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Abstract

Deep learning has developed remarkably over the last few years due to the
massive improvement of computational systems as well as the fact that the volume of
available data for training deep neural networks has increased significantly. In order for
deep learning techniques to succeed, appropriate neural network architectures need to be
selected. The process of selecting a neural network architecture is typically performed by
trial and error, which is a process that requires time, knowledge of the field and is likely
to lead to errors when performed by humans. Furthermore, it may exclude architectures
that have not yet been used for the desired task, but would have been capable of achieving
great performance. The field of neural architecture search has therefore been developed
as a means of tackling the aforementioned difficulties by automatically producing optimal
neural network architectures. Neural architecture search requires the use of candidate
evaluation techniques in order to assess the quality of the architectures that are generated
during the search procedure and thus guide the algorithm to select the best architec-
tures within the chosen search space. As the process of candidate evaluation is usually
time-consuming and requires access to adequate computational power, there is increasing
interest in reducing the time and computational requirements of candidate evaluation.
This thesis focuses on the evaluation of acceleration techniques for evolutionary neural
architecture search. The overall aim of this thesis is to examine the use of various acceler-
ation techniques for candidate evaluation and assess their impact on the search procedure
and on the quality of the produced architectures.

Keywords: Neural Networks, Deep Learning, Neural Architecture Search,
Candidate Evaluation, Evolutionary Algorithms
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Περίληψη

Η βαθιά μηχανική μάθηση έχει γνωρίσει σημαντική ανάπτυξη τα τελευταία χρόνια

λόγω της εξέλιξης των υπολογιστικών συστημάτων και του γεγονότος ότι ο όγκος των δια-

θέσιμων δεδομένων για εκπαίδευση των βαθιών νευρωνικών δικτύων έχει αυξηθεί σημαντικά.

Προκειμένου οι τεχνικές βαθιάς μηχανικής μάθησης να επιτύχουν τους στόχους τους και να

κατορθώσουν να λύσουν τα προβλήματα για τα οποία έχουν σχεδιαστεί, απαιτείται η επιλογή

κατάλληλων αρχιτεκτονικών νευρωνικών δικτύων. Η επιλογή κατάλληλων αρχιτεκτονικών

νευρωνικών δικτύων είναι χρονοβόρα διαδικασία και πραγματοποιείται συνήθως μέσα από μία

διαδικασία δοκιμής και πλάνης η οποία απαιτεί γνώση του πεδίου εφαρμογής. Επίσης, μια

τέτοια διαδικάσια είναι πιθανό να οδηγήσει σε λάθη καθώς και να αποκλείσει αρχιτεκτονικές

που δεν είχαν έως τώρα χρησιμοποιηθεί για κάποιο συγκεκριμένο πρόβλημα, όμως έχουν τη

δυνατότητα να ανταποκριθούν σε αυτό και να το επιλύσουν αποτελεσματικά. Για το λόγο

αυτό αναπτύχθηκε το ερευνητικό πεδίο της αυτόματης αναζήτησης αρχιτεκτονικών νευρω-

νικών δικτύων, το οποίο στοχεύει στην ανάπτυξη τεχνικών για την ανακάλυψη βέλτιστων

αρχιτεκτονικών νευρωνικών δικτύων. Οι τεχνικές αναζήτησης αρχιτεκτονικών νευρωνικών

δικτύων απαιτούν τη χρήση κάποιων μεθόδων για την αξιολόγηση των παραγόμενων αρ-

χιτεκτονικών κατά τη διάρκεια της διαδικασίας της αναζήτησης προκειμένου ο μηχανισμός

αναζήτησης να καθοδηγηθεί προς τις αρχιτεκτονικές με την καλύτερη συμπεριφορά εντός

του χώρου αναζήτησης που έχει επιλεχθεί. Η διαδικασία της αξιολόγησης των παραγόμε-

νων αρχιτεκτονικών χρειάζεται συνήθως αρκετό χρόνο και υπολογιστικούς πόρους, καθώς

βασίζεται στην εκπαίδευση των παραγόμενων αρχιτεκτονικών πάνω σε ένα προκαθορισμένο

σύνολο δεδομένων. Προκειμένου η διαδικασία της αναζήτησης να επιταχυνθεί, η ερευνητική

κοινότητα έχει στραφεί προς τη χρήση τεχνικών για την επιτάχυνση της αξιολόγησης των

παραγόμενων αρχιτεκτονικών. Η διπλωματική αυτή εστιάζει στη χρήση τεχνικών επιτάχυν-

σης της αξιολόγησης των αρχιτεκτονικών που παράγονται κατά τη διαδικασία της αυτόματης

αναζήτησης και έχει ως στόχο την αξιολόγηση διάφορων τεχνικών επιτάχυνσης και την ε-

κτίμηση του αντικτύπου που έχουν αυτές στη διαδικασία της αναζήτησης και στην ποιότητα

των παραγόμενων αρχιτεκτονικών.

Λέξεις Κλειδιά: Νευρωνικά δίκτυα, Αναζήτηση αρχιτεκτονικών νευρωνικών

δικτύων, Εξελικτικοί αλγόριθμοι, Αξιολόγηση υποψήφιων αρχιτεκτονικών
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Chapter 1

Introduction

Deep learning is a subfield of machine learning that employs multi-layer artificial neural
networks in order to automate feature engineering and produce results based on perceiving
the world as a hierarchy of concepts and attempting to learn complex concepts with the
use of many simpler concepts that are combined to produce the final results [2]. The
recent increase in the available data and computational power has led to the rapid growth
of deep learning techniques, which have led to important breakthroughs in fields such
as computer vision and natural language processing. For example, deep learning models
have significantly contributed to the solution of problems such as image classification,
object detection and face recognition, as well as problems such as machine translation,
question answering and speech recognition.

As the success of deep learning methods is dependent on the neural network
architecture that is chosen to tackle the task at hand, neural architecture search has
emerged as a subfield of automated machine learning in order to enable researchers and
machine learning practitioners to automatically discover optimal neural network architec-
tures. Neural architecture search aims to discover optimal neural network architectures
within a chosen search space. It employs optimisation methods such as evolutionary algo-
rithms, reinforcement learning and Bayesian optimisation in order to explore the search
space and uses candidate evaluation to assess the quality of the produced architectures
and guide the search towards producing high-performing neural network architectures.
Candidate evaluation is typically performed by training and evaluating each candidate
architecture on a specific dataset, which is a time-consuming process that also requires
access to adequate computational resources.

This thesis focuses on accelerating the candidate evaluation step of neural archi-
tecture search processes. It employs different techniques for the acceleration of candidate
evaluation and aims to assess their impact on the neural architecture search procedure as
well as on the quality of the discovered neural network architectures. The optimisation al-
gorithms that have been explored are a simple genetic algorithm and a genetic algorithm
with the use of fitness approximation. Two different approximation models have been
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considered: an XGBoost model and a graph convolutional network model. Furthermore,
different options regarding the fitness measure have been explored. The standard fitness
measure in neural architecture search procedures is the validation accuracy of the trained
candidate architectures. However, in order to reduce the time needed for the search pro-
cedure, an alternative fitness measure that calculates the fitness of individuals based on
their initial state has been considered. This measure is called “Neural Architecture Search
Without Training” score and has been proposed in order to cheaply estimate a network’s
trained accuracy without requiring any training.

The structure of this thesis is the following:

• Chapter 2 contains a theoretical background on artificial neural networks and neural
architecture search.

• Chapter 3 introduces the reader to evolutionary algorithms and highlights their
contribution in neural architecture search.

• Chapter 4 expands on the candidate evaluation step of the neural architecture search
procedure and presents the acceleration methods that have been explored in the
experiments that were conducted as part of this thesis.

• Chapter 5 presents the experiments that were performed and describes all the details
related to the experimental setup.

• Chapter 6 presents the results of the experiments and draws conclusions as to the
efficiency of the examined acceleration methods.

• Chapter 7 contains a summary and overall conclusion and also mentions potential
future directions that are in line with the research conducted within this thesis.

