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Abstract
In this study we revisit a significant work conducted by Rothman in 1998.
With a view to finding the most suitable model for the interpretation of the
asymmetric unemployment rates, various nonlinear ARMA models were
introduced estimated and examined for their ability to account for this
asymmetric behaviour plus forecast its future values. We aim on replicating
the estimations, with data of the U.S. unemployment rates corresponding to
the same as well as an extended time period, for the purpose of finding out
how the models vary when we add additional and more modern observations.
Data of the Greek unemployment rates is also used, demonstrating how these
models look for this particular case and if there is a difference with the first
one. Graphs showing the course of the coefficients values and t-statistics over
time are also included. The models used are: Autoregressive (AR), Self-
Exciting autoregressive (SETAR), Exponential smooth transition
Autoregressive (ESTAR), Exponential Autoregressive (EAR), Generalized
Autoregressive (GAR) and the Bilinear. We begin with the replication of the
models using the same dataset, of the US quarterly unemployment rates of the
period 1949:1 - 1979:4. The results indicate small deviations mainly on the
thresholds of the two Threshold autoregressive models (TAR). Afterwards we
expand the dataset to 2008:2 and repeat the estimations for the same models,
this time finding only two models to be significant. Out of sample forecasts are
then performed and interesting results are found for the HP-Filtered data.
Lastly, we repeat the same analysis using Greek unemployment rates for the
time period of 2001:1 - 2021:4 and conclude with similar results for the two
countries, with the ESTAR model proving to be the best expansion of the
Autoregressive model for both cases, even though it still needs a lot of
improvement.

Keywords: Unemployment, Nonlinearity, Forecast, Nonlinear ARMA
models, Model selection.
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1. Introduction

Unemployment has many terminologies and ways of measurement, though
according to OECD it is the amount or percentage of people of working age
who are eligible but not currently working and are actively searching for one.
It has always been one of the main, if not the main focus of every government
and direct evidence of this constitutes the fact that it is comprehended in
every politician’s speech. It can be seen as an index of how well an economy
uses her main resource, the labour and as a result of the general economic
activity. It is of great importance as it affects everyone individually but also the
economy as a whole. That being the case, the measuring and interpreting of
the unemployment rates has become the center of attention for many
researchers. Special attention is given to its behaviour during the business
cycles.

But what is so special about the unemployment rates, that makes it so difficult
to be forecasted? The answer lies in its asymmetric and as a result nonlinear
behaviour which makes the linear models unable to predict efficiently its
future values. According to Neftçi (1984, p. 309) «if a nonlinear prediction
problem is treated (by mistake) as a linear one, then the estimate of the
"unpredictable components" of a time series would contain too much
information».

The paper is organized as follows: Section 2 reports the advances of the topic
offered by this paper; Section 3 details the peculiarities in the behaviour of the
unemployment rates found in the empirical literature; Section 4 presents the
datasets used and the modification that was needed; Section 5 offers an
adequate analysis of the models used; Section 6 provides the empirical results
both for the estimated models and the forecasts; Section 7 concludes; Section
8 contains the Appendices.

2. Contributions
The whole analysis of this paper is based on the work of Rothman (1998). Its
contribution to the existing literature is double.

Firstly, we report how the models presented in the original word correspond
to the more modern period by introducing the estimations for more modern
as well as increased amount of observations. Furthermore we perform out of
sample forecasts which we then examine to find how accurately each model
can predict the future values of unemployment.

Secondly, using data from the Greek economy, we now show how the models
correspond to the Greek case but also compare the results to that of the U.S.
economy. Additionally we present how the models in both cases evolve over
time.
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3. Literature Review
Keynes (1936) was the first to mention asymmetries and cyclical movements
on economic variables. Referring to the business cycles, which he called “trade
cycles”, he reported that although the switch from an upwards tendency to a
downwards happens swiftly and explosively, no such a movement happens for
the switch from a downwards to an upwards tendency. The analysis was
proceeded by the work of Burns and Mitchell (1946) which added the
perception that neither the duration nor the absolute value of the slope is
equal for the expansions and depressions during the business cycle. Neftçi
(1984) later made an in depth analysis and confirmed the existence of
asymmetries in the behaviour of various economic time series and especially
on employment. Using the statistical theory of finite-state Markov processes,
he was able to confirm that the duration of expansions, when unemployment
drops, is longer than the recessions, when unemployment rises. In the
bibliography there are reports of 3 types of asymmetry in the behaviour of the
time series, each with different properties.

3.1. Types of asymmetry

There are 3 types of asymmetries in the behaviour of the unemployment. We
are not going to go into many details, as an extensive analysis can be found in
Rothman and Ramsey (1996). We make only a brief summary of each one.

3.1.1. Steepness

Reported originally by Burns and Mitchell (1946), “Steepness” refers to the
asymmetry in the duration of the expansions and depressions during the
business cycles. In particular periods of expansions, when employment rises
last longer than those of depressions, when employment falls. Figure 3.1
depicts the phenomenon, with the positive slope being lower than the violent
negative slope.
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Figure 3.1 Time series plot with differences in steepness

3.1.2. Deepness

“Deepness” refers to the phenomenon in which the distance between the
peaks and the mean is significantly different from the distance between the
troughs and mean. Regarding the employment, we would expect the troughs
to be deeper than the peaks. This can be seen in Figure 3.2 in which we have
deeper troughs, with an absolute value of 2, than peaks, with a value of 1.

Figure 3.2 Time series plot with differences in deepness
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3.1.3. Sharpness

The last type was identified by McQueen and Thorley (1993) and given the
definition of “Sharpness”. Specifically this type of asymmetry occurs when the
time series has significant differences in the curvature of the peaks and
troughs. When examining the employment, we would expect to find out more
smooth curves during peaks and more sharp turns during troughs, a scenario
well illustrated in Figure 3.3.

Neftçi (1984) mentioned «if asymmetric behavior is indeed systematic then
one needs to develop theoretical models that can generate such behavior
endogenously» as well as «if there is some evidence that nonlinear ARMA
models produce predictions with lower mean squared errors due to
asymmetry in economic time series, then this would imply some caution in the
way asymptotic theory is being used.». This was the basis for the work of
Rothman (1998)

Figure 3.3 Time series plot with differences in sharpness

4. Data
The U.S. dataset consists of 295 observations of U.S. quarterly unemployment
rates, ranging from the first quarter of 1949 to the third quarter of 2021
(1949:1 - 2021:3). The data source is FRED - Federal Reserve Bank of ST.
Louis. The Greek dataset consists of 84 observations, ranging from the first
quarter of 2001 to the last quarter of 2021, with the source of the data being
ELSTAT - Hellenic Statistical Authority. The stationarity of the data is a
requirement for its usage, thence we continue by checking whether this
hypothesis is true.
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4.1. Stationarity test

At first glance, it is clear from Figure 4.1 that the U.S. unemployment rate is
not stationary as it contains a trend. However, in order for this to be
confirmed we will use the two tests of stationarity that were used in the
original work (Dickey-Fuller, Kwiatkowski–Phillips–Schmidt–Shin (KPSS))
as well as two additional ones (Phillips-Perron, Elliott-Rothenberg-Stock
(ADF-GLS)).

