑒 = (𝑢, 𝑣), 𝑢, 𝑣 are called adjacent or neighbours.

Definition 2.2 The set of all neighbours of a vertex u is called neighbourhood of
vertex 𝑢 and it is denoted 𝑁 [𝑢]. The number |𝑁 [𝑢] | is called degree of vertex 𝑢.

For directed graphs, vertices have also in-degrees and out-degrees which are the
number of edges that "end" on the vertex and "start" on the vertex, respectively.
For example the edge 𝑒 = (𝑢, 𝑣) starts from 𝑢 and ends on 𝑣, in the litera-
ture u is called head and v is called tail. Every graph can contain subgraphs,
a graph 𝐺 = (𝑉, 𝐸) contains a subgraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) if and only if
𝑉 (𝐻) ⊂ 𝑉 (𝐺) 𝑎𝑛𝑑 𝐸 (𝐻) ⊂ 𝐸 (𝐺). 𝐻 is called an induced subgraph of 𝐺 if it
is a subgraph of 𝐺 and 𝐸 (𝐻) = {(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐻 (𝑉) 𝑎𝑛𝑑 𝑥 ≠ 𝑦}. A complete
graph is a graph that each one of its vertices is adjacent to all other vertices. A
circuit is a graph 𝐺 (𝑉, 𝐸) with𝑉 = {𝑢1,, 𝑢𝑘 } 𝑎𝑛𝑑 𝐸 = {𝑒1,, 𝑒𝑘 } if and only if
the sequences 𝑢1, 𝑒1, 𝑢2,𝑢𝑘 , 𝑒𝑘 , 𝑢1 is a closed walk. By walk we mean that each
edge 𝑒𝑖 joins the vertices before and after it in the sequence above, a closed walk
means that the starting and the ending vertex coincide. The length of a circuit is the
number of its edges. If a graph 𝐺 contains a subgraph which is a circuit then one
can say that there is a circuit in 𝐺. A spanning circuit in 𝐺 is called a Hamiltonian
circuit or alternatively a tour. If a graph 𝐺 contains a Hamiltonian circuit then 𝐺

5

is called Hamiltonian Graph. An undirected graph is connected if, for every couple
of its vertices there is a path from 𝑢 to 𝑣. A path is a walk from 𝑢 to 𝑣, that is a
sequence 𝑢, 𝑒1, 𝑢1,, 𝑢𝑘 , 𝑒𝑘+1, 𝑣. Similar to the circuit but in that case the walk is
not closed. A graph is called tree if it does not contain any circuits and is connected.
All the vertices of a tree of degree at most 1 are called leaves. Other popular terms
for this kind of graph are parent or predecessor and root. A node 𝑎 is a parent of
𝑏 if there is an edge 𝑒 = (𝑎, 𝑏). The root node of a tree graph is a node that has no
parent. In a graph 𝐺 = (𝑉, 𝐸), a cut is a set of edges which is produced by a set
𝑋 ⊂ 𝑉 in this way {(𝑢, 𝑣) : 𝑢 ∈ 𝑋, 𝑣 ∈ 𝑉 − 𝑋}. The following graph related terms
are important for the next chapters: A matching in an undirected graph 𝐺 is a set
of pairwise disjoint edges. A vertex cover in 𝐺 is a set 𝑆 ⊆ 𝑉 of vertices such that
every edge of 𝐺 is incident to at least one vertex in 𝑆. There are two types of graphs
which are particularly useful. These graphs are the bipartite graphs and Eulerian
graphs. The latter is named after the legendary mathematician Euler. Euler solved
the famous problem of Königsberg bridges using those graphs. An Eulerian walk
in a graph is a walk that uses each edge exactly once. If such a walk exists in a graph
then the graph is called semi-eulerian.
A graph is called Eulerian if and only if all its vertices are of even degree. A graph
𝐺 = (𝑉, 𝐸) is a bipartite graph if there are 𝐴, 𝐵 ⊆ 𝑉 (𝐺) with 𝐴 ∩ 𝐵 = ∅ and
𝐴
⋃

𝐵 = 𝑉 , 𝐸 (𝐴) = 𝐸 (𝐵) = ∅ and 𝐸 (𝐴⋃
𝐵) = 𝑉 (𝐺).

A way to tell if a graph is bipartite is using the following theorem: A graph is bipar-
tite if and only if has no circuits of odd length. There is a large number of theorems
in graph theory. However, we do not include any other theorems as it would be
unnecessary. Before concluding this section, we introduce random graphs, a type of
graphs which facilitates running experiments on graph combinatorial optimization
problems.

A random graph is a graph in which some of its components/properties are defined
at random. These components can be the number of vertices, edges and hence
connections between vertices. There are models to generate such graphs. We
give some information on the so-called Erdos-Renyi model. This model has two
distinct variants which where independently created in the same year. One variant
the G(n,M) was created by Erdos- Renyi [RENYI, 1959] and the other variant
G(n,p) by Gilbert [Gilbert, 1959]
In G(n,M) a graph with n vertices and 𝑀 edges is generated completely at random.
That is, the graph is drawn at random from the

((𝑛2)
𝑀

)
possible graphs that can be

formed from 𝑛 vertices by selecting at random 𝑀 edges from
(𝑛
2
)

possible edges.

6

G(n,p) generates a random graph with 𝑛 vertices where each edge exists with
probability 𝑝. The number of edges of a graph generated by that variant is a random
variable with expected value 𝑝

(𝑛
2
)

2.2 Complexity
The combinatorial optimization problems that we discuss in this thesis belong to
the so-called NP-hard problems. That is a set of problems hard to solve in provable
optimality both in theory and in practise. We briefly review a few fundamental
notions for our analysis.

Definition 2.3 Let 𝑓 , 𝑔 : N→ R+ be two functions. It is said that 𝑓 = 𝑂 (𝑔) when
there are two constants 𝑎, 𝑏 > 0 such that 𝑓 ≤ 𝑎𝑔(𝑛) + 𝑏,∀𝑛 ∈ N and for g we
say that 𝑔 = Ω(𝑓). If 𝑔 = 𝑂 (𝑓) and 𝑓 = 𝑂 (𝑔) then we say that 𝑔 = Θ(𝑓) and
𝑓 = Θ(𝑔).

The Big 𝑂 in the first part of the definition is the famous big O notation. When
𝑓 = 𝑂 (𝑔) we can say 𝑔 is an asymptotic bound of 𝑓 . When 𝑔 = Θ(𝑓) we can say that
these two functions have the same growth rate. we can say that these two functions
have the same growth rate. This notation is used in the analysis of algorithms. In
the context of computational complexity, an algorithm can be defined in an abstract
mathematical way. Here we define algorithms in a simple way : An algorithm is
consists of inputs and well-defined instructions to be executed in steps such that for
each input the algorithm produces an output. In algorithm analysis, the running time
of an algorithm is quite important. The running time of an algorithm is the amount
of time a computer takes to run the algorithm. Calculating the exact running time
of an algorithm is not easy. So, it is common to study asymptotic time instead of
the exact time. The asymptotic time is about how the running time of an algorithm
changes when the input size grows.

Definition 2.4 Let 𝑓 : N→ R+ be a function and A an algorithm which takes inputs
from a set 𝐵. If there are constants 𝑎, 𝑏 > 0 such that the algorithm’s computation
terminates after at most a 𝑓 (𝑠𝑖𝑧𝑒(𝑥)) + 𝑏 steps for all input 𝑥. Then we say that the
running time of 𝐴 is 𝑂 (𝑓).

Usually, an algorithm accepts as an input a list of numbers. These numbers are
transformed and stored in the binary system. The input size size(x) of an instance

7

𝑥 that contains rational numbers is the number of bits needed for the binary rep-
resentation. An algorithm with rational input is said to run in polynomial time if
there is an integer 𝑘 such that it runs in 𝑂 (𝑛𝑘) time, where 𝑛 is the input size, and
all numbers in intermediate computations can be stored with 𝑂 (𝑛𝑘) bits. So, the
algorithm must run in 𝑂 (𝑛𝑘) steps and 𝑂 (𝑛𝑘) bits should be enough for storing all
the numbers at all steps. Some algorithms that run in polynomial time are quicksort
(𝑂 (𝑛𝑙𝑜𝑔(𝑛)) and bubblesort (O(𝑛2)). In the literature sometimes polynomial time
algorithms are called efficient. Within computational complexity, an algorithm that
transforms a problem into another problem is called a reduction algorithm. When
there is an algorithm for transforming Problem 𝑃 into 𝑃′ then it is said 𝑃 reduces to
𝑃′.

2.2.1 P vs NP
Problems that can be solved in polynomial time by a deterministic algorithm are
called problems in P. However, most of the combinatorial optimization problems
are considered computationally hard since no exact polynomial-time algorithm has
been devised for solving them yet. NP-class is the class of all decision problems
that can be solved by a non-deterministic algorithm in polynomial time. A decision
problem 𝑃 is NP-complete when it belongs to NP and any problem in NP can be
reduced to 𝑃 in polynomial time.
A problem is called NP-hard if every problem in NP can be reduced to it in
polynomial time. A decision problem is called NP-complete if it is in NP and every
other problem in NP can be reduced to it in polynomial time. When we say an
optimization problem is 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, we mean that its corresponding decision
problem is NP-complete. Many interesting COPs such as Karp’s 21 NP-complete
problems belong to the class NP-complete. In [Karp, 1972] Karp uses Cook’s
theorem and shows that these 21 COPs belong to NP-complete class. That is done
by showing that there is a polynomial time reduction from the SAT problem to each
one of these 21 problems. The SAT problem (boolean satisfiability problem) was
proved to be in NP- complete class (Cook’s theorem) in [Cook, 1971].

8

C h a p t e r 3

COMBINATORIAL OPTIMIZATION

Combinatorial Optimization (CO) is a subfield of the mathematical field of opti-
mization. This subfield is focused on problems with discrete solution spaces. CO
problems (COPs) seek to find the best combination of objects in order to optimize
some objectives under some constraints. As an example, we can give the following
problem: the best set of vertices (cost-wise) to traverse in order to transmit from
a node 𝑢 to a node 𝑣 in a graph 𝐺. More examples of COPs, not necessarily
defined on graphs, will be presented in this chapter. We will define COP as in
[Mazyavkina et al., 2021].

Definition 3.1 Let 𝑉 be a set of elements and 𝑓 : 𝑉 ↦→R be a cost function.
Combinatorial optimization problem aims to find an optimal value of the function
𝑓 and any corresponding optimal element that achieves that optimal value on the
domain 𝑉 .

The set 𝑉 is finite, but its cardinal number can be so large that can make exhaustive
search an impractical solution method. For example, an instance of size 𝑛 of the
travelling salesman problem, which is presented later, has 𝑛! different possible
solutions and that makes exhaustive search not a valid option for realistic instance
sizes. To solve these problems, special algorithms have been developed that fall
into either the category of the exact algorithms or approximate algorithms. The
most known exact methods are branch and bound [Land and Doig, 1960], cutting
plane [Gomory, 1960], and branch and cut. The last method is ,in a sense, a
combination of the first two. All of them require solving linear relaxation problems
(LP relaxation). Linear relaxation problems are just linear problems (LP) or better
Linear Programming problems. Linear programming problems are problems
involving the optimization of linear functions over a space formed from linear
constraints. Linear programming is essential for the field to which this thesis
belongs.

LP is proved to be in 𝑃 complexity class [Karmarkar, 1984]. Interestingly enough,
the most common algorithm used to solve LP problems is exponential. That algo-
rithm is the Simplex and, though it is exponential, it is regarded as very efficient in

9

practice as opposed to the ellipsoid algorithm which is a polynomial algorithm and
an inefficient one as stated in [Hart et al., 1987]. For more on linear programming
and simplex algorithm, one can counsel [Bertsimas and Tsitsiklis, 1997].

3.1 Prototypical Combinatorial Optimization Problems (COPs)
We now discuss a few fundamental combinatorial optimization problems that are
among Karp’s 21 NP-complete problems and which form the basis of our analysis in
chapter 7. Specifically, we present the following problems: Knapsack Problem(KP),
Minimum Vertex Cover (MVC), Maximum Independent set (MIS) and Travelling
Salesman Problem (TSP). These four problems are studied in relevant work such as:
[Khalil et al., 2017] which focuses on MVC, TSP, max cut and set cover problems but
not on MIS and KP. MIS and KP are tackled using machine learning in other papers
as many other COPs such as Vehicle Routing (VRP), Graph Coloring (GCP), Max-
imum Clique Problem (MCP) and others. One can find out what COPs have been
studied in [Vesselinova et al., 2020, Mazyavkina et al., 2021, Bengio et al., 2021].
Each one of these papers is an overview of relevant research, the first is only about
graph COPs while the others are more general.
We present the formulations of the problems as Integer Linear Programming prob-
lems (ILPs) along with some comments-details below. While it is common among
COPs to have multiple versions, only a single version of each problem is presented
here.

3.1.1 Knapsack Problem
This problem can be stated as follows: given a set of items where each of them has a
weight and a value, determine the best combination of items in order to maximize the
accumulative value. The knapsack has a fixed capacity and that implies a constraint
regarding the total weight of the item combination. There are many variants of the
problem. For brevity, we do not discuss all of them. The variant that is described
below is called 0-1 knapsack problem and for each item, a binary variable indicates
whether the item is included or not in the knapsack.

Firstly, we define the parameters and the decision variables. Due to the fact that
there is only a single family of constraints the formulation of the problem is short
and simple. Even though KP’s formulation is simple, KP is NP hard and has many
applications in the real world.

ILP Formulation
Let us assume we have N items. Let 𝑢1, ..., 𝑢𝑁 be the values of those N items, let

10

𝑤1, 𝑤2, ..., 𝑤𝑁 be the set of their weights and 𝑥1, 𝑥2, ..., 𝑥𝑁 be the decision variables
where

𝑥𝑖 =


1

0

W is the budget parameter (i.e the capacity of the knapsack), 𝑥𝑖 takes the value 1 if
the 𝑖𝑡ℎ item is included in the knapsack and 0 if it is not.