• The accompanying code can be found in https://github.com/foteinidd/genetic_

nas_acceleration.
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Chapter 2

Artificial Neural Networks

Artificial neural networks are mathematical functions that resemble the function of the
human brain in that they perform non-linear calculations with the use of small individual
units that are called neurons. An artificial neural networks consists of layers, each of
which consists of a large number of neurons, as well as weighted connections between
neurons of different layers.

2.1 Neurons

Neurons are the basic building blocks of artificial neural networks and they are used in
order to build neural network layers. Neurons are connected to neurons of different layers
and each connection is assigned a weight. The weight between two neurons can be either
positive or negative, according to the influence the one neuron has on the other. High
weights between neurons signify that these two neurons have a great influence on one
another. Each neuron receives a number of inputs (according to the neurons of previous
layers to which it is connected) and a bias value. Its purpose is to calculate the weighted
sum of the inputs and add the bias term to the result. The calculated term is then passed
through a non-linear activation function, whose function is to take the linear output
that has been calculated and perform a non-linear operation on it in order to perform
regression or classification. The use of non-linear activations is invaluable for the solution
of non-linearly separable problems. Common activation functions are listed in table 2.1.

2.2 Layer Types

There are different types of neural network layers, each of which consists of a set of
neurons. In this section, some of the most common neural network layer types will be
presented.

3



Table 2.1: Activation Functions

Activation function Mathematical expression

Linear f(x) = x

Sigmoid f(x) = 1
1+e−x

Hyberbolic tangent (tanh) f(x) = ex−e−x

ex+e−x

Rectified linear unit (ReLU) f(x) =

 x if x ≥ 0

0 otherwise

Leaky rectified linear unit (Leaky ReLU) f(x) =

 x if x ≥ 0

0.01x otherwise

Softplus f(x) = ln(1 + ex)

Softmax f(x) = exi∑N
j=1 e

xj
, i = 1, 2, ..., N

2.2.1 Fully Connected Layers

In fully connected layers, all neurons in one layer are connected to all neurons in the
next layer. Fully connected layers may be used in all types of neural networks and they
are the standard choice for neural network layers. However, the use of fully connected
layers comes at a cost, as the computational power needed to train networks with fully
connected layers is considerable, due to the fact that a large number of computations
needs to be performed because each neuron is connected to all neurons in the previous as
well as in the next layer. An example of a network with fully connected layers can be seen
in figure 2.1. The edges have been coloured according to the edge weight values: positive
weights are depicted in red, whereas negative weights are depicted in blue. Furthermore,
the opacity of the edges is proportional to their weights.

2.2.2 Dropout Layers

Regularisation is used in order to tackle the issue of overfitting on the training data, which
limits the generalisation ability of trained neural network models. A common regulari-
sation approach is including dropout layers in the network. Dropout layers deactivate
neurons with a probability equal to p during the training process. The value of p is
non-trainable and is decided by the neural network architecture designer [3]. The use of
dropout can be perceived as an ensemble learning technique in that as some neurons are
randomly deactivated in each step of the training process, a set of sub-networks is trained
in order to produce the final trained model.
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Figure 2.1: Fully Connected Neural Network

2.2.3 Convolutional Layers

Convolutional layers are suitable for the extraction of spatial information, which is why
they are widely used in cases where feature extraction from images is required. These
layers consist of filters that extract feature maps to summarise the discovered features.
Filters are essentially n × n matrices that are multiplied element-wise with the layer’s
inputs. The elements of the matrix that occurs are then aggregated in order to provide
a single number. Subsequently, the filter is moved m positions to the right of the layer’s
inputs and the same procedure is performed. The values of n and m are specified by
the architecture designer [4]. Convolutional layers are the basic building blocks of convo-
lutional neural networks (CNNs), which are particularly successful at performing image
processing tasks. An example of a convolutional neural network can be seen in figure 2.2.
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Max-Pool Convolution Max-Pool Dense

8@128x128

8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 2.2: Convolutional Neural Network

2.2.4 Pooling Layers

Pooling layers are typically used after convolutional layers in convolutional neural net-
works and their purpose is to downsample the produced feature maps. They operate
by aggregating input patches of a fixed size in order to produce an output with reduced
dimensions. Common aggregation methods include averaging over the numbers in each
patch (average pooling) and selecting the maximum element in each patch (max pooling).

2.2.5 Recurrent Layers

Recurrent layers are suitable for processing sequential data such as time series and text
processing, as they operate recursively. They can be used to process the input data in
such a way so as to provide an output whose type and dimension is different than the
input’s. These layers leverage the concept of memory, as they take both the data and the
previous calculation’s output as input in order to be able to remember the previous part
of the sequence [5]. They are the building blocks of recurrent neural networks (RNNs),
which have led to significant advancements in the field of sequence processing. Common
types of recurrent neural networks include Long Short-Term Memory (LSTM) networks
[6] and Gated Recurrent Unit (GRU) networks [7].

2.3 Neural Networks

Artificial neural networks consist of an input layer, one or more hidden layers and an
output layer. Their purpose is to learn to find patterns in data, identify trends and make
accurate predictions of the future. The learning process is performed by first performing a
feed-forward operation, i.e. propagating the input data through the layers and producing
an output and then optimising that output with the use of backpropagation, which is the
process that is used during the learning phase of the algorithm in order to provide the
network with feedback. This process consists of using a loss function in order to calculate
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the difference between the produced output and the desired output and then using this
difference in order to adjust the weights of the connections between neurons. The weight
adjustment process is performed iteratively, starting from the output layer and going back
layer by layer until the input layer is reached. The training process, which consists of the
feedforward and backpropagation steps, is performed iteratively for a number of epochs,
gradually leading to the minimisation of the difference between the network’s output
and the desired output. The weight optimisation process is performed with the use of
an optimisation algorithm. Common optimisation algorithms that are used for weight
optimisation while training neural networks include batch gradient descent, stochastic
gradient descent (SGD), mini-batch gradient descent, stochastic gradient descent (SDG)
with momentum, Nesterov accelerated gradient, Adaptive Moment Estimation (Adam),
Adagrad, Adadelta and RMSProp [8].

2.4 Deep Neural Networks

Deep neural networks are artificial neural networks with more than one hidden layer.
They contain a large number of neurons and are capable of automatically performing
complicated tasks such as face recognition, speech synthesis and time series forecasting.
The existence of multiple hidden layers enables the gradual discovery of information from
the input data. The first few hidden layers extract low-level characteristics from the input
data, whereas the next hidden layers try to infer high-level concepts that are useful for
producing the final output. The field of deep learning has significantly evolved over the
last few years, due to the increase of the available processing power, which has enabled
breakthroughs in the field.

2.5 Neural Architecture Search

The task of selecting an appropriate neural network architecture for a given task is still
a non-trivial problem that typically requires a time-consuming trial-and-error process,
which is why attempts to automate this process have recently been made. The process
of automating the design of neural network architectures is called neural architecture
search. Neural architecture search is a subfield of automated machine learning that em-
ploys optimisation algorithms in order to automatically discover optimal neural network
architectures within a given search space. It has led to the discovery of state-of-the-art ar-
chitectures that are able to perform various tasks better than previous manually-designed
architectures and use minimal computational resources [9–13]. The basic components of
a neural architecture search algorithm are the search space, the optimisation method and
the candidate evaluation method [14].
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The search space defines the set of neural network architectures that are eligible
for selection by the algorithm. The choice of search space is usually made according to
prior experience, which however may introduce bias to the process, as in this case the
architectures that will be considered during the search procedure may be similar to archi-
tectures that have previously been used to tackle problems similar to the one the designed
architecture is intended to address, thus excluding different architectures that may have
been capable of performing better [15]. The optimisation method provides the means to
explore the search space and discover high-performing neural network architectures within
it. Common choices of optimisation methods in neural architecture search processes in-
clude evolutionary algorithms, reinforcement learning and Bayesian optimisation, whereas
some one-shot methods have also been proposed [16]. Finally, the candidate evaluation
method is the process that is used for the evaluation of the candidate neural network
architectures that come up as the algorithm is running. Candidate evaluation serves as
a means of guiding the search towards discovering high-performing neural network archi-
tectures. The typical process that is followed for candidate evaluation is performing a
standard training and validation procedure for each candidate architecture on a specific
dataset and evaluating the architecture based on the performance statistics that are cal-
culated during the validation procedure. However, this is a time-consuming process, as it
requires training and evaluating a large number of architectures, which is why alternative
approaches have been proposed to speed up this step of the neural architecture search
process. Some approaches for the reduction of the time needed for candidate evaluation
include reducing the number of training epochs [17], performing the training and vali-
dation procedure on less computationally demanding datasets and then transferring the
results to the desired dataset, reducing the number of cells or filters used, as well as using
predictive models to estimate the performance of candidate architectures and guide the
search based on these predictions [18].

