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1. INTRODUCTION

Along with the creation of the first modern computer and especially of the Internet, two inventions that
revolutionized the everyday lives of every individual and organization in the world, a new problem arose.
While the communication distances were eradicated and people could communicate almost instantly with
whomever they wished,  cyber crime was created.  Almost  all  online functions performed today need
information from the users, in order to perform correctly, that are sometimes sensitive and should not be
exposed to the public. From online banking, or a simple visit in a website, to the prediction of the next
word typed in a sentence, an enormous amount of information can be used in order to provide accurate,
reliable and interesting services to the user. That, of course, leaves the subject of the data exposed to
malicious users that seek to steal their data and gain profit from their use, if the organization that is in
charge of the processing of the data does not take the appropriate measures to protect the  their
integrity and confidentiality. 

Over the years inventions that aim to enhance the security of  organizations have been created and
refined, such as devices like firewalls, Intrusion Detection and Prevention Systems, Secure by Design
principles and security policies. But, it has been proven that even these products are flawed and still
enable attackers to successfully inflict harm. While they limit the attack surface, there is still enough room
for the attackers to perform their malicious actions. There has been an outstanding number of data leaks
and breaches over the years, with the “Yahoo!” data breach that was revealed by the Washington Post in
2016  [1],  being  perhaps  one  of  the  most  notable  data  breaches  in  history.  This  breach  affected
approximately three billion users (McMillan and Knutson 2017) [2] and allowed hackers to take possession
of the users’ names, email addresses, telephone numbers, encrypted and unencrypted security questions
and answers, dates of births and hashed passwords. Of course, one can imagine the magnitude of this
attack and the potential harm it can do both to its users and Yahoo!. Certainly, the COVID-19 pandemic and
the very fast transition to remote working and generally online activity, has enabled many attacks to take



place harming critical  infrastructures,  and has surfaced many unsafe products and organizations that
violate fundamental security policies.  

Regardless, many countries and unions have been conducting and enforcing laws and regulations that
help strengthen data privacy and security. In particular, the General Data Protection Regulation (GDPR)
(2016) [3] focuses on data protection and privacy in the European Union (EU) and the European Economic
Area (EEA). It aims to give individuals control over their personal data via the “right to be forgotten” (that
is users can choose to have their personal data deleted or withdrawn) and requires businesses to use
clear and plain language for their user agreement. In addition, similar acts have been passed in the United
States of America and China. For example, China’s Cyber Security Law and the General Principles of Civil
Law,  enacted  in  2017,  require  that  Internet  businesses  must  not  leak  or  tamper  with  the  personal
information that they collect and that, when conducting data transactions with third parties, they need to
ensure  that  proposed  contracts  follow  legal  data  protection  obligations.  The  establishment  and  the
application of these regulations will help build a stronger security foundations to reduce potential data
breaches and attacks.

In parallel with the advancement of the Internet and the computational power, another field has been
evolving with an exploding rate, and that is Artificial Intelligence (AI). Artificial Intelligence nowadays is
used in almost every device or software that we use. It has helped us minimize human effort, make
predictions and describe complex phenomena. Applications like weather forecasting, assistive bots that
help  us  solve  issues  in  websites,  self-driving  cars  and  applications  in  the  healthcare  industry  for
designing drugs and recognizing malignant tumors all use Artificial Intelligence techniques, in order to
create accurate and reliable results.

As technology advances, previous benchmarks that define artificial intelligence have become outdated.
For  example,  machines  that  calculate  basic  functions  or  recognize  text  through  optical  character
recognition (OCR) are no longer considered revolutionary as these functions are taken for granted as an
inherent computer function. But 2016 is the year that AI came of age, as AlphaGo defeated the top human
Go players using a deep neural network and tree search. In this complex process the huge potential of
artificial intelligence was demonstrated and we have began to expect more complex and cutting-edge  AI
technologies. As a matter of fact, one of the most widely used technologies of Artificial Intelligence today,
are Neural Networks, which aim to mimic the way that the human brain processes and learns information,
and uses this knowledge in order to make decisions in the future.

One of the most fundamental driving forces of AI lately, is the explosion of Big Data, where the availability
of immense amounts of data has enabled applications like AlphaGo to be developed. But one thing that
limits the development of Big Data-driven Artificial Intelligence is most importantly the necessity to protect
the data under process as they may contain personal and sensitive information that must not be disclosed
to an untrusted party. In addition, real world scenarios have proved that with the exception of a few
industries, most fields have only limited data or heavily distributed data that are of poor quality. One
possible solution to that problem that was used predominantly in the last years, is the collection and
process of all the data in a central location. Unfortunately, this quick solution has been proven either
difficult (or even impossible in some cases) or too expensive due to the growing privacy regulations,
industry competition and complex administrative processes. Additionally, distributed artificial intelligence



techniques have also been criticized for the unnecessary exposure of personal and sensitive data, which
enables attackers to steal these sensitive information. 

For those reasons an alternative technology was proposed as a possible solution to these problems, in
order to combine the benefits of Artificial Intelligence and the big amounts of scattered data. Federated
Learning centers its attention around the privacy of the data. It works by connecting the nodes that hold
distributed data and tries to collaboratively train a model that doesn’t expose the data outside of the
device in which they are stored. While Federated Learning has an incredible potential to strengthen data
privacy and security it has yet to make its impact in AI applications. In fact, while Artificial Intelligence has
already been used to develop security products such as Intrusion Detection Systems, Federated Learning
has yet to make its appearance in such products. 

In this work I emphasize on the use of Federated Learning in the Cybersecurity industry and I have taken
the initiative to develop and propose an Intrusion Detection System with the use of Federated Learning
based on realistic  data,  in  order  to demonstrate  its  potential  in  real  world  security  applications.  By
promoting Federated Learning I hope to enhance the ongoing reinforcement of data privacy and especially
in the Cybersecurity product development process.

This thesis is structured as follows: I initially introduce the Intrusion Detection Systems, their objectives,
their different classes and the ways that they accomplish their targets. Later I describe the Federated
Learning technology,  its goals, its categories,  an alternative implementation,  the ways that it  enables
applications to be reliable while protecting the privacy of the data used, its architecture, the participating
entities and possible vulnerabilities that can sabotage its use.  Moreover,  I  outline the process that I
followed in order to develop the Intrusion Detection System with the use of Federated Learning, the used
dataset and its characteristics and the experimental environment in which this application was developed.
Finally,  I  close this  work by presenting the results  of  the developed Intrusion Detection System,  its
capacity to detect threats alone and in comparison to a traditionally trained Intrusion Detection System, so
that its benefits are comprehensible. 

1.1 INTRUSION DETECTION SYSTEMS

Over the past decades,  due to the explosive use of  the Internet,  there has been an overwhelming
increase  in  network  attacks  that  have  greatly  impacted  negatively  not  only  organizations  but  also
individuals. As attacks have greatly increased also in severity, modern networked organizations require a
high  level  of  security  to  ensure  safe  and  trusted  communication  of  information,  therefore  Intrusion
Detection Systems have become a necessary addition to any security infrastructure, in order to act as an
adaptable safeguard technology for system security after traditional technologies fail. In this first section
of this work, I describe briefly what Intrusion Detection Systems are, the different classes of Intrusion
Detection Systems, the methodologies followed by Intrusion Detection  Systems in order to accomplish
their  objectives,  the  various implementation  approaches and I  also  provide  a  short  comparison with
Firewalls, another security technology that is widely used by organizations.



1.1.1 Overview of Intrusion Detection Systems

An Intrusion Detection System (or IDS) is a device or software application that automates the process of
monitoring a  network or  a  computer  system and analyzing behaviors for  malicious  activity  or  policy
violations.  Generally,  an  intrusion is  defined  by  NIST  (Base  and  Mell,  2001)  [5]  as  an  attempt  to
compromise  the  Confidentiality,  Integrity,  Availability  (CIA),  or  bypass  the  security  mechanisms  of  a
computer  or  network  and  can  give  rise  to  serious  disasters  to  the  affected  party.  A  behavior  is
characterized as an intrusion when an attacker accesses the systems from the Internet, when authorized
users of the systems attempt to gain additional privileges for which they are not authorized and when
authorized users misuse the privileges given to them, but of course, in order to reach the conclusion that
an activity is indeed an intrusion, often a large size of data must be analyzed. Therefore an Intrusion
Detection System automates this monitoring and analysis process, which frequently results in quick and
reliable results. 

Furthermore, although Intrusion Detection Systems monitor networks for potentially malicious activity, they
are also prone to false alarms. Hence, organizations need to fine-tune their IDS products when they first
install them. As a normal behavior is subjective and is almost always different for every network, the
security administrators of an organization must first properly set up the Intrusion Detection Systems to
recognize what normal traffic looks like in that particular network as compared to malicious activity. 

One important thing to note when discussing Intrusion Detection Systems, is that they are capable of only
discerning  a  malicious  behavior  from  a  normal  one,  and  informing  the  administrator  or  a  security
information and event management system. In this way, after an intrusion has occurred and the IDS has
successfully recognized it, it cannot take the appropriate measures to prevent the attack. This work is
performed instead by another similar technology, an Intrusion Prevention System (or IPS), which has all
the capabilities of an IDS and could attempt to stop the ongoing attack. Although, these two technologies
are very alike, it important to say that in this work I focus only on Intrusion Detection Systems, with the
aim to provide an agile way to classify intrusions using Federated Learning.

1.1.2 Comparison of Intrusion Detection Systems with Firewalls

In the previous section I noted one key difference between an Intrusion Detection System and an Intrusion
Prevention System.  At  this  section  I  provide  a brief  comparison of  Intrusion Detection Systems with
another technology that is vital to the security infrastructure of an organization, Firewalls. Both Intrusion
Detection Systems and firewalls are Cybersecurity solutions that can be deployed to enhance the security
of an endpoint or an entire network. However, they differ significantly in their purposes and the way that
they operate. 

An Intrusion Detection System is a passive monitoring device (or software) that detects potential threats,
describes a suspected intrusion once it has taken place and generates alerts, enabling Security Operation
Center (SOC) analysts or incident responders  to investigate the activity and respond to the potential
incident. An IDS also is able to identify attacks that originate from within a system or a network. This is
ordinarily  achieved by examining network communications,  by intercepting and analyzing the network



packets flowing through, identifying heuristics and patterns, which are often called signatures of common
attacks (trails that are related to the attacks and are used to identify them) and taking action to only alert
operators. 

In contrast, a firewall is an active protective device (or software). It performs analysis on the metadata of
network packets and allows or blocks traffic based upon predefined and static rules. It implicitly prevents
intrusions,  assuming an appropriate set of rules have been defined.  Essentially,  firewalls limit access
between networks to prevent intrusions and do not signal an alert if an attack has originated from the
interior  of  a  network.  Firewalls  are  more  similar  to  Intrusion  Prevention  Systems  than  an  Intrusion
Detection  System.  Therefore,  many  Next-Generation  Firewalls  (NGFWs)  have  integreated  IDS/IPS
functionality, so that they can both enforce predefined filtering rules (firewalls) and detect and respond to
more sophisticated threats (IDS/IPS). 

