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Abstract 

In public decision-making factors such as personal values, cultural background and 

different individual perspectives play a central role in the policy cycle of design, test, 

implementation and review. To assist policy makers, analysts have used an array of 

qualitative and quantitative methods to all steps of the cycle. 

However, the increasing use of sophisticated methods seems not to be always 

accompanied by an improvement in the quality of policy making; on the contrary, it 

seems to attract criticism that is focused on their disadvantages. Furthermore, the rise 

of Artificial Intelligence (AI) and its expanding use in decision- and/or policy-

making, has brought forth the issue of interpretability of algorithms and whether their 

output can be trusted. Questions such as “which specific feature made the 

model/algorithm reach the specific decision”, hence issues of transparency and 

interpretability of the methods, are becoming central issues of the critique on 

quantitative methods and algorithms. 

This criticism is not without its merits. The complexity of contemporary problems 

means that there are issues about which an analyst can only make assumptions due to 

the existence of deep uncertainty. Moreover, in such complexity, the perception of the 

analyst may limit the view of the policy cycle under study. As a result, the success of 

a quantitative method relies on all of the above choices to be exactly “correct”. 

Sustainable development perfectly encapsulates these issues and in order to achieve it, 

public policies should have economic, social and environmental dimensions, while 

taking into account the current technological developments, the cultural context and 

the value system in which they are applied. Thus, sustainable development is a multi-

dimensional concept and from early on arose the need to find an appropriate proxy to 

measure it; that measure was sustainability. 

In addition to their multi-dimensional nature, both sustainable development and 

sustainability have been characterized by different perceptions on how to explicitly 

define them. Complementary to the lack of a unified definition is also the absence of 

an official and unified methodological framework. Composite indicators have 

emerged as a suitable means that allow the proper measurement of sustainability. 
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One of the methods that has been proposed and used in the literature for both the 

measurement of sustainability and the construction of composite indicators is Data 

Envelopment Analysis. A literature review was performed in the context of the 

current thesis for the years 2016-2020 and it was discovered that researchers have 

made an effort to include parameters that represent the social dimension of 

sustainability (a feature that was missing the previous years), while more dimensions 

of sustainability are included in recent studies such as technological innovation and 

advancement, despite the fact that the three-dimensional construct (economy, 

environment, society) seems to be the preferred one. Moreover, it was discovered that 

the choice of inputs and outputs (and intermediate measures) despite commonalities is 

unique to each research work. In addition, the choice of DEA variation and/or 

combination with other methodologies implies that the perception of each analyst 

affects the final result of their work. 

Apart from those identified gaps, the methodology of DEA itself does not come 

without its own limitations. First, in its traditional form the efficiency of Decision 

Making Units is calculated with weights that are most favorable to themselves; i.e. 

each DMU is evaluated under the most favorable weighting scheme with the purpose 

of maximizing its own efficiency. As a result, the weights that are chosen for one 

DMU may be completely different from those selected for another. Moreover, DEA 

needs to be used in the appropriate context, which means that there is the requirement 

to decide which parameters will best explain different dimensions of sustainability. 

This is especially important since, the number of inputs and outputs that can be used 

is limited by the number of DMUs under evaluation for the measurement to be 

meaningful, otherwise there would be an increased number of efficient DMUs that 

would result in inconsistencies. 

As a result, the purpose of the current thesis is to address all the above gaps and more 

specifically: 

1) to propose an alternative version of two-stage Data Envelopment Analysis with a 

different optimization metric that attempts to intervene on the weights of the inputs, 

intermediate measures and outputs to better reflect their importance for the DMUs by 

considering positive and negative deviations in the calculations and limiting the 

distance of these deviations from the maximum and minimum values.  
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2) to propose a computational framework that will attempt to incorporate different 

perceptions (meaning different combinations of inputs and outputs) and apply it in the 

measurement of sustainability of the EU 28 countries. 

To achieve this objective, the framework will rely on Exploratory Modeling and 

Analysis (EMA). EMA is a school of thought developed at RAND corporation and 

promotes the exploratory use of quantitative methods despite methodological 

limitations, uncertainties and different perceptions (meaning different combinations of 

inputs, intermediate measures and outputs). Employing an exploratory approach to 

sustainability measurement could reveal unanticipated implications of the initial 

assumptions regarding inputs and outputs. 

The thesis is developed in a series of consecutive steps. First, an alternative two-stage 

DEA model is introduced that employs positive and negative deviational variables 

both in the objective function (thus altering the optimization metric) and in the 

constraints. The model attempts to find the best possible weights for the inputs, 

intermediate measures and outputs, by minimizing the deviations of both the first and 

second stage of the model. By minimizing simultaneously the deviations of each 

stage, the efficiencies of both stages are maximized at the same time and no priority is 

given into which stage should take precedence. Three lemmas and one theorem are 

proved, and it is proven that the alternative model has a feasible solution that is 

optimal.  

The alternative optimization metric, two-stage proposed DEA model is applied in two 

case studies: one that calculates the environmental performance of European countries 

and a second to calculate the agricultural sustainability of European countries.  

Following the definition of the new model, a new computational framework is defined 

for the construction of composite indicators. The proposed model is used for the 

calculation of each sub-indicator that the final indicator will consist of. The calculated 

sub-indicators are then used as parameters in a Benefit-of-the-Doubt (BoD) model 

that generates the value of the final index. The computational framework is tested two 

times in the measurement of sustainability of European countries: once with the 

proposed, alternative, two-stage DEA model and once with the typical two-stage  

model of Chen et al. (2012).  
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The above calculation of sustainability however is limited by the same notion that was 

identified in the beginning: since there is no unique, “correct” definition of 

sustainability, the same indicator can be calculated by using different variations of 

DEA and/or different combinations of inputs, intermediate measures and outputs. 

Consequently, there is the need to have an indicator of sustainability that will 

incorporate all these different perceptions that may arise, where perceptions mean 

different DEA variation and/or different combination of inputs, intermediate outputs 

and outputs. The proposed computational framework is based on this principle, and it 

consists of the following steps: 

Step 1: Define different perceptions of sustainability and for each perception: 

a) define how many sub-indicators will be entailed in this perception’s 

sustainability index 

b) define the inputs, intermediate measures and outputs that each sub-indicator 

will entail 

c) Repeat for all perceptions 

Step 2: Define the variation of DEA that will calculate the value of the sub-indicators 

a) calculate the sub-indicators  

b) calculate the perception’s sustainability index using DEA models 

c) Once all sustainability indices for all perceptions are calculated, calculate the 

mean value for each country/DMU 

Step 3: Use machine learning to gain insights into the sustainability of each country 

under different perceptions 

The proposed computational framework is used with four different versions of two-

stage DEA models, and different combinations of inputs, intermediate measures and 

outputs to the calculation of sustainability of European countries.  

The final step of the proposed computational framework is to use Machine Learning 

techniques in the results of the generated computations with the purpose of revealing 

insights into how the sustainability of countries behaves under different perceptions.  
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Following the logic of EMA, several techniques will be employed in an effort to 

mitigate intrinsic methodological limitations and find the common, emergent elements 

that remain robust despite the different methods. 

The first insights will be revealed by using clustering techniques and more 

specifically K-Means  and Density based clustering (DBSCAN). For the clustering 

algorithms, the values of the sub-indicators along with those of the sustainability 

indices under all the computational regimes were used. 

For the current thesis, three additional techniques were used: Classification and 

Regression Decision Trees (CART), Random Forests and Boosting Regression. 

Classification and Regression Decision Trees (CART) since they are not 

computationally costly, they can be used as communication tools to non-experts and 

offer deep interpretational capabilities. However, CART trees tend to overfit the data 

to their training set and are considered weak learners  and for that reason two 

additional ML techniques will be used: Random Forests  and boosting regression.  

Random forests train trees independently using random samples of the available data 

and the sampling happens with bootstrapping both the sample and the features at 

every repetition. As a result, they tend to be slower than CART trees, but the 

generated results are more robust and tend to avoid the pitfalls of overfitting. More 

specifically, with the random forests 80% of the data will be used for training and the 

remaining will be used for prediction. Furthermore, for each data row (point) of the 

remaining data, the contribution of the individual features to the predicted value will 

be calculated. The average of all the contributions will be plotted in a boxplot to 

reveal insights on how individual sub-indicators affect the value of the sustainability 

index. 

Similarly, boosting regression is also considered a slow learner, but compared to 

random forests, each tree is generated using information from previous ones. 

Moreover, the technique will also reveal the relative influence of the individual sub-

indicator to the index of sustainability, which could provide further insights into the 

analysis of the results. Both random forests and boosting regression are more robust 

than CART trees, but this robustness comes at the detriment of intuitive 

communication capabilities that are the main characteristic of CART trees. 

Consequently, the use of all three Machine Learning techniques will limit the 
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methodological weaknesses of each method, while providing results and insights that 

are robust and independent of the used technique.  

The final results illustrated that a balance among the performance of various 

dimensions can be a good policy to achieve sustainable development and when the 

inclusion of all DEA variations does not alter significantly the mean value of 

sustainability then the trust in the results increases, thus making them robust. 

Finally, the blend of DEA with machine learning (applied on the results of DEA for 

the various scenarios) revealed insights on the areas that policy makers could direct 

investments to increase sustainability. In addition, the ML applications contributed in 

the identification of the most important features of sustainability for the various 

countries something that could have direct implications in the area of EU policy 

making: for example, countries that share similar features that drive the behavior of 

sustainability could be grouped together in clusters and policies, laws, regulations etc. 

could be adapted to those clusters in order to boost the particular features that would 

increase their sustainability. As a result, policy making has the potential to become 

customized (adapted to the specifics of each group) without missing its overall and 

principal theme of pursuing sustainable development. This adaptive and adaptable 

policy making could greatly be of assistance especially when new countries are 

negotiating their entry to the Union; based on the features that affect the sustainability 

of the new countries, they could follow the regulations and laws of the appropriate 

cluster. Finally, the inclusion of new layers and perceptions renders the algorithms 

more inclusive and participatory, increasing their transparency, thus improving the 

trust to the final results. 
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Περίληψη 

Κατά τη λήψη δημόσιων αποφάσεων, παράγοντες όπως οι προσωπικές αξίες, το 

πολιτισμικό υπόβαθρο και οι διαφορετικές ατομικές προοπτικές διαδραματίζουν 

κεντρικό ρόλο στον κύκλο σχεδιασμού, δοκιμής, εφαρμογής και αναθεώρησης της 

πολιτικής. Για να βοηθήσουν τους υπεύθυνους χάραξης πολιτικής, οι αναλυτές έχουν 

χρησιμοποιήσει μια σειρά ποιοτικών και ποσοτικών μεθόδων σε όλα τα στάδια του 

κύκλου αποφάσεων. 

Ωστόσο, η αυξανόμενη χρήση εξελιγμένων μεθόδων δεν φαίνεται να συνοδεύεται 

πάντα από βελτίωση της ποιότητας της χάραξης πολιτικής - αντίθετα, φαίνεται να 

προσελκύει κριτική που επικεντρώνεται στα μειονεκτήματά τους. Επιπλέον, η 

ραγδαία άνοδος της χρήσης τεχνικών μηχανικής μάθησης και τεχνητής νοημοσύνης 

και η ολοένα διερευνώμενη χρήση μεθοδολογιών βαθιάς μάθησης στη λήψη 

αποφάσεων ή/και στη χάραξη πολιτικής, έφερε στο προσκήνιο το ζήτημα της 

ερμηνευσιμότητας των αποτελεσμάτων των αλγορίθμων αυτών και κατά πόσον τα 

αυτά τους μπορούν να θεωρηθούν αξιόπιστα και έγκυρα (verified and validated). 

Ερωτήματα όπως "ποιο συγκεκριμένο χαρακτηριστικό (feature/variable/attribute) ή 

μετρική (metric) έκανε το μοντέλο/αλγόριθμο να καταλήξει στη συγκεκριμένη 

απόφαση", άρα ζητήματα διαφάνειας (transparency), ερμηνευσιμότητας 

(interpretability) και εμπιστοσύνης (trustworthiness) των μεθόδων, καθίστανται 

κεντρικά ζητήματα της κριτικής θεώρησης στις ποσοτικές μεθόδους και στους 

αλγορίθμους. 

Η κριτική αυτή δεν στερείται θεωρητικής και πρακτικής βάσης. Η εγγενής 

πολυπλοκότητα των σύγχρονων προβλημάτων προκαλεί ερωτήματα για τα οποία 

ένας αναλυτής μπορεί να κάνει μόνο υποθέσεις λόγω της ύπαρξης πλήρους 

αβεβαιότητας ή περιβάλλοντος υψηλού ρίσκου. Επιπλέον, σε ένα τέτοιο περιβάλλον 

πολυπλοκότητας, οι αντιλήψεις και τα στερεότυπα του αναλυτή (cognitive biases) 

μπορούν να περιορίσουν το οπτικό του πεδίο και τη δυνατότητα ερμηνείας του υπό 

μελέτη κύκλου πολιτικής. Ως αποτέλεσμα, η επιτυχία μιας ποσοτικής μεθόδου 

βασίζεται στο ότι όλες οι παραπάνω επιλογές που αφορούν την ανάλυση του 

προβλήματος θα είναι κατάλληλες. 

Η έννοια της αειφόρου ανάπτυξης περικλείει αυτά τα ζητήματα και για να επιτευχθεί 

οι δημόσιες πολιτικές θα πρέπει να έχουν οικονομικές, κοινωνικές και 
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περιβαλλοντικές διαστάσεις, λαμβάνοντας παράλληλα υπόψη τις τρέχουσες 

τεχνολογικές εξελίξεις, το πολιτισμικό πλαίσιο και το σύστημα αξιών στο οποίο 

εφαρμόζονται.  

Εκτός από τον πολυδιάστατο χαρακτήρα τους, τόσο η αειφόρος ανάπτυξη όσο και η 

αειφορία χαρακτηρίζονται από διαφορετικές αντιλήψεις σχετικά με τον τρόπο που 

πρέπει να οριστούν. Συμπληρωματικά με την έλλειψη ενός ενιαίου ορισμού είναι και 

η απουσία ενός επίσημου και ενιαίου μεθοδολογικού πλαισίου. Οι σύνθετοι δείκτες 

έχουν αναδειχθεί ως ένα κατάλληλο μέσο που επιτρέπει τη σωστή μέτρηση της 

αειφορίας. 

Μια από τις μεθόδους που έχουν προταθεί και χρησιμοποιηθεί στη βιβλιογραφία τόσο 

για τη μέτρηση της αειφορίας όσο και για την κατασκευή σύνθετων δεικτών είναι η 

Περιβάλλουσα Ανάλυση Δεδομένων (Data Envelopment Analysis, DEA). Στο 

πλαίσιο της παρούσας διατριβής πραγματοποιήθηκε βιβλιογραφική ανασκόπηση για 

τα έτη 2016-2020 και διαπιστώθηκε ότι οι ερευνητές έχουν καταβάλει προσπάθεια να 

συμπεριλάβουν παραμέτρους που αντιπροσωπεύουν την κοινωνική διάσταση της 

αειφορίας (χαρακτηριστικό που έλειπε τα προηγούμενα χρόνια), ενώ σε πρόσφατες 

μελέτες περιλαμβάνονται περισσότερες διαστάσεις της αειφορίας, όπως η 

τεχνολογική καινοτομία και πρόοδος, παρά το γεγονός ότι η τρισδιάστατη 

προσέγγιση (οικονομία, περιβάλλον, κοινωνία) φαίνεται να είναι η προτιμώμενη. 

Επιπλέον, διαπιστώθηκε ότι η επιλογή των εισροών και εκροών (και των ενδιάμεσων 

μέτρων) παρά τις σχετικές ομοιότητες είναι μοναδική για κάθε ερευνητική εργασία. 

Επιπλέον, η επιλογή της παραλλαγής της DEA και/ή ο συνδυασμός με άλλες 

μεθοδολογίες συνεπάγεται ότι η αντίληψη κάθε αναλυτή επηρεάζει το τελικό 

αποτέλεσμα της μελέτης του. 

Εκτός από τα κενά που διαπιστώθηκαν παραπάνω, η ίδια η μεθοδολογία της DEA δεν 

είναι απαλλαγμένη από τους δικούς της περιορισμούς. Πρώτον, στην παραδοσιακή 

της μορφή, η αποδοτικότητα των Μονάδων Λήψης Αποφάσεων (Decision Making 

Units-DMUs) υπολογίζεται με τα πιο ευνοϊκά για τις ίδιες βάρη, δηλαδή κάθε DMU 

αξιολογείται με το πιο ευνοϊκό σχήμα στάθμισης με σκοπό τη μεγιστοποίηση της 

δικής της αποδοτικότητας, κάτι που είναι ως ένα βαθμό αποδεκτό θεωρώντας ότι 

κάθε DMU δικαιούται το ελαφρυντικό της αμφιβολίας ως προς τους λόγους της 

μειωμένης αποδοτικότητάς της (benefit of the doubt principle). Ως αποτέλεσμα, τα 
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βάρη που επιλέγονται για μία DMU μπορεί να είναι εντελώς διαφορετικά από εκείνα 

που επιλέγονται για μια άλλη υπό την έννοια ότι οι αντίστοιχες μονάδες με τις οποίες 

συγκρίνεται κάθε μία από αυτές μεταβάλλονται ανάλογα με την άριστη λύση του 

σχετικού μοντέλου ώστε να εντοπιστεί η καλύτερη δυνατή απόδοση αλλά και οι 

ιδανικοί ομότιμοι προς τους οποίους θα πρέπει να κοιτάξει για να βελτιωθεί (efficient 

peers). Επιπλέον, η DEA πρέπει να χρησιμοποιείται στο κατάλληλο πλαίσιο, πράγμα 

που σημαίνει ότι υπάρχει η απαίτηση να αποφασιστεί ποιες παράμετροι θα εξηγήσουν 

καλύτερα τις διάφορες διαστάσεις της αειφορίας. Αυτό είναι ιδιαίτερα σημαντικό 

δεδομένου ότι, ο αριθμός των εισροών και εκροών που μπορούν να χρησιμοποιηθούν 

περιορίζεται από τον αριθμό των DMUs που αξιολογούνται για να έχει νόημα η 

μέτρηση, διαφορετικά θα υπήρχε αυξημένος αριθμός αποδοτικών DMUs που θα 

οδηγούσε σε ασυνέπειες. 

Ως εκ τούτου, σκοπός της παρούσας διατριβής είναι να αντιμετωπίσει όλα τα 

παραπάνω κενά και πιο συγκεκριμένα: 

1) να προτείνει μια εναλλακτική εκδοχή της Περιβάλλουσας Ανάλυσης Δεδομένων 

δύο σταδίων με μια διαφορετική αντικειμενική συνάρτηση που επιχειρεί να παρέμβει 

στα βάρη των εισροών, των ενδιάμεσων μέτρων και των εκροών ώστε να 

αντικατοπτρίζει καλύτερα τη σημασία τους για τα DMUs, λαμβάνοντας υπόψη τις 

θετικές και αρνητικές αποκλίσεις στους υπολογισμούς και περιορίζοντας την 

απόσταση αυτών των αποκλίσεων από τις μέγιστες και ελάχιστες τιμές. 

2) να προτείνει ένα υπολογιστικό πλαίσιο που θα επιχειρήσει να ενσωματώσει 

διαφορετικές αντιλήψεις (δηλαδή διαφορετικούς συνδυασμούς εισροών και εκροών) 

και να το εφαρμόσει στη μέτρηση της αειφορίας των χωρών της ΕΕ των 28, δηλαδή 

προτείνεται ένα νέο υπολογιστικό πλαίσιο που στηρίζεται σε τεχνικές μηχανικής 

μάθησης μέσω του οποίου κατασκευάζονται σύνθετοι δείκτες απόδοσης αειφορίας 

για κάθε χώρα. 

Για την επίτευξη αυτού του στόχου, το πλαίσιο θα βασίζεται στη διερευνητική 

μοντελοποίηση και ανάλυση (Exploratory Modeling and Analysis- ΕΜΑ). Η ΕΜΑ 

είναι μια σχολή σκέψης που αναπτύχθηκε στο ερευνητικό κέντρο RAND και προωθεί 

τη διερευνητική χρήση ποσοτικών μεθόδων παρά τους μεθοδολογικούς περιορισμούς 

τους, τις αβεβαιότητες και τις διαφορετικές αντιλήψεις (δηλαδή διαφορετικούς 

συνδυασμούς εισροών, ενδιάμεσων μέτρων και εκροών). Η χρήση μιας διερευνητικής 
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προσέγγισης για τη μέτρηση της αειφορίας θα μπορούσε να αποκαλύψει απρόβλεπτες 

επιπτώσεις των αρχικών υποθέσεων σχετικά με τις εισροές και τις εκροές. 

Η διατριβή αναπτύσσεται σε μια σειρά διαδοχικών βημάτων. Πρώτον, εισάγεται ένα 

εναλλακτικό μοντέλο DEA δύο σταδίων που χρησιμοποιεί θετικές και αρνητικές 

αποκλίνουσες μεταβλητές τόσο στην αντικειμενική συνάρτηση (μεταβάλλοντας έτσι 

το μέτρο της βελτιστοποίησης), όσο και στους περιορισμούς. Το μοντέλο επιχειρεί να 

βρει τα καλύτερα δυνατά βάρη για τις εισροές, τα ενδιάμεσα μέτρα και τις εκροές, 

ελαχιστοποιώντας τις αποκλίσεις τόσο του πρώτου όσο και του δεύτερου σταδίου του 

μοντέλου. Με την ταυτόχρονη ελαχιστοποίηση των αποκλίσεων κάθε σταδίου, 

μεγιστοποιούνται ταυτόχρονα οι αποδοτικότητες και των δύο σταδίων και δεν δίνεται 

προτεραιότητα στο ποιο στάδιο θα πρέπει να υπερισχύσει. Το προτεινόμενο 

πλαίσιο/μοντέλο στηρίζεται θεωρητικά σε τρία λήμματα και ένα θεώρημα όπου 

αποδεικνύεται ότι έχει τουλάχιστον μια εφικτή λύση που είναι βέλτιστη. 

Η προτεινόμενη παραλλαγή της μεθόδου εφαρμόζεται σε δύο μελέτες περίπτωσης: η 

μία υπολογίζει τις περιβαλλοντικές επιδόσεις των ευρωπαϊκών χωρών και η δεύτερη 

ελέγχει τη γεωργική βιωσιμότητα των ευρωπαϊκών χωρών.  

Μετά τον ορισμό του νέου μοντέλου, ορίζεται ένα νέο υπολογιστικό πλαίσιο για την 

κατασκευή σύνθετων δεικτών. Το προτεινόμενο μοντέλο χρησιμοποιείται για τον 

υπολογισμό κάθε επιμέρους δείκτη από τον οποίο θα αποτελείται ο τελικός δείκτης. 

Οι υπολογισμένοι υποδείκτες χρησιμοποιούνται στη συνέχεια ως παράμετροι σε ένα 

μοντέλο Benefit-of-the-Doubt (BoD) που παράγει την τιμή του τελικού δείκτη. Το 

υπολογιστικό πλαίσιο δοκιμάζεται δύο φορές στη μέτρηση της αειφορίας των 

ευρωπαϊκών χωρών: μία φορά με το προτεινόμενο, εναλλακτικό, μοντέλο DEA δύο 

σταδίων και μία φορά με το τυπικό μοντέλο δύο σταδίων των Chen et al. (2012). 

Ωστόσο, ο παραπάνω υπολογισμός της βιωσιμότητας περιορίζεται από την ίδια 

έννοια που εντοπίστηκε στην αρχή: δεδομένου ότι δεν υπάρχει μοναδικός, "σωστός" 

ορισμός της βιωσιμότητας, ο ίδιος δείκτης μπορεί να υπολογιστεί χρησιμοποιώντας 

διαφορετικές παραλλαγές της DEA ή/και διαφορετικούς συνδυασμούς εισροών, 

ενδιάμεσων μέτρων και εκροών. 

Κατά συνέπεια, γεννιέται η ανάγκη να υπάρξει ένας δείκτης αειφορίας που θα 

ενσωματώνει όλες αυτές τις διαφορετικές αντιλήψεις που μπορεί να προκύψουν, όπου 

αντιλήψεις σημαίνει διαφορετική παραλλαγή της DEA ή/και διαφορετικός 
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συνδυασμός εισροών, ενδιάμεσων μέτρων και εκροών. Το προτεινόμενο 

υπολογιστικό πλαίσιο βασίζεται σε αυτή την αρχή και αποτελείται από τα ακόλουθα 

βήματα: 

Βήμα 1: Καθορισμός διαφορετικών αντιλήψεων για τη βιωσιμότητα και για κάθε 

αντίληψη: 

- α) καθορισμός των επιμέρους δεικτών που θα περιλαμβάνονται στον δείκτη 

βιωσιμότητας αυτής της αντίληψης 

- β) καθορισμός των εισροών, τις ενδιάμεσων μέτρων και εκροών που θα 

περιλαμβάνει κάθε υποδείκτης 

- γ) Επανάληψη για όλες τις αντιλήψεις 

Βήμα 2: Καθορισμός της παραλλαγής της DEA που θα υπολογίζει την τιμή των 

υποδεικτών 

- α) Υπολογισμός των υποδεικτών 

- β) υπολογισμός του δείκτη αειφορίας της κάθε αντίληψης χρησιμοποιώντας 

τα μοντέλα DEA 

- γ) Αφού υπολογιστούν όλοι οι δείκτες αειφορίας για όλες τις αντιλήψεις, 

υπολογισμός της μέσης τιμής για κάθε χώρα/DMU 

Βήμα 3: Χρήση μηχανικής μάθησης για ανάδειξη πληροφοριών σχετικά με τη 

βιωσιμότητα κάθε χώρας υπό διαφορετικές αντιλήψεις 

Το προτεινόμενο υπολογιστικό πλαίσιο χρησιμοποιείται με τέσσερις διαφορετικές 

παραλλαγές μοντέλων DEA δύο σταδίων και διαφορετικούς συνδυασμούς εισροών, 

ενδιάμεσων μέτρων και εκροών για τον υπολογισμό της αειφορίας των ευρωπαϊκών 

χωρών.  

Το τελικό βήμα του προτεινόμενου υπολογιστικού πλαισίου είναι η χρήση τεχνικών 

μηχανικής μάθησης στα αποτελέσματα των παραγόμενων υπολογισμών με σκοπό την 

αποκάλυψη γνώσεων σχετικά με το πώς συμπεριφέρεται η αειφορία των χωρών υπό 

διαφορετικές αντιλήψεις. 

Ακολουθώντας τη λογική της ΕΜΑ, χρησιμοποιούνται διάφορες τεχνικές σε μια 

προσπάθεια να αμβλυνθούν οι εγγενείς μεθοδολογικοί περιορισμοί και να βρεθούν τα 
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κοινά, αναδυόμενα στοιχεία που παραμένουν ισχυρά παρά τις διαφορετικές 

μεθόδους. 

Στο πρώτο στάδιο του βήματος 3 της μεθοδολογίας που προτείνεται, 

χρησιμοποιούνται δύο τυπικές τεχνικές συσταδοποίησης μία η οποία στηρίζεται στα 

centroids και μία η οποία στηρίζεται στην χωρική πυκνότητα. Πιο συγκεκριμένα 

χρησιμοποιούνται η μέθοδος K-Means και η μέθοδος DBSCAN. Για τους 

αλγορίθμους αυτούς χρησιμοποιήθηκαν ως δεδομένα οι τιμές των επιμέρους δεικτών 

μαζί με εκείνες των δεικτών αειφορίας σε όλα τα υπολογιστικά καθεστώτα. 

Για την παρούσα διατριβή χρησιμοποιήθηκαν επίσης και τεχνικές που πηγάζουν 

καταρχάς από τα κλασικά Classification and Regression Decision Trees και 

επεκτείνονται σε Random Forests και Boosting Regression. 

Τα δέντρα αποφάσεων ταξινόμησης και παλινδρόμησης (CART), δεδομένου ότι δεν 

έχουν υπολογιστικό κόστος, μπορούν να χρησιμοποιηθούν ως εργαλεία επικοινωνίας 

σε μη ειδικούς και προσφέρουν βαθιές ερμηνευτικές δυνατότητες. Ωστόσο, τα CART 

τείνουν να προσαρμόζουν υπερβολικά τα δεδομένα και θεωρούνται αδύναμοι learners 

και για το λόγο αυτό θα χρησιμοποιηθούν δύο πρόσθετες τεχνικές μηχανικής 

μάθησης: Random Forests και boosting regression. 

Τα τυχαία δάση εκπαιδεύουν τα δέντρα ανεξάρτητα, χρησιμοποιώντας τυχαία 

δείγματα των διαθέσιμων δεδομένων και η δειγματοληψία γίνεται με bootstrapping 

τόσο του δείγματος όσο και των χαρακτηριστικών σε κάθε επανάληψη. Ως 

αποτέλεσμα, τείνουν να είναι πιο αργά από τα απλά CART, αλλά τα παραγόμενα 

αποτελέσματα είναι πιο ισχυρά και τείνουν να αποφεύγουν τις παγίδες της 

υπερπροσαρμογής. Συνήθως στα τυχαία δάση το 80% των δεδομένων θα 

χρησιμοποιηθεί για εκπαίδευση (training) και το υπόλοιπο θα χρησιμοποιηθεί για την 

πρόβλεψη (prediction). Ο μέσος όρος όλων των συνεισφορών θα απεικονιστεί σε ένα 

θηκόγραμμα (boxplot) για να αποκαλυφθούν γνώσεις σχετικά με τον τρόπο με τον 

οποίο οι επιμέρους υποδείκτες επηρεάζουν την τιμή του δείκτη βιωσιμότητας. 

