
 

 

 

 

 

 

 

 

UNIVERSITY OF MACEDONIA 

DEPARTMENT OF APPLIED INFORMATICS 

 

 

Efficient Compressed Sensing for Wireless 

Communication Systems 

 

Doctoral Thesis 

of 

Theofanis Xifilidis 

 

 

Thessaloniki, 2022 

 

 

Doctoral Thesis Committee: 

Konstantinos E. Psannis, Associate Professor, University of Macedonia (supervisor) 

Manos Roumeliotis, Professor, University of Macedonia 

Konstantinos Margaritis, Professor, University of Macedonia 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

EFFICIENT COMPRESSED SENSING FOR 

WIRELESS COMMUNICATION SYSTEMS 

 

Theofanis Xifilidis 

 

Thesis submitted  

in partial fulfillment of the requirements for the Doctorate Degree at  

University of Macedonia 

 

 

 

Examination Committee: 

Konstantinos E. Psannis, Associate Professor, University of Macedonia 

(supervisor) 

Manos Roumeliotis, Professor, University of Macedonia 

Konstantinos Margaritis, Professor, University of Macedonia 

Eleftherios Angelis, Professor, Aristotle University of Thessaloniki 

Panagiotis Sarigiannidis, Associate Professor, University of Western 

Macedonia 

Petros Nikopolitidis, Associate Professor, Aristotle University of 

Thessaloniki 

Sofia Petridou, Assistant Professor, University of Macedonia 

 

Author: Theofanis Xifilidis 

 

 

Thessaloniki, 2022 



 

 

 

 

 

 

 

 

 

 

 

 

In memory of my father 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Acknowledgements 

First of all, I would like to express my gratitude to my supervisor Professor Kostas 

Psannis for his valuable guidance and support throughout the preparation of this thesis 

and his endless patience, dedication and greatly contributive feedback throughout the 

research and writing of this thesis. 

I would also like to thank my advisory committee, Professor Manos Roumeliotis and 

Professor Konstantinos Margaritis for their continuous support and valuable 

collaboration for competing my thesis. 

Most importantly, I am full of gratitude to my beloved mother and sister, for their 

unconditional love, endless support and guidance throughout the completion of this 

thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

The currently deployed wireless communication systems have been inextricably linked 

to the Big Data deluge conveying an explosive growth of transmitted and processed 

heterogeneous data that demand a low complexity and resource efficient information 

extraction. The above necessity constitutes the main motivation for a thorough 

understanding of advantages and limitations that govern the communication system 

performance analysis and design. 

As with other scientific areas, the performance evaluation of modern communication 

systems implies the careful formulation of an optimization problem with relevant 

objective and constraints that best model the practical requirements of the specific 

problem at hand. To that end, a priori information for the specific problem is proven to 

contribute to the acquiring of an optimal solution. CS comprises a set of optimization 

tools that effectively convert a problem of high intractability i.e. combinatorial nature 

to a reduced dimensionality problem with low computational and implementation 

complexity. Thus, CS has already emigrated to wireless communication system 

performance evaluation due to the essential fact that the convenient property of 

structure as additional information is also verified in the wireless communication field. 

Efficient algorithms that jointly consider physical limitations of the wireless channel, 

in terms of the distortion it induces to the transmitted signal, are already present and 

rapidly evolving. 

This thesis constitutes the integration of CS and information theory in statistical 

modeling of the wireless channel from the essential statistical independence assumption 

point of view. The random distorting mechanisms of the wireless channel are accounted 

for thus additive noise and diverse fading. Moreover, the concept of resource efficiency 

adapts to this thesis in terms of information accessibility in a large scale deployed 

network. The above statistical assumption provides useful performance insights which 

extent in terms of comparison to the more practical correlation case with respect to 

additive noise and fading distributions. 

Finally, the merit of the results derived in this thesis is verified by stating feasible 

application of these results in terms of CS theory and principles to the current Fifth 

Generation communication systems. Through this relation, limitations of the current 

communication system generation can further boost performance and provide 

guidelines in terms of practical application specific considerations serving as motive to 

designing improved future communication systems.  
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1. INTRODUCTION 

1.1 Wireless Communication Systems Fundamentals 

Ever since the pioneering works of Maxwell, Hertz and Tesla which established the 

wireless transmission of information and Marconi devising the first system of radio 

communication the area of wireless communications continues to rapidly flourish and 

develop emerging technologies that offer an increasingly extensive capability of 

information transmission around the globe with new technologies, standards and 

services resulting in ubiquitous communication infrastructures  and implemented 

communication systems. 

Wireless communications [1],[2] involve the transfer of information, a term which 

permits many diverse interpretations depending on what we are transmitting and the 

effect of the classification of this term in the overall performance and case-dependent 

goals which are to be achieved in a communication scenario. It is clear that information 

transmission relies on the well-established principle that the receiver is not aware of the 

information content the transmitter intends to send, at least not in a manner that would 

render the whole communication scheme unnecessary. This concept verifies the 

fundamental property of wireless information transmission being not deterministic but 

random. It is clear thus that statistics and stochastic process theory constitute the main 

cornerstone of the mere feasibility and moreover performance evaluation along with 

understanding tradeoffs and limitations in the respective theory so as to further boost 

performance and develop next generation advanced systems. 

In every communication scenario the source generates the information. The latter term 

has taken a plethora of meanings and interpretations [3],[4] that extend to totally 

abstract aspects as can be found in the information theory literature, which will be 

subsequently discussed. However, the effective subset of these interpretations that are 

applicable in wireless communication systems terminology and metrics have greatly 

aided to the mathematical formalism and communication system performance 

evaluation and implementation. Thus, qualitative and quantitative explanation of the 

term information is a necessity in the wireless communication field of research. The 

concept of amount is not as crucial as what kind of information is being transmitted. 

Although the concept of information transmitter briefly detailed as electric current and 

its transformation to electromagnetic wave propagated through the wireless channel 

remains common as the wireless communication systems have evolved, the query as to 

what is being transmitted is the main fact that drives the communication systems 

evolution. Hence, the transition from text to image and multimedia transmission is one 

of the key elements that differentiate the communication systems and its capabilities 

through the evolution from past digital generation systems to the current 5G and future 

6G communication systems which seem to shortly become a reality as a consequence 

of the 5G system saturation in the context of the extent of advantages and solutions 

provided as opposed to what future needs will dictate. The next ingredient of a 

communication to be discussed is the system receiver skipping the introduction to the 

channel and its impact on communication efficiency as this is the core element on which 

the analysis of this thesis is based and will be accounted thereafter.  



2 

The wireless receiver operates on the fundamental principle of not only inverting the 

electromagnetic wave into a compatible for the receiver circuitry form but also 

inverting all processes conducted in the transmitter prior to transmission. Indeed, this 

property of invertibility is exactly what verifies the optimal performance of decoding 

and acquiring the transmitted signal as though no impairments were present or in a more 

accurate manner with an acceptable distortion that does not cancel the successful 

reception of the specific information sequence. As a complementary remark, the 

limitations imposed by the channel characterized as additive noise and fading are also 

present in the processing in transmitter and receiver circuitry. This reflects the fact that 

although processing aims at providing information integrity and compatible form for 

minimizing distortion, the concept of channel impairments is practically inevitable in 

any process conducted or any communication system implemented. 

The analysis now proceeds with the introduction to the wireless channel [5], based on 

whose optimization the current thesis relies on. Three are the main sources of 

impairments induced by the channel: additive noise, fading and interference. Additive 

noise is modeled as a Gaussian random variable as a means to state that the signal 

passing through the medium is perturbed by a random distorting process that is not 

deterministic in any way and can only be statistically described as a consequence of 

realizations dictated by the respective distribution. System performance analysis also 

refers to non-Gaussian noise forms such as impulsive noise which are more complex 

and require more efficient analysis and statistical modeling. Analysis of communication 

system performance in this thesis restricts to Gaussian additive noise consideration. 

Proceeding to fading which can also be Gaussian modeled but also following other 

distribution [6],[7] it is defined as random fluctuations in power due to the multipath 

effect i.e. waves reaching the receiver from different directions, the latter fitting in the 

context of multi-antenna systems [8],[9], where a main challenge is the phase correction 

of the incident waves thus mitigating the destructive contribution of incident waves in 

approximately opposite phase. The concept of independence is crucial in this context 

as it ensures that deep fading of an independence branch is not likely to be accompanied 

by deep fade in other incident waves at the receiver. Finally, interference is the result 

of multiple users transmitting in the same frequencies or in same time interval thus 

rendering received signal decoding difficult and sometimes infeasible if interference 

cancellation techniques are not employed. Orthogonality is a main strategy of 

transmitting signals with minimum interference, which is applied in the problem of 

resource allocation as in users transmitting in a cell or nearby cells. It must be however 

noted that non-orthogonality has also attracted attention for accommodating more users 

in a given cellular network scheme where alternative techniques are utilized and 

orthogonality condition is relaxed in pursuit of fairness. The scheme explained also 

extends to CR systems where the goal that must be achieved is opportunistic user 

transmission even in the same interval or frequency bin but with acceptable 

interference. This constitutes an important optimization problem still under dense 

investigation. The goal of the communication system is to handle redundancy stemming 

from analog signals to digital signals. The reduction of redundancy results in diversity. 

This enhances system capacity as most evident in MIMO systems where diversity is 

attained in the spatial dimension. However, redundancy can be exploited to ensure 

reliable information transmission, a concept realized in many ways along with 
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complexity reduction and design optimization. Redundancy is observed in the analog 

signal while discrete signals [10] are produced in a manner that in general leads to 

inevitable information loss. This property with numerous relations to many scientific 

branches dictates the necessity to devise methods that minimize this information loss, 

as digital signals are the basis of current communication systems. 

Diversity is a key property that ensures capacity increase [11],[12] by means of 

different techniques that are solely based on the so called degrees of freedom of the 

communication system from which the most essential are given i.e. time, frequency, 

space and code. MIMO wireless systems also utilize the concept of angle as a 

consequence of the use of multiple antenna at transmitter and/or receiver and Direction-

of-Departure and Direction-of-Arrival derivations. The design and implementation of 

each communication system as well as its metrics and requirements are not identical 

but entirely depend on the application at hand as well as the goals to be achieved 

translated as system performance metrics. The following paragraphs detail the degrees 

of freedom along with the concept of diversity interpreted to each of the latter. 

As intuitively deduced, time involves information exchange in successive time intervals 

a scheme known as TDMA [13]. In this scheme, each scheduled user transmits 

information at preassigned intervals in a manner of introducing guard zones so as to 

avoid interference. As a degree of freedom, time can be translated in many ways. 

Scheduling along with synchronization is a fundamental issue that defines multi-user 

communications and ensures reliable communication and successful decoding at the 

receiver side. Although asynchronous communication is also extensively studied, 

synchronization remains a key role for successful detection and decoding at the 

receiver. Time has been the primary metric of communication system performance and 

translated to information transmission and reception achieving optimal performance by 

suitable scaling of transmission and reception time intervals and scheduling information 

exchange in different time intervals for each user thus utilizing time diversity. 

Frequency diversity is another metric based on the latter degree of freedom that relies 

on the frequency content of the transmitted sequence. Hence diversity is achieved by 

assigning different frequency bins to each user transmission, a scheme known as FDMA 

[14]. The concept of allocated bandwidth has been the major resource that is to be 

optimally allocated in each user always in accordance to the requirements and tradeoffs 

of each application-dependent communication scenario. The current state-of-the-art 

networks are characterized by the following limitations: spectrum scarcity and 

spectrum underutilization. The former concerns the limited bandwidth resulting from 

the numerous networks to which portions of available bandwidth have been assigned 

leading to small unoccupied bandwidth along with the constraining fact that only 

certain frequency bands can be allocated to users. The use of higher unoccupied 

frequency bands has emerged as a viable solution but introduces several drawbacks as 

a consequence of using higher frequencies for transmission such as more attenuation 

and required dimensions of antennas. Spectrum underutilization reflects the fact that 

the instantaneously used spectrum from its legitimate users is a considerably small 

fraction of the allocated bandwidth. This observation constitutes the reason spectrum 

sensing is the major performance functionality that has encompassed CS as a means of 

exploiting this observation. Moreover, the differentiation between narrowband and 
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wideband scenarios is a fundamental bottleneck in terms of performance and spectrum 

sensing complexity. The latter two characterizations are closely related particularly 

regarding the method of dividing the respective spectrum to smaller spectrum slices 

related to OFDM [15] method. CR networks are primarily concerned with the need for 

efficient spectrum sensing employing a diverse range of sensing methods and 

opportunistic spectrum use either assigning resources for each use or allowing 

secondary users to use the spectrum zone without causing harmful interference to 

primary users. Hence, frequency diversity is achieved in this manner. 

The concept of code has come to address system performance as an approach alternative 

to increasing signal-to-noise-ratio or allocating more bandwidth. As opposed to 

assigning different time intervals or frequency bins for optimal communication 

mitigating interference, CDMA [16] assigns a different coding sequence, i.e. signature 

to each user that renders the user distinct from the others. The straightforward 

advantage that code sequences serve to achieve the required diversity in a manner that 

allows users to transmit at same time intervals or utilize the same frequency bands. This 

achieved diversity can also be thought as a signaling of increased dimensionality which 

can be directly related to performance optimization, increased complexity and means 

of increasing transmission rate always considering the error probability of a specific 

communication scenario. Furthermore, coding schemes consist of inserting redundant 

bits to information sequences so as to combat channel impairments i.e. additive noise, 

fading and interference. Thus, the goal is lower error probability and robustness to 

varying channel conditions. 

Finally, the spatial degree of freedom relies upon achieving such diversity by 

employing multiple antennas in transmitter and/or receiver side. The so called spatial 

multiplexing scheme is based on many incident waves impinging on multiple receive 

antennas by means of scatterers in the environment thus creating reflected signals that, 

as stated above, contribute either constructively thus aiding in correct detection and 

information decoding or destructively degrading receiver performance or increasing 

complexity by requiring phase correction so as to exploit the multiple signal of delayed 

replicas arriving at receiver side. Moreover, the achieved spatial diversity is also 

reflected in increased channel capacity in a linear manner with respect to the number of 

multiple antennas at transmitter or receiver. Stated in other words, capacity increases 

without increasing SNR or related bandwidth. Hence, capacity optimization comes at 

no additional cost in terms of bandwidth which means no extra noise as well as no SNR 

increase which is critical in SNR limited communication applications. The optimization 

of channel capacity has been extended to accommodate fading channels with the related 

channel models. These multiple-input-multiple-output channels are characterized as 

statistically independent i.e. realizing the achievable diversity, an effect obtained by 

sufficient spacing between multiple antennas that are deployed.  

1.2 Wireless communication systems evolution: from 1G to 5G and beyond  

The first reported cellular telephony known as 1G was introduced in 1980s and involved 

voice service delivery in an analog format. Amplitude modulation or narrowband 

frequency modulation were used in two frequency bands of width equal to 25MHz 
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namely 824 to 849MHz and 869 to 894MHz. 1G systems suffered from poor voice 

quality, small coverage and no encryption. 

The main differentiating point of 2G networks was the use of digitally modulating 

techniques. In a digital context, pure waveform reconstruction at receiver was not the 

case rather than identifying a waveform matching one of available candidate 

waveforms. 2G systems appeared in the 1990s and offered increased capacity and low 

rate data application support. Global System for Mobile Communications (GSM) was 

the representative 2G paradigm. Apart from voice, text message transmission was also 

feasible. Rates from 80 to 120kbps were supported in 2G systems. 

It was the 3G wireless systems that reaped the benefits of CDMA. Such systems were 

available in the 2000s and supported a variety of services including telephony, high 

speed data, video, paging and messaging. 3GPartnership project was available in 1998 

using CDMA and thus providing high data rates namely up to low Mbps for downlink 

and uplink. 

4G systems mainly addressed the issues of high data rates together with mobility. Thus, 

maximum downlink data rates of 1Gbps for low mobility and 100 Mbps for high 

mobility solutions were achieved. OFDM technology and LTE Advanced were 

considered as key 4G wireless system technologies. The spectral efficiencies brought 

about by OFDM i.e. the amount of information that can be contained in certain 

bandwidth for a target QoS were the main benefits from this generation. Multiple 

antenna techniques leveraged spatial diversity to further boost transmission rates with 

a cost in hardware implementation. 

5G appeared at the Big Data era i.e. the enormous growth of diverse types of data to be 

exchanged at a global scale such as video and multimedia streaming in a mobility aware 

and energy efficient manner. High data amounts along with low latency and high 

reliability transmission requirements are the main advantages of the current generation 

systems namely 5G, which was first deployed in south Korea in 2019. Data rates on the 

order of Gbps for both uplink and downlink are enabled and mobility can also be 

extensively supported. Cloud computing services and IoT network deployment, being 

an order of magnitude larger than cellular networks in terms of scalability, are already 

a reality with billions of devices connected worldwide along with the Big Data deluge. 

mmWave communication technologies, mMIMO, beamforming and Artificial 

Intelligence tools are some of the key technologies in the 5G and beyond context. 

1.3 Wireless communications and Information Theory 

Information Theory [17],[18] involves the modeling and thorough understanding of 

performance limitations of wireless communication systems founded by Shannon’s 

pioneering work: a mathematical theory of communications [19] which studied the 

impact of noise on signal transmission through the wireless channel and the necessity 

of exploiting the signal structure in a statistical sense of the information to be 

transmitted and reconstructed at receiver side. Though Shannon’s work concentrated 

on additive noise channels thus not accounting for fading together with the state-of-the-

art technology of communication systems at the time of this publication, his findings 

have provided profound understanding of communication systems performance limits 
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that are still consistent after the so many decades of progress made in communication 

system theory and practical design. 

Information theory is a revolutionary field applicable not only in wireless 

communication theory and design but also in diverse fields where uncertainty, inherent 

to the concept of randomness, governs many areas such as signal and image processing, 

language processing as well as biology and genetics. In wireless communications it 

addresses two fundamental queries. The first one is to what extent can we compress an 

information source. It is proven that there exists a critical determined in each case level, 

namely entropy below which compression is not possible. Given a distinct meaning in 

the term information generating source in the wireless communication regime, 

statistical tools quantifying entropy are applied for evaluating performance limits in a 

universal sense. The second query refers to what extent can we maximize transmission 

rate answered by the channel capacity limit [20],[21]. Thus, as long as transmission rate 

falls below channel capacity, communication with arbitrarily low error can be achieved. 

Otherwise, transmission error is bounded away from zero. In a clarifying comment, as 

long as entropy is below channel capacity asymptotic to be exact error free transmission 

is achievable. 

1.4 Information Theory and Compressed Sensing 

Concluding, on the basis of information theory, the DCS approach [22]  is beneficial in 

terms of signal, image and data processing where the convenient concept of structure 

and sparsity in certain domains has been verified. Furthermore, in sensor network 

scenarios, distributed source coding exploits correlation and hence, many compression 

algorithms have already been devised. Hence, coding techniques falling under the 

umbrella of information theory successfully integrate CS in a way to optimize wireless 

communication system theory. Channel coding also relates to compressibility thus 

effectively enhancing data sequence by additional bits for combating channel 

impairments. DCS also relate to computational asymmetry thus joint decoder is far 

more complex and resource demanding while the simplified encoder only confines its 

role to computing incoherent projections as dictated by CS principles. It must also be 

mentioned that the concept of adaptivity is dominated by non-adaptive CS based 

reconstruction methods, hence the above contrast could potentially lead to a refinement 

of CS optimization in the future. 

1.5 Thesis Motivation and Scope 

Motivation 

In the era of explosive data growth namely the Big Data Deluge and the unrolling of 

5G communication systems, intense research activity has focused on handling theses 

large data quantities in a resource efficient manner. Hence, methods of signal and data 

processing of reduced computational and implementation complexity while still 

obtaining the actual information content already exhibit significant progress with near 

optimal processing efficiency and low complexity. Another parameter to be considered 

are the limitations of currently deployed communication systems which are the main 

motivation for evolution of next generation communication systems. In the above 

context, CS has arisen as a set of powerful of optimization tools successfully addressing 
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the issue of useful information extraction. Together with universal approaches offered 

by CS, efforts to devising optimization methods in an adaptive sense tailored to a 

specific wireless communication performance scenario are also under extensive 

investigation. Statistical modeling integrated with entropy and channel coding have 

already been considered as effective schemes that not only enhance CS optimality but 

also offer reduced complexity methods for confronting the optimization problem at 

hand. The latter goal constituted the main motivation of this thesis. 

Scope 

The scope of this thesis is focused on the assessment of wireless communication system 

performance by considering channel statistical models under the prism of statistical 

independence assumption employing CS and information theory entropy calculations 

in a combined manner. The results of this thesis can provide useful insights compared 

to the practical assumption of correlation and assist in the thorough understanding of 

communication systems and effectively promote next generation wireless system 

analysis and design. 

1.6 Thesis Contribution  

This thesis proposes a performance evaluation of the wireless channel assisted by 

entropy calculations for deriving the average code length for describing the channel. 

Our channel modeling approach includes practical constraints specifically fading 

conditions and additive noise and is based on the assumption of statistical 

independence. Fading channel performance is assessed by capacity, average code 

length and error probability are derived for diverse fading conditions under the 

assumption of independence. An energy detection scheme is proposed based on 

convolutional statistics for the fading channels considered including additive Gaussian 

noise. Moreover, correlation is being assumed in a WSN scenario using the symmetric 

Gaussian distribution in a fully randomized model deriving reconstruction error and 

energy estimation error with CS application by joint correlation and sparsity 

considerations. The content caching methodology is also accounted for performing a 

probabilistic comparison by means of three distinct distributions. File segmentation 

scenario in sparse and dense cases was proven to exhibit convergence. A brief notion 

of privacy issues in SNs along with application of CS to medicine and healthcare data 

as well as smart education by proposition of interactive classroom is provided. The 

results in this thesis are directly related to performance issues in 5G networks 

supporting their practical merit. Finally, conclusions were drawn along with feasible 

extensions of this thesis for future research. 

1.7 Thesis outline 

After this comprehensive introduction, the thesis is structured as follows. 

Chapter 2 provides a detailed notion on CS theory and its potential to reduce 

computational and implementation complexity by exploiting structure defined by 

sparsity. The mathematical preliminaries commonly used throughout this thesis are 

provided. Chapter 3 addresses channel distribution knowledge by combining entropy 

and CS based distribution reconstruction. Moreover, fading channel performance is 
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evaluated by CS compressibility consideration along with WSN performance based on 

the statistical independence and correlation assumptions. Chapter 4 investigates content 

caching by probabilistic scheme and file segmentation consideration. Security issues in 

SNs, healthcare data management and proposition of smart interactive classroom are 

also derived. Chapter 5 derives application of CS and the results from the previous 

chapters to the current 5G wireless systems challenges and performance. Chapter 6 

draws conclusions and highlights future research directions.  

1.8 Publications 

The scientific findings of this thesis have been published in international peer-reviewed 

journals and international conference proceedings. A complete list of these publications 

is given below: 

Publications in Journals: 

[J1] T. Xifilidis and K. E. Psannis, " Caching hit probability and Compressive Sensing 

perspective for mobile cellular networks," Elsevier Simulation Modelling Practice and 

Theory, vol. 87, pp. 92-98, Sept. 2018. 

[J2] T. Xifilidis, K.E. Psannis, “Wireless fading channels performance based on Taylor 

expansion and compressed sensing: A comparative approach”, in Wiley International 

Journal of Communication Systems, vol.34, issue 8, e4794, March 2021. 

[J3] T. Xifilidis and K.E. Psannis, “Correlation-based wireless sensor networks 

performance: the compressed sensing paradigm,” Springer Cluster Computing, vol. 25, 

issue 2, pp. 965-981, Nov. 2021. 

Publications in Conferences: 

[C1] C. Stergiou, K. E. Psannis, T. Xifilidis, A. P. Plageras and B. B. Gupta, "Security 

and privacy of big data for social networking services in cloud," IEEE INFOCOM 2018 

- IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 

2018, pp. 438-443. 

[C2] I. Kakalou, D. Papadopoulou, T. Xifilidis, K. E. Psannis, K. Siakavara and Y. 

Ishibashi, "A survey on spectrum sensing algorithms for cognitive radio networks," 

2018 7th International Conference on Modern Circuits and Systems Technologies 

(MOCAST), 2018, pp. 1-4. 

[C3] C. Stergiou, A. P. Plageras, K. E. Psannis, T. Xifilidis, G. Kokkonis, S. 

Kontogiannis, K. Tsarava and A. Sapountzi, "Proposed High Level Architecture of a 
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Conference (SEEDA_CECNSM), 2018, pp. 1-6. 

[C4] T. Xifilidis and K. E. Psannis, "Practicing Medicine: A Compressed Sensing 

Approach," in Proceedings of New Technologies in Health: Medical, Legal and Ethical 

Issues Conference, 21-22 November 2019, Thessaloniki, Greece. 
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2. COMPRESSED SENSING THEORY AND MATHEMATICAL 

PREREQUISITES 

2.1 Compressed Sensing Theory and Principles 

CS [23],[24] is a set of optimization tools aiming at drastically reducing the 

computational and implementation complexity in a way that guarantees optimal signal 

detection/estimation or reconstruction in a variety of signal processing oriented 

scientific research areas that are entangled with the information technology that strictly 

demands efficient information technology and resource efficient knowledge extraction 

from large or massive amounts of data. 

CS is fundamentally based on the concept of sparsity [25] hence a dataset with the bulk 

of elements equal to zero except for a small fraction of the data being nonzero, hence 

this sparse set. CS achieves this complexity reduction by claiming the reduction of 

sampling rate given a signal while not degrading its reconstruction. The applicability 

of such an approach is traced in the conventional computationally expensive 

methodology of first sampling acquisition and, proceeding further, discarding a large 

portion of the samples prior to their processing stage. This is where CS enters the stage 

of simultaneously sampling and compression. This translates to sampling at a sub-

Nyquist rate [26] as opposed to Shannon Nyquist sampling theorem [27], [28] the latter 

stating that the minimum rate for achieving an accurate signal reconstruction is twice 

the highest frequency present in the signal to be recovered. This is what formulates the 

term of CS. It must also be stressed that CS mathematical tools employed were not 

novel but existed many years before their inclusion in CS optimization theory and 

principle.  

CS principle transforms an initially intractable problem, the latter defined as a 

computationally exhaustive problem, into another form that admits a more convenient 

solution even if such an approach results in a sub-optimal solution. The mathematical 

tools essentially involve random matrix algebra and lp norm algebra. The initial problem 

formulation assumes p=0 thus counting the number of nonzero elements in a 

mathematical structure such as a column matrix. It must also be noted that 

mathematically the lp norm for p equal to zero is not strictly a norm as it does not satisfy 

the triangle inequality. Nevertheless, it is mentioned as such and it provides the 

fundamental CS problem formulation. However, this form requires a combinatorial 

expensive solution and the straightforward consideration entails the transformation of 

this problem to a tractable one. The mathematical formula of the lp norm quantity for 

arbitrary p value is given below: 
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Having derived the meaning of the lp norm for zero valued p, we also mention that for 

p∞ the expression derives the greatest value of the elements in the aforementioned 

column matrix structure. The general problem statement of CS theory is the inverse of 

the problem that derives the output of a system with a sparse vector as input, the matrix 
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transforming the sparse vector known as sensing or measurement matrix and the 

perturbation quantity termed additive noise in the wireless communication literature. 

Hence, it must be noted that the problem in CS theory is underdetermined. This states 

that the measurement vector dimensionality is smaller than the ambient dimensionality 

of the sparse vector [29] to be recovered. Either assuming the noiseless regime thus 

zero valued additive noise vector or the consideration of existing noise, the problem is 

at first glance computationally intractable or in terms of combinatorial theory shown to 

be NP-Hard. Hence, a transformation is required for this problem to be converted to a 

solvable problem with the additional requirement to produce an optimal solution. This 

accounts for the case where the vector to be recovered is not sparse in its initial form. 

In this case, a so called sparsifying matrix is multiplied with the measurement matrix 

and vector product in order to transfer the problem in another domain where the 

resulting vector fulfills the sparsity requirement. Representative sparsifying matrices 

are Discrete Fourier Transform, Discrete Cosine Transform and Discrete Wavelet 

transforms. As an extension of the above procedure to achieve a «universal» 

transformation [30], the dimensions of time, frequency, space and code should always 

be considered not separately but also jointly in order to reap benefits of a general CS 

problem transformation procedure. Bearing in mind that information signals perceived 

in the above sparse signal context are random rather than deterministic in nature, this 

not only does not penalize the value of CS theory but further establishes the random 

matrix optimization framework of CS [31],[32] and renders the statement of signal 

recovery with overwhelming probability valid and conceptually meaningful. This is 

also justified by the fact that signal processing methods for random signals are simply 

extensions of their deterministic counterparts. As already stated, the CS problem is by 

definition underdetermined. This dictates that additional constraints must be imposed 

to narrow down possible problem solutions and effectively reach the optimal one. This 

constraints necessity is equivalent to assuming the sparse property as an optimization 

problem constraint.  

Throughout the evolution of CS theory and principles, numerous solution 

methodologies have been proposed that are mainly divided in two subcategories. The 

first involves the replacement of parameter p value from zero to one, also termed as l1 

minimization [33] or linear programming. This method has been proven to be accurate 

but is characterized as computationally expensive. The antipode of the above 

methodologies are iterative algorithms known as greedy algorithms [34],[35] which are 

much faster but suffer from inferior solution accuracy. Thus, the former solution relates 

to linear optimization and also complies to the property of sparsifying matrix and 

measurement matrix incoherence so as to approach an optimal solution. Thus, 

considering the CS problem in an algorithmic sense, there exists a quantity to be 

minimized accompanied by a quantity acting as constraint in order to narrow down 

feasible solutions. A straightforward claim is whether this formulation can be 

considered not separately but in a combined manner where each quantity is multiplied 

by a relevant weight component. Such expressions jointly utilize norms with different 

p parameter values for each weighted term and are termed as Lagrange multipliers. 

Together with the property that different p values lead to differentiated geometrical 

models, the randomness related statistical distributions pose insightful modeling 

approaches and also provide feasible asymptotic evaluations by making use of CLT in 
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a Gaussian distributed assumption. Moreover, Banach or Hilbert spaces intimately 

relate to CS theory in terms of defining spaces equipped with lp norms of inner product, 

the latter being significant in CS theory as low coherence involves a necessary 

calculation step in order to assess the optimality of results reached by CS methodology. 

Alternatively, the greedy algorithms select one element in each iteration from the vector 

space in which the signal resides. It must also be noted that CS theory has been 

characterized by the property of non-adaptivity hence the algorithms designed are 

universal in a sense that they apply to diverse sparsity scenarios. The intuitive query of 

whether this characteristic is due to the limited evolution of CS theory hence adaptive 

methodologies will be devised with improved performance characteristics constitutes 

the most crucial challenge to be investigated. 

As already stated, CS utilizes random measurement matrices i.e. matrices whose 

elements are randomly valued variables modeled by specific statistical distributions. A 

valuable property of such matrices is enclosed in the following statement which is 

closely related to CS solution methodology: if according to sparsity concept a subset of 

the columns of a random matrix are randomly selected these columns will be linearly 

independent. Also, if the RIP i.e. the multiplication of measurement matrix with the 

sparse vector does not significantly affect the sparse vector then solution obtained is 

optimal. However, RIP requires extensive computations in order to verify whether it 

holds in a specific setting. Another issue to be accounted for is the case where problem 

parameters share common properties which permit joint processing [36], a case proven 

to be beneficial for the CS framework. In the latter context, the grouping or clustering 

schemes could significantly reduce computational burden and problem dimensionality 

thus direct problem solvability exactly in the CS methodology orientation aiding useful 

information extraction. Joint sparsity of two random variables could also provide 

substantial aid to selecting the transformation sparsifying matrix as well as ensuring the 

incoherence property required by CS theory. Hence, combinations of random matrices 

and sufficient number of elements from each base in order to acquire a complete 

representation of the signal preserving its information content poses a challenging 

necessity that is also described by information theory emigrating to wireless 

communication scientific research. Furthermore, the representation of a signal by a set 

of not necessarily orthogonal bases must be conducted in a manner that the contribution 

of each base in the resulting representation must be clearly depicted besides the 

completeness of the expression. Hence, in a joint scenario, CS transformation matrices 

must be selected in the above manner including all related problem parameters. 

Introducing the concept of approximating sparse vector by the concept of 

compressibility [37], which dictates preserving subset of largest in magnitude elements 

given a certain threshold, the issue of optimal representation is of major concern in 

signal reconstruction at the receiver side of a communication system. As optimization 

problems in wireless communication literature are characterized by increased 

dimensionality, the joint or independent consideration of the parameters involved must 

be carefully conducted. As such, low dimensionality projection and information content 

retrieval at the expense of a tolerable information loss is of utmost importance in such 

optimization problems.  
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Returning to the initial problem formulation of recovering a signal of large 

dimensionality from acquired measurements whose cardinality is less than the signal 

ambient dimension via l1 norm, linearity property is verified along with reduced 

complexity. However, there are crucial requirements that must be fulfilled in order for 

this problem transformation to provide the optimal tailored to the specific scenario 

solution. This is the very RIP verification test described above with its accompanying 

need for computational excessive burden. Another mathematical test is termed as NSP. 

In the following paragraphs, the two latter tests will be briefly analyzed. 

NSP [38] is a test that quantifies the similarity, via inner product operation, of two 

distinct columns of a CS sensing/measurement matrix. Given that the columns of such 

matrices must be in a geometrical sense different, the value of this tests must produce 

smallest possible values. In turn, even if NSP portrays how «optimal» our solution is, 

it still exhibits low resilience to noise leading to measurement distortion as in a more 

practical case.  

RIP [39] can be effectively applied in noisy scenarios and confirms that the effect of 

sparse vector transformation via measurement matrix induces a bounded effect on the 

norm of the sparse vector to be recovered alone. The constant involved must be 

contained in the [0,1] range and the smaller its value the more bounded the effect of the 

vector transformation is. It must also be noted that the l2 norm is used in the related 

mathematical expression of the RIP. For clarity, the equation modeling RIP test is given 

below: 
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For a concise reference to the two categories of methodologies for solving CS 

optimization problems, greedy algorithmic approaches demonstrate many versions 

each with different convergence guarantees and speed. One or multiple elements may 

be selected in each iteration along with residual formed from the previous iterations. 

One very specific class of algorithms are learning algorithms which as they are executed 

learn the basis consistent with the problem. Moreover, the properties characterizing 

each algorithm in general also apply in greedy algorithms such as complexity or 

equivalently the determination of the calculation imposing the dominant computational 

burden and algorithm termination criterion for example maximum number of iterations. 

These are shaped depending on the problem and the degrees of freedom to be exploited 

for optimal resource efficient solution derivations. It is also imperative to note that the 

objective functions and corresponding constraints may also appear multiplied by 

weighting quantities which could alter the very convergence or solvability of the 

optimization problem and also demonstrate practical tradeoffs in their algorithmic 

context.  

CS sparsifying matrices may be known or in a more practical sense learned [40],[41] 

during execution of algorithms. Hence, it is usually the case that sparsifying matrix is 

mostly characterized to belong to a countable set of candidate basis whereas the 

measurement matrix applied to the problem once the sparsity domain has been specified 

is drawn from random distributions ensemble. The crucial point that CS requires to 

emerge as a tool for low complexity underdetermined problem solving is the low 
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similarity of the two above matrices i.e. sparsifying and measurement matrix. Thus, the 

design for the latter could not only assume statistical independence but also 

measurement history to be exploited or correlation that better fit into scenarios for 

wireless communication signal reconstruction receiver side in a closed loop feedback 

assisted setting. To illustrate the latter, constraints of the optimization problem not only 

include past measurement history but also dictate the proper exploitation of rate of 

feedback information so as not to become outdated i.e. not constructive for signal 

detection and reconstruction. 

Summarizing the main ingredients of CS are briefly mentioned in the following: 

a) CS consists of a family of optimization tools aiming at alleviating 

computational and implementation complexity in a manner of obtaining an near 

optimal solution accounting for the sparsity constraint or equivalently in non-

convex setting the compressibility constraint both of the latter implying the 

beneficial existence of structure within the data so as to avoid the conventional 

resource costly data sampling and discarding the latter being replaced by 

simultaneous data sampling and compression drastically reducing the required 

computational overhead. Key problem parameters are identified and lp norm 

values for CS problem formulation balance problem solution characteristics 

such as solution uniqueness and tractability. 

b) Relative to wireless communications but also in the areas of signal processing 

and information theory, CS exploits this convenient structure or patterns to ease 

computations but also provide performance benchmarks for example in 

practical communication scenarios which may promote thorough understanding 

of channel characteristics, resource allocation and impact of practical 

constraints on the algorithm employed. In a clarifying comment, CS may not 

only be applied in current 5G networks but also contribute to revisiting methods 

addressing problems of previous communication systems generations and also 

provide insights as to how to optimally interpret and confront future network 

challenges and shortcomings in a way to promote 6G and beyond 

communication systems. 

c) The claimed alleviation of computational complexities in CS theory surpassing 

traditional sampling theorems and data processing methods especially 

addressing exponentially increasing complexity combinatorial problems by 

narrowing down feasible solutions is aimed at preserving information content 

and orienting sampling to the dimensionality of the actual information content 

rather than ambient dimensions. Moreover, the tradeoff between randomness 

and structure is what bears all the advantages and shortcomings of CS 

applicability to realistic problem. Hence randomness promotes efficient 

mathematical modeling with statistical tools while structure is what explicitly 

defines implementation feasibility in wireless communication system design. 

The above two aspects coexist in every scenario and define the extent to which 

optimization tools actually accomplish the desired goals. In a similar context, 

the latter determine the objective functions and constraints included in the 

design of effective algorithms that model practical problems. 
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Finally, we provide a brief notion on integration of CS in information theory. CS 

embodiment in information theory already counts many decades as the aspect of 

sparsity was already present before the establishment of CS in data compression and 

coding [42],[43]. As coding addresses the problem of adding redundancy to the 

transmitted data sequence to combat channel impairments and minimize distortion in a 

diverse tradeoffs context, CS promises tremendous benefits in effective data 

compression while quantifying information content via entropy and uncertainty 

metrics. As measurements are essentially bits, the lower bounds for required 

measurements and for successful reconstruction [44] are derived. Relative to acceptable 

signal recovery, quantifying distortion at target SNR also provides performance 

limitations from an information theoretic perspective. 

2.2 Mathematical Prerequisites 

In this section the commonly used mathematical formulae throughout this thesis are 

provided along with brief comments on their interpretations. 

Firstly, we derive the statistical distributions describing each fading channel along with 

the additive noise distribution. Throughout the thesis, second order statistics are 

assumed thus mean and variances are derived. Thus, although Gaussian symmetric 

distribution is fully described by such assumption, the skewed fading distributions are 

partially modeled, in a manner sufficient for the analyses conducted. The Rayleigh 

fading distribution is given by the expression below followed by the mean and variance 

formulae: 
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Thus, the distribution is entirely defined by value selection of parameter sigma which 

also determines the mean and variance quantities. Proceeding to the Rician fading 

distribution, the distribution expression along with mean and variances are provided 

below: 
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Hence, Rician fading distribution is defined by two parameters namely parameter v and 

sigma. Both are required to adequately describe the distribution. The distribution 

expression contains Bessel function of first kind and zero order, while mean and 

variance expression involve Laguerre polynomial which can be quantified by the 

hypergeometric function of first kind.  

Proceeding to the Nakagami-m fading distribution, the distribution and mean and 

variance expressions are given below: 
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As is apparent, Nakagami-m fading distribution is also described by two parameters 

namely m the shape parameter and Ω the spread parameter. It can be observed that Γ(m) 

is the gamma function appearing in all three expressions. Moreover, the case m=0.5 

results in an expression that resembles the Gaussian function whereas m=1 results in an 

expression close to the Rayleigh fading distribution. 

The Gaussian distributed being the most fundamental distribution in various disciplines 

and also in wireless communication is a symmetric distribution and as such completely 

described by second order statistics i.e. mean and variance. In the context of this thesis, 

Gaussian distribution is used to model additive noise as a practical inherent property of 

the wireless channel as well as CLT distribution. The distribution expression is given 

below. Note that, unlike the fading distributions, the Gaussian distribution expression 
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includes mean and variance instead of parameters of fading distributions that separately 

define distribution along with mean and variance. 
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Proceeding further, the statistical moments given a specific distribution of nth order are 

given by the integral below: 
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Resulting from the above formula the variance can be computed as the difference 

between the second order statistical moment i.e. n=2 in the above formula and the 

square of the first order statistical moment i.e. derived by n=1 in the formula above: 
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We now proceed to information theoretic formulae, Shannon entropy, relative entropy 

and channel capacity. The first quantifies the uncertainty within an outcome of a 

random variable and is a strictly positive quantity by minus sign insertion as given 

below: 
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The relative entropy involves two distributions, the accurate distribution and the 

approximating one in a practical scenario of partial distribution knowledge. It is thus a 

measure of dissimilarity between the two distributions namely the accurate fx and the 

approximating px. In other words, it quantifies the distance between the former and 

latter distribution. The respective formula is given below: 
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The sum of the Shannon entropy and relative entropy involving the distributions 

modeling the wireless fading channel expresses the average number of bits required to 

describe the channel. The first term, Shannon entropy, represents the bits due to the true 

distribution while the second term, relative entropy, express the redundant bits as a 

consequence of approaching the true distribution with the approximating one. 
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Finally, the Shannon capacity is given by the formula below including the squared 

channel gain to account for fading channel cases: 
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In this formula, the bandwidth of the channel appears both as a linear term and as a 

quantity inside the logarithm. The squared channel gain is multiplied by the transmit 

power and divided by the product of the bandwidth and the noise power spectral 

density. 

Moving on to CS theory, the Gaussian case effectively quantifies the number of 

measurements much less than the initial dimensionality of the information signal that 

ensure signal reconstruction in this subcase of CS regime. The related formula is given 

below where N is the initial number of elements in the signal vector and k is the number 

of nonzero elements in the former vector. Hence, k divided by N is termed as the 

sparsity ratio: 
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We conclude the mathematical preliminary section with the initial CS problem 

formulation using the l0 norm as well as the convex relaxed version of this problem in 

both noise free and noisy cases with minimization of the l1 norm. These problem 

formulations are termed Basis Pursuit (BP) and Basis Pursuit Denoising (BPDN), 

respectively. It must be stressed that although this problem forms are not addressed 

throughout this thesis, they are noted in order to give prominence to the derivation of 

the distribution of the sum of independent random variables via the convolution of the 

distributions of the variables that comprise the sum contrary to the investigation of a 

correlation based analysis of the expression deriving the channel output as the sum of 

the input weighted by the fading distribution channel gain plus the additive noise 

inserted as an inherent property of the channel. This expression is given below: 
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The initial CS problem formulation via l0 norm expression is given in the following: 
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The l1 minimization problem expression is given below for the noiseless and additive 

noisy cases i.e. BP and BPDN respectively: 
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BPDN has the modified constraint of bounded noise via the l2 norm expression while 

still preserving the function to be minimized as in the noise free case. Towards a 

clarifying comment, the statistical convolution derives the distribution of y solely based 

on the statistical independence assumption thus bypassing the consideration of the 

above Eq.(19). A concluding comment is that there is no notion of a specific sparsifying 

matrix. Thus, in the analysis of this thesis the sparsifying matrix is equal in a matrix 

multiplication sense, to the identity matrix. In other words, the signal is already sparse 

and the application of the measurement matrix suffices. 
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3. COMPRESSED SENSING IN WIRELESS COMMUNICATION SYSTEMS 

CS promotes improved performance in sampling and signal acquisition that is solely 

based on certain structure properties, specifically sparsity or compressibility, relying on 

random matrix theory to validate its potential for optimal signal recovery applicable 

also in wireless communication [45],[46],[47] performance assessment. The mere 

requirements of CS as a principle is the existence of a sparsity domain reached by means 

of a non-identity matrix multiplication in a general case when such transformation is 

needed by a measurement matrix which is randomized following a certain statistical 

distribution. In this context, Gaussian is the most favorable distribution directly 

qualifying for measurement sparsification with a known formula of adequate number 

of measurements for successful reconstruction. 

Relative to the core contributions in this chapter, the channel estimation issue [48],[49] 

translated in our case as distribution modeling of fading channels can be effectively 

promoted by sparsity or equivalently compressibility as in the subsequent analysis. 

Under this constraint, system performance can be stated in an accurate context in terms 

of many practical assumptions such as dominant cluster multipath model even in a 

NLOS scenario implying dominant scatter component and multiple antennas 

implementation i.e. trading off hardware complexity with spatial diversity exploitation.  

Proceeding further, CR based spectrum sensing can successfully incorporate CS as 

sparsity relates to underutilized spectrum in other words small portion of the licensed 

bandwidth instantaneously utilized. Finally, in densely deployed networks, correlation 

in time and space can be efficiently exploited along with sparsity scenario to reduce 

overhead and promote energy efficiency and reconstruction quality either in a 

centralized or decentralized case. Concluding this short reference, CS is already proven 

to guarantee performance gains by designing effective algorithms with diverse 

convergence, speed and reconstruction accuracy criteria. However, the challenges of 

unknown or rapidly varying sparsity or model mismatch in terms of learned sparsifying 

dictionary also translate to practical constraints in the wireless system performance 

formulating interesting problems at a post CS applicability verification stage where 

many of these problems admit further investigation.   

3.1 Chapter outline 

This chapter investigates the application of CS to fading channels combined with fading 

channel coding which quantifies the average number of information bits required to 

describe the wireless channel. Moreover, statistical CS is employed the latter 

characterization stemming from applying a method of minimizing l1 norm, which 

corresponds to the convex relaxation of the initially intractable l0 norm CS recovery 

problem. This method effectively tackles the much more excessive method of 

conventional l1 norm minimization but also provides the optimal solution by means of 

first and second order moment statistics. The fading channel distributions considered 

are Rayleigh fading, Rician Fading and Nakagami fading distributions as given in Eqs. 

(3),(6) and (9) respectively. The common distribution modeling additive noise is the 

Gaussian distribution. The performance metrics are channel capacity, equivalent 

channel distribution variance, average code description length based on Shannon 
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entropy and relative entropy as well as symbol error probability. The distribution 

inference problem is either formulated as an inverse problem by using channel coding 

and CS based distribution reconstruction results in the first section and by CS 

compressibility rule and Taylor approximation in the second section. Moreover, the 

analysis reviews the spectrum sensing methodologies in CR systems with an 

algorithmic flavor along with main consideration of sub-Nyquist CS techniques. A 

convolutional probabilistic ED based scheme including the CS, CLT [50] and Rayleigh, 

Rician and Nakagami-m fading cases is proposed. Finally, a probabilistic scheme 

assessing WSN network performance in terms of reconstruction error and energy 

estimation is adopted. Gaussian statistics are the main distribution for all performance 

derivations of this section. The results are directly applicable to promote network 

effective topology and routing. 