1.1.3 Classification of Intrusion Detection Systems

Nowadays,  there is  a wide array  of  IDS types,  ranging from antivirus software to tiered monitoring
systems that follow the traffic of an entire network. The most common technologies are categorized into
four major distinct classes according to where they are deployed to inspect suspicious activities and what
event types they recognize. The most common categories according to Stavroulakis and Stamp 2010 [6]
are  Host-based IDS  (HIDS),  Network-based IDS  (NIDS)  Wireless-based IDS  (WIDS),  Network  Behavior
Analysis (NBA) and Mixed IDS (MIDS). 

A  Host-based IDS is most commonly deployed on a particular critical host, such as publicly accessible
servers containing sensitive information and is designed to detect both internal and external threats. IDSs
of  this  type have the ability  to monitor network packets on its  network interfaces,  observe running
processes, inspect the system logs and monitor important operating files for any suspicious activity. A
host-based  IDS  can  detect  intrusions  only  in  its  host  machine,  decreasing  the  available  context  for
decision-making , but has deep visibility into the host computer’s internals. In fact, only a HIDS can analyze
an end-to-end encrypted communication activity. One major disadvantage though of HIDSs is that in order
for a HIDS to operate it must consume host resources and thus has significant delays in alert generation
and centralized reporting.

A Network-based IDS is deployed often at a boundary between networks, such as in proximity to border
firewalls or routers and is designed to monitor an entire protected network. It captures traffic at specific
network  locations  and  analyzes  the  activities  of  applications  and  protocols  to  recognize  suspicious
incidents. It has visibility into all traffic flowing through the network and makes decisions based upon
packet metadata and contents. This wider viewpoint provides more context and the ability to detect a
wide variety of threats, but these systems lack visibility into the internals of the endpoints that they
protect. Network-based IDSs are limited to wired monitoring and cannot detect wireless protocols. Also,
they have high false positive (non-intrusive activities classified as intrusive) and false negative (intrusive
activities classified as non-intrusive) rates, which many times makes them untrustworthy. 

A  Wireless-based IDS is similar to an NIDS, but it  captures wireless network traffic, such as ad hoc
networks,  wireless sensor networks and wireless mesh networks.  A WIDS is susceptible to physical
jamming attacks, in order to obscure any intrusive activity and cannot avoid evasion techniques, which are



ways that an attacker can evade the detection of a malicious activity by an IDS. It is deployed within range
of an organization’s wireless range but can also be deployed where unauthorized wireless networking
could be occurring.

A Network Behavior Analysis system inspects network traffic to recognize attacks with unexpected traffic
flows and are superior at detecting reconnaissance attacks, Denial  of Service attacks and more.  The
major limitation of NBAs is that there is a significant delay in the detection of attacks, as flow data are
transferred to NBA in batches and not in real time. It is most commonly deployed in a place where they
can monitor flows between an organization’s networks and external networks, such as the Internet and a
business partner’s networks.

Last but not least, a Mixed IDS  is made by combining two or more approaches of the Intrusion Detection
System. The four primary types of IDS technologies – host-based, network-based, wireless-based and
network behavior analysis systems – each offer fundamentally different capabilities and each technology
offers benefits over the others, such as detecting some attacks that others cannot, or some attacks with
greater  accuracy,  or  functioning  without  significantly  impacting  the  hosts’  performance.  Therefore,  a
combination of some of these technologies is can be used in order to widen the spectrum of attacks that
can be detected. For example, NBA products can be deployed along with a Wireless-based product, in
order  to  achieve strong  detection  capabilities  for  DoS attacks,  worms and other  threats that  cause
anomalous network flows (performed normally by the NBA system) but also be to be able to detect rogue
WLANs simultaneously (performed by the WIDS). Nevertheless, in most environments a combination of
Host-based IDSs and Network-based IDSs is needed at the minimum, where HIDSs are deployed on critical
hosts and NIDs are deployed at the boundaries between the organization and the outer networks.

1.1.4 Detection Methodologies

Now the logical question arises, how do Intrusion Detection Systems recognize an intrusion. Intrusion
detection methodologies generally are divided into three major categories (Hung-Jen Liao et al., 2013) [7]:
Signature-based Detection (SD), Anomaly-based Detection (AD) and Stateful Protocol Analysis (SPA). 

Signature-based  Detection,  or  as  it  is  often  called  Knowledge-based Detection or  Misuse Detection,
compares captured packets with known patterns or strings that correspond to a known attack or threat.
These patterns that are linked to known attacks are called signatures, and they may be byte sequences in
network traffic or known malicious instruction sequences used by malware. This terminology originates
from antivirus software, which refers to these detected patterns as signatures. Although this type of
detection  methodology  is  simple  and  effective  against  known  attacks  based  on  detailed  contextual
analysis, it is ineffective against unknown attacks, evasion attacks and even variants of known attacks, as
it does now have knowledge on these types of threats. Also, it has little understanding of states and
protocols and it is hard to keep signatures updated. 

Anomaly-based, or Behavior-based Detection is a newer technology that is designed to detect and adapt
to  unknown  attacks  due  to  the  explosive  appearance  of  malwares.  This  detection  method  detects
deviations from a normal and known behavior and recognizes these deviations as intrusions. Profiles that
represent  normal  or  expected  activities  are  derived  from  monitoring  regular  activities,  network



connections, hosts and users over a period of time and frequently machine learning is used, in order to
create  a  model  that  creates  and  generalizes  a  trustful  activity  model.  Then,  all  future  behavior  is
compared to this model and any anomalies are labeled as potential threats and generate alerts. While
systems based on Anomaly detection are effective against novel and zero-day vulnerabilities, are less
dependent  on  Operating  Systems  and  facilitate  detections  of  privilege  abuse,  it  has  been  proven
extremely difficult to create a model of “normal” behavior as these systems must balance false positives
(non-intrusive activities labeled as intrusive) with false negatives (intrusive activities labeled as non-
intrusive)  and  it  is  also  difficult  to  trigger  alerts  on  time,  so  delay  between  the  intrusion  and  the
notification of the staff can facilitate the attacker.

Stateful Protocol Analysis or Specification-based Detection indicates that an IDS could know and trace the
protocol  states  (for  example  pairing  requests  with  replies),  by  depending  on  knowledge of  specific
protocol states and state transitions, which knowledge is based on protocol standards from international
standard organizations,  such as IETF.  One major  advantage of  this  method is  that  It  can distinguish
unexpected sequences of commands, but on the opposite side it consumes a big amount of resources in
order to trace and examine the protocol states and is unable to detect attacks that look like benign
protocol behaviors.

One thing to note, is that these methodologies of detection are not mutually exclusive and can even be
complementary.  In  particular,  Signature-based  detection  and  Anomaly-based  detection  can  be  used
together,  because SD focuses on known and certain attacks or threats and AD centers its attention
around unknown attacks.  

1.1.5 Implementation Approaches

While these methodologies outline the most important ways that Intrusion Detection Systems classify an
intrusion, a further classification to subdivide these approaches has been proposed by Stavroulakis and
Stamp 2010 [6], in order to highlight their practical use. Some approaches to implement IDSs are based on
artificial  intelligence  technologies  such  as  neural  networks  and  expert  systems,  others  are
computationally-based  such  as  special  purpose  languages  and  Bayesian  and  others  are  based  on
biological concepts as immune systems and genetics.

In  Neural-based Intrusion Detection Systems an Artificial Neural Network is trained and refined using a
predefined set of  examples of benign behaviors and attacks, in order to get the experience necessary to
recognize an intrusion. These examples (or samples) are composed by a number parameters that are
connected to and are able to describe the desired output (label, in the case of supervised learning).
Neural networks in general are able to process data from a plethora of sources, predict events and
accept  nonlinear  signals  as input.  They can  also  make fast  predictions  and can perform supervised
learning by mapping input signals to desired responses, such as intrusions and normal behavior. However,
the mandatory training of the neural network demands often complex hardware and software and if the
conditions change from those used when the neural  network was trained,  data must once again be
collected, analyzed and used for retraining the system.



Bayesian-based  Intrusion  Detection  Systems  are  an  example  of  statistics-based IDSs  and  they  use
Bayesian Logic, which is a branch of logic that is applied to decision making and inferential statistics that
deals with probability inference. These systems use the knowledge of prior events to predict future
events, by fitting an optimal statistical model to experimental data. These systems are considered very
robust as they can extract complex patterns from sizable amounts of information that contain a significant
level  of  noise,  and  small  alterations  in  the  model  do  not  affect  the  performance  of  the  system
dramatically. Nevertheless,  uncertainty may arise especially when the input parameters to an IDS are
independent from one another and the number of parameters needed for defining the model is too high.

Rule-based IDSs, including Expert system-based IDSs, provide consistent answers for repetitive decisions,
processes and tasks. The implementation of these IDSs involves the use of specific rules for identifying
known penetrations, penetrations that would exploit known weaknesses and suspicious behavior. These
rules are expressed in the forms of “If-Then” and “If-Then-Else” statements, in order to construct the
model and the profile of  known intrusions.  However,  similar  to the description of  systems based on
signatures, the rules need frequent updates to remain current and the acquisition of these rules is a
tedious and error-prone process.

Immune-based IDSs mimic the ability of the innate immune system to detect intrusions. These systems can
imitate the adaptive immune system to detect new types of  intrusions that have not been observed
before and do not require a human expert to indicate that the intrusion is actually true, by taking into
consideration the activation of the T-cells and the B-cells. They have a faster response to previously
seen intrusions and are distributed, requiring no local coordination, which means that there is no single
point of failure. However these models are extremely simple since the actual human immune system is
still under study and it lacks a theoretical foundation.

During this work, as will be presented in later sections, I chose to develop an Anomaly-based and more
specifically a  Neural-based Intrusion Detection System following the Network Behavior Analysis system

Illustration 1: Different implementation approaches of Intrusion Detection Systems



scheme. This choice was made, as it is one of the most common types of IDSs used today and developing
an IDS of this type with the use of Federated Learning would highlight the importance and the applicability
of Federated Learning in Intrusion Detection Systems in a real world scenario. In addition, as will  be
described below, Federated Learning is a machine learning technology that uses neural networks at its
core, so a neural-based IDS is necessary when using Federated Learning.

After describing the Intrusion Detection Systems, their objectives, their types and the methods that they
use in order to detect intrusions it is time to move on to the next part of this work and present the
Federated Learning technology.

1.2 FEDERATED LEARNING

Federated Learning, first proposed by Google at 2016 [8] is a derivation of common machine learning, or
better,  distributed  machine  learning,  which  enables  distributed  devices  to  learn  a  common  model
collaboratively using their local datasets while simultaneously protecting the privacy of the device or user
that provides the training data against leaks or even malicious users. Federated learning does not by
itself  completely  protect  the  user,  as  it  is  susceptible  to  some  sophisticated  attacks  which  will  be
described below in section 1.2.6

The concept of Federated Learning as proposed by Google and later enhanced by other contributors
targets scenarios where a lot of distributed devices collaboratively want to train a universal machine
learning  model  using  their  local  datasets,  but  focusing  on  the  data  privacy,  security  and  other
idiosyncrasies  of  those  data.  Today,  traditional  distributed  machine  learning  is  based  on  taking  the
decentralized data from the edge devices and transferring them to a central location, most commonly in
the data center of the enterprise. Those data afterwards are fed in the node or the server that calculates
the global model. After the server trains this model, it is transferred back to the devices in order to make
the predictions that the application is aiming for. 