2.5.1 Benchmark Datasets

Neural architecture search benchmark datasets have been developed in order to provide
a quick and easy way to test new ideas in the field and compare different approaches, as
the process of candidate evaluation typically requires a time-consuming and computation-
ally demanding training and validation procedure for each of the generated architectures,
which leads to the inability of researchers without access to adequate computational re-
sources to reproduce published results and perform novel experiments in the field. Bench-
mark datasets contain precomputed performance statistics of complete search spaces, thus
allowing for the rapid evaluation and comparison of neural architecture search algorithms.
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2.5.1.1 NAS-Bench-101

NAS-Bench-101 [19] is the first publicly released neural architecture search benchmark
dataset. It consists of 423, 624 convolutional neural network architectures that have been
trained on the CIFAR-10 dataset and are intended to be used for the task of image
classification. Each architecture has been trained with three different initialisations and
the performance statistics have been computed after training each architecture for 4, 12,
36 and 108 epochs. Thus, the final dataset contains over 5 million architectures. NAS-
Bench-101 architectures are built by defining a cell and using a predefined structure (figure
2.4) to construct the network’s architecture by repeatedly stacking identical cells. Each
architecture’s cell contains a maximum of 7 layers including the input and output layer
and a maximum of 9 connections between layers. The cell is depicted in the form of a
directed acyclic graph, where nodes represent layers and edges represent the connections
between them. The hidden layers are selected from the available operations, which are
3 × 3 convolution, 1 × 1 convolution and 3 × 3 max pooling. An example of a NAS-
Bench-101 cell is displayed in figure 2.3a. The predefined skeleton of NAS-Bench-101
architectures consists of an initial 3 × 3 convolutional layer, three cell stacks (each of
which consists of three identical cells) and a max pooling layer between each stack. The
network’s final layers are a global average pooling layer and a dense layer, which is used
to calculate and output the final result. The best architecture in NAS-Bench-101 achieves
a mean test accuracy of 94.32% on the CIFAR-10 dataset.

2.5.1.2 NAS-Bench-201

NAS-Bench-201 [20] also contains convolutional neural network architectures that are con-
structed with the use of a predefined skeleton of multiple stacked cells. The total number
of architectures within the NAS-Bench-201 search space is 15, 625. The architectures it
contains are trained on the CIFAR-10, CIFAR-10 and ImageNet-16-120 datasets, and a
manual training, test and validation split is performed for each of the three datasets. The
architectures are trained once by using the training set for training and the validation set
for evaluation and once by using the training and validation sets for training and the test
set for evaluation. The skeleton is the same that is used by NAS-Bench-101 (figure 2.4),
with the only difference being the number of cells in each stack. The neural architecture
search process defines the architecture of the cell, which is depicted with the use of a di-
rected acyclic graph with 4 nodes and 6 edges, as each node is connected to all subsequent
layers. The edges here represent the operations, which are chosen from 5 possible types
of layers: 1× 1 convolution, 3× 3 convolution, 3× 3 average pooling, zeroise and identity.
An example of a NAS-Bench-201 cell can be seen in figure 2.3b.
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2.5.1.3 NATS-Bench

NATS-Bench [21] architectures are also constructed with the same predefined skeleton
(figure 2.4) used by NAS-Bench-101 and NAS-Bench-201. NATS-Bench contains two
distinct search spaces, a topology search space (TSS) and a size search space (SSS). The
topology search space is identical to the search space of NAS-Bench-201 (i.e. the different
networks in the search space use different types of operations), whereas the size search
space offers different choices regarding the number of channels in convolutional layers but
consists of networks with identical types of operations, which are selected by exploring the
topology search space and identifying the architecture that performs best on CIFAR-100.
The possible numbers of channels in the size search space are 8, 16, 24, 32, 40, 48, 56 and
64. Thus, the overall size of the topology search space is 15, 625 networks, whereas the
size of the size search space is 32, 768 networks.

out
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Figure 2.3: NAS Benchmark Cell Examples
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Chapter 3

Evolutionary Algorithms

Evolutionary algorithms are population-based metaheuristics inspired by natural evolu-
tion. They use mechanisms such as mutation, crossover, selection, inversion and repro-
duction with an aim to discover high-quality solutions to optimisation problems. These
algorithms use an iterative procedure where in each iteration a population consisting of
the candidate solutions to the given optimisation problem is built and a fitness function is
employed to determine each candidate solution’s quality. The final solution is discovered
at the end of the iterative procedure, which resembles the natural selection process in that
high-quality solutions are favoured and retained as the evolutionary algorithm is running
whereas solutions of inferior quality are discarded.

3.1 Surrogate-Assisted Evolutionary Algorithms

The evolutionary process succeeds in finding appropriate solutions to a large range of op-
timisation problems, however the time and computational power needed for the algorithm
to run can be considerable, mainly due to the fact that the calculation of the fitness of
each candidate solution is required. Due to the fact that the evaluation of the fitness
function for each individual in the population can be time-consuming and complex, fit-
ness approximation models have been introduced. Fitness approximation models attempt
to overcome the problem of the computational complexity of fitness function evaluation
by employing predictive models estimate the quality of candidate solutions and guide
the evolutionary algorithm’s search. These predictive models are called surrogate models
or meta-models, whereas when such models are employed, the evolutionary procedure is
called surrogate-assisted evolutionary algorithm [22]. The fitness approximation models
are usually machine learning based. Typical models that are used for this purpose include
regression models, support vector machines (SVMs) as well as different types of neural
networks.
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3.2 Genetic Algorithms

Genetic algorithms are a type of evolutionary algorithms where the initial population of
randomly generated candidate solutions is gradually evolved to lead to the discovery of
high-quality solutions with the use of an iterative process of multiple generations. The
parameters that need to be defined in order for the genetic algorithm to operate are
the representation of individuals and the fitness function, which is typically the objective
function of the optimisation problem the algorithm is intended to tackle. The process that
is performed in each generation of the algorithm is the following: First, each candidate
solution in the current population is evaluated with the use of the fitness function. Once
all individuals have been assessed, a stochastic process is employed with an ultimate aim
to retain high-quality solutions in the population and discard low-quality ones. Typical
selection strategies include:

• random selection,

• tournament selection, which is the process of selecting the best individuals from
randomly sampled subsets of the population,

• linear ranking selection, which involves ranking the candidate solutions in de-
scending order based on their fitness and then assigning each candidate a selection
probability based on its rank and

• roulette wheel selection, where the probability of selection of each candidate is
proportional to its fitness, thus making it more probable for the higher-performing
candidates to be chosen.

These individuals are then subjected to a procedure of modification, which involves oper-
ations such as mutation or crossover, in order to generate a novel population with charac-
teristics that are similar to the ones of the best solutions found up until that point. The
new population is then selected. Typical strategies for the selection of the new population
are:

• replace oldest: the replacement of all parents with the new offsprings that have
been generated,

• survival of the best individuals: performing a ranking operation on all parents
and offsprings based on the fitness measure and retaining the N individuals with
the best performance,

• replace worst: using offsprings to replace the worst performing individuals,

• replace random: randomly replacing some of the parents with generated off-
springs.
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The iterative process is terminated when one of the following conditions is satisfied:

• the predefined maximum number of iterations has been reached,

• the algorithm has succeeded in discovering individuals whose fitness is deemed sat-
isfactory, meaning that some of the individuals that have been produced offer a
satisfactory solution to the optimisation problem at hand,

• the best individual has remained the same for a number of iterations,

• no member of the population has changed over the last iteration.

