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Abstract 

The objective of this paper is to make accurate forecasts about tourist arrivals in
Cyprus. It is undeniable that the sector of tourism and hospitality constitutes one of
the most significant for the economic growth of the island. As a consequence, the
ability  to  predict  the  future  tourist  demand  is  extremely  useful  both  for  the
government and the stakeholders and can help in further development of this sector.
Accurate  forecasts  provide  valuable  aid  for  the  development  of  marketing  and
tourism strategies, and the pricing policies. In this investigation we use a variety of
econometric models in order to make three years predictions about tourist arrivals in
Cyprus and compare the accuracy of forecasts of these models through widely used
forecast accuracy measures. 

1.Introduction 
Tourism has a large impact in world economy, creating direct and indirect benefits to
all the industries within a region. It contributes to a country’s economy in terms of
employment, affects the balance of payment and investment and generates income
and profit (see Ali, Ciaschini, Pretaroli, Severini and Socci (2014). According to the
World Travel and Tourism Council (WTTC), in the year 2019 the Travel and Tourism
sector  has  created  worldwide  an  8.9US  $  contribution  to  the  world’s  GDP,
participated to the global GDP with 10.3% and created 330 million jobs worldwide.

Tourism industry is one of the major contributors to foreign exchange earnings for
Cyprus as it occupies a dominant position in the economy. Moreover, it significantly
affects  Cyprus culture  and its  multicultural  development  throughout  the decades.
Cyprus has been a full member of the World Tourism Organization since 1975. More
than 4 million tourists visit Cyprus every year and as a result the island is the 40th
most popular destination in the world. 



Tourism contributes  highly  to  GDP,  increasing  the  employment  rate,  sources  of
revenue  for  local  people,  private  sector  and  public  sectors.  In  addition,  tourism
constitutes significant part of government budget and strategy because the revenues
of  taxes  are  used  to  finance  public  investment  plans.  The  tourism  sector  is
dynamically  developing  in  Cyprus and the  contribution  of  Travel  and Tourism to
national GDP and employment is very high. In 2018, the contribution of travel and
tourism to GDP (% of GDP) for Cyprus was 21.9 %. Before contribution of travel and
tourism to GDP of Cyprus started to increase to reach a level of 21.9 % in 2018, it
went through a trough reaching a low of 14.3 % in 2010. In addition, more than 85
thousand people  are  employed in  this  economic  sector.  Moreover,  by  2025,  the
relative contribution of the tourism sector to overall economic activity is anticipated to
be 25.5%. The statistical evidence reveals the significant contribution of Tourism in
Cyprus  economy.  The  ideal  climate  in  combination  with  the  developed  tourism
infrastructure makes Cyprus a very popular summer destination. Although Cyprus
attracts  tourists  all  year  round,  it  is  obvious  that  in  summer  season  the  tourist
demand increases rapidly. For this reason, notable role in our analysis possesses
the term of seasonality.

In this empirical research we desire to find the most appropriate and accurate model
for forecasting of tourist arrivals in Cyprus. For this reason, we use the available data
and make predictions in sample in order to evaluate the accuracy of different models
for our case. The structure of our paper is organized as follows: In section 1 we
make a brief literature review, in section 2 we describe the methodologies and the
dataset  that  are  used,  in  section  3  we  present  the  empirical  results  of  our
investigation and we make some comments and the last section summarizes this
paper. 

2.Literature Review 
With the importance of the tourism industry in Cyprus’ economy, and the whole world
in general, rising, the significance of tourism forecasts becomes more obvious as the
time goes by. The benefits of accurate forecasts in tourism have been under a lot of
study and as a result, the forecasting literature is very rich (see Archer 1987, Morley
1991, Frechtling 1996 and Smith 2014). Accurate forecasts are very valuable to both
the public and the private sectors in order to avoid shortages or surpluses in goods
and services and thus, it’s significance in tourism planning, cannot be denied. Bull
(1995) indicates that  forecasting tourist  numbers is  very helpful  in assessing the
impact that tourism will make on the resources of an economy. Tourism investment
should be based on professional business planning, long-term operating viability and
an  achievable  vision  of  the  industry's  future  (Lundberg,  Krishnamoorthy  and
Stavenga,1995). One of the major needs of tourism industry is to reduce the risk of
poor decisions. One way to achieve this is by better discerning the future events (see
Smith 2014).