Our objective here is to maximize the value of the knapsack without surpassing its
capacity. In other words, to include as much value as we can. So, a natural way to
formulate the problem is:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑖=𝑁∑︁
𝑖=1

𝑢𝑖𝑥𝑖

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑖=𝑁∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝑊

Some other well known variations of the problem are the following: Unbounded
KP (UKP) and multidimensional KP (MKP). The unbounded variant is the same
with the one described above with the difference that in the unbounded variant the
knapsack can include multiple copies of each item. The multidimensional KP, as
the name suggests, considers more dimensions than just the weight dimension. For
example, a knapsack can have limited volume. For each dimension, a constraint is
added to the formulation of the problem. More on KP and its variants can be found
in [Pisinger and Toth, 1998]

3.1.2 Minimum Vertex Cover (MVC)
MVC is another COP which is known to be a NP -Hard problem. Also, MVC is well
studied and a number of algorithms have been devised in order to solve it, some of
them are presented below.

Definition 3.2 Given a graph G, find a subset of nodes 𝑆 ⊂ 𝑉 such that every edge
is covered i.e (𝑢, 𝜐) ∈ 𝐸 if-f 𝑢 ∈ 𝑆 𝑜𝑟 υ∈ 𝑆 and |S| is minimized.

ILP formulation
Let 𝐺 = (𝑉, 𝐸) be the graph associated with the problem. For every (𝑢, 𝜐) ∈ 𝐸 we

11

define the variables 𝑥𝑢, 𝑥𝜐 and we get the variable set. Given all the information the
formulation of the problem as an integer linear program is the following:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁
𝑢∈𝑉

𝑥𝑢

subject to 𝑥𝑢 + 𝑥𝜐 ≥ 1 ∀(𝑢, 𝜐) ∈ 𝐸

𝑥𝑢 =


1

0
,∀𝑣 ∈ 𝑉

The formulation is really simple since there is only a single family of constraints.
The formulation for the weighted version of the problem where each node has some
weight 𝑤𝑢 is the same as the one written above adding 𝑤𝑢 to the objective function.

3.1.3 Maximum Independent Set (MIS)
MIS, in contrast with MVC, seeks a subset S of vertices of a graph 𝐺 such that each
vertex in S is no adjacent to any other vertex of S. Mathematically that is simply:

Given a graph 𝐺 = (𝑉, 𝐸) and S ⊂ 𝑉

S is independent if and only if 𝑆𝑥𝑆 ∩ 𝐸 = ∅

So, MIS seeks the independent set S with the maximum cardinal number within
graph 𝐺. The formulation of the problem is similar to other combinatorial problems
discussed in the text.
ILP formulation

maximize
∑︁
𝑢

𝑥𝑢

subject to 𝑥𝑢 + 𝑥𝑣 ≤ 1,∀(𝑢, 𝑣) ∈ 𝐸

𝑥𝑣 =


1

0
,∀𝑣 ∈ 𝑉

3.1.4 Travelling Salesman Problem (TSP)
TSP is another interesting COP with many applications. TSP and its general-
izations are applied in many areas such as logistics supply chain management,
planning and scheduling. One can find an overview of the problem’s applications

12

in [Matai et al., 2010]. Apart from the applications, TSP itself as a COP is very
interesting. As it is usual for COPs, TSP has some distinct variants. Two of
them are: graph TSP (GTSP) and the Euclidean TSP where the elements are 2-
dimensional points in the euclidean metric space. The problem derives its name
from the real life situation where a salesman wants to pass by a number of cities
and return to their base city in an optimal way. As previously we give an integer
programming formulation of that problem as well. That formulation is known as
Dantzig–Fulkerson–Johnson formulation. [Dantzig et al., 1954]

Let V=1,2,3,...,N be the labels of the cities. Let 𝑐𝑖 𝑗 be the cost of transportation
from city i to city j:

𝑥𝑖 𝑗 =


1, if the salesman goes from i to j city

0, if he does not

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖∈𝑄

𝑐𝑖 𝑗𝑥𝑖 𝑗

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜

𝑖=𝑛∑︁
𝑖=1,𝑖≠ 𝑗

𝑥𝑖 𝑗 = 1,∀ 𝑗 ∈ 𝑉

𝑗=𝑛∑︁
𝑗=1,𝑖≠ 𝑗

𝑥𝑖 𝑗 = 1,∀𝑖 ∈ 𝑉

𝑛∑︁
𝑖∈𝑄

∑︁
𝑗≠𝑖, 𝑗∈𝑄

𝑥𝑖 𝑗 ≤ |𝑄 | − 1, 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑄 ⊂ 𝑉

The last type of constraints are called sub tour elimination constraints. TSP is hard
both in theory and in practice. That gets more comprehensible seeing the table
below about the first computational studies on TSP according to [Waterloo, 2016].
These studies were on the euclidean variant of the problem and none contained more
than 120 cities.

However, advancements in theory and computational power made possible quite
larger instances to be solved. In [Applegate et al., 2011] it is reported that an instance
of 85.900 vertices has been solved using the TSP solver Concorde [Applegate et al., 2006]
.

13

cities by year

49 Dantzig et. al 1954
57 R.Karp 1957
120 M.Groetschel 1977

Table 3.1: First solutions to real TSP instances

3.2 Solution Methods
In this section, we are briefly introducing a number of distinct solution methods for
COPs. Some of these methods can be applied to every COP (e.g branch and bound)
and others work just for a specific problem. Solution methods can produce either
exact or approximate solutions. One way to obtain an approximate solution is by
using a heuristic method. Heuristics provide suboptimal solutions faster than exact
algorithms. On some occasions, the use of heuristics is recommended.

3.2.1 Branch and Bound (BB)
We start with the BB method [Land and Doig, 1960]. The main idea of the method is
to divide the problem solution space into smaller solution spaces (subspaces, whose
union gives the problem solution space). These sub-spaces are constantly evaluated
until the solver has a solution for the problem. That process starts with solving
the relaxation LP (which is the initial problem without the integrality constraints).
If the relaxation has an integer solution then the process terminates, otherwise, if
there is at least one non-integer variable, then one of the non-integer variables is
selected for branching. Branching leads to splitting the initial problem into two sub
problems. Each of the sub problems formulations is given by adding one constraint
to its parent problem. These constraints are 𝑥𝑘 >= ⌈𝑥𝑘⌉ and 𝑥𝑘 ≤ ⌊𝑥𝑘⌋.

One can illustrate BB with a tree whose nodes correspond to BB subproblems and
the root node corresponds to the initial problem. Some interesting decision prob-
lems arise in the process of BB; the solver has to decide on which variable to branch
or which node to pick to examine at each step of the process. There are several
ways to decide on these matters. The simplest one for selecting variable is to select
the one that is "more fractional". Moreover, making good decisions has a consid-
erable effect on how large the tree will be and hence on the algorithm’s running
time. That is why several rules have been developed to help the decision maker to
make good decisions. Some of those methods are strong branching for variable
selection and the depth first search strategy for node selection both of which are
explained in [Wolsey, 2020]. Closing this subsection we give the pseudocode of

14

BB for minimization problems (one can easily modify the pseudocode to work for
maximization problems). The following pseudocode is taken from [Sun et al., 2020]

Algorithm 1: Branch and Bound
Input a MIP in the form of equation (1) ;

1 Initialize 𝑆 = {𝑃𝐿𝑃} 𝑃𝐿𝑃 in form of equation (2) and set 𝑥∗ = 𝜙 and 𝑐 = ∞ ;

2 IF 𝑆 = 𝜙 exit and return 𝑥∗ and 𝑐 ;

3 Select and pop a LP relaxation 𝑄 from 𝑆 ;

4 Solve 𝑄 get solution 𝑥 and optimal value 𝑐 ;

5 IF 𝑐 ≥ 𝑐∗ go to 2 ;

6 IF 𝑥 ∈ 𝑋 set 𝑥∗ = 𝑥 and 𝑐∗ = 𝑐, go to 2;

7 Select variable 𝑗 , split Q into 2 subproblems add them to 𝑆 then go to 3

The required equations follow :

(1) min
x∈R𝑛

{
c𝑇x : 𝐴x ≤ 𝒃, ℓ ≤ x ≤ 𝒖, 𝑥 𝑗 ∈ Z,∀ 𝑗 ∈ 𝐽

}
(2) min

x∈R𝑛
{
c𝑇x : 𝐴x ≤ 𝒃, ℓ ≤ x ≤ 𝒖

}
3.2.2 Dynamic Programming
Dynamic Programming (DP) is a mathematical optimization algorithmic technique
as well as a computer programming technique. DP is an effective way to solve
problems which share a common characteristic. They can be broken down into
simpler sub-problems and, by solving these subproblems recursively, a solution to
the problem is obtained. For the problems that can be solved in that way, we say that
they have the optimal substructure. COPs tend to have these desirable properties
and hence DP is a way to solve them. The basis of this method is the so called
principle of optimality which is defined in [Bellman, 1957] as "An optimal policy
has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from
the first decision." The main characteristics of DP consist of stages, states, value
functions and recursive relationships.

As said, DP problems can be structured into multiple subproblems, and each one of

15

the subproblems constitutes a stage. The solution of a stage affects the characteristics
of the next stage. The states are the necessary information for seeing the effects of
the current decision on future decisions. The recursive relationship relates the value
function of a stage with the ones of the next stage. This relationship allows solving the
problem recursively by solving a stage problem and then including a stage problem
at a time until the overall optimum is obtained. Those concepts become more clear
when seeing the Held -Karp DP algorithm for TSP [Held and Karp, 1962].

This algorithm in each stage 𝑖, for each set 𝑆 of 𝑖 cities, computes the shortest path
from city 𝑏 to all cities 𝑒 such that 𝑒 ∉ 𝑆, 𝑒 ≠ 1 passing by all cities in 𝑆. The main
components can be defined as follows: the stages are numbered as 𝑖 = 0, 1, 2..., 𝑛−1
, the states are tuples of the form (city, set of cities (S(i)), 𝑓𝑖 denotes the optimal
value function. Let b be the base city of the salesman. We denote with 𝑎𝑘 𝑗 the cost
of transportation from city k to city j and we denote with 𝑆(𝑖) a set of 𝑖 in number
cities. The value function and the recursive relationship are defined as:

𝑓𝑖 (𝑒, 𝑆(𝑖)) :={The minimum cost of transportation from the base city to e city

visiting all the cities in the set S(i)}, or

𝑓𝑖 (𝑒, 𝑆(𝑖)) = min
𝑘∈𝑆(𝑖)

[𝑓𝑖−1(𝑘, 𝑆(𝑖) − {𝑘}) + 𝑎𝑘𝑒]

In the first stage of the algorithm we initialize the function values as follows:

𝑓0(𝑒,−) = 𝑎𝑏𝑒 , for all cities e

3.2.3 Heuristics
All of the problems we have discussed are computationally hard. For large sized
COP instances, the running time of exact algorithms is large. That problem can be
tackled by heuristics. However, heuristics do not provide optimality guaranties and
they may well be stuck in local optima. In this subsection, we briefly present some
heuristics for the COPs we discussed in the previous subsection. Mainly, we discuss
constructive heuristics and greedy heuristics. In constructive solutions, one starts
with an empty set (initial solution) and adds elements sequentially. The decision
on what element to add is based on some selection criterion. Greedy heuristics
use selection criteria which are based on some local optimality such as the best
improvement on the objective function. These criteria are myopic and can lead to
worse future additions and hence to worse solutions.

Let us now give the greedy node algorithm for the MVC problem. This algorithm
simply selects the node with the highest degree at each step. Then, erases all the

16

edges connected to that node until the edge set is covered. So, let 𝐺 = (𝑉, 𝐸) be a
graph.

Algorithm 2: MVC greedy node algorithm
𝑆 ← ∅
while S not a cover do

Pick node v with highest degree in the active graph and add it S ;
erase all edges incident to v ;

return S

Another similar algorithm is the one called: 2-OPT approximation algorithm for
minimum vertex cover. The name of the algorithm makes much more sense when
one knows that this algorithm finds vertex covers with less or equal to 2 x (minimum
vertex cover). There are 2-opt algorithms for many other COPs as well. We move
on to discuss a heuristic for TSP.
Nearest neighbour algorithm for the TSP :
The idea again in this algorithm is fairly simple. At each step, the algorithm adds the
node which is closer to the previous added one. Let 𝑉 = {𝑣1, ..., 𝑣𝑁 } be the set of
vertices (or cities). We assume the base city is denoted 𝑣1. This algorithm’s running

Algorithm 3: Nearest Neighbour TSP
1 Initialize 𝑆 = ∅
2 Begin from the base city and add 𝑣1 to S
while |𝑆 | < 𝑁 do

Add 𝑣∗ from 𝑣 : 𝑣 ∈ 𝑉 − 𝑆 s.t distance 𝑣∗ with the previous city is the
minimum

time in worst case scenario is 𝑂 (𝑛2). So, it approximates the optimal solution in a
polynomial time. As we have already mentioned brute force attack has O(n!) and
hence there is a huge difference. We continue to discuss an algorithm for the MIS
problem.

A greedy algorithm for MIS
In a similar way, we can give a greedy algorithm for the MIS problem. This one is
called Minimum Degree Heuristic and can be executed by following the two steps
below :

• Select vertex with minimum degree

• Remove all its neighbors

17

So, in every iteration the solver selects the node of minimum degree available for
selection and then removes all its neighbours from the list of available for selection
nodes. This algorithm has an approximation ratio (Δ+2)/3 where Δ is the maximal
degree of the graph. [Wikipedia, 2022b]

The algorithms we briefly introduced are used as baselines in the last chapter of
this thesis. In the last chapter, we present our applications, which we will see are
nothing but "learned heuristics ". That means an artificial agent learns itself a
heuristic using machine learning in contrast with traditional heuristics, such as the
ones above, which are designed entirely by humans. In relevant work that inspired
this thesis, a great number of human designed heuristics are used as baselines.
For example, in [Khalil et al., 2017] the following heuristics are used: Minimum
Spanning Tree (MST), Farthest insertion, Cheapest insertion, Closest insertion,
Christofides and 2-opt, along with the nearest Neighbor heuristic which we use too.