3.3 Evolutionary Algorithms in Neural Architecture

Search

Evolutionary algorithms are a common choice for the optimisation strategy of neural archi-
tecture search procedures, meaning that they are used as a means of exploring the chosen
search space. In the context of neural architecture search, evolutionary algorithms can
help with selecting layer types, parameters and connections between layers [23]. Search
space exploration with the use of evolutionary algorithms is performed as follows: First, a
number of architectures are randomly sampled from the search space to create the initial
population. Then, each architecture in the population is evaluated with the help of the
fitness function. Fitness measures are usually the networks’ performance statistics that
are relevant to the problem that the produced neural network architecture is intended to
solve. For example, a typical fitness measure is the validation accuracy in cases where
the network is intended to solve a classification problem, whereas in cases where the net-
work is designed to tackle regression problems a metric such as the mean squared error
(MSE) or the mean absolute error (MAE) on the validation data may be used as a fit-
ness measure of candidate solutions. Once all solutions have been evaluated, a stochastic
strategy is employed for the selection of the best architectures and these architectures
are slightly altered with the use of an operation such as mutation or crossover. Common
modifications include changing the layer types or the connections between layers with a
predefined probability. The new population is then formed and the iterative procedure
continues until the selected termination criterion is satisfied.

3.3.1 Evolutionary Neural Architecture Search with Fitness

Approximation

NAS-EA-FA V2 [24] is an evolutionary algorithm that can be used to reduce the time
needed for the search procedure by using a fitness approximation model to estimate the
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fitness of individual architectures instead of performing a training and validation proce-
dure for each candidate architecture. This algorithm uses a selection scheme in order to
train and evaluate a small number of architectures in each iteration, as the performance
statistics of a number of architectures are required to provide training data for the fitness
approximation model, and then trains the fitness approximation model, which provides
an estimation of the fitness of the remaining architectures. The selection scheme works
as follows: First, the architectures in the current population are sorted in descending
order based on their fitness score. The algorithm then selects the K architectures with
the best performance as well as the H architectures with the largest distance from all the
previously trained architectures. The H architectures are included in the fitness approxi-
mation model’s training set in order to enhance diversity by encouraging the algorithm to
explore more areas of the search space, thus contributing to the improvement of the algo-
rithm’s stability. Moreover, in an attempt to enhance the trained fitness approximation
model’s predictive ability, the training dataset is augmented by including the isomorphic
sequences of the selected K +H architectures.
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Chapter 4

Candidate Evaluation

Candidate evaluation is the process of evaluating the quality of candidate architectures
during the neural architecture search procedure and is used in order to discover the best
performing architectures based on a predefined criterion. A typical approach is evaluating
candidates based on the candidate architectures’ performance statistics, which are calcu-
lated after a full training and validation procedure. This is a computationally expensive
process as it requires the training and validation of a large number of architectures.

However, the task that candidate evaluation methods should be able to accom-
plish is not the accurate calculation of each candidate architecture’s absolute performance
but rather the determination of each candidate’s performance in comparison to other can-
didates. Based on this realisation, alternative approaches have been proposed to speed
up the candidate evaluation process, such as training candidate networks for just a few
epochs, which is an approach that has been shown to produce satisfactory results given
that the difference in the number of epochs used for the candidate evaluation and the
number of epochs the produced architectures are intended to be trained for is relatively
small. Another approach considers the use of hyper-networks or network morphisms
to provide a starting point for candidate evaluation. Furthermore, a transfer learning
approach has been proposed, which performs candidate evaluation on a less computation-
ally demanding dataset and then transferring the results to the intended dataset. Another
proposed approach suggests the reduction of the number of filters or the number of cells
that each building block of the architecture consists of. Apart from the aforementioned
methods, fitness approximation models are becoming an increasingly popular approach
for the acceleration of the candidate evaluation process in neural architecture search. This
approach leverages surrogate predictive models to estimate the performance of candidate
architectures. However, the training and evaluation of a small number of architectures is
still required to provide training data for the surrogate model to be trained. Finally, an-
other acceleration approach involves the use of weight-sharing amongst candidate neural
network architectures.
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4.1 Fitness Approximation

This thesis focuses on designing efficient neural architecture search algorithms while at
the same time reducing the candidate evaluation step’s time and computational cost. The
particular aim of this thesis is to evaluate the use of acceleration techniques for candidate
evaluation in neural architecture search. Fitness approximation is a popular acceleration
method for candidate evaluation, as it allows for the reduction of the neural architecture
search process by quickly providing estimations of the quality of candidate networks.
Common choices for fitness approximation in neural architecture search algorithms include
ensemble learning techniques, such as XGBoost, and graph convolutional networks.

4.1.1 Ensemble Learning

Ensemble learning is the process of combining multiple machine learning models in order
to obtain an overall better result [25]. It is an approach that can be implemented either
in parallel or sequentially.

4.1.1.1 Bootstrap Aggregation

Parallel ensemble learners use bootstrap aggregation (also known as bagging), which is
based on building bootstrapped datasets from the initial dataset, i.e. creating datasets
with a number of samples equal to that of the initial dataset but which are created by
randomly selecting samples with replacement from the initial dataset. Furthermore, for
each bootstrapped dataset a set containing the initial dataset’s samples that have not
been included in the bootstrapped dataset is stored in order to be used for validation
purposes. Each bootstrapped dataset is then fed as training data into a machine learning
model instance. The idea is to build a set of multiple models that have been trained on
slightly different data, thus producing different results. Common approaches to improve
the performance of the model instances include the selection of a subset of features to
make predictions as well as the randomisation of bootstrapped datasets. Once all model
instances have been trained, an aggregation technique is employed in order to determine
the ensemble model’s prediction. Bagging is used by random forests, which are essentially
ensemble learners consisting of multiple decision trees.

4.1.1.2 Boosting

Sequential ensemble learners are built with the use of the boosting technique, which cre-
ates the overall model incrementally by assigning higher weights to training data samples
for which the model instances’ prediction was inaccurate. Common boosting algorithms
include Adaptive Boosting (AdaBoost), Gradient Boosting and eXtreme Gradient Boost-
ing (XGBoost).
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AdaBoost is a boosting algorithm that improves its performance by assigning
a weight probability to each training sample according to the previous model instance’s
performance. In the first iteration, all samples in the training dataset are assigned equal
weights and the training dataset is fed into the first model instance. The training samples
for which the model’s prediction was inaccurate are then assigned a higher weight com-
pared to the samples for which the model’s prediction was accurate and the new dataset
is given as input to the next model instance. Finally, the individual models’ predictions
are combined with the use of voting in cases of classification problems and averaging in
cases of regression problems.

Gradient boosting works by using a sequential procedure which in each step
tries to optimise the previous model instance’s loss function in order to produce a new
model instance whose predictions are more accurate than the previous instance’s. The
optimisation is performed in a way that is similar to neural network training, as it leverages
the gradient descent algorithm, i.e. the process of minimising the loss gradient to fit the
model. It is a technique that is particularly successful in problems with tabular data
and is suitable for classification as well as for regression. The components of a gradient
boosting algorithm are the loss function, the weak learners which are combined to provide
the overall model and the additive model whose purpose is to add a weak learner in each
step of the process and perform a gradient descent procedure in order to minimise the loss
induced by adding a new model instance. The additive model modifies the parameters of
the new model instances in order to ensure that the added weak learners contribute to
reducing the loss function value.