As one can understand, most notably the first step of this cyclic procedure is vulnerable to data leaks and
other kinds of attacks that expose the user’s identity. Federated learning tackles this problem by never
transferring the raw training data of  the devices,  but instead providing a “summary” of  the data.  In
Federated Learning, every device trains a model strictly on its own data and sends the trained model to
the server. That server aggregates the updates from all the devices in order to represent a joint model
and pushes that model back to the devices.



1.2.1 Overview of Federated Learning

The main motivation for the development of a Federated Learning application besides privacy and security
is also the eradication of issues that traditional machine learning deals with. Primarily, the amount of data
that organization produce are growing exponentially. It is only logical to conclude, that the transfer of all
the distributed data to a central location can consume vast amounts of precious network resources, as
well as computational and storage resources.  

Secondarily, one key aspect in the development of Federated learning is the very nature of the training
data. In particular, federated learning applications are expected to handle data that have the following
characteristics:

• Non-IID: No single node’s data are representative for the data population. The datasets in each
node  may  be  from  a  different  distribution.  For  example,  in  the  setting  of  a  text  message
prediction application, the way that a teenager types messages probably differs substantially from
the way that her parents type.

• Massively Distributed: In a common federated learning application the devices that participate in
the training process are of a great number, sometimes tens of millions of devices. Normally, the
number of nodes participating can be much bigger than the average number of training examples
stores on a given node.

• Unbalanced: The devices usually store locally a different amount of training data. Again, in the
scenario of the text message application, a teenager sends way more data than their parents. 

• Non-Static:  The data of the users are not stored forever on the device. Data can be added,
edited or even deleted.

Additionally,  federated  learning  must  take  into  consideration  the  state  of  the  devices.  Because  the
devices that participate in the training process are not controlled by a single entity, as is in the case of
normal  machine learning,  where the data is stored on the server that is controlled probably by one
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organization,  federated learning devices can experience slow internet connections,  limited bandwidth,
different computational capacities and even violent interruptions of their availability. Such is the case,
when a device is connected to a metered network (cellular) or is shutdown in the middle of the process
because of low battery or even for network reasons.

1.2.2 Problem Formulation and Participating Entities

As every machine learning problem, federated learning also aims to optimize a cost function based on
given datasets.

min
w∈Rd

f (w) where f(w) = 1
n
∑
i=1

n

f i(w)

Here, w is the vector of the parameters of the model, d is the dimension of the feature vector, that is,
how many features our model has and n is the number of training samples that are used for this round of
training.  Using  that  definition,  the  federated  learning  algorithm  can  cover  linear  regression,  logistic
regression models, support vector machines and more complicated models such as neural networks. For
completion the fi(w) could take any of the following forms in order to compute the cost of the model at
each sample:

- Linear Regression:       f i(w)=
1
2
( xi

τ w− y i
2
) , yi∈ℝ

- Logistic Regression:                   f i(w)=− log(1+e− y i∗x i
τ w
) , y i∈{−1,1}

- Support Vector Machines:           f i(w)=max {0,1− y i x i
τ w}

Suppose that N devices {F1, F2, …, FN} participate in the training of the global model by consolidating their
data {Di, D2, …, DN}, where Di is a matrix containing the training data available on the i th device. Each row
represents a sample and each column represents the features available for the respective samples. Also,
some samples may also contain labels. The label space is denoted by Y, containing all the labels. 

The traditional method would be to transfer the distributed data in D, where D contains all the data from
all the devices, and use that dataset to train one model. The Federated Learning method instead, is
learned by collaboratively training a model, in which each data owner or device never exposes his data to
others. So each communication between the devices and the server contains generally less information
than the original raw data that are stored in the devices. The accuracy of the model that is finally learned
is not substantially lower that if a traditional approach was used. Please note, that in some cases the
vector of the model parameters w which is eventually learned and sent to the devices by the server, can
contain some sensitive data so it can be susceptible to some kinds of attacks, such as inference attacks. 

1.2.3 Participating in the Training Process

As noted before, Federated Learning is based on the iterative process of some devices training a model
locally, sending an update to the server and receiving an answer from the server containing a new jointly
learned model. The first step of the devices in a federated learning implementation as is outlined by



Bonawitz et al. (2019) [9] is the announcement of their willingness to participate in the following training
round. Each device that wants to participate in the training process has to announce first its availability to
the aggregating server. This process, which is called the  Selection Phase,  chooses which devices will
participate in the next training round. Normally out of probably the tens of thousands of devices that
announce that want to participate in the round, only a small subset of them is chosen to participate, close
to some hundreds of devices.  

The devices that want to participate in the training process announce to the server their willingness to
participate by opening a bidirectional stream, which is used to track aliveness and orchestrate multi-step
communication. It’s important to say, that the devices make such an announcement to the server only if
they meet some eligibility criteria, such as connection to an unmetered network (such as WiFi) to not
spend a significant amount of the data that the user pays for, as well as a charging state to not affect the
user experience regarding normal  usage of  the device etc.  Those criteria are determined based on
nature and the requirements of the applications. After a specific amount of time, the server finally selects
the subset of the devices that will eventually participate in the following training round. If a device is not
selected to participate in the round, it is given by the server a time window that instructs the device when
to check in again in order to participate in the next round. 

Server side, during the selection phase, the server listens for incoming announcements from devices. The
server  collects  all  these  announcements  and  decides  whether  the  round  can  start  or  it  should  be
abandoned. During this phase the server considers a timeout, a device participation goal count and a
minimum percentage of the goal count that Is required for the round to operate normally. The server
listens for announcements as long as the goal count has not been met and the timeout has not been
reached. If the goal has been reached before the timeout has passed, then the round starts. In the other
case, where the timeout has been reached, the server checks whether the minimum percentage of the
goal count has been reached and starts the round. On the other hand, if the percentage has not been
reached then the round is abandoned.

1.2.4 Training the Model

1.2.4.1 Training on the Client

If the round can start, before the training can initiate, the server must contact the selected devices from
the Selection Phase, in order to give them instructions on which task they should perform (the devices
can perform a variety of tasks, such as training and evaluation). Specifically, according to [9], the server
sends to the selected devices an FL Plan that contains a description of the computation that they must
perform and instructions on how to do it. Also, the server sends an FL Checkpoint  to each participant
which contains the current  global  parameters and any other  necessary information.  The initial  global
parameters can be either randomly assigned, or they can be previously trained on some proxy data. That
is the case in the first round of the application, since the next rounds as it will be seen later, will send the
global  parameters from the previous round.  At  this  point,  the server  awaits  for  the updated model
parameters as calculated by each device.



When a device receives an FL Plan and an FL Checkpoint, the training (or evaluation) can start. The device
now starts training the new model parameters, using advanced optimization algorithms such as normal
Gradient  Descent  (GD),  Stochastic  Gradient  Descent  (SGD)  and  many  more,  but  SGD  is  used  more
frequently. After the loss function has converged or if a predetermined amount of iterations has been
completed,  the device has in  its  possession the updated model  parameters.  Of course, as one can
suspect, because each device’s dataset is different from the datasets on the other devices, those new
model parameters are fitted only to that device’s data. Thus, this task is performed on every device that
was selected for the training process.

After  the  devices  have  finished  training  the  model,  they  send  to  the  server  the  updated  model
parameters along with a weight of their total update, so the server can perform the averaging of all the
updates. In order to add a simple initial defense mechanism to the system, the devices do not send the
raw updated parameters, but instead the change of each respective parameter in comparison to the
global parameters sent with the FL Plan.

The server starts collecting the updates from the devices that participate in the training process. Because
the  devices  that  implement  the  federated  learning  application  can  not  guarantee  their  constant  and
uninterrupted availability, some devices may fail to respond with an update to the server, either by failing
altogether or by taking too much time to respond. The server in order to operate normally, has to take
these  limitations  into  consideration.  If  enough  devices  respond  in  time,  the  averaging  can  proceed
normally. But if there are many straggling devices those devices are simply ignored, if a certain time has
elapsed.

1.2.4.2 Averaging the Updates

When the server finishes collecting the updates from all the devices that responded with their updated
model parameters, it realizes that it is time to aggregate all the updates in order to create the global
model. The averaging in the server is performed by the Federated Averaging algorithm first introduced
by McMahan et al. (2019) [10]. 

The Federated Averaging algorithm is divided into two parts, the client side and the server side. I will
begin by explaining the algorithm from the perspective of the client. Primarily, the client receives from the
server the initialized vector of the weights of the model. Generally, as it was shown in [10],  it is most
efficient for all the clients to initialize their weight vector using the same initialization vector. So the same
gradient vector is sent to all the selected clients.

CLIENT:
1. The client divides its local data into mini batches where the mini-batch used for this round is

denoted by the B parameter, because the Federated Averaging was built with using the Stochastic
Gradient Descent as an optimization algorithm for the training process on the clients. The size of
the local mini-batch is determined by the B parameter.

Update :w , θtrain−θ init



2. The client calculates the weight n of its update as a whole, which is proportionate to the size of
the local mini-batch.

3. The client computes the updated gradients using a learning rate η, for all the batch of the training
samples.

4. The  client  calculates  the  weighted  update.  As  one  can  see,  the  update  doesn’t  contain  the
updated gradients, but instead it includes the difference of the new gradients from the ones
supplied by the server.

5. The client returns the updated gradient vector and the weight of its updates to the server.

From the perspective of the server, the server is in charge of selecting the clients what will participate in
the training, of sending the initialized gradient vector to the clients and averaging their updates as soon
as they arrive. At this point, the developer of the federated learning application must decide how many
rounds will take place, as well as how many clients can be selected for any given round (denoted by K).

SERVER:
1. The server initializes the gradient vector that will be sent to the clients. This vector, as mentioned

before can be randomly initialized, or previously trained on proxy data.
2. Until the loss function converges or until a certain threshold of rounds has been reached the

server executes the following. It selects the number of clients and those clients that it will expect
to receive an update from. The number of the clients is denoted by K. As one can observe, the
server selects more clients than it necessarily needs in order to have some resilience to clients
that fail to respond to the server with their updates.

3. In parallel, the server waits for updates from the clients that were selected. It doesn’t have to
wait for all clients that were selected in the previous step. If only K clients respond, instead of the
1.3K clients that were selected, the round proceeds.

4. The server adds all the updates that were received from the clients that responded in time.
5. The server adds all the weights of the updates that were sent by the clients that responded

along with the updated gradient vectors.
6. The  server  averages the  updates  by  dividing  the  updates  with  the  weights  of  the  updates

calculated in step 4 and 5 respectively.
7. The server calculates the new model parameters based on the average that was calculated in

step 6. This is now the current global model parameters.



The process repeats until the loss function converges or a specified amount of iterations is reached.

After all the rounds have been completed or convergence has been reached, whichever happens first,
the server pushes the new model to the devices, so every client has in its possession the updated global
model in order to make predictions. 

1.2.5 Privacy

As one might have observed from the previous description, Federated Learning so far hasn’t mentioned
any mechanisms that enhance the privacy and the security of the data, besides the fact that the clients do
not expose their data and the updates do not contain any raw training data. That is, because Federated
Learning, if implemented alone is vulnerable to many kinds of attacks, as will be described in the next
section. Federated Learning gains its privacy and security features from additional mechanisms protocols
that are developed and implemented along with Federated Learning. 

