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Abstract 

K – Nearest Neighbor (k-NN) classifier is one of them most widely used supervised  

learning algorithms. Its popularity is mainly due to its simplicity, effectiveness, ease of 

implementation and ability to add new data in the training set at any time. However, one  

of the major drawbacks of this algorithm is the fact that its performance mainly depends 

on the parameter value k, i.e. the number of nearest neighbors that the algorithm examines 

in order to classify the unlabeled instance. In most cases, it is a fixed value, independent 

of data distribution. The most frequently used technique for the “best” k determination is 

the cross validation as there is no general rule for choosing the k value due to its 

dependency on the training dataset. A large k value results in a noise tolerant classifier, as 

its search area is large. On the other hand, a small k value results in a noise sensitive 

classifier, as the search area is limited. So, selecting a fixed k value throughout the dataset 

does not take into account its special features, like data distribution, class separation, 

imbalanced classes, sparse and dense neighborhoods and noisy subspaces. 

In recent years, a lot of research have been conducted in order to tackle the above-

mentioned disadvantage. The research has led to various approaches of k-NN classifier, 

which mainly combine it with various other techniques for k value determination. In the 

present study, a thorough literature review is conducted in order to summarize all the 

achievements made to date in this field. This procedure led to a pool of twenty-eight (28) 

publications, covering a time period from 1986 till 2020 (with median value 2009). These 

studies are presented in this work, describing the techniques used for dynamic k 

determination. For each study, several indicators are recorded, namely the technique used 

for k selection, the level of k selection, the number of datasets used for experiments, 

whether statistical tests were conducted or not, the total number of citations each research 

has received as well as the average citations per year. 

Apart from the above, a new alternative version of k-NN algorithm is proposed. 

The proposed algorithm is an extension of a previous work, found in the literature. The 

approach is a k-free k-NN variation, in the sense that the user does not select the parameter, 

but it is selected dynamically, depending on the area where each unlabeled data point lies. 

The algorithm falls into the group of the studies that exploit prototype and clustering 

techniques in order to represent the initial dataset. Through a recursive process, 

homogenous clusters are created, each of which are represented by a representative.  
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Moreover, a new term is introduced, namely the Sphere of Influnce (SoI), an index 

which indicates the size of each created cluster. This index, in combination with the 

indicator depth (d), provides useful information about the subspace that each representative 

lies. Finally, heuristics are proposed in order to exploit the information provided from SoI 

and d and convert it in a k value, unique for every unlabeled instance. 

Extensive experiments were conducted on thirty (30) datasets for all proposed 

heuristics. Some of these datasets contained artificial noise in order to test the proposed 

algorithm in real life situations. The experiments showed a very competitive performance 

– in terms of accuracy – of the proposed algorithm in comparison with some commonly 

used k-NN variations. Moreover, Wilcoxon statistical test was used to find statistically 

significant differences.  

 

Keywords: supervised machine learning, classification, k-nearest neighbor (k-

NN), Dynamic k value determination, heuristics 
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 1 Introduction 

 1.1  Problem – Importance of the topic 

Nowadays, supervised machine learning is one of the most frequently used 

technique, exploited among a wide variety of industries, for example epidemiology – 

especially with the recent COVID-19 outbreak - (Alballa & Al-Turaiki, 2021), sales 

forecasting (Rohaan et al., 2022), stocks market (Sakhare & Sagar Imambi, 2019), 

Architecture, Engineer and Construction (AEC) (Kifokeris & Xenidis, 2019), etc. Its use 

is mainly focused on making insightful predictions, which, in turn, will be the cornerstone 

of the so-called data driven decision making. The utmost importance of these algorithms, 

as they affect serious decisions, bring them to the forefront of the research community, 

which in turn tries to make them more and more accurate. 

 Supervised machine learning can split into two main subbranches; Classification 

and regression. Both techniques rely on the idea of “learning from examples”. A brief 

description of these two terms is following. 

 1.1.1 Regression 

Regression is mainly a statistical process. During this process, a relationship model 

is structured between the dependent and the independent variables. The output of a 

regression model is a real or a continuous value. For example, the prediction of a stock 

price given the price of the previous days is a regression problem, as the output variable is 

a real number.  

On the contrary, predicting whether a stock price will increase, or decrease is not a 

regression problem, as the output variable will be categorical (yes / no). Among the most 

common regression algorithms are linear regression, polynomial regression, and support 

vector regression. 

 1.1.2 Classification 

 On the other hand, classification algorithms or classifiers, as they are called, also 

build a model, based on observed values, whose output is categorical value. More 

specifically, classifiers attempt to recognize, understand, and group objects or data 

instances into preset categories. Using a set of instances - training/test dataset - for which 

the category or class label is known, they attempt to build/train a model that can 

successfully predict the class label of unlabeled instances. For example, predicting whether 
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an incoming e-mail is spam or not is a classification problem, as the output variable will 

be categorical (yes / no). 

In turn, classifiers are divided into two main categories; eager and lazy ones (Bulut 

& Amasyali, 2017). Eager learners build a generalized model based on the training 

instances that is used for making predictions, without storing each instance in memory. On 

the other hand, lazy classifiers usually store in memory all the instances and conduct a local 

search. In other words, the instances are both the training dataset and the model at the same 

time. 

 1.2  K-NN Classifier 

One of the widely used classification algorithms is k-Nearest Neighbors (k-NN) 

(Cover & Hart, 1967). It belongs to the lazy classifiers category. Its popularity is due to (i) 

its simplicity, as there is no model to train, (ii) its effectiveness, as the asymptotic 

classification error of 1-NN is bounded by twice the Bayesian error rate, (iii) its ease of 

implementation, as it is mainly based on distance computations, and, (iv) its ability to add 

new training data at any time as there is not an already trained model, an extremely useful 

characteristic, especially, for data streams (Bulut & Amasyali, 2017; Mullick et al., 2018).  

Specifically, k-NN predicts the class label of an unknown instance by conducting 

a local search among its k nearest neighbors and then applying a majority voting; the 

unknown instance is labelled with the class of the majority of the k nearest neighbors. 

Usually, local search is based on Euclidean distance. Other, frequently used, distance 

metrics are Minkowski, Cosine similarity, Manhattan, Jaccard and Hamming. 

Based on the above, one can easily conclude that a major drawback of k-NN, and 

generally of all lazy learners, is the high demand of both storage space, as they store all 

instances in memory, and computational resources, especially in case of high dimensional 

datasets. Figure 1-1 depicts an additional drawback of k-NN; the fact that its  performance 

is highly dependent on value k, which determines the extent of the neighborhood that the 

search is taking place (Johansson, Boström, et al., 2008; Ougiaroglou et al., 2020). Even a 

slight variation in k value may affects the classification outcome.  
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Figure 1-1: Classification process using k-NN algorithm with k=3 and k=5 

 

In recent years, a lot of research have been conducted in order to tackle the above-

mentioned disadvantages. In practice, k is treated as a hyper-parameter and, consequently, 

the most frequently used technique for the “best” k determination is the cross validation as 

there is no general rule for choosing the k value due to its dependency on the training 

dataset. However, the k that is finally determined with the use of cross validation is a 

unique and fixed value for the whole dataset without taking into account the specific and 

unique features that each dataset may have as well as its distribution. For example, in cases 

either of classes that are not well separated or of noisy instances, a large k value may be 

more suitable in order to examine an extensive subspace (neighborhood). A large k value 

results in a noise tolerant classifier, as its search area is large. On the contrary, in case of 

distinct classes, a large k value may result both in higher computational cost and in 

accuracy deterioration. In such cases, a small k value may be more appropriate. A small k 

value results in a noise sensitive classifier, as the search area is limited. 

However, the problem becomes more and more complex in cases of real-life 

datasets that may simultaneously contain both well and not-well separated classes, 

imbalanced classes, sparse and dense neighborhoods, and noisy sub-spaces (Ougiaroglou 

et al., 2020). Based on the above, one should consider that a globally defined fixed k value 

is not appropriate for a dataset. Instead, one should take into account the special features 

of the dataset and the subspace that each instance lies into and try to dynamically determine 

a local k value for each instance to be classified. Thus, the research has led to various 
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approaches of k-NN classifier, which mainly combine it with various other techniques for 

k value determination. 

 1.3  Αim – Objectives 

This study has dual research objective. On the one hand, a thorough literature 

review is conducted in order to gather and compare (according to comparison axes that 

will be defined later in this study) the existing k-NN implementations and the related 

alternative versions. Worth noting that the dissertation is not restricted only to the highly 

cited state-of-art publications but is extended to almost all the existing approaches for 

dynamic k value determining found in the literature.  

On the other hand, a new alternative version of k-NN algorithm is proposed, based 

on some findings of the literature review. Under this alternative, parameter “k” – a key 

parameter of k-NN classifier which mainly determines algorithm’s performance – will not 

be a constant anymore but it will be adapted dynamically, exploiting heuristics, and taking 

into account local variation within each dataset. This modified k-NN version aims at 

outperforming the original k-NN algorithm. 

 1.4  Contribution 

The contribution of this study is highly connected with its objectives. Thus, the first 

contribution is that, through the thorough literature review, the research community will 

be given the opportunity to have a clear picture of the achievements made to date as far as 

far as the dynamic k value determination is concerned and, probably, inspiring and guiding 

their future efforts. Moreover, in the context of this study, both the most influencing and 

the most completed approaches will be highlighted.  

On the other hand, another approach of dynamic k-NN algorithm is proposed and 

tested with experiments. This contributes to the researchers’ efforts transitioning from a 

“static” to a “dynamic” k-NN algorithm, which will consider the majority of the unique 

features each dataset may have. 

 1.5  Structure of the study 

Studies related to the topic of the dissertation, as well as the methodology used for 

the literature review are presented in Chapter 2. The Chapter 3 discusses the proposed 

alternative version of k-NN. The same chapter also includes the theoretical background 
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behind it as well as the experiments conducted for testing it.  Finally, Chapter 4 discusses 

the findings and concludes to useful remarks. 
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 2 Literature review – Theoretical background 

 2.1  Introduction – Methodology 

As mentioned before, the first research objective of this study is to gather together 

all the proposed approaches for dynamic k value determination when applying k-NN 

classifier. It is worth mentioning that the content of this chapter have been published in 

(Papanikolaou et al., 2021). The adopted research methodology consisted of the following 

steps.  