18

C h a p t e r 4

NEURAL NETWORKS

Machine learning is the field of computer science that specializes in construct-
ing algorithms that are able to make accurate predictions without being explicitly
programmed. Instead of being explicitly programmed these algorithms are auto-
matically improved by using data. That happens through experience, trial and error
and in a way that is similar to how humans learn. There are three types of machine
learning: Supervised machine learning, unsupervised learning and reinforcement
learning. Each category is suitable for some problems and has its own distinct
algorithms. A tool that appears useful to all three categories is Neural Networks
(NNs) and it is the topic of the next chapter.

The human brain contains an astronomical number of neurons or nerve cells, and
each neuron is connected to a great number of other neurons. The cell body (soma),
dendrites and an axon constitute a typical neuron. Usually, dendrites and soma
receive signals and pass signals down to the axon and the signal ends up in a dendrite
of another neuron [Stangor and Walinga, 2014]. Artificial Neural Networks (ANN)
imitate that process. The basic components of an ANN are neurons. Neurons in
ANNs can have multiple input and output neurons in the previous and next layer,
respectively. Every neuron receives signals from its input neurons of the previous
layer, aggregates them, and then passes the aggregated signal through an activation
function. The activation function decides, based on the aggregated signal, whether
the neuron will be activated. If the neuron is activated, then a "strong" signal (high
value) will be passed forward to its output nodes in the next layer, otherwise a low
value will be passed forward. The neurons are organized in consecutive layers. Each
neuron of the network can be connected to a random number of neurons. Below,
there are typical graphical representations of simple neural networks.

19

Figure 4.1: Perceptron illustrated as in [Dong et al., 2020]

Figure 4.2: MLP illustration [Dong et al., 2020]

The neural networks in figures 4.1, and 4.2 are simple neural networks which are
called perceptron and multilayer perceptron (MLP) respectively. When the
neurons of a layer are connected to all neurons of the next layer, then that layer
is called a dense layer. The layers of a neural network that lie between the input
and the output layers are called hidden layers because they are not accessible from
outside the network. How these networks work is described mathematically below :

Let

𝑊 =


𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

 (4.1)

contain the weights of the input layer to the first hidden layer. Where 𝑤𝑖 𝑗 is the
synaptic weight between 𝑖𝑡ℎ neuron of the hidden layer and 𝑗𝑡ℎ input. Then each
hidden layer gets as inputs the outputs from the previous layer, which using matrix
algebra can be calculated by the following equation.

𝐻1 = 𝑊1𝑥
𝑡 + 𝑏1 (4.2)

20

where𝑊 is the weight matrix of (4.1), 𝑥 =

(
𝑥1 𝑥2 𝑥3

)
is the inputs vector, b is the

bias (it can be omitted) and t denotes the transpose matrix. Continuing in a forward
way, we can calculate the outputs of the neural network using the equations below.

𝐻2 = 𝑊2𝐻1 + 𝑏2 (4.3)

𝐻3 = 𝑊3𝐻2 + 𝑏3 (4.4)

𝑂 = 𝑊4𝐻3 + 𝑏4 (4.5)

The process we just described is known as forward propagation. Up to this point,
we have discussed only linear neural networks. These networks are useful, but
usually, more complicated networks are used. Non-linear neural networks can be
created by using activation functions.

4.1 Activation Functions
We briefly discuss now some common activation functions. Activation functions are
element-wise, differentiable functions, and can add non-linearity to neural networks.
The first activation function we are going to discuss is softmax which is also knows as
normalized exponential activation function. It takes as input a vector of real numbers
and outputs a probability distribution. Let 𝑆 denote softmax S: R𝑛 → [0, 1]𝑛

𝑆(𝑧)𝑖 =
𝑒𝑧𝑖∑𝑘=𝑛
𝑘=1 𝑒

𝑧𝑘
(4.6)

The equation 4.6 shows how softmax normalizes the input vector and produces a
probability distribution. It is very clear that 𝑆(𝑧)𝑖 ∈ [0, 1] and

∑
𝑖 𝑆(𝑧)𝑖 = 1. In

practice, softmax is mostly used in classification problems. Specifically, it is used
in the output layer of the network in order to transform the output into a probability
distribution. We now discuss an activation function called sigmoid.

4.1.1 Sigmoid
is another well known activation function. The sigmoid function takes as input any
real number and outputs it in the (0,1) interval.
Sigmoid: R→ (0, 1)

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 (4.7)

Its derivative satisfies the next equation

𝑓
′ (𝑥) = 𝑒−𝑥

(1 + 𝑒−𝑥)2
= 𝑓 (𝑥) (1 − 𝑓 (𝑥)) (4.8)

21

Let us now proceed to a very similar function that is called hyperbolic tangent or
tanh.

4.1.2 Hyperbolic tangent
is an activation function similar to sigmoid because is defined over all real numbers
and squeezes them in the interval (−1, 1)

𝑡𝑎𝑛ℎ(𝑥) = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥 (4.9)

As expected it is differentiable, and its derivative is given below

𝑡𝑎𝑛ℎ
′ (𝑥) = 1 − (1 − 𝑒

−2𝑥)2
(1 + 𝑒−2𝑥)2

= 1 − 𝑡𝑎𝑛ℎ2(𝑥) (4.10)

4.1.3 ReLU
ReLU stands for Rectified Linear Unit. ReLU is an activation function that performs
well on several machine learning tasks and is often preferred instead of the two acti-
vation functions discussed below. That is because ReLU is easier to implement and
compute, and its gradients are more consistent, which helps in network optimization.

𝑅𝑒𝐿𝑈 (𝑥) =

𝑥 , if 𝑥 > 0

0 , if 𝑥 ≤ 0
(4.11)

ReLU consists of two linear parts. It is differentiable for every 𝑥 ∈ R∗. The equation
below give us ReLu’s derivative.

𝑅𝑒𝐿𝑈 (𝑥)′ =


1 , 𝑖 𝑓 𝑥 > 0

0 , 𝑖 𝑓 𝑥 < 0
(4.12)

In practice, ReLU is far more often used than sigmoid or tanh. That is because of
the advantages that we have discussed over the other two. Furthermore, the sigmoid
is used only in the output layer in binary classification problems. The sigmoid is a
good choice for that task since it squeezes its input into a value in (0, 1), which can
be converted to a label class (0 or 1) easily. In hidden layers, ReLu is preferred over
sigmoid. Tanh outputs in the interval (-1,1), so it can be used in the output layer
in order to generate image pixels or it can be used in hidden layers to provide non
linearity.

22

4.1.4 Vanishing-Exploding gradients
We are interested in derivatives of activation functions because they are important
for the process of optimizing and tuning neural networks. The behaviour of deriva-
tives of activation functions can affect the process of optimizing a neural network.
When optimizing a neural network, two problems called exploding gradients, and
vanishing gradients, respectively, can possibly occur. The former means that the
gradients get larger and larger, while the latter means that the gradients get smaller
and smaller approaching zero. Some activation functions are more susceptible to
leading to vanishing or exploding gradients. For instance, sigmoid and tanh are
more susceptible to vanishing gradients than ReLU.

4.2 Training neural networks
In order to train neural networks a plethora of methods have been developed and
there are many tools that facilitate this process. Some of these tools are briefly
discussed below.

4.2.1 Cost Functions
An important tool in training neural networks is cost functions. Cost functions
provide a way to measure the performance of machine learning models. They
measure the extent a prediction is close to the real value. Some cost functions are
the following

Mean Squared Error:

𝑀𝑆𝐸 (𝑦, 𝑦̂) = 1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (4.13)

Due to its quadratic formula, MSE is affected more by high errors compared to other
cost functions such as the next one. So, if the predictions are quite close to the real
values then the MSE will be small. If some of the predictions differ significantly
from the real values then the MSE will be large.

The Mean Absolute Error:

𝑀𝐴𝐸 (𝑦, 𝑦̂) = 1
𝑁

𝑁∑︁
𝑖=1
|𝑦𝑖 − 𝑦̂𝑖 | (4.14)

Mean absolute error and mean squared error are popular cost functions for regression
problems. To tackle classification problems, different cost functions are used. The
most known is

23

Cross Entropy for binary classification:

L = − 1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log (1 − 𝑦̂𝑖)) (4.15)

Where 𝑦𝑖 is the actual binary value and 𝑦̂𝑖 is the predicted probability that 𝑖𝑡ℎ data
entry belongs to class 1. Apart from the cost functions, gradient methods are a very
important component of the training phase of neural networks.

4.2.2 Gradient Methods
try to make the neural network learn its parameters 𝜃 (weights 𝑤 and biases 𝑏) with
respect to some cost function, which is minimized. Calculating the cost function’s
minimum is usually very difficult to be done analytically when the neural networks
are complex. For that reason, methods like gradient descent are used. This method
approaches the cost function’s minimum by doing small steps toward it. In order to
do this, we apply to the network parameters the following update rule

𝜃 ← 𝜃 − 𝑎∇𝜃𝐿 (4.16)

Where 𝛼 is the learning rate, and it is the pace at which the network learns its
parameters. Now we discuss how these gradients (∇𝜃𝐿) are calculated. That is done
using the following method:

Backpropagation algorithm traverses the network from the output layer to the input
layer in order to calculate the gradients with respect to its parameters. The calculation
requires the use of the chain rule heavily because a neural network consists of a
number of composite functions. A brief description of how backpropagation works
is given below.

• l=1,2,3,..,l are the indexes of the network layers.

• 𝑧𝑙 = 𝑊 𝑙𝑎𝑙−1 + 𝑏𝑙 is the weighted output of the l-th layer

• 𝐶 = 1
2 | |𝑦 − 𝑎

𝐿 | |2 is the cost function

• 𝛿𝑙 = 𝑑𝐶

𝑑𝑧𝑙

• 𝑎𝑙 = 𝑓 (𝑧𝑙) where f is an activation function

To calculate the gradient with respect to the weights of 𝑙-th layer we first have to
calculate 𝛿𝑙

24

𝛿𝑙 =
𝑑𝐶

𝑑𝑧𝑙
=

𝑑𝐶

𝑑𝑧𝑙+1
𝑑𝑧𝑙+1

𝑑𝑎𝑙

𝑑𝑎𝑙

𝑑𝑧𝑙

𝑑𝐶

𝑑𝑊 𝑙
=

𝑑𝐶

𝑑𝑧𝑙

𝑑𝑧𝑙

𝑑𝑊 𝑙

Calculating 𝑑𝐶

𝑑𝑤𝑙 requires first calculating 𝑑𝐶

𝑑𝑧𝑙+1
so the process of calculating gradients

has to start from the last layer and then move backwards. Gradient descent on every
step computes the cost function with respect to the whole training data set. The larger
the training data set is the more costly the computation becomes. Usually, instead
of gradient descent, stochastic gradient descent (SGD) is used. SGD computes the
cost function on randomly selected samples from the training data which are called
minibatches. For more detailed information on the discussed concepts above, one

Algorithm 4: Stochastic Gradient Descent (SGD)
Input: θ-parameters of the network, N- number of iterations.

for i=1,..., N do
calculate the cost function C of a minibatch
backpropagate to calculate 𝑑𝐶

𝑑𝜃

∇𝜃 ← −𝑎 𝑑𝐶
𝑑𝜃

𝜃 ← 𝜃 + ∇𝜃
end for
return the parameters 𝜃

can take a look at [Zhang et al., 2021, Dong et al., 2020].

25

We proceed to next section which has to do with an interesting type of neural
network.

4.3 Recurrent Neural Networks
Recurrent neural networks (RNNs) [McClelland and Rumelhart, 1987] are neural
networks which were made in order to deal with sequential data. Sequential data
can be the price of a stock and, generally time series data, the words of a sentence in
natural language. In sequential data, the parts of the sequence are dependent on each
other and the order is important. So, the elements in the sequence 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛

interact in some way, and any permutation of the sequence may not have the same
"meaning" as the original one. Designing special neural networks to deal with such
data was needed, and RNNs were designed. RNNs take as input sequences in steps
where in each step those networks need to have some information about the past
of the sequence. That is why they use hidden states. Hidden state vectors offer a
way to "remember" information about the past sequence through the process. Let
𝑥𝑡 be the input of time step 𝑡 and ℎ𝑡−1, ℎ𝑡 the hidden states of time steps 𝑡 − 1 and 𝑡

respectively then ℎ𝑡 is given by the

ℎ𝑡 = 𝑓 (ℎ𝑡−1, 𝑥𝑡) (4.17)

Since the computation of ℎ𝑡 involves ℎ𝑡−1, the equation above is recurrent. There
are many architectures of recurrent neural networks. In this text, we cover the
fundamentals.

Figure 4.3: An illustration of an RNN unfolding [Wikipedia, 2022c]

The figure below illustrates how RRNs unfold. As one can see there are many
parameters above such as 𝑈,𝑉 and 𝑊 which are weight matrices.

• W is the weight matrix associated with the output of each time step and its
hidden state

26

• V is the weight matrix associated with the hidden states

• U is the weight matrix associated with the inputs

Let us now give the details of how these matrices are used by RNNs.

𝐻𝑡 = 𝑔(𝑋𝑡𝑈 + 𝐻𝑡−1𝑉 + 𝑏ℎ) (4.18)

𝑂𝑡 = 𝐻𝑡𝑊 + 𝑏𝑞 (4.19)

Where 𝑋𝑡 ∈ R𝑛𝑥𝑑 is the input at time step 𝑡, 𝑛 is the size of the training batch and
𝑑 is the input size. 𝐻𝑡 ∈ R𝑛𝑥ℎ is the variable that contains the hidden state of each
example in the batch at time step 𝑡. With 𝑔 we denote some activation function
(usually tanh is used). The weight matrices are𝑈 ∈ R𝑑𝑥ℎ, 𝑉 ∈ Rℎ𝑥ℎ and𝑊 ∈ Rℎ𝑋𝑞,
ℎ is the number of hidden units and 𝑞 is the length of the outputs. In addition,
there are bias parameters: 𝑏ℎ the bias of the hidden layer and 𝑏𝑞 the bias of the
output layer. In an RNN we have shared parameters, which means we use the same
parameters for any time step, so there would be no extra parameterization cost if the
number of time steps increased. The training process of these networks is similar
to the one used for training multilayer perceptrons. The process starts with the
initialization of the parameters (usually the initial hidden state ℎ0 is a vector with
only zeros) then the forward pass follows, in which the outputs are calculated and
then comes the loss calculation. Although RNNs can help with tasks that MLPs
cannot, in some tasks RNNs can only go so far. For instance, in tasks with long
sequences, RNNs appear to fail to catch very long term dependencies. They also
suffer from vanishing and exploding gradients problems, which we discussed in
section 4.2. In order to deal with those issues, an advancement of recurrent neural
networks was designed. This advancement has a new feature, which is gates.

