
Master of Science in Law and Informatics

The journey to Continuous Compliance

for software development

Styliani Rouzi

1/69

The journey to continuous compliance, for software development

Styliani Rouzi

M.Sc. Thesis

submitted as a partial fulfillment of the requirements for the

MASTER OF SCIENCE IN «Law and Informatics»

Supervisor

Psannis Konstantinos

Approved by the examining board on

Psannis Konstantinos Vlachopoulou Maria Georgiadis Christos

___________________________ ___________________________ ___________________________

2/69

Περίληψη

Με την εφαρμογή διαδικασιών διασφάλισης ποιότητας μπορούμε να προστατεύσουμε το λογισμικό και την

ομάδα μας από λάθη εκ παραδρομής, παραλείψεις και παρανοήσεις. Οποιαδήποτε αυθαίρετη παραδοχή

σχετικά με τον κώδικα μπορεί να επηρεάσει αρνητικά μια επιχείρηση, έναν οργανισμό και τη φήμη μιας

ομάδας ανάπτυξης. Επομένως η ύπαρξη ουσιαστικών διαδικασιών είναι υψίστης σημασίας ώστε να

εξασφαλίσουμε την πραγματική επίτευξη των στόχων που τίθενται. Οι αυτοματισμοί αποτελούν ένα

σημαντικό εργαλείο για τους προγραμματιστές εδώ και χρόνια, καθώς η χρήση τους συμβάλλει στη

βελτίωση του χρόνου ολοκλήρωσης ενός νέου χαρακτηριστικού, αυξάνει την ακρίβεια του κώδικα και

προσφέρει έγκαιρη ενημέρωση και αποτελέσματα. Η παρούσα εργασία εστιάζει σε άρθρα σχετικά με

πληθώρα θεματικών αναφορικά με τη διασφάλιση ποιότητας και τη συμμόρφωση, συμπεριλαμβανομένου

των αυτοματοποιημένων ελέγχων και της διαδικασίας συνεχούς ενσωμάτωσης καθώς επίσης παρουσιάζει

προβληματισμούς και ιδέες γύρω από σχετικά ζητήματα όπως το κόστος επιδιόρθωσης σφαλμάτων του

κώδικα και την ύπαρξη προκαταλήψεων στον κώδικα. Το δεύτερο κομμάτι της εργασίας προσεγγίζει την

πρακτική πλευρά της αυτοματοποίησης στη διασφάλιση ποιότητας, περιγράφοντας αναλυτικές οδηγίες

βήμα-βήμα για μεθοδολογίες με τις οποίες μπορεί μια ομάδα να ξεκινήσει να εισάγει αυτοματοποιημένους

ελέγχους σε υφιστάμενο λογισμικό και πώς να αξιολογήσει τη σουίτα αυτοματοποιημένων ελέγχων ως

προς την αποτελεσματικότητά της και με κριτήρια ποιότητας των περιπτώσεων που ελέγχονται (αντί της

απλοϊκής προσέγγισης του πόσος κώδικας θεωρητικά ελέγχεται).

Λέξεις Κλειδιά:

Συνεχής συμμόρφωση, συνεχής ενσωμάτωση, αυτοματοποιημένοι έλεγχοι, εργαλεία επαλήθευσης, έλεγχοι

συμμόρφωσης, διασφάλιση ποιότητας, διασφάλιση ποιότητας ως προς τη συμμόρφωση, προκαταλήψεις,

έγκαιρος εντοπισμός προβλημάτων, διόρθωση σφαλμάτων, τεχνικό χρέος, κανονισμοί

3/69

Abstract
By establishing Quality Assurance (QA) procedures we shield ourselves - our software and our team - from

mistakes, misconceptions and oversights. Making assumptions about the well-being of the code and the

results it produces is detrimental to the well-being of a corporation, a business, an organization, or frankly to

the reputation of any kind of engineering team. Therefore, it is crucial that meaningful processes are in place

to ensure our goals are met. Automation has been a great addition to the armory of developers for years now;

using it can help not only save time in coding a new feature and increase accuracy of the outcome but also

report test results sooner. This thesis presents articles related to various aspects of Quality Assurance (QA)

and compliance, including automated testing and CI process, as well as focuses on concerns and ideas

regarding relevant issues, such as the cost of bug fixes and bias introduced to code. The second part of the

thesis is dedicated to more practical aspects of automation in QA, by providing detailed step-by-step

instructions for methodologies with which teams can approach automated testing and can start introducing

automated tests for existing software, as well as how a test suite can be meaningfully evaluated by

employing factors of effectiveness and quality of its test cases (rather than merely examining the coverage it

provides, meaning the rather theoretical estimation of how much code is being tested).

Keywords

Continuous compliance, continuous integration, automated testing, verification tools, conformance testing,

QA, compliance qa, bias, early error reporting, bug fix, technical debt, audit, policy

4/69

Preface - Acknowledgments

There are multiple people who, in the past few years, have played a significant role in my growth and

knowledge expansion. I am grateful to the experiences and conversations I was privy to, and to everyone

who contributed to my being where I am today, by sharing their expertise, not withholding, untiringly

offering a different point of view and explaining in great detail the matter at hand.

I had the privilege to witness first hand how security-oriented teams operate: with precision and a holistic

approach, going deep but also being fast paced. And, as part of an engineering team myself, this is a great

example to look up to.

A big “Thank you” goes to all “Law and Informatics” personnel for creating an interesting, informative and

useful curriculum as well as for providing me with the opportunity to attend.

Special thanks to my supervisor, Konstantinos Psannis, for his trust in me to work on, and complete, this

thesis.

I am particularly thankful to all the people who have mentored me throughout the years and shaped me in a

way that has led me to this path of knowledge.

I am also grateful for the support and inspiration from many people in my life, including Antonis

Eleftheriadis who has also contributed in proofreading this document.

5/69

Table of contents
1. Introduction 8

1.1. Problem Statement 9
1.2. Scope of the study 10
1.3. Terminology 11

2. The evolution of code certainty 12
The phases of software development from a robust perspective 13
Why continuous? 14
What is Continuous Integration? 14
The CI process 14
Continuous Compliance 15
Why must it be continuous? 16
Automated and manual QA 17

3. Literature review 18
How to compare and exploit different techniques for unit-test generation 20
A comparison between manual testing and automated testing 21
A comparative analysis of quality page object and screenplay design pattern on web-based automation
testing 22
Automated Testing of AI Models 23
Automated System-level safety testing using constraint patterns for automotive operating systems 24
On the Challenges of Automated Testing of Web Vulnerabilities 26
Towards Software Compliance Specification and Enforcement Using TOSCA 28
Acquiring Software Compliance Artifacts from Policies and Regulations 29
Software Security Requirement Engineering for Risk and Compliance Management 31
Bug Prediction Capability of Primitive Enthusiasm Metrics 32
Code Smells and Detection Techniques: A Survey 33
Worst Smells and Their Worst Reasons 34
A legal cross-references taxonomy for identifying conflicting software requirements 36
What Is Technical Debt And Why QA Testers Should Be Concerned About It? 37
Automated vs Manual Testing: Which Should You Use, and When? 39
Why Low-Code Isn’t No-Test 41

4. Testing: a choice or a necessity? 43
What does automated testing offer anyway? 44

Can you afford not to detect bugs early? 45
When is it too soon to deliver a new feature? 46

5. Practical testing 47
What to test 47
How to test 48

Explicitly 48
Organized 48

How to get started with testing 48
Methodology 1: Start small 48

6/69

Methodology 2: Bug-based testing 49
How to write one test 50
Make sure the test is actually testing 50
Testing 1% can make a difference 51
The Shift Left approach for Testing 51
Metrics 52

Coverage VS Good Tests 53
How to interpret coverage 53

Why continuous compliance? 54
Is being compliant enough? 54
Compliance VS Testing 55

6. Bias in software, and the role of testing 56
Left-handed people and the role of testing as a preventive measure 57
AI that is safe, and unbiased – Reality or wishful thinking? 58

7. Contribution and future work 60
8. Final thoughts 61
References 62
Appendix I – Articles list 66
Appendix II - Terminology/Glossary 69

7/69

1. Introduction

The goal of this paper is to show the evolution of quality assurance and how it needs to rise to modern

standards and satisfy the needs of organizations, corporations, teams and software within the era of constant

technological evolution. From writing code to automated testing and security, the industry standards keep

rising, and we simply cannot exclude compliance for policies, laws and industry requirements from the

SDLC (Software Development Life Cycle). The software development process, as we know it, keeps

outgrowing our definitions; there has been a huge shift to security and how SDLC is really SSDLC, as in

Secure Software Development Life Cycle, and how we need to build applications which are secure by

design. We now need to also address compliance in the same spirit, i.e. create software which is compliant

by default and by design.

In this paper we aim to present a range of different topics on the broader topic of how to be compliant within

the scope of software development, discuss the unique challenges of compliance, and provide practical

methodologies to get started with automated testing (as the backbone of continuous compliance).

Just like security shouldn’t be an afterthought, neither should compliance. Software should be designed with

both security and compliance already in mind.

8/69

1.1. Problem Statement

Testing, just like security, didn’t always come first in reference with software development, and was often

seen as an overhead to software developer teams, or at least as an extra step that occurred only after a certain

functionality had been implemented. Staying afloat in a world that is constantly moving, means your

software is adapting to the new requirements. Consequently, code changes and what we knew to be working,

needs to be re-confirmed.

Thankfully we have significantly progressed to considering security and compliance top priorities not just

for legal departments and shareholders’ meetings but for every layer and every team of an organization.

Challenges, however, still arise when it comes to automating processes and verification tools, be it testing or

compliance. To achieve high quality software we assume we got the specs right in the beginning. It goes

without saying that faulty specs can and will be the root of all sorts of problems, and just like we want to add

automated tests for software, we should also properly test and verify the initial goal of a project/feature, its

specs, designs, user stories and acceptance criteria – and sometimes even then we still need to provide a

good level of collaboration and transparent communication to make sure we have all understood the same

thing, so that we truly build what’s expected. Clear goals and open communication, between the various

teams of an organization and different people of a team, is certainly another important topic when it comes

to teams as well as software development. When referring to “confirmation everything works as expected”

we assume that we are all expecting the same result and that the provided specs truly align with the business

goals of the organization. Increasing the level of certainty that we indeed have a common understanding of

what we want to build, and more important of what we have built, is often of critical priority.

9/69

1.2. Scope of the study

This paper aims to shed light on the importance of incorporating meaningful processes in the lifecycle of

software development, and maintaining a high level of confidence in the end result when making any

changes. This will help engineering teams maintain a peace of mind when introducing new code, as well as

provide project stakeholders with useful data.

While compliance is a widely used term in a variety of industries, continuous compliance is still new, not

widely known and thus not implemented within software development teams. This paper is written from the

perspective of not just software engineering but also product and business, and it focuses on a collection of

important aspects that both engineers, team leads and higher management should keep in mind. Its added

value includes that it aims to provide an overview of issues surrounding the absence of continuous

compliance, address challenges related to technical teams when it comes to testing for compliance purposes,

and provide a practical approach of how to get started with testing and what to watch out for in order to

deploy a meaningful test suite. Gathering all the necessary information together along with a practical

approach of getting started, hopefully serves as a passage through uncertainty in order to establish modern

methodologies to support and improve compliance within organizations.

10/69

1.3. Terminology

The unique terminology used in parts of the document is explained within the text itself, and the important

keywords can be found in Annex II - Glossary. Details about testing, automated vs manual testing as well as

its role in software development can be found in various resources1 as do the different types available for

testing2.

As far as the term “Compliance” is concerned, it refers to the verification of conformity with law, policies

and other requirements (internal, external, industry specific). We will be focusing particularly on software,

and compliant software, meaning software that adheres to policy guidelines.

Continuous compliance conveys the meaning that conformity, and design thereof, should be constant and

ongoing during all stages of software development.

Continuous compliance conveys the meaning that verification of being conformant with policies is not a task

to be executed only every quarter according to internal procedures, but rather every step of the way starting

from design until coding, testing and qa.

2 https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
1https://www.researchgate.net/publication/335809902_Role_of_Testing_in_Software_Development_Life_Cycle

11/69

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.researchgate.net/publication/335809902_Role_of_Testing_in_Software_Development_Life_Cycle

2. The evolution of code certainty

Even today it’s more often than not for product owners to merely ask developers if the feature is working – a

rather doomed question, because the answer is always yes, of course it is working. Any developer’s code

always works, or at least it works on the developer’s machine, at the time, prior to scrutinous testing, and

according to the understanding of the specs which the developer has.

Instead of focusing on whether or not the code currently works, we need to come up with data and metrics

that will help us determine if the code can work at any given time. Additionally, we must shift our attention

and efforts to being able to make sure that the code continues to work at any later time, as well as confirm

that the way it works is the expected way, ie in a compliant and secure3 way. These can all occur using tools,

techniques and methodologies well-known to the software development world, which have their roots in the

fundamental concepts of testing and Quality Assurance. Ensuring the above, helps provide a “healthy”

software, i.e. a robust system, and significantly higher chances of ending up with a maintainable, easy to

understand, more secure and compliant software.

