

UNIVERSITY OF MACEDONIA
POSTGRADUATE PROGRAMME

DEPARTMENT OF APPLIED INFORMATICS

A RECOMMENDER SYSTEM TO PREDICT
THE BEHAVIOUR OF AN E-COMMERCE PAGE VISITOR

Msc Thesis

by

© Angelos Martidis

Thessaloniki, February 2023

iii

A RECOMMENDER SYSTEM TO PREDICT
THE BEHAVIOUR OF AN E-COMMERCE PAGE VISITOR

Angelos Martidis

Diploma in Civil Engineering, UTh, 2020

Msc Thesis

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER DEGREE IN APPLIED INFORMATICS

Supervisor
Dr. Ioannis Refanidis

Approved by the three-member committee on 01/03/2023

Dr. Ioannis Refanidis,

Professor
Dr. Dimitrios Hristu-
Varsakelis, Professor

Dr. Eftychios
Protopapadakis, Assistant

Professor

...................................

Angelos Martidis

...................................

iv

Περίληψη

Η ανάπτυξη της μηχανικής μάθησης ως κλάδος της Τεχνητής νοημοσύνης

αυξάνεται ραγδαία τις τελευταίες δεκαετίες λόγω της επέκτασης των μεγάλων δεδομένων.

Η αυξανόμενη διαθεσιμότητα μεγάλων ποσοτήτων δεδομένων έχει επίσης δημιουργήσει

απαιτήσεις για πιο αποτελεσματική ανάλυση δεδομένων. Οι αλγόριθμοι βασίζονται σε

στατιστικά μοντέλα, έχουν τη δυνατότητα να καταλαβαίνουν μοτίβα και να κάνουν

προβλέψεις για τη βελτίωση ποικίλων εφαρμογών. Ένα σύστημα συστάσεων διερευνά την

υπολογιστική προσέγγιση που έχει σχεδιαστεί για την πρόβλεψη των επιλογών ενός

χρήστη προς ένα αντικείμενο, με βάση την εξέταση των προηγούμενων προτιμήσεων και

ενεργειών του χρήστη. Η τεχνική που είναι γνωστή ως συνεργατικό φιλτράρισμα, ανήκει

στα συστήματα συστάσεων και στοχεύει να κάνει προτάσεις προτιμήσεων για τις

άγνωστες προτιμήσεις, ενός νέου συνόλου χρηστών αναλύοντας τις προτιμήσεις ενός

γνωστού συνόλου. Για τη μελέτη του συνεργατικού φιλτραρίσματος, είναι απαραίτητο να

προσδιοριστεί η ομοιότητα μεταξύ μιας ομάδας χρηστών και των αντικειμένων, η οποία

συνδέεται συχνά με τις συμπεριφορές ενός χρήστη και τον τύπο του αντικειμένου,

προκειμένου να γίνουν προτάσεις με βάση τις προτιμήσεις παρόμοιων χρηστών. Αυτή η

μεταπτυχιακή διπλωματική εργασία υλοποιεί ένα σύστημα συστάσεων σε γλώσσα

προγραμματισμού Python για την πρόβλεψη των κλικ, προσθηκών καλαθιού και

παραγγελιών, ενώ ερευνά τα συστήματα συστάσεων και ιδιαίτερα το συλλογικό

φιλτράρισμα, για τη βελτίωση των αποτελεσμάτων.

Keywords: Μηχανική Μάθηση, Προγνωστική Μοντελοποίηση, Επιστήμη

Δεδομένων, Συστήματα συστάσεων, Συνεργατικό φιλτράρισμα, Σύστημα Συστάσεων

Πολλαπλών Στόχων, Ανάκληση, Python

v

Abstract

The development of machine learning as a branch of Artificial intelligence has been

rapidly increasing in recent decades owing to the expansion of big data. The increasing

availability of large amounts of data has also created demands for more efficient data

analysis. Algorithms that are based on statistical models, can learn patterns and make

predictions to improve a variety of applications. A recommender system explores the

computational approach designed to predict the choices of a user toward an item, based on

an examination of the user’s prior preferences and actions. The technique known as

collaborative filtering belongs to recommender systems and aims to make preference

recommendations for the unknown preferences of a new set of users by analysing the

preferences of a known set. For the study of collaborative filtering, it is necessary to

determine the similarity between a group of users and items, which is often associated with

a user’s behaviour and the type of the item, in order to make suggestions based on the

preferences of similar users. This master's thesis uses a Python recommender system to

predict clicks, cart adds, and orders while researching recommender systems, in particular

collaborative filtering, to enhance the outcomes.

Keywords: Machine Learning, Predictive Modelling, Data Science,

Recommender Systems, Collaborative Filtering, Multi-Objective Recommender System,

Weighted Recall, Python

vi

Acknowledgments

First of all, I would like to express my deepest gratitude to my Professor and thesis

supervisor Mr. Ioannis Refanidis, for his guidance, support, and encouragement

throughout the entire process. His insightful comments and constructive feedback helped

me to shape my research and improve my knowledge and skills in the field of Artificial

Intelligence. I am truly grateful for his dedication and enthusiasm for my project.

I would also like to thank my family and my friends for their continuous support

and encouragement. A special acknowledgment goes to my brother Vasilis, who offered

exceptional guidance for my thesis implementation. Their love and understanding have

been a source of motivation throughout my academic path.

Angelos Martidis

vii

Table of Contents

1 Introduction 1

1.1 The rise of data and its role in E-Commerce 1

1.2 Effective Marketing through Digital Means 2

1.3 Optimizing the E-Commerce Experience through Recommendation Systems 2

1.4 Benefits of using recommender systems in E-Commerce 3

1.5 The purpose of the research 3

1.6 Basic Machine Learning Terms 4

1.6.1 Machine Learning: 4

1.6.2 Data (or samples/examples) : 4

1.6.3 Categories of learning models: 5

1.7 Thesis Structure 6

2 Theoretical Background. 7

2.1 Recommendation systems 7

2.2 History 8

2.3 Explicit and Implicit data 9

2.4 Utility Matrix, Statement Of the problem 9

2.5 Long-Tail 10

2.6 Content-based filtering 12

2.7 Collaborative filtering 13

2.7.1 User-Based Collaborative Filtering (UBCF) 14

2.7.2 Item-based Collaborative Filtering (IBCF) 15

2.7.3 Model-based collaborative filtering: 17

2.7.4 Memory-based collaborative filtering: 18

2.7.5 Neighborhood-based collaborative filtering: 18

2.7.6 Hybrid collaborative filtering: 19

2.8 Common Problems 19

2.8.1 Cold start - New User or New Item 19

2.8.2 Data sparsity 20

2.8.3 Scalability 20

2.9 Key differences 20

3 Problem 22

viii

3.1 About OTTO 22

3.2 The Competition 23

3.3 Data 24

3.4 Evaluation 26

3.4.1 Recall (or True Positive Rate) 26

3.4.2 Weighted recall (wR) 27

3.5 Data analysis 28

4 Methodology 33

4.1 Libraries and Tools 33

4.1.1 Python 33

4.1.2 Pandas 33

4.1.3 Numpy 34

4.1.4 Pickle 34

4.1.5 Matplotlib 35

4.1.6 Seaborn 35

4.2 Understanding the data 35

4.3 Connection to the server 36

4.4 Dealing with the datasets 36

4.5 Creating a model 37

4.6 First attempts 37

4.7 The model 38

4.8 Adding weights 39

4.8.1 Radial Basis Function 40

4.8.2 Inverse multiquadric kernel 41

4.9 Optimizing accuracy through user actions and weights 42

4.10 Final modification of the model 43

4.11 Review of tests 43

5 Summary and conclusions 52

5.1 Suggested Improvements 52

ix

List of Figures

Figure 1.1 Main factors influencing consumer behaviour.. 1

Figure 2.1 Standard recommender system execution ... 7

Figure 2.2 Types of Recommender Systems .. 8

Figure 2.3 Long Tail ... 11

Figure 2.4 The Content-Based Filtering Process .. 12

Figure 2.5 Movie example CBF ... 13

Figure 2.6 The Collaborative Filtering Process .. 14

Figure 2.7 User-Based Collaborative Filtering .. 15

Figure 2.8 Item-based Collaborative Filtering ... 16

Figure 2.9 Movie database ... 16

Figure 2.10 Movie example for CF .. 17

Figure 2.11 CF and CBF processes .. 21

Figure 3.1 Structure of train and test data .. 25

Figure 3.2 Data extraction from real user sessions and trimming. [34] 26

Figure 3.3 Precision and Recall .. 27

Figure 3.4 Graphical correlation of the busiest days .. 30

Figure 3.5 Graphical correlation of the number events by type. 30

Figure 3.6 distribution of the number of actions in each session 32

Figure 3.7 Length of each session .. 32

Figure 4.1 Differences between the pickle protocols and JSON (JavaScript Object

Notation) ... 34

Figure 4.2 Structure of a radial basis function network. .. 41

Figure 4.3 Model 1 - Results .. 44

Figure 4.4 Model 2 - Results .. 45

Figure 4.5 Model 3 - Results .. 47

Figure 4.6 Model 4 - Results .. 48

Figure 4.7 Model 5 - Results .. 49

Figure 4.8 Model 6 - Results .. 51

Figure 4.9 Results of all the models ... 51

x

List of Tables

Table 1 Example of Utility Matrix ... 10

Table 2 Differences of Content-Based Filtering and Collaborative Filtering 21

Table 3 Confusion Matrix .. 27

Table 4 Unique sessions/ events/ products ... 28

Table 5 First and last sessions timestamps. .. 29

Table 6 Top 5 aids and number of occurrences in train set .. 32

Table 7 Evaluations of the Model #1 ... 44

Table 8 Evaluations of the Model #2 ... 45

Table 9 Evaluations of the Model #3 ... 46

Table 10 Evaluations of the Model #4 ... 48

Table 11 Evaluations of the Model #5 ... 49

Table 12 Evaluations of the Model #6 ... 50

xi

Symbols

RS Recommendation systems, Recommender systems

CF Collaborative filtering

CB Content-based

UBCF User-Based Collaborative Filtering

IBCF Item-based Collaborative Filtering

1

 1 Introduction

 1.1 The rise of data and its role in E-Commerce
Customers today have a variety of needs, they each have their own set of priorities

and preferences that can affect their choices. Finances, personal interests, lifestyle, social

status and cultural background are some of the main factors that might significantly impact

consumer behaviour and decisions. Figure 1.1 [1]

However, the time when it is necessary to accomplish a goal, address a particular

issue, or try to solve a problem, it is also crucial for what a customer could need or

remember to get from a store or website online.