3.2. Fading channel coding and distribution estimation with Compressed Sensing 

3.2.1 Introduction  

The results of this section are related to our publication [C6]-([51]) utilizing CS for 

assessing samples required for statistical density reconstruction utilizing Rayleigh and 

Rician fading distributions. The required number of samples for each probability 

density function considered for its reconstruction are derived by a search for minimal 

l1 norm optimization problem that bypasses the inherent complexity of the traditional 

l1 minimization method but is also applicable due to distribution convexity. The latter 

is verified by the asymmetric bell curved distributions which do not exhibit any other 

extremum but decay to zero as the abscissa increases towards infinity. The number of 

required bits is equal to the sum of Shannon entropy and relative entropy. Shannon 

entropy expresses the number of bits used to describe the channel according to the 

distribution that it follows. Relative entropy is considered when the accurate 

distribution is approximated by a different one. Hence, it quantifies the dissimilarity or 

distance between the accurate and approximating distribution in terms of additional 

number of bits required to describe the wireless channel. The structure of the proposed 

method is the following: the pairs of CLT related distribution and Rayleigh/Rician 

fading distributions are used to derive the maximum number of samples for which finite 

values of entropy were observed are fed into the CS based l1 optimization problem for 

the required number of samples of probability density reconstruction. Thus, for each 

distribution pair the required number of samples is derived which may refer to the same 

distribution in different pairs but differs in terms of values as each case accepts a 

different entropy as the problem input. The CLT case models the approximation of a 

Gaussian distribution of the fading distribution that is defined by a sum of 10 

independent fading variables either of the fading noiseless case or as the sum of 10 

variables following a distribution equal to the convolution of the fading distribution and 

Gaussian additive noise distribution. The results on required average number of bits are 

formed by pairs of CLT related distribution and all four distribution Rayleigh and 

Rician both noiseless and noisy cases included as well four additional cases excluding 

the CLT case and forming the respective pairs of the latter distributions. The results are 

fed into the CS based required number of samples, a problem that is stated by a 

Lagrangian optimization expression that derives the minimum l1 norm and computes 
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the required number of samples based on the two initial statistical moment problem 

formulated by deriving the extremum of an equivalent function. The inverse problem 

of distribution identification is thus addressed deciding in favor of either NLOS or LOS 

component existence.  

The above constitutes a requirement for the random channel to be modeled with finite 

uncertainty and also directly relates to the maximum entropy problem, which has 

proven to be greatly contributive for channel modeling from an information theoretic 

point of view. The remarkable merit of such an approach is that it provides consistent 

models based on the concept of uncertainty as our prior maximized information. It is 

also highly relevant to Bayesian inference which in this section is confined to the 

distinction between Rayleigh and Rician fading, as stated.  

3.2.2. Past related work 

Relative to past related literature, [52] and [53] investigate the statistical properties of 

MIMO fading channels providing a restricted version of the ML method for deriving 

mean and covariance matrices in a computationally efficient way. The main 

mathematically translated differentiation of the above approach is naturally the absence 

of nonzero quantities of covariance since the assumption of fading and noise 

independence is what the analysis of this section is based on. Furthermore, the discrete 

problem of block fading channel is addressed along with continuous fading assumption. 

Although the notion of entropy value derivation comes along in a discrete form but the 

fading distributions support the continuous assumption, the essential assumption for the 

analysis of this section is the channel coherence assumption. This emigrates to the fact 

that the distribution knowledge remains valid, leaving as a future extension of this work 

the issue of coherence in terms of channel gain values but also the noncoherent scenario 

where the problem of outdated channel estimation measurements emerges. Debbah and 

Muller in [54] and Biglieri et al. in [55] address the maximum entropy problem as a 

way of modeling the MIMO channel with the only constraint that of finite energy. It is 

quite interesting to relate these works with the analysis of the current section which is 

based on entropy as the information content. The latter is straightforward applied to the 

fading case with the additional restriction of Rayleigh and Rician fading distributions 

which is the element that renders this analysis of high merit as the NLOS and LOS are 

assumed. This conveys that the channel is accurately modeled as the distinction is based 

on two opposite scenarios. Hence, there is no derivation as to how severe fading the 

distribution implies but to whether a LOS component exists, which is different to the 

complementary Rayleigh fading assumption. These papers also highlight that the 

Gaussian assumption valid for modeling the channel is a consequence of considering 

the two first statistical moments i.e. second order statistics, commenting therefore that 

if additional moments are available, channel matrix could be modeled otherwise. The 

crucial conclusion reached in this paper, however, is that incorporating more constraints 

for channel modeling optimization problem by means of maximum entropy could lead 

to a suboptimal channel description. Thus, the main direction of this thesis being the 

integration of CS with the entropy problem the challenge of whether CS combined with 

entropy could guarantee optimality for channel modeling is stated as an extension of 

the latter work. In [56] and [57], the relative entropy is calculated via the integral of the 

quantity of the difference of the linear mean squared error from the nonlinear minimum 
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mean squared error induced by the penalty of adopting linearity. The latter statement 

could offer an intriguing extension of the derivation of CS number of samples for 

distribution reconstruction in terms of the reconstruction error i.e. CS reconstruction 

error of the respective distribution. Moreover, these works are closely related to our 

analysis as they consider non-Gaussian distributions, the fading distributions in our case 

and Gaussian contamination, which translates to the standard Gaussian noise 

distribution considered that formulates the noisy cases of the analysis. It is important to 

note that the relative entropy and mean square error related derivations refer to the 

output that results in the sum of the convolved channel and transmitted signal quantities 

with the Gaussian additive noise addition. Hence, the results are based on the above 

standard expression whereas our analysis is based on the convolved channel and noise 

distributions as stated in the mathematical preliminaries section always in the context 

of independence. Moreover, the finite second order moment is consistent in our analysis 

compared to [56] whereas it is stated that, being essential for deriving the mean squared 

error formula, a one-to-one mapping is necessary as a transformation for the finite 

second moment assumption to hold. Aligned with the analysis of this thesis, the noise 

is considered independent between two different values without any assumption of 

memory or stationarity as well as independent to the channel realizations that are either 

modeled as noiseless or noisy fading distributions. The above stem from the strict 

notion of independence. It is also noted that the quantification or required number of 

bits derived by the sum of Shannon entropy is also related to how data compression 

deviates above the minimum entropy related value and as a consequence could be 

expressed as the difference on mean and minimum mean square error. Proceeding 

further to [58] by Kontoyannis and Verdu, the case of an optimal compressor is 

investigated by the fact that it is transparent to the achievable limits it must satisfy as 

well as the prefix condition provided the decoder does not need to know where and 

when a compressed file starts and ends. In accordance to the analysis of this thesis, 

memory is not exploited in the optimization compression problem, however, the 

proposed Huffman coding scheme is in agreement with the assumption of this section 

as the channel statistics are known to derive the average code length required for each 

distribution case but is in contrast to the inverse problem in which with the aid of CS 

based required number of samples for reconstruction, the channel distribution is 

inferred, or more accurately decided upon by means of the results of the previous 

section. Relative to investigating the optimal distribution of the symbol length, the 

query of whether in our case this length is known at the decompressor we argue that in 

order for the inverse problem to admit a correct solution, each distribution case, fading 

noiseless or noisy, must be related to the symbol length permitting its identification. In 

light of a theorem of this work, the extension of an assumption regarding a small 

alphabet of a random variable packed together with the exponential increase of alphabet 

for fixed-to-variable case to the capability of CS-based sparse alphabet in the context 

of the Rayleigh/Rician fading assumption is considered challenging. Concerning the 

asymptotic normality of optimal coding length, the authors bring forth the argument of 

excluding the prefix constraint in order to tackle the large deviation behavior. Finally, 

the determination of optimal code length statistics is another route to take in our work 

in conjunction with the Central Limit Theorem as a comparison distribution in our 

analysis that relates to the asymptotic Gaussian approximation of the latter work. 
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Another work [59] closely related to our analysis but assuming a finite state memory 

scenario investigates the normalized empirical expectation code length as opposed to 

the probabilistic-wise entropy rate, the latter matching our proposed approach with the 

difference that this work deals with source coding as opposed in the consideration of 

channel coding in our case. Apart from the relative entropy which is the only individual 

sequence analogue in our case, the authors in [59] seek a deterministic analogue of the 

Renyi entropy, which although intimately related to the standard Shannon entropy used 

in our case, is investigated separately. Furthermore, the relation of the commented 

length fluctuations of source blocks are generally not ruled out in our case since the 

derivations concern the average channel code length. The influence of certain correlated 

side information content on the encoded string length can be thought as additional 

constraint to the compression optimization problem. Therefore, the connection to our 

analysis deriving average code description length for channel coding could be the 

relative entropy as a measure of redundant bits resulting from partial distribution 

knowledge.  

3.2.3 CS based distribution reconstruction 

The approach adopted relies on the fundamental equation that computes the variance of 

a distribution by subtracting the square of the first order moment, i.e. the distribution 

mean from the second order moment as in Eq.(14). Proceeding with the result derivation 

the second order moment is equal to the sum of squares divided by the number of 

samples N i.e. the squared l2 norm divided by N. The squared first order moment is 

equal to the squared l1 norm divided by the square of the number of samples i.e. N2. 

From the above and solving for l1 the following inequality is derived: 
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21 NNll                               (23) 

The minimum number of the l1 norm is thus obvious from the above equation. To 

proceed with the derivation of the minimum the partial derivatives are computed with 

respect to variables: N, the number of samples and l2 the equivalent norm. The 

derivation produces the following equations: 
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According to fundamental theorem of calculus, the derivatives need to be set to zero. 

This results in the following solution: 
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2 2 Nl                                            (26) 

from the first derivative. The result also complies with the positivity of the quantity 

inside the root expression that must be verified. The second derivative does not 
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contribute to the system solution. Hence, the minimum value of l1 norm based on this 

condition is equal to the following quantity: 

                                                         Nl 1                                               (27) 

Hence, the primary quantity evaluated is the l2 norm, which by CS theory has non-

unique solutions as depicted in the equivalent spherical geometry. The l1 norm is thus 

uniquely quantified in the second step as also dictated by CS principle. Based on the 

above, the following optimization problem is formulated with the assigned weights as 

Lagrange multipliers. The complete statement of the optimization problem is given 

below: 

                    




























 



N

x

N

x dxfxdxxxflL 222

321        (28) 

After some algebraic manipulations the following equations are formed: 

                                              02 32                                       (29) 
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Based on the number of finite entropy and parameter values for μ and σ, multiplier λ3 

is evaluated, being positive according to Eq. (31) and from Eq. (29) parameter λ2 is 

evaluated. Finally, the l1 norm quantity is evaluated which enables the derivation of the 

number of required samples for CS-based distribution reconstruction. It should also be 

noted that the integrals expressions are considered with the entropy number of samples 

which verifies the nonzero value of the weighted expressions in the Lagrange 

optimization function. 

The above optimization problem results in the data of number of samples for which 

finite entropy was observed and two values representing the CS number of samples for 

density reconstruction in each of the respective pairs formed by the assumption of the 

accurate and approximating distribution for the relative entropy expression.  

3.2.4 Algorithm formulation 

The related algorithmic formulation of the above stated problem is provided below. 

Algorithm 

1. Input: Rayleigh-Rician fading noiseless and noisy, mean and variance of 

distributions, CLT Gaussian distribution, Shannon/relative entropies, channel 

code length, l1 minimization inequality.  

2. Form pairs of distributions for Shannon/relative entropies 

3. Calculate Shannon Entropies for assumed distributions and relative entropies 

for all distribution pairs. 
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4. Calculate channel code length based on derived Shannon and relative entropies 

as the sum of bits with respect to each term. 

5. Calculate number of samples for each distribution reconstruction based on CS 

theory and the above pairs and entropies related numbers of samples. 

6. Based on channel code lengths and CS based number of samples for distribution 

reconstruction identify whether the distribution is Rayleigh or Rician. 

7. Output: Channel code lengths for each distribution pair, CS-based number of 

samples, identification of distribution as Rayleigh or Rician.  

 

3.2.5 Simulation results 

Relative to second-order statistics, the following Table 3.1 lists the means and variances 

of each distribution forming the pairs considered for the relative entropies derivations 

calculated from the related contribution parameters. The ten times multiple mean of the 

equivalent Gaussian distribution is the generic property of the mean of a sum or random 

variables while the 10 times multiple variance is a consequence of the fact that the sum 

comprises of independent variables, hence the parameters of the approximating 

Gaussian distribution. 

TABLE 3.1: Distributions Statistical Parameters 

Distributions Mean  μ Variance σ2  

Rayleigh noiseless 1.25 0.43 

Rayleigh noisy 1.25 1.43 

Rician noiseless  1.54 0.61 

Rician noisy 1.54 1.61 

Gaussian noise 0 1 

CLT Gaussian 10μ 10σ2 

 

 

Along with number of bits required evaluated by the Shannon and relative entropy in 

Eq.(15) and Eq. (16), respectively, the sum referred to as channel code length, the 

values of number of samples for finite entropy were observed and CS based required 

number of samples for each distribution reconstruction given in Eq. (27) for all pairs 

considered, the results are summarized in the following Table 3.2: 

TABLE 3.2: Maximum samples for finite entropy, CS number of samples for 

distribution reconstruction and average code lengths 

Distribution pairs Nmax 

samples for 

finite 

entropy 

N1 samples for 

reconstruction 

of first 

distribution in 

pair 

N2 samples for 

reconstruction 

of second 

distribution in 

pair 

Average 

code 

lengths 

CLT/Rayleigh 

noiseless 

14 27 27 4 

CLT/Rayleigh 

noisy 

13 15 16 2 
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Distribution pairs Nmax 

samples for 

finite 

entropy 

N1 samples for 

reconstruction 

of first 

distribution in 

pair 

N2 samples for 

reconstruction 

of second 

distribution in 

pair 

Average 

code 

lengths 

CLT/Rician 

noiseless  

17 38 45 26 

CLT/Rician noisy 16 22 23 3 

Rayleigh 

noiseless/Rayleigh 

noisy 

5 1 1 4 

Rician 

noiseless/Rician 

noisy 

2 1 1 2 

Rayleigh 

noiseless/Rician 

noiseless 

5 1 2 6 

Rayleigh 

noisy/Rician 

noisy 

6 1 1 2 

 

The first observation requiring an accurate interpretation are the significantly less bits 

required for CS reconstruction for the Rayleigh and Rician noisy cases paired with the 

equivalent CLT distribution compared to the noiseless cases. Though contrary to the 

fact that considering noise ought to increase number of required bits, the interpretation 

is straightforward. Hence, this stems from the independence assumption between fading 

and noise distributions, which is impractical as correlation always exists. Moreover, the 

general observation of Rician fading paired with CLT distribution requiring additional 

bits from the rest of the cases is verified not only in terms of CS based samples for 

reconstruction but also for the value up to which finite entropy was observed. In the 

same context, the approximation of Rayleigh fading by Rician fading requires same 

number of samples for Rayleigh reconstruction but one extra sample for the Rician 

distribution reconstruction. The opposite i.e one extra sample holds for the number of 

maximum finite entropy based values. These results are directly justified from the 

modified Bessel function term in the mathematical expression of the Rician fading 

distribution. 

Relative to the decimal values of Shannon and Relative entropies and with respect to 

CLT cases, noiseless Rayleigh conveys larger Shannon entropy and less relative 

entropy while for the additive noise case the opposite with larger relative entropy was 

observed. This translates that the uncertainty of the CLT related approximation has 

more uncertainty when related to the Rayleigh approximation than when related to 

Rician fading, which can be attributed to the contrast between NLOS and LOS 

component. Noisy cases have less uncertainty than noiseless cases. Moreover, 

approximation of Rayleigh noiseless by Rayleigh noisy has more uncertainty than 

approximation of Rician noiseless by Rician noisy. Hence, the effect of NLOS 

conditions resulting in greater uncertainty as opposed to Rician LOS is apparent in this 

case where the Rayleigh and Rician are paired instead of the CLT based cases. 
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Specifically, in CS number of samples the number of samples for the accurate and 

approximating distributions seem to be in the same magnitude for all cases except the 

Rician fading case with the CLT as the accurate distribution. The results express the 

greater number of samples for reconstructing the Rician distribution compared to its 

CLT case. Another observation is the reduced number of samples for the Rayleigh and 

Rician cases compared to the cases where CLT was considered. As a complementary 

justification for the difference in number of samples in the aforementioned divided 

groups of results, the input to the CS derivations are the different number of bits related 

to finite entropy values. Hence, even though the same distributions are considered the 

results are different and dependent on the approximating distributions by means of the 

relative entropy calculations. 

Finally, the channel code length derivations result in useful observations. The average 

code lengths for the case quantifying the distance of the CLT related distribution and 

Rician noiseless distribution requires the greatest average code length. The observation 

of noisy case in CLT pairs requiring fewer bits is also confirmed with the case of CLT 

and Rician noisy as opposed to Rician noiseless pair requiring far fewer bits for channel 

coding. The case of approximating Rayleigh noiseless distribution by Rayleigh noisy 

requires two less bits than the approximation of the same with Rician noiseless. This 

actually states that the noisy Rayleigh case is a lower complexity approximation 

compared to Rician noiseless fading case the latter characterization being valid for any 

of the above code length comparisons. 

As a concluding remark, the results of the simulations section are indicative of the 

distribution they result from as they are redundant in the sense that number of values 

for finite entropy, CS based required number of samples for distribution reconstruction 

and average code lengths support a certain decision or they are sufficiently diverse 

referring to the case conveying ambiguity with respect to a specific result, the other 

results provide distinction and enable a certain derivation. This latter observation 

supports the decision of Rayleigh or Rician including noiseless or noisy cases, which 

is the inverse problem addressed in the next subsection.   

3.2.6 Channel distribution knowledge inverse problem 

This section investigates the inverse problem i.e. channel distribution identification 

which subsequently results in channel knowledge. In the context of variable length 

channel coding and non-varying or slowly varying channel distribution the results 

exhibit structure enabling solution to the inverse problem.  

Firstly, the significantly greater number of bits for finite entropy along with the CS 

number of samples with the CLT consideration regarding Rician fading can be made 

accurately by such an observation. Rician noiseless and noisy fading can also be 

identified from the Rayleigh cases with greater bits and samples values. The 

identification of Rician noiseless instead of Rayleigh noisy, given that the 

approximating distribution is Rician noisy can be made by the different in number of 

entropy based bits. The decision over noiseless fading compared to noisy fading can be 

made by the noticeably smaller values not only for the number of bits up to which finite 

entropy values were observed but also for the CS based number of samples for density 
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function reconstruction for all fading distribution cases. The identification of Rayleigh 

noiseless approximated by its noisy counterpart from Rician noiseless case 

approximated by its noisy counterpart is also feasible from the entropy bits as well as 

derived code length. Finally, the mean and variances can be the initial values that can 

be solved for the specific parameters of each distribution thus leading to their complete 

mathematical formulation. From the initial point of view that only Rayleigh and Rician 

fading distributions are assumed, the channel estimation related application of the 

above analysis is furthermore beneficial. Considering that Rayleigh fading introduces 

severe distortion and multiple scatterers and Rician involves a dominant LOS 

component, the wireless channel properties are more accurate. Moreover, the Gaussian 

statistics of in-phase and quadrature components having zero means for Rayleigh case 

and nonzero for Rician case could be accurately modeled with the additional knowledge 

of their variance. Finally, the exact distribution modeling the channel could be 

achieved. Starting from the known variance and with the formulas deriving mean and 

variance the required parameter could be achieved. The following describe the latter 

calculations. 

In the Rayleigh fading case, the knowledge of the variance or mean lead directly to the 

calculation of sigma parameter. For the Rician fading case, however, the formulas 

deriving the mean and variance are interrelated, thus pointing out the requirement of 

numerical solution of the equations for calculating parameters sigma and v. 

Specifically, by inserting approximation of mean and variance values and Taylor 

expansion of Laguerre polynomial the iterative solution of the resulting polynomials 

could be leveraged to determine the desired parameters. 

It is apparent that the approach relates the number of bits for channel coding as a 

measure of uncertainty while the CS based optimization relies on the reconstruction 

accuracy of the models of randomness i.e. the statistical distributions used in the former 

coding derivations. At a MIMO scenario of considerable complexity, the identification 

of channel fading distribution and the verification of whether additive noise must be 

included in the channel model is a promising application of such a combined coding 

and channel model reconstruction in 5G massive multi-antenna environments. Together 

with dominant cluster paths assumed as sparse, the CS optimization can further boost 

detection performance and reduce decoding complexity by means of available channel 

state information at transmitter and receiver. From a decision perspective, the choice of 

more than two distributions for identification leading to an optimization problem of 

multiple possible outcomes could be addressed by exploiting similar observations on 

the basis of structure of the problem. Methodologies based on CS for optimal solution 

compensating for ambiguities as in the current analysis where CS complements results 

from entropy calculations to reach accurate decision could be introduced. Optimal 

performance in terms of tradeoffs and reduced complexity may also be derived. These 

remarks set the stage for considering Rayleigh, Rician and Nakagami-m fading cases 

the latter being an approximation of the former two by proper parameter selection. This 

constitutes the background of the next section. 
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3.2.7 Conclusions and future work 

This section has investigated a channel distribution estimation and CS based 

reconstruction in two separate stages. The first relied on entropy based derivations for 

Rayleigh and Rician fading distributions both with and without additive noise 

consideration relating to maximum entropy problem. The second stage used the 

aforementioned results as input to the CS distribution reconstruction property thus 

combining both stages in order to address the inverse channel distribution estimation 

problem for the above two distributions. 

As future work, the results based on the derived measurements from a statistical 

independence estimation assumption can be extended to the correlated cases including 

additional fading distributions i.e a diverse fading environment together with CS 

optimization principles. 

3.3 Wireless fading channel performance by means of Compressive Sensing and 

Taylor approximation 

3.3.1 Introduction 

The results in this section are related to our publication [J2]-([60]). As already stated, 

performance of wireless communication systems is mainly based on the concept of 

randomness through which the wireless channel is modeled. The notions of Shannon 

entropy and relative entropy quantify the number of bits to achieve channel coding i.e. 

efficiently describe the random channel. Thus, the statistical distributions used to model 

the wireless channel are characterized by their variance, common to all distributions, 

the latter being a measure of spread of random values with respect to the mean of the 

distribution. The above concept of uncertainty is also quantified by the Shannon entropy 

assuming the respective distribution is used, while relative entropy is utilized as a 

measure of dissimilarity when an approximating distribution with respect to the 

accurate is used. The resulting redundant bits are required for channel description. 

In this section, the Rayleigh, Rician and Nakagami-m fading channels are considered 

in terms of performance metrics: capacity [61], variance estimation, required number 

of bits to describe the channel and symbol error probability. The aforementioned exact 

distributions are considered along with the inferred distribution of the same kind 

resulting from keeping only the largest in magnitude channel gains as dictated by the 

CS principle. This problem can be thought as a more generalized problem of identifying 

the exact distribution by a set of data samples i.e. the largest samples in the CS case. A 

more accurate remark on the problem formulated in this section is that the optimization 

problem has the specific two constraints that a certain given fraction of channel gains 

is preserved and that the optimal distribution is of the same kind as the initial one which 

was the initialization of this optimization problem. Moreover, the consideration of 

additive noise is also efficiently encapsulated in the probability density function that 

serves as the initial one. The mathematical manipulation is, as stated before, the same: 

the equivalent distribution of the case including additive Gaussian noise N(0,1) i.e. 

modeled by standard Gaussian distribution, is the convolution of the fading distribution 

and additive Gaussian distribution, as dictated by independent fading channel and noise 
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distributions. Hence, the relation to the concept of structure involved in CS 

reconstruction method in terms of an initially intractable problem or a problem with 

infinite solution is evident by the verified results that the aforementioned constraints 

lead to the unique most optimal result. Furthermore, the Taylor approximation of the 

exact distribution expressions is considered. Such an approach by modeling fading 

distributions in an approximating manner not only effectively captures randomness as 

opposed to modeling results in term of produced realizations but also justifies validity 

of results in a manner of the respective distribution approximation. In order to achieve 

a representative approximation capturing curvature of the three distributions a second 

order Taylor polynomial approximation is applied. Complying to the aforementioned 

validity of result the method of formulating the Taylor polynomial with randomized 

coefficients is left as related future work extension. Hence, the exact, CS inferred and 

Taylor polynomial approximated expressions are used as channel gain generating 

numbers. 

3.3.2 Past related work 

A representative work [62] by Pramanik et.al referring to multi antenna systems at a 

mMIMO scale, a technology under the 5G communications evolution, proposes a 

channel estimation scheme in a CS framework promoted by the validated, for this case, 

concept of sparsity. In general, the consideration of increased overhead in a mMIMO 

system in terms of increased training for CSI acquisition, so as not to be outdated, in 

order to improve performance essentially leads to smaller fraction of information 

symbols transmitted which can translate to the findings of this section regarding 

average code description as a low rate code length. The zero additional bits required 

concerning the CS effect as will be derived in the simulation section stresses the 

necessity of designing high rate codes, which in the context of [62] renders sparsity of 

multipath as a promising way of increasing transmission rate with a lower training 

overhead, the channel estimation CS approach having witnessed significant progress 

already. The goal of channel estimation through LDPC coding is achieved by modified 

StOMP CS algorithm which falls under the category of CS greedy algorithm while our 

approach is l1 norm minimization oriented. Since the analysis of this section is based 

on independence statistics in the derivation of the noisy fading channel matrix, the 

advantage of convergence speed of StOMP against precision of convex optimization-

oriented method is left as an alternative route of solving the problem of fading channel 

estimation and optimized performance. Similar to our symbol error derivations for 

Rayleigh, Rician and Nakagami-m fading channels the improvement in BER is 

provided at an LDPC decoder with side information available. This a priori information 

serving as constraints for the optimization problem can either be translated as preserved 

number of channel gains due to CS compressibility rule or information about the extent 

of approximation achieved by the Taylor polynomial not only because of the 

requirement for confinement to positive valued integral but also depending on the 

polynomial degree considered. The formulation of channel estimation problem 

exploiting sparsity in matrix notation is conducted by means of FDD whereas the 

analysis of this thesis concerns temporal and spatial domains, in the wireless sensor 

network performance optimization section, leaving the case of frequency as future 

indicative research. The proposed channel estimation algorithm in the aforementioned 



32 

work exhibited improved performance over conventional methods in low SNR regime. 

Although the required SNR for the channel coding in our case is not mentioned, CS 

provides reduced complexity and symbol error which could lead to reduced 

transmission power and fewer retransmission thus improving SNR. A work not only 

related to the effect of precoding as a means to achieve interference mitigation by 

Taylor expansion but also addressing convergence and complexity is conducted in [63]. 

While our analysis is solely based on independence, the authors in this paper aim at 

selecting most relevant correlation terms optimizing MMSE. The essence of this work 

using Taylor expansion is to circumvent the issue of complexity arising as a result of 

matrix inversion related divisions. It is also argued that matrix multiplications favor 

hardware design efficiency. The diagonally dominant matrix structure preserving only 

largest magnitude can be directly connected to the CS compressibility rule employed 

in this section by a predefined threshold, with the difference in the already stated notion 

of independence. Offline computation method is the reason for negligible complexity 

regarding optimized coefficients derivation or small number of updating the latter 

values in the first data frame. Munkhammar et.al in [64] address the problem of 

distribution reconstruction, namely Weibull, and highlight the proposed polynomial 

approximation for use in distribution convolution which intimately relates to the 

statistical prerequisite of independence in our analysis as well as the derivation of 

channel distribution accounting for fading and additive noise. The concept of moment 

based distribution approximation closely relates to the previous section where the 

Lagrangian optimization expression includes the weighted first two moments, whereas 

this section compares the derived variance values based on CS and the Taylor 

polynomial approximation of the fading distributions. The steps followed for 

distribution estimation resemble the method adopted for this section in the following 

manners: second order statistics are available, the distribution problem specific interval 

is determined as the interval in which the Taylor approximation of the distributions 

investigated in this section remains positive. This stems from the degree of the Taylor 

polynomial, i.e. second degree as considered which in turn determines the achievable 

approximation. Moreover, the authors comment on the check of quality of convergence 

which in our case can be encompassed in the following statement: the goodness of fit 

is estimated indirectly by the capacity of the Taylor approximation, the calculated 

variances, the average channel code length based on Shannon and relative entropies as 

well as symbol error probabilities. Hence, the penalty resulting from the Taylor 

approximation with a fixed assumption of degree and expansion point constitutes a 

measure of goodness of fit. The suggestion of an approximating polynomial constructed 

as a product of a normal distribution and an Hermite-based polynomial could provide 

an extension of our work for fading distribution along with Gaussian additive noise 

consideration. Another crucial remark that could be related to the CS compressibility 

rule in a case of multiple extrema of a distribution i.e. in a bimodal or in general 

multimodal distribution mentioned in [64], the degree of, Taylor in our case, 

polynomial, along with a suitable expansion point, could be reduced up to a maximum 

value so as to restrict the approximating property in a certain interval, isolating to the 

maximum extent, the desired extremum. In this context, Taylor approximation could 

provide a better fit compared to CS inference. The CS related inferred distribution 

derived in this section could also be applied to this case which states an interesting 
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research extension. A nonlinear equalization scheme with the aim of mitigating 

nonlinear distortion and interference, which have a severe impact on 5G mmWave 

communications, is proposed in [65], by a local-linearization observation model. The 

authors address the nonlinear distortion and frequency selectivity, the latter assumption 

differing to our case in this section where the channel coherence is a prerequisite for 

deriving channel gain realizations from the distributions under consideration. As 

opposed to the authors’ statement that nonlinearity of output symbols induces memory 

which can be thought of as correlation via dependence, our analysis is stated as 

quadratic approximation of fading distributions, i.e. in such a manner that permits 

admitting strict independence between fading channel realizations as well as between 

fading and additive Gaussian noise. Proceeding further, the extent to which marginal a 

priori distribution is known or high dimensional intractability of a posterior distribution 

estimation (via particle filtering), is tackled in our analysis as we assume distributions 

are known i.e. the equivalent distribution resulting from independence based 

convolution. This means that a CDI is supported with a SIMO model as stated in the 

system model section. It is the piecewise continuity of the related curves that allows the 

linearized i.e. first order Taylor polynomial to provide an informative approximation. 

Also, the problem of recursive channel statistics update is further simplified by the 

Gaussian assumption providing a solvable iterative problem of determining mean and 

covariance matrix. Hence, it is an interesting question left for future research how the 

memory property will impact Taylor polynomial approximation merit, with arbitrary 

degree and how the memory in symbols will be fully exploited. In an interference 

mitigation framework, [66] focuses on the low complexity of guard zone based 

interference management. Along with uniformly distributed users in a geographical 

area of cell, the derivation of average throughput is addressed by Taylor expansion and 

inner radius of guard zone optimized. Successive interference cancellation is quantified 

in terms of decoding threshold, variance and user-base station as well as D2D-to base 

station distances and probability expressions are provided. The convexity property of 

related probability expressions confirm the feasibility of user transmission 

optimization. The analysis in this section includes diverse fading as compared to 

Rayleigh scenario in the above work but also exploits equivalent distribution convexity 

so as to apply CS compressibility rule. The idea of considering a randomized distance 

excluding the circular ring area, where transmission is prohibited so as not to lead to 

low probability, is combined with the proposed algorithm for inner radius optimization 

in order to minimize performance degradation. The idea of applying Taylor expansion 

is in accordance with the analysis of this section, thus, in the absence of a closed form 

expression. The convexity of average throughput is also present in this paper and 

utilized by adjusting inner cell radius. The degree of Taylor expansion considers the 

values of second degree and also fourth degree while we consider only second degree 

as the minimal degree of producing curved approximation. An interesting approach of 

using Taylor expansions of Doppler frequencies, AOAs, AODs, multipath delays and 

powers is adopted in [67] with the nonstationary assumption introduced together with 

varied velocity receiver mobility and scatterers as opposed to receivers moving with 

constant velocities and fixed scatterrers. The Doppler frequency arising as the result of 

vehicle and scatterers movement is equivalently expressed by a second degree 

polynomial as is our case investigated whereas another distinction is the fact that the 
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expressions derived are confined to a SISO model while our analysis assumes SIMO 

model. The mean of AOAs and AODs are modeled by a first degree Taylor polynomial 

as well as multipath delays and powers, the latter two approached by first order 

polynomial and exponential power model. The main differentiation of the above work 

and our case is that: effect and modeling of Doppler frequency is not considered in the 

case of movement in our work nor are multipath delays and their relation to bounce 

models in a scattering environment. Another differentiation is the temporal correlation 

between fading samples assumed whereas in our case independence is not relaxed by 

introducing correlation. An information theoretic approach for channel modeling which 

very closely resembles the approach adopted in this thesis is [68]. Here, the authors 

justify the use of relative entropy, which we supported by the term of distribution 

mismatch, as a partial knowledge of distribution case, the latter being very practical in 

multiple antenna systems. Specifically, the authors translate this, due to partial 

knowledge, approximation by a class of distributions that result in a maximum value of 

relative entropy the latter up to a defined threshold, in a Rayleigh channel statistical 

case. The main motivation of recent active research is the channel variations being 

tracked at receiver. This paper not only admits symbol coherence time as a restriction, 

as in the analysis of this section, but also supports such statement by the fact that 

transmit antennas number increasing above coherence time will not provide capacity 

gains. Addressing channel capacity optimization, channel uncertainty emerges as a 

modeling tool and the related maximin problem is stated. The Lagrangian multiplier 

resembles, as a mathematical tool, the analysis over Rayleigh vs. Rician distribution 

inference in the previous section which was formulated by CS principle and did not 

include relative entropy as a weighted optimization term. This section generalizes both 

analyses, that of previous section and that of [68] in the sense that encompasses diverse 

fading: Rayleigh, Rician and Nakagami-m fading distributions, assessing performance 

of all fading scenarios not only by capacity but also entropy based channel coding and 

symbol error probability. Hence, the extension of the current section towards a bounded 

relative entropy optimization problem is a challenging one that could provide 

performance in multi-antenna systems in generalized fading conditions always from an 

information theoretic derivation of classes of optimal distributions, an approach that 

could refine the solution produced in this paper that the solution occurs at the relative 

entropy boundary along with a satisfactory channel coding interpretation. Contrary to 

our standard Gaussian additive noise assumption included as a statistical prerequisite 

in the entire thesis, a ML noise variance estimator for mMIMO channel estimation [69] 

addresses the more practical problem where noise variance is not known and is either 

same or different in the receiver antennas. As noise variance directly impacts channel 

estimation, the authors propose a method that is non-iterative as is the case in this 

section that tackles the high complexity of ML based estimator as well as the inversion 

of covariance matrix in noise estimation for conventional MIMO systems, the latter aim 

being similar to that in the previous section where l1 minimization formulated by the 

equivalent CS algorithms was replaced by a moment based optimization problem along 

with a Lagrangian optimization expression. Another essential metric investigated in the 

above work are the AOAs in the mMIMO setting whereas our analysis refers to a SIMO 

model focusing on independent branches at receiver with no notion of the channel 

characteristics except for the fading distribution modeled by along with additive noise 
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accounted for. Another point of mathematical similarity between this paper and our 

case is the operator max in Eq.(32), which forces to zero any result that indicates 

negative valued variance and the operator that forces to zero a relative entropy of 

negative value which by definition would quantify the redundant bits of average code 

description length. Referring to the same variance estimation and due to the fact that 

our analysis is confined to conventional MIMO systems, one could argue whether the 

variance comparisons conducted could migrate to the mMIMO setting. This would 

certainly increase computations and problem dimensionality even if same variance 

values could apply to different antenna clusters. Hence, the issues of complexity and 

computational burden demand careful investigation in such a query. Our case matches 

more closely the equal variance case and further the unit variance assumption also 

considered for this scenario in [69]. Additionally, the observation of the symbol error 

rate decreasing with increasing antenna number offers an interesting extension of the 

current analysis in this section as it considers not only diverse fading conditions along 

with additive noise cases but also the CS based inferences and Taylor approximations 

as performance comparisons benchmarks, all this to be applied in the 5G mMIMO case. 

A quite representative paper thoroughly investigating compressibility conditions for 

distributions is [70] where incompressibility is based on Laplace distribution while 

compressibility considers Pareto distribution and Gaussian distributed «encoder» as 

implicitly stated in the paper. By performing comparison to CS related assumptions, 

the Laplace distribution that is accounted for as a poor candidate for compressibility 

does not affect analysis in this section as the fading distributions are all defined in the 

positive axis. Moreover, the reconstruction error relative to unbounded second moment 

that can be made arbitrarily small is not adopted in our case but could serve as a 

performance benchmark quantifying the error which in our case is not implicitly 

conveyed but indirectly by derivation of the finite variances for each distribution case. 

Another valuable comment relates the aforementioned unbounded second moment with 

sufficient compressibility providing the asymptotic infinite dimensional optimality of 

l1 based decoder under the Gaussian encoder constraint. This could provide the means 

of either extending our fading distribution cases to the mMIMO setting along with 

asymptotic performance benchmarks ensuring the property of convexity. As opposed 

to CS inference of the respective distributions, the issue of the extent to which under-

sampling guarantees compressibility using sparse method constitutes an interesting 

point of extension of this section in terms of conditions of choosing CS methods as 

opposed to least squares. In overall, the main derivation of [70] being the value ranges 

of under-sampling ratio based on conditions for compressibility regarding second and 

fourth moments, the fading distributions and additive noise forming the independence 

based distributions by convolution operation, could be further investigated. 

Specifically, the CS inference could provide a comparison framework if used in the 

context of sparse estimators and the extent of their optimality. The Laplace distribution 

widely examined in this paper could also be set for comparison for all fading cases in 

this section. In a relevant context of not whether fourth moment is bounded or not but 

considering a large valued fourth moment of multipath amplitude distribution, the 

authors in [71] derive the conditions for CS channel estimation based on OMP performs 

almost well as BPDN, a property known as a characterization of greedy algorithms 

offering lower computational complexity. The promising contribution of this work is 
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to extend CS estimation algorithmic performance in a diverse set of amplitude models 

in a non-Gaussian sense. The justification of non-Gaussian multipath component model 

concerns the property of differences between delays and the utilization of the CLT 

related modeling, a scenario differing from the aforementioned paper, where the 

amplitude is separately modeled. The multipath clustering assumption induces memory 

which is not a prerequisite for our analysis in this section. The delay discretization error 

in the context of CS OFDM channel estimation and its impact on multipath clusters 

could be equivalently modeled as a Taylor polynomial with the respective non-negative 

delay value as the expansion point, which could translate to a transition from MIMO to 

mMIMO scale along with the optimized antenna number and spacing so as to exploit 

the correlated case. Another remark supporting the paper contribution is the l1 

minimization based algorithm BPDN which requires weaker condition where similar 

magnitude of coefficients is assumed as opposed to rapid magnitude decay. This fits 

into our analysis relevant to the methodology replacing the noisy l1 minimization 

algorithm (BPDN) with one based on independence and statistical convolution, as 

stated in the mathematical preliminaries section. Regarding the use of specific values 

of lp norm parameter value p in CS literature so as to balance complexity and solution 

accuracy along with observation that the compressibility index introduced is based on 

non-Gaussianity of multipath components can be expressed as lp norms with values of 

p equal to two and four, the derivations in [71] offer interesting applicability to fading 

distributions not only by independence dictated but also introducing memory and 

correlation constraints for mean-square-error analysis. Thus, with a fourth moment 

magnitude condition, multipath components are more compressible which means 

sparsity can be stricter while achieving same performance, the latter in a statistical sense 

which very closely matches our case in terms of mathematical formalism. Among other 

findings of this paper is that CS estimators outperform non-sparse estimators, which is 

the conclusion reached in our case that are fully justified by two interpretations: the 

extent to which the number of measurements chosen lead to representative results along 

with CS optimized superior performance as a result of compressibility. Chandra and 

Bose in [72] derive analytic expressions for coherent Rician fading channels for symbol 

error probability which follows our main course of deriving the related curves for all 

fading distributions considered generated according to CS inferred case and Taylor 

approximation case. The assumption on which the analysis is based is the short symbol 

duration such that a negligible coherent loss, which also abides by our analysis, so as 

no frequency selectivity is accounted for. Moreover, since mathematical manipulations 

involve only approximations of distributions, the most accurate model that closely 

relates to our case is a partial distribution CDI model, while the CSI at receiver side 

requires more than what is considered as the optimization problem input and 

constraints. The observation of higher SNR requirement in the case of increasing 

constellation size also complies to our results where higher SNR leads to smaller 

symbol error probability for all distributions evaluated. In overall, the essential element 

is  the construction of closed-form expressions for symbol error probability by means 

of Gauss hypergeometric function in coherent Rician fading together with consideration 

of Rician factor K=0 leading to Rayleigh and thus NLOS component distribution. 

Hence, the Taylor approximation of such expressions could be an interesting extension, 

as the impact of polynomial quantities in performance, along with CS compressibility 
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rule applied. Proceeding further, another work [73] in the same context of coherent but 

Nakagami-m fading along with the equivalence to Rayleigh fading by proper parameter 

selection relates to our consideration of the latter fading distribution. The main 

contribution of this paper being built upon gamma function and Q-function 

approximation, the latter is worth noting serving as a polynomial approximation with 

improvement if the relevant degree is increased. Combined with the argument that 

despite the apparent complexity of the error expression derived by the authors, it 

constitutes a simple paradigm compared to existing literature formula for calculations 

on Nakagami-m fading channels. The similarity of the mathematical derivations of this 

paper that matches our analysis is the derivation of the frequency domain expression of 

the moment generating function that is based on a product relevant to convolution in 

the original domain which is dictated by the sum of the equivalent SNRs. This paves 

the way for a frequency domain expression of our case for further derivations by CS 

principle of compressibility and Taylor approximation adopting a polynomial flavor to 

the problem of fading channel performance. As the main conclusion reached for [73] 

the accuracy of the approximation is verified and thus can also be used in the derivations 

of independence based scenarios as well as incorporating the challenge of correlation 

as a far more practical assumption where Q-function approximations are also 

computationally attractive due to its widespread use in closed form formulae.  

3.3.3 System Model  

Before proceeding to the results based on simulations, the system model is provided: 

we consider a SIMO scenario i.e. a transmitter equipped with single antenna and a 

multiple antenna receiver thus independent branches complying with receiver diversity 

and also incoherence principle of CS optimization criterion. As already stated, the 

investigation in this section does not account for practical correlation and the related 

antenna spacing problem to achieve a directional beam width to a certain user. 

Moreover, user mobility causing Doppler frequency calculations as well as interference 

management and mitigation techniques, the latter caused by neighboring transmissions 

are not considered. In summation, time coherence is assumed or stated more accurately 

symbol duration is short enough that negligible coherence loss occurs. 

3.3.4 Simulation Results 

Distribution curves and capacity derivations 

The simulations were conducted using Matlab software. The fading distributions 

considered are Rayleigh fading, Rician fading and Nakagami-m fading each of the 

distributions considering additive noise as an additional case apart from the noiseless 

case. The additive noise follows a standard Gaussian distribution i.e. modeled as N(0,1). 

All fading cases assume independence with respect to noise thus allowing the derivation 

of the noisy fading distribution as a convolution of the fading density function and the 

standard Gaussian noise density. Based on the aforementioned distributions, there are 

two approximations taken into account: the CS inferred distribution and the Taylor 

approximation distribution with respect to the exact one. All three distributions serve 

as channel gains generating functions. The first approximation is generated according 

to CS compressibility rule. Hence, a fraction of the largest valued channel gains is 
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preserved while the rest are discarded. Based on these preserved channel gains the 

distribution of the same kind based on these coefficients is derived i.e. an equivalent 

inference problem with the CS compressibility constraint quantified. Regarding the 

second approximation, the Taylor polynomial is derived with a second degree 

assumption, i.e. the minimum degree required for capturing curvature, which is also the 

property of the distribution curves. The two above approximation methods are then 

utilized to assess performance i.e. capacity, variance calculated for each case, average 

code description length based on Shannon and relative entropy and symbol error 

probability evaluation for all distributions considered. 

The structure of this section is as follows: first the distributions based on these 

approximations are derived for each fading case along with the capacity derivations by 

means of Eq.(17). The average values are derived for each case. The next stage concerns 

variance calculations based on first two order moments given by Eq.(13) accounting 

for the respective approximations and performing comparison with means and 

variances for Rayleigh distribution Eq.(4) and Eq.(5), Rician Distribution from Eq.(7) 

and Eq.(8) and Nakagami-m distribution from Eq.(10) and Eq.(11). The average code 

description length is derived and the results are fully justified for each fading and 

approximation cases. Finally, the last section of the simulation results evaluates symbol 

error probabilities for all the above explained cases considered. 

Rayleigh Noiseless Fading 

The first section depicts the three considered curves produced as above for Rayleigh 

noiseless fading case. The Figure 3.1 is given below: 

 

FIGURE 3.1: Rayleigh noiseless fading distributions: exact, CS inferred and Taylor 

approximation 

As observed, all three curves are closely matched, the more accurate curve being the 

CS inferred one. The Taylor polynomial based curve can be substantially improved by 

increasing the polynomial degree though the second degree is considered in this case. 
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The capacity given three Rayleigh fading distribution curves is given in Figure 3.2 

below: 

 

FIGURE 3.2: Channel Capacity for noiseless Rayleigh Fading 

The shape of the resulting curves is a direct consequence of channel gains randomness. 

In order to reach meaningful results, the average value of the capacity is calculated and 

compared for the three above cases. Indicatively, the exact distribution resulted in 

12.8Gbps while CS inferred case equal to 12.7Gbps and Taylor approximated curve 

resulted in 9.82Gbps. Hence, a 0.78% capacity penalty was observed for CS case and 

23.3% penalty for the Taylor approximation case. Hence, CS induces a near optimal 

result while Taylor approximation induces an observable penalty, while Taylor 

approximation produces more variation around its average value. 

Rayleigh Noisy Fading 

The inclusion of additive noise is accompanied by the independence noise assumption, 

hence the exact distribution is equal to the convolution of fading distribution and 

Gaussian noise of zero mean and unit variance. This result is then used to produce CS 

inferred and Taylor approximation in the same manner as above. Thus, the three 

distributions for this section are plotted below in Figure 3.3: 
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FIGURE 3.3: Rayleigh Noisy Fading Distributions: exact, CS inferred and Taylor 

approximations 

The most crucial observation concerns the CS inferred case where due to keeping only 

the channel gains of larger magnitude results in the distribution curve of larger area and 

above the exact distribution. As apparent in the Rayleigh noisy case, the Taylor 

approximation provides the best fit to the exact distribution extracted from the fading 

and additive noise convolution operation. The resulting capacity curves are plotted 

below in Figure 3.4. 

The results obtained from the figure are the average capacities: 9.22Gbps for exact 

curve, 9.44Gbps for CS inferred case thus 2.3% larger capacity than the exact 

distribution case and 9.48Gbps for Taylor approximation hence 2.7% larger capacity. 

The above results being the approximations producing higher average capacities are 

both interpreted by the additive noise consideration along with the extent to which the 

number of samples obtained are sufficient for reaching accurate results. This however 

does not degrade the merit of the observation that CS results in performance 

improvement in this case of application of inferring a distribution in a manner of being 

of the same kind. Considering the above and relative to the CS case, an optimal capacity 

has been reached. For the Taylor approximation, the justification for higher capacity is 

the combined effect of number of extra samples needed and the convolution of the 

fading distribution with the noise distribution leading to the random channel gains that 

derive higher capacity. This is a consequence of better fit of Taylor expansion given 

the resulting noisy fading expression. 
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FIGURE 3.4: Channel Capacity for Noisy Rayleigh Fading 

Having completed the Rayleigh fading cases, the following subsection is based on 

Rician fading case both noiseless and noisy cases along with the two approximation 

methods outlined above. 