3

https://www.cisa.gov/uscert/bsi/articles/best-practices/measurement/measuring-the-software-security-requirements-engineering-pr
ocess

12/69

https://www.cisa.gov/uscert/bsi/articles/best-practices/measurement/measuring-the-software-security-requirements-engineering-process
https://www.cisa.gov/uscert/bsi/articles/best-practices/measurement/measuring-the-software-security-requirements-engineering-process

The phases of software development from a robust perspective

Generic steps to go through during software development in regards to code robustness:

1. The coding occurs and the developer confirms the code works

2. The code works and someone tests it manually to confirm it works [manual testing]

3. The code comes with tests, so that even if we make changes to the code base we know that it still

continues to work today [this is obviously relevant only for the parts of the code and the scenarios

that are being tested in our automated testing suite]. The higher quality of testing we perform, the

higher level of certainty we achieve that our code works in the desired way [automated testing]

4. The code works, we have a high level of certainty about it, and we have taken into consideration

security and relevant policies during coding and testing, e.g. our test suite includes scenarios as per

the regulations that limit the scope of the business.

Following the above, are some of the should-be mandatory best practices for any software development

team. More details on how to build software-as-a-service can be found in the twelve-factor app4 where best

practices to achieve continuous processes are outlined – that includes building robust applications,

potentially more secure software (following the 12 factor app practices is part of the SSDLC – Secure

Software Development Life Cycle), as well as compliant software by default and by definition.

Moving forward we should clarify certain terms and keywords, in order to gain more insights to what each

item is about, and how it helps us achieve our end-goals. That includes the terms of continuous and CI, as

well as diving into the “why” we should opt for continuous process instead of manual and on-demand

actions.

4 https://12factor.net/

13/69

https://12factor.net/

Why continuous?

Continuous processes encourage automation, and in turn their combination improves quality due to multiple

factors. It allows for reproducible results and checks, as well as to run those checks in multiple

environments. At the same time it saves tons of time from manual labor from a more traditional approach

with QA and ensures that error-prone humans do not affect the result much – humans still write the code of

the checks, but at least once something is verified to work, it continues to perform as expected and make

sure everything works at all times (continuously).

What is Continuous Integration?

What is continuous integration anyway? Continuous integration, or in short CI, is the “practice where

developers regularly merge their code changes into a central repository, after which automated builds and

tests are run”5 While running tests and builds is not necessarily part of the CI, it’s definitely a good practice

and nowadays it is implied that once you merge code, a set of actions will follow, such as executing tests,

running linter checks, making sure builds are successful, etc.

The CI process

Continuous integration is only the beginning. And it triggers questions like: What else should be part of this

process? What else can we use our CI system for? Well, while that depends on the application, using the

important rule of debugging “Make no assumptions”, the CI process can include anything we assume is true.

That should be mostly covered in our test suite if we have a nice and organized test suite, however there are

cases where additional CI jobs can be included to eliminate or reduce the need of manual checks after

updates, perform security-oriented tasks and checks, and execute compliance-related evaluations. This is

beneficial or even critical depending on the nature of the application. The process of CI is no longer just

about merging code, it’s a whole concept of processes that we must follow to stay on top of things. The

traditional definition of CI and automated testing leaves a lot to be desired for pretty much any modern

application, and it is even inadequate for any software that must be monitored more closely to stay

compliant with laws and policies.

5 https://aws.amazon.com/devops/continuous-integration/

14/69

https://aws.amazon.com/devops/continuous-integration/

Continuous Compliance

According to “Continuous compliance” article6 continuous compliance is proposed as a means of guarantee

that the codebase stays compliant on each code change. Continuous compliance increases assurance and

reduces costs.

The testing starts with having some kind of tool to run tests with7 -- ideally automatically as part of the

Continuous Integration process which would help us move towards a more Continuous Testing era and

support the teams for a Shift Left approach -- even if not TDD (Test Driven Development) itself is in place,

it certainly provides a great insight to the code, and consequently to the software being developed, in terms

of what is actually working and what not.

Moving away from more traditional flows for testing, the next logical step would be to incorporate security

requirements in the test process and implement relevant checks. That way we will ensure a higher certainty

that our software remains secure8.

Ideally that helps us build a high level of certainty that each new code push is still keeping us compliant!

Continuous compliance could be seen as an umbrella of all the above, in the essence that we want to be

compliant with the architectural requirements of our project – even after a certain feature is fully developed,

we certainly do not want the next code push to slightly break that functionality! – and remain compliant with

not just policy and legal requirements but also security aspects.

The term, continuous compliance, embraces a lot of its predecessors such as CI and everything it stands for

today, testing and the idea of continuous, as in automated tasks running continuously. More on benefits of

continuous practices can be found in the next paragraphs.

8 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=34698

7 See also: Winchester, Hilary. (2018). How quality assurance codes change: beyond ‘bells and whistles’ and ‘code by
catastrophe’?. Quality in Higher Education. 10.1080/13538322.2018.1460900.

6 “Continuous compliance” by Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. In ASE 2020:
Proceedings of the 35th Annual International Conference on Automated Software Engineering, (Melbourne,
Australia), Sep. 2020.
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

15/69

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=34698
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

Why must it be continuous?

The process of continuously checking and verifying comes with a plethora of advantages on multiple

aspects:

a. Not human error prone

b. Company reputation

c. Cost reduction

d. Verify everything, not just sample

Continuous practices make action not human error prone which is already a long way to ensure results, as

well as the organization’s reputation which depends on those findings. The cost reduction from running

processes in an automated way is a crucial factor to selecting this approach – which helps save money, time,

and effort. Last but not least, it is equally important to keep in mind that with automated processes we can

run and re-run cases and test scenarios at any time. Additionally, it makes it realistic to check all items,

instead of relying on the tests of sample data!

16/69

Automated and manual QA
Quality assurance in the modern world

Manual testing is an integral part of the software life cycle, and is heavily performed even today, usually

within a dedicated team of QA engineers. However, it should not be implied that manual testing could in any

way substitute automated testing and the CI process. On the contrary, it is complementary to the automated

test suite and aims to reveal additional issues, such as UX issues that prohibit users from having a smooth

experience with the software, or, for a website, provide an extensive check of visual elements and how they

integrate to the overall feeling of the UI. Everything else that may still be tested manually could and should

be incorporated within the automated testing suite.

One of the drawbacks of the manual process is that it’s usually performed after the code has been

implemented and possibly even merged. By that time, it’s very possible that the developer has moved on to

another task or even project, and going back to solve an issue requires significantly more time than it would

if the issue was detected during development or immediately after it. More on the shift-left approach and the

cost of bug fixing can be found in the next chapters.

Having an automated test suite that runs before any change is integrated in the code base is crucial to the

success of any project. Developers, now more than ever, focus on writing tests and implementing a CI/CD

process within their project. This provides a structured and organized way of handling the needs of software

development in any given project, be it a small one or a set of multiple repositories/projects that need to

interconnect and be deployed to multiple environments.

Nowadays, every framework for software development comes with testing tools which can be used to

represent the functionalities of the software in an, often, offline environment with predetermined test

scenarios. The quality of the test suite is as good as the available scenarios. And testing can - and should - be

part of any agile9 methodology a software development team is following.

For more details about Automated VS Manual testing, and why not just go manual, check the article

“Automated vs Manual Testing: Which Should You Use, and When?” in the next chapter.

9

https://www.researchgate.net/publication/348992540_A_Comparison_Study_of_Software_Testing_Activities_in_Agile_Methods

17/69

https://www.researchgate.net/publication/348992540_A_Comparison_Study_of_Software_Testing_Activities_in_Agile_Methods

3. Literature review

For the purposes of this thesis, multiple articles and posts were studied to provide multiple aspects of the

issues at hand, which industry and teams face. Below is a selection of such articles that contribute to the

topics discussed later on. The following articles are also evaluated per different criteria.

Evaluation criteria

Here are the evaluation criteria and the reasoning behind their choice:

1. Use of scientific methods to conduct research and determine results

The validity of the methodologies with which the research is performed is of crucial importance to

determining its effectiveness and the quality of the results.

2. Use of open source tools

Using tools which are available to everyone not only enables peer review and verification of a paper

or research but also makes it more approachable to everyone – students, researchers, contributors,

startups – making it possible for anyone to put it in use for their own situation. Thus making the

methodology broadly available, also makes it more beneficial to the community.

Moreover, using open source tools not only gives back to the community but allows us to have a

higher level of certainty regarding the validity of our results, since we can have a deep understanding

of the tool used to provide us with those data – which data may drive important decisions.

3. Use of established methods and standards

Using an acknowledged methodology adds validity to the research itself as well as its results, and in

the same time helps grow awareness.

4. Real-life application and/or scenarios that apply to the unique needs of an industry

Being able to measure how compliant we are, can be critical for organizations. Research based on

realistic challenges and issues which an industry faces, can truly make a difference and have a great

deal of impact.

5. Direct relation to organizations and teams that are involved with QA and compliance issues

18/69

Compliance is very important to businesses as well as other forms of organizations. Articles that

address the technical aspect of things, provide an invaluable help to those organizations to put in

practice the content of the research, instead of merely being presented with theoretical data.

6. Detailed methodology

How easy and effectively can someone reproduce the research / methodology used in order to

produce results for another use case. Step-by-step analysis of the action plan makes it easy for others

to reproduce and apply the same method, in order to validate the results and find use of it to other

scenarios by any team that wishes to employ the same methodology in its own industry.

Summary and evaluation of articles

In the next few pages we proceed with the evaluation of selected articles, providing a short summary,
necessary details of the article, the evaluation rating based on the aforementioned factors, as well as
relevant remarks as to why the rating was evaluated as such.

19/69

How to compare and exploit different techniques for unit-test generation
Bacchelli, Alberto & Ciancarini, Paolo. (2009). How to compare and exploit different techniques for unit-test generation.

Focused on unit-testing specifically, it presents a comparison between different tools for unit testing (JUnit,

JCrasher, Randoop) which generate unit tests automatically.

The article claims to provide a “novel comparison methodology that can be used to analyze the effectiveness

of different unit-test creation techniques”, and at the same time provide critical details about measuring test

coverage. Aside from the useful tool comparison provided within this article, there are very important points

made as to how we measure the quality of our test suite – and it is not by coverage. “Coverage can be used

as a negative metric” to showcase the parts of the code which are not tested. However, when it comes to how

much we have actually tested, we are better off using other metrics such as the percentage of methods that

are included in the test suite (method coverage) or whether or not we test both values (true or false) of a

boolean condition (decision or branch coverage).

It also focuses on how to get started with testing, such as add test cases for defects or start testing with leaf

classes or functions, which are easier to understand and all classes that are using them can benefit from them

being tested. As a next step it is also interesting to read more about automation in testing10

Evaluation Details

Use of scientific methods ★★★★✰

Use of open source tools ★★★★★

Use of established methods and standards ★★★★★

Real life application and scenarios ★★★★★

Direct relation to relevant organizations and teams ★★★★★

Detailed methodology ★★★★✰

● There is an organized and detailed approach to the issue

● All tools used are open source including the operating system and machine software

● The article uses existing tools and methodologies

● The testing takes place on an existing codebase

● The results are directly related and of interest to any Java software development team

● The process is documented step-by-step providing details on how each stage is implemented

10 https://www.researchgate.net/publication/362517283_Automation_Testing_In_Software_Organization

20/69

https://www.researchgate.net/publication/362517283_Automation_Testing_In_Software_Organization

A comparison between manual testing and automated testing

Kumari, Bhawna & Chauhan, Naresh & Syed, Habeebullah Hussaini. (2018). A COMPARISON BETWEEN MANUAL TESTING

AND AUTOMATED TESTING. SSRN Electronic Journal. 5. 323-331.

A fundamental and easy to understand comparison between manual and automated testing, including listing

the benefits and presenting the characteristics of a good test case.

The article provides an overview of the fundamentals around testing. It outlines different characteristics of

good test cases and how they affect the quality of our code, focusing particularly on unit testing.

Additionally it lists a variety of benefits that come with automated testing, in contrast with manual testing,

such as no human interaction being needed for the test execution, better speed due to lack of human factor -

in fact execution can be 70% faster. Except for those rather obvious arguments, a few other advantages of

automated testing are accuracy of results and reliability of the test case being executed as it was designed.

Automated testing also offers a wider test coverage of application features, even though coverage is not

necessarily the best metric to measure the effectiveness of our test suite.

Evaluation Details

Use of scientific methods ★★✰✰✰

Use of open source tools ★★★★★

Use of established methods and standards ★★★★✰

Real life application and scenarios ✰✰✰✰✰

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★★★✰✰

● The article is focused on automated testing methodology which is not itself a recognized scientific

method

● An open source tool is used for the automated testing

● The tool used is a common choice for such kind of testing among software developers and QA

engineers

● The paper is not based on any specific real scenarios

● The results directly affect software development teams

● While there are steps of how to use Selenium, the tool for automated testing presented in the paper, it

is more theoretical than practical enough to be immediately applicable

21/69

A comparative analysis of quality page object and screenplay design pattern on
web-based automation testing

D. Yuniasri, T. Badriyah and U. Sa'adah, "A Comparative Analysis of Quality Page Object and Screenplay Design Pattern on

Web-based Automation Testing," 2020 International Conference on Electrical, Communication, and Computer Engineering

(ICECCE), 2020, pp. 1-5, doi: 10.1109/ICECCE49384.2020.9179470.