Understanding and addressing the numerous needs of customers is vital for

companies in order to be able to satisfy them and keep their trust. Meeting multiple needs,

instead of only spreading their product variety, allows companies to approach a wider

market and increase their potential by offering products and services to new customers

outside their standard customer base.

E-commerce or electronic commerce has allowed them to do that. Businesses of

any size that have their base or storage in one or multiple places perform shipments to

selected regions or even worldwide. As the investment in physical storefronts for

operations is unnecessary, overhead costs become lower. As a result, many small firms

expand and develop faster than otherwise. Companies sell their services and products

online to many people without them having to move to physical stores. Online shopping

improved the process of making purchases by allowing customers to make purchases at

any time without restrictions from anywhere and by evaluating the costs and goods offered

by various merchants. Transactions are faster and more efficient, and many corporate

activities, such as inventory management and customer support, may be automated. [2]

Figure 1.1 Main factors influencing consumer behaviour

2

 1.2 Effective Marketing through Digital Means
Marketing aims to reach customers and increase their awareness about an option

and influence them to take a decision. The concept of affecting this decision has changed

over the years. Nowadays marketing became cost-effective, works mainly through emails

and social media, providing flexibility to reach their target audience way quicker.[3] Also,

it enables the ability to collect consumer data and analytics to track the effectiveness of

their advertising efforts. The acquired data can be utilized to examine various areas of their

marketing performance and product development, gain insights and create tactics for the

optimization of their sales and campaigns for better results. The user's experience can also

be improved by personalizing their preferences to the businesses' communication, offers,

products, and services. These developments have resulted in upgrading the items with

massive amounts of data that consumers must be aware of, to make their decisions,

depending on their necessities.

 1.3 Optimizing the E-Commerce Experience through Recommendation

Systems
For a customer, managing all this information in order to purchase a product or

decide among various possibilities could be an immensely challenging procedure.

[4]Recommendation systems are methods that use machine learning algorithms and

mathematical formulas to contribute to the issue of managing all this data for the user,

providing a better experience for them.

Recommender systems (RS) are programming tools that offer recommendations

depending on data such as user behaviour and preferences. New recommendations are

produced, even if it is an item to purchase, music to listen to, or food to order. The term

item is typically used to describe the predicted suggestions. Depending on the procedure

for the decision-making the algorithm tries to find new items for the users. The structure

and the way a recommender system is designed to perform predictions varies, and is

defined by the exact type of item it tries to predict. The approach utilized to create the

suggestion for the consumer is adjusted to deliver successful choices for that particular

item and does not apply the same way to every type of item.[5, pp. 1–35]

Suggestions that are not based on the user's personal data are also considered useful

and successful options for an RS if the user’s data are not enough. The reason is that these

3

suggestions can be the best-selling products on a selling website, the most recommended

movies by popular directors on a streaming platform, or popular books of the year.

However, an RS does not focus on these options and scopes on better solutions.[4]

The impact and the actual number of practical use cases of recommended systems

in the commercial sector are very substantial. An e-commerce recommender engine assists

users in selecting items to purchase. Their use in e-commerce websites is very common as

they increase the marketing of the company. A popular website such as Amazon.com

processes a per-customer personalized store with suggestions based on their data using a

RS.[6] For many businesses, a big percentage of the profits is attributable to the systems

they use.

 1.4 Benefits of using recommender systems in E-Commerce

• Businesses identify cross-selling and upselling opportunities.

• Increasing conversion and click-through rates.

• Assisting in discoverability of new items (or totally hidden)

• Reduce the rate of bounce and cart abandonment rate.

• Improving decision making and increasing client satisfaction.

• Personalizing offers which affect the time and the quality of the visit.

 1.5 The purpose of the research
The purpose of the research of this master thesis is to present a comprehensive

overview of recommender systems, explain the basic categories used in collaborative

filtering, and create a multi-objective recommendation system given the data of an

enormous number of previous buyers to predict the choices of the next ones. More

specifically, the purpose of the study is to develop a recommendation system that can

anticipate the next moves of a new set of buyers, having available a set with the clicks,

additions to the cart, and purchases of previous users as a starting point. This new set of

users contains fewer data meaning fewer options than those on the first provided for data

analysis. The data utilized for this project is offered by OTTO online shop on a Kaggle’s

featured prediction competition. The goal is to help online retailers find more relevant

items to recommend to their clients based on their real-time behaviour. An implementation

4

of a collaborative filtering recommendation algorithm was created using the Python

programming language and attended the competition.

 1.6 Basic Machine Learning Terms
The definition of some basic machine learning terms is given bellow:

 1.6.1 Machine Learning:
Machine learning is a sub-field of computer science and more specifically Artificial

Intelligence. This field focuses on producing algorithms that improve the accuracy of their

operation and results by mimicking the human learning method. Data is collected and used

to develop statistical based models or algorithms for the purpose of analysing and solving

practical problems. Systems that use machine learning develop the capacity to

autonomously learn and improve from experience without being explicitly coded. [7] Input

data train the model and after the trained model makes predictions for new data.

 1.6.2 Data (or samples/examples) :
Labelled data comprise a target variable (also known as dependent variable or

label) which is the variable that the model attempts to predict.

Unlabelled data, on the other hand, does not comprise the requested predicted

value.

The dataset's examples are often grouped into the following three categories:

training set, validation set, test set

 1.6.2.1 Training Data(training set):

Data used to train the model. During the training process, the ideal weights are

determined for a better prediction result.

 1.6.2.2 Validation Data(validation set):

Data used for the evaluation of the model, to fit on the training dataset or to improve

parameters. Usually evaluation of the trained model is checked several times against the

validation set.

5

 1.6.2.3 Testing Data(test set):

Testing data ensures a neutral evaluation after the completion of training the model.

It enables comparison of predicted outputs by using this set. This assesses the model's

ability to generalize to new, unseen data.

 1.6.3 Categories of learning models:

 1.6.3.1 Supervised:

These models use as input a known dataset (training data set) that is labelled, and

produce the predictions for new, unprocessed data (test data set) using a selected

function. Targets are predicted for the input data set in the model. Any errors in the

model’s learning process are corrected through a procedure called back-propagation,

which means that the output of the model is getting compared to the ground truth label or

the actual expected output. Supervised models are frequently separated into Regression

and Classification problems. In Regression, the aim is for the relationship between

independent variables and a dependent variable to be modelled and predict the dependent

variable. In Classification, the purpose is to assign new data to one of several predefined

categories or classes based on the input features.

 1.6.3.2 Semi-supervised:

These models use as input both labelled and unlabelled training data together in

order to produce better learning accuracy.

 1.6.3.3 Unsupervised:

Unsupervised models use as input an unlabelled data set to find a hidden structure

or commonalities in them. A function that describes these common forms in the

unlabelled data can find conclusions for them. Unsupervised models are frequently

separated into Clustering and Association problems. In Clustering, data is separated into

a number of clusters and grouped based on similarities without a sufficient meaning for

each cluster. In Association, patterns and relationships are found in the data by defining

certain rules.

6

 1.6.3.4 Reinforcement:

Reinforcement learning explores how software agents can perform actions in an

environment to maximize a reward. The environment is described with states that the

agent can receive as input while performing various of actions. The decisions made can

lead to more or fewer rewards per step, but can also change the location of the agent

which will affect the full reward. A function known as the policy is takes as input the

feature vector of a state and produces an ideal move to perform in that phase. This

function is the result of the reinforcement learning algorithm. Reinforcement learning

methods do not require a perfect mathematical formula and are effective in real-world

applications such as autonomous vehicles and games. They can function even when exact

models are not feasible.

 1.7 Thesis Structure
Chapter 1 A brief overview of the importance of recommended systems in e-

commerce and their impact on the customer experience. The objectives, the problem that

the thesis is trying to solve, and some key terms for ML and E-Commerce are presented,

along with the outline of the thesis.

Chapter 2 The theoretical background of recommender systems, including their

history, development, and various types, is presented. The concept of collaborative

filtering, its application in recommender systems, and the basic approaches are described.

Chapter 3 The definition of the problem that the thesis aims to solve in detail,

including background, purpose, dataset description and its characteristics, evaluation

method, and timeline.

Chapter 4 Data analysis, methodology used in the implementation including data

pre-processing steps, similarity measurement, model selection, and both comparison and

discussion of the results.

Chapter 5 Summary and conclusion, discussion of the limitations and challenges

of the study, recommendations for future work, and improvement.

7

 2 Theoretical Background.

 2.1 Recommendation systems
Recommendation systems (or recommender systems or RS), can be applied in

many areas and have very good results and this is also the reason that contributes to their

rapid development. As it was mentioned in the first chapter, recommendation systems are

commonly used in e-commerce websites but have also been established in a wide range of

other sectors, such as, media sharing or streaming, video games or even location-based

applications. By accessing a service-related website, a user and potential customer

understands their data is used. The algorithm uses these data, in order to present them

suggestions closer to their interests. In other words it is an information filtering system that

its purpose is to deal with input and deliver interesting suggestions as output.

Τhe factors that will determine the final result vary and play important role on the

outcome. These factors depending on the problem being addressed can be: existing

information (data), algorithms, methods, database sparsity and scalability, system

efficiency and quality (evaluation metric).[8] A classic form of a recommendation system

is illustrated in the figure. Figure 2.1.

Figure 2.1 Standard recommender system execution

There are two basic approaches on the concept of filtering the information into getting

expected results, Content-based filtering and Collaborative filtering, while hybrid is a

combination of the two of them. In the next figure recommender systems and their

categories are shown Figure 2.2.

8

• A content-based filtering system chooses items based on the user's preferences and

the items' content.

• A collaborative filtering system is based on the association between individuals

with common interests.

• A hybrid system, as its name suggests, combines these different aspects to create a

more wide variety of settings in order to solve the problems.

