MANEMIZTHMIO MAKEAONIAZ
NMPOrPAMMA METAMNTYXIAKQN ZINMOYAQN
TMHMATOZ EGPAPMOZMENHZ NMAHPO®OPIKHZ

N ANEMISTHMIO
MAKEAONI|AZ

ANATMTYZ=H AOrIZMIKOY BAZIZMENH ZTON EAEIXO KAI THN
ZYMMNEPI®OPA INA TH AIAZ®AAIZH NMOIOTHTAZ ZYZTHMATQN AOTIZMIKOY

(BEHAVIOR DRIVEN AND TEST DRIVEN DEVELOPMENT FOR QUALITY
ASSURANCE OF SOFTWARE SYSTEMS)

ArmmAwpaTikh Epyacia
TOU

MatmradorouAlou EAcuBépiou

Oeooalovikn, Peppoudplog 2023

ANAMNTY=H AOIZMIKOY BAZIZMENH ZTON EAEINXO KAI THN
ZYMMNEPI®OPA INA TH AIAZ®AAIZH NMOIOTHTAZ ZYZTHMATQN AOTIZMIKOY

(BEHAVIOR DRIVEN AND TEST DRIVEN DEVELOPMENT FOR QUALITY ASSURANCE OF
SOFTWARE SYSTEMS)

Matmradoétoulog EAsuBépiog
Mruxio Epapuoouévng MAnpogopikng, Mavemotiuio Makedoviag (MAMAK),
2021

ArmmAwpaTikh Epyacia

UTTOBAAAGEVN VIO TN MEPIKI EKTTANPWON TWV ATTAITACEWY TOU

METAMNTYXIAKOY TITAOY ZMNOYAQN ZTHN E®GAPMOZMENH NAHPO®IKH

EmBAETTwWY Kabnynthg
Xar{nyswpyiou AAEavdpog

EykpiOnke atrd TNV TpIgeAA e¢eTaoTikr emiTpoTtr) Tnv 01/03/2023

1° OvoUaTETTWVUUO 2° OVOUOTETTWVUUO 3° OVOUATETTWVULO

Xar{nyswpyiou ANECavOpPOg 2akeAAapiou HAiag ApTtratr{dyAou ATTéoTOAOG

MepiAnyn

Katd tnv didpkela SIEKTTEPAIWONG TNG EPYATIAG AUTAG, ETTITEUXOBNKE AVAAUTIKN £pEUva OTO
KOMMATI TNG TTANPOQOPIKNG TTOU OXETICETal PE TN dIACOAAION TNG TTOIOTATAG CUCTAPATWY
AOYIOMIKOU, evw TauTOxpova dnuioupyrndnke Eva avaAoyo £pyo AOYIOWIKOU O€ OUVEPYQTia YE TNV
etaipeia “Doctoranytime” pe o160 TNV OnuIoupyia evog epyalgiou yia Tnv Olac@AAIon TNG
TTOIOTATAG TOU AOYIOUIKOU TNG. 2KOTTOG KAl OTOXO0G TNG Epyaaciag ATav va avaAuBouv Ta €idn Kal ol
TTPOKTIKEG TOU “EAEyxou AoyiopikoUu”. ETITTPOOBETA, N £pyacia autr a@ooiwlnKe eKTEVECTEPA
oTnv avaAuon Twv peBodoloyiwyv Tou “EAEyxou AoyIOUIKOU”, KOl TTI0 CUYKEKPIPMEVA QUTWY OVOUATI
Test Driven Development (TDD), kai Behavior Driven Development (BDD). NpootraBwvTag va
EMTEUXOEI N aglotroinon Twv TTPOTEPNUATWY Kal TWV dUO pEBOdOAOYIWY, aVOAUBNKE yPATITWG Kal
onuIoupyAdnke éva uBPIOIKG £pyo AOYIOWIKOU PE TNV XPron Kal Twv dUo peBodoloyiwy Pe oTdXO
TNV KAAUTEPN SI0CPAAICT TNG TTOIGTNTAG TOU AOYIOUIKOU TNG £TaIpEiag. MepIkEG aTrd TIG TEXVOAOYiES

TTOU XpnoidoTtroindnkav yia Tnv dIEKTTEPAiwaN Tou €pyou auTou eival or “Python”, “Playwright”,

“Cucumber”, “JavaScript/TypeScript”, “Allure”. H xprijon Tng kabepiag pebodoAoyiag EexwpioTda Kai
MEMOVWUEVA, TTAVTA Ba a@rivel KATTOIO KEVO OTO £pY0 HIAG ETAIPEIAG KABWG N KaBepia peBodoAoyia
e€ao@aliel Kal KAOAUTTTEI DIAPOPETIKEG avayKeg evog Epyou. Na Tov Adyo autd n uppIdIKA Xpron
Kal Twv OUO TTPETTEI va TTPOTIUATAI TTPOKEIMEVOU VA KOAUTITOVTAI OAEG O AVAYKEG EVOG €pyou

AOYIOUIKOU TTOU QTTWTEPO OKOTTO £XEI TV OIACPAAION TNG TTOIOTNTAG CUCTAPATWY AOYIOUIKOU.

Aégeig KAe1dia: ‘Epyo Aoyiopikou, €idn, TTPakKTIKEG, peBodoAoyieg (Tou “EAéyxou Aoyiopikou”),
TToIOTNTA AOYIOMIKOU, UBPIKA XpAon, uBpidikd project, TDD, BDD, Python, Playwright, Cucumber,
JavaScript, TypeScript, Allure.

Abstract

During the implementation of this work, analytical research was achieved which was related with
the part of IT that is referred with the expression “Quality Assurance” or more descriptively, Quality
Assurance of Software Systems. At the same time, a real case project was created in collaboration
with the company "Doctoranytime" with the aim of creating a tool for quality assurance of its
software. The scope and aim of the work was to analyze the types and practices of Testing.
Additional work was dedicated to testing methodologies analysis, and specifically to Test Driven
Development (TDD) and Behavior Driven Development (BDD). Trying to utilize the advantages of
both methodologies, analytical research and a report were created and, more than this, a hybrid
project was created using both methodologies with the aim of improving the quality of the
company's software. Some of the technologies that have been used for the project are “Python”,

“‘Playwright”,

Cucumber”, “JavaScript/TypeScript” and “Allure”. The use of each methodology
shall always leave a gap in a company's project as each methodology ensures and covers
different needs of the project. For this reason, the hybrid use of both methodologies should be
preferred in order to cover all the needs of a project whose ultimate goal is to ensure the quality

of software systems.

Keywords: Testing, types, practices, methodologies (of Testing), Quality Assurance, hybrid use,

hybrid project, TDD, BDD, Python, Playwright, Cucumber, JavaScript, TypeScript, Allure.

Special Thanks

At this point | would like to thank my professor and supervisor Mr. Alexandros Chatzigeorgiou for
his guidance and willingness to amplify me as a student. Additionally, | feel thankful and thrilled
because Mr. Vangelis Christou and Vasileios Fokas, the CTO and the Technical Manager of
Doctoranytime, gave me an amazing opportunity which enabled me to practice my skills, both
technical and soft, in order to achieve realistic and demanding tasks of a business project.
Through their support | was able to understand basic concepts on how to spot the needs of a
project, organize and start it, how to track any existing errors and finally how to analyze and solve

them.

Table of Contents

LISt Of IMAQES........o oottt ettt ettt et e et eerteeaeeae e 6
SYMDBOLISIMS ...ttt ettt et e e e bt e beesaesseesbeesaeeseeseesseeseenbeesaensaenneeneans 8
1. INEFOAUCTION ...ttt 9
1.1 Thesis’ SigNIfiCaANCe ..ot 9
1.2 PUIPOSE — AMS ..ot ettt et e e e s e e te e e tbeebeeeaseeseeeaseenseeenes 10
1.3 Contribution to the QA field of informatics ... 11
1.4 Basic terminNOIOQYooooiiiiii ettt 12
1.5 Structure of the research ... 16
1.6 Research methodology ... 16
2. Bibliographic Review — Theoretical Backgroundc.ccoooiiiiiiiiiiniccee, 17
2.1 SOftWare TeSHING..........ccooiieieee ettt ettt 17
211 TeStiNG DASICSocooi et 17
2.1.2 Ways Of TEStING ..ot 20
2.1.3 Cross-related TeStiNg..............ccooiiiiii e 21
2.1.3.1 Cross-browser TeStiNg...........cccocooiiiiiiiiii e 21
2.1.3.2 Cross-platform Testingccooiiiioiiie e 21

2.2 Automated Software TeStiNg.............cccoeiiiiiiiii e 22
221 Test AUtomMAation ..o 23
2.2.2 Types of Automated TeSting............ccooviiiiiiiiee e 24
2221 Functional tests...........ocooiiiiii e 24
2.2.2.2 Non-Functional tests..............cccoconiiiiiiii e 24

2.2.3 Types of Automated TestS............ccooviiiiiiiie e 25
2.2.4 TDD PractiCe.........ccoccooiiiiiiiiiee et 27
2.2.5 BDD PractiCe ..o 29

3. REAIIIfE PIrOJECE.........ooeeeeeeee ettt ettt 32

311 Cross device TeSHINGccoooviiiiiiieeeee et 33

3.2 QAPIOJECE ...ttt ettt et eaenes 34
3.21 Cross browser TeStiNGoooiiiiiiie e 34
3.2.2 Types of Automated TestS..............ocoooiiiiiiiieeee e 35
3.2.3 Initial version of Testing Projectcooioiiiiiceeee e 36

3.1.4.1 Technology StaCKccoooiiiiiie e 36
142 STFUCTUNE........ooi ettt 38
BB B USQQE ...ttt et ettt et e et e ae e te et e teeteearan 41
3.2.4 Updated version of Testing Projectc.ooov i 42
3.1.5.1 TeChNOlogy StACKccoooiiiiee et 42
S5, 2 STFUCTUNE.......ooei ettt 44
BA5.3 USQQE ...ttt a e e ettt e st e ere e beeraeereeneeneans 49

3.3 QAITOON ...ttt a ettt sttt n e ae e 52
3.3 DESCHIPLION... ...t ettt et ettt areenreas 52
3.3.2 BaCKeNd = APIS ...t 52
3.3.3 Frontend — Ul ... 53
3.3.4 FUNCHIONANItY ...t 54
3.3.5 Tests execution eXampleccooooiiiiiiiiiiieeee e 68
3.3.6 Feature creation eXamplecoooiiiiioiiie s 73
3.3.7 CONCIUSION ...ttt ettt sttt ettt aesaeneas 75

3.4 DevOPS N QA ...ttt ettt ettt e eteeteereas 76
B4 PIPEIINES ... et eaeas 76
3.4.2 Results — Notifications...............coiiiii e 77

4, CONCIUSIONS ...ttt ettt b ettt ebe e 78
4.1 Summary and CONCIUSIONSc.oooviiiiiiiiicceeeee et 78
4.2 FULUIE WOTK ...ttt 79