XGBoost [26] was introduced in order to reduce the gradient boosting algo-
rithms’ requirements for time and computational resources by optimising the algorithm’s
speed and memory utilisation. It supports the use of parallel and distributed computing
methods, while also using cache optimisation to optimise memory usage. XGBoost oper-
ates by attempting to address the weaknesses of gradient boosting trees and it succeeds
in enhancing the predictive power of the models it produces by taking the distribution of
features across the datapoints in a decision tree’s leaf and reducing the size of the search
space in order to facilitate the decisions of creating new branches within decision trees.
This approach is particularly helpful in cases where a large number of features is provided
as input to the algorithm, as in this case the number of potential splits is large, making
the decision process time-consuming. It also which uses L1 and L2 regularisation in order
to prevent overfitting.

4.1.2 Graph Convolutional Networks

Graph convolutional networks have been developed to provide a way for building predic-
tive models for whole graphs as well as for nodes or edges within graphs. These networks
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aim to tackle such tasks by learning embeddings to extract information regarding the
structure of the graph. Graph convolutional networks use convolutional layers that are
similar to the ones used in convolutional neural networks. Convolutional neural networks
make use of trainable filters in order to learn from objects with grid structures and are
particularly successful at dealing with tensor data where local patterns can be observed.
Graph data do not fall in this category, as their structure does not resemble a grid. How-
ever, such data can still benefit from models that are able to identify local patterns, which
is why graph convolutional networks have been developed. Graph convolutional networks
are a generalised version of convolutional neural networks, as they are able to deal with
graph data, where the nodes are unordered and the number of edges may be different in
each graph. They employ local filters in order to aggregate and process information from
neighbouring nodes. They can be split into spatial graph convolutional networks and
spectral graph convolutional networks. Spatial graph convolutional networks [27] exploit
spatial features in order to extract useful knowledge from graphs. They aggregate neigh-
bour node information by using spatial characteristics, thus having a closer relationship
with convolutional neural networks, where the position of each element in the grid-like
input influences the result. Spectral graph convolutional networks [28] leverage spectral
analysis, which is extensively used in network analysis for unsupervised tasks such as
community detection and graph clustering, and combine it with the principles of convo-
lutional neural networks in order to produce models that can be trained in a supervised
manner. These networks leverage spectral decomposition, i.e. the eigendecomposition of
the Laplacian matrix that represents the graph.

Graph convolutional applications can be useful in applications in various do-
mains. First of all, they can be employed in cases where the processing of graph data is
needed for tasks such as graph classification, node classification, link prediction and node
clustering. However, graph convolutional networks can also be used to process other kinds
of data. For example, they can be leveraged to solve problems in computer vision, such
as image classification, visual question answering, image captioning and activity recogni-
tion. Furthermore, they can be employed to tackle problems related to natural language
processing, such as text classification, information extraction, semantic role labelling and
neural machine translation. Moreover, graph convolutional networks can also be used in
social network analysis for tasks such as community detection, link prediction, retweet
count forecasting, fake news detection and recommendation systems. As graph structures
are commonly observed in various scientific domains, such as physics, chemistry, biology
and materials science, graph convolutional networks can also be used to tackle scientific
problems [29]. Finally, graph convolutional networks have efficiently been used in tasks
related to neural architecture search [30, 31], which is why we have chosen to explore
them as an option for performing fitness approximation.
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4.2 Neural Architecture Search Without Training

The Neural Architecture Search Without Training (NASWT) score is an alternative ap-
proach for the acceleration of the candidate evaluation step, as it is able to assess the
quality of candidate neural network architectures from their initial state [1]. The NASWT
score can be calculated for networks that use the rectified linear unit (ReLU) activation
function, as it looks at the overlap of these activations between a batch of data points in
order to partially predict a network’s performance after training. The score has a pos-
itive correlation with the trained networks’ accuracy and its calculation only requires a
few seconds on a single GPU, meaning that it is an approach that has the potential to
accelerate candidate evaluation considerably.

A network’s NASWT score is calculated by looking at the rectified linear unit
(ReLU) activations of the network at its untrained state and forming a binary code based
on which ReLU activations are positive and which are zero. Thus, inputs with similar
codes correspond to the same linear region within a network and are therefore more
difficult to disentangle, whereas inputs with different codes are easier to separate. The
Hamming distance between pairs of binary codes of inputs is used in order to determine the
level of dissimilarity of each pair of inputs and construct the kernel matrix to capture the
difference between binary codes of a whole mini batch of input data. The kernel matrix is
calculated by subtracting the distance between pairs of datapoints from the total number
of activations in the network and the final NASWT score is obtained by using the log
determinant of the kernel matrix. The intuition is that if the cross-correlation between
two images is high, that means they’re hard to separate and therefore it’s harder to train
the network, whereas if the cross-correlation is low, i.e. if the Hamming distance between
the binary codes of a pair of inputs is high, then the two inputs have a large distance in
the network’s space thus making it easier for the network to be trained. That is why the
kernel matrix is generally diagonal for the most high-performing networks, as the cross-
correlation between different inputs should be low, allowing only for the diagonal entries
of the matrix to have a high value. The kernel matrices of various untrained NAS-Bench-
201 and NDS-DARTS architectures for a batch of 128 CIFAR-10 images are displayed
in figure 4.1. The NASWT score doesn’t take labels into account, but rather depicts a
network’s flexibility and gives an estimate of which networks are easier to train based on
how easy it is for them to separate the different input datapoints.

Figure 4.2 displays the linear regions that are created based on the binary
codes of ReLU activations. In step 1, each ReLU activation unit splits the input into two
regions based on which nodes are positive and which are zero, thus creating an active and
an inactive region within the input. Step 2 shows the intersections between the active
and inactive regions of all ReLU activation nodes in the first layer (layer A). Step 3 shows
the intersections between all ReLU activations in layers A and each activation in layer B.
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(a) NAS-Bench-201 (b) NDS-DARTS

Figure 4.1: NAS Without Training Score - Kernel Matrices of Untrained Architectures
(as displayed in the original paper [1])

Figure 4.2: NAS Without Training Score - ReLU Activation Binary Codes (as displayed
in the original paper [1])

Finally, step 4 shows the intersections between the ReLU activations of all nodes in layers
A and B, thus creating unique identification patterns for each linear region.
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Chapter 5

Experiments

In order to evaluate acceleration techniques for candidate evaluation in neural architecture
search, we performed two different sets of experiments. In the first set of experiments, we
use a vanilla genetic algorithm as the neural architecture search optimisation method in
order to provide a baseline for comparison, whereas in the second experiment we use an
enhanced evolutionary algorithm (NAS-EA-FA V2) that employs fitness approximation
techniques to reduce the algorithm running time and produce high-performing neural
network architectures. Each experiment is performed on the NAS-Bench-101 dataset and
on the NATS-Bench topology search space dataset.

5.1 Vanilla Genetic Algorithm

In this section, the genetic algorithm that has been used in our experiments is described.
An iterative procedure for a predefined number of iterations (T ) is used. In the first
iteration, a fixed number of architectures is randomly sampled from the search space
to create the initial population. Each architecture is depicted with the use of a binary
sequence that contains information regarding the types of layers of each architecture’s cell
as well as the connections between these layers. Due to the fact that the architectures
have not been evaluated yet, the fitness of each of the sampled architectures is set to zero.
In each iteration, the parents are chosen with the use of a tournament selection scheme
with a fixed tournament size, whereas the offsprings are derived from the parents with the
use of bitwise mutation in order to alter some of the types of layers as well as some of the
connections between them. The layer mutation rate and the connection mutation rate are
constant and defined at the start of the procedure. The new population is created with
the use of the “replace oldest” strategy, i.e. by replacing all parents with the generated
offsprings.

Two different sets of experiments have been conducted; the first set of exper-
iments uses the validation accuracy as the architectures’ fitness measure, which is the
standard choice for evolutionary neural architecture search approaches. The use of the
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validation accuracy as fitness measure means that each architecture in the population
needs to be trained and evaluated on a specific dataset in order for the algorithm to
assess its quality, which is not convenient due to time and computational power require-
ments. For this reason, a second set of experiments was conducted, where the NASWT
score was used as fitness measure for the architectures in the population. The use of the
NASWT score considerably reduces the time required for the search procedure, as it is
able to evaluate each architecture within a few seconds on a single GPU.