The models used in our analysis are proposed by the articles focusing on forecasting
tourist  arrivals.  The  most  widely  used  procedures  in  non-causal  time  series



forecasting are the autoregressive integrated moving average (ARIMA) models (Goh
and  Law,  2002)  and  the  exponential  smoothing  (ES)  models  (Cho,  2003).  Cho
(2001). Song, Li, Witt, & Athanasopoulos (2011) developed the dynamic modelling
through  the  integration  of  the  time-varying-parameter  (TVP)  technique  and  the
causal  structural  time  series  model.  Claveria  and  Torra  (2014)  evaluate  the
forecasting performance of different models on overnight stays and tourist arrivals in
Catalonia, amongst them, the SETAR model. Liang (2014) employs the SARIMA–
GARCH model  to  analyse and  predict  tourism demand in  Taiwan and  makes  a
comparison with  other  models,  such as  ES and HW. Andrea Saayman and llse
Botha  (2016)  used  non-linear  methods  such  as  unobserved  components  model
(BSM),  smooth  transition  autoregressive  models  (STAR)  and  singular  spectrum
analysis to predict the tourist arrivals in South Africa. Comparing the results of non-
linear models with the results of SARIMA and Naïve model concluded that the non-
linear models presented better forecasting performance. BSM model is also applied
by Du Preez and Witt (2003) and Turnen and Witt (2001) for time-series forecasting.
Mamula (2015) examines the forecasting tourism demand in Croatia by incorporating
seasonal  dummies in  Linear Regression model  to  capture the seasonality  effect.
Gunter, U., Önder, I., & Gindl, S. (2019) incorporated in their investigation Google
Trends in  order  to  test  whether  forecast  models  with  LIKES and/or  with  Google
Trends deliver more accurate forecasts. To capture the dynamics in the data, the
autoregressive distributed lag (ADL) model class is employed.  

3. Methodology 
We use three simple models as benchmark in order to have direct comparisons with
other more complicate models. 

3.1.1 Naïve Model 
The Naïve model assumes that tourism arrivals follow a random walk, and trends
and turning points can therefore not be predicted. We make the assumption that the
tourist arrivals in the current period (Ft) are equal to arrivals in the previous period
(Yt-1). 

Ft=Yt-1 (3.1) 

3.1.2 Linear Regression (LR) 
Having as dependent variable the tourist arrivals and as independent variables a
time trend,  a  constant  and eleven seasonal  dummies,  we conduct  a  forecast  of
tourist arrivals through a simple linear regression with OLS method. The model that
we estimate is: 

Arrivals= c + a1 trend+ b1d1+ b2d2+…b11d11 + et (3.2)

Where  c  is  a  constant,  trend  is  a  time  trend  and  d1,  d2... d11 are  the  seasonal
dummies. We include eleven seasonal dummies instead of twelve in order to avoid
the trap of dummies variable and multicollinearity problems. 

3.1.3 Moving Average (MA) 



The moving average of order K evaluated at time t is denoted by MA(t/K):

MA (t /K )=
Y t+Y t−1+…+Y t−K+1

K
   (3.3)

At each point in time t we remove the oldest observation and we add a new one. In
our  case  we  use  three  types  of  Moving  Average  models  in  order  to  produce
forecasts  for  tourist  arrivals  in  Cyprus.  Moving  average  models  of  3,  6  and  12
observations are used. The formula that we use to forecast the time series at time
t+1 is:

i) MA(3): F t+ 1=
1
3
∗ ∑

(i=t−3+1)

t

Y i

ii) MA(6): F t+ 1=
1
6
∗ ∑

(i=t−6+1)

t

Y i

iii) MA(12): F t+1=
1
12

∗ ∑
( i=t−12+1)

t

Y i

3.1.4 Autoregressive Model (AR)  
A simple AR(1) model is used:

                      Y t=δ+φΥ t−1+εt   (3.4)

3.2 Exponential Smoothing 
All  exponential  smoothing  methods  also  average  exponentially  the  data.  The
exponential  averaging of  data  means that,  the  more recent  observations receive
more  weight  than  the  less  recent  ones.  There  are  many  different  methods  of
exponential smoothing: the Simple Exponential Smoothing, the Double Exponential
Smoothing and the three methods of Holt Winters Exponential Smoothing (Without
Seasonal  component,  with  Additive and Multiplicative Seasonal  component).  The
main difference among the various exponential smoothing methods is the way they
treat the trend and seasonality. In this paper we use four out of five methods were
referred above.

3.2.1 Single Exponential Smoothing 
The single  exponential  smoothing  is  an  appropriate  method  for  forecasting  time
series without trend and seasonality. 

The forecasting formula is the basic equation 

St+1=aY t+(1−a )S t ,0<a≤1 , t>0



This can be written as: 

St+1=St+aet

where et is the forecast error (actual - forecast) for period t. In other words, the new
forecast is the old one plus an adjustment for the error that occurred in the last
forecast.

