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Abstract

In recent years, neural networks in the form of deep learning have re-ignited
a widespread interest in artificial intelligence. The applications that leverage
deep learning have automated several conceptionally easy tasks that are hard
to express algorithmically. Examples include identifying objects in an image,
counting the number of occurrences for the same object, autonomous driving
and accurate speech-to-text.

While deep learning enables the automation of such tasks without explicitly
instructing the machine, intricate neural architectures are employed. These ar-
chitectures require several person-hours and computational resources to design
them. Furthermore, expertise both in neural networks and in the specific field of
application are pre-requisites.

Neural architecture search aims to automate the process of designing the net-
works by several different approaches, including metaheuristics, reinforcement
learning, and differentiable methods. This thesis employs and studies parallel
and distributed neural architecture search algorithms. The efficiency and effec-
tiveness of the implemented algorithms are studied and speed-up techniques that
are widely adopted but have not been studied in-depth before. Furthermore,
under the scope of the thesis, an open-source library aimed at distributed neural
architecture search has been developed. Finally, the thesis contributes to the field
of neural architecture search by verifying the effectiveness and showing the limita-
tions of methods such as reduced epoch training, distributed evolutionary search
methods, distributed differentiable methods, and employing neural architecture
search methods for graph convolutional networks.
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Chapter 1

Introduction

In the past decade, neural networks empowered by the development of General-
Purpose Graphics Processing Units (GPGPUs) have propelled the automation
of various conceptually easy but implementation-wise challenging tasks. For ex-
ample, discerning between images of a cat and a dog [1], or a shoe and a skirt
[2]. As humans, we know what differentiates a dog and a cat, but coding this
intuitive knowledge is hard. Convolutional neural networks have allowed us to
avoid this need by learning features of objects autonomously. Given that a neu-
ral network can identify an object of interest, it can perform simple deductions,
such as counting the number of objects in an image (hence conceptually easy
tasks). Following the success in easier domains, researchers have invented ways
to leverage this feature learning ability of neural networks. For example, instead
of recognizing images, networks can be trained to transfer painting styles from
one image to another [3], scale-up images while enhancing their details (utilized
extensively in gaming) [4], animate 3d characters in a realistic fashion [5], and
even change seasons in a landscape image [6].

Although these applications utilize neural networks, they require specific ar-
chitectures, usually accompanied by a high computational cost. Moreover, archi-
tectures can vary significantly between applications. Recently, researchers have
been trying to automate neural networks further due to the trial-and-error pro-
cess of creating these architectures and the computational and wall-clock time
cost of experimenting. The same driving force behind the original explosion of
neural networks, i.e., GPGPUs, is now enabling the automation of neural archi-
tecture construction. The field concerned with researching methods for this level

1



1. Introduction 2

of automation has adopted the name Neural Architecture Search, and related pa-
pers follow an exponential yearly increase (except for 2021) 1.1. There have been
many breakthroughs and state-of-the-art resulting architectures throughout the
years [7, 8, 9, 10], but NAS is a predominate niche field. This thesis aims to make
NAS more accessible by proposing a NAS framework and library. Leveraging this
library, we also study parallelized and accelerated NAS methods.

Figure 1.1: NAS papers per year.

1.1 Neural Networks

Neural networks are computational systems loosely representing a brain’s struc-
ture. Their most essential component is the neuron, practically a multi-variable
function. It computes a weighted sum of its inputs and then applies a non-linear
(activation) function to the result. Given that an image has many pixels which
are treated as individual variables, traditional neurons proved inefficient, and
convolutional layers were proposed [11]. Instead of applying a specific weight
to each variable, convolutional layers have a set number of filters, each with a
trainable weight matrix (kernel). Kernels allow location-invariant feature learn-



1. Introduction 3

ing while reducing the number of parameters required to process a specific image
size. Graph Convolutional Networks [12] extend the concept of convolution to
graph-like structured data, enabling feature learning from such structures.

Neural networks utilize the backpropagation of errors to optimize their weights.
How these errors are utilized can significantly impact a network’s training speed
and quality (generalization ability). There have been proposed several optimiza-
tion algorithms [13], with mini-batch gradient descent (SGD) employing Nesterov
momentum and Adam being the most popular.

Training a neural network entails splitting the training data into batches
(for numerical stability and memory constraints), predicting the target variable,
back-propagating the errors and updating the weights accordingly. An epoch
has passed when all the batches in a dataset have been processed. A network
may train for a set number of epochs or until no further improvements in the
validation set are observed.

1.2 Accelerating Neural Architecture Search

Due to the high computational cost of Neural Architecture Search, parallel and
distributed methods were used as researchers employed a considerable number
of GPU workers, even from the earliest works [7]. Other researchers attempted
to lower the cost of NAS by employing proxy tasks [14, 15, 8]. Although these
techniques are widely used in NAS, their impact has not been extensively studied.
Using the library developed in this thesis, we study various proxy tasks and
parallelization of NAS, previously unexplored or where their effects have not
been previously studied.

1.3 Message Passing Interfaces

Message passing interfaces enable the communication of individual processes in
distributed memory systems. MPI (Message Passing Interface) [16] is a message-
passing standard designed to regularize this inter-process communication. It
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allows for point-to-point (i.e., from a single process to another) and collective
communications (i.e., many-to-many, one-to-many, many-to-one). The most triv-
ial functionality specified is synchronous point-to-point communication, usually
in the form of send and recv (receive) functions, indicating the source/target
process and data to transmit. Collective communications include:

• bcast: broadcast, sending from one process to all others.

• gather: all processes send data to a single process, usually a master.

• reduce: similar to gather but a reduction such as min/max/mean is applied
to the data by the target process.

• scatter: where data from a source process is divided amongst target pro-
cesses.

• barrier: a blocking operation where all processes must reach the specific
code line for any operation to continue.

MPI-like collective communications have recently been incorporated in neural
network libraries such as PyTorch [17] and Tensorflow [18] to allow for distributed
training of neural networks. Although the work in this thesis initially utilized
the Horovod library [19] for distributed training, later, native implementations
of collective communications and distributed training motivated us to migrate to
native PyTorch implementations.

1.4 Thesis Structure and Related Publications

This thesis, as already mentioned, proposes a NAS framework and studies parallel
NAS algorithms and acceleration techniques. Given that the research was con-
ducted during the explosion of NAS literature, we focused on the most impactful,
contemporary methods and techniques. The thesis is structured in an incremen-
tal manner, where each chapter utilizes concepts and knowledge from previous
chapters. Below each chapter is briefly presented, while Table 1.1 summarizes
publications related to each chapter.
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Chapter 2 introduces basic NAS concepts and algorithms. NAS search spaces,
search methods, and evaluation methods are discussed. Finally, we present the
reinforcement learning approach of the NAS paper [7]2016 that sparked extended
interest in NAS, genetic and evolutionary methods, as well as the paper that
introduced backpropagation as means to optimizing architectures.

Chapter 3 presents NORD, our proposed NAS library. Essential components
of NORD such as descriptors, evaluators and the distributed environment are
presented together with examples and implementations of basic NAS algorithms.

Chapter 4 studies the effect of various optimizers on relative ranking between
trained architectures. As some optimizers tend to converge faster, we study a
reduced-epochs approach to evaluating neural architectures and the effect on
fully trained architectures. Here, distributed computing is utilized to evaluate
the architectures.

Chapter 5 studies the effect of reduced epoch training, building on chapter 4
and extending the study to benchmark datasets, and larger networks. Te results
further show that noise cannot be avoided for proxy tasks, although its merits
can potentially out-weight the drawbacks of induced noise.

Chapter 6 employs a distributed method that combines elements from two
NAS methods, DeepNEAT [20], and Regularized Evolution [21], and utilizes
proxy training tasks to find optimal architectures in a global search space for the
Fashion-MNIST dataset, achieving a state-of-the-art accuracy for global search
spaces.

Chapter 7 utilizes the method from chapter 6 to find a graph-convolutional
architecture that can predict the relative performance of other neural architec-
tures. By utilizing the graph structure of the dataset architectures instead of
feature maps (as was previously done), the method achieves better results than
the previous state-of-the-art model.
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Chapter 8 studies parallelization effects for differentiable NAS methods. As
[9] provided considerable computational cost reduction, most work conducted on
this sub-field of NAS is concerned with improving the original method. As such,
parallelization of the method had not been previously studied.

Chapter 9 discusses limitations and future directions.

Table 1.1: Table of related publications.

Chapter Publication Type
2 An introduction to neural architecture search for

convolutional networks [22]
arXiv pre-print

3 Towards automated neural design: An open
source, distributed neural architecture research
framework [23]

Conference

3 NORD: A python framework for Neural Archi-
tecture Search [24]

Journal

4 Comparison of Neural Network Optimizers for
Relative Ranking Retention Between Neural Ar-
chitectures [25]

Conference

5 The effect of reduced training in neural architec-
ture search [26]

Journal

6 Regularized Evolution for Macro Neural Archi-
tecture Search [27]

Conference

7 Evolving graph convolutional networks for neu-
ral architecture search [28]

Journal

8 The Effectiveness of Synchronous Data-parallel
Differentiable Architecture Search, Approved for
publication, EANN2022

Conference



Chapter 1 References

[1] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” 2009.

[2] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[3] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style transfer:
A review,” IEEE transactions on visualization and computer graphics, 2019.

[4] A. Watson, “Deep learning techniques for super-resolution in video games,”
arXiv preprint arXiv:2012.09810, 2020.

[5] F. G. Harvey, M. Yurick, D. Nowrouzezahrai, and C. Pal, “Robust motion
in-betweening,” ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp.
60–1, 2020.

[6] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, “Manipulating attributes of
natural scenes via hallucination,” ACM Transactions on Graphics (TOG),
vol. 39, no. 1, pp. 1–17, 2019.

[7] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 11 2016. [Online]. Available: http://arxiv.org/abs/1611.01578

[8] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 8697–8710, 7 2018. [Online]. Available: http://arxiv.org/abs/1707.07012

[9] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 7th International Conference on Learning Representations, ICLR
2019, 6 2018. [Online]. Available: http://arxiv.org/abs/1806.09055

7

http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1806.09055


Chapter 1 References 8

[10] M. S. Tanveer, M. U. K. Khan, and C.-M. Kyung, “Fine-tuning darts for im-
age classification,” in 2020 25th International Conference on Pattern Recog-
nition (ICPR). IEEE, 2021, pp. 4789–4796.

[11] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, contour and grouping in computer vision.
Springer, 1999, pp. 319–345.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” pp. 1024–1034, 2017.

[13] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[14] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” pp. 2423–2432, 2018.

[15] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hier-
archical representations for efficient architecture search,” 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 11 2018. [Online]. Available: http://arxiv.org/abs/1711.00436

[16] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing inter-
face,” Supercomputer, vol. 12, pp. 56–68, 1996.

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

http://arxiv.org/abs/1711.00436
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Chapter 1 References 9

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265–
283. [Online]. Available: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf

[19] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[20] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep neural
networks,” in Artificial Intelligence in the Age of Neural Networks and Brain
Computing. Elsevier, 2019, pp. 293–312.

[21] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for
image classifier architecture search,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 4780–4789, 7 2019.

[22] G. Kyriakides and K. Margaritis, “An introduction to neural architecture
search for convolutional networks,” arXiv preprint arXiv:2005.11074, 2020.

[23] G. Kyriakides and K. Margaritis, “Towards automated neural design: An
open source, distributed neural architecture research framework,” in Proceed-
ings of the 22nd Pan-Hellenic Conference on Informatics, 2018, pp. 113–116.

[24] G. Kyriakides and K. Margaritis, “Nord: A python framework for neural
architecture search,” Software Impacts, vol. 6, p. 100042, 2020.

[25] G. Kyriakides and K. Margaritis, Comparison of Neural Network Optimizers
for Relative Ranking Retention Between Neural Architectures, 2019, vol. 559.

[26] G. Kyriakides and K. Margaritis, “The effect of reduced training in neural
architecture search,” Neural Computing and Applications, pp. 1–12, 2020.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf


Chapter 1 References 10

[27] G. Kyriakides and K. Margaritis, “Regularized evolution for macro neural
architecture search,” in IFIP International Conference on Artificial Intelli-
gence Applications and Innovations. Springer, 2020, pp. 111–122.

[28] G. Kyriakides and K. Margaritis, “Evolving graph convolutional networks
for neural architecture search,” Neural Computing and Applications, vol. 34,
no. 2, pp. 899–909, 2022.



Chapter 2

Background on Neural Architecture
Search

This chapter presents basic Neural Architecture Search components and algo-
rithms. All of the material in this chapter is utilized later in the thesis. A good
understanding is beneficial and allows the reader to follow the rest of the chapters
more quickly.

2.1 Search Spaces

The first component of NAS which significantly impacts the generated architec-
tures structure is the search space from which these architectures are generated.
The search space directly dictates the possible architectures that can be gener-
ated and evaluated from the search algorithm. For example, assuming that a
neural network can be represented by a computational graph G, the search space
defines a set of all possible graphs S for the given NAS method. As such, a NAS
algorithm aims to select the best computational graph G∗ ∈ S. Search spaces
can be distinguished into global search spaces, cell search spaces, and hierarchical
search spaces. In this chapter, we present all three approaches and some notable
examples.

11
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2.1.1 Global Search Spaces

The first, more general approach is to define a global optimization search space,
which allows the optimization algorithm to generate arbitrary network architec-
tures. There are relatively few restrictions concerning the network structure in a
global search space. The algorithm determines the network’s layers type, hyper-
parameters, and inter-layer connectivity. Usually, some restrictions exist, such as
the input and output structure of the network, But the design algorithm is free
to decide for the majority of the network’s architecture.

A global search space is the first search space utilized for modern NAS in
[1], consisting of successive convolutional layers of variable filter number, height,
width and stride with skip connections. Many other works also utilized global
search spaces following this original NAS work. In DeepNEAT [2] the authors
also utilize a global search space of layer blocks, where each block utilizes a
convolutional layer of variable filter number and size, followed by a dropout and
possibly a pooling layer. The algorithm optimizes these variables and the connec-
tions between (but not within) blocks. Furthermore, each candidate architecture
optimizes a set of training hyper-parameters (such as optimizer and data aug-
mentation parameters). DENSER [3] creates networks at least 3 layers deep and
up to a maximum of 30 convolutional and pooling layers and up to 10 fully-
connected layers. In Deepswarm [4], the search space consists of sequentially
connected networks consisting of convolutional, pooling and batch normalization
layers.

2.1.2 Cell Search Spaces

Realizing that the global search spaces are possibly too big for design algorithms
to be efficient, researchers started imposing restrictions on the size and diversity
of search spaces. Furthermore, inspired by the observation that many state-of-
the-art handcrafted-architectures exhibited repetitive patterns in their design,
such as ResNet [5] and VGG [6], The researchers started utilizing templates
with repetitive patterns and utilized NAS algorithms in order to optimize the
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architecture of these patterns. These patterns in NAS literature are referred to as
cells, and consequently, search spaces that utilize and optimize cell architectures
are called cell search spaces.

Employing cell search spaces limits the optimization algorithm’s freedom to
generate arbitrary networks but narrows the search into regions of the global
search space, where suitable architectures are expected to be found. Utilizing
cell search spaces requires prior knowledge regarding architectures that work
well in the given application domain. Furthermore, considerably more time has
to be invested in designing the search space when compared to global search
spaces. Nonetheless, cell search spaces have provided state-of-the-art networks
for various datasets, such as Fashion-MNIST [7].

A common cell search space is the NASNet search space, first proposed in [8].
NASNet optimizes two distinct cell types; normal and reduction cells. Normal
cells are stacked on top of each other, and after every Nth normal cell, a reduction
cell follows. Each cell receives as input the output of its two previous cells. As
such, cell i should receive input from cells i− 1, i− 2. Inside the cell, there are B

hidden states, which apply an operation (convolutional or pooling layer) to the
outputs of two previous hidden states and combine the results. Many later works
utilize cell search spaces. Some of them, such as [9], refrain from searching both
a normal as well as a reduction cell. Instead, a max-pooling operation is applied
after every Nth cell to reduce the internal representation’s size. Normal cells
dictate that all layers will have a stride of 1, while reduction cells dictate that
their layers have a stride of 2. In [10], normal cells dictate that their layers will
have a stride of 1, while reduction cells dictate that their layers have a stride of
2. This work led to [7], which by fine-tuning the macro-architecture template to
include an attention module after each cell, fixed operations between specific cells
and a dual stem approach, were able to generate the state-of-the-art network for
Fashion-MNIST. Figure 2.1 compares a typical cell search space to a global search
space and the VGG16 architecture [6]. VGG16 contains a repeating pattern of
two or three convolutional layers followed by a reduction layer. A typical cell
search space mimics this repeating pattern by stacking N normal cells, followed
by a reduction cell.
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Figure 2.1: Comparison between VGG16 architecture, global, and cell search
spaces.
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2.1.3 Hierarchical Search Spaces

Cell search spaces provide means to leverage prior domain-specific knowledge,
leading to state-of-the-art networks for given datasets. Consequently, their main
disadvantage is the requirement for this prior knowledge and the possibility
of introducing bias, excluding regions of the global search space where even
better-performing architectures may exist. Furthermore, this prior knowledge
requirement can apply even when searching for an architecture in a well-known
dataset, where traditional metrics (such as top K accuracy) accompany novel
ones (such as inference latency). In such cases, the existing knowledge regarding
well-performing architectures may not translate well to the novel task.

A relevant case can be found in [11], where the algorithm searches for a well-
performing architecture, but latency is evaluated in real-time on mobile hardware
(imposing a novel metric). Here, the authors propose an intermediate solution
for the search space. A hierarchical search space is proposed instead of having a
fixed macro-architecture template of repeating cells. The search space consists of
7 independent blocks, organized sequentially. Each block Bi contains Ni repeating
cells, where Ni is a hyper-parameter, subject to optimization.

Another hierarchical search space is proposed in [12]. In this work, N differ-
ent design patterns are utilized, called motifs. Each motif of level n is a directed
acyclic graph, where each of the graph’s nodes is a motif of level n − 1. Level
1 motifs are various layer types (such as convolutional and pooling layers). For
example, NASNet search space in [8] can be seen as a special case of this hi-
erarchical search space, where there are only two types of level 2 motifs and a
single pre-determined level 3 motif (the macro-architecture template). Figure 2.2
depicts a four-level hierarchical search space. Finally, [2] utilizes a search space
which can be seen as a special case of the one in [12] where N = 3.

2.2 Optimization Methods

Long before the advent of deep learning, there have been efforts to automate
the design of dense network architectures through evolutionary algorithms [13]



2. Background on Neural Architecture Search 16

Figure 2.2: Example hierarchical search space.

while also attempting to find optimal weight values. The architecture’s effect
on the network’s modeling capabilities was noticed, despite the simplicity of the
networks, when compared to modern deep architectures. Modern NAS methods
utilize several diverse optimization approaches to the problem of network archi-
tecture, while network weights are usually optimized through gradient descent.
This section is concerned with the presentation of various optimization meth-
ods, mainly those utilized in later parts of the thesis, and some approaches that
greatly influenced the field.

2.2.1 Evolutionary Approaches

Evolutionary algorithms (EAs) are a family of metaheuristic methods for finding
solutions to non-trivial, nonlinear problems. One of the earliest works describing a
computational system adapting to its environment can be found in [14]. Inspired
by biological evolution, the key components of an EA are the mechanisms of
selection, reproduction, crossover and mutation [15]. A population of individuals
(genomes), each representing a specific solution to the same problem (where each
variable is encoded as a gene), is evaluated and assigned a fitness score (i.e.,
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how good is the proposed solution to the problem). Based on these scores and
utilizing a selection strategy, the algorithm chooses a subset of the population
to reproduce. Reproduction can involve crossover and mutation. Crossover is
a binary operator, while mutation is a unary operator. After the reproduction
process is over, the population contains new individuals who should be evaluated.
This process is repeated either for a set number of iterations (called generations)
or until a satisfactory solution is produced. Figure 2.3 depicts the process under
a NAS framework.

Figure 2.3: Example evolutionary procedure under NAS.

Evolutionary programming, which followed a similar path to simulating nat-
ural evolution, had been applied to the domain of neural networks by one of the
domain’s pioneers, Lawrence J Fogel, as early as 1990, in a paper titled "Evolv-
ing Neural Networks" [16]. Although focused on evolving neuron weights, other
researchers had already experimented with generating architectures for dense net-
works [17]. These early works and neural network applications, in general, were
limited due to the computational resources of the time. As such, researchers did
not widely adopt them. More recent works, leveraging the abstraction in neural
architecture that convolutional networks have provided (i.e., logically grouping
neurons in layers and going beyond sequential networks), encode layer types,
connectivity, and hyperparameters in their genes. Figure 2.4 depicts a simple
example of such an encoding. Their choices regarding representations greatly
influence the mutation and crossover operators’ design. Mutation-only methods
are easier to implement as they do not require tracking of gene origins to enable
crossover.
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Furthermore, mutations can be implemented with function-preserving trans-
formations, such as network morphisms, allowing the inheritance of weight val-
ues. Finally, in each generation, there are several individuals for evaluation (i.e.,
training and testing the corresponding network); these methods provide the most
straightforward approach to parallelization. Since each network can be evaluated
by a different GPU worker, with minimal communication overhead, paralleliza-
tion is trivial. Only the network description must be sent to the worker while the
fitness value is returned, imposing minimum communication overhead.

Figure 2.4: Example genome encoding and the corresponding network.

DeepNEAT and CoDeepNEAT

DeepNeat is one of the earlier works utilizing genetic algorithms for the evolu-
tion of convolutional architectures [2]. Both mutations, as well as a crossover,
are employed, following earlier work conducted on evolving topologies for dense
networks [13]. The method utilizes a global search space, where each network
consists of arbitrarily connected convolutional blocks. These blocks consist of the
following layer sequence; a 2d convolutional layer, a dropout layer and a max-
pooling layer. Each block can be parameterized as follows: the convolutional
layer has a set number of filters in the range of [32, 256], a kernel size of either 1
or 3, and its initial weights are scaled by a factor in the continuous range of [0, 2].
The dropout probability is in the range of [0, 0.7], while there is an option to omit
the max-pooling layer. Furthermore, global hyperparameters are also optimized.
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Table 2.1: DeepNEAT hyperparameters, represented by an individual’s genes.