5.2 NAS-EA-FA V2

NAS-EA-FA V2 is used as a means of accelerating the neural architecture search proce-
dure, as it operates with the use of a fitness approximation model to estimate the fitness
of candidate architectures, thus requiring the candidate evaluation of only a small number
of architectures in each iteration to provide training data for the fitness approximation
model. The fitness of the remaining architectures in each iteration is instantly estimated
with the use of the fitness approximation model, which is trained in each iteration of the
algorithm with the use of the available training data.

The algorithm performs an iterative procedure for a predefined number of iter-
ations (T ), which is described below: In the first iteration, a number of architectures is
randomly sampled from the search space. The fitness of all architectures in the population
is initialised with a value of zero, as in the beginning of the search process there are no
performance statistics for the architectures. In each iteration, the architectures are sorted
in descending order based on their fitness and the K architectures with the highest fitness
as well as the H architectures with the largest distance from the previously evaluated
architectures are selected to be used as training data for the fitness approximation model.
These K + H architectures are then trained and evaluated, whereas their isomorphisms
are also identified. The training set for the current iteration’s fitness approximation model
is built by appending the K + H architectures and their isomorphisms to the previous
iteration’s training set. In this way, the training set gets larger in each iteration, providing
the model with the opportunity to achieve better predictive performance. The process of
training the fitness approximation model is then performed by using the aforementioned
data as input. Then, a genetic algorithm is used which runs for a predefined number of
generations (G). The genetic algorithm works similarly to the vanilla genetic algorithm
used in the first set of experiments, i.e. by selecting parents with the use of tournament
selection and offsprings with the use of bitwise mutation, whereas the “replace oldest”
strategy is used in each iteration for the creation of the next iteration’s population. How-
ever, this genetic algorithm does not require a training and validation procedure for the
generated offsprings, as their performance is estimated with the use of the trained fitness
approximation model. It is expected that the first few iterations of the algorithm will pro-
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duce mediocre results, as the training data provided to the fitness approximation model
will be fairly limited. As the search process progresses, it is expected that the search algo-
rithm’s performance will improve, as the fitness approximation model’s predictive power
will increase due to the availability of a larger training dataset.

Again, two different options were explored regarding the fitness measure: the
use of the validation accuracy and the use of the NASWT score. In the case where the
validation accuracy is used to assess the produced architectures, the need for training
and evaluating networks is not completely eliminated as K + H architectures need to
be trained in each iteration, but the amount of time that is saved is considerable in
comparison to the vanilla genetic algorithm. In the case where the NASWT score is used
as the fitness score, there is no need to train any architectures, which means that the time
needed for the search process is significantly reduced, but at the same time some some
noise is introduced due to the fact that the score does not provide an absolute measure of
a network’s performance. This noise is added to the noise already present in NAS-EA-FA
V2 due to the use of the fitness approximation model, which estimates the performance
of architectures instead of training them to determine their real performance, meaning
that the results that are produced may not be that accurate.

Furthermore, two different fitness approximation models were considered: an
XGBoost model, which is the model that is used in the original implementation of NAS-
EA-FA V2, and a graph convolutional network that consists of five GraphSAGE layers
with LSTM aggregators, a max pooling layer and two linear layers. The network was
trained with the use of an Adam optimizer and a Mean Squared Error (MSE) loss function,
as the problem that the network is intended to solve is a regression problem. As the use of
a fitness approximation model aims to accelerate the neural architecture search procedure,
the graph convolutional network is trained by using 30% of the dataset as training data
and the remaining 70% as validation data. The summary of the graph convolutional
network model used is displayed in listing 5.1.

Listing 5.1: Graph Convolutional Network Summary

GCN(

(sage_lstm_h_1): SAGEConv(

(feat_drop): Dropout(p=0.0, inplace=False)

(lstm): LSTM(6, 6, batch_first=True)

(fc_self): Linear(in_features=6, out_features=150, bias=False)

(fc_neigh): Linear(in_features=6, out_features=150, bias=False)

)

(sage_lstm_h_2): SAGEConv(

(feat_drop): Dropout(p=0.0, inplace=False)

(lstm): LSTM(150, 150, batch_first=True)
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(fc_self): Linear(in_features=150, out_features=75, bias=False)

(fc_neigh): Linear(in_features=150, out_features=75, bias=False)

)

(sage_lstm_h_3): SAGEConv(

(feat_drop): Dropout(p=0.0, inplace=False)

(lstm): LSTM(75, 75, batch_first=True)

(fc_self): Linear(in_features=75, out_features=37, bias=False)

(fc_neigh): Linear(in_features=75, out_features=37, bias=False)

)

(sage_lstm_h_4): SAGEConv(

(feat_drop): Dropout(p=0.0, inplace=False)

(lstm): LSTM(37, 37, batch_first=True)

(fc_self): Linear(in_features=37, out_features=18, bias=False)

(fc_neigh): Linear(in_features=37, out_features=18, bias=False)

)

(sage_lstm_h_5): SAGEConv(

(feat_drop): Dropout(p=0.0, inplace=False)

(lstm): LSTM(18, 18, batch_first=True)

(fc_self): Linear(in_features=18, out_features=9, bias=False)

(fc_neigh): Linear(in_features=18, out_features=9, bias=False)

)

(pool_1_m): MaxPooling()

(fc1): Linear(in_features=9, out_features=4, bias=True)

(fc2): Linear(in_features=4, out_features=1, bias=True)

)

5.3 Experimental Setup

5.3.1 The NORD Framework

Neural Operations Research and Development (NORD) [32] is a Python framework that
has been released in order to aid the design and development of neural architecture search
pipelines by providing a means of decoupling the process of designing and implementing
such algorithms. The NORD framework also provides an easy way to test neural archi-
tecture search approaches on both benchmark datasets and custom datasets, thus paving
the way for the fair comparison of different ideas concerning the search process.

NORD’s basic functionality includes the neural descriptor class, which takes
graph topologies as input and builds the equivalent neural network architectures, and the
neural evaluator class, which includes everything that is needed for the candidate evalu-
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ation process (i.e. functions for performing training and validation as well as functions
to retrieve precomputed performance statistics from benchmark datasets). The neural
descriptor class contains functions to add layers, add layers sequentially, form and remove
connections between layers and convert neural descriptor objects to NetworkX objects.
The neural evaluator contains functions to load data, set the device that will be used for
training (i.e. CPU or GPU), convert neural descriptor objects to PyTorch neural network
models, set the optimizer, train and test the network, provide information regarding the
training procedure after each epoch, calculate the network’s loss and performance statis-
tics and evaluate both neural descriptor objects and neural network models. NORD has
been used in all experiments conducted within the scope of this thesis in order to easily
evaluate and compare the generated architectures. Furthermore, the functionality of the
neural evaluator class has been extended to support the calculation of the NASWT score
by taking as input the training dataset and the desired size of the batch of data that will
be used for the calculation of the score.

5.3.2 Random Architecture Sampling

In the beginning of the evolutionary neural architecture search procedures that are being
explored in this thesis, the initial population is derived by randomly sampling architectures
from the given search space. The architectures are generated by randomly choosing from
the available types of layers and randomly forming connections between the chosen layers.
In the graph that is generated for each of the sampled architectures, the nodes depict the
layers, whereas the edges represent the connections between layers. During the generation
process it is possible to generate architectures that contain nodes that have either no input
or no output connections, leading to the creation of inconsistent architectures. In order to
resolve this issue, all generated architectures are being checked in order to identify such
cases and the nodes without input or output connections are pruned, meaning that the
resulting population contains architectures with different numbers of layers.