The first step included a thorough literature search for potential references in 

academic bibliographic databases and search engines that are connected with scientific 

publications (e.g., Springer Link, Mendeley, Science Direct, Google Scholar, Scopus, 

Wiley Online, Emerald Insight, etc.).  

The second step included the one-by-one examination of the references included in 

the documents collected in step one.  

The final step involved the in-depth study of the most relevant with the research 

objective references.  

The successful execution of the first two steps led to the collection of about sixty 

five (65) publications. The in-depth study of these sources (step three) led to a pool of 

twenty eight (28) publications that either propose a new methodological framework for 

dynamic k determination or refer to the need of a more adaptive k value by proposing, for 

example, alternatives where the classification process is independent of k. Seven out of 

twenty eight publications refer to global k value (in other words, they treat k selection as a 

hyper-parameter tuning process, choosing one k value for the whole dataset) while the rest 

twenty one two examine it locally (i.e., for each test instance or for each distinct sub-space 

of the whole dataset).  

Then, the publications extracted from step three are grouped according to the 

methodological framework they are based on. In total, six (6) groups were identified, 

namely mapping to genetic algorithms, neural networks, prototypes or clustering, 

heuristics, probabilistic and the group “other”, which includes any other approach that does 

not fit into the previous categories.  

Apart from the above, for each study were recorded the number of data sets used 

for experimenting and testing, whether or not statistical tests were conducted as well as the 

number of citations and the average citations per year. The last two indexes will help to 
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highlight the most influential approaches. All the above are summarized in Table 2-1, 

which presents the findings of this chapter.  

All the above-mentioned process for literature review was conducted between 

December 2020 and February 2021. 

 2.2  Global approaches 

Kardan et al. (2013) propose an approach that is based on a genetic algorithm, 

namely Biogeography based optimization (BBO). This algorithm uses a multi-part 

chromosome for the simultaneous optimization of feature selection, feature weighting and 

the k value. The proposed algorithm was compared with six evolutionary and fourteen non-

evolutionary genetic algorithms, on 10 different datasets. After conducting experiments, 

the BBO seems to outperform all the compared algorithms, in terms of accuracy rate, 

Kohen’s Kappa and reduction rate, across all datasets.  

A heuristic based k-NN variation is presented by Ferrer-Troyano et al. (2001), 

where the k value is selected automatically, without any user intervention. The heuristic is 

based on the idea that the algorithm will search for that k value that correctly classifies the 

majority of training instances. The proposed approach was compared, in terms of accuracy, 

to conventional k-NN, with k ∈ [1, 51] (only odd numbers) on 25 datasets. In thirteen out 

of twenty cases, the proposed algorithm outperformed the widely used 1-NN. Moreover, 

in five out of the thirteen above mentioned cases, the difference was statistically significant.  

Despite the fact that the approach presented by Nock et al., (2003) does not propose 

a different procedure for k selection, the described heuristic makes the performance of 

conventional k-NN less dependent from the selected k value. Briefly, the idea behind this 

approach is that (for a given k) if x votes for y, then y also votes for x, even if x does not 

belong to y′s k nearest neighbors. The proposed algorithm was compared, in terms of 

accuracy, to 1-NN and 1-tNN, over 29 datasets. The results demonstrated that the proposed 

algorithm outperformed the rest ones without statistical significance.  

Holmes & Adams (2002) presented an analytic probabilistic k-NN variation which 

deals with the uncertainty on k using a prior distribution on it. The proposed approach was 

compared, in terms of classification error rate on a variety of datasets, to conventional k -

NN algorithm, demonstrating competitive performance.  

The approach presented by  Hamerly & Speegle (2012) does not propose a varied 

procedure for k selection but a faster cross-validation technique in order to examine a larger 
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amount of k values within the same running time, reducing the time complexity by O(K∗), 

where K∗ is the maximum k value. The proposed technique was tested on 3 datasets 

demonstrating its contribution in running time reduction.  

A quite older empirical approach is presented Enas & Choi (1986). The authors 

argue that the optimal k value is dependent on the dimensions, the size and the structure of 

the sample size. Moreover, they propose some equations for k computation in function 

with the difference between sample proportions and the difference between con-variance 

matrices. No experimental tests are reported.  

A general discussion about the k selection in problems with binary imbalanced 

class is made in another study (Hand & Vinciotti, 2003). Specifivally, in this paper the 

authors cite some proposed equations for k approximation. The most popular of the are k 

≈ 𝑛
2

8 or k ≈ 𝑛
3

8 

 2.3  Local Approaches 

 2.3.1 Genetic Algorithms Approaches 

An approach utilizing genetic algorithms is presented by Johansson, König, et al. 

(2008). In this work, authors propose a genetic alternative of conventional k-NN, namely 

G-k-NN, which is used for the optimization of the k value. Specifically, this technique 

builds decision trees that split the search space into distinct regions. Then, a fixed, unique 

and optimized k value is assigned to each region. In turn, this k value is assigned to each 

unlabeled instance (test instance), according to the position it lies in input space and the 

region it belongs to. The search for the k nearest neighbours can be performed either locally 

- within the limits of the boundaries of each region - or globally - across all regions - or in 

a mixed way - both globally and locally. The three alternatives of the proposed algorithm 

- local G-k-NN, global G-k-NN and mixed G-k-NN - were compared, in terms of accuracy, 

to the classic k-NN for k = 5, k = 11 and k = 11, on 27 different datasets. As far as the 

statistical significance is concerned, global G-k-NN significantly outperforms the three 

versions of conventional k-NN. However, this is not the case for local G-k-NN. 

 2.3.2 Neural Networks Approaches 

A quite interesting approach is presented by Mullick et al. (2018). The authors of 

this study present two alternative versions of classic k-NN; the Adaptive k-NN (Ada-k-
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NN) and the the Adaptive k-NN2 (Ada-k-NN2). Both methods utilize the data density and 

distribution in order to find an appropriate k value for each unlabeled instance. On the one 

hand, Ada-k-NN uses artificial neural networks in order to learn this suitable k. On the 

other hand, Ada-k-NN2 is a simplified version in the light of using a heuristic as indicator 

of the local density around the unlabelled instance. The heuristic is based on the idea of 

searching for that k that correctly classifies the majority of test instance’s neighbors. Two 

sets of experiments were conducted. The first set was oriented in comparing the algorithms 

with eight other classifiers on 17 datasets. The datasets were divided into two categories; 

the small/medium ones and the large ones. The second set was oriented in comparing the 

proposed algorithms in the presence of imbalanced classes. As far as the first set, the results 

revealed that Ada-k-NN2 outperformed the other classifiers in terms of average accuracy. 

It, also, achieved the best Average Rank for Small and Medium-Scale datasets. 

Respectively, Ada-k-NN attained the fifth place. In case of large datasets, Ada-k-NN2 

attained the second place in terms of average accuracy and the first place in terms of 

Average Rank for Large-Scale dataset. On the contrary, Ada-k-NN attained the sixth and 

eighth place, respectively, which shows that it suffers from scalability. As far as the second 

set is concerned, Ada-k-NN2 in combinations with GIHS - a simple weighting scheme - 

outperformed the rest classifiers. 

 2.3.3 Prototypes and Clustering based Approaches 

An interesting approach is presented Garcia-Pedrajas et al. (2017) where the search 

space is divided into sub-spaces. Each sub-space constitutes a neighbor which, in turn, is 

represented by a prototype. Each prototype is assigned with a k value, which is considered 

to be the optimum within the neighbor borders. A greedy approach is adopted in order to 

find these optimum k values; for each prototype the local performance is tested, with k 

varying within an interval [kmin, kmax], with most common values kmin = 1 and kmax = 

100. Eventually, the k value with the highest performance is assigned to the corresponding 

prototype. Then, the classification process for each unlabeled (test) instance is conducted 

using the k value of its nearest prototype (training) instance. Given that the proposed 

approach can be adopted in almost every k-NN variation, the authors conducted 

experiments using the standard k-NN, the adaptive k-NN and the symmetrical k-NN in 

combination with the proposed algorithm for k selection versus the same k-NN variations 

in combination with ten-fold cross validation for k selection. In both cases, the interval 
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was set to kmin = 1 and kmax = 100. The experiments were conducted using 80 datasets 

for regular problems and 65 datasets for imbalanced problems. The algorithms were 

compared in terms of accuracy and Kohen’s Kappa (for regular datasets) and G-mean and 

auROC (for imbalanced datasets). The experiments results showed that the proposed 

algorithm performed better both for regular and imbalanced datasets.  

An approach, based on clustering, is demonstrated by Bulut & Amasyali (2017), 

namely the One Nearest Cluster (1NC) approach. According to this approach, the user pre-

defines the number of clusters (l) and picks the M closest samples around the unlabelled 

instance. All the distances among the test instance and the M closest samples are calculated 

and, according to the distance, all the M samples are laid on an one-dimensional axis, from 

the closest to the farthest. Then, clustering is applied in order to split the M samples into l 

clusters. Finally, the majority voting technique is applied within the closest cluster. That 

way, the approximation of k can be expressed as k ≈ 
𝑀

𝑙
. This procedure is repeated for 

every test instance. The proposed algorithm (with k ≈ 
15

3
 ) was compared with 1-NN and 

5-NN, in terms of accuracy, on 36 datasets. Moreover, a T-test is performed in order to 

check statistically the pairs 1NC - 1-NN and 1NC - 5-NN. 1NC outperformed nine times, 

1-NN ten times and 5-NN seventeen times. In terms of averaged accuracy over the 36 

datasets, 1NC demonstrated the highest accuracy. The statistical test showed that 1NC 

outperforms 1-NN significantly. The authors argue that M and l should have small integer 

numbers because this leads not only to reduced computational time but also to the same 

results in comparison with larger values (e.g. 
10

2
 gives the same outcome with  

100

20
).  

One more prototype and clustering based k-NN variation is presented by Guo et al. 