Anonymized Datasets
Primarily, because the source of the updates are not needed in any part of the process, the updates that
are sent to the server from the devices could be transmitted over a mix network as Tor or a trusted third
party in order to hide the source of the devices. While this measure seems to protect the user, it still can
put the user privacy at risk. Specifically when Netflix announced their competition ‘The Netflix Prize’ where
the goal was to predict the ratings of movies based on an anonymized dataset of its current users’
reviews, researchers [11] published a paper announcing that they successfully identified people from this
dataset by combining with data from IMDB. So while anonymized data may seem harmless, they can be
susceptible to so called, linkage attacks.

Illustration 4: The Federated Averaging Pseudo-Algorithm



Model Parameters in the Updates
Additionally, as it has already been mentioned, the raw training data remains strictly stored locally, so no
single  raw  dataset  is  sent  to  any  place  in  the  network,.  This  is  of  course,  the  main  goal  of  the
development of Federated Learning and a direct application of the principle of focused collection and data
minimization proposed by the 2012 White House report on privacy of consumer data.

Ephemeral Updates
One important note is that the updates that are aggregated by the aggregating server are discarded as
soon as they are used for the calculation of the global model. So, once the server finishes aggregating all
the updates from the devices that sent one to it, the updates are not stored in any persistent storage in
order to remove the risk if the control of the storage of the server ends up in a malicious party that
attempts to read its data. 

Homomoprhic Encryption
Homomorphic Encryption [12]  generally protects the user data privacy during the parameter exchange
when the update aggregation needs to take place. Initially, the computing device encrypts the update
using homomorphic encryption and sends it to the server. Then, the interesting part of the homomorphic
encryption is that it is not necessary to decrypt the message in order to perform arithmetic calculation.
Instead, the receiver can do some arithmetic calculations on the ciphertexts and also between ciphertexts.
This property, as will be seen right below is very important for the Secure Aggregation protocol which is
discussed right below.

But, one key disadvantage of this type of encryption is that it is usually computationally very expensive
and it only integer arithmetic calculations can be performed. Also, other problems arise concerning who
has the encryption and decryption keys that are needed in the process. So while it is undoubtedly a
hugely helpful protocol, it should be used frugally.

Secure Aggregation/Secure Multi-Party Computation
Secure Aggregation or Secure Multi-Party Computation along with Differential Privacy are probably the
two most important protocols in the Federated Learning framework that enhance the user data privacy.
Secure Aggregation works as an intermediary between the devices and the server that collects the
updates and is implemented in the case where the server is assumed to be honest but curious, by hiding
the update content from the server and when it is possible to infer the parts that comprise an update
from looking at the parameters. In the most simple case, this is possible when an update has all the
model parameters equal to zero except from one. So, in this case we infer that for that sample, that
feature that has a non-zero value appears as frequently as it is indicated by the respective parameter
value.

Secure Aggregation takes advantage of a trusted third party which aggregates all the updates from the
devices. So the devices encrypt their updates before they send them with Homomorphic Encryption and
they send it to the third party. That third party, which is in charge of the aggregation of the updates
cannot see the content of the updates but instead sees a random ciphertext. As mentioned before, when
a message is encrypted with Homomorphic Encryption, the aggregating party can aggregate the updates
without deciphering them. After the aggregate has been calculated, the aggregating party sends the
output to the server in order to calculate the updated global model. 



Another key aspect of the Secure Aggregation algorithm is that is tolerant to drop-outs of devices.
Devices  can  unexpectedly  stop  sending  updates  to  the  server  for  various  reasons,  but  Secure
Aggregation can produce a correct output based on the updates that the devices that remain in the
protocol  send. Of course, those devices cannot pass a certain threshold of  minimum participants.  In
addition, during the aggregation phase, the server waits for a specific period of time to receive updates
from the devices. If enough devices (above the minimum threshold) send their updates to the server
before the time has finished, the process continues normally. Otherwise, if the timeout passes and the
minimum threshold has not been reached yet, the round is aborted.

While Secure Aggregation enhances the privacy of the data, one shortcoming is that the computation
overhead of the encryption and the communication overhead for sending the keys are significant and can
be the bottleneck of the whole Federated Learning process. So, the designer of such an application must
realize that it’s a trade-off between security and time efficiency. Also, while the server cannot see the
individual updates it can infer some individual updates but cannot know to which users these updates
refer.

Differential Privacy
Differential  Privacy  [13]  or  k-anonymity  is  another  key  protocol  that  is  complementary  to  Federated
Learning. It has two main goals: to guarantee that no individual update can influence the joint model above
a  specific  bound  and  to  obscure  or  to  “disfigure”  as  much  as  possible  the  updates  sent  to  the
aggregating server by adding noise,  in order to not be able to violate the privacy of  the data and
simultaneously  without  reducing  too  much  the  overall  accuracy  of  the  trained  model.  More  simply,
Differential  Privacy describes a  promise make by a  data  holder  to a  data  subject:  “You will  not  be
affected, adversely or otherwise, by allowing your data to be used in any study or analysis, no matter
what other studies, datasets, or information sources are available”. As this sentence suggests, linkage
attacks such as the one of the Netflix Prize could be neutralized if Differential Privacy was implemented.

Differential  privacy  makes  some alterations  to  the  Federated  Averaging  algorithm presented  earlier.
Primarily, the server no longer selects the users participating in the round randomly. Instead, it selects
every user independently based on an individual probability. Also, the size of the selected users is not
fixed, but varies and is generally larger than the Federated Averaging size. Secondarily, a bound is set on
the influence of an individual update to the joint model by using the technique of clipping, in order to
mitigate the possibility of one specific update being in control of the whole joint model.

According to this protocol, in order to tighten the privacy of the updates there are two courses that can
be followed, but both of them obey to the same principle, that Gaussian noise will be added to some data
in order to obscure the reality of the updates slightly but slightly enough to ensure their privacy. The first
way, which tends to be deprecated is to perform the addition of the noise on the trusted aggregator (the
server when Secure Aggregation is not used or the trusted third party when Secure Aggregation is
used), that is on the joint update. The second way, which is where applications tend to move towards, is
to perform the noise addition on the individual updates before they are sent to the server.

One  minor  disadvantage  that  must  be  taken  into  consideration  when  designing  Federated  Learning
systems is that the model which is trained with Differential Privacy has slightly worse accuracy than if



Differential  Privacy was not used. Also, that accuracy is decreased as the amount of noise added is
increased. So, here too, there is a trade-off, but this time between security and accuracy.

BlockFL
A really robust implementation of Federated Learning made its appearance in 2019, where a group of
researchers (Kim et al. 2020) [14] started leveraging the blockchain technology, in order to implement a
safer Federated Learning platform. They proposed a Blockchained Federated Learning, referred to as
BlockFL, where local learning model  updates are exchanged and verified,  enabling on-device machine
learning in a decentralized manner by utilizing a consensus mechanism in blockchain. They have also
considered an optimal block generation rate, network scalability and robustness issues. 

The operation of BlockFL is summarized as follows: Each device computes and uploads its local model
update to its associated miner in the blockchain network which is selected uniformly and randomly from
the complete set of miners. The miners, exchange and verify all the local model updates and then run
Proof-of-Work (PoW). Once a miner completes the PoW, it generates a block where the verified local
model updates are recorded, and finally the generated block storing the local model updates is added to
the blockchain, also known as the distributed ledger, which is downloaded by devices. At this point, each
device computes locally the global model update from the new block. 

1.2.6 Vulnerabilities

While Federated Learning seems to be secure and to tighten the privacy of the user’s data, like all the
systems it  has its own set of  vulnerabilities that can compromise the whole application.  Attacks can
happen on the participating devices and the aggregating server, but also on the connection between
them. Depending on whether the attack happened on the communication between the server and the
participants, the attack is classified as outsider attack or an insider attack if it was the server or the
devices that attacked [15].

The most  common form of  attack that  can be launched against  a  Federated Learning system is  an
inference  attack.  When  updates  flow  from  the  devices  to  the  aggregators,  a  malicious  user  who
intercepts the data can infer the content of the training data by examining the values of the locally trained
model parameters that are the content of the updates. As was mentioned in the previous section that is
possible in the most simple form when all the parameters are zero except one. Of course, an inference
attack can occur if the transferred data are not sent through an secure and private channel. Also, if the
channel is secure but the server is not completely trustworthy, that is, it is honest but curious then a
secure channel is not enough to prevent such attacks. One possible mitigation technique would be to use
differential privacy to inject noise into the parameters or use Secure Multi-Party Computation. 

Furthermore, another recent type of attack can take advantage of the nature of the training of the global
joint model. Researchers (Bagdasaryan et al. 2020) [16] showed that Federated Learning is vulnerable to
model-poisoning attacks which are significantly  more powerful  than data-poisoning attacks.  Generally,
malicious users can take advantage of the fact that users, malicious or not, influence the joint model via
their updates. An attacker can compromise a user’s device and initiate a model replacement attack, in



order to replace the joint model with another that suits the attacker’s purposes. Also, that new model is
equally accurate on the main task (for example classification) and the attacker can control how the model
performs on a chosen backdoor subtask that he chooses even after many rounds after the attack. So, in
the setting of an animal image classification, the compromised model can intentionally misclassify dog
pictures as cats (backdoor subtask), while correctly classifying other images (main task). 

One might think, that in order to mitigate that attack, anomaly detection techniques can be deployed on
the  aggregating server.  Unfortunately,  one  key characteristic  of  that  kind  of  attack,  is  that  common
defense mechanisms like anomaly detection can not be deployed against it, because it requires access to
the  participant’s  local  training  data  or  their  model  updates,  both  of  which  are  either  impossible  or
discouraged in the setting of a privacy concerning applications, especially when Secure Aggregation is
used (I remind that when Secure Aggregation is used the individual updates cannot be inspected when
they are being aggregating). Even if anomaly detection is somehow incorporated into the aggregating
process, the model  replacement will  remain effective by using constrain-and-scale or train-and-scale
techniques, if  the anomaly detector examines the model’s weights or its accuracy on the main task.
Thankfully,  Ozdayi et al. 2020 [17] have proposed a defense system that mitigates backdoor attacks by
adjusting carefully the server’s learning rate, per dimension, at each round based on the sign information
of agent’s updates.

1.2.7 Categories of Federated Learning

Before a federated learning project is developed, the designer must consider first, the architecture of the
federated learning implementation and the privacy possibilities and constraints that it introduces, because
the way the data are split matters in terms of how Federated Learning is implemented. As introduced in
section 1.2.2 the dataset matrix of every device i is denoted by Di where each row represents a sample
and each column a feature. Some datasets inside D i can also contain labels. I shall denote X as the feature
space, Y  the label space and I as the Sample ID space. For instance, in an tumor classification example, Y
may be the type of tumor, benign or malignant, and X could be the size of the tumor, shape, chemical
composition and many others. Out of these 3 components and specifically out of the way that the data are
distributed  among  the  devices  in  the  feature  and  sample  ID  space,  emerges  a  categorization  of  3
federated learning architectures, namely Horizontally Federated Learning, Vertically Federated Learning
and Transfer Federated Learning.