Per-Block Hyperparameter Range
Convolution Layer Number of Filters [32, 256]

Initial Weight Scaling [0, 2.0]
Kernel Size {1, 3}

Dropout Layer Dropout Rate [0, 0.7]
Pooling Layer Max Pooling {True, False}

Global Hyperparameter Range
Optimizer Learning Rate [0.0001, 0.1]

Momentum [0.68, 0.99]
Nesterov Accelerated Gradient {True, False}

Data Augmentation Hue Shift [0, 45]
Saturation/Value Shift [0, 0.5]
Saturation/Value Scale [0, 0.5]
Cropped Image Size [26, 32]
Spatial Scaling [0, 0.3]
Random Horizontal Flips {True, False}
Variance Normalization {True, False}

These include optimizer parameters, such as learning rate and momentum values,
Nesterov’s momentum utilization, and data augmentation parameters. Table 2.1
depicts the hyperparameters represented by each individual’s genes. In order to
use a crossover operator, the researchers track the origins of each gene, which
helps to identify homologous genes between two parents. This tracking, in turn,
allows the algorithm to decide how to treat homologous and non-homologous
genes. Mutation involves the perturbation of selected values.

CoDeepNEAT extends DeepNEAT into a hierarchical search space. Here, the
search space consists of two levels; the first is the design of small network patterns
utilizing DeepNEAT. Then, blueprints are generated, which create networks using
the patterns generated in the first level. Here, two population are co-evolved [18].
One population concerns the generation of the small patterns, while the other
concerns the generation of blueprints. An individual’s fitness depends on other
individuals. For example, a blueprint individual’s fitness depends both on the
blueprint architecture (how the patterns are connected) and the architecture of
each pattern. Similarly, a pattern individual may contribute to a blueprint’s
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Table 2.2: Layer choices in [19]

identity 1x3 then 3x1 convolution
3x3 average pooling 1x7 then 7x1 convolution
3x3 max pooling 3x3 dilated convolution
5x5 max pooling 1x1 convolution
7x7 max pooling 3x3 convolution
5x5 depthwise-seperable conv 3x3 depthwise-separable conv
7x7 depthwise-separable conv

performance but is not solely responsible for it. The authors choose to assign a
blueprint individual the fitness of its generated network, while pattern individuals
are assigned the average fitness of the five best blueprints they participated in.

Regularized Evolution

In [19], the authors utilize an evolutionary approach for cell search spaces. Specif-
ically, they utilize the NASNet search space [8], where reduction cells are added
after N normal cells. Given that the search space is very well defined, each in-
dividual’s genes dictate the layers and connectivity of a normal and a reduction
cell. Possible layer choices (operations or "ops") include several convolution and
pooling setups,as well as an identity layer, summarized in table 2.2.

The proposed algorithm retains a population of P individuals and selects S

random samples as candidate parents at each generation, repeated for G. The
one with the highest fitness score is selected to reproduce from these candidates.
Offspring is generated by applying a mutation operator and evaluating the re-
sulting network. The oldest individual is discarded when the offspring is inserted
back into the population. The authors argue that this acts as regularization in
the evolutionary process, as individuals with a high fitness score attributed to
favorable stochastic conditions (such as network weight initialization, training
trajectory and others) will not linger in the population. As such, after P gen-
erations, the population is entirely new, and only genes from individuals with
sufficiently well-performing architectures have a high enough probability of sur-
viving through their offspring.
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Figure 2.5a depicts a small comparison example between regularized and clas-
sic evolution. Small networks consisting of five sequential layers are trained for
108 epochs on the CIFAR-10 dataset [20]. Each layer is either a 1x1 convolution,
a 3x3 convolution, or a 3x3 max-pooling layer. Mutation consists of selecting a
single layer and randomly assigning a new one with a probability of 0.33 for each
selection, while validation accuracy is used as the fitness function. The algorithm
runs with P = 50, S = 50 (version 1) for 100 generations. The X-axis depicts the
generation number, while the y-axis depicts the current offspring’s network test
accuracy. Figure 2.5b depicts the full run of 1000 generations.

As it is evident by the graphs, the regularization helps to filter out lucky
evaluations, as regularized evolution consistently outperforms classic evolution.
Nonetheless, the algorithm’s hyper-parameters influence the regularization ef-
fect’s magnitude. Repeating the experiment with P = 50, S = 25 (version 2,
Figures 2.5c, 2.5d), we observe a less profound but still visible effect of regular-
ization. For P = 25, S = 10 (version 3, Figures 2.5e, 2.5f) we observe that classic
evolution outperforms its regularized version for some specific epochs.

2.2.2 Reinforcement Learning

Reinforcement learning is a sub-field of machine learning, which significantly
differs from supervised learning. Under a reinforcement learning scheme, instead
of learning how to map input variables to a target variable, the model learns
how to map its inputs to optimal actions. An agent usually utilizes the model to
act optimally within a specific environment. Depending on the problem at hand,
the agent may be rewarded after a single action or multiple successive actions by
reaching a specific point in the environment. Reinforcement learning problems
are usually formulated as a Markov Decision Process (MDP), which is defined by
a 5-tuple (S,A, P,R, γ):

• The set of all available states S in the environment.

• The set of all available actions A to the agent.
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(a) P = 50, S = 50, G = 100 (b) P = 50, S = 50, G = 1000

(c) P = 50, S = 25, G = 100 (d) P = 50, S = 25, G = 1000

(e) P = 25, S = 10, G = 100 (f) P = 25, S = 10, G = 1000

Figure 2.5: Examples of regularized vs classic evolution for NAS. The current
generation is depicted on the X-axis, while current offspring’s network test accu-
racy is depicted on the Y-axis.

• The transition probabilities P , where Pa(s, s
′) is the probability of transi-

tioning from state s to s′, given that action a was performed.

• The reward function R, which defines the agent’s reward Ra(s, s
′) given
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that it transitioned from state s to state s′ by performing action a.

• The discount factor γ ∈ [0, 1], which regulates the importance between
immediate and future rewards.

In a typical reinforcement learning setup, the agent can observe only part of
its environment, given its current state. Thus, to act optimally, the agent must
first explore its environment and gather relevant data concerning the possible
states, actions, and rewards. After the agent has sufficient information, it can
decide on an optimal policy π∗, which dictates its behavior. Assuming a discrete-
time MDP, the agent interacts with the environment at discrete time steps. At
each time step t, being in a state st ∈ S, the agent selects an action at ∈ A and at
time step t + 1 transitions to state st+1 ∈ S, while receiving reward rt+1. When
a terminal state is reached at time T , discounted cumulative rewards Gt can be
calculated for each time step t as follows:

Gt =
T∑

k=0

γkrt+1+k (2.1)

The agent’s trajectory (often called an episode) is used to train the model.
The relevant states, actions, and discounted cumulative rewards are utilized for
each time step to train a model. Depending on the reinforcement learning algo-
rithm, how this information is utilized can vary. For example, Q-learning [21]
learns the value of each possible action at each possible state by retaining a table.
Deep Q-learning replaces the table with a deep neural network [22]. Advantage
Actor-Critic [23] utilizes a deep neural network with two output layers; one layer
models the expected value of the current state (critic) while the other models
the expected value of each possible action (actor). As backpropagation of errors
occurs for the actor layer only locally (errors do not propagate to the main body
of the neural network), the network can learn an internal representation of the
environment from the critic. In contrast, the actor only leverages this internal
representation and does not contribute to its training.
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Neural Architecture Search with Reinforcement Learning

One of the most influential papers in the field of NAS, and the one that coined the
acronym, utilized reinforcement learning in order to design networks in a global
search space [1] consisting of sequential layers with a skip-connection. Repre-
senting a neural architecture in a machine learning-friendly data structure is the
first obstacle when considering reinforcement learning for NAS. In this paper, the
authors represent a network’s architecture as a variable-length string and utilize
a Recurrent Neural Network (RNN) controller to generate the string. Reinforce-
ment learning is used in order to train the controller, using the REINFORCE
algorithm [24], by utilizing the validation accuracy of the final network as the
reward. For each layer, the RNN controller selects the filter height and width,
stride height and width, the number of filters, and previous layers as skip-connect
inputs for the layer. The controller and architecture generation procedure are de-
picted in Figure 2.6.

Figure 2.6: The controller from [1] generating a network.

As reinforcement learning requires a considerable amount of sampled data
to generate a successful policy and episodes in this method are expensive (they
require fully training and testing a network on the target dataset), the authors
employ a distributed training approach. A number of S parameter-server shards
(copies) is generated, where the parameters of K controller replicas are retained.
Each controller replica samples m unique architectures and trains them for a set
number of epochs. Each controller calculates the gradients related to the net-
works it samples and sends them to the parameter server to update all controller
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replicas’ weights. Figure 2.7 summarizes the procedure, which can be decomposed
to the following steps:

• For each controller, generate m architecture strings.

• For each string, compile the corresponding network.

• Train the network for e epochs and save the validation accuracy a.

• Calculate the return of the terminal state by subtracting a baseline b from
a.

• Calculate the discounted rewards for all state-action pairs in the trajectory.

• Calculate the gradients θ for each controller using the mini-batch of m

architectures.

• Send θ from the controller replica to the parameter servers.

• Publish θ from the parameter servers to the other replicas.

2.7.

Figure 2.7: Generating architectures, calculating training data, and sharing pa-
rameter updates.

Although reinforcement learning is generally less efficient than other methods,
requiring more GPU hours per generated final architecture [25], it has played a
significant role in pioneering the field. The original NASNet paper [8] utilized



2. Background on Neural Architecture Search 26

reinforcement learning to generate cells for its novel cell search space, where each
cell consists of B internal hidden states or blocks. Here, the RNN controller
selected for each block inside the cell the following parameters; two previous
hidden states as inputs, an operation (for example, a convolution or pooling
layer) to apply to each input, as well as a method to combine the operations’
results (such as addition or concatenation). The resulting network architecture
with 5 blocks per cell, NASNet-A (Figure 2.8), outperformed various human-
designed architectures on the ImageNet dataset [26], such as Inception V2 [27],
Inception V3 [28], Xception [29], and Inception ResNet V2 [30], requiring less
parameters while also providing better Top-1 and Top-5 accuracy.

Figure 2.8: NASNet-A cell architectures, as depicted in the original paper [8].

2.2.3 Gradient Based Methods

Although evolutionary and reinforcement learning methods could provide state-
of-the-art architectures, they were significantly inefficient. This inefficiency can
largely be attributed to two main factors. The first is the need to train each
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architecture from scratch, even if it is a slight variation of a previously exam-
ined architecture. The second is the discrete representation of architectures in
both approaches. These factors significantly increase the computational resources
required to generate networks. Gradient-based methods were consequently de-
veloped to overcome these limitations.

DARTS: Differentiable Architecture Search

Differentiable Architecture Search (DARTS) [10] proposed a novel way of gener-
ating as well as representing neural architectures. The methods discussed pre-
viously represented neural architectures as graphs, with nodes as computational
elements and edges as data-flow indicators. DARTS also uses computational
graphs, with edges representing both computations and data flow. Nodes only
represent the concatenation of results generated by the computations occurring
in the incoming edges. Leveraging this representation, DARTS relaxes the dis-
crete nature of neural architectures (i.e., having a specific layer type) by allowing
O edges between nodes, one for each available operation. Edges are weighted,
and for each node, all operations with the same origin node apply a softmax
operation. A comparison between the two representations for a computationally
equivalent network can be seen in Figure 2.9. Notice that the edge-operations
representation (left) is more compact, requiring five nodes and six edges, while
the node-operations representation (right) requires ten nodes and eleven edges.

We can consider a set O = {o1, o2, ..., on} of weighted, same-origin operations
as a mixed-operation layer (MixOp layer) ō, with weights a. As such, by applying
a softmax over all operations’ weights, the final output of the MixOp can be
calculated by equation 2.2, assuming that the output of an operation o is o(x).

ō(x) =
∑
o∈O

eao∑
o′∈O eao′

o(x) (2.2)

Darts utilizes MixOp layers during the search, which enables the backprop-
agation of errors for both layer weights w and architecture weights a. A super
network (supernet) is generated, where all possible connections and operations
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Figure 2.9: Comparison of two computationally equivalent computational graphs.
The one on the left utilizes edge operations (similar to DARTS), while the one
on the right utilizes node operations (as in previously discussed methods).

exist simultaneously. Cells of the same type share architecture weights, with nor-
mal cells having a stride of 1 for their layers while reduction cells have a stride
of 2. In each cell, nodes at level i are connected to all lower-level nodes within
the cell. DARTS employs identity operations, which enable skip-connections to
exist between nodes and "Zeroize" operations, which effectively disable the con-
nection between nodes. The set of all operations O employed by DARTS are the
following:

• Zeroize

• Identity

• 3x3 max pooling

• 3x3 average pooling

• 3x3 separable convolution

• 5x5 separable convolution

• 3x3 dilated separable convolution

• 5x5 dilated separable convolution
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In order to optimize both w and a, DARTS solves a bilevel optimization prob-
lem. At each training step, the weights of each individual layer are first optimized
utilizing the training set (Ltrain) , while the architecture weights are then opti-
mized utilizing the validation set (Lval) . Thus, the optimization problem is to
minimize the loss on the validation set w.r.t. a (2.3a), given the layer weights
w*, as they were optimized on the training set (2.3b).

The computational implementation involves sampling a mini-batch from the
training set to calculate Ltrain and backpropagate the errors for w, given a. Then,
a mini-batch from the validation set is utilized to calculate loss Ltrain and back-
propagate the errors for a given the new values of w. The process repeats for a set
number of epochs. After the search concludes, the operation with the strongest
weight is selected, while the others are discarded to generate the final network.
The final network is then trained from scratch for an arbitrary number of epochs.
The process of starting from all possible connections as MixOps, optimizing the
weights, and retrieving the final network is depicted in Figure 2.10 for a 4-node
cell with |O| = 2.

min
a

Lval(w
∗(a), a) (2.3a)

s.t. w∗(a) = argmin
w

Ltrain(w, a) (2.3b)

Although DARTS was able to generate comparable but not vastly superior
architectures to previous works such as [8], it required considerably less compu-
tational power to do so. On the CIFAR-10 dataset [20], DARTS needed 4 GPU-
days to generate networks with 2.76±0.09 Top-1 test error, while [8] needed 2000
GPU-days to generate networks with comparable performance. Other approaches
need from 300 [12] to over 3000 [19] in order to generate comparable or worse
networks. The main drawback of DARTS is its inability to be applied to global
search spaces, mainly due to computational constraints. In the original paper,
the final network contains approximately 3.3 million parameters which require
approximately 12.6 MB of RAM.
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Figure 2.10: The process of searching for a cell with DARTS; (from left to right)
a. starting with all possible connections, b. initializing weights a, c. optimizing
weights (bold edges have greater weights), d. retaining only the strongest edges
for each node pair.

Nonetheless, during the search phase, up to 10 GB of GPU RAM are utilized
due to the need to store gradients and interim results for MixOps. Another
problem is the contradicting need for architecture weights with high entropy at
the beginning of the search (as not to favor non-trainable operations, such as
pooling and Identity) and low entropy at the end (to approximate the collapse
of the continuous distribution to a single operation). These limitations have
led to several methods that try to alleviate them. For example, in [31], a more
memory-efficient and stable version of DARTS is proposed. Other approaches try
to prune the supernet more gradually [32], consider all incoming edges for a node
simultaneously (as opposed to a per-node basis) [33], or make the hypergradient
calculation (gradient of the architecture weights) more stable [34].

2.3 Evaluation Methods

Methods for evaluating intermediate solutions (networks generated during the
search) and comparing NAS methods are essential to keep advancing the field.
Candidate evaluation can significantly affect the computational cost of a search,
while accurate method comparison can help decide on optimal methods for given
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applications. In this section, we present proposed solutions for both of these
problems. These solutions have been utilized or further investigated in the scope
of this thesis.

2.3.1 Candidate Evaluation

Candidate evaluation methods aim to evaluate candidate architectures during a
search. Most search methods consider the relative performance of intermediate
solutions to decide how to advance. For example, evolutionary methods utilize
it as a fitness function, reinforcement learning approaches derive the discounted
rewards from it, while differentiable methods back-propagate errors based on
loss, strengthening the contribution of the best layer in the MixOp. The most
straightforward approach for all of them is to utilize the original dataset to train
and evaluate. Nonetheless, this is the most computationally expensive approach.
Training a single deep learning architecture requires considerable time, and as
such, many methods employ a number of parallel GPU workers to speed up the
process, resulting in many GPU-days of computation [1, 8, 19]. Furthermore,
relative performance is more important than absolute performance during the
search phase, as the final architecture is usually trained from scratch after the
search phase [10, 8, 19]. This realization has led to the utilization of proxy
evaluation methods.

The most intuitive way to reduce the computational cost of evaluation dur-
ing the search is to employ a smaller number of epochs (partial training) and
fully train the final architecture afterward. This approach has been employed in
various works with success, resulting in architectures that out-performed state-of-
the-art human-designed networks [35, 36, 19, 2]. Although satisfactory empirical
results have been observed, some researchers argue that when the proxy evalu-
ation epochs differ significantly from the final evaluation epochs, it should not
be employed [37]. To this extent, when network morphisms are used to evolve
architectures, previously trained weights can be used to warm-start the training
phase, reducing the epochs required to train networks to convergence [35].

The second most intuitive way to reduce candidate evaluation costs is to
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utilize fewer training instances. Utilizing an approach similar to transfer learning,
researchers may opt to search for a neural architecture on a smaller dataset with
similar characteristics to the target dataset and then train the final architecture
on the target dataset [8, 32, 7]. In the spirit of reducing dimensions in the
dataset, some researchers also reduce the dimensions of the candidate networks.
This approach is prevalent in cell search spaces, as the number of cells and number
of filters in layers can be scaled down for search and up for training, [19, 7, 38].

Finally, some approaches strive to avoid training interim solutions. This can
be achieved in two ways; either with a model trained to predict the performance of
a given architecture or by computationally evaluating the data-modeling abilities
of a neural architecture. Predictive models can reduce the evaluation cost by
several orders of magnitude, although a small subset of the architectures has to
be trained and evaluated in order to train the predictive model [39, 40]. On
the other hand, methods that evaluate the relative quality of architectures using
untrained networks have been proposed [41]. This is achieved by measuring the
overlap of activations between data points in a mini-batch of the original data.

2.3.2 Method Comparison

As NAS generating neural architectures is a complex process, and the results
rely heavily on the pipeline chosen to load and pre-process data, implement and
train networks, and guide the search, it is difficult to compare published results
directly. Furthermore, results are usually reported in terms of final architecture
performance, which introduces a second pipeline used to train the final architec-
ture. Different data augmentation, optimizer hyper-parameters and extra regu-
larization techniques can be implemented during the final train, often different
from those used during the search. These problems are understood and docu-
mented by the NAS community, and an effort to establish a fair comparison of
best practices has been made in the recent years [42].

One of the most robust approaches to compare methods is to utilize NAS
benchmarks, aiming to provide a standardized architecture dataset. A well-
known and extensive cell search space dataset is NASBench-101 [43]. Being a
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tabular dataset, it documents 423,624 unique cell architectures, and their per-
formance on the CIFAR-10 dataset [20] for 4, 12, 36, and 108 training epochs.
Only normal cells are considered, stacked in 3 groups of 3, with a down-sample
layer between each group. Cells can have up to 7 nodes and 9 edges in a node-
computational representation, with three-layer types; 3x3 convolutions and 1x1
convolutions, both followed by batch normalization and a ReLU activation layer,
and 3x3 max-pooling. One node represents the input, and one node the output.
As such, each cell has at most 5 computationally active nodes. Figure 2.11 depicts
the outer skeleton, as well as a cell architecture extracted from the original pa-
per. For each architecture-epoch pair, statistics concerning three separate (each
one from scratch) training sessions are available; training, validation, and testing
accuracy, the number of parameters in the final network and training time. Fol-
lowing this original work, there have been many other benchmarks released for
NAS [44, 45, 46, 47].
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Figure 2.11: Neural architecture structure from [43]; (starting from left, clock-
wise) a. the outer skeleton, b. layer selection for a 7-node cell, c. lower-level
calculation in the same cell.
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Chapter 3

A Distributed Neural Architecture
Search Framework

This chapter introduces Neural Operations Research and Development (NORD),
a NAS framework developed and extensively utilized under the scope of this the-
sis. The implemented library is available at https://github.com/GeorgeKyriakides/nord

3.1 The complexity, Cost, and Speedup of NAS

Pipelines

As already discussed, many critical points in a NAS procedure affect the result.
This instability can be attributed to the extensive pipeline used to implement
it, which increases the number of these points; dataset sources, preprocessing
and augmentation, search space, search algorithm implementation, libraries used
to implement the networks, evaluation hyper-parameters, and final architecture
(which can differ from the NAS pipeline) training pipeline. This already complex
NAS pipeline can be even more complicated when parallel or distributed methods
are involved. Although NAS is generally a computationally intense procedure,
the majority of time is spent searching and evaluating architectures. The rest of
the NAS pipeline components require significantly fewer resources. For example,
a conventional DARTS run may require close to 4 days on a GTX1080Ti GPU
to find the optimal architecture for CIFAR10 [1], while downloading CIFAR10
over a 100Mbps connection requires roughly 20 seconds and loading the dataset
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Figure 3.1: Comparison of run times (search algorithm only) and network valida-
tion accuracy between a reinforcement learning and an evolutionary algorithm.

from an average SSD (500 MB/s read speed over SATA III) requires less than
2 seconds. Training the final architecture is usually not considered part of the
computational cost of NAS (as human-designed architectures also undergo this
procedure).