(2003). The fundamental idea behind this approach is that some representative instances 

will represent the whole training set. After the selection of representatives, a procedure 

based on the training set’s local features which is beyond the scope of this study, the k 

value is chosen automatically - without user intervention - for each representative; k value 

equals to the number of instances covered by each representative. In other words, the local 

search for applying the majority voting technique, is conducted within the limits of the 

local neighborhood of each representative instance. The proposed algorithm was 

compared, in terms of accuracy, with C5.0 and k-NN over 6 datasets. Due to the fact that 

its average classification accuracy was the highest one (85, 15%) comparing to C5.0 (81, 
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35%) and k-NN (80,90% for k = 1, 83,52% for k = 3 and 83,67% for k = 5), its performance 

is considered satisfactory.  

The concept of representing the whole training set with a few representative 

instances (prototypes) is farther exploited in the study of Ougiaroglou et al. (Ougiaroglou 

et al., 2020), who use the idea of homogeneous clusters. Specifically, in this approach, 

namely Subspace Homogeneity based Dynamic k-NN classifier (shd-k-NN), the authors 

apply repetitively the k-means clustering procedure until all created clusters are 

homogeneous. This repetitive procedure produces a kind of tree of clusters. Each leaf node 

represents a homogeneous cluster whose depth (d) provides information about the region 

where the unclassified instance lies. When an unlabeled instance needs to be classified, the 

algorithm finds the nearest homogeneous cluster’s centroid and its corresponding d value. 

Then, the authors suggest five heuristics based on which the k is calculated as a function 

of d and apply the majority voting technique. Based on the above, it is easily concluded 

that this k-NN variation is independent of the ”best” or the ”optimum” k selection as it is 

dynamically selected for each instance in an automated way, without any user intervention. 

The proposed algorithm (using all different heuristics) was compared to some common 

used k-NN variations; the ”best” k-NN (k was estimated using 5-fold cross validation), 1-

NN, 5-NN, 10-NN,√𝑁-NN and √
𝑁

2
-NN, where N represents the number of instances 

included in training set. The comparison was made in terms of accuracy on 14 original 

datasets and 19 variations of them with random ”noise” addition. Generally speaking, all 

heuristics demonstrate not only competitive performance to the “best” k-NN but also 

outperform it in some cases. Comparing the shd-k-NN to conventional k-NN (with fixed 

k), the experiments showed that the proposed algorithm’s performance is better in almost 

all cases. 

 2.3.4 Heuristic based Approaches 

The exploitation of heuristics is a quite common technique for conventional k-NN 

improvement. One such case is presented by Ougiaroglou et al. (2007). According to this 

study, the authors apply incremental computation of nearest neighbors in R-Trees. 

However, the nearest neighbor search breaks if some criteria induced by a heuristic are 

satisfied. Thus, each unlabeled instance is classified by a non-fixed k. The most important 

property of the incremental search is that the neighbors are discovered in their order of 

their distance from the query instance. This allows the discovery of the (k + 1)-th nearest 
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neighbor if we have already discovered the previous k nearest neighbors. Three different 

heuristics for k-NN early break, independently of the selected k value. This way, 

conventional k-NN preserves its simple concept and implementation while, 

simultaneously, reduces the required computational cost. Briefly, the three proposed 

heuristics for k-NN early break are the following:  

(a) The majority voting technique breaks when a predefined threshold for the 

dominant class is met.  

(b) The majority voting technique breaks when the remaining votes are less than 

the difference k - (current votes for the majority class). For example, it’s pointless to 

continue searching in case of a binary classification problem, with k = 9 and after searching 

7 neighbors, the dominant class has already 5 votes.  

(c) The majority voting technique breaks when a predefined number of consecutive 

neighbours is met which all vote for the dominant class.  

The aforementioned heuristics were tested on 2 datasets in terms of accuracy and 

computational cost. As far as the accuracy is concerned, the second heuristic outperforms 

the rest. As far as the the computational cost is concerned, the first heuristic outperforms 

the rest.  

Another, quite similar approach, using a heuristic, is presented by Sun & Huang 

(2010). According to this k-NN variation, a different k value is assigned to each instance 

of the training set. This k value is equal to the minimum number of neighbours needed to 

be included in the majority voting procedure in order the instance in question be classified 

correctly. Then, for each unlabeled instance, the proposed algorithm finds its nearest 

neighbor and its assigned k value. The k-NN algorithm is the applied with this k value. 

The above-mentioned approach was compared, in terms of accuracy, to conventional k-

NN, with k ∈ [1, 9] and Ada-k-NN (Mullick et al., 2018) on 15 datasets. Its performance 

is considered competitive as it is classified second on six datasets and third on one dataset. 

Moreover, the authors support that the Ada-k-NN overall outperforms the rest 

conventional k-NN tested algorithms.  

In an older study, Baoli et al. (2004) have developed a k-NN variation, oriented in 

text categorization. The proposed algorithm does not suggest a new procedure for k 

selection but develops a k-NN variation less dependent on the k value. Specifically, the 

authors suggest that the k should be proportional to the number of training instances that 

belong to the category the test instance is going to be classified. In order to classify a test 



 

13 

instance in a category with more training points, the algorithm should use a larger k value 

in comparison with classifying the same test instance in another category with less training 

points. The experiments conducted on 2 different text datasets revealed that the proposed 

variation is less sensitive to k selection. As a consequence, it can effectively deal with class 

imbalance. 

 2.3.5 Probabilistic Approaches 

The concept of “spheres of confidence” is presented by  Johansson, König, et 

al.(2008). According to this study, the authors exploit the notion of Laplace estimator 

𝑃ClassA = 
k+1

N+C
 , where, k is the number of training instance belonging to class A, N is the 

total number of training instances belonging within the sphere, and C is the total number 

of classes.  

The cornerstone of this approach is that each training instance is surrounded by a 

sphere of confidence that includes other training instances. In order to construct the sphere 

of confidence, the algorithm searches the nearest neighbors one by one, starting from the 

closest one. The procedure breaks either when the Laplace estimator’s value starts 

decreasing or when all training instances are examined. The first case is called “eager 

construction” and the generated sphere of confidence includes all the points examined by 

the algorithm until the break. The second case is called “total construction” and as sphere 

of confidence is selected that with the highest Laplace estimator value.  

When an unlabeled instance needs to be classified, the algorithm applies the 

majority voting technique either among all instances within the spheres covering the test 

instance (instance aggregation) or among all spheres covering the test instance (sphere 

aggregation), considering each sphere as one class (the class of the majority instances 

within the sphere).  

The above-mentioned approach was compared, in terms of accuracy and auROC, 

to the conventional k-NN with fixed values k = 5, 11, 17 on 18 datasets. Briefly, the results 

showed that the proposed algorithm significantly outperformed the rest ones, 

demonstrating better performance on thirteen out of eighteen datasets.  

The concept of exploiting the local data distribution is also utilized by the approach 

presented by Bhattacharya et al. (2014, 2015). The authors, in both studies, suggest the 

construction of a hypersphere around each unlabeled point in order to capture the 

distribution of the training instances around it. Moreover, they introduce the concept of 
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hubness weight, i.e., the probability a point belongs to the specific test point’s 

neighbourhood. Combining the above-mentioned notions, a unique k value is assigned to 

each unlabelled point.  

As referred in (Bhattacharya et al., 2014), the proposed algorithm was compared in 

terms of accuracy, both to the conventional k-NN with fixed values k = 1, 3, 5, 7, [√𝑁] 

and to other k-NN variations like these presented in (Johansson, Boström, et al., 2008) and 

in (Tomašev et al., 2014). The comparison was made on 15 datasets. The results showed 

that the proposed algorithm mainly outperformed the competitors and thus can be 

considered as an effective k-NN variation.  

In the research presented by Zhang & Li (2013) the authors suggest that the 

neighborhood size should be versatile in order to handle the imbalanced classification 

problem. Thus, for a given k, they propose that the examined neighborhood should be 

increased until 
𝑘

2
 instances of the rare class are included.  

The above-mentioned approach was compared, in terms of auROC and Convex 

Hull analysis, to some others k-NN variations (ENN and CCW-k-NN) and techniques for 

handling imbalanced datasets (SMOTE re-sampling and MetaCost) on 12 datasets. Briefly, 

the experiments showed that the proposed approach demonstrated quite competitive 

performance as it outperformed both the k-NN variations and the widely used techniques 

for handling the imbalanced classification problem.  

Song et al. (2007) argue that parameter k is not sufficient enough to decide the 

neighborhood’s size. Thus, they introduce a new parameter, namely I, which is measuring 

the number of informative instances within the selected neighborhood. A training point is 

considered to be informative if it is close to the test instance and far enough from instances 

from other classes. According to the same authors, k and I selection is made using cross 

validation techniques.  

The proposed approach was compared, in terms of error rate, to some k-NN 

variations and other popular classifiers, like Support Vector Machines (SVM). The 

comparison was made on a variety of datasets, including text categorization and object 

recognition. The results showed that the proposed algorithm is less sensitive to k selection 

(comparing to conventional k-NN algorithm) while it demonstrated competitive 

performance compared to widely used classifiers.  
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Another probabilistic approach is presented by Ghosh (2007). According to this 

approach, a unique k value is selected for each unlabeled instance based on the class 

distribution around it. 

 2.3.6 Other Approaches 

An approach for dynamic k estimation is presented by Zhong et al (2017). Briefly, 

according to this approach, an iterative algorithm outputs an interval [kmin, kmax], where 

k is searched dynamically. Then, the algorithm creates variation tendency curves, 

according to the proportion of correctly classified instances for each k value within the 

aforementioned interval. The final k value is selected based on three criteria that are 

dependent on the shape of the variation tendency curves. The proposed algorithm is 

compared, in terms of precision, recall and F-score, to the conventional k-NN with fixed 

values k = 1, 5, 7, √𝑁, where N =sample size, on a Facebook dataset. The approach in 

question outperformed the rest ones, in terms of recall and F-score, while it had the second 

best performance in terms of precision.  

Another approach where k is selected for each data point is presented by Anava & 

Levy) (2016). Adopting a weighting scheme, the authors tried to minimize the distance 

between the generated prediction and the ground truth, optimizing at the same time the 

number of the selected nearest neighbors for each unique unlabeled instance. The proposed 

algorithm was compared, in terms of standard error metric, to the conventional k-NN and 

the Nadaraya-Watson estimator on 8 datasets. According to the results, the proposed 

approach outperformed the rest ones on seven out of eight datasets while on three out of 

seven datasets, the outperformance was statistically significant.  