Table 4.1 Tests of stationarity in quarterly unemployment rates, 1949:1 -2021:3
Test Test Statistic Level of significance Critical value
Dickey-Fuller -3.80 1% level -3.45

5% level -2.87
10% level -2.57

KPSS 0.33 1% level 0.73
5% level 0.46
10% level 0.34

Phillips-Perron -3.94 1% level -3.45
5% level -2.87
10% level -2.57

ADF-GLS 2.22 1% level 1.94
5% level 3.21
10% level 4.40

With the Dickey-Fuller test statistic being -3.8 we cannot reject the null
hypothesis of non stationarity due to a unit root for significance levels of 10%,
5% and 1%, similarly the Phillips-Perron and ADF-GLS test show the same
result, since with critical values of -3.94 and 2.22 respectively we cannot reject
the same hypothesis as the latter test for any significance level. The KPSS test,
which utilizes the opposite null hypothesis, of stationary data, confirms our
findings as it has a test statistic of 0.33. Therefore we identify our time series
as non stationary, for every level of statistical significance (1%, 5%, 10%).

4.2. Detrendation

For the detrendation of our data we will use the log linear method, as it was
suggested by Rothman (1998). To begin with, we create the logarithm of the
unemployment rates and then we use them as a dependent variable on an OLS
regression with the independent variables being the constant and trend.
Following this we save the residuals as our log linear detrended
unemployment rates. Once more, we use the same tests, in order to confirm
the stationarity of our variables.
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Table 4.2 Tests of stationarity in quarterly log-linear detrended US unemployment
rates, 1949:1 - 2021:3
Test Test Statistic Level of significance Critical value
Dickey-Fuller -3.96 1% level -2.57

5% level -1.94
10% level -1.61

KPSS 0.15 1% level 0.73
5% level 0.46
10% level 0.34

Phillips-Perron -3.79 1% level -2.57
5% level -1.94
10% level -1.61

ADF-GLS 1.40 1% level 1.94
5% level 3.21
10% level 4.40

Although we stayed loyal to the methodology of the original work and used the
linear detrendation, the logarithmic unemployment rates were also tested for
stationarity. The results are given in the Appendix 1.

With the Dickey-Fuller test statistic now being -3.97 we reject the null
hypothesis of unit root and in the same manner we reject the same null
hypothesis for the Phillips-Perron and ADF-GLS tests with test statistics of -
3.79 and 1.40 respectively. With LM value of 0.15 we cannot reject the null
hypothesis of stationary data of the KPSS test. Consequently we have achieved
stationarity on our variable for every level of statistical significance (1%, 5%,
10%).

Undoubtedly, the log-linear detrended unemployment rate is the correct form
of our non stationary data, as all of the tests above and Figure 4.1 indicate. We
follow the same detrendation method for the Greek unemployment rates,
presenting the results and the graph in Appendix 1.
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Figure 4.1 Time series plot for U.S. unemployment rates, log unemployment rates,
log-linear detrended unemployment rates, 1949:1 - 2021:3
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5. Methodology
The methodology used for the estimation of most of the models is the
nonlinear least squares, with the only exceptions being the TAR models, which
have a unique estimation method. The subsection below, provides further
information on our models.

5.1. Models

We continue with an introductory analysis of the models that are being
utilized for the interpenetration of the unemployment rates. The books that
had a significant role for the following analysis are Tong (1990), Priestley
(1988), Enders (2014). Subsection 5.1.1. refers to the pure autoregressive
model, subsections 5.1.2. and 5.1.3. to the two TAR models, subsections 5.1.4.
and 5.1.5. to the GAR and EAR models respectively and lastly subsection 5.1.6.
refers to the special case of the Bilinear model.
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5.1.1. Autoregressive (AR)

The standard Autoregressive (AR) model, estimates the dependent variable’s
behaviour based linearly on its lags, a constant and an error term.

(1 − �1� − �2�2 − . . . − ����)�� = �0 + ��
Where L is the lag operator

�� = �0 +
�=1

�

����−�� + ��

5.1.2. Self-Exciting Threshold Autoregressive (SETAR)

The Self-Exciting Threshold Autoregressive (SETAR) is a regime switching
model, which belongs to the family of the Threshold autoregressive TAR
models, developed by Howell Tong. The behaviour of the dependent variable
�� is affected by different autoregressive processes that depend on the values
of the threshold variable ��−�, where θ is the lag of the dependent variable that
acts as the threshold. Through this regime switching, the model achieves a
higher degree of flexibility in its parameters, as their values differ based on the
current regime. Each of the autoregressive processes may be linear, however
the regime switching ability makes the model display nonlinear behaviour.

�� =
�0 + �=1

� ����−�� + �1� �� ��−� ≥ �
�0 + �=1

� ����−�� + �2� �� ��−� < �
Where θ is the delay, γ is the threshold

The regime switching is mostly triggered by shocks on the stochastic terms
�1�,�2� which are the cause for the ��−� to fall below/grow above the threshold
γ. Thus the bigger (lower) the variance of the stochastic terms, the more (less)
times the regime will switch.

This model serves well the interpretation of the unemployment, as it allows
for its persistence to differ based on the current regime, making it competent
of mimicking its asymmetric behaviour during the business cycles.
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5.1.3. Exponential Smooth Transition Autoregressive

(ESTAR)

The Exponential Smooth Transition Autoregressive (ESTAR) model is another
threshold autoregressive model that achieves a higher degree of flexibility in
its parameters, similar to SETAR, by changing based on the regime, however
instead of a sharp shift of regimes, it allows for a slow, smooth one. It is used
when the hypothesis of the sharp transition appears to be false. The first row
of the equation constitutes the linear part, where the second row constitutes
the nonlinear one. The parameter γ represents the smoothness of the
transition.

�� = [�0 +
�=1

�

����−�� ] +

[1 − ���( − �(��−� − �)²)][�0 +
�=1

�

����−�� ] + ��

Where θ, is the delay, γ the slope, c the threshold

As ��−� gets further from c, the term [1 − ���( − �(��−� − �)²)] approaches 1
and the second part becomes linear as well, so the model consists of a
combination of the two autoregressive processes:

�� = [(�0 + �0) +
�=1

�

(�� + ��)��−�� ]

As ��−� approaches c, the term [1 − ���( − �(��−� − �)²)] approaches 0 and
the model becomes symmetric and once again linear, a standard
Autoregressive AR(n) process with n lags of the dependent variable:

�� = [�0 +
�=1

�

����−�� ]

The above is also true when the smoothness parameter γ approaches zero or
infinity.
In any other case, the model is nonlinear.
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5.1.4. Exponential Autoregressive (EAR)

The Exponential Autoregressive (EAR) model is a nonlinear autoregressive
process with dynamics comparable to those of the previous ESTAR model.
The behaviour of the dependent variable �� is affected by smooth functions of
its past values. In the same way, it can too interpret efficiently the
unemployment rates, as it can account well for its asymmetries.