3.2.2 Double Exponential Smoothing 

This method applies the single smoothing method twice (using the same parameter)
and is appropriate for series with a linear trend. Double smoothing of a series Y is
defined by the recursions: 

St+1=aY t+(1−a )S t−1

 Dt+1=aS t+(1−a )Dt−1 

where S is the single smoothed series and D is the double smoothed series and 0<
a≤ 1 

Forecasts from double smoothing are computed as 

F t+ k=(2St−Dt+
a

1−a (S t−Dt ))k

3.2.3 Holt-Winter Exponential Smoothing (Additive)  
This model is considered appropriate for time series depicting a linear time trend and
additive  seasonal  variation.  (Holt,  1957;  Winters,  1960).  This  method  employs  a
triple  exponential  smoothing  framework  comprising  level,  trend  and  seasonality
equations. These are specified as following: 

The forecast formula is: 

F t+1=Lt+T t+St−m+1

The observed error is:

e t=Y t−Lt−1−T t−1+St−m

The updating relationships are:

Lt=Lt−1+T t−1+α (Y t−Lt−1−S t−m ) 

T t=T t−1+β (Lt−Lt−1−T t−1 )

St=St−m+γ (Y t−Lt−1−T t−1−St−m )



3.2.4 Holt-Winter Exponential Smoothing (Multiplicative) 

This model is considered appropriate for time series depicting a linear time trend and
multiplicative seasonal variation (Holt, 1957; Winters, 1960). The forecast function
includes the local trend and seasonal components as before, but the seasonal effect
is now multiplicative. This method employs a triple exponential smoothing framework
comprising level, trend and seasonality equations. These are specified as under: 

The forecast function: 

F t+1=(Lt+hT t ) St−m+h

The error correction updating relationships are: 

Lt=Lt−1+T t−1+α (et / St−1)

 T t=T t−1+αβ (et / St−1)

St=St−m+γ (et / S t−1 )

3.3 ARIMA Models

3.3.1 Auto Regressive Integrated Moving Average (ARIMA) 
ARIMA models provide  another  approach to  time series forecasting.  Exponential
smoothing and ARIMA models are the two most widely used approaches to time
series forecasting, and provide complementary approaches to the problem. While
exponential  smoothing  models  are  based  on  a  description  of  the  trend  and
seasonality in the data, ARIMA models aim to describe the autocorrelations in the
data. 

Univariate ARIMA models use only  the information contained in the series itself.
Therefore, these models are constructed as linear functions of past values of the
series  and/or  previous  random  shocks.  Forecasts  are  generated  under  the
assumption that the past history could be translated into predictions for the future.
The ARIMA model uses the fact that arrival of tourist’s is a stochastic time series.
This  modelling  regresses  the  dependent  variable  Yt on  p-lags  of  the  dependent
variable (Autoregressive) and q lags of the error term (Moving Average).

Y t=α 1Y t−1+α2Y t−2+…+α pY t−p+γ1 e t−1+γ 2e t−2+…+γ p et− p+u i

We follow the steps below in ARIMA modelling: 

1) The Autocorrelation function (ACF) and the Partial Autocorrelation function are
used to identify the model. These functions measure the statistical correlation within
the time series data. One has to select the model whose theoretical ACF and PACF
resembles the expected ACF and PACF of the time series data. 



2) The method of Maximum Likelihood Estimation (MLE) or of the Modified Least
Squares (MLS) is used to estimate the parameters of ARIMA models. 

3) To identify the optimal ARIMA model different combinations of AR and MA are
tested and we choose the model which minimizes the Akaike Information Criterion
(AIC).

 4) Diagnostic test in residuals of the fitted model. 

5) Forecasting

3.3.2  Seasonal  Auto  Regressive  Integrated  Moving  Average
(SARIMA) 
The seasonal ARIMA model incorporates both seasonal and non-seasonal factors in
a multiplicative model. The non-seasonal autoregressive and moving average terms
accounting for the correlation at lower lags are used in SARIMA model. Similarly, the
seasonal autoregressive and moving average terms accounting for the correlation at
seasonal lags are also contained in SARIMA. Seasonal ARIMA model is popular due
to its ability to deal with both stationary and non-stationary series. In case of non-
stationary time series, the values of the variable are taken in their first differences to
estimate  the  model.  The  seasonal  ARIMA  model  is  usually  represented  by  a
multiplicative model in the form of SARIMA (p, d, q) (P, D, Q) s  where p is the non-
seasonal  autoregressive  order  d  is  the  non-seasonal  differencing  q  is  the  non-
seasonal  moving  average  order,  is  the  seasonal  autoregressive  order,  D  is  the
seasonal differentiation, Q is the seasonal moving average order; and is the time
span of repeating seasonal pattern. 

Y t=φ1Y t−1+Φ12Y t−12+φ1Φ12 X t−13+ξ t−θξ t−1−Θ12 et−12−θ1Θ12 ξt−13+u i

with  φi and  θi the  non-seasonal  parameters  that  are  estimates,  Φi and  Θi the
seasonal parameters, and ξt an uncorrelated random shock.

3.4.1 Self- exciting Threshold Autoregressive Model (SETAR)
SETAR models were initiated by Howell Tong in 1977 as an extension of AR models
designed to handle changes in the model parameters by the threshold value and
delay parameter. Tong and Lim stated that SETAR (1, K) is a linear AR model with
order k. Serletis and Shahmoradi stated the following model as two regimes SETAR
model.

