
UNIVERSITY OF MACEDONIA

GRADUATE PROGRAM

DEPARTMENT OF APPLIED INFORMATICS

LATTICE-BASED CRYPTOGRAPHY: PROTOCOLS AND APPLICATIONS

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy

in

Applied Informatics

by

Dimitrios Papachristoudis

Committee in charge:

Retired Professor George Stephanides, Chair

Professor Dimitrios Hristu-Varsakelis

Professor Maria Satratzemi

Thessaloniki, May 2022

Copyright

Dimitrios Papachristoudis, 2022

All rights reserved.

LATTICE-BASED CRYPTOGRAPHY: PROTOCOLS AND APPLICATIONS

Dimitrios Papachristoudis

B.Sc. in Mathematics, University of Ioannina, 2011

M.Sc. in Applied Informatics, University of Macedonia, 2014

Doctoral Dissertation

A dissertation submitted in partial fulfillment for the requirements for the degree of

DOCTOR OF PHILOSOPHY IN APPLIED INFORMATICS

Doctoral Advisor

George Stephanides, Retired Professor

The members of the Committee appointed to examine the dissertation of Dimitrios

Papachristoudis find it satisfactory and recommend that it be accepted 3/5/2022.

George Stephanides, Re-

tired Professor, Chair

Dimitrios Hristu-

Varsakelis, Professor

Maria Satratzemi,

Professor

. .

Foteini Baldimtsi, Assis-

tant Professor

Ioannis Stamatiou, Pro-

fessor

Ioannis Mavridis,

Professor

. .

Sofia Petridou, Assistant

Professor

. .

Dimitrios Papachristoudis

. .

University of Macedonia, Thessaloniki

iii

To my mother Natalie and my father George.

1

Contents

1 Introduction 1

1.1 Hard Computational Problems and Post-Quantum Cryptography 3

1.2 Lattice-Based Cryptography . 5

1.3 Summary of Results . 6

1.4 Conclusion and Open Research Questions 8

2 Definitions, Preliminaries and Basic Tools 9

2.1 General Notation . 9

2.2 Algorithms and Asymptotic Notation 10

2.3 Information Theory . 11

2.3.1 Probability Distributions . 11

2.3.2 Conditional Min-Entropy . 12

2.4 Computational Complexity Theory . 12

2.5 Lattice Theory . 16

2.5.1 Cryptographic Lattices . 16

2.5.2 Lattices and Discrete Gaussians 17

2.5.3 Hardness Assumptions . 18

2.5.4 The Short Integer Solution Problem 23

2.5.5 The Learning With Errors Problem 26

2.5.6 Ideal Lattices . 29

2.5.7 Rejection Sampling . 35

2.5.8 Lattice Trapdoors . 37

2.6 Cryptographic Primitives and Tools . 39

2.6.1 Hash Functions and the Random Oracle Model 39

2.6.2 The General Forking Lemma . 41

2.6.3 Merkle Trees . 42

2.6.4 Commitment Schemes . 43

2.6.5 Zero-Knowledge Proofs of Knowledge 44

2.6.6 Homomorphic Encryption . 45

2.6.7 Digital Signature Schemes . 46

3 An Overview of Lattice-Based Blind Signature Schemes and their Feasi-

bility 48

3.1 Introduction . 48

3.1.1 Organization . 50

3

3.2 Preliminaries . 51

3.2.1 Signed Permutations . 51

3.2.2 Blind Signature Schemes . 51

3.3 Overview of Flawed Lattice-Based BSS 55

3.3.1 Rückert’s Blind Signature Scheme 55

3.3.2 BLAZE . 59

3.3.3 BLAZE+ . 62

3.3.4 Ermann’s Blind Signature Scheme 68

3.3.5 The Forking Lemma and Other Flawed Constructions 70

3.4 Overview of Provably Secure Lattice-Based BSS 71

3.4.1 Hauck et al.’s Blind Signature Scheme 71

3.4.2 Agrawal et al.’s Blind Signature Scheme 75

3.5 Relations to Impossibility Results . 80

3.6 Comparison With Other Post-Quantum Proposals 81

3.7 Conclusions, Open Problems and Future Work 83

4 Leakage–Resilient Partially–Blind Signatures from Lattices 84

4.1 Introduction . 84

4.1.1 Contributions and Related Work 86

4.1.2 Our technique and main challenges 87

4.1.3 Relationship between the present work and impossibility results

for blind signature schemes . 89

4.1.4 Organization . 90

4.2 Preliminaries . 91

4.2.1 Syntax and Security Model of Leakage–Resilient PBSS 91

4.3 Extensions . 95

4.3.1 Dishonest-key Partial Blindness 96

4.3.2 Selective-failure Partial Blindness 96

4.3.3 Honest-user Unforgeability . 99

4.4 A PBSS from Ring-SIS . 105

4.4.1 Our Construction . 106

4.4.2 Protocol Description . 107

4.4.3 Analysis and Security . 112

4.5 Additional Security Properties . 123

4.5.1 Dishonest-key Partial Blindness 123

4.5.2 Selective-failure Partial Blindness 123

4.5.3 Honest-user Unforgeability . 123

4.6 Conclusions, Open Problems and Future Work 124

5 A Framework for Blind Signatures with Revocable Sessions 125

5.1 Introduction . 125

5.1.1 Technical Overview . 128

5.1.2 Related work, problems and limitations 131

5.1.3 Relation to impossibility results for blind signatures. 132

5.1.4 Organization . 133

4

5.2 Preliminaries . 133

5.2.1 Linear Hash Function Families with Correctness Error 133

5.2.2 Blind Signature Schemes with Revocable Sessions 136

5.3 Blind Signatures from Linear Hash Functions with Noticeable Correct-

ness Error . 142

5.3.1 Our Construction . 142

5.3.2 Protocol Description . 145

5.3.3 Analysis and Security . 146

5.4 A Concrete Instantiation Based on R − SIS 170

5.5 Conclusions, Open Problems and Future Work 175

6 Proxy Signatures from Ideal Lattices–Secure in All Rings 176

6.1 Introduction . 176

6.1.1 Contributions and Related work. 177

6.1.2 Organization . 177

6.2 Preliminaries . 178

6.2.1 Lattice Problem Variants . 178

6.2.2 Syntax and Security Model . 180

6.3 A Proxy Signature from Ideal Lattices - Secure in All Rings 181

6.3.1 Our Construction . 181

6.3.2 Analysis and Security . 184

6.4 Conclusions, Open Problems and Future Work 189

5

List of Figures

2.1 Brief description of Impagliazzo’s five worlds and their implications [101]. 13

2.2 Example of the 2-dimensional lattice spanned by vectors b1 = [1, 0]
T

and

b2 = [1/2, 1/2]
T
. The fundamental parallelogram is shown in grey. . . . 18

2.3 Complexity of the Shortest Vector Problem (constants are omitted). . . . 21

2.4 Difference between worst-case hardness and average-case hardness (hard

instances are denoted by a star). 22

3.1 Security game for blindness. 54

3.2 Security game for (honest-user) one-more unforgeability of BSS. 54

4.1 Security game for partial blindness. 93

4.2 Security game for unforgeability of PBSS. 94

4.3 Security game for leakage resilience of PBSS. 96

4.4 Security game for selective-failure partial blindness. 97

4.5 Security game for multi-execution selective-failure partial blindness. . . 99

4.6 Schematic diagram of forgery in the presence of honest users. All queries

shown in the figure correspond to a particular info. 101

4.7 Security game for honest-user unforgeability of PBSS. 101

4.8 The five-step, four-move signature issuing protocol (steps shown in boxed

numbers) for the proposed PBSS. All parameter and set definitions are

given in Table 4.1. For brevity, we omit any verifications performed by

the two parties w.r.t. the domains from which the protocol messages

come from. 109

6

5.1 Interaction flow between signer BSRS.S and user BSRS.U. 138

6.1 Schematic representation of the sequence of reductions culminating in

our scheme’s unforgeability. 188

7

List of Tables

2.1 Asymptotic Notation. 11

2.2 Description of algorithms HashTree,BuildAuth, and RootCalc associated

to collision-resistant hash function G. 43

3.1 Parameter definitions for Rückert’s lattice-based blind signature scheme. 56

3.2 Parameter definitions for the BLAZE blind signature scheme. 60

3.3 Parameter definitions for the BLAZE+ blind signature scheme(s). 63

3.4 Parameter definitions for the Ermann et al. blind signature scheme. . . 68

3.5 Parameter definitions for the Hauck et al. blind signature scheme. . . . 72

3.6 Summary of all lattice-based blind signature schemes in the literature

and their adherence to impossibility results. 81

3.7 Summary of post-quantum blind signature schemes in the literature.

We denote unspecified sizes with a dash. 82

4.1 Scheme parameters for main security parameter n. 106

8

4.2 Sample parameter instantiations for our PBSS. Parameters are set so

that the collision problem is hard to solve [122, 162]. The parameters in

the first column use the mildest hardness assumption, the set of the sec-

ond column aims to reduce the number of required repetitions, and the

third set aims to decrease the signature size, while keeping the number

of required repetitions small (other trade-offs are also possible). For the

second and third column, the optimisation goal is denoted in bold face.

In all cases, the Hermite factor is taken to be 1.007, and the estimated

security level is 92 bits [81, 135]. To decrease the expected number of

repetitions (e5/φ
as we prove in Theorem 4.4.3), we need to increase the

value of the parameter φ, thus sampling our masking vectors through-

out the protocol from larger sets. Finally, as we discuss in Section 5.2,

φ must not be a multiple of 3 (in case dε = 1). 111

5.1 Parameter definitions for the lattice-based LHF. 171

6.1 Scheme parameters for main security parameter n. 182

9

List of Algorithms

1 Rejection_Sample(ẑ, ĉ, φ,T ; ρ) . 38

2 TrapGen(q, σ,A′ ∈ Zn×m̄
q ,H ∈ Zn×n

q) . 39

3 PreSample(A ∈ Zm×n
q ,TA ∈ Z

m̄×nl
q ,H ∈ Zn×n

q ,u ∈ Zn
q) 39

4 FA(x) . 41

5 ProxyKeyGen((s(D)1 , . . . , s
(D)
k), (a

(D)
1 , . . . , a

(D)
k),W) 183

6 ProxySign(µ,W,WD→P) . 183

7 HybridSign(µ, (a1, . . . , ak, t)) . 185

10

Prologue – Acknowledgements

I am deeply grateful to my supervisor and mentor Professor George Stephanides for

his guidance, support, and patience during my years as his Ph.D. student. Under his

tutelage I had the privilege of learning a lot about Cryptography and Mathematics in

general, and to develop my teaching style while serving as his T.A. for two consecutive

years. I highly appreciate the fact that he entrusted me with researching an ambitious,

demanding, and cutting-edge topic such as lattice-based Cryptography, because of the

great promise it holds for the immediate decade(s).

I am also very grateful to my dissertation’s co-supervisor, Professor Dimitrios

Hristu-Varsakelis for his cooperation, steady support and overall positive attitude

during my years as a Ph.D. student, as well as Professor Maria Satratzemi for partici-

pating in the committee in charge.

I am indebted to Professor Foteini Baldimtsi for her guidance and support dur-

ing my Ph.D.; it is through her motivation and deep knowledge of the landscape of

Applied Cryptography that I was able to kick-start and advance my research. I am

also very grateful to her for giving me the opportunity to conduct a research visit to

the Department of Computer Science of George Mason University (GMU), and to give

a seminar talk about the construction presented in Chapter 4 at the department’s

Crypto Group. While visiting, I also had the distinct honour of personally meeting

Professors Jonathan Katz and Dov Gordon, to both of whom I am very thankful for

their very encouraging feedback on my work.

I am also extremely thankful to Dr. Julian Loss for his guidance, patience, and

encouragement. Working with him on the construction of Chapter 5 for the past 1.5

year has been a profoundly didactical and eye-opening experience for me.

I would also like to thank Professor Ioannis Stamatiou for being a good role model

for me during my years as an undergraduate student at the Department of Mathe-

matics of the University of Ioannina. It is thanks to his influence and encouragement

that I decided on pursuing a Ph.D. from early on during my studies.

I have to certainly acknowledge my friends in the department and outside of it with

11

whom I have spent many enjoyable non-working hours. It gives me great pleasure

to thank you all in alphabetical order. Thank you, Alexandros, Antonis, Arkadios,

Charis, Dimitris, Dimosthenis, Dionysis, Efi, George, Giannis, Ioanna, Konstantinos,

Kostas, Lysander, Panagiotis, Sakis, Tasos, Thanasis, and last but not least Thomas

and Vangelis. I would also like to give special thanks to Georgios Sidiropoulos for his

steadfast support in my effort and to my teacher Athanasios Valavanis for helping me

to appreciate the beauty of Mathematics.

Finally, the biggest thank you goes to my family for always being there for me,

throughout all my years as a student. It is thanks to their unwavering support and

numerous sacrifices that this effort comes to a close.

Chapter 2 sets the required theoretical and notational groundwork that is required

for presenting this work.

Chapter 3 is, in part, a reprint of the paper ‘‘A Survey on Lattice-based Blind

Signatures and their Feasibility’’ which is set to appear in the peer-reviewed journal

Archives of Economic History. The dissertation author was the primary investigator

and author of this paper.

Chapter 4 is, in part, a reprint of the paper ‘‘Leakage-resilient lattice-based partially

blind signatures’’ co-authored with Dimitrios Hristu-Varsakelis, Foteini Baldimtsi and

George Stephanides, which appears in the peer-reviewed journal IET Information Se-

curity. The dissertation author was the primary investigator and author of this paper.

Chapter 5 is an improved and expanded version of a manuscript titled ‘‘A Frame-

work for Blind Signatures with Revocable Sessions’’ which was co-authored with Ju-

lian Loss, Foteini Baldimtsi and George Stephanides and was originally submitted to

Asiacrypt 2021. The dissertation author was the primary investigator and author of

this paper.

Chapter 6 is, in part, a reprint of the paper ‘‘Proxy Signatures from Ideal Lattices–

Secure in All Rings’’ [145] co-authored with George Stephanides, which appears in the

Proceedings of the 35th Panhellenic Conference on Mathematical Education ‘‘Mathe-

matics: Research and Education in the 21st century’’. The dissertation author was

the primary investigator and author of this paper.

12

Πεϱίληψη

Η κρυπτογραφία µε ϐάση τα δικτυώµατα ξεκίνησε µε τη ϱηξικέλευϑη εργασία του M.

Ajtai [14] κατά τη δεκαετία του ’90 και έκτοτε έχει εδραιωθεί ως µία από τις πλέον

πολύπλευρες προσεγγίσεις για την κατασκευή αποδεδειγµένα ασφαλών, αποδοτικών

και παραλληλοποιήσιµων κρυπτογραφικών εργαλείων τα οποία µποϱούν να ανθίσταν-

ται επιθέσεις ακόµη και από κβαντικούς υπολογιστές. Εκτός τούτου, η κρυπτογραφία

µε ϐάση τα δικτυώµατα παϱέχει το µοναδικό χαρακτηριστικό ότι επιτϱέπει αναγωγές

χείϱιστης σε µέση πεϱίπτωση, το οποίο απαιτείται για κρυπτογραφικές εφαρµογές κα-

ϑώς η απλή ύπαϱξη ενός στιγµιοτύπου ενός δύσκολου υπολογιστικά προβλήµατος στη

χείϱιστη πεϱίπτωση εγγυάται την ασφάλεια στη µέση πεϱίπτωση. Το γεγονός αυτό όχι

µόνο επιτϱέπει την αξιοποίηση της δυσκολίας προβληµάτων χείϱιστης πεϱίπτωσης σε

δικτυώµατα, αλλά τυπικά απλοποιεί και την επιλογή κλειδιών.

Μολονότι κάποια από τα πλέον διαδεδοµένα κρυπτογραφικά εργαλεία όπως οι ψη-

ϕιακές υπογραφές έχουν ερευνηθεί εκτενώς τις τελευταίες δύο δεκαετίες, σηµαντικά

µικϱότεϱη πϱόοδος έχει γίνει µε τα πιο προηγµένα εργαλεία τα οποία διαθέτουν επιπλέον

χαρακτηριστικά, παϱά τη σηµασία τους για πληθώρα πραγµατικών εφαρµογών που εσ-

τιάζουν στη διατήρηση της ιδιωτικότητας όπως: το ψηφιακό χϱήµα, οι ψηφιακές εκλογές,

οι ψηφιακές δηµοπρασίες, οι τυφλά υπογεγραµµένες συµβάσεις (χρησιµοποιούνται στα

κρυπτονοµίσµατα), τα δίκτυα ασύρµατων αισϑητήϱων και τα ανώνυµα διαπιστευτήρια

(χρησιµοποιούνται στην τεχνολογία U-Prove της Microsoft).

Εµϕοϱούµενοι από αυτή τη σχετική έλλειψη αποτελεσµάτων, καθώς και από το

πολυποίκιλο και υποδειγµατικό ϕάσµα των σεναϱίων εφαρµογής, η παϱούσα διατριβή

στοχεύει όχι απλώς στο να επιτϱέψει τέτοιου είδους ϕιλικές πϱος την ιδιωτικότητα εφαρ-

µογές ϐασισµένες σε προβλήµατα δικτυωµάτων, αλλά και στο να τα καταστήσουµε πρακ-

τικά και αποδοτικά. Πιστεύουµε πως οι τεχνικές µας µποϱούν να µεταφερθούν και σε

άλλα σενάϱια εφαρµογών.

Λέξεις Κλειδιά: Κρυπτογραφία ϐασισµένη στα δικτυώµατα, Μετακβαντική κρυπτογραφία,

Εφαρµογές προσανατολισµένες στην ιδιωτικότητα, Τυφλές υπογραφές, Ευαπόδεικτη ασ-

ϕάλεια, Υπογραφές πληρεξουσίου.

13

Abstract

Lattice-based cryptography began with the groundbreaking work of M. Ajtai [14]

back in the 90’s and has since then proven to be one of the most versatile approaches

for constructing provably secure, efficient, and highly parallelizable cryptographic

primitives that can withstand attacks even by quantum computers. Moreover, lattice-

based cryptography offers the unique feature of allowing for worst-case to average-case

reductions, which is needed for cryptographic applications because the mere existence

of a computationally hard problem instance in the worst case guarantees security in

the average case. This not only allows us to harness the hardness of worst-case lattice

problems, but it also typically simplifies key selection.

While some of the more ubiquitous cryptographic primitives like digital signatures

have been extensively explored during the past two decades, far less progress has been

made with more advanced primitives which possess additional features, despite their

significance in a plethora of real-world privacy-preserving applications like e-cash, e-

voting, e-auctions, blindly signed contracts (used in cryptocurrencies), wireless sensor

networks, and anonymous credentials (used in Microsoft’s U-Prove technology).

Motivated by this relative dearth of results, as well as the diverse and exemplary

spectrum of application scenarios, this dissertation aims on not only enabling such

privacy-friendly applications from lattice assumptions, but also making them both

practical, and efficient. We believe that our techniques can be transferred to other

application scenarios as well.

Keywords: Lattice-based cryptography, Post-Quantum cryptography, Privacy-oriented

applications, Blind signatures, Provable security, Proxy signatures.

14

Notation

SETS

∅ the empty set

N the set of natural numbers {1, 2, . . .}

N0 the set of natural numbers, including zero i.e., {0, 1, 2, . . .}

Z the set of integer numbers {. . . ,−2,−1, 0, 1, 2, . . .}

Zq the ring of integers modulo q (also a field if q is prime)

Q the set of rational numbers {p/q : p ∈ Z, q ∈ N and gcd (p, q) = 1}

R the set of real numbers

R+ the set of positive real numbers i.e., (0,+∞)

R+0 the set of non-negative real numbers i.e., [0,+∞)

[n] the set {1, . . . , n}, where n ∈ N

{vi}
k
i=1 abbreviation for {v1, . . . , vk}

OPERATORS

∪ set union

∩ set intersection

\ set difference

× Cartesian product

∨ logical disjunction (or)

∧ logical conjunction (and)

⊕ bitwise XOR

⊗ tensor product of matrices

‖ concatenation of strings or matrix columns

JstatementK boolean operator (evaluates to 1 if statement is true, and to 0 otherwise)

RELATIONS

≡ is equivalent/congruent to

� is isomorphic to

P1 � P2 Problem P1 (classically) reduces to problem P2

P1 �Q P2 Problem P1 quantumly reduces to problem P2

15

x ∼ D x is distributed according to distribution D

FUNCTIONS

b.c floor function

d.e ceiling function

poly(n) some fixed but unspecified polynomial in variable n

negl(n) a function that is negligible in n

PROBABILITY DISTRIBUTIONS

Unif(S) uniform distribution over some (countable) set S

∆(X,Y) statistical distance of random variables X and Y

COMPLEXITY THEORY

BPP class of decision problems solvable by a probabilistic

Turing machine in polynomial time with an error pro-

bability bounded away from
1
3 for all instances

P class of decision problems solvable by a deterministic

Turing machine in polynomial time

NP class of decision problems that solvable in polynomial

time by a nondeterministic Turing machine

coNP class of decision problems whose complement is in NP

NPC class of all NP-complete problems

AM class of decision problems that can be decided in poly-

nomial time by an Arthur-Merlin protocol with two

messages

coAM class of decision problems whose complement is in AM

16

Abbreviations

AM Arthur-Merlin PRF Pseudo-Random Function

BPP Bounded-error Probabilistic QROM Quantum (Accessible) Random

Polynomial time Oracle Model

BSS Blind Signature Scheme(s) resp. respectively

coAM co-Arthur-Merlin RO Random Oracle

coNP co-NP ROM Random Oracle Model

CVP Closest Vector Problem RSA Rivest, Shamir, Addleman

DLP Discrete Logarithm Problem RSR Random Self-Reducibility

DSS Digital Signature Scheme(s) SIS Short Integer Solution

FPBSS Fair Partially-Blind Signature SIVP Shortest Independent Vectors

Scheme(s) Problem

FSS Fair Blind Signature Scheme(s) s.t. such that

HE Homomorphic Encryption SVP Shortest Vector Problem

iff if and only if UF-CMA Universal Forgery under

LHF Linear Hash Function Chosen-Message Attack

LWE Learning with Errors w.l.o.g. without loss of generality

NIST National Institute of Standards w.r.t. with regards/respect to

and Technology ZKPoK Zero-Knowledge Proof

NIZK Non-Interactive Zero-Knowledge of Knowledge

NP Non-deterministic Polynomial time

NPC Non-deterministic Polynomial time

Complete

OMUF One-More Unforgeability

OWF One-Way Function(s)

P Polynomial time

PP Probabilistic Polynomial time

PBSS Partially-Blind Signature Scheme(s)

PoR Proof of Revocation

PPT Probabilistic Polynomial Time

17

Chapter 1

Introduction

‘‘Privacy is one of the biggest

problems in this new electronic age.’’

Andrew Grove, former Intel CEO

Cryptography has always been an integral part of any society dealing with sensitive

information. Historically, one of the earliest uses of cryptography can be traced all

the way to ancient Egypt 1900 BC, where complex hieroglyphics were carved on the

walls of tombs as a means of pictorially obfuscating information [105]. The primary

use of cryptography throughout the ages has mainly been in warfare, diplomacy, and

espionage, where it enabled two parties to communicate in confidentiality. Individ-

uals and even commercial organizations rarely considered it necessary to resort to

encryption for protecting their communications.

Until the modern era, cryptography was essentially synonymous with encryption

(i.e., primarily concerned with developing techniques that would enable confidential

communication between two parties over great distances). However, the techniques

employed to this end were severely hindered by the fact that both parties needed to

share a pre-agreed secret key (secret key or symmetric cryptography) which would

help them transform their messages accordingly. The celebrated work of Diffie and

Hellman [63] in the 1970’s completely revolutionized the landscape of cryptography by

introducing for the first time the notion of public-key (or asymmetric) cryptography. In

this context, only the receiver of the message needs to be in possession of a secret key,

1

whereas the sender just needs to know the receiver’s public key. The first implemen-

tation of a public key cryptosystem soon followed with the work of Rivest, Shamir, and

Adleman [157]. These groundbreaking works combined with advances in computing

and telecommunications enabled cryptography to broaden its scope far beyond that of

just encryption. In recent decades, a plurality of cryptographic primitives, schemes,

and applications have been proposed. These range from simple primitives such as

one-way hash functions and zero-knowledge proofs, to secure multiparty computa-

tion and a broad array of digital signature schemes.

A special branch of contemporary cryptography is concerned with designing prim-

itives and protocols that protect the privacy and anonymity of communicating parties

within complex transactions. Where digital signatures are typically concerned with

simply producing a signature on an arbitrary message, primitives such as blind signa-

tures aim to accomplish this task: a) without forcing the recipient to reveal its message

(privacy), and b) by preventing the authority responsible for issuing signatures (signer)

from linking the blinded message it signs to a later ‘‘unblinded’’ version that it may be

called upon to verify. For instance, in a (remote) electronic voting scenario, we may

want each ballot to be certified by an election authority before it can be accepted for

counting. The authority can check the credentials of the voter to ensure that they are

eligible to vote (and that they are not submitting multiple ballots). At the same time,

a voter’s selections in the ballot remain outside the authority’s view and the authority

is unable to link any given vote to the identity of the voter that cast it (e.g.: during

counting).

Naturally, with such a high level of privacy comes great risk for abuse. For exam-

ple, blind signatures have been argued to provide a gateway for committing ‘‘perfect’’

crimes [181] such as money laundering, blackmailing, etc. At the same time, blind

signatures provide no guarantees to the signer that the blinded message he signed,

has an appropriate ‘‘format’’ or even contains some valid information that should be

included in the message (e.g.: the denomination of a digital coin, the date a voucher

was issued, etc.). These challenges further motivate the study of schemes with addi-

tional features and more complex frameworks to support them.

2

1.1 Hard Computational Problems and Post-Quantum

Cryptography

Early cryptographic methods crucially relied on security through obscurity (i.e., by

keeping the encryption and decryption algorithms secret). However, as history has

shown time and time again, encryption/decryption machines can be captured and

analyzed, people can defect or be ‘‘convinced’’ to divulge information, etc. This led

to the formulation of the most fundamental principle in contemporary cryptography

called Kerckhoff’s principle: ‘‘In assessing the security of a cryptosystem, one should

always assume the enemy knows the method being used’’. As such, most crypto-

graphic schemes nowadays rely on the secrecy of the key rather than the algorithm.

Furthermore, schemes are brought under scrutiny to ensure that they do not suffer

from any design flaws which could compromise their security. One prominent way to

design cryptographic schemes is by relating their security to the complexity hardness

assumptions of computational problems. If these problems are computationally hard

to solve, then breaking the scheme’s security is (at least) as hard as these problems.

But what exactly does it mean for a problem to be ‘‘hard’’? Roughly speaking, we

say that a problem is efficiently solvable if it can be solved by an algorithm running in

polynomial time in the size of the input. Under this definition, problems are classified

as problems that are: a) possible to solve efficiently, b) impossible to solve efficiently,

or c) impossible to solve at all. Cryptography is generally concerned with the latter

two classes. While problems that are impossible to solve are of some interest to

cryptography, they typically lead to extremely inefficient constructions. On the other

hand, problems that are computationally hard to solve offer a nice balance between

security and efficiency.