Παρομοίως, η παλινδρόμηση boosting θεωρείται επίσης αργός learner, αλλά σε 

σύγκριση με τα τυχαία δάση (Random Forests), κάθε δέντρο δημιουργείται 

χρησιμοποιώντας πληροφορίες από τα προηγούμενα. Επιπλέον, η τεχνική μπορεί να 

αποκαλύψει τη σχετική επιρροή του κάθε επιμέρους υποδείκτη στον δείκτη 

βιωσιμότητας, γεγονός που θα μπορούσε να προσφέρει περαιτέρω πληροφορίες για 
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την ανάλυση των αποτελεσμάτων. Τόσο τα Random Forests όσο και η boosting 

regression είναι πιο εύρωστα από τα δέντρα CART, αλλά αυτή η ευστάθεια αποβαίνει 

εις βάρος των διαισθητικών δυνατοτήτων επικοινωνίας και εμηνευσιμότητας που 

είναι τα κύρια χαρακτηριστικά των δέντρων CART. Κατά συνέπεια, η χρήση και των 

τριών τεχνικών Μηχανικής Μάθησης βοήθησε στο να περιορίσει τις μεθοδολογικές 

αδυναμίες της κάθε μεθόδου, παρέχοντας παράλληλα αποτελέσματα και γνώσεις που 

είναι εύρωστες και ανεξάρτητες από τη χρησιμοποιούμενη τεχνική. 

Τα τελικά αποτελέσματα κατέδειξαν ότι η ισορροπία μεταξύ των επιδόσεων των 

διαφόρων διαστάσεων μπορεί να είναι μια καλή πολιτική για την επίτευξη της 

βιώσιμης ανάπτυξης και όταν η συμπερίληψη όλων των παραλλαγών της DEA δεν 

μεταβάλλει σημαντικά τη μέση τιμή της αειφορίας, τότε η εμπιστοσύνη στα 

αποτελέσματα αυξάνεται, καθιστώντας τα έτσι ισχυρά. 

Τέλος, ο συνδυασμός της DEA με τη μηχανική μάθηση αποκάλυψε πληροφορίες 

σχετικά με τους τομείς στους οποίους οι υπεύθυνοι χάραξης πολιτικής θα μπορούσαν 

να κατευθύνουν τις επενδύσεις για την αύξηση της αειφορίας. Επιπλέον, η εφαρμογή 

τεχνικών μηχανικής μάθησης συνέβαλε στον προσδιορισμό των πιο σημαντικών 

χαρακτηριστικών της αειφορίας για τις διάφορες χώρες, κάτι που θα μπορούσε να 

έχει άμεσες επιπτώσεις στον τομέα της χάραξης πολιτικής της ΕΕ: για παράδειγμα, οι 

χώρες που μοιράζονται παρόμοια χαρακτηριστικά θα μπορούσαν να ομαδοποιηθούν 

και οι πολιτικές, οι νόμοι, οι κανονισμοί κ.λπ. θα μπορούσαν να προσαρμοστούν σε 

αυτές τις ομάδες, προκειμένου να ενισχυθούν τα συγκεκριμένα χαρακτηριστικά που 

θα αύξαναν την αειφορία τους. Ως αποτέλεσμα, η χάραξη πολιτικής έχει τη 

δυνατότητα να γίνει εξατομικευμένη (προσαρμοσμένη στις ιδιαιτερότητες κάθε 

ομάδας) χωρίς να χάνει το γενικό και κύριο θέμα της, δηλαδή την επιδίωξη της 

βιώσιμης ανάπτυξης. Αυτή η προσαρμοστική και ευπροσάρμοστη χάραξη πολιτικής 

θα μπορούσε να βοηθήσει σημαντικά, ιδίως όταν νέες χώρες διαπραγματεύονται την 

είσοδό τους στην Ένωση- με βάση τα χαρακτηριστικά που επηρεάζουν την αειφορία 

των νέων χωρών, θα μπορούσαν να ακολουθήσουν τους κανονισμούς και τους 

νόμους της κατάλληλης ομάδας. Τέλος, η συμπερίληψη νέων διαστάσεων και 

αντιλήψεων καθιστά τους αλγορίθμους πιο περιεκτικούς και συμμετοχικούς, 

αυξάνοντας τη διαφάνειά τους, βελτιώνοντας έτσι την εμπιστοσύνη στα τελικά 

αποτελέσματα. 
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1. Introduction1 

1.1 General Background 

In public decision-making factors such as personal values, cultural background and 

different individual perspectives play a central role in the policy cycle of design, test, 

implementation and review (Tsoukias, Montibeller, Lucertini, & Belton, 2013). To 

assist policy makers, analysts have used an array of qualitative and quantitative methods 

to all steps of the cycle. 

In particular, quantitative methods have seen a growth that started in the 1970s (Longo 

& McNutt, 2018), which continues today with the steep increase in computational 

power and availability of data (Bankes, 1993). However, the increasing use of 

sophisticated methods seems not to be always accompanied by an improvement in the 

quality of policy making; on the contrary, it seems to attract criticism that is focused on 

their disadvantages (Bankes, 1993). Furthermore, the rise of Artificial Intelligence (AI) 

and its expanding use in decision- and/or policy-making, has brought forth the issue of 

interpretability of algorithms and whether their output can be trusted. Questions such 

as “which specific feature made the model/algorithm reach the specific decision” 

(Moraffah, Karami, Guo, Raglin, & Liu, 2020), hence issues of transparency and 

interpretability of the methods (Lewis, Li, & Sycara, 2021), are becoming central issues 

of the critique on quantitative methods and algorithms. 

This criticism is not without its merits. The complexity of contemporary problems 

means that there are issues about which an analyst can only make assumptions due to 

the existence of deep uncertainty (Kwakkel & Pruyt, 2013). For example, there is no 

easy way to quantify human behavior or have knowledge and data that illustrate how 

the components of a system precisely interact. Moreover, in such complexity, the 

perception of the analyst may limit the view of the policy cycle under study. As a result, 

the success of a quantitative method relies on all of the above choices to be exactly 

appropriate (Bankes, 1993). 

Sustainable development perfectly encapsulates these issues. It entered the sphere of 

public policy-making and analysis in the 1980s, when the Brundtland report defined 

 
1 The Introduction appeared on: Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An 

Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability 

Composite Indicators in the EU. Mathematics, 10(13), 2277 
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sustainable development as: “the ability to meet the needs of the present without 

compromising the ability of future generations to meet their own needs” (Brundtland, 

Khalid, Agnelli, Al-Athel, & Chidzero, 1987). This definition implies the existence of 

limits on both the human side (how can humans with the present state of technology 

use environmental resources) and nature (how can it absorb the effects of human 

activities) (Kates, et al., 2001). Furthermore, the definition implies a (multi-

generational) fairness in distributing the resources and effects of human activities 

(Hassanzadeh, Yousefi, Saen, & Hosseininia, 2018). Consequently, the Brundtland 

report brought to the limelight of policy-making the idea that policy makers cannot 

solely seek to promote social development in parallel to economic prosperity (Lin & 

Chiu, 2018), but they need to always consider the balance between economic growth 

and its environmental consequences (Munda & Saisana, 2011). 

These implications, omissions and conflicts imply that in order to achieve sustainable 

development, public policies should have economic, social and environmental 

dimensions, while taking into account the current technological developments 

(Robinson, 2004), the cultural context and the value system in which they are applied 

(Santana, Mariano, Camioto, & Rebelatto, 2015). Thus, sustainable development is a 

multi-dimensional concept and from early on arose the need to find an appropriate 

proxy to measure it (Tyteca, 1998). 

Sustainability, a notion stemming from ecology, has been used in that aspect. At its 

basic form, it is an indication of a natural system’s endurance, its ability to retain its 

essential properties and naturally replenish its population (Zhou, Yang, Chen, & Zhu, 

2018). In human systems, sustainability is regarded as the ability to live without 

environmental degradation (Robinson, 2004), while encompassing all dimensions of 

human systems and processes (Sneddon, Howarth, & Norgaard, 2006). 

In addition to their multi-dimensional nature, both sustainable development and 

sustainability have been characterized by different perceptions on how to explicitly 

define them (Drucker, 2014; Robinson, 2004). So far, all interpretations of both 

sustainable development and sustainability fall into two categories: there is the three-

dimensional approach that seeks to integrate an economic, social and environmental 

dimension and the dualistic approach that emphasizes the interlinked relationship 

between humans and nature (Robinson, 2004). Lately however, another category has 
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emerged, one that focuses on technology and innovation as the means to achieve 

sustainable development (Drucker, 2014). 

Complementary to the lack of a unified definition is also the absence of an official and 

unified methodological framework (Munda & Saisana, 2011). The existence of such a 

framework could be of great assistance, since the increasing complexity of policy-

making is increasingly characterizing the effort to achieve sustainable development 

(He, Wan, Feng, Ai, & Wang, 2016). To achieve its objective, such a framework should 

entail certain properties. First, the multi-dimensional nature of sustainability dictates 

that any quantitative method cannot rely only on terms of costs and benefits (Adler, 

2012). Moreover, any such method should have integrating properties, since 

sustainability seeks to combine different dimensions into a single measure 

(Ramanathan, 2002) and finally it should be transparent, easy to communicate to non-

experts and subjected to the review of experts (Robinson, 2004). 

These characteristics facilitated the use of composite indicators as a suitable means that 

allow the proper measurement of sustainability (Coli, Nissi, & Rapposelli, 2011). A 

composite indicator is a mathematical construction that can integrate multi-dimensional 

concepts with different units of measurement (Zhou, Yang, Chen, & Zhu, 2018). 

Furthermore, it can be used as a communication tool while offering meaningful policy 

monitoring (Zhang, Kong, & Choi, 2014). Consequently, indicators have been used 

extensively in the measurement of multi-dimensional concepts such as energy 

efficiency (Ervural, Zaim, & Delen, 2018), human development (Despotis D. K., 2005) 

and regional sustainability (Zhou, Yang, Chen, & Zhu, 2018). 

Nonetheless, the use of composite indicators did not come without some criticism. At 

their early stages, they mainly focused on the environmental aspect of sustainability 

(Zofı́o & Prieto, 2001). Moreover, they relied on weighted linear aggregation implying 

compensability among the parameters, which is not always a realistic assumption 

(Munda & Nardo, 2009). Finally, this type of weighted aggregation reflects the personal 

values of the policy maker and/or the analyst that might be different from the 

perceptions and values of other analysts, the general public etc. (Kuosmanen & 

Kortelainen, 2005). 

This criticism has stirred the research towards efforts to increase the robustness of 

composite indicators. Firstly, the focus has shifted from the environmental aspect of 
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sustainability and more (sub-) indicators have been integrated. For example, the social 

dimension (Winfield, Gibson, Markvart, Gaudreau, & Taylor, 2010), innovation as a 

force of change (Drucker, 2014) and the capacity to produce sustainable technological 

products (Santana, Mariano, Camioto, & Rebelatto, 2015). 

Regarding the methodological limitations of linear aggregation, other methods have 

been suggested in the literature and one that is being increasingly used is Data 

Envelopment Analysis (DEA). DEA is a non-parametric, mathematical programming 

technique that is used for the assessment of the technical efficiency of Decision Making 

Units (DMUs) relative to one another (Førsund & Sarafoglou, 2002), where technical 

efficiency can be viewed as the ability of a DMU to transform its inputs to outputs and 

is defined as the ratio of the sum of its weighted outputs over the sum of its weighted 

inputs (Thanassoulis, 2001) as indicated in expression (1): 

𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
∑𝑤𝑜𝑢𝑡𝑝𝑢𝑡 ∗ 𝑦

∑𝑤𝑖𝑛𝑝𝑢𝑡 ∗ 𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑖𝑛𝑝𝑢𝑡 𝑙𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑦

= 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑒𝑣𝑒𝑙 

(1) 

 

The foundations of DEA can be traced in the works of Debreu (1951), Farrell (1957) 

and Diewert (1973), while the method was established in the seminal papers of Charnes, 

Cooper and Rhodes (1978) and Banker, Charnes and Cooper (1984). The method does 

not require the knowledge of price information (Kuosmanen & Kortelainen, 2005), it 

requires knowledge neither of the relationship between inputs and outputs nor of the 

statistical distribution of the data that are used (Hajiagha, Hashemi, & Mahdiraji, 2016; 

He, Wan, Feng, Ai, & Wang, 2016). Moreover, DEA is flexible enough to be combined 

with other methods (Amiri, Zandieh, Vahdani, Soltani, & Roshanaei, 2010; Georgiou, 

Thanassoulis, & Papadopoulou, 2021; Kamvysi, Gotzamani, Georgiou, & 

Andronikidis, 2010), thus increasing its methodological robustness. These advantages 

were crucial in recognizing that DEA can be a suitable tool for assessing sustainable 

development (Callens & Tyteca, 1999) and as a result it has been increasingly used in 

sustainability policy making (Zhou, Yang, Chen, & Zhu, 2018). 

Zhou et al. (2018) performed a literature review on the use of Data Envelopment 

Analysis in regional sustainability studies and their study covers the years until 2016. 

In their paper, Zhou et al. (2018) identified the trend of using DEA to measure 

sustainability, however they also noted several gaps in the literature. Firstly, it appeared 



28 

 

that the main focus of the studies has been on the economic and environmental 

dimensions of sustainability, while the inclusion of the societal aspect was not equally 

extensive. Secondly, the authors observed a trend of combining DEA with other 

methodologies  such as Tobit regression (Ervural, Zaim, & Delen, 2018) or lifecycle 

assessment (Gonzalez-Garcia, Manteiga, Moreira, & Feijoo, 2018) in order to increase 

the robustness of the measurement by mitigating the methodological limitations of 

DEA. Moreover, the authors identified that while early studies tend to employ classic 

DEA models, in later years more sophisticated versions are used. Nonetheless, Zhou et 

al. (2018) also identify that there is still the need to decide which parameters will be 

used in the model that best describe the multi-dimensional concept of sustainability. 

Tsaples and Papathanasiou (2021) performed a literature review on DEA and 

sustainability for the years 2016-2020 and discovered that since 2016, the studies have 

made an effort to include parameters that represent the social dimension of 

sustainability. Moreover, there are efforts to include other aspects that represent 

technological advancement and innovation, despite the fact that the three-dimensional 

construct appears to be the preferred one. However, they also revealed the lack of a 

unified context in which sustainability is measured in two forms: Firstly, the choice of 

inputs and outputs (and intermediate measures) despite commonalities is unique to each 

research work. Secondly, the choice of DEA variation and/or combination with other 

methodologies implies that the perception of each analyst affects the final result of their 

work. In their work, Tsaples and Papathanasiou (2020a) calculate four different 

versions of sustainability using different combinations of inputs and outputs. However, 

they still use one variation of DEA for all versions of sustainability and they offer no 

explanation of how the choice of parameters affects the final results.  

Consequently, DEA does not come without limitations. First, in its traditional form the 

efficiency of Decision Making Units is calculated with weights that are most favorable 

to themselves; i.e. each DMU is evaluated under the most favorable weighting scheme 

with the purpose of maximizing its own efficiency (Sun, Wu, & Guo, 2013). As a result, 

the weights that are chosen for one DMU may be completely different from those 

selected for another (Pedraja-Chaparro, Salinas-Jimenez, & Smith, 1997). In other 

words, one DMU might place more importance on one of the inputs that it uses while 

another might do so on another. 
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Furthermore, Zhou et al. (2018) identified that there is the need to use DEA in the 

appropriate context, which means that there is the requirement to decide which 

parameters will best explain different dimensions of sustainability. This particular 

methodological limitation was not unknown; Moutinho, Madaleno and Robaina (2017; 

2018) identified that DEA is sensitive to the choice of inputs and outputs, meaning that 

the calculated efficiency depends on what inputs and outputs will be chosen. Finally, 

the number of inputs and outputs that can be used is limited by the number of DMUs 

under evaluation for the measurement to be meaningful, otherwise there would be an 

increased number of efficient DMUs that would result in inconsistencies (Hassanzadeh, 

Yousefi, Saen, & Hosseininia, 2018). Hence, the problem of context cannot be solved 

simply by adding more parameters to the model. 

Using appropriate inputs and outputs is an item of ongoing research in the DEA 

literature, with researchers attempting to utilize different techniques to increase the 

robustness of the method. For example, Benítez-Peña et al. (2020) propose the use of 

Mixed Integer Programming in choosing the appropriate inputs and outputs, while Lee 

and Cai (2020) propose a least absolute shrinkage and selection operator (LASSO) 

variable selection that not only addresses the issue of which inputs and outputs to use 

but also can be used with small datasets. 

Moreover, researchers understood that the robustness of a DEA model increases if the 

DMU under study is not considered a “black box” and for that reason, the intermediate 

steps of DEA were increased (Färe & Grosskopf, 2009). Hence, two-stage DEA model 

were considered as more appropriate to capture the appropriate weights that are used in 

the calculation of efficiency. However, little attention has been paid to these types of 

models with regard to weight distribution and their discriminatory power (Mahdiloo, 

Jafarzadeh, Saen, Tatham, & Fisher, 2016). 

Consequently, the power of DEA as a monitoring tool for sustainability is diminished 

by the same issue that was identified in the beginning of this section; the choice of the 

appropriate parameters must be “correct” in order for the measurement to be 

meaningful. The lack of a unified definition, however, means that there is no singular, 

“correct” choice. Different people (policy makers, analysts, the public etc.) have 

different values and perceptions of what sustainable development means and what 

should be used to measure sustainability. Thus, there is the need to increase the 
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robustness of DEA by incorporating as many perceptions as possible in the 

measurement of sustainability without losing the value of its advantages. 

1.2 Thesis Objective 

The purpose of the current thesis is to propose a computational framework with a 

twofold functionality: 

1) to propose an alternative two-stage Data Envelopment Analysis model with an 

alternative optimization metric that attempts to intervene on the weights of the inputs, 

intermediate measures and outputs to better reflect their importance for the DMUs by 

considering positive and negative deviations in the calculations and limiting the 

distance of these deviations from the maximum and minimum values.  

2) to propose a computational framework that will attempt to incorporate different 

perceptions (meaning different combinations of inputs and outputs) and apply it in the 

measurement of sustainability of the EU 28 countries. 

To achieve this objective, the framework will rely on Exploratory Modeling and 

Analysis (EMA). EMA is a school of thought developed at RAND corporation (Bankes, 

1992) and promotes the exploratory use of quantitative methods despite methodological 

limitations, uncertainties and different perceptions. Employing an exploratory approach 

to sustainability measurement could reveal unanticipated implications of the initial 

assumptions regarding inputs and outputs. The use of computational experimentations 

to explore conjectures, models and datasets is not new. It has been applied to 

mathematics (for example (Bailey, Borwein, & Bradley, 2006)), in simulation models 

(for example (Kwakkel & Pruyt, 2013)), and of course in various disciplines with the 

emergence of big data (for example (Fraedrich, Schneider, & Westermann, 2009)). The 

approach requires computational power, development of new algorithms and 

techniques to analyze the data that will be generated. 

Thus, EMA relies on Machine Learning (ML) techniques, even though the developed 

models may not be possible to be validated. However, even when it is not possible to 

validate a model, exploration could lead to insights on how the different perceptions on 

sustainability give rise to unexpected results. Moreover, the use of computational 

explorations could facilitate the explanation of known facts and the discovery of 

commonalities among different perceptions of sustainability, hence leading towards the 

development of a composite definition of sustainable development.  
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For that reason, the combination of DEA and ML has been gaining traction in the 

literature: Samoilenko and Osei-Bryson (2008) used cluster analysis to separate the 

original set of DMUs, calculated the efficiencies in each cluster and finally employed 

decision tree induction to gain insights into the specifics of each cluster. Wu (2009a) 

proposed a hybrid model that consists of two modules: in the first module suppliers are 

evaluated under DEA and are separated into efficient and inefficient ones. In the second 

module, neural networks are trained with the generated efficiencies to predict the 

performance of new suppliers. Hu et al. (2012) used DEA to calculate the efficiency of 

IT investments in Chinese companies and then employ Classification and Regression 

Trees (CART) to identify the main factors that affect the performance. De Nicola et al. 

(2012) combined DEA with CART to evaluate the Italian health system. and Salehi, 

Veitch and Musharhag (2020) used DEA to analyze the influence of resilience 

engineering and then employ multilayer perceptron to estimate the level of adaptive 

capacity. Nandy and Singh (2020a; 2020b) used DEA to evaluate the efficiency of 

farms in India and employ machine learning to gain insights into which variables are 

crucial in predicting performance. Aydin and Yurdakul (2020) separated countries in 

groups via clustering and then calculate the efficiency of how countries responded to 

Covid-19 in each cluster with DEA. Finally, Thaker et al. (2021) employed DEA to 

evaluate the efficiency of Indian banks and then use Random Forest Regression to 

analyze the impact of corporate governance (and other bank characteristics) on the 

calculated efficiencies. Consequently, combining DEA with ML offers an alternative 

approach to the issue of inputs and outputs selection. 

However, all the above combinations of DEA with ML are limited by the repeating 

theme of this introduction, that they do not consider different perceptions into the 

calculations. Furthermore, all the above attempts, in essence worked towards reducing 

the size of the available data with the introduction of ML (e.g using clustering). In the 

current thesis the opposite occurs; the variety of calculations under different perceptions 

can be seen as new data generator that are used as inputs for the ML stage of the model. 

The new data add new layers of insights; hence, the integration of DEA with ML under 

an exploratory, multi-perspective (similar to a full factorial experimental design 

pattern) will not only calculate the performance of EU countries on sustainability but 

at the same time provide insights relevant to policy makers and the general public. 
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1.3 Contributions 

The contributions of the current thesis are summarized below: 

• A literature review on Data Envelopment Analysis and sustainability covering 

the years 2016-2020 (Section 2) 

• The proposal and development of a new two-stage DEA variation with a 

different optimization metric and the inclusion of deviations to handle the 

weight distribution and the proof of lemmas and a theorem (Section 3.3.1) 

• The application of the proposed model to the assessment of the environmental 

performance (Section 3.3.2) 

• The application of the proposed model to the assessment of the agricultural 

sustainability (Section 3.3.3) 

• The design of a framework to construct composite indicators based on DEA 

(Section 4.1) 

• The design and development of an Exploratory, multi-dimensional DEA-ML 

framework (Section 4.2) and its application in the calculation of the 

sustainability of EU countries under different perspectives and assumptions 

(Section 4.3). 

1.4 Thesis Structure 

The rest of the thesis is structured as follows:  

Section 2 is focused on the literature and especially how Data Envelopment Analysis 

has been employed to calculate sustainability of countries and regions. 

In Section 3, the methodology of Data Envelopment Analysis is presented 

mathematically. Furthermore, the new two-stage DEA variation is proposed, 

formalized mathematically, applied in two case studies and finally, its sensitivity on 

the rank reversal phenomenon is tested. 

In Section 4, the Exploratory, Multi-dimensional Data Envelopment Analysis – 

Machine Learning computational framework is proposed, designed and applied in the 

calculation of sustainability of EU countries’ sustainability under different 

perceptions and methodological assumptions.  

Conclusions, lessons learnt from the research and literature as well as future research 

directions are presented and discussed in section 5.  
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2. Literature Review2 

2.1 Sustainable Development and Sustainability 

The term of sustainable development became widely known in the 1980s with the 

Brundtland report (Brundtland, Khalid, Agnelli, Al-Athel, & Chidzero, 1987). The 

report served as a reminder that all human activities had damaged the natural integrity 

and had caused unbalances to ecosystems that could seriously threaten the security of 

human societies (Coli, Nissi, & Rapposelli, 2011). 

The report brought to the limelight of public debate the notion that the objectives of 

policy makers and governments cannot be solely to promote social development while 

facilitating economic prosperity (Lin & Chiu, 2018), but there needs to be a constant 

reminder in the decision-making process that conflicts can exist between economic 

growth and the environment (Munda & Saisana, 2011). 

Hence, to achieve sustainable development governmental policies should have 

economic, social and environmental dimensions. Their consequences should 

contribute neither to overexploitation of the natural resources nor to widen the gap in 

distribution of social services (Hassanzadeh, Yousefi, Saen, & Hosseininia, 2018). 

Finally, sustainable development should always reconcile technological development 

and efficiency (Robinson, 2004), while considering the cultural context and the values 

system in which it is applied (Santana, Mariano, Camioto, & Rebelatto, 2015). 

Despite of the immense complexity associated with the concept of sustainable 

development - even from its beginning - efforts to achieve that state have become 

common practice in all levels of public policy, from government laws to regional and 

private decision-making (Li, et al., 2009). The reason behind that effort is best 

captured by the implications if sustainable development is not achieved: the ability of 

the natural environment to provide critical resources will be severely diminished 

(Daniels & Moore, 2001) followed by dire consequences for human societies. 

 
2 The Literature Review appeared on: Tsaples, G., & Papathanasiou, J. (2021). Data envelopment 

analysis and the concept of sustainability: A review and analysis of the literature. Renewable and 

Sustainable Energy Reviews, 138, 110664. (IF: 14.982, Q1) 
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Thus, the achievement of sustainable development is an enormous, complex and 

ongoing effort, but the first step should always be to address the widely recognized 

need of how best to measure it (Tyteca, 1998). 

The notion that has been used to measure the extent to which sustainable development 

has been achieved is the one of sustainability. It originates from the field of ecology 

and in its most basic form it signals the ability of a natural system to retain its 

essential properties and naturally replenish its population. Hence, sustainability is a 

measure of endurance of natural systems (Zhou, Yang, Chen, & Zhu, 2018), while in 

terms of human systems and processes, sustainability focuses on the ability to live 

without environmental degradation (Robinson, 2004; Sneddon, Howarth, & Norgaard, 

2006).  

Despite their importance, both sustainable development and sustainability are 

characterized by a plethora of definitions and meanings for people and organizations 

(Drucker, 2014; Robinson, 2004). In general, however, all the definitions fall under 

two categories: there is the three-dimension approach (integration of economic, social 

and environmental dimensions) and the dualistic topology that emphasizes the 

relationship between human and nature (Robinson, 2004). Lately, an even more 

contested term has entered the arguments of the opposing categories, with some 

claiming that the road to sustainable development can be achieved through technology 

and innovation while the rest claiming that this road could only lead to further 

environmental degradation (Drucker, 2014). 

Consequently, to continue to be an uncontested governmental activity (Coli, Nissi, & 

Rapposelli, 2011), sustainable development needs to be defined in such a way that it 

does not exclude any views; whether one perceives sustainability as a three-

dimensional construct or as a measure of balance between humans and nature, there is 

the need to develop a measure or index that incorporates both (or even more) 

perceptions. 

The lack of a unified definition notwithstanding, policy makers understood the 

importance of trying to achieve sustainable development and a series of international 

treaties and policy frameworks have been reached. The most important examples of 

recent years are the Sustainable Development Goals of the United Nations that 

attempt to synchronize the effort across countries (Adler, 2012) and the United 
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Nations Conference of the Parties 2015 Agreement (or else known as the COP-

21/Paris Climate Agreement), the focus of which has been to underline the connection 

between sustainable patterns of consumption and the fight against climate change 

(DiMaria, 2019). 

What these attempts do not seem to offer however, is methodological guidance and a 

unified framework on how to measure sustainability in practice and therefore achieve 

sustainable development (Munda & Saisana, 2011). The use of such an appropriate 

framework and/or guidance could immensely help policy makers reaching effective 

decisions related to sustainable policies (He, Wan, Feng, Ai, & Wang, 2016), 

especially since decision-making is increasingly characterized by multi-dimensional 

complexity.  

Composite indicators emerged as a tool for the proper measurement of sustainability 

(Coli, Nissi, & Rapposelli, 2011). A composite indicator can be considered as a 

mathematical construction that can measure multidimensional concepts, derived from 

individual indicators that usually have no common units of measurement (Zhou, 

Yang, Chen, & Zhu, 2018). Their advantages include the fact that they can be easily 

communicated and act as justification tools for policy makers, while - if properly 

constructed - they can lead to meaningful comparisons, policy monitoring and 

benchmarking (Zhang, Kong, & Choi, 2014).  

These indicators have been considered essential for regional sustainability 

measurement (Ervural, Zaim, & Delen, 2018), but in the beginning, they mainly 

focused on the environmental aspect of sustainable development (Zofı́o & Prieto, 

2001), covering the effects of economic activities to the environment. The criticism 

over this focus, has lead the research towards integrating more aspects of the 

sustainability structure such as the social dimension (Gibson, 2006; Pope, Annandale, 

& Morrison-Saunders, 2004; Winfield, Gibson, Markvart, Gaudreau, & Taylor, 2010), 

innovation as a force for socioeconomic change (Drucker, 2014), and the capacity of a 

country to produce a steady stream of sustainable technological products (Santana, 

Mariano, Camioto, & Rebelatto, 2015). 

Apart from the criticism on what these indices should include and measure, there have 

also been voices of concern on how they are constructed. The main objection is that 

they are usually developed by using a framework of weighted linear aggregation. 
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Linear aggregation however implies compensability among the parameters (or sub-

indicators) that construct the overall indicator; disadvantages of one sub-indicator 

could be offset by a sufficiently large advantage of another sub-indicator (Munda & 

Saisana, 2011). In the case of sustainability for example this could mean that the loss 

of potable water or the diminished levels of clean air could be substituted by 

economic growth (Munda & Nardo, 2009).  