BIiBlOGrapRyoooi ettt ettt ettt e te b e aa e teeaeenteeaeebeeraans 80

List of images

FIQUIE 2.1 TDD CYCIO ..ottt ettt et ettt e be et e ete s e eaeeeaeennas 27
Figure 2.2 BDD CYCIeoo.o ettt sttt ettt b et et enes 31
Figure 3.1 Doctoranytime 0ooooooiiiiiicee et 32
Figure 3.2 Example of "POM" design pattern................c.ccooioiiieiceceee e 39
Figure 3.3 Initial version StruCture ... 40
Figure 3.4 Updated version StruCtUre.................c.oooiiiiiiiii s 45
Figure 3.5 Playwright configurations typescript fileccoooiin 46
Figure 3.6 TDD STrUCIUIEoooiie ettt ettt e te e et ere e 47
Figure 3.7 BDD STrUCUI@.............cooooi ettt enas 49
Figure 3.8 “INStruCtioNS” PAQGEoooviiiiiiiee ettt et e ere e 55
Figure 3.9 Testing methodology dropdown buttonccooiiiiii 55
Figure 3.10 Results information button ..., 56
Figure 3.11 Terminate program buttonoooiiiiiiii e 56
Figure 3.12 BDD “TeStS” PAGE.........cooouiiiieeiitieeeeeeeteee ettt ettt ettt ettt e eae s 56
Figure 3.13 TDD “TeStS” PAGEcouoiiiiiiiiieceee ettt 57
Figure 3.14 Testing levels dropdOWN...................coooiiiiiiiiiceee e 57
Figure 3.15 DeVice dropPadOWNcc.ooiiiiiiiiiicieeeee ettt ettt 58
Figure 3.16 Browser-Emulators dropdownc.ooooiiiiiiiiiceee e 58
Figure 3.17 Headless mode button...................ooooii e 59
Figure 3.18 Disable/Enable tests button ... 59
Figure 3.19 “Configurations” PAge...............ooooiiiiioiie et 60
Figure 3.20 Configurations dropdOWN...................ccooiiiiiiiiiiee e 60
Figure 3.21 Add configuration file modal ..., 61
Figure 3.22 Edit/Delete configuration file ... 61
Figure 3.23 “ReSUIIS” PAQE.......c.c..ooiiiiiieeeeee ettt et st ta e e e ereeees 62
Figure 3.24 Delete results modal ... 62
Figure 3.25 Tests’ execution results pageccooooiiiiiiiciicce e 63
Figure 3.26 “AlIUIe” FEPOItottt sttt sttt e e 64
Figure 3.27 “Playwright” report (Q).............ccooooiiiioieee et 64
Figure 3.28 “Playwright” report (D)ccoooii s 65

Figure 3.29 “Cucumber” rePOrt ...ttt 65

Figure 3.30 “Feature” PAge...........ocoui ittt ettt et eta e e ereeeens 66
Figure 3.31 Feature's confirmation modal.........................c.ooooii, 67
Figure 3.32 QA TOOI ICON..........c.oiiiiiiieieeetee ettt ettt s et s seese s enis 68
Figure 3.33 Auto-updates of QA TOOIooiiiiii e 68
Figure 3.34 Selecting configurations (@).................ccooiiioiiicce e 69
Figure 3.35 Selecting configurations (b).............c.cccooiiiiii e 70
Figure 3.36 Selecting tests ..o 70
Figure 3.37 Tests eXeCUtiON reSUILSccooiiiiiiiic s 71
Figure 3.38 Results in “AllUre” rePorto.oo i 72
Figure 3.39 Results in “HTIML” report ..ot 72
Figure 3.40 Pre-submitted “Feature” pPage............cccoouioiiiiiiiciiceeeeeee e 74
Figure 3.41 “Feature” page final Step..............ccooiiiiiieeeeee e 74
FIiQUIE 3.42 DEVOIPS ...ttt ettt ettt e s te b e e ae e be e b e ese e seesbeessesssenseessaseennas 76
Figure 3.43 Slack results notification ... 77

Symbolisms

YV V.V V V V V V V V V V

BDD (Behavior Driven Development)

TDD (Test Driven Development)

AAT (Automated Acceptance Tests)

AATDD (Automated Acceptance Test Driven Development)
ISTQB (International Software Testing Qualifications)
QA (Quality Assurance)

Ul (User Interface)

FE (Front End)

BE (Back End)

FS (Full Stack)

E2E (End-to-end)

API (Application Programming Interface)

1. Introduction

1.1 Thesis’ significance

It is very crucial for all companies and for all projects to be usable and to have no conflicts or
errors. Companies devote substantial effort to considerable lengths to ensure that their
projects are error-free. To achieve this, most companies have already started investing in their
quality assurance (QA) or testing departments to test their products before they reach the end
users. QA departments consist of manual and/or automated testers. Manual testers are
responsible for testing the company's product by manually performing all possible user
actions. Automated testers, on the other hand, create scripts to automate the possible user
actions. Over the years, a lot of research has been done in the field of testing and many types
and methodologies have been developed. There are many different types of testing and

several methodologies to accomplish all these testing types.

All the above points will be analyzed in this master thesis, with a special focus on the
methodologies, namely the so-called Test Driven Development (TDD) and Behavior Driven
Development (BDD). The latter is a new methodology capable of closing the gap between

developers and product contributors, a problem that most companies are trying to solve.

1.2 Purpose — Aims

The main purpose of this master thesis is to analyze the notion and the necessity of Testing
in a life cycle of software implementation in order to ensure the Quality Assurance of this
software. Afterwards, a wide analysis related to the methodologies of Automated Software
Testing, and more specifically the ones named Test Driven Development (TDD) and Behavior
Driven Development (BDD), shall take place. Moreover, this master thesis explains the need
of practicing both testing methodologies within a project, in order to increase the Quality
Assurance of the product. Finally, this master thesis explains, how developers and non-
developers are able to collaborate by using the BDD methodology. Except the bibliography
part of this master thesis, a relative project, in collaboration with the company named
“‘Doctoranytime”, has been generated. In this project, both of the above testing methodologies
are used, which helped the company to handle easily its testing project, and increase the

Quality Assurance of its product.

10

1.3 Contribution to the QA field of informatics

1. A review of the relevant literature has been made, considering both official guides (e.g.
ISTQB information) and scientific literature (i.e. articles).

2. Informationrelated to Testing in general and Testing methodologies was gathered from the

relevant literature.

3. This information was filtered and combined in order to create the bibliography part of the

present master thesis.

4. A real-life project was created, by using new technologies (Playwright, Cucumber).

5. Two testing methodologies (TDD and BDD) were used and combined in order for a real-

life project to be generated.

6. In order to ease the handling of the Test Project, a platform (QA Tool), with BE and FE
parts was created. There testers (manual and automated) are able to set the desired
configurations, select and filter the available tests that will be executed and check

afterwards, the respective results.

11

1.4 Basic terminology

> Software

“Computer programs, procedures, and possibly associated documentation and data pertaining to

the operation of a computer system.” [1] [2]

> Functionality
“The capability of the software product to provide functions which meet stated and implied needs

when the software is used under specified conditions.” [1] [2]

> Software Testing

“Software testing is a way to assess the quality of the software and to reduce the risk of software
failure in operation.” [3]

» Automated Software Testing
“Automated testing is the application of software tools to automate a human-driven manual process

of reviewing and validating a software product.” [4]

» Test Automation
“Test automation is the practice of running tests automatically, managing test data, and utilizing
results to improve software quality. Test automation is primarily a quality assurance measure, but

its activities involve the commitment of the entire software production team.” [5]

» TDD Practice
“Test Driven Development is a Testing Practice. Its main idea is to perform initial unit tests for the
code that must be implemented; that is, first codify the test and, subsequently, develop the business
logic. In TDD, tests are written by the developers based on the requirements specified by the

clients.” [2]

12

ATDD Practice

“Acceptance Test-Driven Development (ATDD), also known as Story Test-Driven Development
(STDD), is a technique similar to TDD, but at a different level. This technique involves team
members with different perspectives (clients, development, tests) who collaborate to write

acceptance tests before the implementation of a functionality.” [2]

BDD Practice

“Behavior-Driven Development (BDD), is a synthesis and refinement of software engineering
practices that helps teams generate and deliver higher quality software quickly. Its base represents
some agile practices and techniques, including, in particular: Test-Driven Development (TDD) and

Acceptance Test-Driven Development (ATDD).” [2]

POM
“Page Object Model (POM) is a design pattern, popularly used in test automation that creates
Object Repository for web Ul elements. The advantage of the model is that it reduces code

duplication and improves test maintenance.” [6]

APIs

“APls are mechanisms that enable two software components to communicate with each other using
a set of definitions and protocols. For example, the weather bureau’s software system contains
daily weather data. The weather app on your phone “talks” to this system via APIs and shows you

daily weather updates on your phone.” [7]

Modal

“A modal (also called a modal window or light box) is a web page element that displays in front of
and deactivates all other page content. To return to the main content, the user must engage with
the modal by completing an action or by closing it. Modals are often used to direct users’ attention

to an important action or piece of information on a website or application.” [8]

13

Software feature (Feature)

In software, the term feature has several definitions, which are often distinct from the more general
definitions of the term. The Institute of Electrical and Electronics Engineers (IEEE) defines the term
in IEEE 829 (a now-defunct standard for software test documentation) as a "distinguishing

characteristic of a software item (e.g., performance, portability, or functionality)." [9]

Production environment
“The last environment in software development, this is where new builds/updates are moved into

production for end users.” [10]

Test environment

“As the name implies, this is where application testing is conducted to find and fix errors.” [10]

Staging environment
“Here, all the work done in the development environment is merged into the built system (often
used to automate the process of software compilation) before it is moved into the production

environment.” [10]

Software release (Release)
“A release is the distribution of the final version or the newest version of a software application. A
software release may be public or private and generally signifies the unveiling of a new or upgraded

version of the application.” [11]

DevOps
“DevOps is a combination of software development (dev) and operations (ops). It is defined as a
software engineering methodology which aims to integrate the work of development teams and

operations teams by facilitating a culture of collaboration and shared responsibility.” [12]

DevOps pipeline (Pipelines)
“A DevOps pipeline is a set of automated processes and tools that allows developers and
operations professionals to collaborate on building and deploying code to a production

environment.” [13]

14

» Continuous Integration
“Continuous integration is a software development process where developers integrate the new
code they've written more frequently throughout the development cycle, adding it to the code base
at least once a day. Automated testing is done against each iteration of the build to identify
integration issues earlier, when they are easier to fix, which also helps avoid problems at the final
merge for the release. Overall, continuous integration helps streamline the build process, resulting

in higher-quality software and more predictable delivery schedules.” [14]

» Continuous Delivery
“Continuous delivery lets development teams automate the process that moves software through
the software development lifecycle, and it can provide many benefits when provisioning an

integrated toolbox.” [15]

15

1.5 Structure of the research

In chapter two (2) the research methodology will be analyzed. In the next chapter (3) the
theoretical background of the master thesis will be explained. More specifically, many details
about Software Testing will be given, such as the Testing basics, the Ways of Testing and plenty
other information. More than this, details and information about Automated Software Testing
shall be provided too (Test Automation, Types of Automated Testing/Tests, Testing Practices).
In chapter four (4) the practical part of master thesis will be explained. In particular, firstly, the
initial version of the project shall be explained and, then, the new version of the project will be
presented. Finally, in the last chapter (5), a summary and several conclusions exist. More than
this, some ideas and possible functionalities are provided in order to expand this project in the

future.

1.6 Research methodology

This master thesis investigates and analyzes the meanings and practices of Software Testing.
It is separated into two parts. In the first part, the more theoretical one, data and information
from websites, articles and several other master theses were utilized. The data collected from
several sources, were combined to create a completed and structured bibliography part related
to Software Testing. A reader of this master thesis is able to fully understand the meanings and
the importance of Software Testing. The data that have been used, have already been collected
or created by other researchers (secondary research). The second part of the present thesis,
the more practical one, includes data and details about the development of a product, with
several features, procedures and techniques (applied research). For the creation of this product,
several technologies, programming languages and frameworks were used. More than this,
several testing methodologies and techniques were utilized. The practical part of this master
thesis is based on the theoretical one. A reader of this master thesis and a user of the product
is able to fully understand how the theoretical part can be applied to a product of a real-life

project.