One of the most well-studied and widely used problems in cryptography is the

factoring problem. Given a large positive integer n, we are asked to factor it into a

product of primes. A special case of this problem where n = p · q with p and q being

large primes of roughly the same bit-size is at the heart of the RSA cryptosystem

3

[157]. A second, also widely used problem is the so-called discrete logarithm problem

(DLP). Here, we are given a finite cyclic group G, a generator g ∈ G, and an element

h = gx ∈ G, and are tasked with finding x ∈ Z. DLP is most commonly used with

elliptic curve groups and some of its applications include end-to-end encryption in

VoIP telephony (e.g.: Viber), signing transactions in cryptocurrencies (e.g.: Bitcoin,

Ethereum), and many more.

A question that naturally arises at this point is: Does just an assumption offer

any tangible security guarantees? This concern is indeed valid; just because no

efficient algorithm currently exists for solving a problem does not necessarily mean

that one will never be found. More theoretically sound arguments can be made based

on complexity theory which classifies problems based on their theoretical hardness.

Hence, a problem that is, say, NP-complete would give us strong indications about

its (theoretical) hardness. However, there is often a noticeable gap between theory

and practice. Indeed, just because a problem is considered NP-hard does not mean

that a specific instance of it is also hard (it is often hard to even reliably generate

hard instances of problems). The factoring problem in particular is not known to be

NP-complete and in fact, the related problem of primality testing is actually solvable

in polynomial time [9].

To make matters worse, in 1994, P. Shor showed a quantum algorithm capable

of factoring large numbers into primes exponentially faster than a classical computer

can [169]. The quantum step in Shor’s algorithm can efficiently break DLP, too.

Hence, the construction of a reasonable-scale quantum computer would signal the

compromise of any cryptographic scheme that relied on these well-established number

theoretic hardness assumptions (cybersecurity experts call this Q-Day). Given the

ubiquity of cryptographic schemes in our everyday online activities, this could have

catastrophic implications for individuals, companies and countries around the world.

Hackers would have free reign to view everything including emails, medical histories,

old banking records, etc. Frauds could impersonate a user’s identity, potentially

gaining access to his/her bank account. Data thieves could already be accumulating

encrypted data, with the view of unlocking them once quantum computers become

4

available. A corrupt government would be able to gain insight in voters’ political views

simply by linking their electronic ballots to their identities. Foreign governments

could influence the outcome of elections abroad by tampering electronic ballots. This

alarming discovery by Shor goaded researchers into investigating alternative hardness

assumptions that would remain secure even against a quantum computer.

The original title of my PhD dissertation is ‘‘Post-Quantum Cryptography: Proto-

cols and Applications’’. That is, cryptography that will guarantee security (and privacy)

even after Q-Day. This differs from quantum cryptography in that the goal is to de-

feat quantum computers without quantum computers. Indeed, it is fairly reasonable

to assume that even after the first large-scale quantum computers become a reality,

their availability to the general public may be limited (e.g.: very high costs to build

and maintain). However, cryptographic algorithms and protocols need to already be

in place to protect even those that cannot afford a quantum computer. This reason

motivated me to steer my thesis towards the fairly young and promising line of cryp-

tographic research where security is based on hard computational problems in point

lattices, which are conjectured to be immune to quantum attacks.

1.2 Lattice-Based Cryptography

When designing secure cryptographic schemes, one has to be mindful of develop-

ments both in technology and also in the field of cryptanalysis. Indeed, following

the formulation of Shor’s algorithm [169], the need for alternative hardness assump-

tions that remain intractable even in the presence of quantum computers became as

imperative as ever. By now, lattice-based cryptography is one of the predominant ap-

proaches for constructing provably secure and efficient cryptographic primitives that

can withstand attacks even by a quantum computer. This is largely due to the fact

that unlike number-theoretic hardness assumptions, there are no known algorithms

for solving the lattice problems that are typically used at the foundation of crypto-

graphic constructions, which has led to their conjectured intractability even against

quantum computer attacks. Aside from quantum-resistance, lattices additionally have

5

the unique feature of allowing for worst-case to average-case reductions. Phrased dif-

ferently, a randomly selected (according to some distribution) problem instance, is at

least as hard to solve as some related lattice problem in the worst case. This feature

not only allows us to reliably base security on worst-case hardness, but also greatly

simplifies key selection for constructed cryptosystems. This extraordinary observation

was first made by Ajtai in [14]. Moreover, lattice-based constructions are character-

ized by simplicity, efficiency, and parallelizability as one typically has to perform linear

operations on vectors and matrices, as well as reductions modulo some small integer.

Finally, lattice-based cryptography offers great versatility and is suitable for a plethora

of advanced applications like: fully-homomorphic encryption (FHE), attribute-based

encryption (ABE), general-purpose code obfuscation, hierarchical ID-based construc-

tions, and much more. For a more detailed listing of applications, the reader is referred

to surveys like [132, 148].

1.3 Summary of Results

We begin by introducing the necessary notation, basic definitions, and cryptographic

tools that will be used throughout this dissertation in Chapter 2. Chapter 3 offers a

critical overview of the literature on blind signature schemes from lattice assumptions.

The remaining chapters 4 to 6 are devoted to constructing various lattice-based signa-

ture schemes with additional features, while some also contain results of independent

interest.

Chapter 3: An Overview of Lattice-Based Blind Signature Schemes and their

Feasibility. Blind signatures, introduced by Chaum [55], have become an important

primitive for privacy-preserving cryptography. Roughly speaking, these schemes al-

low a signer to sign a message without seeing it, while retaining a certain amount

of control over the number of issued signatures (unforgeability). For the receiver of

the signature, this process provides perfect anonymity (blindness), e.g., his spend-

ings remain anonymous when using blind signatures for electronic money. However,

designing blind signature schemes in the lattice regime has proven to be a very diffi-

6

cult task. In this Chapter, we review the most prominent literary developments that

have been made towards this goal. In particular, we provide a comparative overview

of these developments and point out security flaws, bottlenecks in performance and

applicability of known impossibility results.

Chapter 4: Leakage-Resilient Partially-Blind Signatures from Lattices. Blind sig-

nature schemes play a pivotal role in privacy-oriented cryptography. However, with

blind signature schemes, the signed message remains unintelligible to the signer, giv-

ing them no guarantee that the blinded message he signed actually contained valid

information. Partially-blind signature schemes were introduced to address precisely

this problem. In this Chapter we present the first leakage-resilient, lattice-based par-

tially blind signature scheme in the literature. Our construction is provably secure in

the random oracle model and offers quasilinear complexity w.r.t. key/signature sizes

and signing speed. In addition, it offers statistical partial-blindness and its unforge-

ability is based on the computational hardness of worst-case ideal lattice problems for

approximation factors in Õ(n4) in dimension n. Our scheme benefits from the subex-

ponential hardness of ideal lattice problems and remains secure even if a (1 − o(1))

fraction of the signer’s secret key leaks to an adversary via arbitrary side-channels.

Several extensions of the security model, such as honest-user unforgeability and se-

lective failure blindness, are also considered and concrete parameters for instantiation

are proposed.

Chapter 5: A Framework for Blind Signatures with Revocable Sessions. We revisit

the problem of rendering blind signatures from linear hash function families with

noticeable correctness error in the random oracle model [98]. We propose for the first

time a new cryptographic primitive called blind signatures with revocable sessions

(BSRS) to model four-move schemes in which the user is able to prove that he did not

obtain a valid signature from a session and can ask for the session to be revoked (e.g.:

[159]). We provide a general framework for constructing BSRS schemes from any

linear hash function family with noticeable correctness error and prove its security in

the ROM by expanding upon the techniques introduced in [98]. We then instantiate

our general framework from the standard SIS assumption. Our lattice-based scheme

7

greatly outperforms the blind signature scheme of [98] in terms of communication

overhead and achieves slightly more compact signature sizes. While our construction

is not practical enough to be used in practice, we believe that it may motivate future

works in this area.

Chapter 6: Proxy Signatures from Ideal Lattices - Secure in All Rings. Proxy

Signatures are a variant of digital signatures that allow one entity to delegate its

signing rights to a second entity. This is particularly common in distributed computing

where an entity (e.g.: a server) typically wants to grant privileges to other entities (e.g.:

other servers) in order to be able to handle traffic, or to be able to undergo maintenance

without denying its services. Over the past two decades, considerable work has been

put into designing such post-quantum cryptographic primitives. In this Chapter, we

propose a proxy signature scheme that offers strong security guarantees by relying on

the simultaneous hardness of lattice problems over exponentially-many rings.

1.4 Conclusion and Open Research Questions

In this thesis, we have demonstrated the great versatility of lattices in cryptographic

constructions that are geared towards preserving privacy and anonymity. Former

construction principles from the area of number theoretic cryptography cannot be

applied directly. In particular, because the size of objects is a crucial factor for proving

a reduction from lattice problems leads to major complications. We have shown how

to overcome some of them.

We believe that our constructions will, as building blocks, lead to even more com-

plex schemes in an effort to provide a comprehensive cryptographic landscape from

lattices. While it seems unlikely for these constructions to achieve simplicity and el-

egance that is comparable to designs from, say, pairings, we believe that ideal and

module lattices hold a lot of potential that has not been fully exploited yet.

In the individual chapters, we discuss further research directions in the respective

area of research.

8

Chapter 2

Definitions, Preliminaries and Basic

Tools

This preliminary chapter, summarizes the basic definitions and results from the lit-

erature that are both relevant and necessary for presenting the constructions in later

chapters.

2.1 General Notation

Throughout this thesis, we use bold, non-italic, lower-case letters like x to denote

column vectors; for row vectors we use the transpose x
T
. Let x be a vector. We denote

the length of x by |x|. The inner product of vectors x, y is denoted by x · y or directly

as x
T
y. For 1 ≤ j ≤ |x|, we refer to its j-th entry as x j . We denote the (sub)vector

consisting of the first j entries of x by x[j]. We generally use bold, non-italic, upper-

case letters like A to denote matrices, and sometimes identify a matrix with its ordered

set of column vectors. We denote the n×n identity matrix by In. Let A be a matrix. We

denote the i-th row of A as Ai and the j-th entry of Ai as Ai, j . We denote the horizontal

concatenation of vectors, matrices and strings with two vertical bars, e.g.: [A‖b]. Let

S be a set. For 1 ≤ i ≤ n and v ∈ Si−1
, we write h

′ ←$ Sn |v to denote that vector

h
′

is uniformly sampled from Sn
, conditioned on h

′[i − 1] = v. This can trivially be

implemented by fixing the first i−1 components of h
′
to be identical to v and sampling

9

the remaining n − i + 1 uniformly from S.

2.2 Algorithms and Asymptotic Notation

An algorithm is a finite sequence of well-defined steps that given some input, produces

some output. We will model all algorithms as Turing machines. Let A be an algorithm.

By A(x) we denote the output of A on input x. If A is a deterministic algorithm, it will

always output the same result for a given input and we will write y ← A(x) to denote

that the output is assigned to y. On the other hand, if A uses random bits as part of its

logic, it is called probabilistic (or randomized) [171]. Running a probabilistic algorithm

on the exact same input will most likely result in an entirely different output. We will

write y ←$ A(x) to denote that the output is assigned to y and that A uses uniformly

random coins. We will write A(x; ρ) to specify the random coins ρ. Notice that by

fixing ρ, A(.; ρ) becomes deterministic. We write A(x) = v if A outputs v on input x.

An interactive algorithm is an algorithm that, before producing its final output, may

produce some intermediate outputs or wait for additional inputs (possibly from some

other interactive algorithm). Let X and Y be two interactive algorithms. We denote

by (a, b) ←$ 〈X(x),Y(y)〉, the joint execution of X and Y in an interactive protocol with

private inputs x and y respectively. The respective private outputs are a for X and

b for Y. By 〈X(x),Y(y)〉k , we mean that the interaction can occur at most k times,

where k ∈ N∪ {∞}. Accordingly, if Y can invoke an unbounded number of executions

of an interactive protocol with X in arbitrarily interleaved order, we write Y〈X(x),.〉
∞

(y).

Finally, Y〈X(x0),.〉
1,〈X(x1),.〉

1
(y) means that Y can invoke arbitrarily ordered executions

with X(x0) and X(x1), but interact with each algorithm only once.

A positive function f (n) is called negligible in n if for any polynomial p(n), there

exists a n0 ∈ N, such that f (n) ≤ 1/p(n), ∀n ≥ n0. We denote a negligible function in

n by negl(n). A positive function f (n) is called noticeable (or non-negligible), if there

exists a positive polynomial p(n) and a n0 ∈ N, such that f (n) ≥ 1/p(n), ∀n ≥ n0. A

function f (n) is called overwhelming if 1 − f (n) is negligible.

For asymptotics, we assume the standard Knuth notation [59], as summarized

10

Table 2.1: Asymptotic Notation.

Growth Description Limit Condition

f (n) = O(g(n)) f grows no faster than g asymptotically limn→∞
f (n)
g(n) < ∞

f (n) = o(g(n)) f grows slower than g asymptotically limn→∞
f (n)
g(n) = 0

f (n) = Ω(g(n)) f grows no slower than g asymptotically limn→∞
f (n)
g(n) > 0

f (n) = ω(g(n)) f grows faster than g asymptotically limn→∞
f (n)
g(n) = ∞

f (n) = Θ(g(n)) f grows about as fast as g asymptotically limn→∞
f (n)
g(n) = c, for some constant c.

f (n) ≈ g(n) f grows as fast as g asymptotically limn→∞
f (n)
g(n) = 1

in Table 2.1. Additionally, we will use soft-O notation to ‘‘hide’’ any polylogarithmic

factors. For example, if f (n) = n log n and g(n) = n3 log2 n, we will write f (n) = Õ(n) and

g(n) = Õ(n3), respectively. All logarithms are considered to be base 2. An algorithm is

considered efficient if it runs in probabilistic polynomial time (PPT).

2.3 Information Theory

2.3.1 Probability Distributions

Let S be a finite set. We will write x ←$ S to express the fact that x is sampled

uniformly at random from S. We denote the uniform distribution over S by Unif(S). If

D is an arbitrary probability distribution, we write x ←$ D to denote that x is sampled

according to D, and x ∼ D to denote that x is distributed according to distribution D.

Statistical distance provides us with a means of quantifying how ‘‘far apart’’ two

probability distributions (or random variables) are. Although there are many defini-

tions of statistical distance in the literature, our analysis uses the following:

Definition 2.3.1. (Statistical Distance) Let X and Y be two discrete random variables

over a (countable) set S. The statistical distance ∆(X,Y) between X and Y is defined

as

∆(X,Y) :=
1

2

∑
v∈S

���Pr [X = v] − Pr [Y = v]
���

A well-known property of statistical distance is that it does not increase if we apply a

function f to its arguments [134].

11

Lemma 2.3.1. Let S and T be finite sets, X and Y are random variables taking values

in S, and f : S → T be a function. Then ∆(f (X), f (Y)) ≤ ∆(X,Y).

We will say that X and Y are perfectly indistinguishable (resp. statistically indistin-

guishable) iff ∆(X,Y) = 0 (resp. ∆(X,Y) = negl(n)).

2.3.2 Conditional Min-Entropy

Min-entropy measures how likely one is to correctly guess a value of a random variable

on his first try. If the most likely value of a random variable W ∼ D, occurs with

probability at most 2−α, then we say that W has α bits of min-entropy and write

H∞(W) = α. More concretely, we have:

Definition 2.3.2. (Min-Entropy) Let W be a discrete random variable with possible

outcomes in {v1, . . . , vn}, distributed according to D, and which maps vi 7→ pi :=

Pr[W = vi], ∀i ∈ [n]. The min-entropy of W is defined as: H∞(W) := − logi (max pi).

Conditional min-entropy quantifies the amount of information needed to describe

the outcome of a random variable Y , given that the value of another random variable

X is known.

Definition 2.3.3. (Conditional Min-Entropy) Let X and Y be two discrete random

variables. The min-entropy of Y conditioned on X is defined as:

H∞(Y |X) := min
y
{− log(Pr [Y = y | X])

2.4 Computational Complexity Theory

The P = NP problem [83] plays an important role in many areas of Applied Math-

ematics like: Algorithmic research, Artificial Intelligence (AI), Game theory, and of

course Cryptography. This section briefly recalls basic concepts and definitions from

computational complexity theory.

Problems typically come in two variants: search and decision. In a search problem,

we are given some input parameters called the problem instance and a specification

12

Algorithmica P = NP. Cryptography is dead and AI reigns supreme.

Heuristica NP-complete problems are hard in the worst-case (P , NP) but are

efficiently solvable in the average-case.

Pessiland There exist average-case NP-complete problems but one-way func-

tions do not exist. It is easy to create hard NP problems, but not

hard NP problems where we know the solution. Hence, not only

can we not solve hard problems on average, but their ‘‘hardness’’ of-

fers no cryptographic advantage whatsoever. This is the worst pos-

sibility.

Minicrypt One-way functions exist but public-key cryptosystems are impos-

sible.

Cryptomania Public-key cryptography is possible and secure communication is

possible.

Figure 2.1: Brief description of Impagliazzo’s five worlds and their implications [101].

of what a solution looks like. We are asked to find a solution matching this specifica-

tion. In a decision problem, we are given a problem instance, and we have to decide

whether the answer is YES or NO. Every search problem has a corresponding decision

problem, and given a solution to a search variant of a problem, it is trivial to solve the

corresponding decision problem. However, the converse does not hold [29]. For these

reasons, computational complexity theory focuses on the study of decision problems

instead of search problems. Decision problems can be generalized to allow for inputs

that are neither YES, nor NO instances. Phrased differently, one has to decide, under

the promise that the given problem instance is either a YES or a NO instance, which

is the case [59]. If the input problem instance is neither, any output is considered a

valid answer. These are called promise problems.

Class P consists of all (decision) problems that can be solved by a deterministic

Turing machine in polynomial time as a function of the problem instance’s size. Prob-

lems in P, are typically referred to as tractable, whereas problems not in P are referred

to as intractable. Class NP consists of all problems, for which a YES instance can be

verified in polynomial time by a deterministic Turing machine i.e., given a ‘‘certificate’’

of a solution, one can verify that the certificate is correct in polynomial time in the size

13

of the input to the problem. It is straightforward to show that P ⊆ NP. However, the

question of whether P = NP is the most important open question in Computer Science

[89].

The complement P̄ of a decision problem P is the decision problem resulting from

reversing the YES and NO instances. We say that a decision problem P1 reduces

to decision problem P2 if there exists a deterministic algorithm (i.e., a mathematical

function) for transforming any YES (resp. NO) instance of P1, into a YES (resp. NO)

instance of P2. We will write P1 � P2 after the fact. If in addition, the reduction func-

tion is computable in polynomial time, then we say that P1 is polynomially reducible

to P2. Notice that a polynomial-time reduction proves that P1 is no harder than P2,

because whenever an efficient algorithm exists for P2, one exists for P1 as well. Con-

versely, if no efficient algorithm exists for P1, none exists for P2 either. Moreover, it is

straightforward to prove that � is a preorder
1

relation among decision problems.

A problem P0 is called NP-hard if any problem P′ ∈ NP is polynomially-reducible

to P0. If in addition the problem itself is in NP, we say that the problem is NP-

Complete and denote the respective class by NPC. Class NPC thus consists of the

hardest problems in NP. If any problem in NPC is solvable in PPT, then P = NP and

the Polynomial-time Hierarchy would collapse. This would imply that not even some-

thing as rudimentary as one-way functions exists. This corresponds to Impagliazzo’s

‘‘Algorithmica’’ (see Figure 2.1) and it is hence impossible to construct any secure

cryptographic primitives. This is indicated by the following theorem:

Theorem 2.4.1. (Theorem 34.4 from [59]) If any problem in NPC can be solved in

polynomial time, then P = NP.

It is for this very reason that cryptography builds upon the assumption that P , NP.

We also mention classes PP, coNP, BPP, AM, and coAM. Class PP consists of all

decision problems that can be solved by a probabilistic polynomial time (PPT) Turing

machine with probability error less than 1/2. coNP consists of all decision problems

in which NO instances can be verified in polynomial time by a non-deterministic

1
i.e., reflexive and transitive.

14

Turing machine. Phrased differently, coNP contains all decision problems P0 whose

complements P0 are in NP. Problems that belong to both NP and coNP, are generally

believed to not be NP-hard (otherwise we would have NP = coNP) [90].

Class BPP was proposed in [88] and contains all decision problems solvable by a

probabilistic Turing machine in polynomial time with an error probability bounded

away from 1/3 for all instances. It is not hard to see that P ⊆ BPP ⊆ PP. In fact,

if access to randomness is removed from the definition of BPP, then we arrive at the

definition for class P. BPP’s relation to NP is currently unknown.

Class AM consists of all decision problems for which a YES instance can be verified

by an Arthur-Merlin protocol, as follows: A BPP verifier called Arthur, generates a

‘‘challenge’’ based on the input, and sends it together with its random coins to a

prover called Merlin. Merlin sends back a response, and then Arthur decides whether

to accept or not based on a deterministic computation (depending on the common

input and the two exchanged messages). Given an algorithm for Arthur, we require

that:

• If the answer is YES, then Merlin can act in such a way that Arthur accepts with

probability at least 2/3 (over the choice of Arthur’s random bits).

• If the answer is NO, then regardless of how Merlin acts, Arthur will reject with

probability at least 2/3.

Requiring Arthur to reveal its random bits does not weaken the system [92]. Hence,

Arthur never needs to withhold information from Merlin. Class AM contains classes

NP and BPP. Boppana et al. [41] show that if coNP ⊆ AM, then the Polynomial-time

Hierarchy collapses. Finally, class coAM is the complement of AM.

15

2.5 Lattice Theory

2.5.1 Cryptographic Lattices

A lattice is an infinite set of points in n-dimensional space with a periodic structure.

The easiest way to represent a lattice is as the set of all integer linear combinations

Λ := {
d∑

i=1

xibi | xi ∈ Z}

of d linearly independent vectors b1, . . . , bd ∈ R
n
.
2

These vectors are called a basis for

the lattice Λ and are often represented more compactly as a matrix B = [b1‖ . . . ‖bd] ∈

Rn×d
. We will write Λ = Λ(B) to express this fact. We say that the rank of the lattice

is d (i.e., rank(Λ) = d) and its dimension is n (i.e., dim(Λ) = n). If d = n, the lattice

is called full-rank. Throughout this work, we will focus on full-rank integer lattices,

i.e., B ∈ Zn×n
. If d > 1, a lattice has infinitely many bases. The quality of different

bases is typically measured by the length of the basis ‖B‖p := maxi=1,...,d ‖bi‖p for

some p ∈ {1, 2, . . .} ∪ {∞}, depending on the norm used to measure the magnitude

of vectors. For any basis B, we define the fundamental parallelepiped P(B) := {Bx |

xi ∈ [0, 1), ∀i ∈ [d]} (see Figure 2.2 for an example). The volume of P(B) is defined as

vol(P(B)) :=
√

det (BT
B) (we typically refer to B

T
B as the Gram matrix of B), and it can

be easily proven that it is invariant w.r.t. basis selection (see e.g.: [46]). As such, for

any lattice Λ = Λ(B), we define its determinant as det (Λ) := vol(P(B)).

The dual (or reciprocal) of a lattice Λ ⊂ Rn
is defined as the set of points whose

inner products with all the vectors in Λ are all integers. I.e.,

Λ
∗ := {w ∈ span(Λ) : w · v ∈ Z, ∀v ∈ Λ}

If B is a basis for Λ, then (B−1)T is a basis for Λ∗. Another useful property states that

(cΛ)∗ = c−1Λ∗, ∀c ∈ R \ {0} for any lattice Λ. It is easy to verify that Zn
is a lattice and

2
Notice that if it were not for the restriction imposed on the coefficients, we would arrive at the

well-known definition of the linear span of {b1, . . . , bd}, i.e., span(b1, . . . , bd) := {
∑d

i=1 xibi | xi ∈ R}.

16

that (Zn)∗ = Zn
.

2.5.2 Lattices and Discrete Gaussians

For any vector c ∈ Rn
and any real s > 0, the Gaussian function with standard deviation

s and center c is defined as ρs,c(x) := exp (− π‖x−c‖
2

s2), ∀x ∈ Rn
. The Gaussian distribution

is defined as Dc,s(x) := ρs,c(x)/sn, ∀x ∈ Rn
.

Many modern works on lattices in complexity theory and cryptography rely on

Gaussian-like probability distributions defined over lattices, called discrete Gaussians.

We recall their formal definition below.

Definition 2.5.1. (Discrete Gaussian distribution over a lattice) The discrete Gaussian

distribution over a lattice Λ ⊆ Rn
, with standard deviation s > 0 and center c is defined

as DΛ,s,c(x) =
ρs,c(x)∑

v∈Λ ρs,c(v)
, ∀x ∈ Λ. We omit c from the subscript when c = 0.

Another very important lattice invariant is the so-called smoothing parameter ηε (Λ)

[134]. Informally, it is the amount of Gaussian ‘‘blur’’ required to ‘‘smooth out’’ essen-

tially all the discrete structure of Λ. More formally, it is defined as follows:

Definition 2.5.2. (Smoothing Parameter) For an n-dimensional lattice Λ, and ε ∈ R+,

we define the smoothing parameter as: ηε (Λ) := min{s ∈ R+ : ρ1/s(Λ
∗ \ {0}) ≤ ε}.

Finally, a set of lattice invariants are the successive minima. The i-th successive

minimum λ
p
i (Λ) is defined as the smallest radius of a n-dimensional sphere, containing

at least i linearly independent lattice vectors. More concretely:

λ
p
i (Λ) := min {r ∈ R+ : dim (span(Λ(B) ∩ C(0, r))) ≥ i}, ∀i ∈ [n]

where: C(0, r) := {v ∈ Zn : ‖v‖p ≤ r} is the closed n-dimensional ball, centered

at the origin, with radius r. Notice that the successive minima are defined w.r.t.

any lp-norm, p ∈ {1, 2, . . .} ∪ {∞}. The first successive minimum is of particular

interest, because it directly ties to a computationally hard lattice problem and we call

λ
p
1(Λ) := min{‖x − y‖p : x, y ∈ Λ(B) ∧ x , y} = min{‖v‖p : v ∈ Λ(B) \ {0}} the minimum

distance of lattice Λ(B).

17

Figure 2.2: Example of the 2-dimensional lattice spanned by vectors b1 = [1, 0]
T

and

b2 = [1/2, 1/2]
T
. The fundamental parallelogram is shown in grey.

2.5.3 Hardness Assumptions

One of the main computationally hard problems involving lattices is the Shortest Vector

Problem (SVP) [179, 14]. Informally, it states that given a lattice basis B of some lattice

Λ(B) ⊆ Zn
, one has to find a non-zero lattice vector, whose magnitude (w.r.t. some

lp-norm) is no longer than the magnitude of all other lattice vectors. More formally:

Definition 2.5.3. (The Shortest Vector Problem - SVPp
) Let Λ = Λ(B) be a lattice. Find

a vector v ∈ Λ \ {0}, such that ‖v‖p = minw∈Λ\{0}(‖w‖p) = λ
p
1(Λ).

A relaxed version of SVP allows for a relaxation factor γ = γ(n) ∈ [1,∞) to be taken

into account. We thus obtain the following approximation problem:

Definition 2.5.4. (The Approximate Shortest Vector Problem - SVPp
γ) Let Λ = Λ(B) be

a lattice and γ ≥ 1. Find a vector v ∈ Λ\{0}, such that ‖v‖p ≤ γ(n)·minw∈Λ\{0}(‖w‖p) =

γ(n) · λp
1(Λ).

