
Computational Complexity Analysis of Linear
Optimization Algorithms

by

Sophia Voulgaropoulou

B.S., University of Macedonia (2010)
M.S., Aristotle University of Thessaloniki (2012)

Submitted to the School of Information Sciences, Department of
Applied Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

UNIVERSITY OF MACEDONIA

May 2022

© Sophia Voulgaropoulou, MMXXII. All rights reserved.

Author .
School of Information Sciences, Department of Applied Informatics

May 19, 2022

Certified by. .
Nikolaos Samaras

Professor
Thesis Supervisor

Accepted by .
Professor Alexandros Chatzigeorgiou

Chairman

2

Computational Complexity Analysis of Linear Optimization
Algorithms

by
Sophia Voulgaropoulou

Submitted to the School of Information Sciences, Department of Applied Informatics
on May 19, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Computational complexity and performance analysis in Linear Optimization
algorithms have always been topics of particular interest among the Operational
Research community. In the current thesis, we are presenting all aspects and
analysis results of our study on the performance of the Exterior Point Simplex
algorithm, the Interior Point Method, and the Primal and Dual Simplex algorithms.
Our objective is to generate valid and accurate prediction models for the
computational performance of these algorithms. Our analysis is separated in three
main parts, as described below.

First, we investigate the computational behavior of the Exterior Point Simplex
algorithm (EPSA). Up until now, a significant difference has been observed between
the theoretical worst case complexity and practical performance of simplex-type
algorithms. To appropriately examine the latter, computational tests have been
carried out on randomly generated sparse linear problems and on a small set of
benchmark problems. Specifically, 6780 linear problems have been randomly
generated, in order to formulate a respectable amount of experiments. This first
part of our study consists of the measurement of the number of iterations that
EPSA needs for the solution of the above mentioned problems and benchmark
dataset. Our purpose is to form representative regression models, which would be
significant for the evaluation of the algorithm’s efficiency and could act as predictive
models for the algorithm’s performance. From each linear problem, we have taken
several characteristics into account, such as the number of constraints and variables,
the sparsity and bit length, and the condition of the constraint matrix. It is
remarkable that the formulated model for the randomly generated problems reveals
a linear relation between the number of EPSA iterations and the above mentioned
characteristics.

Next, we extend our analysis, being concerned about the ability to choose the
most efficient algorithm, in terms of execution time, for a given set of linear
programming problems. Algorithm selection has been a significant, but at the same
time, challenging process in all linear programming solvers. For the purpose of this
part of our study, we utilize CPLEX Optimizer, which supports Primal and Dual
variants of the Simplex algorithm and the Interior Point Method (IPM). We
examine a performance prediction model using artificial neural networks for the

CPLEX’s Interior Point Method on a set of 295 benchmark linear programming
problems (etlib, ennington, Mészáros, Mittelmann) and measure the execution time
needed for their solution. Specific characteristics of the linear programming
problems are examined, such as the number of constraints and variables, the
nonzero elements of the constraint matrix and the right-hand side, and the rank of
the constraint matrix of the linear programming problems. Our purpose is to
identify a model, which could be used for prediction of the algorithm’s efficiency on
linear programming problems of similar structure. This model can be used prior to
the execution of the interior point method in order to estimate its execution time.
Experimental results show a good fit of our model both on the training and test set,
with the coefficient of determination value at 78% and 72%, respectively.

The current study is concluded by examining a prediction model using artificial
neural networks for the performance of CPLEX’s Primal and Dual Simplex
algorithms on the same dataset and with the same variables as in IPM. The
extracted results prove that a regression model cannot predict accurately the
execution time of CPLEX’s Primal and Dual Simplex algorithms. To overcome this
issue, we treat the problem as a classification problem. Instead of estimating the
execution time, our models estimate the class under which the execution time will
fall. Experimental results show a good performance of the models both for Primal
and Dual Simple algorithms, with an accuracy score of 0.83 and 0.84, respectively.

Thesis Supervisor: Nikolaos Samaras
Title: Professor

Research is the very soul of progress.
Whatever you do, try your best where there was almost nothing.

This, alone, can be everything for someone else to progress further.

To loving memory of my grandparents, Christos and Sophia
To Pantelis, Cleopatra and Christos

To Pavlos and my daughter

Publications
1. Voulgaropoulou, S.; Samaras, N.; Sifaleras, A. Computational complexity of the

exterior point simplex algorithm. Oper. Res. Springer 2019, 19, 297–316.

2. Voulgaropoulou, S.; Samaras, N.; Ploskas, N., Predicting the execution time
of the interior point method for solving linear programming problems using
artificial neural networks. In Learning and Intelligent Optimization (LION 13);
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; pp.
319–324.

3. Voulgaropoulou, S.; Samaras, N.; Ploskas, N. Predicting the Execution Time
of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks.
Mathematics 2022, 10, 1038. https://doi.org/10.3390/math10071038

Acknowledgments
Thinking back to the moment the exciting journey for PhD studies was about to begin
for me, I admit I could only imagine half of the experiences I was about to live. I
knew this would not be easy, expecting all those moments of pressure, dead-ends and
even, self-doubt. However, it was all those other moments, being the actual reward
for the effort. Moments of great happiness and gratitude; when a goal was achieved,
a finite result was met. Moments of gaining knowledge; even if this happened the
hard way. Moments that opened my mind because I was surrounded by well-educated
people, people who knew how to share and how to walk the extra mile, pushing and
teaching me to do the same. Now, I am taking the opportunity to express my deepest
appreciation to these people.

The person I could not thank more from the bottom of my heart, is my supervisor,
Prof. Nikolaos Samaras. Nikolaos, after listening carefully and understanding the
given circumstances, supported my decision to persue my dream. He knew from the
beginning that, working as a full-time employee in an international firm, PhD studies
would be rather demanding and challenging for me, both mentally and physically.
His question seven years ago was very simple; ”Do you really want to do this? If
not, it will be just a waste of time for both of us.“. I admit that back then, I kept
thinking about this question and what he really meant. Now, I know that I would
have never been able to complete my PhD studies if I was not willing enough to keep
on with the effort, under any circumstances. For the productive discussions and his
valuable advice; for the inspiration and great support from day one till now; for his
determination and incredible expertise; for teaching me how to overcome dead-ends
and explore alternative solutions; for this one-in-a-lifetime opportunity, I will always
feel grateful, honored and blessed for having Nikolaos as my teacher, realizing that
he already stands as one of the most important persons in my life.

Moreover, I would like to extend my sincere and grateful thanks to Prof. Angelo
Sifaleras for his great assistance, whenever this was needed. His willingness to help
me, by providing thorough explanation and sharing his feedback, was crucial for the
progress of my analysis, especially during the first period of my PhD studies. I could
not be more fortunate to have the honor to work and discuss with him. His always
useful input and corrections helped me realize even more, that attention to detail
always makes a difference.

Over the last three years of my studies, I also had the privilege of working with
Prof. Nikolaos Ploskas and at this point, any attempt to express my sincere gratitude
and appreciation for his support and advice would not be sufficient. Nikolaos has
always been willing to listen to my concerns and ideas, introduce other alternatives,
cross check and elaborate further on our results. I deeply value his feedback and most
of all, his remarkable persistence, which was shared with me as a unique lesson from
this brilliant mind.

Special thanks are extended to Prof. Ioannis Refanidis, Prof. Alexandros
Chatzigeorgiou, Prof. Dimitrios Hristu - Varsakelis and Prof. Lefteris Angelis, as
well. Through our conversations even before the beginning and in the course of my
PhD studies, each one played a very significant role, without realizing it, for my
concentration on my goal and this dissertation.

Last but not least, I am thankful and feel blessed for my family, for standing by
my side throughout this journey. It has been my grandfather, Christos, sharing his
love for lifelong learning since the very first moment I can recall and for making me
set high standards for myself. It has been my grandmother, Sophia, who was always
proud of me, even if she could not clearly understand my studies. It is my father,
Pantelis; his love and pride of me have always been the most powerful engine to my
personal development. It is my mother, Cleopatra; for her internal strength, for the
trust she placed in me since I was a little girl and her unconditional love and support.
It is my brother, Christos, who always stood bulletproof by my side to go through
any negative life events in my life and during my studies. And last, but not least, it
is my husband, my partner, my best friend; Pavlos. Without his support, love and
encouragement, nothing would have been possible.

Contents

1 Introduction 15
1.1 Operational Research and Linear Programming 15
1.2 Contributions of this thesis . 17
1.3 Overview of this thesis . 18

2 Linear Programming 19
2.1 Concept, History & Applications . 19
2.2 Linear Programming Algorithms . 22

2.2.1 Primal and Dual Simplex Algorithms 24
2.2.2 Interior Point Method (IPM) 27
2.2.3 Exterior Point Simplex Algorithm (EPSA) 28

2.3 Complexity and Performance Analysis 30

3 Predictive Modelling 33
3.1 Regression Analysis . 35

3.1.1 Regression Model and Evaluation Metrics 35
3.2 Artificial Neural Networks . 40

3.2.1 Learning process . 43

4 Dataset 45
4.1 Datasets for EPSA . 46

4.1.1 Random Linear Problems . 46
4.1.2 Linear Programming Benchmark Problems 48

4.2 Datasets for IPM, Primal, Dual algorithms 49
4.2.1 Linear Programming Benchmark Problems 49

4.3 Computing environment . 70

5 Predictive Models 73
5.1 Exterior Point Simplex Algorithm (EPSA) 74

5.1.1 Predictive model for randomly generated LP problems 75
5.1.2 Validation of Predictive Model for randomly generated LP

problems . 79
5.1.3 Predictive model for benchmark LP problems 80

5.2 CPLEX - IPM, Primal and Dual Simplex Algorithms 82
5.2.1 Predictive model for Interior Point Method 83

9

5.2.2 Predictive models for Primal and Dual Simplex Algorithm . . 86

6 Conclusions 103

List of Figures

3-1 Structure of an artificial neuron . 41
3-2 Structure of Artificial Neural Networks with 2 hidden layers 42

5-1 Normal Probability plot of iterations standardized residuals 77
5-2 Deviation Histogram - Validation . 80
5-3 Outliers - Validation . 81
5-4 Regression model for interior point method - Tuning the number of

neurons (1 hidden layer) . 86
5-5 Regression model for interior point method - Tuning the activation

function . 87
5-6 Regression model for primal method - Tuning the number of neurons

(1 hidden layer) . 90
5-7 Regression model for primal method - Tuning the activation function 91
5-8 Regression model for dual method - Tuning the number of neurons (1

hidden layer) . 91
5-9 Regression model for dual method - Tuning the activation function . 92
5-10 Classification model for primal method - Tuning the number of hidden

layers and neurons (tanh activation function, lbfgs solver) 98
5-11 Classification model for primal method - Tuning the activation function

and solver (2 hidden layers, 100 neurons each) 99
5-12 Classification model for primal method - Testing different classification

algorithms (1 hidden layer, tanh activation function, lbfgs solver) . . . 99
5-13 Classification model for dual method - Tuning the number of hidden

layers and neurons (relu activation function, lbfgs solver) 100
5-14 Classification model for dual method - Tuning the activation function

and solver (2 hidden layers, 100 neurons each) 101
5-15 Classification model for dual method - Testing different classification

algorithms . 101

11

List of Tables

2.1 Correspondence between LP problem attributes for Primal and Dual
Simplex Algorithm . 25

2.2 Complexity of linear programming algorithms 32

4.1 Value ranges of LP problems . 47
4.2 Characteristics of linear problems . 47
4.3 Characteristics of linear problems . 48
4.4 Characteristics of the MPS benchmark files 48
4.4 Characteristics of the MPS benchmark files 49
4.5 Netlib Optimal . 51
4.6 Netlib Kennington . 52
4.7 Mészáros Miscellaneous (a) . 53
4.8 Mészáros Miscellaneous (b) . 54
4.9 Mészáros Miscellaneous (c) . 55
4.10 Mészáros Miscellaneous (d) . 56
4.11 Mészáros Miscellaneous (e) . 57
4.12 Mészáros Miscellaneous (f) . 58
4.13 Mészáros Problematic . 59
4.14 Mészáros Stochastic LP (a) . 60
4.15 Mészáros Stochastic LP (b) . 61
4.16 Mittelman (a) . 62
4.17 Mittelman (b) . 63
4.18 Execution time for IPM, Primal and Dual (in seconds) 64
4.18 Execution time for IPM, Primal and Dual (in seconds) 65
4.18 Execution time for IPM, Primal and Dual (in seconds) 66
4.18 Execution time for IPM, Primal and Dual (in seconds) 67
4.18 Execution time for IPM, Primal and Dual (in seconds) 68
4.18 Execution time for IPM, Primal and Dual (in seconds) 69
4.19 Lower and Upper values in examined LP characteristics 70
4.20 Computing and model creation environment for EPSA 72
4.21 Computing and model creation environment for IPM, Primal and Dual

Simplex . 72

5.1 Statistical values of regression model 76
5.2 Statistical values of exponential Regression model 78
5.3 Statistical values of logarithmic Regression model 78

13

5.4 Validation Dataset . 79
5.5 Deviation from Observed values in the resulted regression model . . . 80
5.6 Statistical values of Regression model - Benchmark 82
5.7 Model parameters for the MLP method 85
5.8 MLPRegressor model for the IPM execution time 85
5.9 MLP model parameters used for primal and dual simplex algorithms . 88
5.10 MLPRegressor model for the execution time of the primal and dual

simplex algorithms . 89
5.11 Other Regression models for the execution time of the primal simplex

algorithm . 93
5.12 Other Regression models for the execution time of the dual simplex

algorithm . 93
5.13 Classes of the primal and dual simplex algorithms execution time (in

seconds) . 96
5.14 Confusion matrix for the primal simplex algorithm execution time . . 97
5.15 Confusion matrix for the dual simplex algorithm execution time . . . 97
5.16 Classification reports for the primal and dual simplex algorithms

execution time . 97

Chapter 1

Introduction

1.1 Operational Research and Linear Programming

Operational Research (OR) is a scientific area where advanced analytical processes
and methods are applied in order to support and enhance problem-solving and
decision-making procedures. Although, OR is often considered to be part of the
general field of Applied Mathematics, its concept and applications go far beyond
mathematical activities and purposes. Specific mathematical approaches that
formulated the first aspects of OR date back to the 17th century, however, its
modern version was established after World War I and especially, during military
actions in World War II. Soon after the end of World War II, scientists began
applying OR methods to sectors, other than the military one, such as logistics,
infrastructure, etc. At that time and after the development of the Simplex
Algorithm (SA) for Linear Programming (LP) problems in 1947, OR became
inextricably linked to the area of LP and deployed every piece of improvement
coming from the development of computers to evolve to a widely applicable science
for solving problems with tremendous amount of variables and constraints. A
plethora of real-world problems can, nowadays, be formulated as LP problems, while
LP algorithms have been used in various fields, such as logistics, transportation,
decision making, data mining and more. The purpose has always been to reach an
optimal solution for complex problems and this is achieved by engaging other
mathematical methods, such as statistical analysis, mathematical modeling and
optimization and other.

Operational Research can be used to determine the maximum profit or
performance or the minimum costs or risk in numerous real-world problems and
practical applications. It is often overlapping with other fields, such as operations
management, organization science, business analytics and even psychology,
especially when it comes to areas, where the human factor is also present, such as in
customer services, supply chain management, project management, revenue
management, etc. Other applications of OR can be found in modern transportation
(e.g. scheduling of airline and train routes), assignment and allocation of resources
(e.g. assigning certain employees to specific projects, etc.). Operational Research

15

can be considered as a powerful tool for decision makers in various sections aiming
to make better decisions, as it supports strategic and operational decisions in
problems which often involve a considerable amount of risk or uncertainty.
Depending on the section where OR is applied, the benefits of its use can vary from
performance improvements, such as cost and risk reduction or revenue increase, to
raising customer satisfaction levels or even saving human lives. Eventually, OR can
lead to the development of more productive and efficient systems, taking into
consideration all existing alternative options and making precise predictions and
risk estimations. In the effort towards building such systems, there are always
specific contributing factors, such as optimization effort (i.e. narrowing down any
potential alternatives and achieving the best results under the current
circumstances), simulation processes (i.e. engaging model building processes for
testing and validation of the solutions found), statistics and probability analysis (i.e.
application of appropriate algorithms to reveal useful insights, reach accurate
prediction results and validate potential solutions).

As stated above, numerous practical problems in OR can be expressed as LP
problems. Linear Programming addresses the optimization problem of a linear
objective function, which is subject to linear equality and inequality constraints on
the decision variables. Specific LP cases, such as network flow problems and
multicommodity flow problems have triggered extensive research on several
algorithms for their solution. Other LP algorithms work by solving LP problems as
sub-problems. Historically, LP has had a significant impact on other key concepts of
optimization theory, such as duality, decomposition, etc. On its turn, LP was
heavily used in the early formation of microeconomics. Currently, despite the fact
that the issues are ever-changing, it is vastly used in corporate management, since
the majority of companies need to maximize profits and minimize costs with limited
resources.

In order to effectively represent a real-world problem through a set of linear
functions and constraints in LP, mathematical formulations of the problem are used.
These formulations model the problem in such a way, so that it becomes suitable to
be addressed and solved by LP algorithms. However, real-world problems are always
more complex than their respective mathematical formulations and models. In our
effort to depict real-world more accurately, the formulations and LP algorithms we
use may inevitably become more complex. We should always be reminded that LP
algorithms should only be as complex as needed, so that they solve real-world
problems reasonably well. Any added complexity should definitely be followed by
significant gains in our ability to represent and solve a problem and in the quality of
the solutions we obtain. Questions, such as “What are the benefits of LP algorithms
for each problem we are attempting to solve?” or “Will the use of a respective LP
algorithm outweigh any additional costs?” are timeless and have resulted to the
deployment of several performance analysis and measurement techniques for LP
algorithms. The performance of LP algorithms is inextricably linked with the
concept of complexity analysis, since complexity-related questions about LP have
been raised since 1950, before the field of computational complexity started to
develop in the decade of 1970 [74]. Although the theoretical complexity of some of

the most widely-used LP algorithms has been proven over the years, there are still
open topics for discussion and further research, when it comes to their computation
complexity.

1.2 Contributions of this thesis

This dissertation aims to contribute to the field of computational complexity and
performance analysis of Linear Programming (LP) Optimization algorithms. More
specifically, the current thesis:

• Focuses on the computational performance of four of the most widely applied
LP Optimization algorithms; Exterior Point Simplex Algorithm (EPSA),
Interior Point Method (IPM), Primal and Dual Simplex algorithms. Initially,
our focus was concentrated on worst and average case complexity analyses and
how the respective results can be interpreted more efficiently for the
application of several algorithms. In that frame, we studied the work of Ho
and Sundarraj [53], who analyzed the time of the revised simplex method, by
using an economic order quantity (EOQ) formula and tried to form a timing
model to reduce the cost of routine applications and to predict the
performance of new variants of the algorithm. Upon completing our study on
this work, our interest towards analyzing the computational behavior of LP
Optimization algorithms became even stronger. Until then, it was clear that
the theoretical behavior of an algorithm is associated with its complexity. One
could even suggest that the analysis of an algorithm’s complexity involves the
worst case complexity at all times, even if the actual worst case may never
occur in practice. In such scenarios, any timing model we may form for a
particular algorithm will eventually be a non-representative one, consequently
leading to false conclusions about the practical performance of the algorithm.
By timing model, we are referring to mathematical model for estimation of the
time or the number of iterations needed by an algorithm for the execution of
specific problems with a given set of variables and constraints.

• Introduces new models, which can, not only, be further utilized for prediction
of the computational performance of the examined algorithms on new
problems, but also stand as the initiation point for further research on
performance analysis of other LP algorithms.

• Provides significant insight to modeling methods, used for prediction of the
performance and computational behavior of LP algorithms for solving new
problems. Apart from regression analysis, artificial neural networks are also
utilized, exploring and revealing strong potential in the performance analysis
field for LP optimization algorithms. Even when it is not possible to generate
a valid regression model for prediction of continuous values for a certain
variable, classification methods can play a significant role in creating a model
for prediction of a certain range or particular class of values.

In classical complexity analysis, a theoretical study of algorithms is conducted,
taking into consideration the problem dimensions. Worst and average case analyses
may describe execution time as a function of problem dimension parameters only.
Aspects, such as computer specifications, programming style, programming
language and operating system are not taken into consideration. Experimental
analysis evaluates the real running time, the number of iterations performed and the
solution quality on the selected dataset. Consequently, the analysis conducted for
the purposes of this study does not aim to act as substitute for classical complexity
analysis, but rather suggests that these types of analysis are complementary.

1.3 Overview of this thesis
At this point, we are briefly describing the document structure of this thesis and
providing an overview of the content in each chapter. In Chapter 2, we are
describing the main concepts, history and applications of Linear Programming,
while we are also providing a presentation of the LP Optimization algorithms which
are examined in this study (i.e. Exterior Point Simplex algorithm, Interior Point
Method, Primal and Dual Simplex algorithms). This chapter also includes a brief
presentation of complexity and performance analysis processes for LP Optimization
algorithms. Chapter 3 consists of a thorough description of the predictive modelling
methods that have been applied for the purposes of this study. Specific details are
included for regression analysis technique and regression evaluation metrics, while
elaborate input is provided on artificial neural networks and their learning process.
Chapter 4 consists of a detailed description of the datasets and computing
environments used in our study. The datasets are presented, based on how they
were utilized in our study; random linear problems and LP benchmark problems for
EPSA and LP benchmark problems for IPM, Primal and Dual Simplex algorithms.
Chapter 5 presents our analysis and the respective results from the predictive
models we have generated. The models are provided separately for each algorithm
and are accompanied by their corresponding validation results. Finally, chapter 6
concludes the current thesis and compiles our findings for each examined algorithm.
This chapter also includes further recommendations and ideas for future work or
additional research.

Chapter 2

Linear Programming

2.1 Concept, History & Applications

In a fast-evolving era, especially during and after World War II, the majority of
problems that had to be dealt with, were optimization problems. As such, each of
these problems would require a solution which by (a) satisfying specific constraints
and (b) taking into account, particular, clearly-defined criteria, would be the best
possible one out of all solutions that indeed satisfy the specified constraints.
Interestingly enough, the majority of the arisen optimization problems could be
represented by using linear functions; not only for the constraints but also for the
optimization criterion. This gradually resulted in the foundation of Linear
Programming as a broader class of optimization problems which can be solved with
the use of linear functions. Therefore, Linear Programming (LP) or Linear
Optimization, can be considered as a method, which is applied for achieving the
optimal outcome in a mathematical model where the requirements are defined as
linear relationships.

The historical background of LP dates back in 1827, when Fourier published a
method for solving a system of linear inequalities [46] while in 1939, the Soviet
economist Leonid Kantorovich gave a linear programming formulation for a problem
equivalent to the general linear programming problem and proposed a new method
for solving it [61]. Although Kantorovich developed this innovative method during
World War II to plan expenditures and returns to reduce costs in the army section
and increase losses for the enemy, his study was underestimated by the USSR. Some
years later, during 1946–1947, George B. Dantzig developed a general linear
programming formulation for planning problems in the US Air Force. Dantzig
managed to efficiently tackle the linear programming problem for the first time, by
inventing the Simplex Algorithm in 1947 [36], [37], [35]. At that time, Dantzig met
with John von Neumann to share his findings about Simplex Algorithm and it was
only then that Neumann realized the conjecture of the theory of duality, since the
problem he had been working in game theory was actually equivalent. This was a
significant moment, becoming the realization point of the connection between Game
Theory and Linear Programming [116], [117]. In 1979, Leonid Khachiyan proved

19

theoretically that the linear programming problem was solvable in polynomial time
with the Ellipsoid algorithm [64], however, in 1984 a new theoretical and practical
breakthrough was made by Narendra Karmarkar, who introduced a new Interior
Point Method for solving linear programming problems [62]. Practically, in any
linear programming problem, we have a number of variables, which will be assigned
with real values so that (a) specific linear equations and/or inequalities are satisfied
and (b) the linear objective function is maximized or minimized (depending on the
nature of the problem). Approaching LP from a mathematical perspective, we could
safely consider that it aims to optimize a linear objective function, which is subject
to linear equality and inequality constraints. The respective feasible region is a
convex polytope; a set which is represented by the intersection of finitely many half
spaces, each of which is defined by a linear inequality. The objective function is a
real-valued affine (linear) function, which is defined on this specific polyhedron. A
linear programming algorithm detects a point in the polytope where the objective
function has the optimal value (if such a point exists at all).

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≤ 𝑏

𝑎𝑛𝑑 𝑥 ≥ 0

In a linear problem of the above form, x stands for the vector of variables which is
to be determined, c and b are vectors of known coefficients, A is a known matrix of
coefficients, and (.)𝑇 is the matrix transpose. The objective function is the expression
that needs to be maximized or minimized; in this case, this is 𝑐𝑇𝑥. The constraints
defining the convex polytope on which the objective function needs to be optimized
are the inequalities 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0. In LP problems, two vectors are comparable
only when they have the same dimensions, so if every entry in the first is less than or
equal to the respective entry in the second, then the first vector is less than or equal
to the second vector.

A linear problem can be expressed in either standard or canonical form. The
maximization of a linear function is subject to constraints expressed as linear
inequalities in standard form, while they are expressed as linear equalities in
canonical (slack) form. The three main parts of standard form, in which all linear
problems can be expressed, are described below. Other forms can always be
transformed to equivalent problems in standard form. The three parts of the
standard form are described below:

1. Linear function to be maximized
Example: f(𝑥1, 𝑥2) = 𝑐1𝑥1 + 𝑐2𝑥2

2. Problem constraints in the following form:
Example:

𝑎11𝑥1 + 𝑎12𝑥2 ≤ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 ≤ 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 ≤ 𝑏3

3. Non-negative variables
Example: 𝑥1 ≥ 0, 𝑥2 ≥ 0

A quick example of a simple LP problem is described further below. Let us assume
that Alpha Estate winery wants to increase production of the 2 most well-known
labels: Axia Red and Alpha Estate Red (S.M.X.). How many bottles of each one
should it produce to maximize its profits? Currently, Alpha Estate winery produces
𝑥1 bottles of Axia Red per day with profit of 18 Euros each, while for Alpha Estate
Red (S.M.X), the winery makes 𝑥2 bottles per day with a profit of 25 Euros each.
Although 𝑥1 and 𝑥2 are unknown values, obviously they need to be greater than zero
(𝑥1, 𝑥2 ≥ 0). Moreover, we need to keep in mind that the daily demand for Axia Red
is 100 bottles, while for Alpha Estate Red (S.M.X.) is 80 bottles. Last, but not least,
Alpha Estate winery can make up to 150 bottles per day, so taking into consideration
all these constraints, what are the optimal levels of production in this case? The
linear problem representing this case is the following:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑥 18𝑥1 + 25𝑥2

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑥1 ≤ 100

𝑥2 ≤ 80

𝑥1 + 𝑥2 ≤ 150

𝑥1, 𝑥2 ≥ 0

A linear equation in 𝑥1 and 𝑥2 defines a line in the 2-dimensional space, while a
linear inequality represents a half-space, i.e. the region on one side of the line. The
feasible solutions of this particular linear problem, i.e. the points (𝑥1, 𝑥2) which
satisfy all constraints above, is the intersection of 5 half-spaces, as these are defined
by the inequalities above and is a convex polygon. As a general rule, the optimal
solution of a linear problem is achieved at a vertex of the feasible region. This is not
the case if the problem is infeasible or unbounded. In an infeasible linear problem,
the constraints are so tight that it is impossible to satisfy them all (for instance, x
≥ 0 and x ≤ 1). In an unbounded problem, the constraints are so loose, that the
feasible region is actually unbounded and most probably, we will achieve arbitrarily

high objective values (for instance, minimize 𝑥1 + 𝑥2 with 𝑥1, 𝑥2 ≥ 0). The current
optimization problem, such as all similar ones, can be solved by the Simplex
Method, which would start at a vertex (i.e. (0, 0) in our case) and would repeatedly
search for an adjacent vertex (neighbor) that would produce a better objective
value; the adjacent vertex is connected through an edge of the feasible region. While
Simplex performs this “hill-climbing” on the vertices of the polygon, it walks from
neighbor to neighbor and gradually increases profit as it progresses. As soon as the
algorithm reaches a vertex which has no better neighbor, Simplex stops and
considers the current vertex as the optimal one. One may express doubts about this
“local” point being optimal “globally”. However, examining the geometry of the
problem, we can think of a profit line passing through the optimal vertex. Since all
neighbors are below this line (otherwise the vertex would have a neighbor with
better objective value), this means that the rest of the feasible region is below this
line as well, confirming the current vertex as the optimal solution indeed.