16

2. Bibliographic Review — Theoretical Background

2.1 Software Testing

2.1.1 Testing basics

Nowadays more and more software systems are created. Many daily human activities are
related to software systems. From a company's point of view, it is very important for its
applications to have as few failures, bugs, and errors as possible. This is very crucial
because if the company’s products, which are used by many people, do not work properly,
this can lead to many negative consequences, including loss of money, time or business

reputation.

For this reason, many companies have begun to invest in software testing in order for their
products to work as expected and, more than this, to be efficient and productive. It's not
only that companies have begun to create Quality Assurance (QA) departments in order to
test their products, but, also, have begun to train their developers to test their own source

code either manually or with automated way.

Software testing, as an official definition from ISTQB industry, is a way to assess the quality

of the software and reduce the risk of software failure in operation.

Software testing is an investigation conducted to provide stakeholders with information
about the quality of the software product or service under test. More simply, software
testing is a method to check whether the actual software product matches the expected
requirements and ensure that software product is defect free. It can also provide an
objective and independent aspect regarding the software to allow the business appreciate

and understand the risks of software implementation. [3] [16] [17]

17

Testing methods involve the execution of software/system components using manual or
automated tools to evaluate one or more functionalities. The main purpose of testing is to
identify errors, gaps or missing requirements in contrast to actual requirements. In
particular, test techniques include the process of executing a program or application with
the intent of finding software bugs (errors or other defects), and verifying that the software

product is ready to be used.

Software testing is very important because if any bug or errors exist in the software, these
can be identified early enough and can be solved before the delivery of the software
product to the end-user. Properly tested software product ensures reliability, security and
high performance which further results in time saving, cost effectiveness and customer

satisfaction.

Software testing can be conducted as soon as executable software, even if partially
completed, exists. The overall approach to software development often determines when
and how testing is conducted. In a phased process, the biggest part of testing is taking
place after system requirements have been defined and implemented in testable programs.
On the contrary, under an agile approach, requirements, programming and testing are

often executed simultaneously. [18] [19] [17]

Testing is not only the procedure of executing tests. Test planning, analyzing, designing
and implementing are very crucial parts of testing. More than this, testing includes the
operation of reporting progress, showing results and evaluating the quality of a test object.
Moreover, testing includes reviewing “work products”. By “work products” we mean
requirements, user stories and source code. Last but not least, testing includes validation.
In this procedure, it is checked whether the system is able to cover the user’s needs in its

operational environment(s). [3] [16] [17]

18

Furthermore, testing meets many benefits. Some of these benefits are mentioned below:

Cost-Effectiveness

v

v Security
v" Product Quality
v

Customer Satisfaction

All of them will be analyzed further.

To begin with, the first and most important benefit of software testing is that it is cost-
effective. In particular, testing every IT project on time helps companies to save money for
the long term. In case that the bugs of a project are caught in the earlier stage of software
testing, it will cost much less to the company to fix it. [20] [21] [22]

In addition, the most vulnerable and sensitive benefit of software testing is security. Clients
are always looking for products that can trust. Software testing is very important as it is a

practice that removes the majority of risks and problems at a very early stage. [20] [21] [22]

Moreover, software testing increases products’ quality. This is an essential requirement of
any software product. Testing ensures that a product of high quality shall be delivered to
the clients. [20] [21] [22]

Finally, the main aim of any product that will be delivered to clients is to satisfy them.
Software testing preserves the best user experience for the client from a business
perspective. [20] [21] [22]

19

2.1.2 Ways of Testing

There are two ways of testing. The first one is the manual testing and the second one is
the automated testing. In the past, manual testing was more familiar to the companies, as
it was the one and only way of testing that companies were conducting. Nowadays the

most usual type of testing is the automated one. [23] [17]

In recent years manual testing is not so often used as the automated testing, but this does
not mean that it has been erased from the testing world. Sometimes, manual testing is the

only way to test a feature of a software in order to be sure about its validation. [23] [17]

Many companies are trying to create automated test scenarios and test cases in order to
test their products and make all testing processes automated. As it was mentioned before,
usually manual testing is the one and only way to test a feature of a software. For this
reason, the results of the “experiments” that have been made by the companies in the field
of testing, have indicated that a hybrid model of testing (both manual and automated) is

the best way to test software and increase the quality assurance of the product. [23]

20

2.1.3 Cross-related Testing

2.1.3.1 Cross-browser Testing

Cross-browser testing is the type of testing that verifies that the functionalities of an
application and all of its features work correctly and as expected in different browsers.
This type of testing represents a process of verifying an application's compatibility with
different browsers. In particular, cross-browser testing provides a programmer with the
possibility to check whether a website works properly when accessed through different
browsers combinations (versions are included too), different devices, and last but not
least, different assistive tools. [22] [24] [25]

To define and explain the above information more simply, cross-browser testing is a
process rendering the possibility to test a website or an application in multiple browsers

in order to make sure that it works as expected and steadily. [22] [25]

2.1.3.2 Cross-platform Testing

Cross-platform testing is a testing process that is used in order to check the functionality
and adjustability of an application across different platforms. These different platforms
are operating systems and devices. Specifically, cross-platform testing provides a
tester with the possibility to check whether a program works as expected for all

operating systems (Windows, Linus, iOS or Android). [22] [26]

This type of testing (cross-platform testing) is indispensable in terms of quality
assurance. Once a product starts to be developed for multiple platforms, then amount
of platforms that can be chosen is endless. Cross-platform testing is needed to be
performed in order to determine what behavior an application or website adopts in many
different environments. By using this type of testing, it is feasible to identify any existing
errors that may vary among platforms and configurations. These errors may be related

to stability, user interface, usability, and performance. [22] [26]

21

2.2 Automated Software Testing

Automated software testing cannot be missing from a company that aims to increase the quality
assurance of its products. This type of testing does not include only writing and executing
automated scripts. It includes several operations before and after the aforementioned actions.
Before the implementation and the execution of the source code, there are some other steps
such as test planning, analyzing and designing. After the implementation and execution of the
test scenarios and test cases, the steps of reporting and evaluating the results follow. Finally,

the last step is the one of reviewing the operations.

Focusing on the steps of the implementation of the test scenarios and test cases, there are
mainly two ways to create automated tests and scripts. The first one, named Test Driven
Development (TDD), is the most widely known and used. By this way of testing, only the
developers participate into the source code implementation. The second one, named Behavior
Driven Development (BDD) is, in a way, a new testing methodology, that is capable of creating
very productive and safe communication between developers and upscale employees.
Specifically, this technology is able to embed employees from the above grades of a company

to the operation of creating the test scenarios and test cases.

More details about these two testing methodologies will be mentioned below.

22

2.2.1 Test Automation

Test automation is the practice of running tests automatically, managing test data, and
utilizing results to improve software quality. This practice saves time, effort and money to
the companies. In order a test to achieve these goals, it must comply with some criteria.

The most crucial of them will be mentioned below. [3] [16] [17]

For starters, a test should be repeatable. Tests should be created in such a way that can

be used multiple times.

In addition, a test should be determinant. This means that the test must return every time
the same result without deviating from the expected goal. More simply, the execution,
having always the same data as an input in order to execute the test, should always
conclude in a similar, if not the same, outcome. The term “similar outcome” means that
either the test will literally return every time the same result, or, the test will confirm that a

process works properly. [3] [16]

Test automation is a practice that companies should include in their processes, in order to

increase their productivity and succeed to survive in the market.

23

2.2.2 Types of Automated Testing

There are two main types of automated testing, the functional and the non-functional one.

2.2.2.1 Functional tests

Functional tests are capable of testing the business logic behind an application. This
type of test automation includes scripts that are able to validate the business logic and
the anticipated functionality of an application or a website. More specifically, functional

testing includes tests that evaluate functions that the system should perform. [27] [28]

2.2.2.2 Non-Functional tests

Non-functional tests are capable of testing the non-business specifications of an
application. These specifications are the ones that are related to the usability,
performance and security of an application or a website. These specifications can be

stable or they can be scaled by the size of the software. [28]

24

2.2.3 Types of Automated Tests

There are several types of automated tests. These several types of automation tests define
what kind of test suites can be automated. Some of them will be further analyzed. The

types of automated tests that will be analyzed are the following:

Unit tests

Code analysis tests
Smoke tests
Integration tests
End-to-end (E2E) tests

Acceptance tests

vV V V V V V V¥V

Performance tests

To begin with, Unit tests are small and very quick tests that are responsible to check the
functionalities of the code. These tests are on a build server and they do not communicate
with database, external APls, or file storage. They are made to test only the code itself and
not the external dependencies. As their name indicates, this kind of tests is responsible for
validating the proper functionality of a simple unit. This type of testing is being implemented
mostly from the developers of a team and not from the testers. Finally, this type of testing
can be succeeded for both the front-end (FE) and the back-end (BE) part of a product. [29]
[30]

Code analysis tests are running when a developer checks the code. Other than
configuring rules and keeping the tools up to date, there is not much source code writing
to do with these automated tests. There are several types of code analysis tools. Some of

them spot security defects, and others test the code’s style and form. [31] [22]
Smoke tests are very quick tests with small complexity in their functionalities. These tests

are responsible to check crucial parts and features of a product. They are mainly needed

to ensure that all services and dependencies are “up” and running. A smoke test is not

25

necessary to be an all-out functional test. It can also be run as part of an automated

deployment or triggered through a manual step process. [3] [22]

Integration tests are responsible to check the more complex parts of a product. They are
responsible to test the whole integration of a program or a system, even with external
operations or other micro services. For this reason, an integration test is more complicated
and difficult to set up. Integration is mostly ‘valuable’ for the business core of a company
or organization. [29] [22] [30]

End-to-end (E2E) tests are responsible to check several combined functionalities of a
product, in a queue from start to endpoint. These tests verify that all components of a

program or a system are able to run and be combined as expected. [32] [33]

Acceptance tests are executed at the end of the testing process. They are responsible to
determine whether a program or a system has the expected functionality and more
importantly, the functionality that has been agreed upon to have. Therefore, it is crucial for
developers, businesses and testers to expand their cooperation in order to create the

proper acceptance test cases under the client’s requirements. [30]

Performance tests are very important for a product. These tests are responsible to check
the performance of an application in several circumstances. There are many kinds of
performance tests. Each one is responsible to check a different operational part of a
program or a system. For instance, according to the specialists on the performance field,
each web platform should be visible in less than six seconds. Having a platform opening in
more than six seconds, consists a red limit that should be “caught” by the QA sector as a

performance issue. [29] [22] [3]

26

2.2.4 TDD Practice

Test Driven Development (TDD) is a software development process. This practice is a
software development process that repeats short development cycles. The idea of this
practice is that firstly developers should create the test cases and then write the respective
source code. Then the code that is written for a functionality of the software, is repeatedly
tested by these test cases, until it passes them. In the next paragraph a complete analysis

about the steps of the TDD practice is presented. [34]

TDD software development process has mainly three steps.

TDD Cycle

O

REFACTOR

Figure 2.1 TDD Cycle
[https://blog.ippon.tech/a-roadmap-to-tdd-adoption]

To begin with, the first step is to write down the aim of a new feature and create a test
function for this feature. For example, if the purpose of a test is to check the content of the
site’s robots.txt file, then the respective test function can be named “check-robots-txt-file-
content.spec.ts” (TypeScript syntax). This function will include all the necessary steps in
order to get and check this file’s content. A browser would need to be opened on the
desired page. Then, the content of the page would be validated so it can meet the expected

outcome.

Then, in the second step, a developer needs to run the test and check for errors and failures
in the results. For example, all the above functions are going to be executed. Then the

results of this process should be evaluated. Is the robots.txt file’'s content the expected

27

one? If yes, then the test is ready. Otherwise, there is a problem and an investigation

should take place.