 Y t=a0+a1Υ (t−1 )+…+apΥ ( t− p )+( β0+ β1Y (t−1 )+…+β pY ( t−p ) ) {Y (t−d )≤ γ }+εt (2.4.1) 

where p ≥ 1 = autoregressive order, d = delay parameter and γ = the threshold
parameter.



3.4.2 Unobserved Component Model 
The BSM decomposes the time series into three independent components, namely a
trend, seasonal  and irregular component (Harvey and Peters,  1990) and has the
advantage  that  it  can  treat  these  components  as  stochastic.  The  BSM  can  be
represented in the following state space form (SSF): 

Y t=μt+γt+e t , et NID (0 , H t ) (3.4.1) 

μt=μt−1+β t−1+u t ,u t NID (0 , σu
2 ) (3.4.2) 

β t=βt−1+δt , δt NID (0 , σ δ
2 )(3.4.3) 

 γt=−∑
i=1

s−1

γt− j+κ t , κt NID (0 ,σ κ
2 )(3.4.4) 

where Υt is a univariate time series, decomposed into its unobservable components,
including  a  trend  component  (µt),  a  seasonal  component  (γt)  and  an  irregular
component (εt). 

Equations (3.4.2) and (3.4.3) specifies the stochastic trend while the β is the slope of
trend. The seasonal component is defined in Equation 2.4.4) in such a stochastic
way that the seasonal pattern is allowed to change over time, where s is the number
of seasons per year. It is often preferable to express the stochastic seasonality in
trigonometric  form.  The  white  noise  disturbances  of  the  trend  and  seasonal
equations  (Eqs.  (3.4.2)–(3.4.4))  are  independent  and  σu

2 ,  σδ
2 and  σκ

2 are  the
corresponding variances.

3.5 GARCH Models 

3.5.1 AR(1)- GARCH(1,1) 
The GARCH model has the ability to model time-varying conditional variances. In our
GARCH(1,1) model, we incorporate one lag of our dependent variable in the mean
equation. For univariate series: 

 y t=μ+ y t−1+e t   (3.5.1)

 The equation (3.5.1) is a mean equation at a time, where 𝜇 is the conditional mean
of the 𝑦𝑡 and e𝑡 is the shock at time t. The equation of conditional variance is: 

 σ t
2=α 0+∑

i=1

q

α i∗e t−i
2 +∑

i=1

p

γi∗σ t−i
2  (3.5.2) 

Where 𝛼0  > 0 and 𝛼𝑖 +γ𝑖 <1, where ai and γi  are the coefficients of the parameters
ARCH(et-ι

2) and GARCH (σt-ι
2 ) respectively. 

3.5.2 AR(1)-EGARCH 



Exponential-Garch model  is  suggested by  Nelson (1991).  The mean equation  of
AR(1)-EGARCH remains the same with AR(1)- EGARCH. 

y t=μ+ y t−1+e t (3.5.3) 

The specification for conditional variance is:

log (σ t
2 )=ω+β log (σ t−1

2 )+γ( ε t−1

σ t−1
)+[|ut−1|

σ t−1
− 2

√ π ] (2.5.4)

3.6 Google search engine and tourist arrivals prediction 

Google Trends data show the relative volume of web searches relating to a particular
keyword, which can be defined by the user. In tourism studies, destination names,
hotels,  flights,  and other  travel-related keywords are used to retrieve the Google
Trends data applied in tourism demand forecast models.  The predictive ability of
Google Trends data has been investigated in various areas, while there are 65%
predictable queries within the travel category. 

3.6.1 OLS 
Firstly we use a simple OLS regression of Tourist arrivals time series on a constant
and  the  google  searches  data.  The  selected  key  phrase  which  we  chose  to
incorporate in our forecasts is ''  hotel Cyprus''. Using the estimation of the model
below, we conduct the first forecast through the use of google trends. 

d[Log(Arrivals)]= c + dD[Log(Googletr)]+et  (3.6.1) 

3.6.2 SARIMAX 

Having  two  variables  that  present  strong  evidence  of  seasonality  we  select  to
estimate a Seasonal ARIMAX model. In this stage, we include the variable of google
trends as exogenous in the estimation SARIMA model.  In particular we estimate
MSARIMA (multivariate SARIMA) or SARIMAX model. The methodology remains the
same with  the case of  univariate models.  Aided by the software we estimate all
possible  models  and  we  select  the  one  that  minimizes  the  information  criteria
(Akaike).

3.6.3 ARDL 

The autoregressive distributed lag (ADL) model class is employed in order to capture
the dynamics in the data. The model that we estimate is: 

T A t=a j∑
i=1

12

bi×T A t−i+∑
i=0

12

d i×TRED St−i+e t(3.6.2) 

TRENDSt-i denotes  the  current  and  past  monthly  Google  Trends  web  search
index  .TAt is  the  current  number  of  tourist  arrivals  and  TA t-i denotes  the  past
realization of total tourist arrivals (i.e. the lagged forecast variable). The optimal lag
orders for the forecast variable and the explanatory variables out of  a maximum
initial  lag  order  equal  to  12  are  obtained  by  the  BIC  through  automatic  model



selection, that is, the ADL models that are taken to the data are obtained through a
general-to specific modelling process. The optimal lag orders of the reduced ADL
models as determined by the AIC. 