Having briefly described the function of the officially first of the most fundamental
tools of LP, Simplex Method, it is now time to proceed to the following section,
by presenting the algorithms which were examined during research for this thesis;
Primal and Dual Simplex Algorithms, Interior Point Method (IPM) and Exterior
Point Simplex Algorithm (EPSA). A more detailed description for each algorithm is
provided in respective studies, referred in the following subsections. In Chapter 5,
the algorithms are presented in a chronological sequence based on when they were
examined during research for this thesis. Our interest in these algorithms derives
from the fact that Linear Programming is nowadays applied in various fields, such
as mathematics, economics and other industries; transportation, business planning,
resource allocation, energy and manufacturing being only some of the most well-
known ones. It stands as a key tool for Operational Research and is a significant
contributor in modeling several types of problems of planning, routing, scheduling
and assignment. However, the power of linear problems could not be revealed and
would be of no use at all, if we did not have a way to solve them.
That is, Linear Programming Algorithms.

2.2 Linear Programming Algorithms
Prior to the presentation of the examined LP algorithms which follows in this section,
it is important to describe the linear programming problem we are concerned with
(LP.1 in the standard form):

min 𝑐𝑇𝑥 (LP.1)
s.t. 𝐴𝑥 = 𝑏

𝑥 ≥ 0

Here, 𝐴 ∈ R𝑚𝑥𝑛, 𝑏 ∈ R𝑚, 𝑐, 𝑥 ∈ R𝑛, T denotes transposition and rank(A) = m,
1 ≤ m < n. The dual problem of (LP.1) is presented below and will be explained
further in section 2.2.1.

max 𝑏𝑇𝑤 (DP.1)
s.t. 𝐴𝑇𝑤 + 𝑠 = 𝑐

𝑠 ≥ 0

where 𝑤 ∈ R𝑚 and 𝑠 ∈ R𝑛. Partitioning the matrix A of (LP.1) as A = (B,N) and
with a corresponding partitioning and ordering of 𝑥𝑇 = [𝑥𝐵 𝑥𝑁] and 𝑐𝑇 = [𝑐𝐵 𝑐𝑁]
(LP.1) is written as:

min 𝑐𝑇𝐵𝑥𝐵 + 𝑐𝑇𝑁𝑥𝑁 (LP.2)
s.t. 𝐴𝐵𝑥𝐵 + 𝐴𝑁𝑥𝑁 = 𝑏

𝑥𝐵, 𝑥𝑁 ≥ 0

Here 𝐴𝐵 is an m×m non-singular submatrix of A, called basic matrix (or basis),
whereas 𝐴𝑁 is an m×(n-m) submatrix of A, called non-basic matrix. The columns
of A which belong to B are called basic and the remaining ones, non-basic. The
solution 𝑥𝐵 = 𝐵−1𝑏, 𝑥𝑁 = 0 is called a basic solution. This solution is feasible
iff 𝑥𝐵 ≥ 0. Otherwise, it is called infeasible. The solution of dual problem which
corresponds to the basis B, is given by (𝑠𝑁)

𝑇 = (𝑐𝑁)
𝑇 − 𝑤𝑇𝐴𝑁 , (𝑠𝐵)𝑇 = 0, where

𝑤𝑇 = (𝑐𝐵)
𝑇𝐴−1

𝐵 are the Simplex multipliers and 𝑠𝑁 are the dual slack variables.
This solution is dual feasible iff 𝑠𝑁 ≥ 0. The ith row of the coefficient matrix A is
denoted by 𝐴𝑖. and the j th column by 𝐴.𝑗. The basis inverse (𝐴𝐵)

−1 is maintained
in some factorized form. At every iteration, its factors have to be updated. There
are many techniques for updating the invertible representation at the basis matrix.
The simplest updating scheme is the Product Form of the Inverse (PFI). The current
basis inverse (𝐴𝐵)

−1 can be updated from the previous inverse (𝐴𝐵)
−1, using the

relation (𝐴𝐵)
−1 = (𝐴𝐵𝐸)−1 = 𝐸−1(𝐴𝐵)

−1, where 𝐸−1 is the inverse of the so-called
eta-matrix. The matrix 𝐸−1 is computed using the following relation

𝐸−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −ℎ1𝑟

ℎ𝑟𝑟

.
1

ℎ𝑟𝑟... . . .
−ℎ𝑚𝑟

ℎ𝑟𝑟
1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.1)

where ℎ𝑟𝑟 is the pivot element and ℎ𝑗 = (𝐴𝐵)
−1𝐴.𝑗.

2.2.1 Primal and Dual Simplex Algorithms

In section 2.1, we provided an example of how Simplex would perform for solving a
linear problem, given a specific objective function and a set of variables and
constraints. At a very high level, Simplex works on a linear objective function and a
set of linear inequalities as the ones presented in (LP.1), trying to find the optimal
feasible point. On each iteration, the algorithm checks whether the current vertex is
optimal and if so, it stops - otherwise it defines where to move next. Although it is
easily understood how Simplex moves and progresses in order to identify the
optimal solution, it is also very important to define the vertex from which Simplex
should begin, i.e. initiation or starting vertex. As explained, we may have to
transform the coordinate system of the problem, so that the algorithm moves to a
vertex from where it can start. Apart from the starting vertex, there is the
degeneracy problem as well. In case the neighbors of the current vertex are all
identical and have no better objective value, Simplex will eventually return a
sub-optimal degenerated vertex as result. To overcome this problem, we may want
to modify Simplex so that it detects degeneracy and keeps on moving from vertex to
vertex, despite the fact that we lack in any improvement in the objective function.
However, such a modification would result in Simplex looping forever! This effect
can be avoided by perturbations, small changes in the structural stability of the
problem. By structural stability, we mean that the qualitative behavior of the
trajectories in a dynamical system is not affected by small, almost tiny
perturbations and remains stable. Last, but not least, for unbounded linear
problems where the objective function may become arbitrarily large (if we are
referring to a maximization problem) or small (in case of a minimization problem),
Simplex searches for a vertex in the neighborhood of the current vertex and,
eventually, identifies that, when it replaces a particular inequality with another one,
this results to an eventually undetermined system of equations with infinite number
of solutions. In this case, Simplex stops and reports the unboundedness of the
problem. A more comprehensive explanation of the topics described above can be
found in several books and lecture notes for Linear Programming, including (but
certainly not limited to) [95], [27] and [114].

We will now consider a simple, non-degenerate linear problem, intending to find
the lowest point in a convex polyhedron (geometrically this is the intersection of e.g.
d halfspaces). We actually want the lowest vertex in the intersection of these
halfspaces, so let’s examine the fundamental steps of Primal Simplex Algorithm
(PSA) that will be followed in this case:

Step 1 (Feasibility check)
if ∩𝐻 = ∅ , return INFEASIBLE
x ← any feasible vertex

Step 2 (Unboundedness check)
while x is not locally optimal
pivot down and maintain feasibility
if every feasible neighbor of x is higher than x, return UNBOUNDED
else x ← any feasible neighbor of x that is lower than x
return x

As for Dual Simplex Algorithm, the respective description is provided below:
Step 1 (Unboundedness check)

if there is no locally optimal vertex, return UNBOUNDED
x ← any locally optimal vertex

Step 2 (Feasibility check)
while x is not feasible
pivot up and maintain local optimality
if every locally optimal neighbor of x is lower than x, return INFEASIBLE
else x ← any locally optimal neighbor of x that is higher than x
return x

Trying to understand the linear algebra behind the 2 algorithms, we can see that
there is actually no real difference between Primal and Dual Simplex
implementation, other than their subsequent geometrical interpretation. Dual
Simplex is very important alternative for solving LPs, being effective on a plethora
of problems, particularly of integer linear programming. A more detailed overview
of the correspondence between attributes of LP problems, when solved by Primal
and Dual Simplex algorithms, is presented in the following table 2.1.

Table 2.1: Correspondence between LP problem attributes for Primal and Dual
Simplex Algorithm

Primal Dual

minimum ↔ maximum
constraint = ↔ variable free
constraint ≥ ↔ variable ≥ 0
constraint ≤ ↔ variable ≤ 0
variable free ↔ constraint = 0
variable ≥ 0 ↔ constraint ≤
variable ≤ 0 ↔ constraint ≥

A formal description of the Revised Primal Simplex algorithm and the Revised
Dual Simplex algorithm is given briefly below, while more information and details
on definitions, optimality and feasibility conditions and examples can be found in
[95], [27], [114], [41] and [87].

Revised Primal Simplex Algorithm

Step 0 (Initialization)
Start with a feasible partition (B,N). Compute (𝐴𝐵)

−1 and vectors 𝑥𝐵, w and 𝑠𝑁 .
Step 1 (Test of optimality)
if 𝑠𝑁 ≥ 0, STOP. Problem (LP.2) is optimal.
else choose the index l of the entering variable using a pivoting rule. Variable 𝑥𝑙

enters the basis.
Step 2 (Pivoting)
Compute the pivot column ℎ𝑙 = (𝐴𝐵)

−1𝐴𝑙.
ℎ𝑙 ≤ 0, STOP. Problem (LP.2) is unbounded.
else choose the leaving variable 𝑥𝐵[𝑟] = 𝑥𝑘 using the relation:

𝑥𝐵[𝑟] =
𝑥𝐵[𝑟]

ℎ𝑖𝑙

= 𝑚𝑖𝑛

{︂
𝑥𝐵[𝑖]

ℎ𝑖𝑙

: ℎ𝑖𝑙 < 0

}︂
Step 3 (Update)
Swap indices k and l. Update the new basis inverse (𝐴𝐵)

−1 using a basis update
scheme. Update vectors 𝑥𝐵 , w, and 𝑠𝑁 .Go to Step 1.

Revised Dual Simplex Algorithm

Step 0 (Initialization)
Start with a feasible partition (B,N). Compute (𝐴𝐵)

−1 and vectors 𝑥𝐵, w and 𝑠𝑁 .
Step 1 (Test of optimality)
if 𝑥𝐵 ≥ 0, STOP. The primal problem (LP.2) is optimal.
else choose the leaving variable k, so that 𝑥𝐵[𝑟] = 𝑥𝑘 = 𝑚𝑖𝑛

{︀
𝑥𝐵[𝑖] : 𝑥𝐵[𝑖] < 0

}︀
.

Variable 𝑥𝑘 leaves the basis.
Step 2 (Pivoting)
Compute the vector 𝐻𝑟𝑁 = (𝐴𝐵)

−1
𝑟.𝐴𝑁 .

if 𝐻𝑟𝑁 ≥ 0, STOP. The primal problem (LP.2) is infeasible.
else choose the entering variable 𝑥𝑁 [𝑡] = 𝑥𝑙 using the following minimum ratio

test:

𝑥𝑙 = 𝑥𝑁 [𝑡] =
−𝑠𝑁 [𝑡]

𝐻𝑟𝑁

= 𝑚𝑖𝑛

{︂
−𝑠𝑁 [𝑖]

𝐻𝑖𝑁

: 𝐻𝑖𝑁 < 0

}︂
Step 3 (Update)
Swap indices k and l. Update the new basis inverse (𝐴𝐵)

−1 using a basis update
scheme. Update vectors 𝑥𝐵 , w, and 𝑠𝑁 .Go to Step 1.

2.2.2 Interior Point Method (IPM)

As already discussed, IPM was a major breakthrough in Linear Programming, with
its concept being quite different than Simplex or Ellipsoid algorithms. IPM “cuts”
path in the interior of the polyhedron, instead of moving from vertex to vertex on
the boundary of the feasible region. Thus, although nobody could be absolute in a
decision whether Simplex or IPM performs better in solving particular problems,
one thing is for certain; the most positive outcome of this “competition“ between the
2 algorithms, is that it became the lightning start of very fast and efficient coding
for Linear Programming, as it put remarkable pressure on developers of existing
commercial Simplex applications. Most of the times, the large size of problems
tended to be in favor of interior point methods, but it has been quite difficult to
predict the winner on a particular class of problems. For instance, the sequential
nature of Simplex may make parallelisation difficult [50], though it performs better
in a hyper-sparse linear problem [51]. On the contrary, interior point methods can
significantly speed up in massive parallelisation, by utilizing block-matrix structures
in linear algebra operations [49]. A quick look at the most widely-known
implementation of Karmarkar’s Interior Point Method would explain that it is based
on a predictor-corrector technique as this was suggested by Mehrotra, back in 1992
[75]. This technique implies that in each iteration of the IPM, it is necessary to
calculate the Cholesky decomposition (factorization) of a large matrix to find the
search direction [31]. From a computational point of view, this factorization step is
the most expensive one of the algorithm. For this reason, Mehrotra’s
predictor–corrector method (MPC) uses the same Cholesky decomposition (without
recalculating it) to find two different directions: a predictor and a corrector. The
basic concept is to begin by calculating an optimized search direction based on the
predictor. Then, the size of the step that is taken towards this direction will be used
to evaluate the centrality correction that is needed and the corrector will be
computed. The complete search direction results from the sum of the predictor’s
and the corrector’s direction. Mehrotra’s predictor-corrector method is widely
known in practice, although there is no theoretical complexity linked to it [88].
During corrector step, it uses the same Cholesky decomposition found during the
predictor step and in this way, it is only marginally more expensive than a standard
interior point algorithm. On the other hand, this additional increase per iteration is
usually balanced by a reduction in the number of iterations, needed to achieve the
optimal solution. Further research has led to the development of efficient IPMs
which outperform PSA on large-scale problems, practically as well. All IPMs
maintain the approach of reaching the optimal solution through a sequence of points
inside the feasible region. Highly influential and contributing studies have been
introduced by Gondzio and Wright, [48] and [121]. The implementation of IPM
which is examined in this thesis is OB1, developed by Lustig, Marsten and Shanno
in 1994 [38], implementing a primal-dual predictor-corrector interior point code.

The majority of primal-dual IPMs needs a strictly feasible interior point as a
starting point, which, for some LPs, is difficult to find. MPC is an infeasible
primal-dual IPM and it just requires that (𝑥0, 𝑠0) > 0 for the starting point. At
each iteration of the algorithm, a point (x, w, s) is calculated. This point is
permitted to be infeasible with (x, s) > 0. A formal description of MPC method is
briefly presented below, while more details about all calculations and mathematical
equations can be found in [87].

Mehrotra’s predictor-corrector method
Step 0 (Initialization)
Presolve the LP problem. Scale the LP problem.
Find an initial interior point (𝑥0, 𝑤0, 𝑠0).
Step 1 (Test of optimality)
Calculate the primal (𝑟𝑝), dual (𝑟𝑑) and complementarity (𝑟𝑐) residuals.
Calculate the duality measure (𝜇).
if 𝑚𝑎𝑥(𝜇, ‖𝑟𝑝‖, ‖𝑟𝑑‖) ≤ 𝑡𝑜𝑙, STOP. The problem LP.1 is optimal.
Step 2 (Predictor)
Solve the system 2.2 for (𝛥𝑥𝑝, 𝛥𝑤𝑝, 𝛥𝑠𝑝).⎡⎣0 𝐴𝑇 𝐼

𝐴 0 0
𝑆 0 𝑋

⎤⎦⎡⎣𝛥𝑥𝑝

𝛥𝑤𝑝

𝛥𝑠𝑝

⎤⎦ =

⎡⎣𝐴𝑇𝑤 + 𝑠− 𝑐
𝐴𝑥− 𝑏
𝑋𝑠

⎤⎦ =

⎡⎣𝑟𝑑𝑟𝑝
𝑟𝑐

⎤⎦ (2.2)

Calculate the largest possible step lengths 𝛼𝑝
𝑝 and 𝛼𝑑

𝑝.
Step 3 (Centering Parameter)
Compute the centering parameter 𝜎.
Step 4 (Corrector)
Solve the system 2.3 for (𝛥𝑥, 𝛥𝑤, 𝛥𝑠).⎡⎣0 𝐴𝑇 𝐼

𝐴 0 0
𝑆 0 𝑋

⎤⎦⎡⎣𝛥𝑥
𝛥𝑤
𝛥𝑠

⎤⎦ =

⎡⎣𝐴𝑇𝑤 + 𝑠− 𝑐
𝐴𝑥− 𝑏

𝑋𝑠− 𝜎𝜇𝑒

⎤⎦+

⎡⎣ 0
0

𝛥𝑋𝑝𝛥𝑠𝑝

⎤⎦ (2.3)

Calculate the primal and dual step lengths 𝛼𝑝 and 𝛼𝑑.
Step 5 (Update)
Update the solution (x, w, s).Go to Step 1.

2.2.3 Exterior Point Simplex Algorithm (EPSA)

The Exterior Point Simplex Algorithm (EPSA) was first introduced by Paparrizos in
1991 [77]. All simplex-type algorithms can be interpreted with the process of walking
on simplex-type paths, which eventually lead to the optimal solution. The basic
concept of EPSA lays on the improvement it attempts to introduce, by avoiding the
boundary of the polyhedron of the feasible region and thus, constructing two paths
to reach the optimal solution. One path is exterior to the feasible region while the
other is interior. In 1993, Paparrizos extended EPSA concept to the general Linear

Problem [78]. EPSA generates solutions that are not feasible. In every iteration,
EPSA generates two paths to the optimal solution, with one path being infeasible
(exterior) and the other one being feasible. Using this movement, EPSA does not
need to proceed by visiting one edge after another along the polyhedron 𝑃 = {𝑥 |
𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}. A more formal description of the EPSA implementation is given
below.

Step 0 (Initialization)
Start with a feasible partition (B,N). Compute (𝐴𝐵)

−1 and vectors 𝑥𝐵, w and
𝑠𝑁 . Find the sets 𝑃 = {𝑗 ∈ 𝑁 : 𝑠𝑗 < 0} and 𝑄 = {𝑗 ∈ 𝑁 : 𝑠𝑗 ≥ 0}. Compute 𝑠0
using the relation

𝑠0 =
∑︁
𝑗∈𝑃

𝑠𝑗

Also, compute the vector direction 𝑑𝐵 from

𝑑𝐵 = −
∑︁
𝑗∈𝑃

ℎ𝑗

with ℎ𝑗 = (𝐴𝐵)
−1𝐴.𝑗.

Step 1 (Test of termination)
i. (Optimality test): If 𝑃 = ∅, STOP. Problem (LP.1) is optimal.
ii. (Choice of leaving variable): If 𝑑𝐵 ≥ 0, STOP. If 𝑠0 = 0, problem (LP.1) is

optimal. If 𝑠0 < 0, problem (LP.1) is unbounded. Otherwise, choose the leaving
variable 𝑥𝑘 = 𝑥𝐵[𝑟] using the minimum ratio test:

𝛼 =
𝑥𝐵[𝑟]

−𝑑𝐵[𝑟]

= 𝑚𝑖𝑛

{︂
𝑥𝐵[𝑖]

−𝑑𝐵[𝑖]

: 𝑑𝐵[𝑖] < 0

}︂
If 𝛼 = min{∅} = +∞, the problem (LP.1) is unbounded.
Step 2 (Pivoting)
Compute the row vectors 𝐻𝑟𝑃 = (𝐴𝐵)

−1
𝑟. 𝐴𝑃 and 𝐻𝑟𝑄 = (𝐴𝐵)

−1
𝑟. 𝐴𝑄, where (𝐴𝐵)

−1
𝑟.

denotes the rth row of the basis inverse (𝐴𝐵)
−1. Compute the ratios 𝜗1 and 𝜗2, using

the relations:
𝜗1 =

−𝑠𝑝
𝐻𝑟𝑝

= 𝑚𝑖𝑛

{︂
−𝑠𝑗
𝐻𝑟𝑗

: 𝐻𝑟𝑗 > 0 ∧ 𝑗 ∈ 𝑃

}︂
𝜗2 =

−𝑠𝑞
𝐻𝑟𝑞

= 𝑚𝑖𝑛

{︂
−𝑠𝑗
𝐻𝑟𝑗

: 𝐻𝑟𝑗 < 0 ∧ 𝑗 ∈ 𝑄

}︂
Determine the indexes 𝑡1 and 𝑡2 so that 𝑃 (𝑡1) = 𝑝 and 𝑄(𝑡2) = 𝑞. If 𝜗1 ≤ 𝜗2, set

𝑙 = 𝑝. Otherwise, set 𝑙 = 𝑞. The non-basic variable 𝑥𝑙 enters the basis.
Step 3 (Update)
Set 𝐵[𝑟] = 𝑙. If 𝜗1 ≤ 𝜗2, set 𝑃 ← 𝑃 ∖ {𝑙} and 𝑄 ← 𝑄 ∪ {𝑘}. Otherwise, set

𝑄(𝑡2) = 𝑘. Using the new partition (B,N), where N = (P,Q), update the basis inverse

(𝐴𝐵)
−1 = 𝐸−1(𝐴𝐵)

−1 and the vectors 𝑥𝐵, w and 𝑠𝑁 . Also, update 𝑑𝐵 by 𝑑𝐵 = 𝐸−1𝑑𝐵,
where 𝐸−1 is computed by 2.1 and compute 𝑠0. Go to Step 1.

In order to solve general LP problems, we used the Two Phases method. This
method for EPSA was initially presented in [112]. The problem of Phase I is
constructed by the following procedure. First an artificial variable 𝑥𝑛+1 ≥ 0 is
added to the problem (LP.3). The coefficients of 𝑥𝑛+1 are given by the relation
𝑔 = −𝐴𝐵𝑒, where e ∈ R𝑚 is a column vector of ones. The artificial problem which is
solved in Phase I has the form

min 𝑥𝑛+1 (LP.3)
s.t. 𝐴𝑥+ 𝑔𝑥𝑛+1 = 𝑏

𝑥, 𝑥𝑛+1 ≥ 0

The first iteration in Phase I inserts the artificial variable 𝑥𝑛+1 into the basis. The
leaving variable is selected by

𝑥𝑘 = 𝑥𝐵[𝑟] = 𝑚𝑖𝑛{𝑥𝐵[𝑖] : 𝑖 = 1, 2, ...,𝑚}

Now, the new partition is 𝐵[𝑟] = 𝑛 + 1 and 𝑁 [𝑛 + 1] = 𝑘. Obviously, the
corresponding basic solution is feasible, since 𝑥𝐵[𝑟] = −𝑏𝑟 > 0, 𝑥𝐵[𝑖] = 𝑏𝑖 − 𝑏𝑟 ≥ 0,
𝑖 ̸= 𝑟 and 𝑥𝑗 = 0, 𝑗 ∈ 𝑁 . In Phase II, the original problem (LP.1) is solved.

In order to solve general LP problems, we used EPSA in both Phases. Specifically,
EPSA is applied to the problem (LP.3) of Phase I. EPSA exits Phase I if (i) the
artificial variable 𝑥𝑛+1 leaves the basis and at the same time, direction 𝑑𝐵 crosses the
feasible region, or (ii) direction 𝑑𝐵 does not cross the feasible region after 𝑥𝑛+1 leaves
the basis. In this case, EPSA must reach (LP.3) to optimality in order to obtain a
feasible solution for the problem (LP.1). Using the following relation, EPSA checks
if the current direction 𝑑𝐵 crosses the feasible region.

𝛽 = 𝑚𝑎𝑥

{︂
𝑥𝐵[𝑖]

−𝑑𝐵[𝑖]

: 𝑥𝐵[𝑖] < 0} ≤ 𝛼 = 𝑚𝑖𝑛{
𝑥𝐵[𝑖]

−𝑑𝐵[𝑖]

: 𝑑𝐵[𝑖] < 0

}︂
where 1 ≤i≤m.

2.3 Complexity and Performance Analysis

The community of OR analysts and researchers is interested not only in the goals
which are to be achieved with LP algorithms, but also in the efficiency of these
algorithms, i.e. how many resources they would require. By “resource”, we refer to
any kind of original sources (in terms of time, hardware, software, human resources,
etc.) that an algorithm would need to perform as expected and find the optimal
solution for a specific LP problem. At this point, the concept of complexity comes into
play. Complexity analysis is a central area of research in theoretical computer science.
There are three different approaches to analyzing algorithms; best case, worst case and
average case. These approaches can explain an LP algorithm’s resource usage at least,

at most and on average, respectively and they represent the minimum, maximum and
average number of steps that the algorithm needs, in order to process the input data
of x elements. In real life LP problems, we mostly examine the worst-case scenario
as the respective execution time is important, so that we can guarantee that the
algorithm will, at least, finish on time or finish after a certain number of iterations.
It is easy to imagine what would happen, if the worst-case analysis prevailed when
decisions about algorithm efficiency had to be made. PSA would be one of the first
“victims” since its theoretical complexity has proved to be exponential (despite the
fact that it performs very well in practice, especially in problems of small or medium
size). If it was only for theoretical performance, Simplex would have never made it
so far.

PSA starts with a feasible basis of the polyhedron P = 𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0 where
𝐴 ∈ R𝑚×𝑛 , 𝑥 ∈ R𝑛 and 𝑏 ∈ R𝑚 and by using pivot operations it preserves feasibility
of the basis and monotonicity of the objective value. The pivot operation is defined
by the pivoting rule that will be applied and this is of vital significance for the
performance of PSA. Efficient pivoting rules will result to fast convergence to the
optimal solution, while poor pivoting rules may lead to worse execution times or
even no solution for the examined LP problem. According to Maros et.al., the
pivoting rule is one of the main factors that will eventually determine the number of
iterations that PSA needs [71]. To understand the significance of the pivoting rules
for the behavior of PSA, we should refer back to the study of Klee and Minty [65],
who, in 1972, proved that Dantzig’s largest coefficient pivoting rule [35] performs
exponentially on some specially constructed problems. This finding classified PSA
as an exponential-time algorithm, rather than a polynomial-time one. There are
numerous linear problems which cause Simplex to perform an exponential number
of iterations, going from one vertex of the feasible region to a better one and then to
a better one, and so on and so forth, for an exponential number of times.
Nevertheless, the computational improvement of simplex-type algorithms still
remains a topic of great interest. The average case behavior as polynomial was
proven by Borgwardt in 1982 ([22] and [23]) using a probabilistic model. A thorough
presentation of the plethora of pivoting rules for simplex-type algorithms can be
found in [110] by Terlaky and Zhang, while a computational study on eight different
pivoting rules for the Revised Simplex Algorithm has been conducted by Ploskas
and Samaras in [86], extending Thomadakis’ work on the topic [111]. The following
table (2.2) presents the computational complexities of the Simplex, Ellipsoid and
Interior Point algorithms, respectively. In this case, let n be the number of variables
in an LP problem and L, the number of bits necessary to represent the input data.

Remarkably contributing studies about the theoretical behavior and performance
of EPSA, among other LP algorithms have been conducted in [82], [80], [96], [97] and
[81].

Table 2.2: Complexity of linear programming algorithms

Complexity
Algorithm Worst case Average case
Simplex O(2n) O(n2)
Ellipsoid O(n4L) O(n4L)
Interior point O(n3.5L) O(n3.5L)

Apart from the theoretical performance of LP algorithms, the computational
behavior has also been the major focus of numerous studies so far. Spielman and
Teng focused on smoothed analysis, starting in [103] by studying the termination
phase for LP algorithms, providing an introduction to smoothed analysis and a
tutorial on proof techniques that have been used in smoothed analysis. Moving
forward in [104], Spielman and Teng continued working on smoothed analysis of
algorithms, which continuously interpolates between the worst-case and average-case
analyses of algorithms. They measure the maximum over inputs of the expected
performance of an algorithm under small random perturbation of that input. The
performance is measured in terms of both the input size and the magnitude of the
perturbations and show that the simplex algorithm has smoothed complexity
polynomial in the input size and the standard deviation of Gaussian perturbations.
In 2009, they extended their study in [105], explaining that several algorithms and
heuristics work well on real data, despite having poor complexity under the
standard worst-case measure. They present smoothed analysis as a step towards a
theory that explains the behavior of algorithms in practice. It is based on the
assumption that inputs to algorithms are subject to random perturbation and
modification in their formation. A concrete example of such a smoothed analysis is
a proof that the simplex algorithm for linear programming usually runs in
polynomial time, when its input is subject to modeling or measurement noise.
Other interesting studies can be found in [76], [102], [96] and [101], using techniques
that explore the practical performance of algorithms.