In the third part, the developer is fixing the code for the new feature and rerunning the test
function. Then, the developer is checking again for errors and failures. This step should be

repeated until no error and failure exist as a result from the test function.

By following this practice, developers are confident regarding their source code and sure
that their code operates properly. More than this, by implementing this operation, the
quality of the code is increased and the technical debt is being eliminated. Finally, this
practice is capable of achieving high test coverage. The entire life-cycle of a TDD is often

referred to as the “red-green-refractor” cycle.

Although TDD is a development practice, testers use this technique for automation testing
development. Focusing on the usage of the TDD method in the QA field, initially, testers
appoint to the goal of a new feature by their supervisor or manager. The new feature is,
most times, already created by the developers. Then, the testers create a test scenario
with several test cases. They run this test scenario with all its test cases and check the
results for errors and failures. After this process, testers fix these errors and failures in their
source code and they execute again the test scenarios and test cases. This process should

be repeated until no error or failure exists as a result from the whole tests.

The most important characteristic of this practice, that will increase the effectiveness of the
testing part and consequently the quality of the source code, is that the test scenario and
test cases should be created before the creation of the new feature by the developers. In
this way, the test scenarios and test cases will not be affected by the creation of the new

feature, but they will depend on the idea of the new feature. [34] [2]

28

2.2.5 BDD Practice

Like Test Driven Development (TDD), Behavior Driven Development (BDD) is a software
development process. This testing technology, as the name suggests, illustrates the
methods of developing a feature based on its behavior. The behavior is described in a file
in a very simple human language, easy to be read and understood by a person, developer

and non-developer.

This practice helps teams to generate and deliver higher-quality software quickly. Behavior
Driven Development or BDD is an extension of Test-Driven Development. In this practice,
instead of writing test scenarios and test cases at the beginning, several behaviors are
written. When these behaviors are written, then the required code for a program or a
system to perform these behaviors, is going to be written. This testing technology is
capable of making the collaboration of developers, testers, and business users feasible
and easier. [2] [35]

This practice has more steps than TDD practice. More specifically, this practice consists of

six steps. Some of them are similar to TDD. These steps will be mentioned below [35]:

> Write the behavior of a program or system
This behavior is going to be written in a file in simplified English language by the product

owner or business analysts or QAs. Here is an example of such a file (feature file):

Feature: Check homepage search button

Check homepage search button

Scenario. Check homepage search button
Given l am to “/” page

When | click the search button

Then | should redirect to the main s page

29

» Write the automated scripts
This text that was written in the English language is going to be converted into programming
tests. These tests are going to be written in a programming language (Python, Java,
JavaScript, etc.) and with the usage of a testing framework (Selenium, Playwright, Cypress,
etc.). The structure of these automated scripts differs among programming languages and
of course among different testing frameworks. Each step of the feature files is going to be
converted into source code. In this way, the human language is going to be translated into
language readable from computers. Here is an example of this conversion (written in
programming language “TypeScript” and with the usage of testing framework named

“Playwright”):

/I @When ‘I click the search button’

(I click the search button’), async () => {

const homepage = new Homepage();

await homepage.clickSearchButton();

b

» Execute the source code
The functional code underlying the behavior is then executed. For every step of a feature

file, the respective implementation is going to be executed.

» Check if the results are passed
This source code that was written is going to be executed and checked for its results. If the
results are the expected ones, then the next behavior is going to be prepared. Otherwise,
this behavior should be fixed. These results can be imprinted and evaluated through a

reporting tool.

> Refactor the source code
This source code that was written is going to be refactored and organized in order to be
readable and maintainable. More important, it is going to be used from many other feature

files that include some of these steps.

30

> Repeat steps 1-5 for new behavior

Finally, steps 1-5 are going to be repeated in the implementation of the next behaviors.

Write Failing
FEATURE Test

Refactor

Make Test

n cycles

Pass

Figure 2.2 BDD Cycle

[https://saucelabs.com/blog/a-two-minute-bdd-overview]

31

3. Real life project

The company named “Doctoranytime” gave me the opportunity to structure my master thesis
based on its product. More specifically, the present master thesis is related with the Testing

Project of the company.

Figure 3.1 Doctoranytime logo

This testing project was used in the master thesis, in order for the project to be updated with new

technologies and new methodologies. This project is separated in three parts:

v QA
v' QA Tool
v" DevOps

32

3.1.1 Cross device Testing

The initial QA project was also a cross-device testing project. The test scenarios and test
cases were executing not only on multiple browsers, but also on multiple devices. This
attribute ensures that a user can use Doctoranytime’s product on multiple devices and

more importantly on the device that this user desires the most.

As someone can easily understand, cross-device testing is as crucial as is the cross-
browser testing for a product. It is also necessary to be created in order to increase the

quality assurance of this product.

Without altering this characteristic, the updated version of the QA project is a cross-device
testing project too. In fact, in the updated version of the QA project, test scenarios and test
cases are able to be executed in more emulators (devices) than the ones in the initial

version.

The initial version of the QA project was able to execute test scenarios and test cases in

the following devices:
» Moto G4

More devices for cross-device testing can also be supported in this version.

The updated version of the QA project is able to run the test scenarios and the test cases

in the following devices:

» Moto G4
> Galaxy S8

The updated version of the QA project is able to run test scenarios and test cases in more

devices as it is created right now and shall be able to support even more devices.

33

3.2 QA Project

In this chapter, the QA part of the testing project shall be analyzed. The characteristics of the
first part of the project, the QA part, shall be analyzed concerning the initial and the updated

version of the project.

3.2.1 Cross browser Testing

The initial QA Project was a cross-browser testing project. In that case, the test scenarios
and test cases were running in multiple browsers, in order to ensure that a user can use
Doctoranytime’s product on multiple browsers and more importantly on the browser that
this user desires the most. As someone can easily understand, cross-browser testing is

very crucial for a product in order to increase the quality assurance of it.

Maintaining the aforementioned attribute, the updated version of the QA project is a cross-

browser testing project too.

The initial version of the QA project is able to run test scenarios and test cases in the

following browsers:

» Chrome

» Mozilla Firefox
» Microsoft Edge
» Opera

The updated version of the QA project is able to run test scenarios and test cases in the

following browsers:

» Chrome
» Mozilla Firefox
» Microsoft Edge

34

The updated version of the QA project is able to run test scenarios and the test cases in
fewer browsers as it is formed right now. It is worth to be mentioned that in the future shall

be able to support more browsers, even more than the initial QA project is able to support.

3.2.2 Types of Automated Tests

Both versions of Doctoranytime’s QA project use several types of automated tests in order

to increase the quality assurance of the company’s product.

In particular, both versions of the QA project, include smoke tests (these are the most
crucial and the fast tests) that produce quick results about the most crucial parts of
Doctoranytime’s product such as the “robots.txt” file content, the content of the sitemap,
the SEO (Search Engine Optimization) characteristics of the site, etc. Moreover, within this
type of automated tests of the QA project, there is a subcategory of automated tests, the

APl tests. A lot of tests have been created that check the functionality of the product's APlIs.

More than this type of automated tests, both versions of Doctoranytime’s QA project
include integration tests. The duration of this kind of tests is longer than the one of the
smoke tests. Also, integration tests check less crucial features of the company’s product.
More specifically, these tests are created in order to check the behavior of different units,
modules and components of Doctoranytime’s product, as a combined entity. Tests like the
ones checking the login or the register functionality of the website, the search functionality

of the website, etc., belong in this category.
Finally, both versions of Doctoranytime’s QA project, include end-to-end tests. This type
of tests lasts longer than integration tests and much longer than smoke tests. They are not

as crucial as integration tests and of course, they are a lot less crucial than smoke tests.

This type of tests validates the entire product of the company from start to an end point,

along with its integration with external interfaces. With this type of tests, the whole product

35

of Doctoranytime is tested, and more specifically, the dependencies, data integrity, and

communication with other systems, interfaces and databases.

A test that checks a specific functionality of the product does not belong in this category.
On the contrary a test that executes several functionalities and checks a main or possible
behavior of a user of Doctoranytime's product, does belong to this category. An end-to-end
test for Doctoranytime’s product can be a test that executes a user’s login, then the
selection of a doctor for an appointment, then booking an appointment with this doctor, and
lastly the user's logout. This is a test that represents the main behavior of a user of this

product.

3.2.3 Initial version of Testing Project

In this subchapter, the initial version of QA part of the project shall be analyzed.

3.2.3.1 Technology Stack

To begin with, the QA part of the project was created by the use of multiple

technologies, frameworks and methodologies. To name but a few:

Python
Selenium
Pytest
JSON

Allure

YV V. V V V

In more details, the programming language that was used to create the QA part of
this project is the one named “Python”. This language is an Object Oriented
programming language and it was chosen because of its numerous advantages and

convenient usage.

36

In order to automate processes in the browser to succeed automation testing, the
framework “Selenium” was used. This framework was preferred because of its
numerous advantages, the big amount of information in several blogs and websites,

and its very clarified documentation.

Afterwards, the framework “Pytest” was used as a testing management tool. Pytest
is a very powerful framework with many advantages. Some of them shall be further
mentioned. This framework provides testers with the possibility to manage tests’
executions, configure tests in general mode, and, in more individual mode too, by
configuring specific tests. More than this, Pytest enables users to parameterize test

scenarios and increase test cases.

To store several data, that were needed in the automated testing process, JSON
files were used. In order to easily handle these files, JSON technology was used. In
its libraries Python includes a JSON library that enables programmers to handle
JSON files.

Finally, in order to store the results of the tests’ executions and make them readable,
not only for testers but any employee of the company that was related to the testing
project, the “Allure” technology was used. This framework has many possibilities
and produces a detailed report. In an “Allure” report, anyone can find tests in an
organized depiction. More specifically, tests are organized in suites. Every test
scenario includes several test cases. Each test case has its own information (name,
parameters, duration, retries, history) and its own results (status, messages,
screenshots, videos). More than this, an “Allure” report includes general information,
such as the total duration of the tests’ execution, several charts related to the

duration and the success percentage of this tests’ execution, and even more.

37

3.2.3.2 Structure

Having fully analyzed the technology stack of the QA part of the testing project,
further the structure of the QA part of the testing project shall be explained.

To begin with, the project was separated in several folders. The most important were

the following:

Selenium related
Configurations
Components

Tests

YV V. V V V

Results

The first folder, named “Selenium related”, included files that were related to the
framework “Selenium®. In particular, in order for the testers to easily use the
functionalities of the framework mentioned above, a small custom framework was
created, which included methods with grouped Selenium functionalities. Such a
method was the “click_element® one. This method was responsible for finding the
desired element, scrolling into the element's view, in order for the element to be
visible, and, then, clicking it. Several other methods like the aforementioned were

created, something that was very helpful for testers.

The folder named "Configurations™ included several configurations that were
necessary for the tests’ execution. These configurations were stored in JSON files
and contained information for every website/country where the company operates,
every environment (staging, test and production) and several other information,

such as the base URL, credentials that would be needed for the tests, etc.

For the QA project of the company, the POM concept was implemented. “POM?,
resulting from Page Object Model, is a concept in which every page of a website is

represented with a class. In this class, the respective locators and methods are

38

contained. So, in the folder “Components”, a subfolder with pages-classes was

included. These all pages-classes were included in a subfolder, named “Classes”.

£ PAGE OBJECT

Test Script 1
Login Page

Test Script 2
Home Page

Test Script 3

Figure 3.2 Example of "POM" design pattern

[https://blog.testproject.io/2021/01/06/test-automation-framework-

benefits-pom-selenium-locators-opensdk-junit/]

Besides this subfolder, an extra one was created, named “Testing Classes”. This
folder contained classes which were implemented with the concept of POM,
combining and making use of the previous mentioned classes and their methods, in
order to create functions with grouped actions. These functions were called and

executed in the test scenarios and test cases.