5.3.3 Parameter Values

The parameter settings used for the experiments that were conducted are reported in
table 5.1. The values of the parameters generally follow the original implementation of
NAS-EA-FA V2.
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Table 5.1: Parameter Values

Algorithm Parameter Value

Vanilla genetic algorithm

Population size 100
Tournament size 20%

Layer mutation rate 1/5
Connection mutation rate 1/21

Number of generations 100

NAS-EA-FA V2

Population size 100
Tournament size 20%

Layer mutation rate 1/5
Connection mutation rate 1/21
Number of iterations (T ) 10

Number of generations (G) in each iteration 10
K 30
H 20

XGBoost learning rate 0.1

Graph convolutional network

Train percentage 30%
Train batch size 64

Validation batch size 64
Number of filters 150

Adam learning rate 0.001
Number of epochs 100
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Chapter 6

Results

In this chapter, the results of the experiments that were conducted as part of this thesis are
reported. The experiments’ aim was to assess the effect of various acceleration techniques
for the candidate evaluation step of neural architecture search procedures, as well as to
compare different acceleration techniques. All experiments were conducted on the NAS-
Bench-101 dataset and on the topology search space of the NATS-Bench dataset.

6.1 Performance Statistics

The first experiment focuses on comparing the performance of a simple genetic algorithm,
the original NAS-EA-FA V2 algorithm where an XGBoost model is used for fitness ap-
proximation and the NAS-EA-FA V2 algorithm where a graph convolutional network is
used for fitness approximation. In this experiment, all algorithms use the validation accu-
racy as the fitness score of candidate architectures. The simple genetic algorithm requires
conducting a training and validation procedure on all the produced architectures, whereas
NAS-EA-FA V2 aims to speed up the process with the use of fitness approximation and
thus requires training and evaluating a only a small number of architectures in each iter-
ation in order to provide training data for the fitness approximation model. In figure 6.1,
the best accuracies of 10 runs are observed, with the mean and 95% confidence interval
displayed. The conclusion that can be drawn is that the simple genetic algorithm pro-
duces better architectures than NAS-EA-FA V2, as NAS-EA-FA V2 seems to restrict the
search space, probably due to the fitness approximation training data selection process,
which selects the best performing architectures in each iteration and the architectures
with the largest distance from the previously trained architectures. The difference in the
performance of the algorithms is more apparent in the case of NATS-Bench than in the
case of NAS-Bench-101. Furthermore, it seems that the simple genetic algorithm is more
stable in the sense that the accuracies of the best architectures it produces do not change
as much as the accuracies of the best architectures produced by NAS-EA-FA V2, as the
simple genetic algorithm’s 95% confidence interval is narrower. Concerning the compari-
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son between XGBoost and the graph convolutional network, the XGBoost model seems to
perform better in the case of NAS-Bench-101, whereas the graph convolutional network
achieves better performance in the case of NATS-Bench, thus a definitive conclusion as
to the best choice of fitness approximation model cannot be reached.

0 20 40 60 80 100
Epoch

93.25

93.50

93.75

94.00

94.25

94.50

94.75

95.00

95.25

Va
lid

at
io

n 
Ac

cu
ra

cy
 (%

)

NAS-Bench-101

Genetic algorithm train
NAS-EA-FA V2 XGBoost train
NAS-EA-FA V2 GCN train

(a) NAS-Bench-101 - Best Validation Accuracy

0 20 40 60 80 100
Epoch

92.75

93.00

93.25

93.50

93.75

94.00

94.25

94.50

Te
st

 A
cc

ur
ac

y 
(%

)

NAS-Bench-101

Genetic algorithm train
NAS-EA-FA V2 XGBoost train
NAS-EA-FA V2 GCN train

(b) NAS-Bench-101 - Best Test Accuracy

0 20 40 60 80 100
Epoch

87.00

88.00

89.00

90.00

91.00

Va
lid

at
io

n 
Ac

cu
ra

cy
 (%

)

NATS-Bench

Genetic algorithm train
NAS-EA-FA V2 XGBoost train
NAS-EA-FA V2 GCN train

(c) NATS-Bench - Best Validation Accuracy

0 20 40 60 80 100
Epoch

87.00

88.00

89.00

90.00

91.00

Te
st

 A
cc

ur
ac

y 
(%

)

NATS-Bench

Genetic algorithm train
NAS-EA-FA V2 XGBoost train
NAS-EA-FA V2 GCN train

(d) NATS-Bench - Best Test Accuracy

Figure 6.1: Genetic Algorithm Train - NAS-EA-FA V2 XGBoost Train - NAS-EA-FA V2
GCN Train - Best Accuracy of 10 Runs (mean and 95% confidence interval displayed)

The second experiment aims to assess the effectiveness of the NASWT score as
fitness measure. We use a simple genetic algorithm and NAS-EA-FA V2 as optimisation
methods for the neural architecture search procedure and experiment with the NASWT
score as fitness measure by using different data batch sizes for its calculation. The obser-
vation that can be made is that the simple genetic algorithm produces better architectures
than NAS-EA-FA V2 as can be seen in figures 6.2a, 6.2b, 6.3a and 6.3b, but is worse at
identifying the best-performing architectures as can been in figures 6.2c, 6.2d, 6.3c and
6.3d. Thus, in the case where the NASWT score is used as the fitness score, NAS-EA-FA
V2 seems to be a better choice than the simple genetic algorithm. Regarding the batch
size of the NASWT score, it seems that a larger batch size doesn’t always guarantee better
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performance. By looking at the results we can conclude that in the case of NAS-Bench-
101, the simple genetic algorithm performs better when the NASWT score is calculated
with the use of a batch size of 128, whereas in the case of NAS-EA-FA V2, the NASWT
score with a batch size of 512 yields the best results. In the case on NATS-Bench, it seems
that the best performance is reached with the use of the NASWT score with a batch size
of 128 for both the vanilla genetic algorithm and NAS-EA-FA V2.
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Figure 6.2: Genetic Algorithm NASWT - NAS-EA-FA V2 NASWT - NAS-Bench-101 -
Best Accuracy of 10 Runs (mean and 95% confidence interval displayed)

In order to draw our final conclusions, we also created some comparative dia-
grams between different approaches for the acceleration of candidate evaluation. Methods
that use both the validation accuracy and the NASWT score are included, in order to
provide a means of assessing the validity of each of the proposed fitness scores. In fig-
ures 6.4 and 6.5, three approaches that use the validation accuracy as fitness score and
two approaches that use the NASWT score with a batch size of 32 are considered. The
first three approaches include a simple genetic algorithm, NAS-EA-FA V2 with the use of
an XGBoost model for the fitness approximation and NAS-EA-FA V2 with a fitness ap-
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Figure 6.3: Genetic Algorithm NASWT - NAS-EA-FA V2 NASWT - NATS-Bench - Best
Accuracy of 10 Runs (mean and 95% confidence interval displayed)

proximation graph convolutional network model. The remaining two approaches, which
assess the quality of candidate architectures with the use of the NASWT score, are a
simple genetic algorithm and NAS-EA-FA V2 with the use of an XGBoost model. It
can be seen that the simple genetic algorithm generally produces better architectures
than NAS-EA-FA V2 regardless of the chosen fitness measure for reasons that have been
mentioned above. NAS-EA-FA V2 with the use of XGBoost and the validation accuracy
as the fitness measure seems to produce similar architectures with NAS-EA-FA V2 with
the use of XGBoost and NASWT score as the fitness measure, whereas the approach
where NAS-EA-FA V2 uses a graph convolutional network as fitness approximator seems
to produce slightly worse architectures than the two aforementioned approaches in NAS-
Bench-101 and slightly better architectures than the two aforementioned approaches in
NATS-Bench. However, it is apparent that the NASWT score is not capable of accurately
distinguishing the best-performing architectures, as can be seen in figures 6.4c, 6.4d, 6.5c
and 6.5d. Therefore, it seems that NAS-EA-FA V2 with the use of the validation accu-
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racy as fitness score is preferred over the use of the NASWT score for the acceleration of
the neural architecture search process, even though NAS-EA-FA V2 requires the training
and evaluation of some architectures to provide training data for the fitness approxima-
tion model. In the case of NAS-Bench-101, the best-performing acceleration technique
is NAS-EA-FA V2 with the use of XGBoost, whereas in the case of NATS-Bench, the
graph convolutional network as fitness approximation model produces better results than
XGBoost.
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Figure 6.4: Comparison 1 - NAS-Bench-101 - Best Accuracy of 10 Runs (mean and 95%
confidence interval displayed)