Rician Noiseless Fading 

The Rician noiseless fading case is simulated and the results are shown below in Figure 

3.5 and the related capacity curves are shown in Figure 3.6. 

As observed from the above figure, the exact distribution results in average capacity of 

13.5Gbps, the CS inferred distribution in capacity of 14.2Gbps, hence, 5% larger 

capacity and the Taylor approximation resulted in 10Gbps capacity thus in a 26% 

penalty compared to the exact distribution case. 

As observed, the variation of the Taylor approximated curve about its average value is 

much larger compared to the exact and CS inferred case, which show the same smaller 

variation. This observation was consistent with the Rayleigh noiseless case but did not 

adapt to the case including additive noise. Moreover, compared to Rayleigh noiseless 

case where CS compressibility and inference results in small penalty, the inference for 

Rician noiseless case verifies the first observation that translates to CS optimality, i.e. 

larger capacity interpreted by CS compressibility along with sufficiency of number of 

samples for deriving a representative result. The section proceeds with the Rician noisy 

fading case. 
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FIGURE 3.5: Rician Noiseless Fading Distributions: exact, CS inferred and Taylor. 

approximation 

 

FIGURE 3.6: Channel Capacity for Noiseless Rician fading 

Rician Noisy Fading 

The Rician fading with additive noise included results in the following distribution 

curves and capacity derivations in Figures 3.7 and 3.8 respectively.  
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FIGURE 3.7: Rician noisy fading distributions: exact, CS inferred and Taylor 

approximation 

The same observations for the noisy Rayleigh fading case hold also for the noisy Rician 

fading concerning the CS inferred distribution case. Moreover, Taylor results in better 

fit to the exact noisy fading distribution. For the noisy case, the CS inferred distribution 

follows the same pattern, i.e. larger space below the curve and higher peak of the 

distribution curve. As will be observed and interpreted, this pattern will be the core 

finding of this section regarding CS inferred case average code length derivation. 

As is also apparent, Taylor approximation provides an accurate and close curve fitting 

which appears to be slightly superior compared to the Rician noiseless case examined 

above. The average capacity for the exact distribution was found equal to 9.78Gbps, for 

the CS inferred case equal to 8.89Gbps i.e. 9.1% penalty compared to the exact one and 

for the Taylor approximated almost 9.78Gbps showing an optimal value match to the 

exact value. This is a very interesting result that refers to the additive noise where at 

first glance, can be mathematically attributed to the closer approximation for this curve. 

This translates to the fact that for the specific degree and expansion point the match 

resulting is closer, which is also related to our statistical assumption of independence. 

Finally, the variations of the capacity curves are also similar, as in noisy Rayleigh 

fading case. 
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FIGURE 3.8: Channel Capacity for noisy Rician fading 

Nakagami-m Noiseless Fading 

Proceeding in the same manner, the three respective curves, exact, CS inferred and 

Taylor approximation for the Nakagami-m fading case without additive noise are 

depicted below in Figure 3.9. The merit of the analysis in this section relies on the fact 

that the Nakagami-m fading distribution can well approximate the Rayleigh and Rician 

fading distributions, as will be stated in the mathematics interpretation section. 

An important observation regarding this case is the CS inferred distribution curve 

indicating the trend observed in the previous noisy cases with the exception that this 

curve is much narrower hence a much smaller variance as will be shown in the variance 

estimation section. Hence, the CS based inferred curve being above the exact in the 

Nakagami-m fading noiseless regime was only observed in the previous noisy cases. 

Another observation is the close curve fit for the Taylor approximation of the exact 

curve.  Regarding capacity evaluations the results for this case are given in Figure 3.10 

and enhanced with the following comments. 

The exact average capacity was calculated to be equal to 11.9Gbps while the CS 

inferred case resulted in 12Gbps, i.e. 0.83% greater capacity. The Taylor approximation 

derived an average capacity of 9.58Gbps thus a 19.4% average capacity penalty. 

Finally, the CS inferred distribution curve appears to be slightly displaced with respect 

to the peak value of the exact distribution and also be characterized by symmetry as 

opposed to the other cases investigated. 
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FIGURE 3.9: Nakagami-m Fading Noiseless Distributions: exact, CS inferred and 

Taylor approximation 

 

FIGURE 3.10: Channel Capacity for Noiseless Nakagami-m fading 

 

Nakagami-m Noisy Fading 

For the Nakagami-m fading case with additive noise consideration, Figure 3.11 depicts 

the similar trend in the distribution curves with the exception that the CS inferred in 

this case is narrower hence a smaller variance as in the noiseless case. 
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FIGURE 3.11: Nakagami-m Noisy Fading Distributions: exact, CS inferred and 

Taylor approximation 

 

The capacity derivations are depicted in Figure 3.12. For this noisy case, the exact 

average capacity value was found equal to 8.7 Gbps, for the CS inferred case the 

average capacity equal to 9.5Gbps i.e. a 8.4% larger capacity and for the Taylor 

approximation case the average capacity was equal to 9.6Gbps, thus 9.3% larger 

average capacity. The slightly larger average capacity values are justified. For the CS 

inferred case a combination of requiring more samples for reaching representative 

values along with optimal CS results are the justification for the result. The reason for 

the greater average capacity derived from the Taylor approximation fit is that the 

channel gains produced are larger valued which stems from the Taylor curve fit. 

It is worth noting from the simulations that the CS inferred average capacity, a trend 

also observed in previous cases, is above the average of the capacity generated from 

the exact distribution. This is justified by the independence assumption as well as the 

additive noise distribution. What remains in terms of future research is the investigation 

of correlation followed by CS inference as well as optimized noise variance which may 

not be known in advance. Summing up, the asymptotic CLT case for all derived 

distributions similar to the previous section could provide performance benchmark in 

the large sample regime and is left as future extension of the above cases. 
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FIGURE 3.12: Channel Capacity for Noisy Nakagami-m fading 

Variance estimation 

This section is devoted to calculating variances of the distributions produced by means 

of the above: exact, CS inferred and Taylor approximation for each fading case 

considering both noiseless and noisy cases. The results of the extensive simulations 

conducted are summarized in the Table 3.3 below: 

TABLE 3.3: Statistical Variances for Noiseless and Additive Noise cases 

Fading Distributions/No 

noise-Noise included 
Noiseless case Additive noise included 

Formula 

calculation/Rayleigh 

fading exact 

0.429/0.429 1.429/1.258 

Rayleigh CS inferred 0.3935 0.1206 

Rayleigh Taylor 

approximation 
0.2 0.7 

Formula calculation/ 

Rician fading exact 
0.61/0.61 1.61/1.481 

Rician CS inferred 0.1 0.2 

Rician Taylor 

approximation 
0.468 0.9 

Formula calculation/ 

Nakagami-m fading 

exact 

0.214/0.214 1.214/0.946 

Nakagami-m CS 

inferred 
0.005 0.012 

Nakagami-m Taylor 

approximation 
0.1459 0.476 
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Before accounting for the results for each fading distribution some remarks must be 

provided for overall results interpretation. The first comparison is with respect to the 

variance calculated from the specific formula for each distribution and compared to the 

variance derived from the moment integrals based on Eqs. (13),(14). 

Proceeding further, the latter equation is used to evaluate variance with the CS inferred 

distribution in the integral expression. The third variance is calculated based on the 

integrals expression but using the Taylor approximation of the respective distribution. 

Based on the above, the initial important observation is the perfect match between the 

variance calculated from the formula and that of the integral expression in the noiseless 

cases. The next result relates to the increase in variance values for the noisy cases 

compared to the noiseless ones. The only exception is the CS inferred Rayleigh 

distribution. The final remarkable result concerns the variance value mismatch between 

the value obtained from the formulas and the integral expressions for the noisy cases. 

Thus, the formula based calculation is equal to the fading distribution variance plus 

one, resulting from the independence assumption and the covariance term cancellation. 

However, the result from the integral expression is of smaller value due to the fact that 

correlation is included in the integral calculations. It must also be noted that the variance 

calculation results are in perfect agreement with the distribution curves depicted in the 

previous section.  

Rayleigh fading case  

In the noiseless case, the formula and integral based derived values are in perfect match 

as already justified. For the CS inferred the slight difference in variance compared to 

the exact is verified. The Taylor approximation based result indicated smaller variance.  

In the noisy case, the difference between formula and integral based expression values 

are evident and justified above, with independence calculation as opposed to correlation 

based moment integrals. The CS inferred integral based expression results in smaller 

variance thus narrower curve, while the Taylor approximation is characterized by a 

value closer to the exact variance. 

Rician fading case  

In the noiseless case, the match between formula based and integral based values is also 

verified. The CS inferred case indicates a lower value while the Taylor approximation 

has a smaller difference from the exact value. 

In the noisy cases, the mismatch explained above occurs in this case as well. The CS 

inferred variance is smaller than the Taylor approximation case which more closely 

approaches the exact variance value. 

Nakagami-m fading case 

The formula based and integrals based value match is verified in this section as well. 

The narrow curve depicted in the Figure 3.9 is verified by small variance value. Though 

concerning a noiseless case the narrow curve of the CS inferred case above the exact is 

observed in this case. The Taylor approximation based integral expression result 

produces a variance value closer to the exact. 
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In the noisy case, the mismatch between formula based and integral expression based 

is observed here. The CS inferred case produces a slightly larger value compared to the 

CS inferred similar noiseless case. Taylor approximation results in larger variance 

value. 

Required number of bits for fading channels 

This section derives the number of bits required to describe the fading channels 

considering all the above cases. Thus it quantifies the uncertainty of the channel, in 

terms of Shannon entropy with respect to the wireless channel distribution. 

Additionally, the relative entropy quantifies the redundant bits required in the case of 

approximating the accurate distribution with a different one.  

Regarding the derivation of the results of this section, the Shannon entropy was 

calculated based on the exact distribution expressions and the relative entropy was 

calculated utilizing the CS inferred and Taylor approximating case as the approximating 

distributions as input to the relative entropy cases. Before proceeding to the required 

number of bits for each of the cases considered, the equations of Shannon and relative 

entropy must be carefully examined. 

First of all, the Shannon entropy is by definition a positive entropy resulting from the 

minus sign since the values inside the logarithm are probability values hence smaller 

than unity which leads to a negative logarithm. Thus the bits quantifying uncertainty 

being positive by definition are expressed via the Shannon entropy. For the relative 

entropy, the coding theory assumes that it is a positive quantity. From a mathematical 

point of view, this means that the logarithm is positive i.e. the quantity inside the 

logarithm is greater than unity. This is actually a consequence of Information Inequality 

that dictates the fact that code length difference must be positive as a means of 

certifying the quantification that relative entropy realizes. 

However, some cases considering the aforementioned approximations derive negative 

values, which are not supported by coding theory. From the results of the cases where 

the approximated curve is above the exact one in CS inferred cases, it is apparent that 

the formulation of the relative entropy in these cases results in a fraction less than unity 

since the accurate distribution is in the numerator and the approximating distribution in 

the denominator. Thus, a negative result is obtained. The interpretation of such results 

complies with the operator below: 

                       Relative entropy= max(0,  










x x
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f
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Hence, the interpretation of the negative valued cases that constitutes one of the core 

findings of this thesis is that zero additional bits are required and the required number 

of bits are equal to the Shannon entropy. The extension of such interpretation to the 

context of reducing required number of bits due to negative valued relative entropy is 

beyond thesis scope and left as a future research direction. The above justified 

observations are evident in the noisy cases. Hence, the CS based resulting distribution 

is characterized by greater uncertainty compared to the exact when additive Gaussian 

noise is considered. Towards an efficient interpretation, noise increases uncertainty in 
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CS distribution case but translates to zero complexity as no extra bits are required for 

channel coding. The justified results are also partly due to the contribution of the 

assumption of independence in the formulation of the noisy exact distributions. 

Accordingly, the independence assumption along with additive noise consideration 

leads to an incoherence that is defined as the effect or reduced uncertainty of the CS 

inferred distribution compared to the true distribution which is the very reason of zero 

additional complexity. Finally, the relative entropy is finite which is fulfilled by 

definition since the case that distribution value of zero for distribution fx holds for px as 

well. Having noted the above interpretation, the results for each fading case are 

analyzed below in Table 3.4. 

TABLE 3.4: Shannon, relative entropy values and average required numbers of bits 

Fading 

distributions/ 

entropies 

Shannon entropy 

exact distribution  

Relative entropy 

exact vs. CS 

based inferred/ 

exact vs. Taylor 

approximation 

Average number 

of bits required 

Rayleigh noiseless 

fading 
23.5 3.6/-1.7 28/24 

Rayleigh noisy 

fading 
17.6 -16.4/ 5.4 18/24 

Rician noiseless 

Fading 
24.4 82.8/17.8 108/43 

Rician noisy 

fading 
22.6 -29.3/11.4 23/35 

Nakagami-m 

noiseless fading 
17.8 -70/ -3.2 18/18 

Nakagami-m 

noisy fading 
26 -53/0.86 26/27 

 

Rayleigh fading case 

Related to the noiseless case, 24 bits are required based on Shannon entropy and 4 

additional bits are required for the CS inferred case verifying the close match between 

the two distribution curves. For the Taylor approximation negative valued relative 

entropy was found the reason being the Taylor curve being slightly above the exact 

curve. Hence, 28 bits are required for the CS inferred case as an approximation and 24 

bits for the Taylor curve. 

The noisy case investigation resulted in 18 bits for Shannon entropy. For CS inferred 

case the relative entropy was negative as the equivalent distribution curve being above 

the exact, whereas for the Taylor approximation 6 extra bits are required. Hence, for 

CS inferred case 18 bits are required and for the Taylor approximation 24 bits are 

required. 

Rician fading case 

Regarding the noiseless case, Shannon entropy was equal to 25 which for the CS 

inferred case 83 extra bits are needed. This indicated the significantly smaller 
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uncertainty of the CS inferred case its curve being well below the exact curve. For the 

Taylor approximation curve, 18 extra bits are required. The reason for this is the 

observable gap at the right side of the distributions. In overall, CS inferred case requires 

108 total bits while the Taylor approximation case requires 43 bits. 

In the noisy Rician fading, 23 bits are due to Shannon entropy. The CS inferred case 

results in negative valued relative entropy while the Taylor approximation requires 12 

additional bits. Hence the CS inferred case requires a total of 23 bits whereas the Taylor 

approximation requires 35 bits in total. 

Nakagami-m fading case  

The Shannon entropy results in 18 bits for the noiseless case. For the CS inferred 

approximation the significantly negative value of relative entropy is verified by the 

narrow curve being above the exact. Moreover, the Taylor approximation was less 

negative as indicated by a part of the Taylor approximation curve being slightly above 

the exact distribution. Hence, both cases require 18 bits. 

For the noisy case, Shannon entropy derives a value of 26 bits required whereas the 

same trend observed for the CS inferred case resulting in relative entropy as in the 

noiseless case. For the Taylor approximation case, 1 additional bit is required. Hence 

for the CS inferred case 26 bits are required and for the Taylor approximation case 27 

bits are required in overall. 

Wireless fading performance assessment via symbol error probability 

This section derives symbol error probability with respect to SNR for all fading cases 

investigated. The exact distribution case, CS inferred case and Taylor approximation 

case are considered. 

Rayleigh fading case 

For the Rayleigh fading case, in noiseless assumption the exact distribution based error 

curve is similar in error magnitude with the CS inferred one, hence, initial observation 

for CS inferred case is no performance degradation. For Taylor approximation, higher 

error probability was observed. 

For the noisy case, CS inferred curve indicates a smaller symbol error probability. This 

is a combined effect of how representative the curve is with respect to samples taken 

along with improved performance for the CS inferred case. Moreover, the Taylor 

approximation based curve indicates a smaller error not only compared to the exact 

noisy curve but also compared to the noiseless Taylor approximation curve. Such 

smaller penalty can be attributed to the closer match of the average capacity with 

respect to the exact case when additive noise is considered compared to the noiseless 

case. The figure for this case is given below in Figure 3.13: 
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FIGURE 3.13: Symbol Error Probability for Rayleigh fading noiseless –noisy cases 

Towards a thorough interpretation of the above figure curves, it is observed that in the 

noiseless case the symbol error probabilities of exact and CS inferred distributions are 

almost identical thus producing similar error values. The Taylor approximating case 

depicts a performance penalty and it is quite indicative that the curve closely approaches 

the additive noisy curves, specifically the exact noisy distribution curve. Also indicative 

is the observation that the noisy cases of CS inferred distribution and Taylor 

approximation distribution produce symbol error probability curves that are below the 

Taylor approximating curve for Rayleigh noiseless case. This conveys the significant 

performance penalty of the Taylor approximation of the respective case. 

Regarding inclusion of additive noise, the merit of applying CS based inference is 

evident enhancing the concept of optimality given the fact that noise contaminates the 

channel. Thus, performance improvement results in this more practical and also 

distortion case. Moreover, the Taylor approximation for this noisy case depicts similar 

performance but with another justification i.e. a polynomial based approximation of the 

exact noisy distribution. Hence, from different angles, the CS applying compressibility 

rule and Taylor approximation approaching a curve more closely given the polynomial 

degree and specific expansion point result in improved performance. This again traces 

back to our assumption of independence as well as noise variance parameter considered. 

Rician fading case 

The symbol error probability curves for Rician fading are shown in Figure 3.14: 
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FIGURE 3.14: Symbol Error Probability for Rician fading noiseless-noisy cases 

 

As observed in the Rayleigh fading case, the close match of exact and CS inferred case 

in Rician noiseless fading verifies optimal performance. The Taylor approximation case 

results in significant performance penalty, which is higher than CS inferred curve for 

the noisy Rician fading case but lower than symbol error probability curves produced 

for the exact noisy case as well as the Taylor approximation of the additive noise case 

included. 

Regarding the additive noise consideration, the exact and Taylor approximating cases 

are almost similar in terms of symbol error probability, while the CS inferred 

distribution results in lower error probability curve. This once again highlights the 

advantage of applying CS compressibility rule not only resulting in no performance 

degradation but also inducing improvement relative to the exact fading case. 

Nakagami-m fading case 

The symbol error probability curves for this fading case are depicted below in Figure 

3.15. In contrast to the previous cases, CS inferred curve for the noiseless setting shows 

a significant performance degradation which directly relates to the narrow curve being 

above the exact one. Taylor approximation case conveys a smaller error penalty 

compared to the CS latter case. 

For the noisy case, the CS inferred case results show a performance degradation as well. 

The Taylor approximation case results in smaller error and more closely matches the 

exact distribution error probability curve. 
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FIGURE 3. 15: Symbol Error Probability for Nakagami fading noiseless-noisy cases 

Another observation worth highlighting is that the CS inferred error curve for the noisy 

case is below the noiseless curve. This leads to the fact that because of independence 

assumption the remarkable CS inference for noise contaminated fading results in lower 

symbol error probability. As observed from the symbol error derivations, the 

Nakagami-m fading case resulted in smaller error than Rayleigh fading case and higher 

error compared to the Rician fading case. Thus, Nakagami-m fading is a compromise 

between NLOS Rayleigh fading and Rician LOS fading. The mathematical explanation 

of the above is that Nakagami-m fading can model both Rayleigh and Rician fading 

with proper parameter selection. Finally, additive noise consideration results in larger 

errors for all cases. 

3.3.5 Mathematical interpretations 

The concept of convexity is verified by the shape of the fading distributions as the peak 

value is the unique extremum and the curve decays to zero as the abscissa approaches 

zero. Relative to the shape of the fading distributions, Rayleigh distribution curve 

includes an exponential decaying factor similar to the Gaussian distribution plus a linear 

term the above resulting in a non-symmetric convex curve. The Rician distribution 

consists of the aforementioned mathematical components plus the modified zero order 

Bessel function term, the latter having the monotonically decreasing property. The 

above contribute to the non-symmetric Rician distribution curve. Similar observations 

hold for the Nakagami-m fading case.  

As already stated, the Taylor polynomial is assumed to be of second degree, the 

minimum degree of smooth convexity and the minimum required for capturing 

curvature. The extent to which the exact fading distributions are represented by their 

Taylor is directly dependent on the Taylor polynomial degree. The main goal being the 

accurate representation of the respective fading distribution the straightforward analytic 

calculation of complex integrals deriving entropy and statistical moments, is weighted 

together with the truncated version of the approximating curve which is defined by the 
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extent of the neighborhood of the polynomial expansion point. Hence, in order to 

improve approximation, the aforementioned degree must be increased the tradeoff 

being the resulting increase in complexity. Additionally, the increase in complexity 

grows much more rapidly compared to the increased approximation of the fading 

distribution achieved by the Taylor polynomial of higher order. Hence, although second 

order is the minimum degree for complying with curvature of fading distribution, the 

increase in polynomial order is expected to be confined to few extra degrees with 

respect to the second degree assumed in our case, thus settling to a slowly decreasing 

error. 

While the Taylor approximation is more accurate than the CS inferred cases as observed 

in the noisy regimes, the CS comes along with no performance degradation in the CS 

inferred case while the CS is characterized by the same kind of distribution but with 

different parameters. A crucial remark is that the CS inferred distribution is of the same 

kind as the exact one but considering only larger values of channel gains. Thus, the 

resulting distribution is based on a subset of the initial channel gains. As a 

straightforward conclusion is that as more elements are added, the inferred distribution 

approaches the exact one in a tractable manner. Hence, in a topological sense the 

inclusion of successively more elements for CS inferring represents an intersection of 

the subset and original set which becomes a set equality relation. Moreover, an accurate 

justification of the produced distribution curves in all noisy cases as well as the 

Nakagami-m noiseless case is to what extent the number of channel gains are sufficient 

to accurately «produce» the actual i.e. exact distribution from the selected subset of 

channel gains. 

An alternative method defining the maximum value of relative entropy and selecting 

an approximating distribution belonging to the uncertainty set of distribution that result 

in relative entropy equal or smaller to the maximum value is an interesting extension to 

be investigated. Another future research issue concerning application of CLT as in the 

previous section where it served as a distribution to be approximated is the CS inference 

and Taylor approximation of the respective asymptotic distribution. CS inference could 

therefore adequately approximate the distribution of each case by the same kind 

constraint. Contrary to the manner of approximation above, the Taylor expansion 

relates to the distribution in a polynomial-wise manner i.e. a polynomial curve with 

increasing precision as the polynomial degree increases. The quality of the curve fit 

would be justified by the properties of the curve and the fading conditions modeled by 

this curve as well as the optimal Taylor polynomial degree and the expansion point 

chosen. The latter could point to a separate investigation if the convergence focused on 

a certain interval of the respective distribution. All the above essentially boil down to 

the fact that fading channel performance constitutes a complex optimization problem 

with a function or metric to be optimized by enforcing specific constraints that 

correspond to the practical case it refers to. Optimality is not always guaranteed and if 

it does, as in the sections analyzed above, translates to certain tradeoffs which result in 

gains from a point of view to losses from another aspect. The vital conclusion from this 

section formulates the fact that entropy and consequently coding along with CS 

principles provide promising results as performance benchmarks even in the case of 

impractical and unrealistic assumption of statistical independence. 
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3.3.6 Applications to wireless communication systems 

Regarding performance evaluation of wireless systems, the metrics considered in the 

previous sections are sufficient to completely assess system performance. The capacity 

results determine the upper bound of achievable rate through the channel. The symbol 

error probability quantifies the fraction of transmitted bits anticipated to be erroneously 

received by the wireless receiver. Furthermore, the variance of the fading distributions 

represents the spread of values with respect to the mean value which is also a measure 

of uncertainty. The number of bits also convey the uncertainty of the channel 

distribution and provide the number of redundant bits resulting from the approximation 

of the accurate distribution with another one. 

The benefits of CS theory for the fading channels performance are twofold. The first is 

with regard to symbol error probability which results to no performance degradation 

and even improved i.e. lower error probability curve. The second is due to the fact that 

relative entropy values were computed to be negative. This was translated to zero extra 

bits in the context of the mismatch between the accurate distribution and the 

approximating one, which states that zero complexity was introduced in such a CS 

inferred case. 

The Taylor polynomial advantage, as already stated, was the transformation of a 

mathematical quantity into a polynomial thus providing the calculation of complex 

integrals which would otherwise require the use of numerical methods of high 

computational complexity. The inherent limitation of approximation of the optimal 

result is thus traded off for mathematical manipulation. Examples of cases of system 

analysis employing Taylor polynomial approximation are derivations of error 

probability, modulation schemes and error rate evaluation, interference management in 

cellular networks, channel estimation or equalization methods and resource allocation 

in terms of time, frequency, code or power. 

Indicative examples from a mathematical point of view are clustered MIMO channel 

modeling of multipaths where Taylor polynomial with respect to estimated delay value 

is employed. Another example is hardware design specifically amplifier characteristic 

the latter being of nonlinear nature in the case of excessive power received. Thus Taylor 

approximation of second degree or higher can be used to approximate the related curve. 

The linear polynomial can also be considered in case of amplifier moving away from 

saturation. Moreover, Taylor polynomial can be used to follow certain threshold 

crossings such as zero crossings provided that the Taylor polynomial order is 

sufficiently high that can accurately approach the zeros of the nonlinear curve to be 

approximated. As a final case of applicability, signaling waveforms of given shape and 

finite duration can be modeled by Taylor polynomial in the expression of the received 

symbol. It should also be reminded that approximation quality depends on the function 

i.e. curve to be approximated as well as the polynomial degree and expansion point. As 

signaling waveforms may be characterized by various shapes, the issue of complexity 

that constitutes the tradeoff for approximation achieved must be carefully balanced to 

ensure low complexity and properties of the curve that must remain valid such as zero 
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crossings, as stated above or close match in a predefined interval that preserves the 

validity of the optimization problem. 

3.3.7 Conclusions and future work 

This section realizes the benefits of applying CS theory and Taylor polynomial 

approximations in the context of wireless fading channel performance assessment. Both 

noiseless and noisy regimes of Rayleigh, Rician and Nakagami-m fading channels have 

been investigated. The metrics considered are capacity, distribution variances, number 

of bits for coding the channel and symbol error probability characterization. 

As future work, the detailed statement of the CS optimization problem either by linear 

programming or by the use of greedy algorithms integrated with the approach of this 

thesis is a promising alternative. An extension of such an approach to nonconvex 

problem investigation has the potential of effectively modeling and analyzing 5G 

communication systems performance. 

The convenient integration and differentiation techniques applied to polynomials could 

enable the derivation of near optimal solutions of complex mathematical expressions 

encountered often in the evaluation of wireless communication metrics. Finally, 

summarizing the benefits of applying CS in this paper the results of optimal 

performance and no additional complexity can be integrated with the optimization 

problems that enable computational and implementation complexity alleviation, in 

near-optimal decoding and receiver hardware implementation. 

3.4 Cognitive Radio and Compressed Sensing optimization 

3.4.1 Introduction 

The results of this section are related to publication [C2]-([74]) which was co-authored 

with Kakalou et al. Spectrum utilization has emerged as one of most crucial resource to 

be allocated in all users exchanging information. Spectrum utilization limitations are 

twofold. The first issue is the excessive spectrum usage resulting into spectrum scarcity. 

In order for increasing number of users to face the spectrum scarcity challenge, high 

frequency bands are attempted to be exploited, the main limitation of which is the 

greater attenuation in wireless systems. The second issue is spectrum underutilization 

which leverages the observation that the instantaneous spectrum usage i.e. occupancy 

is a small fraction of the entire allocated spectrum. Hence, the spectrum is not fully 

exploited. 

To address the spectrum sensing and allocation, CR [75] was verified as a promising 

technology for dynamic and effective spectrum usage, introducing the concept of 

primary and secondary users. The former are the legitimate users that have been 

allocated a spectrum zone while the latter opportunistically access the same spectrum 

either when the primary user is not using it or under the constraint that they do not cause 

harmful interference. Thus, CR is fundamentally based on opportunistic spectrum usage 

and employs various schemes to achieve optimal performance. Such schemes are 

transmission control to compensate for varying channel conditions and cooperative 

schemes, the latter possessing the potential to provide tremendous performance benefits 
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and optimal resource allocation. The CR technology has presented many spectrum 

sensing techniques [76]. Among those, the Energy Detection scheme [77] is the 

simplest to implement requiring no a priori information about primary user shape and 

parameters. Thus, it accumulates energy level and reaches a decision with the 

consideration of a predefined threshold. However, the Energy Detection method is 

proven to be vulnerable to noise uncertainty which includes noise variance variation, a 

practical assumption in numerous communication scenarios. Energy Detection also 

addresses the challenge of leveraging non-flat signal characteristics [78] in a 

computationally inexpensive way and handle practical SNR levels. 

Compressive spectrum sensing [79] is a relatively recently emerging set of optimization 

tools which when applied to CR enables the reduction of samples along with accurate 

estimation. Hence, as dictated by CS principle it aims at alleviating complexity. 

3.4.2 Cognitive Radio: Cooperative vs. Non-cooperative Schemes 

In general, cooperation among communicating users [80] can provide benefits that 

overcome limitations in non-cooperative schemes. Towards mentioning representative 

issues where cooperation emerges as a promising strategy are: varying fading channel 

conditions, shadowing effects and hidden node problem, the latter commonly 

encountered in cellular networks. Fading channel conditions admit diverse statistical 

modeling approaches which reflect the properties of the environment that lies between 

transmitting and receiver locations. Coding strategies are extensively employed to 

mitigate distortion and achieve accurate decoding at receiver side with low complexity 

and reconstruction error. Relative to fading, shadowing occurs when transmitter and 

receiver are obstructed by large objects and hence, communication is realized via 

scattering and reflection causing the known multipath effect. Employing transmit 

power control, frequency planning along with CDMA technique are mainly leveraged 

to reduce shadowing caused impairments in a MIMO environment [81] thus also taking 

advantage of spatial diversity. The hidden node problem is another issue confronted by 

cooperation in wireless networks. Thus, in order to avoid limited communication with 

an intended node a dense node deployment scenario is selected as an effective solution 

always with the cost of additional infrastructure and transmission scheduling and 

coordination. 

In our context, cooperation takes place between the opportunistic secondary users in an 

attempt to effectively use available spectrum under tolerable interference level with the 

primary user. The spectrum sensing task is initially performed at user level and the 

multiple decisions are sent to fusion center where a rule oriented decision is made with 

the aid of predefined threshold. The latter functionality can be characterized as 

centralized with the issues of complexity and computational overhead arising, 

decentralized where distributed algorithms are utilized and decision is made at user 

level and a hybrid scheme combining the above definitions in order to mitigate 

interference effects and achieve a synchronized and low complexity sensing 

framework. Cluster based cooperation is usually exploited in an attempt to create 

groups of users whose communication is separately coordinated. Hence, a cooperative 

scheme reduces overhead, provides efficient spectrum management [82] and 

compensates for cases of increased scalability and low complexity in a weighted 
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contribution of each cluster to the decision making procedure. Relay-assisted decision 

making [83] handles communication of users with diverse channel conditions and 

improves spectral efficiency. Routing discovery in a dynamic topology network poses 

a great challenge in a varying channel conditions scenario along with tolerable 

definition serving as the constraint to the fusion center based sensing optimization 

problem.   

Underlay cognitive radio model [84] allows primary user and secondary opportunistic 

users to communicate simultaneously as long as interference is retained under an 

application specific threshold. In the overlay case [85], the secondary user listens to the 

primary user transmission and aims at using spectrum for its own transmission while 

optimizing primary user communication by means of coding techniques. Finally, 

interweave systems [86] detect available slots in time or frequency or code dimensions 

to ensure effective spectrum access. Among quality metrics that must be accounted for 

are detection probability, false alarm probability and misdetection probability, metrics 

that are of generic nature in the area of wireless communication mathematical 

framework. Detection probability refers to the convergence of decision about PU 

presence and the actual PU presence. The latter must be maximized in order to ascertain 

efficient balanced spectrum usage for both PU and SU in the context of non-harmful 

interference. False alarm probability is defined as the differentiation of decision of PU 

presence when the actual PU is not present. False alarm probability and detection 

probability are characterized by a tradeoff which must be given special attention for CR 

system performance. Finally, misdetection probability is defined as the decision in 

favor of PU absence in cases where the actual PU is present. All three above metrics 

must be carefully optimized so as to avoid spectrum sensing degradation. Below we 

provide the hypothesis test that includes PU decision of PU presence as H1 case and 

PU absence in noise only H0 case: 

                                           H1: y(n)=x(n)+w(n)                                (33) 

                                          H0: y(n)= w(n)                                        (34) 

In the above test formulation x(n) is the PU signal and w(n) is the additive noise term. 

Energy detection based on predefined threshold will be used in our derivation of 

decision optimization for fading channel conditions considered in the next section. 

Proceeding further with the cooperative strategies for decision making, hard decision 

scheme is founded upon related outcome represented as 1 for PU presence and 0 for PU 

absence combined with soft decision at fusion center level by rules such as AND rule, 

OR rule, Majority rule and K out of N rule. Thus, global decision based on number of 

decisions in favor of presence as well as absence with respect to a finite number of trials 

is based on the following formulae: 
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Also worth stressing is the fact that global decision performed by the fusion center is 

dependent on a plethora of factors such as network topology dynamics, energy 

constraints along with antenna selection as well as scheduling and fading channel 

conditions as optimization problem constraints. The complexity issue is another 

element that must be investigated. 

3.4.3 Spectrum Sensing Techniques Classification 

In this section, the CR based spectrum sensing techniques are categorized providing 

brief comments for each technique. The common aim is to maximize detection 

probability and spectrum hole detection.  

Energy detection method conducts decision about PU presence via a predetermined 

threshold. Prior PU signal characteristics knowledge is not needed and complexity is 

kept low. However, performance deteriorates at low SNR regime and under network 

interference. Regarding further implications concerning ED method, noise variance 

must be provided where in case of variation [87] poses a challenge for the respective 

method. False alarm probability is also leveraged to form the ED scheme via knowledge 

of noise variance. In a sub-band division scenario the complexity must be kept low at 

the same time with mitigating spectrum leakage. A comment related to this 

aforementioned sub-band division is the concept of independence as a fundamental 

assumption. In this case, the derivation of convolution of distributions as the definition 

of the distribution of the sum of independent random variables can be translated to 

spectral domain by substituting convolution with multiplication. In this case, 

overlapping and sub-band consideration is a challenging approach. 

Cyclostationarity is another sensing technique exploiting the homonymous property to 

perform sensing task. Thus, spectral correlation aids the differentiation of signal from 

noise. Estimation of spectral autocorrelation function enables blind identification of 

licensed PUs and remains consistent under low SNR models [88]. 

Matched filtering based detection is an optimal SNR maximizing approach with the 

strict constraint of signal characteristics knowledge at receiver side. The optimized 

performance in the presence of additive noise, as is the case of the next section, comes 

along with rapid sensing at the cost of synchronization ability [89] in order to achieve 

this SNR maximization. This, however, formulates an impractical assumption 

rendering this technique unpopular with the additional shortcoming of increased 

complexity.  

Waveform based sensing [90] is based on exploitation of signal patterns about 

preambles or transmitted pilots and conducts PU detection based on cross-correlation 

metric of received signal and transmitted signal. Correlation aids in the above sensing 

process requiring synchronization and a fixed predetermined threshold. Hence, 

regarding this technique, correlation is what quantifies decision metric and, as being a 

practical assumption, does not incorporate the independent random variable model. 

Covariance sensing method focuses its effectiveness on the fact that signal covariance 

[91] differs from additive noise covariance. In the inclusion of fading channel 

modeling, this method is a suitable sensing method and is usually requires bandpass 
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filters with Slepian sequences having the convenient property of bulk of energy in a 

specific frequency band. Spectral estimate reduced variance comes along with small 

spectral leakage. 

Eigen value sensing [92] requires no noise variance knowledge but suffers from high 

computational complexity. By taking advantage of eigenvalue correlation, the 

technique achieves improved detection probability in a channel and noise blind manner 

while reducing noise uncertainty effect. 

Wavelet packet transform sensing technique [93] relies on the property that the signal 

to be detected usually occupies low frequencies while additive noise is characterized 

by high frequency content. Thus frequency band decomposition leads to accurate 

detection. Additionally, this method favors wideband sensing by tracing spectral 

structure irregularities and dynamically adapts to such structures. One possible 

computational bottleneck arises when high rates are desired. This is where CS sub-

Nyquist technique discussed in the subsequent part emerges in order to balance between 

structure and randomness always retaining low complexity and simple implementation. 

Spectral estimation [94] derives properties in the frequency domain by leveraging the 

autocorrelation function and specifically its Fourier transform. The technique then 

searches for patterns such as spikes which lead to the decision of existing periodicities. 

CS could also aid PU signal detection in cases of partial spectral support knowledge. 

Finally, multi-antenna technique [95] introduces the benefit of received SNR increase. 

Interference mitigation along with increased reliability and sensing at low SNR levels 

are the key advantages that this method provides. The basic technique is MRC. The 

logically straightforward limitation from adopting this approach is increased 

complexity and implementation. It is also indicative that CS could also aid in 

compensating for these limitations as they both are the exact benefits that CS theory 

guarantees i.e. reduced complexity and more efficient sensing. 

3.4.4 Narrowband vs. Wideband Sensing 

Depending on the range of frequency content as wideband sensing [96], the literature 

refers to task of sensing a frequency content that significantly exceeds the channel 

coherence bandwidth. To confront such a computationally and resource demanding 

task, the frequency content is divided in terms of utilized bandwidth in narrow spectra 

in order for the hypothesis testing to be applied and conduct decision making about PU 

presence. Wideband sensing requires high rate ADCs [97] along with a series of parallel 

filters which drastically increases implementation complexity. Following conventional 

signal processing, Nyquist criterion dictates that sampling rate must be at least twice 

the highest frequency present in the mathematical expression of the signal. Deducing 

from the above, CS appears as a very attractive methodology and optimization tools set 

to alleviate computational and implementation complexity. Further notion for CS 

theory and principles will not be detailed at this point as is extensively formulated in 

the mathematical background section. Hence, omitting problem transformation to a 

form for tractable solution and fundamental sparsity and compressibility properties 

upon which CS optimization is founded, we only provide the wideband sensing related 

benefit of applying CS as sensing a given frequency band with fewer samples obtained 
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or equivalently a larger frequency band for a given number of samples. Limitations of 

CS for spectrum sensing include noise uncertainty and recovery uncertainty, RIP proof 

[98] (a significantly computationally expensive task of verification) as well as unknown 

varying sparsity order and high memory storage requirements. As in other applications, 

spectrum sensing via employing CS mainly depends on the balance of randomness as 

the direction taken for optimal CS based signal reconstruction and structure existing 

which is what favors feasible implementation in such scenarios. Relative to 

implementation, it is the efficient manner to avoid costly or impractical ADCs for 

wideband sensing that verifies the merit of CS optimization. As in the entire thesis 

adopted, additive noise is modeled as Gaussian and the case of unknown variance is 

also addressed in CS literature as a more realistic assumption. A last comment concerns 

CS application for sensing in CR systems as twofold: centralized or distributed [99]. 

The latter emigrates to WSN design dealt with by a fully randomized Gaussian scheme 

in section 3.6. Thus, a comment sufficing is the feasibility of applying CS in a hybrid 

scheme which is the crucial benefit resulting from the model assumed in the next 

section. 

3.4.5 Spectrum sensing in related dimensions 

Spectrum sensing techniques are not limited in one dimension such as time but can be 

extended to other dimensions. In this subsection, we briefly outline the manner in which 

sensing is conducted in each dimension in the following table: 

TABLE 3.5: Spectrum Sensing Dimensionalities 

Dimension What is sensed? Comments 

Frequency 
Opportunity in frequency 

domain 

Availability in the 

frequency spectrum. Not all 

bands used simultaneously. 

Time Opportunity of a band in time 
Availability of sub-band in 

time. 

Geographical 

Space 
Location/Distance of PUs 

Occupied or available 

spectrum in the same 

geographical area. 

Code 

Spreading code, time hopping 

or frequency hopping. 

Synchronization estimation 

can be avoided with long 

random code usage. 

Use of orthogonal codes to 

mitigate interference. 

Opportunity in code domain  

i.e. detecting spectrum 

usage and also multipath 

parameters. 

Angle 
Directions of PUs beam and 

locations of PUs 

Spectrum opportunity in 

angle dimension. PU 

transmitting in a certain 

direction while SU 

transmitting in different 

direction causing no 

interference 
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A concluding remark that must be made accounts for the fact that sensing can be 

performed simultaneously in more than one dimension [100] and can leverage code 

domain to effectively overcome limitations such as channel distortion confronted by 

retransmission or expensive feedback as well as computational complexity for timely 

and accurate decoding. 

3.4.6 Algorithmic derivations for Spectrum sensing 

In this subsection, several algorithms and their performance are analyzed from existing 

literature approaches. The derivations as well as comments on problem assumptions 

and constraints are thoroughly interpreted in terms of the investigation of the next 

section in this chapter. Also noted that this subsection reviews past related work in a 

more generic context while the subsection reviewing past literature in the next 

subsection presents our analysis in a more concentrated on the specific Energy 

Detection literature. 

A triple algorithm proposition from a game theoretic perspective is provided in [101] 

along with incomplete network information distributed learning algorithm classified as 

evolutionary algorithm by means of robust game theory. The issue of excessive 

overhead by requiring channel statistics to be known, as is the case with our proposition 

in next section is mentioned to be tackled in the algorithm proposed. Moreover, the 

scheme is non-cooperative and leverages imperfect CSI. A technical remark included 

in this paper is that tolerable interference comes along with spectrum underutilization, 

hence CS application being based on such observation could optimize interference even 

further. Incorporating fading channel models an energy detection based effort with 

statistical methodology as in the next section could integrate sensing scheme simplicity 

and mitigate interference. Regarding spectrum access, the optimization problem posed 

is of probabilistic nature similar to the mathematics of the next section for both accurate 

and inaccurate spectrum state assumptions. An interesting point of view adopted relates 

to the statement that sensing strategies diversity enables collision avoidance and 

interference management. As stated by the authors in the above work, the evolutionary 

algorithm may induce overhead and hence an alternative version applicable in a 

distributed sense is proposed with the desired property of no excessive information 

exchange. Verifying the relation of the above statement to the results in the next section, 

complexity may indeed arise as an issue as a consequence of independence and 

convolution operation. Investigation of how a Nash equilibrium strategy could relate to 

the above along with the practical constraint of inaccurate spectrum state is left as future 

research. A finalizing remark for this paper concerns the parameter m as number of SUs 

which possess a value for optimal performance. This is in agreement with choosing 

optimal number of samples for largest percentage of deciding in favor of PU presence. 

High throughput and low collision could be investigated in the future under the 

mathematical framework adopted in the next section. Another work [102] proposes an 

artificial immune algorithm in a centralized, cooperative and interweave spectrum 

access scheme as an energy detection paradigm for enhancing capacity and mitigating 

interference. The first observation matching the forthcoming analysis in the next section 

is the fading realizations and additive noise independence in prerequisite of our case 

and the above paper. The optimization problem either in constrained or unconstrained 

form in the immune algorithm context can also be applied in the derivations of the next 
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section by accounting for fading channel models and dynamic threshold adaptation. 

Finally, threshold and sensing time optimization could be defined by the CS related 

principle as a comparison benchmark along with extension of convexity consideration 

which, as CS theory dictates, could be solved by linear programming or greedy 

algorithms. The integration of the latter with clone selection algorithm could provide 

performance insights for the energy detection sensing schemes. An excellent work of 

Bkassiny and Jayaweera [103] proposes an active channel detector in a wideband 

sensing regime with non-Gaussian noise statistical assumptions. Proceeding one step 

further, the case of partial noise model knowledge is considered and a robust detection 

scheme with reference to a nominal distribution is proposed based on quadratic 

complexity nonlinear regression. The convolutional scheme of the next scheme can be 

made to address the spectral activity after dividing the wideband range in to smaller 

sub-bands. However, the independence assumption can lead to excessive computations 

given its integration with the wideband sensing regime. Nevertheless, the merit of non-

Gaussian assumption translates to the analysis of the next section with the difference 

that fading distributions refer to a multiplicative effect as opposed to additive noise. 

Moreover, the concept of contaminated distribution could potentially build further upon 

the non-Gaussian noise models and also question its robustness in terms of CS 

constraints. Hence, the analysis of the next section can be extended for contaminating 

all fading distributions considered. Specifically, l1 norm selection replacing l2 norm 

relative to energy can also be integrated with CS principle for the case of heavy-tailed 

distributions. A quite representative work [104] proposing an energy detection based 

scheme for hard decision interweave spectrum access addresses the tradeoff between 

energy conservation and sensing performance by means of evolutionary game and 

coalition formation algorithm. A very clarifying comment concerns the issue of 

reducing participating users in a cooperative scheme when sensing performance is 

acceptable. However, insufficient number of users may degrade this performance. This 

carefully balanced tradeoff could provide an interesting extension of the next section 

where the number of i.i.d. samples could correspond to a case specific user selection of 

the cooperative scheme. This user selection is also essential in order to alleviate 

excessive overhead. Furthermore, the optimization of detection and false alarm 

probabilities in this user selection context could provide dynamic decision threshold 

which in our case could relate reliability with diverse fading condition consideration as 

is the case in the next section. Also worth noting is that our analysis can be extended 

by including memory of fixed or varying order not only in terms of deciding the proper 

action to take from a selfish point of view, as formulated in [104], but also to integrate 

the diverse fading conditions of our analysis for optimizing the selfish action to be taken 

in a scenario that favors non symmetric distributions. Varying channel statistics also 

pose a modeling challenge. The latter selfishness attribute poses an entire novel 

optimization problem by differentiating solvability in the cooperation context. Another 

point of similarity is the hard decision making in both the aforementioned paper and 

our analysis. Regarding majority vote rule, our analysis could benefit from setting a 

percentage above which sensing is acceptable instead of merely comparing the 

percentages of each case. One step further, the beneficial requirement of not being 

predictable so that not to be exploited could well fit to the CS case in terms of 

incoherence so as to interpret the derive percentage in our case. A concluding remark 
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on the aforementioned work is the entropy increase which causes secondary users to be 

hesitant of sensing the respective channel, an applicable consideration of the fading 

cases in our analysis. An attempt to improve sensing performance by differential 

evolution is proposed in [105] in a cognitive sensor network thus introducing the 

scalability assumption. The probabilistic flavor of the stages of differential evolution 

could also be applied for performance of energy based spectrum sensing in our analysis. 