Such an assumption is not realistic and even goes against the very notion of 

sustainability. For that reason, a robust methodological framework is necessary to 

mitigate the methodological limitations and assist in constructing effective and 

appropriate sustainability indices.  

Furthermore, the linear aggregation function demands the determination of weights 

from the analyst/policy-maker that builds the function. However, the problem with 

this type of weighting is that the resulting indicator will represent the values of the 

analyst/policy-maker, which may differ even within the same society/environment 

etc. (Kuosmanen & Kortelainen, 2005).  

In conclusion, the studying of sustainable development and sustainability led to the 

identification of the following gaps: First, the lack of a unified definition on what 

sustainable development is, resulted in different and even conflicting interpretations, 

which may have a negative effect on the communication of why sustainable 

development is necessary. Second, the lack of a unified methodological framework 

for measuring sustainability led to the employment of methods that may not be 

suitable to capture its multi-dimensional nature, which may have resulted in policies 

that are not sufficient and effective. Finally, these two gaps are interrelated: 

misguided assumptions about what sustainable development is accompanied by 

misguided methodological assumptions on how to measure it, lead to wrong 

estimations, hence the individual consequences of each one is amplified, increasing 

the overall complexity of the endeavor. 

The next section is focused on how Data Envelopment Analysis has attempted to 

mitigate the methodological limitations of measuring sustainability, while in parallel 

offering examples within DEA of how the problem of different definitions still 

persists affecting the results. 
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2.2 DEA and Sustainability 

As it was mentioned in the introduction, Data Envelopment Analysis emerged as a 

suitable method to measure sustainability. It is a non-parametric method that is used 

for the assessment of the technical efficiency of Decision Making Units (DMUs) 

relative to one another (Adler, 2012; Førsund & Sarafoglou, 2002), where technical 

efficiency can be defined as a measure of how well a DMU can transform inputs into 

outputs.  

The definition of efficiency for DEA originates in engineering and (as was already 

indicated in the Introduction) is defined as the ratio of the sum of its weighted outputs 

over the sum of its weighted inputs.  

𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
∑𝑤𝑜𝑢𝑡𝑝𝑢𝑡 ∗ 𝑦

∑𝑤𝑖𝑛𝑝𝑢𝑡 ∗ 𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑖𝑛𝑝𝑢𝑡 𝑙𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑦

= 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑒𝑣𝑒𝑙 
(1 revisited) 

 

 

The method was established in the seminal papers of Charnes, Cooper and Rhodes 

(1978) and Banker, Charnes and Cooper (1984). In its most basic form, it is assumed 

that there are N DMUs that use m inputs to produce s outputs. The notation includes 

the variables of xij (i=1…m, j=1…N) the level of the ith input of DMU j, and yrj (r= 

1…s, j = 1…N) the level of rth output of DMU j. 

Then the calculation for the technical efficiency for the input-oriented model can be 

found by solving the Linear Program (LP): 

 

𝑚𝑖𝑛  𝛩0 − 𝑒 (∑𝑆𝑖
− + 

𝑚

𝑖=1

∑𝑆𝑟
+ 

𝑠

𝑟=1

) (2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:  

∑𝜆𝑗 ∗ 𝑥𝑖𝑗 = 𝛩0 ∗ 𝑥𝑖𝑗𝑜

𝑁

𝑗=1

− 𝑆𝑖
−, 𝑖 = 1…𝑚 (3) 

∑𝜆𝑗 ∗ 𝑦𝑟𝑗 = 𝑦𝑟𝑗𝑜 + 𝑆𝑟
+, 𝑟 = 1…𝑠

𝑁

𝑗=1

 (4) 

𝜆𝑗 ≥ 0, 𝑗 = 1…𝑁, 𝑆𝑟
+, 𝑆𝑖

− ≥ 0 (5) 
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The variable 𝜆𝑗 is the weight calculated by DEA with the equations (2)-(5) for DMUj 

while the variables 𝑆𝑟
+, 𝑆𝑖

− are the slack variables that are used in Linear 

Programming. They represent any additional output increase or input decrease that is 

feasible to be achieved by the DMU. 

The technical efficiency of the above problem for DMU𝑗𝑜 is the variable 𝛩0 and it 

takes values between 0 and 1 (or 0 and 100%). The mathematical program represented 

with equations (2)-(5) is solved separately for each DMU and there are three options 

for the results after the solution: 

1. DMU𝑗𝑜 is Pareto-efficient if and only if 𝛩0 = 1 at the optimal solution and 

𝑆𝑟
+, 𝑆𝑖

− = 0 for all inputs and outputs 

2. If the value of one of the slack variables 𝑆𝑟
+, 𝑆𝑖

− is positive at the optimal 

solution, the corresponding input (or output) of DMU𝑗𝑜 can be further 

improved 

3. If none of the above applies, then DMU𝑗𝑜 has technical efficiency 𝛩0
∗. In the 

particular case, the technical efficiency at the optimal solution 𝛩0 < 1 reflects 

the maximum radial contraction of the input levels, without worsening the 

output levels, in order for DMU𝑗𝑜 to be considered efficient. 

This simple model and the notion of efficiency has proven to be appropriate for the 

measurement of sustainability. Zhou et al. (2018) performed an extensive literature 

review of how Data Envelopment Analysis has been used in the context of sustainable 

development and sustainability. Their paper covers research efforts until 2016, and 

the authors consider their work an extension of the review by Dakpo, Jeanneaux and 

Latruffe (2016). Their focus is not only the environmental dimension of sustainability, 

but they attempt to include and search for the social factors that can contribute to 

sustainable development.  

For the current thesis, a search was performed in bibliographic databases (Scopus and 

Google Scholar) for the years after 2016 to investigate the extent to which the method 

has been used for sustainability (using as keywords the terms “composite indicators” 

and “data envelopment analysis” or “DEA”). From the initial sample of articles, a 

further screening was performed by reading the abstracts (and where necessary the 

main texts) to check for measurement of sustainability (or similar notions). Finally, 
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several articles from the original review are included in the final sample because they 

were used to draw alternate interpretations of the results. Tables 1, 2 and 3 below 

summarize the new search, grouped per region of application. 
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Table 1 Summary of the new research on the literature- Applications in Europe 

Work Input Intermediate Output Index DEA 

variation 

Combina

tion with 

other 

method 

Area 

of 

Appli

cation 

(Moutinho

, 

Madaleno, 

& 

Robaina, 

2017) 

Labor productivity, capital 

productivity, the weight of fossil 

energy and the share of renewable 

energy in GDP 

 

- GDP/GHG 

 

Efficiency Classic 

DEA 

Quantile 

regression 

EU 

countr

ies 

(Masterna

k-Janus & 

Rybaczew

ska-

Błażejows

ka, 2017) 

consumption of electricity, 

consumption of heat, consumption of 

fuel, consumption of sawn wood and 

particle boards, consumption of 

fiberboard, consumption of sheets of 

float glass, consumption of paper and 

cardboard, consumption of cement, 

consumption of basic chemicals and 

plastics, consumption of metallurgical 

products, water consumption, 

wastewater discharged in waters, 

emissions of air pollutants, waste 

production 

 

- GDP, gross value added Eco-

efficiency 

Classic 

DEA 

- Polish 

region

s 
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(Gonzalez

-Garcia, 

Manteiga, 

Moreira, 

& Feijoo, 

2018) 

AROPE rate, unemployment rate, 

LCA result, Public school vacancies, 

number of crimes, inhabitants with 

higher education 

- Net disposable income Efficiency Classic 

DEA 

Material 

Flow 

Analysis+ 

Life 

Cycle 

Assessme

nt 

Spanis

h 

cities 

(Moutinho

, 

Madaleno, 

Robaina, 

& Villar, 

2018) 

GDP, population density, labor 

productivity, total resource 

productivity, patent applications per 

10000 inhabitants 

 

- GDP per capita, 

CO2emissions 

Eco-

efficiency 

Classic 

DEA 

Malmquis

t index 

Germa

n and 

Englis

h 

cities 

(Cucchiell

a, 

D'Adamo, 

Gastaldi, 

& 

Miliacca, 

2018) 

Greenhouse gases, Gross final energy 

consumption, renewable energy 

consumption 

 

- GDP, population Efficiency Classic 

DEA 

Zero Sum 

Gains 

DEA 

EU 

countr

ies 

(Biresseli

oglu, 

Demir, & 

Turan, 

2018) 

mathematical programming scores and 

scores from the energy trilemma 

 

- energy consumption, 

GHG generations, share 

of renewable energy in 

gross final energy 

consumption 

 

Efficiency Classic 

DEA 

Mathemat

ical 

Program

ming 

EU 

countr

ies 
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(Carboni 

& Russu, 

2018) 

infrastructure, efficiency of the legal 

system, tourists, high school 

qualifications, unauthorized buildings 

 

- Environmental index, 

GDP per capita 

 

Eco-

efficiency 

Classic 

DEA 

Malmquis

t index 

Italian 

region

s 

(Pozo, et 

al., 2019) 

Percentage of people with low income, 

Carbon emissions, Traffic flow, House 

Price, Anxiety 

- Happiness, Life 

Satisfaction, Income of 

tax Payers 

Efficiency Non radial 

DEA 

Temporal 

analysis 

Londo

n 

borou

ghs 

(Tsaples 

G. , 

Papathana

siou, 

Georgiou, 

& 

Samaras, 

2019) 

Gross Fixed Capital in PPS, Total 

Labor Force 

 

GDP per capita in PPS Share of renewable 

energy in gross final 

energy consumption, 

Greenhouse gas 

emissions (in CO2 

equivalent), Overall life 

satisfaction, Satisfaction 

with living environment, 

Satisfaction with 

financial situation, 

Intramural R&D 

expenditure for all 

sectors of the economy 

Sustainability 

index 

Multi-stage 

DEA 

- EU 

countr

ies 

(Tsaples 

& 

Papathana

siou, 

2020b) 

Fixed Capital in Purchasing Power 

Standards (PPS), Total Labor Force, 

 

GDP per capita in PPS 

 

Share of renewable 

energy in gross final 

energy consumption, 

Greenhouse gas 

emissions (in CO2 

equivalent), Overall life 

4 

sustainability 

indices using 

combinations 

of inputs and 

outputs 

Multi-stage 

DEA 

applied 4 

times 

 EU 

countr

ies 
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satisfaction, Satisfaction 

with living environment, 

Satisfaction with 

financial situation, 

Intramural R&D 

expenditure for all 

sectors of the economy, 

Mean equivalized net 

income, ability to face 

unexpected financial 

expenses as percentage 

of the population 
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Table 2 Summary of the new research on the literature- Applications in Asia 

Work Input Intermediate Output Index DEA 

variation 

Combina

tion with 

other 

method 

Area 

of 

Appli

cation 

(Sueyoshi 

& Yuan, 

2017) 

Capital, Labor, Energy - Gross Regional Product, CO2 

emissions, SO2 emissions, soot, 

wastewater, Chemical Oxygen 

Demand, NO 

 

Efficiency 

under natural 

and 

managerial 

disposability 

Intermediate 

DEA 

- Chine

se 

region

s 

(Sueyoshi

, Yuan, 

Li, & 

Wang, 

2017) 

Capital, Labor, Energy - Gross Regional Product, CO2 

emissions, SO2 emissions, soot, 

waste water, Chemical Oxygen 

Demand, NO emissions 

 

Efficiency 

under natural 

and 

managerial 

disposability 

 

Intermediate 

DEA 

- Chine

se 

region

s 

(Lin & 

Chiu, 

2018) 

population, investment 

in energy industry 

 

coal consumption, oil 

consumption, electricity 

consumption, natural gas 

consumption 

 

CO2 emissions, GDP 

 

Efficiency Two-stage 

DEA 

- Chine

se 

region

s 

(Sueyoshi 

& Yuan, 

2018) 

electricity consumption, 

total primary energy 

consumption 

- GDP, GDP per capita, total CO2 

emissions, CO2/total primary 

energy 

Efficiency and 

natural and 

managerial 

disposability 

Intermediate 

DEA 

- Asian 

countr

ies 
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(Song, 

Peng, 

Wang, & 

Zhao, 

2018) 

Employment, Total 

Energy Consumption, 

Fixed capital input 

 

- Total discharge of industrial 

wastewater, Discharge of 

industrial waste gas, amount of 

industrial solid waste 

 

Efficiency Ray slack-

based DEA 

- Chine

se 

region

s 

(Ervural, 

Zaim, & 

Delen, 

2018) 

Total renewable energy 

potential, network 

length, total installed 

power of renewable 

energy, transformer 

capacity 

 

- Gross energy generation from 

renewable energy, number of 

consumers, total exports, GDP 

per capita, HDI, Total energy 

production, Population, area 

 

Super 

efficiency 

Super 

efficiency 

DEA 

Tobit 

regression 

analysis 

Turkis

h 

region

s 

(Zhang, 

Li, & 

Gao, 

2018) 

Capital, Labor, Energy - Gross regional product (GRP), 

CO2emissions, SO2 emissions, 

soot and dust, wastewater, COD, 

Ammonia nitrogen 

 

Efficiency Intermediate 

DEA 

 Chine

se 

region

s 

(Zhao, 

Zha, 

Zhuang, 

& Liang, 

2019) 

Capital, Labor, Energy, 

RFE % 

GDP Wastewater, waste gas, Solid 

waste, SHC, SBE, SSSE 

Efficiency Parallel 

DEA 

models 

- Chine

se 

region

s 
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Table 3 Summary of the new research on the literature- Applications in various countries 

Work Input Intermediate Output Index DEA 

variation 

Combina

tion with 

other 

method 

Area 

of 

Appli

cation 

(Hassanza

deh, 

Yousefi, 

Saen, & 

Hosseinin

ia, 2018) 

total material consumption, 

labor unemployment 

 

- GDP per capita, CO2 emissions, 

employment protection index 

 

Efficiency SORM 

DEA 

Inverse 

SORM 

DEA 

OECD 

countr

ies 

(DiMaria, 

2019) 

Labor, capital - GDP, ecological reserve deficit Aggregation 

of efficiency 

and anti-

efficiency 

RAM DEA - Vario

us 

countr

ies 

(Tajbakhs

h & 

Shamsi, 

2019) 

Imports of goods and services 

in current US$, total annual 

freshwater withdrawals in 

percentage of internal 

resources, public expenditure 

per capita in current US$, 

duration of compulsory 

education 

- exports of goods and services in current 

US$, GNI per capita in current US$, 

total life expectancy at birth in years, 

total employment, proportion of seats 

held by women in national parliaments 

in percentage, CO2 emissions, total 

refugees leaving the country 

Efficiency Classic 

DEA 

- Vario

us 

countr

ies 
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The tables above indicate papers that were published until 2020. The first aspect that 

can be noticed is that apart from the indicators that were identified as inputs and 

outputs by Zhou et al.(2018), an effort has been made to diversify their types with the 

aim of including social sub-indicators. Furthermore, their variety has increased with 

authors trying to diversify the types of pollutant emissions, waste, consumption etc. 

Interestingly, of all the papers that were studied only five diversify completely from 

the norm.  

Gonzalez-Garcia et al. (2018) who used as inputs several social indicators that were 

not used before like level of higher education, crimes etc. and as output the net 

disposable income to study the efficiency of Spanish cities with regards to 

sustainability. Furthermore, Carboni and Russu (2018) included the quality of the 

legal system along with notions of corruption and quality of life to investigate the eco-

efficiency of Italian regions.  

However, only in 2019 notions like “happiness”, “proportion of seats held by women 

in national parliaments in percentage” and “total refugees leaving the country” have 

started to be included explicitly as equally important inputs and outputs in analyses 

(Pozo, et al., 2019; Tajbakhsh & Shamsi, 2019).  

The inclusion of diverse social indicators continued in the work of Tsaples et al. 

(2019) who included notions such as “overall life satisfaction” and “satisfaction with 

the living environment” in their calculation of sustainability. Furthermore, Tsaples 

and Papathanasiou (2020a) further continued this trend with variables such as the 

“ability to face unexpected financial expenses as percentage of the population”. 

Despite the inclusion of more societal dimensions, the literature is lagging in 

including technology and innovation in the measurement of sustainability. In the work 

by Santana et al. (2015), the authors used as input the gross domestic expenditure on 

Research and Development along with the total number of applications, as outputs 

they used GDP per capita, means of schooling years, life expectance, CO2 emissions 

to measure the efficiency of sustainable development of BRICS and G7 countries. 

Finally, Tsaples et al. (2019) and Tsaples and Papathanasiou (2020a) included the 

variable of “Intramural R&D expenditure for all sectors of the economy” in their 

calculations.  
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Consequently, in the debate of how to define and measure sustainable development, 

the research on DEA illustrates that the concept of the three-dimensional 

sustainability appears to be predominant. It must however be noted that in that way, 

other views and definitions are usually excluded from the analysis. Only recently, 

individual efforts have started to look how sustainability could be defined in an 

alternate way. 

Regarding the actual notion of sustainability, Figure 1 below illustrates the type of 

index that has been employed. 

 

Figure 1 Frequency of appearance of sustainability index 

As it can be observed, the majority of the papers used Efficiency (or some variation) 

as a proxy for sustainability and only in two papers there is an explicit mention of 

calculating a sustainability indicator. Furthermore, the second most-used term is that 

of eco-efficiency. 

Eco-efficiency is one of the most widely used indicators that is related to the more 

encompassing notion of sustainability (Kuosmanen & Kortelainen, 2005). The aim of 

an eco-efficient system is the maximization of the production while keeping the 

environmental consequences to a minimum (Moutinho, Madaleno, & Robaina, 2017; 

WBCSD, 2000). OECD (1998) defined it more formally as “the efficiency with which 

ecological resources are used to meet human needs”. 

Its concept can be traced in the decade of 1970s when it was linked to the efforts to 

achieve environmental efficiency (Carboni & Russu, 2018; Freeman III, Haveman, & 
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Kneese, 1973);. According to Huppes and Ishikawa (2005), the notion of eco-

efficiency can be measured in real life with 4 ways: 

- As the ratio of economic output to environmental pollution (named as 

environmental productivity). 

- As the ratio of environmental pollution to economic activity (named as 

environmental intensity). 

- As the ratio of improvement cost to environmental improvement (named as 

environmental improvement cost). 

- As the ratio of environmental improvement to improvement cost (named as 

environmental cost effectiveness). 

Similar to the discussion on which inputs and outputs should be used with DEA to 

measure sustainability, the above notions of economic output, environmental pollution 

etc. are perceived differently by different authors and different combinations of inputs 

and outputs are used to measure eco-efficiency. 

The notion of eco-efficiency is considered critical since it provides a pathway to the 

design of policies that could reduce environmental pressure (Kuosmanen, 2005). 

Furthermore, the ratio of economic value over environmental damage (or its inverse) 

is considered intuitive and clear, thus making eco-efficiency a measure of 

sustainability that is easy to communicate (Kuosmanen & Kortelainen, 2005). 

For those reasons, eco-efficiency has been extensively used with DEA as a measure of 

sustainability of regions and countries (Xing, Wang, & Zhang, 2018).  

Masternak‐Janus and Rybaczewska‐Błażejowska (2017) used a classic DEA model to 

measure eco-efficiency of Polish regions, while in Moutinho et al. (2018) the authors 

did the same for German and English cities. Finally, a stream of research utilized the 

notion of eco-efficiency to measure sustainable development of various regions. This 

stream includes the works of Carboni and Russu (2018) for Italy and Lin and Chiu 

(2018) for Chinese regions. 

Despite its popularity, eco-efficiency has attracted a lot of criticism. Ehrenfeld (2004) 

sees eco-efficiency as a symptomatic solution where technological innovation is 

solving the problems that were created by technological innovation. Furthermore, 
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attempting to achieve adequate levels of eco-efficiency does not guarantee a state of 

sustainable development (Kuosmanen & Kortelainen, 2005). A recurring criticism 

that was observed in all the literature, is which inputs and outputs should be used in 

the DEA model with the aim of measuring eco-efficiency. 

As a result, the lack of a unified definition has an impact of how sustainability is 

perceived and how it should be measured. In the DEA literature, efficiency is used as 

equivalent to sustainability, while other notions like eco-efficiency are regarded as 

sufficient proxies. Furthermore, the diverse definitions have an effect on which inputs 

and outputs should be used to measure sustainability. In the DEA literature, the 

typical three-dimensional construct is prevalent, but recently efforts have been made 

to include technological aspects. Finally, only one recent paper attempted to integrate 

different definitions of sustainability within the same measurement. 

Apart from the effects of different definitions of sustainability, differences are also 

observed in the methodology used even within the same DEA framework. Figure 2 

below illustrates the frequency of the method that has been used in the literature.  

 

Figure 2 Frequency for DEA variations in the papers under study 

Thus far, it appears that classic variations of DEA are the preferred option for 

researchers, with non-radial and multi-stage approaches gaining traction in the last 

years. 

Moreover, a trend is observed where authors enrich the results generated by DEA 

with another method to gain another layer of knowledge. For example, a combination 
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of a classic CRS DEA model with another method is the one proposed by Cucchiella 

et al. (2018). After analyzing the DEA model, the authors perform a second analysis 

to identify the input values that make the system under study globally efficient.  

A similar idea but with a different approach was executed by Hassanzadeh et al. 

(2018). The authors combined a DEA model with its inverse; its purpose was to 

determine the most desirable inputs and outputs that keep the levels of efficiency 

unchanged (Lertworasirikul, Charnsethikul, & Fang, 2011). 

Another stream of work observed in the literature is the use of the Intermediate DEA. 

The method was proposed by Sueyoshi et al. (2017) and a typical example of its use is 

the work on (Sueyoshi & Yuan, 2018). The authors measured efficiency but they did 

so under the concepts of natural and managerial disposability. 

The examples that were described thus far use the typical, one-stage version of DEA. 

However, in recent years, researchers understood that the robustness of a model 

increases (whereby robustness it is meant to increase the validity of the results by 

mitigating some of the limitations of DEA) if the region/country under study is not 

considered a black box; for this reason, a network-version of DEA could be used. 

Furthermore, in any DEA analysis, the number of inputs and outputs depends on the 

number of DMUs under study for the results to be meaningful i.e. the number of 

DMUs, must be no less than three times of the total number of inputs and outputs (for 

example if one uses 2 inputs and 2 outputs to measure sustainability then the number 

of DMUs or regions under study should not be less than 12) (Wu D. , 2009b). 

As a result, increasing the number of intermediate stages increases the discriminatory 

power of the DEA model and the analysis. For example, Zhao et al. (2019) used 

parallel settings of DEA to explicitly model the three dimensions of sustainability and 

their potential interactions. In a similar direction, the work by Tsaples et al. (2019) 

and Tsaples and Papathanasiou (2020a) use multi-stage DEA models to calculate the 

different sub-indicators that sustainability entails and integrate them in a final 

sustainability index. 

Consequently, even within the DEA framework it appears that there are differences on 

the variation that is being used to measure sustainability. As a result, the lack of a 

unified methodological framework from the birth of the notion of sustainable 

development persists to date.  
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Finally, by examining the area of application, it is revealed that for the last years the 

scope of research is tailored towards urban environments with a focus on Chinese 

regions. The measurement of sustainability of European countries is steadily 

increasing, but it appears that the papers that investigated the sustainability among the 

EU countries was still lower than those measuring sustainability of Chinese regions. 

One possible explanation could be that the rapid economic development that was 

observed in China the previous years, made the research community to reflect on what 

the impact of this development could be in the environment. Figure 3 below illustrates 

the frequency of appearance for the various areas of application. 

 

Figure 3 Frequency of appearance for the various regions of application of DEA in sustainability measurement 

per year 

2.3 Lessons learned from the literature 

The studying of the literature on Data Envelopment Analysis and Sustainability has 

highlighted that the ambiguity of the definition of sustainable development has 

permeated to the research. The three-dimensional structure of sustainability appears to 

be the preferred option, however there are approaches where there is an effort to 

integrate different dimensions, like technology and innovation, in the measurement of 

sustainability. 
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Moreover, even sustainability as a measurement of sustainable development appears 

to have different definitions. In the DEA literature, efficiency is used as equivalent to 

sustainability, while other notions like eco-efficiency are regarded as appropriate 

proxies. These diverse definitions have an effect on which inputs, outputs and data 

should be used to measure sustainability, thus impacting the final results. 

In addition to the lack of a common definition of sustainability, differences are 

observed on the variation of DEA that is being used. All these differences result in 

different measurements of sustainability, which may cloud the robustness of the 

research efforts and ultimately affect the policy-making that depends on those 

measurements. 

Finally, by examining the area of application, it is revealed that for the last years the 

scope of research is tailored towards urban environments with a focus on Chinese 

regions. One possible explanation could be that the rapid economic development that 

was observed in China the previous years, forced policy makers and the research 

community to reflect on the impact of this development. 
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3. Methodology  

3.1 Data Envelopment Analysis3 

Data Envelopment Analysis (Førsund & Sarafoglou, 2002; Thanassoulis, 2001) is a 

non-parametric, mathematical programming technique that is used for the evaluation 

of the Technical Efficiency of a group of (generally) homogeneous units under 

assessment. These units are referred to as Decision Making Units (DMUs) and the 

technical efficiency measures their performance relative to one another. 

The definition of efficiency for DEA originates in engineering and is defined as the 

ratio of the sum of its weighted outputs over the sum of its weighted inputs (Ishizaka 

& Nemery, 2013) as expressed in: 

𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
∑𝑤𝑜𝑢𝑡𝑝𝑢𝑡 ∗ 𝑦

∑𝑤𝑖𝑛𝑝𝑢𝑡 ∗ 𝑥
, 𝑤ℎ𝑒𝑟𝑒 𝑥

= 𝑖𝑛𝑝𝑢𝑡 𝑙𝑒𝑣𝑒𝑙 𝑎𝑛𝑑 𝑦 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑒𝑣𝑒𝑙 

(1 

revisited) 

 

 

By outputs it is meant what the DMU produces, while inputs are the factors that the 

DMU consumes. All the input-output correspondences that can be achieved by a DMU 

(regardless if these correspondences are observed in practice) form the Production 

Possibility Set (PPS). Finally, the weights give a measure of importance of the inputs 

and outputs that are used. 

Hence, technical efficiency is a measure of how well a Decision Making Unit can 

transform inputs into outputs, without considering how the transformation can be 

achieved. Moreover, Decision Making Units represent any type of entity and are 

considered homogeneous in terms of identical inputs and outputs. Finally, the 

technical efficiency that is measured cannot be considered “absolute” because the 

performance measurement is done with reference to the set of the other 

(homogeneous) DMUs (Thanassoulis, 2001). 

As a result, a DMU is considered efficient compared to the rest, when there cannot be 

an improvement in one of the levels of inputs or outputs without a simultaneous 

 
3 This section appeared on the book chapter: Tsaples, G., Papathanasiou, J., Digkoglou, P.(2021). 

Decision-making in the context of Sustainability. In Urban Sustainability: A game-based approach. 

(Eds.) Papathanasiou, J., Tsaples, G., Blouchoutzi, A., Springer. 
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deterioration  in one of the others. This efficiency is defined as Pareto-Koopmans 

efficiency (Cooper, Seiford, & Zhu, 2011). 

DEA offers a series of advantages compared to other parametric methods of 

efficiency assessment: 

1. As mentioned before, it is not necessary to identify the relationships/processes 

that transform the input(s) of a DMU to output(s) 

2. It requires less information that traditional methods, since it can allow 

comparative assessment of DMUs in situations where price information is not 

available 

3. DEA can provide insights into the reasons for which a DMUS is not efficient 

and propose directions towards its improvement (He, Wan, Feng, Ai, & Wang, 

2016; Shi, Bi, & Wang, 2010) 

4. Inputs and outputs are not required to have common units of measurement. 

However, the method does not come without limitations: 

1. The results obtained by DEA cannot be generalized and concern only the 

specific DMUs set under evaluation 

2. Noise and outliers can cause errors in the results 

3. Efficient DMUs cannot be ranked, since all take the maximum value of 

efficiency 

4. The general method cannot aggregate different dimensions of efficiency. 

The seminal papers that fully established the two basic models of DEA are by 

Charnes, Cooper and Rhodes (1978) which assume that the DMUs operate under 

Constant Returns to Scale (CRS) and in a perfectly competitive environment, and by 

Banker, Charnes and Cooper (1984) that relaxe these assumptions and assume that the 

DMUs operate under Variable Returns to Scale (VRS). 

The notions of Returns to Scale are borrowed from economics and describe what 

happens in a production when inputs are increased by a factor α, where α > 0. 

Formally, assuming that a production uses x inputs to produce y outputs, and the 
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inputs are increased by a factor α, where α > 0, then the outputs could vary by the 

factor β. Furthermore, assuming that: 

𝑝 = 𝑙𝑖𝑚
𝑎→∞

(
𝑏 − 1

𝑎 − 1
)  

(6) 

 

The following cases are possible: 

• p > 1: In this situation an increase in inputs leads to a more than proportional 

increase in output. It is noted as Increasing Returns to Scale 

• p=1: In this situation output increases by the same proportional increase as the 

inputs. It is noted as Constant Returns to Scale 

• p<1: In this situation, an increase in inputs leads to a less than proportional 

increase in outputs. It is noted as Decreasing Returns to Scale (Thanassoulis, 

2001). 