Horizontal Federated Learning
Horizontal Federated Learning or Homogenous Federated Learning is the case in which the datasets of
the participants share the same feature spaces but differ in the sample ID space. For example,  two
adversarial  (that  is,  which  offer  the  same  products)  local  supermarkets,  which  want  to  predict  the
consumer habits of their customers will probably have the same feature space because their businesses
are very  similar,  so  the keep the  same characteristics  for  them.  But  because of  the supermarkets’
geographic location, the sample IDs will be different in its majority, because most of the customers go to
the  supermarket  in  their  neighborhood.  Horizontal  Federated Learning is  the most  common form of
Federated Learning implementation inside one organization, as the interesting data inside inside the same
organization have more or less the same form.



In this type of Federated Learning usually two security assumptions are made. First, that the participants
are honest and second, that the server is honest but curious. This forces the designer to implement
Secure Aggregation and Homomoprhic encryption in order to provide security against the server. Also, as
was clearly stated before, it’s possible to attack a Federated Learning application by taking control of a
user’s device, so the first assumption may be inaccurate in the Horizontal Federated Learning setting. 

Vertical Federated Learning
Vertical Federated Learning or Heterogenous Federated Learning concerns itself with the cases in which
two datasets have the sample ID space but differ in the feature space. For example imagine the case of
two companies, an online blog publisher and a book store. Those two businesses may have the same
customers, because many customers can read blog posts from the online blog and also buy books from
the book store. In contrast, the feature space will be different because these two businesses keep track
of different habits. 

One key step when training a joint model under a vertical federated setting is to perform encrypted entity
alignment, during which the two companies confirm the common users of both parties without exposing
their  respective  data  and  the  users  that  do  not  overlap  with  each  other.  In  order  to  ensure  the
confidentiality of the data during the entity alignment a trusted third party collaborator is involved. By the
end of learning, each party holds only those model parameters that are associated with the local set of
features. Therefore, at inference time the two parties must cooperate in order to generate the output.

In this category of Federated Learning, the participants are typically assumed to be honest but curious,
therefore, no information leakage to the other participants is allowed. This problem can be solved by
using a trusted third party during the entity alignment and implementing Secure Multi-Party Computation
which provides privacy under such circumstances.

X i≠X j , Y i≠Y j , I i=I j ,∀ Di , D j , i≠ j

X i=X j , Y i=Y j , I i≠I j ,∀ Di , D j , i≠ j

Illustration 5: Horizontal division of the data



Federated Transfer Learning
Although Federated Transfer Learning is used very sparingly, it is worth a mention. Federated Transfer
Learning  is used when the collaborating parties differ in feature space and sample space. Consider the
case of a hospital located in Japan and a bank located in Germany. Because they are different businesses
they will have different features. Also, because they are located in different geographical regions and
because their service is mostly not digital, their customers come from the local regions, so they have
mostly different user groups also.

In order to collaboratively train a joint model, the two distinct parties follow a similar process to the
vertical  federated  learning,  but  with  a  few  changes.  Specifically,  a  common representation  must  be
learned using limited common sample sets and later applied to obtain predictions for samples with only
one-side features. Suppose that the parties A and B have a very small set of overlapping samples and
we are want to learn the labels for the entire dataset in party A. The vertical architecture focuses on
learning the labels only on the overlapping samples. Therefore, in order for Transfer Learning to work,
the intermediate results that are exchanged between parties are changed. Specifically, the two parties
learn a common representation of both feature spaces in A and B and minimize the errors in predicting
the labels for party A by leveraging the labels that party B possesses. Again, at inference time, both
parties need to collaborate in order to produce the output.

X i≠X j , Y i≠Y j , I i≠I j ,∀ Di , D j , i≠ j

Illustration 6: Vertical division of the data



As in the vertical federated learning setting the participants are assumed to be honest but curious so no
sensitive information is allowed to be leaked between them. Once more, a trusted third party collaborator
must be used.

1.2.8 Client Architecture
After the designer has realized which category of Federated Learning applies to his situation, it’s time to
start designing the client and server devices. Below, I start by explaining the architecture of the client and
right  afterwards the architecture of  the server,  while  simultaneously referring to the jobs that each
component is in charge of.

1.2.8.1 Client
In this section I describe the software architecture running on a device that is participating the Federated
Learning, that is the party that holds data.

Example Store
Initially, in its core, every device must keep a local repository of locally collected data (example store) that
are used for model training and evaluation, which must be available to the FL Runtime. The FL Runtime
which is the interface between the server and the example store, when provided a task by the server
such as training, accesses the example store to compute the updated model parameters and form the
updates that will be sent to the server. Generally, it is recommended that the applications limit the total
storage footprint of their example stores and automatically remove any old data. Also, it is crucial that in
order to reduce the attack surface to only the server and the communication between them, it is also
recommended that the device owners follow best practices for on-device security such as encrypting any
permanently stored data and physically disassembling the device as soon as it is ended its life cycle. 

Programmatic Configuration
Before anything else happens, the configuration of the device must take place. At first, an application
configures the FL Runtime by providing an FL population name and instructing it to register its example
stores. This configuration also instructs the device to schedule a periodic FL Runtime job that is invoked
only when the device meets the eligibility criteria to participate in the selection phase that was described
in section 1.2.3 (the device is idle, connected to an unmetered network, charging etc). If the job is started
but at some point some of these criteria is not longer met, then the FL Runtime will abort freeing the
allocated  resources.  In  addition,  the  FL  Runtime  can  run  either  on  the  same  application  with  the
configuration application,  or on another  separate centralized application.  One must  consider  first  the
capabilities of the platform on which the application resides that facilitate the inter-app communication
before it decides which type of scheme he will follow.

Job Invocation
If the eligibility criteria are met, the FL Runtime contacts the FL server to request to participate in the next
task for the FL population that it belongs to as was configured earlier. The device now awaits a response
from the server, which either supplies the device with  an FL Plan stating what task it should be perform
and the way to do it, or a suggested time to check in later.

Task Execution



When the device is selected, the device receives the FL Plan from the server, retrieves all necessary
data from its example stores and starts executing the task,  either trains a model and computes the
updated model parameters, or extracts metric for the evaluation of the model, which is the equivalent to
the validation step on held-out data in data center training. 

Reporting
When the computation of the model parameters or the extraction of the metrics have been completed,
the device sends to  the server  the results  of  its  computations  and cleans and frees any allocated
resources.

Multi-Tenancy
While one might think that one device can belong to at most one FL Population, this is not true. The
implementation that  McMahan et al. 2019 [9] suggest allows for multiple instances of FL Populations to
exist on one device, performing independent calculations for their respective FL population. In order to to
avoid the overloading of the device with many simultaneous training sessions at once, some coordination
between the activities must take place.

Attestation
One key privacy feature of the whole Federated Learning framework is that the devices can participate in
the Federated Learning anonymously,  in order to overcome certain types of  attacks that exploit  the
source of the updates and conform to international regulations. In contrast, we want to verify the devices
that participate in the tasks, to ensure that only genuine devices influence the results. Thankfully, there is
no need for user identity verification to participate in the tasks. In the setting of an Android application
this is possible with the Android’s remote attestation mechanism, which helps to ensure that only genuine
devices  and  applications  participate  in  Federated  Learning  and  gives  some  protection  against  data
poisoning.

1.2.8.2 Server

While the design of the client is straight forward and easy to implement, the server’s design is much
more complex, because of the scalability that is necessary for a proper Federated Learning application.
The server must be able to operate with hundreds of millions of devices in each FL Population with
thousands of participants in each round. Also, the size of each message sent to and from the the devices
range from some kilobytes to tens of megabytes. In order to enable and facilitate the implementation of a
scalable  server,  an  Actor  Programming  Model  is  considered  (Hewitt  1973)  [18].  Actors  are  universal
primitives of concurrent computation which use message passing as the sole communication mechanism,
which are treated strictly sequentially. In order to enable dynamic scalability, multiple ephemeral instances
of some actors can be run just for the duration of a given FL task, each of whom can make logical
decisions, pass messages to other actors or create more actors dynamically. Also, actor instances can be
located on the same process/machine or distributed across data centers in multiple geographic regions. 



Coordinators
As the name reveals, coordinators are the top-level actors which enable the synchronization of the whole
process and there are that many coordinators as there are FL Populations. Each coordinator registers its
address and the FL Population that is manages in a shared locking service, so that other actors, the
Selectors, can always reach a single owner of every FL Population. The Coordinator based on the FL Task
scheduled knows how many devices are connected to each Selector and instructs them how many device
connections to accept for the next round. The Coordinator spawns Master Aggregators to manage the
rounds of each FL Task.

Master Aggregators
Master Aggregators manage the rounds of each FL Task and for scalability reasons many Aggregators
may be spawned dynamically by those Master Aggregators. It is important to note, that all actors keep
their state in memory and are ephemeral, so no information is written on persistent storage until it is fully
aggregated by the Master Aggregators. That property removes the possibility of many kinds of attacks
that target the persistent logs of per-device updates, because no such logs are kept.

Selectors
Selectors  are  the  ones  that  accept  and  forward  connections  with  devices.  As  noted  earlier,  the
Coordinator instructs the Selectors how many devices are needed for a FL Population, based on which
the  Selectors  accept  or  reject  connections  from  devices.  When  the  Master  Aggregator  and  their
Aggregators  are  spawned,  the  Coordinator  also  instructs  the  Selectors  to  forward  a  subset  of  its
connected devices to the Aggregators, in order to facilitate the efficient allocation of devices to FL Tasks
from the Coordinator. Also, the Selectors can be globally distributed, near the devices from which they
accept connections and limit communication with the remote Coordinator.

Pipelining

Illustration 7: The server's internal architecture



In order to achieve latency optimization, some phases can be pipelined. Specifically, because the Selection
phase of the next round, in contrast to the Configuration and Reporting phases, does not depend on any
input from a previous round, it can be run in parallel with the Configuration and Reporting phases of the
previous round. Simply, the Selector actors run the Selection process continuously.

Failure Modes
It is worthy to note that Federated Learning is not tolerant only to the failures of the devices but also to
the components that comprise the server. For instance, if an Aggregator or Selector crashes, only the
devices that were connected to those actors will be lost. If the Master Aggregator fails, the current round
of the FL task it manages will fail, but will then be restarted by the Coordinator. If the Coordinator itself
crashes, a Selector will detect its failure and will respawn it. Because the Coordinators are registered in a
shared locking service, this will  happen exactly once, so at any time only on instance of each failed
Coordinators will respawn. So in every case of failure, the system will continue to make progress, either
by completing the current round, or restarting from the results of a previously committed round.
 

2. APPLICATION DEVELOPMENT

In  order  to  prove  that  Federated  Learning  is  a  viable  option  to  choose  when  developing  Intrusion
Detection Systems, it is necessary to build a testing application that receives a dataset containing realistic
network traffic,  both benign (that is,  normal  user behavior)  and malignant behaviors(that is,  behavior
linked to an attack), and trains a model using Federated Learning. The following sections discuss the
environment that was chosen o develop the application, the dataset used for the training of the model
and its preprocessing and the network’s architecture.

2.1 DEVELOPMENT ENVIRONMENT

2.1.1 Programming Language and Frameworks Used

First and foremost, it is essential to elaborate first on the programmatic choices that I have made in order
to develop the application1.The network (which I will explain later) and the training of the model is going to
be developed using “Python” and mostly the packages “TensorFlow Federated”, “Keras”, “scikit-learn”
and “Pandas”. 