S. Zhang et al. (2014) present an analytic optimization framework, namely Graph 

Sparse k-NN (GS-k-NN), in order to learn a different (optimum) k value for each unlabeled 

(test) instance, utilizing the already known data distribution. The proposed approach was 

compared, in terms of accuracy and root mean square error (RMSE), to conventional k-

NN (with fixed k = 5) and another k-NN variation (L-k-NN) on 12 datasets. The 

experiments conducted for classification, regression and missing values imputation. In 

summary, the GS-k-NN is considered by the authors a quite competitive approach as it 

outperformed the rest algorithms, demonstrating higher accuracy and lower RMSE. 
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 2.4  Conclusions 

Based on Table 2-1, the aforementioned approaches cover the time period from 

1986 till 2020 (with median value 2009). An interesting observation is that the last three 

years (from 2018 till 2020) only two publications have been recorded.  

The majority of the approaches uses probabilistic frameworks in order to 

dynamically select the proper k value. However, these approaches are mostly the older 

ones, with median year of publication 2007. As far as the most recently published works 

(within the last five years), the majority of them utilize the prototype and clustering 

technique (three out of six publications), following the “other” (two out of six publications) 

and neural networks (one out of six publications) technique.  

As far as the level of analysis for k value selection, either the search space is divided 

in distinct subspaces (level of analysis: the specific region or prototype), each of which is 

assigned with a unique k value (and, consequently, each unlabelled instance is assigned 

with the k value of the subspace it belongs to) or each test instance is assigned with a 

unique k value (level of analysis: the test instance itself).  

The median number of datasets, used for testing the aforementioned techniques, is 

twelve (12), something that is considered insufficient to reliably evaluate the performance. 

This study supports that one should use a wide variety of datasets, like datasets containing 

noise, imbalaced datasets, real life datasets, etc., in order to evaluate in a holistic manner 

each approach’s performance.  

In any case, this should be supplemented with the appropriate statistical tests in 

order to ascertain if performance superiority is significant. Unfortunately, only in twelve 

out of twenty-eight cases, at least one statistical test was conducted.  

The last two columns of the summarizing table deal with the number of citations 

received by each paper in an attempt to identify the most influential papers. In order to 

achieve this, it is considered appropriate not to just report the total number of citations each 

paper has received so far, but, also to compute a normalized index, i.e., the average 

citations per year. All the needed information was retrieved from Google Scholar in June 

2021. The median number of citations is 36.5 while the median number of the average 

citations per year is 4.035. Nine (9) out of twenty eight (28) papers have received more 

than one hundred citations, while six (6) out of twenty eight (28) papers have more than 

ten (10) citations per year on average).  
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The three most influential papers - both in terms of the total number of citations 

and the average citations per year - are (Guo et al., 2003) (621 / 34.5), (Wang et al., 2007) 

(322 / 23) and (Song et al., 2007) (270 / 19.28). Unfortunately, one should note that none 

of the above-mentioned papers conduct statistical tests in order to ascertain the 

performance superiority, especially, in combination with the insufficient number of 

datasets used for testing (6, 5 and 12).  

The author of the study in question feels the need to distinguish (Garcia-Pedrajas 

et al., 2017) as a complete approach, which could be adopted in almost every k-NN 

variation. The proposed algorithm, a prototype-based variation, was tested using 80 

datasets for regular and 65 for imbalanced problems in terms of three different metrics 

(Kohen’s Kappa, G-mean and auROC). The algorithm’s outperformance was significant, 

based on Wilcoxon tests that were conducted for all different situations (regular and 

imbalanced datasets) and metrics. In light of all the above, the specific approach have 

received seventy-one (71) citations within only four (4) years (17.75 citations per year).  

All the above makes it clear that a wide variety of approaches have been proposed 

in the literature, in an effort to build an even more effective k-NN algorithm as it is now 

evident that a fixed k value is not efficient enough to lead to optimal performance. This is 

due to the special features that every sub-space of each dataset has, e.g., each subspace 

within a dataset does not have same density or noise. However, researchers who try to 

overcome one of the main k-NN disadvantages, namely, the dependency on the k selection, 

by creating variations of the standard algorithm, should have in mind not to alleviate its 

advantages, which were mentioned in the first section. In other words, one should strike a 

balance between achieving higher classification rate (due to a ”better” k selection) and 

keeping the algorithm relatively simple. 

 

Table 2-1: Summary table of proposed approaches 

A/A paper year approach 
level of k 

selection 
#datasets 

statistical  

tests 
#citations 

average 

citations 

per year 

                  

1 
(Kardan et al., 

2013) 
2013 

Genetic 

Algorithm 
Global 10 No 9 1.12 

2 

(Johansson, 

König, et al., 

2008) 

2008 
Genetic 

Algorithm 
Region 27 Yes 3 0.23 
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3 
(Mullick et al., 

2018) 
2018 

Neural 

Networks / 

Heuristic 

Region 17 Yes 39 13 

4 

(Garcia-

Pedrajas et al., 

2017) 

2017 
Prototypes & 

Clustering 
Prototype 145 Yes 71 17.75 

5 

(Bulut & 

Amasyali, 

2017) 

2017 
Prototypes & 

Clustering 
Prototype 36 Yes 26 6.5 

6 
(Guo et al., 

2003) 
2003 

Prototypes & 

Clustering 
Prototype 6 No 621 34.5 

7 
(Ougiaroglou 

et al., 2020) 
2020 

Prototypes & 

Clustering 
Prototype 33 No 0 0 

8 

(Ferrer-

Troyano et al., 

2001) 

2001 Heuristics Global 25 Yes 5 0.25 

9 
(Nock et al., 

2003) 
2003 Heuristics Global 29 Yes 35 1.94 

10 
(Sun & 

Huang, 2010) 
2010 Heuristics 

Test 

Instance 
15 No 103 9.36 

11 
(Baoli et al., 

2004) 
2004 Heuristics 

Test 

Instance 
2 No 142 8.35 

12 
(Ougiaroglou 

et al., 2007) 
2007 Heuristics 

Test 

Instance 
2 No 57 4.07 

13 
(Holmes & 

Adams, 2002) 
2002 Probabilistic Global 6 No 172 9.05 

14 

(Johansson, 

Boström, et 

al., 2008) 

2008 Probabilistic 
Test 

Instance 
18 Yes 6 0.46 

15 
(Bhattacharya 

et al., 2014) 
2014 Probabilistic 

Test 

Instance 
15 Yes 18 2.57 

16 
(Bhattacharya 

et al., 2015) 
2015 Probabilistic 

Test 

Instance 
15 No 9 1.5 

17 
(X. Zhang & 

Li, 2013) 
2013 Probabilistic 

Test 

Instance 
12 Yes 28 3.5 

18 
(Song et al., 

2007) 
2007 Probabilistic 

Test 

Instance 
12 No 270 19.28 

19 

(Dhurandhar 

& Dobra, 

2013) 

2013 Probabilistic 
Test 

Instance 
5 No 38 1.63 

20 (Ghosh, 2007) 2007 Probabilistic Region 14 Yes 31 2.21 

21 (Ghosh, 2006) 2006 Probabilistic Region 11 Yes 123 8.2 

22 
(Wang et al., 

2007) 
2007 Probabilistic Region 5 No 322 23 
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23 
(Hamerly & 

Speegle, 2012) 
2012 Other Global 3 No 9 1 

24 
(Enas & Choi, 

1986) 
1986 Other Global 0 No 120 4.8 

25 

(Hand & 

Vinciotti, 

2003) 

2003 Other Global 0 No 100 5.55 

26 
(Anava & 

Levy, 2016) 
2016 Other 

Test 

Instance 
8 Yes 50 10 

27 
(X. Zhang & 

Li, 2013) 
2014 Other 

Test 

Instance 
12 No 19 2.71 

28 
(Zhong et al., 

2017) 
2017 Other Region 1 No 6 4 
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 3 Methodology 

 3.1  Introduction  

Based on the previous chapter, an obvious trend for improving k-NN classifier has 

been demonstrated. This trend stems from the finding that a unique and constant k value 

for the whole dataset is not adequate enough to take into consideration all the special 

features a dataset may have, such as noisy subspaces, dense and sparse neighborhoods and 

imbalanced classes.  

In this direction, in the context of this chapter, an alternative version of k-NN 

classifier will be presented. The approach extends the modified k-NN classifier, namely 

Rhd-k-NN, presented by Ougiaroglou et al. (2020), by, firstly, introducing the concept of 

sphere of influence and, secondly, expanding the list of the applied heuristcs. The author 

of this study strongly supports heuristics’ worth in the sense of preserving the simplicity 

of the original algorithm, a major k-NN’s advantage.  

Based on the above, in this chapter, the study of Ougiaroglou et al. (2020) will be 

briefly presented as well as the concept of sphere of influence and the applied heuristics. 

Finally, the chapter will end with the presentation of the conducted experiments results.  

 3.2  rhd-k-NN  

rhd-k-NN is an alternative k-NN version, presented by Ougiaroglou et al. (2020), 

falling into the group of local, prototype and clustering, approaches of modified k-NN 

algorithms.  

The first step of this approach is a procedure called Structure of Homogeneous 

Clusters (SHC). This process, a recursively application of k-Means clustering algorithm, 

is applied until all created clusters are homogenous. The total number of representatives 

represents the original dataset. This process aims at reducing the entropy, a measure of 

disorder, of the original dataset. This step is visually presented in Figure 3-1. 