Figure 2.2 Types of Recommender Systems

 2.2 History
In Duke University around the 1970s, while sharing text was possible it could be

classified in subcategories without involving the preferences of the individuals.[9, pp. 175–

186]. In 1979 Elaine Rich managed to accomplish a book recommendation approach that

provided recommendations by categorizing a person’s interest to a specific stereotype. [10,

pp. 231–259]Another remarkable approach is “Digital bookshelf” of Jussi Karlgren in

Columbia University, who was also the first to define them as RS.[11]

9

 2.3 Explicit and Implicit data
Data on user preferences for specific items are processed by recommender systems.

This information can be gathered either explicitly, through user evaluations of products, or

implicitly. Recommender systems employ this data to forecast and recommend things to

users that they are likely to want. Explicit data is called the type of data that describes

something that is clearly stated in a direct way. This type of information cannot be

misinterpreted. For example, when a user clicks the like button or the heart respectively on

YouTube and Spotify platforms, or has added the track to a playlist, this type is explicit.

Implicit data is called the type of data that describes something that is not clearly expressed

but can be implied. An example of implicit data is when Spotify constructs and suggests

to the user a playlist with similar songs based on his listening behaviour. Spotify has no

clear statement of the user’s choices but it suggests songs based on previous choices.

 2.4 Utility Matrix, Statement Of the problem
This table is constructed during the recommendation system's design to distribute

data while developing a solution to the problem. Typically, a standard recommendation

system model consists of two groups users and items, where users have particular

preferences for some of them. In this table users' values correspond to the objects they

use or like, thus obtaining a measure of liking of each object by each user. It is assumed

that the data of preference for the users are not known so the table is sporadic. The goal of

this process is not to fill out all the missing data but to find high values - meaning high

liking in order to make the appropriate recommendations.

On the following table, assume that columns are the items represented by capital I and a

lower letter, while rows are the users that rated these items, represented by numbers.

Ratings are taking values form 1 to 5. Table 1 Not all items are rated and this is quite

normal for a dataset.

10

 Utility Matrix
 I-a I-b I-c I-d I-e I-f

user 1 3 1 5

user 2 4 4 5

user 3 1 3 2

user 4 3 4 5

user 5 3 3

user 6 1 2
Table 1 Example of Utility Matrix

Using this table, the goal is the prediction for non-rated value. Table 1 This can happen by

taking in consideration other attributes of an item such as the creator/brand name, the

material of the item, or the price. Basically a similarity over a characteristic of items can

be the key measure or even similar users’ behaviour. i.e. if user 3, user 6 rated both I-a

and I-c with a low value, and if I-b has similar characteristics chances are that both users

will rate I-b in a similar way.

 2.5 Long-Tail
In an e-commerce company, the term long-tail refers to the distribution of the items with

the most demand. This term reveals how important the recommendation systems are

because simply the availability of some products, is not enough in physical stores instead

of multiple available options in online ones. Recommendation systems help the user to

discover options of items that would not have found otherwise. The x-axis on the graph

demonstrates the items purchased due to popularity whereas the y-axis demonstrates

popularity in regards to ratings. Figure 2.3 The items that may not be as popular or are

new can be found in the "Long Tail" section of the graph, whereas those in high demand

are typically located on the right side and are deemed to be efficient and profitable. Many

successful companies, such as Google, eBay, Yahoo, and Amazon, have utilized the long

tail concept in their business strategies to target specific audiences and deliver a wide range

of products and services to improve their profits.[12]

11

Figure 2.3 Long Tail

To the left The cutoff is selected in this illustration such that the volumes of both regions

are equal. (blue) are the few that dominate, and to the right (green) is the long tail.

It is important to take under consideration the place of the starting point or threshold

of the diagram while researching a recommendation system algorithm. By shifting this

point towards the right on the graph, there can be an increase in the diversity of

recommendations that the system will provide. This point can also affect the sparsity of

the algorithm which is another issue, as the items on the tail are not rated by many and this

can result in bad predictions.

12

 2.6 Content-based filtering
When the user’s profile is unknown and there is no data specified for the user, but

the only data available on the problem are those of the items, then content-based filtering

suits the most. In these systems, the term content is referring to the description of the items.

Despite the fact that user data are unknown, this method can suggest items by creating a

user profile with old liked items and suggesting similar options.

More specifically old options of the user are compared with all possible picks to

produce the recommendations. The profile is generated based on the preference of the user

and on his interaction with the RS. The words that describe the specific item are of

considerable importance in the method because it is recommended depending on the count

of similarity [13].

The individually rated content vectors can create a vector consisting of item

features which after that is used but weighted to create the profile of users. In case user

profiles and item data are known in order to determine if a user prefers an item both

heuristic methods or classification algorithms are welcomed. The mechanism of a CBF

system is shown in the figure. Figure 2.4 [14, pp. 163–170] [15, pp. 714–720]

Figure 2.4 The Content-Based Filtering Process

To demonstrate content-based filtering, a simple example follows. Assume that

features are engineered for a movie database and the items are the movies. A feature matrix

where each row represents a movie and each column represents a feature is shown in the

figure. Figure 2.5 Features in this case could be a genre for the description of the movie or

a set of keywords(such as horror, romance, comedy), the movie director. When a feature

exists on the matrix, then its value is non-zero (binary matrix). Some user-related features

may be offered directly by the user, for example, if they watch the filmography of a certain

actor. Furthermore, a similarity metric must be used to recommend items relevant to this

user. The system should score each feasible prediction item according to the metric. The

13

recommendations are specific to this user, as the model did not use any information about

other users.[16]

Figure 2.5 Movie example CBF

 2.7 Collaborative filtering
Collaborative filtering is a method of filtering information concerning preferences

of an individual user from the common set of users (based on similar profiles). The data

are obtained from many profiles but the predicted results are about the particular user.

Traditionally CBF algorithms are used on big data sets, and may require users' active

engagement, way to define users' interests, and algorithms capable of matching persons

with similar preferences.[17, pp. 291–324], [18, pp. 154–164]

It is related to individual's choices but, it is based on the idea that if a different

person has shared choices, then in another situation the latter person's choices will be

shared same with the former.

Typically, the application of collaborative filtering is achieved in three steps.

Figure 2.6 First, the importance of each user in relation to the active user is determined. A

suitable selection of users is then chosen for the purpose of prediction. Finally, a

combination of the ratings of these users is used to calculate the new prediction after the

ratings normalization of the selected group of users. [18, pp. 154–164], [19]

14

Normalization is accomplished by taking a user's average score and then

subtracting it from each of the provided scores. As a result, the scores are further divided

into groups that are similar according to their scores. By standardizing the data, clusters of

users with same scores to similar items are formed, which are then utilized to recommend

items to users.

Figure 2.6 The Collaborative Filtering Process

The basic approaches are of two kinds: User-Based Collaborative Filtering(UBCF)

and Item-based collaborative filtering(IBCF).

 2.7.1 User-Based Collaborative Filtering (UBCF)
User-Based Collaborative Filtering is called the type of collaborative filtering in

which a target user is compared with others to find similar behaviours, in order to provide

recommendations. A classic example is that of Netflix or You-tube when the history of

two users is similar, then the system may recommend media that the one has viewed or

liked to the other. The figure below visualizes the user-based collaborative filtering

Figure 2.7 [20, pp. 153–158]

15

Figure 2.7 User-Based Collaborative Filtering

 2.7.2 Item-based Collaborative Filtering (IBCF)
Item-based Collaborative Filtering is called the type of collaborative filtering in

which items that are frequently consumed or purchased together are identified, by

analyzing the actions of the users. For example, if a user purchased a book, then the system

knows the user’s purchases and identifies other items that are frequently purchased along

with the specific book. It may notice that many readers chose to purchase a magazine too,

and then make that suggestion to this user. Item-based Collaborative Filtering is illustrated

in the figure. Figure 2.8 [20, pp. 153–158]

16

Figure 2.8 Item-based Collaborative Filtering

To demonstrate collaborative filtering, a simple example follows. Assume that a

recommendation system is built for movie database as before. In this scenario, rows

represent viewers and columns represent the movies. Whenever a user enters the database,

he must receive a recommendations. These suggestions should be based on similarities to

movies previously liked by the viewer as well as movies that similar viewers have enjoyed.

Note that the quantification of a viewer's liking of a movie is defined using numerical

values and the preference is defined by watching it. Features in this case could be the

description of each movie in the database, as shown in the figure. Figure 2.9

Figure 2.9 Movie database

17

Considering whether a movie is a comedy or not, an indicator -1 or 1 can be

relatively assigned. The same goes for the viewers and their interest in this genre of movies.

So -1 for not enjoying it and 1 for enjoying the movie. So in order to recommend a movie

to the viewer, the movie must also be of the comedy genre and to their liking, i.e. (it must

have a value of 1 on both user and type indicator). Visually, this example is shown in the

following figure. Figure 2.10

Figure 2.10 Movie example for CF

In practice, more features are applied in order to represent and explain various of

characteristics for items and users and also to achieve different results concerning our

predictions. The advantage of collaborative filtering models is that the extracted features

can also be acquired automatically.[16]

 2.7.3 Model-based collaborative filtering:
Model-based methods' goal is to predict the ratings on unseen items by modeling

past ratings of the users. To achieve this, the system builds a model of the user's preferences

based on their past ratings and uses that model to make predictions for new items. This

model is built using machine learning algorithms.[21] The concept is that the patterns and

associations found in previous ratings can be utilized to make predictions about the user's

preferences for new items they have not yet seen. As new data enter the system, it can be

used to retrain it the model. Some algorithms that are used in these methods are matrix

factorization algorithms, singular value decomposition, principal component analysis, and

neural networks[22].

18

 2.7.4 Memory-based collaborative filtering:
This is a subcategory of user-based and item-based collaborative filtering. These

methods are using historical data to find the recommendation meaning that the data of user-

item interactions are stored in the system's memory. A similarity measure between users

or items is calculated in real-time, to find most similar to recommend. There are many

ways to represent the similarity of a user or an item, with cosine-similarity and correlation

similarity being the most popular. Memory-based algorithms are not always efficient and

fast, thus they are commonly replaced by model-based. [23]

 2.7.5 Neighborhood-based collaborative filtering:
This is a subcategory of user-based and item-based collaborative filtering. These

methods are concerned with the relationships that exist between items or, between users.

Based on ratings of similar items by the same user, an item-based method predicts a

person's preference for an item. More specifically, they are using a subset of similar users

or items that is similar to a target user to create recommendations. This approach

determines how similar two users or items are.