�� = �0 + �=1
� �����[�(��−�)] ��−�� + ��

5.1.5. Generalized Autoregressive (GAR)

The Generalized Autoregressive (GAR) model constitutes a more generalized
form of the nonlinear autoregressive models. Based on the Taylor series, it
attempts to account for a wide variety of functional forms with the
introduction of various powers and cross-products of interpreted variable’s
lags in the autoregressive process.

�� = �0 +
�=1

�

����−�� +
�=1

�

�=1

�

�=1

�

�=1

�

��������−����� ���−� + ��

5.1.6. Bilinear

The Bilinear models are an extension of the ARMAmodels and similar to the
GAR models, uses various lags of the error term. It includes cross-products of
the autoregressive and moving average processes to the pure ARMAmodel.

�� = �0 +
�=1

�

����−�� +
�=0

�

����−�� +
�=1

�

�=1

�

�����−���−���

Where �0 = 1

Furthermore, the model can be viewed as an ARMAmodel where the AR
coefficients are also affected by random shocks. The expected value of the AR
coefficient might be �� however random shocks will have a big impact on its
value. Assuming that the random error term and lag have a positive and
significant correlation, big shocks will decrease the AR coefficient, given that
��� is negative, making them less persistent than small ones. A scenario that
describes greatly the asymmetric behaviour of the unemployment rates. This
applies the same for both positive and negative shocks.
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�� = �0 +
�=1

�

�=1

�

(�� + �����−�)��−��� +
�=1

�

����−�� + ��

Now that we have a better understanding of the models as well as the reason
for their use, we are able to go on to their estimation and explain any possible
deviation.

6. Empirical Results
This section is divided in three subsections, each one appertaining to a
different timeline or country and a fourth one that contains graphs showing
the evolution over time of our models. Subsection 6.1 uses observations of the
U.S. unemployment rates for the same years as Rothman. Hence we expect the
results to be similar to some extent, with the small deviations being the
product of differences in the estimation methods. Subsection 6.2 extends the
timeline by including more contemporary observations of the unemployment
rates and presents how the models deviate. Subsection 6.3 presents the
estimated models for all the available data on unemployment rates for Greece.
Subsection 6.4 contains the graphs that give us an overview of how the models
change thorough the examined time period.

6.1. Identical Timeline

In this part, we present the estimated models, using the same timeline as the
original work of Rothman (1998), starting from the first quarter of 1949 up
until the last quarter of 1979, in order to look for any major differences.
Looking at tables 6.1 and 6.2 we find the most noticeable difference to be in
the selection of the threshold’s delay in the respective models in which is
being used.

Starting from the top, we notice that the pure autoregressive AR model has
remained practically the same, not only since the Akaike information criterion
AIC keeps yielding the lowest value for the same lags, but also because the
values of the coefficients seem untouched. This result was to be expected since
the AR is not a very intricate model and thus the estimates should not vary
much.

Following the original methodology, we inspect the residuals of the linear
model for any significant deviation from the white noise process. As reported
by M.B. Priestley (1988) «If the residuals from the regression model were not
strict white noise, there would be further structure in the relationship between
x and y which we had not “explained” by the model.».

Figure 6.1 shows that the autocorrelations and partial autocorrelations for all
lags are close to zero and additionally all the Q-statistics are insignificant.
Thereby, we can safely assume that there is no major structure left
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unexplained by the model. Nevertheless, we will still examine ways and means
that may have a reduced residual standard deviation.

Figure 6.1 Residual Correlogram and Q-statistics for the same timeline, 1949:1 -
1979:1

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.063 0.063 0.5132 0.474
2 -0.002 -0.006 0.5138 0.773
3 0.027 0.028 0.6108 0.894
4 -0.125 -0.129 2.6714 0.614
5 -0.048 -0.032 2.9760 0.704
6 0.109 0.115 4.5870 0.598
7 0.117 0.114 6.4413 0.489
8 -0.099 -0.133 7.7809 0.455
9 0.158 0.162 11.227 0.260

10 0.071 0.075 11.918 0.291
11 0.022 0.059 11.986 0.365
12 -0.139 -0.212 14.731 0.256
13 0.095 0.147 16.022 0.248
14 -0.152 -0.153 19.365 0.151
15 -0.080 -0.033 20.293 0.161
16 0.113 -0.007 22.173 0.138
17 0.069 0.152 22.883 0.153
18 0.109 0.065 24.649 0.135
19 -0.008 -0.057 24.660 0.172
20 0.006 -0.042 24.666 0.215
21 -0.197 -0.048 30.620 0.080
22 -0.008 -0.013 30.630 0.104
23 -0.019 -0.042 30.687 0.131
24 -0.094 -0.129 32.090 0.125
25 -0.114 -0.099 34.160 0.105
26 0.045 0.019 34.493 0.123
27 -0.027 -0.052 34.612 0.149
28 -0.061 -0.051 35.224 0.163
29 0.033 -0.030 35.401 0.192
30 -0.184 -0.085 41.071 0.086
31 -0.131 -0.090 43.985 0.061
32 -0.102 -0.072 45.785 0.054
33 -0.044 -0.079 46.128 0.064
34 -0.070 -0.027 46.999 0.068
35 0.055 -0.016 47.526 0.077
36 0.028 -0.019 47.671 0.092

When it comes to the Self-Exciting Autoregressive SETAR model, there are
major differences between the two tables. Rothman (1998) mentions that
according to the AIC, the model selected is the one which uses the first lag of
the dependent variable as the threshold variable. On the contrary, our
replication using identical timeline provide us with different results. This time
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the Akaike information criterion suggests that the most fitting variable for
regime switch is the second lag. Moreover, the threshold value we find is
negative, close to -0.3 indicating that the regime switches with the fall of
unemployment, opposed to the original findings where the regime switches
for positive values of unemployment, consequently when it rises. The first
regime which corresponds to the swift fall of unemployment is more
persistent, therefore the effects of the shocks last longer than the ones of the
second regime. The ratio �2 �2� remains the same, hence its interpretive
ability has not changed.

Examining another Threshold Autoregressive model, we notice once again a
change in the delay of the threshold used. Reported in the third row for both
tables, the ESTAR model presented in the original work shows that the AIC
selected delay equals to one, whereas it equals to two when it comes to our
replicated results. It should also be noted that our analysis only applies for a
confidence level of 90%. For a significance level of 5% we cannot reject the
null hypothesis of statistical insignificance of the slope, meaning that it equals
to zero and as we have already mentioned in the methodology section that
makes the whole nonlinear part to be equal to zero as well. Admittedly only for
a significance level of 10% may we have a significant nonlinear part and not
just a standard second level autoregressive process. In addition, the second lag
of the linear part proves to be statistically insignificant. Also note that the
�2 �2� is smaller in contrast to the original results, which means that the
model was underrated.

Following this, we take a look at the Exponential Autoregressive EAR model,
in which once again we reject the statistical significance of the constant.
Besides this, the coefficients are very similar with the only minor difference
being on the augmented first lag’s value. It should also be noted that �2 �2�
exceeds the value of 1, as a result of the residual standard deviation of EAR
model exceeding the one of the autoregressive.