“TensorFlow” is a free and open-source software library, which aims to facilitate the development of
machine  learning  applications,  both  using  traditional  machine  learning  techniques  and  more  modern
methods such as neural networks. “TensorFlow Federated” is a free and open-source framework as well
and was developed to ease open experimentation and research with Federated Learning. It is comprised
by two main interfaces, a high level interface called “Federated Learning (FL) API” and a lower-level
interface called “Federated Core (FC) API”. For the application I used the first interface, the Federated

1 The source code of the application can be found on my personal Github page and the following link: 
https://github.com/AndronikosGiachanatzis/FLinCTI

https://github.com/AndronikosGiachanatzis/FLinCTI


Learning  (FL)  API,  because it  allows developers  to  apply  the  included  implementations  of  federated
training and evaluation to existing TensorFlow models. 

At this point, it must be given attention to the fact that the FL API supports at the moment only local
simulation of the federated computations. This means, that all the necessary computations of Federated
Learning and all the participating entities of the network which will be described in later sections, will be
inside one device, and specifically inside the same process. This though, will be done taking also into
consideration the virtual separation of those entities and their respective data.

“Keras” is a deep learning framework, and is widely used along with TensorFlow. In this application, Keras
is used to define the model’s architecture, such as the number of layers and their dimensions, the number
of neurons per layer, their activation functions and the weight initialization techniques of each layer’s
neurons.
“Scikit-Learn” is another useful and robust machine learning package, that offers an enormous variety of
tools  for  machine  learning  and  statistical  modeling.  Here,  it  was  used  in  order  to  perform  some
fundamental preprocessing steps to the dataset, such as scaling and splitting the dataset into a train and
test set.

Finally, “Pandas” is a fast and powerful open source data analysis and manipulation tool and was used
mostly to save the datasets, on which the aforementioned transformations were performed by scikit-
learn.

2.1.2 Model

The model which will be trained is going to be a multi-layered Feed-Forward Neural Network. This type of
network architecture was chosen as Feed-Forward Neural Networks are used primarily in cases where
supervised learning must be applied and  the data to be learned is neither sequential not time-dependent.
This, as will be described in the next section, is true also for the dataset that I used. In addition, the
dataset  (after  a  few  modiciations  that  I  applied  to  it)  includes  a  feature  that  characterizes  each
observation as a Benign behavior or an Attack, so the problem is clearly a supervised binary classification
problem. Thus,  a multi-layered Feed-Forward Neural  Network is the most  suitable  candidate for this
problem.

Moreover, in order to enhance the utility of Federated Learning in a Cybersecurity related application,
there  needs  to  be  trained  another  model,  with  which  the  federated  model  will  be  compared.  To
accomplish  that,  another  completely  local  neural  network  is  going  to  be  trained  using  the  same
architecture of the trained federated model. When these two models are trained, their results are going
to be compared in order to have a sample of the probable superiority of one model over the other. I have
to remind, that the model that is produced using Federated Learning is expected to be less accurate than
a traditional local neural network model. So, what I must focus upon, is the magnitude of that difference in
accuracy.

Having outlined the development environment it is time to move on to the examination of the dataset
used.



2.2 DATASET

The dataset “Intrusion Detection Evaluation Dataset” (CIC-IDS2017) [19] that was used for the training of
the current model was developed by the University of New Brunswick and specifically by the Canadian
Institute for Cyber Security (Sharafaldin et al.). It is completely labeled with common updated attacks such
as DoS, Heartbleed, DDoS, Brute Force, Port Scan, Botnet, XSS and SQL Injection attacks and contains 78
network  traffic  features  extracted  and  calculated  for  all  benign  and  malignant  flows.  The  data  was
captured in a five day period, starting from 9 am, Monday, July 3, 2017 until 5 pm, on Friday, July 7, 2017.
The attacks mentioned were captured both morning and afternoon on Tuesday, Wednesday, Thursday
and Friday, while Monday was reserved for purely benign traffic.

In this paper I have chosen to take into consideration only Wednesday of all the days, as it contains data
on DoS attacks, one of the most common type of attacks used, and Heartbleed, another critical attack. A
short description of both attacks is given below.

2.2.1 Dataset Description

The initial dataset that was used contained 78 features on Heartbleed and common DoS attacks. Shortly
these attacks are:

• DoS (or Denial of Service) Attack: In this scenario the perpetrator seeks to make a machine or
network  resource  unavailable  to  its  intended  users  by  temporarily  or  indefinitely  disrupting
services  of  a  host  connected  to  the  Internet.  Denial  of  Service  is  typically  accomplished by
flooding the targeted machine or resource with superfluous requests in an attempt to overload
systems  and  prevent  some  or  all  legitimate  requests  from  being  fulfilled.  A  DoS  attack  is
analogous to a group of people crowding the entry door of a shop making hard for legitimate
customers to enter, thus disrupting trade.

In  this  current  implementation  the  DoS  attacks  that  I  focused  on  were  DoS  Slowloris,  Hulk,
GoldenEye and Slowhttptest. Slowloris and Slowhttptest consume the server’s resources very fast
by keeping connections open with minimal bandwidth. GoldenEye is similar to an HTTP flood attack
and is designed to overwhelm a web server’s resources by continuously requesting a single or
multiple URLs. Hulk (or HTTP Unbearable Load King) is a DoS tool that was built to stress testing
of the web servers and it can generate a big volume of obfuscated and unique traffic that can
access directly the server’s resource pool as it bypasses caching.

• Heartbleed: Heartbleed was a security bug in the OpenSSL cryptography library, which is a widely
used implementation of the Transport Layer Security (TLS) protocol.  In order to exploit this bug,
an  attacker  typically  sends to  the  vulnerable  host  (usually  a  server)  a  malformed heartbeat
request with a small payload and large length field, in order to elicit the victim’s response and
divulge secret information such as private keys.



Because the main concern of this work, is not to classify the exact type of an attack, but to be able to
distinguish an intrusive network flow from a normal one, the dataset’s labels were transformed in this
fashion, the ‘BENIGN’ labels were not altered and all the DoS attacks Heartbleed labels were replaced by
the label ‘ATTACK’.  Thus,  the problem has been reduced to  binary classification problem, where the
Intrusion Detection System that will be developed, is going to be able to distinguish malignant (‘ATTACK’)
from benign (‘BENIGN’) network behavior. 

2.2.2 Feature Exploration and Data Cleaning

Initially, before the dataset is fed into the model for training it is crucial that some steps of exploration
and  preprocessing  must  take  place.  In  this  section  I  begin  with  the  exploration  of  the  dataset’s
characteristics and in a later section I process the data according to the findings of the data exploration
stage.

First and most importantly, I must examine the data types per feature. According to the table below, in
which only a subset of the features is presented as the rest of the features are similar to the ones
presented, only the label of the dataset is not numerical (object type). That is because the Label has two
distinct  string:  “BENIGN”  and  “ATTACK”.  All  the  other  features  are  already  numerical  (int64  and
float64)and hence, it is not necessary to do any conversions for now.

FEATURE NAME NON-NULL COUNT DATA TYPE

Destination Port 692703 non-null int64

Flow Duration              692703 non-null int64

... … ...

Bwd Packet Length Std      692703 non-null float64

Flow Bytes/s               691695 non-null float64

Flow Packets/s             692703 non-null float63

... ... ...

Idle Min                   692703 non-null int64

Label 692703 non-null object

Table 1: The number of non-null values and the data types of the features of the dataset

Next, I examine whether there are any missing values. It is easy to find that the feature ‘Flow Bytes/s’
does have some missing values. Specifically while all the other features (and the label included) have
692.703 non-null entries, the ‘Flow Bytes/s’ feature has only 691.695 non-null entries. Thankfully, the
difference is about 1000 entries, which is small, so it is probably safe to remove the entries containing
missing values without causing any unwanted side effects. Also on a side note, the dataset includes also
some infinite values which will have to be dealt with later.



Also, it is important to check the balance of the classes of the label. 

BENIGN 440.031

ATTACK 252.672

Table 2: Number of "BENIGN" and "ATTACK" observations in the original dataset

As we can observe there are 440.031 “BENIGN” samples and 252.672 “ATTACK” labels. While the labels
are imbalanced, there is a slight imbalance in favor of the BENIGN observations, as the proportion is 1,7
BENIGN observations for one ATTACK  observation.

As  mentioned earlier,  the dataset  has at  the moment  some missing and infinite  values.  In  order  to
continue the analysis I have to handle these entries. Because the number of these entries is relatively
small (close to 1000 entries out of approximately 690.000 entries), I chose to discard these samples
without causing any unwanted side effects. Therefore, the dataset contains now 

BENIGN 439.683

ATTACK 251.723

Table 3: Number of "BENIGN" and "ATTACK" observations in the dataset after the removal of missing and infinite values

Now that  the  dataset  does not  contain  any problematic  values,  I  can continue  its  analysis,  with  the
discovery of the most important statistical characteristics of the features. The table 11 in the Appendix lists
these characteristics, namely the minimum and maximum values, the mean, the standard deviation and the
variance of each feature, all of which will prove to be useful in the following sections.

It is crucial to point out at this moment that there are several features that have variance equal to zero.
As these features are constant, they do not offer anything of significance to the model and therefore can
be discarded from the dataset. This was achieved using the VarianceThreshold() function of the scikit-
learn package. Also, none of the features follows the standard normal distribution as none has a mean
equal to 0 or a standard deviation equal to 1.

As  a  last  step  of  the  analysis  of  the  features  I  calculate  the  correlation  between  the  independent
variables, those are the features of the dataset and the dependent variable, that is the label. Because the
label is a categorical variable and the features are all numerical I  have to calculate the Point-Biserial
Correlation Coefficients of each feature and the label. Shortly, the Point-Biserial Correlation Coefficient is
a correlation measure of the strength of association between a continuous-level variable and a binary
variable, that is a variable of nominal scale with only two values. Like all correlation coefficients (e.g.
Pearson’s  r,  Spearman’s  rho),  the  Point-Biserial  Correlation  Coefficient  measures  the  strength  of
association of  two variables in a single measure ranging from -1 to +1,  where -1  indicates a perfect
negative association, +1 indicate a perfect positive association and 0 indicates no association at all.



From the table 10 at the Appendix A, one can observe that there are plenty of features that have a
relatively strong relationship with the label. Those features are potential candidates to be included in the
training of the model.

At this moment there is a clear view of the characteristics of the data. In the next section I will perform
some necessary changes to the dataset in order to be better prepared to be fed into the training
algorithm.

2.2.3 Data Preprocessing

So far, I have explored the most fundamental properties of the dataset and have also applied some data
cleaning methods in order to make the dataset more efficient. At this section, I will process the data even
more, so that they can be in a format that will optimize the behavior of the training algorithm.

It is widely known, that neural networks and generally most machine learning techniques expect the data
to  be  in  numerical  format,  even  though  the  might  represent  categorical  attributes.  Therefore,  it  is
considered best-practice to convert any categorical data into numerical. In the current dataset, as was
discovered in the beginning of the previous section, only the label is in categorical (or string) format, the
values of which are “BENIGN” and “ATTACK”. These two values have to be encoded in numerical values
before they can be fed in the training process. In consequence, the labels “BENIGN” and “ATTACK” were
converted according to the table below:

BENIGN 1

ATTACK 0

Table 4: Encoded values of the label's classes

In addition, It was discovered that not all features contribute to the model, so I discarded those that do
not relate to the objective and kept those that have higher relation with the Label. This distinction, of
course, was not made arbitrarily. I first trained an Extra Trees Classifier on the whole dataset, in order to
discover the effect of every variable on the Label. The Extra Trees Classifier (or Extremely Randomized
Tree Classifier) is a type of ensemble learning technique which aggregates the results of multiple de-
correlated decision trees collected in a “forest” to output its classification result and is used frequently in
both the training of  models but  also during feature selection.  It  is very similar  to a Random Forest
Classifier, differs only from it in the manner of construction of the decision trees in the forest and one of
its many advantages is that it can recognize non-convex patterns in a dataset.