The similarity is measured with Pearson correlation and vector cosine based

similarity. [24]

Pearson correlation:

simil (𝑥𝑥,𝑦𝑦) =
∑  𝑖𝑖∈𝐼𝐼𝑥𝑥𝑥𝑥 �𝑟𝑟𝑥𝑥,𝑖𝑖 − 𝑟𝑟𝑥𝑥

¯
� �𝑟𝑟𝑦𝑦,𝑖𝑖 − 𝑟𝑟𝑦𝑦

¯
�

�∑  𝑖𝑖∈𝐼𝐼𝑥𝑥𝑥𝑥 �𝑟𝑟𝑥𝑥,𝑖𝑖 − 𝑟𝑟𝑥𝑥
¯
�
2
�∑  𝑖𝑖∈𝐼𝐼𝑥𝑥𝑥𝑥 �𝑟𝑟𝑦𝑦,𝑖𝑖 − 𝑟𝑟𝑦𝑦

¯
�
2

Vector cosine based similarity:

simil (𝑥𝑥, 𝑦𝑦) = cos (�⃗�𝑥, �⃗�𝑦) =
�⃗�𝑥 ⋅ �⃗�𝑦

∥ �⃗�𝑥 ∥×∥ �⃗�𝑦 ∥ =
∑  𝑖𝑖∈𝐼𝐼𝑥𝑥𝑥𝑥 𝑟𝑟𝑥𝑥,𝑖𝑖𝑟𝑟𝑦𝑦,𝑖𝑖

�∑  𝑖𝑖∈𝐼𝐼𝑥𝑥 𝑟𝑟𝑥𝑥,𝑖𝑖
2 �∑  𝑖𝑖∈𝐼𝐼𝑥𝑥 𝑟𝑟𝑦𝑦,𝑖𝑖

2

19

where Ixy is the set of items rated by both user x and user y.

Because of their simplicity, efficiency, and capacity to deliver accurate and individualized

recommendations, neighborhood-based approaches have grown in popularity. [5] [22]

 2.7.6 Hybrid collaborative filtering:
Companies like Amazon, Netflix, and Google use a combination of various

technologies and techniques to drive their results in a better outcome. This sort of

recommendation system combines content and collaborative recommendation system

algorithms of both memory-based or the model-based approaches. These models have the

ability to perform better as they overcome some of the weaknesses of the previous ones,

but have higher difficulty to be applied. For example Netflix does that by integrating the

viewer's viewing and searching data contexts with existing records(past data). Google on

the other hand builds user profiles based on their click behaviour to generate news feed.

[25][26, pp. 81–104] [27, p. 271] [27]

 2.8 Common Problems
For recommender systems and specifically collaborative filtering algorithms, the

desired recommendation is the outcome of a good performance, which can be affected by

other factors as well. In this subsection common problems of collaborative filtering

algorithms are presented.

 2.8.1 Cold start - New User or New Item
The user's activity must include many ratings for the recommendation system to

understand a profile of a user, otherwise if the ratings are not enough the recommendations

will be incorrect. Correspondingly on the object side if a new object is not rated by a

specified number of users to be considered sufficient then the recommendation system

does not have the ability to put it as a suggestion to the user. [28], [29]

20

 2.8.2 Data sparsity
A similar problem is created when the volume of data managed by the

recommendation system is very large. There must be an availability to a number of users

who have participated in item ratings in order for the system to function properly. It is also

important that there are many users who rate similar items otherwise they cannot be

recommended. [28]

 2.8.3 Scalability
Another major challenge collaborative filtering algorithms face is the handling of

massive datasets, which results in a correspondingly large number of users and items.

Considering that such a system must act in seconds by making access of all these entries,

this also means that the complexity of this task is also massive and requires improved

resources to solve.[30]

 2.9 Key differences
Key differences of both Content-Based and Collaborative filtering are following.

An illustration of each procedure for both Content-Based Filtering and Collaborative

Filtering method is presented. Figure 2.11 Also a table describing the main differences (on

focus, targets, requirements, data, results and additional problems) for these two methods

is demonstrated. Table 2

21

Figure 2.11 CF and CBF processes

Content-Based Filtering Collaborative Filtering
What is the focus?

Focuses on the content features Focuses on the user's preference
Targets

Types or characteristics of items a user selects Patterns of users selecting items
Requirements

User's profile and content profile is also required User's profile is required
How it works?

Description and attributes of items Users that interracted with an item
Data

Needs less amount of data Needs large amounts of data

Existing data knowledge is required
Embedding data are automatically learned - data
knowledge not required

Results
Results based on a user's existing choices Results based on ratings of many users
Captures the specific interests of a user Can provide users new interests
More limited on recommendations Possibility to get recommendations of unseen items
More predictable (since it is based on specific
attributes) More unpredictable

Problems

Difficulty on content analysis and extracting data
Even users with same interests can not necessarily
prefer the same item.

Biased towards popular items - more data
Hard to predict recommendation for unusual
behaviours' of users

Table 2 Differences of Content-Based Filtering and Collaborative Filtering

22

 3 Problem

 3.1 About OTTO
OTTO (GmbH & Co KG) is a successful e-commerce company and belongs to

multi-national Otto Group, which also subsidizes Crate & Barrel (USA) and 3 Suisses

(France), but at the beginning started as a retailer based in Hamburg of Germany. The

company was established in 1949 when the business owner launched a catalogue with 28

pairs of shoes and made ordering from home available. Over the years, OTTO expanded,

added more products, and became the largest mail-order company worldwide by the mid-

1980s. In 1995 was one of the first companies that decided to adapt to the digital age and

made a difference by launching a website that supported fashion and lifestyle.[31]

Nowadays, a diverse selection of products is available on the website, including

those for clothing, accessories, technology, home and living, sports, and leisure equipment.

The company is committed to sustainability, with a focus on environmentally friendly and

socially responsible practices in its areas. OTTO employs more than 7,000 employees and

offers services to more than 30 million individuals in Germany and other nations. It has

over 4000 OTTO Market Partners and provides over 10 million products online to more

than 11,5 million active customers. Daily the average number of qualified visits per day

corresponds to 2.89 million.[32]

One of the company's distinguishing qualities is its user-friendly website, which

makes it simple for clients to navigate and purchase products online. Free delivery and

returns are also offered, making the shopping experience convenient and faster.

 In addition, OTTO as mentioned provides the service of recommending products

to its customers. However, these recommendations are not random but targeted. OTTO

makes use of advanced data analysis and algorithms to deliver its clients, personalized

recommendations based on their preferences and previous purchases. OTTO has a huge

item database and gathers data from its clients every day which is used to recommend

different items to them or to new customers. The company has a related group that focuses

on investments that can be made in the technology sector to increase profit. AI being of

the most sought-after areas which the group applies to various business sectors. Bonprix

which is an individual company of the Otto Group has created its own AI prediction model

that orders items into categories and offers better quality service by displaying at the top

23

of the store page, the most popular items which are currently available. This model can

also detect which combinations of different attributes are most promising and provides the

company the ability to understand new insights into their customer needs. [33]

 3.2 The Competition
Kaggle is an online famous competition platform that offers data scientists and

machine learning practitioners the opportunity to find and publish datasets of problems

allowing them to build models, and solve but also participate in competitions for money

rewards. Kaggle platform launched in 2010 and was bought by Google in 2017.

The Otto Group's challenge on Kaggle is about the development of a

recommendation system algorithm for their customers which will help to increase their

sales and improve the shopping experience. As there is no model in e-commerce that can

optimize numerous objectives at the same time. Their goal is to achieve that. More

specifically the model should be able to predict the next move of a customer, either it is a

click, an add to cart or an order prediction. The objective is the creation of a multi-objective

recommender system based on past events of a user session for the prediction of e-

commerce clicks, cart additions, and orders.

This competition started in November 2022 and ended at the end of January 2023.

It was open to anyone from any place that complied with the given rules. To enter the

competition registration was required prior to the entry deadline. The aim was the

promotion of data science and the type was clearly skill-based. Also in its terms were

included awards of $ 30,000. The prizes were awarded to whichever system performed the

best score based on the evaluation metric and the merits of the data science models

submitted. The first award was $15,000, followed by $ 10,000 for second place, and $

5,000 for third.

The public leaderboard on the competition website displayed the current position

throughout the competition period. Subject to adherence to the rules, the possible winners

were chosen purely based on leaderboard positioning on the private leaderboard. Both the

public and private leaderboards were built using test sets that were made available to the

general audience. Participants could participate either individually or in teams. The

maximum team size was five participants per team. Daily entries allowed were 5, while at

the end of the event duration, each contestant could choose two to be judged.

24

In total 3,350 people in 2,615 teams took participation in the event representing

different countries.

 3.3 Data
Three data files were provided: two (.jsonl) files with test and train data, and one

(.csv) file for the sample submission.

• Test data: test.jsonl - 402.09MB: Contains the sessions for which the predictions

will be made.

• Train data: train.jsonl - 11.31GB: The training data includes e-commerce session

details.

• sample submission: A sample file in the required format.

For data comprehension, the task of the required prediction should be stated.

Sessions truncated in time order are included in the test data set. Our goal is to predict the

next moves after the point of truncation. For each test session and each event type our task

is to predict the aid values involved on the next move.

The submission file sent to Kaggle should be a (.csv) file, has the following format

where session is the label of the session in the test set, type is the type of the event and

labels are the predicted product codes which should be space delimited. We can predict up

to 20 product codes per row.

session_type,labels

12906577_clicks,135193 129431 119318 ...

12906577_carts,135193 129431 119318 ...

12906577_orders,135193 129431 119318 ...

12906578_clicks, 135193 129431 119318 ...

etc.

Train data has the following format:

{"session": SESSION_ID, "events": [{ "aid": PRODUCT_CODE, "ts": TIMESTAMP, "type":
"clicks/carts/orders" },…}]}

25

• session - the unique session id (number of session)

• events - the time ordered sequence of events in the session

o aid - the article id (product code) of the associated event

o ts - the Unix timestamp of the event

o type - the event type, (clicks, added to cart or ordered during the session)

Each session contains a random number of events of different type in chronological order

Figure 3.1 .

Test data test.jsonl contains truncated session data in the same format.