3.7 Forecasting Measures 

To evaluate the performance of the various models the Root Mean Square Error
(RMSE) , the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error
(MAPE) are used, which are as follows: 

1) RMSE=√MSE    where  MSE= 1
N ∑

t=1

N

( y t−f t )
2

2) MAE= 1
N ∑

t=1

N

(|y t−x t|)
❑

3)  MAPE= 1
N ∑

t=1

N |( y t−x t )
y t

|
❑

4. Empirical results and discussion
 4.1 Data 
To begin with univariate time series analysis, we focus on tourist arrivals of non-
residents in monthly frequency. The data were retrieved from the data site of Cyprus
government for the period of January 1990 to December 2019 and are presented in
figure 1. Data for the period January 1990 to December 2016 is used as the training
sample,  and  data  from  January  2017  to  December  2019  is  used  for  testing
forecasting accuracy. In table 1 we can see the descriptive statistics of our sample.

Figure 1



Table 1

Series Arrivals

Sample 1990M01 2019M12

Observations 360

Mean 203383.7

Median 192045.0

Maximum 553845.0

Minimum 16748.00

Std. Dev. 123594.8

Skewness 0.585151

Kurtosis 2664911

Jarque-Bera 2222838

Key role in our analysis play the terms of stationarity and seasonality. Figure 1 indicates the
strong presence of seasonality in tourist arrivals in Cyprus. In addition, the graph shows that
there is an upward trend in tourist  arrivals from 1990 to 2019. In this stage we test the
stationarity of tourist arrivals time series. In this purpose we use the method of Augmented-
Dickey Fuller. The results in table 2 demonstrates that the tourist arrivals time series is not
stationary , since t-statistic is lower than its critical value and pvalue is higher than 10%. We
take our series in natural logarithms. The figure 2 indicates that the seasonality exists. The
upward trend also exists but it is not so intense. Applying ADF test in logarithms of tourist
arrivals, we observe that the time series is stationary at 5% level of significance. If we take
the first differences of natural logarithms of tourist arrivals, we see that there is stationarity
with even at 1% level of significance (p-value =0).The first logarithmic differences are very
useful in economics because this technique gives the growth rates of interest variables. In
addition, taking first logarithmic differences we can remove the trend from our time series. 

Table 2. Unit root test

Tourist Arrivals

t-Statistic P-value

ADF test -1.355313 0.8721



Figure 2. Tourist Arrivals in Logarithmic form

Table 3. Unit root test

Tourist Arrivals in Logarithmic Form

Level 1st Difference

t-Statistic P-value t-Statistic P-value

ADF
test -1.355313 0.8721 -1.355313 0.8721

In our investigation we use a variety of econometric methods in order to make forecasts
about tourist arrivals in Cyprus and to choose the most efficient model for tourist demand
predictions. Desiring to shrink the scale of our data we select to work in logarithmic time
series for tourist arrivals. It is apparent that the tourism in Cyprus presents strong evidence
of seasonality. It seems that in summer months the tourist arrivals increase in comparison
with winter months. Some of the methods that we use do not take into consideration the
existence of seasonality. As a result if we ignore this characteristic of our time series, then
we will  possibly make bias forecasts. For this reason we remove the seasonality through



CENSUS X13 seasonal adjustment method. In the next graphs we see the graphs of raw
data, deseasonalized data, seasonality and trend.

Figure 3 Logarithmic form of Arrivals, Seasonality, Deseasonalized series and Trend.

4.2 Results 

4.2.1 Simple Models

Table 3. Forecast Evaluation 1

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

Naive  104598.8  77380.64  36.78503  31.73708  0.141697  1.000000
AR(1)  15634.57  10093.95  3.635489  3.611234  0.021156  0.173501
Moving Average (3)  13817.78  8292.031  2.760434  2.722949  0.018776  0.145081
Moving Average (6)  17142.19  10127.60  3.284813  3.227839  0.023302  0.171541
Moving Average (12)  15429.53  8941.126  3.105921  3.034442  0.020799  0.166428
Random Walk  15606.14  10209.77  3.679601  3.661741  0.021136  0.172684
Linear Regression  27131.91  19928.09  6.811376  6.844428  0.036712  0.247985

In the table above we can observe that all forecast accuracy measures indicate the model
which makes the most accurate forecasts is the Moving Average model with three terms
(MA(3)). In addition, it seems that the Moving Average model with twelve terms, has a better
forecast performance in comparison with the naïve, the AR(1) and Random Walk models.



Moreover, the forecasts from linear regression of tourist arrivals on seasonal dummies and
trend present the worst predictions compared with the other six models.