The related iteration process could either define our analysis in the independence 

concept in terms of optimality or excessive computational complexity reached thereby 

terminating the process. What stresses the merit of this paper is the ability of differential 

evolution approach to allow the rapid withdrawal of SU opportunistically using a 

frequency band so as to effectively reduce interference. This statement does not match 

a property of our analysis the latter only implying a complexity issue. This resulting 

complexity could be alleviated by certain a priori knowledge in the sensing 

optimization problem, the latter made feasible by this rapid SU termination of using a 

given frequency band, an approach that is based on scheduling. In overall, the concept 

of cognitive sensor network being dense sensor deployment could build upon our 

approach in the next section by simultaneously considering traffic congestion, 

intelligent differential evolution spectrum sensing along with diverse fading conditions 

and CS sparsity rule. An excellent paper by Huang et al. [106] proposes a cluster-based 

cooperative interweave spectrum access scheme via non-parametric Bayesian rule. The 

authors in this work provide a thorough statement about advantages and shortcomings 

of centralized sensing methods. Hence, in our work the distributed class of sensing 

strategies can be utilized at the first stage along with cooperation to alleviate 

complexity. The above cooperation implies correlation of sensing data in space 

dimension and is a promising direction for addressing excessive overhead. It is also 

intuitive that intra-cluster spectrum information implies temporal correlation which is 

to be exploited as well for improving sensing performance. Furthermore, the 

cooperative proposition made in the latter paper also confronts orthogonality which 

could ensure improved performance along with resources reuse. Sensing data diversity 

in heterogeneous CR networks or equivalently in a network where SUs are different 

distances apart from PUs and thus experience diverse channel conditions. This 

statement is directly related to our case and it is important to trace the merit of 

cooperation in this scheme integrated with CS sparsity and incoherence. Sensing data 

heterogeneity could also fit to our analysis of diverse fading conditions that could be 

incorporated in a single varying fading network. Regarding fading channel model 

assumed, the authors in the latter work assume the envelope related Rayleigh fading as 

both components are Gaussian zero mean distributed while our analysis assumes 

diverse fading scenarios. The bridging point for the two above could be the Nakagami-

m fading distribution which approaches the Rayleigh fading by proper parameter 

selection and could be used to assess sensing performance with the independence 

principle preserved. Additionally, the Dirichlet process related distribution derivations 

could relate our analysis by incorporating prior knowledge in terms of adaptively 

setting detection and false alarm probability values and fading distribution cases. As 

already stated, complexity is a major issue arising from the analysis in the next section. 

Hence, the reduction of computations could originate from either introducing 

correlation as opposed to independence or the CS principle exploiting structure, the 
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latter resulting from mathematical relevance of considered non-symmetric fading 

distributions. The proposed method also exhibits robustness to noise and has the 

potential to leverage dynamic channel availability by not considering number of data 

groups. A last essential tradeoff arises in [106] as that of cluster number versus sensing 

performance. This could lead to improvement and relate to our analysis if an area of 

interest in the coverage of the CR network is preset, which could combat fading 

impairment by considering the same diverse fading conditions. Another remarkable 

work [107] introduces a cooperative centralized spectrum sensing scheme by Bayesian 

rule based on deep sensing. The latter is what renders this approach beneficial compared 

to existing methods along with the reference of mobility and time varying fading having 

a detrimental effect on sensing performance. Translating to our analysis in next section, 

derived optimal number of samples could have different outcomes based on mobility 

as this concept differentiates performance optimization problem including mobility as 

a constraint to be accounted for and also model fading by non-static distributions. These 

sample derivations could also enhance a dynamic model for fading time variation along 

with claiming independence principle with respect to time which fits into our 

convolutional operation calculations assuming statistical independence as a 

prerequisite. Furthermore, while our analysis considers fixed threshold for all cases and 

invariant false alarm probability, the authors in the above work comment further on the 

optimality of determining dynamic threshold from which false alarm probability is 

determined by gamma function calculations. The above contrast could provide a 

benchmark for sensing performance assessment in diverse fading conditions in a 

dynamic state space sense. CS consideration as a special case in our analysis could be 

extended via the latter paper which implies the varying sparsity order along with hidden 

states estimation. In overall, the combined PU existence state and fading state could be 

embodied to the variety of fading conditions in accordance to false alarm probability 

optimization and complexity related measurement history. It is also worthwhile 

noticing that the authors in this paper contemplate the transitions of PU states by setting 

a counter that counts transitions, an approach which could extend our analysis not by 

merely calculating percentages but also transitions in terms of fading cases. In direct 

relation to our analysis is the statement in [107] that a large sample size, as in the 

derivations of our case, may increase complexity as well as sensing time and 

transmission efficiency. The latter issue is closely related to fading conditions and could 

thus improve dynamic spectrum utilization. Proceeding one step further in the analysis, 

the correlation, as opposed to independence in our case, could improve performance 

and be integrated with fading channel dynamics via the deep sensing scheme. The 

contrast of a dynamically adjusted false alarm probability, as opposed to a fixed 

scenario where the respective probability is set to the target value could provide sensing 

comparison in the already stated fading cases. As a concluding remark on this paper, 

our case could be beneficially extended to mobile scenario and flexible resource 

allocation in a manner including correlation effects and compensating for emerging 

issues on 5G cognitive systems sensing performance. A centralized ED based method 

of spectrum sensing based on modified majority rule and cooperative hard decision is 

proposed in [108] relying on the practical multiple/adaptive transmit power levels 

assumption which is proven to be optimal in performance loss compared to cases of 

considering lowest, greatest and average power levels in existing algorithms. The 
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reviewing comment of multiple antennas at SU i.e. exploiting spatial diversity/degree 

of freedom is an intriguing consideration while the contrast of the former to an 

equivalent cooperative scheme is left as future work based on the derivations of our 

analysis. Moreover, the PU transmit power knowledge promotes spectrum sharing and 

enhances the «intelligence» of the cognitive system. The merit of this work is traced in 

prior probability assignment and the adoption of multiple hypotheses concept. It is also 

very interesting to query whether the multiple power level and the multiple SUs as 

assumptions could lead to a resource allocation scheme of increased combinatorial 

complexity as well as the ascending order sorting could have an impact on the multiple 

hypothesis problem. Together with CS methodology and non-Gaussian signal 

consideration, a research extension is formulated. Another rather intuitive issue arising 

from the analysis in [108] is the impact of false alarm probability on the unnecessary 

complexity order in terms of the approach that first decides over PU presence and, as a 

second stage, determining the transmit power level in use. Integrated with dynamic 

sensing threshold and fading conditions, an indicative means of improving performance 

is the sensing history and the correlation effect contrary to independence assumption of 

our case. Accordingly, decision region formed as a result could provide valuable 

insights. The notion of seldom use of power level corresponding to a decision region 

could also admit an interpretation of an entropic concept which would attribute large 

uncertainty of these decision regions and also jointly consider noise variance 

magnitude. Regarding cooperative decision making, the number of SUs for a certain 

decision could be combined with the optimal number of samples corresponding to the 

maximum percentage in favor of PU presence. The particular case of equal majority 

votes with respect to different states could potentially be addressed by CS sparsity rule 

if existing structure is exploited. Finally, the coupling of PU state and power level 

determination in a multiple power level case implies that the error probability in either 

stage needs to be carefully balanced and also compensate the fading conditions and 

number of samples in favor of PU presence as investigated in the next section. Referring 

to the work of Salman et al. [109], a relay-assisted cooperative soft decision ED based 

scheme is introduced for number of users and received signal information joint 

detection. A strategy reviewed in this paper is that of SUs with high detection 

probability aiding SUs with low detection probability. This could be related to the goal 

of achieving a target value and be also integrated with the local level different fading 

conditions and interference levels. The algorithmic derivation of the respective paper 

also focuses on the minimization of mean square error and correlation errors which can 

very easily relate to our search for optimal number of samples achieving the goal of 

highest percentage in favor of PU presence. The combined effect of genetic algorithm 

and CS sparsity/compressibility rule on the basis of multiple extrema and the ability of 

the latter algorithm not being trapped in local minima constitutes a challenging topic 

for further research. It must also be noted that the relay-based calculations come in a 

weighted manner in accordance to the two aforementioned error derivations. Finalizing 

with our comments for [109], the increase of number of sensors in each ULA induces 

a complexity issue which is not investigated in combination with SNR levels and 

resulting errors existing in this paper. Regarding to the relation with our analysis in next 

section, a comment would suffice stating that fading conditions in relay scenarios are 

already maturely studied in literature leaving the notion of joint PU presence and signal 
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related parameters estimation as a case to be investigated. The paper of Hwang and Lee 

[110] addresses cooperative spectrum sensing performance proposing imperfect 

feedback based approach via differential evolution algorithm in a centralized hard 

decision scheme. This imperfect feedback assumption is investigated under Rayleigh 

fading, thus can be applied to our fading diversity and additive noise based analysis 

with the channel impairments affecting decision information feedback channel and 

assessing the impact of such imperfection on decision making and overall sensing 

performance. In the same context, sensor selection and mobility assumptions could 

provide performance benefits as well. The probability of detection is sought to be 

maximized while false alarm probability is assumed to be upper bounded i.e. a Neuman-

Pearson criterion. A very interesting remark in the above work concerns the probability 

derivation of PU presence to be expressed as a function of probability of PU absence. 

This could provide the means for accurate sensing performance as well as complexity 

reduction. In our case, this could translate separately for each fading assumption and 

also preserve independence in the related optimal number of samples for each case. 

Another important point to be highlighted is the outperforming proposing scheme as 

opposed to MRC, based on which a more detailed consideration of a MIMO 

environment with multiple antennas at transmitting and/or receiving side with the 

intuitive issue of implementation complexity accounted for. Furthermore, the merit of 

the proposed quantization combining is verified by same detection probability with less 

information requirement. However, the reduced sensitivity to channel state estimation 

error requires investigation of whether it relates to a performance tradeoff. Another 

centralized ED based cooperative soft decision underlay spectrum access method is 

presented in [111] by investigating whether interference is harmful or not by leveraging 

Bayesian Active Learning rule. The objective of this approach is to learn interference 

channel gains by allowing reverse link feedback. In the analysis of the next section, 

fading conditions could be included in interference modeling and provide a challenging 

model for joint consideration of the above particularly if the non-Gaussian statistics are 

adopted. A similarity point between the latter paper and our analysis is that optimal 

number of samples derivations are also dependent on the distributions parameters. 

Hence, this property combined with SINR conditions for interference learning provide 

a challenging multiple parameter optimization problem where fading and additive noise 

can be jointly considered. However, a requirement of high data rate may result in an 

outdated feedback or detrimental channel distortion along with increased feedback 

history required to combat uncertainty. Hence, the modulation and coding selection 

scheme mentioned by the authors in [111] may require re-consideration. Following the 

methodology in this paper, the main assumption is the grouping and spreading of 

multiple users across available bandwidth, an approach that in terms of spreading 

concept is already applicable in communications literature with respect to the different 

dimensions of time, frequency, space and code. Bridging the above with our case in 

next section, the optimal number of samples derived could change with respect to 

multiple user constraint in the optimization problem along with bandwidth allocation 

for each group. Towards a low complexity and reduced overhead approach, CS sparsity 

principle could be efficiently applied by exploiting for instance structure in the latter 

constrained optimization problem and achieve balance with the probabilistic harmful 

or tolerable interference in user subsets. The algorithmic prerequisite assumption in this 
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paper is that of initial maximum uncertainty regarding interference channel gains and 

raises the logical question of the number of probing attempts required to derive the 

desired gains from a diverse fading condition point of view. Another very indicative 

comment concerns the requirement of diverse direction for deriving interference gains 

which is fulfilled by incorporating randomness, an aspect directly related to CS random 

measurement practice for overcoming deterministic limitations. This can further 

interpret the derivations of our analysis in the next section enhanced by the hyperplane 

geometry analysis conducted in [111]. Furthermore, regarding this uniform 

hypersphere point picking, potential structure as a measure of dimensionality could be 

effectively leveraged by CS to reduce complexity without compromising derived 

algorithm results optimality. Solution uniqueness could also be considered with convex 

relaxation methods as in CS theory and principles. Elaborating more on CS, the context 

of solving MAP estimation problem by alternative to convex relaxation methods could 

also be extended for a convex programming and greedy algorithm performance 

comparison to the other methods. Towards the investigation of a centralized sensing 

approach, the authors in the aforementioned paper provide a statement of the 

exponential increase of computations as a consequence of network size increase. This 

statement admits a double interpretation: the extent to which centralized scenario is 

adopted as opposed to a distributed one for relaxation of the localized computational 

burden and the feasibility of applying complexity alleviation-oriented algorithms that 

are applicable in both architectures with corresponding sensing performance tradeoffs. 

The above contrast constitutes a promising future research direction. Concluding our 

remarks, the observation of faster estimation causing less interference could lead to the 

proposition of predicting interference in a diverse fading environment by merely 

observing speed by learning statistical parameters. Following the same context, instead 

of deriving optimal number of samples as in our case in the next section, a worst case 

analysis relative to fading and interference as well as network dimensionality and 

computational burden could be jointly optimized. A centralized cooperative soft 

decision interweave spectrum access scheme is proposed by Wu et al. in [112] by 

accounting for average error probability minimization and throughput maximization by 

means of low complexity algorithm and optimized parameters investigation. The first 

statement worth stressing in this paper is the already fundamental hard vs. soft decision 

tradeoff. The latter provides accuracy at the expense of increased overhead and 

consumed energy. Moreover, quantization levels and embedding localized decisions in 

most significant bit of quantized bits promotes the feasibility of an efficient coding 

scheme for effective information transmission by simultaneously achieving reduced 

complexity decoding and sensing performance. Regarding system model prerequisites, 

the event of parameter changes directly requires updating, an approach which could 

translate to our analysis as optimal and stable updating of fading distribution parameters 

to accurately learn the channel in a real time setting combined with error probability 

and throughput optimization. Hence, the multi-bit regime could result in overhead that 

could potentially be balanced by efficient variable-length coding. A natural question 

arises as to what extent the sensing performance can be optimized under the low 

complexity requirement by considering the raw measurement statistics. Clearly, the 

quantized soft decision fusion scheme results in a global decision but the statistical 

impact in a non-Gaussian setting remains a challenge especially by considering the CLT 
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case as in our analysis and a varying sparsity CS rule as a practical assumption. 

Inclusion of fading conditions and their impact on the linear search algorithm 

implemented in [112] is also a feasible future consideration. Therefore, this extra 

parameter could require a more detailed investigation in terms of optimal results 

reached. As a final point worth highlighting is the further query of the effect of sampling 

frequency with CS based sub-Nyquist sampling strategy along with number of 

cognitive sensors and throughput maximization in this sparsity regime. 

We now proceed with spectrum sensing literature review with CS methodology applied. 

The exceptional work of Cohen and Eldar [113] proposes a sub-Nyquist sensing scheme 

which exploits cyclostationarity structure for sensing efficiency and noise robustness. 

The authors state in a thorough manner that cyclostationarity is a compromise between 

low SNR sensitive energy detection scheme and matched filter approach requiring 

perfect knowledge or received signal. This statement clearly points towards a future 

research direction concerning our analysis with a more concise CS sub-Nyquist 

sampling concept consideration in the context of the latter two other methods. Another 

important issue raised is the method for conducting sampling in order to acquire 

correlation measurements. Hence, in a CS sub-Nyquist regime compressibility and 

existing pattern/structure could provide a viable implementable solution to this 

problem. Cyclic spectrum recovery can be particularly investigated in a bounded as 

well as non-Gaussian noise assumption, a problem to which CS sub-Nyquist sampling 

could offer attractive ways of overcoming cyclic spectrum recovery limitations. 

Towards a bridging between our next section analysis and the indicative results reached 

in this paper, the multiple frequencies resulting from the fundamental notion of Fourier 

series i.e. higher order harmonics can be integrated with the noise robustness of fading 

environments along with combining optimal number of samples with sub-Nyquist rate 

in the context of the simplification of the whole process requiring only estimation, user 

presence in a frequency band and not signal reconstruction. The latter harmonics 

implying transmission correlations pose an interesting problem in inserting small 

correlation properties to compare with our independence based analysis. The authors 

also provide an insightful geometrical interpretation of the correlation induced 

observations i.e. self-correlation and cross-correlation between frequency bands. This 

analysis admits an integration to our case in the same manner mentioned above. The 

reference of multicoset sampling introduces the very crucial issue of irregular sampling 

as a sample selective version of regular sampling and its impact on sub-Nyquist 

sampling exploiting cyclostationarity. Hence, samples may be characterized by an 

optimal number and locations. Extensive analysis of the autocorrelation matrices 

stemming from the geometrical self and cross correlations preceded is conducted by 

determining the location of nonzero entries with respect to frequency shift. A 

straightforward claim is the application of CS compressibility rule to the related 

observations and results with the additional claim that nonzero location randomness can 

also be consistent as a proposed approach by emigrating from random or irregular 

sampling to optimization random transformation matrix. Relevant to the resulting 

sensing performance the authors in [111] provide a notion of a feasible increase in false 

alarm probability in power spectrum recovery problem in the ED comparison 

benchmark that they use which holds for low SNR regime as opposed in cyclostationary 

detection. Concluding with this work, the impact of noise deteriorating performance is 



71 

also verified in the proposed cyclostationary detection which enhances the 

understanding of the noise robustness property relative to performance of spectrum 

recovery. We continue our literature review with a power spectrum sensing approach 

[114], which as stated above in [113], is a special case of cyclic spectrum recovery by 

the same authors, namely Cohen and Eldar. Thus, minimal required sampling rates are 

derived in the noiseless regime, an approach that could admit the extension of 

considering additive Gaussian noise and specified parameter impact on performance. 

With respect to the noisy case as an extension, including the non-Gaussian non-

symmetric property and studying the impact on performance and how these 

assumptions translate as a mere rate adjustment, correlated measurement history or 

consideration of existing structure in a different manner. A crucial remark on the 

proposed approach in [114] involves the blind power spectrum estimation as well as 

the non-blind scenario where the reconstruction is based on occupied frequency bands. 

This could further aid the sensing accuracy of the respective problem. The independent 

case as adopted in our case may not be valid for considering this approach as opposed 

to the practical correlation assumption. An issue of concern is the derived 

transformation matrix from which the Nyquist samples are filtered to derive sub-

Nyquist samples. In such an approach, complexity may be an issue to overcome 

especially by incorporating noise with a minimal cost in excess samples and structure 

exploitation in both time and frequency domains. Towards achieving sub-Nyquist 

sampling efficiency in the same context the number of samples in our analysis could 

also be included in a sampling pattern consideration thus alleviating computations and 

simplifying hardware in a fading environment along with considering a penalty of 

minimal sampling rate in an equivalent blind scenario. With the aforementioned paper 

and our analysis both being conducted in the time domain, we convolve distributions 

for calculating the ratio above or below a threshold by the independence assumption 

while the authors in the latter work derive autocorrelation matrix by convolving 

samples a similarity that could provide the means for extending our analysis. Another 

contrast is the dimensionality reduction requirement stemming from the multiple 

potentially occupied bands considered simultaneously as opposed to our analysis 

involving a single hypothesis test problem. To that end, CS sparsity rule could greatly 

aid in achieving the aforementioned goal. As in the above work, a parametric evaluation 

of sub-Nyquist sampling emigrated to our case could feasibly consider the parameter 

value selection of the fading distributions jointly with the varying parameter case in the 

paper for sensing performance. We now finalize with a detailed and concise survey 

[115] by Cichoń outlining energy efficiency in cooperative spectrum sensing context. 

The first remark in this paper, rather straightforward, is that channel information 

(initially at receiver side) and measurement history i.e. system memory combined with 

cooperative principle result in improved performance. Again the detection and false 

alarm probabilities tradeoff is highlighted in terms of cooperation, noting that either of 

the above can be modeled by a specific target value while optimizing the other in a joint 

consideration. Hence, our case considering fixed false alarm probability in a non-

cooperative scenario can be obviously extended. In a relative future work scenario, the 

entropy based evaluation of such probability metrics poses a great challenge to be 

addressed. Moreover, in the context of a priori knowledge, the definition of a blind 

sensing problem could be defined in a variety of ways by incorporating full or partial 
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knowledge of many parameters. Concerning interference, the energy efficiency 

bottleneck could be integrated in an approach that not only validates whether 

interference falls below a certain threshold but also in a dynamic case of continuously 

improving sensing performance as interference level continuous reducing its value. The 

soft decision quantifies better the decision quality compared to hard decision and may 

also utilize mathematical tools such as convolutional statistics in the analysis of the next 

section at the expense of increased complexity and computational overhead. However, 

the quantization schemes applied to soft decisions are also points of concern. Cluster 

based approaches could be modeled as discretized constraints to the optimization 

problem on the basis of cluster head selection and the choice of performing local 

decisions or forwarding data to the fusion center the latter forming the related global 

cooperative decision. As for distributed schemes, the notion of node neighborhood must 

be considered, in terms of relaying absence, along with confronting impact of 

probability metrics mentioned above. The strategy of dynamic user selection with 

which to share the global decision reached could also enhance security of the CR 

network reflecting whether a centralized, cluster-based or distributed topology is 

assumed. Relevant to time domain stages of sensing commented on this survey and the 

user selection for decision circulation, the latency issue naturally arises as well as its 

impact on sensing accuracy and false alarm probability. In the same sense, the 

complexity of user detection in time could be potentially reduced by a probabilistic 

analysis that predicts frequency band vacancy in a certain time interval. As an extension 

of sensing and spectrum access time which must be jointly balanced the fading 

conditions assumed pose certain limitations in the first place to the intervals being 

solutions of the above joint optimization problem and also require revisiting of the 

derived throughput results. To this end, cooperation further improves sensing and 

throughput. User selection is also reinterpreted by means of a subset conducting 

spectrum sensing functionality and another subset for spectrum access the latter 

distinction relying on cooperation as is understood. It is also straightforward that a 

varying CS based sparsity order that may characterize spectrum utilization along with 

channel coding technique may alter transmitted sequence and promote energy savings. 

Stemming from network perspective, cross-layer sensing optimization poses a state-of-

the-art challenge in current CR systems. Rather than the simple formulation of the total 

consumed power in the survey, the derivation of consumed power may be excessively 

more complex and also involve nonlinearities given the type of constraints included in 

the optimization problem. The independence assumption can be substituted for 

correlation of sensor readings that may permit selection of sensor subset as well as 

excluding users that experience severe fading limitations from their environment. The 

logical query from the above approach is to what extent the sensing performance 

degradation stemming from user exclusion can be minimized. Concerning bitwise 

energy consumption, efficient coding techniques can significantly lower required 

energy requirements and be combined with less sensing time while achieving the same 

sensing performance. The node/user selection strategy is also reported in this survey 

[115] and made clear that it can be applied under a variety of assumptions i.e. the 

disjoint grouping or censoring approach and the dimensions of space, time, frequency 

or code. Hence, the formulation of sensor selection boils down to a well posed 

constrained optimization problem in a probabilistic and application specific sense. 
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Clearly, SNR criterion in a diverse fading environment may be ineffective due to rapid 

variations and thus may compromise performance. High SNR node selection also 

admits CS compressibility rule application, as a sparsity approximation problem, given 

fading and additive noise, for low complexity optimal performance. An SNR-based 

alternative approach favors uncorrelated or weakly correlated sensing decisions closely 

related to our approach. This could translate to optimal number of samples based on 

uncorrelated node selection scheme along with the challenging delay minimization 

requirement. Furthermore, the methodology of voting is such that severe fading or 

shadowing effect could directly degrade performance. This indicates a clear direction 

of future investigation of our analysis with the relevant channel condition partial 

knowledge as prerequisite and a priori knowledge of PU presence information 

considered as a constraint in the sensing algorithm applied fitting to a practical scenario. 

In the same context, a point of concern would be jointly optimizing detection and false 

alarm probabilities. Cooperative selfishness integrated with relaying is another 

promising direction of research as a means to combat channel impairments and boost 

energy efficiency. The final assessment of this survey is the consideration of the 

optimization problem in a multidimensional setting effectively formed by the metrics 

involved, their quantification and, as a complementary notion, the dimensions of time, 

frequency, space and code. Concluding, we suggest the dimensionality structure-

induced reduction offered by CS principle to further assist to lowering complexity, 

improving sensing accuracy and achieving higher energy efficiency. What must be 

stressed in applying CS theory is the careful identification of degrees of freedom of this 

problem. 

3.4.7 Conclusions and future work 

This section has surveyed spectrum sensing techniques providing analysis and 

derivations of the respective advantages and limitation arising from their practical 

implementation in CR systems. The methodology of confronting wideband sensing 

cases by dividing spectrum to narrowband regions has been extended to the CS 

spectrum sensing methodology allowing fewer samples for spectrum sensing efficiency 

outperforming Shannon-Nyquist sampling theorem and achieving low complexity and 

resource management gains. 

The extensions of this section to improved sensing methods in the context of future 

generation systems exhibits CS spectrum sensing applicability by exploiting structure 

i.e. patterns in the spectrum of PU and SU context. 

3.5 Convolution Energy Detection based Scheme for Cognitive Radio 

3.5.1 Introduction 

The results of this section are related to our publication [C5]-([116]), a probabilistic 

convolution based detection scheme is adopted the decision being based on a threshold 

the value of which is assumed by the Gaussian statistical case. The numerator of the 

fraction is the sample generating distribution indicating primary user presence to the 

noise distribution thus primary user absence. The percentage of number of fraction 

values above threshold is evaluated for the following cases: the CLT theorem based 
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number of samples, the CS theory based number of samples and the asymmetrical, 

compared to the Gaussian case, fading channel distributions, namely Rayleigh, Rician 

and Nakagami-m fading distributions expressed by Eqs.(3),(6),(9). An algorithm is 

formulated and simulation results are interpreted. 

3.5.2 Mathematical Preliminaries 

The threshold on which the decision is based is given by the following equation: 

                                                  NNPQ faw   212
                            (37) 

where N is the number of samples, σw
2 is the noise variance and Pfa is the probability 

assumed to take the value of 0.01, a value that conveys accurate estimation. The CS 

based formula for the calculation of preserved number of samples is given by Eq.(18). 

The sparsity k is related to the number of samples N by the sparsity ratio. The assumed 

value for this ratio stems from the percentage of utilized spectrum in the 5-6GHz zone 

that is 10% of the allocated spectrum. This results in sparsity ratio equal to 0.1 using 

Eq.(18). 

3.5.3 Past related work 

Before we proceed to the formulation of our convolutional approach we present 

indicative past literature that specifically fits into the context of the analysis of this 

section i.e. ED sensing methodology. 

Compressive spectrum sensing approach for Rayleigh channel ED based scheme is 

proposed in [117] by means of compressed measurements. Thus, this work aims at 

addressing fading environments the lognormal fading being already investigated in past 

literature. Contrary to our work assuming integer fading parameters, the non-integer 

regime poses a great challenge that could be confronted in diverse fading with the 

feasibility of soft decision accurate sensing scheme. According to the CS based scheme 

applied, the Fourier series representation stemming from the DCT sensing matrix could 

provide the means of comparing results from time and frequency domain in a sub-

optimal sense as a result of truncation of respective series representation. It is also 

straightforward to extend this analysis to other fading cases initially from the 

Nakagami-m properly selecting m value. The latter extension should also incorporate 

detection and false alarm probabilities in closed-form considered to be beneficial in 

terms of tractability. Finally, the low compression ratio assumption must also be 

included as a means of lowering complexity. A paper by Singh and Mitra [118] 

remarkably illustrates performance degradation induced by multipath fading as well as 

introducing CLT related results as an increased number of samples in a practical 

scenario. The latter work also boldly stresses the maximum detection probability related 

number of samples which fits into our analysis considering Rayleigh, Rician and 

Nakagami-m fading. The notion of error-floor for accurately setting the decision 

threshold is related to our standard Gaussian distribution model for the additive noise 

considered which due to its probabilistic nature can be linked to the approximation we 

can only calculate regarding noise floor. Given that our analysis can be extended to the 

frequency domain, the number of samples derivation in the aforementioned work can 
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be related to time-bandwidth product which in turn relates to uncertainty principle 

concept. The latter can be investigated from the diverse fading and additive noise 

conditions assumed. Arriving at the mathematical framework of this paper, the 

similarity is apparent and enhanced in our case by convolution operation along with 

likewise fixed false alarm probability. Another remark could include parametric 

evaluation such as false alarm and detection probabilities, fading parameters reflecting 

severity as well as CLT by quantifying approximation of normal distribution which also 

compensates for noise variance and user signal distribution if assumed random. 

Furthermore, Kishore et al. in [119] address energy detection performance including 

Rayleigh and Rician fading. The differentiation with respect to our work is the 

Nakagami-m fading distribution which, although separately parameterized and 

evaluated in our analysis, can be mathematically linked to the two former fading 

distribution by means of proper parameter selection. Hence, this intermediate fading 

case also constitutes an interesting direction. As to the prolonging of sensing time thus 

difference in energy quantities, the threshold must be optimally reset. To that end, 

cooperation and relaying could assist in sensing refinement always at the expense of 

implementation and computational complexity. Required SNR derivations for Rayleigh 

and Rician fading verify the LOS component prerequisite in Rician fading translating 

to lower SNR required with respect to Rayleigh. Compared to our analysis, there are 

two issues emerging: the additive noise consideration in the fading scenarios is assumed 

in our case but not in the latter paper while the second issue is the very interpretation 

of the findings of this paper that sets the stage for CS based spectrum sensing in a 

manner of refining sensing and reducing complexity beginning with the non-adaptive 

approach and leaving the adaptive sensing methodology as a feasible future 

investigation. The aforementioned remark on the interpretation of the Nakagami-m 

distribution verifies the merit of another work [120] which proposes collaborative 

sensing as a means to improve energy detection under Rayleigh and Nakagami-m 

fading conditions. The authors in this paper also perfectly distinguish advantages and 

limitations of spectrum sensing methods in cooperative and non-cooperative manner. 

As comments briefly summarizing the tables in this paper, ED is beneficially blind but 

is ambiguous in low SNR cases and cannot be applied in spread spectrum signaling. 

The statement that false alarm probability is not a function of fading thus promotes our 

fixed value assumption in our analysis. The challenge of considering fading is also 

evident by the closed form expressions of detection probability emigrating from 

Marcum q function in AWGN to complicated exponential and hypergeometric 

functions emerging in Rayleigh and Nakagami-m fading cases. In the collaborative 

scenario, it is apparent that the resulting simplified expressions are solely based on 

independence which we assume in our analysis as well. Worth mentioning reviewing 

this paper is the performance degradation with increased time and bandwidth product. 

As already stated, this product metric could feasibly be combined with CS for detection 

probability maximization. Another observation of the latter paper is the outperforming 

of the collaborative scenario with respect to the AWGN channel, which indicates an 

interesting performance advantage given the optimal compared to fading, Gaussian 

case. However, it is straightforward that complexity arises as a tradeoff for 

performance. Concluding with this paper, the above comments point towards an 

attractive future research. ED method for fading distributions considered above i.e. 
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Rayleigh and Nakagami-m is also derived in [121] by Yadav and Agrawal. The 

contribution of calculated detection threshold in a dynamic manner is traced to the 

derivation of detection and false alarm probabilities whereas in our case the inverse 

calculation is utilized i.e. fixed false alarm probabilities and threshold derivation. The 

latter estimation in a dynamic manner constitutes an alternative approach for future 

research under the fading environments considered. Moreover, another distinction 

should be noted: the authors in the above work considered AWGN channel thus unit 

fading channel gain whereas our analysis includes noisy fading environments as a more 

practical approach. In order to clarify the analysis of the latter paper, it is interesting to 

note that the probabilistic derivations regarding the Rayleigh fading assumption are 

based on parameter selection of a Nakagami-m fading distribution as a special case. In 

our case, the Nakagami-m fading distribution is not characterized by the parameter 

value that reduces to Rayleigh fading. This notation permits us to identify and propose 

addressing the problem of detection performance as a matter of scaling between the 

latter two distributions integrated with CS optimization. The simulation results in [121] 

verify the optimality of performance of Nakagami-m with increasing value of factor m 

compared to Rayleigh fading. The last issue requiring attention is the inclusion of other 

fading distributions which extent beyond our analysis as well in the additional context 

of introducing cooperation among SUs. As opposed to static threshold selection as in 

our analysis, the work [122] by Arjoune et al. proposes an advantageous dynamic 

threshold selection, always in the context of ED based methodology by conducting 

measurements of power of noise contained in the received signal.  Convolution of 

received samples with pilots and averaging can be related to the convolution operation 

for deriving the equivalent distribution of the sum of channel gains considered. Thus 

the mathematical framework of the latter paper can be applied on top of convoluting to 

determine the distribution along with comparison of ED with matched filtering sensing 

schemes. Besides, our derivation of optimal number of samples for maximum 

percentage in favor of PU presence may take different and relatively low values thus in 

general our approach compensates for sensing time and complexity. The optimization 

perspective of CS principles could further impact sensing threshold in a sparsity 

scenario initially in a non-adaptive sense. CS could further aid the double threshold 

scheme commented in this paper by reducing the «middle-range» ambiguity leading to 

a consistent decision even in these cases. However, the authors in [122] elaborate on 

the covariance matrix focusing on the distinction of signal and noise eigenvalues with 

the assumption of independent noise similar to our case where we also assume 

independent fading realizations. This provides the basis for deriving the total 

covariance matrix. Moreover, the statistical covariance matrix concept can be further 

enhanced by the CLT theorem which in our analysis is merely adopted as a comparison 

case. The calculation of noise variance via an equivalent minimization problem 

involves a theoretical and empirical distribution comparison which could be embodied 

to our analysis for estimating the different of optimal number of samples in each case, 

the latter providing the feasibility of closed form expression. Regarding simulations, 

the SNR values for optimized performance should be further investigated apart from 

the observation of detection probability improvement to a more advanced consideration 

of noisy fading environment where decision threshold is dynamically adjusted. As the 

context of CS promises reduced computational and implementation complexity, we 
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turn our attention to a representative work [123] that employs CS for fewer samples 

requirement and quantifies performance in the Gaussian noise reduced samples regime. 

The first issue differentiation of this work to our analysis is that authors consider 

stochastic signal while our user signal is deterministic. In addition, the fixed alarm 

probability assumption and detection probability optimization comply to our analysis. 

Another detail that must be stressed regarding this paper that closely relates to our work 

is the consideration of maximum false alarm probability that accompanies the 

likelihood ratio test. An indicative comment concerning the CS based modeling of this 

problem ideal for future research is the l∞ norm operator as equivalent for maximum 

value of a variable. Moreover, the modification of sensing threshold as a necessity 

emerging from reduced measurement dimensionality applying CS is an interesting 

extension of this work with the additional challenge of diverse fading and noise channel 

impairments. As a concluding remark, the effect of compression ratio and SNR 

decrease on detection and false alarm probabilities conveys performance deterioration 

which is nothing else but the statement of CS based performance vs. complexity 

tradeoff with respect to the moderate SNR regime. Proceeding to the work of Dikmese 

et al. in [78] briefly commented in the previous section, we review it from the aspect of 

this section. Hence, it efficiently proposes a wideband methodology for spectrum 

analysis. Fast Fourier Transform along with deviating from the boxcar model are 

utilized for PU spectral characteristics estimation for low complexity sensing. 

Reference to multi antennas scenarios along with cooperative schemes done in a 

complete manner would require an extensive amount of analysis and performance that 

is beyond the scope of this thesis and is therefore left as future work. However, a brief 

comment would suffice: spatial diversity is exploited at the expense of increased 

hardware design complexity. Moving on to the core of the analysis of this paper, the 

authors account for the practical case of frequency selectivity regarding the channel, 

according to moderate SNR value range, along with PU reappearance during SU 

transmission duration. Concerning paper contribution the sliding window concept is 

employed and the spectrum band division in order to derive flat sub-bands is employed. 

Towards a bridging remark between this paper and our analysis, it is clear that we do 

not focus on a frequency domain approach hence the essential component of this paper 

i.e. robust multicarrier techniques formulate an interesting deviation of our analysis for 

future consideration. To this specific end, the Parseval’s theorem connects time and 

frequency domain by the identical test statistics derivation property. Moreover, a crucial 

question that arises is to what extent sensing performance is optimized by frequency 

tuning i.e. dissimilarity of band location of PU spectrum with respect to the sensing 

band. Simultaneous sensing achieved at this paper is what highlights the merit of their 

approach. A CS based probabilistic approach could be designed such that partial match 

of the PU band and sensing band is optimized as a constrained optimization approach 

while accounting false alarm and detection probabilities. Contrary to the derivation of 

[78] regarding PU presence decision probability increasing with interval length, our 

scheme produces results that characterize each fading distribution with an optimal 

number of samples that are related to highest percentage of decision in favor of PU 

presence. Hence, increased probability translates to maximum percentage of PU 

presence decision. Moreover, sub-band resulting from wideband division clearly 

promotes the optimized weighting process and accurate Energy detection performance. 
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The derived weights can be fitted in terms of the impact of respective sub-band to the 

sensing outcome, whereas our case provides the diverse fading consideration with 

contaminating Gaussian noise. In the same context, subset of sub-bands to be selected 

can lead to lower complexity while at suitable values of false alarm, detection 

probabilities and SNR regime. Hence, our analysis can comply to this subset selection 

in a cooperative scenario as intriguing future work. The frequency selectivity effect is 

also an issue to be addressed on the basis of the fact that only PU presence statistics are 

affected, an observation that validates applicability to our analysis. Also, as the authors 

provide remark on the ambiguity of whether non-white spectrum is due to transmitted 

signal spectrum or channel spectrum, this issue demands both separate and joint 

investigation to quantify performance with necessary measures accounted for. Relative 

to this paper, the results also raised an important issue to be taken into account, namely, 

the synchronization coherence filter design with optimum weights as the proposition to 

further validate performance. A subject of future investigation are the filter design 

characteristics of stopband attenuation and implementation complexity. 

3.5.4 Proposed energy detection scheme 

Energy detection scheme is based on the «binary» hypothesis stated below: 

                                                      ][][ nwny                         : PU Absent             (38) 

                          ][][][][ nwnsnhny         :PU Present             (39) 

where y[n] is the discrete received signal, h[n] is the channel gain, s[n] is the user signal 

which is assumed deterministic and of unit amplitude in each time instant and w[n] is 

the zero mean unit variance noise following a Gaussian distribution N(0,1). Although 

the method of estimating moments for accumulated power are a well-established 

method, the comparison of the ratio of the equivalent probability density function in 

favor of primary user presence to the probability density function resulting in only noise 

is adopted here. Thus, the test statistic for LRT is given below: 
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where λ is the defined by Eq.(37) as the threshold and case larger ratio than λ decides 

in favor of primary user presence and smaller ratio in favor of primary user absence, 

hence, only noise. The numerator is equivalent to the n times of convolution of the 

fading channel by itself and a single convolution with the Gaussian probability density 

function modeling the noise in the communication channel. On the other hand, the 

denominator is the noise probability density function considered above. Another 

clarifying comment that must be made is that our proposed approach does not consider 

the squared amplitude channel gains as to derive the energies calculated in a common 

ED sensing problem. It considers channel gain related distributions in a sense that the 

channel gain magnitude is directly indicative of the energy of the sample. To validate 

such an approach, the sensing time interval is identical for all cases investigated. 

The two comparison benchmarks consist of the CLT based statistics assuming Gaussian 

distributions as the following: 
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And Gaussian related formula Eq.(12) . In (41),(42) N is the number of samples, σx
2 is 

the user signal variance set to 3 and σw
2 is the equivalent noise variance set to one. 

Regarding the aforementioned formulae, the Gaussian statistics are assumed. However, 

they are applied to fading cases as an optimistic set of measures due to the fact that 

fading has a more detrimental effect on performance compared to additive noise. The 

analysis of this paper relies on the fading distributions namely Rayleigh, Rician and 

Nakagami-m fading with their expressions given in Eqs. (3),(6) and (9) respectively. 

3.5.5 Algorithm formulation 

The algorithm below analyzes in detail the steps of calculations for all fading cases and 

the comparison based on two CLT and CS based performance benchmarks. 

Algorithm 

1. Input LRT Test Statistics: CLT case (i=1), Rayleigh (i=2), Rice (i=3), 

Nakagami (i=4), number of samples N. 

Iterations: 

2. for distribution i←1 to 4 

3. Randomly select a value of samples i.e. between 50 and 100. Insert different 

values smaller or larger than selected value.  

4. Calculate percentage of values above threshold forming the ratio with respect 

to input number of samples for the CLT case and with respect to the total 

number dictated by the convolution for the inserted values for the fading cases, 

respectively. 

5. Also, calculate the CS-based number of samples using Eq. (18). 

6. While no maximum has been achieved i.e. a sample number where smaller 

percentages are estimated for lesser or larger values of the input 

then expand to more distant to the initial input values. 

endwhile 

7. Select the number of samples corresponding to the maximum reached and 

compare the resulting percentage to the CLT case percentage and CS-based 

percentage, respectively.  

end for 

8. Output: optimal number of samples for which maximum percentage of values 

of LRT above dynamic threshold for CLT case, Rayleigh fading, Rician fading 

and Nakagami-m fading.  
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3.5.6 Simulation results 

All simulations were conducted using Matlab software. By inserting different number 

of samples, the number of samples resulting in maximum percentage of decision values 

in favor of primary user presence is calculated and compared to the CLT and CS related 

percentages. Regarding simulations, the number of samples of the noise component in 

denominator is not determined by our sample number input to each respective case but 

by the order of magnitude larger value resulting from the convolution operation in the 

numerator or the likelihood ratio. As a remark concerning the visualization of the LRT 

ratio, the results from simulations implied a steep slope thus ratio values were either 

significantly low or high with respect to the threshold. This is the reason for omitting 

this depiction. 

CLT case 

As evident from the simulations, the number of samples in favor of primary user 

presence does not carry useful information. Instead, the percentage of number of 

samples above threshold to the total number of samples resulting from the convolution 

operation is what conveys meaningful results. 

In the CLT case, inserting N=20, 50, 100, 150 and 180 samples the maximum 

percentage of values above threshold was 99% and was observed for M=100 samples. 

At greater numbers of samples, the percentage gradually decreased. 

Rayleigh fading Channel 

After initiating with 4, 5 and 10 samples and ending with N=40, 50 and 100 the 

maximum percentage of samples above threshold equal to 68% was found by inserting 

N=5. The CS based case indicated a percentage of 33.3%. For other values of N 

regarding Rayleigh fading, N=30 resulted in 9.4%, N=50 in 3.84% and N=100 resulted 

in 1.02%. 

Rician fading Channel 

Inserting N=17, 20, 25 and 30 as input parameter, a highest percentage of 1.54% was 

found for N=18, while for N=25 the percentage decreased to the value of 0.64%. The 

small percentage of Rician fading is a result of the Bessel term and the 18-times 

convolution of Rician distribution in the formulation of LRT test statistics. 

Nakagami-m fading Channel 

In this fading case, the maximum percentage of 96% was found by inserting N=5. For 

N=10 the percentage falls to 62% and for N=50 to 4.64%. This result can be also 

interpreted mathematically by the choice of parameter m equal to 0.5. 

3.5.7 Overall results interpetations 

The important result of the above simulations is the optimal performance of the CLT 

case which however is an asymptotic case regardless of the initial distribution 

considered as CLT theory dictates. Hence, an insightful remark is that of contemplating 

fading cases as a «transient» phase with the CLT characterized by the steady state 
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property. Another remark is the asymmetry of the fading distributions which by theory 

dictates the necessity of calculating the third and fourth order moments to adequately 

define the distribution curve contrary to the Gaussian distribution being symmetric and 

described by mean and variance. This second order statistics reflects the entire thesis 

and serves as an approximation for both analysis and simulation results obtained.  The 

CS based resulting percentage of 33.3% is proven to be an intermediate result 

accounting of CS property of sub-optimal approximation. As for future work, the 

conditions and optimization problem formulation for improving this percentage will be 

considered in terms of sparsity and fading related compressibility rule. 

 As the convolution operation has a smoothening effect on the original distribution and 

also has the property of approaching a Gaussian distribution, the smaller percentages 

for the fading cases are interpreted in the context of deviating from the asymptotic 

Gaussian symmetric curve. Hence, the values of N resulting in maximum percentages 

were shifted towards lower values, as the asymmetry of the fading cases justify.  

Another remark is that the simulation results based on convolution rely on the 

assumption of independence between fading channel realizations and between channel 

and noise distribution as well. Moreover, the trend observed in each case investigated 

of an optimal number of samples with greatest percentage of decision in favor of PU 

presence is a direct consequence of sufficient sample number reached for lesser values 

and correlation arising from further increasing this variable value beyond the optimal 

one derived. The practical case being correlation leads to different performance. As 

final remark, the maximum percentages derived for all cases considered directly impact 

accurate detection of user presence or absence. 

3.5.8 Conclusions and future work 

This section investigates energy detection scheme for Rayleigh, Rician and Nakagami-

m fading conditions. The results are based on convolution statistics with a predefined 

threshold and the CLT and CS based cases as comparison benchmarks. Related 

algorithm and results interpretations are accounted for. As future work, the moment 

estimation method as ED scheme is considered integrated with CS problem formulation 

regarding convexity or non-convexity are promising directions of research. Extension 

of the proposed scheme to other CR spectrum sensing schemes and the state-of-the-art 

wideband sensing challenge are worth investigating.  

3.6 Correlation based WSN performance: The CS paradigm 

3.6.1 Introduction 

The results in this section are related to our publication [J3]-([124]). WSNs consist of 

densely deployed sensors collecting environmental readings such as temperature, 

humidity, light e.t.c or performing the operation of target tracking which is more 

dynamic in nature and requires synchronization constrained functionality. WSN are 

autonomously deployed and their main challenges are energy efficiency, decentralized 

operation and node mobility as a means of addressing network connectivity and 

localized fault tolerance. 
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The main limitation of WSN operation is limited energy for performing sensing, 

computation and communication tasks. Thus this issue has spurred research for 

developing strategies to minimize energy consumption or maximize energy savings. 

Together with the small size and formidable cost of sensors, this bottleneck is a state-

of-the-art challenge for WSN design. Dynamic topology changes or node energy 

depletion or failure could lead to operation disruption. Moreover, decentralized 

operation is a critical challenge compared to centralized operation where heavy 

computations are shifted to the base station also referred to as sink node. Network 

heterogeneity and asymmetry leading to unevenly dividing computation and 

communication tasks through the network are other major issues. 

Temporal, spatial and spatiotemporal correlation have proven to be efficient properties 

verified for WSN operation and data processing that boost network performance and 

improve data reconstruction quality. The above concepts of correlation have already 

been integrated in WSN design and offered effective information exchange and 

processing. Another set of optimization tools that has been combined with correlation 

in WSNs is CS. 

CS theory aims at providing the benefits of drastically reducing the computation and 

implementation complexity, issues being most important for optimal WSN design, 

deployment and operation. CS theory main concept is sparsity or compressibility. The 

former being the fundamental notion, obtains only the small fraction of nonzero 

elements of a signal vector and discards the bulk of zero valued elements. On the other 

hand, compressibility is an alternative approach that keeps the largest in magnitude 

elements and discards the rest. Temporal, spatial and most importantly spatiotemporal 

correlation along with CS have already provided low complexity data processing and 

efficient information extraction. 

The contribution of this section is a probabilistic scheme assessing WSN network 

performance in terms of reconstruction error and energy estimation is conducted. 

Gaussian statistics are the main distribution for all performance derivations. 