Notice that for an approximation factor of γ = 1, we obtain the exact version

of SVPp
from Definition 2.5.3. A generalization of SVP is the Shortest Independent

18

Vectors Problem (SIVP).

Definition 2.5.5. (Approximate SIVPp
γ) Given a basis B of a full-rank n-dimensional

lattice Λ = Λ(B), find a set {v1, . . . , vn} ⊂ Λ of n linearly independent lattice vectors

s.t.: ‖vi‖p ≤ γ(n) · λn(Λ), ∀i ∈ [n].

The above problems are search problems since we are asked to find a solution

satisfying some criteria. While several cryptosystems can be proved secure assuming

the hardness of certain lattice problems, in the worst case, we are not aware of any

such proof from the search version of SVPp
γ. Instead, security proofs are more com-

monly based on either the search version of SIVP, or the following promise variant of

approximate SVP:

Definition 2.5.6. (Decisional Approximate Shortest Vector Problem GapSVPγ) An in-

put to GapSVPγ is a pair (B, d) where B is a basis for a full-rank n-dimensional

lattice and d ∈ R+. It is a YES instance if λ1(Λ(B)) ≤ d, and is a NO instance if

λ1(Λ(B)) > γ(n) · d. The objective is to determine which is the case.

In the above definition, γ : N → R+ acts as a gap between the YES instance and the

NO instance. The most commonly used version of GavSVPγ is the one in which d = 1.

Complexity and Algorithms

From a computational complexity perspective, lattice problems are quite fascinating

and have been the object of study since antiquity.
3

Lattice problems are known to be

NP-hard, even to approximate to within various sub-polynomial factors γ(n) = no(1)
.

In particular, the exact version of the SVP∞1 problem was proved to be NP-complete

by Boas in [179]. Ajtai [15] later showed that SVP2
1 is NP-hard under randomized re-

ductions. In [131], Micciancio establishes that SVPp
γ remains NP-hard to approximate

for any γ(n) < 21/p
and w.r.t. any lp-norm (1 ≤ p ≤ ∞), under reverse unfaithful ran-

dom reductions. Dinur [64] later proved a considerably stronger result which states

that SVP∞γ is NP-hard for approximation factors up to γ(n) = nc/log (log (n))
in the lattice

3
Indeed, results can be traced back to Euclid for 1-dimensional lattices and to Gauss for 2-

dimensional lattices.

19

dimension n, where c > 0 is a constant. Khot [110] further improved this by show-

ing that approximating SVPp
γ to within arbitrarily large constants under randomized

reductions for any 1 < p < ∞ is NP-hard. Furthermore, he shows that under random-

ized quasipolynomial-time reductions, the approximation factor becomes 2(log (n))1/2−ε

for any ε > 0. Finally, Haviv and Regev [99] further refined the state-of-the-art by prov-

ing that for any ε > 0 there is no polynomial-time algorithm approximating the SVP in

n-dimensional lattices in the lp-norm (1 ≤ p < ∞) to within a factor of 2(log (n))1−ε
. On

the other hand, the SIVP problem is NP-hard for any approximation factor γ(n) ∈ O(1)

[36]. However, the aforementioned hardness results are not very relevant to ‘‘real-

world’’ lattice-based cryptography because lattice-based cryptographic constructions

typically rely on approximation factors γ(n) ≥ n. Indeed, as the groundbreaking works

of [14, 130] suggest (see Figure 2.3), constructing something as primordial as one-way

functions (OWFs), involves approximation factors starting from Õ(n).

In terms of algorithms, the most well-known algorithm for solving SVP (as well

as most other lattice problems) is the LLL algorithm [117] which only provides a

polynomial-time approximation for SVP for very large approximation factors of 2n/2
in

the lattice dimension n. Schnorr [165] presented an improvement of the LLL algo-

rithm leading to somewhat better approximation factors γ(n) = 2n log (log (n))2/log (n)
. By

allowing randomization, Ajtai et al. [16] slightly improved the approximation factor to

γ(n) = 2n log (log (n))/log (n)
. While there exist algorithms for γ(n) = poly(n) [16, 136, 8],

their running times are either super-exponential 2Θ(n log (n))
or exponential 2Θ(n) in both

time and space. It is possible to allow tradeoffs between the running time and the

approximation factors by interpolating between these two classes. This results to ap-

proximation factors of γ(n) = 2k
and a time complexity of 2Õ(n/k)

[165]. This represents

the state of the art for quantum algorithms (also see [141] for an experimental evalu-

ation of some LLL-type algorithms). For SIVP, the best known algorithms (including

quantum algorithms) for obtaining an exact solution and an approximation to within

any factor γ(n) = poly(n) all have exponential complexities [135].

20

1

Ajtai

[15]

NP-hard

2(log (n))1−ε

Micciancio,

Khot, H&R

[131, 110, 99]

√
n/log (n)

NP ∩ coAM
G&G

[91]

Not likely NP-hard

√
n

NP ∩ coNP
A&R

[13]

Õ(n)

NP ∩ coNP
Banaszczyk

[28]

OWF [14, 130]

Relevant for CRYPTO

2n log (log (n))/log (n)

BPP
(rand) LLL

[16, 117]

2n/2

P
LLL

[117]

Figure 2.3: Complexity of the Shortest Vector Problem (constants are omitted).

From the above discussion, and as one can verify from Figure 2.3, there is a

very wide gap between the best known hardness result (i.e., 2(log (n))1−ε
) approxima-

tion factor and the best approximation that can be obtained in polynomial time (i.e.,

2n log (log (n))/log (n)
). In particular, as we mentioned earlier, we are interested in polyno-

mial approximation factors γ(n) = nκ, κ ∈ N (preferably of small degree κ). However,

such factors exceed our state of knowledge for NP-hardness. In fact, limits on inap-

proximability exist which point towards the contrary. In particular, for approximation

factors γ(n) ≥
√

n the works of [91, 13] prove that GapSVPγ is in NP ∩ coNP, and is

thus (likely) no longer NP-hard (see Figure 2.3).
4

Similarly, for γ(n) = Õ(n), [28] shows

containment of GapSVPγ in NP∩ coNP. Finally, the work of Goldreich and Goldwasser

[91] provides us with the currently best known limit on inapproximability, stating for

γ(n) =
√

n/log (n), GapSVPγ lies in NP∩ coAM and is thus also unlikely to be NP-hard.

The above discussion justifiably gives rise to the question: Can we even hope to

base the security of cryptosystems on the hardness of approximating lattice problems

to within polynomial factors since the latter are unlikely to be NP-hard? The answer

is an astounding YES! Given how stagnant progress has been in coming up with

algorithms that perform even slightly better than the exponential factor achieved by

LLL [117], many people conjecture that there do not exist efficient algorithms for

4
Indeed, if GapSVPγ were NP-hard, then NP = coNP and the polynomial hierarchy would collapse.

21

approximating lattice problems to within polynomial factors. Therefore, lattice-based

cryptography relies on the following core conjecture:

Conjecture 1. There exists no polynomial time (even quantum) algorithm for approxi-

mating lattice problems to within a polynomial factor.

Worst-case to Average-case Reducibility

Conjecture 1 makes worst-case problems like GapSVP and SIVP attractive hardness

hypotheses for lattice-based cryptographic schemes. While basing the security of cryp-

tosystems on the worst-case hardness of a problem is the safest thing to assume, this

is still not good enough for applications. Indeed, worst-case problems are considered

hard on the basis that they have at least one intractable instance. Unfortunately, it is

not uncommon for problems that appear hard in the worst case to turn out to be easier

on the average. This is especially true for distributions that produce instances with

some extra ‘‘structure’’. Instead, what cryptography requires in practice is average-

case hardness. In other words, we need problems for which randomly drawn instances

from a specified probability distribution (for example, uniform) are hard to solve (see

Figure 2.4).

Worst-case Hardness

?
?

?

Average-case Hardness

? ? ?

? ? ?
? ? ?

? ? ?

Figure 2.4: Difference between worst-case hardness and average-case hardness (hard

instances are denoted by a star).

In his seminal work, Ajtai [14] gave a groundbreaking connection between the worst

case and the average case for lattices. In particular, he proved that for cryptographi-

cally relevant distributions, certain problems are hard on the average as long as some

22

related lattice problems are hard in the worst case. Using results of this kind, one can

design cryptographic constructions and prove that they are infeasible to break, unless

all instances of certain lattice problems are easy to solve. This hardness guarantee is

a unique feature of lattice-based cryptography.

The reader familiar with the discrete logarithm problem (DLP) might notice similar-

ities to the well-known notion of random self-reducibility (RSR)
5
. However, it should be

noted that while DLP allows us to choose a random instance that is at least as hard

to solve as any other instance, it keeps the cyclic group fixed.

The average-case lattice problems that are heavily featured in lattice-based cryp-

tography are the short integer solution (SIS) problem and the learning with errors (LWE)

problem.

2.5.4 The Short Integer Solution Problem

SIS was first introduced in [14] and since then has been used as the foundation

for lattice-based ‘‘minicrypt’’ i.e., cryptographic constructions that can be built upon

one-way functions (e.g.: one-way hash functions, collision-resistant hash functions,

identification schemes, digital signature schemes, etc). Informally, the SIS problem

asks, given many uniformly random elements of a certain large finite additive group,

to find a sufficiently ‘‘short’’ nontrivial integer combination of them that sums to zero.

Below we give a formal definition w.r.t. to the Euclidean norm (i.e., the l2-norm) but

the problem can easily be rephrased for any lp-norm, p ∈ N ∪ {∞}.

Definition 2.5.7. (Short Integer Solution SISq,n,m,β) We define the SIS problem in terms

of the following game SISq,n,m,β:

Game SISq,n,m,β:

• Setup. On input prime modulus q, lattice dimension n ∈ N, solution dimension

m ∈ N, and a norm bound β ∈ R+, game SISq,n,m,β samples m uniformly random

vectors ai ←$ Z
n
q forming the columns of a matrix A ∈ Zn×m

q . It then runs

adversary A on input q, n,m, β and A.

5
I.e., the existence of an efficient algorithm for solving a random instance of DLP implies the existence

of an efficient algorithm for solving any instance of DLP.

23

• Output Determination. When A outputs a vector z = (z1, . . . , zm) ∈ Z
m

, the

game returns 1 iff: (i) ‖z‖ ≤ β, (ii) FA(z) := Az =
∑m

i=1 aizi = 0 ∈ Zn
q, and (iii) z , 0.

Otherwise, it outputs 0.

We define the advantage of adversary A in Game SISq,n,m,β as:

Adv
SIS

q,n,m,β(A) := Pr
A←$Z

n×m
q

[
SISA

q,n,m,β = 1
]
.

The function FA is often called Ajtai’s function or the SIS function. When clear from

context, A is omitted from the subscript.

We now make some important remarks about the SIS problem:

1. The lattice dimension n is considered the main hardness parameter and all other

parameters are expressed as functions of n.

2. The norm bound should satisfy β < q. Indeed, if that were not the case, the

problem would trivially admit z = (0, . . . , 0, q) ∈ Zm
as a solution.

3. Without the shortness constraint ‖z‖ ≤ β, SIS would belong in class P because

we would be able to employ the Gaussian elimination algorithm.

4. The norm bound β and the solution dimension m must be set in a way that

a solution actually exists. By the pigeonhole principle, this is the case if β ≥√
dn log (q)e and m ≥ dn log (q)e. Indeed, assume that m = dn log (q)e. Since there

exist more than qn
vectors z ∈ {0, 1}m, there must also exist two vectors z1, z2

s.t. FA(z1) = FA(z2) ∈ Z
n
q, so their difference z

′ := z1 − z2 ∈ {0,±1}m is a solution

s.t. ‖z′‖ ≤ β.

5. The above observation also implies that the induced function family {FA : {0, 1}m →

Zn
q} is collision-resistant based on the hardness of SIS. It is trivial to see that if

z1, z2 ∈ {0, 1}
m

is a collision for FA, then z1 − z2 is a solution for SIS.

The SIS problem can be seen as an average-case short-vector problem on the

24

following family of lattices:

Λ
⊥
q (A) := {v ∈ Zm | Av = 0 (mod q)} ⊇ qZm.

These lattices are often referred to as q-ary or SIS lattices. A can be seen as a ‘‘parity-

check’’ matrix that defines the lattice Λ⊥q (A) in a manner similar to coding theory.

Therefore, the SIS problem asks to find a sufficiently short (w.r.t. some norm) non-

zero vector in Λ⊥q (A), where A is chosen uniformly at random.

In his groundbreaking paper [14], Ajtai described for the first time how any in-

stance of the SIVP problem in dimension n can be phrased as a random instance of

the SIS problem. This worst-case to average-case reduction implies that a random

instance of SIS is at least as hard to solve as the hardest instance of SIVP in dimen-

sion n. Hence, solving a non-negligible portion of instances of SIS in PPT directly

yields a PPT algorithm for solving all instances of SIVP in dimension n. Later works

by Micciancio and Regev [130], and Gentry et al. [86] improved upon this by showing

tighter reductions:

Lemma 2.5.1. (SIVP � SIS, from [86]) For any ν ≤ poly(n), prime q ≤ νg(n) for g(n) =

ω(
√

n log (n)), and m ≥ 2n log (q) = Ω(n log (n)), the average-case problem SISq,n,m,β is at

least as hard as SIVPγ in dimension n in the worst case with γ = νÕ(
√

n).

A variant of SIS called the k-SIS problem was introduced in [39].

Definition 2.5.8. (k − SISq,n,m,β,σ) For any integer k ∈ N, we define the k − SIS problem

in terms of the following game k − SISq,n,m,β:

Game k − SISq,n,m,β:

• Setup. On input a prime modulus q, lattice dimension n ∈ N, solution dimension

m ∈ N, and norm bound β ∈ R+, game k −SISq,n,m,β samples m uniformly random

vectors ai ←$ Z
n
q forming the columns of a matrix A ∈ Zn×m

q . It also samples a set

of k vectors e1, . . . , ek ∈ Λ
⊥
q (A) via ei ←$ DΛ⊥q (A),σ, ∀i ∈ [k]. It then runs adversary

A on input q, n,m, β, A, and e1, . . . , ek .

25

• Output Determination. When A outputs a vector z = (z1, . . . , zm) ∈ Z
m

, the

game returns 1 iff: (i) ‖z‖ ≤ β, (ii) FA(z) := Az =
∑m

i=1 aizi = 0 ∈ Zn
q, (iii) z , 0, and

(iv) v < Q − span({e1, . . . , ek}). Otherwise, it outputs 0.

We define the advantage of adversary A in Game k − SISq,n,m,β as:

Adv
k−SIS

q,n,m,β(A) := Pr
A←$Z

n×m
q ,ei←$D

Λ⊥q (A),σ

[
k − SISA

q,n,m,β = 1
]
.

Notice that for k = 0, k−SIS is identical to the SIS problem. Boneh and Freeman also

provide a reduction from the SIS problem in dimension m − k to the k − SIS problem

in dimension m. Worst-case to average-case reducibility is deduced by combining

lemmas 2.5.1 and 2.5.2.

Lemma 2.5.2. (SIS � k − SIS [39]) Let q be a prime, and let m, β, σ, and k, be poly-

nomial functions of a security parameter n. Suppose that m ≥ 2n log (q),m/k > n, σ >

ω(
√

log (m)), t > ω(
√

log (n)), and q > σ · ω(
√

log (m)). Let β′ := β · (k3/2 + 1)k!(tσ)k . Let

A be a polynomial-time adversary for the k − SISq,n,m,β,σ problem. Then there exists a

polynomial-time algorithm B for solving SISn,q,m−k,β′, s.t.

Adv
SIS

q,n,m−k,β′(B) ≥ Adv
k−SIS

q,n,m,β(A) − negl(n).

Since the SIS problem is only assumed to be hard for parameters β = poly(n), the fact

that the above reduction degrades exponentially in k means that k must be chosen to

be small enough so that β′ is still polynomial in n.

2.5.5 The Learning With Errors Problem

Another very prominent average-case problem for lattice-based cryptography is the

learning with errors (LWE) problem which was introduced by Regev in [156]. Despite

its syntactical similarities to SIS, the LWE problem enables lattice-based ‘‘cryptoma-

nia’’ [101]. Applications include public key encryption schemes [156], as well as other

advanced constructions like identity-based encryption [86, 52, 10, 11], homomorphic

26

encryption [85], fully dynamic multi-key FHE [45], predicate encryption [94], obfusca-

tion [40], etc.

LWE is parameterized by integers n, q ∈ N, and an error/noise distribution χ over

Z. For concreteness, n and q can be thought of as roughly the same as in SIS, and χ

is usually taken to be a discrete Gaussian of width αq for some α < 1, which is often

called the relative ‘‘error rate’’.

Definition 2.5.9. (LWE distribution) For a secret vector s ∈ Zn
q, the LWE distribution

As, χ over Zn
q × Zq is sampled by choosing a ←$ Z

n
q, choosing error via e ←$ χ, and

outputting (a, b := a · s + e (mod q)).

The LWE problem comes in two version: search, which asks to find the secret given

multiple LWE samples, and decision, which is to distinguish between samples from

the LWE distribution and uniformly random ones. Both versions are parameterized

by the number m ∈ N of available samples, which is typically set so that the secret is

uniquely defined with high probability.

Definition 2.5.10. (Decision version of Learning With Errors (LWEn,q, χ,m)) The decision

version of the LWE problem is defined in terms of the following game LWEn,q, χ,m:

Game LWEn,q, χ,m:

• Setup. On input an dimension n ∈ N, integer modulus q ≥ 2, error distribution

χ, and number of samples m ∈ N, game LWEn,q, χ,m samples a secret s ←$ Z
n
q

and b←$ {0, 1}. If b = 0 it samples m independent LWE samples via (ai, bi) ←$

As, χ, ∀i ∈ [m]. Otherwise (i.e., b = 1), it samples (ai, bi) ←$ Z
n
q × Zq, ∀i ∈ [m]. It

then runs adversary A on input (ai, bi), i ∈ [m].

• Output Determination. When the adversary outputs a bit b∗, the game returns

1 iff b = b∗. Otherwise, it returns 0.

We define the advantage of adversary A in Game LWEn,q, χ,m as:

Adv
LWE

n,q, χ,m(A) := Pr

[
LWE

A
n,q, χ,m = 1

]
.

27

The search version of LWE differs only in that during the Output Determination

phase, the adversary A has to output a vector s
∗ ∈ Zn

q s.t. s
∗ = s.

We now make some important remarks about the LWE problem:

1. If not for the error terms from χ, both problems would be trivial to solve. In-

deed, the underlying secret vector s can be retrieved from the LWE samples via

Gaussian elimination. In the case of decision-LWE where b = 1, no solution s

will exist with high probability.

2. It is often convenient to combine the given samples into a matrix A ∈ Zn×m
q (whose

columns are the vectors ai ∈ Z
n
q) and a vector b = (b1, . . . , bm)

T ∈ Zm
q , so that for

LWE samples we have b
T = s

T
A + e

T (mod q), where e ←$ χm
. In the decision

version of LWE with b = 1, vector b is uniformly random and independent of A.

In his groundbreaking work [156], Regev proved the following worst-case to average-

case reduction for LWE:

Lemma 2.5.3. (GapSVP, SIVP �Q LWE [156]) Let α = α(n) with 0 < α < 1, and prime

q > 2
√

n/α, and m = m(n) ≤ poly(n). The average-case decision problem LWEn,q, χ,m with

noise distribution χ (with parameter α) is at least as hard as quantumly solving SIVPγ

and GapSVPγ in dimension n in the worst case with γ = Õ(n/α).

It is important to note that the exact values of m and q are irrelevant for the hardness

guarantee (apart from the constraint q ≥ 2
√

n/α). However, the approximation factor

γ is essential and in fact degrades with the inverse error rate 1/α of the LWE problem.

Lemma 2.5.3 is proved by giving a quantum polynomial-time reduction that uses

an oracle for LWE to solve GapSVPγ and SIVPγ in the worst case. Hence, any al-

gorithm (classical or quantum) that solves LWE can be transformed into a quantum

algorithm for GapSVPγ and SIVPγ. The quantum nature of the reduction is mean-

ingful because there are no known quantum algorithms for GapSVPγ or SIVPγ that

significantly outperform classical ones, beyond generic quantum speedups.

A later work by Peikert [147] partially dequantized Regev’s worst-case to average-

case reduction [156] from Lemma 2.5.3. In particular, Peikert proved that LWE with

28

an error rate of α is classically at least as hard as worst-case GapSVPγ, for the same

γ = Õ(n/α) factor as in Lemma 2.5.3. His reduction however comes with two notable

caveats:

1. Unlike Regev’s quantum reduction [156], the classical reduction works only for

GapSVP.

2. Peikert’s classical reduction requires an exponential modulus q ≥ 2n/2
for the

LWE problem, whereas Regev’s quantum reduction can work for any modulus

q ≥ 2
√

n/α. In practice, a larger modulus means that LWE samples require many

more bits to represent. This in turn affects key sizes and leads to less-efficient

cryptographic schemes.

Peikert’s classical reduction can be adapted to work for polynomial moduli at the

expense of relying on a non-standard variant of GapSVP. Influenced by techniques

like ‘‘key-switching’’ and ‘‘modulus reduction’’ from the literature of fully homomorphic

encryption, Brakerski et al. [44] gave a general dimension-modulus tradeoff for LWE,

which roughly says that hardness for a particular error rate α is determined almost

entirely by n log (q), and not by the particular choices of n and q, provided that q is

lower bounded by some small polynomial. The reduction is informally stated below:

Lemma 2.5.4. (GapSVP � LWE, from [44]) Solving LWEn,q, χ,m with q = poly(n) implies

an equally efficient solution to GapSVPγ, where γ =
√

n.

2.5.6 Ideal Lattices

Despite their elegance, q-ary lattices are impractical to use. Indeed, matrix A ∈ Zn×m
q

takes mn log (q) = Ω(n2) space (to represent) and time (simply to read).
6

We can

ameliorate this caveat by restricting the underlying lattice problems to a subclass of

lattices, called ideal lattices, which possess some specialized algebraic structure.

Recall that if R is a ring, then I ⊆ R is an ideal in R iff it is an additive subgroup

of R that is closed under multiplication with R [79]. Informally, an ideal lattice is

simply a lattice corresponding to an ideal in some ring R, under some fixed choice of

6
Recall that we must have m > n in order for Ajtai’s function to be a compressing function.

29

geometric embedding. What this means is that any lattice vector can be interpreted –

under the geometric embedding – as an element in I and vice versa. Since I is closed

under addition and multiplication, we obtain lattices with a much richer structure.
7

Throughout this thesis, R will denote the polynomial ring Z[X]/〈f〉 and Rq will

denote the polynomial ring R/qR = Zq[X]/〈f〉, where q is a prime and f ∈ Z[X] is any

monic, irreducible polynomial of degree n. For efficiency reasons, the preferred choice

for f is Xn+1, where n is a power of 2 (although the ring-structure induced by this choice

of f allows for much shorter key-sizes and makes operations more efficient through the

Fast Fourier Transform, it provides no further functionality [123, p. 2]). Furthermore,

the ring of integers modulo q will be identified with the set {−
q−1
2 , . . . ,

q−1
2 }. We will

use coefficient embedding and will identify any polynomial g ∈ Rq with its coefficient

vector g = (g0, . . . , gn−1) ∈ Z
n
q (i.e., we will treat polynomials of Rq and vectors of Zn

q as

equivalent). Conventionally, we will denote polynomials in Rq with boldface, non-italic

letters and m-tuples of polynomials in Rm
q with boldface, non-italic letters and a hat. It

is not hard to see that under coefficient embedding, R � Zn
and Rm

q � Zmn
q , ∀m ∈ N with

vector addition corresponding to polynomial addition, and matrix-vector multiplication

corresponding to the convolution product â · b̂ :=
∑m−1

i=0 aibi (modulo Xn + 1 and q) of

polynomials in Rq. For all â, b̂ ∈ Rm
q and c ∈ Rq, the product â · b̂ is a scalar product

and satisfies the properties: (i) â · b̂ = b̂ · â, and (ii) c(â · b̂) = (câ) · b̂ = â · (cb̂). We

slightly abuse notation and define ‖g‖∞ := maxi |gi | and ‖ĝ‖∞ := maxi(‖gi‖∞).

As we stated above, a lattice corresponds to an ideal I ⊂ Rq, iff every lattice vector

is the coefficient vector of a polynomial in I. Using the definition of an ideal, it is easy

to interpret an ideal lattice as a q-ary lattice with special structure. In particular, an

element â = (a1, . . . , am) ∈ R
m
q defines the ideal lattice:

Λ
⊥
Rq

:= {x̂ ∈ Rm | â · x̂ ≡ 0 ∈ Rm
q }

GivenΛ⊥
Rq

, the corresponding q-ary latticeΛ⊥
A

is defined via the matrix A := A1‖ . . . ‖Am,

7
Phrased differently, lattices are groups, while ideal lattices are ideals.

30

where:

Ai :=



ai,0 −ai,n−1 . . . −ai,1

ai,1 ai,0 . . . −ai,2
...

...
. . .

...

ai,n−1 ai,n−2 . . . ai,0


, ∀i ∈ [m].

Notice that the two lattices are identical. However, as we will discuss shortly, â

provides us with a much more succinct means of representation.

Ideal Lattice Problems

Worst-case problems like SVP and SIVP easily translate to ideal lattices and are called

Ring − SVP and Ring − SIVP, respectively. For typical choices of rings, and for crypto-

graphically relevant approximation factors γ, the Ring − SVPγ and Ring − SIVPγ prob-

lems on ideal lattices appear to be intractable in the worst case. All currently known

algorithms (classical or quantum), seem to only achieve meagre speedups by exploiting

the specialized algebraic structure of ideal lattices for these problems. In particular,

the best known (quantum) algorithms for Ring − SVPγ, where γ = poly(n) on ideal

lattices in typical choices of rings take exponential 2Ω(n) time.

Average-case problems can also be phrased w.r.t ideal lattices. Within the context

of ideal lattices, the k − SIS problem is called Ring k − SIS and is formally defined as

follows:

Definition 2.5.11. (Ring k − SISq,n,m,β) For any integer k ≥ 0, we define the Ring

k − SISq,n,m,β problem in terms of the following game Ring k − SISq,n,m,β:

Game Ring k − SISq,n,m,β:

• Setup. On input modulus q, lattice dimension n ∈ N, solution dimension m ∈ N,

norm bound β ∈ R+, game Ring k − SISq,n,m,β samples a vector â ←$ R
m

and

k short polynomial vectors ê1, . . . , êk s.t. â · êi = 0 (mod q), ∀i ∈ [k] and runs

adversary A on input â, q, n,m, β and ê1, . . . , êk .

• Output Determination. When A outputs a vector v̂ ∈ Rm
, the game returns 1

iff: (i) v̂ , 0, (ii) ‖v̂‖ ≤ β, (iii) â · v̂ = 0 (mod q), and (iv) v̂ < R \ span(ê1, . . . , êk).

Otherwise, it outputs 0.

31

We define the advantage of adversary A in Game Ring k − SISq,n,m,β as:

Adv
Ring k−SIS

q,n,m,β (A) := Pr

[
Ring k − SIS

A
q,n,m,β = 1

]
.