Additionally, the results for the Generalized Autoregressive GAR are
extremely identical both for Rothman (1998) and our work. The deviations of
the coefficients are so minimal that we can characterize them as insignificant.
In terms of the residual standard deviation ratio, we notice a minor
augmentation.

Last but not least, we have the unique case of the Bilinear model. Particularly
our method of Non-Linear Least Squares fails the task of replication and even
though the coefficient’s values of the AR process are practically the same, the
unique variable that is being added is characterized as statistically
insignificant. The main reason for this phenomenon should be the use of the
wrong estimation methodology. Despite not analyzing further the problem of
estimating Bilinear models, we suggest the works of Subba Rao and Gabr
(1984), Tong (1990), Priestley (1981), for a detailed analysis.

It should be noted that the SETAR and ESTAR models were also estimated
with the threshold variable set as the first lag of the dependent, as it was
originally proposed by Rothman. Since the results were inferior, with many
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important variables not being statistically significant, we present them in
Appendix 2
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Table 6.1 Estimated models of the original work for quarterly log-linear detrended US unemployment rates, 1949:1-1979:4
Rothman’s Results (1949:1-1979:4)

Model Estimated Model �2 �2�
AR(2) �� = 1.563 ∙ ��−1 − 0.670 ∙ ��−2 + ���

(22.46) (-10.06)

SETAR �� = 0.0529 + 1.349 ∙ ��−1 − 0.665 ∙ ��−2 + ��1� if ��−1 ≥ 0.062 0.942
(3.46) (16.03) (-9.37)

�� = 1.646 ∙ ��−1 − 0.733 ∙ ��−2 + ��2� if ��−1 < 0.062
(14.27) (-6.37)

ESTAR �� = 0.325 ∙ ��−1 − 1.771 ∙ ��−2 + (1.219 ∙ ��−1 + 1.124 ∙ ��−2) × [1 − ���(10.230 ∙ ( − 200) ∙ �²�−1)] + ��� 0.953
(2.64) (-3.97) (2.34) (2.51) (83.10)

EAR �� = 0.937 + 0.729 ∙ ���( − �²�−1) − 0.680 ∙ ��−2 + ��� 0.977
(2.89) (1.97) (-10.30)

GAR �� = 1.500 ∙ ��−1 − 0.553 ∙ ��−2 − 0.745 ∙ �³�−2 + ��� 0.965
(23.60) (-6.72) (-2.33)

BILINEAR �� = 1.591 ∙ ��−1 − 0.690 ∙ ��−2 − 0.585 ∙ ��−1 ∙ ���−3 + ��� 0.936
(24.11) (-10.55) (-2.08)
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Table 6.2 Estimated models of the replication for quarterly log-linear detrended US unemployment rates, 1949:1-1979:4
Replicated Results (1949:1-1979:4)

Model Estimated Model �2 �2�
AR(2) �� = 1.562 ∙ ��−1 − 0.670 ∙ ��−2 + ���

(23.46) (-10.06)

SETAR �� = 0.008 + 1.521 ∙ ��−1 − 0.672 ∙ ��−2 + ��1� if ��−2 ≥ -0.276 0.941
(1.25) (22.11) (-9.39)

�� =− 0.234 + 1.630 ∙ ��−1 − 1.321 ∙ ��−2 + ��2� if ��−2 < -0.276
(-3.26) (9.26) (-6.04)

ESTAR �� = 0.978 ∙ ��−1 + 0.081 ∙ ��−2 + (0.640 ∙ ��−1 − 0.855 ∙ ��−2) × [1 − ���( − 79.062 ∙ (��−2 + 0.285)²] + ��� 0.926
(3.54) (0.27) (2.22) (-2.84) (1.93) (-11.36)

EAR �� =− 0.001 + 1.782 ∙ ���( − �²�−1) − 0.665 ∙ ��−2 + ��� 1.007
(-0.20) (23.14) (-9.89)

GAR �� = 1.547 ∙ ��−1 − 0.544 ∙ ��−2 − 0.800 ∙ �³�−2 + ��� 0.975
(23.63) (-6.61) (-2.50)

BILINEAR �� = 1.565 ∙ ��−1 − 0.675 ∙ ��−2 − 0.095 ∙ ��−1 ∙ ���−3 + ��� 0.987
(23.60) (-10.17) (-1.45)
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Figure 6.2 Actual, Fitted, Residual graph of the estimated models for the same timeline, 1949:1-1979:4
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6.2. Extended Timeline

Having analyzed how and to what extent our estimated models differ from the
ones of the original work, it is time we carry on with our analysis and find how
these correspond to the more recent data of the unemployment rates. With the
starting point unchanged, we add observations on unemployment up to the
second quarter of 2008. Having our dataset larger by 114 observations, we
follow the same methodology and examine how the models relate to the more
modern data including the graph of each model at the end, with the shaded
areas corresponding to the extended period. We also perform out of sample
forecasts for 13 years, the same way it was carried out by Rothman (1998).

6.2.1. Estimated models

Starting once again from the top we find the basic AR model to be extremely
similar with the previous one and to have its lags barely affected. From the
Figure 6.4 we notice that the model before 1980 fails to estimate successfully
the depth of the shock, although this problem is solved afterwards.

Proceeding with the residuals analysis, we perceive with the help of Figure 6.3
that many lags have either significant autocorrelation or partial
autocorrelation or even both. This leads to the conclusion, that the error term
contains significant information, so there is major structure left unexplained
by the autoregressive process. Having said that, our main goal now becomes
to solve the above problem with the use of nonlinear ARMAmodels.
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Figure 6.3 Residual Correlogram and Q-statistics for the extended timeline, 1949:1 -
2008:2

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.052 0.052 0.6605 0.416
2 0.013 0.011 0.7035 0.703
3 0.020 0.019 0.8032 0.849
4 -0.145 -0.147 5.9656 0.202
5 -0.076 -0.063 7.4102 0.192
6 0.089 0.102 9.3861 0.153
7 0.113 0.117 12.555 0.084
8 -0.111 -0.151 15.652 0.048
9 0.137 0.126 20.354 0.016

10 0.089 0.108 22.347 0.013
11 0.010 0.047 22.373 0.022
12 -0.098 -0.167 24.827 0.016
13 0.078 0.101 26.383 0.015
14 -0.114 -0.061 29.706 0.008
15 -0.055 -0.023 30.495 0.010
16 0.097 -0.005 32.944 0.008
17 0.114 0.170 36.307 0.004
18 0.090 0.080 38.408 0.003
19 0.046 -0.012 38.954 0.004
20 0.007 -0.060 38.968 0.007
21 -0.090 0.055 41.138 0.005
22 0.025 0.043 41.310 0.008
23 -0.005 -0.043 41.317 0.011
24 -0.022 -0.066 41.453 0.015
25 -0.061 -0.021 42.444 0.016
26 0.095 0.088 44.893 0.012
27 0.009 -0.040 44.913 0.017
28 0.017 -0.027 44.997 0.022
29 0.048 0.037 45.621 0.026
30 -0.118 -0.066 49.455 0.014
31 -0.022 -0.001 49.596 0.018
32 -0.050 -0.054 50.282 0.021
33 0.005 0.012 50.288 0.027
34 -0.029 -0.027 50.528 0.034
35 0.092 0.037 52.926 0.027
36 0.052 0.023 53.687 0.029

Utilizing the SETAR model with the extended dataset we come to the
conclusion that it is inexpedient for the interpretation of the unemployment
rates and is not included in the table 6.4, due to the fact that both the first and
the second lag as a threshold fail to yield lower AIC value than the pure
autoregressive model. This result is opposed to the previous analysis as well as
Rothman’s findings where it is one of the most significant models.