The second step is the determination of depth (d) for each representative. As depth 

is defined the number of repetitions needed to call k-Means algorithm in order to form a 

homogenous cluster. For example, if the k-Means algorithm is called three repeatedly 

times to create a homogenous cluster, the depth of cluster’s representative equals to three 

(d = 3). Greater depth means greater entropy for the specific subspace. In turn, the greater 

the entropy, the greater k is needed to classify correctly. 
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The final step of this approach is the definition of k as a function of depth (d) for 

each representative. Specifically, for each test instance that needs to be classified, the one 

nearest representative is found as well as its depth. Then, the k value that will be used by 

k-NN – in order to classify the test instance in question – is computed, as a function of 

depth as previously mentioned, utilizing the following heuristics: 

• k = d 

• k = 2d 

• k = d2 

• k = [d x (d + 1) / 2] 

• k = ⌊ ⅇ√𝑑 ⌋ 

The experiments were conducted on a total of thirty-three datasets; the fourteen of 

them were standard benchmarking datasets while the rest nineteen were modified version 

of the original ones, with some noise addition (10% or 30%).  The test was conducted in 

terms of accuracy against some common used k-NN variations; the ”best” k-NN (k was 

estimated using 5-fold cross validation), 1-NN, 5-NN, 10-NN, √𝑁-NN and √
𝑁

2
-NN, where 

N represents the number of instances included in training set. 

The proposed algorithm demonstrated competitive performance, as it achieved 

higher accuracy than that of the best-k-NN in eighteen datasets while in two datasets the 

performance was similar. As far as the proposed heuristics are concerned, the k = [d x (d 

+ 1) / 2] heuristic seemed to be the approach with the highest accuracy. The heuristic k = 

d performed well in datasets without noise while the rest ones demonstrated similar 

performance with the best-k-NN. 
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Figure 3-1: The process of creating homogenous clusters through SHC 

[Source: (Ougiaroglou et al., 2020)) 

 3.3  Proposed Algorithm and Heuristics 

The proposed algorithm, in the context of this research, is based on the first two 

steps of rhd-k-NN. In other words, the algorithm initiates calling the procedure SHC in 

order to create homogenous clusters. This procedure runs once for every dataset, keeping 

a low computational cost (Ougiaroglou et al., 2020). Next, and after the completion of 

representative identification, follows the calculation of d value that corresponds to each 

representative. As one can see, these steps are identical with rhd-k-NN. 

However, the point at which this research differentiates, is step three; specifically, 

this research extends the previous one, by introducing and studying a new concept, namely 

the Sphere of Influence (SoI). This index is straightly connected with the size of the created 

homogenous cluster, providing additional information for the original datasets. This index 

can be utilized either solely or supplementary to depth. For example, a homogenous cluster 

with large d value and small SoI value corresponds to dense, not well separated 

neighborhoods that maybe contain noise. That’s why it took a large number of repetitions 

in order to create homogenous clusters (information deduced from index d) and the 

generated clusters are small (information deducted from index SoI).  On the other hand, 

small d value and large SoI corresponds to well separated neighborhoods. 
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Specifically, the following two definitions of SoI were used during the 

experiments. 

𝑆𝑜𝐼 = 1.25 × 𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ 

 

𝑆𝑜𝐼 =
𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐ⅇ +  𝑀𝑎𝑥 𝐷𝑖𝑎𝑠𝑡𝑎𝑛𝑐ⅇ

2
  

Where: 

Average Distance: The average distance between the representative and the data points 

within the cluster. 

Max Distance: The distance between the representative and the most distant point within 

the cluster. 

The concept behind the second definition of SoI is to take into consideration the 

max distance within the dataset but counterbalancing it with the average distance. That’s 

why an outlier could increase unpredictably the max distance, without providing useful 

information for k value calculation. On the contrary, such a great value of SoI, would result 

to large k values which in turn would increase the computational cost without increasing 

the accuracy, respectively.   

The question that now arises is how to connect SoI with k value calculation. The 

answer is by exploiting heuristics, in order to keep the algorithm simple. All experiments, 

testing the proposed algorithm and the corresponding heuristics, were executed twice; the 

first execution used the first definition of SoI while the second execution used the second 

definition of SoI. In cases that SoI = 0 (that means that the whole cluster consists of only 

one data point – which is identical with the representative), the corresponding k value is 

calculated using the best performed heuristic in rhd-k-NN, namely k = [d x (d + 1) / 2]. 

In detail, the proposed heuristics are the following 

1. k = [d x (d + 1) / 2], if SoI = 0 

k = SoI, in any other case 

2. k = [d x (d + 1) / 2], if SoI = 0 

k = SoI2, if 1 ≤ SoI ≤ 9 

k = 92, in any other case 

3. k = [d x (d + 1) / 2], if SoI = 0 

k = 2SoI, if 1 ≤ SoI ≤ 9 

k = 29, in any other case 
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4. k = [d x (d + 1) / 2], if SoI = 0 

k = [SoI x (SoI + 1) / 2], if 1 ≤ SoI ≤ 9 

k = [9 x (9 + 1) / 2], in any other case 

5. k = [d x (d + 1) / 2], if SoI = 0 

k = ⌊ ⅇ√𝑆𝑜𝐼 ⌋, if 1 ≤ SoI ≤ 9 

k = ⌊ ⅇ√9 ⌋, in any other case 

6. k = [d x (d + 1) / 2], if SoI = 0 

k = SoI + d, in any other case 

7. k = [d x (d + 1) / 2], if SoI = 0 

k = 
𝑆𝑜𝐼 + 𝑑

2
, in any other case 

8. k = [d x (d + 1) / 2], if SoI = 0 

k = d, if SoI = 1 

k = [d x (d + 1) / 8] x SoI, in any other case 

9. k = [d x (d + 1) / 2], if SoI = 0 

k = d, if SoI = 1 

k =  
𝑆𝑜𝐼 x 𝑑

3
, in any other case 

10. k = 1, if SoI = 1 

k = [d x (d + 1) / 2], in any other case 

The attributes of the original datasets used for experiment conducting are presented in 

Table 3-1: 

Table 3-1: Datasets attributes [Source: (Ougiaroglou et al., 2020)] 

Dataset Size Attributes Classes 

Balance  (bl) 625 4 3 

Banana  (bn) 5300 2 2 

Ecoli  (ecl) 336 7 8 

Iris 120 4 3 

Letter  Recognition  (lir) 20000 16 26 

Landsat  Satellite  (ls) 6435 36 6 

Magic  G.  Telescope  (mgt) 19020 10 2 

Pen-Digits  (pd) 10992 16 10 

Phoneme  (ph) 5404 5 2 

Pima  (pm) 615 8 2 

Shuttle  (sh) 58000 9 7 

Twonorm  (tn) 7400 20 2 

Texture  (txr) 5500 40 11 

Yeast  (ys) 1484 8 10 
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Apart from the original datasets, experiments were conducted on some modified 

versions of them. These versions contain some noise in order to test the proposed algorithm 

in real – life situations. The selected datasets were those that  Ougiaroglou et al. (2020) 

conducted their own experiments in order to have comparable results. The “noisy” versions 

are denoted using the suffix 10 or 30, containing 10% or 30% random uniform noise, 

respectively.  

 3.4  Experiments Results 

Table 3-2 and Table 3-3 present the distribution of data points according to the total 

number of spheres that they belong. For each data set, the column containing the maximum 

number of points is highlighted with bold. One can see that the distribution is more or less 

similar, independently of the chosen definition of SoI, while the majority of data points 

belonging either to one or to none sphere. This is not the case for dataset Shuttle (sh). This 

fact is highly expected, given the special attributes of this dataset. Specifically, the dataset 

has nine classes while the 80% of the data points belong to the class 1. The rest classes (2 

– 9) are mostly outliers. Given the fact that they are outliers, they increase the maximum 

distance within the created homogeneous clusters. This, in turn, increase each 

representative’s SoI, respectively.  

 

Table 3-2: Data points distribution in spheres if SoI = 1.25 x Average Distance 

Α/Α DATASET 0 

spheres 

1 

sphere 

2 

spheres 

3 

spheres 

4 

spheres 

5 

spheres 

6+ 

spheres 

1 bl 30 74 21 0 0 0 0 

2 bl10 67 55 3 0 0 0 0 

3 bl30 73 49 3 0 0 0 0 

4 bn 455 577 28 0 0 0 0 

5 ecl 31 22 13 1 0 0 0 

6 ecl10 28 30 7 2 0 0 0 

7 ecl30 51 16 0 0 0 0 0 

8 iris 15 15 0 0 0 0 0 

9 lir 992 2091 721 147 38 6 5 

10 ls 210 409 215 172 84 62 135 

11 ls10 245 337 216 171 90 69 159 

12 ls30 398 340 192 103 78 49 127 

13 mgt 697 1037 917 589 316 158 90 

14 mgt10 832 1095 908 518 268 114 69 
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15 pd 404 1105 503 157 22 7 0 

16 pd10 754 825 431 138 43 6 1 

17 pd30 1062 809 242 66 19 0 0 

18 ph 328 581 148 21 2 0 0 

19 ph10 425 516 122 16 1 0 0 

21 pm 31 50 31 27 11 3 0 

22 pm10 36 44 39 22 10 2 0 

23 pm30 46 49 38 9 6 4 1 

24 sh 2629 7826 1062 82 0 0 0 

25 tn 106 66 59 54 62 58 1075 

26 tn10 111 68 58 61 59 47 1076 

27 tn30 135 84 56 65 65 60 1015 

28 txr 226 595 200 62 10 6 1 

29 txr10 379 437 193 73 9 5 4 

30 txr30 549 387 129 27 7 1 0 

31 ys 131 102 54 4 3 2 0 

 

Table 3-3: Data points distribution in spheres if SoI = (Average + Max) / 2 

DATASET 0 

spheres 

1 

sphere 

2 

spheres 

3 

spheres 

4 

spheres 

5 

spheres 

6+ 

spheres 

bl 39 72 14 0 0 0 0 

bl10 87 35 3 0 0 0 0 

bl30 95 29 1 0 0 0 0 

bn 290 631 138 1 0 0 0 

ecl 27 28 8 3 1 0 0 

ecl10 33 27 4 3 0 0 0 

ecl30 57 9 1 0 0 0 0 

iris 11 17 2 0 0 0 0 

lir 961 1994 783 210 44 5 3 

ls 204 365 227 186 94 77 134 

ls10 314 322 240 167 108 58 78 

ls30 567 382 156 80 53 24 25 

mgt 522 718 711 635 487 334 397 

mgt10 854 1132 901 462 274 116 65 

pd 168 685 775 348 147 68 7 

pd10 725 816 426 172 44 13 2 

pd30 1274 723 172 26 3 0 0 

ph 224 429 232 113 67 13 2 

ph10 378 462 164 57 17 2 0 

pm 42 43 30 16 15 5 2 

pm10 49 50 30 21 3 0 0 

pm30 56 52 32 11 2 0 0 

sh 7 182 29 833 524 984 9040 

tn 106 80 71 75 83 60 1005 

tn10 211 135 107 77 74 56 820 

tn30 305 151 118 84 73 55 694 
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txr 120 602 230 109 25 10 4 

txr10 441 418 183 44 12 2 0 

txr30 726 313 51 9 1 0 0 

ys 150 102 37 5 2 0 0 

 

Table 3-4 presents the experiment results for the ten tested heuristics, which were 

presented earlier in this chapter, when SoI is defined as 1.25 x Average Distance (for 

brevity, first case). Respectively, Table 3-5 present the experiment results when SoI is 

defined as 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑀𝑎𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

2
 (for brevity, second case). All results are 

expressed in terms of accuracy (%). In each table and for every dataset, the heuristic(s) 

demonstrating the highest performance are highlighted with bold. Moreover, Table 3-6 

presents the percentage change between Table 3-4 and Table 3-5. Finally, Table 3-7 

presents the accuracy results, obtained for the same datasets, using either some commonly 

used k-NN versions or the heuristics tested in (Ougiaroglou et al., 2020). 