Figure 3.1 depicts the runs on NASBench-101 of a regularized evolution algo-
rithm and a reinforcement learning algorithm, similar to [2] and [3] respectively.
The time required for the search logic itself (i.e., managing the evolved population
or the RL agent) is 0.8 seconds for the evolutionary algorithm and 34.1 seconds
for the reinforcement learning agent. Compared to the time required to load the
data (assuming the search was conducted on CIFAR-10, which NASBench-101
utilizes), which is almost 2 seconds, the search times for reinforcement learning
are considerably higher. Compared to the time required to train the networks,
which is close to 30,000 seconds, or 23 hours and almost 20 minutes, the cost of
search algorithms is negligible.

As NAS has high computational and wall-clock time costs, speeding up the
process is desirable. The most straightforward approach to accelerating any NAS
method with parallel and distributed computing is to focus on network evalua-
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tion. Either data parallelization (distributing each batch to N GPU workers) as
distributed SGD or model parallelization (distributing the network to N workers)
can be employed. As model parallelization is usually more difficult to implement
successfully, more architecture-specific and more communication intense [4], data
parallelization is preferred. The second most straightforward approach is to par-
allelize the search algorithm. Note that search algorithm parallelization aims at
evaluating multiple networks concurrently, rather than a single network. Figure
3.2 shows the NAS pipeline and the parallelizable components in green. Blue com-
ponents can be parallelized, but their relative computational cost is negligible.
Red components cannot be parallelized (Search Space, Network Compilation)
or do not contribute to the overall NAS cost (Final Architecture Training). For
gradient-based approaches, the search algorithm and evaluation overlap. In these
cases, parallelizing the search algorithm, in fact, aims at evaluating the current
architecture in a data-parallel fashion.

3.2 Need for a Framework

Although it can provide significant speedup, Parallelizing NAS methods intro-
duces two major problems. It increases the complexity of implementing a NAS
solution, as well as the complexity of ensuring reproducibility, an already preva-
lent problem in NAS literature [5]. Both of these problems can be alleviated
by establishing a NAS Framework. Benchmark datasets ([6], [7], [8]) provide a
means to fairly compare algorithms, but cannot impose restrictions on how these
algorithms may be applied to other datasets. In this thesis, we propose a NAS
framework and library called NORD (Neural Operations Research and Develop-
ment), based on directed graphs, which represent network or cell architectures
and PyTorch [9]. The aims of NORD are the following:

• Provide an easy to understand programming model.

• Efficiently define, optimize, and evaluate an architecture.

• Standardize the NAS pipeline.
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Figure 3.2: NAS pipeline, parallelizable components in green. Blue components
have negligible relative computational cost, while red components do not con-
tribute to overall cost or cannot be parallelized.
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• Hide network compilation from the user.

• Allow for relatively easy distributed evaluation.

• Allow for a fair comparison between NAS methods for any dataset.

3.2.1 NORD Components

NORD employs a number of basic components based on a standard NAS pipeline;
architecture descriptors, architecture evaluators, data curators and distributed
evaluation environments. In this subsection, we present these components and
their primary usage.

Descriptors

Descriptors allow a user-friendly interface to define and alter architectures. De-
scriptors retain information in a node computational (unlike DARTS’ edge com-
putational) format. As the name implies, a descriptor does not contain instan-
tiated layers and connections. Instead, only a description of the architecture is
retained. Each node’s layer class and parameters are saved along with an op-
tional layer name. Layers can be added sequentially, where each new layer’s
input is the output of the previous layer. Alternatively, a layer can be added
to the descriptor without any connection. The layer can later get connected to
any other layer (either an input or an output) by specifying the names of the
source and destination layers. Furthermore, connections can be removed, again
using layer names. When using Nord, the NeuralDescriptor class can be imported
from nord.neural_nets. An example of describing the network in Figure 3.3 is
provided with PyTorch layers:

1 from nord.neural_nets import NeuralDescriptor

2 import torch.nn as nn

3

4 # Define layer presets

5 conv = nn.Conv2d

6 conv_params = {’in_channels ’: 3,
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Figure 3.3: The network implemented in 3.1.

7 ’out_channels ’: 5, ’kernel_size ’: 3}

8

9 conv_2_params = {’in_channels ’: 5,

10 ’out_channels ’: 10, ’kernel_size ’: 5}

11

12 conv_3_params = {’in_channels ’: 5,

13 ’out_channels ’: 10, ’kernel_size ’: 3}

14

15 pool = nn.MaxPool2d

16 pool_params = {’kernel_size ’: 2, ’stride ’: 2}

17

18 pool2_params = {’kernel_size ’: 2, ’stride ’: 5}

19

20 d = NeuralDescriptor ()

21

22 # Add layers and give them names

23 d.add_layer(conv , conv_params , ’conv’)

24 d.add_layer(conv , conv_2_params , ’conv2 ’)

25 d.add_layer(conv , conv_3_params , ’conv3 ’)

26 d.add_layer(pool , pool_params , ’pool1 ’)

27 d.add_layer(pool , pool2_params , ’pool2 ’)

28
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29 # Add Connections using names

30 d.connect_layers(’conv’, ’conv2’)

31 d.connect_layers(’conv2’, ’conv3’)

32 d.connect_layers(’conv3’, ’pool2’)

33 d.connect_layers(’conv2’, ’pool1’)

34 d.connect_layers(’pool1’, ’pool2’)

Listing 3.1: Descriptor example

Evaluators

Evaluators allow the network compilation of an architecture described by a Neu-
ralDescriptor and its evaluation on a specified dataset. They are responsible for
ensuring that a viable architecture is compiled consistently and evaluated in a
reproducible way. In addition, evaluators ensure that many technical details are
hidden from the end-user, which can significantly ease the development and im-
plementation of NAS methods. An example of such details is handling multiple
inputs to a layer. As architectures are generated, a single layer may receive inputs
from layers where the dimensions are not aligned.

For example, a 2d convolution layer A may have an output size of 15X15X10
(Height X Width X Channels), while another layer B may have an output size
of 3X3X50. If these two layers’ outputs are declared as the input of a third layer
C, with minimum viable input (e.x. due to kernel size) of 10X10X18, the inputs
must be scaled and combined. NORD scales the Height and Width dimensions in
such scenarios by first determining the minimum viable size (MVS). If a layer’s
output is different from the MVS, its Height and Width dimensions are up-scaled
with interpolation to the MVS. Following, the channels are scaled utilizing a 1X1
convolution layer, with a number of filters matching MVS’ channels and the
inputs are summed. As such, C’s inputs would have dimensions equal to MVS.

An alternative approach would be to find the Maximum Viable Size and
upscale all layers and channels. Furthermore, to ensure that information is not
lost, a concatenation could be applied instead of summing the inputs. Although
this approach was implemented in the first iteration of NORD development,
internal network dimensions of compiled networks were growing rapidly, leading
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to shallow networks with many parameters. It is easy to see why; assuming a
layer D with output size 100X100X60, any other layer which gets input from D

would have an input size of at least 100X100X60. If D is one of the network’s first
layers (close to the input layer), it is highly likely to feed many layers, imposing
a high input size. Furthermore, as most NAS methods utilize convolutions with
relatively small kernels (3X3 and 5X5 being the most common), the outputs of
these layers will also be high.

A third approach for handling internal sizes, implemented in NORD, concerns
fixed filter numbers throughout the networks. This is an approach used in various
papers but was first implemented in the NASNet cell search space paper [3].
Various experiments later presented in this thesis have successfully used this
approach for image and graph data. NORD currently implements four different
evaluator classes able to evaluate descriptors through the (descriptor_evaluate)
function:

LocalEvaluator Local evaluators are the most simple implementation of an
evaluator. Data is loaded locally, and a descriptor is evaluated by compiling the
corresponding network and training it for a given number of epochs. An optimizer
class and its parameters must be passed to the constructor when instantiating
an evaluator. When evaluating a descriptor, the final loss function value, a
dictionary with metrics and the total time required to evaluate the network are
returned. A number of datasets are implemented, such as CIFAR-10 [10], and
Fashion-MNIST [11], as well as graph datasets presented later in the thesis.
Custom datasets are also supported. An example of using LocalEvaluators is
provided below:

1 from nord.neural_nets import LocalEvaluator , NeuralDescriptor

2 evaluator = LocalEvaluator(optimizer_class=opt.Adam ,

optimizer_params ={})

3 dataset = ’cifar10 ’

4

5 # in_channels are 3 for the first layer , as CIFAR -10

6 # is in RGB format

7 conv_params = {’in_channels ’: 3,
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8 ’out_channels ’: 5, ’kernel_size ’: 3}

9 conv_2_params = {’in_channels ’: 5,

10 ’out_channels ’: 10, ’kernel_size ’: 3}

11 pool = nn.MaxPool1d

12 pool_params = {’kernel_size ’: 2, ’stride ’: 2}

13

14 d = NeuralDescriptor ()

15 d.add_layer(conv , conv_params)

16 d.add_layer_sequential(conv , conv_2_params)

17 d.add_layer_sequential(pool , pool_params)

18

19 loss , metrics , total_time = evaluator.descriptor_evaluate(

20 descriptor=d, epochs=2, dataset=dataset)

21

22 # Print the results

23

24 print(’Train time: %.2f’ % total_time)

25 print(’Test metrics: ’, [(key+’: %.2f’ % value)

26 for key , value in metrics.items()])

27 print(’Test loss: %.2f’ % loss)

Listing 3.2: Local evaluator example

DistributedEvaluator Distributed evaluators are responsible for partitioning
training data amongst workers and coordinating the training process. Their API
is similar to local evaluators, allowing an almost seamless transition. However,
data communication is achieved through PyTorch’s distributed API, and as such,
efficiently utilizing them requires setting up the distributed environment correctly.

NASBench_101Evaluator and NATSBench_Evaluator Benchmark eval-
uators are also implemented in NORD. When testing a NAS implementation on
a benchmark dataset, descriptors must contain the benchmark dataset’s pre-
defined layer strings as layer types. NASBench_101Evaluator implements the
NASBench-101 dataset [7], while NATSBench_Evaluator implements the NASBench-
201 dataset [6]. Both evaluators provide a list of available operations through
the get_available_ops function. Note that input and output node names are
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not in the list. Instead, NASBench-101 defines the names ’input’ and ’output’,
while NASBench-201 defines ’IN’ and ’OUT’, respectively. Examples for both
evaluators are provided below.

1 ## NASBench -101 example

2

3 from nord.neural_nets import NASBench_101Evaluator ,

NeuralDescriptor

4

5 # Instantiate the evaluator

6 evaluator = NASBench_101Evaluator ()

7 # Instantiate a descriptor

8 d = NeuralDescriptor ()

9

10 # See the available layers (ops)

11 # for NASBench -101

12 layers = evaluator.get_available_ops ()

13 print(layers)

14

15 # Add NASBench -101 Layers connected

16 # sequentially

17 d.add_layer(’input ’, None , ’in’)

18 d.add_layer_sequential(layers [0], None , ’layer_1 ’)

19 d.add_layer_sequential(layers [2], None , ’layer_2 ’)

20 d.add_layer_sequential(’output ’, None , ’out’)

21

22

23 # Add Connections

24 d.connect_layers(’layer_1 ’, ’out’)

25

26 # Get the validation accuracy and training time

27 val_acc , train_time = evaluator.descriptor_evaluate(

28 d, acc=’validation_accuracy ’)

29

30 ## NASBench -201 example

31

32 from nord.neural_nets import NATSBench_Evaluator ,

NeuralDescriptor

33
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34 # Instantiate the evaluator

35 ne = NATSBench_Evaluator ()

36

37 # See the available layers (ops)

38 # for NASBench -201

39 layers = evaluator.get_available_ops ()

40 print(layers)

41

42 # Add NASBench -201 Layers connected

43 # sequentially

44 descriptor = NeuralDescriptor ()

45 descriptor.add_layer("IN", None , "IN")

46 descriptor.add_layer_sequential("nor_conv_3x3", None , "1")

47 descriptor.add_layer_sequential("nor_conv_1x1", None , "2")

48 descriptor.add_layer_sequential("avg_pool_3x3", None , "3")

49

50 # Note that does NOT work with 5 nodes!

51 # If we remove the following comment the evaluator

52 # will reject the descriptor

53 # descriptor.add_layer_sequential (" avg_pool_3x3", None , "4")

54

55 descriptor.add_layer_sequential("OUT", None , "OUT")

56

57

58 descriptor.add_layer("skip_connect", None , "4")

59 descriptor.connect_layers("1", "4")

60 descriptor.connect_layers("4", "OUT")

61

62

63 descriptor.add_layer("skip_connect", None , "5")

64 descriptor.connect_layers("IN", "5")

65 descriptor.connect_layers("5", "3")

66

67

68 descriptor.add_layer("nor_conv_3x3", None , "6")

69 descriptor.connect_layers("IN", "6")

70 descriptor.connect_layers("6", "OUT")

71

72 # Get the validation accuracy and time cost
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73 ne.descriptor_evaluate(descriptor , metrics =[’validation_accuracy ’

, ’time_cost ’])

Listing 3.3: Benchmark evaluators examples

Environment

The Environment class (from nord.distributed.environment) is responsible for set-
ting up the distributed environment and incorporating a DistributedEvaluator.
The class is implemented as a context manager, enabling the quick translation of
locally-executed NORD code into distributed. Using PyTorch’s distributed API
and NVIDIA’s NCCL backend ensures quick collective communications between
nodes. It uses a Master-Worker architecture, where each worker instantiates a
DistributedEvaluator and waits for the Master process to send an architecture
encapsulated in a descriptor and a dataset to start evaluating. Environment
follows the Evaluators API and provides a descriptor_evaluator function. The
Environment’s __enter__ process ensures the correct distributed environment
setup, while its __exit__ process ensures the correct process group shutdown.
Finally, a DistributedConfig class is implemented, containing information regard-
ing the process group; the master node’s IP and communication port, world size
and world rank are included.

The code enclosed under the Environment context manager is executed solely
by the master process. This restriction ensures no worker overhead for executing
the NAS logic, and only evaluation is distributed. This also avoids situations
where a worker lags due to search method logic or where it tries to execute
code depending on data available only to the master process (for example, a
reinforcement learning agent’s prediction network). A high-level overview of the
Environment’s logic and communications is depicted in Figure 3.4, while a usage
example is provided directly below.

1

2 from nord.neural_nets.distributed.environment import Environment

3

4 # Configuration , Master listens at localhost :1234 and there are 4

GPU workers.
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Figure 3.4: Logic and communication under the Environment context manager.

5 config = DistributedConfig(’127.0.0.1 ’, ’1234’, world_size =4,

world_rank =0)

6

7 # Assuming a valid descriptor is provided

8 with Environment(config) as e:

9 loss , metrics , total_time = e.descriptor_evaluate(

10 descriptor=descriptor , epochs=2, dataset=’cifar10)

Listing 3.4: Environment example
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Environments can be utilized in two ways with MPI and other distributed
interfaces. First, instantiating a DistributedConfig object can be done with MPI
by copying each worker’s world size and rank attribute to the DistributedConfig
object. The Master’s IP address and port can also be broadcast during runtime or
implemented as program arguments. The second approach entails parallelizing
the search method. A good example is the concurrent evaluation of a genetic
algorithm population. Assuming N nodes, each with G GPUs and given sufficient
problem sizes, instead of having NXG independent network evaluations active at
any time, the distributed environment allows the utilization of N data-parallel
network evaluations. Each node is a local master and orchestrates G local GPU
workers.

Data Curators and Configurations

As the name implies, data curators are responsible for curating data, while the
Configurations class is responsible for configuring a NAS pipeline tied to a spe-
cific dataset (implemented as a singleton). All datasets can be retrieved with the
get_{dataset name} function, where a percentage parameter determines what
percentage of the dataset will be used for training, thus implementing partial
training. NORD curators provide 7 distinct datasets (excluding the benchmark-
ing datasets), depicted in Table 3.1.

Configurations contain information for a number of parameters essential to
the pipeline, provided in the list below:

• Number of outputs (equal to 1 for regression, number of classes for classi-
fication).

• Input shape for each dataset’s channel (Width and Height).

• Number of channels.

• Optimization criterion for the dataset (i.e. loss function).

• Metrics that must be calculated, such as accuracy or mean squared error.
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Table 3.1: NORD Datasets

Dataset CIFAR-10 Fashion-MNIST NASBench-101 Architectures Fashion-MNIST Architectures Activity Recognition
Publication [10] [11] [12] [12] [13]
Name String cifar10 fashion-mnist {graph-nasbench3, graph-nasbench1} {graph-f-mnist3, graph-f-mnist1} activity_recognition
Type matrix (Image) matrix (Image) graph (Neural Architectures) graph (Neural Architectures) matrix (Time Series)
Outputs (Classes) 10 10 {3,1} {3,1} 7
Input Shape 32X32 28X28 5 (Size of feature vector) 5 (Size of feature vector) 52
Channels 3 3 1 1 1
Criterion Cross Entropy Loss Cross Entropy Loss {KL Divergence, Margin Ranking Loss} {KL Divergence, Margin Ranking Loss} Cross Entropy Loss
Metrics Accuracy Accuracy Kendall’s τ , Spearman’s ρ Kendall’s τ , Spearman’s ρ, Accuracy Accuracy
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• Whether dimension keeping (retaining the same number of channels for all
layers) is applied.

• Data loading functions (from data curators)

• Dense part (head) for the compiled networks.

• Input data organization (graph or matrix-like).

A relatively interesting parameter is the dense part of compiled networks. Ar-
chitectures generated (either cell or global) usually concern the network’s convo-
lutional/feature extraction part. The head of the network (final layers leading to
the output) is pre-determined, possibly as a part of the search space. Nonetheless,
it can also affect the performance of the generated networks. As such, when an
Evaluator compiles the network, it ensures that all networks utilize the same head,
which is pre-defined for a network. Configurations provide an API to specify cus-
tom datasets through the add_regression_dataset, add_classification_dataset
and add_dataset functions. An example of adding a custom dataset (using Py-
Torch’s MNIST dataset) is provided below:

1 import torchvision

2 from torchvision import transforms

3 from nord.configurations.all import Configs

4 from nord.neural_nets import LocalEvaluator

5

6 # Percentage dictates what percentage of the trainset

7 # will be used while training (not train/test split percentages.

8 # This is not implemented in

9 # this toy example.

10 def get_mnist(percentage: float = 1):

11 print(’Loading MNIST.’)

12 transform = transforms.Compose ([

13 transforms.ToTensor (),

14 transforms.Normalize ((0.1307 ,), (0.3081 ,))

15 ])

16

17 trainset = torchvision.datasets.MNIST(root=’./ my_data/mnist ’,

18 train=True ,
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19 download=True ,

20 transform=transform)

21

22 trainloader = torch.utils.data.DataLoader(trainset ,

batch_size =128,

23 num_workers =0,

24 shuffle=True)

25

26 testset = torchvision.datasets.MNIST(root=’./ my_data/mnist’,

27 train=False ,

28 download=True ,

29 transform=transform)

30

31 testloader = torch.utils.data.DataLoader(testset , batch_size

=128,

32 shuffle=False ,

num_workers =0)

33

34 classes = (’0’, ’1’, ’2’, ’3’, ’4’,

35 ’5’, ’6’, ’7’, ’8’, ’9’)

36

37 return trainloader , testloader , classes

38

39

40

41 # Instantiate the Configs singleton and add the dataset

42 conf = Configs ()

43 # data_organization is optional , defaults to ’matrix ’ i.e. image

44 conf.add_classification_dataset(name=’MNIST’, num_classes =10,

input_shape =(

45 28, 28), channels=1, data_load=get_mnist)

46

47 # Assuming a valid descriptor in the descriptor variable

48 evaluator = LocalEvaluator(torch.optim.Adam , {}, verbose=True)

49 evaluator.descriptor_evaluate(d, epochs=2, dataset=’MNIST ’)

Listing 3.5: Custom dataset example
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3.3 NORD NAS Examples

This section provides various example implementations for benchmark and non-
benchmark datasets. The aim is to provide a basic understanding of utilizing
NORD and its abilities.

3.3.1 A simple evolutionary algorithm

In this example, we implement a simple evolutionary algorithm similar to the one
proposed in [2]. The python file with the corresponding implementation is re-
producible_genetic_algorithm_example_nasbench.py. First, we instantiate the
NASBench-101 evaluator and get the available operations. Following, we define
two helper functions; the first adds a random connection to a descriptor, while
the second mutates a descriptor, adding either a random connection between
nodes or replacing a random connection with a node.

1 evaluator = NASBench_101Evaluator ()

2 ops = evaluator.get_available_ops ()

3

4 def add_random_connection(descriptor: NeuralDescriptor):

5 # Get a source , but don’t get output as source node [:-1]

6 from_ = np.random.choice(list(descriptor.connections.keys())

[:-1])

7 # NORD names layers with a number prefix. Get the source node

number

8 # and find possible output nodes that have a greater number

as prefix

9 from_number = from_.split(’_’)[0]

10 avail_to_layers = [ x for x in descriptor.layers.keys() if

int(from_number) < int(x.split(’_’)[0])]

11 # If there are available output layers , choose one at random

and add the connection

12 if len(avail_to_layers) > 1:

13 to_ = np.random.choice(avail_to_layers)

14 descriptor.connect_layers(from_ , to_)

15

16 return descriptor
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17

18

19 def mutate(descriptor: NeuralDescriptor):

20 r = np.random.uniform ()

21 try:

22 # If we have the maximum number of hidden layers (+2 to

account for input -output layers) we can only add connections

23 if r < add_connection_prob or len(descriptor.layers) ==

max_layers +2:

24 descriptor = add_random_connection(descriptor)

25 # If we have less layers and the random number generator

dictates to add

26 # a layer , proceed

27 elif r < add_node_prob+add_connection_prob:

28 # Get source node , but again don’t get the output

layer as source node

29 from_ = np.random.choice(list(descriptor.connections.

keys())[: -1])

30 # Get all of its connections and choose one at random

to replace

31 to_ = np.random.choice(list(descriptor.connections[

from_]))

32 # Get a random layer

33 layer_index = np.random.choice(available_layers)

34 # Name it with a prefix that is larger than the

source node

35 # and smaller than the destination node. Getting the

average

36 # of the source and destination prefixes is

sufficient.