Concerning mathematical scheme formulation, the information vector x comprises of 

mean values of average values of multiple sensor readings following a Gaussian 

distribution with zero mean and variance equal to the inverse of the number of readings 

forming the average values. The values obtained by this manner approach the i.i.d. CLT  

scenario asymptotically described by Gaussian distribution. The transformation matrix 

Φ which is multiplied by vector x, consists of elements of Gaussian zero mean and same 

variance distribution forming the sum and consequently the average values and mean 

values as elements of the matrix. The vector Y consists also of Gaussian elements of 

same variance but nonzero mean. The mean is derived from the fundamental equation 

relating first moment i.e. mean, second moment and variance of the Gaussian 

distribution. The second moment expressing power is assumed equal to one for the 

temporal correlation case and equal to the inverse of the number of mean values for 

spatial correlation case which specifically corresponds to a random sensor selection 

scheme in a given neighborhood. The sum of such elements representing readings lead 

to average values and consequently to the mean values realizations produced. For the 

spatiotemporal correlation the two cases above are fairly accounted for. Based on the 

error between vector Y and product of matrix Φ and vector x, the reconstruction error 
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is derived. The cases considered are noiseless and noisy cases respectively. In each 

case, the dense independence based case, the dense correlation based case and CS 

compressibility based case considering low and high compressibility ratios. Taking the 

energy of each Gaussian element and the related sums the above cases are also 

considered to derive mean values with the difference that results express energy 

estimation error. Benefits reaped from the above analysis are outlined in terms of 

network topology and routing along with applicability in communication systems, 

particularly IoT deployment networks. Conclusions and feasible research extensions 

are provided at the end of the section. 

3.6.2 Past related work 

The early work of Akyildiz et.al [125] is a survey that collectively mentioned the 

performance issues of a WSN referring to all functionality layers of the OSI model. The 

issues arising by emigrating from traditional ad hoc networks to orders of magnitude 

denser deployment of wireless sensors are analyzed and interrelated. For example, the 

power and routing awareness are crucial issues also affecting topology. Additionally, 

the balanced power allocation is determined by the sensor neighborhood or more 

general resources of the network. A straightforward extension of the analysis in this 

paper is traced to the concept of mobility and whether it is static or fully randomized, 

the latter characterization implying a varying neighborhood. The main concept of data 

redundancy could on first thought result in low necessity of mobile nodes covering the 

area of interest but also contribute to diversity considering that various data types are 

available to a subset of sensors forming a portion of the entire network. The 

consideration of spatial, temporal or joint spatiotemporal correlation could all define 

the means of exploiting sensor mobility in the network to the fullest extent. Relevant to 

the above, synchronization and switching off mechanisms are such delicate issues that 

could even question the validity of the results in our analysis of this section. 

Nevertheless, data redundancy as well as correlation in a monitoring network could 

smoothen the requirements of the network and point to the right direction for achieving 

energy conservation. A point stressed in [125] is the issue of energy consumption as 

well as limited memory of sensor nodes in terms of the scalability constitutes an 

interesting extension of the decentralized property that can be supported by our analysis 

based in temporally and spatially correlated data. Therefore, the protocols addressing 

information flow in a sensor network mentioned comprehensively in this early work 

can benefit from the randomized perspective as in the analysis of this section and 

provide optimal results by imposing inherent constraints that describe these networks 

by definition as well as additional ones that incorporate optimal statistical distributions 

for all resources to be allocated in an energy-efficient and effective data routing manner. 

Following the aforementioned work but being a much more complete survey, [126] 

highlights the main design issues for a WSN. Based on the categorization of sensor 

nodes, a straightforward issue arising is that of randomized mobility which in our 

analysis can be imposed as to whether, due to redundancy, mobile sensors are needed 

for further performance improvement. Effective routing is also another challenge 

relative to mobility and synchronization. Another issue discussed in this survey is the 

sleep and awake scheduling mechanisms adopted in an application specific WSN 

deployment. Idle sensors still consume energy and scheduling can even cause problems 
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apart from energy consumption. Relative to the analysis of this section, environmental 

monitoring is assumed thus energy conservation is the main bottleneck and latency is 

not of primary concern thus less stringent. Wireless standards are extensively analyzed 

in order to compensate for energy conservation as well as infrastructure, scalability and 

interoperability. As in multi-resolution storage of sensed data, the temporal and spatial 

redundancy directly relates to the analysis of this section expanded by the joint 

spatiotemporal correlation proven to provide even more optimal results of data 

reconstruction and energy estimation. Another challenging aspect is failure 

management where there are methods that aim at determining the cause of failure and 

the extent to which it significantly impacts network functionality. Given the correlation 

based analysis in our case, a capability of bypassing a failure event is more 

straightforward than actually detecting the failure in a localized manner. Another 

common point is traced at the relation of reconstruction error being bounded with the 

synchronization quality achieved which in turn affects energy conservation, a concept 

related to the energy estimation error analysis in our case. The extension of this 

derivation is the setting of a predefined error threshold in an application-dependent 

manner as well as algorithm development that have the property of low complexity fast 

convergence. Moreover, our main assumption being environmental monitoring sensor 

network, effective coverage in this case relaxes the stringent degree of overlapping 

coverage regions of a subset of sensors, which can be significantly relaxed as opposed 

to other applications such as real-time target tracking. The respective survey [126] 

underlines this fact by the statement of optimized minimum number of sensors 

guaranteeing coverage. Regarding compression and data aggregation, this section 

calculates average values which statistically interpreted are less varying than individual 

sensing values. That is based on the property of correlated, as in our case, readings and 

absence of abnormal values. Hence, aggregation based on average value can be 

combined with compression which translates to the sparsity ratios considered. Another 

similarity of this section adopting a fully randomized model regarding sensing values, 

transformation matrix as well as transformed vector is the issue of reliability mentioned 

in the survey the probabilistic version of which assumes the delivery guaranteed to a 

randomly selected subset of sensors near the coverage area. This also complies to the 

random sensing matrix as a CS optimization preference for probabilistically optimal 

results. A point of interest regarding the case of retransmissions needed in a packet loss 

scenario is whether a «uniform» retransmission of packets takes place or a specific 

packet which reflects additional knowledge of the lost packet identity. Relevant to 

spatial correlation in the sensed data in our case which implies the formation of a 

neighborhood of sensors, the survey provides a comment on correlation filtering for 

selective transmission from a certain node. This could contribute to enhanced security, 

improved scheduling as well as better resource allocation i.e. energy efficiency. 

Integration of wireless performance and low complexity with the CS principles with 

the resulting zero additional complexity induced by inference in a cross-layer 

optimization perspective is another future research direction. Finally, the most crucial 

bridging commentary of the survey to our analysis is the statement that fundamentally 

the derivations for improved performance rely on an optimization problem formulation 

with its objective function and its application-dependent constraints. Hence, this fits 

into the general approaches dictating that this approach takes many forms but obeys the 
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mathematical principle of the optimization problem and the design of an effective 

algorithm, as is the CS case. All these approaches in a cross-layer optimization manner 

make use of the interaction between layers towards achieving energy efficiency, 

effective routing under dynamic network topology as well as low complexity 

information extraction. Proceeding with another survey that deals entirely with energy 

efficiency as the primary prerequisite for extension of network lifetime, [127] provides 

a taxonomy of energy preserving methodologies from different points of view. The first 

distinction of energy consuming tasks states the following: sensing relates to negligible 

energy consumption while communication dominates energy expenditure compared to 

processing of measurements task. Hence, our analysis concerning sensing values and 

energies via a probabilistic Gaussian transformation representation can be related as a 

stochastic methodology, even by a non-Gaussian non-symmetric model, to the 

remaining sensor networks tasks. As in the analysis of this section, temporal and 

spatially correlated sensor readings can provide insightful directions for duty-cycling 

optimized scheduling of sleep and awake states further aided by data redundancies. Our 

analysis of spatial correlation involves a uniform power allocation over a node 

neighborhood which supports mobility as stated in [127]. In the same redundancy 

context, the subset of sensors to enable information flow can be chosen as in an energy-

efficient, localization aware or secure wise manner. Redundant samples combined with 

sensing subsystem energy mitigation is a feasible extension of the analysis in this 

section. As the randomized mobility mentioned above, this survey states the problem 

of whether the mobility is controlled or not i.e. how randomness and a related pattern 

balance in order to optimize network connectivity and coverage. This randomization 

concept can be also extended in order to capture randomness in a modeling of delay 

and duty cycling by random distribution in manner covering network holes and 

optimize sleep schedule in an energy efficient and effective routing way. Collision in a 

randomized scheme can also be mitigated by data redundancy which results as a 

consequence of temporal and spatial correlation in the analysis of this section. It is the 

interrelation of low duty cycling with synchronization and allowance for flexible awake 

and sleep times that can provide additional energy efficiency and reduction of traffic 

and packet collisions. In an environmental monitoring data redundant network as in our 

case, a relaxation of the synchronization requirement can be assumed. One step ahead, 

the decentralized achievability is also based on this synchronization relaxation as well 

as energy efficiency. The effect of correlation in our analysis along with a randomized 

sensor wakeup scheme as described in [127] could well compensate for topology 

changes throughout operation which in our case could translate to node failure due to 

energy depletion, the above supported by a dense deployment scenario. Regarding the 

tradeoff in an environmental monitoring sensor network of energy efficiency versus 

latency, the former being more of a prerequisite, the question imposed by the survey is 

addressed in such a manner that in an energy limited scenario for this type of networks 

redundancy can further promote energy savings and, as stated above, functionality with 

no or relaxed coordinator nodes. An interesting similarity of our analysis which builds 

upon Gaussian modeled distributed readings, transformation matrix and equivalent, is 

the probabilistic data prediction concept which underlines the need of model validity 

by means of sampled data. Hence, the extension in the non-Gaussian case with the 

investigation of reconstruction error and energy estimation error as in this section brings 
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forth the extent of validity of the chosen distribution in both centralized scheme 

compensating for computation burden, as well as decentralized scheme based on 

correlated data assumption of our case. As opposed to randomization, a priori 

information supporting model validity can be thought as involved structure, which can 

be embodied to the performance optimization at hand. Additionally, the issues of 

outliers or sharp variations in data are not primarily considered due to correlation 

assumption. Adaptive sampling describes our case very accurately. Returning to the 

crucial concept of mobility either referring to sink node or sensor nodes, a certain 

energy saving observation can cannot be guaranteed in every network deployment. 

Instead, the balance between mobility pattern and the means of achieving mobility have 

to be taken into account as thoroughly examined in the above survey. A feasible 

comment in our case is that mobility can fulfill its energy consumption reduction goal 

as it is supported by the spatiotemporal correlation. The latter can be integrated with 

CS optimized performance to provide low reconstruction error and robustness of the 

sensor network. An excellent paper [128] that so closely relates to our analysis 

including the present section as well as channel estimation section estimates temporal 

correlation to adjust sleep scheduling by means of optimizing sensing of the observation 

area state leading to energy efficient performance improvement and promoting the 

mitigation of network functionality dependence on sink calculations. A particular 

similarity that must be stressed is the so called method of filtering in the paper i.e. the 

computation of the distribution by means of the observations to our CS based inference 

based on preserving largest in magnitude elements. In fact, this relation could constitute 

a CS integrated future research extension. Concerning the main concept of [128], 

temporal correlation decreases entropy whereas the entropy «floor» reached could lead 

to a characterization of the specified observation distribution. Hence, the effect on our 

analysis could be two-fold: the effect of separate temporal ad spatial correlation on 

entropy decrease as well as the effect of the joint spatiotemporal assumption and the 

entropy decrease in a non-Gaussian case relative to noise as well as composite fading 

cases. Another difference of this work is the linear increment of correlation and 

exponentially decrement while in our analysis we assume linear increment of 

correlation that is combined with CS based sparsity ratio to produce the representative 

results of reconstruction error and energy estimation error. The entropies, conditional 

and relative entropy, can also be used to derive consumed energy by comparing the 

distributions of transmitted and actual data. This could be the basis of a probabilistic 

extension in terms of Gaussian statistics by employing the method of inference as in 

section 3.3 based on CS compressibility rule or in a generic probabilistic analysis 

aiming at energy efficiency quantification. The errors derived in our case can be also 

derived by entropy related method boldly stressed in [128]. A concluding remark 

relative to this work is the dynamic determination of sleep duration in a network of 

sensed values of the same type. Hence, as in our case, the heterogeneous network case 

either resulting from a segmentation of a large network or an integration of networks 

covering an area but measuring different environmental quantities remains a challenge 

based on correlation-induced data redundancy. The property of redundancy stemming 

from spatial correlation, justified as the consequence of dense node deployment, is 

addressed in [129] where a cluster network is assumed where intra-cluster region is 

divided in spatially correlated regions, the same manner in which the network 
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neighborhood of a given sensing node is characterized by a spatial correlation value in 

our analysis. The cooperation between nodes is also leveraged in this paper towards the 

achievement of energy efficiency in the respective sensor subset. However, the authors 

comment on the required number of active sensors as an application specific 

consideration relative to data discrepancies, while our analysis in this section focuses 

entirely on reconstruction error transparent to the latter property highlighting that our 

scheme supports correlation inducing redundancy which is exactly the feasibility of 

supporting energy efficiency and gradual independence of a centralized sink node. 

Furthermore, the spatial correlation in the above work is considered in an adaptive 

manner not accounted for in our analysis where simply incremental increase of 

correlation is assumed for assessing sensor network performance. A natural extension 

of our work is the randomness inherent in initial network deployment as well as choice 

of subset of nodes providing sufficient energy for operation as well as low distortion in 

a way exploited in [129]. Relative to cluster head to sink communication compromise 

which is briefly commented, it is also a feasible extension of our case which can be 

thought of as a less probable, in probabilistic-wise statement, scenario due to flexibility 

in selecting optimal route from node to cluster head and sink induced by data 

redundancy. Another probabilistic statement, which adheres to Gaussian statistics in 

our analysis, but could be extended to arbitrary but realistic in modeling sensor 

coverage and percentages of active nodes with respect to total number of deployed 

sensors is the modeling of active node density based on event proximity and adaptive 

spatial correlation as a constraint to the optimization problem resulting from 

performance assessment. A final comment regarding the discussed paper is the 

derivation of results of minimizing distortion which can be considered in an entropy 

wise approach and average coding length initially in the Gaussian case, which admits a 

tractable entropy calculation, as well as to fading distributions thus taking fading 

channel in node communications into account together with correlation and energy 

efficiency. The latter two quantities pose a challenging optimization problem which can 

pave the way for effective exploitation of sensor capabilities and performance 

limitations. Maivizhi and Yogesh propose a data aggregation based technique in [130] 

to achieve redundancy elimination of redundant data resulting from correlation as 

already stated in detail above. The important assumptions of their work are the 

following: static topology and computation-efficient base station, hence, deviating from 

a decentralized feasibility perspective. The concept that differentiates our analysis 

considering correlation values from this work is that in [130] the match between sensed 

data given a specific threshold is considered in a zero-one derivation depending on the 

similarity of sensed measurements. This takes place at the source level aggregation. At 

aggregator level, the correlation is characterized as high by means of a determined 

threshold whereas our analysis makes no use of such a parameter in order to eliminate 

redundant data. Another basic assumption of this work is the one dimensional type of 

sensed data i.e. temperature. The paper derives a redundant data elimination method to 

estimate data accuracy in a different manner than our approach computing 

reconstruction error by Gaussian statistics. Also, [130] supports reduction in energy 

consumption by means of data aggregation while energy estimation error in our case is 

concentrated to energy of sensor readings. A concluding remark concerning the latter 

paper, the authors assume a statics network, while our work proceeds one step ahead as 
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it leaves a margin for supporting a decentralized scheme as well as reconstruction error 

and energy estimation error, from which mobility as well as effective routing from leaf 

nodes to cluster head and sink could be realized. A remarkable work [131] studies the 

coverage and energy efficiency tradeoff in terms of applying optimal scheduling to 

balance coverage when application dependent requirements for network lifetime 

extensions arise that must be fulfilled. The CS principle adopted in our analysis could 

also be applied to this paper due to the NP-hardness of the scheduling optimization 

problem and the utilization of a greedy algorithm. Indeed, the transformation method 

used in CS theory is also identical in the manner in which this polynomial property is 

verified in the paper. The insightfulness of this paper is the consideration of the sub-

area of an area coverage of a sensor that is covered by at least two active sensors simply 

coordinated by the optimal on-schedule. This on-schedule is to be solved for in a 

thorough statement of an optimization problem including life cycle duration, battery 

life duration and derived area coverage. Moreover, the problem is re-formulated to 

consider maximum network lifetime compensating for the redundant area coverage. 

Concerning the notion of number of neighboring nodes related to required 

computational effort also implies that our case could be extended from the mere 

assignment of spatial correlation value in a given neighborhood to minimizing coverage 

redundancy as carried out in [131] along with the additional intuitive query of what the 

shape of the sensor neighborhood and coverage area is. The similarity of method of 

solution of greedy algorithm in this paper and in CS theory is verified with the latter 

suggesting that the algorithm could be modified by selecting more than one sensors in 

each iteration. According to the authors, the distributed sub-optimal equivalent problem 

adopts a randomized schedule. This is similar to the pair-wise correlation value in an 

incrementally deterministic increasing value regime along with the Gaussian 

distribution assumption in deriving reconstruction and energy estimation errors in the 

analysis of this section. What should also be stressed is the convergence to local 

optimum in the distributed version which, in terms of CS optimization, is nothing else 

but compressibility approximation relative to the sparsity assumption. Moreover, the 

centralized network property is the initial stage from which to emigrate to distributed 

property, the latter claimed to be achievable in terms of reconstruction accuracy in our 

analysis based on the correlation-induced redundancy. A statement worth highlighting 

is that randomly deployed sensors provide performance gain as the node scalability 

increases and the detection probability also rises justified by logical deduction. A 

concluding remark about [131] is that the merit of the results obtained is more useful in 

real time sensor network applications such as target tracking as opposed to our case 

dealing with environmental monitoring networks. Signal reconstruction based on 

sampling optimization in a sparse setting is addressed in [132]. Here, the authors 

mention that reconstruction is achieved via a low-dimensional sparsity promoting 

representation, i.e. CS methodology. Specifically, their work employs Deep Learning 

as the method of exploiting nonlinear mappings for efficient signal reconstruction 

compensating for the linearity based CS methodology. Deep Learning is also preferable 

to the widely used Principal Component Analysis. The primary point of interest 

expressed in this paper is the generative model used to derive model distributions which 

can aid reconstruction of sample data, bearing similarity to CS inference conducted in 

the previous section by setting a predefined threshold as dictated by CS compressibility 
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rule as well as modeling Gaussian statistics with specific threshold to encapsulate CS 

compressibility performance in the analysis of this section. Moreover, we employ linear 

Gaussian statistics based encoding of the sensor readings which is captured in the 

resulting vector. The statistical nature of our approach complies to the approach of 

location optimization. The intuitive statement that spatial correlation is closer to being 

exploited the authors in [132] confirm the inclusion temporal correlation as well which 

is also consistent to our analysis. The encoding of the sensor readings accounting for 

the relevant mismatch is also identical in the operators in this paper by means of the 

weighting matrix similar to transformation matrix Φ, and the bias vector which relates 

to the additive noise in our case modeled as standard Gaussian distribution. What 

should be stressed concerning results of this work are the requirement for low mean 

square error and low variance of the spatial prediction. This translates to our analysis 

as minimum reconstruction error and representative mean values derived in our analysis 

that do not alter significantly in a temporal and spatial sense. The last point of 

convergence of this paper to our analysis is the joint consideration of temporal and 

spatial domain: although the authors devote two separate stages for the above domain 

considerations our analysis in this section considers a joint consideration as a 

complementary case of considering temporal and spatial cases separately. We assume 

the value of these correlations as equal and investigate performance with a fair 

contribution of the above two domains in the derived performance. Another work taking 

advantage of spatio-temporal correlation [133] adjusts sampling rate according to low 

or high correlation data in order to mitigate data redundancy and excessive energy 

consumption. Along with the latter strategy, the non-sampled data is predicted by 

means of a reconstruction algorithm executed at the sink node. The important concept 

to note concerning this work is that the required computational task is performed at 

cluster head and sink which deviates from supporting a decentralized scenario as boldly 

commented in our analysis in this section based on the correlation induced redundancy 

similar to the prerequisite assumption in [133]. A crucial remark in this work 

differentiates the compression and aggregation operation for reducing energy 

consumption as opposed to adaptive sampling. This also sheds light in our analysis 

where mean values derivations determines a certain aggregation method and CS based 

compressibility can be considered as non-adaptive method. Therefore, adaptivity in a 

CS sense remains a challenging hypothesis towards achieving improved performance 

gains as opposed to non-adaptive CS. Furthermore, the issue of selecting a sensor node 

as «representative» either by the correlation value criterion or the residual node energy 

may provide useful results. Nonetheless, our analysis considers temporal and spatial 

correlation and supports the claim that subset nodes selection on the basis of redundant 

sensed data provides energy efficiency as data reduction drastically reduces 

transmission and computations. The authors in the above work consider a complete 

characterization of energy consumed for all sensor node processes conducted whereas 

our probabilistic approach considers sensed value energies to derive the resulting 

energy estimation error after deriving reconstruction error. Additionally, the percentage 

of required sampling rate modification according to correlation value is performed at 

cluster level in a manner which exploits correlation of neighboring nodes. A limitation 

of this work is the case of correlated sensors not compensating for each other, which 

could benefit from a probabilistic analysis such as our analysis in this section or by 
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considering other criteria such as residual node energies. Besides the limitations pointed 

out, the authors examine how their proposed method could handle variations in the 

sensed data relative to increase of sampling interval between measurements. Hence, 

this could translate to the following question in our analysis: how robust is the 

computation of means of average values taking simultaneously into account the rarity 

of abnormal readings in the scenario assumed. This question of robustness is intended 

for future research. The above could contemplate non-Gaussian statistics as extension 

of our case investigated. Following this robustness of the mean values generated in our 

case, we further support a decentralized design whereas [133] proposes a method that 

is heavily dependent on heavy calculations executed at sink node, where energy scarcity 

is a much more relaxed issue from a computational expensive point of view. To 

introduce the impact of CS on wireless sensor network performance improvement, we 

present a detailed review [134] which collectively analyzes the different applications 

of CS in the latter type of networks. Distributed CS is highlighted to achieve energy 

conservation by means of temporal and spatial correlation, with a priori sparsity 

knowledge being an impractical assumption. The issue of sensor deployment is also 

underlined as crucial be it addressed in a probabilistic manner or a pattern-wise 

(regular/irregular) manner. The problem of sparsifying domain knowledge in CS 

optimization techniques is crucial and addressed by learning optimal domain in a 

plethora of cases. Relative to the above formulation, our case only quantifies the 

measurement matrix and assumes the sparsifying matrix to be the identity matrix i.e. 

no transformation is required. A brief notion concerning the generalization of such an 

assumption is that non-Gaussian cases could dictate a transformation to acquire 

compressed samples for a monitoring WSN. In our analysis, sensing overhead has been 

reduced by leveraging CS compressibility in the unique case of Gaussian statistics an 

assumption enabling the quantification of preserved larger magnitude samples in a non-

adaptive, as defined in literature, manner. Hence, the extent to which this approach 

provides benefits is subtly stated in [134]. An extension of our case to arbitrary non-

Gaussian cases implies an adaptive sparsity promoting approach which could provide 

optimized dynamic topology and effective mobility based routing along with the issue 

of randomly deployed sensor locations provided as a concluding remark in the 

aforementioned review. Proceeding to the inclusion of CS sparsity effect on WSN 

performance, we first outline [135] as indicative of the latter consideration along with 

temporal correlation of environmental monitoring data. Benefits are introduced by the 

well-known property of existing structure in data integrated with sparsity, the latter 

magnified by the temporal correlation assumption. Sparsity is refined by proper 

measurement matrix design. Thus, integration of memory with CS sparsity offers the 

improved results of this paper. A similar to intuition of applying CS is the transmission 

of the time difference instead of sensor reading, which in our analysis could provide 

extra noise immunity given that we only consider correlation of sensed values in time 

and space. In fact, the additional noise immunity due to sensor level computation could 

translate as case optimality of our analysis as we support the decentralized property and 

as a consequence of slowly varying mean values in both time and space. The 

vectorization operation used to produce a single measurement vector provides increased 

complexity in real-time calculations, which in our case could be reduced as CS 

compressibility is applied to sensor reading value level. Moreover, the authors elaborate 
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on weight assignment inversely proportional to previous signal values with an 

additional factor included to avoid instabilities due to overwhelming weight values 

obtained. The notion of weight in our analysis is traced in the «weighted» contribution 

of spatial and temporal correlation assumptions when this joint correlation model is 

considered, which is verified by reconstruction and energy estimation error results. 

Simulations conducted in [135] consider different noise levels whereas the noise 

assumption which forms the core concept of our analysis is independence and identical 

Gaussian distribution with zero mean and unit variance. A concluding remark of this 

case is the issue of spatio-temporal correlation left as future work, an issue thoroughly 

investigated in our analysis comparing results of separate to joint correlation 

consideration. Hu and Yang in [136] present a well-defined work exploiting spatial 

correlation along with distributed CS principle for energy efficient observation 

reconstruction. In general, distributed CS is especially suited for handling network 

scalability and computational asymmetry scenarios. This asymmetry is only limited to 

initial information processing in our analysis since the need for sink based calculations 

gradually diminishes due to correlation and a decentralized network functionality is 

supported. However, the latter work clearly accounts for a centralized cluster-based 

network architecture with data collected at cluster head level and reconstruction done 

at sink level. Determining in-network radius based on error threshold is one step further 

towards contemplating for correlation. A similar concept to this one is the spreading of 

available power in the spatial correlation case in a sensor neighborhood, the area size 

of each is not quantified but assumed to define the subset of sensors that are 

characterized by a spatial correlation value. Regarding this paper, the decoding is solely 

conducted on sink level thus omitting the potential of an autonomous coordinator-

independent network where computations are locally performed at sensor node level. 

Another indicative remark is low complexity observation which does not encumber the 

decoding process done at sink with data forwarded by cluster-head nodes. Moreover, 

contrary to the effect of zero approaching error as number of measurement increases, 

we clearly, in our analysis define the dense case, both independent and correlated, along 

with CS compressibility case, deriving our results. Another spatial correlation based 

event detection scheme [137] carried out in fusion center performs detection based on 

uncompressed data covariance matrix by means of compressed data, thus without 

accounting for raw data observations. Stated once again, distance between sensor or 

neighborhood dimensionality are not quantified and our analysis only involves 

correlation values. The merit of this work is the fact that noise threshold is not necessary 

along with the statement for independent noise similarity to our analysis. Regarding the 

mathematical formulation of [137], the hypothesis testing framework is adopted which 

makes a decision by means of diagonal structure in the signal absence scenario and off-

diagonal matrix structure when signal is present, a concept not followed in our analysis 

where fading values are always present and the cases of no noise or noise contaminated 

sensor readings are assumed always under the essential assumption of statistical 

independence. The covariance matrix appears to have this banded property by merely 

exploiting the statement that as distance increases, correlation rapidly decays, the latter 

considering the power exponential model. On the contrary, our analysis is based on the 

following statement: the subset of sensors in a neighborhood all possess the same 

correlation, the value of which is incrementally varied and characterizes the same 
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sensor subset. To finalize with examining [137], the robustness of the proposed 

covariance based event detector given noise power uncertainty is what justifies its 

contribution with the additional comparison result that, in the absence of uncertainty, 

energy detector is preferable. This further verifies performance under a practical 

constraint. As opposed to this work, our analysis only uses a standard Gaussian 

statistical model for the additive noise and studies its effect with following assumptions: 

a) Gaussian distribution with specific assigned parameters and b) obeying the 

independence principle. These provide our results with an incremental correlation 

model. Zhang et al integrate spatial and temporal correlation in [138] to achieve 

improved reconstruction accuracy with the constraints of the optimization problem 

being utilization of Kronecker CS and cluster network topology. Moreover, the 

reconstruction takes place at sink level thus assuming a centralized approach. The 

random walk approach for this problem provides some issues that induce high overhead 

and thus dissipate energy. Hence, given the comments in this paper and our fully 

randomized Gaussian statistical approach the query that arises is whether a randomized 

approach could compensate for link reliability and a compact topology that ensures the 

feasibility of considering significant spatial correlation values along with temporal 

correlation of the sensed data at sensor node level observations. Another extension of 

our work could follow the investigations in this paper i.e. a randomized scheme for 

optimally selecting the sensor nodes with readings that could enhance reconstruction 

accuracy. Clearly, this could require non-Gaussian statistics assumptions and an 

optimal distribution modeling approach under a Bayesian inference optimization 

problem. Sleep scheduling separately at each cluster could also be accordingly 

coordinated for this reconstruction accuracy achieve and its corresponding tradeoff with 

network overall energy efficiency. Relating the CS methodology in the aforementioned 

paper, RIP condition is required to be fulfilled as well as the l1 norm based convex 

relaxation for sink level decoding. A comment that suffices concerning this verification 

is the Gaussian statistical assumption which verifies the CS sparsity ratio of node level 

randomly sensed data. The already provided comment in this section is the issue of 

modeling the problem of optimal sensor deployment and how it could incorporate 

posterior connectivity and reconstruction accuracy requirements. Hence, the claim that 

randomness, as in CS optimization random matrix theory, could compensate for 

deficiencies such as covering network holes, as opposed to the issue of negligible 

correlation as nodes are far apart, leads to the question of whether this case is all about 

the optimal distribution in an application-specific manner. The non-Gaussian approach 

is also a strong candidate in this problem as well and the uniform deployment could 

prove to be outperformed in terms of energy efficiency based constraints. Still, our 

Gaussian random model admits an extension as to what extent this distribution could 

provide optimal performance in a clustered sink coordinated topology as well as a 

decentralized optimization scenario. The authors in [138] employ vectorization 

operation for joint consideration of spatial and temporal correlations. As our analysis 

relies upon a fair combination of the latter two correlation models through appropriate 

parameterization of the vector that represents the transformed matrix of randomly 

Gaussian sensor readings via the Gaussian transformation matrix, the above approach 

could include Kronecker CS for derived results comparison. This could accompany the 

DFT and DCT sparsity models for temporal and spatial correlation, respectively. As a 



93 

decentralized extension remains, as already stated, a challenge the question arises from 

the above paper as to how the role of cluster head and its corresponding calculations 

could be shared among nodes and how the node subset selectivity still applies. The 

results presented in the latter work verify that packet loss does not impact problem 

formulation. Relative to our analysis, the randomized model along with correlation 

induced redundancy could account for packet loss impact absorption and, one step 

further, to reduced effect of packet loss in a gradually autonomous network. Completing 

our comments on this paper, the energy efficiency needs further attention which could 

differ from our similar claim in the analysis of this section due to the fact that the former 

rely upon a clustered sink-coordinated network. A representative work bearing 

similarities with the last one examined was conducted by Hooshmand et al in [139] and 

utilizes spatio-temporal correlation structure based on Kronecker CS. The compression 

scheme exploits signal structure in an energy-efficient manner comparable to existing 

schemes. A remark worth noting is that correlation and consequently redundancy 

permits a certain tolerable compression loss which, along with energy efficiency, 

indicates an interesting research extension integrated with our Gaussian statistical 

assumption identical to the signal statistical model in the latter paper. Sensor selection 

problem for optimal reconstruction strategy is also commented in this paper whereas 

our analysis only provides a remark that correlation induced sensor subset for 

information forwarding is feasible on the basis of slowly varying mean values of sensor 

readings as contrary to sensor reading actual values. Besides reconstruction accuracy, 

the greatest benefit achieved, as stated in [139], can be realized by admitting different 

interpretations as the energy efficiency requirement or latency (clearly not a crucial 

issue in environmental monitoring networks) or even security as we briefly comment 

on the WSN applicability section. All the above can be combined with CS 

compressibility principle to provide those performance gains. The comparison 

benchmark of covariance structure can also be considered along with independence 

assumption as considered in our analysis. The main concept relating this work to our 

analysis is that temporal and spatial correlation are firstly separately investigated in 

terms of temporal sparsifying transforms, Discrete Cosine Transform and spatial 

correlation approach by Distributed Source Coding. Then, spatio-temporal compression 

algorithms are analyzed. On the contrary, our analysis depicts that Gaussian random 

values are already sparse and we merely leverage the equivalent transformation matrix. 

Regarding spatial correlation, this paper uses quantization which considering our case 

with already slow varying mean values, quantization could result in even greater 

savings with the possible loss induced left as future investigation. Clearly, the authors 

claim negligible quantization error and the issue of complexity of their method that 

estimates sensed data based on error with respect to side information leaves the problem 

of overhead as a point of concern which could be addressed by employing advanced 

coding schemes. All sensor selection algorithms presented in the aforementioned work 

based on a scheduling scheme could be contrasted against uniform deployment. Hence, 

a Gaussian model could be assumed due to its simplicity and symmetry and could 

compensate for requirements tailored for environmental monitoring networks i.e. 

focusing on connectivity and robustness against additive noise or, more related to 

sensor selection, node failures. A straightforward extension of our analysis given the 

self-tuning remark with error input is the correlated noise consideration integrated in a 
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CS optimization problem with the l2 norm quantified error tolerance based on 

predefined threshold. Nevertheless, our statistical independence based convolutional 

approach could benefit from this self-tuned statement by selecting an arbitrarily small 

correlation value determined by parameters as the sensed data properties, the dynamic 

topology and the required reliability and robustness of the sensor network. It is also 

worth noting that our Gaussian statistics based CS sparsity ratio can also be related to 

the randomized scheme of applying a small subset of sensors for sampling and compare 

to deterministic sensor selection schemes. The above contrast could emigrate to how 

differently derived mean values in our analysis vary by employing different sensor 

selection schemes. Moreover, another problem worth investigating is how the 

neighborhood is shaped along with random subset selection and whether this selection 

scheme implies that spatial correlation value is low and how temporal correlation 

contributes to mean value representative values. It is clear that proposed scheme in 

[139] is heavily dependent on sink for reconstruction and no comment is provided 

otherwise. It is also interesting to query whether our Gaussian randomized 

reconstruction and energy estimation error derivations could be modified in the spirit 

of the latter paper where critical correlation value ranges are considered and 

additionally combined with a noise tolerance threshold instead of its mere statistical 

description. Concluding comparisons of our work over the latter paper, the statement 

of a transient phase of a windowed version induces the case of observing the extent of 

a similar case of transience in our analysis from the moment the sink begins conducting 

the calculations till the instant when calculations have reached a stage where 

representative values are known at sensor level and consequently the steady state is 

realized where the desired decentralized network operation is then feasible. A 

complementary investigation would consider mean values strategy as in our case along 

with raw data as well as other operators resulting in different quantities of data 

exchanged within the network. Proceeding further, the authors in [140] leverage 

spatiotemporal correlation in an environmental monitoring network with heterogeneous 

data types with the aid of CS methodology. Therefore, it is stated that correlation among 

nodes comes along with sensor selection schemes to reduce data rates confronting 

energy consumption. Hence, correlation between diverse data types integrated with CS 

principle encapsulates the merit of this work. An indicative CS application is the 

exploitation of sparse side information as opposed to the actual signal as stated by the 

authors. An interesting fact concerns the inclusion of weights in sums formed by 

sensors, the sums being forwarded to sink. Hence, the question regarding our work 

arises whether the sensor data forming the average values which in turn provide the 

mean values could include weights to optimize reconstruction error, noise robustness 

and energy efficiency, on the basis of reducing communication and transmissions. The 

copula function tool also implies a probabilistic extension of our work as we consider 

independent realizations along with correlation cases. Hence, copula function can be 

exploited to bridge distributions resulting from independence with those from arbitrary 

correlation values. In fact, spatio-temporal correlation induced dependencies constitute 

a challenge for shaping this copula function element in a sense of deriving the mean 

values in our analysis. Following the same concept, the Markovian assumption 

injecting memory property in the distribution derivation problem could also enable the 

extension to combined correlation and dependence on past sensor readings. The above 
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could render the investigation of resulting complexity versus slowly varying property 

of the mean values derived. The tradeoff of complexity as opposed to energy efficiency 

could also be a challenging aspect. Contrary to the latter paper, the variance of each of 

the sensor readings in the set is kept constant and thus unambiguously contributes to 

the sum of measurements and consequently to the average values derived. Moreover, 

correlation matrix fitting via likelihood estimation is not applied in our analysis whereas 

we are limited to investigating performance relative to incrementally varying temporal 

as well as spatial correlation. Extension of our Gaussian randomized scheme to other 

distributions requires balance between computational complexity and modeling 

capacity as stressed by the authors in [140]. Also worth noting is the separate energy 

consumption evaluation of the processing and transmission phases which, in our case, 

are clearly reduced due to slow variations, caused by rare abnormal readings of the 

mean values derived. 

3.6.3 System model 

The optimal system model regarding the proposed probabilistic scheme would be a set 

of concentric circles each defining a circular ring as a node neighborhood where spatial 

correlation holds as a property. Thus, instead of a square area of deployment or an area 

with the sink at the center of concentric circles, the tree network model is considered 

as the suitable topology serving as a compromise between centralized and in-network 

scenarios. Modeled as a graph G(V,E) with vertices as nodes and edges as bidirectional 

links for information exchange, data flows are feasible between any set of nodes. A 

clustered network setting could also apply while for temporal and spatial correlation 

properties a sampling rate adequate for temporal correlation and adequately dense 

sensor deployment are assumed to be fulfilled. Either quantifying the distance between 

node neighborhoods or adopting d-hops distance away from sink could be well suited 

for the correlated scheme proposed. For the completeness of the above statement, the 

sensor nodes are assumed to be dense in the defined neighborhood of the network thus 

spatial correlation is constant for the respective region. As for temporal correlation, the 

sampling frequency could be assumed such that correlation values are supported in both 

time and space dimensions. 

3.6.4 Mathematical preliminaries 

The fundamental statistical tool used throughout the forthcoming analysis is the 

Gaussian distribution Eq.(12), which is widely applied in wireless communications. It 

is characterized by symmetry and is fully described by the mean and variance. The sum 

of such variables is also Gaussian with a mean equal to the sum of the means and 

variance equal to the sum of variances stemming from the independence assumption by 

means of which the covariance terms are cancelled. Furthermore, for the correlated case 

the resulting sum of variables with equal pairwise correlation has the following 

variance: 

                                      11*)var( 2  NS                    (43) 
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where σ2 is the variance of each of the variables and ρ is equal to the common 

correlation. It must be noted that the independent as assumed additive noise is also 

Gaussian distributed for both reconstruction error and energy estimation error cases. 

For the above cases, the expression of the problem is stated below: 

                                                   Y=Φ*x+e                                          (44) 

where x is the vector of mean values from average values of sensor readings. Matrix Φ 

is the transformation matrix also Gaussian distributed with zero mean and variance 

equal to the inverse of number of variables comprising the sum. The average values are 

computed and the elements of the matrix represent the mean values of average values 

in the same way. The vector Y is Gaussian distributed as well with equal variance for 

each element forming the sum and nonzero mean stemming from the equation: 

                                            22  xmean                              (45) 

where for temporal correlation the second moment assumes a value of one and for 

spatial correlation equal to the inverse of mean values considered. Finally, the energy 

estimation error utilized the (non-central) chi square distribution with k degrees of 

freedom equal to the number of terms in the sum and non-centrality parameter for the 

vector Y nonzero mean inclusion. However, analysis also resorted to an approximation 

of the chi square distribution by a Gaussian distribution as given in [141]: 

                                         skskN 42,                               (46) 

where both mean and variance are functions of degrees of freedom k and non-centrality 

parameter s. The reason behind this is that the CS cases quantify the number of elements 

preserved thus effectively tackling such derivation for the chi square distribution case. 

3.6.5 Algorithm formulation 

For the two error estimation cases investigated i.e. reconstruction error and energy 

estimation error the related algorithms are given below: 

Algorithm 1 Reconstruction error estimation 

1. Input: Temporal correlation casetemp, spatial correlation casespat, 

spatiotemporal correlation casespattemp. Number of readings in each sensor 

(temporal/spatial cases), number of sensing periods and power consumption for 

temporal case/number of sensors and power consumption for spatial case/equal 

number of sensing periods and sensors for spatiotemporal case. Additive 

Gaussian noise distribution as zero mean unit variance N(0,1). 

For casetemp noiseless case 

2. Calculate mean and variance of each sensor reading. 

For the independence case  

3. Calculate the encoded measurement vector Y, the transformation matrix Φ and 

vector x. 
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4. Estimate reconstruction error of means of average values of sensor readings 

(vector x), transformation matrix Φ and vector Y. Evaluate according to error 

magnitude and sign. 

For correlation case  

5. Modify variance of sum according to correlation value and repeat step 3 and 4. 

For Compressed Sensing case  

6. Determine correlation and sparsity ratio values, and repeat steps 3 and 4 for low 

and high sparsity ratio values. 

For casetemp noisy case 

7. Increase sensor reading variance by one and repeat steps 3-6. 

For casespat noiseless case 

8. Modify mean value of distribution of elements based on which vector Y is 

formed and repeat steps 3-6. 

For casespat noisy case  

9. Increase sensor reading variance by one and repeat steps 3-6. 

For casespattemp noiseless case 

10. Modify mean value of distribution of elements based on which vector Y is 

formed and repeat steps 3-6. 

For casespattemp noisy case 

11. Increase sensor reading variance by one and repeat steps 3-6. 

End 

12. Output: Reconstruction errors for temporal, spatial and spatiotemporal 

correlation cases. 

 

As indicated by the above algorithm all three correlation cases are included with the 

separate assumptions of noiseless and additive Gaussian noise in each case. 

 

Algorithm 2 Energy error estimation 

1. Input: Temporal correlation casetemp, spatial correlation casespat, 

spatiotemporal correlation casespattemp. Number of readings in each sensor 

(temporal/spatial/spatiotemporal cases), number of sensing periods and power 

consumption for temporal case/number of sensors and power consumption for 

spatial case/equal number of sensing periods and sensors for spatiotemporal 

case. Additive Gaussian noise distribution as N(0,1). Gaussian distribution 

approximation of non-central chi-square distribution. 

For casetemp, noiseless case 

2. Calculate mean and variance of each sensor reading. 

3. Calculate degrees of freedom and non-centrality parameter of the (non-central) 

chi-square distribution modeling the sum of energies of the random variables. 
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4. Based on Gaussian approximation, calculate the encoded vector Y, 

transformation matrix Φ and vector x of mean values of average values of 

energies. 

5. Estimate energy error and evaluate according to error magnitude and sign. 

For correlation case  

6. Modify non-centrality parameter according to correlation value and repeat step 

3-5. 

For Compressed Sensing case 

7. Determine correlation and sparsity ratio values, modify non-centrality 

parameter and repeat steps 3-5 for low and high sparsity ratio values. 

For casetemp noisy case 

8. Increase sensor reading variance by one, modify non-centrality parameter and 

repeat steps 2-7. 

For casespat noiseless case 

9. Modify non-centrality parameter and repeat steps 2-7. 

For casespat noisy case  

10. Increase sensor reading variance by one, modify non-centrality parameter and 

repeat steps 2-7. 

For casespattemp noiseless case 

11. Modify non-centrality parameter and repeat steps 2-7. 

For casespattemp noisy case 

12. Increase sensor reading variance by one, modify non-centrality parameter and 

repeat steps 2-7. 

End 

13. Output: Energy estimation errors for temporal, spatial and spatiotemporal 

correlation cases. 

 

3.6.6 Simulation results 

All simulations were conducted using Matlab software. The simulations are divided in 

two subsections: the reconstruction error estimation and the energy error estimation. 

Both error estimations are based on Eq.(44) the mismatch between elements of Y and 

the transformed via matrix Φ, elements of vector x. 

Reconstruction error 

Concerning vector Y, the mean value of the elements that form the sum and 

consequently the mean values of the vector Y is computed according to Eq.(45) with 

unit power assumption and variance equal to 1/40 i.e. the inverse of the number of 

variables comprising the sum. The dimension of Y is defined by 30x1, i.e. 30 mean 

values considered as realizations in the simulation. The matrix Φ is thus of dimensions 

30x30 with equal number of mean values that resulted from average values from the 

aforementioned sum. The elements comprising the sum are also zero mean Gaussian 

distributed with the above variance. Finally, for vector x where the variables forming 
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the sum are equivalent to sensor readings, the zero mean and same variance are 

considered as well. For the correlated cases, the correlation was assumed to take the 

values 0.1 to 0.9 with an increment of 0.1. In the CS cases, simulations were conducted 

considering a sparsity ratio from 0.1 to 0.9 with an increment of 0.1 whereas the 

correlation values were assumed likewise. The respective values were pairwise 

considered and the pair with smallest estimation error was chosen for simulations. 

 

Temporal correlation noiseless case 

The simulations for this case include the independence case plotted by blue curve, the 

correlation case plotted by the red curve and the CS cases of low and high sparsity ratios 

with green and magenta curves. The same trend for the above cases investigated is 

followed also in the next subsections. CS based cases preserved only a subset of the 

average values in each realization. Moreover, the value obtained for each case is the 

fifteenth realization which is indicative due to curve symmetry with respect to this 

value. 

 

FIGURE 3.16: Reconstruction error for temporal noiseless correlation case 

The findings of this section plotted in Figure 3.16 indicate that independence case 

performs the worst while the optimal correlation value of 0.9 resulted in negligible error 

compared to independence applicable in cases where high precision errors are 

considered up to fourth decimal digits. The first observation of low CS error is made in 

this section. For sparsity ratio and correlation values equal to 0.1 the lower error was 

verified by the green curve. For the high sparsity ratio of 0.9 and correlation equal to 

0.8 the error was found even lower. Hence, for low sparsity ratio complying with 

incoherence CS principle the effect was verified. On the other hand, the large sparsity 

ratio i.e. small fraction of values discarded and large correlation resulted in lower error, 

meaning that correlation has a more beneficial impact as the dense case is approached. 

Thus, in an either dense or CS based cases, correlation induces lower error as a 

consistent observation. 
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Temporal correlation noisy case 

This subsection deals with temporal correlation along with additive noise consideration 

contaminating the sensor readings relative to vector x and variables based on which the 

elements of matrix Φ and vector Y are formed. This noise is Gaussian distributed zero 

mean and unit variance. Hence, the key concept differentiating the noisy case from the 

previous one is that the small decimal variance value of readings/variables is increased 

to a large extent as the unit noise variance is added to this decimal value. Consequently, 

the variance of the sum of the Gaussian variables is greatly magnified thus resulting in 

a much wider Gaussian bell curve. The related Figure 3.17 is given below: 

 

FIGURE 3.17: Reconstruction error for temporal noisy correlation case 

The CS green curve assumes a sparsity ratio of 0.1 and correlation value equal to 0.3 

while the high sparsity ratio equal to 0.9 and correlation at the value of 0.8. The 

independence performs the worst in this section as well, whereas the other values 

especially in the CS based cases depict lower error. This is contrary to the effect that 

noise deteriorates performance. However, this result is justified as follows. 