Beginning from Table 3-6, one can see that the results between the two approaches 

are quite similar. Specifically, there are percentage changes more than 5% only in two 

cases (datasets); in case of bl30 dataset – the “noisy” version of Balance dataset - for 

heuristcs 1-5 and heuristic 10 and in case of ys dataset for heuristic 1-5 and heuristic 7. 

The average performance – in terms of accuracy – is 86,94% in the first case and 87,27% 

in the second case. Based on this, one can support that the SoI definition that take into 

consideration both average and max distance, slightly outperforms the definition which 

take into consideration only the average distance. 

Examining the overall performance of each of the proposing heuristics, it is clear 

that heuristic 6 outperforms the rest ones, independently from the definition of SoI. The 

average performance in the first case is 88,85%, being the sole heuristic achieving the 

highest accuracy in fourteen out of thirty cases. Quite similar is the second case, as well. 

Specifically, heuristic 6 achieved 88,91% accuracy, being the sole heuristic achieving the 

highest accuracy in twelve out of thirty cases. Compared to best k-NN (overall accuracy 

89,88%) and the heuristic k = [d x (d + 1) / 2] (overall accuracy 89,24%), heuristic 6, even 

if it slightly underperforms, it demonstrates very competitive results. In fact, heuristic 6 

outperforms in comparison with heuristic k = [d x (d + 1) / 2] in twelve datasets while there 

is also one tie. Moreover, heuristic 6 outperforms in comparison with best k-NN in four 

datasets, while there are also two ties.  
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In order to statistically compare the two pairs of algorithms, the Wilcoxon 

Statistical Test was performed, with significance level of 0.05. Wilcoxon test is 

recommended as a powerful and easily implemented procedure to compare two classifiers 

(Demšar & Janez, 2006).  The same procedure is, also, followed by others researches in 

order to compare their proposed k-NN variations (Garcia-Pedrajas et al., 2017; Garcia et 

al., 2012; Mullick et al., 2018; Ougiaroglou & Evangelidis, 2016) The results are presented 

in Table 3-8 and Table 3-9. Specifically, the comparison between heuristic 6 and best k-

NN, showed that the null hypothesis should be rejected, i.e. the mean accuracy between 

the 2 classifiers are not equal. On the other hand, the comparison between heuristic 6 and 

the heuristic k = [d x (d + 1) / 2], highlighted by (Ougiaroglou et al., 2020) as the most 

highly performed variation, showed that the null hypothesis failed to be rejected. This 

means that there is not sufficient evidence to say that the mean accuracy is not equal 

between the two groups. 

Heuristic 9 (88,44% / 88,71%), heuristic 8 (88,36% / 88,71%) and heuristic 10 

(86,85% / 87,06%) follow in the ranking. Wilcoxon tests were also performed to compare 

heuristic 6 against heuristics 8, 9 and 10, respectively. The test showed that the null 

hypothesis failed to be rejected in comparisons of heuristic 6 and heuristic 8 and 9. This 

was not the case in comparison of heuristic 6 with heuristic 10, where the null hypothesis 

was rejected. All results are presented in Table 3-10, Table 3-11 and Table 3-12. 

Despite the fact that heuristic 10 proved to underperform, in comparison with 

heuristic 6, it seems to be a very interesting and simple approach. That’s why it is 

considered as an improvement of the commonly used 1-NN classifier. Specifically, 

heuristic 10 utilize the 1-NN classifier when SoI = 1, i.e. in cases where the unlabeled test 

instance belongs only in one sphere of influence. In this case, the classification is 

conducted by finding the one nearest neighbor. In rest cases, the classification is made 

utilizing the heuristic k = [d x (d + 1) / 2].   The improvement in 1-NN classifier is obvious 

as it increases the accuracy from 79,54% to 87,06%. Generally speaking, 1-NN approach, 

even if it is a simple and easily implemented approach, proves to be insufficient to meet 

the demands and the complexity of real – life datasets.  
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Table 3-4: Experiments results for all heuristic with SoI = 1.25 x Average Distance 

DATASET 
Heuristc 

1 

Heuristc 

2 

Heuristc 

3 

Heuristc 

4 

Heuristc 

5 

Heuristc 

6 

Heuristc 

7 

Heuristc 

8 

Heuristc 

9 

Heuristc 

10 

bl 82,400% 83,200% 83,200% 82,400% 83,200% 88,000% 84,000% 86,400% 87,200% 84,000% 

bl10 80,800% 80,800% 82,400% 80,800% 82,400% 88,800% 84,800% 88,000% 88,000% 81,600% 

bl30 70,400% 70,400% 68,000% 70,400% 68,000% 81,600% 74,400% 79,200% 79,200% 72,000% 

bn 89,906% 89,811% 89,906% 89,906% 89,906% 90,094% 90,283% 90,094% 90,094% 89,811% 

ecl 89,552% 89,552% 88,060% 86,567% 88,060% 88,060% 88,060% 88,060% 88,060% 89,552% 

ecl10 86,567% 86,567% 88,060% 85,075% 88,060% 91,045% 86,567% 89,552% 89,552% 86,567% 

ecl30 88,060% 88,060% 86,567% 88,060% 86,567% 88,060% 86,567% 86,567% 86,567% 88,060% 

iris 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 

lir 94,725% 94,675% 94,175% 94,850% 94,250% 94,575% 94,275% 94,675% 94,600% 94,825% 

ls 90,676% 91,531% 90,210% 91,375% 90,676% 90,987% 91,064% 90,987% 91,142% 91,298% 

ls10 85,703% 87,024% 87,102% 87,102% 87,801% 89,899% 88,967% 89,433% 89,510% 87,413% 

ls30 75,447% 81,197% 81,041% 79,176% 80,342% 87,723% 81,585% 87,413% 86,791% 82,517% 

mgt 80,547% 81,178% 82,019% 81,493% 81,966% 83,044% 82,729% 82,624% 82,860% 80,862% 

mgt10 78,049% 79,364% 80,047% 78,601% 79,784% 82,466% 81,677% 82,387% 82,413% 79,495% 

pd 98,908% 98,908% 98,908% 98,954% 98,908%  98,817% 98,954% 98,772% 98,908% 98,772% 
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pd10 94,177% 95,541% 95,632% 95,223% 95,632% 98,590% 97,179% 98,499% 98,499% 95,587% 

pd30 86,852% 89,263% 88,444% 88,808% 88,353% 97,361% 90,901% 96,906% 96,497% 89,854% 

ph 84,537% 84,722% 84,074% 85,370% 84,074% 82,500% 83,426% 82,870% 82,870% 84,815% 

ph10 81,111% 81,296% 82,315% 81,296% 82,500% 82,500% 82,315% 81,759% 81,944% 81,019% 

pm 73,203% 72,549% 73,203% 73,856% 73,856% 76,471% 74,510% 73,203% 75,163% 73,203% 

pm10 75,817% 75,817% 77,124% 73,856% 76,471% 77,778% 75,163% 72,549% 75,817% 74,510% 

pm30 66,667% 66,013% 64,706% 64,706% 65,359% 71,895% 67,320% 73,203% 72,549% 69,935% 

sh 99,879% 99,871% 99,845% 99,871% 99,845% 99,810% 99,836% 99,819% 99,819% 99,862% 

tn 97,770% 97,905% 98,041% 97,905% 97,905% 97,905% 97,973% 98,108% 97,905% 98,041% 

tn10 95,676% 96,351% 96,959% 96,554% 96,622% 97,568% 97,432% 97,635% 97,770% 96,757% 

tn30 89,797% 94,459% 94,392% 93,446% 90,608% 95,676% 91,892% 96,959% 96,014% 95,946% 

txr 98,182% 98,182% 98,182% 98,182% 98,182% 98,182% 98,182% 98,182% 98,182% 98,182% 

txr10 93,455% 94,636% 94,455% 94,636% 94,455% 97,182% 94,727% 97,273% 97,182% 94,909% 

txr30 85,636% 88,364% 87,636% 87,727% 87,545% 95,545% 87,455% 93,818% 93,545% 89,182% 

ys 55,743% 56,419% 53,716% 56,757% 53,716% 56,757% 54,054% 59,122% 57,770% 60,135% 

Average 85,564% 86,344% 86,169% 85,987% 86,057% 88,852% 86,765% 88,358% 88,436% 86,846% 
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Table 3-5: Experiments results for all heuristic with SoI = (Average Distance + Max Distance) / 2 