Moving to the other Threshold Autoregressive model, the estimated ESTAR
model has only significant nonlinear part as both of the linear lags cannot be
characterized statistically significant. Moreover we find the threshold to be
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also insignificant although we have a significant slope. So our model will have
the form as shown below:

�� = (�1 ∙ ��−1 + �2 ∙ ��−2) × [1 − ���( − � ∙ ��²)] + ���

The statistical insignificant threshold means that as �� approaches 0 the term
[1 − ���( − � ∙ ��²)] will also approach 0 so the behaviour of the
unemployment rates will be explained solely by the error term ��� . On the
other hand, as �� gets further from 0, the term [1 − ���( − � ∙ ��²)] will
approach 1 and as a result the behaviour of the unemployment rates will be
explained by the nonlinear part as well as the error term. In short, the
distance between �� and 0 shows the intensity of the nonlinear autoregressive
effect.
The coefficients of the nonlinear part are very similar to those of the standard
autoregressive model, so the ESTAR model helps in the explanation of the
asymmetric behaviour of the unemployment rates by having a completely
random process for low values of the dependent variable and the standard
autoregressive process, that slowly restores the equilibrium after a shock has
hit, for high values. A behaviour that fits well the unemployment rates. The
ratio �2 �2� considers this to be the best among all the other models, as it yields the
lowest value of 0.914. It should also be noted that when we look at the
correlogram of its residuals, we still find some significant correlations and
autocorrelations, therefore even though it is the best model, it still fails to
leave no structure unexplained in the relationship between our variables. The
correlogram can be found in Appendix 3.

Regarding the EAR model, although we find all the variables, except the
constant term, being statistically significant, the standard deviation of the
residuals is actually greater than the linear model, as �2 �2� is higher than 1.
This means that it has worse performance. Looking at the Figure 6.4, it is clear
that the model assumes the unemployment to have a smoother behaviour than
it actually does. It fails to estimate the true effect of the shocks, as we have
sizeable residuals at the peaks of the actual data.

Concerning GAR model, we observe that due to the second lag to the power of
three being insignificant, it cannot improve our analysis more than what the
pure autoregressive does.

Finally, we examine the Bilinear model, even though we have already come to
the conclusion that our methodology is not suitable for its estimation. The
estimated model confirms the latter as we find the bilinear term to be
insignificant, thereby it constitutes a standard autoregressive process. Another
evidence of this, is the residual standard deviation ratio that is very close to 1
meaning that the residuals standard deviation of the Bilinear and the
Autoregressive models are equivalent. The Bilinear graph in Figure 6.4 is
included to show its homogeneity with the autoregressive one.
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Table 6.3 Estimated models of the original work for quarterly log-linear detrended US unemployment rates, 1949:1-1979:4
Rothman’s Results (1949:1-1979:4)

Model Estimated Model �2 �2�
AR(2) �� = 1.563 ∙ ��−1 − 0.670 ∙ ��−2 + ���

(22.46) (-10.06)

SETAR �� = 0.0529 + 1.349 ∙ ��−1 − 0.665 ∙ ��−2 + ��1� if ��−1 ≥ 0.062 0.942
(3.46) (16.03) (-9.37)

�� = 1.646 ∙ ��−1 − 0.733 ∙ ��−2 + ��2� if ��−1 < 0.062
(14.27) (-6.37)

ESTAR �� = 0.325 ∙ ��−1 − 1.771 ∙ ��−2 + (1.219 ∙ ��−1 + 1.124 ∙ ��−2) × [1 − ���(10.230 ∙ ( − 200) ∙ �²�−1)] + ��� 0.953
(2.64) (-3.97) (2.34) (2.51) (83.10)

EAR �� = 0.937 + 0.729 ∙ ���( − �²�−1) − 0.680 ∙ ��−2 + ��� 0.977
(2.89) (1.97) (-10.30)

GAR �� = 1.500 ∙ ��−1 − 0.553 ∙ ��−2 − 0.745 ∙ �³�−2 + ��� 0.965
(23.60) (-6.72) (-2.33)

BILINEAR �� = 1.591 ∙ ��−1 − 0.690 ∙ ��−2 − 0.585 ∙ ��−1 ∙ ���−3 + ��� 0.936
(24.11) (-10.55) (-2.08)
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Table 6.4 Estimated models of the extended dataset for quarterly log-linear detrended US unemployment rates, 1949:1-2008:2
Extended Timeline Results (1949:1-2008:2)

Model Estimated Model �2 �2�
AR(2) �� = 1.579 ∙ ��−1 − 0.641 ∙ ��−2 + ���

(31.72) (-12.89)

ESTAR �� = 0.078 ∙ ��−1 − 0.074 ∙ ��−2 + (1.494 ∙ ��−1 − 0.546 ∙ ��−2) × [1 − ���( − 232.81 ∙ (�� − 0.006)²)] + ��� 0.914
(0.23) (-0.38) (4.32) (-2.60) (3.11) (0.81)

EAR �� = 0.0009 + 1.625 ∙ ���( − �²�−1) − 0.448 ∙ ��−2 + ��� 1.237
(0.21) (23.91) (-7.74)

GAR �� = 1.575 ∙ ��−1 − 0.605 ∙ ��−2 − 0.188 ∙ �³�−2 + ��� 0.994
(31.73) (-11.20) (-1.68)

BILINEAR �� = 1.579 ∙ ��−1 − 0.641 ∙ ��−2 − 0.010 ∙ ��−1 ∙ ���−3 + ��� 0.999
(31.66) (-12.87) (-0.30)
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Figure 6.4 Actual, Fitted, Residual graph of the estimated models for the extended timeline, 1949:1-2008:2
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6.2.2. Out of sample forecast

As we have already mentioned, we follow the original work’s methodology and
perform an out of sample forecast for 13 years, essentially forecasting the
period 2008:3 - 2021:3. The forecast is performed on 3 types of data, these
being, the log linear detrended unemployment rates which have been already
analyzed in the previous sections, the log level unemployment rates which are
basically the logarithmic form of our data and the HP-filtered unemployment
rates, in other words the smoothed data yielded by the Hodrick-Prescott filter.

The models estimated for the first two new types of data did not vary too
much from the ones we already saw for the latter, although they were some
particularities, that we are going to briefly present and can be found in more
detail in Appendix 4. In both cases the ESTAR model’s coefficients could not
be estimated and the EAR model for the HP filtered data had lower
explanatory ability than the standard autoregressive. Last but not least in both
bilinear models, their distinctive variables were found statistically significant.
Having said that, we have already shown that there is a problem when trying
to estimate the bilinear models using non linear least squares, so one should
be extra cautious when examining this particular case.