Chapter 3

Predictive Modelling

Predictive Modelling is a mathematical process, which aims to create and validate a
model for forecasting future results, based on already known results and
measurements. Predictive Modelling may also be referred to as Predictive Analytics,
especially when it comes to commercial deployment, with the main question that
drives all efforts in this field, being “what if, taking into consideration and analyzing
the history background and known past behavior, we could forecast and make
provision for the behavior in the future?”. Statistics and Statistical Analysis, along
with Machine Learning techniques, are the core elements for Predictive Modelling,
serving among others, a common purpose, i.e. data reduction and interpretation.
Fisher stated in his classic paper in 1922 [45] that “the object of statistical methods
is the reduction of data”. Indeed, a volume of data which may be impossible to be
processed by any human mind, should be replaced by quantities which will
adequately represent the whole or at least, contain a sufficient amount of
information, capable of representing the original data.

Applications of Predictive Modelling exist in our everyday life in such a wide
range that may almost be “too common” to notice. From customer relationship
management and e-commerce to social networks and health care system ([15], [69]),
Predictive Modelling has brought a remarkable added value with a plethora of tools
and techniques that are utilized, based on the nature of the examined data and the
model that is to be formed. Companies in the retail market, banks, social networks
as well as telecommunications companies maintain a vast amount of information
about how people live their everyday lives, since they do keep records of where we
live, what we buy and how we spend our money, what we like and dislike, how often
we tend to visit particular sites and what we post online. Back in 2000, perhaps this
feedback of data was provided to companies through our electronic footprints or
online purchases, however, nowadays, there is an “ocean” of data coming from
numerous directions. This information “flood” is a powerful tool at the hands of
companies and quite often governments, not only to understand behavior and
tendency of people towards products, services and topics of public interest, but also
to “predict” future behavior and reactions. This tool will enable maximization of the
value in the relationship that has been established with people, which for a
commercial organization may result to a further profit maximization and for a

33

government to people’s additional support and even wider public acceptance. Of
course, as more and more information is held by organizations at a worldwide level,
the concept of privacy, data security and ownership, anonymity and decision making
has become rather concerning. By decision making, it is meant what kind of
decisions will be taken and will these be taken by humans or by an automated
process, based on the Predictive Modelling results? Such a discussion about ethics
in Predictive Modelling is vital, especially when people’s data are involved;
insightful details about this topic can be found in Steven Finlay’s book, i.e.
“Predictive Analytics, Data Mining and Big Data” ([43]). A quite representative
example of enhancing Predictive Modelling in business processes on a corporate
level is how companies worldwide use customers’ data to proceed with the, so-called,
“upsales” step. That is, examination and perception of the customer’s needs,
requests and actions over time so that the service or product provider can already
forecast the next inquiry and make a particular suggestion or offer, even before it is
asked to do so. Such an action would result to an even higher level of the customer’s
engagement and commitment to the provider who successfully utilizes Predictive
Modelling techniques. However, before we initiate a predictive model creation
process, we should be able to respond affirmatively to the following three questions:

1. Will we be able to perform our current process, to which the model is related
to, more efficiently?

2. Will we reach a better decision making process?

3. Will we be able to do something new that we have not been able to do so far?

As said, organizations gather data from various sources, consequently the data is,
most of the times, unstructured or quite complex for the human brain to analyze,
especially when results are requested back in a rather short period of time. Therefore,
predictive modelling tools, deployed by computer software programs, are used so that
the historical data can be analyzed and some patterns can be identified. Based on
this analysis, the model will most probably stand as an assessment of the expected
behavior which is likely to occur in the future. A predictive model can understand
how different fragments of data are linked to each other and can be interpreted,
based on the technique that has been followed. In Linear Programming, there are a
few studies that have utilized Predictive Modelling techniques, such as the one from
Rao and Rawlings in [91], where they explore the practicality of model predictive
control, which is partially limited by the ability to solve optimization problems in
real time. To our knowledge, Predictive Modelling has not been extensively utilized
in analyzing the practical performance of LP algorithms; adding value to the novelty
of the current thesis, as this has been described already in 1.Further below, we are
describing two of the most commonly used techniques in Predictive Modelling, which
have been applied during the study for the current thesis as well; Regression Analysis
and Artificial Neural Networks.

3.1 Regression Analysis

Regression Analysis (RA) is a statistical method, which examines the relationship
between 2 or more variables, called the dependent variable and the independent
variable(s); the latter may be one or more. The variables may be referred to as
“output” and “input” variables, respectively, however, we will use the terms
“dependent” and “independent” for the rest of this section. Regression Analysis can
be distinguished to simple regression and multiple regression, based on the number
of independent variables that are engaged during the analysis; it can be utilized not
only to evaluate the strength of the existing relationship between variables, but also
to predict the future relationship between them. Applications of Regression
Analysis in modern business and economics are quite prominent, since the method
is vastly implemented in Predictive Modelling and Decision Making systems.
Regression Analysis offers the capability of forecasting potential opportunities and
identifying risks, while it can also be used to optimize business process on a
corporate level. It supports the reduction of huge amounts of data to interpretable
and actionable information, which subsequently supports a faster, smarter and more
accurate decision making process.

3.1.1 Regression Model and Evaluation Metrics

A simple regression model is the linear regression model, which implies that there is
a linear relationship between the dependent and independent variable. This linear
relationship is represented by a line, i.e. the Regression Line, which is found to be
closer to the data points than other lines, according to a specific mathematical
criterion, and can be calculated with the Least Squares method [26], [106]. The
distinctive feature of the Least Squares Regression Line is the vertical distance
between the data points and the regression line, which is the smallest possible. The
Least Squares method, and thus the regression line, are named as such because the
best line of fit is the one that minimizes the sum of squares of the errors (i.e.
variance). This may be difficult to visualize, however, the main purpose is to find
the equation that fits the data points as closely as possible. A simple linear
regression model is represented by equation Eq.1 below:

𝑌𝑖 = (𝑏0 + 𝑏1𝑋𝑖) + 𝜀𝑖 (Eq.1)

where 𝑌𝑖 is the dependent variable, 𝑏0 represents the intercept with the vertical axis,
𝑏1 is the slope of the regression line and 𝑋𝑖 is the independent variable. The value
of 𝜀𝑖 represents the amount of residual. Generally, the residual value is calculated as
the difference between the observed value and the estimated value of the regression
model. Small residuals correspond to a good fit of the regression model, while the
opposite implies that the model does not fit well to the examined data. The entities
𝑏0 and 𝑏1 are characterized as “Regression coefficients” and are necessary for the Least
Squares method, since we need to identify their values and thus, the regression line,

so that the following quantity (Eq.2) is minimized.∑︁
𝑖

𝜀2𝑖 =
∑︁
𝑖

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)
2 (Eq.2)

The following amounts of Total Sum of Squares, Residual Sum of Squares and
Model Sum of Squares (Eq.3, Eq.4 and Eq.5, respectively) contribute to the evaluation
of good fit of the regression line to the examined data. Sum of squares (SS) indicates
the deviation from the mean and is calculated as the sum of the squares of the
differences from the mean [67].

𝑆𝑆𝑇 =
∑︁
𝑖

(𝑌𝑖 − 𝑌)2 (Eq.3)

𝑆𝑆𝑅 =
∑︁
𝑖

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)
2 (Eq.4)

𝑆𝑆𝑀 = 𝑆𝑆𝑇 − 𝑆𝑆𝑅 (Eq.5)

A rather useful and simple interpretation of the Sums of Squares would be that 𝑆𝑆𝑇

and 𝑆𝑆𝑅 represent the deviation of the examined data from the “worst model” (mean
value) and the “best model” (line), respectively, while 𝑆𝑆𝑀 denotes the difference
between the “worst model” and the “best model”. The bigger the value of 𝑆𝑆𝑀 , the
more important the contribution of the model to the prediction of the independent
variable Y. The smaller the value of 𝑆𝑆𝑀 , the lower the contribution of the model to
the improvement of the “worst prediction” of the mean value. The quality of the model
fitting can be calculated as the percentage of the improvement in prediction (Eq.6),
which is introduced by the model. This implies the percentage of the independent
variable’s volatility, which is explained by the model and is named “coefficient of
determination”, corresponding to the square of Pearson’s coefficient [83], [107].

𝑅2 =
𝑆𝑆𝑀

𝑆𝑆𝑇

=
𝑆𝑆𝑇 − 𝑆𝑆𝑅

𝑆𝑆𝑇

= 1− 𝑆𝑆𝑅

𝑆𝑆𝑇

(Eq.6)

R-squared (R-Sq) or 𝑅2 is a metric that defines the good fit of a statistical model to
the examined data, therefore the bigger its value is, the better fitting the model has.
Although the significance of this coefficient is crucial for all regression models, we
should always take into consideration its two main drawbacks. It has been reported
that the R-squared value increases, every time a new parameter is added in the
examined model. This is one of the reasons why the R-squared value alone cannot
guarantee the good fit of a model. Moreover, the metric may be affected by random
noise of the dataset, especially in cases of large number of parameters and higher
order polynomials in the examined model. This problem is known as “over-fitting”
and produces misleadingly high values for R-Sq, making the model unsuitable to be
used for predictions [90]. An additional measure for evaluation of the regression model

is the F -test, which is calculated by the Mean Sums of Squares as shown in equations
Eq.7, Eq.8 and Eq.9 below. Mean squares (MS) amount is calculated by dividing the
respective sum of squares by the degrees of freedom. This metric is an estimate of the
population variance. In a regression model, the mean squares are used to determine
whether the parameters of the model are significant [67].

𝑀𝑆𝑀 =
𝑆𝑆𝑀

𝐷𝑒𝑔𝑟𝑒𝑒𝑠𝑂𝑓𝐹𝑟𝑒𝑒𝑑𝑜𝑚
=

𝑆𝑆𝑀

𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
(Eq.7)

𝑀𝑆𝑅 =
𝑆𝑆𝑅

𝐷𝑒𝑔𝑟𝑒𝑒𝑠𝑂𝑓𝐹𝑟𝑒𝑒𝑑𝑜𝑚
=

𝑆𝑆𝑅

𝑛−𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠
(Eq.8)

𝐹 =
𝑀𝑆𝑀

𝑀𝑆𝑅

(Eq.9)

Degrees of freedom is the number of values in the final calculation of a statistic that
are free to vary. The concept of this metric was introduced by Student in 1908
[108], while the specific naming belongs to Fisher, who used it some years later in
1922 ([44]). The significance of F and the corresponding P values of a regression
model derives from the fact that, although 𝑅2 provides an estimate of the strength
of the relationship between a regression model and the dependent variable, it does
not provide any formal hypothesis test for this relationship. The F -test is the metric
which determines if this relationship is statistically significant or not. Therefore, if
the P value for the overall F -test is less than the applied significance level, then the
specific regression model has statistically significant predictive capability [39]. In case
the statistical significance is < 0.001, we can safely conclude that the model highly
contributes to the prediction of the independent variable.

Moreover, the statistical significance of the regression coefficients is crucial for
the validity of the regression model and the evaluation of its quality. More
specifically, the value of 𝑏0 defines the change upon the dependent variable if the
respective independent variable changes by one unit. To examine the statistical
significance of 𝑏1 we apply a t-test with significance < 0.05 [108]. The standard
error of the coefficient (SE Coef) is the standard deviation of the estimate of a
coefficient in a regression model. It measures the precision of the model’s estimation
about the coefficient’s unknown value. SE Coef value is always positive and the
smaller it is, the more precise is the estimate. The division of the coefficient by the
respective standard error results to a specific t-value (T). This value is also known
as t-statistic and measures the likelihood of the actual value of the parameter being
not zero. The larger the absolute value of T, the less possible that the real value of
the parameter is zero. If the probability value (P) related to the t-statistic is less
than the determined level of significance, we conclude that the coefficient is
significantly different from zero ([39]).

An introduction to multiple regression would be the extension of the linear
model with more than one, independent variables (Eq.10). In case of 2 independent
variables, the regression line’s equation extends to a plane, while in case of more
than 2 independent variables, to a hyperplane.

𝑌𝑖 = (𝑏0 + 𝑏1𝑋𝑖 + ...+ 𝑏𝑘𝑋𝑘) + 𝜀𝑖 (Eq.10)

In multiple regression, the amounts of 𝑆𝑆𝑇 , 𝑆𝑆𝑅 and 𝑆𝑆𝑀 are calculated in a more
complicated way but their meaning and significance remain the same. The fact that
multiple independent variables are involved in the regression makes it imperative to
calculate a coefficient of multiple correlation that reveals the strength of the
relationship of the dependent variable with all independent ones. The value of 𝑅2 is
calculated similarly to the simple linear regression, as the volatility percentage of
the independent variable, which is actually explained by the model.

One fundamental issue that needs to be clarified before initiating the creation
of a multiple regression model is how the independent variables will be selected.
Taking into consideration, that during examination of a specific dataset, we can use
particular attributes and features as independent variables, it is clear that the latter
are usually correlated to each other. However, there are several methodologies for the
selection of the most appropriate variables for the regression model, such as Forced
Entry, when all variables enter the model simultaneously, Stepwise, where the order
of variables is defined by mathematical criteria, Forward, Backward, etc [29]. In
general, the researcher should have a good understanding of the dataset that needs
to be examined, so that the most appropriate methodology can be selected. Another
matter that concerns researchers is the model’s accuracy, since it is crucial that the
model can achieve a good fit to the data and its behavior is not affected by a few
extreme instances. Such instances, called “outliers”, are cases which differ significantly
from the rest of the dataset. They can stand as a “diagnostics” measure of the model’s
fitting, since they may have a great impact on the regression coefficients’ values.
Outliers can be detected by their large residual values. For better comprehension
and comparison of residuals, these can be standardized by dividing their value by
their standard deviation. Standardized residuals with an absolute value > 3 may be
concerning, while in case over 1% or 5% of the standardized residuals is > 2.5 or > 2,
respectively, then this is a indication of poor fitting. Other measures of checking for
outliers are the Adjusted Predicted Value, which is calculated for each case separately,
by removing it from the sample and estimating it with the new regression model that
is formed; Cook’s distance, which is a measure of overall impact of a data point on the
model (e.g. data points with a value > 1 may be concerning); etc [33], [34]. Elaborate
explanation of additional metrics which are examined for the selection of best-fitting
regression models is provided below:

1. Adjusted R-squared (R-Sq(adj)): adjusted coefficient of determination. This
metric proves to be useful during the comparison of models with different
number of predictors (i.e. independent variables), since it is adjusted
according to the number of predictors in a model. In more detail, its value
increases only if a new predictor improves the model more than it was

expected by chance and decreases when a predictor improves the model less
than expected by chance. Interestingly enough, its value turns out to always
be lower than the R-squared value [90].

2. Predicted R-squared (R-Sq(pred)): the predicted R-squared explains the
predictability of a regression model, i.e. predicting responses for new
observations. A regression model that seems to fit the original data, may not
be capable of providing valid predictions for new observations. Similarly to
adjusted R-squared, predicted R-squared is always lower than R-squared and
there are times, when even a negative value has been observed. Perhaps the
most important benefit of this metric, is that it can “prevent” researchers from
using models which over-fit. Since it is rather impossible to predict random
noise, the value of predicted R-squared would drop, in case of an over-fitted
model. Kutner et al. explain that if the predicted R-squared value in a
regression model is much lower than its regular R-squared value, this may
indicate that the model is most probably over-fitted and cannot be used for
predictions [67].

3. Standard error of regression (S): it measures the units of the “response”
(dependent variable) and represents the standard distance between data values
and the estimated regression line. The lower the value of S, the better the
predictability of the model. When comparing different models, the model with
the lowest S value reflects the best fit [54].

In Chapter 5, where the predictive models of this study are presented, respective
probability plots are included after the regression model equation and statistical
details. The P–P plot is a normal probability–probability (P–P) plot based on the
standardized residuals. In this study, the X axis represents the observed cumulative
probability (observed cum prob), which is based on the percentiles in the frequency
distribution of the residuals. The Y axis, which represents the expected cumulative
probability, is based on the standardized residual (Z -score) and on the computation
of the cumulative density from the normal distribution. If the residuals are normally
distributed, then the values should fall exactly on the diagonal line. A systematic
deviation from the diagonal line may indicate a positive skewness of the
distribution. This means that the right side tail of the curve, if this was depicted in
a histogram, is longer than the left side tail and the mean is greater than the mode.
Skewness is actually the asymmetry of a distribution and can be quantified to
measure the extent to which this distribution is distorted and how much it differs
from a normal distribution.

Having described the basic concept of Regression Analysis and after presenting
some fundamental metrics that enable the evaluation of regression models, we are
now concluding this section by summing up with the following three properties;
autocorrelation, heteroscedasticity and multicollinearity. These properties are not
expected to occur in a good-fitting model.

1. Autocorrelation is identified when the residuals of a regression model are
not independent from each other. Autocorrelation can be detected not only
from graphs as explained above, but also from other statistical measures, such
Durbin-Watson metric [40]. Autocorrelation can be eliminated, by performing
appropriate transformations in variables of the model.

2. Heteroscedasticity occurs when the variances of the residuals in a regression
model are not equal. Similarly to autocorrelation, this issue can be identified
through graphical representation of the residuals and can be overcome with
transformations of data.

3. Multicollinearity arises in multiple regression analysis, where two or more
independent variables are highly correlated to each other. The problem can be
detected through statistical measures and the most efficient solution is usually
to remove the affected variables from the regression model.

3.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) concept is very well known to Artificial
Intelligence (AI) researchers, however it may seem a bit complicated to perceive at a
glance. Artificial Neural Networks stand as one of the main tools in the field of
Machine Learning and as the word “neural” in their naming suggests, they are
systems designed to replicate the learning process of the human brain. An ANN
consists of a set of connected nodes called “artificial neurons”, which actually
represent the neurons of a biological brain. The response time of human biological
neurons can be estimated in milliseconds; still, the human brain can make difficult
and complex decisions, incredibly fast. The computational capabilities of the human
brain and the information it can store and maintain are organized similarly to a
Parallel Distributed Processing (PDP) system [93], [94]. Similarly to a biological
neural network which is continuously learning and gaining knowledge and
understanding, based on experience, ANNs are supported by mathematical
algorithms that work together, calculate input data and produce an output. The
outputs support the ANN to learn and improve its accuracy. The connections
between neurons in ANNs (often called “edges”) transmit signals to other neurons,
similarly to the synapses in a biological brain. A neuron will process a signal it
receives as input and then, transmit it as output to the neurons it is connected to.
In ANNs, this signal is a real number while the output is calculated by a non-linear
function (i.e. activation function) based on the sum of the neuron’s inputs. Neurons
and edges are characterized by a weight that fluctuates as the learning process
progresses and its value increases or decreases depending on the strength of the
signal that is transmitted through the respective connection. A basic representation
of a neuron is shown in the following figure 3-1.

A fundamental aspect of the ANNs’ structure is that the neurons are usually set
up in layers to serve different transformations per layer on their inputs. A signal
may “travel” from the first (input layer) to the last (output layer) after traversing

Figure 3-1: Structure of an artificial neuron

the intermediate (or “hidden”, as they are also called) layers multiple times. The
concept of an ANN consists of three main steps, i.e. a) for each neuron in a layer, the
input is multiplied to the respective weights, b) for each layer, all products of input
× weights of neurons are summed together and c) the activation function is applied
on the result to compute the new output. It is important to clarify that non-linearity
of the activation function is crucial so that the ANN can model complex, non-linear
problems. There are several types of activation functions, such as:

• Sigmoid, which produces an S -shaped curve (1
1+𝑒𝑥𝑝(𝑥)

). It is not linear but still
it cannot usually detect slight changes within inputs; as a result, variations in
inputs yield similar results.

• Hyperbolic Tangent (Tanh), which is superior than Sigmoid (1−(𝑒𝑥𝑝(−2(𝑥))
1+𝑒𝑥𝑝(−2𝑥)

).
Nevertheless, it cannot detect relationships better and is generally slower at
converging.

• Rectified Linear Units (ReLu), which converges faster (when compared to the
two previous functions), optimizes and produces the objective value quicker. It
is the most popular activation function used within the hidden layers.

• Softmax, which is used in output layer, mainly because it can reduce dimensions
and can represent categorical distribution.

The structure of an ANN where neurons are organized in multiple layers is shown in
figure 3-2.

Neurons within layers may be fully or partially connected, while one layer connects
only to the neurons of the exact preceding and exact following layers. Two layers are
considered to be fully connected, when every neuron in one layer connects to every
neuron in the next layer. The layer that receives external data is the input layer,
while the layer that produces the ultimate result is the output layer. In between, we
may have zero or more hidden layers. Single layer and unlayered networks are also
commonly used. Between two layers, multiple connection patterns can be identified.
Moreover, there may be cases when a group of neurons in one layer connects to a single
neuron in the next layer, resulting in reduction of the number of neurons in the latter.

Figure 3-2: Structure of Artificial Neural Networks with 2 hidden layers

ANNs with only such kind of connection form directed acyclic graphs and are known
as feedforward networks. This is the most basic type of neural network in which
information travels in only one direction (i.e. from input to output). Additionally,
there are networks which allow connections between neurons in the same or previous
layers and are known as feedback or recurrent networks. They are more widely used,
due to the fact that data can flow in multiple directions, and since they have greater
learning abilities, they are deployed for more complex tasks, e.g. even language
recognition. Before discussing about the applications of ANNs and how their learning
process is formulated, we are summarizing upon their main components, which could
be presented as follows:

• Neurons
Neurons receive an input signal, combine the input with their internal state
and an optional threshold using an activation function, and produce an output
signal. The activation function is significant for the development of any ANN as
it provides a smooth, differentiable transition while input signal values change,
i.e. a small change in input produces a small change in output.

• Connections and weights
Connections provide the output of a neuron as input to adjacent neurons. Each
connection is assigned a weight that represents its relative importance, while
neurons can have multiple input and output connections.

• Activation function
The activation function is responsible for the computation of the input to a
neuron, taking into consideration the outputs of the preceding neurons and
their connections as a weighted sum.

As explained already, the initial purpose of ANNs was to achieve problem solving
in a way that would be the same as the one of human brain. Over time, research focus
was shifted to more specific tasks, deviated from biology and spread to a variety of
tasks, including but not limited to pattern recognition (speech, sound, image, etc.),
machine translation [17], social network filtering and medical diagnosis [24]. The
“door” to this new area of Artificial Intelligence was first opened by McCulloch and
Pitts, who, in 1943, created a computational model for neural networks [73]. However,

the major breakthrough happened two decades later when backpropagation came into
play, allowing networks to adjust their hidden layers when the outcome was not what
had been expected. One more significant step for the progress of ANNs was the
introduction of “deep learning” concept, which implied that in case of different layers
in a multilayer network, the layers may extract different features (due to different
transformations performed in each layer, as stated already) until the network can
recognize what it is searching for ([119], [98], [99]).

3.2.1 Learning process

ANNs are designed to recognize and identify patterns in data, while the tasks they
can perform include (but are not limited to) classification (i.e. classifying datasets
into predefined classes), clustering (i.e. classifying data into different undefined
categories), and prediction (i.e. using past events to forecast future ones). Artificial
Neural Networks are widely utilized for the solution of problems which have
non-predictable behavior and may be not clearly perceived. Applications of ANNs
through classification are common in fields of medicine, defense, agriculture and
business economy; pattern recognition is particularly useful in banking, information
technology and telecommunications, while prediction methods are vastly used in
business, social networking and online, personalized advertising. The learning
process of ANNs has a clear resemblance to the learning process of biological
brains that learn from experience and require data. Similarly to a gradually
increased efficiency when a human performs the same process multiple times, an
ANN becomes even more accurate as the amount of data it takes as input increases.
Before setting up the training process of an ANN, the dataset is typically split into
two sets; a) the training set, which helps the network establish weights between its
nodes and b) the test set, which examines if the network can successfully convert the
input signal into the desired output. The learning process of ANNs has proved to be
quite a challenge on a technical level. Reason is that the amount of time that is
necessary to train networks, subsequently requires remarkable amount of resources
and computing power. There are three widely known methods for training an ANN,
listed below, which represent the process of adjusting the weights of the network so
that, given a particular vector as input, the network can produce a vector as output:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

In practice, most ANN applications use Supervised Learning, which is supported by
numerous algorithms. In this case, the input and respective output data is provided to
the network for training, in order to get a desired output for a specified input. One of
the most characteristic examples of a Supervised ANN is the spam filters supplied by
our mail service providers. On a training level, the input to the ANN is actually a set
of words in the body of the e-mail, which are considered to be content of spam emails,

while the output is marking email as either spam or not spam. The Unsupervised
ANNs are more complex, since they attempt to understand the data provided as
input, on their own. An example could be housing lists of Airbnb online platform
which get grouped together in neighborhoods, so that the users can navigate more
easily. Reinforcement learning (RL) involves software agents which are designed to
take actions towards solving a problem with the purpose of maximizing a cumulative
reward. In contrast to the other methods of learning, reinforcement learning does not
need specifically labelled input and output values but it works through exploration
of the possible solutions and exploitation of the knowledge the network has gained so
far [60].

Despite the actual learning process, it is true that the most difficult task is the
interpretation of the ANNs results. They are often characterized as “black boxes”
in which the user feeds in data and receives answers. Indeed, although the users
may be able to fine-tune the answers, they cannot have clear access to the exact
decision making process. This topic is an active “work in progress” for a plethora of
researchers and its impact is expected to become even more profound as ANNs
continue getting a bigger role in our everyday lives. To be able to interpret the
results generated by an ANN in a meaningful and practical way, the researcher
should have a clear understanding of the dataset that is available and the tools (i.e.
algorithms) which can be used for training of the ANN. It is a common practice
testing multiple learning algorithms and experimentally determine which one works
best on the problem at hand. Another approach is trying to fine tune the
performance of a learning algorithm, although this may prove to be a very
time-consuming process. Therefore, taking into consideration a limitation in
available resources, it may often prove “wiser”, although is still questionable by
many researchers, to spend some more time collecting a sufficient amount of
training data than attempting to adjust the learning algorithm itself. Commonly
used algorithms in Supervised Learning is the Delta rule, Back Propagation,
Competitive Learning and Random Learning. While building an ANN, a researcher
takes into consideration several metrics and aspects which facilitate the evaluation
of the generated model’s accuracy and efficiency. For instance, the model may show
an overfitting or an underfitting behavior instead of a good fit on the examined
dataset. Overfitting occurs when the generated model has the ability to predict the
data it was trained on very well, but it cannot accurately predict new data and
thus, cannot be generalized. Underfitting occurs when a model cannot predict well
not only new data, but even the data it was trained on. While overfitting is often an
indication of an extremely complicated model, which even “captures” the noise of
our dataset, it can be prevented by fitting multiple models and using validation or
cross-validation to compare their predictive accuracy values on test data. Similarly,
underfitting is a strong indication of an excessively simple model. In both cases, the
accuracy of the model can be increased by adjusting the number of layers in the
ANN, the number of neurons per layer, etc. Books and studies have been published
about ANN training, performance evaluation and characteristics, including a more
thorough analysis on the topics described above; some indicative examples which
proved very useful for the current study are [59], [100], [52], [115] and [13].