The article presents two kinds of design patterns used for automation testing and evaluates each one of them

according to a variety of metrics (flexibility, reusability, functionality, understandability, extensibility,

effectiveness). The research applied the QMOOD (Quality model of object oriented design) approach to get

quality value from each design pattern. The results presented in this paper identify the object design pattern

to present with better quality for metrics of functionality and effectiveness, while screenplay design has

better quality for reusability, flexibility, understandability, and extensibility.

Evaluation Details

Use of scientific methods ★★★★✰

Use of open source tools ★★★★★

Use of established methods and standards ★★★★★

Real life application and scenarios ★★★★✰

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★✰✰✰✰

● There is a solid process followed to conduct the comparative analysis and reach conclusions

● Prestashop is used as an example, which is open source code available to anyone

● The paper is based on existing methods and processes

● While there is no explicit reference to the prestashop instance that it was used, the article’s test

scenarios are clearly based on real life use cases

● The results’ usefulness might be limited to users of that specific software, however the metrics

provided are certainly of interest for any team, organization and kind of software

● The methodology is not immediately applicable to another software and it is not clear if and how it

could apply to another industry

22/69

Automated Testing of AI Models

Haldar, Swagatam & Vijaykeerthy, Deepak & Saha, Diptikalyan. (2021). Automated Testing of AI Models.

The paper is a follow-up on “Model-Based Test Modeling and Automation Tool for Intelligent Mobile

Apps”11 and it uses the tool AITEST and adds testing capabilities for tabular data, image and speech-to-text

models aiming to make the tool a comprehensive framework for testing AI models. The additional

functionalities include a) interpretability testing of tabular AI models, b) comprehensive sets of image

transformations for testing black-box image classifiers, and c) a comprehensive set of audio transformations

for testing fairness and robustness properties for speech-to-text models. The suggested implementation is

limited to black-box testing which needs to be configured but can then be re-used to other similar models.

The tool is part of IBM’s Ignite quality platform.

Evaluation Details

Use of scientific methods ★★★★✰

Use of open source tools ✰✰✰✰✰

Use of established methods and standards ★✰✰✰✰

Real life application and scenarios ★★✰✰✰

Direct relation to relevant organizations and teams ★★★★✰

Detailed methodology ★★★★✰

● The article provides definitions of parameters used and provides detailed results.
● It is not indicated whether or not the tool is open source, or how it can be used by others
● The tool is a new innovative approach to the issue
● While it aims to address very realistic scenarios, the article itself does not present a real life use case
● It directly affects the AI industry
● It provides a lot of information about the process that was used

11 https://ieeexplore.ieee.org/document/9564374

23/69

https://ieeexplore.ieee.org/document/9564374

Automated System-level safety testing using constraint patterns for automotive
operating systems
Choi, Yunja & Byun, Taejoon. (2015). Constraint-based test generation for automotive operating systems. Software & Systems

Modeling. 16. 10.1007/s10270-014-0449-6.

Automated test generation for safety testing of automotive operating systems. The constraint-based method

of testing presented an advantage for testing illegal behaviors.

The automotive industry is a representative example of a typical safety-critical system. According to the

article, existing techniques do not focus on interface testing of such operating systems, which is the gap that

it aims to fill, using operational constraints defined in the specifications, to produce configuration-dependent

and state-dependent constraint patterns. The existing methods of testing present important disadvantages,

namely concolic testing does not explicitly test illegal behaviors, and OSEK OS scenario- and

specification-based testing checks the functional correctness but not the robustness of the system in case of

illegal behavior. For the industry it is imperative to be testing the safety of the system in any environment,

and include both illegal and correct behaviors. The experiment included generated examples for all

constraint states executing both legal and illegal calls. The constraint-based testing method increases the

efficacy of testing for failure detection by systematically executing test cases related to illegal behaviors.

The article presents an example of a system and an industry that requires robust testing techniques, and

showcases that even if testing is being performed, existing methods may or may not be suitable to cover all

industry and system needs.

Evaluation Details

Use of scientific methods ★★★★★

Use of open source tools ★★★★✰

Use of established methods and standards ★★★★✰

Real life application and scenarios ★★★✰✰

Direct relation to relevant organizations and teams ★★★★✰

Detailed methodology ★★★✰✰

● The paper shows a systematic and scientific approach to conduct the testing

● The software used, trampoline, is the open-source implementation of OSEK OS, according to the

article, however it is not clear in the article if non open source tools are needed as well

24/69

● The paper depends on established methods and procedures

● This is directly related to automotive industry, however the paper itself is not based on a specific real

case

● This would be of importance to relevant teams of this particular industry

● The steps are well documented, but results are not immediately reproducible

25/69

On the Challenges of Automated Testing of Web Vulnerabilities
L. F. de Lima, M. C. Horstmann, D. N. Neto, A. R. A. Grégio, F. Silva and L. M. Peres, "On the Challenges of Automated Testing

of Web Vulnerabilities," 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE), 2020, pp. 203-206, doi: 10.1109/WETICE49692.2020.00047.

Evaluation of 5 penetration testing tools against 7 web applications for detention and exploitation of

vulnerabilities, using the PTES (Penetration TEsting Execution Standard) methodology.

This IEEE WETICE article sheds a light into the workflow of penetration testing (pentesting). To achieve

this 5 tools were tested across 7 web applications to document both the tools as well as the challenges which

testers face. The methodology used is PTES (Penetration Testing Execution Standard), according to which

pentesting tools perform two functionalities: scanning and exploitation. Scanning aims to identify the

vulnerabilities in the application under test and exploitation allows testers to gain access to the application

(by exploiting one or more vulnerabilities detected in the first step). Results are publicly available in

https://github.com/lfl-repository/PestestingReports. According to the OWASP edition from 2013 to 2017 the

most frequent vulnerabilities are those related to input validation. The vulnerabilities chosen for this article’s

research were the OWASP top 10 from 2017

The importance of pentesting lies with assurance on software security. Pentesting is a widespread technique

to determine the level of security of systems and applications, as well as provide relevant data and statistics

for an organization’s security level and potential vulnerable points. In multiple cases, penetration testing is

also a requirement, either enforced by law or internal procedures, to determine the readiness of an

application for production or confirm its security over time.

Evaluation Details

Use of scientific methods ★★✰✰✰

Use of open source tools ★★★★★

Use of established methods and standards ★★★★★

Real life application and scenarios ★★★★✰

Direct relation to relevant organizations and teams ★★★★✰

Detailed methodology ★★★★✰

● The paper presents a practical approach for verifying tools’ effectiveness

● All tools and methodologies used are open source and widely available

26/69

https://github.com/lfl-repository/PestestingReports

● The methodologies and tools used are known and used in the industry

● The paper is based on testing applications which exist for the purpose of testing, it would be

interested to perform the same pentest in real applications

● The vulnerabilities being tested are realistic and existent in modern software, thus the results are

highly related to any software development team

● The paper provides a comprehensive analysis of the steps followed, allowing replication of the

process

27/69

Towards Software Compliance Specification and Enforcement Using TOSCA

Mubarkoot, Mohammed & Altmann, Jörn. (2021). Towards Software Compliance Specification and Enforcement Using TOSCA.

10.1007/978-3-030-92916-9_14.

“.. the size and complexity of software systems continue to increase over time and, simultaneously, if not

maintained rigorously, the quality decreases” at the same time changes in regulations and policies add extra

complexity with compliance management. The article provides a methodology for handling changes in

policy documents and industry requirements and stresses the importance of compliance management

throughout the software development lifecycle (SDLC).

Evaluation Details

Use of scientific methods ★★✰✰✰

Use of open source tools ★★★★★

Use of established methods and standards ★★★★★

Real life application and scenarios ★✰✰✰✰

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★★✰✰✰

● A scientific method seems not to be applicable in this case. The overall presentation is methodic.

● All of the tools used are open source

● An existing framework and well-known tools are used

● The paper did not present details of the specific business and software it was used

● The issue at hand as well as a possible solution directly affects engineering and compliance teams,

and a variety of different organizations

● A schematic representation is offered in regards with the example topology, but more details would

be required for application to another software

28/69

Acquiring Software Compliance Artifacts from Policies and Regulations
Breaux, Travis & Antón, Annie. (2022). Acquiring Software Compliance Artifacts from Policies and Regulations.

Provides a methodology to extract technical requirements from legal and policy documents. Explains the

problems which developers face when implementing compliant software and outlines the necessity for an

organized method to identify and classify such compliance requirements.

“..organizations must be able to demonstrate that they have verifiable procedures in-place to implement the

restrictions imposed (..)” while the software engineers face the challenge of reading, understanding,

interpreting and extracting rules and test scenarios out of policy and regulatory documents written primarily

by domain experts in non-engineering fields (law, medicine, finance, etc). The methodology presented in the

article provides technical people with a process for extracting requirements artifacts regarding the actions

and obligations which are permitted. The article aims to “provide auditors with a reproducible and certifiable

chain of evidence that shows how software systems comply with the law”, through analyzing the language

in such documents and creating relevant restrictions and rules which developers can understand.

Additionally it helps stakeholders discern between discretionary and mandatory requirements for their

software.

Evaluation Details

Use of scientific methods ★★★★★

Use of open source tools -

Use of established methods and standards ★★★✰✰

Real life application and scenarios ★★★★★

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★★✰✰✰

● There is a detailed analysis of the method used

● It is not clear which tools were used to implement what’s described in the article

● The article depends on previous research of the same group of people

● The use case provided is of HIPAA policy

29/69

● While that’s realistic to the challenges a lot of organizations and teams face when it comes to policy

documents, it is quite specific to the US health sector

● There are details provided in theoretical level, however it is unclear how to practically apply this to

another policy document

30/69

Software Security Requirement Engineering for Risk and Compliance
Management
D, Kavitha & .S, Ravikumar. (2021). Software Security Requirement Engineering for Risk and Compliance Management.

International Journal of Innovative Technology and Exploring Engineering. 10. 11-17. 10.35940/ijitee.E8628.0210421.

Mapping of security requirements with compliance mandates in an effort to document and visualize their

connection aiming to reduce the risk of non-compliances. The article also provides useful explanations and

definitions for security terms and concepts.

Security requirements must be defined and handled at the early stages of the software development lifecycle.

The article provides an object mapping for risk assessment and compliance management based on category

theory and the CORAS risk assessment modeling technology.

Evaluation Details

Use of scientific methods ★★★★✰

Use of open source tools -

Use of established methods and standards ★★★★✰

Real life application and scenarios ★★★★✰

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★★✰✰✰

● The article shows a methodical approach to the issue

● It’s unclear which tools were used for this analysis

● The article depends on category theory and the CORAS modeling technology. It would be interesting

to see which other tools were used

● The modeling is applied in safety-critical and security-critical software

● The results could benefit other teams and organizations

● It is not clear how we can apply this to another use case

31/69

Bug Prediction Capability of Primitive Enthusiasm Metrics
Gál, Péter. (2021). Bug Prediction Capability of Primitive Enthusiasm Metrics. 10.1007/978-3-030-87007-2_18.

Explores the use of Primitive Enthusiasm metrics (method based metrics) to improve bug prediction. The

metrics measured

While bugs are unavoidable in software, finding them can be tricky and also ineffective, particularly if only

manual methods are used. The goal of the research is to determine if primitive enthusiasm (PE) metrics12

improve cross-project and across-versions bug prediction. Data types can be primitive (boolean, integer,

char, etc) or complex (classes, structs, etc). “Primitive Obsession is the excessive use of primitive data types.

The programmer does not create small objects for small tasks, instead s/he is obsessed with the use of

primitive data types.”. According to the results, PE metrics can be helpful in identifying bugs and their use is

certainly viable and worthwhile in both cases, as “(Primitive obsession is) a symptom for the existence of

overgrown, chaotic code parts”

Evaluation Details

Use of scientific methods ★★★★★

Use of open source tools ★★★✰✰

Use of established methods and standards ★★★★✰

Real life application and scenarios ★✰✰✰✰

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★★✰✰✰

● There is a solid approach to the issue

● Publicly available datasets were used

● The paper is based on scientific and statistical methods

● The algorithm was not directly used on business software running on production

● The results could provide useful insights across other teams

● The analysis is not immediately applicable to another software

12 Primitive Enthusiasm is a metric designed to highlight possible Primitive Obsession infected code parts – Edit Pengo and Peter
Gal, Grasping Primitive Enthusiasm Approaching Primitive Obsession in Steps,
https://www.scitepress.org/papers/2018/69188/69188.pdf

32/69

https://www.scitepress.org/papers/2018/69188/69188.pdf

Code Smells and Detection Techniques: A Survey

Menshawy, Rana & Hassan Yousef, Ahmed & Salem, Ashraf. (2021). Code Smells and Detection Techniques: A Survey. 78-83.