At this point, we can proceed with the results of the forecasts. They are
presented in table 6.5,which is divided in half.
The first half shows the estimated bias, which is the constant error of the
forecast, estimated by running a regression with the residuals from the
forecast as dependent variable and the constant term as the only independent
variable. The value is shown in the first row and below is the t-statistic for the
constant, inside the parenthesis. Looking at the table, we can see that no
model can achieve unbiased predictions, as all of them have statistically
significant prediction errors with large t-statistics. The only exception is the
bilinear model using the log level unemployment rates where the prediction
error is barely insignificant. All in all, our forecasts present some weak
forecasts. The main reason for this should be the extremely unstable economic
state that dominated this time period. Specifically in just 15 years the world
experienced two major economic crises. The first was the Great recession
starting from the first quarter of 2008 and lasting up until the second quarter
of 2009, characterized as the most extreme downturn since the great
depression, the breakdown of the financial system and the uncertainty that
engulfed the economy, resulted in extreme unemployment that lasted for a
long time. The COVID-19 outbreak followed, which started from the first
quarter of 2020 and its effects last until the present day that is of the fourth
quarter of 2021. Even though it began as a public health crisis, it did not take
long to be converted to an economic crisis as well. Following the harsh
lockdown imposed by most of the governments, the unemployment rates rose
sharply.
The other half, presents the ratio of mean squared prediction error (MSPE) of
each nonlinear model respectively, divided by the MSPE of the linear
autoregressive model. This ratio is similar to the one used when we examined
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the estimated models, with their common purpose being to show if these
models-extensions can further improve the interpretation of the asymmetric
unemployment rates offered by the pure autoregressive model. Most of the
models do not offer great improvement. The most interesting results are
found in the HP-Filtered data forecasts, where we find great reductions in the
MSPE by the GAR and Bilinear models. This can serve as a first indication for
their potential use on forecasting, notwithstanding the significance of these
results should be confirmed by the P-values for the Mizrach robust forecast
comparison statistic, as proposed by Rothman (1998)
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Table 6.5 Estimated bias and MSPE ratios for the out of sample forecasts of the unemployment rates, 2008:Q3–2021:Q3
Estimated bias for log-linear detrended unemployment rates

forecasts
MSPE ratios for log-linear detrended

unemployment rates forecasts
AR(2) EAR GAR ESTAR BILIN AR(2) EAR GAR ESTAR BILIN
0.05

(105.62)
0.06

(166.87)
0.05

(100.65)
0.002

(4.08E+16)
0.13
(2.41)

1 0.64 0.99 0.98 1

Estimated bias for log-level
unemployment rates forecasts

MSPE ratios for log-level
unemployment rates forecasts

AR(2) EAR GAR ESTAR BILIN AR(2) EAR GAR ESTAR BILIN
0.05
(105.1)

0.09
(424.85)

0.05
(104.71)

- 7.67
(1.9)

1 0.82 0.98 - 0.96

Estimated bias for HP-filtered
unemployment rates forecasts

MSPE ratios for HP-filtered
unemployment rates forecasts

AR(2) EAR GAR ESTAR BILIN AR(2) EAR GAR ESTAR BILIN
0.01

(1281.59)
0.15

(1699.55)
0.008

(1020.57)
- 0.009

(117.38)
1 257.54 0.44 - 0.46
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6.3. Estimations for Greece

The third part of our empirical results is dedicated on estimating these models
using the unemployment rates of the Greek economy, after the log linear
detrendation, in order to see whether and to what extent they can be used.
With our data ranging from the first quarter of 2001 to the last quarter of 2021,
we have in our availability 84 observations. They methodology we will follow
and the presentation of the result remain unchanged.

From table 6.6 we observe the autoregressive process to have once again small
deviations in relation to the previous subsections. The effects of the lags now
become weaker, with smaller values both for the positive and the negative
coefficient, having said that they are still statistically significant.

In the following analysis of the residuals we perceive from the figure 6.5 that
nearly all autocorrelations and partial autocorrelations are statistically
significant and as a result there is significant deviation from a white noise
process so there is a structure in the relationship between the log linear
unemployment rates and its lag that the autoregressive model fails to explain,
thence we will have to examine the other autoregressive extensions to see
whether another model can explain every major structure.
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Figure 6.5 Residual Correlogram and Q-statistics for the Greek unemployment rates,
2001:1-2021:4

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.057 0.057 0.2760 0.599
2 -0.321 -0.325 9.1547 0.010
3 0.094 0.153 9.9250 0.019
4 0.634 0.581 45.431 0.000
5 0.073 0.097 45.909 0.000
6 -0.274 -0.012 52.691 0.000
7 -0.017 -0.165 52.718 0.000
8 0.557 0.236 81.634 0.000
9 0.109 0.051 82.751 0.000

10 -0.377 -0.200 96.316 0.000
11 -0.018 0.006 96.346 0.000
12 0.425 -0.071 114.14 0.000
13 0.008 -0.120 114.14 0.000
14 -0.350 -0.055 126.54 0.000
15 -0.115 -0.147 127.90 0.000
16 0.348 0.063 140.51 0.000
17 -0.029 -0.155 140.60 0.000
18 -0.379 -0.025 156.02 0.000
19 -0.143 -0.036 158.27 0.000
20 0.345 0.097 171.51 0.000
21 -0.054 0.016 171.83 0.000
22 -0.366 -0.022 187.21 0.000
23 -0.140 0.008 189.51 0.000
24 0.307 0.042 200.72 0.000
25 -0.040 -0.027 200.92 0.000
26 -0.382 -0.067 218.84 0.000
27 -0.123 -0.011 220.73 0.000
28 0.278 -0.049 230.57 0.000
29 -0.034 -0.063 230.72 0.000
30 -0.343 -0.016 246.33 0.000
31 -0.060 0.078 246.81 0.000
32 0.242 -0.057 254.88 0.000
33 -0.066 -0.132 255.48 0.000
34 -0.310 -0.029 269.25 0.000
35 -0.052 0.003 269.65 0.000
36 0.207 -0.072 276.09 0.000

The SETAR model is absent from our results, yet again, as no threshold could
achieve lower AIC value than the standard autoregressive process.

According to the �2 �2� ratio, we find once more the ESTAR model to be the
best improvement of the autoregressive model. The form of the model is the
same as the one from the extended analysis, with the linear part as well as the
threshold being insignificant, another indication that this form is the most
efficient when it comes to interpreting more contemporary unemployment
rates. That being said, we still find the residuals to have significant difference
from the white noise process, which means that there is still a lot of room for
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improvement. The corresponding correlogram can be found in Appendix 5.

On the other hand, the �2 �2� ratio differentiates the EAR model from the
others, for not only failing to improve the residual standard deviation of the
autoregressive model but also increasing it, proving it to be useless. This result
was also seen in the two previous subsections, 6.1 and 6.2 when using the U.S.
dataset, although this time the augmentation of the residual standard error is
much greater. This could be the result of the second lag now being statistical
insignificant. From figure 6.6 it is clear that the model struggles to estimate
successfully the actual values, having many significant residuals.