4.2.2 Exponential Smoothing

Table 4. Forecast Evaluation 2

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

Single  15766.27  9357.005  3.362986  3.303050  0.021260  0.179136
Double  19071.09  11748.07  3.869138  3.788202  0.025897  0.206886
Additive  11484.77  7783.945  2.905486  2.902852  0.015547  0.139073
Multiplicative  12123.66  8017.674  3.005632  2.999840  0.016410  0.147001

The results  demonstrate that  the  Holt-Winter  methods make more accurate  forecasts in
comparison  with  the  single  and  the  double  exponential  smoothing  methods.  The  single
exponential  smoothing  is  applied  in  time series  without  trend  and seasonality  while  the
double exponential smoothing in time series without seasonality. Consequently, before we
forecast the tourist arrivals in Cyprus through these two methods, we remove the trend and
the seasonality from our time series in the first case and only the trend in the second case.
On  the  other  hand  the  Holt-Winter  methods  take  into  consideration  the  trend  and  the
seasonality  through their  triple exponential  smoothing framework and therefore we apply
these forecast methods in the raw data (Tourist arrivals in logarithmic form). In table 5 we
see that  the Holt-Winters exponential  smoothing method with additive seasonal  variation
make the most accurate forecast compared to other three exponential smoothing methods.

4.3 Auto Regressive Integrated Moving Average (ARIMA- SARIMA)
Figure 4.     Correlogram at Level                              Correlogram at 1st Differences

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.826 0.826 247.89 0.000
2 0.476 -0.653 330.27 0.000
3 0.042 -0.377 330.90 0.000
4 -0.343 -0.080 374.02 0.000
5 -0.583 -0.002 498.98 0.000
6 -0.677 -0.270 667.67 0.000
7 -0.593 0.055 797.66 0.000
8 -0.360 0.170 845.70 0.000
9 0.018 0.498 845.83 0.000

10 0.442 0.382 918.45 0.000
11 0.774 0.224 1142.0 0.000
12 0.924 0.331 1462.0 0.000
13 0.764 -0.543 1681.0 0.000
14 0.421 -0.092 1747.8 0.000
15 0.002 0.041 1747.8 0.000
16 -0.366 0.099 1798.6 0.000
17 -0.594 0.059 1932.9 0.000
18 -0.681 -0.002 2109.7 0.000
19 -0.598 -0.039 2246.3 0.000
20 -0.371 -0.113 2299.2 0.000
21 -0.006 -0.060 2299.2 0.000
22 0.404 0.024 2362.1 0.000
23 0.720 0.035 2562.8 0.000
24 0.862 0.171 2850.8 0.000

 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.534 0.534 103.08 0.000
2 0.266 -0.026 128.80 0.000
3 -0.136 -0.375 135.58 0.000
4 -0.428 -0.329 202.53 0.000
5 -0.437 0.004 272.28 0.000
6 -0.520 -0.323 371.39 0.000
7 -0.445 -0.373 444.41 0.000
8 -0.435 -0.582 514.29 0.000
9 -0.141 -0.338 521.68 0.000

10 0.248 -0.088 544.59 0.000
11 0.536 -0.141 651.74 0.000
12 0.908 0.622 959.87 0.000
13 0.530 -0.065 1065.1 0.000
14 0.256 -0.186 1089.6 0.000
15 -0.139 -0.163 1097.0 0.000
16 -0.404 -0.044 1158.6 0.000
17 -0.417 -0.005 1224.4 0.000
18 -0.499 -0.018 1319.0 0.000
19 -0.423 0.051 1387.2 0.000
20 -0.417 0.005 1453.6 0.000
21 -0.136 -0.059 1460.7 0.000
22 0.259 0.088 1486.5 0.000
23 0.519 -0.119 1590.2 0.000
24 0.871 0.199 1884.0 0.000



Having tested about stationarity in tourist arrivals, we proceed to observe the characteristics
of  their  Autocorrelation  function.  The correlogram at  levels,  demonstrates  that  there are
seasonal  patterns  in  the  variable  of  tourist  arrivals.  In  addition,  we  observe  the  strong
presence  of  autocorrelation  even  at  24  months  before.  On  the  other  hand,  in  the
autocorrelation function of tourist arrivals in first logarithmic differences, we can also observe
that  the  strong  evidence  of  autocorrelation  remains.  Moreover,  if  we  observe  the
Autocorrelation  function  and  the Partial  Autocorrelation  function,  we can see that  follow
similar pattern. Additionally at 1st, 3rd ,4th, 6th, 7th ,8th ,9th ,11th ,12th and 24th lags in the
past both AC and PAC are statistically significant. This evidence leads us to estimate ARIMA
type models which include both AR and MA terms. Apart from ARIMA model we proceed to
the estimation of AR and MA models distinctively, but we also estimate a SARIMA model
that incorporates the seasonality.