DATASET 
Heuristc 

1 

Heuristc 

2 

Heuristc 

3 

Heuristc 

4 

Heuristc 

5 

Heuristc 

6 

Heuristc 

7 

Heuristc 

8 

Heuristc 

9 

Heuristc 

10 

bl 81,600% 81,600% 82,400% 81,600% 82,400% 86,400% 83,200% 88,000% 87,200% 84,000% 

bl10 84,000% 84,000% 84,800% 84,000% 84,800% 88,800% 86,400% 88,000% 88,000% 84,800% 

bl30 76,000% 76,000% 74,400% 76,000% 74,400% 80,800% 77,600% 80,000% 80,000% 76,800% 

bn 90,000% 89,811% 89,717% 89,906% 89,717% 90,472% 90,094% 90,000% 90,094% 89,811% 

ecl 89,552% 89,552% 89,552% 88,060% 89,552% 88,060% 91,045% 88,060% 88,060% 89,552% 

ecl10 88,060% 88,060% 88,060% 86,567% 88,060% 91,045% 88,060% 88,060% 88,060% 88,060% 

ecl30 86,567% 86,567% 88,060% 86,567% 88,060% 89,552% 88,060% 88,060% 88,060% 86,567% 

iris 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 96,667% 

lir 94,575% 94,600% 94,000% 94,700% 94,150% 94,575% 94,175% 94,675% 94,525% 94,700% 

ls 90,443% 91,220% 90,054% 91,064% 90,443% 90,831% 91,220% 90,831% 90,987% 91,298% 

ls10 86,558% 88,112% 87,801% 88,112% 88,034% 90,132% 88,811% 89,588% 90,132% 88,034% 

ls30 75,758% 79,720% 80,264% 78,089% 79,254% 87,646% 81,818% 87,257% 86,558% 80,886% 

mgt 81,204% 81,940% 82,150% 81,914% 82,229% 82,992% 82,886% 82,597% 82,676% 81,335% 

mgt10 77,813% 78,996% 79,679% 78,891% 79,416% 82,597% 81,598% 82,624% 82,571% 79,232% 

pd 98,954% 98,726% 98,681% 98,954% 98,772% 98,817% 98,863% 98,726% 98,863% 98,726% 
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pd10 94,677% 95,496% 95,450% 95,314% 95,450% 98,681% 97,407% 98,635% 98,681% 95,587% 

pd30 89,399% 90,855% 90,309% 90,446% 90,309% 97,680% 92,448% 97,043% 96,906% 91,083% 

ph 84,630% 84,722% 84,167% 85,093% 84,352% 82,500% 83,704% 82,778% 82,963% 84,352% 

ph10 80,926% 80,926% 82,222% 80,926% 82,222% 83,148% 82,778% 82,685% 82,500% 80,648% 

pm 71,895% 72,549% 72,549% 73,856% 72,549% 75,817% 73,203% 74,510% 75,163% 72,549% 

pm10 75,163% 74,510% 74,510% 73,203% 74,510% 76,471% 74,510% 75,163% 76,471% 74,510% 

pm30 65,359% 66,667% 66,013% 64,052% 64,706% 72,549% 67,320% 74,510% 73,856% 68,627% 

sh 99,862% 99,595% 99,396% 99,733% 99,784% 99,784% 99,862% 99,707% 99,776% 99,802% 

tn 97,838% 97,770% 97,973% 97,838% 97,973% 97,635% 98,108% 97,770% 97,770% 97,770% 

tn10 94,865% 96,284% 96,216% 96,284% 95,946% 97,770% 97,297% 97,635% 97,770% 96,622% 

tn30 87,568% 92,162% 91,892% 91,351% 87,838% 94,730% 89,527% 96,892% 95,608% 95,270% 

txr 98,273% 98,273% 98,364% 98,636% 98,364% 98,000% 98,364% 98,273% 98,273% 98,091% 

txr10 93,636% 95,364% 94,909% 95,273% 94,909% 97,455% 95,091% 97,545% 97,455% 95,455% 

txr30 88,818% 89,818% 89,091% 89,545% 89,091% 96,364% 89,545% 95,273% 95,273% 89,909% 

ys 59,122% 59,459% 58,108% 59,797% 57,770% 59,459% 58,446% 59,797% 60,473% 61,149% 

Average 85,993% 86,667% 86,582% 86,415% 86,391% 88,914% 87,270% 88,712% 88,713% 87,063% 
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Table 3-6: Accuracy percentage change between the two definitions for SoI 

DATASET 
Heuristc 

1 

Heuristc 

2 

Heuristc 

3 

Heuristc 

4 

Heuristc 

5 

Heuristc 

6 

Heuristc 

7 

Heuristc 

8 

Heuristc 

9 

Heuristc 

10 

bl -0,97% -1,92% -0,96% -0,97% -0,96% -1,82% -0,95% 1,85% 0,00% 0,00% 

bl10 3,96% 3,96% 2,91% 3,96% 2,91% 0,00% 1,89% 0,00% 0,00% 3,92% 

bl30 7,95% 7,95% 9,41% 7,95% 9,41% -0,98% 4,30% 1,01% 1,01% 6,67% 

bn 0,10% 0,00% -0,21% 0,00% -0,21% 0,42% -0,21% -0,10% 0,00% 0,00% 

ecl 0,00% 0,00% 1,69% 1,72% 1,69% 0,00% 3,39% 0,00% 0,00% 0,00% 

ecl10 1,72% 1,72% 0,00% 1,75% 0,00% 0,00% 1,72% -1,67% -1,67% 1,72% 

ecl30 -1,70% -1,70% 1,72% -1,70% 1,72% 1,69% 1,72% 1,72% 1,72% -1,70% 

iris 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 

lir -0,16% -0,08% -0,19% -0,16% -0,11% 0,00% -0,11% 0,00% -0,08% -0,13% 

ls -0,26% -0,34% -0,17% -0,34% -0,26% -0,17% 0,17% -0,17% -0,17% 0,00% 

ls10 1,00% 1,25% 0,80% 1,16% 0,27% 0,26% -0,18% 0,17% 0,69% 0,71% 

ls30 0,41% -1,82% -0,96% -1,37% -1,35% -0,09% 0,29% -0,18% -0,27% -1,98% 

mgt 0,82% 0,94% 0,16% 0,52% 0,32% -0,06% 0,19% -0,03% -0,22% 0,58% 

mgt10 -0,30% -0,46% -0,46% 0,37% -0,46% 0,16% -0,10% 0,29% 0,19% -0,33% 

pd 0,05% -0,18% -0,23% 0,00% -0,14% 0,00% -0,09% -0,05% -0,05% -0,05% 
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pd10 0,53% -0,05% -0,19% 0,10% -0,19% 0,09% 0,23% 0,14% 0,18% 0,00% 

pd30 2,93% 1,78% 2,11% 1,84% 2,21% 0,33% 1,70% 0,14% 0,42% 1,37% 

ph 0,11% 0,00% 0,11% -0,32% 0,33% 0,00% 0,33% -0,11% 0,11% -0,55% 

ph10 -0,23% -0,46% -0,11% -0,46% -0,34% 0,79% 0,56% 1,13% 0,68% -0,46% 

pm -1,79% 0,00% -0,89% 0,00% -1,77% -0,86% -1,75% 1,79% 0,00% -0,89% 

pm10 -0,86% -1,72% -3,39% -0,88% -2,56% -1,68% -0,87% 3,60% 0,86% 0,00% 

pm30 -1,96% 0,99% 2,02% -1,01% -1,00% 0,91% 0,00% 1,79% 1,80% -1,87% 

sh -0,02% -0,28% -0,45% -0,14% -0,06% -0,03% 0,03% -0,11% -0,04% -0,06% 

tn 0,07% -0,14% -0,07% -0,07% 0,07% -0,28% 0,14% -0,34% -0,14% -0,28% 

tn10 -0,85% -0,07% -0,77% -0,28% -0,70% 0,21% -0,14% 0,00% 0,00% -0,14% 

tn30 -2,48% -2,43% -2,65% -2,24% -3,06% -0,99% -2,57% -0,07% -0,42% -0,70% 

txr 0,09% 0,09% 0,19% 0,46% 0,19% -0,19% 0,19% 0,09% 0,09% -0,09% 

txr10 0,19% 0,77% 0,48% 0,67% 0,48% 0,28% 0,38% 0,28% 0,28% 0,58% 

txr30 3,72% 1,65% 1,66% 2,07% 1,77% 0,86% 2,39% 1,55% 1,85% 0,82% 

ys 6,06% 5,39% 8,18% 5,36% 7,55% 4,76% 8,13% 1,14% 4,68% 1,69% 

Average 0,61% 0,50% 0,66% 0,60% 0,53% 0,12% 0,69% 0,46% 0,38% 0,29% 
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Table 3-7: Experiments results for commonly used k-NN versions and heuristic tested in (Ougiaroglou et al., 2020) [Source:   

(Ougiaroglou et al., 2020)] 

DATASET 
Best k-

NN 
1-NN 5-NN 10-NN 

RoT  

k = √𝑵 

RoT 

k = √
𝑵

𝟐
 

k = d k = 2d k = d2 
k = [d× (d 

+ 1)]/2 

k = 

⌊𝒆√𝒅⌋ 

bl 89,60% 79,20% 86,40% 89,60% 89,60% 89,60% 84,80% 88,80% 89,60% 90,40% 89,60% 

bl10 88,80% 68,80% 86,40% 87,20% 89,60% 89,60% 88,00% 91,20% 89,60% 90,40% 87,20% 

bl30 88,00% 59,20% 69,60% 79,20% 83,20% 83,20% 73,60% 83,20% 87,20% 82,40% 76,80% 

bn 90,66% 87,26% 89,81% 90,19% 90,57% 90,47% 89,81% 88,68% 90,38% 90,28% 90,47% 

ecl 91,05% 83,58% 89,55% 92,54% 86,57% 92,54% 88,06% 88,06% 86,57% 86,57% 89,55% 

ecl10 89,55% 77,61% 88,06% 92,54% 88,06% 89,55% 86,57% 91,05% 92,54% 91,05% 91,05% 

ecl30 85,08% 61,19% 82,09% 85,08% 85,08% 85,08% 76,12% 85,08% 88,06% 88,06% 85,08% 

iris 93,33% 90,00% 93,33% 93,33% 93,33% 93,33% 93,33% 93,33% 93,33% 96,67% 93,33% 

lir 95,78% 95,70% 95,40% 95,03% 81,05% 84,20% 95,65% 95,28% 93,83% 95,05% 95,43% 

ls 91,53% 89,98% 91,53% 91,14% 86,09% 87,34% 91,22% 90,68% 89,59% 90,99% 90,83% 

ls10 91,30% 81,66% 90,52% 90,99% 86,09% 87,10% 90,75% 90,37% 89,90% 89,98% 90,75% 