The distributions of elements of vector x, matrix Φ and vector Y have a much larger 

variance due to noise and their Gaussian bell curves overlap. Thus, variables assume 

values in a much wider range and more distant values are assumed with higher 

probability. In some simulations, results indicated even negative errors which are also 

justified by the aforementioned curves overlap which is a result of independent additive 

noise and the much larger variance compared to the variables variance and the errors 

shift towards lower values. Hence, in a practical scenario, adjusting the correlation in a 

specified value range improves the performance and lower error is obtained as opposed 

to the ideal case of independence. A final remark for CS cases is that results follow the 

same trend, i.e. lower errors were observed in comparison to the other cases in this 

subsection and the previous noiseless section as well. 
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Spatial correlation noiseless case 

Compared to the temporal correlation case, the spatial correlation assumes a smaller 

nonzero mean of the random variables that result in average values and consequently 

the mean values that represent the related matrix and vectors. This smaller mean results 

from Eq.(45) by assuming the second moment equal to 1/30 which indicates an even 

spreading of power among the neighboring nodes set to communicate by a random 

sensor selection scheme. The denominator of this second moment was chosen as the 

minimum number of independent random variables that can be well approximated by a 

Gaussian distribution in terms of the CLT. This can be considered as a spreading in the 

power domain, i.e. a uniform power allocation among all such neighboring nodes. The 

variance concerning the variables forming the sum remain the same. Figure 3.18 for the 

spatial noiseless case is given below: 

 

FIGURE 3.18: Reconstruction error for spatial noiseless correlation case 

The main observation from the figure in this section are the lower errors for all 

assumptions compared to the temporal noiseless case investigated in the respective 

subsection. The CS low sparsity ratio case depicted by the green curve assumed sparsity 

ratio equal to 0.1 and correlation value to 0.3. For the high sparsity ratio case, the 

sparsity ratio was equal to 0.9 and correlation was set to 0.8. For the CS low 

reconstruction errors the same trends of the previous sections also hold. Stated once 

again, independence dense case performs the worst while dense correlation of value 0.9 

results in slightly lower reconstruction error. 

Spatial correlation noisy case 

As in temporal noisy case, the variance of each of the variables in the sum is increased 

by one due to N(0,1) additive noise included in the model. The result of this section are 

depicted below in Figure 3.19: 
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FIGURE 3.19: Reconstruction error for spatial noisy correlation case 

The observations for this section is that the related figure indicates lower errors 

compared to spatial noiseless case and even lower errors than the temporal noisy case 

as well. The CS cases also convey lower errors with respect to the low sparsity case 

with sparsity ratio set to 0.1 and correlation set to 0.3 and the high sparsity ratio equal 

to 0.9 and correlation set to 0.9. The second observation was the increased number of 

negative errors in this subsection justified by the distributions overlapping being a more 

contributive result due to the smaller distance of distribution of the elements of the sum 

relative to vector Y from zero mean accounting for the distributions of vector x and 

matrix Φ. A final remark concerning the CS cases is the significantly lower error for 

low sparsity ratio case and the practically zero error i.e. no mismatch for the high 

sparsity and correlation valued case shown by magenta curve. 

Spatiotemporal correlation noiseless case 

The spatiotemporal correlation is a joint correlation scheme integrating both temporal 

and spatial correlation assumptions. Relative to the simulations of this section the joint 

consideration of equal number of temporal sensing periods and spatial number of 

neighboring nodes is made. The variances of the variables in the sums of independent, 

correlated and CS based case remain the same whereas the mean value of elements of 

the sum in vector Y is jointly quantified i.e. by 20 times the mean value based on 

temporal correlation and 20 times the mean value based on spatial correlation. Another 

important assumption is that the correlation value is constant between variables in each 

group and between variables in the same group. This is the reason why variance of sum 

remains the same. Figure 3.20 below presents the results for this case: 
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FIGURE 3.20: Reconstruction error for spatiotemporal noiseless correlation case 

It is obvious that the independence case has the same error magnitude. The dense 

correlation case depicts a significantly lower error compared to other noiseless cases 

verifying the improved performance effect of joint spatiotemporal correlation case. The 

CS low sparsity ratio exhibits lower error than the temporal noiseless case and higher 

error than the spatial noiseless case assuming sparsity ratio equal to 0.2 and correlation 

equal to 0.4. This can be interpreted as the joint contribution of temporal and spatial 

correlation cases leading to this result. Concerning CS high sparsity ratio equal to 0.9 

and correlation equal to 0.8 exhibited smaller error than the low sparsity ratio case as 

in previous sections. 

Spatiotemporal correlation noisy case 

The assumptions of the previous noiseless case hold for this case as well along with the 

increase of the variance of the variables in the sums considered by one due to additive 

noise consideration similar to the above noisy cases. Figure 3.21 depicting the results 

for this cases is given below: 
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FIGURE 3.21: Reconstruction error for spatiotemporal noisy correlation case 

The crucial observation for this last case is the fact that applying CS principle results in 

the drastically lowered error compared to all cases. Explaining the findings in detail, 

the independence case exhibits a decrease in reconstruction error. The red curve 

representing the dense correlation case also conveys a lower error value. The CS low 

sparsity ratio case with sparsity ratio equal to 0.2 and correlation equal to 0.5 exhibits 

the lowest error particularly in comparison with noisy cases in which case the 

comparison is fair. About CS high sparsity ratio case, the negative sign is indicative 

assuming sparsity ratio and correlation values both equal to 0.9. Interpreting the latter 

results in terms of absolute value of error, this section conveys the lowest error along 

with the spatial noisy case. Mathematically interpreted, the values of vector Y 

underestimate the resulting values of the product of matrix Φ and vector x. Related to 

assumption of fair temporal and spatial mean values, the distance of the mean value of 

elements of the sum for vector Y is between the mean value considered for spatial and 

that of temporal case. 

Energy estimation error 

This section presents simulation results regarding energy of the variables forming the 

sums in the previous section. Thus, the average energy values were computed and their 

final mean values as in the previous section. Towards this investigation, the non-central 

chi square distribution is utilized with degrees of freedom equal to the number of 

variables in the sum and non-centrality parameter fully defining the distribution. 

However, all simulations conducted consider a Gaussian approximation of the latter 

chi-square distribution the reason being that CS theory relative to Gaussian statistics 

accurately quantifies the number of samples i.e. average values in this case adequate to 

ensure reconstruction. Contrary to the chi-square, the Gaussian approximation 

effectively tackling this issue. As a final remark, all temporal, spatial and 

spatiotemporal noiseless and noisy cases are investigated in terms of energy estimation 

error as well. 
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Temporal noiseless energy estimation error case  

This first section considers temporal correlation case without additive noise considered. 

Correlation regards the variables the sum of energies of which is calculated and 

consequently the mean values as elements of the vectors Y and x and matrix Φ. 

Independence, dense correlation and CS low and high sparsity ratios are all included in 

the simulations conducted. Figure 3.22 for this subsection is given below: 

 

FIGURE 3.22: Energy estimation error for temporal noiseless correlation case 

The first observation contrary to the reconstruction error is that the independence case 

performs considerably better than the dense correlation case in terms of energy 

estimation error. Concerning CS cases, the low sparsity ratio with value of 0.4 and 

correlation value of 0.7 performs better than the high sparsity ratio with sparsity ratio 

equal to 0.9 and correlation equal to 0.2. From these results, it is apparent that former 

CS case exhibits a higher sparsity ratio and higher correlation as well, while the latter 

considers a lower correlation value. This must be accounted for together with the fact 

that in reconstruction error the CS high sparsity ratio case performs better than the low 

sparsity ratio while in this energy estimation error case the opposite is observed. Hence, 

sparsity ratio increase in the former case dictates that more samples must be preserved 

to reach the optimal energy estimation error. Additionally, the CS based negative signed 

errors although of small magnitude convey that another property of the model 

considered is that it can be characterized as lossy, i.e. the elements of vector Y are of 

smaller magnitude compared to elements of the product of matrix Φ and vector x. 

Hence, according to this representation of transformed vector x by vector Y energy is 

lost. 

Temporal noisy energy estimation error case 

In this subsection, variance of the elements the energies of which are considered are 

increased by one as in all previous noisy cases. This modifies the non-centrality 

parameter of the chi-square distribution and consequently the parameters of the 

approximating Gaussian distribution. Figure 3.23 for this noisy case is given below: 
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FIGURE 3.23: Energy estimation error for temporal noisy correlation case 

The first observation for this section is the negative sign of the errors for dense and CS 

based cases investigated. Furthermore, the decrease of correlation leads to smaller error 

as depicted by the cyan colored curve. Hence, in a practical application, the correlation 

can be decreased so as to achieve a more accurate energy estimation as opposed to the 

independence case. The low sparsity ratio assumed a value of 0.4 while high sparsity 

ratio value was set to 0.9. The common correlation value of 0.1 is justified as follows: 

as the correlation increased the error was shown to take more negative values 

represented by continuously steeper curves. Thus with error equal to one for zero 

correlation the optimal correlation for zero error approaches lies between zero and 0.1. 

Relative to value assumed for simulation the smallest value of 0.1 was considered, as 

the minimum value assumed given the specified range. Finally, the property of lossy 

representation commented in the previous noiseless subsection was found to increase 

according to the negative values of the figure for this subsection. 

Spatial noiseless energy estimation error case 

As in the spatial cases already investigated, the mean value of elements whose energies 

form the sum is modified in the same way by setting the second moment equal to 1/30 

by the random sensor selection scheme justification that was derived above. The related 

Figure 3.24 for this case is given below: 
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FIGURE 3.24: Energy estimation error for spatial noiseless correlation case 

A similar observation is the negative valued energy estimation errors for dense and CS 

based cases. The independence and dense correlated cases indicate negligible 

performance difference. Similar to previous subsection small correlation i.e. equal to 

0.1 results in lower error. CS low sparsity ratio with a ratio value equal to 0.4 performed 

slightly better than the high sparsity ratio case with a ratio of 0.9. Another interesting 

observation is that dense correlation case with minimum correlation, as depicted by 

cyan curve, performs better than CS low sparsity ratio case shown by green curve. 

Spatial noisy energy estimation error case 

Increasing variance of the elements whose energies form the sum by one is the main 

assumption as in all noisy cases. Figure 3.25 for the spatial noisy case is given below: 

 

FIGURE 3.25: Energy estimation error for spatial noisy correlation case 

The independence and dense correlation cases perform the same, while the small dense 

correlation case depicted with a value of 0.1 conveys improved performance. However, 
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the most important finding of this subsection is that CS low sparsity error case, with 

sparsity ratio equal to 0.4 and correlation equal to 0.1, performs much worse. The CS 

high sparsity ratio indicated even larger negative error and is not depicted due to figure 

scaling. Additionally, this section derives the more pronounced effect of lossy 

representation evident from the negative signed energy estimation error values. Hence, 

the model parameters must be accordingly modified to compensate for the 

quantification issue. 

Spatiotemporal noiseless energy estimation error case 

This section fairly considers the temporal and spatial correlation cases into a joint 

perspective with same assumptions as in reconstruction error spatiotemporal cases. The 

findings of the simulations for this case are shown below in Figure 3.26: 

 

FIGURE 3.26: Energy estimation error for spatiotemporal noiseless correlation case 

It is apparent that both CS based cases perform best indicating a reasonably small error 

i.e. achieving an almost perfect match. The worst performance was observed for dense 

correlation case with a minimum value of 0.1 concerning correlation, as shown by the 

cyan curve. Independence case is slightly outperformed by the dense correlation case 

showing a smaller estimation error. The crucial observation in this case is that it exhibits 

larger errors compared to the previous temporal noiseless case and smaller compared 

to the spatial noiseless case. Hence, this «weighted» contribution of the two separate 

cases is verified with the temporal noiseless contributing the most as with slightly 

smaller errors compared to this spatiotemporal noiseless case. 

Spatiotemporal noisy energy estimation error case 

This section similarly assumes a fair consideration of temporal and spatial correlation 

and an increase of variance of elements whose energies form the sum by one as in all 

previous noisy cases. The results for spatiotemporal noisy case are provided in Figure 

3.27: 
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FIGURE 3.27: Energy estimation error for spatiotemporal noisy correlation case 

The first observation regarding this case is similarly the inefficiency of the 

representation of the transformed, via matrix Φ, vector x by vector Y due to largely 

negative errors. The aforementioned «weighted» contribution of temporal noisy case 

and the spatial noisy case to this spatiotemporal case is also verified. Furthermore, 

independence case shows similar value in error with the dense correlated value with 

correlation equal to 0.9, while the dense correlation case with minimum correlation of 

value 0.1 exhibits the lowest error in this case. Finally, the CS case with low sparsity 

ratio equal to 0.4 and correlation equal to 0.1 is only outperformed by the dense low 

correlation case. CS high sparsity ratio case performs the worst. An interpretation of 

this observation is its high inefficiency given the model and simulation assumptions. 

3.6.7 Overall results interpretation 

Concerning the independence case in reconstruction error derivation the worst 

performance was observed. Hence, in a practical scenario introducing the maximum 

possible correlation will directly improve the performance thus lowering the 

reconstruction error. Moreover, all related cases both noiseless and including additive 

noise, achieved low reconstruction error with small values of sparsity ratio either 0.1 or 

0.2. This is in accordance with achieving low errors while discarding the most of the 

data samples. The straightforward impact of such a finding is the significant reduction 

in computational complexity. Another important remark is the lower error achieved in 

the high sparsity ratio case. This indicates that approaching the dense case with the 

highest correlation value greatly improves the performance as well. The errors in this 

section are also characterized by a significantly wide range of values. 

Regarding the noisy cases together with independence principle of elements comprising 

the sums involved in the derived average values and consequently mean values and the 

Gaussian N(0,1) assumption resulted in distribution overlapping. The quantification of 

such observation depends to a large extent on the simulation assumptions. This 

translates to the distance of distribution of vector Y and that of the product of matrix Φ 
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and vector x. The assumed noise variance is order of magnitude larger than the decimal 

value of the elements mentioned above. Thus, as the distributions overlap the effect of 

negative valued errors arises with the meaning that values of vector Y underestimate 

the values of the product of matrix Φ and vector x. The above translates that with the 

distribution curves overlapping the probability that the error remains relatively in a 

short value range is with low probability. As distribution variance further increases it 

is likely that the errors derived are characterized by value ranges each with an 

asymptotically specific probability i.e. a determined number of occurences. Relative to 

energy estimation error cases, the temporal noiseless case results show that 

independence outperforms the dense correlation case, as opposed to the previous 

section of reconstruction errors. In the rest of the cases, the results indicated either 

similar performance or slightly lower error for the dense correlation case. The negative 

signed errors are a consequence of lesser values of vector Y compared to values of the 

vector resulting from the multiplication of matrix Φ and vector x. Although the 

simulation results for the noisy cases assume independent noise with respect to 

variables forming the sum in Eq.(19), a practical scenario would include noise 

correlation which would improve performance. Another remark concerning the CS low 

sparsity ratio cases is the shift observed to higher sparsity ratio values for achieving the 

lowest error. Considering the minimum correlation value of 0.1, reducing correlation 

in a practical scenario can achieve an arbitrarily low estimation error. 

3.6.8 Effects in topology and routing of Wireless Sensor Network design 

The initial comment regarding the optimal network topology is a set of concentric 

circles each of which defines a neighborhood with a subset of nodes. Considering the 

feasibility of adopting standard topologies such as square grid where the node 

deployment would result in sub-optimal area coverage the tree network structure is 

assumed, as already stated. This is based on the balance between area coverage and 

circular symmetry. In order to ensure network operation, the data similarity could aid 

in optimal dynamic topology scheme. Such redundancy could contribute to fault 

tolerance and be further compensated by subset of nodes mobility. The randomized 

model assumed in the case of this section could fill in the gap of covering network holes 

and ensuring coverage and connectivity. Together with redundancy topology 

adjustment due to network failure or energy depletion could promote decentralized 

operation of the network. The proposed probabilistic scheme leading to quantification 

of reconstruction error and energy estimation error could further integrate correlation 

and CS compressibility rule to minimize energy consumption given the constraints of 

delay and bandwidth. 

Aiming at optimizing routing, the spatiotemporal correlation aspect could provide 

optimal error values and support decentralized operation which is achieved as follows. 

In the first stage and in order to achieve representative values the heavy computations 

should be shifted to the sink node, on the basis of not receiving abnormal readings. 

Given the resulting redundancy, the network nodes gradually gain knowledge of the 

representative values thus not requiring sink nodes. Hence, the proposed scheme 

supports localized computations and achieve decentralized operation. However, all the 

above are confined to the environmental monitoring case. This clearly implies that 

abnormal readings are rarely measured, temporal correlation complies to the slow 
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variation of current readings from the past values at sensor level and spatial correlation 

assumes slow variation in the readings in a given sensor neighborhood. In a more 

generalized setting with reduced scalability i.e. in cellular networks or MIMO 

cooperative relay networks the initial WSN based sensor selection scheme translates to 

the relay selection scheme for massive connectivity. The achievable decentralized 

property is directly equivalent to reduced feedback requirement which not only reduces 

overhead but also ensures reliable communication due to the emerging redundancy. 

Despite the lossy characteristic of the model in the energy estimation error cases, the 

efficiency of the scheme is verified. 

3.6.9 Applications to Wireless Sensor Networks 

Wireless sensor network design in the framework of communication systems is 

characterized by common limitations. Regarding design issues, a fundamental problem 

is the achievement of optimal results on terms of specific metrics given the definition 

and formulation of application specific constraints. 

Despite the rapid evolution of WSNs, energy efficiency still remains the issue of 

primary concern. Since energy harvesting techniques were not proven adequate to 

compensate for node energy limitation, efficient duty cycling techniques and optimal 

scheduling of node sleep intervals have been developed to coordinate active and 

inactive sensors during dynamic network operation. 

Scalability is the next important issue. Data redundancy can provide the concept of 

effective scalability based on sensor subset selection. To further exploit correlation and 

redundancy introduced bidirectional information exchange between pair of nodes is 

also supported which will directly result in the decentralized property mentioned above. 

In the context of dense deployment, interference mitigation is a major issue. Directional 

antennas and optimal sensor selection scheme can help alleviate this issue combined 

with distributed transform coding in a post correlation learning stage. The important 

extension of correlation introduced by the proposed scheme is the balance that must be 

achieved between sufficiently large correlation in terms of reconstruction error case and 

small value in terms of energy estimation error case. Due to capacity, effort to reduce 

redundancy and increase of data diversity in case of heterogeneous network or a 

network portioned in several segments is of paramount importance. Another issue is 

privacy and data security. Exploiting redundancy relative to the proposed scheme, 

subset of sensors less prone to security breach and overhearing could be selected. The 

effect of handoff management in cellular networks is of major concern especially when 

applied in an area not covered by node deployment. Given that the proposed scheme 

supports node failure management, the proposed randomized scheme can improve 

handoff management and ensure connectivity. Relative to the QoS requirements the 

decentralized property can contribute to reduced complexity and achieve optimal 

performance. The bandwidth allocation and issue of latency especially in scenarios such 

as healthcare monitoring, disaster event detection and target tracking are also of major 

concern for future wireless sensor networks. 

As a final remark, IoT networks are also characterized by the need for energy efficiency 

improvement. Additionally, heavy traffic load also emerges as an issue which is 
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addressed by smart node deployment with much larger scalability. The key 

performance issues for IoT networks [142] is the high heterogeneity, location 

awareness, effective routing and high data processing complexity. Considering the 

different types of data involved, our proposed probabilistic scheme can be applied in a 

densely deployed IoT network. Finally, cost is the critical issue determining the design 

of a WSN and is the contribution of many aspects such as low power and autonomous 

sensing nodes and the feasibility of deployment and constraints considered by a specific 

application. 

3.6.10 Conclusions and future work 

A fully randomized probabilistic scheme is proposed for evaluating reconstruction error 

and energy estimation error accounting for temporal, spatial and joint spatiotemporal 

correlation metric. In the former case, sum of readings or generally random variables 

forming sum leading to average values and consequently mean values as elements of 

the related vectors and matrix. The latter case assumes a likewise scenario with the 

difference that the sum of energies of the related variables are considered. Gaussian 

statistics are applied in all cases considered. The dense independent and dense 

correlated cases are investigated along with CS based compressibility rule and low/high 

sparsity ratios values. The results are indicative of WSN performance with application 

to WSN  communication systems.  

The proposed scheme could be integrated with CS initial l0 norm problem formulation 

which could be solved by the known convex relaxation or by means of a greedy 

algorithm. The results of error magnitude could be generalized to performance 

optimization based on correlation which can be assumed as varying throughout time or 

space i.e. different in each node. Channel fading conditions along with non-Gaussian 

or correlated noise also pose an attractive case for investigation. Topology and routing 

are also promising directions for introducing probabilistic scheme and distributed CS 

principle. To conclude, cross-layer optimization could also be addressed by translating 

the proposed scheme to the benefits of each respective layer and formulating 

performance as a CS based optimization problem with diverse constraints that not only 

cover environmental monitoring but also extent to real time requirements such as target 

tracking, disaster event monitoring or advance healthcare monitoring networks. 
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4. WIRELESS CONTENT CACHING AND CS APPLICATION TO SOCIAL 

NETWORKS, MEDICINE AND SMART EDUCATION 

Dynamic web content, in terms of volume and type diversity, poses significant 

challenges for storing, exchanging and processing of data in current communications 

networks more than ever given the Big Data deluge characterizing the rapidly evolving 

communications network generations [143], particularly mobile network data, which 

are already becoming a reality. Referring to the issue of latency, which many networks 

face, content caching in terms of the spatial dimension will store frequently accessed 

files for quick acquisition by a user that specifically makes a file request. The latter 

acquisition may provide the solution for network fault tolerance and efficient operation, 

even if a reconfiguration is needed. 

It is clear that the concept of frequent access along with file popularity generally admit 

different interpretations. Hence, a comment would suffice that dynamic content 

delivery relies on the basis of available content copies in a way of not becoming 

obsolete. To that end, the concept of a constrained optimization problem is completely 

valid and the issues of resource allocation and complexity also emerge. A relevant 

problem to the latter is to what extent a cached file needs to be updated and in which 

portion of the network this requirement is to be fulfilled. Hence, the architecture and 

dynamic topology and routing of the network are inextricably related to content 

caching. Caching is also a means to combat information redundancy in the context of 

content or information centric networking under the name of edge caching. Indeed, 

frequently accessed files are to account for duplicate file downloads and caching 

confronts this very issue. A major tradeoff is that of bandwidth vs. storage cost in a 

dense mobile network. It is also evident from a plethora of networks that frequently 

accessed portion of files is a small fragment of the total files stored hence the rule of 

CS based sparsity is a first attempt to relate CS to the analysis of this file. As a clarifying 

comment on the caching strategy efficiency, many requests for popular files may be 

locally satisfied [144] thus alleviating mobile traffic and overhead. Still, this statement 

is also adept to introduce shortcomings in terms of file popularity and diversity along 

with the localized memory storage size of each user in the network. As for the latter 

storage, one strategy is the equal spreading of files in users cache that may efficiently 

define a localized content caching operation but may hinder file diversity. Surely, there 

is a tradeoff in terms of a cached file in multiple locations as opposed to file diversity 

that could serve numerous requests in a timely and resource efficient manner. To that 

end, content update information is another issue that may require increased information 

exchange that may not be limited to a localized scale. Additionally, referring to the 

centralized scenario as opposed to a distributed one, the latter is first applied to verify 

whether it could cover specific file request otherwise the central data base is accessed. 

This directly impacts latency and complexity issues along with energy consumption 

bottleneck commented in previous chapter. This section provides a networking 

performance analysis in terms of the hit probability. This concerns cellular networks 

that are one step less densely deployed compared to WSNs of the previous section. 

Thus, the issue of heavy data traffic management is a key performance metric in such 

networks. Caching hit probability is a technique aiming at alleviating backbone network 

congestion and latency reduction by storing frequently accessed files i.e. files of high 



114 

popularity as stated in literature as opposed to the rest stored in base station entity. The 

hit probability is defined as the probability of a file requested by a user together with 

the successful delivery of the file to the user. 

4.1 Chapter outline 

In this chapter, caching hit probability is investigated in the context of communication 

networks considering uniform, Zipf-like and normal probability together with 

comparisons and interpretations. Similar to CS theory, the cases of few and many files 

cached is analyzed by simulations conducted whereby considering file segmentation 

convergence is verified. A brief notion on privacy issues for SNs is provided along with 

application of CS in practice of medicine and smart education proposing an interactive 

classroom paradigm. 

4.2 Probabilistic content caching and CS 

4.2.1 Introduction 

The results in this section are related to our publication [J1]-([145]). Categorization of 

wireless networks to cellular and ad-hoc networks [146] also relate to the challenge of 

designing WSNs that operate in a decentralized autonomous manner rather than a 

centralized operation. Thus, cellular networks required base station entity for 

information exchange coordination while ad-hoc networks are without infrastructure. 

The benefits of ad-hoc networks are autonomous operation, self-healing and self-

configuration and flexibility as well. However, their constraints are requirement of 

optimal node-level performance, limited throughput due to system loading and 

extensive latency. Hence, centralized coordination provides benefits such as traffic 

management along with latency mitigation. 

Cellular networks coverage area is divided in hexagonal cells. Each cell consists of its 

own base station with transmitter, receiver and control unit and an antenna with its 

frequency set. The use of the same frequency must not take place in adjacent cells so 

as to reduce interference. Moreover, CDMA scheme is widely employed as a means of 

transmitting through the same channel by assigning a specific code sequence to each 

transmitter. Thus, frequency diversity, multipath resistance and privacy are ensured as 

well as no performance degradation when many users communicating are involved. 

The drawbacks are self-jamming, near-far problems and QoS degradation. Cellular 

networks achieve high capacity, less local interference along with reduced transmission 

power especially when employing networks of very small size such as cellular 

networks. The disadvantages are need for infrastructure and the necessity for handovers 

as mobile users move from one cell to another. 

Caching as investigated in this paper is used in offline as well as online and cooperative 

schemes in cellular as well as ad-hoc networks. However, the case investigated 

concerns cellular networks. 

4.2.2 Why mobility-aware caching 

Information exchange in cellular networks is confronted with latency and connectivity 

issues as reliable communication must be guaranteed for optimal operation. Backbone 
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network congestion must also be alleviated to avoid QoS degradation. This is exactly 

where caching emerges as a key solution. Caching enables storage of popular in terms 

of user requests files in an information-centric manner, hence prioritizing information 

as opposed to host requesting the data. Caching reduces the need for base station 

intervention except only in cases where files are not stored in users’ cache. This results 

in reduced overhead and latency, improved overall performance, reduction of heavy 

traffic load as well as reliability and bandwidth saving. Static as well as randomized 

schemes have been developed the latter fitting into the approach of this thesis. 

Energy efficiency is a fundamental issue that characterizes cellular networks as well as 

WSNs as already stated. Addressing the limitation of energy budget, user mobility is 

applied with the common assumption of arbitrary movement inside the considered cell. 

User velocity is proven to be a crucial parameter for data exchange. Users with high 

velocity must cache most popular files to address high contact rate while users with low 

velocity must also cache most popular files to meet their own requirements. Finally, 

medium velocity users must store least popular files to avoid duplicate caching. 

In the context of content caching, file segmentation [147] which are stored in different 

users’ cache has a straightforward impact on performance. However, number of 

segments required for successful file recovery is dependent on file size, which is not 

further investigated. The derivation of specific patterns regarding user mobility along 

with randomized schemes addresses many fixed network topology issues. The users 

assumed in the investigation of the three respective distributions though are free to 

arbitrarily change position in certain areas of specific radius, the main condition being 

the number of users in each area becomes less as the transition of inner to outer radius 

areas takes place. The mobility model for this analysis is either the random walk 

supporting arbitrary movement inside pico-cell and temporal dependence model 

accounting for correlated parameters such as user velocity. 

4.2.3 Past related work  

We now review past literature that directly relates to our analysis and enhances its merit 

by performing thorough comparisons. We review general works that compare to our 

analysis in a generic manner that can be integrated with caching strategies. Proceeding 

further, works specifically tailored to caching schemes propositions are then reviewed 

with detailed comparison to our approach also conducted. 

We first review a well-structured survey [148] which highlights the main issues 

addressed in the context of communication systems which closely relate to caching 

strategies. The first issue is network users scalability and high traffic volume and 

diversity, issues that impact on the necessity of content caching in a manner of minimal 

replication of cached content and serving of file requests in a distributed manner so as 

to avoid centralized approaches with increased signaling and information updating 

overhead. The mMIMO technology could provide an effective solution for diversified 

file content popularity serving a selected subset of users that have made the particular 

content request which in our case could translate to performance comparison of hit 

probability in a massive setting exploiting correlation and setting the effective number 

of cached files considering the three distributions as in our analysis. Dense small cell 
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deployment is another direction that 5G systems take in order to limit power and 

balance frequency reuse in a real-time scenario while interference issue emerges as a 

limitation. In turn, caching hit probability may decrease as a consequence of 

misidentification of user related to file content request if interference is not accurately 

modeled in a probabilistic manner. In a cell level perspective, related handoffs could 

even complicate the situation. As for bandwidth usage, caching strategies also demand 

more use which in the 5G network could be satisfied with higher unused spectrum 

bands with the shortcoming of increase attenuation as a result of higher frequencies use. 

This could also fundamentally degrade hit probability and also question the efficiency 

of the Zipf-like distribution as a means to model caching hit probability. Besides high 

data rates, latency minimization optimizes energy efficiency of the whole network 

which is still a target metric to be achieved in caching file networks by eliminating 

duplication and redundancy. As stated by the authors in [148], spectral efficiency 

connected to bandwidth allocation is a major issue. This issue may be addressed by 

reducing file exchange and localizing the bandwidth resource problem. NOMA scheme 

may address the increase in user accommodation which in turn gives prominence to 

content caching for low latency fetching from users’ memory storage. For each cached 

file, code signature uniqueness can be the key methodology for frequency reuse and 

secure caching in an ultra-dense infrastructure. Another review paper [149] accurately 

reflects the 5G goals to be achieved i.e. even higher data rates above those reached by 

4G and energy efficiency which is anticipated to play a significant role as a bottleneck 

for future networks. Concerning these two metrics, a certain conclusion that can be 

reached is that their optimization is dependent on many parameters. With respect to 

caching, diversified popularity is indicative of data diversity that are involved in storage 

for frequent rapid accessibility which, in a probabilistic context, depends on statistical 

modeling and communication channel conditions in the portion of the network area 

where caching is conducted. Mobile caching is also a major scheme which may serve 

as a means for increased connectivity and efficient file availability but may also 

negatively impact achieved data rate. Finally, the content caching strategies could adapt 

to indoor or outdoor networks in an entirely different way and one promising extension 

of our probabilistic analysis may be realized by selecting either of these scenarios with 

different distributions considered and different optimality results reached. Proceeding 

to past literature with direct caching scheme proposition, a work [150] adopts content 

centric networking to introduce payment for caching of a user’s files. An online caching 

algorithm is proposed that assumes caching and retrieval costs otherwise blind to file 

popularity. Emitting from the related comment in this paper, our analysis could further 

provide an optimal distinction between content cached as in our case and location 

awareness the latter achieving a distributed caching scheme at the expense of tolerating 

the drawbacks resulting from centralized coordinator absence in the network. Edge 

caching contrary to core network caching could also benefit from our probabilistic 

analysis along with justification of file segmentation approach as a function of network 

area of interest. File popularity also impacts energy efficiency as a straightforward 

deduction due to reduced energy by storing frequently accessed data and jointly 

optimizing routing as well. An interesting approach to the content caching problem 

which ignores popularity and decision is made on content request could benefit from 

CS principle when applied to such networks. Specifically, a decision could be made as 
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to simultaneously evaluate popularity prior to request as an a priori information for 

effective low complexity decision along with prediction model for request given a 

certain file. A conditional probabilistic setting could account for request history so as 

to optimize future access to a certain file. Indeed, a well-posed problem could be that 

of applying CS sparsity as a means of few cached popular files in a user’s memory. An 

equivalent problem could formulate the problem of not caching a file if its popularity 

is below a predefined or dynamic traffic aware threshold or as a terminating criterion 

of the algorithm the case when cache is full of content stored. Furthermore, the so called 

hit probability that encapsulates the file request together with successful file delivery is 

tantamount to caching and retrieval costs assumed in the latter paper. These costs surely 

admit a modeling approach with an additional cost-aware constraint to the caching 

optimization problem. The proposed online scheme uses a minimum cost path whereas 

our analysis also assumes models such as the random walk model or the temporal 

dependence model accounting for user velocity hence a mobility assumption. 

Decentralized topology is also assumed that combines with popularity nonawareness 

and low overhead. Although our analysis of transmitted power adheres to increased 

user density with network cell radius decrease, the above assumption relaxes the 

necessity of this rule and fits into a more dynamic topology setting. Also worth noting 

is the case of tracing a cached file at multiple locations which can be thought of as a 

measure of redundancy. This could be confronted by narrowing down the possible 

sources from which the file can be retrieved by additional criteria such as minimized 

cost and low latency. Statistical modeling can be refined combined with CS application 

as a means for rendering tractable a complex optimization problem. One step further 

form assuming caching problem independence, inter content correlation could 

contribute to reduce overhead but also be dependent on popularity. This statement could 

also affect the parameterized Zipf’s distribution which by definition determines how 

many files are significantly popular by selecting parameter value as in our analysis. 

Although our discussion given [150] is ignorant of popularity the algorithmic derivation 

as a consequence of determining cost by answering whether a cached file is not cached 

at another location could assist in calculating its popularity. This could be well 

integrated with the three distributions considered in our case. The flooding strategy 

affects the observation of a file not cached at a given user but also implies overhead. 

Moreover, caching time intervals have diverse impacts on latency and need for 

information updating which can be considered as another dimension of the optimization 

problem. To that end, content eviction is not to be accounted for alone but in the context 

of the subset of users from which the cached content is evicted. Concluding, 

randomized caching costs, caching time intervals and cached file popularities are 

promising directions of extending distribution types for the modeling of the latter. We 

now proceed to the work of Shiral [151] which serves as the backbone of comparing 

cellular and ad-hoc networks in the content caching context. With reference to cellular 

networks, the asymmetric, in terms of computations, property favors a centralized 

scenario and paves the way for investigating the content caching at optimal locations, 

including mobility concept as in our analysis. The main properties of a sensor network 

is order of magnitude larger user deployment resulting in traffic volume and 

heterogeneity and energy efficiency. Further notion for WSNs is provided in detail in 

section 3.6. Worth mentioning is the multi-hop pattern relative to the delivery of a 
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cached file after a request to the desired user/destination. This consideration could alter 

the parameter of the Zipf-like distribution and deviated from the uniform distribution 

we adopted as a comparison benchmark. As stated above, file redundancy could confine 

caching to diverse files while degrading data rates. Regarding ad-hoc networks, their 

property of base station absence renders them vulnerable to issues such as dynamic 

packet request which in the language of content caching may lead to varying hit 

probability and popularity value of each cached file. Hence, a localized file exchange 

in each portion of a bigger network could more accurately describe functionality of an 

ad-hoc network. The next paper by Tehrani et al. [152] deals with the hybrid 

architecture of devices communicating via base station and devices communicating 

autonomously with each other, a scheme that dictates meticulous routing throughout 

the network, interference management and, relative to our analysis, content caching 

modeling in a static framework but also integrating D2D communications with mobility 

aware caching. To that end, the latter consideration must coordinate resource allocation 

in a cross-layer perspective. In the previous section, cooperation in the CR context was 

boldly stressed as an efficient means of refining and improving spectrum sensing 

performance. However, cooperation can also contribute to file duplication reduction 

and low latency with popularity aware caching by proper setting of information routing 

and MAC scheduling. Another methodology to be vastly researched is relying for 

effective content caching along with the hardware and coding constraint to be 

compensated for. Additionally, the analysis in this section deriving transmission power 

can also be incorporated with spatial correlated information exchange and specifically 

investigating the channel effects such as shadowing which may cause deviation from 

the model of lower transmission power in a decreasing radius network cell. As for 

interference management, the most well-posed proposition is the latter two-tier hybrid 

scheme where base station may also contribute to coordination but localized 

coordination may also promote interference mitigation. In the aforementioned context 

of caching due to payment benefit, relaying may also involve payment as an incentive, 

hence, file popularity can derive the payment for promoting storage at a user level. A 

probabilistic approach as our Bernoulli-wise certain probability that a file is cached and 

the complementary probability concerning a file not cached can extent to modifying 

payment according to the value of aforementioned probability as a function of other 

parameters such as maximum latency or harmful interference. An interesting 

perspective regarding interference is that spectrum may be allocated by means of 

payment to more than one user promoting a cooperative scenario with the critical 

constraint to the problem that of sufficient user distance so as not to be impaired by the 

level of related interference. To that end, game theory is an intriguing methodology that 

could refine our probabilistic analysis in search for a stable solution. Finalizing with 

the contrast of this work to our analysis, the localized «learning» of two devices in 

proximity could provide the means of autonomous operation and caching of files with 

strictly high popularity. Following the same context of D2D mobility aware caching 

and user velocity issue, the authors in [153] introduce a low complexity dynamic 

programming algorithm and a time efficient greedy algorithm as an efficient approach 

for content caching. Moreover, cached file density with respect to popularity seem to 

be interrelated, a property which could translate to transmission power related user 

density from a different point of view. The idea of ultra-dense network can be applied 
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to a certain extent from an interference point of view and content caching may also 

demonstrate limitations that become dominant when exceeding deployment density 

beyond a certain scale. This contrast may also be reflected by caching statistical 

modeling. The rateless fountain code use complies to our file segmentation assumption 

and the gap of the total and equivalent probabilities can be utilized to assess file 

recovery quality on the basis of sufficient segments collected. Similarly, linear 

complexity proposed algorithm can be modified by CS principle application with 

reference to the case of sparse and dense scenarios. Hence, this NP-hard problem can 

be alternatively solved with reported low computational burden. A well-posed 

statement which reflects the randomized availability of a certain segment to be 

recovered by a user that makes the request is that concerning the maximum delay 

constraint after the expiry of which segment is recovered from BS. This can be also 

statistically modeled jointly with Poisson contact times along with exploiting 

memoryless Poisson property. A very insightful feasibility of applying CS principle in 

the caching placement algorithm is offered by the dynamic programming algorithmic 

concept. In a comprehensive statement, CS may be recursively applied but also in a 

final refining level to derive a solution with constraints corresponding to realistic 

conditions satisfied. We also stress the similarity of the content placement strategy to a 

CS greedy algorithm so as to reduce complexity. The latter can also be related to the 

concept of decreasing gain as the algorithm element subset grows which may for 

instance be realized by an accurate real-time distribution modeling the cached file 

segments along with revisiting algorithm termination conditions. It is our opinion that 

random caching serving as a comparison benchmark in [153] should be further 

optimized jointly with mobility mechanism as opposed to the proposed greedy 

algorithm, an approach which could facilitate CS application with respect to varyingly 

parametrized Zipf distribution. The random waypoint model is also applicable in our 

analysis as it fulfills the requirement of user movement speed and location in a 

probabilistic manner. Among the simulation results in this paper, it is worth pointing 

out the result stating that high enough velocity implies assuming that each user has 

access to all users’ cache. This is quite indicative as a mobility pattern and can clearly 

be combined with our analysis in order to probabilistically encapsulate user velocity in 

specific value intervals and to thus learn the optimal distribution based on file 

popularity and user velocity. Concluding, as the authors emphasize, user density also 

referred to in our analysis can be jointly optimized in the dynamic programming content 

in order to avoid duplicate files cached and serve the needs of the entire large sized 

network. Even further, another interesting paper by Liu et al. [154] abiding by mobility 

awareness and mobile edge computing, introduces a coded probabilistic caching 

scheme for compensating for caching efficiency and throughput maximization all the 

above in small scale cellular networks. The merit of this work is the MEC-enabled 

tradeoff investigation of mobility, caching and channel selection diversity. Hence, this 

provides a unified perspective of integrating our analysis, comparatively probabilistic 

as well, by accounting for fading channel conditions along with Zipf distribution 

parameterization and different statistical modeling consideration. In order to accurately 

state system model in the latter paper, interference and frequency reuse are excluded 

issues from the problem assumptions. This paper is very insightful as the particular 

point of modeling the remaining data to be collected also assumes the uniform 
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distribution as opposed to the optimal one. This is identical to our considerations where 

evaluation of the popularity model includes uniform, Zipf-like and normal distributions. 

Motivated by the analysis of [154], a joint probabilistic problem formulation could 

model both file popularity and user density and throughput in a given area from which 

the content request can be satisfied while minimizing the segment recovery from the 

small BS. Additionally, the increase in caching hit probability demonstrates an increase 

in throughput, a result which requires the mobility intensity diversity, as stated by the 

authors in the respective paper. As concluding remarks, the popularity skewness and 

mobility intensity must be carefully balanced to avoid sensitivity induced deviations 

from acceptable optimized parameters values. Hence, skewness must be increased to a 

certain extent otherwise the observed gain will be outweighed. The most crucial point 

of merit concerning the analysis in this paper, is the exploitation of mobility and 

distributed storage to address backhaul link issues. The above could relate to our 

analysis by Zipf parameter optimization and inclusion of channel conditions as a means 

to further achieve optimal performance due to this additional knowledge inserted in the 

optimization problem. CS optimization theory could provide the means for low 

complexity derivations in the same context of the heuristic algorithms used to reach 

optimality. Another work [155] derives the benefit of applying mobility concept to 

compensate for the limitation of retrieving file portions from distant devices as a 

consequence of interference and channel conditions. The gains achieved are quantified 

in terms of coverage probability. The positive effect of mobility is serving as a solution 

to the issue of not caching the entire file in a certain device and thus, given this practical 

limitation, improves coverage probability. An indicative assumption of this paper is the 

independence of the localized area from which the file portion is retrieved with respect 

to the location of this area in the network. This renders performance evaluation 

applicable to a subset of users irrespective of their location. The context of the scheme 

applied is based on ignoring thermal noise and considering interference power instead. 

Moreover, the authors set the prerequisite of independence as a means of using the 

product rule to derive the total interference distribution calculating in turn the coverage 

probability. It is straightforward to adopt these calculations in comparing caching hit 

probability by conditioning on not only Rayleigh but diverse fading distributions. These 

channel conditions could contribute to asymptotic performance by varying the relative 

coverage areas with respect to cached files in the optimization problem. As also stated 

by the authors, multiple cached files divided in portions cached in a distributed manner 

is a challenging extension which also relates to our probabilistic analysis, the latter 

being possible treated as an increased dimensionality problem. A representative paper 

by Wen et al. [156] addresses caching hit probability optimization with respect to 

content placement probability employing random caching strategy all the above in the 

large scale heterogeneous network model. In this large scale context, MIMO wireless 

technology is another paradigm to boost throughput and improve performance in terms 

of content placement, coded caching and hit probability related reliability with the 

fundamental tradeoff referring to implementation complexity. It is straightforward to 

relate the optimality of probabilistic placement compared to its deterministic equivalent 

to the CS random matrix perspective as a means to overcome deterministic limitations. 

Hence, CS can extend our analysis by utilizing sparsity rule for cached content with 

investigation of parameter of Zipf distribution reflecting file popularity diversity. 
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Considering the effect of fading and additive noise that commonly characterize channel 

conditions, the assumption of the authors in [156] about interference being the dominant 

bottleneck is still valid and the integration of all the above poses a challenge in terms 

of impact of each channel parameter on hit probability along with accurate statistical 

modeling. The authors employ a quite insightful approach of storage capacities 

modeling the latter as varying between different tiers which is all about verifying the 

probabilistic content placement concept for extending our hit probability derivations. 

The consideration of both link reliability and content availability admit the rule that 

content may be available but reliability not guaranteed and vice versa. Given a 

communication scenario with increased path loss exponent introduces the limitation 

that transmission power increase does not have the dominant effect on association 

probability which simply translates to the fact that coded caching approaches and 

exploitation of other degrees of freedom improves content placement and deployment 

density. Relative to the joint contribution of physical layer parameters and content 

popularity, a reasonable question is whether additional channel conditions can be 

efficiently included in the path loss exponent value and additionally whether identical 

probabilistic model for popularity and channel conditions can have a major overall 

effect on reliable low latency content caching. The placement probabilities in a more 

practical case are contained in the [0,1] interval and hence as dictated by moderate 

popularity the spreading of cached content in BSs is valid. This could provide 

interesting results if combined with uniform SIR thresholds in the network area. It is 

also imperative to note the context similarity of non-convexity of the multi-tier content 

placement problem with CS based non-convex problems and therefore suggest CS 

compressibility application for such a problem since the derivation of associated 

thresholds are thoroughly considered. Finally, coded caching and cooperation can result 

in an apparent performance improvement via probabilistic analysis such as in the next 

subsection. Proceeding one step further in the context of one-hop D2D caching strategy, 

Zhang et al. in [157] propose scheduling and power allocation problem by solving for 

scheduling satisfying SIR and transmit power constraints along with the second 

problem of power allocation under the rate maximization. Zipf-like distribution is 

accordingly utilized and the non-convexity statement traced once again also strongly 

implies the CS principle consideration with the similarity of file segments considered 

in our analysis. Clearly, the approach adopted assumes single file request, hence the 

multiple file extension with the file segmentation context may lead to computation 

intractability but may point towards near optimal approaches in a similar to our analysis 

randomized context. Clearly, for achieving near optimal performance the one-hop 

distance assumption not only implies spatial correlation and also neighboring file 

availability, both of which must be investigated as to the heterogeneous network 

assumption and throughput maximization. The contribution of this paper also bypasses 

the communication reliability issue between any two users as it merely considers 

cached file availability. Thus, integrating channel status is a straightforward claim 

which may well result in non-closed form expressions necessitating numerical 

methodology for solution. The authors also provide detailed comments on the use of 

the Zipf-like distribution, based on which our uniform assumption and non-skewed 

symmetric normal distribution indeed provide statistical insights on the popularity 

defined problem. Probabilistic analysis given D2D communication could also provide 
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modeling of request file diversity i.e. no multiple request of file from a common helper 

along with mobility-aware coded caching so as to allow frequency band reuse in a 

relaxed reduced interference manner. Contrary to the latter past literature reviewed in 

this section, the differentiation of [157] is that additive noise plus interference is formed 

in the SINR calculation thus a more complete characterization of the link reliability 

model. An interesting assumption in this paper is that SINR may be satisfied in terms 

of solving the respective scheduling problem in a manner of links sharing the same user 

subset but not working simultaneously. Moreover, the optimization problem posed in 

this paper accurately reflects the principle of optimal solution feasibility in terms of 

SINR constraints and link removal when needed. It is our understanding that this 

iterative process can be revisited by applying CS greedy approach and investigate the 

accuracy versus speed algorithmic tradeoff in a mitigated interference attempt. In the 

latter algorithm serving as an extension the increment as to increase SINR, the 

significance of the increment value remains to be seen as a measure of complexity and 

power allocation efficiency.  The optimal distance between users is carefully balanced 

in the reported results and deviates from the «hot» server referred to in our analysis thus 

content is more diversified. Finalizing with this paper review, the strategy of selecting 

better channel conditions i.e. rich become richer could demonstrate interesting results 

if compared to a more uniform perspective of allocated resources in the same scenario 

and also combine with our hit probability comparisons. Therefore, a clear limitation 

could be complexity but also issues of file duplication in sparse as opposed to dense 

deployment areas and optimized latency involved, reflecting effective file popularity 

variations. Cooperative scenarios and multiple antenna spatial diversity exploiting 

scenarios constitute promising approaches as well which could further refine 

optimization results in a decentralized manner at the well-established expense of 

complex implementation and hardware constraints. The final two papers reviewed are 

inherent to the mathematical background concerning Zipf law as a benchmark to assess 

addressing the use of the respective quantity in the simulations of our next section. 