Train set: Test set:

Figure 3.1 Structure of train and test data

The test set includes data from the sessions that happened the week after the 4

weeks included in the train set. In the Figure 3.2 it is shown how the data was extracted

from real sessions and the train sessions that overlapped with the test were trimmed.[34]

26

Figure 3.2 Data extraction from real user sessions and trimming. [34]

 3.4 Evaluation

 3.4.1 Recall (or True Positive Rate)
Recall is the evaluation performance metric that the submission file is evaluated

with. A confusion matrix shows counts between expected and observed values. Table 3

Recall quantifies the number of positive predicted results made out of all positive data in

the set. Precision is defined as the division of true positive values by all values that were

predicted as positive while recall (or True Positive Rate) is the division of true positives

by all values that should have been predicted as positive. Figure 3.3.The table is frequently

used while solving classification problems. If the recall value is high, this means that our

model is able to identify correctly a large percentage of positive occurrences as opposed to

when its value is low where it means that the resulting predictions are quite dissimilar to

the train set.[35, p. 138]

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 , 𝑃𝑃𝑟𝑟𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑡𝑡

In e-commerce, an example would be if a recommended system provides 20 things to a

user who looked for a white keyboard, 10 of which are genuinely white keyboards, 6 are

black keyboards, 2 are white mousepads, and 2 black mousepads. Precision is 10 out of 20

27

or 50%. Recall 10 / 10 = 100%. In an example where the search algorithm missed some

of the relevant items and 7 out of 10 were retrieved, then recall would be 7/10 = 0.7 .

Table 3 Confusion Matrix

Figure 3.3 Precision and Recall

 3.4.2 Weighted recall (wR)
Weighted recall (wR) is used on multiclass classification. Weighted recall assures

that the performance on the minority class is taken into consideration by assigning weights

28

to each one of the classes. It is defined exactly as the recall but is calculated with

weights.[36, pp. 37–63] [37, pp. 97–119]

In this occasion each action type (click, add to cart, or order) the three recall values

are calculated weight-averaged:

score = 0.10 ⋅ 𝑅𝑅clicks + 0.30 ⋅ 𝑅𝑅carts + 0.60 ⋅ 𝑅𝑅orders

Where Rtype is:

𝑅𝑅type =
∑  𝑁𝑁
𝑖𝑖 ∣ { predicted aids }𝑖𝑖, type ∩ { ground truth aids }𝑖𝑖,𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡 ∣

∑  𝑁𝑁
𝑖𝑖 𝑚𝑚𝑃𝑃𝑓𝑓 �20, ∣ { ground truth aids }𝑖𝑖,𝑡𝑡𝑥𝑥𝑦𝑦𝑦𝑦 ∣�

In the above formula, N is the total number of sessions in the test set. Predicted

aids are the predictions for each session-type. The ground truth value clicks is just one

value for each test session. For carts and orders the ground truth includes all aid values that

were added to cart and ordered respectively in the duration of the session.

 3.5 Data analysis
Here are some stats about the data provided by OTTO already known from the

documentation of the dataset, but can be easily extracted. [34] The following statistics can

give us a good picture of the dispersion of the data but also can inform us to avoid incorrect

conclusions.

The total number of events, unique products and sessions in both data sets is shown

on the first table. Table 4 On the following table are shown the timestamps of first and last

sessions. Table 5

 train dataset: test dataset

unique sessions 12899779~12.9M 1671803~1.67M
events 216716096~217M 6928123~6.9M

unique product 1855603~1.85M 783486~783K
Table 4 Unique sessions/ events/ products

29

Unique number of items in each set:

Number of unique products in train dataset - 1855603

Number of unique product in test dataset - 783486

Number of common products in the sets – 783486

 session time
 train dataset: test dataset

First session 2022-07-31T22:00:00 2022-08-28T22:00:00
Last session 2022-08-28T21:59:59 2022-09-04T21:59:51

Table 5 First and last sessions timestamps.

Session with the longest time duration:

training set: 27days, 23 hours,59 minutes

test set: 6 days, 23 hours, 59 minutes

On the first graph the days with the most traffic/busiest days in terms of the amount

of actions per day in each set are displayed Figure 3.4 . It is assumed the week starts on

Monday, which is denoted by 1 and ends on Sunday which is denoted by 7. On the second

the graphical correlation of the actions that occurred according to their type in each data

set is Figure 3.5 .

30

Train set

Test set:

Figure 3.4 Graphical correlation of the busiest days

Train set:

Test set:

Figure 3.5 Graphical correlation of the number events by type.

On the next page are statistics of user movements in each set of clicks, additions to the

card, and orders of the items recorded in each data set. Also statistics from the movements

of the sessions per month are exported.

31

Train set:

Total number of each type of action in train set:

sessions[train_set] contains :

194720954 number of "clicks" in total.

16896191 number of "carts" in total.

5098951 number of "orders" in total.

Total actions of each type during 7,8 month:

During the 7 month,

320632 number of type "clicks"

22963 number of type "carts"

5517 number of type "orders"

During the 8 month,

194400322 number of type "clicks”

16873228 number of type "carts"

5093434 number of type "orders"

Test set:

Total number of each type of action in test set:

sessions[test_set] contain :

6292632 number of "clicks" in total.

570011 number of "carts" in total.

65480 number of "orders" in total.

Total actions of each type during each month:

During the 8 month,

2868445 number of type "clicks"

262328 number of type "carts"

35504 number of type "orders"

During the 9 month,

3424187 number of type "clicks"

307683 number of type "carts"

29976 number of type "orders"

32

On the table below the product clicked cart or order the most in the event s of the training
set Table 6 . Also two diagrams with graphical correlation of the distribution of the
number of actions taken in each session and the length of each session were produced
Figure 3.6, Figure 3.7 .

aid count
1460571 129004
485256 126836
108125 118524
 29735 113279

1733943 105091
Table 6 Top 5 aids and number of occurrences in train set

Figure 3.6 distribution of the number of actions in each session

Figure 3.7 Length of each session

33

 4 Methodology

In this Chapter, the planning followed for the creation of a recommendation system

approach in the context of this diploma thesis is described in detail. First, reference is made

to the available tools, and libraries used in most machine learning problems and the reasons

that led to the selection of some of them are documented. Next, the format, specifics, and

challenges of the “OTTO – Multi-Objective Recommender System” dataset are described,

in order to create a basis for a better understanding for the attempts. The parameters that

had to be decided for the execution of each approach are then analyzed. Also with the help

of the evaluation system of the competition, the comparison of the methods that will be

used will be done. However, in addition to the methods that will be applied, some

improvements will also be proposed.

 4.1 Libraries and Tools

 4.1.1 Python
For this task the programming language that was selected was Python, as it is

commonly used in machine learning problems. Python is used for systems currently under

development around the world, and it also offers the most efficient interpreted language.

Python is totally open source and there is a huge community of programmers providing

solutions for common problems, coding is simpler than other languages and there are a lot

of libraries containing functions and methods that everyone can use on their projects.

 4.1.2 Pandas
Pandas is an open source library for python and it is used a lot in machine learning

problems because it offers tremendously simplified data representation. This can

significantly improve data analysis and comprehension resulting on better results. It

provides features to filter and handle data faster while it makes analyzing data more

flexible.[38]

34

 4.1.3 Numpy
NumPy or Numerical Python, is also an open source library, that many scientist

and engineers tend to use when working on numerical processes with a lot of data because

it provides object structures and many methods to deal with complex problems. One

example of a commonly used object structure is NumPy arrays which are faster and more

efficient to create than standard python arrays.

 4.1.4 Pickle
Pickle can serialize and deserialize a Python object structure. In other words, it is

the act of transforming a Python object into a byte stream in order to save it to a database

or a file. By unpickling the pickled byte stream, the original object hierarchy can be

recreated, resulting in the original object structure. In this way someone can maintain a

program state across sessions, or transport data over a network.[39]

When a byte stream is unpickled, the pickle module first makes an instance of the

original object before populating it with the right data. To accomplish this, the byte stream

only carries data relevant to the original object instance. However, simply having the data

may not be enough. To effectively unpickle an object, the pickled byte stream contains

instructions to the unpickler for rebuilding the original object structure, as well as

instruction operands that contribute in populating the object structure.

In the following figure the main differences between the pickle protocols and JSON

are listed. Figure 4.1 The screenshot was taken from the Python 3.11.1 documentation,

Lib/pickle.py [39]

Figure 4.1 Differences between the pickle protocols and JSON (JavaScript Object

Notation)

35

 4.1.5 Matplotlib
Matplotlib is a Python package that allows the user to create static, dynamic, and

interactive plots or graphs that are suitable for publication. Exports can be produced in

many formats, as there is a wide diversity available, and the style can also be customized

and adjusted to the user’s preference.

 4.1.6 Seaborn
Seaborn is an open source library that is dataset-oriented and uses matplotlib for

creating plots. It enables the user to manipulate data with panda dataframes, plot

functions, and perform statistical aggregation to develop the graphs he want.

 4.2 Understanding the data
In this subsection, additional information is provided to better understand the

results, which are closely tied to the type and size of the data set in any problem.

It should be emphasized that the set of "OTTO - Multi-Objective Recommender

System" data was published for the first time in order to create this competition.

Nonetheless, this corporation is active in data technology, analysis, and machine learning,

as seen by their 2015 "Otto Group Product Classification Challenge" competition on the

Kaggle platform. This was a classification challenge, and the goal was to create a predictive

model that could classify between the main product categories.

As mentioned in the introduction, the "OTTO - Multi-Objective Recommender

System" data set is used. Here it should be noted that this is real data from real consumers,

as well as implicit data. A detailed report on the structure of these data and data analysis

are made in subsection 3.3 .

The sequence of data that were used had as mentioned a session id with the actions

that happened in this session. The event in each session has three attributes which are

aid(product id), ts(timestamp), type(clicks/ carts/ orders). The most common type of action

is click, followed by adding to cart and order. The orders are the actions that interest us the

most because they have a great influence on the evaluation process. Actions in each session

are chronologically ordered by the way they were performed. The sessions, aids, and ts

have integer values while the types contain strings with the type of actions subsection 3.3 .

36

The asked task is to predict what each of the test users, (test) sessions will do in the

future. For each test session it is needed to the predict the following click, cart and order

items, after the last record.

 4.3 Connection to the server
The amount of training data is enormous, it has 12,899,778 sessions with

216,716,095 actions. To begin with, the ability to manage all of this information would be

impossible if the institution did not have a machine to which a remote connection was

made to run the code. The connection was achieved with Visual Studio Code Remote, an

SSH extension which allows the user to open a remote folder on a computer with a running

an SSH server. PuTTY was also used in order to check the performance of the tasks and

the ram available on the machine.