Table 5 Forecast Evaluation 3

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

MA(10)  16466.26  13195.61  5.023095  5.146041  0.022498  0.175411
AR(10)  14152.54  9497.639  3.592585  3.608327  0.019133  0.161203
SARIMA(4,1,5)(12,1,12)  17194.80  12653.32  4.686914  4.717771  0.023205  0.187649
ARIMA(5,1,4)  20988.47  16262.92  5.633408  5.835520  0.028953  0.198664

Aided by the Eviews-10, we run all possible ARIMA and SARIMA models. The software has
an option in add-ins which is named Automatic Arima selection. Through this procedure we
take  the  AR,  MA,  ARIMA  and  SARIMA  models  that  minimized  the  Akaike  information
criterion. As we can observe the AR and MA models which minimize the information criterion
have 10 AR and 10 MA terms respectively.  In  addition,  in  table 6 is  illustrated that  the
ARIMA model that minimizes the information criterion includes 5 AR terms and 4 MA terms,
while we have taken the first logarithmic differences of tourist arrivals. On the other hand, the
selected SARIMA model incorporates 4 AR terms and 5 MA terms, but also 12 seasonal AR
and 12 seasonal MA terms as well.  As in the ARIMA model we took the growth rates of
tourist arrivals. Knowing the presence of seasonality in our data, we estimate the ARIMA
model in deseasonalized series while the 16 SARIMA model is applied in the initial series
(with  seasonality)  because  the  introduction  of  seasonal  terms  captures  the  problem  of
seasonality. The AR(10) model seems to have the best forecast performance compared with
other three models. The evaluation criteria of our forecasts demonstrates that the SARIMA
model produce more accurate forecasts than ARIMA.

4.4 BSM and SETAR

Table 6 SETAR and Space State Model

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

SETAR  18298.40  15076.17  5.321623  5.496184  0.025152  0.179108
State Space  26421.81  19505.54  6.661671  6.698843  0.035764  0.244892

The results in table 6 demonstrates that the SETAR model produce more accurate forecasts
than Unobserved Component Model with the state space formulation. In the graph below we



can see the prediction values that we took from the forecast with the State Space Model and
their confidence intervals (upper and lower bound).

Figure 5. State space model forecast values and confidence intervals

4.5 AR(1)-GARCH AND AR(1) -EGARCH 
We use AR(1)-GARCH model in order to forecast tourist  arrivals time series.  Firstly,  the
deseasonalized  series  is  used  to  predict  the  tourist  demand  without  the  presence  of
seasonality  and  subsequently  we  incorporate  the  seasonal  component  in  our  forecast
values.  In the graphs below we can see not  only the forecast  values of  deseasonalized
tourist arrivals time series but also the forecast of tourist demand volatility.

Figure 6. AR(1)-GARCH(1,1)

We follow the same methodology in the prediction of tourist arrivals with a AR(1)- EGARCH
model.  The  predicted  values  of  tourist  arrivals  deseasonalized  series  and  their  volatility
forecasts are illustrated in the next graphs.



Figure 7. AR(1)-EGARCH(1,1)

Table 7. Forecasting Evaluation 5

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

AR(1)-GARCH  31224.54  26469.65  8.757386  9.214841  0.043984  0.248641
AR(1)-EGARCH  20169.92  16635.68  5.679076  5.836853  0.027864  0.182739

All forecast measures indicate that the asymmetric Garch model with one Autoregressive lag
make more  accurate  forecasts  of  Cyprus  tourist  demand in  comparison  with  symmetric
AR(1)-GARCH(1,1).

4.6 Tourist Arrivals Prediction through the help of Google Searches
Engine 

4.6.1 Data 
The data for Google trends were available in monthly frequency from January 2004. The
data for tourist  arrivals  are in monthly frequency and cover the period from 1990M01 to
2019M12. Consequently, in this part of our paper we use the data for tourist arrivals and
Google  trend  for  the  period  2004M01-  2019M12.  The  dataset  of  tourist  arrivals  were
retrieved  from  the  data  site  of  Cyprus  government  for  the  period  of  January  2004  to
December 2019 and are presented in figure 8. The data for Google trends are retrieved from
Google trend database ((https://trends.google.com/trends/) for the same period.



Figure 8. Logarithmic Form of Google Trends Index and Tourist Arrivals

We use the Census-X13 Seasonal Adjustment program and we apply the ADF unit root tests
for the deseasonalized series.

Table 8. Unit Root Test

Variable         Level 1st Difference

t-Statistic P-value t-Statistic P-value

ADF
test

Tourist
Arrivals

-0.740050 0.9679
-4.679438 0.0010

Google
Trends -0.823786 0.9606 -3.767602 0.0039

It is obvious that both tourist arrivals and Google Trends are not stationary in their levels
while they are stationary in first logarithmic differences. On the first logarithmic differences of
deseasonalized series are used in the estimations with OLS and ADL methods. On the other
hand, the first logarithmic differences of seasonal series are used in SARIMAX because this
model captures the seasonality with the incorporation of seasonal AR and MA terms.