37 layer_name = (int(from_.split(’_’)) + (to_.split(’_’)

))/2

38 layer_name = str(layer_name)+’_Layer ’

39 layer_name = descriptor.add_layer(ops[layer_index],

{}, layer_name)

40

41 # Disconnect the original source and destination

nodes

42 descriptor.disconnect_layers(from_ , to_)
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43 # Connect them to the new layer

44 descriptor.connect_layers(from_ , layer_name)

45 descriptor.connect_layers(layer_name , to_)

46 # Ensure that the descriptor ’s last layer name points

47 # to the actual output layer. Adding a layer

48 # changes the last_layer name , so we have to reset it

49 descriptor.last_layer = OUTPUT_LAYER_NAME

50 except Exception:

51 pass

52

53 return descriptor

Following, we define a simple evaluation function that handles the exception
thrown when an invalid architecture is passed and returns 0 in that case, as well
as a named tuple to hold individuals’ descriptors and fitness values, while also
defining the population initialization and evolution:

1 OUTPUT_LAYER_NAME = ’9999’

2 IN_LAYER = ’input ’

3 OUT_LAYER = ’output ’

4

5 def evaluate(descriptor):

6 fitness = 0

7 total_time = 0

8 try:

9 fitness , total_time = evaluator.descriptor_evaluate(

10 descriptor)

11 except Exception as e:

12 pass

13 return fitness

14

15 Individual = namedtuple(’Individual ’, ’descriptor fitness ’)

16

17 for i in range(initial_population_size):

18 d = NeuralDescriptor ()

19 # How many layers this individual will initially have.

20 # We require at least 1

21 this_layers = 1+np.random.choice(max_layers -1)

22 # Add the first (input) layer
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23 d.add_layer_sequential(IN_LAYER , {})

24 # For the number of layers that this individual will have

25 # add a random sequential layer

26 for _ in range(this_layers +1):

27 layer_index = np.random.choice(available_layers)

28 layer_name = d.add_layer_sequential(ops[layer_index], {})

29 # Give a 1/7 probability to add a second connection

30 if np.random.uniform () < 1/7:

31 d = add_random_connection(d)

32 # Add the output layer and evaluate

33 d.add_layer_sequential(OUT_LAYER , {}, OUTPUT_LAYER_NAME)

34 f = evaluate(d)

35 population.append(Individual(d, f))

36

37

38 while generation < evolutions:

39

40 generation += 1

41 # Get the candidate parents

42 sample = np.random.choice(len(population), size=sample_sz)

43 sample = [population[x] for x in sample]

44 # Get their fitnesses

45 fits = [x.fitness for x in sample]

46 # Get the best parent

47 parent = np.argmax(fits)

48 parent = sample[parent]

49 # Copy the parent ’s descriptor , mutate and evaluate

50 offspring = deepcopy(parent)

51 offspring = mutate(offspring.descriptor)

52 fitness = evaluate(offspring)

53 # Add the offspring to the population and discard

54 # the oldest individual

55 population.append(Individual(offspring , fitness))

56 population.pop (0)

Listing 3.6: Regularized evolution for NASBench-101

The above algorithm can find one of the top NASBench-101 architectures in
less than 50 evolution cycles. Changing to NASBench-201 is relatively easy 3.7,
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although the algorithm is tuned for the NASBench-101 search space and, as such,
does not provide the same performance. As it can be seen from Figure 3.5, a
number of invalid architectures are generated during population initialization.
Nonetheless, the algorithm finds a relatively well-performing architecture, given
its insufficient mutation rules.

1 evaluator = NATSBench_Evaluator ()

2 IN_LAYER = ’IN’

3 OUT_LAYER = ’OUT’

Listing 3.7: Changes to apply regularized evolution to NASBench-201

(a) NASbench-101 (b) NASbench-201

Figure 3.5: Performance of regularized evolution on NASBench-101 and
NASBench-201.

3.3.2 A simple reinforcement learning algorithm

In this example, we provide an implementation of a reinforcement learning agent
for the NASBench-101 dataset. Contrary to [14], [3] we do not use a RNN con-
troller. Instead, we use a fully connected network, taking advantage of the limited
size of cells in NASBench-101, resulting in small binary representations which we
use as states. Furthermore, we avoid the need to train recursive networks, result-
ing in faster training times.

The controller network receives an input with a size of 21 (possible connec-
tions between nodes) + 24 (6 layers, encoded in 4-bit one-hot vectors) bits, for
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a total of 45. We employ two output layers, one for layer type selection (4
output neurons, one for each layer plus one for the output layer) and one for
input selection (7 neurons, one for each layer before the output, plus one for
no-connection). The input selection layer utilizes an attention-like mechanism;
a softmax is applied over the outputs, and the two neurons with the highest ac-
tivation are selected. Their position indicates the inputs for the selected layer
(with the seventh layer indicating no connection). The details of implementing a
reinforcement learning agent’s controller are outside the scope of this thesis and,
as such, are omitted. Nonetheless, the full implementation can be found in the
reinforcemnet_learning_attention_like_nasbench.py file.

To conduct NAS with a reinforcement learning method, we must first define
our agent’s environment:

1

2 # +1 as we can stop before maximum number of layers

3 n_actions = ops_number +1

4

5 class NASEnv:

6

7 def __init__(self):

8 # Get the layers available to the search space

9 self.avail_layers = evaluator.get_available_ops ()

10 self.layer_codes = {}

11

12 # Create one -hot vector codes for each layer

13 for i in range(len(self.avail_layers)):

14 code = np.zeros(ops_number +1)

15 code[i] = 1.0

16 self.layer_codes[self.avail_layers[i]] = code

17

18 # Create a code for the input layer as well

19 self.layer_codes[INPUT_LAYER] = np.array([0, 0, 0, 1])

20 # Create the initial descriptor with only an input layer

21 self.descriptor = NeuralDescriptor ()

22 self.descriptor.add_layer_sequential(INPUT_LAYER , {})

23

24 # Reset function called after an episode ends
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25 def reset(self):

26 self.descriptor = NeuralDescriptor ()

27 self.descriptor.add_layer_sequential(INPUT_LAYER , {})

28

29 # Return the state of the environment as a torch tensor

30 def get_state(self):

31

32 # Create a temporary descriptor with an output layer

33 # in order to create the representation

34 tmp_desc = deepcopy(self.descriptor)

35 tmp_desc.add_layer_sequential(OUTPUT_LAYER , {}, ’tmp_out ’

)

36 # Get the descriptor as a matrix -operations

representation

37 # matrix contains the connections between layers

38 # while ops contains the type (as string) of each layer

39 matrix , ops = evaluator.descriptor_to_matrix(tmp_desc)

40

41 # Create one -hot representation of layer types

42 layers = np.zeros (6*( ops_number +1))

43 # Don’t need the output layer , as it is always there

44 for i in range(len(ops) -1):

45 op = ops[i]

46 code = np.array(self.layer_codes[op])

47 layers[i*( ops_number +1):(i+1)*( ops_number +1)] = code

48

49 # Transfer the connection matrix to a 7X7 connection

matrix

50 # The original may be smaller than 7X7 , due

51 # to having less

52 connections = np.zeros ((7, 7))

53

54 matrix = np.array(matrix)

55 # Copy all but last column

56 connections [0: matrix.shape [0], 0: matrix.shape [1]-1] =

matrix[:, :-1]

57

58 # Copy last original column to last column of connections

,
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59 # as it refers to the output layer

60 connections [0: matrix.shape [0], -1] = matrix[:, -1]

61

62 # Get the upper triangle indices of the 6X6 matrix

63 # We don’t need the full 7X7 matrix as the first column

64 # and last row are always zero

65 inds_x , inds_y = np.triu_indices (6)

66 # Move columns to the right as first column is zeros

67 inds_y += 1

68 connections = connections [(inds_x , inds_y)]

69

70 # Return the concatenated one -hot layer representations

and connections

71 return torch.tensor(np.concatenate ([ layers.reshape(1, -1)

, connections.reshape(1, -1)], axis =1)).unsqueeze (1)

72

73 # For a given action perform a step , update the state

74 # and return a flag indicating if it is a terminal state (

only when

75 # the agent asks to stop or the maximum number of nodes has

been

76 # added) and the reward (zero if the state is not terminal ,

77 # as we only evaluate networks that are in terminal states)

78 def step(self , action):

79

80

81 current_layers_no = len(self.descriptor.layers)

82

83 # Action contains a tuple of layer selection

84 # and layer connections

85 layer , layers_in = action

86 # Layer connections indicate always two layers

87 # No -connection is implemented as selecting the output

88 # layer for input

89 in1 , in2 = self.get_connections(layers_in)

90 reward = 0.0

91 done = False

92 # If a terminal state

93 if current_layers_no == 6:
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94 # Add an output layer and ask the evaluator

95 # to evaluate the descriptor

96 self.descriptor.add_layer_sequential(OUTPUT_LAYER ,

{})

97 reward , time = evaluator.descriptor_evaluate(self.

descriptor)

98 done = True

99 # No terminal state , add the selected layer

100 else:

101

102 # Initializing with output layer

103 layer_params = (OUTPUT_LAYER , {})

104 # If the agent has not asked to stop

105 if layer < len(self.avail_layers):

106 layer_params = (self.avail_layers[layer], {})

107

108 # Add the layer and get the generated name

109 layer_name = self.descriptor.add_layer (* layer_params)

110

111 # If in1 does not indicate no-connection ,

112 # add the requested connection

113 if in1 != NO_CONNECTION:

114 in1_layer = list(self.descriptor.layers.keys())[

in1]

115 self.descriptor.connect_layers(in1_layer ,

layer_name)

116

117 # Same for in2 selection

118 if in2 != NO_CONNECTION:

119 in2_layer = list(self.descriptor.layers.keys())[

in2]

120 self.descriptor.connect_layers(in2_layer ,

layer_name)

121 # If the agent asked to stop , evaluate the network

and

122 # set the terminal state flag

123 if layer == len(self.avail_layers):

124 reward , time = evaluator.descriptor_evaluate(self

.descriptor)



3. A Distributed Neural Architecture Search Framework 67

125 done = True

126

127 return reward , done

128

129 # Helper function to get selected connections from the

130 # model’s outputs

131 def get_connections(self , layers_in):

132 # Get current layers number

133 current_layers_no = len(self.descriptor.layers)

134 # Transfer selection from GPU memory to CPU and from

135 # pytorch tensor to nunmpy array

136 layers_in = layers_in.cpu().numpy ().reshape (-1)

137 # Sort by value and get the two highest value indices

138 sorted_inds = np.argsort(layers_in [: current_layers_no ])

139

140 in1 = sorted_inds [-1]

141 in2 = NO_CONNECTION

142 # If there are enough layers , get

143 # the second connection

144 if len(sorted_inds) > 1:

145 in2 = sorted_inds [-2]

146 # Return the indices

147 return in1 , in2

Listing 3.8: Environment for NASBench-101

After the environment is implemented, finding an architecture consists of it-
erating over a number of episodes, taking actions, evaluating the resulting states,
and training the controller. The results of 500 episodes are depicted in Figure
3.6. Compared to the evolutionary algorithm, reinforcement learning is more
unstable, while it fails to generate the same quality of architectures. Figure 3.1
was generated by utilizing the implementations presented in this section, which
better compares the differences between these two approaches.

1

2 # Using Double Deep Q-Networks algorithm

3 # we have two networks for the agent:

4 # policy_net which dictates the agent’s moves

5 # and target_net which predicts the value of each action
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6

7 for i_episode in range(num_episodes):

8 # Initialize the environment and state

9 env.reset ()

10 # Get the initial state

11 state = env.get_state ()

12 for t in count():

13 # Select and perform an action (layer type and

connections)

14 action = select_action(state)

15 # Get the reward

16 reward , done = env.step(action)

17

18 # Transfer the reward to cuda

19 reward = torch.tensor ([ reward], device=device)

20

21 # Observe new state

22 if not done:

23 next_state = env.get_state ()

24 else:

25 next_state = None

26

27 # Get the selected connections

28 in1 , in2 = env.get_connections(action [1])

29 in1 = in1

30 in2 = in2

31 # Store the transition in memory

32 memory.push(state , action [0], in1 , in2 , next_state ,

reward)

33

34 # Move to the next state

35 state = next_state

36

37 # Perform one step of the optimization (on the policy

network)

38 optimize_model ()

39

40 # If a terminal state has been reached

41 # end the episode and reset the environment
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Figure 3.6: Network validation accuracy for 500 episodes of the reinforcement
learning algorithm.

42 if done:

43 break

44 # Update the target network , copying all weights and biases

45 if i_episode % TARGET_UPDATE == 0:

46 target_net.load_state_dict(policy_net.state_dict ())

Listing 3.9: Reinforcement learning for NASBench-101
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Chapter 4

Relative Ranking Retention
Between Optimizers

As mentioned in earlier chapters of this thesis, the main barrier to entry for neural
architecture search is the computational cost required to conduct experimental
projects. Although most research focuses on improving existing methodologies
and making them more efficient, the computational cost of evaluating neural ar-
chitecture remains, even when such methods become indeed more efficient. This
chapter investigates the ability of neural optimizers to retain relative rankings
between neural architectures, utilizing an evolutionary algorithm to generate ar-
chitectures and then training them with various optimizers

4.1 Introduction

A number of studies propose new NAS methods that can generate better networks
or convert faster to the optimal architecture. Nonetheless, most neural architec-
ture search papers are concerned with the behavior of the proposed method.
Furthermore, these proposed methods spend most of their computational time
evaluating intermediate solutions. As such, many of these methods employ dis-
tributed computational methods to speed up the process. Although this solution
is practical and effective, it does not favor all families of algorithms, and requires
additional hardware.

On the other hand, the networks are evaluated only to further the search
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and act as an intermediate step to generate the final architecture. As such, the
absolute performance of these intermediate network solutions is not important.
Their relative performance, on the other hand, is critical. Methods that can
enable quick relative quality evaluation between architectures can significantly
speedup a NAS search.

This chapter studies the utilization of various neural network optimizers un-
der a reduced number of training epochs. We employ Monte-Carlo simulations,
searching for optimal parameters in 3-d functions with added noise. The noisy
and original function domains have a correlation coefficient similar to this ob-
served in the reduced epoch training experiments. With this study, we aim to
examine the extent of applicability for reduced epoch training as a proxy candi-
date evaluation task

4.2 Methodology

4.2.1 Evolving Architectures

Our methodology draws inspiration from CoDeepNEAT [1] to generate the neural
architectures. However, we employ only the mutation operator, contrary to the
original CoDeepNEAT, which employs speciated crossover and mutations. Our
goal is to produce several diverse architectures of increasing complexity and not
necessarily combine the best available architectures.

Architectures are initialized as a graph containing only two nodes; an input
and an output. The mutation operator adds a new connection between existing
nodes or a new node replacing an existing connection. In our implementation,
nodes consist of the convolutional block proposed in [1]. Each block contains a
convolutional layer with K filters and a kernel of size N , followed by a dropout
layer with dropout probability d, a weight scaling factor S. A probability p exists
of adding a max-pooling layer at the end. Concerning the number of connections
and modules in the network, there are no algorithmic restrictions, although the
networks were generated and verified (not evaluated) on a cluster of computers
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with NVIDIA GT730 cards. This imposed a practical upper limit on their sizes.

Our methodology makes use of genomes, chromosomes, and genes. A genome
represents an individual, while a chromosome encodes information regarding its
layers or connectivity. As such, each genome contains one connection chromosome
and one block chromosome. Genes comprise a chromosome, and each gene con-
tains information regarding a single connection (source and destination blocks)
or a single convolutional block (K,N, d, S, p).

Some of the architectures generated during our experiments can be seen in
Figure 4.1. The initial two-node architecture is depicted by number 1. Since
NORD scales layers, the number of layers in a compiled network is significantly
greater than the number of nodes in an architecture. For example, architecture
20 has 15 nodes corresponding to 86 PyTorch layers. Note that after the con-
volutional part of the network, a simple 2-layer dense head is added. Figure 4.2
shows the genome corresponding to architecture 6.

4.2.2 Experimental Setup

Our experiments consist of generating several unique architectures by evolving
a single network for 20 generations. The networks were verified in a cluster
of computers with NVIDIA GT730 GPUs and then sent to a cluster equipped
with NVIDIA TESLA K40 for evaluation on the CIFAR10 dataset [2]. We train
each compiled network for 1, 5, 10, 20, and 50 epochs, utilizing seven different
optimizers: Adadelta, Adam, Adamax, RMSprop, Stochastic Gradient Descent
(SGD), SGD with momentum (SGD-M) and SGD with Nesterov momentum
(SGD-NM). Table 4.1 depicts the parameters of our setup.

To compare the ability of specific optimizer-epochs setups to act as accelerated
proxy tasks, we want to investigate their ranking-retention qualities. Therefore,
we first create lists of network rankings based on their test accuracy for each
optimizer-epoch pair, resulting in 35 lists. Then, to compare the rankings under
various setups, we employ Kendall’s rank correlation coefficient τ [3]. Kendall’s
τ measures similarity between ranks (correlation of ranks), calculated utilizing
concordant and discordant pairs. High positive values indicate high similarity
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Figure 4.1: Sample architectures evolved.

Figure 4.2: Genome example.
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Table 4.1: Experimental Parameters.

Parameter Symbol In-Text Value
Number of Filters N [32,56]
Kernel Size K 1, 3
Dropout Rate d [0, 0.7]
Scaling Factor S [0, 2.0]
Max-Pool Probability p 0.5
Node Addition Probability - 0.05
Connection Addition Probability - 0.1
Generations - 20
Epochs Trained - 1,5,10,20,50
Number of Optimizers - 7

between the rankings.

Given that Kendall’s τ treats low-ranking and high-ranking pairs equally, we
measure τ two times, one for the rankings between all architectures and one for
the ten youngest architectures. As relatively simple architectures are easier to
train, minor differences in initial conditions can lead to enough final accuracy
differences to alter their ranks. On the other hand, more complex architectures
require more effort to train successfully and, as such, are less likely to benefit
significantly from favorable initial conditions.

After calculating the (Kendall) correlations between the various setups, we
would like to explore what is their practical implication. For this reason, we
conduct Monte-Carlo simulations utilizing a 3-d Rastrigin function. We choose
the Rastrigin function, as it is multimodal, resembling the search spaces of neural
architectures. First, we calculate the values for the function in a given domain.
Given that the function is a mapping from a 3-d point to a scalar value, we can
obtain rankings by re-arranging the 3-d points to a 1-d vector. Subsequently,
we obtain a new mapping with a known Kendall correlation to the original by
injecting pre-calculated random noise into the results. We fine-tune the noise to
match the correlations observed in the optimizer-epochs setups.

Having an original and a noisy search space (original function’s results and
noisy results), we employ a simple genetic algorithm to find local minima in
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Figure 4.3: Comparison of achieved accuracy in 1 epoch of training to 50 epochs.

the two search spaces. First, we initialize a population of 10 individuals and
implement a crossover operation with a probability of 0.9 and a mutation rate of
0.02. Parents are selected via tournament selection, and we experiment with 10,
100, and 1000 generations. Each experiment is repeated 1,000 times to obtain a
reasonable empirical distribution.

4.3 Results

4.3.1 Neural Architectures

Although focusing on relative ranking under a reduced training epoch scheme
for various optimizers, absolute accuracy values can hint at the overall quality
of the networks. Figure 4.3 depicts the accuracy of each setup (1 and 50 epochs
of training for the 7 optimizers). As is expected, 50 epochs provide the best
results, stabilizing the rankings. Nonetheless, there seems to exist a pattern that
both groups follow. There is a sharp increase in accuracy around generation 10
followed by relatively stable performance, and finally a noticeable drop in the
last generations. Only the ’Ada’ family (Adamax, Adadelta, Adam) seems to
overcome the decrease in performance, given enough training epochs. The times
required to train the networks are provided in Table 4.2. As expected, the average
time required to train a network scales linearly with the number of epochs.
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Table 4.2: Average training times (in seconds per architecture).

Optimizer 1 Epoch 5 Epochs 10 Epochs 20 Epochs 50 Epochs
Adadelta 36.1 158.6 312.3 622.1 1701.5
Adam 35.9 157.5 311.7 617.4 1724.8
Adamax 35.8 157.1 310.3 617.8 1718.6
RMSprop 35.4 156.5 310.2 614.6 1687.6
SGD 36.0 157.1 308.3 613.2 1687.3
SGD-M 35.7 157.2 309.3 613.5 1709.5
SGD-NM 35.5 156.6 311.2 617.7 1707.4

Figure 4.4: Rank correlation coefficients heatmap.

Judging relative performance from accuracy plots is not easy or accurate.
To better understand the behavior of the architectures under different training
setups, we compute the rank correlation coefficients for each ranking list. We
regard the setups with 50 epochs as "fully trained" and compute Kendall’s τ

between all other lists and those generated by the 50 epochs setups.The results
show high correlation coefficients (above 0.65) for most combinations, except for
RMSprop_01 and SGD_01 as depicted in Figure 4.4.

Although promising and indicating a direction for future investigation, the
results do not show clear or powerful correlations between the setups. This
lack of strong correlation can be partly attributed to many simple architectures
performing similarly and exchanging ranks due to favorable initial conditions.
As such, we repeat the analysis by focusing on the 10 youngest architectures,
which are significantly more complex, aiming to examine rank retention in such
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Figure 4.5: Rank correlation coefficients heatmap for the second half of generated
architectures.

networks. As it can be seen in Figure 4.5, there are significantly stronger corre-
lations between more complex architectures. Adam_01, Adam_05, Adam_20,
Adamax_10, Adamax_20, RMSprop_20, SGD-M_10, and SGD-NM_10 have
high correlations with Adam (τ > 0.75, p < 0.05). Furthermore, SGD-NM_10
and Adam_20 have τ = 0.964 with p < 0.01, indicating a strong correlation in
relative rankings.