Chapter 4

Dataset

One of the primary steps in any kind of scientific work, which is of vital importance
for every researcher, is to examine, understand and be able to interpret the dataset
which is subject to the respective analysis. Data can provide significant knowledge
and insight to any topic under examination, as long as the researchers can explore
and understand the available datasets. Otherwise, data will only stand as measured
values and observations instead of getting transformed to valuable information. A
dataset may consist of attributes of different nature; variables may be quantitative or
qualitative, categorical or nominal, and may be analyzed and examined in different
ways, depending on the problem that needs to be solved and the tools, methods and
approaches that are most suitable every time. Thus, before diving into modelling, a
researcher takes a close and careful look at the available data. Further elaboration on
the examined dataset may reveal noise that should be excluded or minimized, outliers
which may have an impact on the analysis and patterns or correlations between the
examined variables that need to be taken into consideration.

In our study, we are dealing with numerical values which may need to be
transformed before being analyzed. This chapter includes a thorough description of
the datasets, which are used for the purpose of our study and are presented based
on the respective algorithms that are studied. Our datasets consist of linear
problems which a) have been created through a random linear problem generator
and b) belong to widely used benchmark problem libraries. Benchmark problems
are publicly available LP problems, which are, most of the times, hard to solve.
Some of the most widely used benchmark libraries, which have also been utilized in
our study, are listed below:

• Netlib LP problems [1]
Kennington LP problems [2]
Netlib LP problems (infeasible) [3]

• Mészáros LP problems
Miscellaneous [4]
Problematic [5]
Stochlp [6]

• Mittelman LP problems [7]

45

Netlib test set for Linear Programming is actually a collection of real-life LP
problems from a variety of sources. In “Linear Programming Using MATLAB®”
[87], Ploskas and Samaras explain that, over the years, Netlib has become a
standard set of problems for testing and comparing algorithms and software in LP
field. However, as stated also by Ordóñez and Freund [76], almost 71% of Netlib LP
problems are ill-conditioned and may introduce obstacles in calculation of numerical
values. Moreover, a remarkable number of Mészáros and Mittelman LP problems
are very degenerate and hard to solve. These conditions are a powerful motivation
for the use of the described libraries in order to examine EPSA, IPM, Primal and
Dual Simplex algorithms and generate trustworthy models for their performance.

Prior to a more thorough presentation of our datasets, we should clarify that the
files generated by the random LP problem generator are in MAT format (as produced
by MATLAB), while the LP problems of the aforementioned libraries are in MPS
format (widely accepted format for defining LP problems and considered as input
for numerous of LP solvers). Closing this chapter, we are going into further details
about the computing environment that was used in order to solve the aforementioned
problems with the examined algorithms.

4.1 Datasets for EPSA

4.1.1 Random Linear Problems

Exterior Point Simplex Algorithm was examined upon 6,780 sparse linear problems
which were randomly generated. Sparse linear problems exist in a plethora of
applications, thus our goal has been to examine how EPSA performs when it is
applied for their solution. The expected number of feasible vertices of a random
linear problem is less or equal to 2𝑚, where m is the dimension of the constraint set
[21]. The randomly generated sparse linear problems are subject to inequality
constraints and they are optimal, meaning that the algorithm reaches an optimal
solution after a specific number of iterations. These problems have been created
using a generator, that was specifically designed to generate random optimal LP
problem instances [79]. The planes of the constraints are tangent on a sphere, so
that its center is feasible. Also, these problems have a closed feasible region that is a
closed polyhedron. We used an LP problem generator that takes as input the
number of constraints and decision variables (m and n, respectively), the density of
the nonzero entries of matrix A (0< 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 1) and the seed number for the
random number generator. The ranges of the values used in matrices A, b, and c, in
order to create the linear problems of our study are shown in Table 4.1 below.
Based on existing bibliography material and previous work, the lower and upper
bounds of values in matrices A, b and c have been set to 10, 10, -300 and 400, 100,
900, respectively. The entries of A, b and c were randomly generated with Matlab
sprand function.

Table 4.1: Value ranges of LP problems

A [10 400]
b [10 100]
c [-300 900]

As stated earlier, one of the values that the random generator takes as input is
that of density. The density has been formed by using Matlab rand function with
an upper limit of 30%, due to the fact that we are especially interested in examining
the algorithm’s behavior when dealing with sparse LP problems. The LP problem
characteristics examined for EPSA are shown in the list below.

• m: number of linear constraints
• n: number of variables
• sparsity : problem’s sparsity
• nnz : number of nonzero elements in matrix A
• L: data length (bit length)
• cond(A): condition of matrix A

Apart from the first two characteristics (which are well-known LP attributes), the rest
have a significant contribution to the algorithm’s performance and overall efficiency as
well. The respective values of the characteristics above were randomly formed, except
for the benchmark LP problems which are described further below. Some descriptive
statistical information about the above mentioned characteristics is presented in Table
4.2.

Table 4.2: Characteristics of linear problems

m n sparsity (in %) nnz L cond(A)
min. value 1,122 1,088 71.7% 127,970 3,478,842 24.9788
max. value 12,470 12,301 97.47% 27,051,872 311,324,768 573,956,480

The quantities of m and n were formed by using Matlab rand function, within
the bounds shown in Table 4.2 above. The number of nonzero elements indicates the
elements within matrix A which are not zero. Data length L is the number of bits
which are required in order to represent integer data of A, b and c.

Regarding cond(A), its number is close to 1 when the data within matrix A is of
good condition. The condition number can be used to predict how ill-conditioning
affects the computed solution of a LP. The above mentioned values are uniformly
distributed, according to the sprand and rand functions of Matlab. A more detailed
presentation of the measured values for the randomly generated LP problems (6,780
in total) could not be supported in printed form, however it is available in electronic
format (i.e. Microsoft Excel file, 𝐸𝑃𝑆𝐴𝑆𝑝𝑎𝑟𝑠𝑒𝐴𝐿𝐿.𝑥𝑙𝑠𝑥).

4.1.2 Linear Programming Benchmark Problems

Apart from the previously described randomly generated LP problems, 60 benchmark
problems were examined as well (Table 4.4), coming from the Netlib library [8] and
Mészáros miscellaneous LP collection (Linear Programming Test Problems [4]). Some
descriptive statistical information about the characteristics of the benchmark dataset
is provided in Table 4.3.

Table 4.3: Characteristics of linear problems

m n density (in %) nnz L cond(A)
min. value 7 17 0.05% 41 411 3.1292
max. value 14,310 12,465 34.45% 152,800 178,605,200 2.1027× 1035

Table 4.4: Characteristics of the MPS benchmark files

Problem m n density nnz L cond(A) niter
adlittle 56 97 0.0705 383 7,056 9.3747E+02 158
afiro 27 32 0.0961 83 1,095 9.5044E+16 22
agg 488 163 0.0303 2,410 88,832 4.9751E+16 135
agg2 516 302 0.0275 4,284 168,155 1.0680E+25 224
agg3 516 302 0.0276 4,300 168,171 7.7242E+32 229

aircraft 3,754 7,517 0.0007 20,267 28,330,724 2.0809E+04 3,504
beaconfd 173 262 0.0745 3,375 52,616 1.4610E+04 306

blend 74 83 0.0799 491 7,167 4.9210E+17 89
brandy 220 249 0.0392 2,148 59,001 INF 400

cari 400 1,200 0.3183 152,800 636,613 3.1292E+00 1,658
cr42 905 1,513 0.0048 6,614 1,399,865 6.8812E+02 1,842

degen2 444 534 0.0168 3,978 243,841 8.7744E+16 1,278
e226 223 282 0.0410 2,578 69,812 2.1027E+35 645
farm 7 17 0.3445 41 411 4.9293E+02 2

fffff800 524 854 0.0139 6,227 464,488 5.3703E+21 756
israel 174 142 0.0918 2,269 33,749 3.7416E+16 331

jendrec1 2,109 4,228 0.0100 89,608 9,287,885 1.3477E+03 6,858
lotfi 153 308 0.0229 1,078 50,578 4.1496E+07 373

nemscem 651 1,712 0.0034 3,840 1,125,700 4.4628E+01 514
nsic1 451 463 0.0137 2,853 245,545 1.9515E+22 404
nsic2 465 463 0.0140 3,015 247,175 2.9912E+18 522
nsir1 4,407 5,717 0.0055 138,955 27,224,988 4.5551E+20 4,078

Table 4.4: Characteristics of the MPS benchmark files

Problem m n density nnz L cond(A) niter
nsir2 4,453 5,717 0.0059 150,599 27,126,852 3.1966E+20 7,886
p0201 133 334 0.0463 2,056 52,294 2.8742E+02 423
p0291 252 543 0.0167 2,283 143,616 1.4445E+02 102
p0040 23 63 0.0918 133 2,567 6.0275E+03 38
p2756 755 3,511 0.0037 9,692 2,718,092 1.4161E+04 1,211

problem 12 46 0.1558 86 1,232 1.0082E+01 14
rosen2 1,032 2,048 0.0220 46,504 2,251,347 9.5635E+01 3,885
rosen7 264 512 0.0575 7,770 159,181 7.3814E+01 691
rosen8 520 1,024 0.0292 15,538 580,394 1.2165E+02 1,570
rosen10 2,056 4,096 0.0074 62,136 8,613,209 2.3561E+02 3,923
sc50a 50 48 0.0542 130 2,746 4.7169E+01 40
sc50b 50 48 0.0492 118 2,694 7.4264E+01 44
sc105 105 103 0.0259 280 11,518 1.1079E+02 101
sc205 205 203 0.0132 551 42,971 6.3909E+02 249
scagr7 129 140 0.0233 420 20,072 1.0272E+04 130
scagr25 471 500 0.0066 1,554 242,644 2.7013E+09 641
scfxm1 330 457 0.0172 2,589 157,088 1.8342E+18 629
scfxm2 660 914 0.0086 5,183 615,824 1.7107E+18 1,412
scfxm3 990 1,371 0.0057 7,777 1,376,179 1.2020E+18 2,234
scrs8 490 1,169 0.0056 3,182 584,955 1.5015E+17 1,165
scsd1 77 760 0.0408 2,388 63,338 2.1212E+01 837
scsd6 147 1,350 0.0217 4,316 207,014 8.8483E+01 1,848
scsd8 397 2,750 0.0079 8,584 1,108,874 9.9320E+02 4,416
sctap1 300 480 0.0118 1,692 150,945 7.3158E+16 675
sctap2 1,090 1,880 0.0033 6,714 2,076,689 2.8883E+17 2,146
sctap3 1,480 2,480 0.0024 8,874 3,706,126 6.3612E+17 2,327
share1b 117 225 0.0437 1,151 32,368 1.3814E+05 356
share2b 96 79 0.0915 694 10,378 1.5057E+18 258
ship04l 402 2,118 0.0074 6,332 879,180 INF 782
ship04s 402 1,458 0.0074 4,352 605,233 INF 434
ship08l 778 4,283 0.0038 12,802 3,389,137 INF 1,643
ship08s 778 2,387 0.0038 7,114 1,889,137 INF 678
ship12l 1,151 5,247 0.0026 16,170 6,309,794 INF 978
ship12s 1,151 2,763 0.0026 8,178 3,212,891 INF 509
stocfor1 117 111 0.0344 447 14,627 6.3562E+05 85
stocfor2 2,157 2,031 0.0019 8,343 4,411,089 1.0662E+06 1,072

sws 14,310 12,465 0.0005 93,015 178,605,200 3.3301E+18 2,066
zed 116 43 0.1137 567 7,494 5.6907E+05 135

4.2 Datasets for IPM, Primal, Dual algorithms

4.2.1 Linear Programming Benchmark Problems

For the purpose of our computational study on IPM, Primal and Dual algorithms, 295
benchmark linear programming problems were used from the Netlib (25), Kennington
(13), Mészáros (217), and Mittelmann (40) libraries. The problems were solved with
CPLEX’s 12.6.1 [9] primal and dual simplex algorithms and the respective execution
time, needed for their solution, was recorded for each problem (in seconds) (Table

4.18). The LP characteristics which were examined in regards to these algorithms
and set as input in the respective models are the following:

• m: the number of constraints
• n: the number of variables
• nnzA: the number of nonzero elements of the constraint matrix
• nnzb: the number of nonzero elements of the right-hand side vector
• rankA: the rank of the constraint matrix

The execution time was set as the output of the examined models. Apart from
the above characteristics, we also took into consideration the number of variables in
the problems after adding slack variables, the density of the problem, the data length
(bit length), required in order to represent integer data, as well as the norm of the
constraint matrix. However, these characteristics showed no statistically significant
contribution to the creation of our models; this will be further documented in the
following section.

The values of the described attributes are presented in tables 4.5 to 4.17 below,
while the time is presented in Table 4.18. The respective measurements were taken
with no limitations regarding decimal places, however the values are rounded down
to five decimal places only for printing purposes in the following tables.

Table 4.5: Netlib Optimal

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
25fv47 373834 821 1571 516 305 1876 0.00806 10400 0.46276 727 0.34957 287 436.91582 818
2q06c 1194691 2171 5167 1507 664 5831 0.00289 32417 0.63035 3257 0.40258 874 3568.32614 2170

80bau3b 1141232 2262 9799 0 2262 12061 0.00095 21002 0.82263 8061 1.00000 2262 567.22442 2237
bnl2 565836 2324 3489 1327 997 4486 0.00173 13999 0.60906 2125 0.35370 822 211.69630 2247

d6cube 1406453 415 6184 415 0 6184 0.01469 37704 1 6184 0.01446 6 703.40803 404
degen3 871149 1503 1818 717 786 2604 0.00902 24646 0.87129 1584 0.39521 594 54.63300 1503
dfl001 1465563 6071 12230 6071 0 12230 0.00048 35632 0.51030 6241 0.27393 1663 15.91692 6071
fit2d 4780670 25 10500 1 24 10524 0.49150 129018 0.85714 9000 0.56000 14 17513.23301 25
fit2p 2308581 3000 13525 3000 0 13525 0.00124 50284 0.77634 10500 0.50000 1500 9377.30554 3000

greenbea 1050444 2392 5405 2199 193 5598 0.00239 30877 0.11508 622 0.03595 86 106.22474 2389
grow22 303275 440 946 440 0 946 0.01983 8252 0.06977 66 0.00000 0 2.51231 440

maros-r7 4892894 3136 9408 3136 0 9408 0.00491 144848 0.66667 6272 0.99872 3132 3.40322 3136
nesm 639486 662 2923 568 94 3017 0.00687 13288 0.23948 700 0.81873 542 62.00721 608
perold 222857 625 1376 495 130 1506 0.00700 6018 0.00581 8 0.39680 248 52658.04988 625
pilot4 187371 410 1000 287 123 1123 0.01254 5141 0.00400 4 0.46341 190 59355.37334 410
pilot87 2451962 2030 4883 233 1797 6680 0.00738 73152 0.13352 652 0.13941 283 1002.55009 2012
pilotnov 464041 975 2172 701 274 2446 0.00617 13057 0.03315 72 0.40000 390 11504487.26651 969
qap08 274914 912 1632 912 0 1632 0.00490 7296 0.61765 1008 0.01754 16 6.98743 912
qap12 1446230 3192 8856 3192 0 8856 0.00136 38304 0.67073 5940 0.00752 24 8.72518 3192
qap15 3603050 6330 22275 6330 0 22275 0.00067 94950 0.70707 15750 0.00474 30 9.82907 6330
scfxm3 275152 990 1371 561 429 1800 0.00573 7777 0.05033 69 0.36162 358 1014.13925 978
stocfor3 3110673 16675 15695 8829 7846 23541 0.00025 64875 0.58165 9129 0.05925 988 1696.20261 15695
truss 1312537 1000 8806 1000 0 8806 0.00316 27836 1 8806 0.08800 88 5.59268 1000

wood1p 2217625 244 2594 243 1 2595 0.11094 70215 0.00039 1 0.00820 2 22731.15684 244
woodw 1219749 1098 8405 1085 13 8418 0.00406 37474 0.00048 4 0.03097 34 19572.71261 1098

Table 4.6: Netlib Kennington

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
cre-a 674161 3516 4067 335 3181 7248 0.00105 14987 1 4067 0.08788 309 193.01243 3255
osa-07 5486127 1118 23949 0 1118 25067 0.00537 143694 1 23949 1 1118 680.32409 1118
pds-06 3193314 9881 28655 9185 696 29351 0.00022 62524 0.68906 19745 0.07266 718 9.85141 9861
pds-10 5449008 16558 48763 15389 1169 49932 0.00013 106436 0.68960 33627 0.07193 1191 9.85247 16528
pds-20 11804810 33874 105728 31427 2447 108175 0.00006 230200 0.69946 73953 0.07289 2469 9.85258 33726
cre-b 10666973 9648 72447 4958 4690 77137 0.00037 256095 1 72447 0.03234 312 193.14671 7240
cre-c 600769 3068 3678 335 2733 6411 0.00117 13244 1 3678 0.10365 318 180.98677 2864
cre-d 10142757 8926 69980 4958 3968 73948 0.00039 242646 1 69980 0.03596 321 181.31645 6476

ken-13 8457756 28632 42659 28632 0 42659 0.00008 97246 0.99834 42588 0.30941 8859 13.23603 28632
ken-18 30590519 105127 154699 105127 0 154699 0.00002 358171 0.99902 154548 0.22334 23479 18.10183 105127
osa-14 12013582 2337 52460 0 2337 54797 0.00257 314760 1 52460 1 2337 994.48027 2337
osa-30 22901956 4350 100024 0 4350 104374 0.00138 600138 0.99998 100022 1 4350 1365.89370 4350
osa-60 53349731 10280 232966 0 10280 243246 0.00058 1397793 1.00000 232965 1 10280 2138.50159 10280

Table 4.7: Mészáros Miscellaneous (a)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
aa03 2901853 825 8627 825 0 8627 0.00995 70806 1 8627 1 825 39.34052 822
aa5 2407623 801 8308 801 0 8308 0.00991 65953 1 8308 1 801 38.25759 800
car4 3245616 16384 33052 16384 0 33052 0.00012 63724 0.99141 32768 0.03625 594 1.68805 16384
dbic1 39753058 43200 183235 118 43082 226317 0.00013 1038761 0.97299 178285 0.99975 43189 1113689.81681 43192

delf001 730419 3098 5462 1990 1108 6570 0.00078 13214 0.53607 2928 0.53486 1657 3934.77202 3002
delf005 728521 3103 5464 1992 1111 6575 0.00080 13494 0.53587 2928 0.56171 1743 3932.67507 3011
delf008 740381 3148 5472 1998 1150 6622 0.00080 13821 0.53509 2928 0.57147 1799 3930.92791 3055
delf013 742272 3116 5472 1997 1119 6591 0.00081 13809 0.53509 2928 0.59275 1847 3930.05740 3023
delf015 740414 3161 5471 2003 1158 6629 0.00080 13793 0.53519 2928 0.58146 1838 3926.41085 3068
delf025 756189 3197 5464 1997 1200 6664 0.00083 14447 0.53587 2928 0.54145 1731 3913.64032 3103
delf028 757477 3177 5452 1977 1200 6652 0.00083 14402 0.53705 2928 0.58672 1864 3912.23991 3084
df2177 1678184 630 9728 0 630 10358 0.00354 21706 1 9728 1 630 9.71900 630

large000 921456 4239 6833 2499 1740 8573 0.00057 16573 0.53564 3660 0.66832 2833 4066.32821 3819
large005 959644 4237 6837 2498 1739 8576 0.00061 17575 0.53532 3660 0.70734 2997 4056.72967 3820
large008 971242 4248 6837 2498 1750 8587 0.00062 17898 0.53532 3660 0.71681 3045 4055.21723 3831
large013 974656 4248 6838 2501 1747 8585 0.00062 17941 0.53524 3660 0.73046 3103 4054.56063 3830
large019 968573 4300 6836 2512 1788 8624 0.00061 17786 0.53540 3660 0.72605 3122 4047.22086 3880
large021 982655 4311 6838 2516 1795 8633 0.00062 18157 0.53524 3660 0.73927 3187 4041.86746 3893
large034 999380 4294 6831 2499 1795 8626 0.00064 18855 0.53579 3660 0.70843 3042 4035.41393 3876

lpl2 1391994 3294 10755 3168 126 10881 0.00091 32106 1 10755 0.03916 129 500.10316 3294
model3 853556 1609 3840 871 738 4578 0.00376 23236 0.38750 1488 0.11125 179 11299.58551 1607
model5 2917267 1888 11360 1446 442 11802 0.00417 89483 0.06620 752 0.05085 96 503.09562 1744

nemsemm1 35856356 3945 71413 6 3939 75352 0.00373 1050047 0.99175 70824 0.53587 2114 14596.75613 3893
nemspmm2 2656303 2301 8413 1980 321 8734 0.00351 67904 0.22988 1934 0.03738 86 9389.45856 2276

orna2 264565 882 882 882 0 882 0.00400 3108 1 882 1 882 21835.95516 882
orna7 264565 882 882 882 0 882 0.00400 3108 1 882 0.92857 819 21778.07490 882

pldd000b 484503 3069 3267 1287 1782 5049 0.00090 8980 0.54545 1782 0.43304 1329 142.52148 2475
pldd005b 484502 3069 3267 1287 1782 5049 0.00090 8985 0.54545 1782 0.43174 1325 142.52148 2475
stat96v4 18151975 3173 62212 2309 864 63076 0.00248 490472 0.00002 1 0.29593 939 19.59346 3173

Table 4.8: Mészáros Miscellaneous (b)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
aa6 1917498 646 7292 646 0 7292 0.01098 51728 1 7292 1 646 37.61396 646

delf026 747262 3190 5462 1990 1200 6662 0.00082 14220 0.53607 2928 0.52821 1685 3912.93259 3097
large020 981147 4315 6837 2515 1800 8637 0.00061 18136 0.53532 3660 0.73418 3168 4044.03397 3897
model4 1491814 1337 4549 924 413 4962 0.00745 45340 0.15718 715 0.14660 196 4369.51485 1331
aa01 2993221 823 8904 823 0 8904 0.00996 72965 1 8904 1 823 38.72970 823
aa3 2570614 825 8627 825 0 8627 0.00995 70806 1 8627 1 825 39.34052 822
aa4 1916041 426 7195 426 0 7195 0.01700 52121 1 7195 1 426 41.54544 426

air02 2442271 50 6774 50 0 6774 0.18174 61555 1 6774 1 50 131.39007 50
air04 2993219 823 8904 823 0 8904 0.00996 72965 1 8904 1 823 38.72970 823
air05 2191266 426 7195 426 0 7195 0.01700 52121 1 7195 1 426 41.54544 426
air06 2901851 825 8627 825 0 8627 0.00995 70806 1 8627 1 825 39.34052 822

aircraft 944809 3754 7517 3754 0 7517 0.00072 20267 0.50113 3767 1 3754 3202.65559 3754
bas1lp 18778892 5411 4461 47 5364 9825 0.02413 582411 0.00403 18 1 5411 1489.67814 4444
baxter 3904608 27441 15128 11836 15605 30733 0.00023 95971 0.91565 13852 0.03316 910 600530.08820 15110
cari 4854951 400 1200 400 0 1200 0.31833 152800 0.66667 800 1 400 4.42541 400
ch 1445988 3700 5062 471 3229 8291 0.00111 20873 0.76788 3887 0.24811 918 757.70698 3682
co5 3059662 5774 7993 1442 4332 12325 0.00116 53661 0.63531 5078 0.35573 2054 3957.18172 5710
co9 5798412 10789 14851 2716 8073 22924 0.00063 101578 0.64507 9580 0.32663 3524 3957.55777 10685

complex 1542082 1023 1408 1023 0 1408 0.03226 46463 0.22727 320 0 0 113.57925 1023
cq5 2761262 5048 7530 830 4218 11748 0.00125 47353 0.60106 4526 0.42334 2137 2239.52798 4950
cq9 5189525 9278 13778 1522 7756 21534 0.00070 88897 0.60865 8386 0.39028 3621 2239.52798 9096

crew1 1954946 135 6469 135 0 6469 0.05376 46950 1 6469 1 135 70.19399 135
dano3mip 2648780 3202 13873 1224 1978 15851 0.00179 79655 0.00007 1 0.50906 1630 1817.34751 3066

dbir1 34320496 18804 27355 384 18420 45775 0.00206 1058605 0.33668 9210 0.51021 9594 44318956.33528 15507
dbir2 36876944 18906 27355 384 18522 45877 0.00220 1139637 0.33668 9210 0.51142 9669 4445409.21712 15579

delf000 694789 3128 5464 1993 1135 6599 0.00074 12606 0.53587 2928 0.51886 1623 3935.29082 3032
delf002 716720 3135 5460 1990 1145 6605 0.00078 13287 0.53626 2928 0.52504 1646 3934.38118 3039
delf003 718189 3065 5460 1991 1074 6534 0.00079 13269 0.53626 2928 0.53475 1639 3934.06560 2972
delf004 725574 3142 5464 1992 1150 6614 0.00079 13546 0.53587 2928 0.52037 1635 3933.68458 3050
delf006 732276 3147 5469 1997 1150 6619 0.00079 13604 0.53538 2928 0.56180 1768 3931.68427 3054

Table 4.9: Mészáros Miscellaneous (c)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
delf007 738407 3137 5471 1997 1140 6611 0.00080 13758 0.53519 2928 0.57475 1803 3931.66255 3044
delf010 740983 3147 5472 1997 1150 6622 0.00080 13802 0.53509 2928 0.58468 1840 3930.81277 3054
delf011 740337 3134 5471 1996 1138 6609 0.00080 13777 0.53519 2928 0.58679 1839 3930.92463 3041
delf012 740471 3151 5471 1996 1155 6626 0.00080 13793 0.53519 2928 0.58394 1840 3930.35428 3058
delf014 742745 3170 5472 2000 1170 6642 0.00080 13866 0.53509 2928 0.58297 1848 3928.60579 3077
delf017 738358 3176 5471 2004 1172 6643 0.00079 13732 0.53519 2928 0.58281 1851 3925.13941 3083
delf018 739270 3196 5471 2007 1189 6660 0.00079 13774 0.53519 2928 0.58010 1854 3924.21095 3103
delf019 739291 3185 5471 2008 1177 6648 0.00079 13762 0.53519 2928 0.58399 1860 3923.20041 3089
delf020 749863 3213 5472 2013 1200 6672 0.00080 14070 0.53509 2928 0.58886 1892 3919.26949 3120
delf021 749479 3208 5471 2013 1195 6666 0.00080 14068 0.53519 2928 0.58603 1880 3917.07370 3114
delf022 747683 3214 5472 2014 1200 6672 0.00080 14060 0.53509 2928 0.57032 1833 3916.01770 3120
delf023 748896 3214 5472 2014 1200 6672 0.00080 14098 0.53509 2928 0.56938 1830 3915.08974 3120
delf024 761097 3207 5466 2007 1200 6666 0.00082 14456 0.53568 2928 0.58216 1867 3914.33598 3114
delf027 745859 3187 5457 1987 1200 6657 0.00082 14200 0.53656 2928 0.52557 1675 3912.91010 3094
delf029 756480 3179 5454 1979 1200 6654 0.00083 14402 0.53685 2928 0.57565 1830 3912.25602 3086
delf030 752601 3199 5469 1999 1200 6669 0.00082 14262 0.53538 2928 0.56330 1802 3911.84911 3106
delf031 748658 3176 5455 1976 1200 6655 0.00082 14205 0.53676 2928 0.55856 1774 3911.96163 3083
delf032 751666 3196 5467 1996 1200 6667 0.00082 14251 0.53558 2928 0.56008 1790 3911.95865 3103
delf033 748540 3173 5456 1978 1195 6651 0.00082 14205 0.53666 2928 0.55563 1763 3912.17178 3080
delf034 748522 3175 5455 1980 1195 6650 0.00082 14208 0.53676 2928 0.55654 1767 3912.07832 3082
delf035 752973 3193 5468 1998 1195 6663 0.00082 14284 0.53548 2928 0.56060 1790 3911.89551 3100
delf036 748765 3170 5459 1975 1195 6654 0.00082 14202 0.53636 2928 0.55804 1769 3911.26581 3077
dsbmip 382268 1182 1886 443 739 2625 0.00330 7366 0.56628 1068 0.57022 674 35999.91296 1045

e18 5249013 24617 14231 246 24371 38602 0.00038 132095 0.85665 12191 1 24617 2040.01703 14230
ex3sta1 2647307 17443 8156 8083 9360 17516 0.00042 59419 0.00012 1 0.53660 9360 251.62400 8156

ge 1914517 10099 11098 4828 5271 16369 0.00035 39554 0.36700 4073 0.24111 2435 13744.99634 9085
jendrec1 3056622 2109 4228 2109 0 4228 0.01005 89608 1 4228 1 2109 3430.87674 2109

kl02 9479891 71 36699 71 0 36699 0.08157 212536 1 36699 1 71 157.77296 71
large001 947908 4162 6834 2500 1662 8496 0.00061 17225 0.53556 3660 0.70855 2949 4057.76599 3742
large002 983774 4249 6835 2504 1745 8580 0.00063 18330 0.53548 3660 0.71146 3023 4056.89412 3831