The Ring-SIS problem (R − SIS) can be seen as a special case of Ring k − SISq,n,m,β,

where k = 0. In order to guarantee that a solution exists for R − SIS, we typically

set m = O(log (n)) (as opposed to m = Ω(n log (q)) for standard SIS). This enables

a more succinct representation for ideal lattices since we only require mn log (q) =

O(n log2 (n)) = Õ(n) bits of storage. Computing the convolution product â · b̂ ∈ Rq can

also be achieved in quasi-linear O(n log (n)) = Õ(n) time by using FFT-like techniques,

while addition takes O(n log (q)) = O(n log (n)) = Õ(n) time.

Inspired by Ajtai’s construction [14] and Micciancio’s one-way function [134],

Lyubashevsky and Micciancio introduce a family H(Rq,m) of collision-resistant com-

pression functions in ideal lattices [125]. The functions F ∈ H map Rm
q → Rq. A

random element of the family is indexed with â ←$ R
m
q and the associated function

F = Fâ maps:

x̂ ∈ Rm
q 7→ Fâ(x̂) := â · x̂ :=

m−1∑
i=0

aixi ∈ Rq.

Evidently, F is homomorphic (i.e., linear) over Rm
q , i.e., it satisfies F(ax̂ + bŷ) =

aF(x̂) + bF(ŷ), ∀a, b ∈ Rq, and ∀x̂, ŷ ∈ Rm
q . When the domain is restricted to a set

D ⊂ Rm
q of small-norm polynomials (i.e., the coefficients of the input are restricted

to {−d, . . . , d}, where d ∈ N), the function family is collision-resistant [125]. Phrased

differently, finding short vectors in the kernel of the family H(Rq,m) of module ho-

momorphisms Fâ : Rm
q → Rq, when the domain is restricted to D ⊂ Rq, is computa-

tionally hard and is known as the collision problem Col(H(Rq,m),D), which we now

formally state:

Definition 2.5.12. (Collision Problem Col(H(Rq,m),D), from [125]) We define the

Col(H(Rq,m),D) problem in terms of the following game ColH(Rq,m),D:

Game ColH(Rq,m),D:

• Setup. On input ring Rq, solution dimension m ∈ N, and subset D ⊂ Rq, game

32

ColH(Rq,m),D samples F ←$ H(Rq,m) and runs adversary A on input F,Rq,D,

and m.

• Output Determination. When A outputs a pair (ẑ1, ẑ2), the game returns 1 iff:

(i) F(ẑ1) = F(ẑ2), (ii) ẑ1 , ẑ2, and (iii) (ẑ1, ẑ2) ∈ D × D. Otherwise, it outputs 0.

We define the advantage of adversary A in Game ColH(Rq,m),D as:

Adv
Col

Rq,m,D(A) := Pr
F←$H(Rq,m)

[
Col

A
H(Rq,m),D

= 1
]
.

The Collision Problem can trivially be shown to be as hard as R − SIS [134] in the

average case and transitively, at least as hard as Ring − SVP in the worst case. The

next theorem from [125] provides this connection.

Theorem 2.5.5. (Ring − SVP � Col) Let D = {f ∈ Rq : ‖f ‖∞ ≤ d}, where m >

log(q)/log(2d), and q ≥ 4dmn
√

n log(n). An adversary A that solves the Col(H(Rq,

m),D) problem for F ←$ H(Rq, m), i.e., finds preimages x̂, ŷ ∈ D such that x̂ , ŷ

and F(x̂) = F(ŷ), can then use them to solve Ring − SVP∞γ with approximation factors

γ ≥ 16dmn log2(n) in the worst case.

The Ring-LWE problem was introduced in [126] as the algebraic analogue of stan-

dard LWE. In its original proposal in [126], it is stated w.r.t. rings of the form

Z[X]/〈Φm(X)〉 of integer polynomials modulo a cyclotomic polynomial Φm(X). A con-

current and independent work by Stehlé et al. [174] focuses on the special case of

ring-LWE for rings of the form R = Z[X]/〈Xn + 1〉, where n = 2k, k ∈ N but lacks a

hardness proof for the decision form of the problem. Ring-LWE is parameterized by a

ring R of degree n over Z, a modulus q ∈ N defining the quotient ring Rq = R/qR, and

an error distribution χ over R. Typically, R is picked to be a cyclotomic ring, and χ to

be some kind of discretized Gaussian in the canonical embedding of R, which we can

roughly think of as having an ‘‘error rate’’ α < 1 relative to q.

Definition 2.5.13. (Ring-LWE distribution) For a secret s ∈ Rq, the Ring-LWE distri-

bution As, χ over Rq × Rq is sampled by choosing a←$ Rq, choosing error via e←$ χ,

and outputting (a, b := a · s + e (mod q)).

33

Informally, the decision version of the Ring-LWE problem in R, denoted R − LWE,

states that: let χ be a fixed error distribution over R that is concentrated on ‘‘small’’

elements, and let s←$ Rq be the secret. Analogously to LWE, the goal is to distinguish

arbitrarily many independent ‘‘random noisy ring equations’’ from truly uniform pairs.

More specifically, the noisy equations are of the form (a, b ≈ a · s (mod q)) ∈ Rq × Rq,

where each a is uniformly random, and each product a · s is perturbed by a term

drawn independently from the error distribution χ over R. More formally, we have the

following definition:

Definition 2.5.14. (Decision version of Ring Learning With Errors (R − LWEn,q, χ,m))

The decision version of the Ring-LWE problem is defined in terms of the following

game R-LWEn,q, χ,m:

Game R-LWEn,q, χ,m:

• Setup. On input lattice dimension n ∈ N, an integer modulus q ≥ 2, error

distribution χ, and the number of samples m ∈ N, game R-LWEn,q, χ,m samples

a secret s ←$ Rq and b ←$ {0, 1}. If b = 0 it samples m independent Ring-

LWE samples via (ai, bi) ←$ As, χ, ∀i ∈ [m]. Otherwise (i.e., b = 1), it samples

(ai, bi) ←$ Rq × Rq, ∀i ∈ [m]. It then runs adversary A on input (ai, bi), i ∈ [m].

• Output Determination. When the adversary outputs a bit b∗, the game returns

1 iff b = b∗. Otherwise, it returns 0.

We define the advantage of adversary A in Game R-LWEn,q, χ,m as:

Adv
R-LWE

n,q, χ,m(A) := Pr

[
R-LWE

A
n,q, χ,m = 1

]
.

The search version of Ring-LWE differs only in that during the Output Determina-

tion phase, the adversary A has to output a polynomial s
∗ ∈ Rq s.t. s

∗ = s (which is in

fact unique).

Just like in LWE, the problem would be easy to solve without the error terms.

Indeed, if b = 0 in Game R-LWEn,q, χ,m, we can efficiently find s: given a sample (ai, bi)

where ai ∈ Rq is invertible (most elements in Rq are), we have s = bi · a
−1
i , whereas if

34

b = 1, there will almost never be a single s that is consistent with all samples. Ring-

LWE also has a normal form, in which the secret s is picked from the error distribution

(modulo q) instead of uniformly. It is not hard to show that this form of the problem

is at least as hard as the one defined above.

Ring-LWE offers more compactness and efficiency compared to LWE. Indeed, each

sample (ai, bi) yields an n-dimensional pseudorandom ring element bi ∈ Rq, rather

than just a single pseudorandom scalar value bi ∈ Zq which is the case in LWE. Fur-

thermore, like with R − SIS, ring multiplication can be performed in only quasi-linear

Õ(n) time using Fast Fourier Transform. Hence, we can generate these n pseudoran-

dom scalars in just Õ(1) amortized time each.

As for its hardness, Lyubashevsky et al. [126] show that the Ring-LWE problem is

at least as hard on the average as solving SVP on arbitrary ideal lattices in the worst

case, using a quantum algorithm:

Theorem 2.5.6. (Ring − SVP �Q R − LWE, from [126]) For any m = poly(n), cyclotomic

ring R of degree n (over Z), and appropriate choices of modulus q and error distribution

χ of error rate α < 1, solving the R − LWEn,q, χ,m problem is at least as hard as quantumly

solving the Ring − SVPγ problem on arbitrary ideal lattices in R, for some γ = poly(n)/α.

2.5.7 Rejection Sampling

Rejection sampling is a technique originally introduced by von Neumann [180], and

it allows us to draw samples from arbitrarily complex probability distributions. In

[122], it was shown for the first time, how this technique can be utilized to construct

a canonical identification scheme from lattices. Because this technique is a crucial

component to understanding the constructions of Chapters 3, 4, and 5 we give here a

brief overview.

Rejection Sampling with Uniform Samples

Let 0 < A ≤ B be two integer numbers. Now, consider the set of constant random

variables {Xc := c : c ∈ {−A, . . . , A}} with respective probability mass functions:

fXc (x) := 1, if x = c, and 0 otherwise. Furthermore, let Y be an independent, discrete

35

uniform random variable, taking values in the set {−B, . . ., B} ⊇ {−A, . . . , A} and with

probability mass function: gY (y) := 1
2B+1 , if y ∈ {−B, . . . , B}, and 0 otherwise.

We now define a new random variable Zc as the sum of Xc and Y , for any fixed

c ∈ {−A, . . . , A}. Obviously, Zc takes values in the set {−(A + B), . . . , A + B}. The

distribution hZc of Zc is thus the convolution of distributions fXc and gY , and its

probability mass function is given from the formula [150]:

hZc (z) =
∞∑

k=−∞

fXc (k)gY (z − k) =
A+B∑

k=−A+B

fXc (k)gY (z − k) = Pr [Y = z − c] .

Notice that if |z − c | > B, then the above probability is zero. On the other hand, if

|z−c | ≤ B, i.e., if −B+c ≤ z ≤ B+c, then the above probability equals
1

2B+1 . Therefore,

the probability mass function of hZc is hZc (z) := 1
2B+1 , if z ∈ {−B + c, . . . , B + c}, and 0

otherwise.

Thus, hZc is just a ‘‘shifted’’ version of gY by c ‘‘places’’. It is not difficult to notice

that Zc is uniformly distributed over {−(B − A), . . . , B − A}, ∀c ∈ {−A, . . . , A}. Thus,

if we compute Zc := Xc + Y = c + Y , and only output the result if it falls within

{−(B−A), . . . , B−A} (and resample Y otherwise), then each value z ∈ {−(B−A), . . . , B−A}

will be equally likely to occur. As a result, we can use this technique to ‘‘hide’’ the

value of c (In other words, Zc is distributed independently of c). The following lemma

formalizes the above idea and can be viewed as a Rejection Sampling Lemma w.r.t.

uniform samples.

Lemma 2.5.7. (Lemma 3.4 in [159, p. 29]) Let k ∈ N, a,a′, b ∈ Zk
with arbitrary

a,a′ ∈ {v ∈ Zk : ‖v‖∞ ≤ A}, and a random b←$ {v ∈ Z
k : ‖v‖∞ ≤ B} for B > A. If b is

such that max{‖a+ b‖∞, ‖a
′ + b‖∞} ≤ B − A, we define the random variables c← a+ b

and c
′← a

′ + b, otherwise, re-sample b. Then, ∆(c, c′) = 0.

The following lemma from [159] provides a relation between bounds A and B, and

the probability of succeeding to mask a constant vector a s.t. ‖a‖∞ ≤ A by adding to

it a vector b ∼ Unif({v : ‖v‖∞ ≤ B}).

Lemma 2.5.8. (Lemma 3.1 in [159, p. 28]) Let k = Ω(n),a, b ∈ Zk
with arbitrary

36

a ∈ {v ∈ Zk : ‖v‖∞ ≤ A} and random b ←$ {v ∈ Z
k : ‖v‖∞ ≤ B}. If B ≥ φk A for φ ∈ N,

then Prb[‖a + b‖∞ ≤ B − A] > e−1/φ − o(1).

Rejection Sampling with Discrete Gaussian Samples

Similarly, rejection sampling can be performed using discrete Gaussian samples. The

following two lemmas from [123] are used throughout this work. The first provides

a tail-cut bound for Gaussian distributed elements, while the second one concerns

rejection sampling:

Lemma 2.5.9. (Lemma 4.4 in [123]) We have:

1. Pr[|x | > t · σ | x ←$ DZ,σ] ≤ 2 exp (−t2/2), ∀t > 0.

2. Pr[‖x‖ > ησ
√

m | x←$ DZm,σ] ≤ ηm exp (m2 (1 − η
2)), ∀η > 1.

Lemma 2.5.10. (Theorem 4.6 in [123]) Let V ⊆ Zm
be a set whose elements’ norms

are bounded by T , σ = ω(T
√

log m), and h : V → R be a probability distribution. Then

there exists a constant M = O(1) s.t. ∀v ∈ V : Pr[DZm,σ(z) ≤ M · DZm,σ,v(z) | z ←$

DZm,σ] ≥ 1 − ε , where ε = 2−ω(log m)
. Furthermore, the following two algorithms are

within a statistical distance of δ = ε/M.

1. v←$ h, z←$ DZm,σ,v, output (z, v) with probability
DZm,σ(z)

M ·DZm,σ,v(z)
.

2. v←$ h, z←$ DZm,σ, output (z, v) with probability 1/M.

Moreover, the probability that the first algorithm produces an output is at least

(1 − ε)/M. If σ = αT for any α > 0, then M = exp (12
α +

1
2α2) with ε = 2−100

.

Algorithm 1 shows how rejection sampling is performed w.r.t. discrete Gaussian

samples.

2.5.8 Lattice Trapdoors

Informally, a trapdoor function is a function that is easy to evaluate but hard to invert

on its own, but which can be generated together with some additional ‘‘trapdoor’’

information that makes inversion easy. Ajtai showed that it is possible to construct

37

Algorithm 1 Rejection_Sample(ẑ, ĉ, φ,T ; ρ)

1: σ := φT ; M(φ) := e12/φ+1/(2φ2)

2: if ρ = ⊥ then

3: u←$ [0, 1); . Sample uniformly

4: else

5: u←ρ [0, 1); . Sample with fixed randomness ρ

6: if (u ≤ 1
M(φ)e

(
−2ẑ·ĉ+‖ĉ‖2

2σ2)
) then

7: return 1; . Accept sample

8: return 0; . Reject sample

certain types of trapdoor functions from the hardness of lattice problems [14]. Further

advances [52, 86, 23] proposed more elegant and efficient constructions of ‘‘strong

trapdoors’’ from the SIS/LWE assumptions.

Roughly speaking, the idea was to generate a lattice basis A ∈ Zn×m
q of the SIS

lattice Λ⊥q (A) := {v ∈ Zm | Av = 0 (mod q)}, along with an associated lattice trapdoor

that enables efficiently sampling short Gaussian vectors x ∈ Zm
s.t. FA(x) = u (mod q),

where FA(x) := Ax denotes the SIS function, and u ∈ Zn
q. This sampling process is

known as preimage sampling. For the purposes of this thesis, we focus on a particular

category of lattice trapdoors called ‘‘gadget’’-based trapdoors [133].

Gadget-based trapdoor

The main idea behind the construction in [133] is to start with a fixed, public lattice,

defined by a ‘‘gadget’’ matrix G. This matrix should allow for a fast, parallel and offline

way of solving equation Gx = u (mod q) for short vectors x ∈ Zm
. The trapdoored

lattice basis A is obtained by applying a unimodular transformation which involves the

gadget matrix G, along with other randomly sampled matrices. The transformation

itself serves as the trapdoor for A. We now describe how to construct an (almost)

uniform random matrix A together with an associated trapdoor TA, having a desired

tag H.

Trapdoor Generation. On input a modulus q, gaussian parameter σ, an optional

A
′ ∈ Zn×m̄

q and an optional (but invertible) tag H ∈ Zn×n
q , the trapdoor generation

algorithm outputs a lattice basis A, along with a short trapdoor TA. Algorithm TrapGen

38

is summarized in Algorithm 2.

Algorithm 2 TrapGen(q, σ,A′ ∈ Zn×m̄
q ,H ∈ Zn×n

q)

1: l := dlog (q)e
2: g := (1, 2, 22, . . . , 2l−1) ∈ Zl

q . Gadget vector

3: G := In ⊗ g
T ∈ Zn×nl

q . Gadget matrix

4: if A
′ = ⊥ then

5: A
′←$ Z

n×m̄
q . Sample uniformly

6: if H = ⊥ ∨ det (H) = 0 then

7: H := In

8: T←$ Dm̄×nl
Z,σ . Sample a short Gaussian matrix

9: m := m̄ + nl
10: A := (A′‖HG − AT) ∈ Zm×n

q . Form the trapdoored lattice basis

11: TA :=
(

T

Inl

)
. Trapdoor for A with tag H

12: return (A,TA)

Preimage Sampling. On input basis A ∈ Zm×n
q , trapdoor TA ∈ Z

m̄×nl
q , tag H ∈ Zn×n

q

and syndrome u ∈ Zn
q, algorithm PreSample outputs a (short) vector x ∈ Zm

s.t. Ax =

u (mod q). Algorithm PreSample is summarized in Algorithm 3.

Algorithm 3 PreSample(A ∈ Zm×n
q ,TA ∈ Z

m̄×nl
q ,H ∈ Zn×n

q ,u ∈ Zn
q)

1: Generate a perturbation vector p ∈ Zm
with covariance Σ2 = σ

2
I − TAT

T
A
> 0

2: b := H
−1 · (u − Ap)

3: For i ∈ [n]:
4: Find wi s.t. g

T
wi = bi (mod q)

5: w := (w1, . . . ,wn)

6: x := p + TAw

7: return x

2.6 Cryptographic Primitives and Tools

In this section, we give an overview of the cryptographic primitives and tools that will

be used throughout the following chapters.

2.6.1 Hash Functions and the Random Oracle Model

Many cryptographic constructions in the literature employ cryptographic hash func-

tions as a component. A hash function is any function that can be used to map data

39

of arbitrary size to fixed-size values (called hash values). More formally:

Definition 2.6.1. (Hash Function) A function H : {0, 1}∗ → {0, 1}k , mapping bit strings

of arbitrary length to bit strings of a fixed length k ∈ N0, is called a hash function. Ad-

ditionally, H is called a cryptographic hash function, if H(x) can be efficiently computed

for any string x ∈ {0, 1}∗, and it has at least one of the following properties:

1. One-wayness (or preimage resistance): given a k-bit string y ∈ {0, 1}k , it is hard

to find a bit string x ∈ {0, 1}∗ s.t.: H(x) = y.

2. Weak collision-resistance (or 2nd-preimage resistance): given a bit string x1 ∈

{0, 1}∗, it is hard to find a bit string x2 ∈ {0, 1}
∗

s.t.: x2 , x1 and H(x1) = H(x2).

3. Collision-resistance (or strong collision-resistance): it is hard to find a pair of bit

strings (x1, x2) ∈ {0, 1}
∗ × {0, 1}∗ with x1 , x2 s.t.: H(x1) = H(x2).

Notice that collision-resistance implies weak collision-resistance, but does not nec-

essarily imply one-wayness. A good cryptographic hash function typically possesses

all of these properties.

A random oracle is a mathematical function chosen uniformly at random, i.e., a

function mapping each possible query to a fixed random response from its range. In

the random oracle model (ROM) [31], we assume that a publicly known cryptographic

hash function (ideally) behaves like a truly random function and can thus be used

as a ‘‘drop-in replacement’’ for the random oracle. As such, a provably-secure con-

struction in the ROM can only be broken if the attacker exploits specific properties

of the concrete hash function used (e.g.: SHA-512). This heuristic approach was first

advocated by [31] and since then has been widely used for designing a plurality of

efficient cryptographic primitives. While the confidence placed on random oracles in

the context of provable security has spurred a lot of debate in the cryptographic com-

munity, it is generally accepted that a proof in the ROM is much better than no proof

at all.

It should finally be noted that Boneh et al [38] introduced the notion of Quantum-

accessible Random Oracle Model (QROM). In this model, a quantum attacker can

40

access any ‘‘offline primitives’’ (e.g.: the concrete hash function replacing the ran-

dom oracle) in quantum superposition. In other words, the attacker can, with a

single quantum query to all inputs in superposition, learn a superposition of all pos-

sible random oracle values. Thus, reductions relying on techniques like adaptive

re-programming of the random oracle do not work in this model. The QROM general-

izes the ROM, and a proof of security in the QROM is thus stronger than one in the

plain ROM. However, as recently shown in [71], security in the QROM cannot imply

security in the standard model (i.e., without the use of any random oracles). For this

dissertation, we limit our study to the classical ROM.

2.6.2 The General Forking Lemma

The Generalized Forking Lemma from [32] is a probabilistic tool for proving security

of cryptographic constructions in the ROM. Informally, it states that if an algorithm

A outputs a pair of values (I, σ) with I > 0 with noticeable probability acc, then the

forking algorithm FA defined below will, with noticeable probability return (1, σ, σ
′

)

based on two executions of A, sharing an identical prefix up to the I-th query to H. In

other words, the probability of getting two related runs with the same value of I, and

a common prefix of length I − 1 is not too small.

Algorithm 4 FA(x)
1: Pick coins ρ for A at random;

2: h1, . . . , hq ←$ H;

3: (I, σ) ← A(x; h1, . . . , hq; ρ);
4: if (I = 0) then

5: return (0, ε, ε);

6: h
′

I, . . . , h
′

q ←$ H;

7: (I
′

, σ
′

) ← A(x; h1, . . . , hI−1, h
′

I, . . . , h
′

q; ρ);

8: if (I = I
′

∧ hI , h
′

I) then

9: return (1, σ, σ
′

);

10: else

11: return (0, ε, ε);

Lemma 2.6.1. (Lemma 1 in [32]) Fix an integer q ≥ 1 and a set H of size h ≥ 2.

Let A be a randomized algorithm that on input x, h1, . . . , hq returns a pair, the first

41

element of which is an integer in the range 0, . . . , q and the second element of which

we refer to as a side output. Let IG be a randomized algorithm that we call the input

generator. The accepting probability of A, denoted acc, is defined as the probability

that J ≥ 1 in the experiment x ←$ IG; h1, . . . , hq ←$ H; (J, σ) ←$ A
(
x; h1, . . . , hq

)
. The

forking algorithm FA associated to A is the randomized algorithm that takes input x and

proceeds as shown in Algorithm 4. Let frk := Pr

[
b = 1 : x ←$ IG; (b, σ, σ

′

) ← FA(x)
]
.

Then, frk ≥ acc

(
acc

q −
1
h

)
.

2.6.3 Merkle Trees

A Merkle tree (or binary hash tree) is a data structure where each internal (i.e., non-

leaf) node is computed as the hash of its child nodes [129]. Merkle trees help maintain

data integrity, and select applications of Merkle trees include: file-systems (e.g.: ZFS

and IPFS), peer-to-peer networks (e.g.: Bitcoin [172] and Ethereum [24]), distributed

version control systems (e.g.: Git and Mercurial), as well as in the branch of hash-

based cryptography [106].

Let G : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash function. Given a list of

values v0, . . . , vl−1, a Merkle tree is constructed as follows: the leaves of the tree

are simply the hashes of vi under G. Every inner node y is constructed via y :=

G(left child, right child). Using this construction, the values of all inner nodes are

fully determined by the leaf nodes. The entire (ordered) list of values is thus repre-

sented by a single hash. For proving the inclusion of a leaf node in a Merkle tree,

we use an authentication path, which consists of the siblings of the nodes on the

path from the bottom to the root of the tree. If v is indeed included in the tree and

auth is an authentication path for v, then the verifier should obtain the tree’s root

node root by calculating successive parent nodes. The algorithms HashTree,BuildAuth,

and RootCalc associated for a collision-resistant hash function G are described in

Table 2.2. Algorithm HashTree takes as input a list of values v0, . . . , vl−1 and re-

turns a sequence of nodes spanning the tree, along with the root of the tree. Al-

gorithm BuildAuth takes as input an index, as well as a tree and outputs an au-

thentication path auth. Finally, algorithm RootCalc takes as input a node and an

42

authentication path auth and returns the root of a hash tree. Note that for all nodes

(v0, . . . , vl−1) and for all indices i ∈ {0, . . . , l−1}, we have RootCalc(vi, auth) = root, where

(root, tree) ← HashTree(v0, . . . , vl−1) and auth← BuildAuth(I, tree).

Table 2.2: Description of algorithms HashTree,BuildAuth, and RootCalc associated to

collision-resistant hash function G.

Algorithm HashTree(v0, . . . , vl−1): Algorithm BuildAuth(I, tree): Algorithm RootCalc(v, auth):

h← dlog (l)e (t(1)0 , . . . , t(h)
2h−1−1

) ← tree (I, a0, . . . , ah−1) ← auth

for j ∈ {0, . . . , l − 1}: for i ∈ {0, . . . , h − 1}: b0 ← G(v)

t(0)j ← G(v j) s← bI/2ic for i ∈ [h]:
for i ∈ [h]: b← s (mod 2) s← bI/2i−1c

for j ∈ {0, . . . , 2h−i − 1}: if b = 1: b← s (mod 2)

t(i)j ← G(t(i−1)
2 j , t(i−1)

2 j+1) ai ← ts−1 if b = 1:

root← t(h)0 else: bi ← G(ai−1, bi−1)

tree← (t(1)0 , . . . , t(h)
2h−1−1

) ai ← ts+1 else:

return (root, tree) auth← (I, a0, . . . , ah−1) bi ← G(bi−1, ai−1)

return auth return root := bh

2.6.4 Commitment Schemes

Commitment schemes are fundamental cryptographic primitives that lie at the heart

of many modern cryptographic protocols. Informally, they allow a party to commit to

a certain value (or statement), while keeping the actual value hidden from all others,

with the ability to reveal that value at a later point.

Definition 2.6.2. (Commitment Schemes) Let com : {0, 1}∗ × {0, 1}λ → {0, 1}∗ be a

deterministic polynomial time algorithm, where λ is a security parameter. A (non-

interactive) commitment scheme consists of two protocols between two parties which

are typically named ‘‘sender’’ and ‘‘receiver’’:

Commit phase. The sender commits to a value µ ∈ {0, 1}∗ by computing C :=

com(µ; r), where randomness r ←$ {0, 1}
λ
, and sends C to the receiver.

Reveal phase. The sender ‘‘opens’’ commitment C := com(µ; r) by revealing the ‘‘de-

commitment’’ parameter r to the receiver. The receiver can then verify that C =

com(µ; r).

43

Commitment schemes need to satisfy two properties: hiding and binding. The

hiding property requires that C does not reveal any information about the committed

message µ, whereas the binding property requires that no algorithm can substitute

the committed message µ with some other message µ′ , µ, in such a way that C =

com(µ′; r) = com(µ; r′), for some randomness r′ ∈ {0, 1}λ. A commitment scheme

is (t, θ)-hiding (resp. binding) if no algorithm exists running in time at most t, that

can break the hiding (resp. binding) property with a probability of at least θ. Both

properties can be satisfied computationally or unconditionally. It has been shown that

a commitment scheme cannot be unconditionally hiding and unconditionally binding

at the same time [62].

Lattice-based cryptographic hash functions such as [25] can be used as a message

authentication code to construct purely lattice-based commitment schemes.

2.6.5 Zero-Knowledge Proofs of Knowledge

Zero-Knowledge Proofs of Knowledge (ZKPoK) are a method by which one party (called

prover) can prove to another party (called verifier) that a given statement is true,

without revealing any information apart from the fact that the statement is indeed

true. A zero-knowledge proof needs to satisfy the following properties, which we now

state informally:

• Correcteness: if the statement is true, an honest verifier is always convinced of

this fact by an honest prover.