4.3.2 Monte Carlo Simulations

We have already indicated the need to accelerate NAS methods by utilizing proxy
tasks. Furthermore, we have studied the rank correlations between various proxy
tasks, obtaining significantly high results. Nonetheless, we do not yet know how
such correlation levels impact an optimization method. The need to study this
impact is even more significant in global search spaces, as architectures generated
are more probable to exhibit differences similar to those in our current experi-
ments.

To study such behaviors, we require a controlled environment where we have
complete information regarding the correlations between the proxy and target
tasks. This experiment enables the study of this behavior and, as such, the via-
bility of using proxy spaces with specific correlation levels to the target. We pro-
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Figure 4.6: 2-D Rastrigin functions, original(left) and perturbed(right) with τ =
0.738

ceed by generating the results for a 3-d Rastrigin function and injecting random
noise into them until the required correlation to the original results is reached.
A 2-d example of the two functions can be seen in Figure 4.6, which shows how
the addition of noise changes the function’s surface but leaves significant features
and patterns intact.

We follow the same direction for the optimization method as in our original
experiment by employing a genetic algorithm. The algorithm will search for
solutions and utilize as a fitness function the noisy results. For the best solution
found, we calculate the corresponding original function value and save the top
% of solutions better than it (i.e. if a solution is better than 98% of all possible
solutions, we save value of 2%) and repeat the process 1,000 times.

Table 4.3 depicts the top % average (E) while Table 4.4 the top % standard
deviation of the generated solutions, over 1,000 runs. In the original space, the
algorithm was able to generate solutions very close to the top-1%. For correla-
tion levels of 0.75, the algorithm produced solutions near the top-4%, while for
correlation levels of 0.85 and 0.95, it was able to produce solutions in the top-3%
and top-2% respectively.

In a worst-case scenario (τ = 0.75), the noisy function space produces so-
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Table 4.3: Mean of achieved solution’s top percentage for the original and per-
turbed search space, when applied to the original function.

Generations E(original) E(τ = 0.95) E(τ = 0.85) E(τ = 0.75)
10 0.160 0.162 0.184 0.195
100 0.050 0.058 0.086 0.103
1000 0.013 0.022 0.032 0.040

Table 4.4: Standard deviation of achieved solution’s top percentage for the orig-
inal and perturbed search space, when applied to the original function.

Generations E(original) E(σ = 0.95) E(σ = 0.85) E(σ = 0.75)
10 0.160 0.162 0.184 0.195
100 0.050 0.058 0.086 0.103
1000 0.013 0.022 0.032 0.040

lutions in the range of [1.6%-8%]. For (τ = 0.85) the solutions are within the
[0.6%, 7%] range, while for (τ = 0.95) they lie within the [0.3%, 3.9%] range.
The solutions are marginally better in the original search space ([0%, 3.3%] ),
although the algorithm can find the global minimum. Moreover, we can see that
as correlation increases, standard deviation decreases. Nonetheless, it is evident
that the most important factor determining the final network’s quality is the
number of generations the algorithm is allowed to evolve.

4.4 Limitations

This chapter provides some interesting results, both from the real-world CIFAR-
10 experiments and the simulations. Nonetheless, more thorough research is
needed to determine the feasibility of reduced epoch training in more complex
networks and cell search spaces. The architectures studied in this chapter are
relatively limited. In the following chapter, we further our investigation, including
more diverse architectures as well as cell search spaces.
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4.5 Summary

This chapter studies the relative ranking retention of 20 distinct neural architec-
tures when trained under various setups. The architectures were generated utiliz-
ing DeepNEAT’s mutation operator. They were all trained using seven different
optimizers for 1, 5, 10, 20, and 50 epochs. By comparing the relative ranking
lists generated by each evaluation setup, we observed high correlations for most
setups, except for RMSprop and SGD, when only a single training epoch is used.
The more complex architectures exhibited higher ranking correlations compared
to simpler architectures. By isolating them and computing rank correlation co-
efficients, a strong (τ= 0.964), statistically significant (p < 0.01)correlation was
revealed between the fully trained Adam optimizer group and SGD-NM when
trained for 10 epochs and Adam when trained for 20.

To test the effect on search algorithms when searching on proxy tasks, we
pre-calculate results for a 3-d Rastrigin function and inject noise into them, thus
generating a "proxy" space for the Rastrigin function with a known correlation
coefficient (0.75, 0.85, and 0.95). We then employ a genetic algorithm to op-
timize the function and save the percentage of all existing solutions better (on
the original function) than the one generated. As a result, the algorithm was
able to generate solutions belonging, on average, to the top 3,5% of the original
function’s solutions.

We observe that there is merit in using proxy search spaces, given that
the computational resources freed from lengthy network evaluations can be re-
allocated to evaluate more networks. Absolute performance is not relevant when
evaluating intermediate solutions. Instead, their relative performance is of paramount
importance. Moreover, genetic algorithms seem to perofrm relatively well in noisy
spaces, given that noise levels allow a positive correlation of at least 0.75 to the
original space.Nonetheless, more thorough research must be conducted to estab-
lish optimal proxies for neural architecture design and optimization in various
domains. In the following chapters, we will extend our experiments to larger
datasets and utilize reduced-training distributed methods to generate state-of-
the-art models for various problems.
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Chapter 5

Training Candidates on Proxy
Training Epochs

This chapter studies the effect of reduced training in neural architecture search.
Building upon the results of Chapter 4, our experiments focus on relative rankings
between architectures trained under various setups. We generate more diverse
architectures and utilize better hardware, to further our investigation of rank-
ing retention. Furthermore, we expand the investigation into cell-search spaces,
specifically the search space of NASBench-101 [1]. Finally, we once again per-
form Monte-Carlo experiments, utilizing noisy spaces generated from Rastrigin
functions.

5.1 Introduction and Relevant Works

In the previous chapter, we produced positive, although limited, results con-
cerning the utilization of reduced training epochs as a NAS proxy task. The
architectures and search space studied were quite limited. Moreover, new meth-
ods proposing more complex architectures continue to utilize proxy tasks. As
such, we aim to thoroughly evaluate the impact of such evaluation schemes on a
broader range of search spaces and architectures.

Most researchers utilizing this reduced-training method choose to fully train
the top N produced models after the search phase. This fine-tuning of archi-
tectures significantly boosts network performance. One of the earliest works to
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perform reduced training was [2]. The authors evaluated architectures with only 8
training epochs while fine-tuning the best architectures with 120 training epochs.
They report that utilizing few training epochs during search seems to produce ar-
chitecture requiring far fewer training epochs to achieve performance comparable
to the state-of-the-art. Deep multitask networks [3] also utilize a reduced eval-
uation epoch scheme to generate multi-alphabet character, recognition models.
The authors utilize 3,000 iterations (forward and backward passes), while the 50
best models are trained for 30,000. Regularized evolution [4] during search also
uses a small fraction (25 epochs) of the full training, 600 epochs.

The original NAS paper utilized 50 training epochs during the search phase
while the final architectures are trained until convergence. On the other hand, the
NASNet paper [5] utilized a mere 20 epochs while also training final architectures
until convergence.

Even in ProxylessNAS [6] where a proxyless approach is proposed, employing
an over-parameterized network with N possible paths, reduced epochs in the
search phase are employed. Specifically, 200 epochs are used for the search phase,
while the final network is trained for 600 epochs. Although producing satisfactory
results, the method is computationally intense. It is logical that evaluating the
actual deployment conditions will produce the best results.

Finally, Progressive Neural Architecture Search [7] utilizes a sequential model-
based optimization approach and reduced search phase evaluation epochs. Here
only 20 epochs are used, while the best models are trained for 300 epochs, and
the best of these architectures is extracted as the final result.

From this brief overview of various NAS methods, utilizing reduced train-
ing epochs for the search phase is a widespread practice, aiding in its accelera-
tion.Table 5.1 depicts the evaluation schemes of various methods, sorted by the
ratio of final to search phase training epochs. The effect of employing such proxy
tasks has been studied in the previous chapter. In this chapter, we explore more
in-depth the effect and viability of using reduced training as a speedup method
in NAS.
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Table 5.1: Search phase and final training epochs of various methods.

Method Search Phase Final Ratio
ProxylessNAS 200 600 3
Multitask CoDeepNEAT 3,000 (iterations) 30,000 (iterations) 10
CoDeepNEAT 8 120 15
Regularized Evolution 25 600 24
Progressive NAS 20 600 30

5.2 Methodology

Building upon Chapter 4, we generate 140 random, diverse architectures. First,
we evaluate them on the CIFAR-10 dataset, expanding the understanding of
relative ranking retention between more diverse architectures. Following, we
utilize the NASBench-101 dataset [1], aiming to achieve two objectives. First,
to demonstrate the noise injected by re-evaluating a set of architectures with
different initial conditions. Second, to study the collective behavior of closely-
related architectures under reduced epoch evaluation schemes. NASBench-101
has a relatively strict search space (only normal cells with at most 5 hidden layers
and 9 connections). Finally, we once again perform Monte-Carlo simulations
based on the correlation coefficients obtained from the first two experiments.

5.2.1 Generating Architectures

To generate several unique architectures, we build upon chapter 4. Again, we
use blocks consisting of convolutional layers with K filters and kernels of size N ,
followed by a dropout layer with dropout probability d, a weight scaling factor S
and possibly a max-pooling layer. The block architecture is depicted in Figure
5.1.

Each gene’s parameters are sampled from a specific range, depicted in Table
5.2. Starting from the same simple architecture (only input and output nodes), we
mutate the architecture by either perturbing parameter values, adding a block
or a connection, or even removing a connection. Any invalid architecture is
discarded, for example, if there is no path between the input and output nodes.
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Table 5.2: DeepNEAT hyperparameters ranges used.

Hyperparameter Range
Number of Filters (N) [32, 256]
Dropout Rate (d) [0, 0.7]
Weight Scaling (S) [0, 2.0]
Kernel Size (K) 1, 3
Max Pooling (M) True, False

In this chapter, we generate and validate the networks on NVIDIA TESLA V100
and K40 cards, significantly increasing the maximum parameter size for each
network.

Figure 5.2 depicts some of the generated architectures. Note that contrary to
chapter 4, some nodes may be orphaned (have no input or output connections,
indicated with light cyan in the figure) as the mutation operator can now disable
connections. Cells labeled "-2" indicate the architecture’s input, while "-1" indi-
cates the architecture’s output (which is the input to the dense, 2-layer part of
the network). Again, NORD scales layer outputs so they can be combined when
a node has multiple inputs. In these architectures, following a Maximum Viable
Size (as opposed to NORD’s Minimum Viable Size) policy, leads to an explosion
of inner network dimensions.

We generate a total of 140 distinct architectures and evaluate them on the
CIFAR-10 dataset [8]. An average architecture has 70,000 trainable parameters,
but all of them are in [9,099 - 148,140]. Although most networks do not have a
high number of parameters, we focus our efforts on studying their relative perfor-
mance under diverse training setups. We want to generalize our findings to novel
tasks with unknown computational complexities. Therefore, it is more important
to have a basket of diverse networks rather than a few over-parameterized. Each
architecture is trained for 50 epochs(referred to as the fully-trained group, or
FTG), as well as 1, 5, 10, and 20 epochs (referred to as partially-trained groups,
or PTGs).

Moreover, for each version, we again employ the seven distinct optimizer se-
tups; Adadelta, Adam, Adamax, RMSprop, Stochastic Gradient Descent (SGD),
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Figure 5.1: DeepNEAT cell architecture.
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Figure 5.2: Example of neural architectures generated with the mutation opera-
tor. Light cyan nodes (Sample 5) are inactive.
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SGD with momentum (SGD-M), and SGD with Nesterov momentum (SGD-NM).
Again, calculating ranking lists for each setup and comparing the rankings, we
employ Kendall’s τ [9]. As our sample size is still relatively small (although
significantly bigger than chapter 4), we generate 800 bootstrap samples to esti-
mate τ [10]. Given that we rank each architecture by its test set accuracy, minor
accuracy variations can result in significant variations between ranks. We saw
an indication of this phenomenon in chapter 4, when we discarded the first half
of the architectures and τ values increased significantly. As such, we calculate
τ for the original accuracy and after rounding the accuracy to the closest inte-
ger percentage. Rounding eliminates significant ranking differences due to minor
accuracy discrepancies, possibly induced by initial conditions.

5.2.2 NASBench-101 Simulations

To further study the behavior of networks evaluated under a reduced epoch
scheme, we repeat the experiment utilizing the NASBench-101 dataset. Con-
sisting of 423,624 cell architectures, it provides a sufficient number of samples.
The outer skeleton, dictating how the cells are compiled into networks, is depicted
in Figure 5.3). As inter-cell connectivity is pre-determined, generated architec-
tures are relatively similar, contrary to architectures generated with unbound
connectivity of global search spaces.

In this chapter’s experiments, we sample 100,000 architectures with replace-
ments. This sampling scheme aims to allow a real-world evaluation of architecture
rankings. Each time an architecture is sampled results from one of three differ-
ent training runs are retrieved. Our experiments compare results for 4, 12, 36,
and 108 training epochs (PTG) to a specific 108 training run sample (FTG). We
utilize the partially trained group of 108 epochs (108PTG) and FTG groups as
a noise evaluator. Ideally, these two groups should have a Kendall’s τ value of
1 (perfect ranking retention). Nonetheless, due to inherent stochasticity in the
training process, we expect rankings to differ to some degree. Therefore, we aim
to measure this discrepancy and establish a practical baseline, allowing us to
fairly judge relative ranking retention between PTG and FTG.
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Figure 5.3: NASBench-101 fixed outer skeleton.

5.2.3 Monte-Carlo Simulations

As a final experiment, we aim to examine the ability of a genetic algorithm to
find optimal solutions in a noisy environment that exhibit similar characteristics
to those observed in the previous experiments. To simulate neural architectures’
search spaces, we again utilize 3-d Rastrigin functions to demonstrate that op-
timization algorithms can find satisfactory solutions by exploring a noisy, albeit
less computationally expensive environment. These simulated environments will
have the same correlation to the original environment as the levels observed in
this chapter’s previous experiments. We record the percentage of better solu-
tions in the search space for each solution generated. Although we could utilize
NASBench-101 to conduct this experiment, it is restricted to a specific family of
neural architectures, which introduces selection bias to the results. Rastrigin is a
more general approach to evaluating optimization algorithms, and thus, a noisy
Rastrigin function should translate better to a general NAS setting.

The genetic algorithm is employed to search both the noisy and the original
search spaces. We generate noisy search spaces with correlations of τ = 0.85, τ =

0.75, τ = 0.65. We follow the same procedure as chapter 4. First, we compute
the function’s values for all the original search space points. Following, we inject
noise into the results to achieve the desired correlation level. To further expand
the scope of our experiments, we also conduct experiments in 2 and 4-dimensional
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Figure 5.4: Rastrigin function 2D, 100 x 100 mesh grid. Lighter shades indicate
higher values.

spaces, as well as the original 3-dimensional space. Figure 5.4 shows a 100-point
2-dimensional function and its noisy transformation. PyGMO [11], European
Space Agency’s general optimization library is utilized for the genetic algorithm
implementation. A crossover probability of 0.9, mutation probability of 0.02,
and a population size of 10 individuals are utilized, while tournament selection
determines an offspring’s parents. The algorithm’s stopping criterion is a set
number of generations, specifically 10, 100, and 1000. Finally, each experiment
is repeated 100 times to create a sufficient sample of empirical results.

5.3 Results

In the following section, we present the results obtained from the experiments
discussed in section 5.2.
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Table 5.3: Average DeepNEAT accuracy for each optimizer for the fully and
partially-trained versions.

Optimizer 1 Epoch 5 Epochs 10 Epochs 20 Epochs 50 Epochs
Adadelta 33.51 37.07 39.08 39.60 39.81
Adam 38.87 41.78 42.28 42.35 42.90
Adamax 38.84 42.02 42.62 42.44 42.45
RMSprop 29.55 31.05 32.66 33.16 33.79
SGD 35.41 38.82 39.32 40.48 41.40
SGD-M 38.30 41.88 43.07 42.23 43.65
SGD-NM 39.39 42.33 43.36 43.67 44.03

5.3.1 Generated Architectures

In the CIFAR-10 architectures experiment, we focus on relative ranking retention
between architectures generated in a global search space. As Figure 5.5 shows,
the accuracy distributions of PTGs tend to FTG when the number of training
epochs increases. There seem to be at least three sub-populations in the sample,
indicated by the three modes in the distribution. The right-most population first
appears in the 5 epochs group (5PTG). Architectures that exhibit the highest
performance separate from the rest, with the first 5 epochs of training contribut-
ing the most to this separation. Table 5.3 depicts the mean test accuracy for each
training setup. Note that these statistics are calculated from the raw accuracies,
not the rounded approximation mentioned in section 5.2.1. Mean accuracies
show that networks are under-performing, which is expected as the networks are
randomly generated. Parameters of successive layers and inter-layer connectivity
are not designed to improve performance. Instead, this experiment is designed to
exhibit the relative ranking retention under various training setups when network
quality is distributed over a large area.

In Figure 5.6, a heatmap of the bootstrap-estimated Kendall’s τ is provided
between PTGs and FTG. We observe various PTG and FTG pairs with corre-
lation values of τ > 0.5, while Stochastic Gradient Descent and Adamax exhibit
the highest correlations to PTGs, approximately τ ≈ 0.6.

Although there is a positive correlation, ranking again suffers from noise; small
variations in final accuracy can induce significant variations in the rankings. As
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Figure 5.5: DeepNEAT accuracy distribution for 1, 5, 10, and 20 epochs, com-
pared to 50 epochs.
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Figure 5.6: Bootstrap estimated correlations between fully-trained (y-axis) and
partially-trained (x-axis) versions.

such, we re-evaluate Kendall’s τ after rounding the accuracies to the nearest inte-
ger percentage. Results improve significantly (Figure 5.7), as Stochastic Gradient
Descent and Adamax achieve correlations of τ > 0.7. Moreover, FTG Stochas-
tic Gradient Descent and 20PTG Stochastic Gradient Descent are correlated by
τ = 0.851± 0.028. Figure 5.8 depicts bootstrap-estimated standard error. Pairs
with a high correlation coefficient also seem to exhibit low standard error. Finally,
as training epochs number increases, we observe that the average correlation be-
tween PTGs and FTG also increases. This increase is logical, as networks tend
to converge to their full potential as the number of training epochs increases.

Results are promising, as FTG Stochastic Gradient Descent and Adamax are
highly correlated with most PTGs, thus providing suitable optimizers for proxy
training tasks. Furthermore, PTG Adam and Adamax show a consistently high
correlation with FTG Stochastic Gradient Descent and Adamax. As such, they
can safely be utilized as optimizers for the search phase of NAS.

5.3.2 NASBench-101 Results

In our NASBench-101 experiments, it is interesting first to examine the general
behavior of various architectures as the number of training epochs increases. The
dataset does not provide data regarding different optimizers, but it does provide
data regarding various training epochs. As such, we provide Kendall’s τ values
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Figure 5.7: Bootstrap estimated correlations between fully-trained (y-axis) and
partially-trained (x-axis) versions for rounded accuracies.

Figure 5.8: Bootstrap estimated correlation standard error between fully-trained
(y-axis) and partially-trained (x-axis) versions for rounded accuracies.
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for PTGs and FTG for the single optimizer employed in 5.9. Although 36PTG
and FTG ranking correlation is 0.76, FTG and 108PTG (re-sampling of the 108
epochs accuracies) is only 0.89. This is far from the perfect correlation we would
expect.

Furthermore, a 300% in available computational resources resulted in a 17%
improvement in ranking correlation. The comparison of 108PTG to FTG shows
the consequences of re-training a group of architectures with the same training
setup but different initial conditions and inherent stochasticity in the training pro-
cess (for example, out-of-order execution in GPGPU instructions). The impact
is significant, inducing a ranking correlation significantly lower than expected.
Note that there is a 33% probability of re-sampling the same accuracy value for
every single network. Nonetheless, when a large number of networks is evaluated,
the probability of sampling the same values twice is effectively zero. This results
in the inability to achieve the theoretically expected correlation and imposes a
practical upper limit on the expected correlation between proxy task and original
search space.

For each partially trained group (PTG) and the fully trained group (FTG), we
calculate the bootstrap-estimated τ after rounding their accuracy to the closest
integer percentage. This results in a higher ranking retention for 36PTG and
108PTG. Figure 5.11 depicts the bootstrap distributions of the estimated values
and the standard error. By applying the Lilliefors test [12] we conclude that the
values are normally distributed, allowing us to use the standard error to construct
confidence intervals. As Figure 5.11 depicts, 108PTG achieves on average a
ranking correlation of 94%, a considerable improvement over the non-rounded
rankings (Figure 5.10). Although re-training the same architectures induced
noise, rounding reduced its effect considerably.

Moreover, we observe improvements in the correlations for 36PTG, as it pro-
duces, on average, rankings 80% similar to FTG. These results are close to those
observed for Adamax and SGD in the previous experiment, although NASBench
employs RMSProp with cosine learning rate decay. Nonetheless, a correlation
of 80% is feasible in both search spaces. Partially trained groups with 4 and
12 epochs of training exhibit low levels of correlation with FTG. More train-
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Figure 5.9: Accuracy distributions and Kendall’s tau-b between PTGs and FTG
for NASBench.
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Figure 5.10: Bootstrap estimated distributions for Kendall’s tau-b on the rounded
NASBench dataset. The number in brackets denotes the standard error.

ing epochs were needed to achieve similar correlation levels to the global search
space experiment. This overhead can be attributed to the nature of the search
space, which leads to generating architectures with similar characteristics. As
final networks share a large portion of their macro-architecture, more minute de-
tails discern between average and exceptional architectures. Consequently, more
training epochs are needed to highlight those differences.