4.4 Gated Recurrent Neural Networks (GRNNs)
GRNNs were introduced in [Cho et al., 2014] and they are used more than simple
RNNs. We now discuss two types of gated recurrent neural networks, the gated
recurrent units (GRU) and long short term memory networks (LSTMN). The primal
difference between GRNNs and RNNs is the first ones use gating mechanisms in
the calculation of hidden states. Let us introduce the GRUs first, which are simpler
than LSTMNs. Gated recurrent units use an update gate and a reset gate. These
gates contain numbers from the interval (0, 1) such that we can perform convex

27

combinations. The reset gate decides how much of the old hidden state we want
to keep. The update gate decides how much of the new state is just a copy of the
previous one.

Figure 4.4: GRU illustration as in [Zhang et al., 2021]

We have no better way to describe GRUs than by giving their mathematical details.
So as previously let 𝑋𝑡 be a batch at time step 𝑡 and 𝐻𝑡−1 the hidden state of the
previous time step. Then, the 𝑍𝑡 , 𝑅𝑡 are given from the equations below.

𝑅𝑡 = 𝜎(𝑋𝑡𝑈𝑟 + 𝐻𝑡−1𝑉𝑟 + 𝑏𝑟) (4.20)

𝑍𝑡 = 𝜎(𝑋𝑡𝑈𝑧 + 𝐻𝑡−1𝑉𝑧 + 𝑏𝑧) (4.21)

Where σ denotes the sigmoid activation function and 𝑏𝑧, 𝑏𝑟 are biases. Another
essential component of GRUs is the candidate hidden state 𝐻. Now that we have
defined the reset gate in equation 4.20, it is time to use it in calculating the candidate
hidden state.

𝐻 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈 + (𝑅𝑡 ⊙ 𝐻𝑡−1)𝑉 + 𝑏ℎ) (4.22)

Where ⊙ denotes the Hadamard product operator (multiplication of elements in
corresponding cells). It is easy to see that when all the values in 𝑅𝑡 are close to
one, the calculation of the candidate hidden state coincides with the calculation of
a simple RNN’s hidden state. When all values in 𝑅𝑡 are close to 0, the calculation
of the candidate hidden state coincides with a multilayer perceptron output which
took 𝑋𝑡 as input. To conclude our discussion on GRU’s, we should discuss how
hidden states are calculated. That calculation involves both the update gate and the
candidate hidden state.

𝐻𝑡 = 𝑍𝑡 ⊙ 𝐻𝑡−1 + (1 − 𝑍𝑡) ⊙ 𝐻𝑡 (4.23)

28

The equation above shows the degree that the new hidden state at the current time
step is a caricature of the previous one and how much the new candidate hidden
state is used. Similar to before, one can easily see that if all values in 𝑍𝑡 are close
to 0 then the new hidden state coincides with the candidate hidden state. On the
contrary, when all values in 𝑧𝑡 are close to 1 then the new hidden state is equal to
the previous one. In [Zhang et al., 2021] one can find more details along with code
implementations of such NNs.

4.4.1 Long Short Term Memory
Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] networks
are neural networks which are designed similarly to GRUs. Although these networks
are a bit more sophisticated than GRUs they were invented almost twenty years before
GRUs. LSTMs have a cell state which has the same shape as the hidden state and its
purpose is to save extra information. In order to manage this cell state, three gates
are used. The first gate is called the input gate, the second is called the output gate
and the third one is called the forget gate. These gates are responsible for different
tasks, which are presented mathematically below.

𝐼𝑡 = 𝜎(𝑋𝑡𝑈𝑖 + 𝐻𝑡−1𝑉𝑖 + 𝑏𝑖) (4.24)

𝐹𝑡 = 𝜎(𝑋𝑡𝑈 𝑓 + 𝐻𝑡−1𝑉 𝑓 + 𝑏 𝑓) (4.25)

𝑂𝑡 = 𝜎(𝑋𝑡𝑈𝑜 + 𝐻𝑡−1𝑉𝑜 + 𝑏𝑜) (4.26)

Where 𝐻𝑡−1 ∈ R𝑛𝑥ℎ is the hidden state variable at the time step 𝑡 − 1, 𝑋𝑡 ∈ R𝑛𝑥𝑑

is a batch of 𝑛 examples of 𝑑 input size at the time step 𝑡,𝑈𝑖,𝑈 𝑓 ,𝑈𝑜 ∈ R𝑑𝑥ℎ,
𝑉𝑖, 𝑉 𝑓 , 𝑉𝑜 ∈ Rℎ𝑥ℎ are weight matrices and 𝑏𝑖, 𝑏 𝑓 , 𝑏𝑜 ∈ R1𝑋ℎ are biases. About the
newly introduced: 𝐼𝑡 ∈ R𝑛𝑥ℎ is the input gate, 𝐹𝑡 ∈ R𝑛𝑥ℎ is the forget gate, 𝑂𝑡 ∈ R𝑛𝑥ℎ

is the output gate.

Candidate Memory Cell is computed pretty much in the same way as the gates
are computed. Nonetheless, there is a key distinction: instead of using sigmoid
activation function, the candidate memory cell uses tanh. We denote the candidate
memory cell at the time step 𝑡 with 𝐶𝑡 and we compute it as follows.

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈𝑐 + 𝐻𝑡−1𝑉𝑐 + 𝑏𝑐) (4.27)

Where 𝑈𝑐 ∈ R𝑑𝑥ℎ, 𝑉𝑐 ∈ Rℎ𝑥ℎ are weight matrices and 𝑏𝑐 ∈ R1𝑥ℎ is the bias.

Memory cell uses the two gates. The input 𝐼𝑡 , which decides how much new
information we will take from the current candidate memory cell 𝐶𝑡 . The forget

29

gate 𝐹𝑡 , which decides how much we will forget from the previous memory cell.

𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 + 𝐼𝑡 ⊙ 𝐶𝑡 (4.28)

If the values in the forget gate are close to 0 then the information in the previous
memory cell is forgotten. The input gate decides what information from the can-
didate memory cell will be kept. When the values of 𝐼𝑡 are close to 1 then the
corresponding information from the candidate memory cell is kept when they are
close to zero is not kept.

Hidden State uses the output gate and the memory cell in its computation.

𝐻𝑡 = 𝑂𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (4.29)

When 𝑂𝑡 values are close to 1 then a rich hidden state is passed through to the next
time step.

At this point, all the computational aspects of the LSTMs are described. LSTMs
between time steps pass through only the hidden state and Memory cell. They
"fix" the problem of vanishing or exploding gradients and are capable of catching
long time dependencies that simple RNNs cannot. RNNs and especially LSTMNs
are widely used in applications of ML in CO. For instance, LSTMNs are used
in [Bello et al., 2016] in order to devise a mechanism called attention, which is
described below.

4.5 Attention Mechanism
In this section, we briefly discuss attention mechanism [Bahdanau et al., 2014]. This
mechanism enhances some parts of the input data and diminishes other parts and
shows which parts of the data we should more focus on. Usually, it is used in models
that use the following neural network architecture: encoder decoder architecture.
That architecture consists of two components:

• The encoder, which takes an input sequence of any length and creates a
context variable of fixed shape. The context variable contains the information
of the sequence encoded.

• The decoder, which takes the context variable and gives the output sequence
of variable length. In the next paragraph we discuss a design that will help us
to describe attention.

30

In the next paragraph we discuss a design that will help us to describe attention.

This design is called sequence to sequence learning. In this encoder decoder
framework, both the encoder and the decoder are recurrent neural networks. The
encoder as an RNN works as follows: given the sequence at the time step

𝑡 calculates the hidden state:
ℎ𝑡 = 𝑓 (𝑥𝑡 , ℎ𝑡−1)

Where 𝑓 is some function to express how the RNN transforms in the recurrent layer.
After the calculation of the hidden state ℎ𝑇 at the final step 𝑇 the context variable 𝑐

is calculated
𝑐 = 𝑞(ℎ1, ℎ2, ..., ℎ𝑇) (4.30)

where 𝑞 is some function of the hidden states. Quite often, the context variable 𝑐 is
chosen to be just the hidden state at the final step 𝑇 , 𝑐 = ℎ𝑇 .

In every time step, the decoder uses the context variable in the calculation of its
output and hidden states. For the hidden states, which we denote here with 𝑠:

𝑠𝑡 = 𝑔(𝑦𝑡−1, 𝑠𝑡−1, 𝑐) (4.31)

and, the outputs 𝑦𝑡 are conditioned on the previous outputs and the context variable
𝑐. So, when we get the hidden state 𝑠𝑡 , we apply softmax operation to get the
probability distribution of 𝑦𝑡 and eventually the output 𝑦𝑡 .

The attention mechanism, as mentioned, is a mechanism which helps to make more
accurate predictions. This mechanism determines the parts of the sequence to focus
on. Moreover, it works similarly to how human attention works. At each time step
of decoding, a scoring function is used to compute a score between each hidden state
ℎ 𝑗 of the encoder and the most recent hidden state of the decoder (the dot product
could be the scoring function).

𝛼𝑡 𝑗 = 𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ 𝑗) (4.32)

Next, the scores are normalized in a probability distribution using the softmax
operation.

𝑎𝑡 𝑗 =
𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ 𝑗)∑𝑖=𝑇
𝑖=1 𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖)

(4.33)

As soon as we get those normalized values, we use them as weights, and we obtain
the context variable of time step 𝑡 as the weight average of the encoder’s hidden

31

states.

𝑐𝑡 =

𝑗=𝑇∑︁
𝑗=1

𝑎𝑡 𝑗ℎ 𝑗 (4.34)

Now that the context variable has been computed, the process continues as previously
described in sequence to sequence learning.

4.6 Graph Neural Networks
Having covered some NN architectures that we believe are fundamental and a
good base to comprehend the more complicated-modern ones, we would like to
discuss Graph Neural Networks (GNNs) before moving to the next chapter. A
specific type of GNNs, Graph Convolutional Networks (GCNs) are used in our
experiments. These NNs are designed to be used in ML tasks which deal with graph
data, and they produce meaningful representations of nodes, edges, or even graphs.
They work as follows: they get as input a set of features of nodes and/or edges,
and using a mechanism called message passing or neighborhood aggregation, they
create representations for each node by aggregating its neighbors’ features. At each
iteration of the message passing process, an embedding for each node is updated.
The number of iterations is determined by the number of GNN layers. The more
GNN layers, the more "distant neighbors" are used, stacking 𝐿 GNN layers results
in producing node embeddings based on 𝐿-hop neighborhood of each node. GNN
layers are based on two functions, the update and the aggregation. At each iteration,
the aggregation function computes a message by aggregating the embeddings of all
neighboring nodes of a node 𝑢 . Then, the update function takes this message and
combines it with the previous embedding of 𝑢 and produces the new embedding of
𝑢. These two functions should be differentiable. We proceed with our discussion
by giving the mathematical description of a simple GNN layer.

h(𝑘)𝑢 = 𝜎
©­«W(𝑘)

self h(𝑘−1)
𝑢 +W(𝑘)

neigh

∑︁
𝑣∈N (𝑢)

h(𝑘−1)
𝑣

ª®¬ (4.35)

That neural network is a simplification of the one presented in
[Merkwirth and Lengauer, 2005]. Here, ℎ𝑘𝑢 is the hidden embedding of 𝑢 node in
𝑘𝑡ℎ iteration, 𝜎 is a function that provides non-linearity, which could be ReLU, tanh,
or some other activation function. 𝑊 𝑘

𝑠𝑒𝑙 𝑓
, 𝑊 𝑘

𝑛𝑒𝑖𝑔ℎ
are trainable parameters that can

be shared between layers or not. The aggregation function is 𝑚𝑢 =
∑

𝑣∈N (𝑢) h
(𝑘−1)
𝑣 ,

and the update is 𝑈𝑃𝐷𝐴𝑇𝐸 (ℎ𝑢, 𝑚𝑢) = 𝜎(𝑊𝑠𝑒𝑙 𝑓 ℎ𝑢 +𝑊𝑛𝑒𝑖𝑔ℎ𝑚𝑢).

32

Now that we have discussed the basics of graph neural networks, we briefly describe
how GCNs work as introduced in [Kipf and Welling, 2016]. GCNs work in two
stages: first average the node features over the neighborhood of each node, and then
pass the averaged feature to a fully connected network. The following equations
describe how a GCN works.

𝐻 (𝑙+1) = 𝜎

(
𝐷̃−

1
2 𝐴̃𝐷̃−

1
2 𝐻 (𝑙)𝑊 (𝑙)

)
𝐻 (0) = 𝑋

Where 𝐴 is the adjacency matrix, 𝐴̃ is 𝐴 with self-loops, 𝐷̃ =
∑

𝑗 𝐴𝑖 𝑗 is the degree
matrix. 𝑋 is the node input feature matrix and has a shape of 𝑁𝑋𝐷 where 𝑁 is
the number of nodes and 𝐷 the number of features, 𝐻𝑙+1 is the output of layer
𝑙 + 1 and has a shape of 𝑁𝑋𝐹, where 𝐹 is the dimension of the output feature.
GNNS are very popular in applications of ML- graph CO. Examples of applica-
tions can be found in [Gasse et al., 2019, Khalil et al., 2017, Barrett et al., 2020,
Joshi et al., 2019], which are discussed later.

33

C h a p t e r 5

REINFORCEMENT LEARNING

Reinforcement Learning (RL) is one of the three types of machine learning. The
basic components of RL systems are two entities: environment and agent. The en-
vironment is an entity with which the agent interacts. For example, the environment
could be a chess game, a backgammon game, or almost any board game. The agent
decides which action to take from an action set that contains all possible actions at
each time step in the process. Whenever the agent takes an action, it transits from
one state to a new state and receives a scalar signal, which is called reward. In
RL, there are two types of reward, immediate and accumulative. The goal of RL
is to teach the agent to interact well in the environment, and this is done using the
maximization of the accumulative rewards. The states, actions and rewards, which
are important features of RL, are denoted with the letters 𝑆, 𝐴 and 𝑅, respectively.