10.1109/MIUCC52538.2021.9447669

“Refactoring Code smells help the developers to improve the code quality in a significant way”

The paper makes reference to the different detection approaches (manual, history-based, fully automated,

etc.) and concludes that the majority of the available tools support Java, and so are the most popular

datasets. ML algorithms are widely used, however they depend on those training datasets, restricting

research around a specific programming language. An interesting point brought up for further investigation

is how refactoring a code smell can in fact introduce a new one, and the relation between them. Also see 18.

Evaluation Details

Use of scientific methods ★★★★★

Use of open source tools ★★★★✰

Use of established methods and standards ★★★✰✰

Real life application and scenarios ★✰✰✰✰

Direct relation to relevant organizations and teams ★★✰✰✰

Detailed methodology ★★★★✰

● The article provides a literature review with specific hypotheses in mind

● Tools used to produce this article are accessible

● There aren’t any standards per se, but there is an organized representation of information

● This being a literature review, it does not directly correlate to an industry, organization or specific

software

● Insights about causes of bugs and ways for better and faster detection are certainly useful

● The article presents a detailed set of steps and good documentation of findings

33/69

Worst Smells and Their Worst Reasons

D. Falessi and R. Kazman, "Worst Smells and Their Worst Reasons," 2021 IEEE/ACM International Conference on Technical

Debt (TechDebt), 2021, pp. 45-54, doi: 10.1109/TechDebt52882.2021.00014.

Survey with developers to identify details surrounding the creation of technical debt. Provides a statistical

analysis and its results for 5 hypotheses.

“Code bad smells are symptoms of poor design and implementation”13 and more often than not software

development teams are not mindful about technical debt, don’t measure it, don’t acknowledge it in

retrospectives, and consequently do not address it.

“Similarly we know that developers (intentionally or unintentionally) violate design and coding rules and

best practices, and so technical debt inevitably accumulates over time, making the system harder to

maintain”

The article aims to identify worst code smells, i.e. bad smells that never have a good reason to exist,

determine the frequency, change-proneness and severity associated with the worst smells and last but not

least identify the worst reasons for introducing them. The survey included 71 developers across multiple

enterprises. And its findings present that 80 out of 314 cataloged code smells should never exist in any code

base. Possibly even worse, the survey also concludes that technical debt usually starts small and over the life

of a project as new features are added they become “god classes”. Additionally referenced in the article14,

most smells are introduced at the creation of an artifact, and not as a result of its evolution – which makes

you wonder if software development teams really need to get in front of this, at the very time when code is

being written, and shut down unnecessary technical debt before it even comes to life. One of the interesting

results of the survey reveals that there is a significant difference on severity levels between worst and

non-worst smells, as well as that worst and non-worst code smells cannot be correlated to the number of

changed lines of code. Last but not least, a complete replication package is provided to encourage

replicability and validation of results by others (peer review)15

15 https://zenodo.org/record/4270178#.Ye0ziFtBxhE

14 M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lucia, and D. Poshyvanyk, “When and why your code starts
to smell bad (and whether the smells go away),” IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1063–1088,
2017

13 M. Fowler, “Refactoring: Improving the design of existing code,” in
Proceedings of the Second XP Universe and First Agile Universe Conference on Extreme Programming and Agile Methods -
XP/Agile Universe 2002. Berlin, Heidelberg: Springer-Verlag, 2002, p. 256.

34/69

https://zenodo.org/record/4270178#.Ye0ziFtBxhE

Evaluation Details

Use of scientific methods ★★★★★

Use of open source tools ✰✰✰✰✰

Use of established methods and standards ★★★★✰

Real life application and scenarios ★★★★★

Direct relation to relevant organizations and teams ★★★★✰

Detailed methodology ★★★★✰

● The article presents a methodical approach for survey, performing a statistical analysis and

presenting results

● It is not clear if open source software was involved. The survey was based on bugs identified by

sonarCloud which does not seem to be open source

● Use of well-known methods for statistical analysis, however the research is based on bugs identified

by another software

● Participants of the survey were engineers and software developers found from the mailing list of

IEEE Technical Council on Software Engineering (TCSE). Additionally the use of sonarCloud for

the identification of bugs is an enterprise software that can be potentially used by any software team

● The results are important for any software development team as well as management

● There is a significant amount of information for the survey to be replicated, even though the results

still depend on the subjective opinion of each participant. It would be interesting to compare results

between senior developers, junior and mid developers as well as team leads or other management

positions

35/69

A legal cross-references taxonomy for identifying conflicting software
requirements16

Maxwell, Jeremy & Antón, Annie & Swire, Peter. (2011). A legal cross-references taxonomy for identifying conflicting software

requirements. Proceedings of the 2011 IEEE 19th International Requirements Engineering Conference, RE 2011. 197 - 206.

10.1109/RE.2011.6051647.

This paper aims to document the specific challenges that arise due to cross-references in compliance

requirements and which directly affect engineers. According to the article there are 6 different types of

cross-references which were identified in the research using HIPAA (US Health Insurance Portability and

Accountability Act). Additionally the paper offers 4 strategies that can help engineers resolve conflicting

requirements:

1. Comply with the most restrictive law

2. Store data separately

3. Obligations supersede legal privileges

4. Consult legal domain experts

Evaluation Details

Use of scientific methods ★★★★★

Use of open source tools ★✰✰✰✰

Use of established methods and standards ★★★✰✰

Real life application and scenarios ★★★✰✰

Direct relation to relevant organizations and teams ★★★✰✰

Detailed methodology ★★★★✰

● The article uses scientific methods to analyze and answer the hypotheses posed

● No open source tools mentioned

● The article is based on solid methodologies

● The text analyzed is the US HIPAA, which covers one certain industry

● It is unclear if it can be directly applied to other kind of policies

● While there is a detailed analysis of the methodology, the algorithm is not available for re-use

16

https://www.researchgate.net/publication/224263869_A_legal_cross-references_taxonomy_for_identifying_conflicting_software_
requirements

36/69

https://www.researchgate.net/publication/224263869_A_legal_cross-references_taxonomy_for_identifying_conflicting_software_requirements
https://www.researchgate.net/publication/224263869_A_legal_cross-references_taxonomy_for_identifying_conflicting_software_requirements

What Is Technical Debt And Why QA Testers Should Be Concerned About It?
https://www.softwaretestinghelp.com/technical-debt-and-qa/, January 2022

“Most QA managers impulsively view tech debt as the reasonable consequence of focusing all your energy

on the current sprint alone, which leads to achieving the test coverage somehow through manual means, and

completely ignore automation. This is known as the quick and dirty approach which has been covered in a

blog by Martin Fowler, the author of the technical debt quadrant.”

The article provides a comprehensive explanation around the causes of technical debt and the challenges that

surround it. As a definition it mentions “Technical debt is the difference between what is expected and what

is delivered”. Additionally, it presents six (6) reasons why technical debt is created, one of which is the

absence of continuous integration. Even with automated testing, in their example they identified that there

was only 40% coverage and the technical debt resulted in 60% increase of effort for testing, in increased

costs for hiring testers to support the project, slow release testing and difficulty in keeping the test cases up

to date as the project grew more complex. Last but not least, it emphasizes that delivering too many features

(more than the team’s capacity) inevitably results in technical debt which will need to be addressed, and for

that the team must “slow down to start covering the technical debt it left behind”. The reasons presented as

the root cause behind the creation and propagation of technical debt are:

1. Improper documentation identified in the article is indeed a common denominator in

miscommunication, all sorts of issues, often even delay in release of features

2. Inadequate testing and bug fixing – these are both items often overseen and forgotten by teams and

particularly team leads and other management members

3. Lack of coordination between teams, which can lead to delays in deploying software, preparing new

infrastructure in time, and have a common understanding of what we are building and what are the

next steps moving forward

4. Legacy code, which can grow in volume and technical debt and increase the improvement effort

needed

5. Delayed refactoring, for which one of the reasons could be old legacy code which may or may not be

needed or understood by the current product and team

6. Absence of continuous integration, so that we know each step of the way what’s the state of our

codebase and consequently our project and product

7. (more factors which the users/organizations cannot control)

37/69

https://www.softwaretestinghelp.com/technical-debt-and-qa/

Evaluation Details

Use of scientific methods ★★★✰✰

Use of open source tools ★★★✰✰

Use of established methods and standards ★★★★✰

Real life application and scenarios ★★★★★

Direct relation to relevant organizations and teams ★★★★★

Detailed methodology ★★✰✰✰

● A big part of this article is based on real life experience, still there is a basis for the claims as as well

as statistics and graphs to support the data presented

● Use of tools is not relevant to this article, however its findings relate to open source projects

● There is definitely business experience involved, but the results are based on known approaches

● The article is based on real life software

● Its findings apply to a wide range of software development teams that can benefit from its insights

● While there is very useful information included, it is not immediately replicable for another use case

38/69

Automated vs Manual Testing: Which Should You Use, and When?
A. (2020, May 7). Automated vs Manual Testing: Which Should You Use, and When? Apica.

https://www.apica.io/blog/difference-between-automated-manual-testing

A business approach on testing and which type to choose, along with a concise overview of different kinds

of testing and their definition. The comparison between manual and automated testing is based on multiple

factors and from a both technical and hands-on perspective. Specifically automated testing should be

preferred for regression testing (particularly necessary when there are frequent code changes, which is often

the case) and performance testing (in order to simulate thousands of concurrent users) while manual testing

may be considered in order to facilitate usability testing (how user-friendly the interface is, or its

convenience to end-users) or some kind of ad-hoc testing where we want to get the insights of the tester

about an unplanned testing that needs to be executed.

The comparison factors include repetition, accuracy and human error possibility, time consumption,

investment required as well as the possible need for human observation (which is best served by manual

testing).

The following table from the article itself, gathers comparison factors in an effort to determine which test is

best advised according to the goals and capabilities of each team and organization.

Evaluation Details

Use of scientific methods ★★✰✰✰

Use of open source tools ★★★✰✰

Use of established methods and standards ★✰✰✰✰

Real life application and scenarios ★★★★★

Direct relation to relevant organizations and teams ★★★★★

Detailed methodology ★✰✰✰✰

● The article references different kinds of testing and provides a comparison table

● Open source tools are not directly related to this article, however all findings apply to any open

source tool for performing automated tests as well as open source projects

39/69

https://www.apica.io/blog/difference-between-automated-manual-testing/

● The article provides explanations for different testing methods and their purpose, as well as the

comparative analysis between them

● The findings of the article derive from real life application of testing methods

● And it can certainly help teams and organizations learn about automated testing as well as make

more educated decisions about their approach to responsible software development

● The article provides insights on different testing methodologies which can be employed, but there is

not a way to replicate the findings for the comparative table between automated and manual tests

40/69

Why Low-Code Isn’t No-Test

Bridgwater, A. (2022, January 13). Why Low-Code Isn’t No-Test. Forbes.

https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test

This Forbes article is based on a corporate business stand-point and discusses technical debt and automation

oversight, providing data to support the necessity of automated testing and the consequences of lack thereof.

The author chooses the term “lower-code” rather than “low-code”, because the amount of coding involved is

not insignificant. Both lower-code and no-code techniques can be useful but potentially also detrimental to

software development best practices. Mitigations to this risk include a proper policy which is enforced by

the organizations that use the software, corporate compliance guidelines, and proper testing before the

application goes live.

“With this rapid innovation comes the need for scalable end-to-end testing. A recent Forrester report

confirms organizations using Low-Code platforms like Salesforce’s Low-Code tools can’t afford to ignore

automated testing,” insists McQueen (senior vice president of growth at Copado) and team

It’s not uncommon to release software to production because there is not enough time, or manpower when it

comes to manual testing, to conduct the necessary testing or structure the new test cases for the features or

bug fixes implemented – but for that the quality suffers, and costs increase as defects are detected later on.

Now more than ever, with the increasing use of Low-Code/No-Code platforms and market competitiveness,

teams need to prioritize their strategy for automated testing, which will in turn provide companies with the

required business agility that leads to commercial success. Manual testing is no longer an option because not

only is it expensive, but it also does not scale.

The article also provides useful statistics regarding software development and automated testing, such as the

following:

● Teams that use automated testing have 50% more frequent releases

● Teams that use automated testing experience less than half production failures yearly

Automations applied in software development – use of AI, Low-code and No-code methodologies – should

be extended in testing methodology as well, meaning a world of more automated tests.

41/69

https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.forrester.com/report/we-must-address-testing-in-low-code-development/RES162135

Evaluation Details

Use of scientific methods ★★✰✰✰

Use of open source tools ★★★✰✰

Use of established methods and standards ★✰✰✰✰

Real life application and scenarios ★★★★★

Direct relation to relevant organizations and teams ★★★★★

Detailed methodology ★✰✰✰✰

● While there are some statistics offer to support the claims of the article, they don’t depend on a

methodical research and the article does not present details about a scientific approach

● There is no reference of open source tools used for the purposes of the article, however the topic

relates to open source software

● The content of the article is based on empirical methods

● Claims within the article derive from business experience

● And can be beneficial to any other software development team

● While useful, data in the article cannot be reproduced for a different use case

42/69

4. Testing: a choice or a necessity?
Lots of teams treat testing like a choice or even a burden, rather than the key to certainty.

For a lot of teams writing tests is an extra step they need to tackle. Sometimes it’s even seen more like a

burden that must be addressed after development is completed, rather than a step integrated within the

development process.