The results of this experiment further validate the viability of utilizing reduced
training epochs to speed up the search phase of NAS. Furthermore, it highlights
the need for an increased number of epochs when generated architectures share
major features and the difficulty in achieving high correlation coefficients even
when architectures remain the same between training groups.
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Figure 5.11: Bootstrap estimated distributions for Kendall’s tau-b on the rounded
NASBench dataset. The number in brackets denotes the standard error.
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5.3.3 Monte-Carlo Results

For our last experiment, we search for optimal solutions to a noisy Rastrigin
function. Employing a genetic algorithm, we search for spaces with τ levels in
{0.65, 0.75, and 0.85} (65SP, 75SP, and 85SP, respectively). Correlation levels
are chosen to represent a worst, average, and best-case scenario, given the results
of the previous two experiments. Table 5.4 depicts the results of the simulations.
Given the global search space experiment’s results, we can assume that a proxy
task with a correlation level of τ = 0.75 to the original search space (OSP)
translates to a speedup of ±10 (Figure 5.6, Adamax to Adamax_5 correlation
is 0.779). We first compare the performance of a 10-generation search on the
OSP and a 100-generation on 75SP (roughly the same computational cost). We
observe that, on average, the 100-generation 75SP run produces better results
(quality measured on the original search space). This behavior also applies when
performing a 100-generation search on the OSP and a 1000-generation search on
75SP. A 95% confidence interval shows that for the 1000-generation run, 75SP
was able to generate solutions in the top [2%, 7.5%].

However, when employing 1000-generation runs, the benefits of utilizing a
proxy search space with τ = 0.75 seem to decrease as the number of dimensions
increases. This can be attributed to the fact that the number of neighboring
points increases for a given point in space as dimensions increase. When we inject
noise to the values of each point, we create clusters of similarly-valued solutions,
which increase the difficulty of distinguishing between marginally better solutions.
This behavior is similar to ranking correlations under various training setups
observed in the previous two experiments. It seems to validate our findings
further, indicating more significant gains from utilizing reduced training in global
search spaces, where solutions are more diverse and spread out in the search space.
Contrary to this, cell-search spaces benefit less from reduced epoch training, as
most of the architectures cluster around the space generated by the fixed macro-
architecture.

For 85SP, the genetic algorithm can find even better solutions, although the
expected speedup (assuming the computational behavior observed in the first
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Table 5.4: Expected performance when searching in the original and perturbed
search spaces. Expressed in the top-N percentage of the original search space
(smaller is better).

Dimensions Generations E(original) E(τ=0.85) E(τ=0.75) E(τ=0.65)
10 0.131 0.141 0.180 0.196

2 100 0.042 0.072 0.085 0.111
1000 0.002 0.032 0.033 0.044
10 0.161 0.179 0.199 0.217

3 100 0.043 0.076 0.091 0.127
1000 0.002 0.030 0.038 0.046
10 0.177 0.195 0.220 0.243

4 100 0.044 0.084 0.098 0.133
1000 0.002 0.033 0.043 0.048

experiment) is insufficient to justify its usage. Nonetheless, the merit of utilizing
1000-generation searches on the 85SP compared to 100-generation searches on
OSP is prevalent even in the 4-dimensional version. For fewer generations, its us-
age is not justified, as 75SP proves to be more efficient (in terms of solution quality
to computational cost). Finally, 65SP and 100-generation runs, solutions discov-
ered outperformed 10-generation runs on OSP. Assuming the speedup observed
in the global search space experiment (e.x. Adamax to Adamax_01 offering a
speedup of 50), even the 1000-generation runs can be effectively utilized, as it
provides considerable improvements over 10-generation runs on OSP.

From the above, we conclude that when choosing between the increase of the
allocated resources of the NAS optimization algorithm (in our case, the num-
ber of generations) or the resources of intermediate solution evaluation (training
epochs), the former is a safer choice. For severely restricted search spaces, where
differences between realized networks are minute, increasing the allocated re-
sources (training epochs) of the evaluation is preferable.
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5.4 Limitations

This chapter provides some interesting insight into the tradeoff between allo-
cating resources to the search algorithm or the candidate evaluation method.
Nonetheless, there are a number of limitations in our experiments. Although the
number of architectures and their diversity increased significantly from chapter
4, the sample size remains small for the first experiment. Furthermore, we are
still utilizing single-GPU evaluation for each architecture, thus limiting the ar-
chitectures in size. Although having a significantly bigger sample size, the second
experiment is constrained by the family of architectures in the dataset.

Finally, both datasets concern convolutional networks evaluated on the CIFAR-
10 image recognition dataset. Therefore, there is a possibility that selection bias
has skewed the results in the form of sampling bias. Following these limitations,
if selection bias is indeed present, it also skews the results of the third experiment,
as the correlation levels are set according to the findings of the first two experi-
ments. In this case, results are only valid for sub-populations with characteristics
similar to samples utilized in the first and second experiments.

5.5 Summary and Conclusions

In this chapter, we have studied the behavior of neural architectures when eval-
uated under a reduced training epoch scheme based on their relative rankings.
To study this behavior, we created 140 unique networks utilizing mutations and
trained each network for 1, 5, 10,20, and 50 epochs using seven different optimiz-
ers: Adadelta, Adam, Adamax, RMSprop, Stochastic Gradient Descent (SGD),
SGD with momentum (SGD-M), and SGD with Nesterov momentum (SGD-NM).
In addition, we applied a rounding operation to their test accuracy to reduce the
noise generated by inherent stochasticity in the training process, rounding to
the nearest integer percentage. Finally, the rounded accuracies were utilized to
generate rankings lists for each experimental setup (epochs and optimizer vari-
ation). We compared the relative rankings for each reduced-epoch setup to the
fully-trained setups, employing Kendall’s tau ranking correlation coefficient.
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Given that our sample size is relatively small, we generated 800 bootstrap
samples to estimate the tau distributions. We observed high correlations be-
tween fully-trained SGD setups and the 20-epoch SGD setup (0.85± 0.028). We
concluded that SGD and Adamax are suitable optimizers to utilize in training
final NAS architectures, as they exhibit a high correlation with various par-
tially trained optimizer setups. Furthermore, Adam and Adamax are suitable
search phase optimizers, as they generated a high correlation coefficient with
fully trained SGD and Adamax.

To further investigate the level of relative ranking retention between fully
and partially trained networks, we studied the behavior of 100,000 architectures
sampled from the NASBench-101 dataset. As the dataset does not provide data
for different optimizers (only RMSProp is utilized), we tested for 4, 12, 36, and
108 epochs. This experiment provided more insight, yielding relatively high cor-
relation coefficients (0.808± 8.33E − 4) for the 36-epoch partially trained group
(36PTG) and the fully-trained group (FTG). However, it also indicated that it is
impossible to reproduce the same ranking between two groups of independently
trained networks, even if the architectures are identical (108PTG and FTG). This
inability can be attributed to inherent stochasticity in training the networks. Es-
sentially, we cannot directly measure the quality of a neural architecture. We can
only observe the quality of a compiled network derived from the architecture.

Even when rounding the accuracy to the nearest integer percentage, the cor-
relation between 108PTG and FTG was only 0.94±4.72E−4, posing a practical
upper limit on what can be achieved. Finally, as the standard deviation of the
fully-trained performance distribution decreases, the number of epochs required
to rank architectures increases.

To test the ability of optimization algorithms to find optimal architectures
in a proxy search space, we generated noisy Rastrigin function results with rank
correlation coefficient levels in 0.65, 0.75, 0.85 (compared to the original function
results). We then employed a genetic algorithm to search for optimal solutions
in the noisy search spaces. The algorithm produced solutions, on average, within
the top-4% 5.4 of the original search space for τ = 0.75. This experiment fur-
ther validated previous findings, showing that in lower-dimensional spaces, and
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spaces able to generate diverse solutions, the algorithm was more efficient when
extra computational resources were allocated to the search rather than candidate
evaluation. As such, low-correlated spaces are beneficial. High-correlated spaces
are required to generate optimal solutions in search spaces where solutions are
clustered around a single point (such as one defined by a macro-architecture).

We conclude from the above that it is not detrimental to utilize a reduced
number of training epochs during the NAS search phase. A highly accurate eval-
uation of candidates is not needed and may be detrimental as it reduces the
available computational resources for the search method. Accurate analysis of
their relative performance is sufficient to produce near-optimal solutions. Fur-
thermore, even when fully re-training a set of neural networks, their rankings
may differ significantly from what someone would expect.

There is a certain point where the tradeoff between a more intense candi-
date evaluation and a more thorough search becomes apparent, and it is directly
related to the diversity of architecture generated. Fewer epochs are needed to
discern between diverse architectures, while more epochs are needed for similar
architectures.An extreme example of diverse architectures would be an architec-
ture with only an input and an output node and an architecture with several
convolutional layers. To rank them, even a single training batch is sufficient.
Ont the other hand, two identical networks of several convolutional layers, dif-
fering only in the kernel size of a single layer by 1 pixel, will have very similar
performance, and even a large number of training epochs may not be sufficient
to rank them successfully.

This chapter has thus successfully informed us about the utilization of re-
duced epochs training as a candidate evaluation method. Adam and SGD seem
to be safe optimizer choices. Furthermore, it highlighted the merit of allocating
more computational time to the search method, rather than the candidate eval-
uation method, especially for global search spaces. Diverse architectures seem to
differentiate in performance early on in the training phase, while more similar
architectures require more training effort. In the following chapters, we utilize
this knowledge to search for optimal architectures in image and graph datasets,
utilizing distributed computing and reduced training epoch schemes.
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Chapter 6

Distributed Regularized Evolution
for Global Search Spaces

Most research focuses on searching for small blocks of deep learning operations or
micro-search. This method yields satisfactory results but demands prior knowl-
edge of the macro architecture’s structure. Generally, methods that do not utilize
macro structure knowledge perform worse but can be applied to datasets of en-
tirely new domains.

This chapter proposes a macro NAS methodology that utilizes concepts of
Regularized Evolution and Macro Neural Architecture Search (Deep-NEAT) [1]
and applies it to the Fashion-MNIST dataset. By utilizing our method, we can
produce networks that outperform other macro NAS methods on the dataset
when the same post-search inference methods are used. Furthermore, we can
achieve 94.46% test accuracy while requiring considerably fewer epochs to train
our network fully.

6.1 Introduction

Most successful methodologies in NAS concern cell search spaces, which require
significant prior knowledge about the target dataset. Although these approaches
are both efficient and effective, the prior knowledge required to generate the
macro architecture does not exist for all types of data sets. Therefore, they are
only applicable in areas where such knowledge has been previously obtained which
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usually means thorough human experimentation. As mentioned previously in this
thesis, experimentation requires significant computational resources and time.
On the other hand, global search spaces require more computational resources
than cell search spaces but can be implemented for data sets where previous
knowledge regarding well-performing macro-architectures does not exist.

In this chapter, we design an approach created by combining regularized Evo-
lution from [2] and genetic encoding from DeepNEAT [1], combined with the
knowledge extracted from the previous chapters. Utilizing a global search space,
we search for optimal architectures in the fashion-MNIST dataset[3], employing
a reduced-training-epoch candidate evaluation method. We aim to evaluate the
proposed method’s ability to generate suitable architectures without prior knowl-
edge regarding the application domain and compare it to other approaches with
similar set spaces. We first briefly presented other approaches and the target
data set. Finally, we explain our approach and present our experimental results.
Limitations are discussed at the end.

6.2 Related Work

As previously mentioned, we utilize a combination of Regularized Evolution [2]
and DeepNEAT [1] to formulate a global NAS methodology for our method.
As such, in this section, we present the basics of the two algorithms and the
Fashion-MNIST dataset.

6.2.1 DENSER

In DENSER [4], an evolutionary algorithm is employed to design neural archi-
tectures. The algorithm searches for the network’s topology and optimal hyper-
parameters, such as learning rate parameters, other optimizer parameters and
data augmentation parameters. The search space consists of a two-level hier-
archical search space. The lower level encodes parameters regarding individual
layers, while the higher level encodes parameters regarding network connectivity.
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Generating architectures involves utilizing context-free, human-readable gram-
mar. The method is applied to a variety of image recognition datasets. For
Fashion-MNIST, it is able to produce networks with 94.23% accuracy while em-
ploying 10 epochs in the search phase and 400 in the final training phase.

6.2.2 Auto-KERAS

In [5], network morphisms and bayesian optimization are utilized in order to gen-
erate neural architectures. Identity morphisms are utilized by inducing function-
preserving transformations and allowing re-utilization of previously trained weights.
Bayesian optimization is used to guide the morphisms, increasing their efficiency
in altering architectures. Applied to the Fashion-MNIST dataset, utilizing 200
epochs for both search and final training, the method generated architectures
with 93.28% accuracy.

6.2.3 DeepSwarm

In DeepSwarm, a population-based algorithm, specifically ant colony optimiza-
tion (ACO), is employed to generate competent neural architectures. The gen-
erated networks consist of sequentially connected layers, which can be convolu-
tional, pooling, and batch normalization layers. There are no skip connections
or branching layer outputs. Nonetheless, utilizing 50 epochs for candidate eval-
uation and 100 for the final training, the method is able to out-perform [5],
producing networks with 93.56% final accuracy.

6.2.4 NASH

Finally, a simple hill-climbing algorithm is utilized in NASH to design neural
architectures. Again, network morphisms are employed, but instead of having
a Bayesian optimization algorithm guide the insertion, a simple hill-climbing
algorithm is employed. Here, skip connections exist and the basic operations
that the hill-climbing algorithm can choose from are the following:
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• Making the network deeper, by adding a convolutional block (convolution
followed by a batch normalization and activation function).

• Making the network wider increasing the number of channels used by its
internal layers.

• Adding a skip connection from a single layer to another.

6.2.5 Fashion-MNIST

Fashion-MNIST [3] is a benchmarking image recognition dataset. It was first
proposed as a direct drop-in replacement for the popular MNIST dataset [6],
which had become too easy for modern deep learning architectures to provide a
benchmark. The dataset contains several labeled fashion items grouped into 10
classes. Each instance is a 28 by 28 pixel grayscale image depicting a single item.
There are 60,000 items in the training set and 10,000 items in the test set. An
example of the dataset can be seen in Figure 6.1.

6.3 Methodology

Building upon the knowledge gained from the previous chapters, this chapter’s
methods utilizes concepts of Regularized Evolution [2], DeepNEAT [1], as well
as reduced epoch candidate evaluation methods. Following, we define the rules
of evolution taken from [2]. Finally, we explain how a genome (a collection of
genes) is translated into a functioning neural network and evaluated.

6.3.1 Architecture Representation

In order to represent a neural architecture, genes contain information regarding
their layers and connections. These genes define the network’s topology, as well
as its layers parameters and layer type.
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Figure 6.1: Sampled Fasion-MNIST images, one for each class.

Layer Genes

Each layer gene dictates which layer type will be implemented by a single node.
Deviating from our previous approaches, we opt to implement 12 discrete layer
configurations instead of having variable kernel size, number of filters, dropout
probability, as well as the existence of the MaxPool layer. This approach dramat-
ically reduces the search space, which is already vast, given that no connection
restrictions apply.

To specify the layer configurations, we first define a fixed number of channels
for all architectures, as in [2]. Each node can implement either a convolution or a
pooling layer, with kernels of sizes 2x2, 3x3, and 5x5. Furthermore, each pooling
layer may implement a max or average reduction function (being a Max-Pool or
Average-Pool). Finally, each convolutional layer may choose to implement only
half of the predefined channel (number of filters) number. This decision reduces
the available variations in each node from 896 down to 12. The available choices
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Table 6.1: Available layer choices.

Selection Layer Type Kernel Size Operation
CONV_2.H 2x2
CONV_3.H Convolution 3x3 Filters Number = Half Channels
CONV_5.H 5x5
CONV_2.N 2x2
CONV_3.N Convolution 3x3 Filters Number = All Channels
CONV_5.N 5x5
POOL_2.A 2x2
POOL_3.A Pooling 3x3 Average
POOL_5.A 5x5
POOL_2.M 2x2
POOL_3.M Pooling 3x3 Max
POOL_5.M 5x5

are depicted in Table 6.1.

Connection Genes

Connection genes indicate the network’s connectivity and are implemented in the
same manner as previous chapters. The only difference is that mutation operators
can only disable a connection and not generate a novel connection. Furthermore,
this choice does not restrict the search space to sequential architectures, i.e.,
there can exist networks with two or more layers with the same inputs or a layer
with multiple inputs. Although this may seem to restrict the search space, skip
connections can still form, as it will become clear later.

6.3.2 Evolving Architectures

Following the method in [2], a population of P individuals is initialized. Each
new individual represents a 4-layer architecture. Again, this does not restrict the
existence of architectures with fewer than 4 layers in the population. As connec-
tions can be disabled, some layers may be orphaned and thus become inactive
themselves. To evolve the population, we implement a mutation operator, which
is applied with probability pmutate. We further define a separate probability to
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Figure 6.2: Times an individual is sampled for serial (1 worker) and distributed
(4 workers) version of regularized evolution.

add a new node to the network padd, as well as a probability pidentity to leave the
network intact. At each evolution cycle (a cycle consists of replacing the oldest
individual with an offspring), N individuals are selected as candidates for repro-
duction. The best (utilizing the compiled neural network’s test set accuracy as
its fitness) out of N is selected to create offspring inserted into the population,
and the oldest individual is discarded. Having W parallel GPU workers, we em-
ploy concurrent evolutionary cycles, where at the end of each cycle, W offspring
are created, and W oldest individuals are discarded. This does not significantly
alter the probabilities of an individual to be sampled. Figure 6.2 depicts the
probability that any individual will be sampled a given number of times before
being discarded, for serial and distributed implementations.
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Figure 6.3: Three node additions to the same genome.

Adding Nodes

An existing connection is selected at random to insert a new node in an architec-
ture. The new node is inserted and connected to the original connection’s source
and target node while the connection is disabled. Note that the connection is not
discarded but instead is de-activated. When applied to an inactive connection
gene, the mutation operator re-activates it, thus allowing for the creation of skip
connections. With this mechanism, the original source node can have multiple
outputs, as each time a new node is inserted, a direct connection to the original
target is retained, although it is inactive. This can be seen in Figure 6.3. Each
node is identified by a unique number, indicating its age. Node -2 is the net-
work’s input, while 99 is the network’s output. As it can be seen, the input node
has developed multiple outputs, while the output node has developed multiple
inputs.
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6.3.3 Implementing the Networks

To utilize the convolutional architectures for the classification of the Fashion-
MNIST dataset, we need to define a dense head. We add three fully connected
layers (FC) with a decreasing number of filters. The first fully connected layer
(FC1) has a number of neurons equal to a quarter of its input features. The
second fully connected layer (FC2) has half the number of neurons that FC1 has.
Finally, the third fully connected layer has 10 neurons, equal to the number of
classes in the dataset.

After each convolutional layer, a ReLU activation function is applied and
clipped to have a maximum value of 6 (ReLU6). Following the activation, a
Batch Normalization layer is employed, along with a dropout layer with dropout
probability d = 0.1. Minimum Viable Size is employed by NORD to ensure that
layers with multiple inputs can sum them before processing their inputs.

6.4 Experiments

6.4.1 Experimental Setup

In this chapter’s experiments, we employ a population of 100 genomes. Utilizing
a total of 400 evolution cycles, we evaluate a total of 500 networks. At each
evolution cycle, we select 25 individuals as prospective parents. Each network
during the search phase is trained for 10 epochs and evaluated. To train the
networks, we utilize the Adam optimizer [7], which proved to be suitable for
NAS search phases. We choose 64 as the fixed channel number. This means
that CONV_2.H, CONV_3.H, and CONV_5.H will contain only 32 filters when
selected as layer configurations. Furthermore, the probability of adding a new
node to an architecture is set to padd = 0.25, while the probability of adding a
new connection is 0.7. As such, the probability of leaving a network intact is
pidentity = 0.05.

To establish a baseline for our method, we also implement a random search
approach. For this purpose, we repeat the experiment with N = 1, meaning that
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a random individual is selected each time to reproduce. This reduces the algo-
rithm to a random search. The experiments were run on a cluster of 4 NVIDIA
Tesla V100 GPU cards, employing our distributed algorithm implementation.

6.4.2 Results

Our distributed evolutionary search (ES) implementation seems to significantly
outperform random search (RS). It was able to produce better architectures while
doing so consistently. The results can be seen in Figure 6.4, where the currently
best-found architecture accuracy is depicted for both approaches. ES manages to
continuously generate better architectures, while RS cannot do the same (left).
Moreover, the evolutionary search produces better empirical cumulative distribu-
tions, exerting a first-order stochastic dominance over random search. Stochastic
dominance implies that ES can produce at least the same or better architectures
with a higher probability. ES can generate architecture achieving test accuracy of
up to 93.62%. This architecture consists of two CONV_2.N layers, followed by a
CONV_3.N, a CONV_5.N, a POOL_5.A, and a CONV_3.H layers, all of them
sequentially connected. RS was able to find architectures with up to 91.91% test
accuracy, although these architectures consisted of a CONV_3.H, CONV_5.H,
a CONV_3.H, and a POOL_5.M layer, again connected sequentially.

Most of the best-performing architectures found by ES consisted of sequentially-
connected layers with full channel count, followed by a single pooling layer and a
reduced-channel convolution. This can be attributed to the dense head selected
when designing our search space. Some architectures developed diverging outputs
and multiple inputs, achieving relatively good performance. The most prominent
features were two sequential CONV_2.N layers, followed by a CONV_3.N, a
CONV_5.N, and a POOL_5.A layer. Figure 6.5 shows all evolved architectures
(initial population not included), each with an alpha equal to 1

400
. This allows

robust features to be represented in bold while less prominent features appear
extremely faded. This is an easy way to identify patterns visually. Here, OUT-
PUT layers denote the output of the convolutional part of the network, i.e., the
input to the dense head. Valid evolved architectures contained, on average, 5.5
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Figure 6.4: Best architecture’s performance (left) and performance empirical
cumulative distributions (right).
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Figure 6.5: Overlay of all genomes’ architectures.

nodes with a standard deviation of 1.1. Some invalid architectures were gener-
ated, including architectures with no path from the input to the output node. In
Figure 6.5 a pattern of 4 convolutions of increasing kernel size is prominent, as
is the branching of outputs from the main sequence to a convolution layer with
kernel size 3, feeding the output layer. It is interesting to note that the dominant
patterns seen in Figure 6.5 were evolved many times and were then established
due to their performance.