• Soundness: if the statement is false, no cheating prover can convince an honest

verifier that it is true, except with some very small probability.

• Zero-knowledge: if the statement is true, no verifier is able to learn anything

other than the fact that the statement is true.

If no interaction is required between the prover and the verifier in order to prove a

statement, then the ZKPoK is said to be a Non-Interactive Zero-Knowledge (NIZK) proof

of knowledge.

44

2.6.6 Homomorphic Encryption

A homomorphic encryption (HE) scheme is an encryption scheme that permits com-

putations to be performed on encrypted data (i.e., decrypting is not required before

performing the computations).

Definition 2.6.3. (Homomorpic Encryption Scheme) A homomorphic encryption scheme

is a tuple of probabilistic polynomial time (PPT) algorithms HE = (HE.KeyGen, HE.Enc,

HE.Eval,HE.Dec) defined as follows:

• HE.KeyGen(1λ, 1d): On input security parameter λ and a depth bound d, the

algorithm outputs a pair of keys (sk, pk).

• HE.Enc(pk, µ): On input a public key pk and a plaintext message µ ∈ {0, 1}, the

encryption algorithm outputs a ciphertext ct.

• HE.Eval(pk,C, ct1, . . . , ctk): On input a public key pk, a circuit C : {0, 1}k →

{0, 1} of depth at most d, and a tuple of ciphertexts (ct1, . . . , ctk), the evaluation

algorithm outputs an evaluated ciphertext ĉt.

• HE.Dec(pk, sk, ĉt): On input a public key pk, a secret key sk and a ciphertext ĉt ,

the decryption algorithm outputs a message µ̂ ∈ {0, 1} or ⊥ (in case of failure).

Definition 2.6.4. (Correctness) An HE scheme is correct if for all λ, depth bound

d, circuit C : {0, 1}k → {0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the

following holds: for (sk, pk) ←$ HE.KeyGen(1λ, 1d), cti ← HE.Enc(pk, µi) for i ∈ [k], ĉt←

HE.Eval(pk,C, ct1, . . . , ctk), we have Pr[HE.Dec(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1 − λ−ω(1).

Definition 2.6.5. (Security) We say that an HE scheme is secure if for all λ and depth

bound d, the following holds: for any adversary A with run-time 2o(λ)
, the following

experiment outputs 1 with probability 2−Ω(λ):

1. On input the security parameter λ and a depth bound d, the challenger runs

(sk, pk) ← HE.KeyGen(1λ, 1d) and ct ← HE.Enc(pk, b) for b ←$ {0, 1}. It sends

(sk, pk) to A.

45

2. A outputs a guess b′. The experiment outputs 1 iff b′ = b. Otherwise, it outputs

0.

Definition 2.6.6. (Circuit Privacy) An homomorphic encryption scheme HE is semi-

honest circuit private if for (sk, pk) ← HE.KeyGen(1λ, 1d), any circuit C : {0, 1}k → {0, 1}

of depth at most d, µi ∈ {0, 1} for i ∈ [k], and cti ← HE.Enc(pk, µi) for i ∈ [k], the sta-

tistical distance between the distributions (HE.Eval(pk,C, {cti}i≤k), {cti}i≤k, pk, sk) and

(HE.Eval(pk,C0, {ct′i}i≤k), {cti}i≤k, pk, sk) is 2−Ω(λ), where ct′1 = HE.Enc(pk,C(µ1, . . . , µk)),

ct′i = HE.Enc(pk, 0) for i ∈ {2, . . . , k} and C0 : {0, 1}k → {0, 1} is the circuit of depth d

that simply outputs its first input (and ignores the rest).

If the above hold even for keys (sk, pk) and ciphertexts cti for i ∈ [k] that were not

generated honestly, then we say that the HE scheme is maliciously circuit private.

2.6.7 Digital Signature Schemes

One of the most ubiquitous cryptographic primitives is that of digital signature schemes

(DSS). In this section, we recall the definition of digital signature schemes and their

security model.

Syntax and Security Model

Definition 2.6.7. (Digital Signature Scheme) A digital signature scheme consists of

a triplet of (possibly probabilistic) polynomial-time algorithms (KG, Sign,Ver).

The algorithms KG, Sign,Ver are respectively called key-generation, signing, and

verification algorithms. A digital signature scheme is said to be correct iff:

Pr

[
Ver(vk,msg, Sign(sk,msg)) = 1 | (sk, vk) ←$ KG(1λ)

]
= 1, ∀msg ∈ {0, 1}∗

The keys sk and vk are called signing and verification key, respectively.

Informally, a digital signature scheme is secure if no forger, after seeing signatures

of messages of his choosing, can sign a message whose signature he has not already

seen, with noticeable probability [93]. More concretely, we have:

46

Definition 2.6.8. (Unforgeability) A digital signature scheme DSS = (KG, Sign,Ver) is

called existentially unforgeable if for every PPT forger U∗, the probability that after see-

ing vk and {(msg1, σ1), . . ., (msgk, σk)} for any k messages msgi of its choosing (where

k = poly(λ) and σi := Sign(sk,msgi), ∀i ∈ [k]), U∗ can produce an additional message-

signature pair (msg
∗, σ∗) s.t.: DSS.Ver(vk,msg

∗, σ∗) = 1, and msg
∗ < {msg1, . . . ,msgk}

is negl(λ). The probability is taken over the randomnesses of KG, Sign,Ver, and U∗ and

the security game is summarized in Game EUFDSS below:

Game EUFDSS:

• Setup. On input the security parameter 1λ, the game generates a pair of keys via

(sk, vk) ←$ DSS.KG(1λ) and initializes a counter k := 0 as well as a list L := {}. It

then runs adversary U∗ on input vk.

• Online Phase. U∗ is given access to the following oracle:

1. Oracle Sign: On input a message msg, the oracle outputs (msg, σ), where

σ is obtained by invoking DSS’s signing algorithm σ ←$ DSS.Sign(sk,msg).

If σ , ⊥, it appends msg to the list of queried messages via L := L ∪ {msg}

and increments the counter via k := k + 1.

• Output Determination. When the adversary outputs a message-signature pair

(msg
∗, σ∗), the game returns 1 iff a) msg

∗ < {msg1, . . . ,msgk}, and b) DSS.Ver(vk,msg
∗, σ∗) =

1. Otherwise, it returns 0.

We define the advantage of adversary U∗ in Game EUFDSS as:

Adv
EUF

DSS(U
∗) := Pr

[
EUF

U∗

DSS(1
λ) = 1

]
.

In the above security definition, the forger should not be able to produce a signature

of a new message. A stronger security notion called strong unforgeability requires

that in addition to the above, a forger should not even be able to come up with a

different signature for a message whose signature he has already seen. Replacing

condition a) in the output determination phase in game EUFDSS with ‘‘(msg
∗, σ∗) <

{(msg1, σ1) . . . , (msgk, σk)} ’’, yields this stronger definition.

47

Chapter 3

An Overview of Lattice-Based Blind

Signature Schemes and their

Feasibility

3.1 Introduction

We live in the highly digitalized Age of Information. The rise of the Internet heralded a

major and rapid shift from the traditional industry towards an economy based upon

information technologies. Indeed, all of us employ some form of electronic services in

our daily lives (e-mail services, online banking, e-learning through various software,

etc). Not surprisingly, there is great effort being put in the digital transformation of

the global economy as evidenced by the high precedence set for it by administrative

bodies such as the European Commission [1], the wide spread of Information and

Communication Technologies across all business sectors as a means of enhancing

productivity, and by the dramatic increase of cryptocurrencies in only a few years

[2]. This Internet Economy [51] gives rise to a vast new array of opportunities for

businesses, it boosts the development of trustworthy technology, enables a vibrant and

sustainable economy, and fosters an open and democratic society. A major component

of this new economy is the so-called e-business infrastructure and includes hardware,

software, telecommunication networks, support devices, and human capital used in

48

electronic business and commerce [182]. However, digital networks are susceptible

to hacking, which creates the need for sophisticated cryptographic systems in order

to secure transactions over insecure digital networks. On the other hand, it is well-

understood that the amount of disclosed personal user information during any form

of transaction should be kept at a strict minimum. Hence, it is paramount for every

publicly used digital system to strike the right balance between digital security and

digital anonymity.

Digital signatures are a cryptographic primitive that enable one party, termed the

signer, to issue signatures on messages or documents, validating their authenticity

to some other party, termed the user. Such schemes primarily safeguard against at-

tempts of impersonation, repudiation, and message tampering. However, forfeiting the

confidentiality of the message-to-be-signed becomes problematic for privacy-oriented

applications in which the message needs to remain unintelligible to the signer.

Blind Signature schemes (BS) are a variant of digital signatures, pioneered by D.

Chaum in 1982 [53] in an effort to create an electronic version of conventional cash

(e-cash). Since their original conception, they have found a myriad of applications in

electronic voting [114], anonymous authentication via digital credentials [26] (like in

Microsoft’s U-Prove technology [146]), wireless sensor networks (WSN) [186], blindly

signed contracts to ensure anonymity and fairness in cryptocurrencies [100], to name

a few. The key idea in blind signature schemes is to separate the party owning the

message from the party issuing signatures. This is done by allowing the owner of

the message to interact through a cryptographic protocol with the signer in order to

obtain a signature on it but in a way that does not expose it to the signer’s view.

The resulting signature can still be verified against the signer’s public key, just like

with typical digital signatures. However, nobody – not even the signer – can link a

message-signature pair to a signing transcript.

There have been numerous BSS proposals in the literature, including early work

by [53, 54] and later advances [50, 137, 163, 152, 73, 97]. However, all are based

on number-theoretic assumptions, such as the hardness of factoring large integers,

computing discrete logarithms, or the quadratic residuosity problem. Unfortunately,

49

the security assumptions underlying these schemes are known to be vulnerable to

quantum attacks thanks to Shor’s algorithm [169]. As a result, they are ill-suited

candidates for the post-quantum era. There also exist BSS from general complexity

assumptions [70, 75, 104] but their efficiency under standard assumptions poses an

exceptionally difficult task.

By now, lattice-based cryptography is one of the most versatile approaches for

constructing provably secure, efficient, and highly parallelizable cryptographic primi-

tives that can withstand attacks even by quantum computers. This is apparent from

the number of lattice-based candidates in the third round of NIST’s post-quantum

cryptography standardization process [3]. In addition, lattice-based cryptography of-

fers the unique feature of allowing for worst-case to average-case reductions [14, 134,

156, 147, 115], which is needed for cryptographic applications. This not only allows

us to harness the hardness of worst-case lattice problems, but it also greatly simplifies

key selection.

3.1.1 Organization

In Section 3.2 we recall a few preliminary notions that are necessary for presenting

the rest of this chapter. The notion of blind signature schemes and their security

model which will be relevant to later chapters is also recalled. Section 3.3 provides an

overview of the most prominent literary attempts towards designing blind signature

schemes from lattice assumptions. Section 3.4 provides an overview of the current

state-of-the-art blind signature constructions in the lattice setting, along with a dis-

cussion on issues pertaining to their feasibility. Section 3.5 addresses the relationship

between all presented proposals and known impossibility results from the literature.

Finally, Section 3.6 provides a comparison of concrete sizes between all presented

schemes, as well as other post-quantum proposals for blind signature schemes.

This chapter is a partial reprint of [142]. The dissertation author was the primary

investigator and author of this paper.

50

3.2 Preliminaries

3.2.1 Signed Permutations

The notion of signed permutation monomials was introduced in [21].

Definition 3.2.1. (Adapted from [21]) For the ring Rq, we define the set of signed

permutation monomials as S := {(−1)s · X i | s ∈ {0, 1} and 0 ≤ i ≤ n − 1}.

In [21], the authors prove that S forms a group under multiplication in Rq. Fur-

thermore, if we define the set Sn
κ := {v ∈ Rq : ‖v‖1 = κ and ‖v‖∞ ≤ 1}, then any

polynomial c ∈ Sn
κ can be partitioned into a set of partitioning monomials {c1, . . . , cκ}

s.t. c =
∑κ

j=1 c j where c j contains exactly the j-th non-zero entry of c at the exact

same position. Additionally, the following lemma shows that signed permutations can

be used to (individually) ‘‘mask’’ each partitioning monomial:

Lemma 3.2.1. (Adapted from [21]) Let c ∈ Sn
κ be a polynomial and {c1, . . . , cκ} be its

partitioning set. Furthermore, let p1, . . . , pκ be random signed permutations in S and

c∗j = p−1
j c j, ∀ j = 1, . . . , κ. Then, for c j, c∗j ∈ S, the following holds:

Pr
pj←$S

[(c∗1, . . . , c
∗
κ) = (p

−1
1 c1, . . . , p−1

κ cκ) | c] =

Pr
pj←$S,c←$S

n
κ

[(c∗1, . . . , c
∗
κ) = (p

−1
1 c1, . . . , p−1

κ cκ)] =
1

(2n)κ

3.2.2 Blind Signature Schemes

In this section, we recall the syntax and security model of blind signature schemes

from [53, 104].

Definition 3.2.2. (Blind Signature Schemes) A BSS is a tuple of algorithms (PG,KG, Sign =

〈S,U〉,Ver), where Sign is an interactive protocol executed between a signer S and a

user U. Their specification is the following:

• PG(1λ) is a PPT algorithm. On input the main security parameter λ, it outputs

the scheme’s public parameters par.

51

• KG(par) is a PPT algorithm. On input parameters par, it outputs a key pair (sk, pk)

where sk is the secret signing key and pk is the public verification key.

• Sign(sk,msg) = 〈S(sk),U(pk,msg)〉 is an interactive and PPT two-party protocol

between a signer S and a user U (who requests the signature) with a public key

pk as common input. The private input of S is a private key sk, and the private

input of U is a message msg. The signer’s private output is a view V consisting of

all messages exchanged between the two parties, and the user’s private output

is a signature σ on message msg under sk. We also assume that the protocol

generates a status message like ‘‘ok’’ or ⊥ for the signer, denoting success or

failure, respectively.

• Ver(msg, pk, σ) is a deterministic polynomial time algorithm. On input a message

msg, a public key pk, and a purported signature σ, it determines whether σ is a

valid signature on msg with respect to public key pk. If it is valid, the algorithm

outputs 1, otherwise it outputs 0.

According to [104], a secure blind signature scheme must satisfy the following

three properties: correctness, blindness, and one-more unforgeability.

Correctness states that if both the signer and the user comply with the signing

protocol, then the produced blind signature is accepted as a valid signature by the

verification algorithm except with probability ε, which denotes the scheme’s correct-

ness error. More formally, we have:

Definition 3.2.3. (Correctness of BSS) A BSS is correct with correctness error ε ∈ [0, 1],

if for all uniformly picked messages msg ∈ {0, 1}∗, all honestly generated keys (pk, sk),

and any honestly generated signature σ through the signature issuing protocol, σ is

a valid signature with probability:

Pr



msg←$ {0, 1}
∗
,

par←$ BSS.PG(1λ),

σ , ⊥ ∧ BSS.Ver(pk,msg, σ) = 1 (pk, sk) ←$ BSS.KG(par),

σ ← 〈S(sk),U(pk,msg)〉


≥ 1 − ε

52

If ε = 0 in the above definition, we say that BSS has perfect correctness. Similarly, if

ε = negl(λ), we say that BSS has statistical correctness.

Blindness informally states that it is infeasible for a malicious signer to link any

valid signature to the exact instance (or session) of the signature issuing protocol in

which it was created. More formally, we have:

Definition 3.2.4. (Blindness) We define blindness of a blind signature scheme BSS =

(PG,KG, Sign = 〈S,U〉,Ver) via the game in Figure 3.1. In the game, the adversarial

signer S∗ works in three modes. In mode find, it chooses two messages msg0,msg1 and

interacts with two user sessions in mode issue. Depending on a coin flip b ←$ {0, 1},

the first (resp., second) user obtains a blind signature for msgb (resp., msg1−b). After

seeing the unblinded signatures in the original order, w.r.t. msg0,msg1, the signer

has to guess the bit b in mode guess. If either of the user algorithms fails in outputting

a valid signature, the signer is merely notified of the failure but is not given any

signature.

We define the advantage of adversary S∗ in game BlindBSS as AdvBlindBSS (S
∗) :=��Pr[BlindS∗

BSS(1
λ) = 1] − 1/2

��. We say that BSS is statistically blind if for all adversaries

S∗, AdvBlindBSS (A) ≈ 0 (if AdvBlindBSS (S
∗) = 0, we say that it is perfectly blind). We remark that

in the above definition, we consider that the signer behaves honestly and generates its

keys through the scheme’s key generation algorithm. In the stronger,malicious-signer

model, the signer should be unable to link the output signatures to the sessions that

generated them, even if the signer is allowed to pick the keys on its own [75].

One-more unforgeability [104] states that an adversarial user U∗ should be unable

to produce even a single signature more than it should be able to learn through

interacting with an honest signer S. Phrased differently, each completed interaction

between signer and user should yield at most one signature. More formally, we have:

Definition 3.2.5. (One-more unforgeability of BSS) We define one-more unforgeability

of a blind signature scheme BSS = (PG,KG, Sign = 〈S,U〉,Ver) via the game in Figure

3.2, where H denotes a family of random oracles. In particular, after k successful,

complete interactions with honest signer S, the adversarial user U∗ wins if it is able

53

Game BlindBSS(1
λ)

1: (pk, sk) ←$ BSS.KG(1λ)
2: (msg0,msg1, statefind) ←$ S∗(find, 1λ)
3: b←$ {0, 1}

4: stateissue ←$ S∗〈.,U(pk,msgb)〉
1, 〈.,U(pk,msg1−b)〉

1
(issue, statefind)

5: σb := U(pk,msgb), σ1−b := U(pk,msg1−b)

6: If (σ0 =⊥ ∨ σ1 =⊥)

7: b′←$ S∗(guess,⊥,⊥, stateissue)

8: Else

9: b′←$ S∗(guess, σ0, σ1, stateissue)

10: return Jb′ = bK

Figure 3.1: Security game for blindness.

Game OMUFBSS(1
λ)

1: (pk, sk) ←$ BSS.KG(1λ)
2: H←$ H(1

λ)

3: (µ1, σ1), . . ., (µl, σl) ←$ U∗H(.), 〈S(sk),.〉∞(pk)
4: Let k := # successful, complete interactions between U∗ and S.

5: b1 := Jµi , µj, ∀i, j = 1, . . . , l with i , jK
6: b2 := JBSS.Ver(pk, µi, σi) = 1, ∀i = 1, . . . , lK
7: b3 := Jl = k + 1K
8: return b1 ∧ b2 ∧ b3

Figure 3.2: Security game for (honest-user) one-more unforgeability of BSS.

to output l > k valid signatures, where the output signatures correspond to pairwise

distinct messages.

An interactive BSS = (PG,KG, 〈S,U〉, Ver) is said to be (ε, t,Qsig,QH)-one-more un-

forgeable if Ver is deterministic, and for any algorithm U∗ running in time at most

t, making up to Qsig signing queries and up to QH queries to oracle H, we have

Pr

[
OMUFU∗

BSS(1
λ) = 1

]
≤ ε.We define the advantage of adversary U∗ in game OMUFBSS

as AdvOMUF
BSS (U∗) := Pr[OMUFU∗

BSS(1
λ) = 1].

Remark 1. Requiring all message-signature pairs to be pairwise distinct in the condi-

tion on line 5 of Figure 3.2 (i.e., (µi, σi) , (µ j, σj), ∀i, j ∈ [l] s.t. 1 ≤ j < i ≤ l) results in

a stronger security notion called strong one-more unforgeability.

54

Remark 2. It should be noted that the above definition for unforgeability is not mean-

ingful for blind signature schemes with noticeable correctness error (i.e., schemes in

which either party may abort with noticeable probability) [98]. Indeed, because there

is no 1-1 correspondence between a signing session and a message-signature pair,

even if the adversary behaves honestly during the signing protocol, it may obtain less

signatures than the number of closed sessions. However, it still has to come up with

(at least) k + 1 signatures in order to win. This results in a significant weakening of

the definition.

3.3 Overview of Flawed Lattice-Based BSS

In this section we review a number of blind signature schemes in the literature whose

design has been shown to be flawed in one way or another.

3.3.1 Rückert’s Blind Signature Scheme

The first attempt towards constructing blind signature schemes from lattice-based

assumptions was made in 2008 in the seminal work of Rückert [159]. Following a

well-known pattern
1

found in many number-theoretic blind signatures [139, 153, 154,

163, 152], [159] uses Lyubashevsky’s identification scheme [122] as its basis (which

itself relies on the SIS hash function) to construct a Fiat-Shamir-like blind signature

scheme. However, because of the rejection sampling technique (which stems from

the underlying hash function’s enclosedness errors [98]), there is no guarantee that

any given protocol run will actually produce a valid blind signature for the user. The

novelty introduced in [159] to resolve this issue is to extend the standard 3-move

protocol structure with an additional move, in which a user can prove to the signer

that it failed to obtain a valid signature (when unblinding).

1
The recent work of [97] formalizes this pattern but only for hash functions with negligible enclosed-

ness errors.

55

Construction

We now describe Rückert’s blind signature scheme in detail. The parameter defi-

nitions are summarized in Table 3.1. The construction makes use of the following

cryptographic components:

• the R − SIS linear hash function family F(x̂) :=
∑m

i=1 uixi (mod q), x̂ = (x1, . . . , xm) ∈

Rm
q , where û←$ R

m
q .

• a hash function H : {0, 1}∗ → Sc′ (modelled as a programmable random oracle),

• a statistically hiding, and computationally binding commitment function com :

{0, 1}∗ × {0, 1}n → {0, 1}n.

Table 3.1: Parameter definitions for Rückert’s lattice-based blind signature scheme.

Parameter Definition and Constraints

n main security parameter, integer power of 2

dsk positive integer < q/(4n)
Dsk {v ∈ Rq : ‖v‖∞ ≤ dsk}

m positive integer > blog q/log (2dsk)c + 1
Sc′ challenge space {v ∈ Rq : ‖v‖∞ ≤ 1 =: dc′}

u, v positive integer constants ≥ 1
Sb {v ∈ Rq : ‖v‖∞ ≤ undc′ =: db}

Sc {v ∈ Rq : ‖v‖∞ ≤ db − dc′ =: dc}

Dr {v ∈ Rq : ‖v‖∞ ≤ vmn2dsk dc =: dr}

Ds {v ∈ Rq : ‖v‖∞ ≤ dr − ndsk dc =: ds}

Da {v ∈ Rq : ‖v‖∞ ≤ vmnds =: da}

Ds′ {v ∈ Rq : ‖v‖∞ ≤ da − ds =: ds′}

D {v ∈ Rq : ‖v‖∞ ≤ ds + da + ndsk dc′ =: d}
q prime s.t. ≥ 4dmn

√
n log n

Key Generation. On input the main security parameter n, the algorithm selects

56

parameters as specified in Table 3.1.
2 KeyGen(1n) samples polynomials û ←$ R

m
q

defining the homomorphic hash function F and ẑ←$ D
m
sk . Finally, it sets sk := ẑ, and

pk := F(ẑ), and returns (sk, pk).

Signing. The interactive signing protocol 〈S(sk),U(pk,msg)〉 works as follows:

1. Signer: At the outset, the signer samples a masking vector r̂ ←$ D
m
r and com-

putes a commitment R := F(r̂). It sends R to the user.

2. User: The user receives R and samples its masking parameters â ←$ D
m
a and

b ←$ Sb. It samples randomness ρ ←$ {0, 1}
n

and uses it to commit to the

message-to-be-signed by computing C := com(msg, ρ). It computes a ‘‘masked

commitment’’ R
′ := R+F(â)+b ·pk as well as its challenge c

′ := H(R′,C). Because

c
′
will be part of the produced signature, it cannot be sent in the clear. The user

‘‘blinds’’ c
′

as c := c
′ + b. If c < Sc then c

′
‘‘leaks’’ information about c. Hence,

to maintain anonymity, the user only sends c if it falls within Sc and repeats

the entire step from scratch otherwise. This rejection sampling step can be

performed locally by the user without affecting the scheme’s correctness.

3. Signer: Upon receiving c, the signer computes its response ŝ := r̂ + c · sk. To

make ŝ independent of the secret key, the signer rejection-samples it and only

sends it to the user if ŝ ∈ Dm
s . Otherwise, the entire protocol restarts. This

introduces an expected correctness error of 1− e−1/v + o(1) to the blind signature

scheme.

4. User: Upon receiving ŝ, the user checks if F(ŝ) , c · pk + R and ŝ < Dm
s . If

either condition fails, then the signer sent invalid data, and the user can trivially

request a protocol restart. Otherwise, the user ‘‘unblinds’’ the response ŝ by

computing ŝ
′ := ŝ + â. A final rejection sampling step is necessary here in order

to make ŝ
′

independent from ŝ. Hence, the user outputs (c′, ŝ′, ρ) iff ŝ
′
∈ Dm

s′ .

Otherwise, the user reveals the blinding parameters â, b, the challenge c
′

and

the commitment to the message C (the user only withholds the decommitment

2
These parameters are globally known and implicit inputs to all other algorithms.

57

parameter ρ to avoid having to reveal msg) to the signer and requests a restart.

Notice that rejection sampling during this step further amplifies the blind signa-

ture scheme’s correctness error by an additional factor of 1 − e−1/v + o(1).

5. Signer: The signer receives â, b, the challenge c
′

and the commitment to the

message C. These allow the signer to trace all computations performed on the

user’s side and ascertain if a restart is truly necessary. To this end, it computes

the blinded commitment R
′ := R + F(â) + b · pk, as well as c̃1 := H(R′,C) and

c̃2 := H(F(ŝ + â) − c
′ · pk,C). If ŝ ∈ Dm

s , c − b = c
′
, c
′ = c̃1 = c̃2, and ŝ + â < Dm

s′ ,

the signer restarts the entire protocol. Otherwise, the user attempts to cheat by

submitting an invalid ‘‘proof’’ and the signer simply dismisses the request.

Verification. On input public key pk, a purported signature (c′, ŝ′, ρ) and mes-

sage msg, algorithm Ver(pk, (c′, ŝ′, ρ),msg) outputs 1 iff ŝ
′
∈ Dm

s′ and H(F(ŝ′) − pk ·

c
′, com(msg, ρ)) = c

′
. Otherwise, it outputs 0.

Claimed Security Results

While rejection-sampling can be used for tailoring the distributions of messages ex-

changed during the protocol, it comes at the cost of introducing a noticeable correct-

ness error to the scheme:

Lemma 3.3.1. (Adapted from Theorem 3.3. of [159]) The construction of [159] has an

expected correctness error of (1 − e−1/v + o(1))2.

Moreover, because of its reliance on a commitment scheme, the construction of [159]

is only as blind as com is hiding.

Lemma 3.3.2. (Adapted from Theorem 3.5. of [159]) If com is a statistically (resp.

perfectly) hiding commitment function, then the construction of [159] is statistically (resp.

perfectly) blind.

Finally, unforgeability relies on the collision resistance of the R − SIS hash function

family, as well as the binding property of com:

58

Lemma 3.3.3. (Adapted from Theorem 3.8. of [159]) If com is a computationally binding

commitment function and the R − SIS hash function is collision-resistant in D, then the

construction of [159] is one-more unforgeable.