Figure 5.1: Interaction agent environment [1]

As shown in Figure 5.1 and detailed previously in the text, the agent starts from an
initial state (usually randomly chosen), takes an action, and receives a reward. Then
it transits to a new state. This happens at each time step of the interaction procedure
and forms what is called a trajectory.

𝜏 = (𝑆0, 𝐴𝑂 , 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2,)

The trajectory τ simply means that the agent went from state 𝑆0 to state 𝑆1 taking
the action 𝐴0 and received the reward 𝑅1. Then went from 𝑆1 to 𝑆2 taking action
𝐴1 and received the reward 𝑅2.

5.0.1 Markov Decision Process
A Markov Decision Process (MDP) is the way in which an RL environment is
mathematically formulated. An MDP consists of a tuple of (S,A,P,R,γ) where S is

34

a set of states, A is a set of actions, and P is the probability of transition from state
to state taking an action.

𝑝(𝑠′ |𝑠, 𝑎) = 𝑝(𝑆𝑡+1 = 𝑠
′ |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) (5.1)

As one can see from the equation above, the transition to a state is not only condi-
tioned on the state of the previous time step; it is conditioned on both the previous
state and the action taken. R represents the immediate reward function.

𝑅𝑡 = 𝑅(𝑆𝑡 , 𝐴𝑡) (5.2)

and 𝛾 is a scalar, which is called a discount factor. MDPs are a decent way
to formulate sequential decision-making. More about MDPs can be found in
[Sutton and Barto, 2018], [Dong et al., 2020].

5.0.2 Rewards and Returns
We have already mentioned that the agent’s goal is to maximize the accumulative
reward it receives, but this is somewhat vague. For that reason, we introduce a new
concept, called return.

𝐺 𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2..... + 𝑅𝑇 (5.3)

So, the return 𝐺 𝑡 is just the sum of the rewards from the time step 𝑡 to the final time
step 𝑇 , or the cumulative reward after the time step 𝑡. Therefore, the agent’s goal is
to maximize 𝐺 𝑡 or ,even better, the expected 𝐺 𝑡 . In some RL tasks, there is not a
final step 𝑇 , and the task continues without stopping. Thus, the defined return given
above is not suitable for such tasks. In such cases, the discount factor is handy.

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + =
∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (5.4)

𝐺 𝑡 and 𝐺 𝑡+1 are related since they satisfy the next equation.

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝐺 𝑡+1

When 𝛾 is equal to zero, the agent is interested only in maximizing the immediate
reward and is called "myopic" because it does not care about the future. However, if
𝛾 is equal to 1 then (5.4) is exactly the same equation as in (5.3). When 0 < 𝛾 < 1,
𝛾 acts as a kind of weight for the value of future rewards; the further in the future
the reward is received, the less weight is assigned.

35

5.0.3 Policy and Value Functions
We begin by defining what a policy is. A policy is a correspondence of probabilities
from states to actions. When the agent is in a state 𝑆𝑡 = 𝑠 at time step 𝑡, the policy
gives the probability of taking the action 𝐴𝑡 = 𝑎 for every possible action. In the
literature, a policy is denoted by 𝜋(𝑎 |𝑠) and it is clear that it forms a probability
distribution over the possible actions in 𝐴 for each state in the set of states 𝑆. We
defined what a stochastic policy is. A policy can also be deterministic, which means
that each state is mapped to one single action by the policy.

The value function of a state s following a policy π is the expected return after being
in state s.

𝑉𝜋 (𝑠) = E[𝐺 𝑡 |𝑆𝑡 = 𝑠], for all s in S (5.5)

We call 𝑉𝜋 the state value function, and apparently, the terminal states have a value
of zero. Now, we proceed to the action value function, which is defined similarly.

𝑄𝜋 (𝑠, 𝑎) = E[𝐺 𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5.6)

These functions can be estimated by keeping track of the agent’s experience while
following policy 𝜋. That is, to keep track of the returns that the agent receives starting
at each state and then average them. The averages obtained constitute estimates of
the real state values and action values. These methods for calculating estimations
of value functions are called Monte Carlo methods.

5.0.4 Optimal Value functions and Policies
Using value functions allows us to order policies in some way. A policy 𝜋 is better
than or equal to a policy 𝜋′ if the value of all states 𝑠 following the policy 𝜋 is greater
than or equal to the value of the state following 𝜋′. More formally, 𝜋 ≥ 𝜋′ if and
only if 𝑉𝜋 (𝑠) ≥ 𝑉𝜋′ (𝑠). This relation forms a partial ordering. Now we proceed
to define the optimal value function. Optimal value functions satisfy the following
equation, and we denote them by 𝑉∗(𝑠).

𝑉∗(𝑠) = max
𝜋

𝑉𝜋 (𝑠) (5.7)

Similarly, an optimal action function satisfies the next equation.

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋 (𝑠, 𝑎) (5.8)

36

Given that we follow an optimal policy and using the definition of the action value
function 𝑄, which gives the expected return of taking an action 𝛼 in a state 𝑠, we
can rewrite 𝑄∗ using 𝑉∗(𝑠).

𝑄∗(𝑠, 𝑎) = E[𝑅𝑡+1 + 𝛾𝑉∗(𝑆𝑡+1) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5.9)

5.0.5 Bellman equations
It can be shown that the value of state 𝑠 in any policy is in relation to the value of
the succeeding state and the next relation is satisfied.

𝑉𝜋 (𝑠) = E𝛼∼𝜋,𝑠′∼𝑝(|𝑠,𝑎) [𝑟 + 𝛾𝑉 (𝑠′)] (5.10)

The above equation is known as the Bellman equation for value functions. In
addition, there is a Bellman equation for the action value function.

𝑄𝜋 (𝑠, 𝑎) = E𝑠′∼𝑝(|𝑠,𝑎) [𝑟 + 𝛾E𝛼∼𝜋(𝑎 |𝑠) [𝑄(𝑠′, 𝑎′)]] (5.11)

Moreover, Bellman’s equations also hold for the optimal value functions.

𝑉∗(𝑠) = max
𝑎
E[𝑅𝑡+1 + 𝛾𝑉∗(𝑆𝑡+1) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5.12)

𝑄∗(𝑠, 𝛼) = E[𝑅𝑡+1 + 𝛾 max
𝛼′

𝑄∗(𝑆𝑡+1, 𝑎′) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (5.13)

5.1 Algorithms
As already mentioned, there is a broad set of algorithms within reinforcement
learning. In the next subsection we briefly discuss a few of those algorithms, which
we consider very useful for RL-in CO.

5.1.1 Dynamic Programming
We start with algorithms belonging to DP, which we discussed previously, DP can
be used in RL in order to compute optimal policies. In order to use DP, some
conditions must be met. These algorithms assume a finite state set and action set,
as well as complete knowledge of the environment dynamics

Policy Iteration
Policy iteration consists of two distinct processes: policy evaluation and policy
improvement. Policy evaluation is used to determine the state value given an

37

arbitrary policy π. This is done by expanding (6.5) as follows.

𝑉𝜋 (𝑠) = E𝜋 [𝑅𝑡+1 + 𝛾𝑉𝜋 (𝑆𝑡+1)] |𝑆𝑡 = 𝑠] (5.14)

=
∑︁
𝑎

𝜋(𝛼 |𝑠)
∑︁
𝑠′

𝑝(𝑠′|𝑠, 𝑎) [𝑟 + 𝛾𝑉𝜋 (𝑠′)] (5.15)

At first, an estimation of 𝑉𝜋 is picked at random for every non-terminal state. Let us
denote it by 𝑣1, then by using equation 5.15 the successor values are calculated.

𝑣𝑘+1 =
∑︁
𝑎

𝜋(𝛼 |𝑠)
∑︁
𝑠′

𝑝(𝑠′|𝑠, 𝑎) [𝑟 + 𝛾𝑣𝑘 (𝑠′)]

Policy evaluation stops when two successive estimates have a distance less than 𝜃,
a small threshold. That is, when for a natural number 𝑚 we have:

max
𝑠
|𝑣𝑚 (𝑠) − 𝑣𝑚+1(𝑠) | < 𝜃

When the policy evaluation is performed, the policy improvement begins. Policy
improvement decides whether in a state 𝑠 the agent should take the action 𝜋(𝑠) or
it is better to choose another action. The agent should choose this action if it leads
to a better state value following the policy 𝜋. This state action value is 𝑄𝜋 (𝑠, 𝑎).
Policy improvement is based on a theorem called the policy improvement theorem,
which is stated below. Whenever for two policies 𝜋 and 𝜋′ holds

𝑄𝜋 (𝑠, 𝜋′(𝑠)) ≥ 𝑉𝜋 (𝑠) for all states 𝑠

then
𝑉𝜋′ (𝑠) ≥ 𝑉𝜋 (𝑠)

Given a policy 𝜋 and the state value 𝑉𝜋 (𝑠) 𝑓 𝑜𝑟 𝑠 ∈ 𝑆 the policy improvement
constructs a new policy using the state values following the policy 𝜋 as described
below.

𝜋′(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄𝜋 (𝑠, 𝑎) (5.16)

The new policy 𝜋′ satisfies the improvement theorem and therefore is an improve-
ment of 𝜋. If the two policies lead to the same state values, Bellman’s equation
implies that 𝜋′ is an optimal policy. Now that the policy improvement has been
described, we can describe the policy iteration more technically. We start with an
initial policy 𝜋1 and evaluate it, then improve it and get 𝜋2. Then we evaluate 𝜋2

and improve it. We go on this way until the termination criterion is satisfied.

𝜋1 −→𝐸 𝑣𝑝1 −→𝐼 𝜋2 −→ −→𝐼 𝜋∗ −→𝐸 𝑣∗

38

5.1.2 Monte Carlo
Another way to evaluate a policy is to use a Monte Carlo (MC) method. These
methods work only for episodic tasks, require a large sample of episodes, and do
not require any knowledge of the environment dynamics. After generating a large
sample, the estimation 𝑣𝜋 (𝑠) is calculated by averaging the returns. Next, we provide
the pseudocode of the First Visit MC algorithm, which, unlike every Visit MC,
only considers the rewards after the first visit to state 𝑠.

Algorithm 5: First visit MC
Input: policy π
Initialize: 𝑣(𝑠) for all s and a list 𝑟𝑡 (𝑠) for each 𝑠.

loop
Generate episode 𝑆0, 𝐴0, 𝑅0, 𝑆1, 𝐴1, 𝑅1, 𝑆2..., 𝑆𝑡−1, 𝐴𝑇−1, 𝑅𝑇

𝐺 ←− 0
𝑡 ←− 𝑇 − 1
for t>=0 do
𝐺 ←− 𝛾𝐺 + 𝑅𝑡+1
if 𝑆0, 𝑆1, .., 𝑆𝑡−1 do not contain 𝑆𝑡 then

put 𝐺 in the list 𝑟𝑡 (𝑆𝑡)
𝑣(𝑆𝑡) ←− 𝑚𝑒𝑎𝑛(𝑟𝑡 (𝑆𝑡))

end if
𝑡 ←− 𝑡 − 1

end for
end loop

So far, we have presented only policy algorithms. These are algorithms that depend
on a policy. In some cases, using a method which is not dependent on any policy
comes handy; such methods are called off-policy. An off-policy method is the
so-called algorithm Q-learning.

5.1.3 Q-learning
To briefly introduce Q-learning, we give the following equation which is how the
state-action value function is estimated.

𝑄(𝑆𝑡 , 𝐴𝑡) ←− 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡)) (5.17)

39

Where 𝛼 is a step size parameter: a scalar in the interval (0, 1]. To be precise,
Q-learning bases its choices of actions on a policy derived from the action values 𝑄.
Usually, this policy is ε-greedy where a greedy action (with respect to the Q values)
is selected with probability 1 − 𝜀 and with probability 𝜀 an action is selected at
random. The Q learning algorithm starts by initializing all 𝑄 [𝑠, 𝑎] randomly for all
state action pairs, except for the terminal states, for which it sets𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, 𝑎) = 0.
Q-learning does not require knowledge of the environment, is not dependent on any
specific policy, and is one of the most popular RL algorithms. The pseudocode of
the algorithm is given below.

Algorithm 6: Q-learning
Initialize: 𝑄(𝑠, 𝑎) randomly for all 𝑠, 𝑎 pairs except for terminal states then
Q(terminal,a)=0
for each episode do

Initialize S
for each step of the episode do

Select A from S using the policy formed by Q(usually ε-greedy).
Take action 𝐴 and keep the reward 𝑅 and next state 𝑆′

𝑄(𝑆, 𝐴) ←− 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼(𝑅 + 𝛾 max𝑎 𝑄(𝑆′, 𝑎) −𝑄(𝑆, 𝐴))
𝑆←−S’

until 𝑆 is terminal
end for

Knowing the values 𝑄(𝑠, 𝑎) for each state action couple, one can easily derive a
policy simply by selecting the best action in every state value wise. This policy is
obtained by using the following equation.

𝜋(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄(𝑠, 𝑎)

5.1.4 Actor Critic Methods (AC)
Actor critic methods are popular methods that are in the middle of on and off policy
algorithms. The idea behind AC is to combine estimating a policy and a value
function at the same time. A typical AC method works as follows: The actor is said
to be the policy, and the critic is said to be the value function. The policy acts and
selects an action and then the value function, as the critic criticizes the action taken.
Actor-critic algorithms are among the most popular algorithms for applying RL to
solve COPs. In [Bello et al., 2016] an actor critic algorithm is used with a technique
called function approximation, which is discussed in the next paragraph. There are
many AC methods; here, we will give the pseudocode of the method described in
[Sutton, 2022], which is fairly simple.