The folder named “Tests” included tests separated into categories. These
categories were related to the kind of device that the code was testing, the criticality
of the tests, and the type of these tests. For example, a test that was related to
Search Ending Optimization (SEO) and was created to achieve Desktop testing was
included in the first Level of the Desktop tests, in order to have higher priority and
be executed sooner than the other tests. This test belonged in the smoke tests
category. The tests of this folder were making use of the classes and methods that

existed in the “Testing Classes” folder.

39

Finally, in the folder named “Results”, the results of the tests’ execution were
stored. It is worth to be mentioned that this folder included results of three different
formats. More specifically, this folder contained results with JSON and XML format
and results with the format of the reporting framework “Allure”. The last mentioned
technology is a framework produces several files (JSON, txt, images) for each tests’
execution, which are generated during the tests’ execution and are necessary in

order for the “Allure” reports to be generated.

The structure that has been analyzed before is showed in the following image.

L

Selenium_related Configs Components Tests Results
! M
Files related to r
! Testing_Classes Classes
selenium and
custom framework Allure_results Xml_results
= "
General, environmentand Mobile_App Website Json_results
country related
configurations /\
Level O Level_1

Level O Level 1

Figure 3.3 Initial version structure

As it was mentioned before, in order to execute the available tests, the technology
“Pytest” was used. This technology is able to search for available tests on the path
that the user has defined. Pytest provides the user with the possibility to execute
the tests of his/her desire, with specific configurations, and detailed results. In order
to easily handle this technology, a wrapper file was created (with the usage of the
programming language “Python”), which included source code for the execution of
the necessary processes before the tests' execution. An indicative pytest command

appears below:

pytest "./Tests/Website/" —k "check-robots-txt-content"

40

3.2.3.3 Usage

The initial version of the QA part of the testing project was using only the testing
methodology, Test Driven Development (TDD). Testers did not often communicate
with the upper departments. They were responsible for the whole testing operation.
In particular, they were responsible for preparing the test scenarios and tests cases
and then creating them. The preparation of the test scenarios and test cases
included the Test Design and the documentation of these tests. Moreover, testers
were responsible for evaluating the functionality of these test scenarios and test
cases after their creation. In the case that these tests were not ready or were not
executed correctly, testers had to fix them. Finally, the testers of the company were
responsible for evaluating the results of the tests’ executions and informing the
relevant employees for the existence of any bugs and errors of the company’s
product. This methodology and process were in progress for every test scenario,

test case and every new feature that the website was about to include.

In this chapter, a brief analysis of the initial version of the project has been
presented. From the information being provided above, someone can easily
perceive that the responsibilities of testers have been plenty and the whole

operation was disorganized.

An extensive analysis for the updated version of the testing project shall follow. The

updated version contains a lot and different processes.

41

3.2.4 Updated version of Testing Project

In this subchapter, the updated version of the QA part of the project shall be analyzed.

3.2.4.1 Technology Stack

To begin with, the updated version of the QA part of the project was created by the
use of multiple technologies, frameworks, and methodologies, as the previous one.
In this updated version, though, the technologies are not exactly the same with the
ones that were mentioned in the previous chapter. Some extra technologies were
added to increase the productivity of the testing project. In the list below, the

technologies of the updated project appear:

Python
TypeScript
JavaScript
Playwright
CucumberdS
JSON

YV V. V V V V

The programming language “Python” is used in order to create a wrapper file that
shall control the whole testing operation. In particular, as in the initial version of the
project, this wrapper file is responsible to set, orchestrate and execute the testing

project.

The programming languages “JavaScript” and “TypeScript”, are Object Oriented
programming languages and are used for the rest of the testing project. These
programming languages were selected because of their numerous advantages and
mostly for their compatibility with the testing framework that was selected for the
update of this testing project (Playwright). TypeScript was preferred for the biggest
part of the testing project, because of its code accuracy, which is achieved by its

strict coding style.

42

In the updated project, the testing framework that was selected is the one named
“Playwright”. Playwright is a new testing framework of Microsoft. It is compatible
with many programming languages, but the default, programming language, and
most preferred by its developers is the one named TypeScript. Playwright is a
testing framework with plenty of advantages. In the case that testers use the
programming language TypeScript, the testing project does not need any extras
libraries. Playwright is capable of setting, organizing, creating, and executing tests.
Playwright has its own settings and reports. By using Playwright, a tester is able to
easily capture screenshots and videos and add them later in the Test Report.
Finally, Playwright provides to a tester the possibility to easily write readable,

organized, detailed, and very fast test scenarios and test cases.

An extra framework that was selected for the updated testing project is the one
named “Cucumber” and more specifically the JavaScript compatibility of this
framework, the “CucumberdS”. This framework is very powerful and useful for
testing projects that include Behavior Driven Development (BDD) methodologies.
This framework is a testing framework, but not like the previous one. In fact,
Cucumber uses Playwright in order to achieve the execution of the tests.
Cucumber’s role is to search inside the testing project and read several files that
include test documentation. These files are called feature files. Feature files, as it
was mentioned before, include lines written in a language identifiable to a human,
using several keywords (Given, When, Then, And). This language is called
“Gherkin” language. Each line that includes a keyword, is called a step. Cucumber
is responsible for reading each step from every feature file in the project and trying
to find the respective part of source code that matches each step. The content of a

feature file appears below:

43

Feature: Check homepage search button

Check homepage search button

Scenario: Check homepage search button
Given lam to “/” page
When | click the search button

Then | should redirect to the main s page

Finally, in order to store several data, that were needed in the automated testing
process, JSON files were used. JavaScript and TypeScript include JSON libraries
that provide the possibility to the programmers to handle JSON files.

3.2.4.2 Structure

Having fully analyzed the technology stack of the updated testing project, the

structure of this testing project shall further be explained.

To begin with, the updated project slightly differs from the previous one. More
specifically, the updated project is separated into two subprojects (in practice it is
separated into two subfolders). The first subproject is related to the TDD

methodology and the second one is related to the BDD methodology.

Each of these subprojects behaves separately, with its own structure, functionalities,
results, and of course, testing methodology. Despite the fact that these subprojects
act separately, they use the same configurations and information, which are stored
in folders and files inside the main testing project. More than this, a main wrapper
file (python file) exists, which is used in order to handle the possibilities of each
testing framework in the aggregate, and is responsible to set, orchestrate and

execute both of the testing subprojects.

44

QA DEV

L

TOD Configurations BDD

Figure 3.4 Updated version structure

Firstly, the Test Driven Development (TDD) related folder is going to be analyzed.

In this subproject, in order for the setup of the Playwright framework to be achieved,
a configuration file (typescript file) exists including the necessary information. Some

of these configurations are:

The directory in which the tests are stored

The base URL of the website that shall be tested

The type of the browser that shall be used

The number of retries that shall occur in the case that a test fails

Whether the execution shall be in a parallel mode

YV V. V V V V

The number of computer threads that shall be tethered from the system for a

parallel execution

45

The format of this typescript file appears in the image below:

Figure 3.5 Playwright configurations typescript file

Moreover, the TDD subproject includes three extra folders in order to organize the
classes, tests and results of the project. This allocation makes the project easy to
operate and maintain. More specifically these extra folders are the ones referred

below:

» Components
» Tests
> Results

In the first folder named “Components”, several classes exist. This subproject
follows the “POM” (Page Object Model) concept. For this reason, each class

represents a page and includes the respective locators and methods.

The folder named “Tests” includes tests separated into categories. More
specifically, tests are separated into folders based on the device that they are going

to evaluate, their priority, and type.

46

Finally, in the last folder, named “Results”, the results of the tests shall be stored.
In this folder, two different kinds of results are contained. During a tests’ execution,
several files are created, which are necessary in order for Allure and HTML (default

report of the Playwright framework) reports to be generated.

|

Components
|
|
Several folders
with classes

e

MobileApp

/\

Level O

Level 1

N

Website

~

4/"

-

Allure-resuits

/\

Level 0

Level 1

i \

|

Results

\

Html-reports

Figure 3.6 TDD structure

Further down, the Behavior Driven Development (BDD) related subproject is going

to be analyzed.

It is worth to be mentioned that Behavior Driven Development (BDD) folder, has a
whole different structure from the one that the Test Driven Development (TDD)

folder adopts.

To begin with, this folder includes two files that are very crucial for the execution of
the technologies “Cucumber” and “Playwright”. More specifically, these two files are

responsible for the initial steps of these technologies during a tests’ execution.

Additionally, the Behavior Driven Development (BDD) folder, as the TDD subproject,

includes some extra folders, in order to organize the classes, features, step

47

definitions and results of the project. More specifically, these extra folders are the

ones referred below:

» Page Objects
> Features

» Step Definitions
> Results

The folder named “Page Objects” has the same role as the folder named
“Components” for the TDD folder. As the “POM” is also followed in this project, the

“Page Objects” folder includes several pages-classes.

The second folder, named “Features”, is the folder where all the feature files of the
project are stored. All the files that represent documentation of the tests and include

steps that are going to be executed, are stored in this folder.

The third folder, named “Step Definitions”, is the one that includes the source code
that matches the steps of the aforementioned files. In particular, for every step of
each feature file, a functionality exists, that is going to be executed when the

necessary cucumber commands would be given.

Finally, in the folder named “Results”, the results of all the tests’ executions are
stored. As in the TDD subproject, the results are generated in two different formats.
A tester is able to evaluate the respective results via an Allure report or via an HTML

report (default report of the Cucumber framework).

48

BDD l

=
Page Objects Features Steps Definitions Results

II i // \“
| \ / ‘\
[\ ff / \
| \ / \

| l'i / Allure-results

Several folders

Feature files
with classes f Html-reports

Methods that
match the steps
which exist in the
feature files

Figure 3.7 BDD structure

3.2.4.3 Usage

The use of this testing project and of course its subprojects (TDD, BDD) can be
accomplished from the wrapper file. The execution of this file with the respective

parameters enables the execution of the desired subproject.

To begin with, prior to the execution of the wrapper file, the user of this testing project
should prepare the common configurations, the ones inside the folder
“Configurations” as described in the chapter above. Afterwards, the user should
select the desired tests for execution. These tests can be selected either isolated

through a JSON file or collectively by selecting the desired tests’ category.

Then, in order to execute the TDD or the BDD project, and run the respective tests,
some parameters in the execution command of the wrapper file, should be given.

These parameters are:

> results_folder: The folder that the results of the tests are going to be stored
» main_config_id: The id of the configuration file that is going to be used
» application: The application/device that the tests are going to evaluate the product

> browsers: The browsers that the tests are going to evaluate the product

49

» tests_level: The category of the tests that are going to be executed
» headless: The value of the headless mode that the user desires

» project_type: The subproject that is going to be executed (TDD or BDD)

pipenv run python runner.py --results_folder

--application --browsers 1 --headless --project_type

The above command will activate the TDD subproject and execute the following

command:

tests_command =>

npx playwright test --grep ${tests_command} --config=tdd/playwright.config.ts

In both subprojects, the role of the testing frameworks (Playwright, Cucumber) is to
search for the desired tests, in the respective folder that the user declared, and
execute them. Then, their role is to store the results of each execution in the
declared position of the project. These results, afterwards, will be used in order to

generate different types of reports.