Table 4.10: Mészáros Miscellaneous (d)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
large003 976694 4200 6835 2499 1701 8536 0.00063 18016 0.53548 3660 0.73214 3075 4056.79312 3784
large004 964140 4250 6836 2500 1750 8586 0.00061 17739 0.53540 3660 0.70329 2989 4057.30475 3833
large006 970641 4249 6837 2499 1750 8587 0.00062 17887 0.53532 3660 0.71382 3033 4056.76852 3832
large007 970005 4236 6836 2497 1739 8575 0.00062 17856 0.53540 3660 0.71837 3043 4055.95368 3819
large009 970902 4237 6837 2498 1739 8576 0.00062 17878 0.53532 3660 0.71867 3045 4054.92719 3820
large010 972085 4247 6837 2497 1750 8587 0.00062 17887 0.53532 3660 0.72616 3084 4054.60028 3830
large011 972225 4236 6837 2497 1739 8576 0.00062 17878 0.53532 3660 0.72875 3087 4054.69155 3819
large012 973178 4253 6838 2498 1755 8593 0.00062 17919 0.53524 3660 0.72537 3085 4054.71946 3836
large014 975841 4271 6838 2501 1770 8608 0.00062 17979 0.53524 3660 0.73098 3122 4052.77150 3854
large015 975963 4265 6838 2505 1760 8598 0.00062 17957 0.53524 3660 0.73740 3145 4051.34834 3848
large016 978127 4287 6838 2507 1780 8618 0.00062 18029 0.53524 3660 0.73688 3159 4050.15161 3870
large017 977204 4277 6837 2506 1771 8608 0.00061 17983 0.53532 3660 0.74258 3176 4049.83160 3857
large018 968638 4297 6837 2509 1788 8625 0.00061 17791 0.53532 3660 0.72492 3115 4048.82134 3877
large022 978873 4312 6834 2512 1800 8634 0.00061 18104 0.53556 3660 0.72820 3140 4041.07432 3894
large023 976892 4302 6835 2513 1789 8624 0.00062 18123 0.53548 3660 0.70595 3037 4040.21044 3884
large024 993888 4292 6831 2492 1800 8631 0.00063 18599 0.53579 3660 0.72367 3106 4039.32589 3874
large025 993822 4297 6832 2497 1800 8632 0.00064 18743 0.53571 3660 0.69211 2974 4038.53169 3879
large026 989233 4284 6824 2484 1800 8624 0.00064 18631 0.53634 3660 0.69071 2959 4038.01290 3866
large027 985984 4275 6821 2475 1800 8621 0.00064 18562 0.53658 3660 0.68819 2942 4037.50241 3857
large029 1003062 4301 6832 2501 1800 8632 0.00064 18952 0.53571 3660 0.71007 3054 4036.27987 3883
large030 998896 4285 6823 2485 1800 8623 0.00064 18843 0.53642 3660 0.71342 3057 4035.95762 3868
large031 999689 4294 6826 2494 1800 8626 0.00064 18867 0.53619 3660 0.71099 3053 4035.96850 3877
large032 998918 4292 6827 2492 1800 8627 0.00064 18850 0.53611 3660 0.70969 3046 4035.75107 3875
large035 989381 4293 6829 2498 1795 8624 0.00064 18881 0.53595 3660 0.62823 2697 4035.22091 3875

lp22 2646138 2958 13434 0 2958 16392 0.00165 65560 1 13434 1 2958 25.76285 2944
lpl1 20236309 39951 125000 39951 0 125000 0.00008 381259 0.64694 80868 0.02966 1185 546.25429 39946

stat96v5 12574881 2307 75779 2307 0 75779 0.00134 233921 0.97293 73728 0.00043 1 19.52339 2305
sws 3731014 14310 12465 5040 9270 21735 0.00052 93015 1 12465 0.38050 5445 36.25902 10980

t0331-4l 17007686 664 46915 664 0 46915 0.01384 430982 1 46915 1 664 125.84267 664
ulevimin 5497735 6590 44605 4258 2332 46937 0.00055 162206 0.00002 1 0.32595 2148 57278239.69242 6575

Table 4.11: Mészáros Miscellaneous (e)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
us04 11415230 163 28016 163 0 28016 0.06516 297538 1 28016 1 163 237.50302 162
world 8745289 34506 32734 93 34413 67147 0.00015 164470 0.67071 21955 0.70585 24356 8520.10338 28783

pldd007b 484426 3069 3267 1287 1782 5049 0.00090 8987 0.54545 1782 0.43043 1321 142.52148 2475
rat1 3129695 3136 9408 3136 0 9408 0.00299 88267 0.66667 6272 0.99872 3132 1.72928 3136
rat5 4677257 3136 9408 3136 0 9408 0.00466 137413 0.66667 6272 1 3136 1.73106 3136
rat7a 8801563 3136 9408 3136 0 9408 0.00911 268908 0.66667 6272 0.99872 3132 1.79719 3136
rlfddd 10053178 4050 57471 0 4050 61521 0.00112 260577 0.86073 49467 1 4050 45.66143 4050
rlfdual 11887960 8052 66918 0 8052 74970 0.00051 273979 0.82059 54912 0.00596 48 33.47216 8052
rlfprim 12025777 58866 8052 4202 54664 62716 0.00056 265927 0.00596 48 0.79605 46860 33.45724 8048
rosen10 2183354 2056 4096 0 2056 6152 0.00738 62136 0.94043 3852 1 2056 342.30063 2056
rosen2 1577736 1032 2048 0 1032 3080 0.02200 46504 0.94141 1928 1 1032 246.95259 1032
route 8425864 20894 23923 1798 19096 43019 0.00038 187686 0.93379 22339 0.92342 19294 13043.02331 20894

seymourl 1365291 4944 1372 0 4944 6316 0.00495 33549 1 1372 1 4944 30.42055 1302
slptsk 2395694 2861 3347 2861 0 3347 0.00757 72465 0.17837 597 0.48445 1386 449.71552 2861

south31 5466170 18425 35421 17525 900 36321 0.00017 111498 1 35421 0.99973 18420 12894.28638 17832
stat96v1 32070409 5995 197472 5995 0 197472 0.00050 588798 0.97132 191808 0.00017 1 25.99911 5995
pldd001b 484528 3069 3267 1287 1782 5049 0.00090 8981 0.54545 1782 0.43304 1329 142.52148 2475
pldd002b 484427 3069 3267 1287 1782 5049 0.00090 8982 0.54545 1782 0.43174 1325 142.52148 2475
pldd003b 484452 3069 3267 1287 1782 5049 0.00090 8983 0.54545 1782 0.43174 1325 142.52148 2475
pldd004b 484477 3069 3267 1287 1782 5049 0.00090 8984 0.54545 1782 0.43174 1325 142.52148 2475

p010 4793732 10090 19000 10000 90 19090 0.00062 117910 1 19000 0.70268 7090 17.41287 10081
p05 2398942 5090 9500 5000 90 9590 0.00122 58955 1 9500 0.70530 3590 12.69845 5081

pcb1000 874928 1565 2428 1173 392 2820 0.00528 20071 1 2428 1 1565 62.81253 1565
pcb3000 2443398 3960 6810 3038 922 7732 0.00210 56557 1 6810 1 3960 91.88371 3960
pf2177 1192831 9728 900 450 9278 10178 0.00248 21706 1 900 1 9728 9.71900 630
orna3 264565 882 882 882 0 882 0.00400 3108 1 882 0.98866 872 21789.18265 882
orna4 264565 882 882 882 0 882 0.00400 3108 1 882 1 882 21717.31529 882

nemswrld 6285127 7138 27174 5762 1376 28550 0.00098 190907 0.08747 2377 0.09428 673 653.95033 6584
nl 3529351 7039 9718 1432 5607 15325 0.00061 41428 0.80490 7822 0.26012 1831 287.36265 7031

nsct1 21799256 22901 14981 421 22480 37461 0.00191 656259 0.75028 11240 0.50919 11661 33388862.85700 14978

Table 4.12: Mészáros Miscellaneous (f)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
nsct2 22397904 23003 14981 421 22582 37563 0.00196 675156 0.75028 11240 0.51054 11744 8930036.67552 14980
nsir1 4603254 4407 5717 113 4294 10011 0.00552 138955 0.37555 2147 0.51282 2260 19673736.48629 4404
nsir2 4971978 4453 5717 113 4340 10057 0.00592 150599 0.37555 2147 0.51763 2305 10078622.39012 4446
nug08 278721 912 1632 912 0 1632 0.00490 7296 0.61765 1008 0.01754 16 6.98743 912
nug12 1468221 3192 8856 3192 0 8856 0.00136 38304 0.67073 5940 0.00752 24 8.72518 3192
nug15 3660057 6330 22275 6330 0 22275 0.00067 94950 0.70707 15750 0.00474 30 9.82907 6330
nw14 37477009 73 123409 73 0 123409 0.10045 904910 1 123409 1 73 506.27865 73

nemsemm2 7153903 6943 42133 198 6745 48878 0.00060 175267 0.89066 37526 0.34510 2396 14010.54400 6922
nemspmm1 1988193 2372 8622 2091 281 8903 0.00272 55586 0.27546 2375 0.06577 156 9383.77441 2342

model6 949586 2096 5001 1808 288 5289 0.00261 27340 0.17257 863 0.04676 98 1111.15669 2086
model7 1807426 3358 8007 1783 1575 9582 0.00184 49452 0.40827 3269 0.10870 365 11352.75069 3358
model8 1243375 2896 6464 2896 0 6464 0.00135 25277 0.00248 16 0.23550 682 5.08705 2896
model9 1964968 2879 10257 2197 682 10939 0.00187 55274 0.47655 4888 0.09587 276 1000.00239 2771

lpl3 4348549 10828 33538 10680 148 33686 0.00028 100377 1 33538 0.02327 252 500.27288 10828
mod2 8815002 34774 31728 93 34681 66409 0.00015 165129 0.68917 21866 0.71007 24692 8520.02210 28716

model10 4972699 4400 15447 3028 1372 16819 0.00219 149000 0.19583 3025 0.14705 647 37694.17194 4376
model11 2397385 7056 18288 7056 0 18288 0.00043 55859 0.52843 9664 0.33645 2374 200.21311 7056

Table 4.13: Mészáros Problematic

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
gen1 2074721 769 2560 768 1 2561 0.03204 63085 0.60000 1536 0.67360 518 39.19175 769

de080285 238250 936 1488 516 420 1908 0.00335 4662 0.57258 852 0.70620 661 1945.54371 840
gen 2074721 769 2560 768 1 2561 0.03204 63085 0.60000 1536 0.67360 518 39.19175 769
gen2 2715557 1121 3264 1121 0 3264 0.02237 81855 0.68627 2240 0.99376 1114 47.32863 1121
gen4 3559818 1537 4297 1536 1 4298 0.01622 107102 0.71492 3072 0.95966 1475 55.42562 1537
l30 2122152 2701 15380 1800 901 16281 0.00123 51169 0.88563 13621 0.33358 901 5.00001 2701

Table 4.14: Mészáros Stochastic LP (a)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
deter0 587496 1923 5468 1923 0 5468 0.00106 11173 0.00329 18 0.00156 3 7.06732 1923
deter3 2340381 7647 21777 7647 0 21777 0.00027 44547 0.00331 72 0.00052 4 10.29728 7647

fxm3_6 1935133 6200 9492 3067 3133 12625 0.00093 54589 0.02665 253 0.45258 2806 1014.13925 6056
scagr7-2b-64 1587464 9743 10260 6156 3587 13847 0.00032 32298 0.95000 9747 0.36898 3595 152.68007 8723
scfxm1-2b-64 4030987 19036 28914 14903 4133 33047 0.00019 106919 0.02258 653 0.46543 8860 106.67100 19036
scrs8-2r-512 2417254 14364 19493 6166 8198 27691 0.00018 50241 0.49997 9746 0.52611 7557 46.60166 14363
scsd8-2r-432 8420788 8650 60550 8650 0 60550 0.00036 190210 1 60550 0.12936 1119 59.39625 8650
sctap1-2r-108 1697086 6510 10416 2604 3906 14322 0.00056 38124 0.75000 7812 1 6510 630.59235 6510

stormg2-8 1207831 4409 10193 3280 1129 11322 0.00061 27424 0.70803 7217 0.25607 1129 305.39590 4329
aircraft_stoch 952312 3754 7517 3754 0 7517 0.00072 20267 0.50113 3767 1 3754 3202.65559 3754

cep1 369145 1521 3248 0 1521 4769 0.00136 6712 0.99877 3244 0.43195 657 14.86603 1520
deter1 1691210 5527 15737 5527 0 15737 0.00037 32187 0.00330 52 0.00072 4 9.23743 5527
deter2 1871568 6095 17313 6095 0 17313 0.00034 35731 0.00462 80 0.00066 4 10.69981 6095
deter5 1561377 5103 14529 5103 0 14529 0.00040 29715 0.00330 48 0.00078 4 9.00753 5103
deter6 1301709 4255 12113 4255 0 12113 0.00048 24771 0.00330 40 0.00094 4 8.53603 4255
deter7 1950879 6375 18153 6375 0 18153 0.00032 37131 0.00331 60 0.00063 4 9.67449 6375
deter8 1171875 3831 10905 3831 0 10905 0.00053 22299 0.00330 36 0.00104 4 8.29848 3831

fxm2-16 1108915 3900 5602 2167 1733 7335 0.00143 31239 0.03088 173 0.36821 1436 1014.13925 3836
fxm3_16 13142203 41340 64162 19927 21413 85575 0.00014 370839 0.02514 1613 0.47015 19436 1014.13925 40316
fxm4_6 8470051 22400 30732 5947 16453 47185 0.00036 248989 0.03752 1153 0.27795 6226 1014.13925 21536

pgp2 958749 4034 9220 0 4034 13254 0.00050 18440 0.81171 7484 0.42885 1730 31.98000 4034
pltexpa3_16 6541669 28350 74172 28350 0 74172 0.00007 150801 0.41591 30849 0.18356 5204 2325.42984 28350
pltexpa4_6 6206733 26894 70364 26894 0 70364 0.00008 143059 0.41594 29267 0.18458 4964 2325.47608 26894
sc205-2r-800 1893977 17613 17614 4004 13609 31223 0.00015 48030 0.00006 1 0.16715 2944 40.10951 16814
scagr7-2r-108 668496 4119 4340 2604 1515 5855 0.00076 13542 0.95000 4123 0.36975 1523 99.19808 3691
scagr7-2r-216 1334424 8223 8660 5196 3027 11687 0.00038 27042 0.95000 8227 0.36909 3035 140.25123 7363
scagr7-2r-432 2666280 16431 17300 10380 6051 23351 0.00019 54042 0.95000 16435 0.36875 6059 198.31972 14707
scagr7-2r-64 398792 2447 2580 1548 899 3479 0.00128 8106 0.95000 2451 0.37066 907 76.38969 2195
scagr7-2r-864 5329992 32847 34580 20748 12099 46679 0.00010 108042 0.95000 32851 0.36859 12107 280.44842 29395

Table 4.15: Mészáros Stochastic LP (b)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
scfxm1-2b-16 525163 2460 3714 1911 549 4263 0.00153 13959 0.02504 93 0.46016 1132 106.67101 2460
scfxm1-2r-128 4030987 19036 28914 14903 4133 33047 0.00019 106919 0.02258 653 0.46543 8860 106.67100 19036
scfxm1-2r-256 8037643 37980 57714 29751 8229 65943 0.00010 213159 0.02240 1293 0.46582 17692 106.67099 37980
scfxm1-2r-32 1025995 4828 7314 3767 1061 8375 0.00077 27239 0.02365 173 0.46313 2236 106.67101 4828
scfxm1-2r-64 2027659 9564 14514 7479 2085 16599 0.00039 53799 0.02294 333 0.46466 4444 106.67103 9564
scfxm1-2r-96 3029323 14300 21714 11191 3109 24823 0.00026 80359 0.02270 493 0.46517 6652 106.67102 14300
scsd8-2b-64 4996306 5130 35910 5130 0 35910 0.00061 112770 1 35910 0.15029 771 45.76740 5130
scsd8-2c-64 4996306 5130 35910 5130 0 35910 0.00061 112770 1 35910 0.15029 771 45.76740 5130
scsd8-2r-108 2110726 2170 15190 2170 0 15190 0.00145 47650 1 15190 0.13410 291 29.82361 2170
scsd8-2r-216 4213324 4330 30310 4330 0 30310 0.00073 95170 1 30310 0.12540 543 42.05848 4330
sctap1-2b-64 4019057 15390 24624 6156 9234 33858 0.00024 90220 0.75000 18468 1 15390 961.78431 15390
sctap1-2r-216 3389689 12990 20784 5196 7794 28578 0.00028 76140 0.75000 15588 1 12990 884.56760 12990
sctap1-2r-480 7524895 28830 46128 11532 17298 63426 0.00013 169068 0.75000 34596 1 28830 1312.82962 28830
stormg2_1000 146736708 528185 1259121 410000 118185 1377306 0.00001 3341696 0.70456 887121 0.22376 118185 3283.88301 526121
stormg2-125 18372380 66185 157496 51250 14935 172431 0.00004 418321 0.70475 110996 0.22566 14935 1162.54588 65871
stormg2-27 3995535 14441 34114 11070 3371 37485 0.00018 90903 0.70558 24070 0.23343 3371 544.63823 14323

Table 4.16: Mittelman (a)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
fome11 2943178 12142 24460 12142 0 24460 0.00024 71264 0.51030 12482 0.27393 3326 15.91692 12142
long15 92020497 32769 753687 32769 0 753687 0.00006 1507374 0.99987 753587 0.49992 16382 128.00391 32769
neos3 55154867 512209 6624 1 512208 518832 0.00045 1542816 0.02174 144 1 512209 80.98793 6624

netlarge6 1786086218 8000 15000000 8000 0 15000000 0.00025 30000000 1 15000000 0.15000 1200 77.77794 8000
pds-50 30000053 83060 270095 77341 5719 275814 0.00003 585114 0.66290 179047 0.06912 5741 9.85342 82679
pds-90 51552753 142823 466671 134046 8777 475448 0.00002 1005359 0.61332 286220 0.06161 8799 9.86216 142416
rail516 11620711 516 47311 0 516 47827 0.01290 314896 1 47311 1 516 143.88804 502

watson_2 66239929 352013 671861 346650 5363 677224 0.00001 1841028 0.00400 2688 0.09905 34867 19.96628 352013
16_n14 30485248 16384 262144 16384 0 262144 0.00012 524288 0.95336 249917 0.00012 2 71.57240 16384
cont1 20478791 160792 40398 79998 80794 121192 0.00006 399990 0.00002 1 0.99010 159200 284.24285 40398
cont4 20453717 160792 40398 79998 80794 121192 0.00006 398398 0.00002 1 0.99010 159200 284.24285 40398

fome12 5886289 24284 48920 24284 0 48920 0.00012 142528 0.51030 24964 0.27393 6652 15.91692 24284
fome13 11772511 48568 97840 48568 0 97840 0.00006 285056 0.51030 49928 0.27393 13304 15.91692 48568
fome20 11804810 33874 105728 31427 2447 108175 0.00006 230200 0.69946 73953 0.07289 2469 9.85258 33726
fome21 23607452 67748 211456 62854 4894 216350 0.00003 460400 0.69946 147906 0.07289 4938 9.85258 67452
I_n13 85639935 8192 741455 8192 0 741455 0.00024 1482910 0.97319 721576 0.00024 2 207.32531 8192

L1_sixm250obs 182307993 986069 428032 986069 0 428032 0.00001 4280320 1 428032 0.00000 0 8.21402 428032
lo10 47688728 46341 406225 46341 0 406225 0.00004 812450 0.99978 406136 0.49999 23170 186.46716 46341
neos 55003077 479119 36786 0 479119 515905 0.00006 1047675 1 36786 1 479119 135.47739 36786
neos1 16482131 131581 1892 0 131581 133473 0.00188 468009 0.04493 85 0.98627 129775 60.50279 1892
neos2 19156423 132568 1560 0 132568 134128 0.00267 552519 0.04936 77 1.00000 132568 87.82013 1560

netlarge1 943830897 47700 8001358 47700 0 8001358 0.00004 16002716 1 8001358 0.95983 45784 43.80947 47700
netlarge2 139191119 40000 1160000 40000 0 1160000 0.00005 2320000 1 1160000 0.34033 13613 14.09134 40000
netlarge3 566518697 40000 4676000 40000 0 4676000 0.00005 9352000 1 4676000 0.35888 14355 23.72216 40000

Table 4.17: Mittelman (b)

Problem Filesize m n m-equal m-inequal n-slack densA nnzA densc nnzc densb nnzb normA rankA
ns1687037 46856900 50622 43749 12000 38622 82371 0.00064 1406739 0.54858 24000 0.88147 44622 80340635.68170 43749
ns1688926 55179838 32768 16587 8192 24576 41163 0.00315 1712128 0.50606 8394 1 32768 41022456.74456 16587
pds-100 55729538 156243 505360 147026 9217 514577 0.00001 1086785 0.60106 303754 0.05867 9167 10.11538 155764
pds-30 17280220 49944 154998 46453 3491 158489 0.00004 337144 0.68215 105732 0.07034 3513 9.85213 49698
pds-40 23696227 66844 212859 62172 4672 217531 0.00003 462128 0.67439 143550 0.07022 4694 9.85363 66499
pds-60 36539333 99431 329643 92653 6778 336421 0.00002 712779 0.65401 215589 0.06839 6800 9.85408 99030
pds-70 42336513 114944 382311 107250 7694 390005 0.00002 825771 0.64246 245619 0.06713 7716 9.85423 114539
pds-80 47151503 129181 426278 120879 8302 434580 0.00002 919524 0.62786 267641 0.06444 8324 9.85578 128774
rail2586 284515578 2586 920683 0 2586 923269 0.00336 8008776 1 920683 1 2586 496.00297 2570
rail4284 394339679 4284 1092610 0 4284 1096894 0.00241 11279748 1 1092610 1 4284 399.78028 4282
rail507 15125155 507 63009 0 507 63516 0.01281 409349 1 63009 1 507 149.32246 506
rail582 14655675 582 55515 0 582 56097 0.01243 401708 1 55515 1 582 185.90398 582
sgpf5y6 32658832 246077 308634 242171 3906 312540 0.00001 828070 0.24043 74205 0.03174 7810 8.46692 246077
square15 92000817 32762 753526 32762 0 753526 0.00006 1507052 0.99987 753425 0.50003 16382 128.00391 32762
watson_1 38726181 201155 383927 198090 3065 386992 0.00001 1052028 0.00400 1536 0.09906 19927 20.59371 201155
wide15 92020497 32769 753687 32769 0 753687 0.00006 1507374 0.99987 753587 0.49992 16382 128.00391 32769

Table 4.18: Execution time for IPM, Primal and Dual (in seconds)

Category Problem Primal Dual IPM
Netlib_Optimal 80bau3b 0.110 0.090 1.010

bnl2 0.140 0.030 1.000
d6cube 1.860 0.050 0.190
degen3 0.330 0.090 0.560
fit2p 1.620 0.840 0.980

greenbea 0.230 0.200 1.010
perold 0.090 0.050 1.010
pilot4 0.030 0.010 1.010

pilotnov 0.090 0.050 1.000
scfxm3 0.020 0.010 0.030
stocfor3 0.440 0.310 1.000
wood1p 0.020 0.010 0.050
25fv47 0.090 0.080 0.050
2q06c 1.280 1.120 0.310
dfl001 5.680 3.870 1.510
fit2d 0.940 1.050 0.110

grow22 0.050 0.080 0.030
maros-r7 0.780 0.550 0.370
pilot87 2.700 6.540 1.670
qap08 0.980 1.170 0.080
qap12 22.010 35.460 1.720
qap15 236.530 487.190 7.290
truss 1.310 2.710 0.080
nesm 0.060 0.090 1.030

woodw 0.010 0.030 0.050
Netlib_Kennington cre-a 0.130 0.050 1.000

cre-b 1.390 0.940 1.120
cre-c 0.110 0.030 1.010
cre-d 1.230 0.310 1.010
ken-13 1.580 0.220 0.970
ken-18 10.110 1.650 2.030
osa-30 0.330 0.250 0.950
osa-60 1.260 0.770 1.030
pds-06 0.140 0.090 1.000
pds-10 1.030 0.200 1.090
pds-20 3.680 1.080 4.010
osa-07 0.030 0.050 0.970
osa-14 0.110 0.120 0.970

Meszaros_Misc aa01 2.150 0.440 1.000
aa03 2.530 0.220 1.000
aa3 2.340 0.220 0.610
aa4 1.110 0.130 0.270
aa6 1.830 0.140 0.390

air04 2.140 0.440 1.000
air05 1.140 0.120 1.110
air06 2.530 0.220 1.000
baxter 0.810 0.340 3.880
car4 0.170 0.110 0.140
ch 1.010 0.140 1.000
co5 1.550 1.000 1.110
cq5 1.140 0.440 1.010

Table 4.18: Execution time for IPM, Primal and Dual (in seconds)

Category Problem Primal Dual IPM
cq9 2.560 1.760 2.930

dbir1 0.420 0.300 7.530
dbir2 0.920 0.450 6.070

delf000 0.060 0.030 1.010
delf001 0.060 0.030 1.000
delf002 0.060 0.020 1.010
delf003 0.050 0.030 1.010
delf004 0.080 0.050 1.010
delf005 0.060 0.050 1.030
delf006 0.080 0.050 1.010
delf007 0.090 0.050 1.010
delf008 0.110 0.060 1.010
delf010 0.090 0.060 1.010
delf011 0.080 0.050 1.010
delf012 0.080 0.050 1.010
delf013 0.080 0.050 1.030
delf014 0.090 0.060 1.030
delf015 0.080 0.050 1.010
delf017 0.090 0.050 1.010
delf018 0.080 0.030 1.010
delf019 0.080 0.030 1.010
delf020 0.090 0.050 1.030
delf021 0.130 0.050 1.030
delf022 0.090 0.060 1.010
delf023 0.160 0.050 1.010
delf024 0.110 0.050 1.010
delf025 0.130 0.060 1.030
delf026 0.110 0.060 1.010
delf027 0.090 0.050 1.010
delf028 0.090 0.050 1.010
delf029 0.120 0.050 1.010
delf030 0.140 0.050 1.010
delf031 0.110 0.050 1.010
delf032 0.140 0.050 1.030
delf033 0.140 0.030 1.010
delf034 0.140 0.050 1.030
delf035 0.140 0.050 1.010
delf036 0.130 0.050 1.010

e18 2.180 1.000 79.870
ge 0.980 0.270 1.090

jendrec1 1.000 0.390 1.090
large000 0.120 0.050 1.010
large002 0.120 0.080 1.040
large003 0.140 0.080 1.030
large004 0.140 0.060 1.040
large005 0.130 0.050 1.010
large006 0.170 0.060 1.010
large007 0.160 0.080 1.030
large008 0.140 0.080 1.030
large009 0.170 0.080 1.010
large010 0.160 0.080 1.030

Table 4.18: Execution time for IPM, Primal and Dual (in seconds)