Furthermore, a DEA model can be input- or output-oriented. An input-oriented DEA 

model minimizes input for a given output. Thus, it indicates how much a DMU should 

reduce its levels of input(s) to achieve the given level of output. On the contrary, an 

output-oriented DEA model maximizes output for a given input. Thus, it indicates 

how much a DMU should increase its levels of output(s) given the provided level of 

input(s). 

In both cases, DEA identifies a frontier of “best practices” or efficient frontier that 

envelopes all the DMUs; those that lie on the frontier are considered the most efficient 

or “best-practice units” and those that lie beneath the frontier are considered 

inefficient. In the inefficient units, a number is attributed that represents their radial 

distance from the efficient frontier. Its difference from the maximum value (reserved 

for the DMUs on the efficient frontier) indicates: 

• The level of output(s) decrease that the DMU should proceed to for its given 

inputs (input-oriented model) to be considered efficient 

• The level of output(s) increase that the DMU should proceed to for its given 

inputs (output-oriented model) to be considered efficient (Coelli, Rao, 

O'Donnell, & Battese, 2005). 
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3.1.1 DEA under Constant Returns to Scale 

The DEA models either under Constant or Variable Returns to Scale are approached 

as Linear Programming models (Cooper, Seiford, & Zhu, 2011; Thanassoulis, 2001; 

Zhu J. , 2014). For their calculation, there is the need to define the Production 

Possibility Set which contains all input-output correspondences that can be achieved 

by a Decision Making Unit, regardless if these correspondences are observed in 

practice or not. 

The measurement of the relative efficiency of the DMU is achieved in two steps: 

(1) The construction of the Production Possibility Set; meaning the definition of 

inputs and outputs of the Decision Making Units 

(2) The estimation of the degree to which the outputs can be expanded or the inputs 

can be contracted within the limits defined in the Production Possibility Set. 

The DEA model under Constant Returns to Scale is known as DEA-CCR model and 

was first introduced by Charnes, Cooper and Rhodes (1978). Under this assumption if 

there is an input scaling (either upwards or downwards) of a feasible input-output 

correspondence then another feasible correspondence is obtained, where the output 

levels have the same factorial scaling as the input levels.  

For its formulation, we assume that there are N DMUs that use m inputs to produce s 

outputs. We denote denote xij (i=1…m, j=1…N) the level of the ith input of DMU j, 

and yrj (r= 1…s, j = 1…N) the level of DMU . 

Then the calculation for the technical efficiency for the input-oriented model can be 

found by solving the LP: 

𝑚𝑖𝑛  𝛩0 − 𝑒(∑𝑆𝑖
− + 

𝑚

𝑖=1

∑𝑆𝑟
+ 

𝑠

𝑟=1

) 
(7) 

Subject to Constraints:  

∑𝜆𝑗 ∗ 𝑥𝑖𝑗 = 𝛩0 ∗ 𝑥𝑖𝑗𝑜

𝑁

𝑗=1

− 𝑆𝑖
−, 𝑖 = 1…𝑚 

(8) 

∑𝜆𝑗 ∗ 𝑦𝑟𝑗 = 𝑦𝑟𝑗𝑜 + 𝑆𝑟
+, 𝑟 = 1… 𝑠

𝑁

𝑗=1

 

(9) 

𝜆𝑗 ≥ 0, 𝑗 = 1…𝑁, 𝑆𝑟
+, 𝑆𝑖

− ≥ 0 (10) 
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As it is already mentioned, the variable 𝜆𝑗 is the weight calculated by DEA with the 

equations (7)-(10) for DMUj while the variables 𝑆𝑟
+, 𝑆𝑖

− are the slack variables that are 

used in Linear Programming. They represent any additional output increase or input 

decrease that is feasible to be achieved by the DMU. 

The technical efficiency of the above problem for DMU𝑗𝑜 is the variable 𝛩0 and it 

takes values between 0 and 1 (or 0 and 100%). The variable e takes a very small 

value. The problem is solved in two stages:  

1. The problem is solved without the slack variables 𝑆𝑟
+, 𝑆𝑖

− and the model 

provides the technical efficiency 𝛩0
∗. 

2. The technical efficiency 𝛩0
∗ is substituted in the LP problem, and it is solved 

again with objective of maximizing ∑ 𝑆𝑖
− + 𝑚

𝑖=1 ∑ 𝑆𝑟
+ 𝑠

𝑟=1 .  The result of the 

second stage is the optimal values of the slack variables, when it is ensured 

that the optimal technical efficiency is included in the calculation. 

The technical input efficiency of a DMU reflects the extent to which the inputs of the 

DMU can be reduced/contracted without detriment to its output levels (Thanassoulis, 

2001). Regarding the solution of the mathematical problem represented with 

equations (7)- (10), there are three options for the results after the solution: 

1. DMU𝑗𝑜 is Pareto-efficient4 if and only if 𝛩0
∗ = 1 and 𝑆𝑟

+, 𝑆𝑖
− = 0 for all 

inputs and outputs 

2. If the value of one of the slack variables is positive at the optimal solution,  the 

corresponding input (or output) of DMU𝑗𝑜 can be further improved 

3. If none of the above applies, then DMU𝑗𝑜 has technical efficiency 𝛩0
∗ 

(Thanassoulis, 2001). In the particular case, the technical efficiency 𝛩0
∗ < 1 

reflects the maximum radial contraction of the input levels, without worsening 

the output levels, in order for DMU𝑗𝑜 to be considered efficient. 

 
4 A DMU is Pareto-efficient when any effort to reduce any of its inputs or expand any of its outputs 

will adversely affect other inputs or outputs. In DEA, Pareto efficiency and efficiency equal to 1 are 

equivalent (Charnes, Cooper and Rhodes, 1978). 
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Since the DEA model formulated above are based on Linear Programming, there is 

the possibility to formulate its dual; it measures efficiency in a value context. These 

types of models are referred to as value-based DEA models (Thanassoulis, 2001). 

The equivalent value-based DEA model to the one represented by equations (7)-(10) 

is: 

 

𝑚𝑎𝑥∑𝑢𝑟 ∗ 𝑦𝑟𝑗0

𝑠

𝑟=1

 
(11) 

Subject to Constraints  

∑𝑣𝑖 ∗ 𝑥𝑖𝑗0 = 1

𝑚

𝑖=1

 
(12) 

∑𝑢𝑟 ∗ 𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝑣𝑖 ∗ 𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1… 𝑗0…𝑁 
(13) 

𝑢𝑟 ≥ 𝜀, 𝑟 = 1…𝑠 (14) 

𝑣𝑖 ≥ 𝜀, 𝑖 = 1…𝑚 (15) 
 

The variables 𝑢𝑟 and 𝑣𝑖 are the dual variables of the rth and ith constraints of the 

problem formulation (7)-(10) respectively and the weight coefficients assigned inputs 

and outputs respectively by DEA (Thanassoulis, 2001). Furthermore, DMU𝑗𝑜’s 

technical efficiency is calculated by the ∑ 𝑢𝑟
∗ ∗ 𝑦𝑟𝑗0

𝑠
𝑟=1 , where 𝑢𝑟

∗ is the optimal 

solution of the problem above. If ∑ 𝑢𝑟
∗ ∗ 𝑦𝑟𝑗0

𝑠
𝑟=1 = 1, then DMU𝑗𝑜 is considered 

efficient. 

Thus far, the DEA models described were formulated under input orientation. 

However, there are the corresponding models for output orientation. For its 

formulation, we assume that there are N DMUs that use n inputs to produce s outputs. 

We denote xij (i=1…m, j=1…N) the level of the ith input of DMU j, and yrj (r= 1…s, j 

= 1…N) the level of DMU . 

Then the calculation for the technical efficiency for the output-oriented model can be 

found by solving the LP: 
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𝑚𝑎𝑥  ℎ0 + 𝑒(∑𝑆𝑖
− + 

𝑚

𝑖=1

∑𝑆𝑟
+ 

𝑠

𝑟=1

) 
(16) 

Subject to Constraints  

∑𝜆𝑗 ∗ 𝑥𝑖𝑗 = 𝑥𝑖𝑗𝑜

𝑁

𝑗=1

− 𝑆𝑖
−, 𝑖 = 1…𝑚 

(17) 

∑𝜆𝑗 ∗ 𝑦𝑟𝑗 = ℎ0 ∗ 𝑦𝑟𝑗𝑜 + 𝑆𝑟
+, 𝑟 = 1… 𝑠

𝑁

𝑗=1

 

(18) 

𝜆𝑗 ≥ 0, 𝑗 = 1…𝑁, 𝑆𝑟
+, 𝑆𝑖

− ≥ 0 (19) 

 

The technical efficiency of the above problem for DMU𝑗𝑜 is the variable 
1

ℎ𝑗0
∗  and it 

takes values between 0 and 1 (or 0 and 100%). The variable e takes a very small 

value. The slack variables 𝑆𝑟
+, 𝑆𝑖

− represent any additional output augmentation and/or 

input reduction that may be necessary in order for DMU𝑗𝑜 to be considered efficient.  

The technical output efficiency represents the expansion of the output levels that 

could be achieved in the DMU under increased performance, without any effect on its 

input levels. Similar to the DEA CCR model under input orientation, the above model 

is solved in two stages and the potential solutions to the problem could be: 

1. DMU𝑗𝑜 is Pareto-efficient if and only if ℎ0
∗ = 1 and 𝑆𝑟

+, 𝑆𝑖
− = 0 for all inputs 

and outputs 

2. DMU𝑗𝑜 has technical output efficiency 
1

ℎ𝑗0
∗  (Thanassoulis, 2001). 

It should be stated that the technical efficiency under input orientation and that under 

output orientation are equal in the case of Constant Returns to Scale (Cooper, Seiford, 

& Zhu, 2011). 

Finally, the equivalent value-based DEA model under output orientation can be 

solved by the following equations: 

𝑚𝑖𝑛∑𝑣𝑖 ∗ 𝑥𝑖𝑗0

𝑚

𝑖=1

 
(20) 

Subject to Constraints  

∑𝑢𝑟 ∗ 𝑦𝑟𝑗0 = 1

𝑠

𝑟=1

 
(21) 
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∑𝑢𝑟 ∗ 𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝑣𝑖 ∗ 𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1… 𝑗0…𝑁 
(22) 

𝑢𝑟 ≥ 𝜀, 𝑟 = 1…𝑠 (23) 

𝑣𝑖 ≥ 𝜀, 𝑖 = 1…𝑚 (24) 
 

DMU𝑗𝑜’s technical efficiency is calculated by the equation 
1

∑ 𝑣𝑖
∗∗𝑥𝑖𝑗0

𝑚
𝑖=1

, where 𝑣𝑖
∗ is the 

optimal solution of the problem above. If ∑ 𝑣𝑖
∗ ∗ 𝑥𝑖𝑗0

𝑚
𝑖=1 = 1, then DMU𝑗𝑜 is 

considered efficient (Thanassoulis, 2001). 

In conclusion, it should be stated that both the general and the value-based DEA 

models (under input and output orientations) offer more insights apart from the 

comparative technical efficiency of the DMUs. In detail, the results from the LP 

models indicate the efficient DMUs that the inefficient ones should emulate with the 

purpose of improving their performance. For the general models, the peers of  

(inefficient) DMU𝑗𝑜 are those that have the same mix of input-output levels as  

DMU𝑗𝑜 but operate at more efficient levels. These peers correspond to the DMUs that 

exhibit non-zeros 𝜆∗ at the optimal solution. For the value-based DEA models, the 

peers of  (inefficient) DMU𝑗𝑜 are those that correspond to the binding constraints of 

the optimal solution (Thanassoulis, 2001). 

The finding of peers in the solution of DEA (either CRS or VRS) is a useful feature 

that can provide insights regarding the performance of a particular DMU. By the 

notion of peers it is meant identifying efficient DMUs whose practices an inefficient 

DMU can emulate to enhance its performance (Thanassoulis, 2001). For example, the 

frequency that a DMUj is considered a peer to inefficient DMUs can increase the 

robustness of the result of the particular unit, thus increasing the confidence to the 

conclusion that the particular DMUj is efficient. 

3.1.2 DEA under Variable Returns to Scale 

The DEA model under Variable Returns to Scale is known as DEA-BCC model is an 

update of the DEA-CCR model and was first introduced by Banker, Charnes and 

Cooper (1984). In its core the BCC model relaxes the assumption of constant returns 

to scale. 

For its formulation, we assume that there are N DMUs that use m inputs to produce s 

outputs. We denote xij (i=1…m, j=1…N) the level of the ith input of DMU j, and yrj 
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(r= 1…s, j = 1…N) the level of DMU. Then the calculation for the technical 

efficiency for the input-oriented model (defined as pure technical efficiency) can be 

found by solving the LP: 

𝑚𝑖𝑛  𝛩0 − 𝑒(∑𝑆𝑖
− + 

𝑚

𝑖=1

∑𝑆𝑟
+ 

𝑠

𝑟=1

) 
(25) 

Subject to Constraints  

∑𝜆𝑗 ∗ 𝑥𝑖𝑗 = 𝛩0 ∗ 𝑥𝑖𝑗𝑜

𝑁

𝑗=1

− 𝑆𝑖
−, 𝑖 = 1…𝑚 

(26) 

∑𝜆𝑗 ∗ 𝑦𝑟𝑗 = 𝑦𝑟𝑗𝑜 + 𝑆𝑟
+, 𝑟 = 1… 𝑠

𝑁

𝑗=1

 

(27) 

∑𝜆𝑗 = 1

𝑁

𝑗=1

 

(28) 

𝜆𝑗 ≥ 0, 𝑗 = 1…𝑁, 𝑆𝑟
+, 𝑆𝑖

− ≥ 0 (29) 

 

The potential results of the above problem are: 

1. DMU𝑗𝑜 is Pareto-efficient if and only if 𝛩0
∗ = 1 and 𝑆𝑟

+, 𝑆𝑖
− = 0 for all inputs 

and outputs 

2. If the value of one of the slack variables is positive at the optimal solution, the 

corresponding input (or output) of DMU𝑗𝑜 can be further improved (Cooper, 

Seiford, & Zhu, 2011). 

Finally, it should be stated that the pure technical efficiency cannot be less than its 

technical input efficiency as calculated by equations (7)-(10) (Thanassoulis, 2001). 

The equivalent value-based DEA model to the one represented by equations (25)-(29) 

is: 

𝑚𝑎𝑥  ∑𝑢𝑟 ∗ 𝑦𝑟𝑗0

𝑠

𝑟=1

+ 𝑤 
(30) 

Subject to Constraints  

∑𝑣𝑖 ∗ 𝑥𝑖𝑗0 = 1

𝑚

𝑖=1

 
(31) 

∑𝑢𝑟 ∗ 𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝑣𝑖 ∗ 𝑥𝑖𝑗

𝑚

𝑖=1

− 𝑤 ≤ 0, 𝑗 = 1… 𝑗0…𝑁 
(32) 

𝑢𝑟 ≥ 𝜀, 𝑟 = 1…𝑠 (33) 
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𝑣𝑖 ≥ 𝜀, 𝑖 = 1…𝑚 and w free (34) 
 

For the value-based model, DMU𝑗𝑜 is considered efficient if ∑ 𝑢𝑟
∗ ∗ 𝑦𝑟𝑗0

𝑠
𝑟=1 +w = 1 

Similarly, the DEA-BCC model under output orientation is solved by: 

𝑚𝑎𝑥  ℎ0 + 𝑒(∑𝑆𝑖
− + 

𝑚

𝑖=1

∑𝑆𝑟
+ 

𝑠

𝑟=1

) 
(35) 

Subject to Constraints  

∑𝜆𝑗 ∗ 𝑥𝑖𝑗 = 𝑥𝑖𝑗𝑜

𝑁

𝑗=1

− 𝑆𝑖
−, 𝑖 = 1…𝑚 

(37) 

∑𝜆𝑗 ∗ 𝑦𝑟𝑗 = ℎ0 ∗ 𝑦𝑟𝑗𝑜 + 𝑆𝑟
+, 𝑟 = 1… 𝑠

𝑁

𝑗=1

 

(38) 

∑𝜆𝑗 = 1

𝑁

𝑗=1

 

(39) 

𝜆𝑗 ≥ 0, 𝑗 = 1…𝑁, 𝑆𝑟
+, 𝑆𝑖

− ≥ 0 (40) 

 

The potential results of the above problem are:        

1. DMU𝑗𝑜 is Pareto-efficient if and only if ℎ0
∗ = 1 and 𝑆𝑟

+, 𝑆𝑖
− = 0 for all inputs 

and outputs 

2. DMU𝑗𝑜 has technical output efficiency 
1

ℎ𝑗0
∗  (Thanassoulis, 2001). 

It should be stated that the pure technical efficiency 
1

ℎ𝑗0
∗   cannot be less than its 

technical efficiency as calculated by equations (16)-(19) (Thanassoulis, 2001). 

Finally, the equivalent value-based DEA-BCC model is: 

𝑚𝑖𝑛  ∑𝑢𝑟 ∗ 𝑦𝑟𝑗0

𝑠

𝑟=1

+ 𝑤 
(41) 

Subject to Constraints  

∑𝑣𝑖 ∗ 𝑥𝑖𝑗0 = 1

𝑚

𝑖=1

 
(42) 

∑𝑢𝑟 ∗ 𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝑣𝑖 ∗ 𝑥𝑖𝑗

𝑚

𝑖=1

+ 𝑤 ≤ 0, 𝑗 = 1… 𝑗0…𝑁 
(43) 

𝑢𝑟 ≥ 𝜀, 𝑟 = 1…𝑠 (44) 

𝑣𝑖 ≥ 𝜀, 𝑖 = 1…𝑚 and w free (45) 
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For the value-based model, DMU𝑗𝑜 is considered efficient if ∑ 𝑢𝑟
∗ ∗ 𝑦𝑟𝑗0

𝑠
𝑟=1 −w = 1 

(Cooper, Seiford, & Zhu, 2011; Thanassoulis, 2001). 

In general, the efficiency as calculated under CRS is noted as technical efficiency. It 

can be analysed into two dimensions: pure technical efficiency (as calculated by the 

DEA-BCC models) and scale efficiency. Thus, if: 

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑇𝐸 

𝑃𝑢𝑟𝑒 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑃𝑇𝐸 

𝑆𝑐𝑎𝑙𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑆𝐸 

The different efficiencies are related by the equation: 

𝑇𝐸 = 𝑃𝑇𝐸 ∗ 𝑆𝐸 (46) 

 

3.2 Two-stage DEA models5 

One of the advantages of Data Envelopment Analysis is that there is no need for 

knowledge on how inputs are transformed to outputs. As a result, a performance 

analysis can occur without having to resort to complex functions that represent the 

relationship between inputs and outputs.  

However, this advantage can be seen also as a limitation, since the method is 

considered a “black box”; the analyst has knowledge only of the inputs and outputs 

but not what happens among them. Färe and Grashhopf (2009) studied extensively the 

“black box” property of DEA and suggested the concept of two-stage models to 

mitigate its effects. These models can be considered a special category of network-

DEA models (Seiford & Zhu, 1999; Wang, Gopal, & Zionts, 1997). Figure 4 

illustrates the structure of a typical two-stage DEA model. 

 

 
5 Part of this section appeared on: Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An 

Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability 

Composite Indicators in the EU. Mathematics, 10(13), 2277 
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Figure 4 Structure of two-stage DEA 

Each stage is regarded as a separate decision center with the overall process managed 

by one decision maker. The goal is the simultaneous improvement of efficiency both 

of the individual stages (efficiency of the Stage 1 named E1 and efficiency of Stage 2 

named E2) and the overall efficiency (named E0) (Ross A. D., 2000). Ross and Drage 

(2002) analyzed what internal and external improvement of efficiency means and 

proposed that at the internal level, each decision center aims at succeeding the best 

allocation of resources while accounting for its individual preferences and needs. The 

optimal allocation refers to higher efficiency at the individual stage. On the other 

hand, at the external level the decision center aims at achieving a bigger market share, 

which reflects the contribution of that individual stage to the overall process. Hence, 

two-stage DEA models increase the dimensions of performance measurement 

compared to the classic one-stage DEA models, thus offering greater insights, which 

in turn reduces the characterization of DEA as a “black-box” method. 

Halkos, Tzeremes and Kourtzidis (2014) studied in detail the two-stage DEA models 

and classified them into four categories: 

• Independent two-stage models. In this category, the classic DEA variation is 

applied to each stage without accounting for interactions between the stages 

(Cook, Liang, & Zhu, 2010) 

• Connected two-stage models, where the interaction between the stages are 

accounted for 

• Relational two-stage DEA which assumes a formal mathematical relationship 

between the overall and individual efficiencies 

• Finally, there are the two-stage models that are based on game theory 

approaches. 
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Chen et al. (2009);(2012) and Halkos, Tzeremes and Kourtzidis (2015) proposed a 

model of efficiency decomposition, whose mathematical formulation is: 

 

𝐸0 = 𝜉1
∑ 𝑤𝑑𝑧𝑑0
𝐷
𝑑=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

+ 𝜉2
∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝑤𝑑𝑧𝑑0
𝐷
𝑑=1

 

 

(47) 

𝐸0 = 𝑚𝑎𝑥∑𝜇𝑑𝑧𝑑0

𝐷

𝑑=1

+∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

 

 

(48) 

Subject to Constraints  

∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

+∑𝜇𝑑𝑧𝑑0

𝐷

𝑑=1

= 1 

 

(49) 

∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0 

 

(50) 

∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0 

 

(51) 

𝛾𝑟 , 𝜔𝑖, 𝜇𝑑 ≥ 0 

 

(52) 

 

The above model can produce results that may not be optimal. To solve the issue Kao 

and Hwang (2008) proposed the maximization of one of f the 𝐸0
1, 𝐸0

2 while 

maintaining the overall efficiency at 𝐸0. For example, maximizing the individual 

efficiency 𝐸0
2: 

 

𝐸0
2 = 𝑚𝑎𝑥∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

 

 

(53) 

Subject to Constraints  

∑𝜇𝑑𝑧𝑑0

𝐷

𝑑=1

= 1 

 

(54) 

∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

− 𝐸0∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

≤ 0 
(55) 
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∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0 

 

(56) 

∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0 

 

(57) 

∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0 

 

(58) 

𝛾𝑟 , 𝜔𝑖, 𝜇𝑑 ≥ 0 

 

(59) 

 

Consequently, the other efficiency will be calculated by: 

𝐸0 = 𝜉1𝐸𝑜
1 + 𝜉2𝐸𝑜

2 

 

(60) 

 

Where 𝜉1 𝑎𝑛𝑑 𝜉2 are the weights assigned to the individual efficiency of each stage. 

Liang et al. (2006; 2008), Kao and Hwang (2008), Chen et al. (2009; 2012) and Cook 

et al. (2010) provided alternative integrated models that attempted to simultaneously 

optimize the efficiencies of the two stages. For indicative extensive reviews of two-

stage and network DEA models, the reader is referred to the works by Castelli et al. 

(2010), Halkos et al. (2014), Kao (2014) and Despotis et al. (2016). 

The two-stage model that is used as a basis in the context of the current thesis is the 

one by Chen et al. (2012) and is presented below. 

 

max𝐸0 =∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

 
(61) 

Subject to Constraints  

∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1, … ,𝑁 

(62) 

∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0, 𝑗 = 1,… ,𝑁 

(63) 
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∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

= 1 
(64) 

𝜔𝑖 ≥ 0, 𝑖 = 1, … ,𝑚 (65) 

𝜇𝑑 ≥ 0, 𝑑 = 1,… , 𝐷 (66) 

𝛾𝑟 ≥ 0, 𝑟 = 1,… , 𝑠 (67) 
 

The optimal value calculated by the model described in the equations (61)-(67) 

represents the overall efficiency of 𝐷𝑀𝑈0, a number between 0 (inefficient) and 1 

(efficient). Furthermore, the optimal values of the weights 𝜔𝑖, 𝜇𝑑  𝑎𝑛𝑑 𝛾𝑟 are used for 

the decomposition of the overall efficiency and the calculation of the efficiencies of 

the individual stages according to the equations: 

𝐸0
1 =

∑ 𝜇𝑑
∗𝑧𝑑0

𝐷
𝑑=1

∑ 𝜔𝑖
∗𝑥𝑖0

𝑚
𝑖=1

 
(68) 

𝐸0
2 =

∑ 𝛾𝑟
∗𝑦𝑟0

𝑠
𝑟=1

∑ 𝜇𝑑
∗𝑧𝑑0

𝐷
𝑑=1

 
(69) 

 

The values of 𝜔𝑖
∗, 𝜇𝑑

∗  𝑎𝑛𝑑 𝛾𝑟
∗  are the optimal values of the weights of the inputs, 

intermediate outputs, and outputs respectively that were calculated by the equations 

(61)-(67). 

3.3 Weight Flexibility in DEA6 

Data Envelopment Analysis (either in its classic or two-stage form) does not come 

without limitations. In its traditional forms the efficiency of Decision Making Units is 

calculated with weights that are most favorable to themselves; i.e. each DMU is 

evaluated under the most favorable weighting scheme with the purpose of maximizing 

its own efficiency (Sun, Wu, & Guo, 2013). As a result, the weights that are chosen 

for one DMU may be completely different from those selected for another (Pedraja-

Chaparro, Salinas-Jimenez, & Smith, 1997). In other words, one DMU might place 

more importance on one of the inputs that it uses while another might do so on 

another. 

 
6 This section appeared on: Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An Exploratory 

DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability Composite 

Indicators in the EU. Mathematics, 10(13), 2277 
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Hence, this weighting flexibility has been met with some criticism since a DMU’s 

efficiency assessment might be dominated by secondary activities, thus concealing 

inefficiencies of important factors in the Production Possibility Set. Furthermore, by 

being assessed on different weighting schemes, DMUs cannot be compared at the 

same basis (Wang, Luo, & Lan, 2011). 

To solve these limitations several approaches have been proposed. Sexton et al. 

(1986) introduced the notion of cross efficiency, where each DMU is assessed in a 

peer evaluation mode with the optimal weights of all the other DMUs instead of its 

own (Örkcü, Özsoy, Örkcü, & Bal, 2019). However, Kao and Hung (2005) argued 

that cross efficiency limits the information contained in the weights of the DMU’s 

inputs and outputs. 

In another approach several authors suggested modifications to the classic DEA 

models in order to obtain a Common Set of Weights on which the efficiency of all 

DMUs is calculated (Ganley & Cubbin, 1992; Roll, Cook, & Golany, 1991; Roll & 

Golany, 1993). One stream of research in this approach is the use of virtual DMUs in 

the set that act as reference points for the real DMUs. Such virtual DMUs are 

hypothetical units that can act as a reference for the existing ones either by assuming 

that they use inputs in the most economical ways to produce the maximum level of 

outputs (ideal DMUs), thus incentivizing the existing DMUs to imitate them or by 

assuming that they use inputs in the most expensive way to produce the minimum 

level of outputs (anti-ideal DMUs), thus incentivizing the existing DMUs to deviate 

from the behavior as much as possible. 

Jahanshahloo et al. (2010) used an ideal line to determine a common set of weights in 

order to calculate a new efficiency and rank efficient DMUs. Lotfi et al. (2011) 

introduced a virtual DMU based on the aggregate units to obtain a full ranking of 

DMUs. Barzegarinegad et al. (2014) proposed a variation of DEA with the purpose of 

fully ranking DMUs based on ideal and anti-ideal points in the production possibility 

set. Similarly, Khalili-Damghani and Fadaei (2018) used both an ideal and an anti-

ideal DMU to increase the discrimination power of DEA. Finally, Azadi et al. (2020) 

proposed models to calculate the efficiency of DMUs based on the distances to two 

virtual DMUs, considering both the pessimistic and optimistic approach of DEA. 
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Moreover, there are approaches to increase the discriminatory power of DEA by 

combining the classic model with another method. For example, Kritikos (2017) 

combined DEA with TOPSIS in order to fully rank DMUs, Simuany-Stern and 

Friedman (1998) used the classic DEA models with non linear discriminant analysis, 

while Yang et al. (2018) proposed a new approach inspired by the Z score (the 

distance of an observation from the mean expressed in standard deviation units) 

combined with DEA. Another common approach is the combination of DEA with 

AHP, for example in Thanassoulis et al. (2017) the authors combine the two methods 

to evaluate higher education teaching performance. Finally, weight restrictions as part 

of the DEA model have been proposed as a solution to their flexibility in the 

literature. Weight restrictions can be seen as value judgments (Podinovski, 2016) that 

not only limit their flexibility, but also act positively on the discriminatory power of 

the model (Thanassoulis, et al., 2008). Examples of weight restriction methods 

include the work by Alirezaee and Afsharian (2010) who used the trade-offs approach 

with an expanded Malmquist index to increase the discrimination of DMUs or the 

Cone-Ratio models (Angulo-Meza & Lins, 2002) and Assurance Regions (Allen, et 

al., 1997). 

However, Jain et al. (2015) point out that these weight restriction methods might also 

have some limitations such as increased subjectivity since the models incorporate a 

priori information, lack of guarantee for feasibility or the assumption of a single 

policy maker. 

Moreover, all the approaches that were mentioned above are solutions for classic, 

one-stage Data Envelopment Analysis. Similarly, in two-stage DEA the weight 

distribution for the calculation of both individual stages and overall efficiency are still 

free, thus the discriminatory power of two-stage DEA can be further improved. 

Following the works of researchers for typical DEA models, the research followed 

different streams on how to better handle the weight distribution of two-stage DEA 

models. 