3.3.2 BLAZE

BLAZE [21] is a blind signature scheme, structurally similar to [159]. The signing

protocol relies on rejection sampling with discrete Gaussian samples, instead of uni-

form, which allows for smaller key and signature sizes. Furthermore, the use of signed

permutations allows their scheme to avoid having to rejection-sample the challenge

part of the signature (when unblinding), thus achieving a smaller correctness error.

The key result ensuring this is Lemma 3.2.1.

Construction

We now describe the BLAZE blind signature scheme in detail. BLAZE makes use of

the following cryptographic ingredients:

• a public (randomly chosen) deterministic function Expand : {0, 1}λ → Rm
q (can be

instantiated for example with a PRF),

• a hash function H : {0, 1}∗ → Sn
κ modelled as a random oracle,

• a statistically hiding and computationally binding commitment function com :

{0, 1}∗ × {0, 1}λ → {0, 1}λ,

• functions Compress and Decompress for compressing (resp. decompressing) in-

tegers distributed according to DZ,σ (for implementation details cf. Table 3 in

[67]).

Parameter Generation. On input the main security parameter λ, algorithm PG(1λ)

sets the scheme’s public parameters par according to the specifications of Table 3.2,

and it outputs par.

Key Generation. On input public scheme parameters par, the key generation al-

gorithm KG samples a seed ←$ {0, 1}
λ

and ẑ1, z2 ← Dm
Zn,σ × DZn,σ. It expands the

59

Table 3.2: Parameter definitions for the BLAZE blind signature scheme.

Parameter Definition and Constraints

λ main security parameter

n integer power of 2

m number of polynomials in the secret key s.t. m + 1 ≥ 2
q prime modulus s.t. q ≡ 1 (mod 2n)

σ standard deviation for the distribution from which

the secret key is drawn s.t. σ > 0, (m + 1) log (tσ) > log (q)
κ Hamming weight of H’s output s.t. 2κ

(n
κ

)
> 2λ

s∗ standard deviation of the distribution from which the signer

draws its blinding parameters s.t. s∗ = α∗
√
κ‖sk‖, α∗ > 0

s standard deviation of the distribution from which the user

draws its blinding parameters s.t. s = ηαs∗
√
(m + 1)κn‖sk‖, α, η > 0

η(m+1)ne
(m+1)n

2 (1−η2) ≤ 2−λ

M expected number of iterations s.t. M = e
12
α +

1
2α2 +

12
α∗
+ 1

2α∗2

seed to a vector of polynomials by computing â := Expand(seed), and it also computes

b := â · ẑ1 + z2 (mod q). It sets sk = (ẑ1, z2), and pk = (seed, b), and returns (sk, pk).

Signing. The interactive signing protocol 〈S(sk, seed),U(pk, seed,msg)〉 works as follows:

1. Signer: On input secret key sk, as well as seed, the signer first expands the seed

via â := Expand(seed). It then samples masking terms r̂
∗
1,1, . . . , r̂

∗
κ,1 ← Dm

Zn,s∗ and

r
∗
1,2, . . . , r

∗
κ,2 ← DZn,s∗ and computes commitments R j := â · r̂

∗
j,1+ r

∗
j,2 (mod q), ∀ j ∈

[κ]. It sets R̂ := (R1, . . . ,Rκ), and it sends R̂ to the user.

2. User: On input seed, and a message msg ∈ {0, 1}∗, and commitment R̂, the

user computes â := Expand(seed). It samples randomness r, r′, ρ, ρ′ ←$ {0, 1}
λ
,

signed permutations p1, . . . , pκ ←$ S, and masking terms (ê1, e2) ←ρ Dm+1
Zn,s (no-

tice that the random coins are fixed through ρ). It computes commitments

C1 := com(msg, r) and C2 := com(ρ′, r′) and a challenge c := H(â · ê1 + e2 +∑κ
j=1 p jR j,C1,C2). It partitions c =

∑κ
j=1 c j ∈ S

n
κ and individually blinds each

partitioning term via c∗j := p−1
j c j ∈ S. It sets c

∗ := (c∗1, . . . , c
∗
κ) and sends c

∗
to the

signer.

3. Signer: The signer receives c
∗

and computes its responses with the help of

60

its secret key sk = (ẑ1, z2). In particular, it computes ŝ
∗
j,1 := r̂

∗
j,1 + ẑ1c∗j , s

∗
j,2 :=

r
∗
j,2+z2c∗j , ∀ j ∈ [κ], and sets ŝ

∗ := (ŝ∗1,1, . . . , s
∗
κ,2), and it rejection-samples ŝ

∗
using

Algorithm 1 to ensure that it is distributed independently from sk. In case of

rejection (which occurs with probability 1 − e−12/α∗−1/(2α∗2)
), the entire protocol

restarts. Otherwise, ŝ
∗

is sent to the user.

4. User: The user receives ŝ
∗ := (ŝ∗1,1, . . . , s

∗
κ,2) and computes v̂1 :=

∑κ
j=1 p j ŝ

∗
j,1,

v2 :=
∑κ

j=1 p js
∗
j,2. If ‖(v̂1, v2)‖ > ηs∗

√
(m + 1)κn, then the signer submitted an

invalid response and the entire protocol must be restarted. Otherwise, it ‘‘un-

blinds’’ the response via ŝ1 := v̂1 + ê1 and s2 := v2 + e2. It then invokes

Rejection_Sample((ŝ1, s2), (v̂1, v2); ρ
′) to make (ŝ1, s2) independent from (v̂1, v2).

Notice that the user needs to fix the random coins of Algorithm 1 through ρ′

to which it committed to earlier in the protocol. If rejection sampling fails (which

occurs with probability 1− e−12/α−1/(2α2)
), the user sends (C1, ρ, ρ

′, r′, p1, . . . , pκ, c)

to the signer, requesting a protocol restart. Otherwise, it compresses (ŝ1, s2) via

(ŝ1, s2) := Compress(ŝ1, s2) and it outputs (C2, r, ŝ1, s2, c) as its signature.

5. Signer: Upon receiving (C1, ρ, ρ
′, r′, p1, . . . , pκ, c), the signer uses ρ to retrieve

3

ê1, e2 via (ê1, e2) ←ρ Dm+1
Zn,s . It then computes C2 := com(ρ′, r′), ŝ1 := ê1 +∑κ

j=1 p j ŝ
∗
j,1, s2 := e2+

∑κ
j=1 p js

∗
j,2. If

∑κ
j=1 p jc∗j = c, c = H(â·ê1+e2+

∑κ
j=1 p jR j (mod q),

C1,C2), c = H(â · ŝ1+s2−bc (mod q),C1,C2), and Rejection_Sample((ŝ1, s2); ρ
′) = 0,

the signer is convinced and restarts the protocol. Otherwise, it ignores the re-

quest.

Verification. On input public key pk = (seed, b), message msg ∈ {0, 1}∗ and a pur-

ported signature (C2, r, ŝ1, s2, c), the verifier expands the seed to obtain â := Expand(seed),

and it decompresses (ŝ1, s2) using Decompress. If ‖(ŝ1, s2)‖ < ηs
√
(m + 1)n and c =

H(â · ŝ1 + s2 − bc (mod q), com(msg, r),C2), it outputs 1 (accept). Otherwise, it outputs

0 (reject).

3
Essentially, the signer samples from distribution Dm+1

Zn,s with fixed random coins.

61

Claimed Security Results

Thanks to the use of signed permutations, the correctness error that would be induced

when unblinding the challenge part of a signature is completely eliminated:

Lemma 3.3.4. (Adapted from Theorem 1 of [21]) If the parameters for BLAZE are set

according to Table 3.2, then BLAZE has a correctness error of (1 − e−12/α∗−1/(2α∗2))(1 −

e−12/α−1/(2α2)).

As with [159], reliance on com affects the blindness property:

Lemma 3.3.5. (Adapted from Theorem 2 of [21]) If com is a statistically hiding commit-

ment function, then BLAZE is statistically blind.

Similarly to [159], unforgeability is also conditioned on the binding property of com:

Lemma 3.3.6. (Adapted from Theorem 3 of [21]) If com is a statistically hiding and

computationally binding commitment function, and R − SIS is hard for the parameters

set according to Table 3.2, then BLAZE is strongly one-more-unforgeable.

Attacks and Countermeasures

BLAZE can be attacked by exploiting a subtle design flaw as hinted in [98]. Notice that

because a malicious user has complete control over the randomness ρ, it can attack

the protocol by rigging ρ so that u (line 5 of Algorithm 1) is always picked very close to

1 (e.g., with statistical distance at most 1 − 2−128
), thus causing the Rejection_Sample

algorithm to always output 0 when the user tries to unblind. This allows the user to

keep asking for new signatures until it can produce its own forgery and win in the

unforgeability game. One possible countermeasure to this kind of attack would be to

switch the distribution from discrete Gaussian to uniform but this would increase key

and signature sizes considerably.

3.3.3 BLAZE+

BLAZE+ [19] introduces a novel technique for reducing the correctness error by per-

forming multiple rejection samplings in parallel. Instead of sampling a single pair of

62

masking terms (ê1, e2), the user samples multiple such pairs and stores (a function of)

each such pair as a leaf of a Merkle tree. This offers the advantage that when the user

tries to unblind to produce its signature, it will succeed for at least one of these pairs

with very high probability. By tuning the number of sampled pairs to a sufficiently

large amount, this probability can effectively be made negligible. The optimizations

introduced are backwards compatible with BLAZE.

Table 3.3: Parameter definitions for the BLAZE+ blind signature scheme(s).

Parameter Definition and Constraints

λ main security parameter

n integer power of 2

m number of polynomials in the secret key s.t. m + 1 ≥ 2
q prime modulus s.t. q ≡ 1 (mod 2n)

γ positive integer constant

σ standard deviation for the distribution from which

the secret key is drawn s.t. σ > 0, (m + 1) log (tσ) > log (q)
κ Hamming weight of H’s output s.t. 2κ

(n
κ

)
> 2λ

s∗ standard deviation of the distribution from which the signer

draws its blinding parameters s.t. s∗ = α∗γσ
√
(m + 1)κn, α∗ > 0

s standard deviation of the distribution from which the user

draws its blinding parameters s.t. s = ηαs∗
√
(m + 1)κn, α, η > 0,

η(m+1)ne
(m+1)n

2 (1−η2) ≤ 2−λ

Three-move Variant of BLAZE+

We now describe the 3-move variant of the BLAZE+ blind signature scheme in detail.

This variant makes use of the following cryptographic ingredients:

• a public (randomly chosen) deterministic function Expand : {0, 1}λ → Rm
q (can be

instantiated for example with a PRF),

• a hash function H : {0, 1}∗ → Sn
κ modelled as a random oracle,

• functions Compress and Decompress for compressing (resp. decompressing) inte-

gers distributed according to DZ,σ.

63

Parameter Generation. On input the main security parameter λ, algorithm PG(1λ)

generates the scheme’s public parameters par according to Table 3.3 and it outputs

par.

Key Generation. On input the scheme’s parameters par, algorithm KG(par) samples

a seed ←$ {0, 1}
λ

and ẑ := (ẑ1, z2) ← Dm
Zn,σ × DZn,σ. If ‖(ẑ1, z2)‖ > γσ

√
(m + 1)n,

the algorithm resamples (ẑ1, z2). It expands the seed to a vector of polynomials by

computing â
′ := Expand(seed), and sets â := (1, â′) It also computes b := â · ẑ (mod q).

It sets sk = ẑ, and pk = (seed, b), and returns (sk, pk).

Signing. The interactive signing protocol 〈S(sk, seed),U(pk, seed,msg)〉 works as follows:

1. Signer: On input secret key sk, as well as seed, the signer expands the seed

via â
′ := Expand(seed) and sets â := (1, â′). It samples masking parameters

r̂
∗
1, . . . , r̂

∗
κ ←$ Dm+1

Zn,s∗ and computes commitments R j := â · r̂
∗
j (mod q), ∀ j ∈ [κ]. It

sets R̂ := (R1, . . . ,Rκ) and sends R̂ to the user.

2. User: On input seed, and a message msg ∈ {0, 1}∗, the user also expands the

seed â
′ := Expand(seed) and sets â := (1, â′). It samples signed permutations

p1, . . . , pκ ←$ S, randomness ρ ←$ {0, 1}
λ
, and masking terms (ê0, . . . , êl−1) ←ρ

Dm+1
Zn,s (notice that the random coins are fixed through ρ). It computes y :=∑κ
j=1 p jR j (mod q) as well as t j := â · ê j+y (mod q), ∀ j = 0, . . . , l−1. It uses the t j

elements as leaf nodes to construct a Merkle tree via (tree, root) := HashTree(t0, . . .,

tl−1). It computes its challenge c := H(root,msg) and partitions it into monomials

c j (this can trivially be done by writing c in the form c =
∑κ

j=1 c j, c j ∈ S). It blinds

the partitioning monomials with the help of signed permutations p1, . . . , pκ via

c∗j := c j p−1
j . It sets c

∗ := (c∗1, . . . , c
∗
κ) as the blinded challenge and transmits c

∗
to

the signer.

3. Signer: On input a blinded challenge c
∗
, the signer computes its responses ŝ

∗
j :=

r̂
∗
j + sk · c∗j , ∀ j ∈ [κ]. It then invokes Rejection_Sample((ŝ∗1, . . . , ŝ

∗
κ), (sk · c∗1, . . . , sk · c∗κ))

to make its response independent of sk. If rejection sampling fails, it restarts the

entire protocol. Otherwise, it sets ŝ
∗ := (ŝ∗1, . . . , ŝ

∗
κ) and sends ŝ

∗
to the user.

4. User: The user receives ŝ
∗

and computes v̂ :=
∑κ

j=1 p j ŝ
∗
j . If ‖v̂‖ > ηs∗

√
(m + 1)κn,

64

the protocol is aborted (this occurs with probability 2−λ). The user then locates

the first ê j, j ∈ {0, . . . , l − 1} for which rejection sampling of ê j + v̂ succeeds (if

none succeed, the protocol is aborted)
4
. Let I be the index of the first success-

ful rejection sampling. The user sets ŝ := Compress(êI + v̂) and also invokes

BuildAuth(I, tree) to compute an authentication path proving that the I-th el-

ement under root was used to compute ŝ. It outputs (ŝ, c, auth) as its blind

signature.

Verification. On input public key pk, message msg ∈ {0, 1}∗ and a purported signature

(ŝ, c, auth), the verifier expands the seed to obtain â
′ := Expand(seed), â := (1, â′) and

decompresses the signature via ŝ := Decompress(ŝ). It computes w := â · ŝ−bc (mod q)

and root := RootCalc(w, auth). If ‖ŝ‖ ≤ ηs
√
(m + 1)n and c = H(root,msg), it returns 1

(accept). Otherwise, it outputs 0 (reject).

Claimed Security Results

Correctness is significantly improved over BLAZE thanks to the use of a Merkle tree:

Lemma 3.3.7. (Adapted from Theorem 1 of [19]) If the parameters are set according to

Table 3.3, then BLAZE+ has a correctness error of 2−2λ
.

While this variant manages to decouple itself from relying a commitments scheme, it

still satisfies blindness in a statistical sense:

Lemma 3.3.8. (Adapted from Theorem 2 of [19]) BLAZE+ is statistically blind.

Finally, as long as the hash function G used for constructing the Merkle tree satisfies

collision-resistance and R − SIS is hard, BLAZE+ is strongly one-more unforgeable:

Lemma 3.3.9. (Adapted from Theorem 3 of [19]) If G : {0, 1}∗ → {0, 1}2λ is a collision-

resistant hash function used for constructing the Merkle trees during the signing protocol,

and R − SIS is hard for the parameters set according to Table 3.3, then BLAZE+ is

strongly one-more unforgeable in the ROM.

4
This occurs with probability 2−λ.

65

Four-move Variant of BLAZE+

In [19], the authors propose a second, 4-move, ‘‘hybrid’’ variant of BLAZE+ in which

the user can prove that a session did not yield a valid signature similarly to BLAZE.

This approach however circumvents the attack discussed in Section 3.3.2 because

multiple rejection samplings are performed when the user unblinds. The number of

such samplings can be set to a sufficiently high value, which guarantees that at least

one of them will lead to a successful result, thus preventing the user from claiming

otherwise. In addition to the cryptographic ingredients required in the 3-move variant

of BLAZE+, this variant also makes use of a statistically hiding and computationally

binding commitment function com : {0, 1}∗ × {0, 1}λ → {0, 1}λ.

Parameter Generation. Algorithm PG(1λ) is identical to the 3-move variant of BLAZE+.

Key Generation. Algorithm KG(par) is identical to the 3-move variant of BLAZE+.

Signing. The interactive signing protocol 〈S(sk, seed),U(pk, seed,msg)〉 works as follows:

1. Signer: On input secret key sk, as well as seed, the signer expands the seed â
′ :=

Expand(seed) and sets â := (1, â′). It samples masking parameters r̂
∗
1, . . . , r̂

∗
κ ←$

Dm+1
Zn,s∗ and computes commitments R j := â · r̂

∗
j (mod q), ∀ j ∈ [κ]. It sets R̂ :=

(R1, . . . ,Rκ) and sends R̂ to the user.

2. User: On input seed, and a message msg ∈ {0, 1}∗, the user also expands

the seed â
′ := Expand(seed) and sets â := (1, â′). It samples signed permuta-

tions p1, . . . , pκ ←$ S, random coins r, r′, ρ, ρ′ ←$ {0, 1}
λ
, and masking terms

(ê0, . . . , êl−1) ←ρ Dm+1
Zn,s (notice that the random coins are fixed through ρ). It

commits to the message-to-be-signed msg and the randomness ρ′ by comput-

ing C1 := com(msg, r) and C2 := com(ρ′, r′), respectively. It computes y :=∑κ
j=1 p jR j (mod q) as well as t j := â · ê j+y (mod q), ∀ j = 0, . . . , l−1. It uses the t j

elements as leaf nodes to construct a Merkle tree via (tree, root) := HashTree(t0, . . .,

tl−1). It computes its challenge c := H(root,C1,C2) by passing C1 and C2 as in-

puts to H, and partitions the challenge into monomials c j (this can trivially be

done by writing c in the form c =
∑κ

j=1 c j, c j ∈ S). It blinds the partitioning

monomials with the help of signed permutations p1, . . . , pκ via c∗j := c j · p−1
j . It

66

sets c
∗ := (c∗1, . . . , c

∗
κ) as the blinded challenge and transmits c

∗
to the signer.

3. Signer: On input a blinded challenge c
∗
, the signer computes its responses ŝ

∗
j :=

r̂
∗
j + sk · c∗j , ∀ j ∈ [κ]. It then invokes Rejection_Sample((ŝ∗1, . . . , ŝ

∗
κ), (sk · c∗1, . . . , sk · c∗κ))

to make its response independent of sk. If rejection sampling fails, it restarts the

entire protocol. Otherwise, it sets ŝ
∗ := (ŝ∗1, . . . , ŝ

∗
κ) and sends ŝ

∗
to the user.

4. User: The user receives ŝ
∗

and computes v̂ :=
∑κ

j=1 p j ŝ
∗
j . If ‖v̂‖ > ηs∗

√
(m + 1)κn,

the protocol is aborted (this occurs with probability 2−λ). The user expands ρ′

into l random coins via (ρ0, . . . , ρl−1) := Expand(ρ′). The user then locates the first

pair of the form (ê j, ρ j), j ∈ {0, . . . , l−1} for which rejection sampling of ê j+v̂ with

fixed randomness ρ j succeeds. Let I be the index of the first successful rejection

sampling. The user sets ŝ := Compress(êI + v̂) and also invokes BuildAuth(I, tree)

to compute an authentication path proving that the I-th element under root was

used to compute ŝ and it outputs (C2, r, ŝ, c, auth) as its blind signature. On the

contrary, if all rejection samplings fail, it sends (C1, ρ, ρ
′, r′, p1, . . . , pκ, c) to the

signer, requesting a restart.

5. Signer: Upon receiving (C1, ρ, ρ
′, r′, p1, . . . , pκ, c), the signer computes C2 := com(ρ′, r′),

(ρ0, . . . , ρl−1) := Expand(ρ′), (ê0, . . . , êl−1) ←ρ Dm+1
Zn,s , y :=

∑κ
j=1 p jR j (mod q),

t j := â · ê j + y (mod q), ∀ j = 0, . . . , l − 1, (tree, root) := HashTree(t0, . . . , tl−1),

v̂ :=
∑κ

j=1 p j ŝ
∗
j . For each j ∈ {0, . . . , l − 1}, the signer computes w := â · (ê j + v̂) −

bc (mod q) and auth j := BuildAuth(j, tree). It then verifies that all rejection sam-

plings on the user’s side failed by checking whether c , H(RootCalc(w j, auth j),C1,C2)

or Rejection_Sample(êj + v̂, ρj) = 1, ∀ j = 0, . . . , l − 1, and if that is the case, it ig-

nores the user’s request. Finally, if c = H(root,C1,C2) =
∑κ

j=1 p jc∗j , the signer

restarts the entire protocol. Otherwise, it ignores the user’s request.

Verification. On input public key pk, message msg ∈ {0, 1}∗ and a purported sig-

nature (C2, r, ŝ, c, auth), the verifier expands the seed to obtain â
′ := Expand(seed), â :=

(1, â′) and decompresses the signature via ŝ := Decompress(ŝ). It computes w :=

â · ŝ − bc (mod q) and root := RootCalc(w, auth). If ‖ŝ‖ ≤ ηs
√
(m + 1)n and c =

H(root, com(msg, r),C2), it returns 1 (accept). Otherwise, it outputs 0 (reject).

67

3.3.4 Ermann’s Blind Signature Scheme

Ermann et al. [42] propose a 3-move ‘‘Schnorr-like’’ blind signature scheme from

lattice assumptions but with a twist in order to achieve perfect correctness. The

key idea is to trapdoor the SIS function using a technique from [133]. This allows

the signer to sample a preimage for its response until the latter satisfies a certain

shortness condition. Since the signer can always come up with an appropriately

distributed response, it is freed from having to restart the entire protocol. Moreover,

the user is also freed from having to rejection sample when it unblinds to obtain its

signature.

Construction

The only cryptographic block required for their scheme is a hash function H : {0, 1}∗ →

R2 modelled as a random oracle.

Table 3.4: Parameter definitions for the Ermann et al. blind signature scheme.

Parameter Definition and Constraints

λ main security parameter

n integer power of 2

m number of polynomials in the secret key s.t. m := blog (q)c + 1

α ω(k
√

log (n))
β 2ω(log (n))σ

√
n

γ nα
τ standard deviation of the distribution from which the secret key is drawn

σ ω((n
√

nα)
√

log (n))
D t

√
nm(β + σ)

q prime modulus s.t. q ≥ 4mn
√

n log (n)

Parameter Generation. On input the main security parameter λ, algorithm PG(1λ)

selects the scheme’s public parameters par according to Table 3.4 and it outputs par.

Key Generation. Let ĝ = (1, 2, 22, . . . , 2k−1)T ∈ Rk
q , with k = dlog2 (q)e be the gadget

vector. On input the scheme’s parameters par, algorithm KG(par) samples ŝ ←$ R
m
3 ,

a vector of polynomials â
′
←$ R

m−k
q , h ←$ Rq and a short trapdoor vector T̂â ∈

R
(m−k)×k
q from a discrete Gaussian distribution with variance τ. It computes a vector

of polynomials â := (â′T,hĝ−â
′T

T̂â)
T
. Let Fâ : Rm

q → Rq be the SIS function defined by â

68

(i.e., Fâ(x̂) := â · x̂). The algorithm computes S := Fâ(ŝ), it sets sk := (ŝ, T̂â), pk := (S, â),

and outputs (sk, pk).

Signing. The interactive signing protocol 〈S(sk),U(pk,msg)〉 works as follows:

1. Signer: The signer samples a masking vector r̂ ←$ Dm
R,σ

and computes a com-

mitment R := Fâ(r̂). It sends R to the user.

2. User: The user receives R and samples masking parameters t1 ←$ DR,α, t̂2 ←$

Dm
R,β

. If ‖t̂2‖ > tβ
√

mn, it resamples t̂2. It computes its challenge via c :=

H(R− t1 ·S−Fâ(t2),msg) and blinds it by computing c
∗ := c− t1. With probability

min (1,
DR,α

G1·DR,α,c
), the user sends c

∗
to the signer. Otherwise, it repeats the entire

step from scratch.

3. Signer: The signer receives c
∗

and computes its response ẑ
∗ := c

∗ · ŝ + r̂. With

probability min (1,
Dm
R,σ

G2·Dm
R,σ,c∗ ·̂s

), ẑ
∗

will be used by the signer. With probability

1 − min (1,
Dm
R,σ

G2·Dm
R,σ,c∗ ·̂s

), the signer uses T̂â to sample a preimage of c
∗ · S + R via

ẑ
∗
← PreSample(T̂â, c

∗ · S + R, σ). If ‖ẑ
∗
‖ > tσ

√
mn, it samples a fresh preimage

for c
∗ · S + R. Once this condition is satisfied, it sends ẑ

∗
to the user.

4. User: The user unblinds the signer’s response by simply computing ẑ := ẑ
∗
− t̂2.

It outputs (c, ẑ) as its blind signature.

Verification. On input public key pk, a purported signature (ẑ, c) and message msg ∈

{0, 1}∗, algorithm Ver(pk, (ẑ, c),msg) outputs 1 iff ‖ẑ‖ ≤ t(β + σ)
√

mn and H(Fâ(ẑ) − S ·

c,msg) = c. Otherwise, it outputs 0.

Claimed Security Results

Thanks to the use of a trapdoor, the signer is always able to respond to the signer,

without having to abort the interactive protocol. This also results in freeing the user

from having to rejection sample when unblinding:

Lemma 3.3.10. (Theorem 2 in [42]) The construction of [42] has perfect correctness.

Even though no commitment scheme is used, blindness is shown to hold in a statis-

tical sense:

69

Lemma 3.3.11. (Theorem 3 in [42]) The construction of [42] is statistically blind.

Finally, unforgeability is based on the hardness of the (Ring) k − SIS problem:

Lemma 3.3.12. (Theorem 4 in [42]) If Ring k − SISq,m,D is hard for the parameters set

according to Table 3.4, then construction of [42] is one-more unforgeable.

3.3.5 The Forking Lemma and Other Flawed Constructions

The recent work of [98] states a very subtle flaw that is shared by all of the construc-

tions presented so far and which stems from an incorrect application of the general

Forking Lemma [32]. The key strategy employed in their unforgeability proofs is to

rewind the adversary with a partially changed random oracle so as to obtain two

distinct values χ and χ′ s.t. F(χ) = F(χ′), where F is the (Ring) SIS hash function

family. The value χ − χ′ is then a non-trivial solution for the underlying hard lattice

problem (i.e., R − SIS). In order to prove that χ − χ′ is non-trivial, they try to apply

an argument similar to Lemma 8 from [155], and state that non-triviality is a direct

consequence of the scheme’s witness indistinguishability. This is incorrect because

Lemma 8 of [155] only implies that there exist two distinct secret keys sk, sk′, leading

to identical protocol transcripts. This argument however does not suffice for claiming

non-triviality and applying the general Forking Lemma.

Zhu et al. [188] follow a completely different approach based on the hardness of the

closest vector problem (CVP) in order to design round-optimal (i.e., with only 2-moves)

blind signature schemes from lattice assumptions. Their construction however has

been shown to be flawed in [57] (also see [21] for an attack).