We chose the best-performing architecture out of architectures trained at least
5 distinct times for the final training. We select the average best, as we want to
refrain from choosing a network that achieved high performance due to stochas-
ticity. This decision follows the work of [8], as similar levels of variance were
recorded in this study (0.2% on average). The chosen network closely repre-
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Table 6.2: Performance of similar algorithms

Method Final Accuracy Search Epochs Training Epochs
DENSER [4]2 94.23% 10 400
Auto-Keras [5] 93.28% 200 200
Byla2019 [9] 93.56% 50 100
NASH [10]3 91.95% 20-105 205
REMNet-128 94.26% 10 20
REMNet-256 94.46% 10 20

sents the dominant architecture from Figure 6.5 (first 5 sequential layers shown,
followed by two CONV_3.H layers branching out after the pooling operation).
Employing data augmentation on the train set (horizontal flipping and random
erasing), increasing the number of channels to 256 (resulting in 3.1 million param-
eters) and training the network for 20 epochs with Adamax as optimizer, after
which it converged. The network can achieve a test set accuracy of 94.46%, while
a more modest implementation with 128 channels (791,338 parameters) achieved
a test accuracy of 94.26%. We call the architecture REMNet (Regularized Evo-
lution for Macro-NAS Net) for ease of reference.

6.4.3 Discussion

Compared to networks found by other global search space NAS methodologies,
our generated network seems to perform marginally better. Nonetheless, there
exist post-search training and inference methods that can greatly boost network
performance, such as test-set data augmentation and neural network ensembles
used in [4]. By leveraging such methods, the authors are able to propose an
architecture with 94.7% accuracy when test-set augmentation is used and 95.26%
when ensembles are employed. As we do not employ any of these methods, we
refrain from comparing our model with those versions.

Table 6.2 depicts a summary of the results obtained by our method and other
similar approaches. REMNet seems to need fewer epochs to fully train the final

294.70% with test set augmentation
3As implemented in [5]
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network, which can be attributed to two distinct reasons. First, we employ a
significantly restricted candidate evaluation scheme with only 10 epochs, as we
are confident that it is enough to evaluate network performance for up to 50
epochs in the final training. This also imposes a regularization on the candidate
selection, as overly complex networks are not able to distinguish themselves from
well-performing simple networks. Second, we utilize optimizers with an adaptive
learning rate. Thus, we do not need to employ complex learning rate policies, as
in [4].

6.4.4 Limitations

Though our approach produced better results than similar methodologies, it can-
not produce better than state-of-the-art architectures. This is partly due to the
search space selection, as it does not allow the exploitation of known promis-
ing regions. Furthermore, we do not employ advanced training and evaluation
techniques for the final architecture, thus being unable to unlock its full potential.

6.5 Summary

There are several methods that can produce state-of-the-art networks through cell
search space NAS. Nonetheless, these methods require prior knowledge regarding
suitable regions of the search space. In this chapter, we propose a methodology
for global search spaces by combining Regularized Evolution [2], and DeepNEAT
[1]elements while also utilizing knowledge gained from the previous chapters,
employing reduced epoch training as a candidate evaluation method.

By applying our approach to the Fashion-MNIST data set, we were able to
produce neural architectures that outperform other similar search space method-
ologies when the post-search training evaluation methods are similar. We de-
signed networks capable of up to 94.46% accuracy on the test while converging
in relatively few epochs.In the following chapter, we aim to leverage our method
of generating relatively standardized (fixed layer configurations) neural architec-
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tures in order to create a model that can predict relative performance without
requiring any training on networks compiled from the neural architectures.
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Chapter 7

Graph Neural Networks and Neural
Architecture Search

In this chapter, the networks we generate (performance predictors) will learn how
to rank other neural architectures based on their topologies. Again, we employ
concepts from regularized evolution [1], and genetic algorithms [2] to generate
a number of global search space architectures. We aim to utilize the generated
architectures as an evaluation dataset and search for a Graph Convolutional Net-
work that can correctly predict the relative performance of other architectures.
This chapter addresses relative performance as a binary classification problem
(which network is better). Although there have been successful attempts at em-
ploying graph convolutional networks to model the same domain, to the best of
our knowledge, this is the first time that a neural architecture search methodol-
ogy is employed to generate a neural predictor that aims to accelerate other NAS
methods. Furthermore, this is the first time that evolutionary algorithms have
been applied to the problem of NAS for GCN.

7.1 Introduction

So far, we have addressed the problem of increased computational requirements in
NAS by exploring how to allocate available resources best. This chapter attempts
to significantly reduce the requirements by making training compiled networks
obsolete. Estimating an architecture’s quality from a predictive model (as op-
posed to computationally observing it through the performance of a compiled
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network) can induce a significant speedup in a NAS pipeline. There is an added
cost of training the model, although the benefits can potentially outweigh the
cost [3, 4, 5]. Having a suitable surrogate model can also aid in Bayesian Opti-
mization approaches [6, 7, 8]. Both of these methods induce unavoidable noise to
the NAS process and affect relative architecture rankings. We showed in chapter
5 that even retraining networks compiled from the same architectures could in-
duce noise. As noise is unavoidable, researchers must find the optimal trade-off
between speedup and precision for their specific application, as it is impossible
to achieve perfect precision.

In this chapter, we aim to propose a NAS method that can create suitable
predictive models for other NAS methods, thus significantly automating the pro-
cess of choosing one. First, we present related works. Following, we present the
basic components of our approach, experiments and results. Finally, we discuss
the limitations of our approach and our findings.

7.2 Related Works

7.2.1 Predicting neural network performance

Most NAS approaches that do not employ differentiable operations require the
evaluation of compiled networks. These evaluations have been identified as the
main computational burden of NAS, requiring resources that could be allocated
to the search algorithm. As a result, some researchers opted for predictive models
instead of utilizing a reduced epoch evaluation scheme seen in previous chapters.
BRP-NAS[9] employs a four-layer GCN to predict binary rankings between var-
ious architectures. This approach presents some similarities to our approach,
presented later in this chapter. Nonetheless, the authors focus on predicting
inference latency, and the predictive model is derived from a hand-crafted ar-
chitecture. The authors also employ transfer learning to transfer the network
optimized on the latency prediction problem to the binary ranking problem and
produce satisfactory results for both problems.
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In [4], the researchers employ an auto-encoder model to create representa-
tions of each neural architecture, which are then used to organize all architecture
representations in a graph. Radial basis functions are employed to measure the
distance between two architecture representations. The calculated distance is
then used to position the architecture in a final relational graph. This super-
graph is then utilized as an input to a graph convolutional network model to
assess the performance of various architectures (represented as nodes in the su-
pergraph). Though satisfactory results were produced, the need for two separate
models and a supergraph can be seen as drawbacks.

ReNAS[5] is a more straightforward approach to the task of assessing relative
performance between cell search spaces architectures. Here, the cell’s adjacency
matrix and layer types are employed as a feature tensor (similar in spirit to the
reinforcement learning example from chapter 3) and an extended version includ-
ing the number of parameters for each layer and floating operations per second.
A modified version of the LeNet-5 convolutional architecture [10] is employed as
the prediction model. The network is trained on either the 19x7x7 full feature
vector or the 1x7x7 reduced vector (adjacency and layer type only). This method
has produced state-of-the-art results, outperforming all previous methods which
utilized LSTM embeddings[11] and Random Forests[12]. Furthermore, it seems
to outperform [4] for train sets with an equal number of samples.

7.2.2 Neural architecture search on graph neural networks

As NAS can produce state-of-the-art architectures for convolutional networks, it
is only logical that other types of neural networks can benefit from its methods.
Graph convolutional networks are no exception.

GraphNAS [13] employs a reinforcement learning approach to designing variable-
length strings representing hyperparameters of graph neural networks (GNNs).
Networks are evaluated on a number of classification tasks and protein-protein
interaction graphs. The researchers employ a policy gradient approach, using the
network’s accuracy on each task as the reward. Moreover, the authors employ
weight-sharing between each generated architecture to reduce the search’s overall
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computational and time costs.

Similarly, Auto-GNN [14] also employs a reinforcement learning and weight
sharing approach to design graph convolutional architectures for the same datasets.
Additionally, the authors employ a guided architecture modifier, aiming to as-
sist the agent in exploring the action space. This guided modifier leverages the
decision entropy of various actions to determine how an existing neural architec-
ture should be modified. This approach outperforms GraphNAS on the selected
datasets.

Finally, SNAG [15] introduces a novel framework for generating GNN archi-
tectures. Similar to the previous two approaches, this method employs NAS with
reinforcement learning. Nonetheless, it utilizes a more simplistic and expressive
search space. Here, the search space includes 12 node aggregators, 3 layer ag-
gregators, an Identity, and a zeroize layer. Additionally, the agent is optimized
to maximize the expected validation accuracy of the generated architectures. By
employing this more straightforward search space, the method can outperform
the previous two approaches on various node classification tasks.

The previous methods employ reinforcement learning, while their focus is to
design graph neural networks for node classification tasks. However, employing
reinforcement learning approaches introduces complexity to the pipeline, as the
agent’s training must also be optimized. By utilizing an evolutionary algorithm
developed in earlier chapters, we reduce the components that need fine-tuning.
Furthermore, parallelization of evolutionary algorithms is straightforward [16],
enabling our approach to be easily scaled up.

7.3 Methodology

This chapter employs the evolutionary algorithm described in chapter 6 to gen-
erate graph convolutional architectures. We evaluate the compiled networks on
the relative ranking prediction task, utilizing architectures generated from both
global as well as cell search spaces. We utilize the global search space on Fashion-
MNIST (as in chapter 6) and the NASBench-101 benchmarking dataset. We first



7. Graph Neural Networks and Neural Architecture Search 129

describe how the various genes are implemented, how the individuals are evolved,
how a network is compiled, and how it is evaluated.

7.3.1 GCNs and the SAGE framework

Graph convolutional networks extend the basic concepts of conventional convolu-
tional layers to datasets organized in a graph-like structure [17, 18]. For a graph
G = (E, V ) with edges E and nodes V , we associate a feature vector Hi, of length
N with each node. We can then aggregate feature tensors from the neighbor-
hood of Vi utilizing permutation-invariant operations, such as element-wise max
or average. This results in a new vector Ti of size N . Multiplying the vector
by a weight matrix and applying a non-linear activation function to the result, a
simple graph convolutional layer can be defined.

Although most early work on GCNs focused on transductive learning, Graph-
SAGE [19] focuses on inductive learning. It proposes the employment of train-
able aggregators, aiming to achieve inductive learning capabilities. The two most
exciting aggregators (also the ones used in our approach) are LSTMs [20] and
Pooling networks. As LSTMs are not permutation-invariant, a random shuffling
of the inputs ensures that the network will not over-fit on the data order. Pool-
ing networks use a trainable weight matrix, which is applied individually to each
neighboring node’s feature vector, followed by a non-linear activation. Finally,
the results are aggregated by an element-wise max pooling operation.

7.3.2 Genome representation

To represent our GCN architectures, we employ layer and connection genes, as
in previous chapters, but also employ a hyper-parameter gene, describing specific
network-wide attributes. The three chromosomes comprise a single genome, fully
describing a GCN architecture.
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Table 7.1: Available layer gene options.

Layer Selection Aggregator Filters

SAGE_LSTM.H LSTM Half Filters (F/2)
SAGE_POOL.H POOLING Half Filters (F/2)
SAGE_LSTM.N LSTM Standard Filters (F )
SAGE_POOL.N POOLING Standard Filters (F )
SAGE_LSTM.D LSTM Double Filters (2F )
SAGE_POOL.D POOLING Double Filters (2F )

Layer and connection genes

As in the previous chapter, we employ a fixed number of channels for each net-
work. However, instead of having only half-channel layer options, we also employ
double-channel options. As such, employing GraphSAGE layers with LSTM or
pooling aggregators, we have 6 distinct layer configurations; LSTM aggregators
with half, double or normal channel number, and pooling aggregators with half
double or normal channel number. Connection genes are implemented in the
same way as in chapter 6.

Hyperparameter genes

Instead of having a simple output node in our networks, we employ a global
pooling operation to create standardized-size embeddings, irrespective of each
input graph’s topology and size. As this layer significantly affects the architec-
ture’s performance, we implemented it as a hyper-parameter in the genome. The
hyper-parameter gene indicates selecting this layer type and parameters from
one of 5 individual options: a MaxPooling layer, an AveragePooling layer, and a
SortPooling layer, with k ϵ [1, 2, 3] nodes retained.

Figure 7.1 depicts an example of the genome and the corresponding archi-
tecture. The first number in the gene indicates its first appearance (mutation
number). The first number indicates the source for the connection chromosome
while the second indicates the target node (expressed as the mutation number).
The string in the parenthesis indicates the layer configuration selected. Finally,
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Figure 7.1: Left: Example of a genome with connection, layer, and hyper-
parameter chromosomes. Right: The corresponding network.

the single hyper-parameter gene indicates the global pooling selection for the
architecture.

Mutation and Evolution

For the hyper-parameter genes, mutation induces a random permutation of the
layer configuration. Connection genes are mutated in the same manner as before.
Finally, layer gene mutation changes the layer configuration selection to another
at random.

Evolution follows the same rules as in chapter 6. A population of P random
genomes is initialized, with a single hidden GCN layer and a random global
pooling layer. At each cycle, N candidates are randomly selected to reproduce,
and the one with the highest fitness creates offspring by mutation. A gene is
mutated with probability pm and a connection gene is added with probability pa.
The oldest individual is discarded after the offspring is evaluated and inserted in
the population.
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Figure 7.2: Genome to network implementation.

7.3.3 Graph ranking implementation

We employ a two-level dense head to implement graph ranking, which is fed
by the GCN architecture. As our inputs are a pair of architectures G1, G2, the
head receives double the features of a single GCN. We set the number of neurons
equal to half of the GCN features for the first dense layer, while the second layer
is the classification layer. We employ a ternary class, allowing the network to
decide if the two architectures are equal( G1 ≈ G2), or one is better than the
other (G1 > G2 or G1 < G2). We assume that two networks are equal if their
performance is within a small margin e of one another. We choose to share
weights between the two GCNs to reduce the number of trainable parameters
and make the networks more robust. The two outputs are concatenated and then
forwarded to the dense head. Figure 7.2 depicts the transition from a genome to
an implemented network, summarizing this section’s information.
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7.3.4 Generating the datasets

For the NASBench-101 dataset, we sample at random a number of architectures.
We generate their relative rankings by first splitting them into a train and test
set and then testing for equality (if the absolute difference between their average
accuracy is smaller than e). Note that there is no overlap between the train and
test set. As such, when tested, the GCN network will try to predict the relative
quality of previously completely unseen networks. The information regarding 108
epochs of training is utilized.

For the global search space dataset, we generate 980 random architectures for
the Fashion-MNIST dataset, employing the same available layer configurations as
in NASBench-101, namely 1x1 convolution layers with 16 filters 3x3 convolutions
with 32 filters, and a 2x2 max-pooling layer. In addition, each network is trained
for 108 epochs, using the AdamW optimizer[21]. Finally, the accuracy of the test
set is recorded. Although we employ the same layer configurations as NASBench-
101, we do not employ a fixed macro-architecture. As such, we have a global
search space with limited options regarding layer setups. Nonetheless, we limit
the available number of nodes to 8 to enable comparison with ReNAS, which
requires a fixed maximum number of nodes as its inputs are in a fixed-length
tensor format. The dense head in these networks consists of three dense layers;
the first with a number of neurons equal to 1/4 of the incoming features, the
second with half the neurons of the first, and finally, a classification layer with
10 neurons.

7.4 Experiments

7.4.1 Experimental setup

For the NASBench-101 architectures dataset, our experimental setup consists of
populations of 100 individuals, evolved for a total of 400 cycles. At each cycle,
25 individuals are selected as parents, utilizing the generated network’s Kendall’s
tau correlation coefficient [22] of the generated rankings as a fitness function.
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Table 7.2: Experimental Parameters.

Parameter Value Parameter Value

P 100 ϵ 0.01
N 25 train size 150
C 400 test size 350
pm 0.25 optimizer AdamW
pa 0.25 fitness metric Kendall’s tau
train batch 256 train epochs 2
standard filters 300

Each parent produces an offspring with 25% probability of adding a node to its
architecture and a 25% probability of mutating a gene. We employ 300 channels
as the standard number, thus having layers with 150, 300, and 600.

We train each network for 2 epochs on the AdamW optimizer, with a learning
rate of 1.0e − 3 and weight decay of 1.0e − 2. During the search phase, we
employ 500 architectures, split into a 70% train set and 30% validation set. The
same setup was also employed in the Fashion-MNIST dataset. We set the equality
margin ϵ = 0.01. The DGL python library was incorporated into NORD to enable
network compilation. All GCN experiments are executed on a single GTX1060
graphics card. The parameters are summarized in Table 7.2. To establish a
baseline, we also implemented ReNAS, utilizing only the layer type and adjacency
matrix, as this is also the only information available to the GCN models.

7.4.2 Experimental results

Following the 400 cycle evolution, the algorithm has successfully found a well-
performing neural architecture relatively quickly. In the NASBench-101 dataset
(as depicted in Figure 7.3), the initial population is able to incorporate individuals
with ranking correlations above 0.825. Moreover, architectures that achieve over
0.91 correlation are also present during the last cycles. This level of ranking
correlation is close to the re-sampling of training runs conducted in chapter 5.

On the fashion-MNIST dataset (Figure 7.4), it is evident that the networks
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Figure 7.3: Progression of the best
found architecture’s performance on
NAS-Bench-101.

Figure 7.4: Progression of the best
found architecture’s performance on
Fashion-MNIST

struggle to model the more complex search space. Nevertheless, the overall best
Kendall’s correlation coefficient is marginally over 0.73, which is still useful as
it was seen in the Monte-Carlo experiments of chapter 5. Note that the search
process required approximately 10 GPU hours on an NVIDIA GTX 1060 card
(not accounting for the time required to generate the datasets).

Going further, it is interesting to explore the various GCN architectures gen-
erated. The boxplots in Figures 7.6, 7.5 indicate that MaxPooling layers provide
better performance as global aggregators, while the SortPooling layers benefit
more from higher numbers of retained features (k = 3). This observation is
even more apparent in the global search space dataset. Nonetheless, MaxPooling
seems also to induce a high variation in network performance. This variation can
partly be attributed to the sheer number of architectures employing MaxPooling.

As we employ a very small number of training epochs, we expect that highly
parameterized models will struggle to optimize their weights, and models with
fewer parameters will survive in the population longer. Admittedly, in Figures
7.7, 7.8, two scatterplots with Kendall’s correlation coefficient on the y-axis and
the number of parameters on the x-axis confirms our hypothesis. Moreover, by
color-grading the points to reflect correlation coefficients for the top-50% of the
architectures, we notice that most of the architectures have less than 200,000
parameters. For NASBench-101, we observe that models with slightly more pa-
rameters perform better in the top-50% sub-set. In Fashion-MNIST, a higher
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Figure 7.5: Performance boxplots
for NAS-Bench-101, grouped by fi-
nal aggregation layer.

Figure 7.6: Performance boxplots
for Fashion-MNIST, grouped by fi-
nal aggregation layer.

noise level exists, as the dataset is considerably harder to model.

Best architectures and fine-tuning

To analyze further the optimal architectures discovered in NASBench-101, we
further trained the architectures evaluated at least five percent of the overall
architectures number (25 times). We select the architecture with the highest
combined mean accuracy and Kendall’s correlation coefficient from this pool of
frequently evaluated architectures. The chosen architecture consists of two se-
quentially connected SAGE_LSTM.H layers, followed by a MaxPooling layer.
The network has 330,000 trainable parameters. We try various optimization
schemes, although our primary goal is to evaluate the architecture’s generaliza-
tion ability. We utilize both 70%/30% train/test splits and 30%/70%, NASBench
samples of 500 and 1500 architectures, and an equivalence threshold of e = 0.003,
thus increasing the difficulty, as a pair of architectures must perform very closely
to classify as equivalent. The performance of the network under various training
setups for the NASBench-101 dataset is depicted in Table 7.3. Setting the batch
size to 32 and allowing for a more granular training, the network is able to achieve
a correlation coefficient of over 0.95. The network retains this performance even
when we require a difference in accuracy of less than 0.3% to consider two ar-
chitectures equivalent. Employing only 30% of the dataset as a training set is
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Figure 7.7: Scatterplot of kendall’s tau (y-axis) vs number of parameters(x-axis)
on NAS-Bench-101. Color indicates kendall’s tau for the top-50% test set in-
stances.
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Figure 7.8: Scatterplot of kendall’s tau (y-axis) vs number of parameters(x-axis)
on Fashion-MNIST. Color indicates kendall’s tau for the top-50% test set in-
stances.
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Table 7.3: Fine-tuning results on NAS-Bench-101.

Train Set Test Set ϵ Kendall τ Top-50% τ
350 150 0.01 0.954 0.95
1050 450 0.01 0.93 0.904
350 150 0.003 0.898 0.886
1050 450 0.003 0.932 0.934
450 1050 0.003 0.907 0.853

sufficient to train the network, achieving a 0.907 correlation coefficient while also
retaining a high top-50% correlation, thus exhibiting satisfactory generalization
ability.

For the architecture derived from the Fashion-MNIST dataset, the chosen
network has a significantly more complex architecture, as depicted in Figure
7.9. The architecture is able to achieve a correlation coefficient of τtotal = 0.725

for the whole test set and τ0.5 = 0.489 for the top-50% of the architectures.
We also employ the last training setup used in the NASBench-101 model of
30%/70% train/test split. Nonetheless, the network cannot learn meaningful
representations, resulting in a degradation in performance. Employing a One-
Cycle learning rate policy [23] with a maximum learning rate of 1.2e-3 the network
is able to achieve τtotal = 0.817 for the whole test set and τ0.5 = 0.749 for the
top-50%.