Table 9. Forecast Evaluation 6

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

ADL  0.049291  0.036464  0.295338  0.295458  0.001976  0.119168
OLS  0.044863  0.028572  0.233236  0.233078  0.001798  0.108613
SARIMAX(2,1,5)(111)  0.236656  0.179771  1.464562  1.461527  0.009500  0.540038

The Seasonal ARIMA model that minimizes the Akaike criterion, includes 2 AR ,5 MA terms
1 seasonal  AR and 1 seasonal  MA terms. Furthermore,  according to Akaike information
criterion, the selected ADL model includes 2 lags of dependent variable (tourist arrivals) and
1 lag of independent  variable (Google Trends Index).  Moreover,  the information criterion
indicates that we must work in first  logarithmic differences (Integrated=1). The outcomes
above demonstrate that the forecast from OLS regression is the most accurate. In addition,
the  forecast  evaluation  measures  indicate  that  the  SARIMAX  model  shows  the  worst
forecasting performance. 

In the next graph we plot the forecasting results from all different methods which we used in
the paper. According to RMSE forecasting evaluation measurement, the best and the most
appropriate model for forecasting tourist arrivals in Cyprus is the Holt-Winters Exponential
Smoothing  model  with  the  Additive  seasonal  effect.  The  MAPE  indicates  the  Moving
Average of  three observations as the model  with the best  forecast  accuracy of  Tourism
demand in Cyprus. Moreover, the OLS regression of tourist arrivals on Google Trends Index
seems to have the best forecasting performance according to MAE criterion.

Table 10. Forecast Evaluation 7

Model RMSE MAE MAPE SMAPE Theil U1 Theil U2

ADDITIVE  11484.77  7783.945  2.905486  2.902852  0.015547  0.139073
ADL  15350.27  10775.10  3.640689  3.644600  0.020733  0.165634
AR(1)  15634.57  10093.95  3.635489  3.611234  0.021156  0.173501
AR(10)  14152.54  9497.639  3.592585  3.608327  0.019133  0.161203
AR(1)-GARCH  31224.54  26469.65  8.757386  9.214841  0.043984  0.248641
ARIMA54  20988.47  16262.92  5.633408  5.835520  0.028953  0.198664
DOUBLE  19071.09  11748.07  3.869138  3.788202  0.025897  0.206886
LINEARREGRESSION  27131.91  19928.09  6.811376  6.844428  0.036712  0.247985
E-GARCH  20169.92  16635.68  5.679076  5.836853  0.027864  0.182739
MA(10)  16466.26  13195.61  5.023095  5.146041  0.022498  0.175411
MOVAV12  15429.53  8941.126  3.105921  3.034442  0.020799  0.166428
MOVAV3  13817.78  8292.031  2.760434  2.722949  0.018776  0.145081
MOVAV6  17142.19  10127.60  3.284813  3.227839  0.023302  0.171541
NAIVE  104598.8  77380.64  36.78503  31.73708  0.141697  1.000000
MULTIPLICATIVE  12123.66  8017.674  3.005632  2.999840  0.016410  0.147001
OLS  13563.12  7735.113  2.890670  2.855245  0.018374  0.165464
RANDOMW  15606.14  10209.77  3.679601  3.661741  0.021136  0.172684
SARIMA  17194.80  12653.32  4.686914  4.717771  0.023205  0.187649
SARIMAX  66538.07  49628.52  18.78244  17.77912  0.093871  0.489819
SETAR  18298.40  15076.17  5.321623  5.496184  0.025152  0.179108
SINGLE  15766.27  9357.005  3.362986  3.303050  0.021260  0.179136
SSPACE  26421.81  19505.54  6.661671  6.698843  0.035764  0.244892



Figure 9 Forecast Comparison

5.Conclusion 
To sum up,  in this paper we attempted to find the most  accurate econometric  model  in
Cyprus tourist arrivals forecasts and to predict the possible number of arrivals for the next
two years. Undeniably the tourism branch constitutes one of the most significant sectors of
Cypriot economy and the ability of economic policy makers to estimate the tourist arrivals
and to approach the revenues is surely a comparative advantage. The purpose of this paper
is to help the economic policy makers and the entrepreneurs of tourism sector to organize
their economic and marketing strategies and in this way to promote the further development
of  the branch in  the island.  In the first  part  of  our investigation,  we gave some general
information about the Tourism branch and its contribution in Cypriot economy. In section 2,
we presented  the econometric  methodology  which  was  used in  part  3.  Key role  in  our
analysis  played the seasonality  which is  obviously  observed in  Cyprus tourism demand.
Using  in  total  22  different  econometric  models  and  the  common  forecasting  accuracy
measurements (RMSE,  MAE,  MAPE) we came to the conclusion that  the most  suitable
models in our case are the Holt-Winter Exponential Smoothing with the additive seasonal
effect  and  the  Moving  Average  model  with  three  terms  according  to  RMSE  and  MAE
respectively.

As George Box (1979) famously and correctly noted, “All models are false, but some are
useful.” Precisely the same is true of assumptions, as models are just sets of assumptions.
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