Another line of papers [119, 185, 187, 82] attempt to construct ‘‘RSA-style’’ blind

signature schemes (and variants thereof). All of them however are vulnerable to an

attack described in [21] (also see [159] for a discussion).

Remark 3. (from [159]) It is impossible to construct secure RSA-style [53, 54, 55] blind

signatures from lattice assumptions (i.e., following the pattern: hash→ blind→ invert

→ unblind) because then the scheme becomes vulnerable to an attack described in

[159].

70

Finally, [143] (which we present in Chapter 4) attempts to construct partially-

blind signature schemes (i.e., schemes in which both the signer and the user share a

common public value) from lattice assumptions. This work also has a flawed security

proof due to the incorrect application of the Forking Lemma mentioned above. We

are currently unaware of any provably secure partially-blind signature scheme from

lattice assumptions.

3.4 Overview of Provably Secure Lattice-Based BSS

In this section, we review all provably secure proposals of blind signature schemes

from lattice assumptions. There currently exist two approaches for rendering blind

signatures from lattices. The first by [98] adapts the paradigm of the Okamoto-Schnorr

blind signature [139] from the discrete logarithm setting to the lattice setting and ex-

pands on the techniques introduced in [21, 19] to obtain a very modular (generic)

construction. The second one followed by Agrawal et al. [12] is based on the observa-

tion that homomorphic encryption can be used to achieve round-optimality for blind

signatures in the lattice setting [84].

3.4.1 Hauck et al.’s Blind Signature Scheme

The recent work of [98] proposes for the first time a correct and modular treatment

for rendering canonical (i.e., 3-move) blind signature schemes from any linear hash

function family displaying some form of correctness error. Their construction is secure

in the ROM even against forgers that are allowed to perform concurrent protocol

executions. The key idea is to have the signer commit to multiple masking terms

during its first move, then have the user also pick multiple masking parameters and

to store (a function of) each such combination as a leaf of a Merkle tree. This approach

guarantees that for sufficiently many sampled blinding parameters, the probability

of aborting during rejection-sampling (on either side) in the signing protocol will be

negligible. The user can use an authentication path in order to prove that a particular

trial under the Merkle tree’s root was indeed used for producing its signature. While

71

Table 3.5: Parameter definitions for the Hauck et al. blind signature scheme.

Parameter Definition and Constraints

λ main security parameter

n integer power of 2

m number of polynomials in the secret key s.t. m > log (q)/log (2 ∗ d)
q prime modulus s.t. q ≥ 4dmn

√
n log (n)

ι number of irreducible factors of xn + 1 modulo q s.t. q ≡ 2ι + 1 (mod 4ι)
δ bound for the infinity norm of torsion-free elements from the kernel of F s.t. (δ + 1)mn > qn

dsk bound for the infinity norm of secret keys

Dsk {v ∈ Rq : ‖v‖∞ ≤ dsk}

dc′ bound for the infinity norm of the outputs of H
Sc′ the challenge space {v ∈ Rq : ‖v‖∞ ≤ dc′}

u, v,w positive integer constants for controlling the accept-reject ratio of rejection sampling

µ number of blinding parameters b j picked by the user

η number of commitments Ri sent by the signer

ν number of blinding parameters âk picked by the user

db bound for the infinity norm of blinding parameters b j s.t. db := udc′n
Sb {v ∈ Rq : ‖v‖∞ ≤ db}

dc bound for the infinity norm of blinded challenges c s.t. dc <
1

2
√
ι
q1/ι

Sc {v ∈ Rq : ‖v‖∞ ≤ dc}

dr bound for the infinity norm of blinding parameters r̂i s.t. dr ≥ vmn2dsk dc
Dr {v ∈ Rq : ‖v‖∞ ≤ dr}

ds bound for the infinity norm of signer responses ŝ s.t. ds := drndsk dc
Ds {v ∈ Rq : ‖v‖∞ ≤ ds}

da bound for the infinity norm of blinding parameters âk s.t. da := wdsnm
Da {v ∈ Rq : ‖v‖∞ ≤ da}

ds′ bound for the infinity norm of unblinded responses ŝ
′
s.t. ds′ := da − ds

Ds′ {v ∈ Rq : ‖v‖∞ ≤ ds′}

d d := 2ds′, d < 1
2 min {q, 22

√
n log (q) log (δ)(n log (q)/log (δ))−1/4}

D {v ∈ Rq : ‖v‖∞ ≤ d}

the construction in [98] is generic, below we focus on its instantiation from the Ring

SIS linear hash function family.

Construction

Let 2Int : [η] × [ν] × [µ] → [ηνµ] be the mapping (i, j, k) 7→ i + η · (j − 1)+ ην · (k − 1), s.t.

2Int(1, 1, 1) = 1 and 2Int(η, ν, µ) = ηνµ. The main building blocks for the construction

of [98] are:

• a hash function H : {0, 1}∗ → Sc′ := {c′ ∈ Rq : ‖c′‖∞ ≤ dc′}, modeled as a random

oracle,

• a collision-free and chain-free hash function G : {0, 1}∗ → {0, 1}2λ.

72

Parameter Generation. On input the security parameter λ, algorithm PG(1λ) selects

the scheme’s public parameters par according to Table 3.5 and it outputs par.

Key Generation. On input the scheme’s parameters par, algorithm KG(par) samples

a secret key ẑ←$ D
m
sk . It sets sk := ẑ and computes the public key via pk := F(sk) and

outputs (sk, pk).

Signing. The interactive signing protocol 〈S(sk),U(pk,msg)〉 works as follows:

1. Signer: The signer picks masking parameters r̂i ←$ D
m
r , ∀i ∈ [η] and computes

Ri := F(r̂i), ∀i ∈ [η]. It sends commitment R̂ := (R1, . . . ,Rη) to the user.

2. User: The user receives R̂ = (R1, . . . ,Rη) and picks its own masking parameters

â1, . . . , âν ←$ D
m
a , b1, . . . , bµ ←$ Sb, and γ ←$ Zη. It computes all possible

combinations of masked commitments R
′
i⊕γ, j,k := Ri+F(âk)+b j ·pk for all (i, j, k) ∈

[η] × [µ] × [ν]. It constructs a Merkle tree with the masked commitments as

leaves via (tree, root) := HashTree(R′1,1,1, . . . ,R
′
η,µ,ν). It then computes its challenge

as c
′ := H(root,msg) and proceeds to locate the first masking polynomial b.

for which rejection-sampling succeeds. If there exists an index j ∈ [µ] s.t.

c
′ + b j ∈ Sc, it sets c := c

′ + b j and sends c to the user. Otherwise, (i.e., if no

such index is found), it sends ⊥ to the signer, indicating failure.

3. Signer: The signer receives c ∈ Sc and computes its response with the help of

the secret key. In particular, it locates the first i ∈ [η] s.t. ŝ := r̂i + c · sk falls

within the set Dm
s . The signer sends ŝ to the user. Otherwise, if no masking

term r̂i satisfies this criterion, it sends ⊥ to the user.

4. User: The user receives ŝ ∈ Dm
s and locates the first index i ∈ [η] s.t. F(ŝ) =

c · pk + Ri (if no such index is found, it outputs ⊥). It then finds the first

index k ∈ [ν] for which the corresponding blinding term âk causes ŝ
′ := ŝ + â

to fall within Dm
s′ (if no such index is found, it outputs ⊥). The user recalls the

index j ∈ [µ] that it used during Step 2 and computes an authentication path

auth := BuildAuth(2Int(i⊕ γ, j, k), tree) for the specific combination under root that

was used. It outputs (ŝ
′, c′, auth) as its blind signature.

73

Verification. On input the public key pk, a message msg ∈ {0, 1}∗ and a purported

signature of the form (c′, ŝ′, auth), the verifier computes R
′ := F(ŝ′) − c

′ · pk and root :=

RootCalc(R′, auth). If c
′ = H(root,msg) and ŝ

′
∈ Dm

s′ , it outputs 1. Otherwise, it outputs

0.

Proved Security Results

The main advantage of using a Merkle tree is that both parties can sample multiple

masking parameters but only use the combination which causes all rejection sam-

plings on their respective side of the protocol to succeed. This leads to the following

result about correctness:

Lemma 3.4.1. (Adapted from Lemma 3 of [98]) The construction of [98] has a correctness

error of (1 − e−1/u + o(1))(1 − e−1/v + o(1))(1 − e−1/w + o(1)).

By avoiding the use of a commitment scheme, the construction of [98] achieves statis-

tical blindness. If the underlying hash function family F has sufficient min-entropy,

the construction also seems to attain perfect blindness.

Lemma 3.4.2. (Adapted from Theorem 2 of [98]) Let LHF = (PGen, F) denote the R − SIS

hash function family. For parameters set according to Table 3.5, the construction of [98]

is perfectly blind relative to all par ∈ PGen(1κ).

Finally, unforgeability is proven in two steps: (i) by reducing collision-resistance of

the underlying LHF to one-more-man-in-the-middle security (OMMIM) [97] for an in-

termediate identification scheme (cf. Section 5.2 of [98]), and (ii) reducing OMMIM

security of the identification scheme to OMUF security of the blind signature scheme.

This leads to the following (informal) result:

Lemma 3.4.3. (Adapted from Theorem 1 of [98]) Let LHF = (PGen, F) denote the R − SIS

hash function family. If LHF is collision-resistant relative to par ∈ PGen(1κ), then the

construction of [98] is one-more unforgeable relative to par in the ROM.

Remark 4. We observe that although blindness and unforgeability are proved relative

to fixed par ∈ PGen(1κ), it is possible to extend the proof for par ←$ PGen(1κ) using

techniques from [97].

74

Discussion on Hauck et al.’s Blind Signature Scheme

The scheme by Hauck et al. is an adaptation of the Okamoto-Schnorr blind signature

[139] from the discrete logarithm regime to the lattice regime. This unfortunately

incurs a significant loss in advantage larger than 2QS/|Sc′ | for the reduction, where QS

denotes the maximum number of signatures that the signer can issue before needing

to replace its key. This loss is due to the forger’s ability to perform concurrent protocol

executions with the signer which significantly limits QS in practice to a polylogarithmic

amount. For example, for a security level of 128 bits, the number of signatures that

can be issued before needing to change the public key is log (128) = 7. Furthermore,

blindness is only proven in the weaker honest signer model.

An important remark about the unforgeability proof of [98] is that due to the mul-

tiple trials involved in each rejection sampling, the protocol will, with overwhelming

probability not abort. This allows the construction of [98] to remain consistent with

the standard notion of unforgeability which is only meaningful for blind signature

schemes with (at most) negligible correctness error. If the scheme can abort with

noticeable probability, then even honest adversaries may not be able to produce even

l valid signatures after l signing sessions. However, it still has to come up with l + 1

signatures in order to win in the unforgeability game. This leads to a significant

weakening of the definition. In Chapter 5, we revisit the notion of unforgeability and

propose a more general definition which allows the user to revoke sessions that did

not yield a valid signature for him.

3.4.2 Agrawal et al.’s Blind Signature Scheme

The state-of-the-art lattice-based proposal by Agrawal et al. [12] follows a completely

different design approach for rendering blind signature schemes in the ROM. This is

accomplished by simplifying the standard model, 2-move construction by [84] which

results in a round optimal, very efficient and at the same time simple scheme. Fur-

thermore, unlike [98], their constructions do not limit the signer to issuing a polylog-

arithmic amount of signatures.

75

A Rejection-free variant of Lyubashevsky’s Digital Signature Scheme

A crucial component of [12] is a rejection-free variant of Lyubashevsky’s digital sig-

nature scheme [123], which we recall below. Removing the rejection sampling step is

important in order to be able to express the signing algorithm as a relatively simple

circuit. The main building blocks are:

• a hash function H : {0, 1}∗ → {v ∈ {0,±1}k : ‖v‖1 ≤ α}, modeled as a random

oracle,

• a pseudorandom function family (PRF) F : {0, 1}r × {0, 1}∗ → {0, 1}r (used for

derandomizing the signing algorithm).

Key Generation. On input the security parameter 1λ, algorithm Sig.KeyGen(1λ)

samples the key of PRF F as kprf ←$ {0, 1}
r

as well as matrices A ←$ Z
n×m
q and

S ←$ {−d, . . . , 0, . . . , d}m×k
. It computes T := AS, and sets vk := (A,T) as the (public)

verification key and sk := (kprf,S) as the (private) signing key. It outputs (vk, sk).

Signing. On input the signing key sk and a message msg ∈ {0, 1}∗, algorithm Sig.Sign(sk,msg)

generates message-specific randomness rnd = F(kprf,msg). It samples y←rnd Dm
σ us-

ing fixed randomness rnd. It sets c := H(Ay,msg) and z := y + Sc and it outputs (z, c)

as the signature on message msg.

Verification. On input the verification key vk, message msg ∈ {0, 1}∗, and a purported

signature (z, c), algorithm Sig.Verify(vk,msg, (z, c)) checks if ‖z‖ ≤ (σ + αd)
√

m and

H(Az − Tc,msg) = c. If both conditions are true, it outputs 1 (accept). Otherwise, it

outputs 0 (reject).

Construction

We now describe the blind signature construction of [12]. In the following, let G denote

the gadget matrix, i.e., G := (1, 2, 22, . . . , 2dlog (q)e−1)T ⊗In for given parameters q, n, where

In denotes the n× n identity matrix and ⊗ denotes the tensor product of matrices. The

blind signature scheme requires the following cryptographic blocks:

• a hash function H : {0, 1}∗ → C modeled as a random oracle,

76

• a circuit-private homomorphic encryption (HE) scheme HE = (HE.KeyGen, HE.Enc,

He.Dec,He.Eval),

• a signature scheme Sig = (Sig.KeyGen, Sig.Sign, Sig.Verify) that can be used within

an HE scheme (instantiated with the rejection-free variant presented above).

• zero-knowledge proofs of knowledge (ZKPoK) for exact linear relations with small

coefficients, i.e., for the existence of a vector v such that v has low Euclidean

norm and Av = b (mod q) for some public (A, b, q).

Key Generation. On input the security parameter λ, algorithm KG(1λ) generates the

keys by invoking the digital signature’s key generation algorithm (Sig.sk, Sig.vk) ←$

Sig.KeyGen(Sig.sk, Sig.vk). It outputs (sk, pk) := (Sig.sk, Sig.vk).

Signing. The interactive signing protocol 〈S(sk),U(pk,msg)〉, where msg ∈ {0, 1}, works

as follows:

1. User:

• The user samples s̄ ←$ Z
n−1
q , e ←$ DZm,α and computes A = H(pk, id) using

a user identifier id, s := (−s̄, 1) ∈ Zn
q and Â :=

©­«
A

s̄
T
A + e

T

ª®¬. It sets HE.SK := s

and HE.PK := Â.

• The user encrypts msg using HE.PK. This is done by sampling a matrix

R←$ {0,±1}m×m
, and then computing C := ÂR+bG ∈ Zm×n

q . It sets CTmsg :=

C as the ciphertext. Notice that the last column of s
T
C = e

T
R+bs

T
G is close

to bq
2 .

• The user generates ZKPoK πSK and πCT proving that its public key and

ciphertext are well-formed. In particular, πSK proves knowledge of a short

vector (x, y) s.t. the last row of Â has the form x
T
A + y, while πCT proves

that CTmsg = ÂR + bG, for a low-norm matrix R and b ∈ {0, 1}.

• It sends (HE.PK, πSK,CTmsg, πCT) to the signer.

2. Signer:

77

• The signer receives (HE.PK, πSK,CTmsg, πCT) and it verifies the validity of

both πSK and πCT. If either proof is invalid, it outputs ⊥.

• It homomorphically evaluates the digital signature’s signing algorithm (viewed

as a circuit) on the encrypted message by computing CTσ := HE.Eval(Sig.Signsk,

CTmsg).

• It sends CTσ back to the user.

3. User: The user decrypts ciphertext CTσ using its secret key HE.SK. This is done

by computing the inner product of s
T

and the last column of CTσ. If the norm

of the result is smaller than q/4, it outputs 0. Otherwise, it outputs 1.

Verification. Verification is performed identically to Sig.Verify.

Proved Security Results

Under the assumption that the ZKPoK systems underlying the scheme’s instantiation

are correct, the scheme of [12] is also correct:

Lemma 3.4.4. ([12]) If the ZKPoK proof systems πSK and πCT are correct, HE.Eval and

HE.Dec are correct, and Sig.Verify are correct, then the construction of [12] is also correct.

Furthermore, the zero-knowledge property implies blindness for the scheme:

Lemma 3.4.5. (Theorem 6.3 in [12]) If the underlying proof systems are ZKPoK, then

the construction of [12] is blind against honest-signers.

Remark 5. The construction of [12] can be upgraded to remain secure even against

malicious signers. This is done by:

1. Having the signer append a proof πvk (constructed with ZKPoK) to its verification

key, proving that Sig.vk is well-formed.

2. Using a homomorphic signature scheme with context hiding security to authen-

ticate that algorithm Sig.Sign was homomorphically evaluated.

Finally, unforgeability is derived from the UF-CMA security of the rejection-free variant

of Lyubashevsky’s signature.

78

Lemma 3.4.6. (Theorem 6.4 in [12]) If the underlying digital signature scheme is secure

against universal forgery under chosen-message attack, then the construction of [12] is

one-more unforgeable.

Discussion on Agrawal et al.’s Blind Signature Scheme

What is notable about the construction of [12] is its reliance on very heavy machinery

such as Non-Interactive Zero-Knowledge (NIZK) proofs and homomorphic encryption

schemes that are capable of evaluating a random oracle homomorphically for the

communication between the two parties. In particular, while this construction shows

great promise for practical use (cf. Section 3.6), there are several serious roadblocks

barring implementation. First, by design, the signing algorithm Sig.SignSig.sk acts as

a circuit on which the ciphertext must be homomorphically evaluated by the signer.

However, Sig.SignSig.sk internally uses a hash function modeled as a random oracle and

as such, this hash function must also be evaluated homomorphically. Unfortunately,

choosing such a hash function is a highly non-trivial matter which to the best of

our knowledge is still a major open problem. Second, the homomorphic encryption

scheme itself needs to be chosen carefully and in a way capable of handling the diverse

formats involved during the homomorphic signing. Ensuring compatibility between

the homomorphic encryption format and the format needed for evaluating the hash

function seems particularly tricky to ensure when instantiating Sig.Sign with their

proposed abort-free variant of Dilithium-G’s signing algorithm
5
. Finally, Dilithium-G

compresses the signature elements with Huffman codes. However, in [12] this will

need to be done under the homomorphic encryption layer, which could be expensive

to implement. Addressing all of these issues simultaneously is particularly tricky and

could lead to insecure implementations. These factors suggest that the scheme of [12]

is mostly of theoretical interest.

5
A Fisher-Yates shuffle no longer works for mapping to Dilithium-G’s challenge space because this

task must be done homomorphically.

79

3.5 Relations to Impossibility Results

An important consideration to take into account when designing blind signature

schemes are impossibility results. These typically state that under certain condi-

tions, reductions to underlying cryptographic problems do not provide a meaningful

security statement. In other words, if such a reduction exists, then the underlying

problem is already easy. In this section, we review these results and how they impact

the lattice-based constructions covered in this chapter.

The first result that we examine is proven by Katz et al. [108]. The authors prove

that blind signature schemes are impossible to construct from one-way permutations,

even in the ROM.

Theorem 3.5.1. (Theorem 1 from [108]) There is no black-box construction of blind

signature schemes from one-way functions.

While it is currently unknown whether one-way permutations can even be con-

structed from the LWE problem, all of the constructions considered in this paper cir-

cumvent this result by relying on the (stronger) collision-resistance property of R − SIS

(or Ring k-SIS in the case of [42]).

The second result by Baldimtsi et al. [27] states that Schnorr-type blind signatures

are impossible to construct when unforgeability is based on a one-witness hard prob-

lem. In the context of lattice-based schemes, this rules out any hopes of designing

a blind signature scheme based solely on the LWE problem. No constructions exist

whose unforgeability relies solely on LWE. All of the constructions considered in this

survey avoid this kind of impossibility result by relying on a multi-witness problem

(namely, SIS or Ring k − SIS). Interestingly, an earlier version of BLAZE [18] managed

to avoid this kind of impossibility result by taking a ‘‘hybrid’’ approach akin to [69]. In

particular, it bases key-secrecy on the hardness of LWE (i.e., a one-witness problem),

and unforgeability on SIS (i.e., a multi-witness problem). Unfortunately, [18] then

attempts to simulate the signer without the secret key which exposes it to universal

forgeability [155].

80

The final result by Fischlin and Schröder [78] provides a resetting meta-reduction

(i.e., a reduction against another reduction) which rules out the possibility of con-

structing secure schemes with at most three moves, statistical blindness, and which

have statistical signature-derivation checks (i.e., one can verify from the protocol tran-

script between a signer and an honest user if the user was able to obtain a valid

signature from the interaction). While this immediately rules out any blind signature

schemes in the standard model with at most 3 moves, it does not capture direct con-

structions of lattice-based blind signatures proven secure in the ROM. In general, the

impossibility results of [78] are typically circumvented by using complexity leveraging

[168, 70] or by using a common reference string [75].

Theorem 3.5.2. (Theorem 2 from [78]) Let BSS be a three-move blind signature scheme,

which is statistically blind and has statistical signature-derivation checks. Then there

is no resetting (with restricted cross-resets) black-box reduction from unforgeability of

the blind signature scheme BSS to a hard non-interactive problem.

All of the constructions considered in this paper circumvent this result by using a

programmable random oracle. Table 3.6 summarizes the above observations.

Table 3.6: Summary of all lattice-based blind signature schemes in the literature and

their adherence to impossibility results.

Proposal Baldimtsi and Lysyanskaya [27] Katz et al. [108] Fischlin and Schröder [78] Incorrect use of the Forking Lemma

Rückert [159] - - - X
BLAZE [21, 19] - - - X

3-move BLAZE+ [19] - - - X
4-move BLAZE+ [19] - - - X
Ermann et al. [42] - - - X
Hauck et al. [98] - - - -

Agrawal et al. [12] - - - -

3.6 Comparison With Other Post-Quantum Proposals

In this section, we review the concrete sizes of keys, produced signatures and total

communication for each of the schemes discussed in Sections 3.3 and 3.4. In addi-

tion, we compare them to other post-quantum proposals in the literature. Table 3.7

81

summarizes the aforementioned sizes per scheme, also listing the underlying (post-

quantum) hardness assumption per scheme, as well as the estimated bit security

level.

Table 3.7: Summary of post-quantum blind signature schemes in the literature. We

denote unspecified sizes with a dash.

Proposal Hardness assumption(s) Bit security sk size pk size Signature size Total communication

Flawed Lattice-Based Blind Signature Schemes

Rückert [159] R − SIS 102 23.6 KB 23.6 KB 89.4 KB 119.1 KB

BLAZE [21, 19] R − SIS ≈ 128 0.8 KB 3.9 KB 6.6 KB 351.6 KB

3-move BLAZE+ [19] R − SIS ≈ 128 0.75 KB 3.9 KB 6.7 KB 177.8 KB

4-move BLAZE+ [19] R − SIS ≈ 128 0.75 KB 3.9 KB 6.7 KB ≈ 265 KB

Ermann et al. [42] Ring k − SIS 100 5.86 MB 852 KB 868 KB -

Provably secure Lattice-Based Blind Signature Schemes

Hauck et al. [98] R − SIS 128 4.15 MB 0.4 MB 7.73 MB 33.3 MB

Agrawal et al. [12] R − LWE & R − SIS 128 - ≤ 2 KB ≤ 3 KB -

Other Post-Quantum Blind Signature Schemes

Petzoldt et al. [151] Rainbow 128 70.2 KB 106.8 KB 28.5 KB -

Blazy et al. [33] CFS & Syndrome Decoding 100 - 15 KB 200 KB -

In terms of feasibility, the construction of Agrawal et al. [12] seems to have a clear

advantage across the board over all other constructions (both lattice-based and non-

lattice-based), while at the same time being practical. Unfortunately, as discussed

in Section 3.4.2 there are several serious issues that need to be addressed before

reaching an implementation. On the other hand, the proposal of Hauck et al. [98]

modularizes the methodology that its predecessors [159, 21, 19] unsuccessfully tried

to apply, and relies on very simple cryptographic components to build. Unfortunately,

it is ill-suited for practical use due to its key, signature and communication sizes

being in the order of megabytes. A major bottleneck in the communication traffic of

[98] is caused by the fact that the signer has to send η = 60 commitments during

its first move. For the concrete parameters proposed in [98], this corresponds to

26 MB which is approximately 78% of the overall traffic exchanged between signer

and user. Moreover, each signer is only limited to issuing up to 7 signatures per

public key in order to prevent potential ROS attacks [164], which severely limits its

practical use. While this latter issue could potentially be lifted through a transform

proposed in [107], the resulting scheme’s relevant sizes would still be in the order of

megabytes. Adapting the transform of [107] for lattice-based schemes may however

82

be of independent interest.

3.7 Conclusions, Open Problems and Future Work

While blind signatures from standard number-theoretic assumptions have been under

scrutiny for over three decades, lattice-based schemes have received attention only

during the past decade. In addition, constructing BSS from lattice assumptions has

proven to be an incredibly arduous task, as evidenced by the fact that all of the

proposed constructions in the literature either have an incorrect proof of security,

are too inefficient for practical use, or need to overcome major instantiation and/or

implementation issues. Another important thing to note is that all constructions are

proven secure in the ROM. However, in a true quantum setting, the adversarial forger

can query the random oracle with quantum state (i.e., in superposition), which may

result in him getting some information about all (exponentially many) values right at

the start [38]. Hence, an interesting open question is if it is possible to construct BSS

from lattice assumptions in the QROM, or even to completely do away with the RO.

As we mentioned in Section 3.2.2, the existing notion of unforgeability is only

meaningful for BSS with at most negligible correctness error. This creates a defini-

tional gap between unforgeability and schemes like [159] which display a noticeable

correctness error. In addition, schemes like [159] provide the user with a means of

‘‘revoking’’ a session if he was unable to obtain a valid signature from a session. It is

therefore interesting to design a framework for BSS (akin to the one from [97]) which

encompasses four-move constructions like [159] and [21]. This direction is explored

in Chapter 5.

Finally, the construction of [98] seems like a good starting point for investigating

the possibility of rendering variants of BSS from lattice assumptions. In particular,

partially-blind signature schemes [6, 7] and fair blind signature schemes [173] seem

to be within reach.

83

Chapter 4

Leakage–Resilient Partially–Blind

Signatures from Lattices

4.1 Introduction

Blind signature schemes separate the owner of a message from the signer by al-

lowing the owner of the message to interact with the signer and obtain a signature

on it that remains unintelligible from the signer’s view. The resulting signature can

still be verified against the signer’s public key, just like with typical digital signatures.

However, nobody – including the signer himself – can link a message-signature pair

to a signing transcript. As one would suspect though, such a high level of privacy

has some grave drawbacks. First, by design, blind signatures provide perfect confi-

dentiality for the receiving user with regards to the message being signed. As a result,

blind signatures can potentially provide a gateway for committing ‘‘perfect’’ crimes

[181] such as money laundering, blackmailing, etc. Second, blind signing provides no

guarantees to the signer that the blinded message he signed, is of the right ‘‘format’’

or contains some valid information that should be included in the message (e.g.: the

denomination of a digital coin, the date a voucher was issued, etc.). Moreover, given

that the only attributes over which the signer has control are those bound to his public

key, we might end up in a case where multiple keys need to be managed, resulting

to an increased complexity for both the signer and verifiers (which is even more prob-

84

lematic if devices with constrained memory (e.g., smart-cards) are being used [6]).