It is worth to be mentioned, that both subprojects execute tests from a specific folder.
The TDD subproject searches and executes tests that include source code. On the
contrary, the BDD subproject searches and executes tests that include steps written
in a human language. This gives the possibility to the employees of the company,
which are not related to programming, to be responsible for some of the testing
processes. More specifically, it enables them to create feature files that will be useful
as documentation and generate test scenarios and test cases, according to their
point of view. All they have to do is to add the created feature files in the BDD
subproject and evaluate the results of their execution. A good strategy for the testers

would be to “translate” the steps into source code beforehand. In this way, the

50

syntax is determined, and the evaluation is immediate. It is recommended for the
upscale employees to be involved in the testing project only for the tests which are
related to the more crucial and business-oriented features of the company’s product.
Their opinion on these tests would be valuable. The aforementioned operation shall
increase the testing project’s productivity, and consequently, the quality assurance

of the company’s product.

To sum up, the updated project is comprised of two subprojects. The first is related
to Test Driven Development methodology and the second one to the Behavior
Driven Development methodology. Both of them use common configurations stored
in the main testing project. A user can handle them, from a wrapper file (python file)
which is contained in the main testing project similarly to the configurations. After
the tests' execution, several results are produced providing the user with the

opportunity to generate several kinds of reports.

But how this operation and this collaboration can be succeeded?

In order for the employees of a company to easily collaborate and work with a testing
project, like the one that was analyzed above, a QA Tool was made. This tool is able

to automate and cover several processes of this collaboration. More details shall be

found in the next chapter.

51

3.3 QA Tool

3.3.1 Description

QA tool already existed in the initial version of QA part of the testing project. Manual and

automated testers are still using this tool in order to:

» add, edit, delete and set configurations,
> select, filter, and execute tests,

> view, check and evaluate the results.

The tool helps a lot the automated testers, which are able to handle easier and more
productively the testing project. The QA tool is created as a full stack (FS) project, and
includes a backend (BE) part with APIs and a frontend (FE) part with a friendly User
Interface (Ul). The updated attributes of the QA Tool shall be mentioned below.

3.3.2 Backend - APIs

The QA tool, as previously mentioned, includes a backend (BE) part with several APlIs.
Specifically, the backend part is created with the programming language “Node.js”. With
the usage of the Node.js programming language, several APIs, based on the QA tool's

pages, are created. These APIs are separated into the following categories:

Header APIs

Tests APIs
Configurations APIs
Results APIs
Feature APIs

YV V. V V V

The first category includes all the APIs that are related to the “Header” component of the
site. Similarly, the rest of the categories include respectively, APIs for the “Tests” page,
the “Configurations” page, the “Results” page, and the “Feature” page. The APIs are

separated in this way, in order for the developers to ease their handling and editing.

52

There are several types of APIs, created in this project. In particular, “GET” APIls are
created in order to get information. Moreover, “POST” APIs are created in order to send
information. Finally, “PUT” and “DELETE” APIs are created in order to update and delete

data respectively.

Due to low storage demands the BE part of this project is using JSON files and not a
database. In these files, crucial information for the QA Tool’s processes are stored. These

files are being used and edited from the abovementioned APIs.

3.3.3 Frontend — Ul

As far as the frontend (FE) part of the QA tool is concerned, a library of the programming
language JavaScript, named “React.js” is used. This framework is very useful in order to
create user interfaces. The whole project of the User Interface (Ul) part, is based on this
library and consists of several pages. Each one of these pages serve a different handling

of the testing project.

This JavaScript framework is selected because of its advantages. Its most important
advantage is the capability to separate the whole project into components. The whole FE
part of the project is separated into components. Each component includes HTML
elements with several functionalities. Some components represent pages, while some
smaller represent elements. It is feasible for a component to include other components

(bigger or smaller).
This structure is used because provides the developers with the possibility to create

reusable components, handle easier the source code and, finally, create a maintainable

project.

53

Like the BE part, the components are separated into categories. There are:

Header APIs

Tests APIs
Configurations APIs
Results APIs
Feature APIs

YV V V VYV VY

The mindset behind this categorization is the same as the one that was mentioned in the
BE part. Every category contains a main component that represents a page and several

other components that are included to the main one.

3.3.4 Functionality

It the updated version of the testing project the QA Tool was changed and adapted to the
new technologies, new programming languages, and new testing methodologies which
accompany the new testing project. The initial QA tool was totally changed, except its
structure, technology stack and User Interface (Ul). Further the features of the updated QA

tool and its functionalities shall be described in details.

The updated QA tool consists of five main pages and for each one of them, several APIs

exist. In particular, these five main pages are the following:

v" Instructions
v' Tests

v' Configurations
v" Results

v

Feature

54

Firstly, the “Instructions” page, which is shown below, includes several instructions that
help the user to handle the QA tool (figure 3.8).

Instructions Tests Configurations Results Feature

Instructions:
This site was created in order to be easy to select tests to be executed

1. Sat configurations

& Gat results info (toast notification)

Figure 3.8 “Instructions” page

In the up and right corner of the tool, being presented below, there are three buttons. The
first one is related to the testing methodology that the user desires to use (figure 3.9). The
second button is responsible for informing the user about the status of the results (pending
and done) with a toast (figure 3.10). The last button is responsible for terminating the

program when the user clicks it (figure 3.11).

Doctoranytime QA Instructions Tests Configurations Results Feature

m m m m Ciiicruioin

Public tests list

o Lo [o

Figure 3.9 Testing methodology dropdown button

55

Doctoranytime QA Instructions Tests Configurations Results Feature 100 (Project typi = 1 o

Public tests list

Figure 3.10 Results information button

Doctoranytime QA Instructions Tests Configurations Results Feature (700 projnc ypor = | [asumogo] [romivane |

Pubili rtor Admin Patient Admin Diagnastic Cente

Public tests list

€0 1g_pIOCes:
make_pl west
=

Figure 3.11 Terminate program button

From “Tests” page, the user of the QA tool has the possibility to select to execute its

desired tests. This page differs according to the selected testing methodology.

More specifically, when BDD methodology is selected, the page includes all the available
tags of the tests. Thus, the tests that are going to be executed are the ones that include
the tags that the user has selected. Moreover, from “Tests” page, the user is able to choose
whether the tests are going to be executed in headless or non-headless mode (figure
3.12).

Doctoranytime QA Instructions Tests Configurations Results Feature £0D (Projcttype) ™ | | Resutsinfo | | Teminate |

Tags

Tags tests list

smoke
search
dat-login
integration

new_test

Selectall | Deselect all m

Figure 3.12 BDD “Tests” page

56

When the TDD methodology is selected, the “Tests” page has a whole different Ul. In this
case, the page includes the names of all the available tests. These tests are grouped by

categories according to their testing content (figure 3.13).

Doctoranytime QA Instructions Tests Configurations Results Feature [TDDtF:-:,Ecltvpe_l'||ﬁeMish|Iu‘ [Te=~--n.:r.=|

Public = Doctor Admir Patient Admin Diagnostic Center Telesecretary B2b Apis

Public tests list

check_robats_txt_file_content
check_sitemaps_file_content
accept_cookies
complete_booking_process

make_phone_request

st | ocecat

Figure 3.13 TDD “Tests” page

The selection of tests takes place either by selecting the respective checkboxes or by

selecting the desired “Test Levels” from the dropdown list (figure 3.14).

lelected Test Levels: Levdll REENG)

¥ Level_1

Public Doctor Admi Diagnostic Centsg

¥ Level 2

} " B Level 3
Public tests list

B Level 4
B Level 5

)

Figure 3.14 Testing levels dropdown

57

The tests are, also, categorized into mobile application and desktop tests. The user has

the possibility to navigate into these categories, from a dropdown list (figure 3.15).

Doctoranytime QA Instructions Tests Configuratid

Website

min Patient

Mobile Application

Public tests list

check_robots_txt_file_content

check_sitemaps_file_content

accept_cookies

Figure 3.15 Device dropdown

More than this, from the same page, the user has the possibility to select the browsers and

the mobile emulators where the tests are going to be executed (figure 3.16).

LA Instructions jests Lontigurations Kesults F4

e £

Selected Brdil NeGie

~ Firefox

Public ® Edge ient Admin Diaf

’ @ Moto g4
Public tes @ Galaxy s8
check_robots_txt_file_content
check_sitemaps_file_content
accept_cookies

complete_booking_process

mabo nhans ronuact

Figure 3.16 Browser-Emulators dropdown

58

Moreover, from this page, the user is able to select whether the tests are going to be

executed in headless or non-headless mode (as in the BDD “Tests” page) (figure 3.17).

= ey

Headless mode: false

Public =~ Doctor Admin Patient ~ Admin Diagnostic Cente

Public tests list

check_robots_txt_file_content

check_sitemaps_file_content

Figure 3.17 Headless mode button

Finally, from this page, the user has the possibility to disable and enable tests (figure 3.18).

Disabled Tests X

“

Figure 3.18 Disable/Enable tests button

59

From “Configurations” page, the user of the QA tool has the possibility to handle the
configurations of the tests’ executions. These configurations include credentials of

accounts and information about the site that is going to be tested (URL, API URL, country,

etc.) (figure 3.19).

% ISLTULLLID. 163 WUIINIYgUialivige: REUIL Foatdic

Test-GR ™

Configuration file content

Figure 3.19 “Configurations” page
In particular, the user is able to select an already created configuration file from a dropdown

list (figure 3.20).

Instructions Tests Configurations

Test-GR ~

Montas-staging-be
Prod-BE

Prod-GR

Prod-MX

Test-BE

Test-GR

Test-MX

Add configuration file

Figure 3.20 Configurations dropdown

60

Moreover, there are the possibilities to create a new configuration file (figure 3.21), edit

and delete an already created configuration file (figure 3.22).

Add configuration file

Configuration file name

Configuration file content

o J o)

Figure 3.21 Add configuration file modal

A Instructions Tests Configurations Results Feature

Add configuration file kol ixgdoct

Figure 3.22 Edit/Delete configuration file

The “Results” page has the same structure for both testing methodologies. The user of
the QA tool has the possibility to see and check all the results of the tests’ runs. This page
contains a chart with the “pending” and the “done” results. The results are shown in this

page with the form of a hyperlink, accompanied by their respective running status

61

(“pending” or “done”). Finally, a “delete results” button exists, in case the user desires to

delete some or all of the results (figure 3.23).

Instructions Tests Configurations Results Feature TOD (Project typel ~ | | Terminate |
Test esits (X

result 2023-01-18-22-04-30-29 (N result 2022-12-27-23-55-54-75 Testronie

result 2023-01-18-22-02-29-85 m resul -12-17-23-55-48-20 m s

result 2022-12-27-23-57-58-19 ([N

Figure 3.23 “Results” page

Clicking the “Delete results” button (figure 3.23), a modal appears with all the results
providing the possibility to the user to select some or all of them and, then, delete them
(figure 3.24).

Delete results

Select results to be deleted:

8 result_2023-01-18-22-04-30-29 result_2022-12-27-23-55-54-75

8 result_2023-01-18-22-02-29-85 result_2022-12-17-23-55-48-20
result_2022-12-27-23-57-58-19

Select all Deselect all Delete Cancel

Figure 3.24 Delete results modal

62

Clicking a result hyperlink, which was mentioned before (figure 3.23), the user is redirected
to the selected tests’ execution results page, in which the user shall find a pie chart
presenting the success rate of the tests’ run. Moreover, the user shall find several
information about the number of the passed, broken and skipped tests, as well as, the

status of the tests’ execution (“pending” or “done”) (figure 3.25).

Furthermore, two buttons are available for the user, the “Allure” and the “Html|”. Each button

opens a new page with a specific type and format of results’ report (figure 3.25).

Last but not least, the user can find the tests' names when the selected testing
methodology is TDD, or the scenarios' names when the selected testing methodology is
BDD. These names will have a different color according to their result’s value, i.e. green
for passed, red for broken, grey for skipped (figure 3.25).