Category Problem Primal Dual IPM
large011 0.140 0.080 1.010
large012 0.170 0.060 1.030
large013 0.190 0.080 1.030
large014 0.140 0.060 1.030
large015 0.140 0.050 1.040
large016 0.160 0.060 1.030
large017 0.110 0.050 1.030
large018 0.130 0.050 1.030
large019 0.160 0.050 1.030
large020 0.190 0.060 1.040
large021 0.160 0.080 1.040
large022 0.190 0.080 1.030
large023 0.220 0.080 1.030
large024 0.170 0.130 1.050
large025 0.200 0.090 1.060
large026 0.200 0.120 1.040
large027 0.160 0.110 1.030
large029 0.140 0.110 1.050
large030 0.140 0.110 1.030
large031 0.160 0.130 1.030
large032 0.280 0.140 1.030
large034 0.160 0.120 1.030
large035 0.190 0.120 1.030
model11 0.390 0.360 1.030
model9 1.060 1.000 1.030

nemsemm1 0.420 0.300 1.050
nemsemm2 0.170 0.120 1.000

nl 2.620 1.000 1.870
nsct1 0.220 0.130 7.400
nsct2 0.560 0.250 7.210
nsir1 0.090 0.020 0.280
nsir2 0.280 0.090 0.980
orna2 0.030 0.010 1.000
orna3 0.050 0.020 1.000
orna4 0.030 0.020 1.010
orna7 0.050 0.020 1.000
p010 0.420 0.190 0.250

pcb1000 0.080 0.060 1.000
pcb3000 0.310 0.230 1.010
pf2177 0.130 0.110 0.120

pldd000b 0.030 0.010 1.000
pldd001b 0.050 0.010 1.000
pldd002b 0.030 0.020 1.000
pldd003b 0.030 0.010 1.000
pldd004b 0.050 0.030 1.000
pldd005b 0.050 0.010 1.000
pldd007b 0.050 0.020 1.000

rat1 0.120 0.110 0.230
rlfddd 0.170 0.080 0.590
rlfprim 0.780 0.220 0.920
route 4.450 0.060 0.730

Table 4.18: Execution time for IPM, Primal and Dual (in seconds)

Category Problem Primal Dual IPM
slptsk 0.480 0.300 0.620

stat96v1 166.140 27.030 156.520
sws 0.020 0.010 0.030

ulevimin 19.860 6.930 7.000
aa5 2.010 0.270 0.170

aircraft 0.060 0.090 0.050
co9 4.380 2.700 2.010

dano3mip 4.930 6.020 2.000
dbic1 15.550 18.490 8.360

ex3sta1 0.920 7.020 0.610
lp22 14.810 7.600 1.230
mod2 30.260 10.780 2.140

model10 3.350 3.230 1.170
model4 1.040 1.220 1.010
model5 1.200 1.170 1.150
model6 1.090 1.280 1.000
model7 1.310 1.450 1.060

nemspmm1 1.250 1.440 1.000
nemspmm2 1.620 1.370 1.170
nemswrld 10.730 9.230 1.170

nug08 1.000 1.290 0.380
nug12 18.720 31.790 1.830
nug15 220.460 484.200 7.320
p05 0.160 0.090 0.080
rat5 0.330 0.340 0.220
rat7a 3.280 2.560 1.260

rosen10 0.300 0.090 0.080
rosen2 0.170 0.090 0.060

seymourl 0.500 0.450 0.200
south31 3.920 11.530 1.220
stat96v4 117.720 42.350 1.950
stat96v5 2.840 2.810 1.470
t0331-4l 5.590 3.620 0.940
world 41.680 12.890 1.900
air02 0.010 0.030 0.980
bas1lp 0.360 3.780 2.710
cari 0.010 0.020 0.030

complex 0.470 0.560 1.030
crew1 0.030 0.060 0.050
df2177 0.050 0.140 0.110
dsbmip 0.010 0.030 1.010

kl02 0.060 0.110 0.950
large001 0.090 1.280 1.010

lpl1 3.120 6.430 5.210
lpl2 0.020 0.030 1.000
lpl3 0.110 0.390 1.090

model3 0.110 1.010 1.000
model8 0.080 0.130 0.140
nw14 0.270 0.280 0.870
rlfdual 0.230 0.980 1.120
us04 0.090 0.140 0.940

Table 4.18: Execution time for IPM, Primal and Dual (in seconds)

Category Problem Primal Dual IPM
Meszaros_Problematic de080285 0.020 0.010 1.010

gen 1.030 0.050 1.200
gen1 1.030 0.050 1.060
gen4 12.400 0.280 1.720
gen2 10.550 3.370 1.280
l30 60.720 4.460 2.540

Meszaros_Stochlp fxm3_6 0.130 0.120 0.980
fxm4_6 0.840 0.550 0.970

pgp2 0.090 0.030 1.000
scagr7-2b-64 0.050 0.030 1.000
scagr7-2r-432 0.220 0.080 1.000
scagr7-2r-864 0.940 0.380 1.000
scfxm1-2b-16 0.060 0.030 0.050
scfxm1-2b-64 0.900 0.660 1.010
scfxm1-2r-128 1.250 0.640 1.010
scfxm1-2r-32 0.090 0.080 1.000
scfxm1-2r-64 0.330 0.270 1.000
scrs8-2r-512 0.030 0.010 0.980
scsd8-2b-64 0.300 0.060 0.220
scsd8-2c-64 0.300 0.080 0.200
scsd8-2r-108 0.060 0.010 0.670
scsd8-2r-216 0.250 0.050 0.970
scsd8-2r-432 0.870 0.110 0.950
sctap1-2b-64 0.130 0.060 0.230
sctap1-2r-108 0.030 0.020 0.090
sctap1-2r-216 0.090 0.080 0.170
sctap1-2r-480 0.500 0.280 0.950
stormg2-125 2.540 2.120 2.610

aircraft_stoch 0.060 0.090 0.030
fxm2-16 0.080 0.140 0.060
fxm3_16 2.840 2.460 1.250

scfxm1-2r-256 2.820 1.940 1.060
stormg2_1000 381.470 90.040 32.680

cep1 0.010 0.020 0.030
deter0 0.020 0.030 0.060
deter1 0.060 0.140 0.980
deter2 0.050 0.110 1.000
deter3 0.080 0.140 0.980
deter5 0.050 0.090 0.980
deter6 0.030 0.060 1.000
deter7 0.060 0.110 0.980
deter8 0.030 0.060 1.000

pltexpa3_16 0.060 0.280 1.110
pltexpa4_6 0.060 0.410 1.000
sc205-2r-800 0.030 0.050 0.060
scagr7-2r-108 0.030 0.050 1.000
scagr7-2r-216 0.050 0.130 1.000
scagr7-2r-64 0.010 0.030 1.000
scfxm1-2r-96 0.520 0.530 1.010
stormg2-27 0.200 0.250 1.010
stormg2-8 0.030 0.050 1.000

Table 4.18: Execution time for IPM, Primal and Dual (in seconds)

Category Problem Primal Dual IPM
Mittelmann 16_n14 261.860 22.370 43.030

fome20 3.680 1.080 4.340
fome21 10.140 3.790 6.750
I_n13 2483.260 25.510 80.480
lo10 239.460 3.090 418.930

long15 191.400 6.270 2019.780
neos 29.280 4.740 11.280
neos3 56.040 2.340 20.610

netlarge1 112.270 66.820 1043.320
netlarge2 320.070 5.970 3410.430
netlarge3 458.530 24.770 3870.600
netlarge6 63.620 62.350 1343.710
ns1688926 27.410 8.530 29.640
pds-100 267.670 18.640 68.810
pds-30 8.640 3.130 7.190
pds-40 26.580 4.730 14.430
pds-50 70.810 6.300 18.720
pds-60 115.290 8.830 24.870
pds-70 168.400 12.390 34.910
pds-80 241.470 14.460 47.140
pds-90 278.200 16.860 50.950

square15 209.540 5.770 2219.410
watson_1 23.880 3.260 5.150
wide15 191.300 6.270 2017.720
fome11 16.680 8.110 1.540
fome12 44.550 21.120 3.540
fome13 149.330 63.900 2.480

L1_sixm250obs 2219.690 1597.370 128.530
ns1687037 4541.880 5184.270 70.390
rail2586 37.040 24.570 12.610
rail4284 117.970 79.950 27.440

watson_2 87.250 17.190 7.420
cont1 112.150 216.170 182.830
cont4 115.380 205.750 174.680
neos1 1.400 2.890 4.760
neos2 1.530 4.600 4.420
rail507 0.390 0.450 0.940
rail516 0.170 0.190 0.330
rail582 0.340 0.380 0.940
sgpf5y6 0.560 0.660 1.690

For this set of benchmark problems, the lower and upper values in the numbers of
constraints, variables and nonzero elements of the constraint matrix and right-hand
side vector, are given respectively in Table 4.19 below. Each minimum and maximum
value may be related to different LPs, since these values are provided as reference
and are not necessarily linked to the same LP.

Table 4.19: Lower and Upper values in examined LP characteristics

Minimum Maximum
Constraints 25 986, 069
Variables 882 15, 000, 000
Nonzero elements of constraint matrix 3, 108 30, 000, 000
Nonzero elements of right-hand side vector 0 512, 209
rankA 25 526, 121

The reason behind the selection of the specific dataset has been our interest to
predict the performance of CPLEX’s primal and dual simplex algorithms on
well-known LPs, such as the ones described above. Including problems of different
nature and structure (such as quadratic or mixed-integer problems) could increase
the size of our dataset for training the examined ANNs, however, the diversity of
the examined problems would not contribute to meaningful results regarding the
problems’ solution. In order to ensure that our dataset size is sufficient for training
an artificial neural network, we took into consideration commonly applied
rules-of-thumb, such as that the dataset size should be at least a factor of a) 50 to
1000 times the number of predicted classes [32], and b) 10 to 100 times the number
of the examined features/characteristics ([58], [63], [92]).

4.3 Computing environment
For the implementation of the EPSA algorithm, we worked with MATLAB
programming language, in MathWorks MATLAB environment (version R2014a)
(Mathworks MATLAB [10]). MATLAB has been the most suitable option, due to
its inherent capability for matrix and vector operations, regarding sparse matrices
and large linear problems. Our code is designed to take advantage of Matlab’s
sparse matrix functions. The hardware and software characteristics of the specific
computing environment in which our 6,780 LPs were generated and solved are fully
described in the following table (Table 4.20) [70].

In order to create the predictive model for EPSA, we concluded that one of the
most widely known statistical environments is the most appropriate, mainly because
of the combination of analytical functions it supports; that is Minitab. Minitab is
a general statistics software [11], originally developed in 1972, as a light version of
OMNITAB, a statistical analysis program, in the National Institute of Standards and
Technology (NIST) [12].

For the implementation of IPM, Primal and Dual algorithms, our study utilized
the algorithms’ versions supported by CPLEX 12.6.1 [9] to solve the respective

benchmark problems, described in the previous section. CPLEX Optimizer includes
several high-performance linear programming algorithms, supporting, among other
methods, primal and dual variants of the simplex algorithm, as well as the interior
point method. This solver offers efficient methods for model generation in order to
overcome particularly complex optimization tasks, such as planning and scheduling.
It is important to note that the algorithms were executed with the default options
of CPLEX Optimizer, in order to minimize subjectivity in our observations, which
may have resulted from different settings. This should be considered as an
interesting area of research for the future, especially in combination with solver
tuning techniques. Since the hardware and software characteristics are crucial
parameters of a specific computing environment, which prove to have a significant
impact on the performance of an algorithm [71], all experiments were conducted in
the same environment, thus, this factor can be considered same for all problems,
with no fluctuation from one problem to another. In case the computational
experiments needed to be performed under different hardware conditions, a
re-training process on the respective ANNs would be required.

Regarding the predictive models for IPM, Primal and Dual Simplex algorithms,
these have been generated and examined with the use of the scikit-learn toolkit [84].
Scikit-learn toolkit integrates a plethora of widely use machine learning techniques,
which can further be utilized for inferential statistical data analysis. In contrast to
descriptive analysis, which focuses on the attributes of the sampled dataset only,
inferential analysis is closer to the concept of a data population, which the observed
data derives from. Scikit-learn supports numerous methods of supervised and
unsupervised learning, model selection and evaluation and transformation of data.
The characteristics of the computing environment are described in detail in the
following table (Table 4.21).

The exact methodology and analysis steps that were followed in the above
described environments is presented thoroughly in the next chapter, along with the
generated models for the examined algorithms.

Table 4.20: Computing and model creation environment for EPSA

CPU Intel® Xeon™, 3.00 GHz (2 processors)
RAM size 12,288 MB

L2 Cache size 2×1,024 KB
L1 Cache size 2×16 KB

Operating System Microsoft Windows 7 Professional, SP1, 64-bit
MATLAB version 8.3.0.532 R2014a

Minitab version 16.1.1

Table 4.21: Computing and model creation environment for IPM, Primal and Dual
Simplex

CPU Intel Core i7, 3.40 GHz (8 cores)
Main memory 32 GB

Clock 3,700 MHz
L1 Code Cache size 32 KB \core
L1 Data Cache size 32 KB \core

L2 Cache size 256 KB \core
L3 Cache size 8 MB

Memory bandwidth 21 GB \s
Operating System Microsoft Windows 7 Professional, SP1, 64-bit

IBM ILOG CPLEX Optimization Studio V12.6.1
scikit-learn 0.23

Chapter 5

Predictive Models

This chapter includes the details of the analysis, conducted during our study. It
provides the results regarding the generated predictive models for the computational
behavior of the Exterior Point Simplex Algorithm, the Interior Point Method and
the Primal and Dual Simplex algorithms. We are presenting the models in a
sequential order, i.e. EPSA first, then IPM, and finally Primal and Dual Simplex.
Each predictive model is followed by the respective statistics and validation
findings, accompanied by comparative results among the tested models each time.
It should be underlined that the generated models provided us with a great
opportunity to understand the respective algorithms’ performance and confidently
support the models’ predictive capabilities. Apart from the results we received for
EPSA, the analysis performed among CPLEX’s implementations for IPM, Primal
and Dual Simplex algorithms was of vital significance. Our findings can have a
major impact on the establishment of comparative thinking before selecting a
particular algorithm for the solution of any LP problem. The main concern
regarding CPLEX and any other mathematical solver has been that all examined
algorithms may actually be able to solve the problems in question each time.
However, so far, it had not been possible for any researcher that would wish to know
upfront which algorithm is the most efficient one, to decide upon using a specific
algorithm only. The researcher should select one algorithm and solve the given
problem with no information on whether another algorithm would be much faster or
consume different computing resources or be affected by different parameters.
Researchers and software designers often perform extensive computational
experiments to find the default values of parameters that will perform well on most
instances of their data. Algorithm selection has been facilitated through algorithm
tuning processes with several interesting studies conducted in this field ([19], [20],
[47]). Meta-learning approaches have been utilized for tuning the performance of
algorithms, mainly machine learning ones. The more similar those previous
problems are, the better performance we can achieve [118]. Of course, there is no
free lunch [120]. When a new problem comes in, leveraging prior experience may not
be effective. Apart from tuning the performance of algorithms, meta-learning
approaches have been also utilized for predicting their execution time [89, 25].

73

5.1 Exterior Point Simplex Algorithm (EPSA)
The first section of this chapter consists of a thorough explanation of the process we
followed in order to create predictive models for the EPSA algorithm. We are
presenting all details of our models, which are accompanied by the respective model
validation part. In order to generate and examine our models, we have applied well
established Regression Analysis techniques and metrics; here, we describe each
regression model separately, through numerical and graphical representation of the
results.

The most significant finding is the linear relation of the dependent with the
independent variables in the model for the randomly generated sparse LP problems.
While studying upon EPSA behavior, we focused more on the required number of
iterations of the algorithm, rather than the CPU time. The problem with using
regression analysis to study CPU time is that the memory hierarchy (caches, virtual
memory system), creates a piece-wise cost function for time, with abrupt changes
when the algorithm outgrows a level in the hierarchy. The location of the breaks,
and the magnitude of the changes, are highly platform dependent. Therefore, time
measurements on one platform would not be useful for predicting costs on another
platform [28].

Regression models were generated and tested in Minitab, using the “Best subsets”
model selection method. This is an automated process for identifying the best-fitting
regression model for a given dataset, taking all available independent variables into
account [54]. The main goal is to select a subset of independent variables that best
satisfies specific statistical metrics, as these have already been presented in previous
sections and will also be stated below. Since the fundamental aspects of Regression
Analysis have already been described, we will now pinpoint the metrics used in order
to evaluate the best regression model for this part of our study on EPSA. These
metrics are listed below, followed by a brief explanation.

The metrics utilized for the purpose of our analysis are well-known and commonly
used in the statistical research field for evaluation and model performance testing.

• R-squared (R-Sq): Coefficient of determination. Defines the degree of good fit
of a statistical model on the examined data.

• Adjusted R-squared (R-Sq(adj)): Adjusted coefficient of determination. Useful
for comparison of models with different number of predictors, due to the fact
that it is adjusted according to the number of predictors in a model.

• Predicted R-squared (R-Sq(pred)): Indicates the predictive capability of a
regression model for new observations. Useful for identifying if a model is not
capable of providing valid predictions, even if it seems to fit to the original
data.

• Standard error of regression (S): Measures the units of the response variable
and represents the standard distance between data values and the estimated
regression line.

• Standard error of the coefficient (SE Coef): Standard deviation of the estimate
of a coefficient in a regression model. Measures the precision of the model in
estimating the unknown value of the coefficient.

• Degrees of freedom (DF): Number of values in the final calculation of a statistic
that are free to vary.

• Sum of Squares (SS): Indicates the deviation from the mean and is calculated
as the sum of the squares of the differences from the mean.

• Mean Squares (MS): Calculated by dividing the respective sum of squares by
the degrees of freedom. This metric is an estimate of the population variance.

As explained in Chapter 3, we pay attention to the F and the corresponding P
values of each model. The F -test is the metric which determines if this relationship is
statistically significant or not. Therefore, if the P value for the overall F -test is less
than the applied significance level, then the specific regression model has statistically
significant predictive capability [39]. The significance level in our study for EPSA has
been set to 5%. Moreover, our models are accompanied by the respective probability
plots (i.e. P-P plots), whose significance has been clarified earlier in this thesis. An
extensive study of several possible regression models was conducted, so that we can
reach a conclusion about the best suitable model for the sampled dataset. The best
exponential and logarithmic models are included for comparative purposes.

5.1.1 Predictive model for randomly generated LP problems

The regression model for the randomly generated LP problems, solved by EPSA,
reveals a linear positive relation between the number of iterations and the number of
constraints (m) and decision variables (n). This indicates that a potential increase of
the problem dimensions will result to an increase in the number of iterations as well.

The positive relation of the number of iterations with the problem sparsity reflects
possible difficulties that the algorithm may face during the computation of specific
mathematical equations in very sparse problems. Moreover, the condition of matrix
A (cond(A)) is positively related to the number of iterations. This means that if
the condition of our data (namely of matrix A) gets worse (i.e., the corresponding
value of cond(A) increases), then the number of iterations will increase as well. The
regression equation of the corresponding regression model is the following (Eq.5.1).

𝑛𝑖𝑡𝑒𝑟 = −5, 935.063 + 0.148𝑚+ 0.699𝑛+ 6, 453.502𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 + 1.150𝐸 − 006𝑐𝑜𝑛𝑑𝐴
(Eq.5.1)

A full description of the model’s statistics is provided in the following table
(Table 5.1). All independent variables that contribute to this predictive model are
statistically significant with a P value lower than 0.05. The coefficient of
determination (not only the R-Sq, but also the R-Sq(adj)), is approximately equal
to 96% and the F-test is of significance 𝑃 < 0.001, meaning that the model is
suitable for the overall description and explanation of the variability of the whole
dataset. Finally, the Durbin-Watson statistic [40] is approximately equal to 1.94,
which is really close to 2 and indicates that there is no auto-correlation within the
examined data.

Table 5.1: Statistical values of regression model

Predictor Coef SE Coef T P
Constant -5,935.063 56.482 -105.080 0.000
m 0.148 0.003 48.887 0.000
n 0.699 0.003 229.803 0.000
sparsity 6,453.502 67.330 95.849 0.000
cond(A) 1.150E-006 0.000 2.021 0.043

R-Sq = 96.0% R-Sq(adj) = 95.9% S = 383.634
R-Sq(pred) = 95.93%

Analysis of Variance
Source DF SS MS F P
Regression 4 23,640,513,358.335 5,910,128,339.584 40,157.160 0.000
Residual Error 6,778 997,551,872.102 147,174.959
Total 6,780 24,638,065,230.437
Durbin-Watson 1.936

The normal probability plot below (Fig. 5-1) provides a graphical representation
of the standardized residuals, regarding the number of iterations. The X axis
represents the Observed Cumulative Probability (Observed Cum Prob), which is
based on the percentiles in the frequency distribution of the residuals. The Y axis,
which represents the Expected Cumulative Probability (Expected Cum Prob), is
based on the Standardized Residual (Z-score) and on the computation of the
cumulative density from the normal distribution. If the residuals are normally
distributed, then the values should fall exactly on the diagonal line. In our analysis,
there is a deviation from the diagonal line, as shown in the (P-P) plot, which
indicates a positive skewness of the distribution. This means that the right side tail
of the curve, if this was depicted in a histogram, is longer than the left side tail and
the mean is greater than the mode. Skewness is actually the asymmetry of a
distribution and can be quantified to measure the extent to which this distribution
is distorted and how much it differs from a normal distribution. This matter can be
subject to further analysis in the future.

Moving forward, we are providing specific details of an exponential (Eq. 5.1) and
a logarithmic (Eq. 5.2) model, which were found to be the best out of the rest models
examined for the complete dataset (Tables 5.2 and 5.3).

As shown, the independent variables participating in the exponential model are
only the number of decision variables (n) and the problem sparsity, while in the
logarithmic model we see the number of constraints (m), the number of decision
variables (n), the problem sparsity and the condition of matrix A (cond(A)). All
independent variables in both predictive models are statistically significant with a P
value lower than 0.05 and while the respective values of the coefficient of
determination (R-Sq, R-Sq(adj) and R-Sq(pred)) are satisfying (i.e. approx. 94%

Figure 5-1: Normal Probability plot of iterations standardized residuals

and 88% for exponential and logarithmic model, respectively) they are still lower
than the corresponding value of the linear model (i.e. approx. 96%). The F-test is
of significance 𝑃 < 0.001 in both models, meaning that they could be suitable the
overall description of the dataset, however, still the standard error of regression (S)
of the linear model is lower than the respective values of the exponential and
logarithmic models. Finally, the Durbin-Watson statistic [40] is quite satisfying in
both models (approx. 1.54 and 1.84 in the exponential and logarithmic models,
respectively), although the corresponding value of the linear model remains closer to
2 (i.e. 1.94), indicating that in all cases, there is no auto-correlation in the examined
dataset.

𝑛𝑖𝑡𝑒𝑟 = −6, 830 + 0.804𝑛+ 2, 805𝑒𝑥𝑝(𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦) (5.1)

𝑛𝑖𝑡𝑒𝑟 = −24, 624+1, 282𝑙𝑜𝑔(𝑚)+6, 654𝑙𝑜𝑔(𝑛)+12, 380𝑙𝑜𝑔(𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦)+91.4𝑙𝑜𝑔(𝑐𝑜𝑛𝑑𝐴)
(5.2)

Table 5.2: Statistical values of exponential Regression model

Predictor Coef SE Coef T P
Constant -6,830.37 77.34 -88.32 0.000
n 0.803768 0.002466 325.89 0.000
exp(sparsity) 2,804.57 33.54 83.62 0.000

R-Sq = 94.6% R-Sq(adj) = 94.6% S = 441.373
R-Sq(pred) = 94.63%

Analysis of Variance
Source DF SS MS F P
Regression 2 23,317,254,689 11,658,627,345 59846.20 0.000
Residual Error 6,780 1,320,810,541 194,810
Total 6,782 24,638,065,230
Durbin-Watson 1.542

Table 5.3: Statistical values of logarithmic Regression model

Predictor Coef SE Coef T P
Constant -24,623.8 150.3 -163.81 0.000
log(m) 1,281.69 55.03 23.29 0.000
log(n) 6,653.55 55.14 120.66 0.000
log(sparsity) 12,380.3 218.9 56.57 0.000
log(cond(A)) 91.402 5.216 17.52 0.000

R-Sq = 88.4% R-Sq(adj) = 88.4% S = 648.856
R-Sq(pred) = 88.40%

Analysis of Variance
Source DF SS MS F P
Regression 4 21,784,430,694 5,446,107,674 12,935.69 0.000
Residual Error 6,778 2,853,634,536 421,014
Total 6,782 24,638,065,230
Durbin-Watson 1.839

5.1.2 Validation of Predictive Model for randomly generated
LP problems

Earlier in this section, the regression model which corresponds to the dataset of the
randomly generated LPs was thoroughly presented. This section aims to provide a
further validation of this model in order to ensure its accuracy and prediction ability.
For this purpose, additional LPs were generated, following the same process that was
applied during the creation of the initial dataset. In terms of statistical analysis, our
initial LPs form the training dataset for our models, while the additional LPs, which
are mentioned here, form the validation dataset, which confirms the regression model
we created. The value ranges regarding the number of constraints (m), the number of
variables (n), the problem density, as well as the type of constraints are the same to
the ones applied in the initial dataset. During the creation of our validation dataset,
we examined the same characteristics as the ones studied in the initial dataset. The
additional LPs that were created during the validation step of our process are totally
independent from the initial dataset.

The number of the additional LPs that were generated, covers approximately 10%
of the total dataset (TDS). The number of LPs during validation is presented in the
following table (Table 5.4).

Table 5.4: Validation Dataset

Number of LPs Percentage against TDS
Total 647 9.54

The validation process included the following steps:
1. Regression Model: The regression equation of the resulted model is given
2. Value Replacement: The independent variables (m, n, etc.) within the model

are replaced by the corresponding observed values from the validation dataset
3. Calculation: The estimated value of number of iterations is calculated, based

on our regression model
4. Comparison: The estimated value is compared to the observed one
5. Deviation computation: The deviation between the estimated and the observed

value is calculated

For the purpose of this computation, we used the following ratio (Eq. 5.3):

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 = (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑉 𝑎𝑙𝑢𝑒−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉 𝑎𝑙𝑢𝑒)/𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑉 𝑎𝑙𝑢𝑒 (5.3)

This process resulted in having a complete view of the efficiency of our models,
both for representation and prediction of the number of iterations. Table 5.5 below,
shows the maximum, minimum and average deviation from the observed values (in
absolute numbers) (Eq. 5.3).

The regression model created for the number of iterations seems to be quite
accurate and the actual average differences between the estimated and observed

Table 5.5: Deviation from Observed values in the resulted regression model

Number of Iterations
max min average

Total 112.80% 0.02% 9.81%

values are remarkably small. Apart from the above mentioned analysis, though, we
also examined how these instances are distributed and how they affect the average
practical performance of our algorithm. EPSA performance seems to fall behind in
extreme instances like the ones shown in the box plot on Fig. 5-3 below. This is also
depicted on the respective histogram (Fig. 5-2), which indicates right skewed
instances. This right or positive skewness is characterized by a "tail" of the
instances to the right. This means, that there are many instances in the validation
dataset, for which the number of iterations is relatively small, while in increasingly
few instances the number of iterations increase significantly. The existence of a
specific pattern of characteristics in these extreme instances, which may eventually
affect the practical performance of EPSA, could be subject to further analysis.

Figure 5-2: Deviation Histogram - Validation

5.1.3 Predictive model for benchmark LP problems

In the current section we are presenting our analysis of EPSA performance on
benchmark dataset of 60 LP problems, as this has been described in Chapter 4.

Figure 5-3: Outliers - Validation

Although the regression model included in this section is the best performing model
out of the models tested, it actually indicates that the performance of our algorithm
drops (comparing to the performance in the randomly generated sparse problems,
described in previous sections). This can be explained by the nature of the
benchmark problems of the dataset, which are degenerate; it was quite impressive
that during the analysis seven LPs were automatically excluded from the analysis,
since their condition number reached infinity. These problems could not, eventually,
participate in the computation of the regression model. The corresponding details
are shown below (Equation 5.4 and Table 5.6).