40

Figure 5.2: picture from [Sutton, 2022]

Algorithm 7: Actor Critic
1 Select action at step 𝑡 according to current policy
2 Calculate TD error 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)
3 update preference values 𝑝(𝑠𝑡 , 𝑎𝑡) = 𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛽𝛿𝑡
4 generate 𝜋𝑡 (𝑠, 𝑎) = Pr {𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠} = 𝑒𝑝 (𝑠,𝑎)∑

𝑏 𝑒
𝑝 (𝑠,𝑏)

5 update the critic (V) using some rule

The TD error 𝛿𝑡 in 2 is used in 3 to increase or decrease the probability of selecting
the action 𝑎𝑡 in state 𝑠𝑡 . In 3 𝛽 is just another positive step size parameter. This
method, like all the methods that we have discussed so far, cannot be efficient for
problems with huge state spaces.

So far, all of the discussed RL methods estimate state value functions for each state
separately and update constantly (one at each step of the algorithm). This is very
time-consuming, memory-consuming, and practically infeasible in problems with
large state spaces. In these problems, states occur for the first time in most steps.
Apparently, it is difficult to make good decisions in such states, and thus basing the
decision on previous experience with similar states is recommended. This is done
using function approximation methods:

5.1.5 Function Approximation
As mentioned earlier, in the case of problems with massive state action spaces, all
algorithms presented so far fall short in solving these problems, and solving this
problem requires a function approximation method. RL and dynamic programming,
as we have already mentioned, are used to solve such problems. Unfortunately, they

41

suffer from "the curse of dimensionality". That means that the computational cost
increases exponentially with the number of state variables. This term was first used
by Bellman in [Bellman, 1957]. To overcome this, function approximation in RL
and Approximate Dynamic Programming (ADP) methods were developed. In fact,
ADP and RL are not very different from each other, as can be seen in the article
[Powell, 2009] and in the book [Bertsekas and Tsitsiklis, 1995]. Whether one calls
these methods ADP or RL is pretty much based on which field they belong to.
There are many function approximation methods. For example, gradient methods
are quite popular. These methods try to minimize the "difference" between the
approximate value function and the real value function by using gradient descent
methods. As an approximation function, one can use any differentiable function
from very simple functions, such as linear functions, to very sophisticated functions,
such as state-of-the-art deep neural networks.

Let w ∈ R𝑑 be a vector of 𝑑 weights and 𝑣(𝑠,w) be a function of 𝑤 for all 𝑠 ∈ 𝑆. The
function 𝑣 must be a differentiable function. Gradient methods need a set of state
value examples to adjust the vector w so that the approximate function closely mimics
the actual value function. To achieve this, gradient methods calculate gradients and
update the vector in a series of steps. Usually, this happens every time an example
is seen. The weights are updated by:

w𝑡+1 = w𝑡 −
1
2
𝑎∇[𝑉𝜋 (𝑆𝑡) − 𝑣(𝑆𝑡 ,w𝑡)]2 (5.18)

Where α is the learning rate parameter. As an approximate function, one can choose
a linear function. A linear approximate function is a good choice because it
performs well in some problems and it is easy to compute its gradients. In this
case, there is a vector called the feature vector x(s) for every 𝑠 ∈ 𝑆, where 𝑆 is the
state space. The feature vector and the weight vector are 𝑑 dimensional. The linear
function of our interest is defined with the help of the x and w vectors. That is, it is
defined as their inner product:

𝑣(𝑠, 𝑤) = 𝑤𝑇𝑥(𝑠) =
𝑖=𝑑∑︁
𝑖=1

𝑤𝑖𝑥𝑖 (𝑠) (5.19)

Feature vectors form a linear basis for the space of approximate functions and
describe the state. Each component of 𝑥(𝑠) = (𝑥1(𝑠),, 𝑥𝑑 (𝑠))𝑇 is called a feature
of the state 𝑥𝑖 : 𝑆 → R. As mentioned above, the gradient of the linear function is
easily calculated, which facilitates the SGD steps. The gradient of the function we

42

defined earlier with respect to the weights is:

∇𝑣(𝑠,w) = 𝑥(𝑠)

and therefore the weight update in this case becomes:

𝑤𝑡+1 = 𝑤𝑡 + 𝑎[𝑉𝜋 (𝑆𝑡) − 𝑣(𝑆𝑡 , 𝑤𝑡)]𝑥(𝑆𝑡) (5.20)

Usually, it is difficult to obtain the value 𝑉𝜋 (𝑠) of a state 𝑠. Therefore, an unbiased
estimate is often used instead. 𝑉𝑡 is an unbiased estimate of 𝑉𝜋 (𝑆𝑡) if and only if

E[𝑈𝑡 |𝑆𝑡 = 𝑠] = 𝑉 (𝑆𝑡)

For Monte Carlo, 𝐺 𝑡 is an unbiased estimate. Combining all of these, the Monte
Carlo algorithm for estimating the approximate values becomes

Algorithm 8: Monte Carlo for estimating 𝑉𝜋 (Linear approximate function)
Input: the policy π and
Input: a linear function 𝑣(𝑠, 𝑤) Initialize: the weight vector 𝑤 ∈ R𝑑 arbitrarily

1: loop
2: Generate episode 𝑆0, 𝐴0, 𝑅0, ..., 𝐴𝑡−1, 𝑆𝑇
3: for t=0,...t=T-1 do
4: 𝑤𝑡+1 = 𝑤𝑡 + 𝑎[𝐺 𝑡 − 𝑣(𝑆𝑡 , 𝑤𝑡)]𝑥(𝑆𝑡)
5: end for
6: end loop

5.1.6 Q learning with function approximation
Function approximation can also be used with off policy algorithms like Q-learning.
We briefly present the next two algorithms with value function approximation, which
are called fitted Q-iteration and online Q-iteration.

43

Algorithm 9: fitted Q-iteration
Input: q(s,a,w) function of w.
Step size parameter 𝛼

for i=1,...,T do
Collect D-samples[(𝑆𝑖, 𝐴𝑖, 𝑅𝑖, 𝑆

′
𝑖
)]

for t=1,....,K do
𝑦𝑖 ←− 𝑅𝑖 + 𝛾(max𝑎 𝑄(𝑆′𝑖 , 𝑎, 𝑤))
𝑤 ←− 𝑎𝑟𝑔 min𝑤 1

2
∑𝑖=𝐷

𝑖=1 (𝑄(𝑆′𝑖 , 𝐴𝑖, 𝑤) − 𝑦𝑖)2
end for

end for

Algorithm 10: Online Q-iteration
Input: q(s,a,w) differentiable function of w.
Step size parameter 𝛼

for i=1,...,T do
pick a and observe (s,a,r,s’)
𝑦 ← 𝑟 + 𝛾(max𝑎 𝑄(𝑠′𝑖 , 𝑎, 𝑤))
𝑤 ← 𝑤 − 𝛼(𝑄(𝑠, 𝑎, 𝑤) − 𝑦)∇𝑤𝑄(𝑠, 𝑎, 𝑤)

end for

In algorithm 9, the parameter w, as we can see, is updated using samples of size
𝐷 and the mean square error loss function, while in algorithm 19 the updates are
made after each step using only the calculated target 𝑦 and the observed value 𝑄.
This type of algorithm is used in the RL for the COP research line, for example in
the following: [Khalil et al., 2017, Barrett et al., 2020]. In the first paper, fitted Q
learning is used with the addition of a technique called experience replay, which we
discuss below. The second work uses a similar algorithm, which is also discussed
below.

5.1.7 Deep Q-learning network (DQN)
DQN was created by a DeepMind’s engineering team. It was introduced in
[Mnih et al., 2013] where it tackles the atari2600 video game. For such problems
before DQN, all algorithms were well-designed by human experts in the game-task.
On the contrary, DQN is capable of performing good tasks without human-designed
features. For instance, DQN receives only an image and a current score at each step
of atari, and using only this information performs well. The algorithm is probably
the most complex in this text. Instead of presenting the algorithm in an end-to-end
way, we briefly describe the basic and most important components of the algorithm.

44

Replay Buffer is a list that contains tuples of previous transitions. The buffer has
a fixed capacity and stores the previous experience in order to provide samples for
the process of experience replay.

Experience Replay is feeding the algorithm randomly sampled mini-batches of tran-
sitions from the replay buffer to train it. Experience replay enhances the algorithm’s
learning ability.

Q-network and target network The two networks are responsible for different
functions of DQN. The first is responsible for the prediction of the 𝑞 values and
instantiates the q-learning function, while the latter is responsible for the generation
of the target Q values. The parameters of the target network are updated every 𝐶

steps. That is, the parameters of the updated network are set to be equal to the ones
of the Q-network. It is possible not to use the second network and use only the first
one for both functions, but it is not recommended since the setting of two networks
appears to perform better. In the following, we give the pseudocode of the algorithm
as in [Dong et al., 2020].

Algorithm 11: DQN
Hyper Parameters: replay buffer capacity N, discount ε greedy factor.
Input: empty replay buffer D, initial parameter w of Q-network (Q function).
Initialize : 𝑄̂ target network with the parameters of Q-network

for episode i=0,1,2,... do
initialize environment and get initial observation 𝑂0
initialize sequence 𝑠0 = [00] and pre-process 𝜑0 = 𝜑(𝑠0)
for t=0,1,2,3... do

select action 𝐴𝑡 at random with probability ε and
𝐴𝑡 = 𝑎𝑟𝑔 max𝑎 𝑄(𝜑(𝑆𝑡), 𝑎, 𝑤)
Take action 𝐴𝑡 and observe 𝑂𝑡+1 and reward 𝑅𝑡 .
if episode has ended set 𝐷𝑡 = 1 if it has not set 𝐷𝑡 = 0
𝑠𝑡+1 = (𝑠𝑡 , 𝐴𝑡 , 0𝑡+1) and preprocess 𝜑𝑡+1 = 𝜑(𝑠𝑡+1)
save the tuple (𝜑𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝐷𝑡 , 𝜑𝑡+1) in D
sample a minibatch of transitions from D (𝜑𝑖, 𝐴𝑖, 𝑅𝑖, 𝐷𝑖, 𝜑

′
𝑖
)

if 𝐷𝑖 = 0, assign 𝑌𝑖 = 𝑅𝑖 + 𝛾 max𝑎′ 𝑄̂(𝜑′𝑖, 𝑎′, 𝑤̂), 𝑒𝑙𝑠𝑒,y𝑖 = 𝑅𝑖

do a gradient descent step on (Y𝑖 −𝑄(𝜑(𝑆𝑖), 𝐴𝑖, 𝑤)2
Update the target network every C steps
if the episode has ended then break the loop

end for
end for

In algorithm 11, we assume that we have a partially observable Markov decision

45

process and that is why we have those Os in the algorithm. Partial observations
are not in our interest so they are not presented in this work. However, for more
information on the algorithm and its coding implementations, see [Dong et al., 2020]
and [Zai and Brown, 2020]. Clearly, algorithms such as DQN, which use experience
buffers, require a lot of memory. Moreover, experience replay increases the number
of hyperparameters.

46

C h a p t e r 6

SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS VIA
MACHINE LEARNING

As the title of the chapter suggests, the current chapter aims to present applications of
machine learning in the field of COP. Recently, this topic has been a very active area
of research, and many articles have been published. Most of them use supervised
learning or RL in order to devise frameworks capable of solving COPs; unsupervised
learning is rarely used. Applications in this field vary. There are some direct
applications, such as constructing solutions to COPs, and some indirect, such as
improving processes of a COP solver. Regarding their ability to solve multiple
instances of problems, models are classified into two categories: Single Instance
learning models and Multi Instance Learning models.

Single instance learning models are the models that are trained to solve a single
instance of a COP. These models are ideal when the solver has no reason to want
their model to be able to solve other instances with or without the same size. In
that setting, for every different instance, a new policy has to be learned, which
means that the training process has to restart. multi instance learning models, in
contrast with single-instance learning models, can solve multiple instances of a
COP. Furthermore, a distinction between direct models and indirect models can be
made based on whether a model directly gives a solution to a COP or not. Direct
models can be divided into those that are autoregressive and those that are non-
autoregressive. Apparently, the type of machine learning used to train a model is
another dividing characteristic. Usually, SL or RL is used. Although in the end of
this chapter we briefly discuss some indirect applications of ML in CO, our focus
and our experiments are mainly on direct applications. In [Bengio et al., 2021] more
about the spectrum of ML applications in CO can be found. Direct applications
can vary greatly. Nevertheless, the following series of steps can provide a rough
description of direct ML methods in CO :

• Learn functions for graph representations
• Produce node or edge embeddings
• Using these embeddings learn a policy or a value function
• Use a search algorithm to get a solution

47

These models can be trained using SL or RL. Obviously, SL requires obtaining a
significant number of targets, whereas RL does not. Usually, SL is used in a non-
autoregressive way, in contrast to RL. To briefly describe how these models work,
we begin with the figures below.

Figure 6.1: [Joshi et al., 2019]

Figure 6.2: Illustration from [Khalil et al., 2017]

Figure 6.1 shows how the [Joshi et al., 2019] framework works. This framework de-
vises a non-autoregressive model trained by supervised learning, which constructs
solutions for TSP. As we can see, a two-dimensional graph is input, and a GCN
outputs an adjacency matrix containing probabilities of each edge belonging to the
tour. Then a solution is given by using beam search. The model is trained by
minimizing the cross entropy loss. The ground truth tours for the input graphs are
transformed to 0-1 adjacency matrix, so, the cross-entropy loss can be computed.
Figure 6.2 shows how the [Khalil et al., 2017] framework works for the MVC prob-
lem. This approach is an autoregressive RL model, which constructs solutions by
adding nodes sequentially to a partial solution. A message-passing neural network
takes graphs as input and produces graph embeddings and node scores. Then, a node
is selected greedily (i.e., the node with the highest score is selected). This happens
until all edges are covered. They combine graph embeddings and Q-learning to
construct a greedy-learned heuristic.

The latter framework is used as a means of comparison in many other works that
follow that line of research. Therefore, it is a fair representative of frameworks be-
longing to RL-paradigm. In fact, most of the work in the line of RL- autoregressive
is quite similar to that. Another work worth mentioning is the [Barrett et al., 2020]

48

framework, which deals with the maximum cut problem. This works similarly to
[Khalil et al., 2017], but introduces a new technique. They allow the agent to reverse
a previously taken action. Apparently, using this technique is more time-consuming
as each episode takes longer to end. Similarly, they use a message-passing neural
network and DQN to combine graph embeddings and Q-learning.