Doctoranytime QA Instructions Tests Configurations Results Feature

Results inside folder ‘result_2023-01-18-22-04-30-29' m m m

Skipped: 0

Passed

50.00%

Figure 3.25 Tests’ execution results page

63

Clicking the “Allure” button (figure 3.25), a new page will open with an Allure report of the

selected tests’ execution results (figure 3.26).

ALLURE REPORT 1/18/2023 TREND
2 50%
SUITES
Googe Crrome o
ENVIROMMENT
et £ E T thiryg 1o Show
Country G
CATEGORIES
e R iy
Base; Product detects e —
Show al
FEATURES BY STORIES
EXECUTORS
Eho
DESKTOP-DMAHONA Report 2023-01-18-22.04.30-29

Figure 3.26 “Allure” report

Likewise, clicking the “Html” button, a new page will open with an Html report of the
selected tests’ execution results. In this case, the report will not be the same for both testing
methodologies. For TDD, the Html report will be the report which is provided by the
Playwright framework (figure 3.27) (figure 3.28) and for BDD, the Html report will be the

report which is provided by the Cucumber framework (figure 3.29).

Q. All 2 Passed 1 ® Failed 1 Flaky 0 Skipped 0

~ Website/Level_0/Public/SmokeTests/check-sitemaps-file-content.spec.ts 508ms
x @public - Check sitemap file content 508ms
~ Website/Level_0/Public/SmokeTests/check-robots-txt-file-content.spec.ts 500ms
« @public - Check robots txt file content 500ms

Figure 3.27 “Playwright” report (a)

64

Q

Al 2| Passed 1 » Failed 1 | Faky o

@public - Check sitemap file content

Website/Level_0/Pubiic/SmokeTests/chack-sitemaps-fle-coment spectss

((Google Chrome)
X Run

~ Emors

AssertionError [ERR_ASSEATION]: [ERROR] Sitemaps number i3 not the same with the expected sitemaps number

38 | /! Assertion length
|
» 42 | assert(
| -

4 | sitemaps.length == expectedsitemaps.length,

42| "[ERR0R] Sitemaps number 1s not the same with the expected sitemaps rumber™

a3 | b}
st C: \UHP‘%\SWI!!ISW%EQI‘ thesis\master-thesis\tad\tests\nebsite\Level_2\Public\SaokeTests\check-sitenaps-file-con
at C:lusers thesis\master. modules'\Splaywrighttest’\lib\workerfunner. j5:376:9
at TestInfolmpl. runfn (C:\Users\SkolixiS\Master thesis\master-thesis\node mﬂule;\ﬁla,wunt\test\1ib\test!m'n is:
at C:lusers thesis\master -odules\Qalayw:gh:\test\nu\-nmramner Js:331:26
at T .run (C:Ysers\Skol -thesis\node_mcdules\play
at

~ Test Steps

« Before Hools

> o) ylime g o

» o locatoralinnerTexts[openad folder openad line spanmin-chii

w After Hooks

~ Screershots

80 indexxmi] — WebsiteLavel 0/Pubic/SmakeTests/

— JSCemporentyPublicComponenty/stenants]

T Y i ot o e 70 s dnmc it vt & The et w2 o s b

ight-core\lib\utils\timeouthu
TimecutManager.runiithTimeout (C:\Users\SkolixiS\Master thesis\master-thesis\node modules\Splaywright'testi\lib\tli
at TestInfolmpl. rumdithTimeout (C:\Users\SkolixiS\Master thesic\master.thesis\node modules\Splaywright\test\lib\tes
at Workerfiunner. runTest (C:\users\SkolixiS\Master thesis\master-thesis\node modules'\Splaywright\test\lib\worksrfunm
Bt Workersunner.runTestGroup (Crusers\SkolixiS\mMaster thesis\master-thesis\node modules\Bplaywright'test\lib\worker
at process.canomymous: (C:iUsers\Skolixis\Master thesis\master-thesis\node_modules'fplaywrightitest\lib\worker.js:74

heck-sitemaps-fie-conte. 300ms

Skipped 0

38dms

20ms

oems

Figure 3.28 “Playwright” report (b)

bad lest scenarios master-thesis

@ Fassed

Aapars 223012014 1-4838
Teat £
Counsry: G

S—

~ Feature: Check homepage soarch bfion a

Feaum Descrpton Coeck he st pamen

@t
~ Scenarie; Muster thasis 2 a

I Givers | am os 7 page
0 e | chon e seath Buson
3 Then § sk recieect 1o the man § page

I A S

Generaed & hours ag0

1 Semmarie

© Poues

Esecuton DESKT
Flana LR haps Shast doctoes
Bane Aph UFRL: hitpn Mastaphgr Sctm dey

Figure 3.29 “Cucumber” report

65

Finally, the “Feature” page shall be presented and analyzed. In this page, the core value
and usefulness of the present master thesis is effortlessly shown. This page connects the
non-developers with the testers of a company. The non-developers shall be able to create
feature files and, then, send them to the testers, in order to include them in the testing

project. These feature files shall be generated by the usage of predefined steps.

In the same page, non-developers can enter the feature file name, the feature name and
the feature description in the respective inputs. Moreover, they can enter the feature file's
content in the main text area. Also, they are able, also, to save temporarily the feature’s
information in order to be able to navigate inside the QA tool without losing the written data.
The content of the feature file can be selected from a dropdown list with the predefined

steps (figure 3.30).

Doctoranytime QA Instructions Tests Configurations Results Feature

Create feature o

Feature file information

Feature file content Feature file steps

Figure 3.30 “Feature” page

66

Finally, by clicking the “Create feature” button (figure 3.30), a confirmation modal appears
containing the information, that was already added by the user, for the new feature file. At
this stage, the user receives the final format of the feature file that shall be created. By
clicking the “Download” button of this modal, the feature file shall be downloaded to the

“‘Downloads” folder of the user’'s computer (figure 3.31)

Download feature file

Feature file name:

Feature file content

Figure 3.31 Feature's confirmation modal

67

3.3.5 Tests execution example

In this chapter, a real example is going to be mentioned, in order for the reader to
understand the usage of this tool. If the user desires to execute several tests for the Greek
site of Doctoranytime’s product and then check the respective results, he/she has the
possibility either to execute tests on production site (the one that end-users can see), or
the test site (the one that is used by the employees of the company in order to ensure that
the new features and changes, work as expected). In this example, the tests are going to
be executed in the test environment. The procedure that the user has to follow shall be

explained.

To begin with, the user who wants to use this tool, all he/she has to do is double-click the

tool’s icon existing as a shortcut at the user’'s computer (figure 3.32).

Figure 3.32 QA Tool icon

The tool is auto-updated. Thus, every time the tool is executed, it runs the necessary

updates, as shown in the image below (figure 3.33).

le named pipenv

FrontEnd

Figure 3.33 Auto-updates of QA Tool

68

When the tool is ready, the first page that will open is the “Tests” page.

Firstly, the user needs to set the desired configurations. For this example, as it was
mentioned before, the user has to choose from the configurations dropdown the option that
is related to the Greek site and more specifically, the one related to the test environment
of it.

By clicking from the header of the site the “Configurations” option, the user shall be
redirected to the respective page. In this page, the user is able to click the configurations

dropdown list and then choose the desired configuration option (figure 3.34) (figure 3.35).

Instructions Tests Configurations Results

Test-GR~

Prod-BE
Prod-GR
Prod-MX
Test-BE
Test-GR
Test-MX

Add configuration file

Figure 3.34 Selecting configurations (a)

69

Instructions Tests Configurations Results

Test-GR~

Configuration file content

Figure 3.35 Selecting configurations (b)

Then, the user should go back to the “Tests” page and select the tests for execution. The
ways of selecting and filtering the tests have been described before. In the present

example, the user selects individually three tests for execution (figure 3.36).

Public Doctor Admin Patient Admin Diagnostic Center Tele

Public tests list

B check_robots_txt_file_content

check_sitemaps_file_content

accept_cookies
complete_booking_process

make_phone_request

Select all Deselect all

Figure 3.36 Selecting tests

70

When the tests’ execution is finished, a “Results” page with the respective results shall
open automatically. From there, the user shall be able to check which and how many tests

have passed, failed or skipped and their rate in a pie chart. (figure 3.37).

Instructions Tests Configurations Results Feature

Results inside folder ‘result 2023-02-07-08-17-08-46' (23 (M3 =0

Skipped: 0

Passed
75.00%

Figure 3.37 Tests execution results

Finally, in the case that the user desires to access a more analytical report, he/she has the
choice to select between two extra kinds of report, the “Allure” and the “HTML”. In the
images below, these two reports appear. More specifically, in the first image the “Allure”
report appears, which includes plenty of details for the tests’ execution (screenshots,
parameters, execution time, messages, charts, timelines, etc.) (figure 3.38). In the second
image the “HTML” report appears, which also contains many details related to the tests’

execution (figure 3.39).

71

Q Allure T TREND
Overview \
4 75%
SUITES
Google Chrome G
Show al
ENVIRONMENT
Test Emaronment TEST There is nething fo show
Counlry [
CATEGORIES 1 1t
Gase URL itps:/test doctoranytme gr
Base A0iLRL ips hesiplagedeim dew Froductdefects
Showall
FEATURES BY STORIES
EXECUTORS
Show all
) DESKTOP-DNAHGNA Report: 2023.02.07-08-17.08-46
Figure 3.38 Results in “Allure” report
Q All 4 Passed 3 % Failed 1 Flaky 0 Skipped 0
v Website/Level _0/Public/SmokeTests/check-sitemaps-file-content.spec.ts 568ms
% @public - Check sitemap file content 568ms
Website/Level_0/Public/SmokeTests/check-sitemaps-file-content.spec.ts:8
v Website/Level 0/Public/SmokeTests/check-robots-txt-file-content.spec.ts 546ms
v @public - Check robots txt file content 546ms
Website/Level_D/Public/Sm sts/check-robots-txt-fil
v Website/Level_1/Public/SmokeTests/accept-cookies.spec.ts 3.6s
v @public - Accect cookies (page: /s/Genikos-iatros) 1.7s
\ efLevel_1/Public/SmokeTests, pt-cookies.spec.ts:11
v @public - Accect cookies (page: /) 1.9s
ite/Level_1/Public/SmokeTests/accept-cookies.spects:11

Figure 3.39 Results in “HTML” report

A tests’ execution example with the usage of the QA Tool was provided. As it is evident,
this tool has many functionalities and possibilities, which enable the user to operate

successfully and easily the Testing Project.

72

3.3.6 Feature creation example

In another case, where the user is not a tester or a developer, but an employee of the
higher levels of the company (for example a Product Owner, Leader, Manager, etc.), the
QA Tool provides some extra possibilities. In particular, in case the user desires to test a
new feature that is going to be uploaded on the production site, he/she can open the QA
Tool as it was mentioned in the above chapter, and navigate into the “Feature” page of

this tool.

On this page the user is able to create a new feature file with several steps, the ones that
he/she evaluates as necessary, in order to check the functionality of the new feature that
has been implemented. The available steps that can be selected by the user, appear in a
dropdown list. These steps are already created, i.e. "translated”, as a source code in the
testing project. After fulfilling the desired feature file’s information (Feature file’s name,
feature’s name, feature’s description), the user can create a test scenario of his/her desire.
In particular, by clicking the button “Add feature scenario”, the user is able to add a new
scenario with several tags. It is worth to be mentioned that the content of a tag, that can be
filled by a user, has no limitation. This tag will characterize the test scenario and will make
it easy for the responsible employees to understand its type and content. Then, the user is
able to select the necessary steps for the test scenario. (figure 3.40). Finally, by clicking
the “Create feature” button, the user is able to see the final format of the feature file and

download it (figure 3.41).