Contrary to independence based assumption as the main pylon of this thesis, Zipf 

convergence dictates consideration of past file accesses to further refine the caching hit 

ratio. Furthermore, cache everywhere strategy may be hindered by weak channel 

conditions or intolerable interference level. It is also the large file size that renders our 

file segmentation approach valid, the sparse or dense scenario of which in multiple 

cached files regime remains as a step further towards Zipf law file popularity. An 

interesting implication of Zipf’s law is the derived number of access times given a 

certain object which is obtained provided the number of accesses is large enough. 

Hence, the intuitive query is whether our analysis assuming normal distribution for file 

hit probability could be modified to leverage CLT and directly compare to the normal 

approximation and the detailed interpretations of our comparison. Our analysis could 

well incorporate the confidence interval relevant to the reliability of the caching model 

assumed. To that end, alternative a priori knowledge could be leveraged besides past 

access history in a multiple file size and requests setting. Completing our remarks with 

this paper, 5G oriented bandwidth and storage demanding multimedia streaming can 

potentially redefine Zipf-like distribution enhanced with dynamic file popularity based 

on different measurement history. Concluding this section, Breslau et al. in [158] 

provide a detailed mathematical analysis focusing on the modeling efficiency of web 
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caching by Zipf-like distribution which is a deviation from Zipf’ law. The authors in 

this paper also demonstrated weak relation of access frequency to the file size, a 

statement which could further determine the above relation via an uncertainty based 

approach where frequent request translates to reduced uncertainty and rare request 

frequency relates to greater uncertainty. Hence, the concept of independence or 

equivalently weak correlation can be extended to a wider sense, for instance, 

independent deep fading which can further elaborate on integrating diverse fading with 

caching hit probability and network deployment density. Relative to Zipf’s law 

applicability, user selection strategy could pose deviations to Zipf’s law modeling along 

with dynamic topology based randomized caching. Hence, an overall probabilistic 

optimization problem considering Zipf’s law could boil down to optimal coefficient 

derivation for cached files along with optimal distribution for other parameters of the 

problem. The accurate remark relative to weak correlation between file change rate and 

access frequency is what confines possible future research to small correlation values 

with the extension of asymptotic results in large file volume regime. Hence, the crucial 

question that arises is to what extent the Zipf-like distribution based independence 

assumption constitutes an oversimplifying one in terms of file popularity and 

availability investigating the «hot» and diverse «cold» server cases. The accompanying 

algorithm referred to as cache replacement algorithm addresses a challenging problem 

from a probabilistic point of view. The comparison in terms of hit ratio performance 

could very well extend our probabilistic analysis in a manner that given the cached files 

in a certain cache could be evicted from the cache if a certain length of the cache finite 

size does not contain the respective file. However, this has potential implications on the 

designed algorithm. A related property could be that diversity of cached files implies 

that a pattern exists such that a cached file repeatedly appears as requested in a 

maximum memory file length. Hence, file request and cache sizes have a dominant role 

in cached files contained in a dynamically varying cache. Clearly, the latter property is 

also computationally demanding, an effect to be magnified in a large scale network 

regime. Closing our remarks for [158], the asymptotic case investigated in this work 

could well invoke the CLT, hence, Gaussian distribution serving as a comparison 

benchmark in our analysis could well be utilized asymptotically by leveraging the 

crucial independence statistical prerequisite followed by interpreting popularity and file 

requests both changing as a practical assumption. 

4.2.4 Caching hit probability distributions and pico-cell network analysis 

Every file stored in users’ file is characterized by a certain hit probability derived by 

the assume statistical distribution. The current analysis considers popularity based 

strategy i.e. most popular files cached or proactive strategy exploiting user 

relationships. The simulations conducted considered a varying number of cached files 

along with three corresponding distributions: the uniform distribution, normal 

distribution and Zipf-like distribution. The uniform distribution relates to equal hit 

probability for all files, hence as number of files cached increases the hit probability 

decreases as mathematically deduced. For normal distribution instead of using Q-

function, the approximation formula below is considered: 
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Where m is a parameter set to 0.5 for accurate approximation. The third distribution is 

the Zipf-like with parameter γr expressed by the following formula: 
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FIGURE 4. 1: Probability vs. Cached Files for Uniform, Normal and Zipf-Like 

Distributions 

 

where N is the number of files and γr is distribution parameter reflecting file popularity. 

The file popularity distribution considered i.e. Zipf-like differentiates itself from the 

known Zipf’s law which results by assuming values of γr=0.986 which is sufficiently 

close to one. As opposed to this characterization for values of 0.64 to 0.83 the referred 

to distribution is derived. High γr denote few files popularity meaning that the server is 

«hot» and the balance of distance of users and file popularity is achieved by caching 

most popular files. On the other hand, lower γr values means more «diversified» 

popularity and files with different levels of popularity are cached. As a remark relating 

uniform to Zipf-like distribution, the value of γr=0 derives uniform from Zipf-like 

distribution. 

Concerning assumptions of simulations conducted we set number of files N=10 and 

parameter γr=0.7 as a value chosen balancing between aforementioned marginal values. 

The uniform distribution case is proven to be optimal for all N that integrates the 

concept of equal file popularity. It must also be noted that the trend of this curve does 

not reach a certain floor value as may be claimed at first size but gradually approaches 

the abscissa with an increasing rate. The Zipf-like distribution is outperformed by 
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uniform distribution but is superior in terms of higher caching hit probability compared 

to the normal distribution approximation. The mere deviation from this observation is 

the interval of up to two cached files where normal distribution outperforms its Zipf-

like distribution counterpart. Beyond the two cached file number, Zipf-like distribution 

demonstrates a greater hit probability. Moreover, a performance gap is observed 

pairwise for all three curves. The performance gap is shown to decrease as N increases. 

In overall, the distribution performing the worst is the normal distribution observably. 

There are two related reasons for such performance: the approximation formula used 

and the second reason is thoroughly explained by the next comments comparing normal 

and Zipf-like distributions. 

Zipf-like distribution assumes sorting of files by decreasing popularity, which does not 

hold for the normal distribution fully described by the mean and variance parameters. 

The variance indicates how concentrated the values are around the mean while mean 

represents the symmetry of the distribution. Hence, variance indicates how many files 

are most popular while the mean serves as an index of which the most popular file is. 

Another manner of interpreting the results in Figure 4.1 above is the information 

theoretic entropy/uncertainty concept. Hence, the uniform distribution outperforming 

both Zipf-like and normal distributions is the one with the highest uncertainty a property 

emanating from the flat curve of this distribution. Moreover, the entropy quantification 

of the normal distribution is strictly a function of its variance hence location blind in 

terms of mean value. This also justifies our zero mean assumption. To that end, one 

could argue that the normal distribution may take negative values, which is contrary to 

probability positive values. However, this can be justified by the fact that the expression 

leveraged to our analysis is a Nakagami-m based approximation. Hence, the positive 

valued requirement is covered by the respective nature of Nakagami-m distribution. 

The second reason for utilizing the aforementioned approximation is that Nakagami-m 

distribution, as stated in previous section, represents a compromise between the 

Rayleigh and Rician fading related distribution, by means of proper parameter 

selection. This is one step further to investigate skewed distributions along with their 

impact on caching hit probability. Finally, the Zipf-like distribution is observably 

characterized by less uncertainty than uniform distribution. The conclusion is thus 

straightforward: optimal hit probability is achieved by large uncertainty. Also noted is 

the steep slope of the normal approximation case descending to zero beyond the three 

cached files number. 

Pico cell network analysis 

We now consider a wireless cellular link region, which is divided in an inner area of 

radius Ro=50m, a value between Ro=50m and R1=100m, a value between R1=100m and 

R2=150m and a value between R2=150m and R3=200m. The received power is given 

below: 
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Where Pt is transmission power, hk=e, where e is Euler’s number as the Rayleigh fading 

channel gain and ||X|| is equivalent to distance inside the cell. The minimum received 

power is calculated for a receiver of 100MHz bandwidth, a noise figure of 1.5dB at 

temperature T=290K and SNR of 10dB thus equal to -82.5dBm or equivalently 5.6pW. 

With loss exponent equal to a=4 and rearranging the above formula the transmission 

power with respect to the radius values is derived based on the following formula: 
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The derived values are contained in the following Table 4.1: 

TABLE 4.1: Pico cell radii and transmission powers 

Area Zone of Pico Cell Radius (meters) Transmission Power 

0 50 12.8*10-6 W 

1 100 0.2*10-3 W 

2 150 1.04*10-3 W 

3 200 3.3*10-3 W 

 

The result concerning the above calculations is that denser user deployment must be 

realized in cells of small radius as larger received power is available thus enabling 

greater energy efficiency. Furthermore, larger transmission power is needed as the 

radius increases as intuitively deduced. The case of smaller received power in small 

radius as opposed in the statement above due to channel impairments as shadowing is 

not accounted for in current analysis. Complying with the denser user deployment in 

small radius areas, the caching hit probability increases along with less energy 

consumed. 

4.2.5 Extension to compressed sensing sparsity concept 

This section deals with a probabilistic analysis relative to caching hit probability of a 

specific file with probability p and not cached in user memory with probability 1-p, 

thus a Bernoulli distribution scenario. The formula of total probability is given below: 
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where it is assumed that N=10. The CS sparsity principle is represented with the case 

n<<N with n as cached files and N-n not cached, while the dense case is expressed by 

n≈N. For the former case pn
1 thus PTOT(1-p)N while for the latter case (1-p)N-n

1 

and PTOTpN . For the value n=1 the Figure 4.2 is given below: 
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FIGURE 4.2: Total and equivalent total Probability for n=1 

In order to better realize convergence of the total and equivalent probability cases, we 

introduce file segmentation strategy, i.e. decimal values for number of cached files. The 

next Figure 4.3 given below assumes n=0.2: 

 

FIGURE 4.3: Total and equivalent total Probability for n=0.2 

As apparent from the figure the convergence for decimal value representing segmented 

files is greater and «sparse» case is analyzed completely. 

The final concept is the convergence observed in the dense case as n approaches N i.e. 

N-n0. Figure 4.4 for integer value n=9 is provided below: 
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FIGURE 4.4: Total and equivalent total Probability for n=9 

The figure verifies the convergence for the dense case assumed above. Following the 

same context i.e. decimal values representing cached file segments the value n=9.8 is 

considered in Figure 4.5: 

 

FIGURE 4.5: Total and equivalent total Probability for n=9.8 
 
A final remark is that CS approximately approaches the optimal solution in the sparse 

and dense case as well. File segmentation is proven to compensate for the sub-

optimality of integer values. Thus considering the above as an optimization problem 

together with the fact that number of segmented parts, in which a file may be divided 

is dependent on the size of the file and the specific application, the validity of optimal 

result along with theoretic CS derivations can provide either a solution or a constraint 

in the formulation of the problem of using the concept of sparsity or compressibility 

together with caching files according to popularity by means of Zipf-like distribution. 
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The analysis conducted in this section relative to other approximating distributions as 

normal uniform can contribute to different total probability expressions and provide 

insights on caching files in a cellular network framework. As a clarifying remark, the 

probabilistic analyses in previous section considering the uniform, Zipf-like and normal 

distribution can be effectively combined with both CS related sparse and dense 

segmented files left for further investigation. Moreover, the last section can be 

accordingly modified to quantify entropy in a higher dimensionality regime which also, 

in terms of the latter segmentation, could fit into the CLT case as segmented file parts 

grows in number. The balance of Zipf-like distribution coefficient values reflecting file 

request and cache sizes, could provide an interesting approach integrated with diverse 

fading conditions and additive noise apart from interference levels describing the 

channel.  

4.2.6 Conclusions and future work 

This section investigates a cache-enabled cellular network with caching hit probability 

considered for probability of certain file stored in users’ cache. The need for caching 

scheme is highlighted while simulations account for three distinct distributions: 

uniform, normal and Zipf-like distributions. The results of hit probability are 

technically interpreted by comparing hit probabilities for each case. Evaluating 

transmission power and the relation to the strategy of dense user deployment in a cell 

of small radius, hit probability is quantified as greater in dense cellular network areas. 

Furthermore, assuming Bernoulli distribution for the case of file cached with 

probability p and consequently not cached with probability 1-p the convergence of 

exact total probability and equivalent probability curves is verified. The latter more 

pronounced effect is evident in the case of adopting the segmented file assumption i.e. 

decimal values instead of integers. The results can be translated by CS sparse and dense 

cases reaching a sub-optimal result. 

Directions of future research include cellular networks of larger radius together with 

applying coded caching and user mobility in the respective cell. Caching information 

capacity combined with optimal data exchange based on performance metrics is another 

promising direction. Cooperative caching is also applicable with the aim of designing 

robust efficient algorithms and reduction of delay along with adequate QoS at the 

expense of increased computational complexity. User mobility and resulting patterns 

can also be leveraged. 

Finally, CS principles and exploitation of time variant distributions is also a future 

issue. 

The domains of time, frequency, code or space provide potential extension of the 

derived results translated in the context of benefits or drawbacks for each of the above 

domains along with joint dimensionality approach in a cross-layer optimization 

constrained equivalent problem. 
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4.3 Compressed Sensing Integration with Cloud assisted Social Networking 

4.3.1 Introduction 

The results of this section are related to publication [C1]-([159]), which was co-

authored with Stergiou et al. Current wireless communication systems face the critical 

challenge of exchanging and processing of large datasets that are characterized by 

excessive volume, heterogeneity as well as different speed relative to their generation, 

processing and access. Towards an accurate remark, Big Data refers to the explosive 

growth of data in our era of information technologies that affects the majority of 

technologies and scientific areas. Hence, big data analytics provide the very means for 

analysis, processing and information extraction from these big data quantities. 

Information extraction addresses this challenging problem by exploiting pattern or 

structure within the data in a resource efficient manner. The realistic attribute of Big 

Data is unstructured and semi-structured property as opposed to the more convenient 

structured property, which is exactly the driving motivation for advanced analytics tools 

for processing and analysis of these datasets. The latter may contribute to processing 

and analysis simplification but nevertheless requires careful modeling so as to minimize 

complexity and processing overhead and achieve analysis in an optimal, robust, secure 

and flexible framework. It must also be stressed that, as is imperative in many Big Data 

analytics scenarios, the problem is formulated as an optimization problem, whereas 

optimization is carried out in multiple dimensionalities such as time space e.t.c. as in 

communication performance optimization problems. In such optimization problems a 

crucial issue involves the insertion of a pre-analysis phase so as to assess certain 

attributes of the data set that will greatly aid processing efficiency. Hence, although this 

strategy requires a portion of the total time available for data analysis, its inclusion may 

play a dominant role in the resulting information extraction and induced complexity. 

Moreover, problem transformation and learning of data attributes and structure are 

major stages prior to analysis. The former is quite intuitive as it may provide the means 

of modifying raw data to a form that eases processing and better understanding of 

dataset results at the expense of a transformation induced shortcoming. Clearly, a 

dataset of large volume may possess a certain structure that is difficult to realize due to 

large dimensionality implying computational complexity. Learning as a phase of data 

processing may be resource consuming but may greatly aid the overall process by more 

accurately predicting future outcomes and optimization trends. In light of CS principle, 

dictating prior discarding of data for efficient and low complexity estimation and 

reconstruction, data analytics also apply this rule which is exactly what abides to 

information extraction from large volume data and also improve failure robustness. 

Probabilistic modeling constitutes a part of an overall data analysis phase referred to a 

data model building. This is the next most important phase following data structure 

understanding as it includes testing and validation in a practical case but also provides 

useful insights in an asymptotic regime as a feasible consideration of the latter phase. 

An example with respect to modeling is the testing of whether a hypothesis is verified 

in a qualitative or quantitative and more complex setting. At this point, it is necessary 

to highlight the merit of statistical modeling. The stages of model building and 

evaluation assist predictability, robustness, interaction and dependences among 

independent variables of interest along with quantifying the extent to which the model 
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provides further performance of data processing and exchange. Data volume also 

relates to obtaining sufficient adequate measurements and data samples to claim 

obtaining a comprehensive model as to approximating an asymptotic model predefined. 

Based on dataset attributes, clustering is a method of grouping data judging from 

properties they possess, a technique that may pose a computationally expensive 

combinatorial optimization problem, which calls upon complexity reducing structure 

commented above. The clustering based attributes can be equivalently modeled as 

constraints to the optimization problem, the inclusion of which could alter the results 

achieved. Thus, the CS optimization principles applicability becomes increasingly 

apparent not only on the large dataset volume but also due to the practical and 

convenient property of possessing structure in diverse Big Data quantities such as cloud 

computing, wireless communications, healthcare and smart devices environments. 

Specifically, another issue of wrongly relying on certain observations stems from the 

relationship of those either as properties of the dataset or a result from a specific 

recursion of the algorithm employed. Based on probability, the above results could be 

found to be characterized by independence or correlation concepts. 

To further elaborate on mathematical tools leveraged for extracting knowledge from 

large datasets, regression is an inherent method when it comes to probabilistic modeling 

thus identifying input variables with a dominant role on the algorithm employed along 

with sensitivity analysis with respect to certain parameters. To that end, linear 

regression as deduced from its definition define a linear input-output relationship. 

Although applicability of this method is a result of sub optimal relaxation of certain 

problems that are highly intractable, linear modeling is very well-posed from a 

probabilistic point of view. Hence, expected values, uncertainty measure and abrupt 

variations as well as computed error components can all be traced by such methods. 

Additionally, CS theory promises a logarithmic relation to many problems and can thus 

be effectively integrated with linear regression schemes. Logistic regression is another 

form of addressing large datasets and serves as the basis of classification methods. 

These methods label each observation by a specific label in a predefined dataset and 

formulates an effective method of dynamically categorizing data. Categorization may 

be decided based on diverse attributes of the data and utilizes greedy algorithms that 

iteratively determine categories of available data in the same algorithmic manner 

employed in the CS counterpart of convex relaxation methods. Correlation may be the 

criterion applied to lead the algorithm to deriving a specific optimal solution. Regarding 

time series tools, the problem is solely dependent on data sample history with the 

memory order defined in an application-specific manner aiding future forecasting by 

the already commented structure exploitation. As a finalizing notion on big data 

analytics, we mention in-database analytics that rid of the necessity to transfer data to 

analytic tool for processing. Moreover, accurate data analysis may often require a 

transformation prior or posterior to data processing as to effectively translate in the 

needs and constraints each problem contains. 

The Big Data deluge including all properties such as volume, heterogeneity and velocity 

have spurred the generation of many information technologies related computing 

methodologies, the most widespread known under the name of Cloud Computing. 
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Hence, data analytics briefly mentioned above are inseparably related to Cloud 

computing. 

Cloud computing [160] refers to a local network of servers for storage, easy access and 

processing of data. In current communication systems, the necessity of cloud 

computing stems from the multi-technology integration along with the shaping of 

challenges and limitations that motivate the design and evolution of future wireless 

networks. Cloud computing provides the means for building and managing networks in 

a secure privacy preserving framework. Moreover, mobile cloud computing is a step 

further in that the transition from data center to mobile users along with inheriting the 

advantages and limitations that mobile technology and distributed access induce. 

This section proposes a Cloud computing assisted system for Social networking from a 

security perspective in the Big Data regime for efficient information exchange. As an 

extension of this work verifying its merit, a novel database is provided for assessing 

user interactions statistics with Social networking. Furthermore, CS principle 

applicability is attempted to be combined with the proposition of this section to shed 

light on proposed secure framework. 

Social networking is a social web-based structure that enables multiuser interactions in 

a way though that compromises security and data privacy of sensitive data to be 

accessed by unauthorized third parties. Hence, a secure environment as a consequence 

of CS based optimization, cryptography and encryption along with transmission and 

communication cost mitigation can be realized. Without a doubt, the feature of Social 

networking enabling coherent pattern definition from localized interventions. This 

renders pattern finding feasible in a decentralized setting promoting autonomous 

operation with optimal performance as the computations required at a base station to 

achieve desirable performance is relaxed by this convenient property mentioned above. 

This fits into structure exploitation at the core of CS optimization. It could also be 

thought as redundancy resulting from minimum interactions. Hence, the less the 

interactions required, the less computational burden falls upon the social network to 

improve performance in a low complexity manner. Another bridging point between 

cloud computing and CS is the fact that in a cloud environment time and space are 

transparent dimensionalities. This could either serve as a means to reach performance 

penalties imposed by CS in time and space but also promote the non-adaptive nature of 

optimizing algorithms. As commented above, is all about the aforementioned data 

availability by using mobile devices. Hence, the concept of random movement as a 

means to compensate for deterministic fixed routes limitations e.g. covering network 

holes. This   enables redefining resource allocation for Big Data handling in SN of low 

cost infrastructure. However, this raises security issues due to the very nature of Big 

Data and requires resilient data analytics to combat security vulnerabilities along with 

the requirement for efficient management of finite memory storage and processing 

power. 

4.3.2 CS method for Social Networking security issues 

Relative to SNs, users have the ability to dispense and send information to any set of 

users they know and thus develop a friendly web-based community. The effects of Big 
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Data and sharing of user related private information have resulted in security issues 

compromising sensitive data. Thus security breaches may be interpreted as 

unauthorized access to a site content or private information access which are generally 

not distinct since realization of one implies the other. 

Given SNs, the Big Data processing and sharing clearly verifies not just large volume 

but all three attributes defining the Big Data deluge: volume, velocity, variety i.e. 

diversity. As the transition to petabytes or higher processed has already become a 

reality, CS structure exploitation has arisen to be more imperative than ever such that 

integrated with statistical analysis leads to resource efficient information extraction 

from these datasets but may also be leveraged to enhance resilience to security 

breaches. Regarding Big Data attributes impact on Big Data characteristics, only a 

comment will suffice: Big Data volume is the most related attribute to the 

characteristics such as data hiding, user identification and public data. Moreover, public 

data category is more influenced by diverse analysis tools and services. The processing, 

storage and transfer of data are quantified by the so called encryption rate, the value of 

which introduces an additional limitation for real time processing of social networking 

data. 

4.3.3 CS applicability on proposed system 

The main framework to support system proposition is essentially based on the 

beneficial integration of encryption algorithms that separately reach high encryption 

rates and together prove to be accurate and efficient. Similarly, encryption rate 

increases as data transmission evolves which indicates the necessity of implementing 

the encryption process prior to transmission and during transmission stage. This is the 

point of convergence with respect to CS based encryption by reducing transmission 

time intervals and applies sparsity rule. Computational security and encryption 

efficiency in a scenario of adversary presence in an overwhelming probabilistic context 

as a consequence of random measurement matrix that CS optimization leverages. 

The system proposition relies on the use of cloud computing environment that renders 

the authentication enabled by providers to be transparent to network scalability i.e. it 

will be available to all users in a SN. This property further promotes CS non-adaptivity 

in the sense that user number variation does not impact security robustness provided by 

integrating cloud environment. Hence, the algorithmic integration with the additional 

assumption of multimedia content transmission leverages segmentation to smaller 

packets for minimizing packet loss. Another trend observed is the absence of stuck 

overflow via the latter integration thus ensuring smooth data transmission. To this 

extent, CS could further provide security and take advantage of this beneficial 

integration by leveraging sparsity on the effective interactions of each user with the 

Social network. Another issue of concern is whether the non-negligible impact on the 

number of users possesses a certain limit hence if IoT scenario influences CS encryption 

and resilience to attacks.  
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4.3.4 Past related work 

In this subsection, we proceed to a brief review of related work. We only highlight 

major principles related to security issues along with challenges for future 

considerations. 

In the first paper by Gao et al. [161], security issues in SNs are derived and their 

interrelations and defense mechanisms are analyzed. We will not delve into further 

detailed categorization of security threat types but instead confine ourselves to security 

breaches classification. The issue of security breach from a service provider raises the 

question on how to take advantage of centralized architecture by simultaneously 

mitigating security compromise. Thus, encryption along with user selection can protect 

sensitive data and even benefit from a localized information sharing, a strategy which 

can further be aided by CS based encryption. Thus, instead of pursuing a decentralized 

scenario the concept of provider induced security breach implies a central coordinator 

scenario for enhancing data integrity. The complementary case is user induced security 

breach, where providers prevent unauthorized access. In such cases, localized 

interaction may prove to be prone to security breach. Hence, impersonating a friendly 

user, data may be exposed to various attackers. Concerning security breach from third 

parties, the key mechanism for these breaches is the lack of monitoring the 

functionalities employed by third parties for information accessing that would be 

preventive with respect to security breaches. Hence, through a dynamic request for 

information accessing, the specification of strict set of data that the user allows access 

for constitutes a main defense mechanism. Moreover, as CS sparsification is all about 

exploiting structure as a balance to randomness based mathematical formalism, 

structure can prove to be the cause for a security breach if for instance a link pattern is 

observed by third parties with reference to user interaction inside the social network, 

which may be simple to derive requiring small overhead and being applied to similar 

networks in terms of topology. This could be effectively confronted by CS encryption. 

From an attack launching perspective, the attacker may require moderate or extensive 

knowledge given the network, which also reflect the threat level posed to compromised 

users and the complexity of security enhancing schemes. Relative to CS assisted 

security ciphering framework in the distributed setting of cloud edge environment, 

[162] introduces data security double layer scheme in a resource efficient manner 

tailored to such scenarios such as densely deployed IoT networks. The familiar concept 

of comparing measurement matrix of encoded and reconstructed signal for verifying 

whether data integrity is compromised is also commented thus assigning the 

computational burden on the decoder. Clearly, the dimensionality involved is a measure 

of the feasibility of a successful security breach. Another aspect of CS based security 

is the key updating method which relates to CS incoherence principle as a 

dimensionality reduction scheme. The latter scheme combined with revisiting 

computational asymmetry in an edge cloud environment constitutes a promising 

research direction. Regarding sorting out noise sources in a security preserving 

communication scenario, we only stress the integration of channel impairment induced 

performance degradation and security enhancing schemes. An additional strategy 

regards the determination of location of data that have been exposed to attackers. 

Hence, an attempt to protect crucial data part, the attacker could be directed to access 
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the part that do not constitute the important locations rather than locations that do not 

compromise security and do not degrade decoder size reconstruction. Another very 

interesting issue concerns correlation between sparse measurements and signal to be 

reconstructed in the sense that exposure of the former may lead to determination of the 

latter. It is this matter where CS dictating incoherence between sparsifying domain and 

measurement matrix could aid in reducing correlation while still ensuring optimal 

reconstruction in a reduced complexity context. Either by considering signal 

reconstruction failure or inserting false data in the sequence, CS based encryption can 

provide enhanced robustness to attacks. An interesting extension is that besides 

robustness, additional information about the attacker can be obtained as a 

complementary measure of sensitive data protection. Proceeding further with a sensor 

network and the challenge of distributed information exchange, security is verified 

along with low complexity achieved by user-level encryption in a cloud assisted 

scenario. An issue of data integrity relates to the random mapping of original data and 

its inverse mapping for data reconstruction is all about CS random matrix theory and 

optimal reconstruction with overwhelming probability context. Moreover, sensitive 

data being a small fraction of transmitted ones could also contribute to security 

enhancement. On the basis of CS based methodology of solving a sparsity based 

problem, the extension of l1 minimization commented to preserve security leaves a 

promising direction of future research. Furthermore, the issue of data retrieval 

conducted at the cloud must also be investigated along with feasibility of security 

compromise at the cloud-user communication phase. Also, a security breach in a SN 

could be discouraged if an excessive number of permutations are needed based on raw 

data transformation i.e. attacker faces a large complexity. 

4.3.5 Conclusions and future work  

SN is a networking paradigm that as many other entities is dependent on exchange and 

processing of large sets of data. As Big Data has already emigrated to currently 

deployed communication systems, the aspects of security and privacy preservation of 

users information constitute an inherent challenge and necessity in the SN context. To 

that end, CS provides the encryption capability when integrated to the specific scenario 

at hand. CS related optimal transformation matrices in a random manner are the main 

target of research in this area. In a high scalability network, technologies such as Cloud 

Computing for easy acquiring of frequently accessed data also impacts data security. 

The combination of CS lightweight encryption prior and during transmission stage and 

multiuser interactions monitoring in web-based communities can address the data 

privacy issue. Hence, Big Data analytics combined with CS for processing and 

information extraction either in terms of the information content or the data security 

parameters pose a significant research challenge. 

4.4 CS Integration with Medicine Practice 

The evolution of Big Data has already resulted in the utilization of different 

technologies that are assigned to address the issue of communication, storage and 

processing of this large volume and heterogeneous amount of data which have reached 

the order of zettabytes and continue to grow. This motivation has inevitably emigrated 
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to healthcare data management which have formed various optimization problems 

similar to the general context but with application specific additional constraints 

stemming from the requirements posed from medical science. Among the 

straightforward constraints are low latency in a real time measurement gathering and 

processing environment and data reconstruction accuracy so as to timely alert involved 

clinicians for a certain situation calling upon medical treatment and to accuracy to 

assess disease presence and severity. 

4.4.1 Introduction 

The results of this section are related to publication [C4]-([163]). The science of 

medicine relies just as in the wireless communication optimization methodology relies 

upon certain problems that by definition must be well-posed in order to be solvable by 

existing methods. However, CS theory has demonstrated that ill-posed problems can be 

optimally solved exploiting structure as the problem constraint. This property has 

emigrated to practice of medical science. 

Medicine deals with diagnosing and effectively curing diseases assisted by numerous 

information technologies that promote healthcare data management and efficient 

processing for useful information extraction. Hence, a priori knowledge is incorporated 

to the clinical procedure in order to conduct early diagnosis and prevention of health 

deteriorating. There is also a posteriori knowledge that follows diagnosis and relates to 

curing diseases. It is thus understandable that accurate and timely diagnosis is 

imperative that also adopts to technologies for fast data communication from the patient 

to clinician in order to effectively treat the respective disease. 

4.4.2 Biomedical Big Data and Information technologies 

Efficient information gathering, storage, processing and communication are required to 

refine disease understanding and classification. Hence, the Big Data properties are all 

satisfied when it comes to healthcare data. Similar to heterogeneous data types such as 

text, images and video, healthcare data regime implies different diseases, different 

disease severities and different patients classified via diverse criteria. 

Computers and information technologies have introduced crucial capabilities to address 

this Big Data deluge and the shift to resource expensive real time applications. Hence, 

in a clinical environment processing for clinical interpretation of data has been enabled 

through the use of entities such as wireless networks and cloud environment for fast on 

demand access of patient data without compromising their confidentiality. Centralized 

or decentralized approaches have been deployed with compensating for scheduling, low 

latency and energy efficiency of the network functionality. Technological tools such as 

Artificial Intelligence or the massively deployed IoT paradigm involving numerous 

devices connected around the globe intelligently handling biomedical data and 

processing them in a timely manner. As integration of technologies expands, clinical 

databases share information employing encryption to preserve privacy and avoid 

information leakage to third parties. 
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4.4.3 Past Related Work 

We review two highly relevant works focusing on IoT-Healthcare CS application along 

with security oriented CS based considerations. 

The first paper reviewed by Siddique [164] et al. investigates the effect of redundancy 

of data in healthcare wearable devices in order to assume a tolerable error thus enabling 

energy savings as a consequence of this relaxation. Hence, healthcare data 

consideration in this paper fits into the WSN energy consumption bottleneck 

extensively analyzed in section 3.6. Cloud assisted environment is also valid in this 

context along with data compression techniques. The most important issue pertained to 

CS application is the quantification of required measurements to achieve optimal 

diagnosis related results. The fundamental inherent information loss caused by 

compression algorithms is also a concern in healthcare data derived in this paper by 

jointly considering diagnosis accuracy. The additive Gaussian margin i.e. error 

tolerance is also concisely derived in this section which straightforward implies 

denoising algorithm tailored to the above tolerance. As a finalizing remark concerning 

this paper, the latency and energy efficiency tradeoff, as mentioned in this subsection, 

must be further elaborated as it is a major requirement for IoT biomedical wearable 

technology, in order to assist in timely treatment of a certain reported disorder.  

In the past related work in [165], Yuan et al. base their work on CS fast and secure 

acquisition, indexing and processing of healthcare multimedia data amounts as a 

consequence of their exponential increase in a cloud-assisted framework. Sampling, 

compression and recovery are analyzed and secure encrypted design along with 

memory efficiency are achieved. A well-posed statement in this work is that large 

multimedia data volume results in increased security breach potential in practical 

network scenarios. Contrary to the previous paper review, low latency is commented to 

be related with data retrieval quality. Security of compressed samples is enabled by 

prior to cloud transmission while reduced volume does not come at the expense of value 

for the clinician accessing those healthcare data. However, this preservation of content 

is what carries the cost of a privacy attack in cloud server. Bandwidth issues are also 

emerging in real-time healthcare wearable devices as rapid informing of the clinician is 

a prerequisite in such scenarios. This issue becomes more imperative in a large global 

database with dynamic information sharing. Concluding with this paper, the accuracy 

latency tradeoff is also very well investigated and stated to depend on the specific 

healthcare data application. Hence, accuracy may be required from a clinician to further 

ascertain interpretation and accurate diagnosis. However, in the case of alerting the 

clinician of an abnormal reading sensed by the wearable device requires very low 

latency which comes at the expense of accuracy loss. Finally, CS based optimization 

by employing randomness may encumber the use of security keys for future for data 

sample grouping. Thus, the latter poses a challenging future investigation. 

4.4.4 Compressed Sensing assisted Healthcare Data Management 

Medicine practice requires excessive amount of data to interpret and evaluate in order 

to perform an accurate diagnosis and decide in favor of a disease based on clinical 

symptoms. Thus, this appears to be in contrast to CS practice that involves selective 
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consideration of data and most importantly data compression to offer low complexity 

and assist in time efficient treatment and tolerable information loss thus not affecting 

diagnosis accuracy. It is therefore clear that CS based healthcare data processing must 

provide a careful selection of the related degrees of freedom in a problem so as to ensure 

tractability and solution optimality. 

In order for the above to be achieved, a parallelization consists of clinical diagnosis 

combined with laboratory test results that must be effectively integrated based on the 

clinician’s expertise. Common symptoms that relate to diverse diseases must be 

carefully examined. At this point, CS can be leveraged as to aid to determining correct 

diseases identification based on constraints that appear together with healthcare data 

structure and thus filtering the range of practical results. One possible claim in 

healthcare data processing could suggest that structure or pattern emerging in data could 

require excessive amounts of clinical examinations so as to reach a safe diagnosis. 

However, the potential for low cost and low complexity data processing has already 

been exhibited in the healthcare data deluge and thus resource efficient information 

extraction is indeed feasible. Moreover, it must be stressed that all clinical examinations 

and diagnoses inevitably involve a certain amount of uncertainty thus implying an 

information theoretic approach that can be adopted. The latter also validates an 

information theoretic analysis either for statistical inference or providing healthcare 

data oriented performance benchmarks. No detailed notion for the above will be further 

provided except for the entropy wise interpretation that frequent symptoms arising with 

respect to a class of diseases convey small amount of uncertainty while rare symptoms 

are characterized by more information content. Hence, the greater the uncertainty the 

more resources needed for clinical evaluation. 

It is also a fact that medicine like other sciences, utilize statistical methods for 

conducting diagnoses and aid the decision making just as in other information 

technology disciplines. CS leveraging advance statistical methods can boost data 

management efficiency and extend present practices in medicine practice. Another 

concept is that of an insertion of perturbation in the test results increasing uncertainty. 

The broader concept of such an additive quantity referred to as additive noise in 

wireless communication literature constitutes an error inherent in the clinical results 

conducted by a medical device. Hence, the model of inserting noise also complies to 

medical devices and instruments from a mathematical point of view as well as a 

quantitative perspective characterized by randomness necessitating statistical methods. 

This is nothing else but applying random optimization CS based techniques. The 

resulting imprecision of results must be effectively removed always attempting to 

preserve computational complexity tolerably low. Towards an accurate relation, 

randomly injected perturbation is required to evaluate so as to minimize the potential 

effect of leading the clinician to incorrect diagnosis as a result of induced deviation in 

the healthcare data processing and significant information context extraction. 

Concluding, given the globally interconnected healthcare databases, cloud computing 

enabling on demand information access always considering the need for privacy 

preservation along with web content caching [165] for fast access of frequently 

requested data are both promising technologies that enable a whole new perspective for 

promoting medical science ability to handle severe diseases in both a diagnosis and 
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treatment aspect. CR is also a key technology to enable accommodating excessive users 

in a network, both licensed and opportunistic, while not hindering communication 

quality and information exchange. 

4.4.5 Legal and Moral Issues Arising in Information Technologies Era 

As already derived in previous subsection, the global biomedical data or medical 

images are being shared and processed collaboratively, thus raising security and 

confidentiality concerns. As stated above, CS encryption could provide a lightweight 

and efficient data protection technique. Nevertheless, information leakage is still a 

concern and CS could potentially improve data integrity by its corresponding sparsity 

concept. This could be applied to integrating compression and encryption while 

selectively protecting fractions of the data sequences transmitted. At a digital identity 

verification scenario, the attacker could be discouraged in his attempt to decrypt and 

access data if he encountered a varying excessive complexity i.e. required a 

combinatorial exhaustive search, which in addition could provide adequate time for the 

legitimate users to identify the attempt and prevent data from being revealed to the 

attacker. Relative to social networking security breach scenario commented in the 

previous subsection, healthcare data also constitutes similar context for all threat types 

mentioned in the former. 

Concerning healthcare data management, there are critical moral issues to be addressed 

caused by the very widespread exchange and sharing of data. The issue of whether 

access of private medical data to a non-clinician set of users raises a most important 

issue given that medical data confidentiality must be preserved. Moreover, the 

application of a medical treatment raises the issue of necessity versus obligation. 

Another issue reflecting the latter is the imperative requirement that medical treatment 

should be accessible to all patients regardless of social distinctions and beliefs. In 

addition to the latter, each patient must have the freedom and ability to choose and 

benefit from a certain treatment in the sense of best possible clinical result given a 

certain disease. It is thus imperative that CS low complexity integration by means of 

information technologies should be oriented to society welfare and collective benefit 

given the practice of medical science.  

4.4.6 Conclusions and future work 

It is clear the CS principle could emigrate to healthcare data management efficiency 

promising computational burden alleviation and validate accurate and timely diagnosis 

capability for clinicians by sharing data through a global database infrastructure. 

Combination with cloud computing technology and the massive deployment of the IoT 

paradigm, data assessment and effective processing introduces revolutionary healthcare 

data handling. Together with advances in electronics and thus medical devices 

capabilities along with progress in medical science in terms of diseases understanding 

and treatment generation, information technologies will lead to a new data science era 

that will motivate progress in these technologies even further. 
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4.5 CS in Smart Classroom Architecture 

Smart education has emerged as one of the most essential part of smart deployment 

scenarios that has emigrated from conventional methods to complex deployed network 

assisted infrastructure as a means to provide students, educators and administrators with 

powerful tools to promote interactive acquisition of knowledge and better 

understanding of the course materials and subjects that the educator attempts to the 

students irrespective of individual properties of the students that could potentially 

handicap the education process and the main concept of each delivered course. 

A diverse number of scientific areas have significantly contributed in improving smart 

education processes such as communication technologies, sensor networks, cloud 

computing and advanced information processing. These technologies have opened new 

frontiers in smart education via massively deployed sensor networks and enabled a 

much better educational level since educator can continuously evaluate whether each 

student has thoroughly understood the course being taught but most importantly the 

emotional and intellectual state of the student which can serve as a valuable feedback 

to the teacher for explaining the concepts taught in a manner that best suits each 

individual student. 

It is also understandable that Big Data deluge ideally fits into the diversified data 

involved in daily teaching while social networking is also a paradigm technology that 

indicates the applicability of large databases and information sharing for smart 

education in a global scale. Hence, CS low complexity useful information extraction 

could not only simplify the education process in the sense of educational quality but 

also greatly aid the educator in assessing specific parameters for each student ruling out 

many parameters and keeping the desired ones to be investigated in an advanced 

pedagogical practice environment. 

4.5.1 Introduction 

The results in this section are related to publication [C3]-([166]), which was co-

authored with Stergiou et al. LMS already provide tools for an interactive teaching and 

testing methodology but has been confined to a two dimensional environment. Forum, 

Wiki, games and aggregated games are part of the education process in an asynchronous 

functionality context while real-time and mobile audio visual course conducting 

services constitute the synchronous functionality. Thus, it is the hybrid asynchronous 

and synchronous model integration that is the core contribution concept of this section 

along with state-of-the-art sensor and haptic equipment implementation for sensing and 

touch information in an interconnected interactive smart classroom. IoT, Big Data and 

cloud services thus interact in the above context and jointly progress in a rapid manner 

applicable to many information sharing network functionalities.  

As already stated, Cloud computing enable remote use of hardware and software. 

Integrated with IoT and even further to Internet-of-Everything in 6G and beyond paves 

the way for a highly interactive classroom architecture with sharing of diverse entities 

that forms a new generation of smart education methodologies. The latter entities are 

both of large volume and variety thus complying to Big Data characterization in both 

structured and unstructured form that enable CS optimization method application. 
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Regarding communication technologies, sensor networks have already been analyzed 

in Chapter 3 and thus further notion will not be given with the exception of the comment 

that this section is oriented to indoor applications for interactive streaming hence 

reliable data gathering is imperative while signal attenuation is a more relaxed 

requirement contrary to outdoor long range applications. At this point, 5G networks 

becoming a reality along with low power sensor networking are to be fully exploited in 

the smart classroom architecture. Moreover, virtual reality interrelated with haptic 

sense can redefine real-time experiments conducting and distance learning combined 

with thorough understanding from the student side in courses such as Physics or 

Chemistry where experimentation is a vital part of theory interpreting governing laws 

and their physical context. Hence, complex problems will be significantly simplified 

by taking advantage of CS sparsity rule enabling clarified interpretation even when 

parameters are filtered and confined to a certain subset as a consequence of structure 

involved in the education process of teaching physical sciences. Moreover, the CS 

principle can be considered as an advantageous set of tools for the very performance of 

wireless networks and cloud computing tools that support the educational process. 

Long-term benefits and effective training of young scientists will therefore be achieved. 

4.5.2 Past related work 

Relative to paper proposition, the concept of dividing a complex problem [167] into 

simpler ones is also adept to CS principle where the effect of clustering applied in the 

educational process simplifies solving method approach and lowers complexity of the 

overall computational load. Hence, this approach not only applies to smart classroom 

operability but also constitutes a remarkable method of approaching courses that 

involve mathematical thinking and logical deductions. The collaboration of students in 

a haptic sense enabled course not only further encourages high performance from each 

student, by awarding outstanding performance but also validates a thorough 

understanding of the concepts taught. Aligned with clustering of students and courses 

being taught in the smart classroom along with the three dimensional enhancement, 

Valsamidis et al. [168] utilizes these methods to boost educational process efficiency. 

The reported shortcoming by the authors relative to statistics useful only for platform 

administration, combination with CS could render statistical tools most capable of 

assessing large educational data efficient processing in real-time teaching environment. 

To that end, data mining is a mechanism for exploiting patterns identical to CS 

principle. A bridging remark of this paper stating data visualization to our proposition 

is the projection of the real world to the virtual world where the issue of dimensionality 

arises. Hence, given the problem of integrated technologies the latter must be 

accompanied by data visualization methods for ensuring educational process quality 

and efficient student interaction. A final comment regards the statistical interpretation 

of the virtual courses which can be combined with an information theoretic perspective 

given the methods that are applicable to solving the majority of problems of low 

uncertainty while the methods applicable to a small portion of the course problems are 

characterized by greater uncertainty. This consideration could promote understanding 

of the issues unsolved that each problem in the course addresses. Moreover, uncertainty 

quantification of clustered student mental states could more closely characterize the 

effect of each smart education process has on the participating students. Gounopoulos 
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et al. [169] proposes an evaluation framework for web-based courses in the transparent 

to time and geographical location Learning Management system. As it is the student 

profile knowledge that best shapes the needs and characteristics of the corresponding 

educators given the students participating to the virtual course, the questionnaire aims 

at acquiring this knowledge. A measure of richness of the course is the ratio quantifying 

whether the set of visited web pages is diverse or only consists of a small subset of web 

pages. Relative to our proposition, the number of students attending a specific course 

and the number of web pages visited constitute correlated parameters which could 

promote the merit of our integrated technology based classroom architecture, all the 

above to a globally interconnected context. As a concluding remark, the above 

parameters could quantify the complexity required for CS based useful information 

extraction. The last paper reviewed [170] introduces the concept of blended learning 

which elaborates on the transition from conventional teaching to e-learning 

environment. The latter results from integrating digital educational content with online 

support services. It must also be highlighted that it is the hybridization of conventional 

learning and e-learning that ensures the advantages of each process are included in the 

smart classroom as in our derived proposition. Finally, statistical evaluation integrated 

with CS as already stated above could provide a clear picture of the extent to which 

educational content is adequately absorbed by the students provided that involved 

virtual teaching parameter dependencies are not only known to the educator but also 

fully analyzed in a manner that will allow information technologies to adapt their 

functionalities for virtual interaction and efficient educational content delivery to the 

participating students.  

4.5.3 CS and the High level architecture proposition 

The proposition of this section is termed Interconnected Interactive Classroom. Haptic 

assisted user sense transfer and distant interaction. The Haptic sense interactive 

interface workstations along with sensor actuator devices serving as human machine 

interfaces comprises the integrated architecture. The proposition however also requires 

real-time protocols at a separate wise application level or at the LMS data transfer or 

sensor interoperability system. In detail, the proposed architecture consists of a cloud 

computing server where user and sensors data streams are received stored in a device 

set via local area networks. This is the point where CS encryption should be optimized 

as to whether content is known at the cloud along with data compression in a secure 

manner so as not to compromise data privacy irrespective of whether the compressed 

samples of reduced size can be exploited in the same way as raw data. Hence, privacy 

preservation will ensure that content will not be subject to unauthorized access. 

Proceeding further with proposed implementation, haptic set of devices with 

application and data transfer protocols together with virtual and augmented reality 

headsets will allow human machine interoperability with the created virtual world. To 

this end, permitting feedback will not only greatly improve human machine interface 

operation and the overall smart interconnected classroom but also effectively utilize 

memory of the whole system and also energy efficient prediction the latter coordinated 

by scheduling the feedback functionality in terms of parameter estimation quality. 

Moreover, the smart classroom instructor will have access to virtual context of the 

course thus enabling real-time evaluation of sensor data. Additionally, a haptic 
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equipment control station will provide user interaction monitoring and data usage, 

which will coordinate the smooth operation of the virtual world environment and the 

supporting local network. This proposed architecture will allow the transition from a 

conventional two dimensional LMS to a system of three dimensions with extended 

capabilities such as virtual exercises, virtual self-evaluation, virtual questionnaires and 

forum wiki. The capabilities of the student will also be enriched and consisting of 

dynamic document download through tablet or computer, a realistic three dimensional 

sense and improved interface with diverse selections available given the educational 

material. Participating in a modern virtual educational process, advance supervisory 

tools will be available along with augmented reality enhanced learning procedure. 