In this research line, providing an RL environment for a COP is needed. As an
example, one can see how this is done in [Khalil et al., 2017]. The table below
contains the definition of states, actions, rewards, and termination criteria.

Components
Problem State Action Reward Termination
MVC the subset of

nodes selected so
far

append node to
subset

-1 all edges are cov-
ered

Max Cut the subset of
nodes selected so
far

append node to
subset

change in cut
weight

cut weight cannot
be improved

TSP the partial tour add a node to par-
tial tour

change in tour
cost

tour includes all
nodes

MIS the subset of
nodes selected so
far

append node to
subset

+1 there are no more
feasible additions

The first three rows are the same as in [Khalil et al., 2017], while the last row is
how we formulate MIS in our experiment. We could have included in the table
above other prototypical COPs, but we decided to keep those that we are more
interested in. Typically, feature engineering has an impact on the performance of
ML models. In this research area, though, we believe feature engineering is not
the center of attention. However, some common features are the following: graph
statistics in graph COPs like node degree, coordinates (𝑥, 𝑦) for euclidean TSP, 0-1
tag depending on whether the node belongs to the partial solution, random features to
characterize nodes, and the number of nodes in lesser distance than a fixed number,
or some more complicated features. For instance, in [Barrett et al., 2020] they use
the features

1. Vertex inclusion, if it is in the current solution
2. Immediate cut change in case the vertex is changed
3. Number of steps since the last state was changed
4. Difference of current cut value from the best observed
5. Distance of the current solution set from the best observed
6. Number of available actions that immediately increase the cut-value

49

7. Steps remaining in the episode

Only observations 4-7 are global

Training and evaluation data are generated using algorithms that have been designed
to generate instances of COPs. For the graph COPs the situation is simple, as the
norm is to use synthetic data from random graph generation models such as Erdos-
Renyi. In the evaluation stage, real data is also often used. Usually, real data comes
from publicly available sources such as TSPLIB [Reinhelt, 2014]. Furthermore, the
most common way to measure the performance of a model is to use the approximation
ratio averaged over all instances in the evaluation dataset. For the evaluation of a
model, producing targets is needed. So, some well-known solver is used to produce
the targets. A time limit is often applied, so there is no guarantee of optimality.

Learning to Branch or Cut
Having mentioned some methods for using machine learning to solve COPs directly,
we discuss an indirect way in which ML is used in the same context. In chapter
two, we discuss solution methods in CO, specifically about branch and bound
and the decision problems arising in its implementation. Tackling these decision
problems with the assistance of ML systems is another research line in the context
of this thesis. There are approaches in which an agent tries to learn policies
for adding effective cutting planes in the cutting plane algorithm or branching
effectively in the branch and bound algorithm. An example of such an approach
can be found in [Gasse et al., 2019], where a graph convolutional neural network
model is used for learning variable selection policies. This model is trained using
a technique called imitation learning over the strong branching rule. It managed to
outperform the previous ML-branching attempts and the default branching mode of
SCIP [Achterberg, 2009], which is an open source MIP solver. Apart from the good
results, the model performed well on problem instances much larger than those used
in the training phase.

In the following, we provide some technical details of this approach. The MILP
solver plays the role of the environment, and the branching rule plays the role of the
agent. The transitions between two successive states occur as follows:

• The agent selects a fractional variable at the focused node with respect to a
policy π

50

• Then the solver branches on the node, solves the respective LP relaxations,
runs its internal heuristics, and prunes the tree in case that is needed

• Picks the next leaf to split and transits to the next state to repeat that process
again.

In that framework, the state 𝑠𝑡 of the solver compounds of the BB tree, past decisions,
and a collection of other properties. The state is encoded as a bipartite graph with
node and edge features. The policy, as already mentioned, is parameterized as a
graph convolutional neural network and takes as input the state encoded as a graph.
Another similar approach is [Sun et al., 2020]. In this article, the authors suggest
that imitation learning over the strong branching rule is not the best idea, and they
follow a different way.

Figure 6.3: Representation of a state [Gasse et al., 2019]

The figure depicts how a state with two constraints and three variables is represented
as a bipartite graph. On the left side of the graph, the nodes represent constraints.
On the right, they represent variables. An edge joins two nodes on opposite sides
(constraint variable) only if the constraint contains the variables.

Learning to cut
We now discuss [Tang et al., 2020], which was published later than "learning to
branch". This approach devises an RL agent that learns to add cutting planes
effectively in an adaptive way. The devised agent is used as a subroutine in the
cutting-plane method, which we have already referred to in chapter 2. The exact
cutting plane method used is the Gomory cutting plane; however, its creators suggest
that it can be used in branch and bound as well leading to improvements. Another
impressive property of that approach is that the agent, apart from having the ability
to generalize well to larger problem instances, is also able to generalize from one
problem class to another. That work can be considered pioneering, as no previous
work formulated the process of selecting cutting planes as an MDP. Therefore, it is
worth going deeper into the technical details of this framework.

51

The state is encoded as 𝑠𝑡 = {𝐶 (𝑡) , 𝑐, 𝑥∗𝐿𝑃 (𝑡), 𝐷 (𝑡)}. Where𝐶 (𝑡) is the feasible region
of the new LP in the time step 𝑡. 𝑥∗

𝐿𝑃
(𝑡) is the optimum solution of LP and 𝐷𝑡 is

the set of Gomory cuts. The action set consists of all cuts in 𝐷𝑡 that are available
to be added in the next step. The agent selects an action by selecting a cut; the new
state is equal to the union of the previous state and the selected cut. The reward is
the gap between the objective values of two consecutive LPs. There are many ways
to evaluate the quality of a cutting plane method. In the specified work, a measure
called the integral closure gap is used. This measure is the following ratio.

𝑔0 − 𝑔𝑡
𝑔0 ∈ [0, 1]

where 𝑔𝑡 = 𝑧∗
𝐼𝑃
− 𝑧∗

𝐿𝑃
.

For the RL part, an on-policy algorithm is chosen. The policy is parameterized by
an LSTM neural network with attention. Lastly, policy optimization is done using
an algorithm called Evolution Strategies (ES) as in [Sun et al., 2020]. ES is a good
alternative to the usual RL algorithms. It is easier to use in distributed settings and
has fewer hyperparameters.

52

C h a p t e r 7

EXPERIMENTS

Having discussed the ways of applying ML for CO, we are ready to move on to the
last chapter. In the last chapter, we present some of the experiments we ran. These
experiments belong to a line of work that we described in the previous chapter.
Specifically, they belong to the RL paradigm. We develop a framework which
solves the following problems MVC, MIS and TSP. The framework we developed is
similar to that developed from [Khalil et al., 2017]. This framework acted as a role
model. In algorithmic design, both frameworks construct solutions by sequentially
adding nodes to a partial solution and apply greedy search. Algorithm training
is similar, too, since fitted Q-learning is used in [Khalil et al., 2017] and DQN in
ours. Moreover, graph neural networks for function approximation are used in
both cases. That said, our framework is less sophisticated and efficient than that
framework. This is due to some differences in training methods, less optimized code,
and less computational power. As a means of comparison, we use the framework of
[Orrivlin, 2019]. This solves MVC using an actor-critic algorithm. Moreover, we
extended it, so it can solve MIS and TSP.

7.1 Training Details
As we already mentioned, we use DQN with a graph neural network in our exper-
iments. Our approach is similar to other approaches, as mentioned previously, but
has some differences. For the function approximation part, we use a graph neural
network. Specifically, a graph convolutional network for MVC and MIS problems,
which is almost identical to [Orrivlin, 2019] with the only difference being the
number of convolutional layers. In our approach, we stack 2 layers, whereas in
[Orrivlin, 2019] they stack 3. For the TSP, we choose a slightly different architec-
ture. We use the GCN architecture that we use for MVC and MIS, but this time we
stack another three gated recurrent layers taken from [Dwivedi et al., 2020]. For the
TSP, as we have mentioned, we use a combination of GCN and gated GCN layers.
The gated GCN layer that we use works as follows:

ℎℓ+1𝑖 = ℎℓ𝑖 + ReLU ©­«BN ©­«𝑈ℓℎℓ𝑖 +
∑︁
𝑗∈N𝑖

𝑒ℓ𝑖 𝑗 ⊙ 𝑉ℓℎℓ𝑗
ª®¬ª®¬

53

where the edge gates 𝑒𝑖 𝑗 are computed by the following equations:

𝑒ℓ𝑖 𝑗 =

𝜎

(
𝑒ℓ
𝑖 𝑗

)
∑

𝑗 ′∈𝑁𝑖
𝜎

(
𝑒ℓ
𝑖 𝑗 ′

)
+ 𝜀

𝑒ℓ𝑖 𝑗 = 𝑒ℓ−1
𝑖 𝑗 + ReLU

(
BN

(
𝐴ℓℎℓ−1

𝑖 + 𝐵ℓℎℓ−1
𝑗 + 𝐶ℓ𝑒ℓ−1

𝑖 𝑗

))
Where U,V,A,B,C b ∈ R𝑑𝑥𝑑 and BN stands for batch normalization.

We use DQN with GCN or gatedGCN as follows. We work with ε-greedy policy.
Where ε decays exponentially from 1 to 0.05. We use mini-batches of 64 size.
Regarding the learning rate, many values performed fine. Usually, a learning rate
in the interval (0.0005 − 0.001) would be good. Unlike the original DQN, we
update the base network parameters every k steps, where k is a fixed number. This
alternation is also used in [Barrett et al., 2020] and appears to improve training and
save time. The methodology we follow to train our agents can be summarized in the
following algorithm.

Algorithm 12: Algorithm for Training
Initialize parameters such as experience replay buffer capacity,
for e in episodes do

get a COP instance environment.
Initialize state S = ()
for time step t in e do

𝑢𝑡 =

{
random node u in A w.p ε
\argmax𝑢𝑄(𝑢, 𝑆𝑡 ,𝑊) w.p 1-ε

add 𝑢𝑡 to the partial solution
add tuple (𝑆𝑡 , 𝑢𝑡 , 𝑅𝑡 , 𝑆𝑡+1) to memory buffer
if t mod 𝑘 = 0 then

sample a minibatch from memory buffer
perform an SGD step

end for
end for
return parameters W

54

Where w.p stands for: with probability. As already mentioned, we perform SGD
steps every k steps instead of every step. That is why there is an IF statement in
line 9. Every episode ends according to a termination criterion. You can see the
termination criteria that we use in table 7.2. The 𝑄 function is instantiated by neural
networks, as previously described in this section.

7.2 Training and evaluation data
Training and evaluation data is generated using the Erdos-Renyi model. We use
graphs of 20 nodes to train agents for MIS and MVC. For TSP, we use graphs of
10 nodes. Our training and evaluation data sets are homogeneous in terms of graph
size, in contrast to [Khalil et al., 2017], [Barrett et al., 2020] and other approaches
that use graph evaluation sets of various sizes. We use a method to create an RL-
environment for each COP task. This method creates a graph for each episode. This
graph is accessible as long as it remains in the replay buffer. The performance of
our model is evaluated on graph lists of 20, 50 vertices for MVC, MIS and 10, 30
vertices for TSP.

55

7.3 Results
In this subsection, we present the results of our experiments. As you will see,
we use the following performance measures: approximation ratio and mean return
in the evaluation stage. We compare our algorithms with [Orrivlin, 2019] and a
classic heuristic for each problem. We also diagnose how the training phase went
using visualizations of returns during training or rolling means of returns (with
50 episodes windows). We also present the results of agents trained by the actor
critic of [Orrivlin, 2019]. We note again that the framework above works only for
MVC, we provide our own environment methods for other problems, and we have
made some minor changes in the AC algorithm for MIS. In addition, we describe
an experiment we conducted on a single instance of KP using the python OR-gym
package [Hubbs et al., 2020].

7.3.1 MVC
Here, we present the results for MVC. As we mentioned:the agents are trained on
graphs of 20 vertices that are generated from the Erdos-Renyi model with connec-
tion probability 0.15. The episodes terminate when all edges are covered. We can
see from the figures below that both agents are able to learn. As you can see from
the tables, the AC agent performs better. However, both agents perform better than
the human-designed heuristic.

Figure 7.1: Returns during AC agent training

56

Figure 7.2: Duration of episodes during the training phase of the DQN algorithm
for the MVC problem

Method Approx-ratio mean-cover-size

CPLEX 1 9.57
AC-3layered-gcn 1.0024 9.59

DQN-2layered-gcn 1.1585 11.08
node-deg 1.38 13.38

Table 7.1: Performance evaluation on 20-vertex graphs

The table above shows the results on 20-node graphs. Whereas, below, you can find
the results on 50 node-graphs.

Method Approx-ratio mean-cover-size

CPLEX 1 32.69
AC-3layered-gcn 1.0091 32.99

DQN-2layered-gcn 1.1548 37.740
node-deg 1.3415 43.82

Table 7.2: Performance evaluation on 50-vertex graphs

57

7.3.2 MIS
We move on to the MIS problem, where the two agents perform about equally
well. The framework is similar to that of MVC. Here, the termination criterion is:
to terminate the episode when there is no node that can join the partial solution
without violating the problem’s constraints. In order to get the available nodes to
join, a more complex function is used compared to the one for the previous problem.
As you can see from the visualizations and tables below: 1) the AC agent quickly
learns to produce good solutions and then remains stable, whereas the DQN agent
takes more time, and its performance fluctuates and eventually declines during the
training. 2) Testing them in the evaluation data set, we see that the DQN agent
performs slightly better than the AC agent. 3) Both agents are better than the simple
human-designed heuristic of min degree.