7.4.3 Comparing to ReNAS

As we aim to evaluate our NAS method, we implement ReNAS, which has
achieved significant out-of-sample performance on the NASBench-101 architec-
tures while outperforming other methods. As our approach only utilizes ar-
chitecture structure, we implement the simplest version of ReNAS, where cell
connectivity and layer types are utilized as features. This approach ensures a
fair comparison between ReNAS and our best network (EGraph). To train the
ReNAS model, we use Adam, with a learning rate of 1e− 3 and weight decay of
5.0e− 4 for 200 epochs, according to [5]. Margin Ranking Loss is utilized, which
yielded promising results in the original paper when the simple feature space was
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Figure 7.9: Best architecture found for the Fashion-MNIST derived dataset.
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Table 7.4: Comparison with ReNAS on NAS-Bench-101.

Model Batch Size Train/Test ϵ τ Top-50% τ

ReNAS 32 450/1050 0.003 0.828 0.57
ReNAS 1024 450/1050 0.003 0.856 0.64
EGraph-Regression 32 450/1050 0.003 0.872 0.71
EGraph 32 450/1050 0.003 0.907 0.853
EGraph 5 Epochs 32 450/1050 0.003 0.922 0.895

used. We attempted to train ReNAS with batch sizes of both 1024, as proposed
by the authors, as well as 32, which is what our model uses. Furthermore, we
modify our dense head’s final layer to a single neuron to test EGraph’s regression
performance, using Margin Ranking Loss to optimize it and 20 training epochs.
Finally, we attempt to employ bigger training budgets for EGraph, increasing
the training epochs to 5.

Table 7.4 summarizes the resulting performances for NAS-Bench-101. For the
Fashion-MNIST dataset, the best performance obtained by ReNAS (batch size
of 1024, 200 training epochs) achieved τtotal = 0.628 and τ0.5 = 0.333. EGraph’s
best-performing version (without One Cycle Learning Rate Policy, i.e. batch size
of 32, 5 training epochs) achieved τtotal = 0.802 and τ0.5 = 0.720.

Experimental results show that ReNAS has solid performance, especially con-
sidering that the network’s architecture consists of two 2-Dimensional convolu-
tions, followed by a batch normalization layer. However, EGraph with the regres-
sion head can marginally outperform ReNAS in both the top-50% of the archi-
tectures and the whole dataset. This behavior can be attributed to EGraph’s use
of convolutions designed explicitly for the graph domain, while ReNAS employs
conventional convolutional layers coupled with innovative feature engineering.

EGraph with the binary ranking head can outperform all other models, re-
taining high correlation in both the whole dataset as well as the top-50% of the
architectures. Furthermore, it is interesting that ReNAS performs better when a
large batch size is employed, while EGraph requires small batch sizes. Finally, for
the Fashion-MNIST dataset, although EGraph manages to outperform ReNAS,
employing a One Cycle Learning Rate Policy significantly boosts performance,
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further confirming the specific learning rate schedule merit.

7.5 Limitations

Even though our approach outperformed a solid baseline (ReNAS), deriving the
architectures is significantly more expensive. Furthermore, training the architec-
ture is also more expensive due to differences in the datasets. For example, for
a regression task with N graphs, N instances are generated. For binary ranking
tasks, the resulting dataset is of size N2. In cases where we do not need a sym-
metrical dataset, as is EGraph, the total number of comparisons is (N ∗N+1)/2.
This increase in training instances dramatically increases the computational re-
sources required to train a model.

Our search space is limited to a relatively small number of layers and pooling
operations selection concerning the search method. From the experimental re-
sults, a de-facto MaxPooling global pooling layer would be beneficial, allowing us
to further expand the layer configurations without increasing the absolute search
space size while also improving the diversity of the architectures.

7.6 Conclusions

In this chapter, we propose a method for searching for graph convolutional archi-
tectures for the task of modeling candidate architecture performance. Expanding
on previous chapters, we examine a method for generating GCNs as performance
predictors. Compared to other works that inspired us to work in this direction, we
are able to produce better predictive models. We observe that for our proposed
search space, MaxPooling operations outperform other global pooling methods;it
could be utilized as the de-facto aggregator in similar works, thus significantly
reducing the search space size.

Due to the high computational burden of evaluating complex GCN architec-
tures, we restrict our search space to include a limited number of layer configura-
tions, while we employ a reduced epoch candidate evaluation method, employing
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only 2 training epochs. Nonetheless, by applying our method to architectures
derived from the NASBench-101 and Fashion-MNIST datasets, we are able to
outperform ReNAS when the input features contain similar information. Al-
though able to outperform ReNAS, our approach also has the advantage of not
requiring specific feature engineering to be able to process neural architectures.
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Chapter 8

Parallelizing Differentiable Neural
Architecture Search

Previous chapters studied the acceleration of various distributed genetic and evo-
lutionary approaches to NAS. Although these methods have their merit and are
indispensable when searching global search space, differentiable methods have
produced state-of-the-art models for various datasets [1, 2, 3, 4]. There have
been many extensions of the original paper, DARTS, but as with most other
NAS research, they focus on improving DARTS’ computational and memory de-
mands and its effectiveness in generating competent architectures. Being a NAS
method, DARTS is computationally expensive and can benefit from parallel and
distributed computing. In this chapter, we implement and study a distributed
version of DARTS, which is the first such implementation to the best of our
knowledge. Due to the pruning of connections before producing the final archi-
tecture, the noise induced by parallelizing the method should not significantly
affect the results. We aim to investigate this hypothesis by implementing and
running both serial as well as parallel versions of DARTS

8.1 Introduction

One of the most popular and successful differentiable NAS methodologies is
DARTS[5] (presented more in-depth in chapter 2). Extensions of this method
have led to the discovery of the current state-of-the-art network for the Fashion-
MNIST data set [4]. However, when compared to other NAS methods, one of

147



8. Parallelizing Differentiable Neural Architecture Search 148

the main disadvantages is the significantly larger memory requirement due to the
need for the whole supernet to be in the CPU memory at all times and interim
results needed for the backpropagation of weight and architecture errors. This
requirement indirectly poses an upper limit on the maximum size that DARTS
can utilize. Furthermore, the parallelization of differentiable methods is usually
not straightforward.

Given that DARTS is a differential method, asynchronous parallel implemen-
tation of gradient descent could be applied in theory [6, 7, 8]. The problem lies
in the special handling of the optimization process and the noise introduced to
the training process. The most straightforward, synchronous approach would be
to have all parallel copies of the network average their weights after each epoch
[9]. Although there is a possibility of converting to local optimal for non-convex
models, neural networks show an increasingly convex loss surface landscape as
the number of their parameters increases [10].

This chapter aims to explore the behavior of first-order parallel DARTS under
synchronous parallel SGD settings. We employ 1,2 and 4 parallel workers on the
Fashion-MNIST dataset. The noise expected to induce parallel training should
only affect the search phase. Furthermore, as the final architecture is pruned,
minor variations in the architecture weights should not dramatically alter the
final architecture. We first explain our methodology and our experimental results.
Finally, we present the limitations and findings of our research.

8.2 Methodology and Experimental Setup

As we aim to explore the behavior of DARTS under data-parallel training, we
employ a synchronous approach, hoping to curtail its impact on a bi-level op-
timization problem. To minimize communication overhead (and thus increase
speed), we perform a single all-reduction operation (averaging) at the end of each
training epoch (Algorithm 1). All workers must thus wait for anyone lagging to
proceed to the next epoch. When compared to a more conventional synchronous
approach, for example, gradient aggregation (Algorithm 2), we reduce the com-
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munication overhead significantly. Specifically, the communications are reduced
by N/B, where N is the number of training examples, and B is the batch size. In
our application dataset, Fashion-MNIST, with a batch size of 64, the reduction
factor is a significant 937,5; as for DARTS, the whole training dataset is utilized
for training (both training as well as validation sets). Moreover, by reducing
communication, we also reduce the possible cases where strugglers may occur [9].

Algorithm 1: Weight-based data-parallel DARTS, worker k
Data: Ltrain, Lvalid, nbatches, nepochs

Result: a
w ← broadcast(w) from worker 0;
a← broadcast(a) from worker 0;
for e = 0, 1, ..., nepochs do

for i = 0, 1, ..., nbatches do
train← Ltrain[i]; valid← Lvalid[i];
Gw ← ∂Error(train;w,a)

∂w
;

w ← w − lr ∗ (Gw);
Ga ← ∂Error(valid;w,a)

∂a
;

a← a− lr ∗ (Ga);
end
w ← allreduce(w);
a← allreduce(a);
/* Wait for allreduce to complete */

end

The synchronous DARTS approach is implemented in NORD, utilizing NVIDIA’s
NCCL backend for collective communications. NCCL allows data transmission
directly from GPU memory, thus alleviating the need to transfer data to CPU
memory. We employ a proxy search space during the search phase, consisting
of 16 initial channels and 8 cells. Layer weights are optimized with Stochastic
Gradient Descent, employing an annealing learning rate schedule with an ini-
tial learning rate of 0.025 and a minimum learning rate of 0.001. Architecture
weights are optimized utilizing the Adam optimizer. For each MixOp layer, we
employ the original 8 operations; zeroize, identity, max and average pooling with
kernels of size 3x3, separable convolutions with kernel sizes 3x3 and 5x5, and
dilated convolutions with kernel sizes 3x3 and 5x. For dataset augmentation,
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we employ the standard NORD Fashion-MNIST implementation, consisting of
random horizontal flips and random erasing. The experiments are conducted in
cloud clusters of 1, 2, and 4 NVIDIA TESLA A100 GPUs. Each experimental
setup is executed for 4 distinct runs with a different initial seed to accommodate
the fact that initial architecture and layer weights can both favor and disfavor a
particular run.

Algorithm 2: Gradient-based data-parallel DARTS, worker k
Data: Ltrain, Lvalid, nbatches, nepochs

Result: a
w ← broadcast(w) from worker 0;
a← broadcast(a) from worker 0;
for e = 0, 1, ..., nepochs do

for i = 0, 1, ..., nbatches do
train← Ltrain[i]; valid← Lvalid[i];
Gw ← ∂Error(train;w,a)

∂w
;

w ← w − lr∗allreduce(Gw);
/* Wait for allreduce to complete */
Ga ← ∂Error(valid;w∗,a)

∂a
;

a← a− lr∗allreduce(Ga);
/* Wait for allreduce to complete */

end
end

After the search phase, we retain the best architecture of each GPU setup
(1, 2, and 4). Then, we train the final extracted architectures for 100 epochs to
compare their performances. In this final phase, we employ an expanded outer
skeleton, consisting of 36 channels and 20 cells, aiming to increase the number of
parameters in the networks (in line with the original work of [5]). The validation
set is only 10% of the training set during this training phase, while Stochastic
Gradient Descent with momentum optimizes the network weights. Table 8.1
depicts the parameters for the search and final training phases.
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Table 8.1: Search and training parameters

Search Phase Training Phase

Layer Optimizer SGD Layer Optimizer SGD
Learning Rate 0.025-0.001 Learning Rate 0.025
Momentum 0.9 Momentum 0.9
Architecture Optimizer Adam -
Channels 16 Channels 36
Cells 8 Cells 20
Layer Types 8 -
Batch Size 64 Batch Size 96
Validation Percentage 50% Validation Percentage 10%
Epochs 50 Epochs 100

8.3 Results

In this section, the results for all approaches are presented. First, we analyze the
behavior of the serial and the parallel implementations. Following, we compile the
extended networks, and by fully training them, we extract information regarding
the viability of employing synchronous data-parallel approaches for DARTS.

8.3.1 Search Phase

As the results from the training dataset indicate, serial implementations of DARTS
outperform multi-GPU parallel implementations. Both the training and valida-
tion accuracy is higher for the serial version. Furthermore, final train and val-
idation accuracy are also higher for single-GPU runs. The differences are even
more prominent in training accuracy (Figure 8.1), rather than validation accu-
racy (Figure 8.2). In validation accuracy terms, all runs could produce results
within a 1% accuracy range, namely in [92.2%, 93.2%].

Nonetheless, these results do not concern the final network and only indi-
cate search progress. As such, they cannot be directly compared. Speedup
seems to scale almost linearly with the number of GPU workers. The two-GPU
setup achieves a speedup of 1.82, while the four-GPU setup (Table 8.2 achieves a
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Figure 8.1: Training accuracy curves for the search phase.

speedup of 3.2. The efficiency of the implementation is thus 90% for the two-GPU
and 80% for the four-GPU setup. This can probably be attributed to straggles,
as communication overhead is minimal.

Backup workers [9] could, in theory, alleviate the problem of stragglers, but
this would require an additional GPU performing work. If we add another worker
in the four-GPU setup and achieve a speedup of 4, efficiency would remain at 80%.
Assuming that a 10% efficiency is lost for every doubling of the GPU workers, at
8 nodes, the efficiency would drop at least to 70%. With 8+1(backup) workers
and a speedup of 8, the efficiency would be at 88%, justifying its employment.

Table 8.2: Key performance metrics

GPUs Best Train Accuracy Best Val. Accuracy Avg. Time Speedup

1 99.06% 93.19% 26708s -
2 98.52% 92.99% 14659s 1.82
4 96.92% 92.63% 8393s 3.18
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Figure 8.2: Validation accuracy curves for the search phase.

To examine differences between the architectures extracted from each run, we
calculate the graph edit distance (GED) for intra-group and inter-group results
between normal (Figure 8.3) and reduction cell architectures (Figure 8.4). Graph
edit distance is calculated utilizing both topologies as well as layer selection.
The same computational graph structure with a single difference in operation
selection would give a graph edit distance of 2. First, the wrong operation should
be removed, and then the correct operation should be added, resulting in two
“moves”. We observe that intra-group GED values (1, 2, and 4 GPUs) exhibit
smaller deviation than inter-group GED values (1 vs. 4, 1 vs. 2, and 2 vs. 4
GPUs).

Applying a Kruskal-Wallis H test [11] for the normal cells yields a p-value
of 0.4 while applying it to the reduction cell GEDs yields a p-value of 0.29.
Consequently, we cannot say that any group produced significantly different dis-
tributions of architectures. Given that the mean GED value is 8 and each node
has exactly one connection with all previous nodes, we can say that, on average,
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layer selections differ in four points, while the cells are computationally simi-
lar (Figure 8.2). As such, the synchronous data-parallel approach produces, on
average, the same deviation in generated architectures, as the serial implementa-
tion of DARTS. From Figure 8.4 we can even see a slight tendency for the serial
implementation to produce higher intra-group GED.

Figure 8.3: Graph edit distance values
for the normal cells.

Figure 8.4: Graph edit distance values
for the reduction cells.

8.3.2 Best Model Analysis

Training the final architecture generated by each group entails increasing the
compiled network’s parameters number and optimizing it for 100 epochs. The
architectures for normal and reduction cells in these networks are depicted in
Figure 8.5. We observe that the inputs feed mainly convolutions for normal
cells, with a minimal amount of pooling operations present. It is interesting to
note that although all groups produced final architectures with mainly pooling
operations in their cells, they were not the best-performing ones on our specific
dataset.

Even though the serial implementation exhibited the best in-search perfor-
mance, the final architecture proposed by the serial groups underperforms in
training set accuracy. Contrary, the other two networks follow a more similar
trajectory (Figure 8.6). Nonetheless, all three networks have comparable behav-
ior on the validation set, although a more thorough examination of their similarity
should be conducted.
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(a) 1 GPU normal (b) 1 GPU reduction

(c) 2 GPU normal
(d) 2 GPU reduction

(e) 4 GPU normal

(f) 4 GPU reduction

Figure 8.5: Best models cell architectures.

Assuming that the results of the first 10 training epochs rely heavily on the
quality of the initial weight values, we apply a Kolmogorov-Smirnov test [12]
for equality of distributions on the validation accuracies from epoch 10 to 100.
Following, we correct for false discovery rate, utilizing the Benjamini/Hochberg
correction [13]. Finally, table 8.3 depicts the results, which do not allow the
rejection of the null hypothesis (the distributions are the same). As such, this
further strengthens our observation from Figure 8.7, which shows a remarkably
similar trend (with noise) for all networks.

Table 8.3: Kolmogorov-Smirnov and Benjamini/Hochberg-corrected p-values

Model Kolmogorov-Smirnov Benjamini/Hochberg-corrected

1 vs 2-GPUs 0.51 0.71
1 vs 4-GPUs 0.08 0.15
2 vs 4-GPUs 0.87 0.88
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Figure 8.6: Best model training fine-
tune accuracy.

Figure 8.7: Best model validation fine-
tune accuracy.

8.4 Limitations

Although we attempt to study the behavior of synchronous data-parallel DARTS
to the best of our abilities, this chapter’s main limitation is the small number
of runs for each setup, as well as the lack of more GPU nodes to study the
behavior on larger scales. Nevertheless, the results seem stable, although an
increased number of executions for each setup would provide more insights into
the properties of a data-parallel DARTS approach.

8.5 Discussion and Future Work

This final chapter of the thesis studies the behavior of Differentiable Architecture
Search [5] under a data-parallel synchronous training approach. Employing 1,
2, and 4 GPU workers, we observe a speedup close to linear, although a 10%
drop in accuracy is observed every time the number of workers doubles. We thus
conclude that a back-up worker [9] would be beneficial when more than four GPU
workers are employed. Moreover, it seems that parallelizing the method retains
the stability levels of the original method, as the diversity between generated
architectures remains unaffected. Analyzing graph edit distances of generated
architectures further validates this observation.

The final networks (expanded to larger internal dimensions and depths) also
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exhibit similar performance. When trained, the trajectory of their validation ac-
curacy follows the same trajectory, and the accuracy distributions do not differ at
the 0.05 and 0.1 significance levels. This indicates that these networks are compu-
tationally equivalent. Any differences observed during the initial training epochs
can be attributed to initial conditions, states of random number generators, and
GPU instructions execution’s inherent stochasticity.

Concluding, in this final chapter of this thesis, we show that a synchronous
data-parallel approach is viable for DARTS. Furthermore, it results in similarly
performing architectures, while the distributions of generated cell structures do
not differ significantly.
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Chapter 9

Conclusions and Future Directions

This thesis aims to implement a Neural Architecture Search Framework and study
parallel and distributed methods for NAS. Below the conclusions extracted during
its course are summarised and possible future directions.

9.1 Conclusions

Chapter 3 proposed NORD, a NAS framework and library implemented in
python. Having a standardized environment with easy to setup distributed train-
ing helped immensely with the experiments presented in the rest of the thesis.
Furthermore, it enabled straightforward comparison between methods and varia-
tions of such methods. Given the speed at which NAS and deep learning advance,
it required several significant refactors and feature integration, which proved more
challenging than initially estimated.

Chapter 4 investigated the widespread (by NAS researchers) utilization of re-
duced training epochs as a proxy task for candidate architecture evaluation. We
examined architectures generated for the CIFAR-10 dataset under reduced train-
ing epoch schemes. We received positive feedback by calculating rank correlation
coefficients and applying a Monte-Carlo simulation, motivating us to investigate
the approach further. Nonetheless, the architectures were generated on machines
with limited memory and, as such, were relatively small.

160
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Chapter 5 built upon the experience gained in chapter 4 and further expanded
the investigation. More diverse architectures and more powerful hardware were
employed to study relative ranks’ behavior when reduced training was employed.
Furthermore, architectures from the NASBench-101 dataset were investigated,
and the rank correlation levels observed in both search spaces were translated to
a noisy Rastrigin function search space. Results indicated that it is preferable
to allocate more resources to the search algorithm rather than the candidate
evaluation method. This is since we never directly measure the quality of a neural
architecture. Instead, we observe the quality of a compiled network derived from
the architecture.

Chapter 6 employs a distributed, regularized evolution approach along with
the knowledge regarding reduced training evaluation to find optimal architectures
in a Fashion-MNIST global search space. As a result, generated architectures can
outperform other global search space NAS methods when evaluated similarly.
Furthermore, it is observed that severely restricting the training epochs results
in final networks that converge faster than comparable architectures. This can
be attributed to larger networks requiring more epochs to distinguish themselves
from the rest.

Chapter 7 applies the distributed method from chapter 6 to graph convolu-
tional networks. Aiming to generate a predictive model for relative neural net-
work quality, we generate GCN architectures and evaluate them on architecture
datasets derived from the NASBench-101 and Fashion-MNIST datasets. Com-
pared to the state-of-the-art method for predicting network quality, ReNAS, our
generated models achieve better prediction quality. Furthermore, for our GCN
search space, we observe that MaxPooling is the best choice as a global pooling
layer and could possibly be employed as the de-facto choice/

Chapter 8 investigates a synchronous data-parallel approach for training a
DARTS hypernet. By avoiding more traditional distributed SGD approaches, we
reduce the communication overhead significantly and observe an almost linear
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speedup. We conclude that backup workers should be used for setups with more
than four GPU workers. The parallel DARTS implementation itself produces
architectures whose distributions match those of the original method. Moreover,
when compiled into expanded networks, the final architectures have similar be-
havior to the architectures generated by the serial implementation. Distributing
the batch to many workers also enables the evaluation of larger architectures, as
the memory constraints are expanded.

9.2 Future Directions

Following the work in this thesis, there are some exciting outlooks. First, NAS
seems to be able to produce significantly well performing architectures without
human intervention. Second, recent work concerning transformer architectures
have enabled many novel tasks to be automated. As such, employing parallel
and distributed methods for transformer-specific NAS is a possible direction.
Another possible direction would be the employment of NAS for reinforcement
learning problems. If we view RL agents as individuals we could very well evolve a
population of agents, each with a different "brain" or neural architecture. Finally,
on a more technical aspect, Tensor Processor Units could be examined as a viable
platform for parallel NAS.
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