On a side note, it can be assumed that a previous research has been made independently on a similar
dataset to explore the importance of some features, so this does not violate the assumption of Federated
Learning for the absence of knowledge of the datasets from other entities participating in the network. 

The 25 most important features that were discovered through the training of this classifier are presented
in the table below:



Destination Port ACK  Flag Count

Bwd Packet Length Mean Avg Bwd Segment Size

Idle Min Flow IAT Max

Fwd IAT Max Bwd Packet Length Std

Average Packet Size Idle Mean

min_seg_size_forward Packet Length Mean

Idle Max Max Packet Length

Fwd Packets/s Min Packet Length

Fwd IAT Total FIN Flag Count

Fwd IAT Std Bwd Packet Length Max

URG Flag Count Packet Length Std

Flow IAT Std Fwd Packet Length Min

Flow Packets/s

Table 5:  The 25 most important features discovered with the Extra Trees Classifier

Also, some additional features must be discarded from the model, as they have either very low variance
or have very low correlation coefficients with the label, such as the “URG Flag Count”, which has variance
equal to 0,06 and does not offer anything of significance to the model, or “Destination Port” which has a
coefficient  equal  to  0,26.  Also,  from  the  pairs  of  features  that  have  high  Pearson’s  Correlation
Coefficients, one is discarded, as their values are already represented by their pair. 

So, finally, the features that participated in the final model are: 

Bwd Packet Length Mean Avg Bwd Segment Size

Flow IAT Max Fwd IAT Max

Bwd Packet Length Std Idle Mean

min_seg_size_forward Packet Length Mean

Max Packet Length Fwd Packets/s

Min Packet Length Fwd IAT Total

Fwd IAT Std Bwd Packet Length Max

Packet Length Std Flow IAT Std

Fwd Packet Length Min Flow Packets/s

Table 6: Variables participating in the model



After selecting the most important features the dataset is divided is distributed to the clients as will be
described in a later section. Now, each client’s dataset is split into train and test sets keeping also the
proportion of the BENIGN and ATTACK labels from the original client’s dataset, from which the former is
used for the training of the model and the latter is used for the evaluation of the trained model. 

Furthermore, the datasets’ features are standardized in order to have a mean equal to (or a very small
number close to) 0 and standard deviation 1, which has been proven that neural networks perform better
when their  input variables are standardized. Also,  the test set was standardized using the standard
deviation and mean of the train set only, as in a real world scenario a test set is not available and the
input is fed directly to the model for inference. And finally, each client’s dataset is batched into batches of
32 samples each, shuffled and repeated 100 times.

I set aside for now the data themselves and I begin describing the architecture of the network, on which
the application is going to be simulated and deployed.

2.3 NETWORK ARCHITECTURE

In this section I will begin to describe the architecture of the network based on which the final model will
be trained and evaluated and the Intrusion Detection System will be deployed. Therefore, it is appropriate
to begin by enumerating the entities that will be present in the network and how the dataset is going to
be separated and assigned to the clients. 

2.3.1 Participating Entities

The training and deployment network will be consisted by 6 main entities, 5 clients and 1 server. Notice
that in the picture below an attacker is also presented. This attacker is not going to be developed and is
present at the illustration, just to give a notion to the reader about the nature of a  deployed Intrusion
Detection System and the capabilities of the system that I developed.

The 5 clients have the following responsibilities. In the beginning, they have permanently and privately
stored in their local memory their respective datasets, as it will  be explained further later. On these
datasets, certain preprocessing and preparation techniques will have been imposed independently from
other devices, such as feature standardization. Since this processing has been completed the clients will
await for their participation in the Federated Learning process, which can be either training or evaluation
of a model. When the order from the server comes to begin a certain process, which will be described in
the server’s message, the clients compute the requested calculation and send back to the server their
updates, as the Federated Learning protocols demand. It is important to mention again that the dataset of
each client is virtually unknown to any other entity of the network. Finally, when a satisfactory model has
been trained (or the evaluation of a model has been completed) the clients will be able to recognize an
attack in the network If an intrusive flow comes through them, since they have in their possession the
globally trained model. So in a hypothetical scenario that includes an attacker, as can be seen in the photo
below, if a malevolent user tries to make a DoS Slowloris or Heartbleed attack on client 4, then this client
will be able to recognize this flow as an attack. 



At  this  point,  I  must  highlight  that  the  development  of  a  malicious  user  that  performs  an  attack  is
redundant and is presented in the picture and the description only to grasp the objective of a deployed
Intrusion Detection System. The attacker’s role would be to test the trained model if it  can correctly
classify a flow as intrusive or non-intrusive (after the flow has been processed so that it can have the
same format of the features of the dataset). But this function is already performed, and in fact in a much
larger scale, by the test set used during the evaluation of the model, as it possesses a plethora of flows
that are either Benign or an Attack. So conclusively, because the objective of the test set is to test the
trained  model  how well  it  generalizes,  or  how well  it  can  react  to  newly  presented behaviors,  the
attacker’s role is overshadowed by the test set, and therefore there is no need to develop an attacker.

The server is in charge of coordinating the Federated Learning processes. Specifically, the server does
not have any knowledge of the datasets of the clients and its sole duties are sending instructions to the
clients to initiate a round of a given process (training or evaluation), the aggregation of the updates of the
clients, pushing the updated global model back to the clients and presenting the results of the training or
evaluation of the model.

Furthermore, owing to the limitations that the chosen library “Tensorflow Federated - FL API” imposes,
the network that was described and its subsequent functions will be located inside the same simulating
host, and specifically inside the same process. This limitation though, does not change any assumptions
that I made so far, as both Tensorflow Federated and the system that I developed take into consideration
the necessary virtual separation of the participating entities and their respective data.

Also, the analysis of the dataset that I made so far hasn’t violated any of the assumption of Federated
Learning as it was conducted for the purpose to get an insight of the data and its properties and it can be
assumed that a similar research has been conducted independently in the past.



2.3.2 Dataset Division and Distribution

The dataset that I examined in the previous sections remains to be divided and assigned to each of the
five clients of the network. This will be done by shuffling first the samples of the dataset and afterwards
splitting it into five sub-sets, each containing approximately the one fifth of the original dataset. 

In detail:

DATASET NUMBER OBSERVATIONS BENIGN OBSERVATIONS ATTACK OBSERVATIONS

0 138282 88223 50059

1 138282 87712 50570

2 138282 88186 50096

3 138282 87834 50448

Illustration 8: Network architecture and participating entities



4 138278 87728 50550

Table 7: The number of observations per sub-dataset

From the table above one can observe that only the fifth dataset contains slightly fewer observations that
the  first  four  and  that  all  the  datasets  contain  different  amounts  of  BENIGN  and  ATTACK  labeled
observations, which is in accordance with the assumptions of federated learning, which state that the
clients may have different distributions of the data.

In the expectation of simulating the distribution of the datasets that Federated Learning demands, these
split datasets are now assigned to each of the five clients in respective order. That is, that the dataset 1
is assigned to the client 1, the dataset 2 is assigned to the client 2 etc. These datasets will be virtually
separated from the others as Federated Learning demands.  Additionally,  the division  of  the data  is
horizontal, as all the clients share the same feature space and differ in the sample space. Also, in this
manner,  all  the  participating  clients  have  a  common data  format,  something  that  is  aligned with  the
scenario of an independent organization, that does not combine data from different organizations, which
probably support another knowledge representation format.

Finally, having described the development environment, the architecture of the model and the dataset’s
intricacies, it is time to move on to the training of the model and present the experimental results.

3. EXPERIMENTAL RESULTS

The main object of this work is to train and present a model that has a good accuracy ratio, so that if it is
fed with new data it can recognize a new intrusive flow from a normal one in the network or device,
depending on where the final model  is deployed. Therefore,  in the following sections I  describe the
training and testing process of the final model, present the final’s model architecture and parameters and
make a comparative analysis with a traditionally trained model.

Illustration 9: Horizontal division of the data and assignment of the sub-datasets to the clients



3.1  TRAINING WITH FEDERATED LEARNING

At this section, I elaborate on the training of the neural network with Federated Learning. 

3.1.2 Training

At this point, the dataset has been modified to be entered to the model and the model is ready to be
trained. After exploring various architectures with different layers, different number of neurons per layer,
different activation and initialization techniques and different optimizers, it was discovered that the best
performing architecture is the one that is described below.

The final model is a sequential contains two dense hidden layers and one output layer. The first dense
layer of the model contains 300 neurons, uses the “Scaled ELU” (or SELU) activation function and all the
neurons’ weights are initialized using the “LeCun normal” initialization technique. The second dense layer
contains 250 neurons, uses the “selu” activation function and all the neurons’ weights are initialized using
the “LeCun normal” initialization technique as well. The output layer of the model is also a dense layer
and contains only one neuron,  as it  is  a  binary classification  problem,  uses the “sigmoid”  activation
function and its kernel is also initialized using the “he_normal” initialization technique. 

Scaled  ELU  (or  SELU),  introduced  in  a  2017  paper  by  Günter  Klambauer  et  al.,  was  chosen  as  the
designated activation function as it has been observed that it outperforms other widely used activation
functions, owing to the fact that if a neural network is built exclusively of a stack of dense layers and if all
hidden layers use the SELU activation function, then the network will  self-normalize, that the output of
each  layer  will  preserve  a  mean of  0 and standard deviation  of  1  during training  which solves  the
vanishing/exploding gradients problem. There are, of course, a few conditions for self-normalization to
happen. First, the input  features must be standardized (mean 0 and standard deviation 1), every hidden
layer’s weights must be initialized using the LeCun normal initialization, the network’s architecture must be
sequential and all layers must be dense. As described earlier, all these conditions are met.

The optimizer that was chosen is the “Adam” optimizer, configured with a learning rate equal to 0,001. 

3.1.3 Training Metrics and Evaluation

The training of the model lasted 20 rounds, leading to a model with 78,50% accuracy and 0,054 loss on
the training data. This is a very satisfactory result as the model can classify correctly more than the three
quarters of the flows observed.

TRAINING EVALUATION

ACCURACY 78,50% 78,77%

LOSS 0.054 0,056

Table 8: Metrics of the trained federated model



The model was later evaluated using only the test set, which resulted in an accuracy equal to 78,77% and
loss equal to 0,056. Of course the small difference in the two metrics is expected and especially the small
difference between the two losses, as the model is fit to the training data only and does not take into
consideration  the  test  set.  As  it  is  known,  the  test  set  represents  the  measure  to  which  a  model
generalizes, or the way that it behaves on new data. 

In order to get also a visual representation of the training process, the following diagram presents the
training curves, specifically the model’s accuracy (in blue) and loss (in yellow) with each round. It can be
observed that both the accuracy and the loss of the model initially change really fast and after a few
rounds their rate declines, so much that in the final rounds the metrics are almost steady. 