Even worse, it’s often the case that developers don’t know how to get started with testing, or what exactly to

test, and maybe they are even confused by the different kinds of testing. That’s already too overwhelming

and testing becomes the perfect candidate to be put at the bottom of the ToDo list - and that’s how some

software development teams simply never get to it.

There is a simple approach to making testing less of a stress and more of a factor of certainty17 – even for

teams that are already working on existing projects and are in the middle of developing new features. The

key here is to start small. If we think of the hundreds of different test cases we should examine, no wonder

we cannot get started and our team feels paralyzed by the volume of all that information.

Moving forward in this paper there are simple, yet powerful, techniques to get every team started on testing

– because in testing every little bit matters (more about this in section “Practical Testing” and the 1% in

testing). Getting started with testing, as well as sticking with it are very important factors about the

well-being of your software, and automated testing can directly contribute to the software being secure and

compliant, with less bugs, and overall more robust. Moreover, the provided resources later on help teams

and developers identify meaningful tests, actionable test cases, as well as possible areas of improvement (in

the test suite itself, or in the process of testing).

17 https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

43/69

https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

What does automated testing offer anyway?

Understanding the benefits offered by automated testing can be crucial in getting the whole team on board.

Overall, the less bugs and pain-points there are for customers and the support team, the better the experience

for everyone – and happy customers are returning customers.

1. Robust code

A code that handles everything that there is to handle, provides a stable execution outcome, and an

overall better product quality.

2. High quality of services

Automated testing can help catch issues, bugs, faulty logic and inaccurate user stories before the

feature hits production (and customers).

3. Legal protection

Additionally, if automated testing is done right, it already provides some level of legal protection in the

essence that it provides certainty that our software is behaving as expected – assuming the design was done

properly, and we raise the level of verification regarding its implementation through automated testing.

44/69

Can you afford not to detect bugs early?

The graph below shows the immense increase in costs as we delay discovering an issue in our software. It

can be a wake up call for teams as well as managers that there is this hidden cost as the software

development progresses, and if not done right the qa process – or rather acting on its results – can prove to

be a lot more expensive than initially budgeted. For that reason, teams including higher management should

be made aware of the risks and mitigate them as they see fit. Once the information and data is available, it’s

possible to make educated decisions, and foresee potential issues.

Let’s take a look at the cost of bug fixing in multiple stages of the software lifecycle18, which is part of the

article “What is shift left testing” in BrowserStack’s guides. The graph also appears in other articles, as it is

an interesting topic that should concern multiple team members within organizations.

Relative cost to fix bugs, based on time of detection

Why does the cost increase as we move away from architecture and writing code?

There are multiple reasons that contribute to the cost going up if you need to take a look at if everything

works at a later stage of the SDLC19. Except for the communication overhead and developer frustration

which arise when a supposedly completed feature is sent back to be reworked on, more practical reasons for

the development cost going up is the simple fact that

19

https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_C
ycle_SDLC

18 https://www.browserstack.com/guide/what-is-shift-left-testing and https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

45/69

https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_Cycle_SDLC
https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_Cycle_SDLC
https://www.browserstack.com/guide/what-is-shift-left-testing
https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

1. Refactoring an existing code means we once spent time writing the code, and now we will spend

more time to re-write that code, essentially doing double work if that’s a new feature -- and we may

even need to go into a complete do-over and rework the feature from scratch!

2. The time it takes to bring our new feature into production, i.e. to our customers, is significantly

higher when we need to return back to the first steps of the process. That alone can cause customer

dissatisfaction

When is it too soon to deliver a new feature?
Code that works? Or code that works well?

“It’s never too early to deliver your task” is possibly what many, including higher management, would say.

And while it holds some truth to it, particularly when we are working within iterative processes with a

well-defined roadmap and planned milestones, when it comes to certainty and compliance it couldn’t be

further from the truth. Delivering too soon most probably comes with shortcuts and omissions -- of tests,

comments, best practices, etc. And what gets really delivered is a partial task and a whole bunch of technical

debt.

Time is not the only factor that matters, unless people are literally dying. Unless you are part of a team

which has consciously decided to ship something at a very early stage on purpose – such as a startup which

merely wants to showcase a concept and not actually release it – there are some interesting questions to be

aware of, before deciding the software is “good enough” or that the deadline has passed. When extra time is

needed, it’s of the utmost importance to evaluate what has happened with the extra time, even if it was over

the estimated time of the task. Was that time dedicated to reviewing the code one more time, or trying to see

how everything glues together after an important change? Did it provide meaningful insights to the feature

via documentation and code comments? Were useful tests written?

However less tangible or seemingly less countable, these are the things that can contribute to the well being

of software and help the whole team in the long run. Merely seeing something working as expected, is not

enough to determine how well-written the code is, or how many assumptions are included. And since

making an assumption is the root cause of most bugs, being mindful about all aspects of the feature, not just

time until delivery, should probably be very high in priority for everyone.

Does the next day matter? The next day, after the code gets merged. That’s production deployment. And

where any and all well-hidden bugs will surface. Quality over speed might in fact result in faster outcomes.

46/69

5. Practical testing
“...timely delivery of assigned tasks should not be the sole criterion” – Chaitanya Belwal, Ph.D.20

What to test

A thorough enumeration and explanation of all the different test types is beyond the scope of this paper.

What we will focus on is the quality of the tests, their traits and structure which build a meaningful

automated test suite designed to protect your software.

Each function added to the software must be accompanied by a unit test. Unit tests apart from confirming

the function is working as expected, they also provide a good insight on how the function works, what it

implements, and offers specifics around its input and its output. While code comments should already make

this clear, often going through a test case and seeing example values of what goes in and what result is to be

expected, it’s a very helpful process to gain deeper knowledge about the method and its purpose.

Unit tests are only one of the many kinds of tests that can - and should - be incorporated into any software.

Each kind of testing provides additional certainty as well as a different approach to the issue at hand, for

example “Black box testing is conducted to evaluate the compliance of a system with specified functional

requirements and corresponding predicted results.“21

Adding integration and end-to-end tests can help identify issues with the communication between parts of

the application, or use of other services within our codebase. After all, having a function that works properly

– tested via unit tests – which, however, cannot be called from other parts of our application, is still

problematic and should definitely be fixed, sooner than later. Besides, building a function is only relevant if

it can be useful somehow – such as incorporated into our codebase, or used by our software and our team.

Unless it provides some kind of value to the team, the software we are building, or the product we are

shipping, it may be great practice developing that code but it is not relevant to the current common goals of

the team.

21

https://www.researchgate.net/publication/268419508_Different_Approaches_To_Black_box_Testing_Technique_For_Finding_Err
ors

20 https://www.linkedin.com/pulse/think-you-have-rock-star-your-software-team-chaitanya-belwal-pmp-csm/

47/69

https://www.researchgate.net/publication/268419508_Different_Approaches_To_Black_box_Testing_Technique_For_Finding_Errors
https://www.researchgate.net/publication/268419508_Different_Approaches_To_Black_box_Testing_Technique_For_Finding_Errors
https://www.linkedin.com/pulse/think-you-have-rock-star-your-software-team-chaitanya-belwal-pmp-csm/

How to test

Explicitly

Tests must be specific. It’s not too hard to get derailed when writing tests, in fact it is fairly easy to end up

testing that the truth is in fact true. Which is why tests must come with explicit values. Do you need a user

record? Create one. You need to make sure the function returns the correct email address? Create a user with

a specific email address, and use that value within the test.

Organized

Tests must be structured. And DRY still applies. Tests can be grouped when they address a certain case, e.g.

when an error is raised, when the user has a specific role (admin, guest, etc.)

How to get started with testing

Testing is a factor of certainty. And if testing is a factor of certainty that our code works as expected,

Compliance QA is a factor of certainty that our code and product is compliant with the legally binding

regulations and policies our organization must adhere to.

Whether for a solo software developer or a whole engineering or Testing/QA team, there are simple ways to

get started with coding, even if you have an existing product or service with ongoing development and even

with pressing deadlines.

Below there are 2 simple ways that help any developer bootstrap testing in their team. It doesn’t necessarily

need to get the CTO or Lead Engineer involved – any team member can get things rolling.

Methodology 1: Start small

The “start small” approach is a simple workflow that anyone can use, including junior developers who

haven’t tested anything before. For existing projects without a test suite, it can seem as an enormous

endeavor to start writing tests. The solution to this is: Just do it. Small. – Simply get started and commit in

small increments.

48/69

Here is an overview of simple steps to follow:

1. Setup test suite

2. Write 1 test

3. Another team member writes 1 more test

4. The team commits to writing 2 tests each for the next week

Methodology 2: Bug-based testing

This approach helps teams avoid having the same bugs reoccur – besides there so many other bugs out there,

no reason to stick to the same ones!

This approach may require a slightly better understanding of debugging and root cause analysis, in order to

come up with specific and accurate reproduction steps that are necessary to setup the test scenarios –

remember the previous section about having explicit test cases.

Steps to get you started:

1. Setup the test suite

2. Write 1 test

3. When the team is handling a bug, write a test for this bug

4. Repeat for every bug you encounter

A common step is, unsurprisingly, to write one test. This is what gets you started, and keeps you moving

towards testing more. Writing the one test can provide momentum for individuals and teams and it’s a lot

easier to aim to write one test rather than more generic goals such as increasing coverage by X percent. Let’s

see in the next chapter how to tackle this first, yet important, step.

“Set small goals along the way and

don’t be overwhelmed by the process.”

– Kara Goucher

49/69

How to write one test

Diving into the most important step, writing a test. Each time. How to write the one test:

1. Write 1 test case. Anywhere. Anyhow.

2. Put it in the right place, ie if this is a unit test of a particular model, it should be in the test file of this

model

3. Make sure the test is actually testing

4. Write one more test case, and repeat

5. Find similarities in the existing test case, which would warrant using shared examples to DRY things

up

Make sure the test is actually testing

Sometimes we get carried away with testing and particularly with stubs and mocks, that we end up testing

that the truth returns true. That’s not at all what we are aiming for with our test suite though.

If you have a test that checks if the returned value is true, change your test to expect a false value, and make

sure it fails. If it fails, you can revert it back to true, and proceed. However, if it does not fail, that means that

it is returning true – as you were initially expecting – but for the wrong reason! You need to dig into that

reason and figure it out.

Here are some ideas to get you started with your investigation to properly set up your test:

○ Your test might be testing the wrong thing

○ Or, quite probably, you haven’t set up the test case properly – to run a test we assume we

have several pieces of data already available and to recreate a particular test scenario our data

needs specific values

○ Somewhere in there there is an assumption

You should absolutely not just leave a test passing, if it wouldn’t fail with the opposite expected value,

because it’s not really testing what you wanted to be testing – that’s a testing trap.

50/69

Testing 1% can make a difference

Why does it make sense to start small with testing and try the above mentioned methodologies?

1% of code is probably useless for any application, but 1% of tests could potentially catch the 1 case where

there is a bug in the code. When we are writing code, 1% of a feature means nothing, and there is nothing

we can use from 1% or even 10% of the code which is required to develop a feature or an application. We

literally need all the code for the particular task we are working on. However, that’s not quite the case with

tests. The thing with testing is that, if you have 100 different cases to test, even if you only test 1 case, you

still have added some value to your code, and that’s because 1% of tests is way better than none. 1% of tests

could include 1 bug that would get caught before it makes it to production -- and that’s a win any day! It

might not be much, but it is a whole lot more than nothing. Testing 1% can make a difference, might be a

small one, but it is a difference nonetheless.

The Shift Left approach for Testing

“This shift left in the agile development process means testing starts much earlier in the application

lifecycle. As a result, developers should own QA, which means developers write, execute, and maintain tests

for the code they produce; it encourages everyone on the team to be engaged in delivering high-quality

products to the customer quickly.” – Alexsandro Souza22

What does shift left mean?

To be put simply, as described by BrowserStack23:

- Tests being run by developers themselves before they push their individual code unit to version

control.

- The Shift Left Testing approach implements a process that lets developers detect bugs early and

often because these code units are small and infinitely more manageable

23 https://www.browserstack.com/guide/what-is-shift-left-testing
22 https://dev.to/apssouza22/we-are-testing-software-wrongly-and-it-costs-a-lot-of-money-23o5

51/69

https://www.browserstack.com/guide/what-is-shift-left-testing
https://dev.to/apssouza22/we-are-testing-software-wrongly-and-it-costs-a-lot-of-money-23o5

The problem

According to BrowserStack, when testing is paused until the end of development, any bugs that do show up

will usually be more difficult to fix. Add to that the extra cost of bug fixing at later stages of the software

development cycle, as described in The cost of bug fixing in multiple stages of the software lifecycle and it

should be a no-brainer that we should focus on creating and running tests as early as possible in our software

development process.

Metrics

What are metrics? Why do we care? Isn’t coverage all that matters?

Tricentis24 blog post presents a collection of metrics for software testing. The list includes the obvious, such

as coverage and cost per bug fix, but it also comes with a more meaningful approach such as being mindful

about “How bad are the bugs?” and “How many bugs did the test team not find?” which can provide great

insights to how the team works and how the testing process evolves. The ultimate goal is to determine what

we are doing right and what we can improve.