Furthermore, in figures 6.6 and 6.7, the same comparison was performed with
the use of the best-performing NASWT score approaches in terms of batch sizes. The
conclusion that can be drawn is the same as the one drawn from the previous comparative
diagrams. Although altering the batch size of the NASWT score may lead to discovering
slightly better architectures, the NASWT score’s correlation with the validation accuracy
seems to not be strong enough in order for the score to be able to identify the best-
performing architectures, meaning that the validation accuracy is still a more accurate
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Figure 6.5: Comparison 1 - NATS-Bench - Best Accuracy of 10 Runs (mean and 95%
confidence interval displayed)

measure of candidate architectures’ performance. However, the NASWT score may be a
preferred choice in cases where the time and computational resources are severely limited,
as the fact that no full training and evaluation is required means that the use of the
NASWT score as fitness measure may be capable of discovering adequate architectures
quickly and cheaply, although a compromise on the quality of the produced architectures
will need to be made.

6.2 Validation Accuracy Distributions

Figures 6.8 and 6.9 display the distributions of the validation accuracies of the architec-
tures produced by the different variations of the genetic algorithm and NAS-EA-FA V2
search procedures. In the case of NAS-Bench-101, the majority of the produced archi-
tectures have a validation accuracy between 90% and 95%, whereas there is also a small
peak around 85%, which probably depicts architectures that are generated at the start
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Figure 6.6: Comparison 2 - NAS-Bench-101 - Best Accuracy of 10 Runs (mean and 95%
confidence interval displayed)

of the search procedure. In the case of NATS-Bench, we observe two peaks in the valida-
tion accuracy distributions. The highest peak is at around 90%, whereas there is also a
lower peak at around 10%, probably representing architectures that appear at the start
of the search procedure. We observe that the distributions of the validation accuracies
are broader in the case of NATS-Bench, meaning that with the use of the NATS-Bench
topology search space the search procedure produces architectures that are more diverse
in terms of validation accuracy compared to when the NAS-Bench-101 search space is
used.

The first observation that can be made is that the architectures produced when
the graph convolutional network is used for the fitness approximation produce a validation
accuracy distribution that is broader than that of the case where XGBoost is used as a
fitness approximation model as well as that of the vanilla genetic algorithm that uses the
validation accuracy as fitness. Concerning the case where the NASWT score is used as
the fitness score, we observe that in the case of the NATS-Bench topology search space,
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Figure 6.7: Comparison 2 - NATS-Bench - Best Accuracy of 10 Runs (mean and 95%
confidence interval displayed)

the validation accuracy distributions have a somewhat sharper peak in the case where the
genetic algorithm is used as optimisation method.

In order to determine whether the validation accuracies produced by the pro-
posed approaches belong to the same distributions, the two-sample Kolmogorov-Smirnov
test [33] was used. The results can be seen in table 6.1. The conclusion that can be
drawn is that the validation accuracies that are produced with the use of the vanilla ge-
netic algorithm belong to different distributions compared to the validation accuracies of
the architectures that NAS-EA-FA V2 produces.
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Figure 6.8: NAS-Bench-101 - Distributions of the Validation Accuracies of the Produced
Architectures

Table 6.1: Kolmogorov-Smirnov Two-Sample Test
Benchmark Method 1 Method 2 Statistic P-Value

NAS-Bench-101

Genetic algorithm train NAS-EA-FA V2 XGBoost train 0.211 8.02 · 10−98

Genetic algorithm train NAS-EA-FA V2 GCN train 0.5538 0.0
Genetic algorithm NASWT (Batch size: 32) NAS-EA-FA V2 XGBoost NASWT (Batch size: 32) 0.2698 1.89 · 10−160

Genetic algorithm NASWT (Batch size: 64) NAS-EA-FA V2 XGBoost NASWT (Batch size: 64) 0.2216 6.14 · 10−108

Genetic algorithm NASWT (Batch size: 128) NAS-EA-FA V2 XGBoost NASWT (Batch size: 128) 0.202 1.24 · 10−89

NATS-Bench

Genetic algorithm train NAS-EA-FA V2 XGBoost train 0.5566 0.0
Genetic algorithm train NAS-EA-FA V2 GCN train 0.5694 0.0

Genetic algorithm NASWT (Batch size: 32) NAS-EA-FA V2 XGBoost NASWT (Batch size: 32) 0.327 6.40 · 10−237

Genetic algorithm NASWT (Batch size: 64) NAS-EA-FA V2 XGBoost NASWT (Batch size: 64) 0.3652 8.18 · 10−297

Genetic algorithm NASWT (Batch size: 128) NAS-EA-FA V2 XGBoost NASWT (Batch size: 128) 0.342 1.40 · 10−259
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Chapter 7

Conclusion

Deep learning techniques are widely used in today’s society, as their representation and
predictive power can be leveraged to solve various different problems. As the success
of deep learning relies on the selection of an appropriate neural network architecture
for the given task, the task of automatically selecting neural network architectures has
recently become a topic of research. This is how the field of neural architecture search has
emerged, which is a subfield of automated machine learning that aims to automatically
decide on optimal neural network architectures by leveraging the power of optimisation
algorithms. Neural architecture search has so far succeeded in discovering state-of-the-art
architectures for a wide range of problems.

The neural architecture search procedure requires performing candidate eval-
uation in order to determine the quality of architectures that are generated during the
search process and thus guide the search towards selecting high-performing neural net-
work architectures. The candidate evaluation process is typically a time-consuming and
computationally-intensive process, as it is typically performed with the use of a standard
training and validation procedure of all the generated architectures on a given dataset.
This thesis focuses on the acceleration of candidate evaluation in neural architecture search
by employing various acceleration techniques and assessing their effect on the search pro-
cedure and the quality of the produced architectures. We explored the possibility of using
fitness approximation models to estimate the candidate architectures’ fitness instead of
calculating it directly. The use of two different fitness approximation models, an XGBoost
model and a graph convolutional network model, was investigated. Furthermore, the use
of the NASWT score as the fitness measure of candidates was investigated. The NASWT
score requires no training and can be calculated within a few seconds on a single GPU,
thus providing a cheap alternative to the validation accuracy, which is usually the chosen
fitness measure of candidate architectures in neural architecture search processes. Exten-
sive experiments were conducted on two neural architecture search benchmark datasets
with an aim of determining the effect of the proposed acceleration techniques.

The results of our computational study show that the use of a fitness approx-
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imation model introduces noise to the neural architecture search process, as there is no
direct correspondence between the estimated fitness and the real fitness of candidate ar-
chitectures. Moreover, the use of fitness approximation models seems to narrow down the
search space and force the search algorithm to only explore specific regions of the search
space, which may lead to excluding the best-performing architectures. Concerning the
NASWT score, is seems that it is able to guide the search to produce high-performing
architectures and that is does not impose any restrictions on the search space, however
it is unable to accurately distinguish the best-performing architectures, meaning that it
is not an accurate enough measure of a network’s performance after training. As the
NASWT score succeeds in guiding the search towards optimal architectures, it might be
possible to use it along with another fitness measure. In such a setting, the NASWT score
could be used to accelerate the search procedure and another fitness measure could then
be used to identify the best-performing architectures.

Although this study has been quite extensive, there is still room for further
experimentation. Future work may include the investigation of the behaviour of other
machine learning models as fitness approximators, as well as the use of other metaheuris-
tics as optimisation methods for the search procedure. Potential metaheuristics that could
be explored are particle swarm optimisation and ant colony optimisation. Furthermore,
as this thesis focused on evolutionary neural architecture search, it might be useful to
investigate the use of acceleration techniques in cases where other optimisation methods,
such as reinforcement learning and Bayesian optimisation, are used in order to explore
the search space.
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