 4.4 Dealing with the datasets
Both of the datasets are in in the same format and of .jsonl or JSON Lines text

format. Due to the size of the sets it was necessary to convert them to another object

structure which will be easier to read and use for processing. The problem of this dataset

was the RAM it required to run code for the training set. Depending on the strategy that is

adopted to face the competition, there is a need for a certain data structure for handling the

data in an efficient way. This means that performance of the model should be good in terms

of speed and keep RAM to a minimum(memory-efficient). Furthermore, processing the

data could take a lot of time, for each attempt to perform even a small test for a certain

action in a subset. While running code, it was required to keep checking if the code was

doing what was requested for each action and for this reason at the beginning for the first

testing a subset of the data was actually used.

37

 4.5 Creating a model
By studying the structure of the data, using some of the tools mentioned above for

the analysis presented, followed the study of the model to create the algorithm of the

recommendation system, and then some variations of it to improve the results. After the

identification of the requested problem and the understanding of the data, some goals were

set for the initial approach.

The original model was an improvised approach based on the nearest neighbor

method. In this particular method, all sessions of the test set and a subset of the training set

took part. The purpose was to find the distance between two sessions, a test session with a

training session. This distance is supposed to be determined by comparing the similarity

of the two sets in the model. In this situation, the objects that took part in the comparison

were are the items of each session, and because each session contains three different types

of actions, this should also be taken into account.

The calculation of these R distances is done using the evaluation type formula and

calculating the Rscore , between the train session and all tests for each type of Click, Cart,

Order action. This requires that three Rtype must be calculated for each session before the

Rscore can be calculated. But this comparison had to be done for all the test sessions and

for each of them with all the training sessions.

 4.6 First attempts
While reading the data, a structure was created which for each session contained

the click cart and order items separately. The above procedure took place for both sets.

This structure was saved using the aforementioned pickle library, to save the time of

reading it each time. Then followed the calculation of the closest R sessions. Since the

closest of a session were known the items of these could be extracted and enter into the

corresponding position as predictions for the appropriate session. The original model was

intended to find the distance R between two sessions, a test session with a training session.

But this comparison had to be made for all test sessions and for each of them with all

training sessions. This means that the comparison for each test session with every train had

to be completed three times

38

The process took a long time to complete since the sets were two big and the result

was that there were many empty rows of predictions in the output submission file, so

necessarily the structures had to be changed. This happened probably because it was taken

under consideration only a very small subset of the train set and because no extra

calculations were done to add extra items to the predictions.

 4.7 The model
The next steps to create the model were as follows:

The data structures that held the session items were changed and adjusted to contain

as little information as possible. An index of all items was made for the train set in order

to know in which sessions an item is contained. This action also could happen with only

one passing of all train set.

Then, the test was scanned for each session, but only those sessions of the train set

that had a common item were checked (through the indexes), so it was not necessary to go

through the whole train dataset again but only access those sessions that have a common

item.

Knowing in which sessions of the train set the items of a test appear, the code

calculates the Rscores and keeps a number of the best scores. The result of the calculation

of all Rscores for the sessions was saved in a 45GB .txt file where it was then passed and

read to get the appropriate information. More specifically, during the construction of the

file, the concerning train’s session id, Rtypes and Rscore is recorded in a row which is made

for every test session, i.e. a row contains test session id and then many train referring

numbers including the train session id the, Rclick, Rcart, Rorder and the final Rscore of the

best scores. The size of Rscore i.e. closest sessions instead of 20 was chosen to be 1000

after some more tests. Since the Rscores were now saved the time spent comparing all these

tests was significantly reduced (under 50%), as the calculation for the next moves was

done while parsing the Rscore file.

Later, from these nearest sessions common items are selected and added as

suggestions for the corresponding test session. The common items are ranked in order

based on the number of their occurrences in the nearest sessions. As it is already perceived

39

the items the criminal to the close sessions means that they are preferred by more users,

therefore that they are of high preference among similar users.

If the number of selected items is less than 20, then a list is added to them according

to the type mentioned with the top(clicks, carts, orders). The top are three lists with a size

of at least 20 items containing the top_clicks top_carts top_orders of the train meaning

items with the more appearances at events of each type. The addition is made after the

suggestions from nearby train sessions to fill the requested size of 20 for the submit.

 4.8 Adding weights
Another factor that played a significant role in the final results was the addition of

weighting factors to the common items selected for the prediction. Weights can be used

in recommender systems and assist the algorithm on delivering accurate and

individualized recommendations to users. The system is assigning different values of

weights to each factor for determining a better suggestion to the user. The outcomes

attach a level of value to various features, characteristics and quality measures of the

items suggested, allowing the system to personalize offerings to the needs and tastes of

the individual user, resulting in a better user experience. The optimal values for the

weights are chosen after running various trials by changing the function that generates

them.

For example a recommender system creates a list with the preferences of a user

based on past behaviour. In case the user’s habit is to choose more items on the section of

gaming items then the system will suggest him items of that category but in this case it

might add a higher value on this recommendations. The ranking of the items influences

the determination of the items, which is affected by the weights applied. Without the

weights, the system would not be able to effectively take into account the user's

preferences. This would result in a less accurate recommendation.

40

 4.8.1 Radial Basis Function
The initial function that calculates the weights was chosen as the Radial Basis

Function. Radial basis functions act as a foundation for many machine learning subjects.

Radial bias networks are used for both learning and data classification, and consist of an

input layer, a processing layer (or hidden) and one or more outputs Figure 4.2. The

parametric extension of Gaussian function was chosen as it is the one usually used on

these types of problems. RBF calculates the similarity by taking as input the distance of

the given points from some fixed point. The value of the function is calculated with

providing a distance(Euclidean distance)from a point 𝑥𝑥𝑐𝑐 . RBF with KNN or NN is used

to give a larger value on weight to nearby points and less weight to distant points,

resulting in a smoother classification than NN and KNN. The value of this function

decreases as the magnitude of the distance given by the formula ||𝑥𝑥 − 𝑥𝑥𝑐𝑐|| rises.

In our case it is assumed that R takes values from 0 to 1. R[0,1]. So in this case to

calculate this distance we assumed that X takes the value 1 and xc is the value of each

Rscore in the training set that we examine each time.

𝜑𝜑(𝑥𝑥, 𝑥𝑥c) = exp �−
∥∥𝑥𝑥 − 𝑥𝑥𝑥𝑥∥∥2

2𝜎𝜎2 �

The denominator of the fraction took the form of a constant α for simplicity. Values of a

were changed during the tests to improve the results. [40]

𝜑𝜑(d) = exp �−
(1 − 𝑑𝑑)2

𝛼𝛼 �

 Where, 𝑑𝑑 = 𝑅𝑅𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡

41

Figure 4.2 Structure of a radial basis function network.

The image illustrates the architecture of an RBF Network, including an input vector x, a

RBF layer, and an output layer.

 4.8.2 Inverse multiquadric kernel
Another mathematical function that was also used was the inverse multiquadric

kernel (IMQ) which is used for approximation of multivariate data,

 with a constant c > 0

𝑘𝑘(x, y) =
1

�∥ x − y ∥2+ 𝑅𝑅

In our case it is assumed that by converting the standard form of the multiquadric kernel

to this:

𝑘𝑘(x, y) = �∥ x − y ∥2+ 𝑅𝑅

And then by replacing k (x,y) with k (d) the x and y terms of the Euclidean distance ||x-

y|| with d then :

42

𝑘𝑘(d) = �𝑑𝑑2 + 𝑅𝑅2
Where, 𝑑𝑑 = 𝑅𝑅𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡

The constant c in the Multiquadric kernel function is a hyperparameter that affects

the kernel width. Tests were performed to choose the right value for the constant c, and

those with the best performance were selected. [41]

 4.9 Optimizing accuracy through user actions and weights
The next step in modifying the recommendation algorithm of the model involved

adjusting the predictions according to the user’s actions. This involved incorporating the

train sessions’ choices into the prediction model in order to improve the accuracy of the

recommendations. By saving the values of the product ids that each event included in a

separate list, for each type of action in the test session it was now known which products

the user was even slightly interested in to click, cart or order. After these three lists were

completed, it became possible to include these options of items into future predictions.

This could be performed in several ways by either including the same types of alternative

items into the predictions or by combining options and providing additional flexibility in

terms of effectiveness. Furthermore weights was also used on these relevant on the test

user options on delivering accurate recommendation. The system is assigning different

values of weights for each type to each test user’s list for determining a more powerful

option, providing better suggestion to the user. For example, if the clicks list was chosen

to go to the predictions of the click action, this implies that the list of clicks made by the

user was given a higher priority in the recommendation process for the clicks. By giving a

higher value to the weights for the actions performed by each individual then these items

could go first on recommendation priority, thus elevating the importance of related items.

Also combining these items allows for the consideration of multiple aspects and

patterns of user’s behaviour. Meaning for example, items that have been clicked on can

determine items added to a cart, items added to a cart can determine items placed in an

order, and items ordered can determine items placed in an order with a different value of

weight. This played an important role in the final results.

43

Finally, the recommendation system then implements the established procedure of

assigning weights to common items of a test session with the nearest training sessions and

providing these options in addition to the choices of the test user.

 4.10 Final modification of the model
In this subsection, in order effectively evaluate the results of a recommendation

algorithm, the modifications of the model and the parameters that were altered during the

testing and the evaluation

The final step in the construction of the model involved selecting the nearest

training sessions for each test session not based on Rscores, but rather on a different

calculation for each type of prediction. More specifically, the calculation used was

determined based again on the evaluation formula for the prediction task. This time the

code keeps a number of the best scores in two extra files and the nearest training sessions

are chosen from each file for click, cart and order predictions. The best scores for each

type of prediction were calculated as follows, (0.1*Rclick) for clicks predictions,

(0.1*Rclick+0.3*Rcart) for additions to cart predictions and Rscore for order predictions.

These two additional files, with a file size of 46GB and 47GB respectively, are holding the

results of the calculations and keep the same format as the initial Rscores .

This approach was performed to improve the accuracy of the predictions, as an

alternative method by selecting the most relevant training sessions for each test session's

type of action.

 4.11 Review of tests
In this subsection, in order effectively evaluate the results of a recommendation

algorithm, the modifications of the model and the parameters that were altered during the

testing and the evaluation are reviewed. This information is presented through the use of

the following tables and diagrams, providing a comprehensive overview. The impact of

each modification is identified by the result of the evaluation process. Finally, the impact

of various approaches followed has the potential to inform decisions about future

improvements of this algorithm or other strategies.