It must be noted that the training curves do not appear to be oscillating, which indicated that the learning
rate is not high. 

3.2 TRAINING A TRADITIONAL MODEL

As was mentioned earlier, in order to prove the importance of federated learning in Cyber Security and
the success of the trained model, a traditional model must be trained in order to be compared those two. 

The traditional model’s architecture is identical to the federated model’s, as a comparison is valid only
when two same models are compared. Hence, the two models have the same number of layers and

Illustration 10: Training curves of the Federated Learning Model



number of neurons per layer, same activation functions and the neurons are initialized using the same
techniques. Additionally, the dataset that is fed into the neural network contains the same set of features
and is also scaled, shuffled, batched and repeated.

The trained neural network has a final training accuracy equal to 95% and training loss equal to 0,088.
Also, the model’s evaluation on a test set resulted in an accuracy equal to 94% and test loss equal to
0,095. 

3.3 COMPARISON OF THE TWO MODELS

At length, after having trained the two models, their results must be compared. At the table below, I have
collected the results 

FEDERATED LEARNING TRADITIONAL

TRAINING EVALUATION TRAINING TEST

ACCURACY 78,50% 78,77% 95% 94%

LOSS 0.054 0,056 0,088 0,095

Table 9: Model Metrics Comparison

Conclusively,  comparing  the metrics from the two trained models,  it  is  apparent  that  the  Federated
Learning  model  has  worse  performance  than  the  traditionally  trained  model.  Of  course,  as  it  was

Illustration 11: Training curves of the traditional model



described in earlier sections, this is expected, and the magnitude of that difference should the actual
point of comparison. Therefore, since the difference of those metrics is not very large about 18%, it is
obvious that the Federated Learning model has value and can be used for correctly recognizing intrusive
flows inside a network or a host device.

4 CONCLUSION

As the distribution of the data became wider and the privacy of data was emphasized over the last years,
Federated Learning was introduced in order to produce accurate models on heavily distributed data, but
also emphasizing on the privacy of the data. So far, Federated Learning has not been used widely in
Cyber Security products, but in this work I have taken the initiative to exploit the Federated Learning’s
advantages  and  use  them  in  order  to  develop  an  accurate  Intrusion  Detection  System  that  can
successfully differentiate a malicious network flow from a benign one.

This work explains thoroughly the Intrusion Detection Systems and the Federated Learning technology,
their  architecture,  their  advantages  and  their  potential  vulnerabilities,  and  emphasizes  mostly  on
developing  an  Intrusion  Detection  System  by  training  a  Feed-Forward  Neural  Network  model  using
Federated Learning on realistic data on Cyber Security. This trained model was then tested on separated
data and verified the Federated Learning is indeed a viable option to use when developing Intrusion
Detection Systems, as the difference of accuracy from a traditionally trained model is not big.
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APPENDIX A. TABLES

Feature Coefficient Feature Coefficient

Destination Port 0,270 Bwd Packets/s 0,083

Flow Duration -0,493 Min Packet Length 0,366

Total Fwd Packets 0,004 Max Packet Length -0,612

Total Backward 
Packets

0,005 Packet Length Mean -0,592

Total Length of Fwd
Packets

0,031 Packet Length Std -0,627

Total Length of 
Bwd Packets

0,003 Packet Length 
Variance

-0,589

Fwd Packet Length 
Max

0,000 FIN Flag Count -0,349

Fwd Packet Length 
Min

0,180 SYN Flag Count 0,118

Fwd Packet Length 
Mean

0,060 RST Flag Count 0,014

Fwd Packet Length 
Std

-0,042 PSH Flag Count 0,143

Bwd Packet Length 
Max

-0,633 ACK Flag Count -0,354

Bwd Packet Length 
Min

0,396 URG Flag Count 0,189

Bwd Packet Length 
Mean

-0,641 ECE Flag Count 0,014

Bwd Packet Length 
Std

-0,638 Down/Up Ratio 0,254

Flow Bytes/s 0,031 Average Packet 
Size

-0,587

Flow Packets/s -0,159 Avg Fwd Segment 
Size

0,060

Flow IAT Mean -0,390 Avg Bwd Segment 
Size

-0,641

Flow IAT Std -0,582 Fwd Header 
Length.1

0,003

Flow IAT Max -0,624 Subflow Fwd 0,004



Packets

Flow IAT Min -0,055 Subflow Fwd Bytes 0,031

Fwd IAT Total -0,493 Subflow Bwd 
Packets

0,005

Fwd IAT Mean -0,389 Subflow Bwd Bytes 0,003

Fwd IAT Std -0,626 Init_Win_bytes_for
ward

0,105

Fwd IAT Max -0,625 Init_Win_bytes_bac
kward

0,128

Fwd IAT Min -0,010 act_data_pkt_fwd 0,005

Bwd IAT Total -0,113 min_seg_size_forw
ard

-0,150

Bwd IAT Mean -0,113 Active Mean -0,035

Bwd IAT Std -0,287 Active Std 0,008

Bwd IAT Max -0,265 Active Max 0,006

Bwd IAT Min 0,020 Active Min -0,038

Fwd PSH Flags 0,118 Idle Mean -0,623

Fwd Header Length 0,003 Idle Std -0,094

Bwd Header Length 0,004 Idle Max -0,627

Fwd Packets/s -0,168 Idle Min -0,616

Table 10: Point-Biserial Correlation coefficients between every feature and the label

FEATURE NAME MIN VALUE MAX VALUE STD MEAN VARIANCE

Destination Port 0 65487 15722,34 5683,12 247191979,65

Flow Duration 0 119999998 42789680,28 28054208,75 1,83E+15

Total Fwd Packets 1 203943 747,9 9,57 559351,78

Total Backward 
Packets

0 272353 985,13 10,23 970475,67

Total Length of Fwd 
Packets

0 1224076 6169,4 556,13 38061435,01

Total Length of Bwd 
Packets

0 627000000 2243276,23 17028,33
5032288246990,3

9

Fwd Packet Length 
Max

0 24820 604,23 234,03 365099,29



Fwd Packet Length 
Min

0 2065 51,11 15,05 2612,55

Fwd Packet Length 
Mean

0 4640,76 157,77 60,67 24891,64

Fwd Packet Length 
Std

0 6429,19 226,31 83,05 51216,17

Bwd Packet Length 
Max

0 19530 2615,38 1664,66 6840234,36

Bwd Packet Length 
Min

0 1983 64,63 33,89 4177,18

Bwd Packet Length 
Mean

0 4370,69 797,84 552,97 636547,78

Bwd Packet Length 
Std

0 6715,74 1098,7 659,87 1207145,12

Flow Bytes/s -12000000 2070000000 29615636,04 1729533,08 877085898186005

Flow Packets/s -2000000 3000000 323148,85 99631,51 104425178561,83

Flow IAT Mean -1 120000000 5600140,27 2507504,34 31361571002778,5

Flow IAT Std 0 84800000 11761290,45 6857157,48 138327953137614

Flow IAT Max -1 120000000 38417124,25 22936015,55 1,48E+15

Flow IAT Min -14 120000000 3676678,59 222876,54 13517965424632,7

Fwd IAT Total 0 120000000 42794134,62 27796810,12 1,83E+15

Fwd IAT Mean 0 120000000 11044287,96 5078796,83 121976296616948

Fwd IAT Std 0 83700000 16015980,84 9033598,99 256511642246491

Fwd IAT Max 0 120000000 38459630,8 22841140,85 1,48E+15

Fwd IAT Min -8 120000000 8874960,24 1032711,25 78764919187902,9

Bwd IAT Total 0 120000000 33378788,6 13890073,05 1,11E+15

Bwd IAT Mean 0 120000000 9602068,7 2652033,19 92199723329310,8

Bwd IAT Std 0 82900000 10747260,2 3529490,75 115503601871038

Bwd IAT Max 0 120000000 26187755,64 9322740,16 685798545542259

Bwd IAT Min 0 120000000 8115415,49 928593,62
65859968577565,

2

Fwd PSH Flags 0 1 0,2 0,04 0,04

Bwd PSH Flags 0 0 0 0 0

Fwd URG Flags 0 0 0 0 0

Bwd URG Flags 0 0 0 0 0

Fwd Header Length -11 4290372 15657,43 242,41 245155244,31

Bwd Header Length 0 5447060 19708,03 249,71 388406384,2



Fwd Packets/s 0 3000000 320133,84 95632,11 102485674484,01

Bwd Packets/s 0 2000000 30947,76 4060,15 957764042,64

Min Packet Length 0 1448 27,54 13,75 758,56

Max Packet Length 0 24820 2635,78 1728,36 6947355,45

Packet Length Mean 0 2279,75 369,28 278,77 136369,25

Packet Length Std 0 4364,02 783,85 524,25 614419,8

Packet Length 
Variance

0 19000000 1750111,48 889266,88
3062890209342,3

8

FIN Flag Count 0 1 0,3 0,1 0,09

SYN Flag Count 0 1 0,2 0,04 0,04

RST Flag Count 0 1 0,02 0 0

PSH Flag Count 0 1 0,4 0,19 0,16

ACK Flag Count 0 1 0,49 0,42 0,24

URG Flag Count 0 1 0,25 0,07 0,06

CWE Flag Count 0 0 0 0 0

ECE Flag Count 0 1 0,02 0 0

Down/Up Ratio 0 43 0,57 0,56 0,33

Average Packet Size 0 2612 398,2 306,23 158565,19

Avg Fwd Segment 
Size

0 4640,76 157,77 60,67 24891,64

Avg Bwd Segment 
Size

0 4370,69 797,84 552,97 636547,78

Fwd Header Length.1 -11 4290372 15657,43 242,41 245155244,31

Fwd Avg Bytes/Bulk 0 0 0 0 0

Fwd Avg 
Packets/Bulk

0 0 0 0 0

Fwd Avg Bulk Rate 0 0 0 0 0

Bwd Avg Bytes/Bulk 0 0 0 0 0

Bwd Avg 
Packets/Bulk

0 0 0 0 0

Bwd Avg Bulk Rate 0 0 0 0 0

Subflow Fwd Packets 1 203943 747,9 9,57 559351,78

Subflow Fwd Bytes 0 1224076 6169,4 556,13 38061435,01

Subflow Bwd Packets 0 272353 985,13 10,23 970475,67

Subflow Bwd Bytes 0 627046409 2243053,59 17026,77 5031289392290,99



Init_Win_bytes_forwar
d

-1 65535 11872,53 5304,72 140956915,73

Init_Win_bytes_backw
ard

-1 65535 7313,62 1476,22 53489061,3

act_data_pkt_fwd 0 197124 715,83 6,13 512406,12

min_seg_size_forwar
d

-1 60 6,32 26,76 39,99

Active Mean 0 100000000 701350,4 92417,82 491892386352,1

Active Std 0 74200000 474648,2 47697,83 225290916715,23

Active Max 0 105000000 1095619,32 163041,58 1200381699170,62

Active Min 0 100000000 605663,36 63270,32 366828106767,56

Idle Mean 0 120000000 38147853,69 22152696,93 1,46E+15

Idle Std 0 76900000 4492672,51 475264,27 20184106318964,6

Idle Max 0 120000000 38506621,73 22563989 1,48E+15

Idle Min 0 120000000 38101294,77 21774503,29 1,45E+15

Table 11: Statistical properties of the features of the dataset