𝑛𝑖𝑡𝑒𝑟 = 539 + 0.0296𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 × 𝑛𝑛𝑧 + 0.177𝑛× 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 (5.4)

As shown, R-Sq(adj) reaches 60.3%, however R-Sq(pred) shows that the particular
model is not suitable for prediction purposes. This is reasonable, if we take into
consideration the structure and unique characteristics of benchmark problems, which
are degenerate and ill-conditioned. As a result, it is difficult for EPSA to handle such
problems and especially to have results that would form a satisfying regression model,
which would then be used for predictive purposes, as well.

Table 5.6: Statistical values of Regression model - Benchmark

Predictor Coef SE Coef T P
Constant 539.0 171.9 3.14 0.003
sparsity × nnz 0.029562 0.005815 5.08 0.000
n × sparsity 0.17708 0.08942 1.98 0.053

R-Sq = 61.9% R-Sq(adj) = 60.3% S = 1064.60
R-Sq(pred) = 23.71%

Analysis of Variance
Source DF SS MS F P
Regression 2 91,940,699 45,970,349 40.56 0.000
Residual Error 50 56,669,020 1,133,380
Total 52 148,609,719
Durbin-Watson 1.892

5.2 CPLEX - IPM, Primal and Dual Simplex
Algorithms

As explained earlier in this study, LP problems can nowadays be solved by a plethora
of algorithms which are supported in several mathematical solvers. Regardless of
the number of available algorithms which can solve a specific LP problem though, it
is often difficult to decide upon which algorithm would be the most appropriate and
efficient to use, in terms of execution time for the solution of a problem each time. One
of the most widely used mathematical solvers, IBM CPLEX Optimizer [9], includes
several high-performance linear programming algorithms, supporting, among other
methods, primal and dual variants of the simplex algorithm, as well as the interior
point method.

In this section, we are analyzing the IPM, Primal and Dual CPLEX variants and
elaborating thoroughly on the steps we followed in order to reach meaningful
conclusions through the generated predictive models. For these algorithms, we are
concentrating on the execution time, rather than the number of iterations for the
solution of a LP problem (as examined for EPSA). Reason is the that execution
time is of vital significance for all modern mathematical solvers, which have evolved
to complex software systems consisting of various parameters that can be tuned.
The configuration process of the solver’s parameters is referred to as solver tuning
[18]. Most software designers often perform extensive computational experiments to
find the default values of parameters that will perform well on the majority of
instances to be solved. Solver tuning has been applied successfully in various
mathematical solvers ([16], [56], [55], [30], [68]). For CPLEX, we are looking into a
different problem though, since we are interested in predicting the execution time of
the solver for a specific problem instance. Knowing the execution time upfront, i.e.
the time necessary to solve an instance, the mathematical solver may devise

different options to solve this instance. Similar studies have been conducted in the
past, such as [122], which aims to predict the solution time of Branch-and-Bound
algorithms for mixed-integer programs (MIP) and proposes a double exponential
smoothing technique, evaluating it with three MIP solvers. Such a performance
modeling of software systems is mainly achieved through analytical modeling and
machine learning [72, 109, 85, 14]. Analytical modeling exploits existing knowledge
of the internal dynamics of the software system and can express the relationship of
the inputs and outputs using a set of analytical equations. However, as stated
already, software systems have become so complex over the years that applying
analytical modeling techniques to predict the solvers’ execution time does not yield
good results anymore. Therefore, various researchers explore machine learning
techniques to predict the execution time of software systems ([102], [113], [66],
[101]). Based on our research, a performance modeling tool for any mathematical
optimization solver has not been developed so far.

5.2.1 Predictive model for Interior Point Method

In regards to the analysis of the Interior Point Method, the neural network models we
examined have been generated using the scikit-learn toolkit [84]. While testing several
statistical environments, we found scikit-learn to be the most suitable for the purpose
of our analysis, since it supports numerous methods of supervised and unsupervised
learning, model selection and data evaluation and transformation. The algorithm used
for the generation of our model is the Multi-layer Perceptron (MLP) and in particular,
Multi-layer Perceptron Regressor (MLPRegressor). MLP is a supervised learning
algorithm that can learn a function 𝑓(𝑥) : 𝑅𝑥 → 𝑅𝑜 by training on a dataset, where 𝑥
is the number of dimensions for input and 𝑜 is the number of dimensions for output.
Given a set of input features and an output target, MLP can learn a nonlinear function
approximator for either classification (MLPClassifier) or regression (MLPRegressor).
Although we experimented with other supervised learning methods available in scikit-
learn toolkit, such as linear regression, lasso regression, ridge regression and decision
trees, we obtained the best results using the MLP regression method.

To better understand its functionality, the parameters of MLPRegressor are
described in detail below, including the number of hidden layers in ANNs, the
activation function and ANN solver, the tolerance and alpha values, along with the
scale of the examined data.

One of the most important parameters is the number of hidden layers that needs
to be examined and defined, along with their size and the activation function which
we have to choose. The activation function is responsible for converting the input
signal of the last hidden layer to an output signal for the next layer. Commonly
used activation functions are the hyperbolic tan function (tanh), the logistic sigmoid
function (logistic) and the rectified linear unit function (relu). Numerous
combinations of all supported activation functions with different number of hidden
layers were tested for the purpose of this study.

It has also been mandatory to test the ANN solver of our model. Neural
networks consist of a number of simple but highly interconnected nodes, the

so-called “neurons”, which are organized in layers. Neural networks are extremely
helpful in finding patterns that are too complex to be manually extracted and
taught for any kind of machine. In an ANN, the input layer (which has one neuron
for each element of the input data) communicates to one or more hidden layers that
are present in the network. The hidden layers are actually the place where all
information is processed, thus their name may not be so representative of their real
significance; they are characterized as “hidden” only because they do not constitute
the input or the output layer. The information is processed through weights and
biases (commonly referred as W and b, respectively). In more detail, once the input
is received, the neuron calculates a weighted sum (by adding also the bias) and
according to the result and the preset activation function, it is activated or not. The
neuron transfers this information to its connected neurons, ending up to the last
hidden layer that is linked to the output layer, which has only one neuron (i.e. for
the respective output). The ANN solver of the model is related to the weight
optimization process that takes place while transmitting information through
hidden layers. There are several solvers that can be used, such as lbfgs, an optimizer
in the family of quasi-Newton methods and sgd, concerning stochastic gradient
descent. For small datasets, lbfgs converges faster and performs better in general.
Solver lbfgs uses a weighted linear summation to transform the input values of
previous layers to output values for the next layer [84].

Another parameter is the tolerance value, which refers to the tolerance for the
optimization. To explain, let us assume that upon a certain number of iterations, we
fail to decrease the training loss or to increase the validation score by at least a value
equal to tolerance; in this case, the convergence is considered to be reached and the
training stops.

The alpha value refers to the L2 penalty parameter (Ridge regression;
regularization technique used to address over-fitting and feature selection), while the
maximum number of iterations indicates that the solver will iterate until
convergence (determined by tolerance value) or this number of iterations.

Last but not least, one more aspect that needs to be taken into consideration is the
scale of our data. The input parameters of a model may have different scales, which
makes it difficult for the examined problems to be modeled. Scaling and normalizing
the original data is a significant step we have taken while generating our models.

The greatest challenge during our analysis was related to the number of hidden
layers, which had to be set while testing our models, along with the activation function
we had to choose. It was noted that the more hidden layers we have in our models,
the worse results we eventually get. Several activation functions (i.e. tanh, logistic
and relu) were also tested while repeated and extensive testing was also performed
on the number of hidden layers. The solver that was eventually selected for weight
optimization is lbfgs. The ANN parameters selected in the best performing model are
shown in Table 5.7.

The ratio between the training and test set was chosen to be 70 to 30. To evaluate
the performance of our models, certain metrics were taken into consideration. The
coefficient of determination (𝑅2, R-squared) provides an estimate of the strength of
the relationship between a regression model and the dependent variable (output),

Table 5.7: Model parameters for the MLP method

Algorithm MLPRegressor
Hidden layer sizes 20
Activation function relu
Solver lbfgs
Alpha value 1𝑒− 5
Maximum iterations 1000
Tolerance 0.0001

since it defines how well a statistical model fits the examined data (i.e. the bigger its
value is, the better fitting the model has). The Root Mean Square Error (RMSE) is
the standard deviation of the residuals (prediction errors) and measures their spread
around the line of best fit. RMSE is considered as a measure of accuracy, used for
comparison of different models generated for a particular dataset. This metric has
non-negative values and a value of 0, although impossible to achieve in practice,
would indicate a perfect fit to the data. In general, a lower RMSE value is always
better than a higher one. It is important to note that this metric is not used between
different datasets, as it is scale-dependent [57], thus comparisons of different types of
data would not be valid since the measurement depends on the scale of the examined
dataset numbers. We also include the mean absolute error that measures the average
magnitude of the errors in a set of predictions, without considering their direction,
and the median absolute error that is insensitive to outliers ([39], [67] and [90]). Table
5.8 presents the results for the training set, where the model achieved an RMSE value
of 123.32 and an 𝑅2 value of 0.78 and the test set, where the model achieved an RMSE
value of 296.73 and an 𝑅2 value of 0.72. Taking into account the features’ variability
of the 295 linear programming models and the metrics’ values, it is shown that our
model can explain the data reasonably well. As an example, an 𝑅2 value of 1 would
indicate a perfect fit of the data, so the current 𝑅2 value proves goodness of fit of our
model.

Table 5.8: MLPRegressor model for the IPM execution time

Training set Test set
Root Mean squared error 123.32 296.73
Absolute Mean error 54.31 97.54
Absolute Median error 7.12 9.49
𝑅2 0.78 0.72

A graphical representation of the comparison between the metrics measured for
some of the models we tested follows in Figures 5-4 and 5-5 (different number of
hidden layers and different activation functions, respectively). The term units as
shown in Figure 5-4 below, refers to the actual layers of the model.

Figure 5-4: Regression model for interior point method - Tuning the number of
neurons (1 hidden layer)

5.2.2 Predictive models for Primal and Dual Simplex
Algorithm

For Primal and Dual Simplex algorithms, we extended the work performed for the
Interior Point Method, by using the MLPRegressor algorithm for the generation of
our predictive models. Our initial goal was to examine whether a regression model
could also be built for these two algorithms, in the same way as for IPM. We also
experimented with other supervised learning methods and more specifically, with
classification methods available in scikit-learn, such as MLPClassifier and
KNeighborsClassifier.

The findings of our computational study showed that, none of the formed
regression models could either achieve goodness of fit for our data or stand as an
accurate prediction model for the execution time of CPLEX’s primal and dual
simplex algorithms. In order to overcome the barrier introduced by this outcome,
we attempted treating the problem as a classification problem; thus, instead of
estimating the execution time, we attempted estimating the class under which the
execution time will fall.

In the following paragraphs, we will briefly describe the concept of regression and
classification techniques that were used and then, present the analysis we conducted
to form regression models, using artificial neural networks, for the prediction of
primal and dual simplex algorithms’ execution time. A thorough description of the

Figure 5-5: Regression model for interior point method - Tuning the activation
function

models generated using classification techniques, follows next, along with the
respective results and a graphical representation of the comparative analysis among
the generated models in order to select the most appropriate one for each algorithm.

As explained in previous sections, regression and classification belong to the
broader family of supervised machine learning techniques, utilizing the concept of
using known datasets (i.e. training datasets) to make predictions about new
incoming data. Considering that an input variable x and an output variable y are
available, a supervised learning algorithm aims to “teach” a mapping function (that
is y = f(x)) from the input variable x to the output variable y. This way, whenever
there is a new input data x, the respective output variable y will be predicted, with
the help of regression or classification predictive models. Although these techniques
share the same objective, regression and classification have a main difference, which
is that the output variable for classification is categorical (or discrete), while in
regression it is numerical (or continuous). Classification predicts a discrete class
label, while regression a continuous quantity. There are some algorithms, though,
which can be used both for classification and regression, with only slight
modifications, such as Artificial Neural Networks (ANNs) and decision trees.
Classification predictive models can be evaluated using the accuracy value, whereas
regression predictive models are evaluated through other metrics, such as the
respective coefficient of determination and the root mean squared error (i.e.
quantities that cannot be measured for classification predictions).

Evaluating the metrics of each model for the primal and dual simplex algorithm
separately, our models were formed, testing and tuning the parameters shown in
Table 5.9.

Table 5.9: MLP model parameters used for primal and dual simplex algorithms

Algorithm Primal, Dual
Hidden layers [1-3]
Hidden layer sizes [10-100 neurons/layer]
Activation function relu, tanh, logistic
Solver lbfgs, sgd
Alpha value 1𝑒− 5
Maximum iterations 1, 000
Tolerance 0.0001

To split our dataset into training and test set, a ratio of 75 to 25 was selected.
The training and test sets were formed through cross validation, as supported for
MLPRegressor by the scikit-learn library [84]. Similarly to IPM, the formulated
models were evaluated upon standard metrics, such as the coefficient of determination
and root mean square error. As explained, the coefficient of determination (R-squared,
𝑅2) estimates the strength of the relationship between a regression model and the
dependent variable (output) and defines how well a statistical model fits the examined
data (i.e., the bigger 𝑅2 value is, the better is the fitting of the examined model).
Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction
errors), which measures their spread around the line of best fit. RMSE is considered
to be a measure of accuracy and it is used for comparison of different models generated
for a particular dataset. This metric has non-negative values and a value of 0 would
indicate a perfect fit to the data, however, this is quite impossible to achieve in
practice. In general, a lower RMSE value is always better than a higher one. It is
important to note that this metric should not be used between different datasets, as
it is scale-dependent [57]. Comparisons of different types of data would not be valid
since the measure depends on the scale of the examined dataset numbers. Apart from
these metrics, we also measured the mean absolute error that measures the average
magnitude of the errors in a set of predictions, without considering their direction,
and the median absolute error that is insensitive to outliers [39, 67, 90].

Table 5.10 presents the results of our neural networks, both for primal and dual
simplex algorithms on the examined dataset.

For the primal simplex algorithm, the model that showed the best performance,
compared to the rest models that were formed and tested, achieved an RMSE value
of 342.08 and an 𝑅2 value of 0.79, while for the test set the model achieved an RMSE
value of 1302.25 and an 𝑅2 value of 0.21. The model was set to work with 1 hidden
layer of size equal to 30 neurons, logistic activation function, and the lbfgs solver.

As for the dual simplex algorithm, the results the best fitting model achieved,
were an RMSE value of 345.28 and an 𝑅2 value of 0.66 in the training set, while in
the test set, these values reached 1260.39 and 0.05, respectively. In this case, there

Table 5.10: MLPRegressor model for the execution time of the primal and dual
simplex algorithms

Primal Dual
Training set Test set Training set Test set

Root Mean squared error 342.08 1302.25 345.28 1260.39
Absolute Mean error 9.60 25.07 11.35 25.16
Absolute Median error 3.26 14.75 3.93 16.05
𝑅2 0.79 0.21 0.66 0.05

was 1 hidden layer with 20 neurons, while the activation function and solver were the
logistic and lbfgs, similarly to the model formulated for the primal simplex algorithm.

Taking into account the variability in the features of the 295 LP problems of our
dataset and the metrics’ values, our models proved to perform lower than our initial
expectations. It became clear that they cannot explain the data well, showing a
significant discrepancy between the metrics’ values of the training and the test set.
An 𝑅2 value of 1 would indicate a perfect fit of the data, so the current 𝑅2 values
of the training sets for both algorithms prove a certain level of goodness of fit of our
models, which, however, cannot be verified or validated further. This is confirmed by
the test sets, where the 𝑅2 values drop significantly, while the corresponding RMSE
values increase tremendously, comparing to the ones of the training set.

These values reveal models that cannot be utilized for prediction of the
execution time needed for the solution of LP problems by the primal and dual
simplex algorithms. It is quite interesting to show that these results were considered
the “best” after extensive and thorough testing, with different numbers of hidden
layers and neurons per layer (1 − 3 and 10 − 100, respectively), different activation
functions (relu, tanh and logistic), and solvers (lbfgs and sgd). A graphical
representation of the results we received with only some of the different models
formed with MLPRegressor follows further below (Figures 5-6 and 5-7 for primal
simplex and Figures 5-8 and 5-9 for dual simplex algorithms, respectively).

The models we tested showed worse performance, while some of them were even
characterized by negative values of 𝑅2 for the test set, which could not be interpreted
to lead in meaningful and useful results. More specifically, since 𝑅2 compares the
fit of the chosen model with that of a horizontal straight line (the null hypothesis),
if the model fits worse than a horizontal line, then 𝑅2 is negative, meaning that
the chosen model does not follow the trend of the data, so would not be useful for
prediction purposes. Moreover, models formed with sgd solver showed non-goodness-
of-fit (𝑅2 values were below 0.06 and 0.20 for the primal and dual simplex algorithms,
respectively), thus they are not included in the graphical representation.

The example of Figure 5-6 presents the 𝑅2 value for several numbers of neurons in
models for the primal simplex algorithm, using 1 hidden layer, the logistic activation
function, and the lbfgs solver. The 𝑅2 value is given both for the training and test
sets. In Figure 5-7, the 𝑅2 value of several models is given, using the relu, tanh, and
logistic activation functions and having 30 neurons in 1 hidden layer with lbfgs as
solver.

Figure 5-8 presents the 𝑅2 value for several number of neurons in models for the
dual simplex algorithm, using 1 hidden layer, the logistic activation function and the
lbfgs solver. In Figure 5-9, the 𝑅2 value of several models is given, using the relu,
tanh, and logistic activation functions and having 20 neurons in 1 hidden layer with
lbfgs as solver. The 𝑅2 value is given both for the training and test sets below, for
all presented samples of our comparative analysis.

Figure 5-6: Regression model for primal method - Tuning the number of neurons (1
hidden layer)

Figure 5-7: Regression model for primal method - Tuning the activation function

Figure 5-8: Regression model for dual method - Tuning the number of neurons (1
hidden layer)

Figure 5-9: Regression model for dual method - Tuning the activation function

Elaborating further on the concept of regression, we extended our analysis to
more regression algorithms, such as Decision Tree, ElasticNet, Lasso, Random Forest,
Ridge, Support Vector and Linear Regressor. Although scikit’s GridSearch function
was utilized to identify the best regression model generated from each algorithm, the
models that were eventually formulated, could not be used for prediction purposes.
A remarkable exception was reported for Random Forest ANN model, which may
result in better values of the evaluation metrics than MLPRegressor, but shows the
same significant discrepancies between the training and test set. More specifically, the
reported 𝑅2 values of the training set for primal and dual simplex algorithms, show
goodness of fit for the relevant Random Forest ANN models, in combination with the
values of the rest metrics, as well. However, this fact cannot be validated through the
test set, since the 𝑅2 values decrease significantly, along with the rest error metrics’
values which increase to a high extend, comparing to the ones of the training set.
The values of the metrics, which were used to evaluate the respective ANN regression
models for primal and dual simplex algorithms are included in Tables 5.11 and 5.12,
separated between training and test set.

Table 5.11: Other Regression models for the execution time of the primal simplex
algorithm

Training set Test set
RMSE MAE MedAE 𝑅2 RMSE MAE MedAE 𝑅2

Decision Tree 1441.9 31.77 26.02 0.01 2098.2 37.06 28.00 -0.03
ElasticNet 1483.2 32.11 24.28 0.07 1717.2 35.04 27.27 -0.01
Lasso 1470.6 32.24 35.39 0.05 1797.1 35.17 24.92 -0.002
Linear 1669.9 34.95 27.82 0.05 1177.7 29.90 24.39 -0.03
Random Forest 209.4 10.28 7.57 0.88 954.20 22.52 17.53 0.15
Ridge 1491.6 32.10 24.50 0.04 1809.10 36.41 28.00 -0.01
Support Vector 1663.0 27.55 17.89 -0.08 2138.28 31.92 18.46 -0.14

Table 5.12: Other Regression models for the execution time of the dual simplex
algorithm

Training set Test set
RMSE MAE MedAE 𝑅2 RMSE MAE MedAE 𝑅2

Decision Tree 1125.2 28.02 23.90 0.02 998.6 26.98 25.90 -0.08
ElasticNet 1014.7 26.16 20.90 0.03 1206.8 27.90 20.76 0.04
Lasso 940.2 24.01 18.77 0.09 1327.0 28.93 20.92 -0.08
Linear 1040.6 25.87 17.59 0.10 1006.7 25.99 22.91 -0.10
Random Forest 148.4 8.68 6.77 0.87 618.9 17.29 13.12 0.34
Ridge 1033.3 26.21 19.78 0.11 997.9 24.84 18.60 -0.10
Support Vector 1299.2 21.26 8.06 -0.17 1356.96 24.15 12.20 -0.30

This outcome turned our focus more on classification techniques. Now, instead
of trying to predict an exact value, such as the execution time of an algorithm, we
are concentrating on predicting the class under which the value of the execution time
may fall. As shown in the following sections, classification techniques work more
efficiently with our dataset. We concluded that keeping the models that showed the
best performance as prediction models for the execution time of the primal and dual
simplex algorithms, would be neither a useful nor a valid choice.

Therefore, we tested two of the most commonly used classification algorithms
supported by scikit-learn toolkit, such as Multi-layer Perceptron Classifier
(MLPClassifier) and KNeighborsClassifier. Unlike other classification algorithms,
such as Naive Bayes Classifier, MLPClassifier performs the task of classification,
based on an underlying neural network. The process of classification using ANNs
may seem theoretically complex and difficult to implement and interpret while it
surely requires extensive testing to tune (offering a plethora of tuning options to
prevent over- or under-fitting). However, this still cannot change the fact that it
proves to be a powerful tool towards dealing with complex relations and functions
that connect the examined input and output variables, while it is effective for
high-dimensional problems. The parameters described earlier for MLPRegressor are
also present in the use of MLPClassifier. Therefore, we proceeded with exhaustive
testing of several models using different numbers of hidden layers and numbers of
neurons, different activation functions, and solvers. The exact ranges of values are
presented in Table 5.9. To measure the validity and accuracy of the models, which
were generated by MLPClassifier and the rest classifiers, we analyzed the respective
confusion matrix and the accuracy value of each model, along with the classification
report that is created upon testing the model. In statistical classification and
machine learning, a confusion matrix supports the visualization of a supervised
learning algorithm’s performance, by showing the instances in a predicted class in
each row of the matrix and the instances in an actual class in each column of the
matrix (or vice versa). The confusion matrix can show how many instances were
mis-classified for each class. Accuracy is another significant metric for evaluating
classification models, which, in general, can be considered as the amount of
predictions that the examined model identified correctly. More specifically, accuracy
could be defined through the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 / 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)
(5.5)

We could explain the concept of accuracy in classification problems with the help of
some simple but really useful terms such as True and False Positives and True and
False Negatives. A True Positive (TP) is an instance that exists in an actual class of
our dataset and has also been correctly predicted by our examined model. A True
Negative (TN) is an instance that does not exist in the actual class of our dataset
and here again, it is also correctly predicted by our examined model. A False Positive
(FP) is an instance that does not exist in the class, but our model has predicted it
incorrectly, while a False Negative (FN) refers to an instance that exists in a class
of the examined dataset, however, it is incorrectly predicted (i.e that it does not

exist). As a fraction, which includes TP, TN, FP and FN amounts, accuracy could
be expressed as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (5.6)

However, it would not be safe to consider that the confusion matrix and accuracy
value can stand alone as proof of the validity and good performance of the examined
models, thus we proceeded with further analysis of the generated classification reports.
A classification report includes the precision and recall values and the F1 score and
support scores of a classification model. Comparing to a plain accuracy value, we
could say that the classification report offers a deeper understanding of the classifier’s
behavior and can also help select the most effective model for the examined dataset
(for instance, the model with the “strongest” values of classification metrics). Before
presenting the results of our models in this section, we are including a brief description
of the metrics we used to compare our results. The precision value is representative
of the classifier’s ability to avoid marking a negative instance as positive. For each
class of a given dataset, the precision is defined as the ratio of TPs to the sum of TPs
and FPs, as shown below:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) (5.7)

Moving on, the recall value depicts the classifier’s ability to find all positive instances.
For each class of the examined dataset, recall is calculated by the ratio of TPs to the
sum of TPs and FNs, as shown below:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁) (5.8)

Furthermore, F1 score is the harmonic mean of precision and recall, with its best
value reaching 1 (i.e., perfect precision and recall) and its worst at 0. Although
F1 cannot be used alone to describe the accuracy of a classification model, it can
certainly be a useful tool while comparing several models. Last but not least, the
support value stands for the number of actual instances of each class in the examined
dataset. This value provides us with a clear picture of the “balance” in our dataset,
meaning how balanced the separation of the instances among the classes of our dataset
is. Unbalanced training data may result in weaknesses in the reported scores of
the classifier, which would result to the need for stratified sampling or even, re-
balancing [42].

Proceeding with the classification models for the primal and dual Simplex
algorithms, we are including detailed examples of our comparative analysis to select
the most efficient models for the examined dataset. The selected model for the
primal simplex algorithm uses tanh activation function, lbfgs solver, and 2 hidden
layers of 100 neurons each. Similarly, the selected model for the dual simplex
algorithm uses lbfgs solver and 2 hidden layers of 100 neurons each, with the only
exception being the activation function, which is now relu instead of tanh. The
execution time of primal and dual simplex algorithms has been separated in 4
classes, which are defined as shown in Table 5.13.

Table 5.13: Classes of the primal and dual simplex algorithms execution time (in
seconds)

Class Primal Dual
0 0 < time < 0.1 0 < time < 0.1
1 0.1 ≤ time < 0.5 0.1 ≤ time < 1
2 0.5 ≤ time < 4 1 ≤ time < 10
3 4 ≤ time 10 ≤ time

Class 0 represents LPs that are easy to solve, with the time needed for their
solution being less than 0.1 seconds, for both algorithms. Class 1 consists of LPs that
are relatively easy to solve, with the execution time falling in a range of 0.1 − 0.5
and 0.1 − 1 seconds, for primal and dual simplex algorithms, respectively. In the
same concept, Class 2 stands for the LPs that seem to require more time to solve
(i.e., execution time for primal and dual simplex reported in ranges of 0.5 − 4 and
1− 10 seconds, respectively). Finally, Class 3 consists of LPs that can be considered
rather difficult and time-consuming, with the relevant execution time exceeding 4
and 10 seconds for primal and dual simplex algorithms, respectively. The classes
were formulated after extensive sampling of the given dataset. We also experimented
with different number of classes. The generated classification model for the execution
time of the primal simplex algorithm reaches an accuracy value of 0.83, while the
generated classification model for the execution time of the dual simplex algorithm
has an accuracy value of 0.84.

The respective confusion matrices are available in Tables 5.14 and 5.15, while the
classification reports in Table 5.16. It is shown that the model for the primal simplex
algorithm mis-classifies only 2 instances in Class 0, 3 instances in Class 1 and Class
2, while 7 instances are mis-classified in Class 3. The model for the dual simplex
algorithm classifies all 33 instances correctly in Class 0, mis-classifies 4 instances in
Class 1 and 6 instances in Class 2, while Class 3 turns out to be the most challenging
one with 4 instances mis-classified out of a total of 11 instances. The precision, recall,
and F1 scores for each examined class are quite satisfying, with the average scores
confirming the accuracy of the generated models.

These results were extracted after extensive testing with several combinations
of activation functions, solvers, number of hidden layers and neurons, and different
classification algorithms (e.g., KNeighborsClassifier). The following figures include a
graphical representation of examples from various tests which were performed and
used for comparative analysis, before we reach the final models of this study. As
shown, although we have an accuracy score of 0.88 in Figure 5-13, the respective model
is not selected eventually. The reason for this is that the rest of its characteristics
(precision, recall, F1 score) indicate a unsuitable model for our dataset, i.e. precision
and F1 value are ill-defined and thus, they are set to 0.0 in labels with no predicted
samples.