Here’s a list of metrics all developers should ask themselves:

1. How long does it take our team to write tests for a feature?

2. Are the tests of good quality?

3. How many times did a test catch a bug in new code?

4. How bad are the bugs?

5. How many bugs were not spotted before a feature was shipped to production?

Coverage is one of the most mentioned metrics when it comes to automated testing, yet there are so many

more aspects to be mindful about.

24 https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success/

52/69

https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success/

Coverage VS Good Tests

Is it enough if we have 90% coverage? Absolutely no! Hands down that’s the worst approach to determining

the effectiveness of the testing process. As Martin Fowler25 points out, test coverage is a good way to

identify untested code. However it doesn’t tell us much about the quality of the code, or if we have covered

all the dozens of different subcases.

According to https://dzone.com/articles/we-are-testing-software-incorrectly-and-its-costly reporting test

coverage and using it as a threshold for shipping software

● contributes to lower quality tests just to increase the numbers, and

● tends to distract from the use cases that should drive the software development process

How to interpret coverage

That said, having 100% test coverage is awesome! The key here, though, is interpretation. 100% coverage

does not mean that you are testing everything you possibly could, in fact it doesn’t even mean you are

testing everything you should. But it does show that you have bootstrap your testing suite for all relevant

parts of the software, which is awesome and super important specially if you are now starting with testing.

That means that developers can focus on the specific test cases they want to add rather than configuring the

test suite and adding completely new components.

Once we reach a comfortable level of tests within our software, it is not long until we wonder whether or not

our tests should be checking for more – more assumptions, more specs, more indirect acceptance criteria.

Staying on top of what may be considered “obvious” by the team can help identify even more test cases, and

even aspects of the software which should be working a certain way but have never been tested. Staying

aware of different assumptions between different teams is also valuable when identifying more items for

testing. For instance, the security team might find it crucial to add tests that check for possible SQL

injections – and that’s just one idea, talk to your team to find out more! At the same time, the business or

legal teams may assume that the engineering team is always checking that the software complies with

internal policies or external requirements – even though that’s not always easy to split up into test cases

which run automatically. Again, close collaboration between teams with clear and transparent

communication can do wonders in revealing assumptions, producing new testing requirements and

improving the overall software and service being offered.

25 https://martinfowler.com/bliki/TestCoverage.html

53/69

https://dzone.com/articles/we-are-testing-software-incorrectly-and-its-costly
https://martinfowler.com/bliki/TestCoverage.html

Why continuous compliance?

“We propose continuous compliance to guarantee that the codebase stays compliant on each code change

using lightweight verification tools. Continuous compliance increases assurance and reduces costs.“ --

https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

According to the paper, continuous compliance can be summed up as the process in which teams “build

verification tools for compliance controls, and each commit runs the verifiers in continuous integrations”.

This approach enables both increased verification towards compliance of the software as well as fast

reporting directly to developers – which can enable faster fixes, less communication and organizational

overhead between teams that need to review code, report back the findings to the engineering team which

needs to receive the results, understand them and schedule them into their sprints for development. This

alone can positively impact costs; additionally it reduces the amount of effort required and eliminates a huge

part of human error on the auditors’ side.

Techniques such as bug-based testing can be used in continuous compliance as well, to ensure that any

non-compliant cases become part of the verification tools in place, so that the same defect does not occur

again.

There are industries which are inherently obliged to comply with regulations, such as the medical sector,

financial software, aerospace, services related to critical infrastructure, as well as software related to

security, cryptography and trust services. Yet there are policies that may apply even if the software does not

fall into these categories, GDPR is one very evident example.

Is being compliant enough?

Making sure the software is compliant, and particularly doing so continuously and in an automated way, is

essentially part of the bigger sector of automated testing, and should be seen as part of automated testing

responsibilities. However, being compliant, meaning adhering to policies and regulations does not guarantee

there are no bugs in the software. Testing for bugs, or generally writing unit tests, is the fundamental step in

creating an automated testing suite and environment. There are, of course, many more aspects, such as

integration tests and end to end checks, which are also very useful and provide a more holistic approach to

the software, based on the overall product. Furthermore, such tests are a lot more in the vicinity of the

experience of actual users. On the other hand, making sure we reduce bug occurrence by testing an

54/69

https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

application, and even testing it well, does not do much about keeping the application compliance, because

whether or not there are bugs is not directly relevant to being compliant. Certainly the overall well-being of

a software contributes to it being compliant, in the sense that the absence of bugs might cover parts of the

regulations, however the software automated testing process is not primarily concerned with compliance

matters, making it somehow difficult to make claims about the software’s adherence to policies just by

evaluating the test suite. Both compliance testing and traditional software automated testing are required in

order to determine production-readiness, evaluate compliance and make relevant business decisions. In fact,

it calls for a more dedicated team for compliance testing & QA to run, as doing it effectively assumes

knowledge of the product from its business perspective as well as the user experience we are aiming for and

also understanding of regulations that must be followed. That’s why it’s often useful to combine compliance

teams and software development teams or QA testers, and create a combined workgroup to tackle the

continuous compliance through testing explicitly for compliance matters.

Compliance VS Testing

Compliance, particularly when paired with software development, does bring challenges when technical

people try to understand and accurately interpret legal documents, extract necessary information into

actionable tasks and stay up to date with changes.

The world of compliance consists of policies and legal terms, while the testing refers to more technical

aspects such as issues, sprint goals and product requirements (often showcased through user stories).

Compliance Testing

● Policies

● Industry standards

● Complex documents

● Legal requirements

● Technical issue

● Business requirements

● User stories and flows

● Sprint goals

55/69

6. Bias in software, and the role of testing

Assumptions made during any stage of the Software Development Life Cycle, and particularly

implementation and testing phases, can be detrimental to user experience, developer motivation, business

costs, as well as the overall state of the software.

Aiming at a robust code is a high priority, even though «building robust systems that encompass every point

of possible failure is difficult because of the vast quantity of possible inputs and input combinations»26, it is

always useful to keep in mind that users will most likely do the ‘wrong’ thing when using an application,

which will cause an error. Handling those errors gracefully27 and guiding the user to the proper use of

software not only will provide end-users with the desired outcome but will also reduce the amount of

complaints and cases that need to be investigated by support and tech teams.

When it comes to testing, it is imperative to predict and test for as many edge cases and wrong inputs as

possible, as this will reveal weak code and protect us from having to deal with the errors in production.

Assumptions not only negatively affect the robustness of the codebase, but also slow down the overall

progress of the software, as the team’s focus shifts to bug fixing and users’ issues – which, among other

things, can lead to developer frustration. Losing focus from creating awesome software that scales, can

cause poor analysis and missing cases during requirements break-down, which in turn leads to more issues,

causing a vicious cycle that, additionally to exceptions and errors, can also result in introducing

vulnerabilities in the code.

“Software is created by people with specific ideas in mind”

– Valentin Jeutner

The human brain is awesome at generalizing, but any ideas our mind has is also a source of assumption and

bias. Software is shaped by human choices, all of which can be questioned and debated. While AI is not

necessarily built with bias, as it can easily be applied on larger scale, it amplifies the biases of its creators28

Acknowledging the issue at hand, and being proactive are already the first steps to improving software and

reducing bias. “American research shows that the most advanced AI facial recognition tools make mistakes

28 https://www.coursera.org/learn/ai-law/lecture/plqQD/law-and-ai-hardware
27 Read more at https://uxmag.com/articles/failing-gracefully
26 https://en.wikipedia.org/wiki/Robustness_(computer_science)

56/69

https://www.coursera.org/learn/ai-law/lecture/plqQD/law-and-ai-hardware
https://uxmag.com/articles/failing-gracefully
https://en.wikipedia.org/wiki/Robustness_(computer_science)

much more often in cases with black women than in cases with white men” – Ulrika Andersson29. Keeping

this in mind while developing and testing software, can significantly impact the end result – like any other

conscious or unconscious decision and choice.

Developers of AI systems are not responsible for what the AI system does, but they do share responsibility

for bias inserted during development and/or training, meaning that developers, and anyone else involved in

the software development life cycle, must be mindful and educated, so as not to introduce their own biases

and assumptions into the system.

Automated testing systems are a great tool to provide specific checks against a wide range of different

scenarios after every change in the code. Still they only test what they are told, or what the developer/tester

has written as test cases, or they behave according to the training set that was used. Carefully crafting the

use cases introduced in automated testing and training systems, can increase the possibility of a more

accurate outcome, if not prevent the occurrence of a bug altogether. Thinking outside the box is certainly

desired when it comes to coming up with scenarios and creating complex cases to test how the software will

handle them.

Julia Reinhard raises a great point about not releasing software to people before it is tested30 because of what

it really means to release a software, i.e. let it loose where people will use it and be affected by its use. The

provided example about mood detection systems is a great opportunity to take a step back and think long

and hard about how software affects people, and how easy it is to become non-compliant even if having the

best intentions in mind. According to the podcast, mood detection systems can put people into categories

and reinforce cliches, which doesn’t necessarily comply with non-discrimination laws. From a more

business perspective, this is really a wake-up call of how being laser-focused on delivering extra features can

cause legal problems, and how a business can fundamentally benefit from having a well-defined

development process that includes enough time and resources for proper QA.

Left-handed people and the role of testing as a preventive measure

Left-handed people are more inclined to click on options we make available on the left side of the screen,

but developers don’t necessarily use those options much, and consequently they are less likely to test for

those functionalities during manual testing – unless they have a well-organized list of cases to test for, in

which case they might as well incorporate them into an automated testing system. Including alternative user

30 https://podcasts.apple.com/us/podcast/julia-reinhardt-what-do-gdpr-and-ai-regulations-mean/id1506212617?i=1000531062544
29 https://www.coursera.org/learn/ai-law/lecture/TidPQ/ai-and-criminal-law

57/69

https://podcasts.apple.com/us/podcast/julia-reinhardt-what-do-gdpr-and-ai-regulations-mean/id1506212617?i=1000531062544
https://www.coursera.org/learn/ai-law/lecture/TidPQ/ai-and-criminal-law

flows into end-to-end testing scenarios is relatively easy to do, once you think about it. And once written, a

test continues to be available and executed to test for those different journeys our users take. This is easier to

implement as the functionalities are being introduced and coded, rather than later on. TDD methodology can

come handy for an additional reason, as it can act as a preliminary and preventive measure for untested

options.

Test Driven Development and the shift-left approach call for testing software early. The initial stages of

SDLC provide a unique opportunity to reflect on how a new feature is incorporated into the existing

software and the different ways it can be used. Before coding and before we make up our minds about what

the user workflow should be, and before we get caught up in the business logic of the application itself, we

have a window of opportunity to look at this with fresh eyes and uncover more ways the new option can be

used from a user perspective.

Writing down test cases beforehand can help prevent missing out on edge cases and less usual ways of user

interaction with the software, precisely because we don’t start testing after we have seen the end result, so

the final implementation of a new component is still a lot less tangible, which leaves a lot of room for

interpretation of the initial idea and designs, and allows us to get more creative with the test scenarios –

while at the same time our intuitive thinking might as well introduce our own biases!

AI that is safe, and unbiased – Reality or wishful thinking?

Are we delusional to think that AI systems from Siri to autonomous automobiles and even human-looking

robots31 can provide a safe and inclusive environment for humans and technology to coexist in peace?

Recent events32 might leave us hanging in hesitation or even fear, but legislators are continuing to improve

the legal frame in which AI can be developed and most importantly provided for use.

European Union publication for “Liability for artificial intelligence and other emerging digital technologies”

suggests that any such technology “must come with sufficient safeguards, to minimize the risk of harm

these technologies may cause, such as bodily injury or other harm.”33

33 https://op.europa.eu/en/publication-detail/-/publication/1c5e30be-1197-11ea-8c1f-01aa75ed71a1/language-en

32

https://www.autoevolution.com/news/tesla-model-s-hits-the-back-of-a-bus-in-newport-beach-autopilot-may-be-involved-176486.h
tml Tesla crashes into (possibly stationary) bus

31 Like very vividly presented in the movie Ex Machina a few years back https://www.imdb.com/title/tt0470752/

58/69

https://op.europa.eu/en/publication-detail/-/publication/1c5e30be-1197-11ea-8c1f-01aa75ed71a1/language-en
https://www.autoevolution.com/news/tesla-model-s-hits-the-back-of-a-bus-in-newport-beach-autopilot-may-be-involved-176486.html
https://www.autoevolution.com/news/tesla-model-s-hits-the-back-of-a-bus-in-newport-beach-autopilot-may-be-involved-176486.html
https://www.imdb.com/title/tt0470752/

Another article raises concerns for autonomous cars, particularly about the need of sufficient standards and

regulations to be in place.34

Non profit organization also supports, in the ANSI approved UL Standard, that the reliability of hardware

and software is necessary35 and that traditional safety practices may require changing to accommodate

autonomy, eg. fault mitigation actions to be in place when there is lack of a human operator.

Still technology can provide the means for a new era of possibilities in various industries, from the medical

field3637 to Network systems38, to ensuring cyber attacks don’t leave us hanging39 40, to presenting software

creators with tools to work faster and smarter41 and operations personnel (devops) with solutions42, options43

and tools44. Compliance QA can help make it happen by providing the framework of verifying outcomes,

testing and checking every step of the way and validating results, before, during, and after they are used in

real life. At the same time it is technology evolution that contributes to testing improvement45.