Figure 7.3: Rolling mean of returns during actor critic agent training (time window
= 50)

58

Figure 7.4: Rolling mean of returns during training of DQN agent (time window=50)

Method Approx-ratio mean-size-MaxIndSet

CPLEX 1 10.42
AC-gcn 0.987 10.30

DQN-gcn 0.9941 10.364
MinDegHeuristic 0.9652 10.064

Table 7.3: Performance evaluation on 50-vertex graphs-MIS

Method Approx-ratio mean-size-MaxIndSet

CPLEX 1 17.51
AC-gcn 0.936 16.39

DQN-gcn 0.9475 16.57
MinDegHeuristic 0.909 15.92

Table 7.4: Performance evaluation on 50-vertex graphs-MIS

7.3.3 TSP
Here we present the results of our TSP experiments. As we did with previous
problems, we train 2 agents, one with AC and one with Q-learning (DQN). However,
this time the situation is different. Our DQN agent fails to learn a competent
heuristic. We believe that this is due to insufficient hyperparameter tuning. Due to
the fact that the solutions given by DQN are no better than randomly drawn tours,
we decided not to include DQN.

The RL-environment method we created differs slightly from the ones for the pre-
vious problems. In every episode, the initial partial solution contains node 0 or
the base city. Most of the relevant work on TSP draws distances between cities-
nodes from the real number interval (0,1). In contrast, apart from drawing distances

59

from (0,1), we use the discrete uniform distribution in {1,2,3,4,5,6,7,8,9,10 } and
therefore two vertices can have a distance with 1 ≤ 𝑥 ≤ 10 where 𝑥 is an integer.

Figure 7.5: rolling mean of returns during training of our model(time window=50)

The last figure shows that the agent improves rapidly in the first 3000 episodes and
then very gradually. The best rolling means are slightly above -20, which means that
the best tours found during training have a total cost of slightly less than 20. We test
the trained model using 250 complete graphs randomly generated. The edges are
generated in the same way as those from the training. In order to evaluate the model,
we have computed the optimal tours for each of the test graphs. We use multiple
metrics to diagnose how the agent performs. In addition, a very popular and simple
human-designed heuristic is used as a baseline. The heuristic is the nearest neighbor
described in chapter 2. The performance of the agent is shown in the next table.

Method Approx-ratio mean-cost-tour

CPLEX 1 24.784
AC-gatedgcn 1.113 27.668

near-neighbour 1.222 30.036

Table 7.5: Performance evaluation on 10-vertex graphs

In table 7. we see that the learned heuristic performs better than the other heuristic.

Then we check how the model generalizes to larger instances. For the evaluation,

Method Approx-ratio mean-cost-tour

CPLEX 1 36.94
AC-gatedgcn 1.532 56.48

near-neighbour 1.436 53.02

Table 7.6: Performance evaluation on 30-vertex graphs

we used 50 complete graphs of 30 vertices.

60

Figure 7.6: approximation ratio

7.3.4 Solving single instances of COPs using OR-gym package
Apart from these three experiments, we experimented with recently developed
higher-level packages, which are intended to simplify the procedure of running ML
experiments in CO. We used two packages: the OR-gym package [Hubbs et al., 2020],
and ECOLE [Prouvost et al., 2020], which stands for Extensible Combinatorial Op-
timization Learning, and formulates decision problems in MILP solvers as RL-
environments, such as variable selection in branch and bound method.

Here, we present a higher-level approach using the OR-gym and ray [Moritz et al., 2018]
packages. This experiment was quite different in implementation from the ones de-
scribed previously. OR-gym is a collection of RL environments for COPs. Some
COPs for which they provide environments are KP, TSP, VRP, portfolio optimiza-
tion, and others. As an example usage of the package, we will show the results of
solving a very small KP instance. We chose to use a small instance because when
we tried to use the default instance of OR-gym, we ran out of memory. Several
variants of KP are provided in the package; we selected the unbounded KP.

we describe the instance in table 7.7.

Number of Items 5
capacity of kp 15
Item values (2, 4, 2, 1, 10)
item weights (1, 12, 2, 1, 4)

Table 7.7: Description of the KP instance

We train two agents: 1) using an on-policy algorithm called PPO, which stands
for proximal policy optimization and is not covered in our work. Those interested

61

in the algorithm can check [Dong et al., 2020]. 2) DQN, which we use for the
multi-instance experiments, also.

In this experiment, everything that has to do with the agent’s properties and training
(such as function approximators, algorithm hyperparameters, and optimization of
functions) is managed completely by ray without any intervention by us. Next, we
visualize the results.

Figure 7.7: Episode rewards of the PPO agent

Figure 7.8: Episode rewards of the DQN agent

62

7.4 Conclusions
We developed a framework that uses the RL- algorithm DQN in order to solve three
different graphs COPS, MVC, MIS and TSP. In addition, we extend a framework
for MVC to work for MIS and TSP. We benchmark these two frameworks. These
frameworks follow the so-called RL-paradigm, and their performance indicates that
a machine learning model can learn a competent heuristic for COPs. While, for
MVC and MIS, our training was successful and resulted in the agent learning a
decent heuristic, for TSP, our training failed. That is, training for TSP resulted in
a model that produces tours that are not better than random tours. That probably
would not have happened if we had enough computational power to do a competent
hyperparameter tuning. Apart from that, we have to note that training for TSP takes
much more time than training for MVC and MIS. Therefore, hyperparameter tuning
is more difficult when dealing with TSP. From our single-instance experiment on
KP, we can conclude that using higher-level libraries saves much time and is more
convenient. However, it comes with a cost in flexibility.

7.5 Limitations
In this paragraph, we describe the limitations of our work. First, the running time
of the training phase is quite high. This is due to two reasons: our code is far from
being optimized and we do not have enough computational power. Another hardware
limitation that we faced was insufficient memory, as we ran all the experiments using
the computational power of an obsolete laptop. Furthermore, limitations forced us
to compromise training and experimentation. Specifically, we trained our models
using only fixed-size graphs, which possibly leads to worse results. We tested
their capabilities only on two lists of graphs with a fixed size, which is not enough
to check the generalization abilities of the models. Insufficient memory hinders us
from running experiments freely with or-gym and ray because we run out of memory
when we try to solve large instances.

7.6 Future work
In the future, we will try to overcome the limitations that we face. Specifically, we
will try to train our models using varying sizes of COPs. This requires reducing
the amount of time that training takes. Also, we only applied two distinct RL algo-
rithms (DQN and actor-critic); it will be interesting to use some other algorithms
and compare their results and training time. Furthermore, we would like to fol-
low the progress of the high-level packages for integrating machine learning and

63

combinatorial optimization and use them for experimentation.

64

BIBLIOGRAPHY

[Achterberg, 2009] Achterberg, T. (2009). Scip: solving constraint integer pro-
grams. Mathematical Programming Computation, 1(1):1–41.

[Applegate et al., 2006] Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2006).
Concorde tsp solver.

[Applegate et al., 2011] Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J.
(2011). The traveling salesman problem. In The Traveling Salesman Problem.
Princeton university press.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural
machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[Barrett et al., 2020] Barrett, T., Clements, W., Foerster, J., and Lvovsky, A. (2020).
Exploratory combinatorial optimization with reinforcement learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
3243–3250.

[Bellman, 1957] Bellman, R. E. (1957). Dynamic Programming. Princeton Uni-
versity Press.

[Bello et al., 2016] Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S.
(2016). Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940.

[Bengio et al., 2021] Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learn-
ing for combinatorial optimization: a methodological tour d’horizon. European
Journal of Operational Research, 290(2):405–421.

[Bertsekas and Tsitsiklis, 1995] Bertsekas, D. P. and Tsitsiklis, J. N. (1995). Neuro-
dynamic programming: an overview. In Proceedings of 1995 34th IEEE confer-
ence on decision and control, volume 1, pages 560–564. IEEE.

[Bertsimas and Tsitsiklis, 1997] Bertsimas, D. and Tsitsiklis, J. N. (1997). Intro-
duction to linear optimization, volume 6. Athena Scientific Belmont, MA.

65

[Cho et al., 2014] Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y.
(2014). On the properties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of computing,
pages 151–158.

[Dantzig et al., 1954] Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution
of a large-scale traveling-salesman problem. Journal of the operations research
society of America, 2(4):393–410.

[Dong et al., 2020] Dong, H., Dong, H., Ding, Z., Zhang, S., and Chang (2020).
Deep Reinforcement Learning. Springer.

[Dwivedi et al., 2020] Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. (2020). Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982.

[Gasse et al., 2019] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. (2019). Exact combinatorial optimization with graph convolutional neural
networks. Advances in Neural Information Processing Systems, 32.

[Gilbert, 1959] Gilbert, E. N. (1959). Random graphs. The Annals of Mathematical
Statistics, 30(4):1141–1144.

[Gomory, 1960] Gomory, R. (1960). An algorithm for the mixed integer problem.
Technical report, RAND CORP SANTA MONICA CA.

[Hart et al., 1987] Hart, O., Holmstrom, B., and Bewley, T. (1987). Advances in
economic theory. In World Congress.

[Held and Karp, 1962] Held, M. and Karp, R. M. (1962). A dynamic programming
approach to sequencing problems. Journal of the Society for Industrial and
Applied mathematics, 10(1):196–210.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural computation, 9(8):1735–1780.

66

[Hopfield and Tank, 1985] Hopfield, J. J. and Tank, D. W. (1985). “neural” compu-
tation of decisions in optimization problems. Biological cybernetics, 52(3):141–
152.

[Hubbs et al., 2020] Hubbs, C. D., Perez, H. D., Sarwar, O., Sahinidis, N. V.,
Grossmann, I. E., and Wassick, J. M. (2020). Or-gym: A reinforcement learning
library for operations research problems. arXiv preprint arXiv:2008.06319.

[Joshi et al., 2019] Joshi, C. K., Laurent, T., and Bresson, X. (2019). An efficient
graph convolutional network technique for the travelling salesman problem. arXiv
preprint arXiv:1906.01227.

[Karmarkar, 1984] Karmarkar, N. (1984). A new polynomial-time algorithm for
linear programming. In Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 302–311.

[Karp, 1972] Karp, R. M. (1972). Reducibility among combinatorial problems. In
Complexity of computer computations, pages 85–103. Springer.

[Khalil et al., 2017] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017).
Learning combinatorial optimization algorithms over graphs. Advances in neural
information processing systems, 30.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-
supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

[Land and Doig, 1960] Land, A. H. and Doig, A. G. (1960). Econometrica,
(3):497–520.

[Matai et al., 2010] Matai, R., Singh, S. P., and Mittal, M. L. (2010). Traveling
salesman problem: an overview of applications, formulations, and solution ap-
proaches. Traveling salesman problem, theory and applications, 1.

[Mazyavkina et al., 2021] Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev,
E. (2021). Reinforcement learning for combinatorial optimization: A survey.
Computers & Operations Research, 134:105400.

[McClelland and Rumelhart, 1987] McClelland, J. L. and Rumelhart, D. E. (1987).
Schemata and Sequential Thought Processes in PDP Models, pages 7–57.

67

[Merkwirth and Lengauer, 2005] Merkwirth, C. and Lengauer, T. (2005). Auto-
matic generation of complementary descriptors with molecular graph networks.
Journal of chemical information and modeling, 45(5):1159–1168.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[Moritz et al., 2018] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I., et al. (2018). Ray: A dis-
tributed framework for emerging {AI} applications. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 561–577.

[Orrivlin, 2019] Orrivlin (2019). Minimumvertexcover-drl. https://github.
com/orrivlin/MinimumVertexCover_DRL.

[Pisinger and Toth, 1998] Pisinger, D. and Toth, P. (1998). Knapsack problems. In
Handbook of combinatorial optimization, pages 299–428. Springer.

[Powell, 2009] Powell, W. B. (2009). What you should know about approximate
dynamic programming. Naval Research Logistics (NRL), 56(3):239–249.

[Prouvost et al., 2020] Prouvost, A., Dumouchelle, J., Scavuzzo, L., Gasse, M.,
Chételat, D., and Lodi, A. (2020). Ecole: A gym-like library for machine learning
in combinatorial optimization solvers. arXiv preprint arXiv:2011.06069.

[Reinhelt, 2014] Reinhelt, G. (2014). {TSPLIB}: a library of sample instances for
the tsp (and related problems) from various sources and of various types. URL:
http://comopt. ifi. uniheidelberg. de/software/TSPLIB95.

[RENYI, 1959] RENYI, E. (1959). On random graphs. PublicationesMathemati-
cate, 6:290–297.

[Stangor and Walinga, 2014] Stangor, C. and Walinga, J. (2014). Introduction to
psychology. BCcampus.

[Sun et al., 2020] Sun, H., Chen, W., Li, H., and Song, L. (2020). Improving
learning to branch via reinforcement learning.

68

[Sutton, 2022] Sutton, R. S. (2022). Actor-Critic Methods — incompletei-
deas.net. http://www.incompleteideas.net/book/ebook/node66.html.
[Accessed 01-Aug-2022].

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

[Tang et al., 2020] Tang, Y., Agrawal, S., and Faenza, Y. (2020). Reinforcement
learning for integer programming: Learning to cut. In International conference
on machine learning, pages 9367–9376. PMLR.

[Vesselinova et al., 2020] Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and
Boman, M. (2020). Learning combinatorial optimization on graphs: A survey
with applications to networking. IEEE Access, 8:120388–120416.

[Waterloo, 2016] Waterloo, M. (2016). A shortest-possible walking tour through
the pubs of the united kingdom.

[Wikipedia, 2022a] Wikipedia (2022a). Graph theory — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=Graph\

%20theory&oldid=1091469158. [Online; accessed 01-August-2022].

[Wikipedia, 2022b] Wikipedia (2022b). Independent set (graph theory) —
Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.
php?title=Independent\%20set\%20(graph\%20theory)&oldid=

1082877025. [Online; accessed 01-August-2022].

[Wikipedia, 2022c] Wikipedia (2022c). Recurrent neural network — Wikipedia,
the free encyclopedia. http://en.wikipedia.org/w/index.php?title=
Recurrent\%20neural\%20network&oldid=1106626225. [Online; ac-
cessed 06-September-2022].

[Wolsey, 2020] Wolsey, L. A. (2020). Integer programming. John Wiley & Sons.

[Zai and Brown, 2020] Zai, A. and Brown, B. (2020). Deep reinforcement learning
in action. Manning Publications.

[Zhang et al., 2021] Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive
into deep learning. arXiv preprint arXiv:2106.11342.

INDEX

F
figures, 19, 25, 27, 33, 40, 47, 50, 55–61

69

70