Mahdiloo et al. (2016) argued that little attention has been paid to the weight 

distribution and weak discriminatory power of network models. In their paper, they 

propose a multi-criteria DEA model, which is tested by assessing the sustainable 

design performances of car products. Gharakhami et al. (2018) proposed a DEA 
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variation that is based on goal programming, while Mavi et al. (2019) use a similar 

approach to analyze the joint effects of eco-efficiency and eco-innovation. Finally, 

Kiaei and Matin (2020) suggest a method based on separation vector to change a 

Multiple Objective problem into a single objective linear programming problem in 

two-stage DEA. For a complete overview of the ways that researchers have attempted 

to address the weight distribution in DEA, Contreras (2020) performed a 

comprehensive literature review. Consequently, for two-stage DEA models more 

efforts are necessary to address the limitations of weight distribution especially when 

it comes to measuring the efficiency of complex processes like sustainable 

development; in such cases, incorrect weight distribution might conceal inefficiencies 

of very important factors. For example, GHG emissions might not get equal 

importance compared to increased economic activity, despite the fact that they are 

crucial for the measurement of sustainability, thus providing an erroneous picture of 

sustainable development for the country/DMU under study. The present thesis 

contributes to that aim. 

3.3.1 Proposed model 

To overcome this limitation the following model is proposed (the model is based on 

the works by Mahdiloo et al. (2016) and Sun et al. (2013): 

Assume a two-stage process for N DMUs. Each 𝐷𝑀𝑈𝑗(𝑗 = 1…𝑁) in the first stage 

uses 𝑚 inputs, the level of which is notated as 𝑥𝑖𝑗 , (𝑖 = 1,2…𝑚), to produce 𝐷 

intermediate outputs, the level of which is notated as 𝑧𝑑𝑗 , (𝑑 = 1,2…𝐷). The 

intermediate outputs are used as inputs in the second stage to produce 𝑠 outputs, 

notated as 𝑦𝑟𝑗, (𝑟 = 1,2… 𝑠). 

𝑚𝑖𝑛 𝑑0 + 𝑛0 + 𝑑0
′ + 𝑛0

′  (70) 

Subject to Constraints  

∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

−∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≥ 0, 𝑗 = 1,… ,𝑁 (71) 

∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

−∑𝜇𝑑𝑧𝑑0

𝐷

𝑑=1

− 𝑑0 + 𝑛0 = 0 (72) 

∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1,… ,𝑁 (73) 
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∑𝜇𝑑𝑧𝑑0

𝐷

𝑑=1

−∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

− 𝑑0
′ + 𝑛0

′ = 0 (74) 

∑𝜇𝑑𝑧𝑑0

𝐷

𝑑=1

= 1 (75) 

𝜔𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 (76) 

𝜇𝑑 ≥ 0, 𝑑 = 1,… , 𝐷 (77) 

𝛾𝑟 ≥ 0, 𝑟 = 1, … , 𝑠 (78) 

𝑑0, 𝑛0, 𝑑0
′ , 𝑛0

′ ≥ 0 (79) 

 

The main property of the model is the introduction of the variables 𝑑0, 𝑑0
′ , 𝑛0, 𝑛0

′ . The 

variable 𝑑0 represents the positive deviation and variable 𝑛0 represents the negative 

deviation of the efficiency of stage 1 from reaching the maximum value. Variable 𝑑0
′  

represents the positive deviation while the variable 𝑛0
′  represents the negative 

deviation of the efficiency of stage 2 from reaching its maximum value. 

Consequently, since in two-stage DEA it is assumed that the ratio of the sum of the 

weighed intermediate outputs to the sum of the weighted inputs (stage 1) and the sum 

of weighted outputs to the sum of weighted intermediate outputs should be smaller or 

equal to 1 (constraints (71), (73)), the introduction of the variables 𝑑0, 𝑑0
′ , 𝑛0, 𝑛0

′  

occurs in constraints (71) and (73) in order to make them equal to 0 in the following 

manner: 

 

∑ 𝜇𝑑𝑧𝑑𝑗
𝐷
𝑑=1

∑ 𝜔𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1 ⇒∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

−∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≥ 0

⇒∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

−∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− 𝑑0 + 𝑛0 = 0 

 

(80) 
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∑ 𝛾𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝜇𝑑𝑧𝑑𝑗
𝐷
𝑑=1

≤ 1 ⇒ ∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

≥ 0

⇒∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

− 𝑑0
′ + 𝑛0

′ = 0 

 

(81) 

 

Thus, the model represented by equations (70)-(79) attempts to find the best possible 

values for ωi, μd and γr by minimizing the deviations of both the first and second stage 

of the DEA model. By minimizing simultaneously the deviations of each stage (i.e. 

𝑑0 + 𝑛0 for stage 1 and 𝑑0
′ + 𝑛0

′  for stage 2), the efficiencies of both stages are 

maximized at the same time and no priority is given into which stage should take 

precedence. Moreover, since we wish to attain the specific value of 1 for both stage 

efficiencies, both groups of deviational variables are included in the objective 

function to be minimized. The introduction of positive and negative deviations in such 

models is typical in the Multi-Criteria Decision Analysis literature and although the 

model might work with fewer deviations, in the context of the current thesis the 

author believes that the inclusion of both positive and negative deviations, although it 

adds a level of complexity to the model, it also offers a layer of rigor, which might 

increase the computational time but at the same time provides a more nuanced 

distribution of the weights without altering the core elements of the DEA 

methodology. In addition, the significance of each deviational variable in the 

objective function can be further fine-tuned, either within a level or between levels 

with appropriate weights thus offering a trade-off vehicle of trading between the 

efficiencies.  

Equations (71) and (73) ensure that the efficiency scores of the first and second stage 

are smaller than 1. Equations (72) and (74) indicate that the efficiency score for the 

first and second stage respectively when their respective deviations are added should 

be 1 and to achieve that it is assumed that ∑ 𝜇𝑑𝑧𝑑0
𝐷
𝑑=1 = 1 (equation (75)).  

Finally, the efficiencies of the individual stages are calculated according to equations 

(68) and (69) while the overall efficiency equals the average of the individual 

efficiencies similar to the work by Mahdiloo et al. (2016). The author of the current 
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thesis recognizes that the proposed alternative, two-stage DEA with a different 

optimization metric described by equations (70)-(79) can be one of many approaches 

that use deviational variables; in order to examine whether the proposed approach was 

valid, three lemmas and one theorem were proved about the model, which are 

presented below. Finally, the proposed alternative approach to two-stage DEA might 

not offer a unique solution and one approach to mitigate the potential effects of that 

fact will be presented in a next section of the current thesis. 

The following lemmas and theorem about the model described by the equations (70)-

(79) are proved based on the work by Sun et al. (2013) and Khalili-Damghani and 

Fadaei (2018). 

Lemma 1. The constraints of the model described by the equations (70)-(79) form a 

non-empty, convex set. 

Proof. The constraints (70)-(79) constitute a non-empty set named 𝑆. If 

(𝜔𝑖
∗, 𝜇𝑑

∗  𝑎𝑛𝑑 𝛾𝑟
∗) 𝑎𝑛𝑑 (𝜔𝑖

∗′, 𝜇𝑑
∗′ 𝑎𝑛𝑑 𝛾𝑟

∗′)  ∈ 𝑆 then ∀α ∈ [0,1]: (α𝜔𝑖
∗ +

(1 − α)𝜔𝑖
∗′ , α𝜇𝑑

∗ + (1 − α)𝜇𝑑
∗′ , α𝛾𝑟

∗ + (1 − α)𝛾𝑟
∗′)  ∈ 𝑆. Hence, 𝑆 is a convex set. ∎ 

Lemma 2. The objective function (70) is convex in the defined domain. 

Proof 2. The Hessian matrix of the objective function is: 

(

 
 
 
 
 

𝜕𝑜𝑏𝑗
2

𝜕2𝜔1

𝜕𝑜𝑏𝑗
2

𝜕𝜔1𝜕𝜔2
⋯

𝜕𝑜𝑏𝑗
2

𝜕𝜔1𝜕𝛾𝑠

⋮
𝜕𝑜𝑏𝑗
2

𝜕2𝜔2
⋱ ⋮

𝜕𝑜𝑏𝑗
2

𝜕𝛾𝑠𝜕𝜔1

𝜕𝑜𝑏𝑗
2

𝜕𝛾𝑠𝜕𝜔2
⋯

𝜕𝑜𝑏𝑗
2

𝜕2𝛾𝑠 )

 
 
 
 
 

 

The matrix is always zero, thus, objective function (11) is a strictly convex function. 

∎ 

Lemma 3. The model described by the equations (70)-(79) is always feasible. 

Proof 3. Suppose that an arbitrary solution of the model of the form: 

𝜔𝑖 =
1

𝑚𝑥𝑖0
 

(82) 

𝜇𝑑 =
1

𝐷𝑧𝑑0
 

(83) 
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𝛾𝑟 =
1

𝑠𝑦𝑟0
 

(84) 

𝑑0 = (
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

−
1

𝑚
∑

𝑥𝑖𝑗

𝑥𝑖0

𝑚

𝑖=1

) , ∀j  
(85) 

𝑑0
′ = (

1

𝑠
∑

𝑦𝑟𝑗

𝑦𝑟0

𝑠

𝑟=1

−
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

) , ∀j 
(86) 

𝑛0  = (
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

−
1

𝑠
∑

𝑦𝑟𝑗

𝑦𝑟0

𝑠

𝑟=1

) , ∀j  

 

(87) 

𝑛0
′  = (

1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

−
1

𝑠
∑

𝑦𝑟𝑗

𝑦𝑟0

𝑠

𝑟=1

) , ∀j  

 

(88) 

 

Substituting equations (82), (83) in equation (71): 

∑
1

𝑚𝑥𝑖0
𝑥𝑖𝑗

𝑚

𝑖=1

−∑
1

𝐷𝑧𝑑0
𝑧𝑑𝑗

𝐷

𝑑=1

≥ 0, 𝑗 = 1, … , 𝑛 

Substituting equations (82), (83), (85) and (87) in equation (72): 

∑
1

𝑚𝑥𝑖0
𝑥𝑖0

𝑚

𝑖=1

−∑
1

𝐷𝑧𝑑0
𝑧𝑑0

𝐷

𝑑=1

− (
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

−
1

𝑚
∑

𝑥𝑖𝑗

𝑥𝑖0

𝑚

𝑖=1

) + (
1

𝑚
∑
𝑥𝑖𝑗

𝑥𝑖0

𝑚

𝑖=1

−
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

)

= 0 

Substituting equations (83), (84) in equation (73): 

∑
1

𝐷𝑧𝑑0
𝑧𝑑𝑗

𝐷

𝑑=1

−∑
1

𝑠𝑦𝑟0
𝑦𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1,… , 𝑛 

 

Substituting equations (83), (84), (86) and (88) in equation (74): 
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∑
1

𝐷𝑧𝑑0
𝑧𝑑0

𝐷

𝑑=1

−∑
1

𝑠𝑦𝑟0
𝑦𝑟0

𝑠

𝑟=1

− (
1

𝑠
∑

𝑦𝑟𝑗

𝑦𝑟0

𝑠

𝑟=1

−
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

) + (
1

𝐷
∑

𝑧𝑑𝑗

𝑧𝑑0

𝐷

𝑑=1

−
1

𝑠
∑

𝑦𝑟𝑗

𝑦𝑟0

𝑠

𝑟=1

)

= 0 

Finally, substituting equation (82) in equation (75): 

∑
1

𝐷𝑧𝑑0
𝑧𝑑0

𝐷

𝑑=1

= 1 

All constraints are satisfied with the arbitrary solution, thus the model (70)-(79) is 

feasible.∎ 

Theorem 1. The model described by the equations (70)-(79) has an optimal solution. 

Proof 1. 𝑆 is a non-empty, convex set (Lemma 1), the objective function is strictly 

convex (Lemma 2) and the model has a feasible solution (Lemma 3). Consequently, 

the solution obtained by the model is optimal. ∎ 

3.3.2 Case Study 1 

To test the proposed variation, the environmental performance of European countries 

is calculated.  

The environmental performance can provide concise information to decision-makers 

especially when dealing with interactions between energy and the environment (Esty, 

et al., 2006). Furthermore, environmental performance has been and continues to be 

used as a measure of sustainable development. Finally, an environmental performance 

index can be an effective communication tool to convey complex notions to the 

general public and non-experts.  

Table 4  below illustrates some of the papers that were found in scientific databases 

when searching for environmental performance and DEA. 

Table 4 Review of the literature on DEA and environmental performance 

Paper Desirable outputs Undesirable 

outputs 

Production inputs 

(Zhou, Poh, & Ang, 

2007)  

GDP CO2 emissions, SO2 

emissions, NOx 

emissions 

Labor, primary 

energy consumption 
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(Zhou, Ang, & Poh, 

2008)  

 

GDP CO2 emissions energy consumption 

(Bian & Yang, 

2010)  

GDP SO2 emissions, 

COD, Nitrogen 

emissions 

labor, capital, 

energy, water 

(Guo, Zhu, Fan, & 

Xie, 2011)  

GDP CO2 emissions labor, capital, energy 

(Li & Hu, 2012) 

 

GDP CO2 emissions, SO2 

emissions 

labor, capital, energy 

(Wang, Wei, & 

Zhang, 2012) 

GDP CO2 emissions, SO2 

emissions 

labor, capital, coal, 

crude oil, natural gas 

(Wu, Fan, Zhou, & 

Zhou, 2012) 

Industrial added 

value 

CO2 emissions labor, capital, energy 

(Wei, Ni, & Du, 

2012) 

GDP - labor, capital, energy 

(Wang, Zhao, Zhou, 

& Zhou, 2013) 

GDP  labor, capital, energy 

(Wang & Wei, 

2014) 

Industrial added 

value 

Waste water, waste 

gas, solid waste 

labor, capital, energy 

(Wang, Feng, & 

Zhang, 2014) 

Industrial added 

value 

CO2 emissions, SO2 

emissions 

labor, capital, energy 

(Wu, An, Yao, & 

Wang, 2014) 

Industrial added 

value 

NO2 emissions capital, electricity 

(Zhou, Sun, & Zhou, 

2014) 

GDP CO2 emissions labor, capital, energy 

(Li & Lin, 2015) GDP CO2 emissions, SO2 

emissions 

labor, capital, coal, 

electricity 
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(Yao, Zhou, Zhang, 

& Li, 2015) 

GDP CO2 emissions labor, capital, energy 

(Du, Matisoff, 

Wang, & Liu, 2016) 

GDP CO2 emissions labor, capital, energy 

(Long, Wang, & 

Chen, 2016) 

GDP Solid waste labor, capital, coal 

(Sueyoshi & Yuan, 

2016) 

GDP, primary 

secondary and 

tertiary industry 

PM10, SO2 

emissions, NO2 

emissions 

coal, oil, gas, 

electricity, energy 

investment 

(Wu, Yin, Sun, Chu, 

& Liang, 2016) 

Industrial added 

value 

Waste water, solid 

waste 

labor, capital, coal 

(Zhang, Hao, & 

Song, 2016) 

Industrial added 

value 

CO2 emissions labor, capital, energy 

(Chen & Jia, 2017) GDP SO2 emissions, solid 

waste 

labor, capital, energy 

(Chen, Wang, Lai, & 

Feng, 2017) 

GDP CO2 emissions, SO2 

emissions, COD 

labor, capital, energy 

(Feng, Zhang, & 

Huang, 2017) 

GDP CO2 emissions labor, capital, energy 

(Li, Zhang, Zhou, & 

Yao, 2017) 

GDP CO2 emissions labor, capital, energy 

(Li, Peng, Wang, & 

Yao, 2017) 

GDP CO2 emissions, SO2 

emissions 

labor, capital, energy 

(Sueyoshi & Yuan, 

2017) 

 

Gross regional 

product (GRP) 

CO2 emissions, SO2 

emissions, soot, 

waste water, 

Chemical Oxygen 

Demand, NO 

labor, capital, energy 

(Sueyoshi, Yuan, & 

Goto, 2017) 

Gross regional 

product (GRP) 

CO2 emissions, SO2 

emissions, Smoke 

and dust, Waste 

labor, capital, energy 
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 water, chemical 

oxygen demand, NO 

(Sueyoshi, Yuan, Li, 

& Wang, 2017) 

GDP CO2 emissions labor, capital, energy 

(Zhu, Wu, Li, & 

Xiong, 2017) 

GDP  coal, oil, gas, fixed 

investment 

(Song, Peng, Wang, 

& Zhao, 2018) 

GDP SO2 emissions, 

waste water, solid 

waste 

labor, capital, energy 

(Du, Chen, & 

Huang, 2018) 

GDP CO2 emissions, SO2 

emissions, solid 

waste, industrial 

dust 

labor, capital, energy 

(Zhang, Li, & Gao, 

2018) 

 

Gross regional 

product (GRP) 

CO2 emissions, SO2 

emissions, soot and 

dust, waste water, 

COD, Ammonia 

nitrogen 

 

labor, capital, energy 

(Biresselioglu, 

Demir, & Turan, 

2018) 

 

share of renewable 

energy in gross final 

energy consumption 

 

energy consumption, 

GHG generations 

mathematical 

programming scores 

and scores from the 

energy trilemma 

(Ervural, Zaim, & 

Delen, 2018) 

 

Gross energy 

generation from 

renewable energy, 

number of 

consumers, total 

exports, GDP per 

capita, HDI, Total 

energy production, 

Population, area 

 Total renewable 

energy potential, 

network length, total 

installed power of 

renewable energy, 

transformer capacity 
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The works that are displayed on Table 4 have used the classic DEA model to calculate 

the environmental performance of regions. Thus, another contribution of the current 

thesis is the calculation of the environmental performance of European countries with 

the two-stage DEA model described by the equations (70)-(79). For the determination 

of the inputs, intermediate outputs and outputs, apart from the works summarized on 

table 1, the efforts of Tsaples and Papathanasiou (2021) were also used. The authors 

study the concept of sustainability and how DEA has tackled it and consider 

environmental performance as one of the dimensions of sustainability. Furthermore, 

Tsaples et al. (2019) and Tsaples and Papathanasiou (2020a) use different 

combinations of inputs, intermediate outputs and outputs to calculate the 

environmental performance of EU countries. 

For the case study, the following measures are used: 

- Inputs: Population, Gross electricity production [Thousand tonnes of oil 

equivalent (TOE)] 

- Intermediate measures: Final energy consumption [Terajoule] 

- Outputs: Terrestrial protected area (km2), Share of renewable energy in gross 

final energy consumption, Greenhouse gas emissions (in CO2 equivalent)  

The data source is Eurostat7 for the year 2018, which was the latest common year for 

which data was available for all countries. Moreover, the output Greenhouse gas 

emissions is considered undesirable which contradicts the nature of outputs in Data 

Envelopment Analysis, which should always be maximized. Thus, the undesirable 

output of the case study is rendered into a “desirable” one with a linear monotonic 

transformation (Seiford & Zhu, 1999). 

Table 5 below illustrates the results obtained from the proposed two-stage DEA 

variation and the corresponding results obtained from the model of Chen et al. (2012). 

  

 
7 https://ec.europa.eu/eurostat (accessed January 2021) 

https://ec.europa.eu/eurostat
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Table 5 Results from the proposed variation and the ones obtained by the models of Chen et al. (2009) 

 
Chen et al. (2012) Proposed, alternative metric 

two-stage DEA 

 Chen et al. (2012) Proposed, alternative metric 

two-stage DEA 

Country E0 E1 E2 E0 E1 E2 Country E0 E1 E2 E0 E1 E2 

Belgium 0.032 (26) 0.733 0.044 0.388 (21) 0.733 0.044 Luxemb

urg 

0.255 

(10) 

1 0.255 0.628 (9) 1 0.255 

Bulgaria 0.296 (9) 0.296 1 0.648 (7) 0.296 1 Hungary 0.160 

(16) 

0.715 0.224 0.469 

(14) 

0.715 0.224 

Czech 

Republic 

0.077 (22) 0.664 0.116 0.390 (20) 0.664 0.116 Malta 0.223 

(11) 

0.223 1 0.612 

(10) 

0.223 1 

Denmark 0.145 (18) 0.818 0.178 0.498 (12) 0.818 0.178 Netherla

nds 

0.023 

(27) 

0.570 0.041 0.306 

(28) 

0.570 0.041 

Germany 0.038 (25) 0.657 0.058 0.358 (23) 0.657 0.058 Austria 0.153 

(17) 

0.756 0.202 0.479 

(13) 

0.756 0.202 

Estonia 0.680 (2) 0.680 1 0.840 (2) 0.680 1 Poland 0.093 

(21) 

0.512 0.183 0.347 

(24) 

0.512 0.183 

Ireland 0.132 (20) 0.599 0.220 0.410 (19) 0.599 0.221 Portugal 0.136 

(19) 

0.272 0.502 0.387 

(22) 

0.272 0.502 



82 

 

Greece 0.188 (13) 0.348 0.541 0.444 (15) 0.348 0.541 Romani

a 

0.191 

(12) 

0.469 0.408 0.438 

(16) 

0.469 0.408 

Spain 0.171 (14) 0.320 0.534 0.427 (17) 0.320 0.534 Slovenia 0.405 (6) 0.506 0.800 0.653 (6) 0.506 0.800 

France 0.061 (23) 0.583 0.105 0.344 (25) 0.583 0.105 Slovakia 0.169 

(15) 

0.378 0.449 0.414 

(18) 

0.378 0.449 

Croatia 0.457 (5) 0.659 0.693 0.676 (5) 0.659 0.693 Finland 0.495 (4) 1 0.495 0.748 (4) 1 0.495 

Italy 0.056 (24) 0.538 0.104 0.321 (26) 0.538 0.104 Sweden 0.380 (7) 0.753 0.505 0.629 (8) 0.753 0.505 

Cyprus 0.316 (8) 0.398 0.793 0.596 (11) 0.398 0.793 United 

Kingdo

m 

0.020 

(28) 

0.604 0.033 0.318 

(27) 

0.604 0.033 

Latvia 0.697 (1) 0.714 0.977 0.845 (1) 0.714 0.977        

Lithuania 0.589 (3) 1 0.589 0.794 (3) 1 0.589        
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The column named as E0 indicates the overall environmental performance of the 

country, E1 the performance of the first stage and E2 the performance of the second 

stage. The first aspect to observe is that the results of the individual stages for the 

proposed alternative are almost similar to the ones calculated with the model of Chen 

et al. (2012), nonetheless with notable differences. These differences, it is argued, are 

the result of the introduction of the deviational variables that apart from restricting the 

values of the optimal weights, in essence, they induce the optimization of a different 

metric in the objective function and the following calculation of the overall efficiency 

by the arithmetic mean of the individual efficiencies. Furthermore, the two models 

differ in the average overall efficiency, which is larger in the proposed variation and 

the range of the values of the overall efficiency, where in the proposed model is 

smaller than that of Chen et al. (2012). Notably, the model of Chen et al. (2012)  

assumes that the overall efficiency is derived as the product of the divisional 

efficiency scores whereas in the proposed model the overall efficiency is calculated as 

the weighted average of the divisional efficiency scores. Therefore, it is true that 

comparing the overall efficiency scores wouldn’t make much of a sense. It is worth 

mentioning though that the overall efficiency in the proposed model is defined 

through a compensatory approach whereas the model of Chen et al. (2012) employs a 

non-compensatory approach. Consequently, it is mathematically expected that the 

proposed model would certainly be allowed to attain higher (or equal) overall 

efficiency scores. In Table 5, as both models estimate almost identical divisional 

efficiency scores, they will also provide almost the same overall efficiency scores 

under any common definition of the overall efficiency. 

The accumulated small differences result in different rankings of the countries 

according to their overall efficiency. Countries that seemed to perform better under 

the variation of Chen et al. (2012) like Poland, Portugal and Greece, move down the 

ranking in the proposed variation of the current thesis. Finally, it is observed that 

despite the above notable observations, the values of the efficiencies of the individual 

stages do not differ much and the fact that the countries that are in the efficient 

frontiers of the first and the second stages respectively remain the same under both 

variations, increases the confidence in the results. In combination with the results 

from the paper of Mahdiloo et al. (2016), where the authors observed similar behavior 
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when they compared their model with that of Chen et al. (2012), the robustness of 

both the results and the models increases. 

To get a better understanding of how the alternative variation compares to that of 

Chen et al. (2012), an additional illustration was performed by adding: to the inputs 

the Gross fixed capital at current prices (PPS) and the Total Labor force (x1000 

persons), to the intermediate measures the Domestic material consumption [Thousand 

tons] and to the outputs the Total expenditure [Euro per inhabitant]. The results are 

tabulated in Table 6 below. 
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Table 6 Another set of results from the two variations with additional parameters 

 
Chen et al. (2012) Proposed, alternative metric 

two-stage DEA 

 Chen et al. (2012) Proposed, alternative metric 

two-stage DEA 

Country E0 E1 E2 E0 E1 E2 Country E0 E1 E2 E0 E1 E2 

Belgium 0.066 (26) 0.746 0.088 0.475 

(22) 

0.891 0.059 Luxemb

urg 

1 (1) 1 1 1 (1) 1 1 

Bulgaria 1 (1) 1 1 1 (1) 1 1 Hungary 0.321 

(17) 

0.965 0.333 0.652 

(14) 

0.986 0.317 

Czech 

Republic 

0.117 (23) 0.716 0.164 0.456 

(23) 

0.795 0.116 Malta 0.647 

(10) 

0.647 1 0.822 (9) 0.645 1 

Denmark 0.228 (20) 1 0.228 0.614 

(17) 

1 0.228 Netherla

nds 

0.052 

(27) 

0.527 0.098 0.364 

(28) 

0.665 0.062 

Germany 0.069 (25) 0.656 0.105 0.410 

(26) 

0.758 0.062 Austria 0.204 

(21) 

0.765 0.267 0.511 

(21) 

0.815 0.206 

Estonia 0.843 (5) 0.843 1 0.917 (5) 0.907 0.927 Poland 0.252 

(19)  

1 0.252 0.626 

(16) 

1 0.252 

Ireland 0.267 (18) 0.857 0.311 0.588 

(20) 

0.896 0.279 Portugal 0.350 

(16) 

0.740 0.473 0.605 

(19) 

0.763 0.446 
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Greece 0.723 (6) 0.864 0.836 0.847 (6) 0.894 0.801 Romani

a 

0.429 

(13) 

0.985 0.435 0.710 

(12) 

1 0.420 

Spain 0.366 (15) 0.429 0.854 0.641 

(15) 

0.429 0.854 Slovenia 0.656 (9) 0.701 0.934 0.818 

(10) 

0.701 0.934 

France 0.109 (24) 0.551 0.198 0.393 

(27) 

0.676 0.111 Slovakia 0.376 

(14) 

0.607 0.620 0.613 

(18) 

0.607 0.620 

Croatia 0.935 (4) 0.935 1 0.968 (4) 0.935 1 Finland 0.670 (8) 1 0.670 0.835 (8) 1 0.670 

Italy 0.130 (22) 0.613 0.212 0.452 

(24) 

0.795 0.108 Sweden 0.497 

(12) 

0.755 0.658 0.706 

(13) 

0.755 0.658 

Cyprus 0.717 (7) 0.882 0.813 0.847 (6) 0.898 0.797 United 

Kingdo

m 

0.044 

(28) 

0.634 0.070 0.447 

(25) 

0.858 0.037 

Latvia 0.998 (3) 0.998 0.999 0.999 (3) 0.998 1        

Lithuania 0.632 (11) 

1 0.632 

0.816 

(11) 1 0.632 
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The inclusion of more parameters in the two-stage models alters the results which is 

not unexpected. However, the conclusions from the previous table also hold for the 

results on Table 6. Nonetheless, the differences in the overall efficiency between the 

proposed method and that of Chen et al. (2012) are larger.  

In conclusion, the introduction of both negative and positive deviational variables 

distinguishes the proposed model from that of Chen et al. (2012) (and the model by 

Mahdiloo et al. (2016)) in a qualitative manner: the deviational variables in the first 

stage push the stage efficiency to increase in detriment of the efficiency of the second 

stage. At the same time, the deviational variables of the second stage, push the stage 

efficiency to increase in detriment to the efficiency of the first stage. Hence, a trade-

off occurs between the two stage efficiencies that ultimately drives the overall 

efficiency upwards.  

3.3.3 Case Study 28 

Agriculture is one of the most important sectors in the economy and it can have 

effects (negative or positive) in environmental conservation and economic 

development (Pang, Chen, Zhang, & Li, 2016). Furthermore, agriculture plays an 

important role in social support since it provides nutrition to an increased global 

population.  

However, current nutrition choices and consequently current production practices are 

considered unsustainable and one of the main drivers of climate change (Poore & 

Nemecek, 2018; Pradhan, et al., 2020). Moreover, an increased urbanization and 

globalization of supply chains means that food demands are met only after 

transportation over long distances (Kissinger, 2012; Weber & Matthews, 2008).  

Nonetheless, the increased transportation of goods (and people) is considered one of 

the main sources for Greenhouse Gas emissions (Fuglestvedt, Berntsen, Myhre, 

Rypdal, & Skeie, 2008), which contributes further to climate change. For example, the 

dairy sector emitted 4% of the total greenhouse gas emissions (Aggestam & Buick, 

2017). 