44

First Model:
• determines N the nearest training sessions for each test session, selects shared

items, and, if the quantity falls below 20

• augments with the top items (most popular) from clicks, carts, and orders

from the training set.

Attempt Number N of nearest sessions Final Score

1 N = 5 0.2417

2 N = 20 0.3331

3 N = 1000 0.4625
Table 7 Evaluations of the Model #1

Figure 4.3 Model 1 - Results

From these results, it is visible that increasing the number N of nearest sessions used to
make suggestions boosts the system's accuracy.

Attempt #1
0.24167

Attempt #2
0.3331

Attempt #3
0.46246

0

0.1

0.2

0.3

0.4

0.5

0.6

Final
Score

Number of attempts

Model #1

Attempt #1

Attempt #2

Attempt #3

45

Second Model:
• determines N =1000 (based on the results of the first model) the nearest

training sessions for each test session, selects shared items,

• assigning weights based on a RBF radial basis function with constant a, and,

if the quantity falls below 20

• augments with the top items (most popular) from clicks, carts, and orders

from the training set.

On this model, the third attempt was performed with the inverse multiquadric kernel (IMQ)

and a=0.10 (based on 1,2)

Attempt Weight function - Constant Value Final Score

1 RBF - a=0.05 0.4549

2 RBF - a=0.10 0.4699

3 IMQ - a=0.10 0.4781
Table 8 Evaluations of the Model #2

Figure 4.4 Model 2 - Results

In this modification of the model, by increasing the constant a to 0.10, and trying a
different mathematical formula for the weights the outcome is considerably affected.

Attempt #1
0.45492

Attempt #2
0.46986

Attempt #3
0.47806

0

0.1

0.2

0.3

0.4

0.5

0.6

Final
Score

Number of attempts

Model #2

Attempt #1

Attempt #2

Attempt #3

46

Third Model:
• determines N =1000 (based on the results of the first model) the nearest

training sessions for each test session, selects shared items,

• assigning weights based on a RBF radial basis function with constant a, and,

if the quantity falls below 20

• Items that have been clicked on (by the test user) can determine cart

predictions

• Items that have been clicked on or added to a cart (by the test user) can

determine order predictions

• Note that on this model weights for test user choices, were adjusted with low

values, meaning that other option could be high on priority if they appear many

times.

• augments with the top items (most popular) from clicks, carts, and orders

from the training set.

On this model, the third and fourth attempt were performed with these changes:

• Items that have been clicked on (by the test user) can determine cart

predictions

• Items that have been added to a cart (by the test user) can determine order

predictions

Attempt Weight function - Constant Value Final
Score

1 RBF - a=0.50 0.5545

2 RBF - a=0.10 0.5562

3 RBF - a=0.10 0.5312

4 IMQ - a=0.10 0.5561
Table 9 Evaluations of the Model #3

47

Figure 4.5 Model 3 - Results

Here, the data points of #1 and #2 attempts that used both clicks and carts on order

predictions, show a better result than #3 which refers to the same function. The #4 attempt

was done using IMQ but the score was also lower than RBF.

Fourth Model:
• determines N =1000 (based on the results of the first model) the nearest

training sessions for each test session, selects shared items,

• assigning weights based on a RBF radial basis function with constant a, and,

if the quantity falls below 20

• Items that have been clicked on (by the test user) can determine cart

predictions

• Items that have been clicked on or added to a cart (by the test user) can

determine order predictions

• Note that on this model weights for test user choices, were adjusted with high

values, meaning that other option could be high on priority if they appear many

times.

• augments with the top items (most popular) from clicks, carts, and orders

from the training set.

Attempt #1
0.554

Attempt #2
0.556

Attempt #3
0.531

Attempt #4
0.556

0.520

0.530

0.540

0.550

0.560

0.570

0.580

0.590

0.600

Final
Score

Number of attempts

Model #3

Attempt #1

Attempt #2

Attempt #3

Attempt #4

48

Attempt Weight function - Constant Value Final
Score

1 RBF - a=0.50 0.5589

2 RBF - a=0.30 0.5588

3 RBF - a=0.10 0.5562

4 RBF - a=0.02 0.5440
Table 10 Evaluations of the Model #4

Figure 4.6 Model 4 - Results

Here, the graphical correlation shows that the efficiency of the predictions increases the

same way as the value of constant a does from 00.2 to 0.5.

Fifth Model:
• determines N =1000 (based on the results of the first model) the nearest

training sessions for each test session, selects shared items,

• assigning weights based on a RBF radial basis function with constant a, and,

if the quantity falls below 20.

• Note that on this model weights for common items changed depending on

clicks(0.1* Rclick), carts(0.1* Rclick +0.3* Rcart), orders(Rscore)

Attempt #1
0.5589

Attempt #2
0.5588 Attempt #3

0.5562

Attempt #4
0.5440

0.5400

0.5500

0.5600

0.5700

0.5800

0.5900

0.6000

Final
Score

Number of attempts

Model #4

Attempt #1

Attempt #2

Attempt #3

Attempt #4

49

• Items that have been clicked on (by the test user) can determine cart

predictions

• Items that have been clicked on or added to a cart (by the test user) can

determine order predictions

• Note that on this model weights for test user choices, were adjusted with high

values as before.

• augments with the top items (most popular) from clicks, carts, and orders

from the training set.

Attempt Weight function - Constant Value Final
Score

1 RBF - a=2.50 0.5590

2 RBF - a=1.00 0.5590

3 RBF - a=0.50 0.5589

4 RBF - a=0.1 0.5569

5 RBF - a=0.004 0.5355

6 RBF - a=0.002 0.5454
Table 11 Evaluations of the Model #5

Figure 4.7 Model 5 - Results

Attempt #1
0.559

Attempt #2
0.559

Attempt #3
0.559 Attempt #4

0.557

Attempt #5
0.535

Attempt #6
0.545

0.530

0.540

0.550

0.560

0.570

0.580

0.590

0.600

Final
Score

Number of attempts

Model #5

Attempt #1

Attempt #2

Attempt #3

Attempt #4

Attempt #5

Attempt #6

50

This plot depicts the relationship between the value of constant a with the evaluation result

on this model showing that while the value of a is high the evaluation is better.

Sixth Model:
• In this and last model 3 different files are accessed for each test session,

highest Rclick, highest 0.1* Rclick +0.3* Rcart and the initial Rscores file ,

for N nearest sessions of each type of prediction. N =1000 the nearest training

sessions for each test session, selects shared items based on the type,

• assigning weights based on a RBF radial basis function with constant a, and,

if the quantity falls below 20.

• Items that have been clicked on (by the test user) can determine cart

predictions

• Items that have been clicked on or added to a cart (by the test user) can

determine order predictions

• Note that on this model weights for test user choices, were adjusted with high

values as before.

• augments with the top items (most popular) from clicks, carts, and orders

from the training set.

Attempt Weight function - Constant Value Final
Score

1 RBF - a=2.50 0.4709

2 RBF - a=1.00 0.5568
Table 12 Evaluations of the Model #6

51

Figure 4.8 Model 6 - Results

On this last model the result is higher while the value of a is lower, but the results are not

better that the previous model was (#6).

The following graph displays the results of 6 models.

Figure 4.9 Results of all the models

Attempt #1
0.471

Attempt #2
0.557

0.460

0.470

0.480

0.490

0.500

0.510

0.520

0.530

0.540

0.550

0.560

0.570

Final
Score

Number of attempts

Model #6

Attempt #1

Attempt #2

52

 5 Summary and conclusions

This thesis, aimed to highlight the use of recommender systems in e-commerce, by

providing their importance on enhancing the shopping experience for both consumers and

businesses. The thesis also focuses on collaborative filtering methods. After examining

these methods a recommender system algorithm was implemented based on data of e-

commerce sessions.

 The approach proposed for this dataset, is an user-based collaborative filtering

model, implemented by finding the nearest neighbors (or most similar users-training

sessions) of the test user (session), and then recommending the common items in these

sessions.

To improve the predictive accuracy the algorithm is modified many times by

adding weights on the common items. Additional modification included adjusting the

predictions into test user’s preference and even by adding weights on these preferences of

the test user. The results obtained from the tests show that even small adjustments to the

parameters can significantly affect the result, therefore the programmer can achieve optima

results. Finally the similarity measure for test and train users for each prediction type was

also tested to check if the result would be improved.

 5.1 Suggested Improvements
Considering the difficulties presented by this data set as well as its volume, the

predictive ability of the model could potentially be greater depending on the strategy

followed to tackle this problem.

Also, for the improvement of the accuracy on the model, it is necessary to use the

exact moment in time (timestamp) at which each action occurred. Time may require

running the model, using another data structure that will store per training period the

product IDs ordered in time order. Thus, during the execution of the prediction model by

type, different weights are added additionally based on the time series of the compared

user to each object. Depending on one more factor for the execution, the model may result

on giving greater options.

In addition, perhaps a pre-processing of the aggregate data could be applied, this

would remove data that are incomplete or deviant, to make the algorithm produce more

accurate recommendations.

53

Bibliography

[1] ‘Dr. Nilesh B. Gajjar / International Journal of Research In Humanities and Social
Sciences’, Humanities and Social Sciences, vol. 1, no. 2, 2013.

[2] J. B. Schafer, J. Konstan, and J. Riedl, ‘Recommender Systems in E-Commerce’.
[3] A. Stankevich, ‘Explaining the Consumer Decision-Making Process: Critical

Literature Review’, JIBRM, vol. 2, no. 6, pp. 7–14, 2017, doi: 10.18775/jibrm.1849-
8558.2015.26.3001.

[4] P. Resnick and H. R. Varian, ‘Recommender systems’, COMMUNICATIONS OF THE
ACM, vol. 40, no. 3.

[5] F. Ricci, L. Rokach, and B. Shapira, Eds., Recommender Systems Handbook. New
York, NY: Springer US, 2022. doi: 10.1007/978-1-0716-2197-4.

[6] G. Linden, B. Smith, and J. York, ‘Amazon.com recommendations: item-to-item
collaborative filtering’, IEEE Internet Comput., vol. 7, no. 1, pp. 76–80, Jan. 2003, doi:
10.1109/MIC.2003.1167344.

[7] ‘Andriy Burkov - The Hundred-Page Machine Learning Book-Andriy Burkov
(2019).epub’.