The last two models fail to achieve better results than the autoregressive, since
we cannot reject the null hypothesis of statistical insignificance for their
distinctive variables. This contradicts the results found on the estimation of
the HP-filtered models, in which we found this two models to be among the
best improvements of the autoregressive.
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Table 6.6 Estimated models for quarterly log-linear detrended Greek unemployment rates, 2001:1-2021:4
Results for Greece (2001:1-2021:4)

Model Estimated Model �2 �2�
AR(2) �� = 1.247 ∙ ��−1 − 0.266 ∙ ��−2 + ���

(11.64) (-2.43)

ESTAR �� =− 0.059 ∙ ��−1 − 0.017 ∙ ��−2 + (1.361 ∙ ��−1 − 0.288 ∙ ��−2) × [1 − ���( − 152.279 ∙ (�� + 0.002)²)] + ��� 0.896
(-0.14) (-0.06) (3.06) (-0.90) (2.03) (-0.13)

EAR �� =− 0.001 + 1.384 ∙ ���( − �²�−1) − 0.168 ∙ ��−2 + ��� 1.070
(-0.23) (10.16) (-1.45)

GAR �� = 1.237 ∙ ��−1 − 0.197 ∙ ��−2 − 0.316 ∙ �³�−2 + ��� 0.993
(11.53) (-1.58) (-1.12)

BILINEAR �� = 1.247 ∙ ��−1 − 0.265 ∙ ��−2 − 0.001 ∙ ��−1 ∙ ���−3 + ��� 1
(11.47) (-2.38) (-0.02)
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Figure 6.6 Actual, Fitted, Residual graph of the estimated models for the Greek unemployment rates, 2001:1-2021:4
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6.4.Model evolution over time

Before we conclude with our work, we present graphs that show how the
models of our work evolve over time. In particular, they show how the
coefficients change over time as well as the periods, in which they are
statistically significant. This analysis is done both for the U.S. dataset, the
time period being 1949:3-2021:3, in figure 6.7 and the Greek dataset, for the
time period of 2001:3-2021:4, in figure 6.8, with the respective order. Each
page is divided into two parts. In the left part, the graphs show the course of
the coefficients values of each variable over time and in the right part, the
graphs show their respective t-statistic course. In the latter, we also include
horizontal lines for the values of 1.96 and -1.96, in order for the significance of
the variable to be more clear. It should be noted that the SETAR model is not
included, for the reason that its complex form made this analysis impossible
to be performed.We will not go into detail with this analysis, as this would be
very extensive and exhausting. Nonetheless, the findings should be clear for
anyone looking at the Figure 6.7 and Figure 6.8. We highly encourage the
reader to look at the graphs. Of high interest is the way the coefficients and t-
statistics react to the aftermath of the COVID-19 outbreak, showing a clear
struggle for the models to adapt in this extreme situation.
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Figure 6.7 Graphs of the over time evolution of the models coefficients and t-statistics for the U.S. unemployment rates, 1949:3-2021:3
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Figure 6.8 Graphs of the over time evolution of the models coefficients and t-statistics for the Greek unemployment rates, 2001:3-2021:4
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7. Conclusion
The paper reviews a major work conducted by Rothman(1998) and attempts
to reestimate the models that were originally used to interpretate the US
unemployment rates. This is done for both the U.S. and Greek unemployment
rates, this time including more recent data, aiming to analyze any
dissimilarities between the periods as well as the countries and show the
estimations for the present day. For the U.S. unemployment rates we also
analyse the quality of the forecasts that these can offer. The whole analysis is
conducted in four parts.

The results of the first part, when the same timescale is used, present several
dissimilarities. Firstly, the threshold autoregressive models now yielded the
lowest AIC for the second lag instead of the first, a result also found in the
process of forecasting by Rothman (1998). Regarding the latter, we also found
a negative threshold, in contrast to the positive one of the original estimates.
The residual standard deviation ratio showed that the ESTAR model can offer
the greatest improvement. Another interesting result was found in the
estimated EAR model which had higher residual standard deviation than the
standard autoregressive model and as a result lower explanatory ability.

In the second part we replicate the models while extending the dataset
including more recent observations. With this being the main point of the
paper, we attached a great importance to the results, in which we found even
more dissimilarities. The most interesting of them, had to do with the SETAR
model, in which no threshold could be found to improve the explanatory
ability of the pure autoregressive. On the contrary, the other Threshold
Autoregressive model was once again estimated to have the best explanatory
ability. Moreover neither in this analysis could the EAR model improve the
linear model. Similar results were now found for the GAR model. When we
examine the forecasts offered from the models we find interesting results for
the GAR and Bilinear models using the HP filtered data, although as we have
already mentioned, the significance of these results should be further
examined.

In the third part, we follow anew the same methodology, this time with
unemployment rates for Greece. Interestingly enough, the results found are
extremely similar to these of the previous analysis.

In the last part, we include graphs that show the how the models change
during the whole time period offered by both the U.S. and Greek dataset.

In broad outline, our results suggest that the ESTAR model is undoubtedly the
best model, that can account for the asymmetric behaviour of the
unemployment rates and improve the explanatory ability of the autoregressive
model. Having said it still fails to yield residuals that have no significant
deviation from the white noise process, meaning that there is still major
structure left unexplained by the model. Furthermore the remaining models
prove to be incompetent for this analysis, as no threshold can be used by the
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SETAR model to improve the pure autoregressive process and both the EAR,
GAR models have insignificant distinctive variables. We also find that they are
unable of forecasting, with the only possible exceptions being the GAR and
Bilinear models using the HP-Filtered unemployment rates. We mainly
attribute this incompetence to the instability that engulfed the economic
system, at the last years of our examined time period.

Finally, we encourage future researches to examine if the Bilinear models can
help the interpretation of the asymmetric variable, when they are properly
estimated, as well as demonstrate their estimation process.

8. Appendices
Appendix 1

Table 8.1 Tests of stationarity in quarterly logarithmic unemployment rates, 1949:1 -
2021:3
Test Test Statistic Level of significance Critical value
Dickey-Fuller -3.92 1% level -3.45

5% level -2.87
10% level -2.57

KPSS 0.36 1% level 0.73
5% level 0.46
10% level 0.34

Phillips-Perron -3.75 1% level -3.45
5% level -2.87
10% level -2.57

ADF-GLS 2.36 1% level 1.94
5% level 3.21
10% level 4.40

Table 8.2 Tests of stationarity in quarterly Greek unemployment rates, 2001:1 -
2021:4
Test Test Statistic Level of significance Critical value
Dickey-Fuller -2.45 1% level -3.51

5% level -2.89
10% level -2.58

KPSS 0.15 1% level 0.21
5% level 0.14
10% level 0.11

Phillips-Perron -0.26 1% level -2.59
5% level -1.94
10% level -1.61

ADF-GLS 0.89 1% level 1.92
5% level 3.06
10% level 4.08
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Table 8.3 Tests of stationarity in quarterly log-linear detrended Greek unemployment
rates, 2001:1 - 2021:4
Test Test Statistic Level of significance Critical value
Dickey-Fuller -2.45 1% level -2.59