 
8 The case study appeared in the paper of Tsaples, G., & Papathanasiou, J. (2021). Measuring 

agricultural sustainability of European countries with a focus on transportation. International Journal of 

Sustainable Agricultural Management and Informatics, 7(4), 304-320. (CiteScore: 0.8, Q2) 
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As a result, efficient and cost-effective transportation can be a driver for sustainability 

(Gao, Erokhin, & Arskiy, 2019); in the opposite case, climate change will hinder 

sustainable agriculture, which due to globalization will cause disruptions with 

cascading, global effects. Furthermore, the effects will not be only global and even in 

the medium-term. An inefficient transportation has a severe impact on the small (and 

medium) agricultural enterprises (Han, Pervez, Wu, Shen, & Zhang, 2020). 

Since the primary objective of farmers is to increase their profits, an increased 

transportation cost might lead them to employ unsustainable production practices that 

cause further damage to the environment (Hoang & Alauddin, 2012). Hence, farmers 

are trapped in a vicious cycle where in order to survive they must be detriment to the 

environment which further hinders any effort for sustainability that results in more 

dire consequences for farmers. 

In conclusion, sustainable agriculture is a key goal for all. Therefore measuring the 

performance of the agricultural sector of countries can provide essential information 

to policy makers in order for them to design appropriate policies that could lead to 

sustainable development (Picazo-Tadeo, Gómez-Limón, & Reig-Martı́nez, 2011).  

DEA has been used to measure performance in various echelons of the agricultural 

sector. Dhungana et al. (Dhungana, Nuthall, & Nartea, 2004) used DEA to 76 

Nepalese rice farms to reveal significant variations in the levels of inefficiency that 

were attributed to the manner that the inputs were used; Rebolledo-Leiva et al. 

(Rebolledo-Leiva, Angulo-Meza, Iriarte, & González-Araya, 2017) combined carbon 

footprint assessment with DEA to measure the eco-efficiency of organic blueberry 

orchards, while Atici and Podinovski (2015) analyzed the efficiency of wheat 

production in various farms in Turkey. 

The efficiency measurement was not limited to the farm level. Toma et al. (2015) 

applied DEA to measure the sustainability of agriculture in regions of Romania, while 

Li et al. (Li, Jiang, Mu, & Yu, 2018) calculated the relative efficiency of 30 regions in 

China for several years. Furthermore, Arnade (1994) measured the efficiency of 

agricultural sectors in 77 countries; Hoang and Rao (2010) evaluated the agricultural 

efficiency of 29 OECD countries. Moreover, DEA has been used to measure 

agricultural efficiency in Europe (Bojnec, Fertő, Jámbor, & Tóth, 2014; Kočišová, 

2015; Toma, Miglietta, Zurlini, Valente, & Petrosillo, 2017). 
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However, several gaps were identified in the literature. Fistly, Toma et al. (2017) 

identified that in general there is a lack of studies to evaluate agricultural efficiency at 

national level. Secondly, to the best of our knowledge, transportation of agricultural 

goods has not been considered in the studies associated with agricultural efficiency. 

Finally, the classic, one-stage DEA models were used before. However, evaluating 

agricultural efficiency is a complex effort and one-stage DEA models can be 

considered “black boxes” since no knowledge is required about how inputs are 

transformed into outputs (Färe & Grosskopf, 2009). Thus, two-stage DEA models 

might be more suitable, since they can provide a decomposing of the overall 

efficiency into two different elements and reveal more insights to the policy maker. 

The objective of the current case study is to provide a calculation of the sustainability 

of agriculture of European countries taking also into account the transportation of 

goods by employing the two-stage Data Envelopment Analysis (DEA) model 

described by the equations (70)-(79). Thus, other contributions of this thesis are: (1) to 

the best of our knowledge transportation of agricultural goods has not been considered 

in previous studies, (2) the employment of two-stage DEA models for the evaluation 

of agricultural sustainability of countries and the comparison among the different 

models contributes to the relevant literature to the relevant. 

For the objective of the current thesis, both models will be used to calculate the 

agricultural efficiency of European countries. As inputs, the following measures were 

used: 

• Utilized Agricultural Area 

• Total labor force in agriculture 

• Transport infrastructure investment and maintenance spending 

As intermediates, the following measures were used: 

• Output of agricultural industry – Production value at basic price 

• Greenhouse gas emissions from agriculture 

• Total transported goods 

Finally, as outputs the following measures were used: 
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• Agricultural income 

• Gross value added at basic prices 

The data were obtained by Eurostat9 and OECD10 for the year 2018. The choice of the 

year depended on the data availability and 2018 was the most recent, common year 

for which there was availability for the chosen countries. 

The results are illustrated on table 7 below. 

Table 7 Results of the agricultural sustainability of European countries according to the models by Chen et al. 

(2009) and the proposed variation 

 
Chen et al (2012) Proposed, alternative metric two-

stage DEA 

Country Overall 

agricultural 

sustainabilit

y 

Efficienc

y of stage 

1 

Efficienc

y of stage 

2 

Overall 

agricultural 

sustainabilit

y 

Efficienc

y of stage 

1 

Efficienc

y of stage 

2 

Belgium 0,37 0,82 0,44 0,64 0,95 0,33 

Bulgaria 0,15 0,21 0,73 0,32 0,38 0,26 

Czech 0,28 0,37 0,75 0,62 1 0,24 

Denmark 0,87 0,87 1 0,93 0,86 1 

Germany 0,58 1 0,58 0,79 1 0,58 

Estonia 0,15 0,48 0,32 0,41 0,57 0,24 

Ireland 0,24 0,37 0,64 0,50 0,37 0,64 

Greece 0,18 0,20 0,87 0,41 0,27 0,56 

Spain 0,48 0,50 0,95 0,64 0,61 0,66 

France 0,77 1 0,77 0,88 1 0,77 

Croatia 0,20 0,24 0,83 0,39 0,29 0,49 

Italy 1 1 1 1 1 1 

Cyprus 0,40 0,47 0,84 0,55 0,82 0,27 

 
9 https://ec.europa.eu/eurostat/data/database (accessed in April 2021) 
10 https://stats.oecd.org/ (accessed in April 2021) 

https://ec.europa.eu/eurostat/data/database
https://stats.oecd.org/
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Latvia 0,17 0,32 0,54 0,37 0,57 0,16 

Lithuania 0,33 1 0,33 0,66 1 0,33 

Luxembour

g 

1 1 1 0,97 1 0,94 

Hungary 0,78 1 0,78 0,89 1 0,78 

Malta 1 1 1 1 1 1 

Netherlands 0,66 1 0,66 0,83 1 0,66 

Austria 0,30 0,40 0,74 0,55 0,77 0,33 

Poland 0,14 0,23 0,60 0,35 0,45 0,24 

Portugal 0,55 0,82 0,67 0,75 0,82 0,67 

Romania 0,45 0,58 0,78 0,68 0,58 0,78 

Slovenia 0,28 0,28 1 0,50 0,70 0,30 

Slovakia 0,27 0,43 0,63 0,52 0,73 0,31 

Finland 0,20 0,48 0,42 0,51 0,85 0,16 

Sweden 0,28 0,68 0,42 0,63 1 0,37 

 

The first column of the table contains the countries that form the DMU set. The next 

three columns have the overall agricultural sustainability, the efficiency of the first 

stage and the efficiency of the second stage as they were calculated with the model by 

Chen et al. (2012). The countries/DMUs can be separated into three general groups: 

the first group has the countries that have an overall agricultural efficiency of 1 and 

these are Italy, Luxembourg and Malta. The inclusion of countries like Italy 

(considered as agriculturally developed) with that of Malta, highlights that agricultural 

output should not be the only measure of development. Malta, a small country, 

utilizes a small percentage of its available land for agriculture and has a very small 

agricultural sector in general. However, the available resources are used in an efficient 

way and although the country relies on imports for such products, the small 

population and the relatively effective spending on the infrastructure along with the 

reduced greenhouse emissions, means that Malta is as agriculturally efficient as Italy. 
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The second group contains the countries that have an overall agricultural 

sustainability below 1 and over 0.5. These countries are: Denmark, Germany, France, 

Hungary, Netherlands and Portugal. These countries are considered among the most 

developed in the European Union and it appears that the agricultural sector follows (or 

affects) the overall development of the country.  

Finally, the third group contains the rest of the countries that have an overall 

agricultural performance below 0.5. The majority of these countries are either ones 

that are considered new in the union (like Poland) or have been affected heavily by 

the economic crisis of the previous decade (Greece).  

The last three columns of Table 7 illustrate the same results but calculated with the 

two-stage DEA variation proposed in the current thesis. The first fact to observe is 

that all the values of the overall agricultural sustainability are larger than in the first 

case, but the values themselves have a smaller variation. Similar to the results as 

calculated with the DEA variation of Chen et al. (2012), three groups can be 

recognized. The first entails Italy and Malta that have the largest values of overall 

agricultural sustainability. The second group consists of the majority of the countries 

and the final group with Bulgaria, Estonia, Croatia, Latvia and Poland. 

To get a better understanding of the countries’ performance, their rank is displayed on 

Table 8. The results illustrate that differences are observed on the two DEA 

variations; there are countries that perform better in their ranking but not by a lot like 

the Czech Republic and there are others where the two rankings are significantly 

different, like Slovenia.  

The differences in the values of agricultural efficiency and the overall ranking can be 

explained in a similar way as those of the previous case study.  
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Table 8 Ranking of the countries for the overall agricultural sustainability according to the two variations 

 
Chen et 

al 

(2012) 

Proposed, 

alternative 

metric 

two-stage 

DEA 

Belgium 13 12 

Bulgaria 26 27 

Czech  18 15 

Denmark 4 4 

Germany  8 8 

Estonia 25 23 

Ireland 20 20 

Greece 23 22 

Spain 10 13 

France 6 6 

Croatia 21 24 

Italy 1 1 

Cyprus 12 17 

Latvia 24 25 

Lithuania 14 11 

Luxembourg 1 3 

Hungary 5 5 

Malta 1 1 

Netherlands 7 7 

Austria 15 16 

Poland 27 26 

Portugal 9 9 

Romania 11 10 

Slovenia 17 21 

Slovakia 19 18 

Finland 22 19 

Sweden 16 14 
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4. Exploratory, Multi-dimensional Data Envelopment Analysis11 

As it was mentioned in Case Study 1 of the previous Chapter, environmental 

performance is considered only one of the three (or more) dimensions of 

sustainability. Consequently, moving in the direction of adding more dimensions to 

measure sustainability, the need arises to move from a two-stage DEA model to a 

multi-level or multi-dimensional model that will allow the incorporation of these 

dimensions without succumbing to the methodological limitations of DEA. In the 

following sub-sections, the new framework is proposed for the incorporation of 

multiple dimensions. 

4.1 Multi-Dimensional DEA for the construction of composite indicators 

The typical calculation of sustainability involves three dimensions: economic, 

environmental and social. Thus, the calculation of the environmental performance in 

the previous section can be considered as part of sustainability, despite the fact that 

many of the inputs, intermediate measures and outputs that have been used by the 

various authors resemble those that are used in the DEA literature for the calculation 

of sustainability.  

However, for a more inclusive calculation of sustainability that is not limited by the 

number of inputs and outputs that can be used, the proposed variation that was 

described by equations (70)-(79) can be incorporated in the framework proposed by 

Tsaples and Papathanasiou (2020b) that is depicted in Figure 5 below. 

 
11 This section appeared on: 

1. Tsaples, G., & Papathanasiou, J. (2020). Multi-level DEA for the construction of multi-dimensional 

indices. MethodsX, 7, 101169.(CiteScore 1.8) 

2. Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An Exploratory DEA and Machine 

Learning Framework for the Evaluation and Analysis of Sustainability Composite Indicators in the EU. 

Mathematics, 10(13), 2277 
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Figure 5 Framework for the construction of composite indicators with two-stage DEA models 

Based on the figure, each sub-indicator is calculated using the equations (70)-(79) and 

the overall performance of each sub-indicator is used in a Benefit-of-the-Doubt (BoD) 

model to calculate the overall sustainability index. The BoD model is described by the 

equations (92)-(94) below (Cherchye, Moesen, Rogge, & Van Puyenbroeck, 2007): 

max∑𝑤𝑟𝑖𝑦𝑟𝑖

𝑠

𝑟=1

 (92) 

Subject to:  

∑𝑤𝑟𝑖𝑦𝑟𝑗

𝑠

𝑟=1

≤ 1 (𝑁 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐷𝑀𝑈 𝑗 = 1…𝑁) (93) 

𝑤𝑟𝑗 ≥ 0, (𝑟 = 1…𝑠, 𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏

− 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟) 
(94) 
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The BoD model described by the equations (92)-(94) is a typical DEA model with the 

inputs designated as 1. As a result, the model calculates the optimal weights allowing 

maximum flexibility. In contrast to the proposed two-stage variation of equations 

(70)-(79), the BoD model does not include any restrictions to the weights because the 

dimensions that are included are typical of sustainability (despite the differences in 

the underlying measures that are used to calculate those indicators) and limited in 

number. Moreover, the simplicity of the BoD model, the opportunities that it allows to 

account for different (countries’) backgrounds (Rogge, et al., 2017), the fact that it has 

been used by numerous studies (see (Karagiannis & Karagiannis, 2018) for an 

inclusive account) and has been proposed by OECD for the construction of composite 

indicators (OECD, 2008) mean that it can be used without any intervention in the 

weights. As mentioned in the above paper, its main advantage is that “it results in 

idiosyncratic weights to aggregate sub-indicators that vary both across sub-indicators 

and evaluated decision-making units (DMUs)”. In other words, “each evaluated DMU 

is allowed to choose a set of weights that maximizes its performance in terms of the 

resulting value of the composite indicator under the restriction that if the same set of 

weights is used by any other evaluated DMU it will not result in a value of the 

composite indicator that is greater than one” (Karagiannis & Karagiannis, 2018, p. 1). 

The use of a BoD model is not unique and alternative methods can be used equally 

successfully and efficiently. However, in the context of the current thesis, the BoD 

approach is preferred because the overall proposed model continues to be two-stage 

DEA, in which the first stage consists of two-stage DEA models that calculate the 

(more refined) dimensions that will be used in the BoD model that brings the above 

desired properties for the construction of a final scalar index for each country. Thus, 

the framework is characterized by an esoteric, elegant consistency. 
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4.1.1 Case Study 112 

To test the proposed framework, the measurement of sustainability of European 

countries is performed. In the current thesis, the following measures are used for each 

dimension: 

• Economic 

o Inputs: Gross fixed capital at current prices (PPS), Total Labour force 

(x1000 persons) 

o Intermediate measures: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Median equivalised net income [Purchasing power standard 

(PPS)], Final consumption expenditure of households [Current prices, 

million euro] 

• Environmental 

o Inputs: Population, Gross electricity production [Thousand tonnes of 

oil equivalent (TOE)] 

o Intermediate measures: Final energy consumption (Terajoule) 

o Outputs: Terrestrial protected area (km2), Share of renewable energy 

in gross final energy consumption (%), Greenhouse gas emissions (in 

CO2 equivalent) 

• Social 

o Inputs: Gross fixed capital at current prices (PPS), GDP per capita in 

PPS-Index (EU28 = 100) 

o Intermediate measures: Total expenditure (Euro per inhabitant) 

o Outputs: Patent applications to the European patent office (EPO) by 

priority year, Overall life satisfaction, Satisfaction with living 

 
12 The case study appeared on: Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An 

Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability 

Composite Indicators in the EU. Mathematics, 10(13), 2277 
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environment, Percentage of females in total labor population (Tsaples 

& Papathanasiou, 2020a) 

 

Table 9 Results for the construction of a sustainability composite indicator 

Country Sustainability Economic 

sub-

indicator  

Environmental 

sub-indicator 

Social 

sub-

indicator 

Belgium 0,68 0,44 0,38 0,47 

Bulgaria 0,94 0,4 0,75 0,6 

Czech 

Republic 0,62 0,4 0,39 0,40 

Denmark 0,82 0,44 0,5 0,57 

Germany 1 0,49 0,35 0,87 

Estonia 1 0,53 0,84 0,46 

Ireland 0,62 0,40 0,41 0,38 

Greece 0,61 0,34 0,44 0,37 

Spain 0,68 0,47 0,42 0,44 

France 0,85 0,50 0,34 0,70 

Croatia 0,82 0,43 0,67 0,43 

Italy 0,70 0,46 0,32 0,54 

Cyprus 0,90 0,80 0,59 0,47 

Latvia 1 0,46 0,84 0,53 

Lithuania 0,93 0,41 0,79 0,49 

Luxemburg 0,93 0,79 0,62 0,53 

Hungary 0,68 0,32 0,46 0,44 

Malta 1 1 0,61 0,58 

Netherlands 0,65 0,40 0,30 0,50 
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Austria 0,74 0,45 0,47 0,47 

Poland 0,68 0,43 0,34 0,50 

Portugal 0,60 0,36 0,38 0,39 

Romania 0,80 0,29 0,43 0,60 

Slovenia 0,85 0,54 0,65 0,46 

Slovakia 0,61 0,33 0,41 0,39 

Finland 0,93 0,46 0,74 0,52 

Sweden 0,87 0,41 0,62 0,54 

United 

Kingdom 0,75 0,50 0,31 0,58 

 

As it can be observed on table 9, there are 4 countries that are considered sustainable 

compared to the rest of the set: Germany, Estonia, Latvia and Malta. The rest of the 

countries can be grouped in two broad categories; those that have a sustainability 

index above 0.7 compared to the other countries and those that have a sustainability 

index below 0.7. which are Belgium, Czech Republic, Ireland, Greece, Spain, 

Hungary, Netherlands, Portugal and Slovakia. Furthermore, the Spearman Correlation 

Coefficient was calculated for: 

• Sustainability-Economic sub-indicator: 0.635 

• Sustainability-Environmental sub-indicator: 0.627 

• Sustainability-Social sub-indicator: 0.616 

The coefficients illustrate that the sustainability of each country depends almost 

equally on each sub-indicator, with the economic-sub-indicator however, having a 

slightly larger coefficient. 
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4.1.2 Case Study 213 

To get a better sense of the versatility of the computational framework, the same 

measurement of sustainability occurred but this time using the typical two-stage DEA 

variations and not the proposed one. Thus, the equations for the measurement of each 

dimension are: 

max𝐸0 =∑𝛾𝑟𝑦𝑟0

𝑠

𝑟=1

 
(95) 

Subject to Constraints  

∑𝜇𝑑𝑧𝑑𝑗

𝐷

𝑑=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1, … ,𝑁 

(96) 

∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜇𝑑𝑧𝑑𝑗

𝑠

𝑟=1

≤ 0, 𝑗 = 1,… ,𝑁 
(97) 

∑𝛾𝑟𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝜔𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1,… ,𝑁 
(98) 

∑𝜔𝑖𝑥𝑖0

𝑚

𝑖=1

= 1 
(99) 

𝜔𝑖 ≥ 0, 𝑖 = 1, … ,𝑚 (100) 

𝜇𝑑 ≥ 0, 𝑑 = 1,… , 𝐷 (101) 

𝛾𝑟 ≥ 0, 𝑟 = 1,… , 𝑠 (102) 

 

Furthermore, the BoD model is altered, and the new equations are: 

max∑𝑤𝑟𝑖𝑦𝑟𝑖

𝑠

𝑟=1

 (103) 

Subject to:  

 
13 The case study appeared on the paper Tsaples, G., & Papathanasiou, J. (2020). Multi-level DEA for 

the construction of multi-dimensional indices. MethodsX, 7, 101169 (CiteScore 1.8) 
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∑𝑤𝑟𝑖𝑦𝑟𝑗

𝑠

𝑟=1

≤ 1 (𝑁 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐷𝑀𝑈 𝑗 = 1…𝑁) (104) 

𝑤𝑟𝑗 ≥ 𝑎, (𝑟 = 1…𝑠, 𝑠 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑢𝑏

− 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟) 
(105) 

∑𝑤𝑟

𝑠

𝑟=1

= 1 (106) 

 

Constraint (104) indicates that the constructed indicator will be less than or equal to 1. 

Constrain (105) ensures that all sub-indicators will participate in the construction of 

the overall composite index with the parameter a defined by the analyst. Constraint 

(106) indicates that the sum of the calculated weights will be equal to 1. 

As it was mentioned, the new equations are used for the calculation of sustainability 

of European countries with the same dimensions (inputs, intermediates, outputs) as 

before: 

• Economic 

o Inputs: Gross fixed capital at current prices (PPS), Total Labour force 

(x1000 persons) 

o Intermediate measures: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Median equivalised net income [Purchasing power standard 

(PPS)], Final consumption expenditure of households [Current prices, 

million euro] 

• Environmental 

o Inputs: Population, Gross electricity production [Thousand tonnes of 

oil equivalent (TOE)] 

o Intermediate measures: Final energy consumption (Terajoule) 

o Outputs: Terrestrial protected area (km2), Share of renewable energy 

in gross final energy consumption (%), Greenhouse gas emissions (in 

CO2 equivalent) 
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• Social 

o Inputs: Gross fixed capital at current prices (PPS), GDP per capita in 

PPS-Index (EU28 = 100) 

o Intermediate measures: Total expenditure (Euro per inhabitant) 

o Outputs: Patent applications to the European patent office (EPO) by 

priority year, Overall life satisfaction, Satisfaction with living 

environment, Percentage of females in total labor population 

The results are summarized on table 10 below. 

Table 10 Results for the sustainability indicator by using the typical two-stage DEA variation for the calculation of 

the individual dimensions 

Country Sustainability 

index 

Economic 

sub-

indicator 

Environmental 

sub-indicator 

Social sub-

indicator 

Malta 0.778 1 0.223 0.296 

Latvia 0.544 0.122 0.697 0.249 

Estonia 0.536 0.186 0.681 0.214 

Germany 0.524 0.004 0.038 0.739 

Cyprus 0.509 0.615 0.316 0.205 

Lithuania 0.459 0.095 0.589 0.214 

Luxemburg 0.458 0.584 0.255 0.0719 

Finland 0.381 0.067 0.495 0.157 

Croatia 0.358 0.07 0.457 0.186 

France 0.343 0.006 0.061 0.475 

Slovenia 0.338 0.168 0.405 0.198 

Sweden 0.300 0.032 0.38 0.198 

Bulgaria 0.244 0.036 0.296 0.213 

United 

Kingdom 

0.235 0.003 0.02 0.331 
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Italy 0.206 0.007 0.056 0.281 

Romania 0.17 0.008 0.191 0.2 

Spain 0.162 0.008 0.171 0.194 

Poland 0.159 0.008 0.093 0.206 

Greece 0.157 0.035 0.188 0.131 

Netherlands 0.146 0.021 0.023 0.2 

Slovakia 0.146 0.039 0.169 0.145 

Hungary 0.144 0.022 0.16 0.167 

Austria 0.139 0.039 0.153 0.157 

Denmark 0.132 0.064 0.145 0.142 

Portugal 0.13 0.033 0.136 0.149 

Czech 

Republic 

0.123 0.023 0.077 0.155 

Ireland 0.119 0.072 0.132 0.107 

Belgium 0.115 0.032 0.032 0.151 

 

The countries are also ranked from the lowest to the highest sustainability value. For 

example, Malta has the highest sustainability index compared to the other countries 

with a value of 0.778. The individual sub-indicators that are entailed in sustainability 

have a value of 1 for the economic sub-indicator, 0.223 for the environmental sub-

indicator and 0.296 for the social sub-indicator. These results indicate that Malta has a 

high sustainability index due to its great economic performance (compared to the 

other countries). However, the economic prosperity is not accompanied by the same 

environmental or social performance. As a result, policy makers in Malta might 

consider placing greater importance in the environment and the social processes of the 

country, should they wish to achieve sustainable development. 

Furthermore, the rest of the countries can be roughly separate into 2 groups: those 

countries like Latvia, Germany and Slovenia that have a sustainability index between 

0.55 and 0.3. The last group that performs the best includes countries like Greece, 

Netherlands and Belgium. 



104 

 

Hence, the use of the typical two-stage DEA model with the altered BoD version 

produces different results. These results can be attributed to the more strict constraints 

that are present in the altered BoD version. Furthermore, the typical two-stage model 

has wider values than those of the proposed variation, since it does not attempt to 

minimize the calculated values from the minimum ones.  

In conclusion, the proposed computational framework for the construction of 

composite indicators can be used with any variation of DEA (either two-stage or 

simple-stage) according to the requirements of the problem at hand. This method 

allows the calculation of sub-indicators and the final indicator by limiting the bias that 

can be inserted in the models by the analyst and/or the policy-maker.  

4.2 Proposed DEA-ML computational framework14 

Nonetheless, the above calculated sustainability indices suffer from the same 

limitation that was identified in the Introduction: since there is no unique, “correct” 

definition of sustainability, the same indicator can be calculated by using different 

variations of DEA and/or different combinations of inputs, intermediate measures and 

outputs. 

Furthermore, the proposed two-stage DEA model with the alternative optimization 

metric might not offer a unique solution that could alter the final results of the 

calculated index. Finally, one could argue that the BoD model that was used to 

aggregate the individual dimensions into one sustainability index does not pose any 

restrictions to the weights, similar to those proposed in the initial two-stage DEA 

model. Thus, methodological limitations might limit the value of the final results. 

Consequently, there is the need to have an indicator of sustainability that will 

incorporate all these different perceptions that may arise, where perceptions mean 

different DEA and BoD variations and/or different combinations of inputs, 

intermediate measures and outputs, and at the same time limit the impact of 

methodological limitations. Such an indicator would be useful in policy design (and 

policy making in general) because as Foster and Sen (1997) proposed, uniqueness is 

 
14 This sub-section appeared on: Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An 

Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability 

Composite Indicators in the EU. Mathematics, 10(13), 2277 
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not a prerequisite to make agreed judgments. Hence, the proposed computational 

framework is based on this principle, and it consists of the following steps: 

Step 1: Define different perceptions of sustainability and for each perception: 

a) define how many sub-indicators will be entailed in this perception’s 

sustainability index 

b) define the inputs, intermediate outputs and outputs that each sub-indicator will 

entail 

c) Repeat for all perceptions 

Step 2: Define the variation of DEA that will calculate the value of the sub-indicators 

d) calculate the sub-indicators  

e) calculate the perception’s sustainability index using model (92)-(94) 

f) Once all sustainability indices for all perceptions are calculated, calculate the 

mean value for each country/DMU 

Step 3: Use machine learning to gain insights into the sustainability of each country 

under different perceptions 

Figure 6 below illustrates the proposed computational framework. 
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Figure 6 Exploratory, Multi-Dimensional Data Envelopment Analysis 

Consequently, by blending DEA with ML the available data and analyses are 

expanded which contributes to investigating the topic under study (thus implicitly 

adding new layers to the initial problem) meaning that greater insights are revealed. 

Furthermore, the absence of a unique solution by the proposed variation of equations 

(70)-(79) can be considered a methodological limitation, however, the issue becomes 

not of central importance per se, since in the context of the current thesis the variation 

will be used repeatedly and with different data to generate different results, in 

accordance to the philosophy of Exploratory Modeling and Analysis, where 

methodological limitations lose their impact from the generation of numerous results 

under different assumptions. Hence, the exploratory framework offers not only a 

slight deviation to the typical way that DEA is used, but also a complementary 

research avenue on the issues of interpretability and transparency of algorithms and/or 

quantitative methods: by blending methodologies under a multi-perspective design, 

algorithms become more inclusive and democratic (in the sense that the Benefit-of-

the-Doubt notion inherent in the aforementioned DEA formulations, is further  
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enriched). Hence, decision support can take a step towards the generation of collective 

knowledge that includes different values, perceptions and dimensions. 

Regarding the proposed computational framework, the author recognizes that it 

deviates slightly from the traditional process of using Data Envelopment Analysis. In 

its most basic form, the process starts with a question/problem to be solved, it moves 

to researching the area of research and gathering the appropriate data, followed by the 

employment of the method, the analysis of the results and the reporting of the 

conclusions. Figure 7 below illustrates the typical process of using DEA. 

 

 

Figure 7 Typical DEA process 

However, in the proposed DEA-ML computational framework, additional loops are 

added to the above elements: new perceptions are added to the research of the topic, 

and every time new data are gathered followed by the choice and implementation of a 

DEA variation. Thus, new data are generated which are then fed into an ML 

methodology to either provide new avenues of research and perception additions or 

intervene between the use of DEA and analysis of the results (Figure 8). 
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Figure 8 The process in the proposed computational framework 

Consequently, by blending DEA with ML the available data and analyses are 

expanded which contribute to investigating the topic under study (thus implicitly 

adding new layers to the initial problem) meaning that greater insights are revealed. 

Moreover, the framework offers a complementary research avenue on the issues of 

interpretability and transparency of algorithms and/or quantitative methods: by 

blending methodologies under a multi-perspective design, algorithms become more 

inclusive and democratic (in the sense that the Benefit-of-the-Doubt notion inherent in 

the aforementioned DEA formulations, is further  enriched). Hence, decision support 

can take a step towards the generation of collective knowledge that includes different 

values, perceptions and dimensions. 