[8] R. Logesh, V. Subramaniyaswamy, D. Malathi, N. Sivaramakrishnan, and V.
Vijayakumar, ‘Enhancing recommendation stability of collaborative filtering
recommender system through bio-inspired clustering ensemble method’, Neural
Comput & Applic, vol. 32, no. 7, pp. 2141–2164, Apr. 2020, doi: 10.1007/s00521-018-
3891-5.

[9] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, ‘GroupLens: an open
architecture for collaborative filtering of netnews’, in Proceedings of the 1994 ACM
conference on Computer supported cooperative work - CSCW ’94, Chapel Hill, North
Carolina, United States, 1994, pp. 175–186. doi: 10.1145/192844.192905.

[10] R. E. Nisbett – T. D. Wilson (1977): Telling more than we can know: Verbal reports
on mental processes, Psychological Review, Vol. 84, No. 3.

[11] akvileja, ‘A digital bookshelf: original work on recommender systems’, Jussi
Karlgren, Oct. 01, 2017. https://jussikarlgren.wordpress.com/2017/10/01/a-digital-
bookshelf-original-work-on-recommender-systems/ (accessed Feb. 05, 2023).

[12] C. Anderson, ‘Long Tail : Why the Future of Business Is Selling Less of More’.
[13] P. B.Thorat, R. M. Goudar, and S. Barve, ‘Survey on Collaborative Filtering,

Content-based Filtering and Hybrid Recommendation System’, IJCA, vol. 110, no. 4,
pp. 31–36, Jan. 2015, doi: 10.5120/19308-0760.

[14] M. de Gemmis, P. Lops, G. Semeraro, and P. Basile, ‘Integrating tags in a semantic
content-based recommender’, in Proceedings of the 2008 ACM conference on
Recommender systems, Lausanne Switzerland, Oct. 2008, pp. 163–170. doi:
10.1145/1454008.1454036.

[15] C. Basu, H. Hirsh, and W. Cohen, ‘Using Social and Content-Based Information
in Recommendation’.

[16] ‘Introduction | Machine Learning’, Google Developers.
https://developers.google.com/machine-learning/recommendation (accessed Feb. 06,
2023).

[17] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, ‘9 Collaborative Filtering
Recommender Systems’.

[18] X. Luo, Y. Xia, and Q. Zhu, ‘Applying the learning rate adaptation to the matrix
factorization based collaborative filtering’, Knowledge-Based Systems, vol. 37, pp.
154–164, Jan. 2013, doi: 10.1016/j.knosys.2012.07.016.

54

[19] M. Balabanović and Y. Shoham, ‘Fab: content-based, collaborative
recommendation’, Commun. ACM, vol. 40, no. 3, pp. 66–72, Mar. 1997, doi:
10.1145/245108.245124.

[20] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, ‘An algorithmic
framework for performing collaborative filtering’, in Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information
retrieval, Berkeley California USA, Aug. 1999, pp. 230–237. doi:
10.1145/312624.312682.

[21] X. Su and T. M. Khoshgoftaar, ‘A Survey of Collaborative Filtering Techniques’,
Advances in Artificial Intelligence, vol. 2009, pp. 1–19, Oct. 2009, doi:
10.1155/2009/421425.

[22] C. C. Aggarwal, Recommender Systems. Cham: Springer International Publishing,
2016. doi: 10.1007/978-3-319-29659-3.

[23] M. Kuanr, P. Mohapatra, and S. S. Choudhury, ‘TSARS: A Tree‐Similarity
Algorithm‐Based Agricultural Recommender System’, in Recommender System with
Machine Learning and Artificial Intelligence, 1st ed., S. N. Mohanty, J. M. Chatterjee,
S. Jain, A. A. Elngar, and P. Gupta, Eds. Wiley, 2020, pp. 387–400. doi:
10.1002/9781119711582.ch20.

[24] J. S. Breese, D. Heckerman, and C. Kadie, ‘Empirical Analysis of Predictive
Algorithms for Collaborative Filtering’.

[25] S. Maddodi, ‘Netflix Bigdata Analytics- The Emergence of Data Driven
Recommendation’.

[26] M. A. Ghazanfar, A. Prügel-Bennett, and S. Szedmak, ‘Kernel-Mapping
Recommender system algorithms’, Information Sciences, vol. 208, pp. 81–104, Nov.
2012, doi: 10.1016/j.ins.2012.04.012.

[27] A. S. Das, M. Datar, A. Garg, and S. Rajaram, ‘Google news personalization:
scalable online collaborative filtering’, in Proceedings of the 16th international
conference on World Wide Web, Banff Alberta Canada, May 2007, pp. 271–280. doi:
10.1145/1242572.1242610.

[28] G. Adomavicius and A. Tuzhilin, ‘Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions’, IEEE Trans. Knowl.
Data Eng., vol. 17, no. 6, pp. 734–749, Jun. 2005, doi: 10.1109/TKDE.2005.99.

[29] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, ‘Methods and Metrics
for Cold-Start Recommendations’.

[30] Kai Yu, A. Schwaighofer, V. Tresp, Xiaowei Xu, and H. Kriegel, ‘Probabilistic
memory-based collaborative filtering’, IEEE Trans. Knowl. Data Eng., vol. 16, no. 1,
pp. 56–69, Jan. 2004, doi: 10.1109/TKDE.2004.1264822.

[31] ‘OTTO - Mode, Möbel & Technik » Zum Online-Shop’. https://www.otto.de/
(accessed Feb. 04, 2023).

[32] ‘OTTO (GmbH & Co KG) – At a glance’, OTTO (GmbH & Co KG) – At a glance.
https://www.otto.de/unternehmen/en/who-whe-are/at-a-glance (accessed Feb. 04,
2023).

[33] ‘Otto Group: Otto Group growing sustainably and successfully in e-commerce’.
https://www.ottogroup.com/en/medien/newsroom/meldungen/Otto-Group-growing-
sustainably-and-successfully-in-e-commerce.php (accessed Feb. 04, 2023).

[34] Philipp Normann, Sophie Baumeister, Timo Wilm, ‘OTTO Recommender Systems
Dataset: A real-world e-commerce dataset for session-based recommender systems
research’. OTTO (GmbH & Co. KG), Nov. 01, 2022. Accessed: Feb. 04, 2023.
[Online]. Available: https://github.com/otto-de/recsys-dataset

55

[35] D. L. Olson and D. Delen, Advanced data mining techniques. Berlin Heidelberg:
Springer, 2008.

[36] D. Powers, ‘Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness & Correlation’.

[37] P. Perruchet and R. Peereman, ‘The exploitation of distributional information in
syllable processing’, Journal of Neurolinguistics, vol. 17, no. 2–3, pp. 97–119, Mar.
2004, doi: 10.1016/S0911-6044(03)00059-9.

[38] ‘pandas documentation — pandas 1.5.3 documentation’.
https://pandas.pydata.org/docs/ (accessed Feb. 08, 2023).

[39] ‘pickle — Python object serialization — Python 3.11.1 documentation’.
https://docs.python.org/3/library/pickle.html#comparison-with-json (accessed Feb.
08, 2023).

[40] H. Chen and B. R. Bakshi, ‘Linear Approaches for Nonlinear Modeling’, in
Comprehensive Chemometrics, Elsevier, 2009, pp. 497–504. doi: 10.1016/B978-0-
444-64165-6.02009-7.

[41] C. A. Micchelli, ‘Interpolation of scattered data: Distance matrices and
conditionally positive definite functions’.

56

Appendix – Code
The code of the tests, as well as all the visualizations presented are available at the

link:

https://github.com/amartid/E-commerce-recommendation-system

The data is stored on the Kaggle platform:

https://www.kaggle.com/competitions/otto-recommender-system/data

and can be downloaded using their API:

kaggle competitions download -c otto-recommender-system

To run the final experiment code it is required to install:

• Python

• Jupyter Notebook

• Install the necessary Python packages

• Place the data files and ipynb files in a the folder with the data

https://github.com/amartid/E-commerce-recommendation-system
https://www.kaggle.com/competitions/otto-recommender-system/data

	1 Introduction
	1.1 The rise of data and its role in E-Commerce
	1.2 Effective Marketing through Digital Means
	1.3 Optimizing the E-Commerce Experience through Recommendation Systems
	1.4 Benefits of using recommender systems in E-Commerce
	1.5 The purpose of the research
	1.6 Basic Machine Learning Terms
	1.6.1 Machine Learning:
	1.6.2 Data (or samples/examples) :
	1.6.2.1 Training Data(training set):
	1.6.2.2 Validation Data(validation set):
	1.6.2.3 Testing Data(test set):

	1.6.3 Categories of learning models:
	1.6.3.1 Supervised:
	1.6.3.2 Semi-supervised:
	1.6.3.3 Unsupervised:
	1.6.3.4 Reinforcement:

	1.7 Thesis Structure

	2 Theoretical Background.
	2.1 Recommendation systems
	2.2 History
	2.3 Explicit and Implicit data
	2.4 Utility Matrix, Statement Of the problem
	2.5 Long-Tail
	2.6 Content-based filtering
	2.7 Collaborative filtering
	2.7.1 User-Based Collaborative Filtering (UBCF)
	2.7.2 Item-based Collaborative Filtering (IBCF)
	2.7.3 Model-based collaborative filtering:
	2.7.4 Memory-based collaborative filtering:
	2.7.5 Neighborhood-based collaborative filtering:
	2.7.6 Hybrid collaborative filtering:

	2.8 Common Problems
	2.8.1 Cold start - New User or New Item
	2.8.2 Data sparsity
	2.8.3 Scalability

	2.9 Key differences

	3 Problem
	3.1 About OTTO
	3.2 The Competition
	3.3 Data
	3.4 Evaluation
	3.4.1 Recall (or True Positive Rate)
	3.4.2 Weighted recall (wR)

	3.5 Data analysis

	4 Methodology
	4.1 Libraries and Tools
	4.1.1 Python
	4.1.2 Pandas
	4.1.3 Numpy
	4.1.4 Pickle
	4.1.5 Matplotlib
	4.1.6 Seaborn

	4.2 Understanding the data
	4.3 Connection to the server
	4.4 Dealing with the datasets
	4.5 Creating a model
	4.6 First attempts
	4.7 The model
	4.8 Adding weights
	4.8.1 Radial Basis Function
	4.8.2 Inverse multiquadric kernel

	4.9 Optimizing accuracy through user actions and weights
	4.10 Final modification of the model
	4.11 Review of tests

	5 Summary and conclusions
	5.1 Suggested Improvements