73

Create feature [T

Feature file information

check-homepage-search-bution Check homepage search button

Feature file: check-honepage-search-button, feature
Feature: Check homepage search button
Feature Description: Check homepage search button

/

Feature file contant

Create feature

Feature description

Check hemepage search button

Feature file steps

Then | shauld redirect to the main < page

Figure 3.40 Pre-submitted “Feature” page

Download feature file

Feature file name:
“check-homepage-search-button.feature”
Feature file content

=: Check homepage search button

n: Check homepage search button

Check homepage search button
I am on {string} page
1 | click the search button
1 should redirect to the main s page

Download Cancel

Figure 3.41 “Feature” page final step

74

3.3.7 Conclusion

To sum up, the QA Tool contains all the aforementioned pages, as they were shown in the
previous images. From these pages, the user of this tool has the possibility to set and
handle configurations and to filter, select and execute tests. More than this, the user is able
to see and evaluate results and finally, to create a feature file that will be included in the

project, in order to increase its test scenarios and test cases.

The usage of this tool (QA tool) makes feasible the immediate communication and
collaboration between the higher and lower departments of a company. Moreover, the user
of this tool has the possibility to handle in an easier way the testing project and achieve its
improvement. Finally, the usage of this tool can save time for the employees of a company,
increase their productivity and, of course, to increase the Quality Assurance (QA) of the

company’s product.

75

3.4 DevOps in QA

3.4.1 Pipelines

The whole testing project was connected with some pipelines in order to succeed the
“Continues Delivery” operation. The tests are not only able to be executed through the
QA tool, but also at an external computer (a virtual machine) on a predetermined and daily

base and of course, before and after every release.

This operation is automated and it is the beginning of the processes needed in order for

the company to succeed the “Continues Integration” operation.

ORI

Ops

¥ @

Figure 3.42 DevOps

[https://medium.com/taptuit/the-eight-phases-of-a-devops-

pipeline-fda53ec9bba]

76

3.4.2 Results — Notifications

The results of the tests that were executed by the pipelines are stored in the cloud. In this
way, the employees of the company have the possibility to view and evaluate the results

at any time. More than this, in this way, a history of the tests’ results is stored.

The “DevOps” department has, also, created a notification process. In particular, the
results’ generation part of the testing project, contained in the pipelines, was connected
with an application named “Slack”. There, all the results appear and every employee of

the company is able to view them (figure 3.43).

Devops Genie ArP 2
Website update:

test.be | Lvi-0 ()] Lvi-1 Lvl-2 vi-3 (V)| Lvi-4 Lvi-5

test.gr | Lvi-0 (X)(4)] Lvi-1 wi-2 3)(3)] -3)| -4)] vi-5 &
test.mx | Lvi-0 Lvl-1 ()] Lvi-2 ()(3)] Lvi-3 Lvi-4 Lvl-5
APl update:

Figure 3.43 Slack results notification

77

4. Conclusions

4.1 Summary and conclusions

In the present master thesis, an analysis of the meanings of Testing, Quality Assurance, and
Automated Testing and their characteristics, took place. The testing process is very important
for the companies that desire to grow and be a part of the global market. In particular, the testing
process is the only way to achieve the aforementioned goal. Testers, manual or automated, are
able to find errors and bugs of a product, way sooner than the user or the client of this product.
In this way, the Quality Assurance of a company's product is going to be achieved, the image
and reliability of this company in the market shall be established and its incomes shall be
increased. Despite the fact that manual testing is very important even in our days, the key to

achieve the aforementioned goals is the automated testing.

There are several types of automated testing. Each company chooses which of these types
would implement and, of course, the number of tests that are going to create for each testing
type. This decision is related to the needs of each company. For example, some companies
that are smaller and their product is new in the market, it is possible that they would need more
smoke tests and less integration and end-to-end tests. On the other hand, bigger companies it

is possible to need plenty of tests for each testing type.

Like the test types, there are different testing methodologies. The most frequently used of the
testing methodologies is the one named Test Driven Development (TDD). In this testing
methodology, only developers and testers interact. In order for the collaboration between higher
and lower departments of the company, in the testing process, to be achieved, the testing

methodology named Behavior Driver Development (BDD) should be implemented.
In this process, the behavior of a test scenario or test case is written in a human language inside
a file, named feature file. This file includes several steps. Each of these steps will be “translated”

by testers into a language comprehensible by a computer (source code).

78

Someone can understand better this theoretical part, by reading the practical part of this master
thesis. A testing project with automated software testing processes has been created with the

usage of the aforementioned testing technologies.

In the testing project that has been created, the communication and collaboration of the testers
and non-developers of a company was indeed successful. The result of the above was to

increase the Quality Assurance of the company’s (Doctoranytime) product.

Besides the testing project that has been created, the implementation of a tool has, also, been
achieved (QA Tool) that gives the possibility to testers and non-testers to easily operate and
handle the testing project. This tool embeds into its processes both TDD and BDD testing
methodologies.

4.2 Future work

Testing has no boundaries. Thus, the QA part of this project can accomplish a great
improvement in the future. The testing framework that has been selected for this project,
"Playwright", consists a technology able to succeed this improvement. More than this, there is
still room for improvement of the QA Tool and the DevOps part of this project. The QA tool can
increase its quality and usage by adding plenty of new features. Among these new features, the
features related to the Behavior Driven Development (BDD) testing methodology, should take
priority. Finally, regarding the DevOps part of the testing project, the process of "Continuous
Delivery" has been created. The main aim of this testing project is still ahead and it is called

"Continues Integration".

79

Bibliography

[1]

(2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

A. ISTQB team, "/en/search/," 2023. [Online]. Available: https://glossary.istqb.org/en/search/.
[Accessed 12 February 2023].

L. A. C. Gémez, "Analysis of the impact of test based development techniques (TDD, BDD, AND
ATDD) to the software life cycle," IC-Online, Leiria, 2018.

A. ISTQB team, Certified Tester, Foundation Level Syllabus, 2018 V3.1 ed., Belgium: International
Software Testing Qualifications Board (ISTQB), 2019, p. 93.

M. Rehkopf, "/continuous-delivery/software-testing/automated-testing," 2023. [Online]. Available:
https://www.atlassian.com/continuous-delivery/software-testing/automated-testing. [Accessed 7
February 2023].

P. Vuollet, "/blog/what-is-test-automation/," August ~ 2019. [Online]. Available:
https://www.testim.io/blog/what-is-test-automation/. [Accessed 27 December 2022].

N. Sharma, "AN EXPLORATORY STUDY ON WEB APPLICATION AUTOMATION TESTING,"
43, 2020.

AWS, "/what-is/api," 6 February 2023. [Online]. Available: https://aws.amazon.com/what-is/api/.
[Accessed 5 February 2023].

J. Juviler, "/website/modal-web-design," 1 April 2022. [Online]. Available:
https://blog.hubspot.com/website/modal-web-design. [Accessed 11 February 2023].

A. Wikipedia contributors, "/wiki/Software feature#cite note-2," 6 2 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Software feature#fcite note-2. [Accessed 12 February 2023].

[10] A. Marget, "/blog/development-test-environments," 20 January 2023. [Online]. Available:

https://www.unitrends.com/blog/development-test-environments. [Accessed 11 February 2023].

[11]K. T. Hanna, "/searchsoftwarequality/definition/release," March 2022. [Online]. Available:

https://www.techtarget.com/searchsoftwarequality/definition/release. [Accessed 8 February 2023].

[12] A. GitLab team, "/topics/devops," 2023. [Online]. Available: https://about.gitlab.com/topics/devops/.

[Accessed 10 February 2023].

80

[13] T. Hall, "/devops/devops-tools/devops-pipeline,"” 2023. [Online]. Available:
https://www.atlassian.com/devops/devops-tools/devops-pipeline. [Accessed 10 February 2023].

[14] A. IBM team, "/topics/continuous-integration," 2023. [Online]. Available:
https://www.ibm.com/topics/continuous-integration. [Accessed 10 February 2023].

[15] A. IBM team, "/topics/continuous-delivery," 2023. [Online]. Available:
https://www.ibm.com/topics/continuous-delivery. [Accessed 9 February 2023].

[16] L.-O. Damm, "Early and cost-effective software fault detection measurement and implementation in
an industrial setting," Blekinge Institute of Technology, 2007.

[17] Mark Fewster, Dorothy Graham, Software Test Automation, Effective use of test execution tools,

Boston: Addison-Wesley Professional, 1999, p. 574.

[18] C. Software, "/(@concisesoftware/everything-you-should-know-about-qa-in-software-development-
the-beginners-guide," 17 September 2019. [Online]. Available:
https://medium.com/(@concisesoftware/everything-you-should-know-about-qa-in-software-

development-the-beginners-guide-3e7afacf607c. [Accessed 29 December 2022].
[19]1 K. Yasar, "/whatis/definition/software-testing," August 2022. [Online]. Available:
https://www.techtarget.com/whatis/definition/software-testing. [Accessed 26 December 2022].

[20] Ilze, "/blog/importance-of-software-testing," 3 July 2018. [Online]. Available:
https://www.testdevlab.com/blog/importance-of-software-testing. [Accessed 5 February 2023].
[21]P. Parthiban, "/blog/why-software-testing/," 14 April 2021. [Online]. Available:

https://www.indiumsoftware.com/blog/why-software-testing/. [Accessed 1 February 2023].
[22] E. Papadopoulos, "Synthetic Transaction and Up-time Monitoring Systems in IT," Thessaloniki,

2021.

[23]S. Pittet, "/continuous-delivery/software-testing/types-of-software-testing," 2023. [Online].
Available: https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-

testing. [Accessed 3 February 2023].

[24] S. R. Choudhary, "Detecting Cross-browser Issues in Web Applications," Georgia Institute of
Technology, Atlanta, GA, p. 3, 21 May 2011.

[25] C.-B. D. C. System, "Marti Kaljuve," Tartu University Library, Tartu, 2013.

81

[26] Mattia Fazzini, Alessandro Orso, Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, Urbana-Champaign IL USA: IEEE Press, 2017, p. 318.

[27] M. Shi, "Software Functional Testing from the Perspective of Business Practice," Ccsenet, vol. 3, no.
4, p. 4, November 2010.

[28] Isha Rana, Pooja Goswami, Himani Maheshwari, Sameer Mohammad, "A REVIEW OF TOOLS
AND TECHNIQUES USED IN SOFTWARE TESTING," Jetir, vol. 6, no. 4, p. 6, April 2019.

[29] V. Shinde, "/automation-testing-tutorial-2," 24 January 2023. [Online]. Available:
https://www.softwaretestinghelp.com/automation-testing-tutorial-2/. [Accessed 27 December 2022].

[30] Rasneet Kaur Chauhan, Igbal Singh, "Latest Research and Development on Software Testing
Techniques and Tools," Inpressco (International Press Corporation), vol. 4, no. 4, p. 5, 1 August
2014.

[31TR. Bellairs, "/blog/sca/what-static-analysis," 10 February 2020. [Online]. Available:
https://www.perforce.com/blog/sca/what-static-analysis. [Accessed 4 February 2023].

[32] Alexander S. Gillis, "/searchsoftwarequality/definition/End-to-end-testing," February 2018. [Online].
Available: https://www.techtarget.com/searchsoftwarequality/definition/End-to-end-testing.
[Accessed 5 February 2023].

[33] Wei-Tek Tsai, Xiaoying Bai, Raymond A. Paul, Weiguang Shao, Vishal Agarwal, "End-To-End
Integration Testing Design.," DBLP, p. 7, January 2001.

[34] K. Beck, Test Driven Development: By Example, Boston: Addison-Wesley Professional, 2002, p.
216 .

[35]J. F. Smart, BDD IN ACTION, Behavior-Driven Development for the whole software lifecycle,
Manning Publications, 2014, p. 384.

82