4.3 Illustration of the proposed DEA-ML computational framework15 

Following the steps that were proposed in the previous section: 

Step 1: In the context of the current thesis, three types of Economic, three types of 

Environmental, three types of Social and two types of Research and Development 

(R&D) dimensions were defined and are displayed in the list below:  

• Economic sub-indicator 1 

 
15 This sub-section appeared on: Tsaples, G., Papathanasiou, J., & Georgiou, A. C. (2022). An 

Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability 

Composite Indicators in the EU. Mathematics, 10(13), 2277 
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o Inputs: Total Labour force (x1000 persons), Gross fixed capital at 

current prices (PPS), Final energy consumption [Million tonnes of oil 

equivalent (TOE)] 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Median equivalised net income [Purchasing power standard 

(PPS)], Final consumption expenditure of households [Current prices, 

million euro], People at risk of poverty or social exclusion [thousand 

persons] [modified to be maximized] 

• Economic sub-indicator 2 

o Inputs: Total Labour force (x1000 persons), Gross fixed capital at 

current prices (PPS) 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Median equivalised net income [Purchasing power standard 

(PPS)], Final consumption expenditure of households [Current prices, 

million euro] 

• Economic sub-indicator 3 

o Inputs: Total Labour force (x1000 persons), Gross fixed capital at 

current prices (PPS) 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Satisfaction with financial situation, People at risk of poverty 

or social exclusion [thousand persons] [modified to be maximized] 

• Environmental sub-indicator 1 

o Inputs:  Gross fixed capital at current prices (PPS), Total Labour force 

(x1000 persons) 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Share of renewable energy in gross final energy consumption, 

Greenhouse gas emissions (in CO2 equivalent) [modified to be 

maximized] 
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• Environmental sub-indicator 2 

o Inputs: Population-, Gross electricity production [Thousand tonnes of 

oil equivalent (TOE)]- 

o Intermediate: Final energy consumption [Terajoule] 

o Outputs: Terrestrial protected area (km2), Share of renewable energy 

in gross final energy consumption, Greenhouse gas emissions (in CO2 

equivalent) [modified to be maximized] 

• Environmental sub-indicator 3 

o Inputs: Gross fixed capital at current prices (PPS), Population, Gross 

electricity production [Thousand tonnes of oil equivalent (TOE)]- 

o Intermediate: Final energy consumption [Terajoule], GDP per capita in 

PPS-Index (EU28 = 100) 

o Outputs: Share of renewable energy in gross final energy consumption, 

Greenhouse gas emissions (in CO2 equivalent) [modified to be 

maximized], Carbon dioxide [thousand tonnes] [modified to be 

maximized] 

• Social sub-indicator 1 

o Inputs: Total Labour force (x1000 persons), Gross fixed capital at 

current prices (PPS) 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Overall life satisfaction, Satisfaction with living environment, 

Satisfaction with financial situation 

• Social sub-indicator 2 

o Inputs: Total Labour force (x1000 persons), Gross fixed capital at 

current prices (PPS) 

o Intermediate: Total expenditure [Euro per inhabitant] 

o Outputs: Overall life satisfaction, Satisfaction with living environment, 

Percentage of females in total labor population-2018 
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• Social sub-indicator 3 

o Inputs: Gross fixed capital at current prices (PPS 

o Intermediate: Total expenditure [Euro per inhabitant], Mean 

consumption expenditure of private households on cultural goods and 

services by COICOP consumption purpose [Purchasing power 

standard (PPS)] 

o Outputs: Percentage of females in total labor population, Life 

expectancy at birth, People at risk of poverty or social exclusion 

[thousand persons] [modified to be maximized] 

• Research and Development sub-indicator 1 

o Inputs: Total Labour force (x1000 persons), Gross fixed capital at 

current prices (PPS) 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Intramural R&D expenditure (GERD) by sectors of 

performance [Euro per inhabitant], Pupils and students enrolled All 

ISCED 2011 levels excluding early childhood educational 

development, Participation rate in education and training (last 4 weeks) 

by sex and age From 25 to 64 years Percentage 

• Research and Development sub-indicator 2 

o Inputs: Final energy consumption [Million tonnes of oil equivalent 

(TOE)], Population, Gross fixed capital at current prices (PPS 

o Intermediate: GDP per capita in PPS-Index (EU28 = 100) 

o Outputs: Patent applications to the European patent office (EPO) by 

priority year, Intramural R&D expenditure (GERD) by sectors of 

performance [Euro per inhabitant] 

These 11 different types of dimensions are combined in all the possible combinations 

of three and four dimensions, resulting in 135 different perceptions of sustainability. 

Consequently, in the context of the current thesis, the choice of parameters for the 

models becomes secondary in importance with the purposing of reducing the bias of 
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the analyst or decision maker and the methodological limitations of DEA. All the 

parameters/variables that are used in the calculations along with summary statistics 

are presented in Appendix B. 

Step 2: Each of these 135 perceptions are used with the proposed DEA variation that 

is described by the equations (70)-(79) and (92)-(94). The mean sustainability of the 

countries with the proposed DEA variation is displayed in table 11 below: 

Table 11 Mean sustainability calculated with the proposed variation (equations (70)-(79) and ((91)-(93)) 

Country Mean 

Sustainability 

(proposed 

two-stage 

DEA model) 

Belgium 0,50 

Bulgaria 0,83 

Czech 

Republic 

0,47 

Denmark 0,73 

Germany 0,75 

Estonia 0,87 

Ireland 0,47 

Greece 0,57 

Spain 0,52 

France 0,65 

Croatia 0,77 

Italy 0,48 

Cyprus 0,86 

Latvia 0,91 

Lithuania 0,79 
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Luxemburg 0,93 

Hungary 0,57 

Malta 1 

Netherlands 0,45 

Austria 0,60 

Poland 0,53 

Portugal 0,51 

Romania 0,73 

Slovenia 0,73 

Slovakia 0,51 

Finland 0,82 

Sweden 0,81 

United 

Kingdom 

0,58 

 

Hence, the inclusion of different perceptions alters the results that were illustrated in 

table 11. Under multiple perceptions, Malta, Latvia and Luxemburg have the highest 

sustainability compared to the rest of countries. Moreover, with all the different 

variations of sub-indicators, there are countries for which the mean sustainability falls 

below 0.5 like the Czech Republic, Ireland, Italy and the Netherlands. Finally, there 

are no countries for which the mean sustainability increased with the inclusion of 

different parameters; only Malta managed to keep the sustainability at the value of 1 

in both cases. 

Figure 9 below illustrates the results of the 135 calculations of sustainability on violin 

plots. 
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Figure 9 Violin plots of the sustainability of 135 different perceptions calculated with the proposed two-stage DEA 

variation 
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The y axis indicates the measurement of sustainability, while the x axis indicates the 

distribution of the sustainability indices that were calculated; wider sections of the 

density indicate that there is a higher probability that data points will take the given 

value, while narrow sections indicate lower probability. 

The first aspect to observe is that Latvia concentrates the majority of their values on 

the upper side of the violin plot, while Malta has a constant value of 1 for all 

calculations, indicating that compared to the rest, the two countries have a high 

sustainability no matter the perception, thus the robustness of the conclusion 

increases. For the rest of the countries, the different perceptions create different 

situations for their sustainability. For example, Greece has a mean sustainability of 

0.57, however its values can change depending to the perception from 0.45 to 0.75, 

with the majority of the values concentrated between 0.5 and 0.6. Thus, the 

sustainability of Greece changes with different perceptions in a significant way, 

weakening the declaration of any robust conclusions. 

Apart from the calculation of the sustainability indices under different perceptions 

with the proposed variation, Step 2 of the computational framework includes the use 

of different variations of DEA. In the present application, the classic two-stage model 

of Chen et al. (2012), and an adaptation of the Constant Returns to Scale (CRS) DEA 

(Charnes, et al., 1978) and of the Variable Returns to Scale (VRS) (Banker, et al., 

1984) are used (along with the proposed variation). For the last two DEA variations, 

the classic DEA models are used in chained way to accommodate the 2-stage nature 

of the models. More specifically, each combination of inputs, intermediate measures 

and outputs was used in the chained way of the classic one stage models as follows: 

the efficiency of the first stage is calculated with the inputs and the intermediate 

measures as outputs using either CRS or VRS DEA. The efficiency of the second 

stage is calculated with the intermediate measures as inputs and the outputs using 

(similar to the first stage) either CRS or VRS DEA. The sustainability index is 

calculated by multiplying the efficiencies of the two stages. Finally, the sustainability 

index of each perception is calculated using the BoD model (Cherchye, et al., 2007) 

The inclusion of different variations of DEA (which can be chosen by the analyst 

and/or the policy maker) with different combinations of inputs and outputs increases 

the robustness of the results since many sustainability indices will be calculated that 

can capture different perceptions both methodological (which method is the more 
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“correct”) and context-wise (which combination of inputs, outputs and intermediates 

is the more “correct”). 

Table 12 below summarizes the results when all DEA variations are used. 

Table 12 Mean sustainability calculated with all DEA variations 

Country Mean 

Sustainability 

(all DEA 

variations) 

Mean 

Sustainability 

(proposed 

DEA 

variation) 

Belgium 0.56 0,50 

Bulgaria 0.51 0,83 

Czech 

Republic 

0.35 0,47 

Denmark 0.69 0,73 

Germany 0.60 0,75 

Estonia 0.82 0,87 

Ireland 0.55 0,47 

Greece 0.49 0,57 

Spain 0.49 0,52 

France 0.55 0,65 

Croatia 0.60 0,77 

Italy 0.47 0,48 

Cyprus 0.85 0,86 

Latvia 0.80 0,91 

Lithuania 0.67 0,79 

Luxemburg 0.95 0,93 

Hungary 0.41 0,57 
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Malta 0.99 1 

Netherlands 0.55 0,45 

Austria 0.57 0,60 

Poland 0.42 0,53 

Portugal 0.49 0,51 

Romania 0.44 0,73 

Slovenia 0.67 0,73 

Slovakia 0.40 0,51 

Finland 0.75 0,82 

Sweden 0.71 0,81 

United 

Kingdom 

0.55 0,58 

 

The inclusion of different variations of DEA (which can be chosen by the analyst 

and/or the policy maker) with different combinations of inputs and outputs increases 

the robustness of the results since many sustainability indices will be calculated that 

can capture different perceptions both methodological (which method is the more 

“correct”) and context-wise (which combination of inputs, outputs and intermediates 

is the more “correct”). 

As it can be observed on Table 12, the mean sustainability changes again indicating 

that the methodological framework that is used matters in the calculation of the final 

index. In the current illustration, there are countries where the mean sustainability 

increases with the inclusion of other DEA variations (like Belgium, Luxemburg and 

the Netherlands), others where it is almost the same (like Malta) and those for which 

the mean sustainability decreases (rest of the countries). Moreover, the Spearman 

correlation coefficient for the two mean sustainability indices was calculated and 

found to be equal to 0.752, which indicates a strong positive correlation between the 

two indices.  
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Finally, for the majority of the countries, the mean sustainability index is similar 

under the two DEA variations, which indicates an increased confidence in the results. 

Hence, those sustainability indices can be considered relatively robust, since they do 

not have major differences when methods and parameters change. However, there is a 

set of countries (Bulgaria, Czech Republic, Germany, Latvia, Hungary, Poland, 

Romania and Slovakia) for which the sustainability index changes significantly under 

the different DEA variations. Thus, the results seem sensitive in the choice of method 

which decreases the relative robustness of the results. 

These changes are mirrored also in the violin plots of the sustainability, displayed on 

Figure on figure 10. 

 

Figure 10 Violin plots of the sustainability of 135 different perceptions calculated with all DEA variations  
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Step 3: The final step of the proposed computational framework is to use Machine 

Learning techniques in the results of the generated computations with the purpose of 

revealing insights into how the sustainability of countries behaves under different 

perceptions.  

Following the logic of EMA, several techniques will be employed in an effort to 

mitigate intrinsic methodological limitations and find the common, emergent elements 

that remain robust despite the different methods. All the techniques were deployed 

with the Python package sci-kit learn (Pedregosa, et al., 2011). 

The first insights will be revealed by using clustering techniques and more 

specifically K-Means (Krishna & Murty, 1999; Likas, Vlassis, & Verbeek, 2003) and 

Density based clustering (DBSCAN) (Ester, Kriegel, Sander, Xu, & others, 1996). For 

the clustering algorithms, the values of the sub-indicators along with those of the 

sustainability indices under all the computational regimes were used. For the K-

Means algorithms 4 clusters were defined and Figure 11 below illustrates the results. 
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Figure 11 K-Means Clusters of the EU countries 
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The x-axis illustrates the mean sustainability of the countries under all the perceptions 

when only the proposed DEA variation is used, while the y-axis entails the mean 

sustainability of the countries under all perceptions when all DEA variations are 

employed. As it can be observed, the 4 clusters have different colors. Malta, having 

the highest mean sustainability values in all calculations, belongs to one cluster 

(Cluster 0) by itself. The second cluster (light blue color) contains the countries of 

Luxemburg, Estonia, Latvia, Finland, Lithuania, Croatia and Bulgaria. As it can be 

observed, these countries have a mean sustainability of 0.5 to 0.9 for all calculations. 

In this cluster, only Croatia has the lowest mean values. 

The third cluster (yellow color) contains the countries Sweden, Denmark, Slovenia, 

Hungary, Romania, Austria, Germany, Belgium and the Netherlands. The final cluster 

(purple color) contains the rest of the countries. In the last cluster, an anomaly is 

detected since Cyprus, despite the fact that belongs to a cluster in which the majority 

of the countries has a mean sustainability of 0.6 or lower, is the country with the third 

highest mean sustainability under all perceptions. Thus, it appears thus despite the 

large mean sustainability, Cyprus shares similar characteristics in the dimensions as 

the other countries in the cluster.  

Apart from the K-Means clustering, the Density Based clustering algorithm was used 

and the results are illustrated on Figure 12 below.  
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Figure 12 DBSCAN clusters of the EU countries 
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The DBSCAN algorithm produces 8 clusters and the largest clusters are 1 and 2, with 

the cluster 2 containing the majority of the countries. Table 13 below summarizes the 

mean sustainability and the clusters with the two methods for each country. 

Table 13 Summary of the clustering process 

Country Mean 

Sustainability 

(all DEA 

variations) 

Mean 

Sustainability 

(proposed 

DEA 

variation) 

K- Means 

Cluster 

DBSCAN 

Cluster 

Belgium 0.56 0,50 2 0 

Bulgaria 0.51 0,83 1 1 

Czech 

Republic 

0.35 0,47 0 2 

Denmark 0.69 0,73 2 2 

Germany 0.60 0,75 2 2 

Estonia 0.82 0,87 1 3 

Ireland 0.55 0,47 0 2 

Greece 0.49 0,57 0 2 

Spain 0.49 0,52 0 2 

France 0.55 0,65 0 2 

Croatia 0.60 0,77 1 1 

Italy 0.47 0,48 0 2 

Cyprus 0.85 0,86 0 4 

Latvia 0.80 0,91 1 5 

Lithuania 0.67 0,79 1 5 

Luxemburg 0.95 0,93 1 1 

Hungary 0.41 0,57 2 2 
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Malta 0.99 1 3 6 

Netherlands 0.55 0,45 2 2 

Austria 0.57 0,60 2 2 

Poland 0.42 0,53 0 2 

Portugal 0.49 0,51 0 2 

Romania 0.44 0,73 2 7 

Slovenia 0.67 0,73 2 1 

Slovakia 0.40 0,51 0 2 

Finland 0.75 0,82 1 1 

Sweden 0.71 0,81 2 2 

United 

Kingdom 

0.55 0,58 0 2 

 

The two clustering techniques illustrate that Malta forms a cluster on its own, since it 

is the country that has the highest mean sustainability compared with the other 

countries. Furthermore, there are countries that behave differently than the others. 

Belgium, Estonia, Cyprus and Romania are countries that in the K-Means clustering 

belong to clusters with other countries, but with the DBSCAN algorithm they are in a 

cluster on their own. That is also the case with Latvia, where with the density-based 

algorithm, it belongs to a cluster with Lithuania. 

As a result, these countries will be further analysed in the following paragraphs with 

other machine learning techniques. 

For the current thesis, three additional techniques were used: Classification and 

Regression Decision Trees (CART) since they are not computationally costly, they 

can be used as communication tools to non-experts and offer deep interpretational 

capabilities (Vayssières, Plant, & Allen-Diaz, 2000). However, CART trees tend to 

overfit the data to their training set and are considered weak learners (Friedman, 

2017) and for that reason two additional ML techniques will be used: Random Forests 

(Kam & others, 1995) and boosting regression (Bühlmann & Yu, 2003).  
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Random forests train trees independently using random samples of the available data 

and the sampling happens with bootstrapping both the sample and the features at 

every repetition. As a result, they tend to be slower than CART trees, but the 

generated results are more robust and tend to avoid the pitfalls of overfitting. More 

specifically, with the random forests 80% of the data will be used for training and the 

remaining will be used for prediction. Furthermore, for each data row (point) of the 

remaining data, the contribution of the individual features to the predicted value will 

be calculated. The average of all the contributions will be plotted in a boxplot to 

reveal insights on how individual sub-indicators affect the value of the sustainability 

index. 

Similarly, boosting regression is also considered a slow learner, but compared to 

random forests, each tree is generated using information from previous ones (James, 

Witten, Hastie, & Tibshirani, 2013). Moreover, the technique will also reveal the 

relative influence of the individual sub-indicator to the index of sustainability, which 

could provide further insights into the analysis of the results. Both random forests and 

boosting regression are more robust than CART trees, but this robustness comes at the 

detriment of intuitive  communication capabilities that are the main characteristic of 

CART trees. Consequently, the use of all three Machine Learning techniques will 

limit the methodological weaknesses of each method, while providing results and 

insights that are robust and independent of the used technique.  

Finally, following the logic of the previous steps, each country will be studied 

individually first when only the proposed two-stage DEA variation is used and later 

with all the DEA variations included in the calculations of sustainability.  

Belgium 

Figure 13 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Belgium under the proposed 

variation.  

As it can be observed, the overall indicator of Research and Development has the 

largest influence on the sustainability indices (under the proposed DEA variation), 

followed by the overall Environmental performance and the efficiency of the second 

stage of the Environmental sub-indicator. 
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By studying the CART tree it can be observed, that when the overall Research and 

Development sub-indicator is lower than 0.31 and the overall Environmental sub-

indicator is lower than 0.42, the sustainability index takes its largest values. Thus, it 

can be concluded that the increase Research and Development and Environmental 

performance of the country cannot drive the sustainability of the country in high 

values, which implies that the Economic and Social sub-indicators push the 

sustainability index to its current levels.  
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Figure 13 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Belgium under the 

proposed computational framework with equations (70)-(79) 

The results are corroborated by the boxplot, which illustrates that the Research and 

Development and Environmental sub-indicators (along with the efficiencies of their 

individual stages) have the widest range of contribution in the sustainability index 

depending on the choice of the parameters that are use in the framework. Another 

interesting result that is revealed by the boxplot is that the Social dimension has 

almost no influence in the values of the final sustainability index.  

Consequently, the implications for the policy-makers are that Belgium should focus 

more on the social dimension of sustainability and make an attempt to increase the 

positive influence of the economic dimension. 

Bulgaria 
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Figure 14 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Bulgaria under the proposed 

variation.  

As it can be observed, the overall Environmental performance has the largest relative 

influence on the sustainability results followed by the overall Social performance. By 

studying the CART tree, it can be deduced that when the overall Social performance 

is not larger that 0.52 and the overall Environmental sub-indicator is not larger than 

0.75, the sustainability of the country takes its largest values.  
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Figure 14 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Bulgaria under the 

proposed DEA variation 

The boxplot illustrates that the Economic and Research and Development sub-

indicators (and their corresponding stage efficiencies) have almost no impact in the 

final calculations of sustainability. Furthermore, the overall Social performance of the 

country can have a positive impact on the final index further supporting the results of 

both the boosting regression and CART tree. 
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Estonia 

Figure 15 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Estonia under the proposed 

variation.  

The boosting regression algorithm indicates that the overall Environmental 

performance of the country has the largest influence on the country. Furthermore, the 

CART tree illustrates that when its value is not smaller than 0.65 (or not missing) then 

the sustainability index has its largest values that accounts for 58% of the generated 

results. 
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Figure 15 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Estonia under the 

proposed DEA variation 

Consequently, the Environmental performance of the country is the one that drives the 

sustainability to higher level for the majority of the calculations. In addition, the 

Random Forest algorithm indicates that the environmental efficiency of the first stage 

can have both the most positive and most negative contribution to the sustainability of 

the country. Moreover, the Economic and Social dimensions seem to have a negligent 

contribution to the final index.  

Thus, the implications for policy makers could be that the country should continue the 

efforts towards the Environment (and the Research and Development front), however 

more could be done in the aspects of the Economy and Society. 
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Cyprus 

Figure 16 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Cyprus under the proposed 

variation.  

Similar to Estonia, for Cyprus the overall Environmental performance has the largest 

relative influence to the final calculations of sustainability, followed by the economic 

efficiency of the first stage. Moreover, the CART tree indicates that when the value of 

the Environmental performance is larger than 0.77, then the final sustainability index 

has its largest values which accounts for 58% of the calculations. 
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Figure 16 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Cyprus under the 

proposed DEA variation 

The results from the Boosting Regression and the CART tree are supported by the 

Random Forests, which indicate that the overall Environmental performance can have 

the most positive contribution to the final sustainability index. Hence, the 

sustainability of Cyprus shares many similarities with that of Estonia. The difference 

of the two countries however can be seen in the contribution of the Research and 

Development index to sustainability: for Cyprus it is almost negligent. Thus, the 

implications for policy makers could be that more efforts should be devoted to 

increasing the capacity of the country to innovate, while keeping the performance for 

environmental sustainability.  
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Latvia 

Figure 17 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Latvia under the proposed 

variation.  

The boosting regression algorithm indicated that overall Environmental performance 

along with the environmental efficiency of the second stage for the particular sub-

indicator are the ones with the largest relative influence to the final sustainability 

index. In addition, according to the CART tree, when the overall Environmental 

performance is not smaller than 0.71 then the final sustainability index has a mean 

value of 0.91, which accounts for 71% of the calculations.  
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Figure 17 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Latvia under the 

proposed DEA variation 

Thus, Latvia also shares similarities with Cyprus and Estonia, since the 

Environmental performance is the one that drives the final sustainability index to high 

values. However, contrary to the other two countries, Latvia has two sub-indicators 

with zero contribution to the calculations according to the Random Forest 

calculations: the Economic and Research and Development sub-indicators. 

Consequently, the implications for policy makers could be on the one hand, to retain 

the efforts on the environmental sustainability, while on the other hand to concentrate 

resources on the economy and research and development capacity of the country. 
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Romania 

Figure 18 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Romania under the proposed 

variation.  

The boosting regression algorithm indicated that the overall Social performance is the 

one with the largest relative influence to the final sustainability calculations. This 

result is supported both by the CART tree and the Random Forest. Moreover, the 

latter also illustrates that the overall Environmental performance can have a positive 

impact on the country’s sustainability. 
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Figure 18 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Romania under the 

proposed DEA variation 

In conclusion, the societal dimension of sustainability is the one that drives the 

country’s effort towards sustainable development. Thus, the implications for policy 

makers could be that the country needs resources and efforts for all the other 

dimensions in order for their sustainability to be balanced and with higher values. 

The final part of the analysis is to perform data mining on the countries when all DEA 

variations are used.  
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Belgium with all DEA variations 

Figure 19 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Belgium under all DEA 

variations.  

Contrary to the previous results for the country, when all DEA variations are used, the 

sub-indicators that have the largest influence on the sustainability index are the 

overall Economic, Social and Research and Development performances. Moreover, 

the CART tree becomes more complex with more branches, however, the largest 

values of sustainability are observed when the individual sub-indicators have in 

general larger values. 
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Figure 19 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Belgium under all DEA 

variations 

In addition, the boxplot of the Random Forest results illustrate that the overall Social 

performance can have the most negative impact on the final sustainability index. 

Contrary to the results of sustainability when only the proposed DEA variation was 

used, the Environmental sub-indicator has a diminished role in the sustainability of 

the country.  

Thus, based on all calculations, the Research and Development sub-indicator of 

Belgium appears to drive the sustainability to high levels. However, the contribution 

and influence of the other three sub-indicators differ when the DEA variations change, 

thus the results become more sensitive and less robust.  
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Bulgaria with all DEA variations 

Figure 20 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Bulgaria under all DEA 

variations.  

The results from the boosting regression algorithm illustrate that the overall 

Environmental, Social and Research and Development sub-indicators share the 

relative influence to the calculations of the sustainability index. Moreover, the CART 

tree (similar to the case of Belgium) becomes more complex, however it becomes 

clear that when the overall Environmental performance is not missing and is not 

smaller than 0.43 then the sustainability index has its largest values. In conclusion, 

results when all DEA variations are used support the importance of the Environmental 

dimension for Bulgaria, since it had similarly large influence when the proposed DEA 

variation was used.  
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Figure 20 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Bulgaria under all DEA 

variations 

Estonia with all DEA variations 

Figure 21 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Estonia under all DEA variations.  

The boosting regression algorithm indicates that when all DEA variations are used, 

the overall Environmental performance continues to have the largest relative influence 

in the calculations of sustainability. Moreover, the CART tree, despite its increase in 

complexity, illustrates that influence clearly: when the overall Environmental 

performance is not smaller than 0.49 then the sustainability index has a mean value of 

0.97 which accounts for 42% of the calculations. 
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Figure 21 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Estonia under all DEA 

variations 
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Moreover, the Random Forest algorithm produces a boxplot similar to the one when 

only the proposed DEA variation was used. Thus, it can be concluded that the results 

for Estonia are relatively robust since they show sensitivity neither to the choice of 

DEA variation nor to the parameters that are used in the calculations. 

Cyprus with all DEA variations 

Figure 22 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Cyprus under all DEA variations.  

The boosting regression algorithm indicates that the lead in the relative influence is 

taken by the overall Economic performance, despite the fact that the overall 

Environmental performance follows in the second place. The CART tree becomes 

also more complex compared to the CART of Cyprus when only the proposed DEA 

variation is used. In addition, the CART tree illustrates that an increased overall 

Environmental performance in combination with a very high (above 0.9) level of the 

overall Economic performance drives the value of the sustainability index to its 

highest levels. 
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Figure 22 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Cyprus under all DEA 

variations 

Finally, the boxplot from the Random Forest algorithm shows a more balanced 

contribution of the various sub-indicators. Compared to the one that was produced 

when only the proposed DEA variation was used, the results show an increased 

influence of the Research and Development sub-indicator to the calculated 

sustainability index. Thus for Cyprus, the results show robustness of the influence of 

the overall Environmental Performance. On the other hand, the Research and 

Development sub-indicator is more sensitive to the choice of DEA variation. 
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Latvia with all DEA variations 

Figure 23 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Latvia under all DEA variations.  

Similar to the case when only the proposed DEA variation was used, for Latvia the 

importance of the overall Environmental performance remains, since it is the sub-

indicator with the largest relative influence. Moreover, similar to all other cases, the 

CART tree becomes more complex, however, a combination of high values of the 

Environmental, Economic and Social sub-indicators lead to the largest values of 

sustainability. 
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Figure 23 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Latvia under all DEA 

variations 

Finally, the produced boxplot illustrates that the overall Environmental sub-indicator 

can have the largest negative contribution to sustainability, while compared to the 

case when only the proposed DEA variation was used, the other dimensions 

participate in the value of the final sustainability index.  

Hence, it can be concluded that the results for Latvia are relatively robust (based on 

the mean values of sustainability) and the importance of the Environmental sub-

indicator (along with that of the Social sub-indicator) remains regardless of the choice 

of DEA variation. However, the Economic and Research and Development 

dimensions are more sensitive. 

 

 



147 

 

Romania with all DEA variations 

Figure 24 below illustrates the results from the employment of the three ML 

techniques in the generated sustainability indices of Romania under all DEA 

variations.  

The boosting regression algorithm introduces two more dimensions that share the 

largest influence to the final sustainability index compared to the case when only the 

proposed DEA variation was used. In this case, the overall Economic and Research 

and Development sub-indicators share the influence with the overall Social 

performance. 
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Figure 24 CART tree (upper left), relative influence of sub-indicators from boosting regression (upper right) and 

average contribution of the sub-indicators to the index from Random forests (bottom) for Romania under all DEA 

variations 

Moreover, the resulted boxplot from the Random Forest algorithm supports the 

importance of the Social Dimension, but similarly to all other cases, the other 

dimensions contribute also to the calculated sustainability index.  

In conclusion, when all DEA variations are used, the influence is shared among all or 

most of the dimensions and/or sub-indicators. This can be partly attributed to the 

availability of increased data. Thus, the difference with the previous process (when 

only the proposed DEA variation was used), a balance among the influence of the 

dimensions does not guarantee high values of sustainability. Finally, when the 

inclusion of all DEA variations does not alter significantly the mean value of 

sustainability and/or the most important sub-indicators (like Estonia and Latvia) then 

the trust in the results increases, thus making them robust. 
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5. Conclusions 

The purpose of the current thesis was twofold: 

1) to propose a new variation on two-stage Data Envelopment Analysis that attempts to 

intervene on the weights of the inputs, intermediates and outputs to better reflect their 

importance for the DMUs by considering positive and negative deviations in the 

calculations and limiting the distance of these deviations from the maximum and 

minimum values.  

2) to propose a computational framework that will attempt to incorporate different 

perceptions (meaning different combinations of inputs and outputs) and apply it in the 

measurement of sustainability of the EU 28 countries, thus assisting in the transition of 

Data Envelopment Analysis to a more Exploratory and Investigative mode. 

To achieve the objective, a series of steps was designed and developed. First, a 

literature review on the use of Data Envelopment Analysis in the context of 

sustainability was performed. The purpose of the review was to extend the literature 

review performed by Zhou et al. (2018) and investigate whether the lack of unified 

definition and methodological framework for the measurement of sustainable 

development has affected the research. 