5% level -1.94
10% level -1.61

KPSS 0.15 1% level 0.73
5% level 0.46
10% level 0.34

Phillips-Perron -0.56 1% level -2.59
5% level -1.94
10% level -1.61

ADF-GLS 0.26 1% level 1.92
5% level 3.06
10% level 4.08

Figure 8.1 Time series plot for Greek unemployment rates, log unemployment rates,
log-linear detrended unemployment rates, 2001:1 - 2021:4
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Appendix 2

Table 8.4 Estimated TAR models, with the first lag set as threshold, 1949:1-1979:4
Model Estimated Model
SETAR �� = 1.527 ∙ ��−1 − 0.705 ∙ ��−2 + ��1� if ��−1 ≥ -0.173

(20.86) (-10.23)

�� =− 0.135 + 1.017 ∙ ��−1 − 0.447 ∙ ��−2 + ��1� if ��−1 < -0.173
(-2.70) (4.55) (-2.60)

ESTAR �� = 1.721 ∙ ��−1 − 0.706 ∙ ��−2 + ( − 0.416 ∙ ��−1 − 0.079 ∙ ��−2) ×
(12.67) (-6.74) (-0.66) (0.20)

[1 − ���( − 3.477 ∙ (��−1 + 0.066)²] + ���
(0.42) (-1.25)
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Appendix 3

Figure 8.2 Residual Correlogram and Q-statistics of the ESTAR model for the
extended timeline, 1949:1 - 2008:2

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.091 0.091 2.0069 0.157
2 -0.006 -0.015 2.0167 0.365
3 0.028 0.031 2.2149 0.529
4 -0.094 -0.100 4.3801 0.357
5 -0.083 -0.065 6.0748 0.299
6 0.067 0.079 7.1996 0.303
7 0.063 0.056 8.1948 0.316
8 -0.064 -0.080 9.2296 0.323
9 0.172 0.173 16.677 0.054

10 0.093 0.067 18.862 0.042
11 -0.005 0.007 18.869 0.063
12 -0.023 -0.046 19.008 0.088
13 0.085 0.108 20.851 0.076
14 -0.105 -0.086 23.696 0.050
15 -0.048 -0.035 24.294 0.060
16 0.018 -0.025 24.379 0.082
17 0.124 0.179 28.416 0.040
18 0.067 0.018 29.595 0.042
19 -0.009 -0.081 29.618 0.057
20 -0.016 -0.034 29.683 0.075
21 -0.131 -0.055 34.236 0.034
22 0.030 0.039 34.479 0.044
23 0.029 0.010 34.698 0.056
24 0.015 0.013 34.758 0.072
25 -0.030 -0.019 34.999 0.088
26 0.099 0.060 37.676 0.065
27 0.038 0.017 38.079 0.077
28 0.017 0.031 38.156 0.095
29 -0.010 -0.038 38.186 0.118
30 -0.056 -0.034 39.046 0.125
31 0.011 0.058 39.077 0.151
32 -0.085 -0.083 41.116 0.130
33 -0.026 -0.044 41.309 0.152
34 0.002 0.012 41.310 0.182
35 0.037 -0.008 41.707 0.202
36 0.036 0.016 42.073 0.225
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Appendix 4

Table 8.5 Estimated models of the quarterly log U.S. unemployment rates, 1949:1-2008:2
Log level Results (1949:1-2008:2)

Model Estimated Model �2 �2�
AR(2) �� = 1.611 ∙ ��−1 − 0.612 ∙ ��−2 + ���

(31.34) (-11.90)

EAR �� = 1.689 − 2.620 ∙ ���( − �²�−1) + 0.177 ∙ ��−2 + ��� 1.738
(12.82) (-11.84) (2.78)

GAR �� = 1.587 ∙ ��−1 − 0.560 ∙ ��−2 − 0.008 ∙ �³�−2 + ��� 0.973
(31.44) (-10.79) (-3.70)

BILINEAR �� = 1.666 ∙ ��−1 − 0.622 ∙ ��−2 − 0.025 ∙ ��−1 ∙ ���−3 + ��� 0.982
(30.98) (-12.28) (-3.00)
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Table 8.6 Estimated models of the quarterly HP-filtered U.S. unemployment rates, 1949:1-2008:2
HP-filtered Results (1949:1-2008:2)

Model Estimated Model �2 �2�
AR(2) �� = 2.007 ∙ ��−1 − 1.007 ∙ ��−2 + ���

(243.32) (-121.97)

EAR �� = 0.092 − 52346.48 ∙ ���( − �²�−1) + 0.987 ∙ ��−2 + ��� 15.789
(1.61) (-1.03) (100.98)

GAR �� = 1.992 ∙ ��−1 − 0.988 ∙ ��−2 − 8.05�−05 ∙ �³�−2 + ��� 0.928
(342.39) (-169.35) (-14.01)

BILINEAR �� = 2.011 ∙ ��−1 − 1.007 ∙ ��−2 − 0.00006 ∙ ��−1 ∙ ���−3 + ��� 0.885
(275.34) (-138.05) (-8.24)
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Appendix 5

Figure 8.3 Residual Correlogram and Q-statistics of the ESTAR model for the Greek
dataset, 2001:1 - 2021:4

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.062 0.062 0.3303 0.566
2 -0.261 -0.266 6.2117 0.045
3 0.039 0.082 6.3446 0.096
4 0.484 0.440 27.063 0.000
5 0.039 -0.005 27.201 0.000
6 -0.216 -0.042 31.429 0.000
7 -0.090 -0.140 32.168 0.000
8 0.433 0.267 49.592 0.000
9 0.097 0.028 50.478 0.000

10 -0.255 -0.085 56.708 0.000
11 0.005 0.130 56.710 0.000
12 0.336 0.019 67.823 0.000
13 -0.072 -0.197 68.340 0.000
14 -0.332 -0.194 79.522 0.000
15 -0.128 -0.148 81.215 0.000
16 0.197 -0.066 85.260 0.000
17 -0.079 -0.128 85.913 0.000
18 -0.281 0.019 94.384 0.000
19 -0.074 0.032 94.988 0.000
20 0.270 0.098 103.07 0.000
21 -0.098 -0.081 104.15 0.000
22 -0.300 -0.045 114.48 0.000
23 -0.069 0.005 115.04 0.000
24 0.260 0.117 123.04 0.000
25 -0.032 0.138 123.17 0.000
26 -0.318 -0.058 135.60 0.000
27 -0.076 -0.012 136.32 0.000
28 0.235 -0.115 143.36 0.000
29 -0.010 -0.110 143.37 0.000
30 -0.243 -0.052 151.17 0.000
31 -0.012 0.018 151.19 0.000
32 0.238 0.050 158.96 0.000
33 -0.040 -0.109 159.19 0.000
34 -0.188 0.043 164.28 0.000
35 0.025 0.020 164.37 0.000
36 0.193 -0.083 169.94 0.000
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