Table 5.14: Confusion matrix for the primal simplex algorithm execution time

Actual Class
0 1 2 3

0 22 2 0 0

Predicted Class 1 2 21 0 1
2 0 0 20 3
3 0 0 7 11

Table 5.15: Confusion matrix for the dual simplex algorithm execution time

Actual Class
0 1 2 3

0 33 0 0 0

Predicted Class 1 4 20 0 0
2 0 3 15 3
3 0 2 2 7

Table 5.16: Classification reports for the primal and dual simplex algorithms
execution time

Class (Primal) Precision Recall F1 Support
0 0.92 0.92 0.92 24
1 0.91 0.88 0.89 24
2 0.74 0.87 0.80 23
3 0.73 0.61 0.67 18

avg/total 0.83 0.83 0.83 89

Class (Dual) Precision Recall F1 Support
0 0.89 1.00 0.94 33
1 0.80 0.83 0.82 24
2 0.88 0.71 0.79 21
3 0.70 0.64 0.67 11

avg/total 0.84 0.84 0.84 89

Figure 5-10: Classification model for primal method - Tuning the number of hidden layers and neurons (tanh activation function,
lbfgs solver)

Figure 5-11: Classification model for primal method - Tuning the activation function
and solver (2 hidden layers, 100 neurons each)

Figure 5-12: Classification model for primal method - Testing different classification
algorithms (1 hidden layer, tanh activation function, lbfgs solver)

Figure 5-13: Classification model for dual method - Tuning the number of hidden layers and neurons (relu activation function,
lbfgs solver)

Figure 5-14: Classification model for dual method - Tuning the activation function
and solver (2 hidden layers, 100 neurons each)

Figure 5-15: Classification model for dual method - Testing different classification
algorithms

Chapter 6

Conclusions

In the final chapter of this thesis, we are summarizing our findings and providing
specific suggestions for future work and additional research. As discussed, our main
area of interest has been the computational complexity of four of the most
commonly used Linear Programming Optimization algorithms; the Exterior Point
Simplex algorithm (EPSA), the Interior Point Method and the Primal and Dual
Simplex algorithms. For the analysis of the last three algorithms, we utilized the
implementations supported by IBM CPLEX [9]. Our purpose has been the creation
of representative statistical models, capable of predicting the computational
performance of the examined algorithms for the solution of Linear Programming
(LP) problems.

The predictive model for the computational performance of Exterior Point
Simplex algorithm (EPSA) was created through extensive regression analysis and
was distinguished in two specific models, based on the examined datasets; a) the
randomly generated LP problems and b) the specific benchmark problems from
netlib, kennington, Mészáros and Mittelman LP problem libraries. It is of major
significance that the regression model for the randomly generated LP problems,
proves the linear relation between the number of iterations that EPSA needs to
perform for the solution of a given LP problem with specific LP problem attributes;
namely the number of constraints (m) and variables (n), the problem sparsity and
the condition of matrix A (cond(A)). Another important conclusion is that, for the
examined benchmark problems, a respective predictive model, being statistically
significant and representative of the examined dataset, was not possible to be
created.

In our analysis for EPSA, the generated Normal Probability Plot of iterations
standardized residuals, revealed a slight deviation from the diagonal line. If the
residuals had been distributed normally, the values would fall exactly on the
diagonal line. This deviation indicated a positive skewness of the distribution.
Positive skewness was confirmed by our validation process and the respective
histogram chart, where the right side tail of the curve was longer than the left side
tail and the mean was greater than the mode. Skewness could be considered as the
asymmetry of a distribution and can be quantified to measure the extent to which
this distribution is distorted and how much it differs from a normal distribution.

103

The fact that there are many instances in the validation dataset, for which the
number of iterations is relatively small, while in increasingly few instances the
number of iterations increase significantly, reveals the existence of a specific pattern
of characteristics in these extreme instances, which may eventually affect the
practical performance of EPSA. This finding could be subject to further analysis in
the future.

Apart from the above, though, that there are many aspects, which can be
improved and offer a great opportunity for future study. Applying the above
methodology to non-feasible algorithms as well, could provide some useful results
about their practical performance in real-world applications. Furthermore, it was
noticed that our algorithm tends to have a slightly worse than its usual good
performance, when it comes to extreme conditions, as already explained. Therefore,
it remains to be examined how can we improve this aspect of EPSA, in order to
take advantage of its capabilities and achieve the best possible outcome for any LP
problem given.

In the second part of our study, we focused on the problem of algorithm
selection, as this concerns the majority of researchers using modern linear
programming solvers. Most of these solvers support a heuristic procedure to select
the most appropriate algorithm, based on the characteristic of the input linear
programming problem. Through our analysis, we experimented with the use of a
neural network for predicting the execution time of CPLEX’s Interior Point
Method (IPM). Our dataset consisted of a large pool of benchmark problems from
the netlib, kennington, Mészáros and Mittelman LP problem libraries. The
generated results showed that our model achieves an 𝑅2 value of 78% for the
training set and 72% for the test set. Taking into account the variability in the
features of the examined benchmark LP problems and the metrics used for the
comparison of the generated models, the current model proved to have a good fit on
the data and thus, can be used for further prediction of the algorithm’s efficiency.

Encouraged by the results for IPM, we extended our work by examining the use
of neural networks for predicting the execution time of CPLEX’s Primal and Dual
Simplex algorithms. As explained, the results we received from the regression
process were not satisfying enough to support a prediction model for the execution
time of each algorithm. Thus, we further experimented with a classification
approach, which led to meaningful results about the generated models. Through
classification, we managed to form a predictive model about the class under which a
specific problem can be classified. This piece of information alone provided us with
sufficient insight about the time we will need for the solution of the problem,
selecting one of the two examined Simplex methods. The accuracy of the our model
for Primal Simplex reached a value of 0.83, while for Dual Simplex, 0.84. Moreover,
acting as the main driving tool for our analysis, AI algorithms have been utilized to
tackle one of the major questions in research community, when it comes to
algorithm selection for the solution of linear programming problems, using one of
the most widely used mathematical solvers. Thus, we believe that this study makes
a significant contribution, outlining the importance and necessity of AI algorithms
in solver tuning field.

In future work, it would be crucial to continue building prediction models for
more LP Optimization algorithms, supported by widely used mathematical solvers,
using supervised learning methods. The models could be formed after a extensive
study of several model parameters (i.e. number of hidden layers, number of neurons,
activation functions, scaling and normalization techniques), similarly to the process
followed for our analysis. Even if this effort seems big, building accurate models for
the prediction of the execution of LP Optimization algorithms will enable any linear
programming solver to select the most efficient algorithm for a given LP problem.
This step will open new ways for remarkable time and cost savings in solving linear
programming problems.

Bibliography

[1] Netlib Repository. Netlib LP problems. http://www.netlib.org/lp/data. Online;
Last accessed.

[2] Netlib Repository. Kennington LP problems.
http://www.netlib.org/lp/data/kennington. Online; Last accessed.

[3] Netlib Repository. infeasible section of Netlib LP problems.
http://www.netlib.org/lp/infeas. Online; Last accessed.

[4] Mészáros C. Linear Programming Test Problems. Miscellaneous section. ℎ𝑡𝑡𝑝 :
//𝑤𝑤𝑤.𝑠𝑧𝑡𝑎𝑘𝑖.ℎ𝑢/*𝑚𝑒𝑠𝑧𝑎𝑟𝑜𝑠/𝑝𝑢𝑏𝑙𝑖𝑐𝑓 𝑡𝑝/𝑙𝑝𝑡𝑒𝑠𝑡𝑠𝑒𝑡/𝑚𝑖𝑠𝑐. Online; Last accessed
on 05 Oct 2016.

[5] Mészáros C. Linear Programming Test Problems. Problematic section. ℎ𝑡𝑡𝑝 :
//𝑤𝑤𝑤.𝑠𝑧𝑡𝑎𝑘𝑖.ℎ𝑢/ * 𝑚𝑒𝑠𝑧𝑎𝑟𝑜𝑠/𝑝𝑢𝑏𝑙𝑖𝑐𝑓 𝑡𝑝/𝑙𝑝𝑡𝑒𝑠𝑡𝑠𝑒𝑡/𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑎𝑡𝑖𝑐. Online; Last
accessed on 05 Oct 2016.

[6] Mészáros C. Linear Programming Test Problems. Stochlp section. ℎ𝑡𝑡𝑝 :
//𝑤𝑤𝑤.𝑠𝑧𝑡𝑎𝑘𝑖.ℎ𝑢/ * 𝑚𝑒𝑠𝑧𝑎𝑟𝑜𝑠/𝑝𝑢𝑏𝑙𝑖𝑐𝑓 𝑡𝑝/𝑙𝑝𝑡𝑒𝑠𝑡𝑠𝑒𝑡/𝑠𝑡𝑜𝑐ℎ𝑙𝑝. Online; Last
accessed on 05 Oct 2016.

[7] Mittelman H. Mittelman LP problems. ℎ𝑡𝑡𝑝 : //𝑝𝑙𝑎𝑡𝑜.𝑎𝑠𝑢.𝑒𝑑𝑢/𝑓𝑡𝑝/𝑙𝑝𝑡𝑒𝑠𝑡𝑠𝑒𝑡.
Online; Last accessed on 05 Oct 2016.

[8] Netlib Benchmark LP problems. http://www.netlib.org/benchmark. Online;
Last accessed on 05 Oct 2016.

[9] IBM ILOG CPLEX: Cplex 12.6.0 user manual.
http://www-01.ibm.com/support/knowledgecenter/SSSA5P
_12.6.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html?lang=en
(2017). Online.

[10] Mathworks MATLAB. http://www.mathworks.com/products/matlab. Online;
Last accessed on 05 Oct 2016.

[11] Minitab. http://www.minitab.com/en-us/academic. Online. Last accessed on
05 Oct 2016.

107

[12] NIST, National Institute of Standards and Technology. http://www.nist.gov.
Online. Last accessed on 5 Oct 2016.

[13] C. Aggarwal. Neural Networks and Deep Learning. A Textbook. Springer
International Publishing, 2018.

[14] M. Amaris, R.Y. de Camargo, M. Dyab, A. Goldman and D. Trystram. A
comparison of GPU execution time prediction using machine learning and
analytical modeling. In Proceedings of the 2016 IEEE 15th International
Symposium on Network Computing and Applications (NCA), Cambridge, MA,
USA, 31 October–2 November, 2016; pp. 326–333.

[15] R. Amarasingham, P. Patel, K. Toto, L. Nelson, T. Swanson, B. Moore, B. Xie,
S. Zhang, K. Alvarez, Y. Ma, M. Drazner, U. Kollipara, and E. Halm. Allocating
scarce resources in real-time to reduce heart failure readmissions: A prospective,
controlled study. BMJ Quality and Safety, 22(12):998–1005, 2013.

[16] C. Audet and D. Orban. Finding optimal algorithmic parameters using
derivative-free optimization. SIAM Journal on Optimization, 17(3):642–664,
2006.

[17] L. Barrault, O. Bojar, M. Costa-jussà, C. Federmann, M. Fishel, Y. Graham,
B. Haddow, M. Huck, P. Koehn, S. Malmasi, and C. Monz. Findings of the
2019 conference on machine translation (wmt19). In Proceedings of the Fourth
Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1).
Florence, Italy: Association for Computational Linguistics, pages 1–61, 2019.

[18] M. Barry, H. Abgottspon, and R. Schumann. Solver tuning and model
configuration. In Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), pages 141–154, Cham, 2018. Springer.

[19] M. Baz and B. Hunsaker. Automated tuning of optimization software
parameters. technical report. Technical report, Department of Industrial
Engineering, University of Pittsburgh, Pittsburgh, PA, 2007.

[20] M. Baz, B. Hunsaker, and O. Prokopyev. How much do we "pay" for using
default parameters? Comput. Optim. Appl., 48:91–108, 2011.

[21] E. Berenguer and L. Smith. The expected number of extreme points of a random
linear program. Mathematical Programming, 35:129–134, 1986.

[22] K. Borgwardt. The average number of pivot steps required by the simplex-
method is polynomial. Mathematical Methods of Operations Research,
26(1):157–177, 1982.

[23] K. Borgwardt. Some distribution-independent results about the asymptotic
order of the average number of pivot steps of the simplex method. Mathematics
of Operations Research, 7(3):441–462, 1982.

[24] L. Bottaci, P. Drew, J. Hartley, M. Hadfield, R. Farouk, P. Lee, I. Macintyre,
G. Duthie, and J. Monson. Artificial neural networks applied to outcome
prediction for colorectal cancer patients in separate institutions. The Lancet,
350(9076):469–472, 1997.

[25] P. Brazdil, C.G. Carrier, C. Soares, and R. Vilalta. Metalearning: Applications
to Data Mining; Springer-Verlag: Berlin Heidelberg, 2009.

[26] O. Bretscher. Linear Algebra With Applications (3rd ed.). Upper Saddle River,
NJ: Prentice Hall, 1995.

[27] R. Bronson and G. Naadimuthu. Schaum’s Outline of Operations Research 2nd
Edition. Schaum’s Outlines. McGraw-Hill Education; 2 edition, second edition,
22 July 1997. Greek edition by Pr. N. Samaras.

[28] C. McGeoch C, P. Sanders, R. Fleischer, PR. Cohen PR, and D. Precup. Using
finite experiments to study asymptotic performance, volume 2547 of Fleischer
R., Moret B., Schmidt E.M. (eds) Experimental Algorithmics. Lecture Notes in
Computer Science, pages 93–126. Springer, Berlin, Heidelberg, 2002.

[29] J. Castle, J. Doornik, and D. Hendry. Evaluating automatic model selection.
Journal of Time Series Econometrics, 3(1):1–33, 2011.

[30] W. Chen, Z. Shao, K. Wang, X. Chen, and L. Biegler. Random sampling-based
automatic parameter tuning for nonlinear programming solvers. Industrial &
Engineering Chemistry Research, 50(7):3907–3918, 2011.

[31] A-L. Cholesky. Note Sur Une Méthode de Résolution des équations Normales
Provenant de L’Application de la MéThode des Moindres Carrés a un Système
D’équations Linéaires en Nombre Inférieur a Celui des Inconnues. Application
de la Méthode a la Résolution d’un Système Defini d’équations linéaires.
Géodésique 2, pp. 67–77, 1924.

[32] D. C. Cireşan, U. Meier, and J. Schmidhuber. Transfer learning for latin and
chinese characters with deep neural networks. In The 2012 International Joint
Conference on Neural Networks (IJCNN), 2012.

[33] D. Cook. Detection of influential observations in linear regression.
Technometrics. American Statistical Association, 19(1):15–18, 1977.

[34] D. Cook. Influential observations in linear regression. Journal of the American
Statistical Association. American Statistical Association, 74(365):169–174,
1979.

[35] G. Dantzig. Linear programming and extensions. 1963.

[36] G. B. Dantzig. Programming in a linear structure. technical report. Technical
report, Comptroller, US Air Force, Washington, DC., 1948.

[37] G. B. Dantzig. Programming of interdependent activities: Ii, mathematical
model. pages 200–211, 1949.

[38] D. den Hertog. Interior Point Approach to Linear, Quadratic and Convex
Programming: Algorithms and Complexity, volume 277 of Mathematics and
Its Applications. Springer Netherlands, 1994.

[39] N. Draper and H. Smith. Applied regression analysis, 3rd edn. Wiley Series in
Probability and Statistics. Wiley, New York, 1998.

[40] J. Durbin and G. Watson. Testing for serial correlation in least squares
regression. I. Biometrika, 37(3,4):409–428, 1950.

[41] J. Erickson. Lecture Notes on Linear Programming
(https://courses.engr.illinois.edu/cs498dl1/sp2015/notes/27-simplex.pdf) -
Online; Last accessed.

[42] T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

[43] S. Finlay. Predictive Analytics, Data Mining and Big Data. Myths,
Misconceptions and Methods. Business in the Digital Economy. Palgrave
Macmillan UK, 2014.

[44] R. A. Fisher. On the interpretation of 𝜒2 from contingency tables and the
calculation of p. Journal of the Royal Statistical Society, 85(1):87–94, 1922.

[45] R. A. Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, 222:309–368, 1922.

[46] J-B. J. Fourier. Histoire de l’academie royale des sciences de l’institut de france.
Analyse des travaux de I’Acadamie Royale des Sciences pendant I’annee 1824
Partie mathematique, 7:xlvii–lv, 1827.

[47] A. Franzin, L. Pérez Cáceres, and T. Stützle. Effect of transformations
of numerical parameters in automatic algorithm configuration. Optim Lett,
12:1741–1753, 2018.

[48] J. Gondzio. Interior point methods 25 years later. European Journal of
Operational Research, 218(3):587–601, 2012.

[49] J. Gondzio and A. Grothey. Direct solution of linear systems of size 109 arising
in optimization with interior point methods. In N. Meyer R. Wyrzykowski,
J. Dongarra and J. Wasniewski, editors, Parallel Processing and Applied
Mathematics, number 3911 in Lecture Notes in Computer Science, pages 513–
525, Berlin, 2006. Springer-Verlag.

[50] J. A. J. Hall. Towards a practical parallelisation of the simplex method.
Computational Management Science, 7:139–170, 2010.

[51] J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex
method and how to exploit it. Computational Optimization and Applications,
32:259–283, 2005.

[52] S. Haykin. Neural Networks and Learning Machines. Pearson; 3 edition, 2011.

[53] J. K. Ho and R. P. Sundarraj. A timing model for the revised simplex method.
Operations Research Letters, 13:67–73, 1993.

[54] D. Hosmer, B. Jovanovic, and S. Lemeshow. Best subsets logistic regression.
Biometrics, 45(4):1265–1270, 1989.

[55] F. Hutter, H. Hoos, and K. Leyton-Brown. Automated configuration of
mixed integer programming solvers. In International Conference on Integration
of Artificial Intelligence (AI) and Operations Research (OR) Techniques in
Constraint Programming, pages 186–202, Cham, 2010. Springer.

[56] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

[57] R. Hyndman and A. Koehler. Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679–688, 2006.

[58] A. K. Jain and B. Chandrasekaran. Dimensionality and sample size
considerations in pattern recognition practice. Handb. Stat, 39(2):835–855,
1982.

[59] B. Jain and B. Nag. Performance evaluation of neural network decision models.
Journal of Management Information Systems, 14(2):201–216, 1997.

[60] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning. a survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[61] L. V. Kantorovich. Mathematical methods of organising and planning
production. 1939. Translated in Management Science, vol.6, no.4, 366-422,
1960.

[62] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[63] T. Kavzoglu and P. M. Mather. The use of backpropagating artificial neural
networks in land cover classification. Int. J. Rem. Sens., 24(23):4907–4983,
2003.

[64] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR, 244:1093–1096, 1979. Translated in Soviet Mathematics
Doklady 20, 191-194, 1979.

[65] V. Klee and G. J. Minty. How good is the simplex algorithm. Academic Press,
New York and London, 1972.

[66] S. Krishnaswamy, S. Loke, and A. Zaslavsky. Estimating computation times of
data-intensive applications. IEEE Distributed Systems Online, 5(4), 2004.

[67] M. Kutner, J. Neter, C. Nachtsheim, and W. Wasserman. Applied linear
statistical models, 5th edn. McGraw-HillfIrwin series Operations and decision
sciences. McGraw-Hill, New York, 2004.

[68] J. Liu, N. Ploskas, and N. Sahinidis. Tuning baron using derivative-free
optimization algorithms. Journal of Global Optimization, 74(4):611–637, 2019.

[69] A. Makam, O. Nguyen, B. Moore, Y. Ma, and R. Amarasingham. Identifying
patients with diabetes and the earliest date of diagnosis in real time: an
electronic health record case-finding algorithm. BMC Medical Informatics and
Decision Making, 13(81), 2013.

[70] I. Maros and M. Khaliq. Advances in design and implementation of optimization
software. technical report. Technical report, Imperial College, London, 1999.

[71] I. Maros and M. H. Khaliq. Advances in design and implementation of
optimization software. European Journal of Operational Research, 140(2):322–
337, 1999.

[72] A. Matsunaga and J.A. Fortes. On the use of machine learning to predict the
time and resources consumed by applications. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
Melbourne, VIC, Australia, 17–20 May, 2010; pp. 495–504.

[73] W. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[74] N. Megiddo. On the complexity of linear programming, pages 225–268.
T. Bewley (Ed.), Advances in Economic Theory: Fifth World Congress
(Econometric Society Monographs). Cambridge: Cambridge University Press,
1987.

[75] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[76] F. Ordó nez and R. Freund. Computational experience and the explanatory
value of condition measures for linear optimization. SIAM Journal on
Optimization, 14(2):307–333, 2003.

[77] K. Paparrizos. An infeasible (exterior point) simplex algorithm for assignment
problems. Mathematical Programming, 51(1):45–54, 1991.

[78] K. Paparrizos. An exterior point simplex algorithm for (general) linear
programming problems. Annals of Operations Research, 46-47(2):497–508, 1993.

[79] K. Paparrizos, N. Samaras, and G. Stephanides G. A method for generating
random optimal linear problems and a comparative computational study. In
Proceedings of the 13th national conference of the Hellenic operational research
society, Piraeus (in Greek), pages 785–794, 2000.

[80] K. Paparrizos, N. Samaras, and G. Stephanides. An efficient simplex
type algorithm for sparse and dense linear programs. European Journal of
Operational Research, 148(2):323–334, 2003.

[81] K. Paparrizos, N. Samaras, and C. Triantafyllidis. A computational study of
exterior point simplex algorithm variations. In Proceedings of 20th Hellenic
Operational Research Society, 2008.

[82] K. Paparrizos, N. Samaras, and K. Tsiplidis. Some results on the finiteness of an
exterior point simplex algorithm. In Proceedings of the 3rd Balkan Conference
on Operations Research, 1995.

[83] K. Pearson. Notes on regression and inheritance in the case of two parents. In
Proceedings of the Royal Society of London, number 58, pages 240–242, 1895.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[85] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. A performance model to
estimate execution time of scientific workflows on the cloud. In Proceedings of
the 2014 9th Workshop on Workflows in Support of Large-Scale Science, New
Orleans, LA, USA, 16–21 November, 2014; pp. 11–19.

[86] N. Ploskas and N. Samaras. Pivoting rules for the revised simplex algorithm.
Yugoslav Journal of Operations Research, 24(3):321–332, 2014.

[87] N. Ploskas and N. Samaras. Linear Programming Using MATLAB®. Springer
Optimization and Its Applications. Springer International Publishing, 2017.

[88] F. Potra and S. J. Wright. Interior-point methods. Journal of Computational
and Applied Mathematics, 124(1-2):281–302, 2000.

[89] R. Priya, B.F. de Souza, A.L. Rossi, and A.C. de Carvalho. Predicting execution
time of machine learning tasks using metalearning. In Proceedings of the 2011
World Congress on Information and Communication Technologies, Mumbai,
India, 11–14 December, 2011; pp. 1193–1198.

[90] C. Rao. Linear statistical inference and its applications, 2nd edn. Wiley Series
in Probability and Statistics. Wiley, New York, 1973.

[91] C. Rao. and J. Rawlings Linear Programming and Model Predictive Control.
Journal of Process Control, 10:283–289, 2000.

[92] S. J. Raudys and A. K. Jain. Small sample size effects in statistical pattern
recognition: recommendations for practitioners. IEEE Trans. Pattern Anal.
Mach. Intell., 13(3):252–264, 1991.

[93] D. Rumelhart and J. McClelland. Parallel Distributed Processing: Explorations
in the Microstructure of Cognition: Foundations. MIT Press, 1987.

[94] D. Rumelhart and J. McClelland. Parallel Distributed Processing: Explorations
in the Microstructure of Cognition: Psychological and Biological Models. MIT
Press, 1987.

[95] N. Samaras. Lecture Notes on Linear and Network Programming
(http://opencourses.uom.gr/courses/efarmosmenhs-plhroforikhs/576-
grammikos-diktyakos-programmatismos/enothtes) - Online; Last accessed.

[96] N. Samaras and A. Sifaleras. A comparative computational study of exterior
point algorithms for the assignment problem. In Proceedings of 19th national
conference of Hellenic Operational Research Society (HELORS), 2007.

[97] N. Samaras, A. Sifaleras, and C. Triantafyllidis. A primal–dual exterior point
algorithm for linear programming problems. Yugoslav Journal of Operations
Research, 19(1):123–132, 2009.

[98] J. Schmidhuber. Learning complex, extended sequences using the principle of
history compression. Neural Computation, 4:234–242, 1992.

[99] J. Schmidhuber. Deep learning. Scholarpedia, 10(11):85–117, 2015.

[100] I. N. Silva, D. H. Spatti, R. A. Flauzino, L. H. Bartocci Liboni, and S. F.
dos Reis Alves. Artificial Neural Networks. A Practical Course. Springer
International Publishing, 2017.

[101] W. Smith. Prediction services for distributed computing. In IEEE International
Parallel and Distributed Processing Symposium, pages 1–10, 2007.

[102] W. Smith, I. Foster, and V. Taylor. Predicting application run times
with historical information. Journal of Parallel and Distributed Computing,
64(9):1007–1016, 2004.

[103] D. Spielman and SH. D. Teng. Smoothed analysis of termination of linear
programming algorithms. Math. Program., Ser. B 97, 375–404, 2003.

[104] D. Spielman and SH. D. Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385–463, 2004.

[105] D. Spielman and SH. D. Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84,
2009.

[106] S. M. Stigler. Gauss and the invention of least squares. Ann. Stat., 9(3):465–474,
1981.

[107] S. M. Stigler. Francis galton’s account of the invention of correlation. Statistical
Science, 4(2):73–79, 1989.

[108] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

[109] J. Sun, G. Sun, S. Zhan, J. Zhang, and Y. Chen. Automated performance
modeling of HPC applications using machine learning. IEEE Trans. Comput.
2020, 69:749–763.

[110] T. Terlaky and S. Zhang. Pivot rules for linear programming: A survey on recent
theoretical developments. Annals of Operations Research, 46(1):203–233, 1993.

[111] M. E. Thomadakis. Implementation and evaluation of primal and dual simplex
methods with different pivot-selection techniques in the lpbench environment,
a research report. Technical report, Texas A & M University, 1994.

[112] C. Triantafyllidis and N. Samaras. Three nearly scaling invariant versions of an
exterior point algorithm for linear programming. Optimization: A Journal of
Mathematical Programming and Operations Research, 64(10):2136–2181, 2015.

[113] D. Tsafrir, Y. Etsion, and D. Feitelson. Backfilling using system-generated
predictions rather than user runtime estimates. IEEE Transactions on Parallel
and Distributed Systems, 18(6):789–803, 2007.

[114] R. J. Vanderbei. Linear Programming: Foundations and Extensions, Fourth
Edition. International Series in Operations Research and Management Science.
Springer US, fourth edition, 2014.

[115] I. Vlahavas, P . Kefalas, N . Bassiliades, F . Kokkoras, and . Sakellariou.
Artificial Intelligence - 3rd edition. University of Macedonia Press, 2011.

[116] J. von Neumann. Zur theorie der gesellschaftsspiele. Math. Ann., 100:295–320,
1928.

[117] J. von Neumann and O. Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[118] J. Vanschoren. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548.

[119] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In
Drenick R.F., Kozin F. (eds) System Modeling and Optimization. Lecture Notes
in Control and Information Sciences, vol 38. Springer, Berlin, Heidelberg, 1982.

[120] D.H. Wolpert and W.G. Macready. No Free Lunch Theorems for Search.
Technical Report; Technical Report SFI-TR-95-02-010; Santa Fe Institute:1399
Hyde Park Road, Santa Fe, NM, 87501, 1995.

[121] S. J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and
Applied Mathematics, 3600 University City Science Center Philadelphia, PA,
United States, 1997.

[122] O. Özaltın, B. Hunsaker, and A. Schaefer. Predicting the solution time of
branch-and-bound algorithms for mixed-integer programs. INFORMS Journal
on Computing, 23(3):392–403, 2011.