45 https://ieeexplore.ieee.org/document/9805972
44 https://www.researchgate.net/publication/359924657_ExVivoMicroTest_ExVivo_Testing_of_Microservices
43 https://www.researchgate.net/publication/345389310_Automation_Testing_in_DevOps
42 https://www.researchgate.net/publication/337954540_Testing_microservice_architectures_for_operational_reliability
41 https://dl.acm.org/doi/abs/10.1145/3520304.3528952
40 https://www.sciencedirect.com/science/article/abs/pii/S2210537918300490
39 https://www.researchgate.net/publication/356653094_Automated_Testing_of_Data_Survivability_and_Restorability
38 https://ieeexplore.ieee.org/abstract/document/9844054

37

https://www.researchgate.net/publication/336349466_An_Enhanced_and_Secure_Cloud_Infrastructure_for_e-Health_Data_Trans
mission

36

https://www.researchgate.net/publication/361190449_Exploitation_of_Emerging_Technologies_and_Advanced_Networks_for_a_
Smart_Healthcare_System

35 ANSI/UL 4600, Standard for Safety for Evaluation of Autonomous Products
https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600

34 https://theconversation.com/autonomous-cars-five-reasons-they-still-arent-on-our-roads-143316

59/69

https://ieeexplore.ieee.org/document/9805972
https://www.researchgate.net/publication/359924657_ExVivoMicroTest_ExVivo_Testing_of_Microservices
https://www.researchgate.net/publication/345389310_Automation_Testing_in_DevOps
https://www.researchgate.net/publication/337954540_Testing_microservice_architectures_for_operational_reliability
https://dl.acm.org/doi/abs/10.1145/3520304.3528952
https://www.sciencedirect.com/science/article/abs/pii/S2210537918300490
https://www.researchgate.net/publication/356653094_Automated_Testing_of_Data_Survivability_and_Restorability
https://ieeexplore.ieee.org/abstract/document/9844054
https://www.researchgate.net/publication/336349466_An_Enhanced_and_Secure_Cloud_Infrastructure_for_e-Health_Data_Transmission
https://www.researchgate.net/publication/336349466_An_Enhanced_and_Secure_Cloud_Infrastructure_for_e-Health_Data_Transmission
https://www.researchgate.net/publication/361190449_Exploitation_of_Emerging_Technologies_and_Advanced_Networks_for_a_Smart_Healthcare_System
https://www.researchgate.net/publication/361190449_Exploitation_of_Emerging_Technologies_and_Advanced_Networks_for_a_Smart_Healthcare_System
https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600
https://theconversation.com/autonomous-cars-five-reasons-they-still-arent-on-our-roads-143316

7. Contribution and future work

In the current paper we explored the evolution of automated testing to testing for compliance in a continuous

manner, its challenges and the related costs, as well as practical methodologies for teams to get started and

improve. The paper presents a variety of articles around related topics, such as automated testing and QA,

defects and technical debt, compliant industries and their needs, and challenges regarding converting policy

documents to technical issues.

A sector that equally affects the tech industry as well as the legal world, is AI. With its rapid growth and

innovative path that leads businesses and automation, legislation is trying to catch up as the tech world is

continuously evolving. Whether or not it will be able to sustain policies and regulations up to a good

standard that allows for even more research and new ideas, remains to be seen. Its particular needs for not

just testing technical features but also compliance with regulations, is rather unique, as it affects its business

more than any other industry. Furthermore there are interesting aspects of testing when it comes to

decentralized systems such as blockchain46. Other existing techniques such as intrusion detection systems

(IDS) can boost research and development of methods for testing and monitoring for security and

compliance related incidents – such systems47 could be adapted and used to get real-time alerts for possible

issues. More research towards the impact of automated testing and continuous compliance from a both

technical and business/financial perspective would be of interest and definitely work exploring. Perhaps the

necessary safeguards required for AI can come in the form of a process towards continuous compliance.

47 http://ikee.lib.auth.gr/record/329274
46 https://dl.acm.org/doi/10.1109/ICPC.2019.00048

60/69

http://ikee.lib.auth.gr/record/329274
https://dl.acm.org/doi/10.1109/ICPC.2019.00048

8. Final thoughts

Understanding the code as a non-programmer is challenging, often unnecessary and almost always beyond

the expertise and responsibilities of a lot of people who are called to determine if the code works as

expected, including whether or not it is secure and compliant.

Making assumptions is the primary reason why bugs occur, therefore we don’t want to resort to hypotheses,

especially when we can have tangible data. For that reason, and to avoid additional problematic situations,

after the code is written, we must focus on making our code as bulletproof as possible.

Hoping for bug-free code is utopian, and the only question is whether or not we know we have a bug. The

path to success is to test and determine with certainty that we have the desired outcome within the

restrictions of our sector.

TLDR there is no such thing as completely bulletproof code, but it is the unattainable goal we try to reach, in

an effort to surpass our own selves and elevate the quality of our code.

“What gets measured, gets improved”

– Peter Drucker

61/69

References

1. Honest, Nirali. (2019). Role of Testing in Software Development Life Cycle. International Journal of

Computer Sciences and Engineering. 7. 886-889. 10.26438/ijcse/v7i5.886889.

2. Sten Pittet. The different types of software testing.

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

3. Measuring The Software Security Requirements Engineering Process. Cybersecurity and

infrastructure security agency (CISA)

4. Kumari, Bhawna & Chauhan, Naresh & Syed, Habeebullah Hussaini. (2018). A COMPARISON

BETWEEN MANUAL TESTING AND AUTOMATED TESTING. SSRN Electronic Journal. 5.

323-331.

5. Bacchelli, Alberto & Ciancarini, Paolo. (2009). How to compare and exploit different techniques for

unit-test generation.

6. Brian Chess (Fortify Software), Julia H. Allen (2009. An Alternative to Risk Management for

Information and Software Security. Carnegie Mellon University

7. Mahajan, Prasad & Harshal, India & Bharati, Shedge & Uday, India & Bharati, Patkar & Coe, &

Patkar, Uday. (2022). Automation Testing In Software Organization.

https://www.researchgate.net/publication/362517283_Automation_Testing_In_Software_Organizatio

n

8. Barraood, Samera & Haslina, Haslina & Baharom, Fauziah. (2021). A Comparison Study of

Software Testing Activities in Agile Methods.

9. Choi, Yunja & Byun, Taejoon. (2015). Constraint-based test generation for automotive operating

systems. Software & Systems Modeling. 16. 10.1007/s10270-014-0449-6.

10. D, Kavitha & .S, Ravikumar. (2021). Software Security Requirement Engineering for Risk and

Compliance Management. International Journal of Innovative Technology and Exploring

Engineering. 10. 11-17. 10.35940/ijitee.E8628.0210421.

11. Breaux, Travis & Antón, Annie. (2022). Acquiring Software Compliance Artifacts from Policies and

Regulations.

12. Mubarkoot, Mohammed & Altmann, Jörn. (2021). Towards Software Compliance Specification and

Enforcement Using TOSCA. 10.1007/978-3-030-92916-9_14.

13. Gál, Péter. (2021). Bug Prediction Capability of Primitive Enthusiasm Metrics.

10.1007/978-3-030-87007-2_18.

62/69

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.researchgate.net/publication/362517283_Automation_Testing_In_Software_Organization
https://www.researchgate.net/publication/362517283_Automation_Testing_In_Software_Organization

14. Haldar, Swagatam & Vijaykeerthy, Deepak & Saha, Diptikalyan. (2021). Automated Testing of AI

Models.

15. D. Yuniasri, T. Badriyah and U. Sa'adah, "A Comparative Analysis of Quality Page Object and

Screenplay Design Pattern on Web-based Automation Testing," 2020 International Conference on

Electrical, Communication, and Computer Engineering (ICECCE), 2020, pp. 1-5, doi:

10.1109/ICECCE49384.2020.9179470.

16. L. F. de Lima, M. C. Horstmann, D. N. Neto, A. R. A. Grégio, F. Silva and L. M. Peres, "On the

Challenges of Automated Testing of Web Vulnerabilities," 2020 IEEE 29th International Conference

on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2020, pp.

203-206, doi: 10.1109/WETICE49692.2020.00047.

17. D. Falessi and R. Kazman, "Worst Smells and Their Worst Reasons," 2021 IEEE/ACM International

Conference on Technical Debt (TechDebt), 2021, pp. 45-54, doi:

10.1109/TechDebt52882.2021.00014.

18. Dawson, Maurice & Burrell, Darrell & Rahim, Emad & Brewster, Stephen. (2010). Integrating

Software Assurance into the Software Development Life Cycle (SDLC). Journal of Information

Systems Technology and Planning. 3. 49-53.

19. A, J. (2022, January 3). What is Technical Debt and Why QA Testers Should be Concerned About It?

Software Testing Help. https://www.softwaretestinghelp.com/technical-debt-and-qa/

20. Khan, Mohd. (2011). Different Approaches To Black box Testing Technique For Finding Errors.

International Journal of Software Engineering & Applications. 2. 10.5121/ijsea.2011.2404.

21. A. (2020, May 7). Automated vs Manual Testing: Which Should You Use, and When? Apica.

https://www.apica.io/blog/difference-between-automated-manual-testing/

22. Bridgwater, A. (2022, January 13). Why Low-Code Isn’t No-Test. Forbes.

https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a

2238

23. Menshawy, Rana & Hassan Yousef, Ahmed & Salem, Ashraf. (2021). Code Smells and Detection

Techniques: A Survey. 78-83. 10.1109/MIUCC52538.2021.9447669, 2021 International Mobile,

Intelligent, and Ubiquitous Computing Conference (MIUCC)

24. Maxwell, Jeremy & Antón, Annie & Swire, Peter. (2011). A legal cross-references taxonomy for

identifying conflicting software requirements. Proceedings of the 2011 IEEE 19th International

Requirements Engineering Conference, RE 2011. 197 - 206. 10.1109/RE.2011.6051647.

63/69

https://www.softwaretestinghelp.com/technical-debt-and-qa/
https://www.apica.io/blog/difference-between-automated-manual-testing/
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238

25. Winchester, Hilary. (2018). How quality assurance codes change: beyond ‘bells and whistles’ and

‘code by catastrophe’?. Quality in Higher Education. 10.1080/13538322.2018.1460900.

26. Sharma, Tushar & Kechagia, Maria & Georgiou, Stefanos & Tiwari, Rohit & Sarro, Federica.

(2021). A Survey on Machine Learning Techniques for Source Code Analysis.

27. Liability for artificial intelligence and other emerging digital technologies

https://op.europa.eu/en/publication-detail/-/publication/1c5e30be-1197-11ea-8c1f-01aa75ed71a1/lan

guage-en

28. Autonomous cars: five reasons they still aren’t on our roads

https://theconversation.com/autonomous-cars-five-reasons-they-still-arent-on-our-roads-143316

29. ANSI/UL 4600, Standard for Safety for Evaluation of Autonomous Products

https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600

30. Julia Reinhardt, What do GDPR and AI regulations mean for Silicon Valley?, Voices of the Data

Economy (Apple Podcasts #14)

https://podcasts.apple.com/us/podcast/julia-reinhardt-what-do-gdpr-and-ai-regulations-mean/id15062

12617?i=1000531062544

31. AI and Criminal Law, LUND University, Coursera

https://www.coursera.org/learn/ai-law/lecture/TidPQ/ai-and-criminal-law

32. Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. (2020), Continuous

Compliance, ASE 2020: Proceedings of the 35th Annual International Conference on Automated

Software Engineering, (Melbourne, Australia), Sep. 2020, pp. 511-523.

https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html

33. Ted O’Meara, Failing gracefully, https://uxmag.com/articles/failing-gracefully

34. Tricentis (2016), 64 Essential testing metrics for measuring quality assurance success,

https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success

35. Martin Fowler, Test Coverage, https://martinfowler.com/bliki/TestCoverage.html

36. Memos, Vasileios & Psannis, Kostas & Goudos, Sotirios & Kyriazakos, Sofoklis. (2021). An

Enhanced and Secure Cloud Infrastructure for e-Health Data Transmission. Wireless Personal

Communications. 117. 10.1007/s11277-019-06874-1.