ls30 88,27% 61,23% 82,21% 89,04% 86,25% 86,79% 82,98% 88,58% 89,36% 88,81% 87,72% 

mgt 83,57% 80,13% 82,97% 83,57% 80,97% 81,65% 83,36% 78,97% 80,86% 81,86% 83,39% 

mgt10 83,10% 73,32% 80,97% 82,76% 81,13% 81,55% 82,89% 78,68% 80,81% 81,84% 82,99% 
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pd 99,05% 99,05% 99,09% 98,73% 95,04% 96,13% 99,09% 98,59% 98,32% 98,54% 98,91% 

pd10 98,86% 89,40% 98,95% 98,73% 95,13% 96,36% 98,91% 98,73% 98,36% 98,64% 98,91% 

pd30 98,68% 69,75% 94,18% 98,45% 94,90% 96,36% 92,58% 98,04% 98,23% 98,41% 97,59% 

ph 88,70% 88,70% 86,94% 86,30% 82,04% 83,52% 85,74% 78,98% 81,30% 81,94% 84,44% 

ph10 86,67% 81,39% 86,02% 86,02% 81,76% 83,89% 84,35% 78,80% 81,11% 81,48% 84,26% 

pm 76,47% 77,12% 78,43% 81,05% 75,16% 77,78% 80,39% 72,55% 74,51% 73,86% 82,35% 

pm10 78,43% 72,55% 76,47% 78,43% 75,16% 78,43% 75,82% 77,12% 77,78% 79,09% 77,78% 

pm30 73,86% 64,05% 64,71% 69,94% 71,90% 71,24% 71,24% 73,86% 71,90% 73,20% 76,47% 

sh 99,96% 99,96% 99,91% 99,86% 99,44% 99,36% 99,89% 99,72% 99,67% 99,83% 99,85% 

tn 97,97% 95,54% 97,70% 97,77% 97,77% 98,04% 97,77% 98,11% 97,70% 97,91% 98,04% 

tn10 97,77% 84,39% 95,47% 97,10% 97,57% 97,50% 97,10% 97,91% 97,43% 97,70% 97,70% 

tn30 97,77% 67,23% 79,19% 86,08% 97,43% 97,57% 86,69% 97,77% 97,03% 97,57% 94,73% 

txr 98,73% 98,73% 98,09% 97,82% 94,73% 95,82% 98,36% 98,09% 97,55% 98,00% 98,09% 

txr10 97,91% 90,55% 97,91% 97,82% 94,55% 95,55% 98,09% 97,73% 97,46% 97,64% 97,73% 

txr30 97,55% 69,73% 93,55% 97,55% 94,82% 94,91% 91,09% 96,55% 97,00% 97,55% 96,64% 

ys 58,45% 49,32% 57,10% 59,12% 61,15% 60,14% 55,41% 61,15% 60,14% 61,49% 57,43% 

Average 89,88% 79,54% 87,09% 89,10% 87,20% 88,15% 87,32% 88,52% 88,90% 89,24% 89,17% 
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Table 3-8: Wilcoxon test between heuristic 6 and best k-NN 

Wilcoxon signed-rank test / Two-tailed test:          

V 297 
       

V (standardized) 2,583 
       

Expected value 189 
       

Variance (V) 1732,500 
       

p-value (Two-tailed) 0,010 
       

alpha 0,05 
       

         

Test interpretation: 
       

H0: The two samples follow the same distribution. 
 

Ha: The distributions of the two samples are different. 
   

As the computed p-value is lower than the significance level alpha=0,05, one should 

reject the null hypothesis H0, and accept the alternative hypothesis, Ha. 

 

Table 3-9: Wilcoxon test between heuristic 6 and heuristic k = [dx(d+1)/2] 

Wilcoxon signed-rank test / Two-tailed test: 
    

         

V 236 
       

V (standardized) 0,740 
       

Expected value 203 
       

Variance (V) 1928,375 
       

p-value (Two-tailed) 0,459 
       

alpha 0,05 
       

        

Test interpretation: 
       

H0: The two samples follow the same distribution. 

Ha: The distributions of the two samples are different. 

As the computed p-value is greater than the significance level alpha=0,05, one cannot 

reject the null hypothesis H0. 

 

Table 3-10: Wilcoxon test between heuristic 6 and heuristic 8 

Wilcoxon signed-rank test / Two-tailed test: 
    

         

V 307 
       

V (standardized) 1,925 
       

Expected value 217,500 
       

Variance (V) 2138,625 
       

p-value (Two-tailed) 0,054 
       

alpha 0,05 
       

        

Test interpretation: 
       

H0: The two samples follow the same distribution. 

Ha: The distributions of the two samples are different. 
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As the computed p-value is greater than the significance level alpha=0,05, one cannot 

reject the null hypothesis H0. 

 

Table 3-11: Wilcoxon test between heuristic 6 and heuristic 9 

Wilcoxon signed-rank test / Two-tailed test: 
    

         

V 292 
       

V (standardized) 1,600 
       

Expected value 217,500 
       

Variance (V) 2138,625 
       

p-value (Two-tailed) 0,110 
       

alpha 0,05 
       

        

Test interpretation: 
       

H0: The two samples follow the same distribution. 

Ha: The distributions of the two samples are different. 

As the computed p-value is greater than the significance level alpha=0,05, one cannot 

reject the null hypothesis H0. 

 

Table 3-12: Wilcoxon test between heuristic 6 and heuristic 10 

Wilcoxon signed-rank test / Two-tailed test:          

V 365 
       

V (standardized) 3,179 
       

Expected value 217,500 
       

Variance (V) 2138,625 
       

p-value (Two-tailed) 0,001 
       

alpha 0,05 
       

         

Test interpretation: 
       

H0: The two samples follow the same distribution. 
 

Ha: The distributions of the two samples are different. 
   

As the computed p-value is lower than the significance level alpha=0,05, one should 

reject the null hypothesis H0, and accept the alternative hypothesis, Ha. 
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 4 Conclusion 

 4.1  Summary and conclusions 

As mentioned in chapter 2, this study aims at two goals. On the one hand, it 

attempts to record both the trend and the progress accomplished so far about k-NN 

variations – focusing on dynamic k value determination. This way, researchers will have 

the opportunity to form a clear picture of the achievements made to date, probably inspiring 

their future efforts. On the other hand, it attempts to develop a k-NN alternative, which 

will dynamically determine the k value, i.e., the number of neighbors that take part in the 

majority vote process, based on which the classification is made, without any user 

intervention.  

In the above-mentioned direction, a thorough literature review was conducted. The 

research resulted in a pool of 28 publications, covering a time period between 1986 and 

2020, with median value 2009. These studies, presented in the present work, revealed a 

clear tendency to improve the conventional k-NN algorithm in order to overcome one of 

its most important disadvantages; the performance’s dependency on k value selection. This 

tendency comes in contrast to the prevailing (in practice) technique of choosing a fixed 

“best” k using cross-validation. The studies were divided into six groups, according to the 

approach they follow for k determination, namely genetic algorithms, neural networks, 

prototypes and clustering, heuristic based, probabilistic and the group other. The majority 

of the older publications exploited probabilistic approaches while the tendency changed 

over the years, with prototypes and clustering becoming the prevailing approach. Apart 

from this, the level of k selection for each study was recorded, namely global, region, 

prototype and test instance, the number of datasets used for experiments, whether statistical 

tests were conducted or not, the total number of citations each research has received as 

well as the average citations per year. The last two indexes helped to distinguish the three 

most influential studies out of the twenty-eight. In summary, in most cases, and after 

conducting experiments on standard benchmarking datasets, the developed variations 

outperformed the conventional k-NN algorithm, with a fixed k value throughout the 

dataset. 

In addition to the literature review, a k-NN variation is proposed in the present 

study. Specifically, it is a k-free k-NN classifier, in the sense that the user does not select 

the parameter, but it is selected depending on the area where each unlabeled data point lies. 
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The algorithm initiates with a pre-processing step, the SHC algorithm. This 

algorithm takes as input the whole dataset and divides it into homogeneous clusters. Each 

homogeneous cluster is represented by a unique representative. Moreover, the depth for 

each representative is recorded, i.e. the number of recursions needed to call the k-Means 

clustering procedure in order to create the homogenous cluster. This study introduces a 

new term, namely Sphere of Influence (SoI). This number represents the size of the created 

homogenous cluster. Combined with depth, this index provides useful information about 

the subspace where an unlabeled test instance lies. Several proposed heuristics exploit this 

information in order to dynamically determine the appropriate k value for each test instance 

that needs to be classified.  

All the proposed heuristics were tested on several datasets. Some of these datasets 

contained artificial noise in order to test the classifier in real life conditions. The 

experimental results revealed a very competitive performance. In fact, the proposed 

algorithm achieved higher accuracy in four datasets against the conventional k-NN 

classifier that selects the k value with a cross-validation procedure while there were, also, 

two ties. Moreover, the proposed algorithm achieved higher accuracy in comparison with 

heuristic k = [d x (d + 1) / 2], that was highlighted by Ougiaroglou et al (2020) as the most 

highly performed heuristic. 

The above-mentioned results were, also, tested using the Wilcoxon statistical test. 

Besides, the literature review proved that statical tests are a necessary tool to compare two 

classifiers, in addition to experiment conducting. The test in question is a commonly used 

statistical procedure to compare two classifiers. Based on this, the difference between “best 

k” k-NN and the proposed algorithm is statistically significant. On the other hand, this was 

not the case in the comparison of the proposed algorithm and the heuristic [d × (d + 1)] / 

2.  

 4.2  Future extensions 

As far as the future extensions of this study are concerned, the efforts will be 

concentrated in developing new metrics that will take into consideration even more 

features about the subspace that each representative lies. For example, such metrics could 

be the number of instances (of the initial dataset) that each representative represents, the 

standard deviation of distances within each homogenous cluster or the number of classes 

that exist in the spere of influence of each representative. This way, new heuristics will be 
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created. These heuristics will consolidate all the above-mentioned information and will 

result in a dynamic k determination procedure, without any user interference. This 

classifier, an even more improved version of dynamic k determination k-NN, aspires to 

outperform the conventional k-NN.  
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