Finally, the property of choosing physical presence in this interconnected classroom or 

wireless connection enables to expand the impact that the benefits of this classroom 

demonstrates in an international level. 

4.5.4 Virtual Services integration with Smart Interactive Classroom proposition 

The categorization of services that are contained in the proposed smart interactive 

classroom are briefly analyzed in this subsection with possible CS applicability 

suggestions. 

The virtual classroom service is the first component that enables three dimensional 

immersion through artificial imaging. This is a crucial point where CS can provide the 

advantage of low complexity in image processing and visualization while not degrading 

the merit of the educational process. Appropriate three dimensional modeling and 

haptic devices enable this student interface interaction with the proper protocol support 

for text or messaging and streaming services. The second service is not confined to 

augmented reality related service but also includes bio-readings and bioactivity 

monitoring, the latter as logically enabling valuable feedback to the educator for taking 

the proper actions to optimize student perception as well as mental and psychological 

state. It is also a fact that energy efficiency is still a bottleneck despite the state-of-the-

art use of sensors which could be addressed by energy harvesting techniques. CS pattern 

exploitation and artificial intelligence algorithms can be part of a cognitive service for 

the proposed classroom architecture with two fold benefits real time evaluation of 

student response to virtual world and the interactive course material possibly including 

experiments and tests and feedback to the educator. The third service component 

reflects the real indoor position of a student contrary to his virtual class position in terms 

of determining the former for the projection to the latter. The fourth component relates 

to the touch interaction haptic service utilizing technologically advanced gloves with 

pressure sensors and infrared transceivers. Apart from providing low latency, streaming 

quality and feedback control, their use can be realized to visually impaired students. 

Moving on to the fifth component, three dimensional modeling of the proposed smart 

classroom and advance toolboxes use, the student are given the advantage of using three 

dimensional printers for implementing real world to the ideal world. The sixth 

component concerns virtual reality audiovisual recording. The on-demand content, 

directly implying cloud technology adaptation and three dimensional user actions to 

further refine the educational process. A matter of overhead given the recording service 

can be balanced by cloud computing and CS dimensionality reduction. The final 

component referred to as virtual course assessment service accurately evaluates student 
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mental state and performance by intelligent algorithms and clustering techniques for 

sensor and haptic data, the latter admitting a balanced optimization problem 

formulation for minimum resource expenditure in exchange with a tolerable estimation 

error of student performance as this component is responsible for various tasks such as 

evaluation reports through diverse devices, laptops, tablets, mobile phones e.t.c. It must 

also be stressed that information sharing between students, while in virtual course, 

could tremendously improve smart education interactive classroom quality as a 

measure of cooperation. Thus, thorough understanding will be promoted along with 

feedback for the educator in order to assess collective performance evaluation and also 

instrument modifications to the smart education process tailored to separate groups of 

students. 

4.5.5 Smart Interactive Classroom implementation 

The tools that will contribute to smart classroom result reliability are internal and 

external quality control. The former is conducted from the research team and 

collaborating institutions for project realization, while the latter performed from those 

accessing the virtual environment for filling in components for project development. 

Concerning implementation, it is the aforementioned integration of wireless 

technologies that contribute to the WiFi Local Area Network consisting of an adapter, 

a router with access points deployed in the rooms facilitating the smart classroom 

environments along with indoor antennas in a relay assisted environment for amplifying 

received signal power. As a concluding remark, hardware implementation must 

essentially be integrated with software that define the runtime environment and 

interface development of the virtual class. Thus, gathering of data resulting from a 

certain indoor network infrastructure along with compression and low latency and 

complexity processing are the issues defined by software use in the proposed smart 

classroom. 

4.5.6 Conclusions and future work 

This section proposed smart interactive interconnected classroom and the beneficial 

application to virtual environment teaching procedure with the use of diverse 

technologies and powerful computational tools that holistically improve the educational 

process in real-time scenarios and implementation. Extension of this proposition to a 

pure laboratory class and augmented reality environment in different languages are 

challenging issues for future research. This specialized laboratory smart education 

scenario transparent to nationalities in terms of course content will surely benefit from 

the smart classroom paradigm in primary and secondary education. It seems also 

apparent that the societal impact of this advanced smart education class will be more 

than merely an advanced educational scheme but also a motivation for  the evolution 

of smart classroom realizations with the use of the most recent communication and 

information sharing and processing technologies. 
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5. APPLICATION TO FIFTH GENERATION COMMUNICATIONS 

SYSTEMS 

This chapter is devoted to investigating application of the core concepts considered as 

assumption prerequisites in this thesis and all technical results from the previous 

chapters that resulted due to the consideration of the former in the 5G wireless 

communications systems. 

5G wireless systems [171],[172] constitute the current widely deployed but also rapidly 

evolving communication systems generation which, as each newly adopted 

communication technology, promises to successfully address bottlenecks and 

limitations of past communication system generations and also further boost 

performance, the latter admitting numerous interpretations and metrics considered 

according to the requirements of the communication scenario. To this end, 5G systems 

have evolved in parallel with the information technology and the data explosion deluge 

fundamentally termed as Big Data with all its corresponding properties successfully 

emigrating to wireless communication performance evaluation as well. Thus, 5G 

networks have already reached a mature scientific research stage and are becoming a 

reality in their deployment.   

As the 4G LTE networks are gradually surpassed, 5G paradigm promises high data 

rates specifically on the order of Gbps, energy efficiency, low latency and increased 

capacity as well as improved QoS in the context of demanding multimedia video 

streaming thus characterized by resource expensive requirements. It is the latter issue 

together with mobility that conveys the need for network performance under such 

practical constraints. This comes along with the Big Data deluge that poses even greater 

challenge of tremendously increased data traffic management. Cooperative 

communication schemes along with multiple antenna implementation, initially at 

receiver side and also extended to transmitter side with closed loop consideration and 

implementation bottleneck further promise improved performance whereas the 

optimization of CS along with information theory and statistical independence could 

potentially provide asymptotic performance as opposed to essential correlation in a 

practical sense. Correlation must be set according to maximum value dictated for 

reconstruction error minimization and minimum value dictate for energy estimation 

error. As by definition, the above schemes imply correlation based performance 

optimization and thus comparison is not only feasible but indicative of independence 

based derivations. Furthermore, communication in the range of 3 to 300 GHz termed 

mmWave communications are encompassed in the 5G network regime to increase 

capacity while exploiting this bandwidth range. However, the very small portion of the 

above bandwidth is being utilized which by definition implies the CS applicability as 

in the case of CR spectrum sensing. The anywhere anytime 5G requirement also blends 

in with cloud computing paradigm and caching at mobile users, the latter being 

equivalent in the context of low latency and on demand availability in real time 

information exchange. Referring to the dense cellular network deployment, increased 

interference versus reduced energy and high connectivity should be carefully balanced, 

in a caching randomized sense and efficient statistical modeling. Correlation may thus 

reduce throughput but improve CS based useful information extraction in terms of 
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induced redundancy. Dense deployment also involves directional smart antennas for 

mitigating interference and optimize achieved throughput. Further notion on related 

beamforming technique will be provided below where, relative to statistical 

independence, interference could be minimized by independent radiation patterns with 

CS applicability in terms of incoherence between sparsifying transformation and 

measurement matrices. Moreover, channel modeling and estimation emerge as issues 

more imperative than ever in the 5G system modeling. Hence, quantification of channel 

information in receiver and, as an extension to transmitters, admits the distinction 

between channel state information and channel distribution information. The practical 

cases investigated in 5G systems usually account for the latter, hence, channel partial 

knowledge which is perfectly related to our derivations employing relative entropy as 

a means for assessing redundant bits required when modeling an accurate distribution 

by an approximating one. The results of Chapter 3 promise to provide insightful 

properties of the CS inference based fading channels from an information theoretic 

channel coding perspective and its inherent additional complexity. In a multi-antenna 

setting, the knowledge of such channels is intractable hence CS could point to an 

effective quantity for the latter. As in this thesis fading channel distributions are 

considered along with the additive noise constraint, the LOS path leads to improved 

connectivity whereas NLOS conditions require various mechanisms for combating 

severe distortion as well as equalizers that further add complexity and may introduce 

latency. Hence, applying CS questions the feasibility of a reduced complexity such 

approach along with the optimal effect on the channel distortion, leaving the latter as 

future challenge to be addressed. Relative to multipath fading in a MIMO equivalent 

channel model the strategy of beamforming dictates steering the antenna array beam to 

a specific direction so as to increase throughput and reduce interference. However, in a 

multipath environment the received signal components either add constructively or 

destructively hence a demanding implementation complexity approach would require 

phase shifters to correct the multipath phases in order to provide beneficial information 

for signal decoding. To that end, as opposed to independence assumption, correlation 

is desirable and CS may provide the means for reducing complexity while still ensuring 

accurate signal decoding. Clearly, the mMIMO schemes ensure constructive addition 

of wavefronts at the cost of hardware complexity. The correlation concept is more 

adaptable as opposed to orthogonality, the latter representing an ideal case which does 

not practically hold. Moreover, this case is relaxed for boosting excessive user 

accommodation and spectral efficiency in the context of NOMA. Moving on to spectral 

efficiency methods, full duplex communication promises to boost capacity and 

feedback quality as well as 5G network security. Relative to our analysis in Chapter 3, 

the claimed user selection scheme for security resilience formulates an interesting 

problem of whether full duplex compromises data integrity or aids security ensuring 

communication overhead in an environment of legitimate users and sparse number of 

attackers. 

Regarding mm-wave communications [173] that involve climbing upwards in 

frequency bands from 30GHz to 300 GHz introduces both merits as well as drawbacks. 

The promise for increase of capacity anticipated to be expected is a major driving force 

for exploiting unused spectrum. The concept of CS incoherence serving as a measure 

of diversity is an indicative step towards this direction which however will require 
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advanced signal processing techniques, a context that could relate to CS with dynamic 

sparsity assumption and investigation for coding schemes tailored to these frequency 

ranges. Hence, it is channel modeling, potentially in a CS framework, that must be 

progressed as attenuation increases by climbing up in frequency. The sparse dominant 

signal components in such scenarios ought to be exploited. To combat this path loss, 

highly directional antennas for steerable beamforming also constitutes an imperative 

issue to advance along with correlation assumption given the multipath components. 

Thus, the independence based results of this thesis can be further incorporated in a 

challenging UWB analytical channel model but could also be extended to a physical 

model accounting for electromagnetic properties of this channel. Entropy based 

consideration and CS exploitation of degrees of freedom pose an interesting channel 

distribution knowledge future problem. Nonetheless, CS nonadaptivity could also 

provide a compact characterization of the entire mmWave band by a channel model 

instead of producing several, as successively higher bands are attempted to be 

exploited. Clustering could thus be considered in a temporal as well as spatial domain 

which constitute two of the many degrees of freedom such as frequency, code, power 

or angle.  

Focusing on the mMIMO technology [174], [175] the use of compact antenna sets 

comprising of a large number is a step further with the increased hardware complexity 

problem. However, it is an essential prerequisite in order to achieve beamforming gains 

by verifying that the radiation pattern beam is directive and narrow enough so as to 

increase capacity of the network and suppress interference. Integration of the above to 

precoding, particularly in the challenging NLOS channel assumption, is an interesting 

problem also viewable from an information theoretic point of view. In this context, 

antenna spacing being a function of wavelength defined in the mmWave band regime 

also depends on correlation which verifies the practicality of the latter as opposed to 

independence related diversity for achieving capacity. mMIMO promises to further 

boost spectral efficiency which in a CS context could be contemplated with the low 

complexity information extraction already benefited with optimal exploitation of 

spectrum. To this end, correlation could hinder capacity increase. Nonetheless, it should 

be considered as a practical assumption in the system design problem. At this point, it 

is worth noting that asymptotic system performance evaluation on the basis of number 

of antennas tending to infinity, channel orthogonality emerges as a consequence. 

Hence, the independence based analysis of this thesis could indeed provide valuable 

insights to this asymptotic wise consideration along with applying the mathematical 

tool of CLT and performing comparison to practical case of finite antennas number as 

well as correlation of mMIMO channel statistical modeling. Moreover, reducing 

complexity in such an asymptotic case could effectively emigrate to a practical massive 

antenna deployment scenario. Such tradeoffs remain to be investigated by employing 

CS as well as effective entropy based analysis quantifying uncertainty of the wireless 

channel. In a beamforming scenario, sparsity of RF chains as opposed to number of 

antennas constitutes a well posed CS performance optimization problem. In this 

context, interference could more easily be cancelled and energy efficiency can be 

achieved. As an indication of correlation being a practical assumption, the de-

correlating process for promoting spatial multiplexing is an essential step and could 

directly relate to a fully scaled problem including all channel impairments, namely, 
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additive noise, fading and interference followed by the optimal derivation of correlation 

value. Another issue of mMIMO technology is antenna interleaving which as number 

of antenna elements grows could evolve in a computationally demanding combinatorial 

problem to be solved. CS could thus be utilized together with a compromise of 

beamforming gain achieved. Another point of similarity is the computational 

exhaustive CSI in the mMIMO setting. Hence, a reduced complexity approach for the 

latter could lead to the partial distribution knowledge problem adopted in this thesis 

along with variable length coding quantified by Shannon and relative entropies. 

Channel reciprocity is another convenient property that could improve channel 

estimation. From the above, it can be easily deduced that CS optimization is indeed 

applicable in the mMIMO regime for reducing complexity emerging as a consequence 

of massive antenna deployment, potentially assuming optimization in a case specific 

adaptive sense. It is also noted that in frequency selective channel model, the occurrence 

of a deep fade is highly unlikely when statistical independence is assumed. This implies 

the application of CS and uncertainty quantification in the latter fading model. 

Additionally, in high mobility scenarios, the correlation of mobility parameters and 

channel dynamics points towards performance improvement of the 5G networks. Also, 

due to high data rates achieved, the measurements for estimating the channel in a 

scheme relying on measurement history could become outdated and thus of limited use. 

Moreover, an estimation error could likely propagate in future computations thus 

severely degrading performance. Furthermore, it is the signaling overhead and critical 

resource allocation in the mMIMO setting that poses the major complexity problem, 

which could relate to our statistical fading channel analysis since partial distribution 

knowledge fits into the scheduling problem as a practical constraint. Concerning 

mMIMO detection, sparsity based algorithms are already applicable, hence, the notion 

of compressibility as a measure of deviation from strict sparsity can be combined for 

improved detection performance providing robustness to fading, an observation 

admitting further extensions as to the statistical channel model considered. Performance 

could also be enhanced by claiming energy efficiency achieved by increasing antennas 

thus reducing transmit power in a «spreading» sense approaching a uniform allocation 

model. The latter could be compared to a biased power allocation scheme accompanied 

by a reduced CS based complexity adaptive scheme. Similar to the thesis derivations, a 

combined entropy based channel coding scheme by initially narrowing down channel 

multipaths arrived at receiver could also compensate for partial distribution knowledge 

along with indicating presence of interference. In such complex scenarios, CS 

compressibility could render error rate performance improvement feasible and also 

address the algorithmic expensive computations such as matrix inversion as the channel 

matrix dimensionality grows. Proceeding to a relative mathematical formulation, if 

such matrices are composed as a sum of diagonal and off-diagonal matrix and the 

inversion applies on the diagonal case, significant computation savings are achieved. 

Remaining at a mathematical fading channel model perspective, the relation of entropy 

as opposed to mathematical expression constitutes an interesting approach extending 

beyond statistical independence to a correlation-aware scenario. It is also worth 

mentioning that the correlation practical value is encapsulated in the fact that in a 

mMIMO setting, transmitted and received signals are correlated, a property to be 

accounted for. This mutual dependence could aid reconstruction quality as well as low 
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complexity resulting from the CS theory. A very attractive approach of sphere decoding 

which by definition limits constellation points to those within a specified radius is the 

consideration of the criterion that defines this radius. This could translate to a CS 

constrained optimization problem providing refined results.  

Proceeding to dynamic spectrum sharing in a 5G CR network [176], [177], the 

dimensions of time and space jointly define the principle of frequency reuse feasibility 

and provide potential for dynamic spectrum, as a valuable resource in CR networks 

without degrading performance. What defines the complexity of spectrum sensing is 

the requirement to adjust software and hardware in this dynamic problem. Hence, in 

this dynamic scenario of exploitation of higher frequency bands, spectrum sensing 

techniques must be accordingly tailored to the specific applications. A challenging issue 

regards the spectrum sensing accuracy with the requirement for continuous sensing, 

which requires effective algorithmic design. Algorithmic complexity arises in the 

context of making use of past sensing history deemed necessary in this dynamic setting. 

In this higher frequency regime, CS may introduce the problem of UWB sparsity which 

could demand increased interactions to estimate in a prior to sensing phase. Moreover, 

an interference-aware bandwidth allocation scheme could prove to be of combinatorial 

nature thus admitting, under CS theory defined conditions, a computationally efficient 

method for addressing such a problem. CS could also be integrated with channel coding 

and spectrum access strategies, namely overlay and underlay to optimize spectrum 

utilization and decrease sensing time delay. Information theoretic channel modeling 

could also aid in optimizing SUs spectrum access accounting for tolerable interference 

from the PU activity side. The strategy of NOMA, for which detailed remarks will be 

given in the subsequent paragraph, is a strategy that unequally allocates power to a large 

number of users along with interference cancellation, a valuable result in the 5G CR 

context. The spectrum sensing efficiency is based on spectrum inference which 

essentially involves spectrum prediction based on past spectrum occupancy statistics 

exploiting correlation properties. Thus, spectrum inference poses a tremendous 

challenge for applying the probabilistic approach in this thesis accounting for additive 

noise and fading channel distribution as practical constraints along with exploitation of 

past decisions as well as occupancy related statistics. Compressive spectrum sensing 

addressing the wideband channel sensing issue can be effectively combined in order to 

reduce complexity and loosen the stringent requirements on ADCs functionality as an 

impact on hardware complexity. The time, space and frequency domains are the 

straightforward ones for dynamic spectrum inference and access. However, code 

domain also conveys promising results by assigning code signatures related to sensing 

of a certain set of frequency bands. With reference to time domain and the zero/one 

problem formulation for expressing channel availability or occupancy respectively, 

inference can incorporate both stationary and non-stationary models given the variation 

of the respective probabilities. Along with dynamic probabilities of detection and false 

alarm along with fast varying channel conditions, the latter setting constitutes a feasible 

extension of our work that adopts a target false alarm probability scenario. Given the 

spatial spectrum prediction model along with our analysis including CRs and WSNs 

spectrum occupancy variations encompass all dimensions namely, time, frequency and 

space and it is in this sense that correlation must be considered. It is thus imperative 

from an algorithmic design sense, that the channel parameter, sensing of spectrum as 
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well as interference level are evaluated. To that end, a comparison must be made 

between CS linear projections of reduced dimensionality and linear prediction 

employed for inference algorithms. However, the claim that nonlinearity, as more 

flexible, could result in improved adaptive CS optimization algorithms along with 

convexity being applicable can characterize efficient spectrum inference in a digital 

signal processing context. Weighting in the characterization of the significance of past 

observations for future ones can provide the means for optimal spectrum sensing and 

inference and also point towards the optimal algorithm for the problem at hand. Thus, 

even in the case of known distribution the assignment of probabilities for each decision, 

busy or idle, can prove to be computationally expensive. In such cases, additional a 

priori knowledge or entropy related analysis can provide the key tools for alleviating 

complexity. Moreover, Bayesian inference is a well performing methodology based on 

a priori distribution to predict a posteriori distribution. This can be combined in the CS 

inference context to provide insights about performance evaluation by incorporating 

temporal as well as spatial correlations. Entropy can be successfully integrated with our 

convolution based probabilistic scheme to improve spectrum sensing in the context of 

predictability. In this randomized setting, mobility arises as a useful strategy 

compensating for localized poor channel conditions as well as requirements for 

ensuring connectivity and continuous transmission always in a pattern-wise context. 

This could further aid dynamic topology configurations and sensor failure management 

in distributed sensor network setting. As an additional comment, a joint domain 

inference approach i.e. including the essential code as well as angle domains i.e. in 

multiple antenna setting could further boost prediction quality and spectrum sensing 

efficiency. 

Moving on to NOMA [178],[179], utilization of a resource block accommodating more 

users is achieved by relaxing orthogonality. Providing the means of achieving spectral 

efficiency and increased throughput, NOMA brings forth the question of non-adaptive 

allocation of resources in a diverse set of fading channel conditions and also the contrast 

of this approach with CS compressibility criterion which more closely resembles the 

strategy of choosing users with good channel conditions. Furthermore, fairness could 

serve as a practical constraint to the above optimization problem for optimal allocation 

of available resources. In other words, NOMA ensures massive network deployment 

which, combined with spatio-temporal correlation consideration, further enhances user 

accommodation. Given the straightforward claim that NOMA pursuing fairness could 

degrade performance, the benefits of such strategy is spectral efficiency which admits 

further extension in terms of an information theoretic limit accounting for achieved rate. 

A probabilistic analysis similar to the one in this thesis based on convolutional statistics 

could adopt NOMA in order to orient optimization in a QoS perspective, coined by the 

term CR-NOMA. An essential comment is the application of hybrid NOMA where a 

closely related to CS combinatorial problem approach is the grouping of users in order 

to assign same resource to each group. Performance issues with correlations arise in 

this context particularly relative to decoding complexity. Furthermore, the 

differentiation of user channel conditions providing the performance gain could well be 

related to CS principle of incoherence which is also a prerequisite for CS performance 

optimization. Moreover, the derivation of average code length for describing the 

channel, as adopted in the analysis of this thesis, combined with capacity achieving 



151 

coding is a fruitful direction to be considered. Moreover, user ordering employing 

entropy criterion is a feasible extension of the thesis analysis. An important issue is that 

of user ordering according to channel feedback. There exist many parameters to be 

considered for this problem such as the issue of outdated data due to rapid channel 

variations, the complexity of acquiring useful data as well as correlation property which 

could relax the need for high overhead. CS compressibility is a potentially useful tool 

for the latter problem formed by assuming different number of antennas at the BS and 

at users’ side. Multiple users with diverse requirements also resemble a cooperative 

scheme with NOMA applicability. In this context, full duplex communication can 

provide the superior performance of NOMA compared to half duplex relaying. User 

ordering according to QoS requirements, instead of channel conditions, is another 

direction to be investigated by means of an optimal probabilistic model accounting for 

correlation as a more practical case compared to independence. To that end, channel 

conditions, specifically attenuation as a consequence of using higher mmWave 

frequency bands, is another parameter to be considered. Channel distribution 

knowledge and approximation using a different distribution thus employing relative 

entropy could lead to assessment of performance limitations and interference mitigation 

resulting from practical assumptions of NOMA scheme. Additionally, in the CS 

approach, learning the optimal sparsifying domain along with a randomized 

measurement matrix stemming from statistical channel model is an attractive 

alternative. From the above, it is apparent that the benefits of applying NOMA 

principles integrated with other 5G technologies further boost performance capabilities 

and compensate for issues such as energy efficiency together with the well justified 

user scalability. From a coding perspective, the strategy of treating other users’ signals 

as noise in the decoding process is already mathematically supported in terms of 

achieved capacity in the NOMA fairness context. Towards achieving interference 

mitigation, processing power as a requirement in 5G networks could benefit from the 

statistical assumptions of independence versus correlation combined with NOMA as a 

means of achieving massive connectivity. CS based sparse number of users compared 

to magnitude of antennas deployed is also a viable point of investigation which could 

provide optimized bounds of performance. NOMA oriented cooperative 

communications involving resource sharing i.e. power but also computational burden 

could be further elaborated in the query of whether a decentralized scenario such as in 

a WSN could be supported in this asymmetric context. In such an attempt, the promise 

for more user accommodation by NOMA could be beneficially integrated. A measure 

of the merit of rate achieving performance by employing NOMA is determined by the 

assumption of low SNR which also extends to CR-ED scheme efficiency in such 

regime. Integration of fading channel model with beamforming based beam 

misalignment cases and the impact of the latter on NOMA performance degradation 

could be combined with uncertainty quantification approach and channel coding. 

Hence, misalignment can be compensated for by NOMA for serving maximum number 

of users by each beam. Relative to NOMA cellular network cases, the typical 

assumption states that far users are poorly served as opposed to nearby users. However, 

the shadowing effect which could render the above statement inaccurate requires further 

attention in terms of the manner on which NOMA enables spectral efficiency and 

extensive user accommodation along with the impact on interference cancellation 
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decoding task. Stated differently, the imperfect channel knowledge could result in 

decoding order ambiguity, an issue that could be alleviated by additional a priori 

information. Relaying is also based on this principle. Additionally, the pursuit of 

fairness by NOMA complying to the uniform allocation strategy as the analysis of WSN 

in this thesis, further stresses the need of evaluating CR scheme in terms of 

opportunistic spectrum use in a manner of not inducing harmful interference for PU. 

Energy harvesting constitutes a step further towards NOMA oriented selection of users 

with good channel conditions in order to assist weak powered users. Having already 

stated the merit of randomized mobility, the integration with NOMA exploiting a 

certain pattern, could enable the massive connectivity requirement of such networks. 

Regarding NOMA and cloud/edge computing integration the asymmetric computation 

property along with easy access of frequently requested information could provide 

practical performance enhancements and assist in low latency and minimized energy 

allocated in the NOMA sense.  

Proceeding to the energy efficiency requirement for 5G networks [180], the 

fundamental statement encapsulates the fact that energy efficiency is characterized by 

certain tradeoffs that relate to spectral efficiency discussed above in the NOMA context, 

deployment efficiency, delay and bandwidth. In plain words, energy efficiency, as a 

desired goal to be achieved, is an outcome of many parameters relative to wireless 

system performance. Hence, the consideration of CLT which in theory applies to 

Gaussian and non-Gaussian distribution models, as in our analysis can potentially 

encompass various practical channel models and convey performance benchmarks by 

simultaneously exploiting statistical correlation. The OFDM scheme based on sub-band 

division, promotes energy efficiency by optimally utilizing narrowband channels for 

transmission thus promoting energy efficiency, and resilience to frequency selective 

fading and interference. In a practical sense, energy efficiency and achievable rate can 

be a vital set of conflicting objectives. To that end, previously discussed NOMA pursuit 

of fairness can provide a viable performance balance. Moreover, delay constraints can 

translate to transmission rate requirements. A target value capacity can also provide a 

solution to the above issue. Furthermore, heterogeneous network design, diverse fading 

conditions and asymmetric computations assisted by correlation parameter and uniform 

energy consumption can redefine performance bounds in a most practical manner 

answering 5G network requirements and result in effective algorithm design for the 

above. Diversity in terms of power consumed by hardware circuitry is another 

parameter affecting energy efficiency, rendering CS optimization tools applicable in 

UWB communications thus simplifying implementation complexity. It must also be 

noted that properly selected coding scheme is energy efficient as well and interference 

mitigating. Energy efficiency tailored to each user as well as characterizing the whole 

system can be met with joint channel assignment which strongly implies statistical 

correlation. Nevertheless, the independence model can provide performance bounds 

and limitations when compared to the more realistic correlation assumption. Regarding 

the feedback addressing channel distortion minimization, channel estimation with the 

energy efficiency constraint impinges on complexity with the additional issue of 

outdated measurement history, which heavily degrades channel estimation for rapidly 

varying channels. As a means of reducing hardware complexity in a multiple antenna 

setting, antenna selection involves zeroing power allocation, an approach which is 
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based on uniform power spreading and must be investigated by considering mutual 

coupling effect regarding empowered antennas. A very interesting approach of 

achieving capacity for a multi-antenna fading channel concerns the asymptotically 

cancelling of fading randomness as transmit antennas tend to infinity. In a mMIMO 

setting, this rule could establish useful bounds to be achieved together with employing 

CS optimization theory. It is already evident that for practical finite antennas number 

spectral efficiency is improved. As for the mathematical formalism supporting massive 

connectivity, CS random matrix theory could provide reduced complexity as the 

channel matrix formulation in the performance optimization problem generally depends 

on the product of the numbers of transmit and receive antennas, which is a cumbersome 

indication. Energy efficiency in a heterogeneous network is a function of many 

parameters. The mere definition of heterogeneity directly implies the different energy 

budget such as macro or smaller cells and the query of whether the total consumed 

energy needs to be coordinated by clustering or, in general, a central BS. In such 

architectures, randomized models could address deficiencies and derive the optimal 

topology for ensuring the desired connectivity. The quantification of uncertainty given 

asymmetric computations and asynchronous communication is another indicative 

manner of modeling. 

Concluding with 5G oriented applications of CS and results of this thesis to 5G network 

paradigm we refer to the mobile edge caching schemes in a mobile perspective 

[181],[182] as to address the data exponential growth which constitutes the critical 

burden on 5G system parameter design and evaluation. Edge computing essentially 

reduces latency induced by distance between users and data center in the cloud 

computing paradigm. Hence, MEC has arisen as a vital 5G network technology. 

Furthermore, it is the capability of MEC to assess channel conditions and mobility 

patterns that render the entire analysis of this thesis applicable by adopting a statistical 

model exploiting similarities and abilities so that an optimization problem with 

practical constraints can be formulated. In other words, additional knowledge can be 

leveraged to obtain the caching solution that optimally fits into the caching application. 

As briefly commented in Chapter 4, mobility caching is a strategy that can provide 

significant improvement of content caching and delivery depending on file popularity 

and velocity of mobile provider. Thus, classification of popularity and request 

frequency by means of entropy could further characterize the mobile caching scheme 

adopted. Bandwidth requirements as a function of file popularity, channel conditions 

and dynamic data traffic constitutes an extension viable to the WSN analysis in Chapter 

3. As MEC corresponds to real time applications, a probabilistic analysis comparing 

different distributions, such as in this thesis, could provide the solution to low latency 

and connectivity. Moreover, latency reduction could be traded with energy efficiency. 

Regarding cellular network architecture distinction between centralized and distributed, 

the crucial differentiation relates to global information in the former compared to 

localized knowledge confined to the user neighborhood. This contributes to shaping the 

caching problem in terms of file segments selection to be cached and extent to which 

the caching strategy considered adequately serves the target set of users requesting 

content. To that end, cooperative caching can further enhance the efficiency of edge 

caching scheme at the expense of increased overhead. The latter can be reduced in a 

manner accounting for correlation of cached content which as deduced in the WSN 
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analysis in Chapter 3, generates redundancy and thus reduces cached, requested and 

delivered content. It is worth noting that the aforementioned patterns should be 

exploited in order to contribute to the tradeoff between randomness resulting from 

statistical models adopted and structure. The latter favors implementation and is the 

main property reflecting CS sparsity based optimization. As a comment to the latter, 

the small dimensionality of frequently requested content compared to the total files 

cached in mobile providers could assume sparsity property and provide practical 

bounds on caching efficiency. It is also imperative to stress the merit of cached content 

prior to request or after the specific file has been requested. This raises the concerns of 

caching efficiency and past request history in addition to need for adequate storage 

capacity in mobile caches.  Caching efficiency is also dependent on the alignment of 

mobility pattern and file request pattern. This direction subtly implies that CS could be 

applied in terms of these patterns in order to alleviate complexity in a randomized 

model that jointly encompasses the above. In a post content delivery context, update 

phase relates to finite storage capacity and optimal cached content tailored to each 

mobile provider. Sharing of cached content is feasible while reducing energy 

consumption. From a mathematical point of view, statistical correlation can be 

employed in terms of a weighted expression of the cached files either in a single user’s 

cache or in a group of mobile users confined in an area inside the network. Thus, 

correlation induced redundancy supporting a decentralized network topology, as in our 

analysis in Chapter 3, further promotes caching efficiency. Caching efficiency also 

conveys a tradeoff with respect to interference, which necessitates utilization of 

beamforming techniques to limit cached content delivery to the desired target users. 

However, cooperation which promises availability of requested content in a localized 

manner also amplifies interference. Clearly, if a file request can be served by redundant 

mobile providers, the increase in throughput and mitigation of interference is feasible. 

To that end, a well fitted probabilistic model just as in our analysis by including fading 

and noise for channel conditions could contribute not only to low complexity file 

delivery but also optimize resource allocation such as bandwidth or power and reduce 

delay. Moreover, integration of content sharing and time varying non-uniform file 

popularity in an information theoretic framework should be considered to address 

practical edge caching scenarios while adopting probabilistic models that accurately 

predict dynamic file requests. The effectiveness of such models when integrated with 

our comparisons made on the basis of the three distinct distributions will surely sharpen 

the accuracy of our approach and lead to optimal prediction of future file requests and 

deliveries to the intended users with the aid of mobility. Another interesting point to be 

commented relates to the content placement problem which, in the absence of extra 

knowledge, could lead to a computationally demanding problem where CS theory can 

be applied, the latter exploiting features such a limited number of most popular files 

requested and salient correlation of file requests. Concluding this topic, dynamic file 

requests and deliveries entail optimal exploitation of both time and space along with all 

dependencies that regulate these domains. Probabilistic models along with uncertainty 

quantification portray interesting approaches that randomness can be used to 

compensate for deficiencies arising from rapid variations of file requests and channel 

conditions specifically interference. 
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

6.1 Conclusions 

The current wireless communication systems have naturally evolved in the era of 

exponential data growth that does not cease to increase in dimensions as well as 

heterogeneity and diversity. This data growth emigrates to wireless communication 

system performance and design requirements with a vast range of conflicting objectives 

that formed what is referred to by the term tradeoffs. As the type of information that 

are transmitted wirelessly and reconstructed at receiver side fall into the category of 

multimedia streaming which is characterized as resource demanding when exchanged 

through wireless systems, signal processing techniques that are of low complexity while 

still preserving information content are more needed than ever. To this end, current 

wireless communication technology continues to evolve based on thorough 

understanding of current system limitations and providing solution to overcome the 

latter. 

This is where CS steps into the stage to offer low complexity information processing 

which in terms of sampling and acquisition outperforms the traditional Shannon-

Nyquist sampling theorem and thus provides promising results for low complexity and 

simplified hardware decoding at receiver end. The mere requirement for achieving the 

above goals is structure at information translating to the notion of sparsity. This 

structure existence is verified in most scientific areas as well as wireless 

communications. Along with statistics and information theory, modeling of wireless 

communication systems and performance assessment along with CS principles applied 

this thesis has contributed to performance evaluation of wireless system performance 

with the practical diverse fading and additive Gaussian noise considerations. The 

fundamental statistical assumption upon which the analysis of this thesis is founded is 

statistical independence. As an assumption, the latter statistical property is far from 

realistic as is perfectly illustrated in the findings of noisy fading channels modeling and 

performance. Indicatively, information theoretic derivation of average code description 

length for the wireless channel exhibited less samples when the additive noise was 

considered as a practical assumption of the channel. Moreover, Rician fading 

accounting for an optical LOS link between transmitter and receiver was found to 

require more bits than the Rayleigh fading channel which relates to severe fading and 

NLOS conditions. All these are due to the prism of independence. A feasible 

interpretation to the above states that channel with more uncertainty i.e. most 

informative require less bits under the independent assumption. Moreover, the analysis 

conveyed that uncertainty can be coupled with CS reconstruction accuracy with 

reference to the fading channel. 

Another point relating CS to fading channel distributions in the additive noise regime, 

was inference based on preserving largest in magnitude channel gains as a measure of 

compressibility. This inference resulted in very indicative results that reflect the fact 

that CS does not increase complexity if statistical independence is assumed to hold. 

Three distinct fading distributions were considered and the analysis conducted revealed 

that CS based inference resulted not only in error performance gains but also in zero 

additional complexity. From a mathematical point of view, the above results are 
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consequences of the fact that the convolution operation in terms of statistical 

independence creates mathematical expressions that produce these findings. All these 

results admit the aforementioned interpretations. Moreover, in order to adopt an 

approach that resembles CS linear projections a Taylor polynomial representation was 

leveraged with the assumption of second degree polynomial as the minimum order 

capturing curvature verified by fading distributions curves. Performance tradeoffs were 

stated relative to convenient property of polynomial being differentiated and integrated 

in a trivial manner. This property was thus traded with performance penalty. It must 

also be noted that the results from the Taylor approximated distribution are all 

consequences of the combined approximation quality as a function of expansion point 

and polynomial degree as well as statistical independence. Hence, CS inferred and 

Taylor approximation cases provided notable insights under this statistical assumption. 

Proceeding to the CR technology, the additive noise cases were only accounted for as 

more realistic. The diverse fading distributions were considered and the results obtained 

categorized CS optimization case in terms of LRT statistics in favor of PU presence. 

Independence also impacted the derived results. Related threshold and CLT cases 

abiding by the Gaussian assumption served as optimistic measures of skewed non-

Gaussian fading distributions considered. 

The thesis analysis also proceeded in the consideration of temporal, spatial and 

spatiotemporal correlation in a WSN setting with the vital assumption of Gaussian 

distribution i.e. symmetric and adequately described by mean and variance. Moreover, 

the zero correlation cases investigated directly implied independence by exploiting the 

relative property uniquely characterizing Gaussian statistics. Reconstruction error and 

energy estimation errors were shown to demand conflicting correlation magnitudes for 

each of the aforementioned errors. Specifically, reconstruction error was found to 

improve with increasing correlation while lowest energy estimation errors resulted from 

low correlation values. It thus became intuitive that, according to the WSN scenario at 

hand, optimal correlation value must be chosen as to provide a balance between these 

two error metrics. However, the main concept behind this analysis is its applicability to 

monitoring networks where abrupt readings are not received as opposed to other 

scenarios where real time operation is imperative and delay as well as dynamic readings 

are received. 

The results of this thesis further encompassed content caching in the case of network 

exchanging frequently accessed data retrieved from static or mobile providers. A 

probabilistic model is adopted and the well-established Zipf-like distribution is 

compared to the uniform and Gaussian distributions. The results obtained were 

interpreted in terms of file popularity assumptions considered to being consistent. 

Finally, the CS based file segmentation scenario was adopted and the cases of small 

fraction, in terms of total file segments, as well as number of segments closely 

approaching the total file number were assumed and the total resulting probabilities 

produced convergent curves. The analysis briefly underlined the security issues in 

networks such as the SNs as a Big Data effect. Suggestions on applying CS to the 

practice of medicine as well as healthcare data management were drawn and led to the 

conclusion of the requirement on joint progress of many scientific areas in order to reap 

the optimization benefits of CS theory and practice. Finally, a smart education paradigm 
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was described in terms of an augmented reality interactive classroom that provides 

advantages as an integration of many technologies. 

The results of all above chapters were directly fitted into the performance and 

limitations of 5G systems that constitute the currently deployed wireless systems 

generation. Potential for evolving in 5G and beyond are apparent under the prism of 

statistical models that address the overcoming of current limitations and compensate 

for the challenges of the information technologies relative to Big Data deluge. 

6.2 Discussion and Future Research Directions  

The major guideline for future investigation is the impractical assumption of statistical 

independence. Hence, although this thesis provided useful insights, comparison with 

the much more realistic case of correlation is imperative in order to approach a thorough 

understanding of performance bounds and limitations that shape today’s wireless 

communication technology. In particular, correlation of fading channel realization as 

well as correlation of additive noise and fading define a practical scenario as opposed 

to independence. 

To this direction, CS problem formulation by means of matrix algebra and lp norms 

enhanced with correlation assumption being already under intense research indicates 

an approach that despite progress made can tremendously benefit from an information 

theoretic point of view not only by our channel coding consideration but with scrutinous 

research for efficient and capacity achieving coding schemes. The numerous 

interpretations that coding and information sources have taken point towards a 

significant gap between the concept of coding and the practical constraints that describe 

performance of wireless communication systems. All the above from a correlation point 

of view. 

Another fundamental assumption upon which our analysis is founded is second order 

statistics. Hence, apart from the Gaussian distribution case in the WSN case where 

mean and variance are adequate to fully define the distribution, fading distribution 

require higher order moments given their asymmetric property. However, second order 

statistics are proven adequate to conduct the analysis in this thesis as variance being a 

measure of spread of the distribution with respect to its peak. Variance was considered 

as a measure of uncertainty given a specific distribution quantifying the average number 

of bits required for describing the channel while relative entropy is another measure of 

uncertainty quantifying additional required bits by approaching the assumed 

distribution by an approximating one. Another fact that reflects the use of second order 

statistics is the use of Gaussian related parameters such as threshold for our proposed 

ED method for CR as well as CS required number of samples. It is thus straightforward 

that extension of the analysis in this thesis considers higher order moments and the 

consequences in channel modeling accuracy in this extended case. It must also be noted 

that non-Gaussian distributions are not only confined to fading channel models but also 

to non-Gaussian noise as well as modeling other problem parameters. In summary, 

examining the distributions included in this thesis from an information theoretic point 

of view some remarks indicate future research directions. The uniform distribution is 

the most uncertainty containing distribution while Gaussian distribution entropy is only 
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a function of its variance. This also deduces that second order statistics does not degrade 

entropy calculations. 

It is also worth noting that CS theory essentially deals with underdetermined problems 

where structure is necessary in order to narrow down solutions with reference to the 

initial combinatorial problem. Hence, it is necessary to relate the above to the wireless 

communication system degrees of freedom, namely, time, frequency, space and code. 

Throughout this thesis the time and space domains were considered while frequency 

and code were not accounted for except for the entropy based average code length 

derivations for the latter code dimension. Regarding frequency domain, the findings of 

this thesis are most representative and extension to the frequency domain such as power 

spectrum analysis, spectral efficiency along with capacity achieving coding schemes 

can be made. In the context of 5G communication systems, effective bandwidth for 

employing CS based notion of sparsity is another interesting direction. Moreover, 

correlation in the frequency domain is also an interesting consideration if integrated 

with the twofold bandwidth allocation issues: spectrum scarcity and spectrum 

underutilization. Compressive spectrum sensing is also an already mature scientific 

area, relative to which the computational complexity in the UWB regime is drastically 

reduced by sub-Nyquist sampling technique. Concerning code, the vast range of 

efficient coding schemes with the pursuit of achieving Shannon capacity in terms of the 

specific application formulates various extensions of our work which suggests 

statistical independence and correlation contrast. 

Additionally, spatial diversity exploitation being the definition of multiple antenna 

systems and encompassing the reason for achieving improved performance already 

verifies intense scientific research by means of CS optimization theory, a crucial 

observation being the multipath clustering and sparse dominant clusters admitting CS 

based statistical modeling. One step further in the 5G wireless system paradigm being 

mMIMO in higher frequency ranges is a plausible extension of CS and realistic 

assumption of correlation. Multiuser setting also poses interesting cooperation and 

performance issues in the 5G cellular network paradigm. Summarizing the effect of CS 

on multiple antennas at receiver as well as transmitter, the angle domain reflects the 

AOAs of multipaths at the receiver. Combined with geometrical models of multipath 

scattering environment and geometric perspective of CS norm minimization theory in 

terms of the optimal value of parameter p for expressing the lp norm also poses a 

challenging optimization problem.  

Due to power domain consideration, the NOMA oriented pursuit of fairness implying 

a uniform power allocation and in general resource allocation must also be further 

investigated. Contrary to this strategy, the approach of selecting users with for instance 

better channel conditions or equivalently more remaining energy as in our WSN 

correlation based analysis is also a viable solution. The two aforementioned strategies 

could be simultaneously leveraged in a heterogeneous network setting by carefully 

contemplating performance tradeoffs. 

Moving on to a mathematical formalism oriented issue, the contrast of discreteness and 

continuity is also prominent in this thesis. Hence, it is observed that entropy calculations 

abide by the discrete equivalent definition leading to quantification of average code 
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length for the channel. However, variance calculations in terms of first and second order 

moments, the latter being included in the Lagrange multiplier setting in the combined 

entropy and CS distribution reconstruction scenarios, all assume integral derivations 

thus continuous assumptions. Among the most important results in this thesis that 

contributed to the distinction between statistical independence and correlation concerns 

the additive noise setting where moment integrals derive different results as opposed to 

the independence based variance being the variance increased by one due to unit 

variance additive noise. Clearly, the fading distributions considered are continuous 

while channel gains generated are discrete. This discreteness is evident in CS theory 

both relating to sparsity as well as compressibility. 

Concluding this thesis, we boldly stress the fact that assessing wireless communication 

system performance either by CS theory or other optimization tools is all about 

formulating an optimization problem along with an efficient algorithm modeling the 

problem and adopted approach. This optimization problem as such includes the 

objective function to be minimized in terms of cost or penalty or maximizing the 

efficiency of a specific parameter. CS relates to unknown sparse vector to be minimized 

by employing lp norm algebra. The next ingredient includes the constraints which 

compensate for mathematical properties to be fulfilled for instance the probabilities 

values taking values between zero and one as well as their sum being equal to one in 

terms of a complete probabilistic optimization approach. Constraints also extent to 

incorporating the strategy adopted in resource allocation in a wireless communication 

system and other practical constraints that will jointly define the optimization problem 

fitness to the specific wireless communication system at hand. Thus, what must be 

highlighted is that constraints are the key ingredients of an optimization problem that 

could even decide whether the problem has a solution or solution uniqueness can be 

sorted out by a feasible optimization region that could bear a number of solutions. This 

is exactly the concept behind CS that due to the underdetermined problem nature of the 

initial problem, sparsity enters the stage thus narrowing down solutions and under 

circumstances leads to the optimal solution by addressing a problem that is more 

solvable and of low complexity, in the sense that we depart from a combinatorial 

problem. Hence, by properly controlling the decision variables, the optimization 

problem can accurately model a practical communication scenario and quantify 

uncertainty due to the inherent stochastic nature of information transfer through the 

wireless channel. From the above, it becomes evident that optimization problem 

constraints and also properly calculated weighted quantities that are assigned to 

problem variables ultimately answer the question of whether the problem admits a 

solution departing from a computationally demanding context to a simpler one or 

inversely if the problem is rendered insolvable due to the very insertion of a specific 

constraint that nevertheless reflects the practicality of the problem at hand. Following 

the above, algorithmic design must firstly consider the optimization problem above and 

also provide convergence speed, and accuracy, an issue that may be proven 

cumbersome due to conflicting objectives i.e. performance tradeoffs. CS already 

exhibits a variety of effective algorithms that ensure the low complexity in terms of 

computations required. 
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As the 5G and beyond become a reality, optimization CS tools continue to evolve as 

most effective tools for performance evaluation and specifically contribute to 

accurately modeling the wireless channel along with the distortion and impairments 

that it causes to the transmitted signal. Thus, randomness and uncertainty are properties 

bound to information wirelessly transmitted signals and also encourage the adoption of 

a generic stochastic model for describing the information source in order to exploit 

randomness compensating for system design limitations. In plain words, statistical 

independence and correlation both bear the potential of providing performance insights. 

The main characteristics of the next generation wireless communication technologies 

being orders of magnitude greater amounts of resource expensive data transmission, 

processing and analysis as well as energy efficiency aligned with higher data rates 

achieved, performance evaluation problem modeling has already shown to be flexible 

and adaptive to encompass diverse requirements and desired goals. CS along with 

statistics and information theory will emerge as the key optimization tools for 

advancing into a new era of massive connectivity and increased capabilities offered by 

future communication technologies.  
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