37. Alexsandro Souza (2021), We are testing software wrongly. And it is costly.

https://dev.to/apssouza22/we-are-testing-software-wrongly-and-it-costs-a-lot-of-money-23o5

38. Shreya Bose (2020), Shift Left Testing: What It Means and Why It Matters BrowserStack

https://www.browserstack.com/guide/what-is-shift-left-testing

64/69

https://op.europa.eu/en/publication-detail/-/publication/1c5e30be-1197-11ea-8c1f-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/1c5e30be-1197-11ea-8c1f-01aa75ed71a1/language-en
https://theconversation.com/autonomous-cars-five-reasons-they-still-arent-on-our-roads-143316
https://www.shopulstandards.com/ProductDetail.aspx?productid=UL4600
https://podcasts.apple.com/us/podcast/julia-reinhardt-what-do-gdpr-and-ai-regulations-mean/id1506212617?i=1000531062544
https://podcasts.apple.com/us/podcast/julia-reinhardt-what-do-gdpr-and-ai-regulations-mean/id1506212617?i=1000531062544
https://www.coursera.org/learn/ai-law/lecture/TidPQ/ai-and-criminal-law
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html
https://uxmag.com/articles/failing-gracefully
https://www.tricentis.com/blog/64-essential-testing-metrics-for-measuring-quality-assurance-success/
https://martinfowler.com/bliki/TestCoverage.html
https://dev.to/apssouza22/we-are-testing-software-wrongly-and-it-costs-a-lot-of-money-23o5
https://www.browserstack.com/guide/what-is-shift-left-testing

39. Christos Stergiou, Kostas E. Psannis, Brij B. Gupta, Yutaka Ishibashi, Security, privacy & efficiency

of sustainable Cloud Computing for Big Data & IoT, Sustainable Computing: Informatics and

Systems, Volume 19, 2018, Pages 174-184, ISSN 2210-5379,

https://doi.org/10.1016/j.suscom.2018.06.003.

40. Asma Belhadi, Man Zhang, and Andrea Arcuri. 2022. Evolutionary-based automated testing for

GraphQL APIs. In Proceedings of the Genetic and Evolutionary Computation Conference

Companion (GECCO '22). Association for Computing Machinery, New York, NY, USA, 778–781.

https://doi.org/10.1145/3520304.3528952

41. Pietrantuono, Roberto & Russo, Stefano & Guerriero, Antonio. (2019). Testing microservice

architectures for operational reliability. Software Testing, Verification and Reliability. 30.

10.1002/stvr.1725.

42. Jain, Prateek & Consulting, Jupitor It And Research. (2020). Automation Testing in DevOps.

43. Gazzola, Luca & Goldstein, Maayan & Mariani, Leonardo & Mobilio, Marco & Segall, Itai &

Tundo, Alessandro & Ussi, Luca. (2022). ExVivoMicroTest: ExVivo Testing of Microservices.

Journal of Software: Evolution and Process. 10.1002/smr.2452.

44. Muller, Sylvain & Bryce, Ciar´an. (2021). Automated Testing of Data Survivability and

Restorability. 111-126. 10.5121/csit.2021.111810.

45. Jianbo Gao, Han Liu, Yue Li, Chao Liu, Zhiqiang Yang, Qingshan Li, Zhi Guan, and Zhong Chen.

2019. Towards automated testing of blockchain-based decentralized applications. In Proceedings of

the 27th International Conference on Program Comprehension (ICPC '19). IEEE Press, 294–299.

https://doi.org/10.1109/ICPC.2019.00048

46. Sanket (2019), The exponential cost of fixing bugs,

https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

47. Minopoulos, G.M.; Memos, V.A.; Stergiou, C.L.; Stergiou, K.D.; Plageras, A.P.; Koidou, M.P.;

Psannis, K.E. Exploitation of Emerging Technologies and Advanced Networks for a Smart

Healthcare System. Appl. Sci. 2022, 12, 5859. https://doi.org/10.3390/ app12125859

48. P. Alcock, B. Simms, W. Fantom, C. Rotsos and N. Race, "Improving Intent Correctness with

Automated Testing," 2022 IEEE 8th International Conference on Network Softwarization (NetSoft),

2022, pp. 61-66, doi: 10.1109/NetSoft54395.2022.9844054.

49. C. S. Spahiu, L. Stanescu, R. Marinescu and M. Brezovan, "Machine Learning System For

Automated Testing," 2022 23rd International Carpathian Control Conference (ICCC), 2022, pp.

142-146, doi: 10.1109/ICCC54292.2022.9805972.

65/69

https://deepsource.io/blog/exponential-cost-of-fixing-bugs/

Appendix I – Articles list

Title / Link Short overview

1 A comparison
between manual
testing and automated
testing

December 2018
SSRN Electronic Journal
5(12):323-33148

A fundamental and easy to understand
comparison between manual and automated
testing, including listing the benefits and
presenting the characteristics of a good test
case.

2 How to compare and
exploit different
techniques for
unit-test integration

January 200949 Focused on unit-testing specifically, it presents
a comparison between different tools for unit
testing (JUnit, JCrasher, Randoop) which
generate unit tests automatically.

3 Automated
System-level safety
testing using
constraint patterns for
automotive operating
systems

January 201550

DOI:
10.1007/s10270-014-044
9-6

Automated test generation for safety testing of
automotive operating systems. The
constraint-based method of testing presented an
advantage for testing illegal behaviors.

4 Software Security
Requirement
Engineering for Risk
and Compliance
Management

March 202151

DOI:
10.35940/ijitee.E8628.02
10421
International Journal of
Innovative Technology
and Exploring
Engineering 10(5):11-17

Mapping of security requirements with
compliance mandates in an effort to document
and visualize their connection aiming to reduce
the risk of non-compliances.
The article also provides useful explanations
and definitions for security terms and concepts.

5 Acquiring Software
Compliance Artifacts
from Policies and
Regulations

Breaux, Travis & Antón,
Annie. (2022). Acquiring
Software Compliance
Artifacts from Policies
and Regulations. 52

Provides a methodology to extract technical
requirements from legal and policy documents.
Explains the problems which developers face
when implementing compliant software and
outlines the necessity for an organized method
to identify and classify such compliance
requirements.

6 Towards Software
Compliance
Specification and

December 202153

DOI:
10.1007/978-3-030-9291
6-9_14

How to handle changes in policy documents
and industry requirements, the importance of
compliance management throughout the
software development lifecycle (SDLC).

53 https://www.researchgate.net/publication/356890651_Towards_Software_Compliance_Specification_and_Enforcement_Using_TOSCA

52 https://www.researchgate.net/publication/228818973_Acquiring_Software_Compliance_Artifacts_from_Policies_and_Regulations
51https://www.researchgate.net/publication/350567020_Software_Security_Requirement_Engineering_for_Risk_and_Compliance_Management

50 https://www.researchgate.net/publication/282480447_Automated_System-level_Safety_Testing_of_Automotive_Operating_Systems

49 https://www.researchgate.net/publication/228777686_How_to_compare_and_exploit_different_techniques_for_unit-test_generation
48 https://www.researchgate.net/publication/349636718_A_COMPARISON_BETWEEN_MANUAL_TESTING_AND_AUTOMATED_TESTING

66/69

https://www.researchgate.net/publication/356890651_Towards_Software_Compliance_Specification_and_Enforcement_Using_TOSCA
https://www.researchgate.net/publication/228818973_Acquiring_Software_Compliance_Artifacts_from_Policies_and_Regulations
https://www.researchgate.net/publication/350567020_Software_Security_Requirement_Engineering_for_Risk_and_Compliance_Management
https://www.researchgate.net/publication/282480447_Automated_System-level_Safety_Testing_of_Automotive_Operating_Systems
https://www.researchgate.net/publication/228777686_How_to_compare_and_exploit_different_techniques_for_unit-test_generation
https://www.researchgate.net/publication/349636718_A_COMPARISON_BETWEEN_MANUAL_TESTING_AND_AUTOMATED_TESTING

Enforcement Using
TOSCA

7 Bug Prediction
Capability of
Primitive Enthusiasm
Metrics

September 202154

DOI:
10.1007/978-3-030-8700
7-2_18
In book: Computational
Science and Its
Applications – ICCSA
2021

Explores the use of Primitive Enthusiasm
metrics (method based metrics) to improve bug
prediction. The metrics measured

8 Code Smells and
Detection Techniques:
A Survey

2021 International
Mobile, Intelligent, and
Ubiquitous Computing
Conference (MIUCC)

Different detection approaches and the language

restrictions due to available tools.

9 Automated Testing of
AI Models

October 202155 A testing tool for image and speech-to-text
models. This framework provides black-box
testing, which, once configured,can be applied
to a large number of similar models.

10 A comparative
analysis of quality
page object and
screenplay design
pattern on web-based
automation testing

June 202056

DOI:
10.1109/ICECCE49384.
2020.9179470

Comparison analysis between screenplay design
and page object design patterns for automated
testing.

11 On the Challenges of
Automated Testing of
Web Vulnerabilities

2020 IEEE 29th
International Conference
on Enabling
Technologies:
Infrastructure for
Collaborative Enterprises
(WETICE), September
202057

Evaluation of 5 penetration testing tools against
7 web applications for detention and
exploitation of vulnerabilities, using the PTES
(Penetration Testing Execution Standard)
methodology

12 Worst Smells and
Their Worst Reasons

Falessi, Davide &
Kazman, Rick. (2021).
Worst Smells and Their
Worst Reasons 58

Survey with developers to identify details
surrounding the creation of technical debt.
Provides a statistical analysis and its results for
5 hypotheses.

13 What Is Technical
Debt And Why QA
Testers Should Be
Concerned About It?

https://www.softwaretesti
nghelp.com/technical-de
bt-and-qa/, January 2022

A comprehensive post about the causes of
technical debt and the challenges that surround
it.

58 https://www.researchgate.net/publication/350131861_Worst_Smells_and_Their_Worst_Reasons
57 https://ieeexplore.ieee.org/document/9338518
56 https://ieeexplore.ieee.org/document/9179470
55 https://www.researchgate.net/publication/355141671_Automated_Testing_of_AI_Models
54 https://www.researchgate.net/publication/354520302_Bug_Prediction_Capability_of_Primitive_Enthusiasm_Metrics

67/69

https://www.softwaretestinghelp.com/technical-debt-and-qa/
https://www.softwaretestinghelp.com/technical-debt-and-qa/
https://www.softwaretestinghelp.com/technical-debt-and-qa/
https://www.researchgate.net/publication/350131861_Worst_Smells_and_Their_Worst_Reasons
https://ieeexplore.ieee.org/document/9338518
https://ieeexplore.ieee.org/document/9179470
https://www.researchgate.net/publication/355141671_Automated_Testing_of_AI_Models
https://www.researchgate.net/publication/354520302_Bug_Prediction_Capability_of_Primitive_Enthusiasm_Metrics

14 Automated vs Manual
Testing: Which
Should You Use, and
When?

https://www.apica.io/blo
g/difference-between-aut
omated-manual-testing/,
2022

Post on business portal which provides a
concise overview of different kinds of testing
along with their definitions and when each type
of testing is advised. Offers clear definitions on
automated and manual testing from a technical
and hands on perspective, and it focuses on
their differences and factors to consider when
choosing one or the other.

15 Why Low-Code Isn’t
No-Test

https://www.forbes.com/
sites/adrianbridgwater/20
22/01/12/why-low-code-i
snt-no-test/?sh=641d647
a2238, January 2022

Technical debt, automation oversight when it
comes to testing, from a business standpoint.
The article is based on corporate insights and
data to support the necessity of automated
testing and the consequences of lack thereof.

16 A legal
cross-references
taxonomy for
identifying conflicting
software requirements

Proceedings of the 2011
IEEE 19th International
Requirements
Engineering Conference,
RE 2011. 197 - 206.
10.1109/RE.2011.605164
7, October 201159

The impact of cross-references in legal
documents and strategies for engineers to
resolve conflicting requirements.

59

https://www.researchgate.net/publication/224263869_A_legal_cross-references_taxonomy_for_identifying_conflicting_software_
requirements

68/69

https://www.apica.io/blog/difference-between-automated-manual-testing/
https://www.apica.io/blog/difference-between-automated-manual-testing/
https://www.apica.io/blog/difference-between-automated-manual-testing/
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.forbes.com/sites/adrianbridgwater/2022/01/12/why-low-code-isnt-no-test/?sh=641d647a2238
https://www.researchgate.net/publication/224263869_A_legal_cross-references_taxonomy_for_identifying_conflicting_software_requirements
https://www.researchgate.net/publication/224263869_A_legal_cross-references_taxonomy_for_identifying_conflicting_software_requirements

Appendix II - Terminology/Glossary
Bug / code smell When the software is behaving in a different way

than intended

Compliance Verification that software follows industry policies
and requirements

CI (Continuous Integration) To regularly merge all code contributions into a
central repository (where build and test suite run
automatically)

CI/CD The fundamental 2-part automation for software
development,

1. CI -- Continuous Integration, one of the
main purposes it serves is to automatically
run tests at every push (that includes
merging a PR/MR)

2. CD -- Continuous Delivery or Continuous
Deployment, are 2 methods to make the
software available, ie deploy to a production
server (or other ENV)

Pull Request (PR) / Merge Request (MR) Propose changes to be merged into the repository
in a way that is easy for the team to review the
suggested changes
Both terms refer to the same thing:

● Github uses the term PR
● Gitlab uses the term MR

SDLC - Software Development Life Cycle A detailed plan to describe the development
process, including a stage for testing

Shift Left Testing approach Start testing as early as possible, instead of waiting
for features to be completed by the dev team and
passed on to the QA team

TDD (Test Driven Development) The methodology of writing tests before writing
code

Technical debt When trying to implement more code than the
team’s capacity, which results in best practices not
being applied

Test suite A collection of test cases

Version control Track and manage changes to code. Useful
to keep code safe, usually using services such as
Gitlab (and others), to promote teamwork and
collaboration on software development to facilitate
immediate and easy code reviews on suggested
changes

69/69