To do so, bibliographic databases were searched for research efforts concerning the 

years from 2017 until 2020. Several interesting insights are revealed in the literature. 

First, the vague definition of sustainability has led to different approaches on how to 

measure it. However, in the DEA literature the authors heavily use the 3-dimensional 

structure (economic, social and environmental), with individual efforts attempting to 

incorporate different dimensions such as technology and innovation. 

Moreover, even when the 3-dimensional structure of sustainability is used, differences 

are observed on the combinations of inputs and outputs of the DEA model. This is to 

be expected since the social dimension, for example, might have a different meaning 

for different people. Nonetheless, each of these approaches, by using one combination 

of parameters excludes the other perceptions from the analysis. 

Another issue that was also mentioned in the review by Zhou et al. (2018) is that the 

social dimension of sustainability has been underrepresented in the studies so far. In 

fact, a lot of environmental and energy studies use the same combinations of inputs 
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and outputs as those that explicitly measure sustainability. Despite the recent 

approaches that seek to remedy the issue, there is still a lot of effort needed to fully 

capture the multi-dimensional notion of sustainability in a coherent and 

mathematically sound way. 

Moreover, in the last few years the research on sustainability has shifted towards 

urban environments and within country regions. A large portion of the research 

activity concerned Chinese regions. One possible explanation could be that the 

research community is focused on investigating the possible visible and not visible 

consequences that the country’s economic development could have on the 

environment and the society. Finally, from the papers that were reviewed, those that 

focus on the comparison of the EU countries with regards to sustainability appear to 

be lagging in numbers. Nonetheless, it is deemed important to address the specific gap 

especially since the Sustainable Development Goals are part of the European Policy 

Framework. 

All these gaps result in different measurements of sustainability, which may have a 

negative impact on the robustness of the research efforts. Equally important, this fact 

could have negative implications in policy making. First, decisions based on those 

measurements may be rendered ineffective because the measurements cannot really 

capture the full scope of sustainability. Moreover, these decisions could produce 

undesired consequences in areas of public life that were not addressed in the analysis. 

Finally, these differences in measurements have an effect on communicating policy 

efforts to the general public. As a result, citizens may be less inclined to abide by 

policies if these appear to be based on contested measurements. 

A second step was to propose and develop a new variation of a two-stage DEA model 

which takes advantage of deviational variables to handle the variations attributed to the 

weights distribution. The contribution to the literature is the inclusion of deviations (for 

the individual stages) in a two-stage DEA model. The deviational variables provide a 

vehicle of interventions on the weights distribution through the goal programming 

formulation inherent to DEA thus reducing the fluctuations of the weight distribution. 

In addition, several Lemmas and a Theorem regarding the model are provided. 

The proposed variation was used to calculate the environmental performance of EU 

countries and a comparison was provided with the two-stage variations of Chen et al. 
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(2009). The results illustrate that the two variations do not share the same values for 

environmental performances and obviously there exist changes in the rankings. This is 

attributed to the fact that the proposed two-stage DEA variation uses an augmented set 

of constraints and additional variables that impose limitations to the distributions of 

the calculated weights (as desired). 

Furthermore, to test the robustness of the new two-stage, DEA variation, a rank reversal 

analysis was performed to investigate how the results change if DMUs are added to or 

deleted from the original set. To have a better understanding of the sensitivity, a new 

was developed that analyses not only how many DMUs remain common in the 

rankings, but also how similar are the rankings themselves.  

The final step of the thesis was to develop a DEA-ML computational framework for 

the evaluation of EU policies, especially in the case of multi-dimensional constructs 

like sustainability. The proposed framework relies (a) on the use of multi-level Data 

Envelopment Analysis in combination with classic DEA variations, (b) on the 

application of these models for different combinations of inputs, intermediates and 

outputs that represent different perceptions of what sustainability is and finally (c) on 

the exploratory analysis on the outcomes with the use of Machine Learning 

methodologies such as CART decision trees.  

In this direction, it is worth pointing out that this framework follows the school of 

thought of Exploratory Modeling and Analysis that supports the use of models and 

quantitative methods in an exploratory way, not to predict or monitor policy cycles 

accurately (which can be considered impossible), but to gain insights by incorporating 

different perceptions and methodological approaches at the same problem, thus 

increasing the robustness of the results (Moallemi, Kwakkel, de Haan, & Bryan, 

2020). In the current thesis, this approach was applied in the measurement of 

sustainability of EU 28 countries. Concretely, the computational experiments 

illustrated that the different perceptions of how sustainability is measured, and the use 

of different DEA variations (hence different methodological frameworks) affect the 

final results. More specifically, the results illustrated that a balance among the 

performance of various dimensions can be a good policy to achieve sustainable 

development and when the inclusion of all DEA variations does not alter significantly 
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the mean value of sustainability then the trust in the results increases, thus making 

them robust. 

Finally, the blend of DEA with machine learning (applied on the results of DEA for 

the various scenarios) revealed insights on the areas that policy makers could direct 

investments to increase sustainability. In addition, ML application contributed in the 

identification of the most important features of sustainability for the various countries 

something that could have direct implications in the area of EU policy making: for 

example, countries that share similar features that drive the behavior of sustainability 

could be grouped together in clusters and policies, laws, regulations etc. could be 

adapted to those clusters in order to boost the particular features that would increase 

their sustainability. As a result, policy making has the potential to become customized 

(adapted to the specifics of each group) without missing its overall and principal 

theme of pursuing sustainable development. This adaptive and adaptable policy 

making could greatly be of assistance especially when new countries are negotiating 

their entry to the Union; based on the features that affect the sustainability of the new 

countries, they could follow the regulations and laws of the appropriate cluster. 

Finally, the inclusion of new layers and perceptions renders the algorithms more 

inclusive and participatory, increasing their transparency, thus improving the trust to 

the final results. 

However, the thesis is not without limitations. Regarding the definition and/or 

methodological framework for sustainability, a new approach could be taken, a bottom-

up approach, where scientists propose a unified methodological and/or computational 

framework that attempts to mitigate the limitations of individual methods and integrates 

different and diverse definitions of sustainability into the same measurement. 

Furthermore, the addition of new layers and perceptions means that the process 

becomes more computationally costly and new conceptual questions arise; for 

example, when is it valid to stop adding new perceptions and report the conclusions? 

How many new perceptions are necessary to get a clearer picture?  

Such questions will drive future research efforts of the current study. Further 

directions of research include the development of a user interface that could be used 

by non-experts, and the inclusion of supplementary variations of DEA, the generation 

of additional sub-indicators along with various data sources. Finally, the framework 
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could be enriched with methods other than DEA which would allow the Machine 

Learning techniques to identify not only the differences in the context (sub-indicators) 

but also in the method that was used.  

Finally, the current thesis can be seen as an example for the use of an Exploratory 

approach to Data Envelopment Analysis (and Operational Research) and could be a 

useful source on future research efforts on sustainability and/or Data Envelopment 

Analysis. 
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Appendix A 

All the DEA variations were programmed in the Julia Programming Language16. Julia is free 

and open-source for scientific computing. Furthermore, the language is compiled and not 

interpreted that offers a faster performance time. It has a simple and understandable syntax 

and it combines the advantages of static and dynamic typing. Finally, the community around 

the language is expanding daily and the code developed for the current dissertation could 

contribute to the community. 

Two-stage, independent, DEA CCR code 

# TWO-STAGE, INDEPENDENT CCR DEA MODEL 

using JuMP 

using SCS 

using CSV 

using DataFrames 

using XLSX 

 

 

 

#Empty dataframes to be used  

df = DataFrame(Country = [], E0 = Float16[]) 

df1 = DataFrame(Country = [], E1 = Float16[]) 

df2 = DataFrame(Country = [], E2 = Float16[]) 

 

# Load data from CSV file 

data = CSV.read("C:/Users/…/data_overall2.csv 

 

 

countries = data[:,1] 

inputs =  data[:, [7,8 

inp=size(inputs)[2] 

 

intermediate= data[:,[10]] 

md = size(intermediate)[2] 

outputs = data[:, [30,13,15]] 

rs=size(outputs)[2] 

 

# scale is the number of DMU, dimension is the total number of inputs 

and outputs 

scale, dimension = size(data)  

generalEff = [] 

generalfirst = [] 

generalsecond = [] 

 

for t = 1 : scale 

 

    ### Modeling section 

    # Here is the CRS input-oriented model (CCR model) to evaluate 

DMU t 

 
16 https://julialang.org/  

https://julialang.org/
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    model = Model(SCS.Optimizer) # SCS is used as the LP solver here. 

Users can choose their favorite solver. 

 

    @variable(model, gamma[1:rs]>=0) 

    @variable(model, omega[1:inp]>=0) 

 

    # Objective function 

    @objective(model, Max, sum(gamma[k]*outputs[t,k] for k = 1: rs)) 

 

    # Constraints 

    @constraint(model,  sum(omega[i]*inputs[t,i] for i=1:inp) == 1 ) 

    @constraint(model, [j=1:scale], sum(gamma[r]*outputs[j,r] for 

r=1:rs)- sum(omega[i]*inputs[j,i] for i=1:inp)<=0) 

 

 

    ### Problem solving 

    optimize!(model) 

    E1_0 = JuMP.objective_value.(model) 

    push!(generalEff, JuMP.objective_value.(model)) 

    push!(df, [countries[t], JuMP.objective_value.(model)]) 

 

    #Calculating the efficiencies of the first stage 

    model2 = Model(SCS.Optimizer) 

 

    @variable(model2, mu[1:md]>=0) 

    @variable(model2, omega[1:inp]>=0) 

 

    # Objective function 

    @objective(model2, Max, sum(mu[d]*intermediate[t,d] for d =1:md)) 

 

    #Constraints 

    @constraint(model2,    sum(omega[i]*inputs[t,i] for i=1:inp ) == 

1 ) 

    @constraint(model2, [j=1:scale], sum(mu[d]*intermediate[j,d] for 

d =1:md) - sum(omega[i]*inputs[j,i] for i=1:inp) <= 0 ) 

 

    optimize!(model2) 

    E1_1 = JuMP.objective_value.(model2) 

    push!(generalfirst, JuMP.objective_value.(model2)) 

    push!(df1, [countries[t], JuMP.objective_value.(model2)]) 

 

 

    #Calculating the efficiencies of the second stage 

    model3 = Model(SCS.Optimizer) 

 

    @variable(model3, mu[1:md]>=0) 

    @variable(model3, gamma[1:rs]>=0) 

 

    #Objective function 

    @objective(model3, Max, sum(gamma[k]*outputs[t,k] for k = 1: rs)) 

 

    #Constraints 

    @constraint(model3,    sum(mu[d]*intermediate[t,d] for d =1:md) 

== 1 ) 

    @constraint(model3, [j=1:scale], sum(gamma[k]*outputs[t,k] for k 

= 1: rs)-sum(mu[d]*intermediate[j,d] for d =1:md)<= 0 ) 
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    optimize!(model3) 

    E1_2 = JuMP.objective_value.(model3) 

    push!(generalsecond, JuMP.objective_value.(model3)) 

    push!(df2, [countries[t], JuMP.objective_value.(model3)]) 

end 

sub1= innerjoin(df,df1,df2, on = :Country, makeunique=true ) 

CSV.write("C:/Users/…/outputfile.csv",sub1) 
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Two-stage, independent, DEA VRS code 

# TWO-STAGE, INDEPENDENT VRS DEA MODEL 

using JuMP 

using SCS 

using CSV 

using DataFrames 

using XLSX 

 

 

#Empty dataframes to be used  

df = DataFrame(Country = [], E0 = Float16[]) 

df1 = DataFrame(Country = [], E1 = Float16[]) 

df2 = DataFrame(Country = [], E2 = Float16[]) 

 

# Load data from CSV file 

data = CSV.read("C:/Users/…/data_overall2.csv 

 

 

countries = data[:,1] 

inputs =  data[:, [7,8 

inp=size(inputs)[2] 

 

intermediate= data[:,[10]] 

md = size(intermediate)[2] 

outputs = data[:, [30,13,15]] 

rs=size(outputs)[2] 

 

# scale is the number of DMU, dimension is the total number of inputs 

and outputs 

scale, dimension = size(data)  

generalEff = [] 

generalfirst = [] 

generalsecond = [] 

for t = 1:scale 

 

    ### Modeling section 

    # Here is the CRS input-oriented model (CCR model) to evaluate 

DMU t 

    model = Model(SCS.Optimizer) # SCS is used as the LP solver here. 

Users can choose their favorite solver. 

 

    @variable(model, gamma[1:rs] >= 0) 

    @variable(model, omega[1:inp] >= 0) 

    @variable(model, u1) 

 

    # Objective function 

    @objective(model, Max, sum(gamma[k] * outputs[t, k] for k = 1:rs) 

+ u1) 

 

    # Constraints 

    @constraint(model, sum(omega[i] * inputs[t, i] for i = 1:inp) == 

1) 

    @constraint(model,[j = 1:scale], sum(gamma[r] * outputs[j, r] for 

r = 1:rs) - sum(omega[i] * inputs[j, i] for i = 1:inp) + u1 <= 0) 
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    ### Problem solving 

    optimize!(model) 

    E1_0 = JuMP.objective_value.(model) 

    #JuMP.objective_value.(model) 

    push!(generalEff, JuMP.objective_value.(model)) 

    push!(df, [countries[t], JuMP.objective_value.(model)]) 

 

    #Calculating the efficiencies of each stage 

    model2 = Model(SCS.Optimizer) 

 

    @variable(model2, mu[1:md] >= 0) 

    @variable(model2, omega[1:inp] >= 0) 

    @variable(model2, u3) 

 

    #Objective function 

    @objective(model2, Max, sum(mu[d] * intermediate[t, d] for d = 

1:md) + u3) 

 

    #Constraints 

    @constraint(model2, sum(omega[i] * inputs[t, i] for i = 1:inp) == 

1) 

    @constraint(model2,[j = 1:scale], sum(mu[d] * intermediate[j, d] 

for d = 1:md) -sum(omega[i] * inputs[j, i] for i = 1:inp) + u3 <= 0) 

 

    optimize!(model2) 

    E1_1 = JuMP.objective_value.(model2) 

    push!(generalfirst, JuMP.objective_value.(model2)) 

    push!(df1, [countries[t], JuMP.objective_value.(model2)]) 

 

 

 

    model3 = Model(SCS.Optimizer) 

    @variable(model3, mu[1:md] >= 0) 

    @variable(model3, gamma[1:rs] >= 0) 

    @variable(model3, u24) 

 

    #Objective function 

    @objective(model3, Max, sum(gamma[k] * outputs[t, k] for k = 

1:rs) + u24) 

 

    #Constraints 

    @constraint(model3, sum(mu[d] * intermediate[t, d] for d = 1:md) 

== 1) 

    @constraint(model3,[j = 1:scale],sum(gamma[k] * outputs[t, k] for 

k = 1:rs) -sum(mu[d] * intermediate[j, d] for d = 1:md) + u24 <= 0) 

 

    optimize!(model3) 

    E1_2 = JuMP.objective_value.(model3) 

    push!(generalsecond, JuMP.objective_value.(model3)) 

    push!(df2, [countries[t], JuMP.objective_value.(model3)]) 

end 

sub1 = innerjoin(df, df1, df2, on = :Country, makeunique = true) 

CSV.write("C:/Users/…/outputfile.csv",sub1,) 
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Chen et al. (2012) code 

# TWO-STAGE MODEL BASED ON CHEN ET AL. (2012) 

using JuMP 

using SCS 

using CSV 

using DataFrames 

using XLSX 

 

# Empty dataframes to be used lated 

df = DataFrame(Country = [], E0 = Float16[]) 

df1 = DataFrame(Country = [], E1 = Float16[]) 

df2 = DataFrame(Country = [], E2 = Float16[]) 

df3 = DataFrame(Country = [], obj = Float16[]) 

 

# Load data 

data = CSV.read("C:/Users/…/agri_data2.csv") 

 

countries = data[:,1] 

inputs =  data[:, [2,3,4]]  

inp=size(inputs)[2] 

 

intermediate= data[:,[5,6,7]] 

md = size(intermediate)[2] 

 

outputs = data[:, [8,9]] 

rs=size(outputs)[2] 

 

# scale is the number of DMU, dimension is the total number of inputs 

and outputs 

scale, dimension = size(data)  

generalEff = [] 

generalfirst = [] 

generalsecond = [] 

 

# The two-stage DEA otpimization 

for t = 1 : scale 

    ### Modeling section 

    ### SCS is used as the LP solver here. Users can choose their 

favorite solver. 

    model = Model(SCS.Optimizer)  

    @variable(model, mu[1:md]>=0.0000000000000000000000000000001) 

    @variable(model, gamma[1:rs]>=0.00000000000000000000000000001) 

    @variable(model, omega[1:inp]>=0.0000000000000000000000000001) 

 

    ### Objective function 

    @objective(model, Max, sum(gamma[k]*outputs[t,k] for k = 1: rs)) 

 

    ### Constraints 

    @constraint(model,  sum(omega[i]*inputs[t,i] for i=1:inp) == 1 ) 

    @constraint(model, [j=1:scale], sum(gamma[r]*outputs[j,r] for 

r=1:rs) - sum(omega[i]*inputs[j,i] for i=1:inp) <=0) 

    @constraint(model, [j=1:scale], sum(mu[d]*intermediate[j,d] for d 

= 1:md) - sum(omega[i]*inputs[j,i] for i=1:inp) <= 0 ) 

    @constraint(model, [j=1:scale], sum(gamma[r]*outputs[j,r] for 

r=1:rs) - sum(mu[d]*intermediate[j,d] for d = 1:md) <= 0) 
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    ### Problem solving 

    optimize!(model) 

    E1_0 = JuMP.objective_value.(model) 

    Eff=sum(getvalue.(gamma)[r]*outputs[t,r] for r = 

1:rs)/sum(getvalue.(omega)[i]*inputs[t,i] for i = 1:inp) 

    E1_ast = sum(getvalue.(mu)[d]*intermediate[t,d] for d = 

1:md)/sum(getvalue.(omega)[i]*inputs[t,i] for i = 1:inp) 

    E2_ast= sum(getvalue.(gamma)[r]*outputs[t,r] for r = 

1:rs)/sum(getvalue.(mu)[d]*intermediate[t,d] for d = 1:md) 

 

 

# Write the efficiency of each country into the appropriate dataframe 

 

    push!(df3, [countries[t], JuMP.objective_value.(model)]) 

    push!(df, [countries[t], sum(getvalue.(gamma)[r]*outputs[t,r] for 

r = 1:rs)/sum(getvalue.(omega)[i]*inputs[t,i] for i = 1:inp)]) 

    push!(df1, [countries[t], sum(getvalue.(mu)[d]*intermediate[t,d] 

for d = 1:md)/sum(getvalue.(omega)[i]*inputs[t,i] for i = 1:inp)]) 

    push!(df2, [countries[t], sum(getvalue.(gamma)[r]*outputs[t,r] 

for r = 1:rs)/sum(getvalue.(mu)[d]*intermediate[t,d] for d = 1:md)]) 

 

end 

 

# Connect the dataframes into one 

sub= innerjoin(df,df1, df2, on = :Country, makeunique=true ) 

 

# Write the results into a CSV file 

CSV.write("C:/Users/…/outputfile.csv",sub) 
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Proposed, two-stage DEA variation code 

######PROPOSED, TWO-STAGE DEA VARIATION 

 

using JuMP 

using SCS 

using CSV 

using DataFrames 

using XLSX 

 

# Empty dataframes to be used lated 

df = DataFrame(Country = [], E0 = Float16[]) 

df1 = DataFrame(Country = [], E1 = Float16[]) 

df2 = DataFrame(Country = [], E2 = Float16[]) 

df3 = DataFrame(Country = [], obj = Float16[]) 

 

# Load data 

data = CSV.read("C:/Users/…/agri_data2.csv") 

 

countries = data[:,1] 

inputs =  data[:, [2,3,4]]  

inp=size(inputs)[2] 

 

intermediate= data[:,[5,6,7]] 

md = size(intermediate)[2] 

 

outputs = data[:, [8,9]] 

rs=size(outputs)[2] 

 

# scale is the number of DMU, dimension is the total number of inputs 

and outputs 

scale, dimension = size(data)  

generalEff = [] 

generalfirst = [] 

generalsecond = [] 

 

# The two-stage DEA otpimization 

for t =1:scale 

    model = Model(SCS.Optimizer) # SCS is used as the LP solver here. 

Users can choose their favorite solver. 

    @variable(model, mu[1:md]>=0.0000000000000000001)  

    @variable(model, gamma[1:rs]>=0.0000000000000000001) 

    @variable(model, omega[1:inp]>=0.0000000000000000001) 

    @variable(model, n[1:scale]>=0) 

    @variable(model, nminus[1:scale]>=0) 

    @variable(model, d[1:scale]>=0) 

    @variable(model, dminus[1:scale]>=0) 

 

 

 

    #OBjective function 

    @objective(model, Min, n[t] + nminus[t]+d[t] + dminus[t]) 

 

    #Constraints 

    @constraint(model, sum(mu[d]*intermediate[t,d] for d = 1:md) ==1) 
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    @constraint(model, [j=1:scale], -sum(mu[d]*intermediate[j,d] for 

d = 1:md) + sum(omega[i]*inputs[j,i] for i=1:inp) >= 0 ) 

    @constraint(model, [j=1:scale], -sum(mu[d]*intermediate[t,d] for 

d = 1:md) + sum(omega[i]*inputs[t,i] for i=1:inp) - delta[t] +n[t] == 

0) 

    @constraint(model, [j=1:scale], -sum(gamma[r]*outputs[j,r] for 

r=1:rs) + sum(mu[d]*intermediate[j,d] for d = 1:md)  >= 0) 

 

    @constraint(model, [j=1:scale], -sum(gamma[r]*outputs[t,r] for 

r=1:rs) + sum(mu[d]*intermediate[t,d] for d = 1:md) - deltaminus[t]+ 

nminus[t] == 0) 

 

    optimize!(model) 

    E1_ast = sum(getvalue.(mu)[d]*intermediate[t,d] for d = 

1:md)/sum(getvalue.(omega)[i]*inputs[t,i] for i = 1:inp) 

    E2_ast= sum(getvalue.(gamma)[r]*outputs[t,r] for r = 

1:rs)/sum(getvalue.(mu)[d]*intermediate[t,d] for d = 1:md) 

 

    push!(df1, [countries[t], sum(getvalue.(mu)[d]*intermediate[t,d] 

for d = 1:md)/sum(getvalue.(omega)[i]*inputs[t,i] for i = 1:inp)]) 

    push!(df2, [countries[t], sum(getvalue.(gamma)[r]*outputs[t,r] 

for r = 1:rs)/sum(getvalue.(mu)[d]*intermediate[t,d] for d = 1:md)]) 

    E_ast = (E1_ast + E2_ast)/2.0 

    push!(df, [countries[t],E_ast]) 

end 

sub2= innerjoin(df,df1, df2, on = :Country, makeunique=true ) 

CSV.write("C:/Users/…/outputfile1.csv",sub2) 
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Appendix B 

Table 14 below summarizes the parameters along with the major descriptive statistics 

of the data that were used in the proposed computational framework for the 

calculation of sustainability. 
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Table 14 Parameters that are used in the computational framework and summary statistics 
 

Gross fixed capital at 

current prices (PPS) 

Total Labour force 

(x1000 persons) 

GDP per capita in 

PPS-Index (EU28 = 

100) 

Median equivalised net 

income [Purchasing 

power standard (PPS)]-

2018 

Final consumption 

expenditure of 

households [Current 

prices, million euro] 

Population- 2018 

 

Mean 93.7035714 8954.214286 97.60714286 15896.46429 309080.5929 17970379.21 

Standard Error 25.2418411 2219.976821 7.815724769 1144.509393 89744.88872 4373182.198 

Median 35.85 4360.45 84.5 16372.5 122017.75 8846162.5 

Standard 

Deviation 

133.567268 11747.01317 41.35692811 6056.174452 474885.314 23140705.07 

Sample Variance 17840.2152 137992318.5 1710.395503 36677249 2.25516E+11 5.35492E+14 

Kurtosis 4.02051893 2.281925743 8.29166899 0.182552646 2.792124589 1.428904095 

Skewness 2.11001276 1.770197969 2.325043795 0.448817209 1.981594431 1.622982 

Range 526.2 44245.7 215 25880 1664272.9 81388230 

Minimum 1.7 193.3 46 6278 6506.1 414027 

Maximum 527.9 44439 261 32158 1670779 81802257 
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Gross electricity 

production 

[Thousand tonnes of 

oil equivalent 

(TOE)]-2018 

Domestic material 

consumption 

[Thousand tonnes]-

2018 

Final energy 

consumption 

[Terajoule] -2018 

Terrestrial protected 

area (km2)-2018 

Share of renewable 

energy in gross final 

energy consumption 

Greenhouse gas 

emissions (in CO2 

equivalent) 

 

Mean 10048.5454 246185.8875 424169.6536 28009 18.53214286 9.228571429 

Standard Error 2697.45258 54633.58413 110868.6098 5782.166667 2.211867065 0.624962584 

Median 4853.78 148400.71 214985.875 16821.5 15.75 8.4 

Standard 

Deviation 

14273.5774 289093.7537 586661.5397 30596.35008 11.70410038 3.306991152 

Sample Variance 203735012 83575198424 3.44172E+11 936136638.3 136.9859656 10.93619048 

Kurtosis 4.39672619 4.383577372 3.565649211 4.921733029 0.957448781 3.456735643 

Skewness 2.17413267 2.014708432 2.041196627 1.92448185 0.958061175 1.586879483 

Range 54998.36 1239884.92 2309837.03 137974 48.5 14.9 

Minimum 168.71 6499.1 3892.59 42 3.5 5.4 

Maximum 55167.07 1246384.02 2313729.62 138016 52 20.3 
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Total expenditure 

[Euro per 

inhabitant] 

Mean consumption 

expenditure of private 

households on 

cultural goods and 

services by COICOP 

consumption purpose 

[Purchasing power 

standard (PPS)] 

Patent applications to 

the European patent 

office (EPO) by 

priority year 

Overall life 

satisfaction  

Satisfaction with 

living environment 

Percentage of females 

in total labor 

population-2018 

Mean 7182.62071 25608.67857 1951.743214 6.971428571 7.221428571 68.53214286 

Standard Error 993.301805 1686.520727 746.3961868 0.135581946 0.148480589 1.349613442 

Median 4696.11 26815 277.075 7.05 7.55 68.6 

Standard 

Deviation 

5256.0591 8924.228852 3949.55738 0.717432223 0.785685425 7.141483069 

Sample Variance 27626157.3 79641860.6 15599003.5 0.514708995 0.617301587 51.00078042 

Kurtosis -0.1173526 0.381582258 12.94505502 1.597491057 0.06125311 1.020390146 

Skewness 0.82586947 0.374300212 3.389370605 -0.877951855 -0.844073462 -0.959481566 

Range 19595.89 38416 18875.07 3.2 3.2 31.1 

Minimum 1248.76 11422 6.63 4.8 5.2 49.1 
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Maximum 20844.65 49838 18881.7 8 8.4 80.2 

       

 
Satisfaction with 

financial situation 

Intramural R&D 

expenditure (GERD) 

by sectors of 

performance [Euro 

per inhabitant] 

Pupils and students 

enrolled All ISCED 

2011 levels excluding 

early childhood 

educational 

development 

Participation rate in 

education and training 

(last 4 weeks) by sex 

and age From 25 to 64 

years Percentage 

Life expectancy at 

birth 

Urban population 

exposure to air 

pollution by 

particulate matter 

[Particulates < 2.5µm] 

 

Mean 5.90714286 488.85 3872286.429 11.56785714 80.225 13.275 

Standard Error 0.19134228 86.49583843 942453.4172 1.463814449 0.523864986 1.018423216 

Median 5.8 281.75 1792249 9.4 81.5 12.95 

Standard 

Deviation 

1.01248816 457.6929559 4986994.728 7.745777993 2.772032948 5.388989117 

Sample Variance 1.02513228 209482.8419 2.48701E+13 59.99707672 7.684166667 29.0412037 

Kurtosis -0.3674502 -0.514620128 1.455757741 0.550769838 -0.864099668 0.149557265 

Skewness -0.0743634 0.888998451 1.644603126 1.007501236 -0.778315177 -0.212994905 

Range 3.9 1479.7 16110645 30.5 8.5 24.3 

Minimum 3.7 27.9 82343 0.9 75 0 
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Maximum 7.6 1507.6 16192988 31.4 83.5 24.3 

       

       

 
Carbon dioxide 

[thousand tonnes] 

People at risk of 

poverty or social 

exclusion [thousand 

persons] 

Final energy 

consumption [Million 

tonnes of oil 

equivalent (TOE)] 

   

    

Mean 112130.516 3924 40.14642857 
   

Standard Error 30703.5494 967.6611291 10.04674016 
   

Median 43570.865 1667 17.725 
   

Standard 

Deviation 

162467.912 5120.381402 53.16235191 
   

Sample Variance 2.6396E+10 26218305.7 2826.235661 
   

Kurtosis 6.71719926 1.04478003 3.634446153 
   

Skewness 2.39557289 1.556049423 1.987717623 
   

Range 728021.85 16352 214.71 
   

Minimum -1974.29 89 0.66 
   

Maximum 726047.56 16441 215.37 
   

 