Consider for example a signer that issues blind signatures which expire at the end of

the week, then the signer’s public key needs to be updated every week, or consider

the case of e-cash with multiple denominations: the signer/bank will need to use a

different public key for each allowable coin denomination. These major shortcomings

of blind signatures spurred the research community to invent primitives with features

that could bypass these issues.

The two major models that have been proposed, in an effort to overcome these

issues are: fair blind signature schemes (FBSS) [173, 80] and partially-blind signature

schemes (PBSS) [6, 7]. Fair blind signatures allow a trusted third party to revoke

blindness in order to identify either the session during which a given signature was

issued (session tracing), or a signature, given a signer’s view of a specific session

(signature tracing). On the other hand, partially-blind signatures allow a signer and

a user to include a commonly agreed upon piece of information (denoted info) to the

signature. The key idea for achieving this in [7] was to adapt a method proposed

in [60] by letting the signer use a secret key, along with two public keys, one of

which includes info, with the help of a public hash function. As a result, the final

signature is bound to these public keys and thus, to info as well. This approach has

the benefit of greatly simplifying key management, because the signer only needs a

single key in order to be able to include any auxiliary information (i.e. expiration

date or denomination value). Note that PBSS do not immediately solve the problem

of whether the blinded message to be signed is of the right format (this problem

would be solved generically by including a zero-knowledge proof of knowledge on the

format of the message), however, they provide an efficient way to make sure that the

info part of the message included the necessary to application information and is of

the right format. We would also like to mention that the more recent work of [161]

proposed a unified security model called fair partially blind signatures (FPBSS), which

combines the security models of both aforementioned primitives into a single. Building

a construction in that model would be ideal for real-world applications, balancing

the individual needs of customers (blindness), service providers (partial control), and

85

authorities (fairness), and is currently an open problem.

4.1.1 Contributions and Related Work

A previous attempt to construct partially blind signatures from lattices was made in

[177]. However, the construction of [177] does not prove partial blindness concretely

and in fact seems to prove something weaker than the required notion as it relies on

qualitative (if not ambiguous) properties of the signer that cannot be captured by the

security model of PBSSs. Furthermore, its scope is more limited compared to our

proposal because it allows disclosures of the signed message which are acceptable in

some applications (e-cash) but unacceptable in others (e-voting, e-auctions). Finally,

the scheme of [177] is vulnerable to side-channel attacks, because of the use of discrete

Gaussian sampling for the blind signing step [95, 149, 72].

We propose the first leakage-resilient, lattice-based partially-blind signature scheme

in the literature. Our construction is inspired by the work of [159] which at the time

of publication was the best known leakage-resilient BSS based on lattices. However,

being a regular BSS, it is subject to the limitations discussed above. Our approach

represents a significant step forward for partially blind signature schemes because:

• First, because the vast majority of previous PBSS proposals, are based on num-

ber theoretic assumptions, such as the hardness of large integer factorization,

or the computation of discrete logarithms. These include early work by [6, 7, 5]

and later advances [58, 140, 118, 35, 34, 87]. Unfortunately, the security of

these schemes would be in jeopardy should a reasonable scale quantum com-

puter be constructed, thanks to Shor’s algorithm [169]. Consequently, all of

these constructions are ill-suited for the post-quantum era.

• Second, although a tremendous amount of progress has been made in the design

of conventional digital signatures from lattices over the past decade [86, 121,

122, 123, 96, 66, 22, 124, 69, 111], there is a serious relative dearth when

it comes to lattice-based blind signatures [159, 188] (the latter of which has

recently been shown to be problematic [57]) despite their importance for privacy-

preserving applications.

86

• Regarding efficiency, our construction is as efficient as the lattice-based blind

signature scheme in [159], both in terms of key sizes (ours are slightly smaller)

and in computational complexity. However, our construction is not only one

step closer to practical applications by allowing the inclusion of a commonly

agreed piece of information in the final signature, but also relies on a milder - by

a factor of n (the security parameter) - hardness assumption for the underlying

worst-case lattice problem. This is important because one has to rely on as

mild assumptions as possible in anticipation of attacks arising from emerging

technologies. We show that all of the extensions considered in [159] are also

satisfied by our scheme, along with an additional extension discussed in Section

4.5.3. In that case, we show that the efficient transformation that was proposed

in [167] can also be used for PBSS, which we believe might be a result of interest

on its own when designing such schemes.

4.1.2 Our technique and main challenges

Extending [159] to a PBSS was conjectured to be possible in [160]. However, no sug-

gestions as to how this could be realized were given, and the problem was not formally

addressed until now as it apparently involved several technical challenges. As per

the security model of PBSS [7], we need to show that our scheme is correct, partially

blind, and unforgeable. Unfortunately, lattices lack the algebraic structure that is

present in (finite) cyclic groups, and which very naturally allows one to achieve partial

blindness by simply computing the product/sum of any group element with a random

group element. This problem can be rectified through rejection sampling [159, 122],

which allows us to make the distributions of exchanged messages, independent of the

respective messages that they ‘‘hide’’. However, this comes at the price of added com-

plexity. Reducing this complexity is by no means trivial: being able to avoid/simplify

rejection sampling would in turn impact many other lattice-based constructions such

as [122, 66, 69, 159]). The complexity introduced by rejection sampling makes all of

the aforementioned security properties (as well as the extensions that we consider)

non-trivial to achieve simultaneously because they are interconnected to one another.

87

In particular:

• Correctness is hindered, meaning that even if both parties involved in the sig-

nature issuing protocol are honest, the protocol may need to be restarted. We

address this issue in the same way as [159]. However, since it is possible for

the signature issuing protocol to restart, it is important to make sure that both

partial blindness and unforgeability hold, even across restarts.

• Regarding partial blindness, PBSS are built by combining the framework of [7]

with witness-indistinguishable identification protocols. For this work, we will

use (a slight variant of) the witness-indistinguishable identification scheme of

[122] as a basis. However, due to the aforementioned rejection sampling strategy,

it is not possible to apply the transformation of [7] in a straightforward manner.

This is due to the fact that rejection sampling causes the coefficients of a blinded

message to come from a larger set (roughly by a factor of at least n) than the

original message’s, whenever applied. This turns out to be problematic when

we want to ‘‘unblind’’ to produce the final signature. We address this issue

by having the user send a ‘‘shrinked’’ version of the blinded challenge to the

signer (i.e., reducing it modulo the range of the challenge space’s coefficients -

typically, modulo 3), by carefully setting our scheme’s multiple interconnected

parameters, and analyzing the distributions of messages exchanged between

the two parties. Our scheme is shown to be partially blind and an important

implication of our approach is obtaining a milder by n hardness assumption

for our scheme’s unforgeability property. In addition, we employ a statistically

hiding commitment scheme to make sure that partial blindness is preserved

across protocol restarts.

• Proving unforgeability is also non-trivial because a malicious user might falsely

claim that he failed to obtain a valid signature out of a protocol execution, thus

causing the protocol to abort and potentially ‘‘buying’’ himself multiple valid

signatures (this scenario would obviously be catastrophic for applications like

e-cash or e-voting). We address this issue by introducing a fourth move to our

88

signature issuing protocol, which serves as a special proof of failure in case

the protocol has to be restarted and is akin to [159]. As in [159], we need to

show that a malicious user cannot obtain a valid signature out of an aborted

protocol execution, unless he is able to solve a computationally hard lattice

problem. However, as we will see in Section 4.4.3, this is considerably trickier

to achieve compared to [159] because in our PBSS setting there are multiple

scenarios which may cause the protocol’s restart (in [159] there is only one).

Nevertheless, our construction’s security will be formally proven in the ROM [31]

under standard worst-case lattice problems pertaining to ideals [125].

• Finally, with respect to leakage resilience, we will show that if we impose an

additional requirement on the size of one of our scheme’s parameters, then it is

also resistant against key-leakage via arbitrary side-channels.

4.1.3 Relationship between the present work and impossibility re-

sults for blind signature schemes

In [78], the authors give an impossibility result for 3-move BSS with the help of a

meta-reduction (i.e., a reduction between reductions). Their approach plays the two

security requirements of BSS (blindness and unforgeability) against each other, result-

ing in a proof that finding black-box reductions from unforgeability to non-interactive

problems (like RSA, or discrete logarithm) is hard, unless the problems involved were

already easy. Their work covers a broad class of BSS in the literature [5, 53, 155]

and subsumes many prior impossibility results for BSS [47, 120, 48]. However, the

main result of [78] does not apply to our construction. First, the results of [78] are

given for BSS rather than PBSS which means that one would first have to show that a

corresponding result also holds for PBSS. Second, [78] does not rule out reductions in

the ROM [27, p. 3]. Third and most importantly, [78] only applies to BSS with at most

three moves, that admit statistical signature-derivation checks (i.e., an observer can

determine only from the public data and messages exchanged between a malicious

signer and an honest user, whether the user successfully obtained a valid signature

89

or not). In our 4-move scheme however, it is impossible for one to tell whether the

user truly obtained a valid signature or not within 3 moves because the user has not

revealed all of the relevant information (i.e., its blinding parameters) that he uses to

produce his final signature. This is important because the components of the final

signature must satisfy a certain relation but also fall within certain bounded domains

for the signature to be deemed valid. This originates from our rejection sampling

strategy and is in sharp contrast to previous number theoretic BSS (and PBSS), where

all of the final signature’s components would always fall within some finite group (e.g.,

ZN in the case of [53]), and thus checks like these would trivially be true due to finite

group arithmetic rules. This is in accordance with an observation made by [78], stat-

ing that if the user sends a second message to the signer, which depends on his first

message, then the resetting strategy of their meta-reduction cannot be applied (see

[76] for a discussion on the limitations of their strategy). The same argument can also

be used for [159]. Additionally, the fairly more recent results of [27] also do not apply

to our work. The reason is that the results of that paper only concern schemes with a

unique-witness relation between the public and secret key. While many constructions

like the original Schnorr BSS fall under that category, our construction relies on a

many-to-one witness relation between its public and secret keys (see Lemma 5 in Sec-

tion 4.4.3). Finally, the impossibility result of [108] is circumvented by the fact that

our underlying hash function family is collision resistant and not simply one-way.

4.1.4 Organization

Section 4.2 sets the required theoretical and notational groundwork and we describe

the formal security model of leakage-resilient PBSS, along with extensions based on

the BSS literature. In Section 4.3, we consider for the first time, extensions to the

basic security model of PBSS, based on their BSS counterparts. Various results from

the BSS literature are shown to still hold in the PBSS context. In Section 4.4, we give

a detailed description of our lattice-based construction and prove that it abides by the

formal security model of PBSS, and that it is leakage resilient. Once we have estab-

lished the baseline security of our scheme, Section 4.5 examines additional security

90

properties for our proposal.

In this chapter, we reprint the main construction in [143], of which the dissertation

author was the main investigator and author.

4.2 Preliminaries

Throughout this chapter, n will be used to denote the main security parameter.

4.2.1 Syntax and Security Model of Leakage–Resilient PBSS

We now define leakage-resilient partially-blind signature schemes and their security

model.

Syntax and Security Model

Partially-blind Signature Schemes (PBSS) are a generalization of regular blind signa-

ture schemes (BSS) [53, 104, 155] and a simplification of fair partially-blind signature

schemes (FPBSS) [161]. The security model for PBSS was formalized in [7, 140].

Definition 4.2.1. (Partially-Blind Signature Schemes) A PBSS is comprised by three

algorithms (KG, Sign = 〈S,U〉,Ver), where Sign is an interactive protocol executed be-

tween S and U. Their specification is the following:

• Key Generation. On input the security parameter λ, algorithm KG(1λ) outputs

a private signing key sk and a corresponding public verification key pk.

• Signature Issuing Protocol. Protocol Sign(sk, µ, info) jointly executes algorithms

S(sk, info) and U(pk, µ, info) in an interactive manner. The signer’s private output

is a view V consisting of all messages exchanged between the parties, and the

user’s private output is a signature σ on message µ and the common information

info under sk. The common information info is agreed upon by the signer and

the user prior to the protocol’s execution and is assumed to be a common input

to both parties. We also assume that the protocol generates a status message

like ‘‘ok’’ or ⊥ for the signer, denoting success or failure, respectively.

91

• Signature Verification. Algorithm Ver(pk, µ, info, σ) returns 1 iff σ is a valid

signature on message µ w.r.t. common information info under public key pk,

and 0 otherwise.

In the interactive protocol, signer views can be interpreted as random variables

and we will consider two views V1 and V2 ‘‘equal’’ if no computationally unbounded

algorithm A exists that distinguishes them with non-negligible probability. Notice

that by fixing info to the empty string, we obtain the usual definition of blind signature

schemes [155].

A partially-blind signature scheme needs to satisfy three properties: correctness,

partial blindness, and unforgeability [7, 140, 161].

Correctness for PBSS is defined as in regular digital signatures, i.e., if both the

signer and the user comply with the signature issuing protocol, then the user suc-

cessfully obtains a valid signature with overwhelming probability. More formally:

Definition 4.2.2. (Correctness of PBSS) A PBSS is correct with correctness error ε ∈

[0, 1], if for all uniformly picked messages µ ∈ {0, 1}∗, all uniformly picked common-

part information info ∈ {0, 1}∗, all honestly generated keys (pk, sk), and any honestly

generated signature σ through the signature-issuing protocol, σ is a valid signature

with probability:

Pr


µ, info←$ {0, 1}

∗
,

σ , ⊥ ∧ PBSS.Ver(pk, µ, info, σ) = 1 (pk, sk) ←$ PBSS.KG(1λ),

σ ← 〈S(sk, info),U(pk, µ, info)〉


≥ 1 − ε

Partial blindness generalizes the notion of blindness
1

[104, 155], and informally

requires that it is infeasible for a malicious signer to link any valid signature to the

exact instance/session of the signature-issuing protocol in which it was created. A

formal definition is given by means of game PBlindPBSS(1
λ) in Figure 4.1 [7].

Definition 4.2.3. (Partial Blindness) A PBSS is (t, θ)–partially blind if for any PPT

algorithm S∗ (working in modes find, issue, and guess), running in time at most t, we

1
In the literature, some authors also use the term unlinkability to describe this property (e.g.: [166]).

92

Game PBlindPBSS(1
λ)

1: (pk, sk) ←$ PBSS.KG(1λ)
2: (µ0, µ1, info, statefind) ←$ S∗(find, 1λ)
3: b←$ {0, 1}

4: stateissue ←$ S∗〈.,U(pk,µb,info)〉1, 〈.,U(pk,µ1−b,info)〉1(issue, statefind)

5: σb := U(pk, µb, info), σ1−b := U(pk, µ1−b, info)
6: If (σ0 =⊥ ∨ σ1 =⊥)

7: b′←$ S∗(guess,⊥,⊥, stateissue)

8: Else

9: b′←$ S∗(guess, σ0, σ1, stateissue)

10: return Jb′ = bK

Figure 4.1: Security game for partial blindness.

have:

���Pr

[
PBlindS∗

PBSS(1
λ) = 1

]
− 1/2

��� ≤ θ.
Notice that the notion of partial blindness closely resembles that of blindness

[104], the only difference being that now there is an additional commonly known

factor, info, which corresponds to the public part of the message-to-be-signed, that

also needs to be taken into account. In the game of Figure 4.1, the malicious signer,

S∗, generates his public/secret keys via the scheme’s key generation algorithm (we

relax this requirement when we discuss dishonest-key partial blindness). He then

selects messages µ0, µ1 and common information info on his own (mode find). He then

interacts with honest users U(pk, µb, info) and U(pk, µ1−b, info), after a secret coin flip

b ←$ {0, 1} (mode issue). If either user session aborts before completion, the signer

is merely notified of the event, but receives no signature. After seeing the unblinded

signatures in the original order, the signer’s task is to correctly guess b (mode guess).

We further parameterize matters in Definition 4.2.3. S∗’s advantage is defined

as: AdvPBlindPBSS (S
∗) :=

���Pr

[
PBlindS∗

PBSS(1
λ) = 1

]
− 1/2

���. We will call PBSS statistically

partially-blind if it is (∞, θ)–partially-blind for a negligible θ, and perfectly partially-

blind if θ is 0.

Unforgeability of PBSS is stronger than the one defined for regular blind signatures

[104, 155], since ‘‘recombination’’ attacks should be ruled out [161]. Additionally, the

adversarial user is allowed to select both the messages and the common information

93

Game OMUFPBSS(1
λ)

1: (pk, sk) ←$ PBSS.KG(1λ)
2: H←$ H(1

λ)

3: (info, (µ1, σ1), . . ., (µkinfo+1, σkinfo+1)) ←$ U∗H(.), 〈S(sk),.〉∞(pk)
4: kinfo := # successful, complete interactions w.r.t. info.

5: b1 := Jµi , µj, ∀i, j = 1, . . . , kinfo + 1 with i , jK
6: b2 := JPBSS.Ver(pk, µi, info, σi) = 1, ∀i = 1, . . . , kinfo + 1K
7: return b1 ∧ b2

Figure 4.2: Security game for unforgeability of PBSS.

info that he queries, in an adaptive manner. Put another way, a malicious user should

be unable to generate a valid signature for a new info, instead of just for a new message

[161]. The notion of unforgeability of PBSS is defined in terms of the game of Figure

4.2, which we derive from the more general game of [161], where H denotes a family

of random oracles:

Definition 4.2.4. (Unforgeability of PBSS) An interactive partially-blind signature

scheme PBSS = (KG, 〈S,U〉, Ver) is (t, qsig, qH, θ)–unforgeable if for any PPT algorithm U∗

running in time t, making at most qsig signature queries and qH hash oracle queries,

we have Pr

[
OMUFU∗

PBSS(1
λ) = 1

]
≤ θ.

Note that in the unforgeability game of Figure 4.2, the adversarial user outputs

kinfo + 1 valid message-signature pairs that correspond to a single info, where 0 ≤

kinfo ≤ qsig denotes the number of successful, complete interactions that took place.

The case where kinfo = 0 corresponds to the scenario in which the malicious user

outputs a signature for a new info that was never queried to the signing oracle and is

known as a ‘‘recombination’’ attack (not present for regular blind signatures). We can

define strong unforgeability by changing the condition of line 5 in game OMUFPBSS(1
λ)

to ‘‘b1 := J(µi, σi) , (µ j, σj), ∀i, j = 1, . . . , kinfo + 1 with i , jK’’.

Leakage-resilient cryptographic primitives are designed to remain secure even if

an arbitrary, but bounded portion of the secret key (and/or other internal state infor-

mation in general) of an honest party leaks to an adversary during computation. This

augmentation of the notion of unforgeability helps safeguard against various forms

94

of side-channel attacks, such as: timing attacks [95, 149], data remanence attacks,

power-monitoring attacks [72], or implementations using poor random number gen-

eration. Unfortunately, [95, 149] provide clear evidence that cache timing attacks in

particular are a practical threat to post-quantum cryptographic constructions. As

a result, proving that a scheme is resistant against key leakage is a very important

property if we want to consider long-term security, and constructions possessing it

grant us a very high level of confidence when deploying them in practice.

To model leakage resilience in the context of unforgeable PBSS, we refer to [109],

and grant the adversarial user access to a leakage oracle, Leak(.), in the above un-

forgeability experiment (our scheme satisfies the properties required by [109]). The

adversary can adaptively query a series of functions fi, i ∈ {1, . . . , κ} to this oracle,

and receive fi(sk) ∈ {0, 1}. We consider the signer’s secret state to consist solely of his

secret key and that his secret key does not change over time. We also consider the

same bounded leakage model as in [159]. More precisely, we impose the constraint∑n
i=1 | fi(sk)| < λ(|sk|), where λ = λ(.) is a function of the length of the secret key, and

dictates the amount of tolerable leakage. Of course, this extension only makes sense

as long as λ(|sk|) < min{|sk|, |σ |}, where |.| denotes bit-length, and σ is a signature.

The game modeling leakage resilience for the unforgeability of partially blind signature

schemes is defined below:

Definition 4.2.5. (Leakage Resilience of PBSS) An interactive partially blind signature

scheme PBSS = (KG, 〈S,U〉,Ver) is leakage-resilient with parameter λ, iff for any effi-

cient algorithm U∗, the probability that experiment LR −OMUFPBSS,λ−Leak(1
λ) (Figure

4.3) evaluates to 1 is negligible (as a function of λ).

4.3 Extensions

In this Section, we discuss several extensions of the classic security model of PBSS that

are applicable to our construction. We consider honest-user unforgeability, selective-

failure blindness, and dishonest-key blindness. To the best of our knowledge, none of

these properties have previously been examined in the context of PBSS.

95

Game LR −OMUFPBSS,λ−Leak(1
λ)

1: (pk, sk) ←$ PBSS.KG(1λ)
2: H←$ H(1

λ)

3: (info, (µ1, σ1), . . . , (µkinfo+1, σkinfo+1)) ←$ U∗H(.),〈S(sk),.〉∞,Leak(sk,.)(pk)
4: kinfo := # successful, complete interactions w.r.t. info.

5: Let f1, . . . , fκ be the leakage queries of U∗, each with output length λi.

6: b1 := Jµi , µ j, ∀i, j = 1, . . . , kinfo + 1 with i , jK,
7: b2 := JPBSS.Ver(pk, µi, info, σi) = 1, ∀i = 1, . . . , kinfo + 1K
8: b3 := J

∑κ
i=1 λi ≤ λ(|sk|)K

6: Return b1 ∧ b2 ∧ b3

Figure 4.3: Security game for leakage resilience of PBSS.

4.3.1 Dishonest-key Partial Blindness

In the definition of (partial) blindness (step 1 of Figure 4.1), we implicitly assumed that

the signer generates his secret and public keys through the scheme’s key generation

algorithm. This however may not necessarily be true. Abdalla et al. put forth the

notion of dishonest-key blindness
2

[4] to capture scenarios in which the malicious S∗

is allowed to construct his public key in a special way that would give him an edge

in breaking the blindness property of a blind signature scheme. This type of attack

has already been considered in [140], where it was also incorporated into the security

model of partially-blind signature schemes. As such, steps 1 and 2 of PBlindPBSS(1
λ)

in Figure 4.1 are replaced with ‘‘(pk, µ0, µ1, info, statefind) ←$ S∗(find, 1λ)’’. Achieving

partial blindness in this setting is harder but not impossible.

4.3.2 Selective-failure Partial Blindness

Another type of attack not captured by the blindness property of blind signature

schemes is that in which the adversarial signer can pick messages of its own choosing

from some secret distribution, in hopes of causing one of the user instances with

which it interacts to abort, thereby gaining an advantage in linking the messages with

the produced signatures. Motivated by this observation, the notion of selective-failure

blindness was proposed by [49] and informally states that no malicious signer S∗ can

2
We interchangeably refer to this model as the malicious signer model.

96

cause the protocol’s execution with an honest user U to abort through adversely-

chosen messages µ0, µ1. We generalize this notion to account for the common piece of

information info.

Definition 4.3.1. (Selective-Failure Partial Blindness) A PBSS = (KG, 〈S,U〉,Ver) is

called (t, θ)–selective-failure partially blind if it is unforgeable (as per OMUFPBSS(1
λ))

and for any PPT algorithm S∗ (working in modes find, issue and guess), running in time

at most t, we have: ���Pr

[
SF − PBlindS∗

PBSS(1
λ) = 1

]
− 1/2

��� ≤ θ,
where SF − PBlindPBSS(1

λ) is defined in Figure 4.4.

Game SF − PBlindPBSS(1
λ)

1: (pk, µ0, µ1, info, statefind) ←$ S∗(find, 1λ)
2: b←$ {0, 1}

3: stateissue ←$ S∗〈.,U(pk,µb,info)〉1,〈.,U(pk,µ1−b,info)〉1(issue, statefind)

4: σb := U(pk, µb, info), σ1−b := U(pk, µ1−b, info)
5: Define answer as: first if only the first execution has failed,

second if only the second execution has failed,

both if both executions have failed,

(σb, σ1−b) otherwise.

6: b′←$ S∗(guess, answer, stateissue)

7: return Jb′ = bK

Figure 4.4: Security game for selective-failure partial blindness.

The following two results from [77] naturally generalize to the PBSS setting. They

state that selective-failure partial blindness is a strictly stronger notion than partial

blindness.

Lemma 4.3.1. (Generalization of Proposition 1 from [77]) Every selective-failure partially-

blind signature scheme SF − PBSS is also a secure partially blind signature scheme.

Lemma 4.3.2. (Generalization of Proposition 2 from [77]) If there exists a secure

partially-blind signature scheme PBSS, then there exists a secure partially-blind sig-

nature scheme PBSS′ which is not selective-failure partially-blind.

97

Any partially blind signature scheme PBSS can be converted into a selective-failure

partially blind signature scheme SF − PBSS as follows:

Construction 4.3.1. (Generalization of Construction 1 from [77]) Let PBSS = (KG, 〈S,U〉,Ver)

be a partially blind signature scheme and let C(1λ) be a commitment scheme. We de-

fine a new signature scheme SF − PBSS = (KG′, 〈S′,U′〉,Ver′) as follows:

Key Generation. KG′(1λ) runs (sk, pk) ←$ KG(1λ). It also chooses a function com←$

C(1λ). The algorithm sets sk′ := sk and pk′ := (pk, com), and returns (sk′, pk′).

Signing Protocol. Signer S′ is identical to signer S. User U′ commits to message µ

by computing C ← com(µ; r) for some r ←$ {0, 1}
λ

and then invokes the original user

U(pk,C, info), who interacts with signer S(sk, info). When U outputs a signature σ, U′

outputs (µ, info, (σ, r)).

Signature Verification. The verification algorithm Ver′(pk′, µ, info, σ′) parses σ′ as

(σ, r) and returns the output of Ver(pk, µ, info, com(µ; r)).

Theorem 4.3.3. If PBSS is a secure partially-blind signature scheme and C(1λ) is a

secure commitment scheme, then the scheme SF − PBSS defined in Construction 4.3.1

is a selective-failure partially blind signature scheme.

Multi-execution selective-failure partial blindness further generalizes selective-failure

blindness [77] to account for an arbitrary number of executions with user instances.

We define multi-execution selective-failure partial blindness as a natural generalization

of selective failure partial blindness.

Definition 4.3.2. (Multi-execution selective-failure partial blindness) An interactive

partially-blind signature scheme PBSS = (KG, 〈S,U〉,Ver) is called (t, θ)–multi-execution

selective-failure partially-blind if it is unforgeable (as per OMUFPBSS(1
λ)), and for any

PPT algorithm S∗ (working in modes find, issue and reveal), running in time t, we have:���Pr

[
MESF − PBlindS∗

PBSS(1
λ) = 1

]
− 1/2

��� ≤ θ, where MESF − PBlindPBSS(1
λ) is defined

in Figure 4.5.

Note that the malicious signer selects his public key, a common-part information info,

and messages µ1, ..., µk , where k denotes the number of user instances he will interact

98

Game MESF − PBlindPBSS(1
λ)

1: strev ← (⊥, . . . ,⊥)
2: (pk, µ1, . . . , µk, info, statefind) ←$ S∗(find, 1λ)
3: Select a uniformly random permutation π over {1, . . . , k}.
4: stateissue ←$ S∗〈.,U(pk,µπ(1),info)〉1,...,〈.,U(pk,µπ(k),info)〉1,Reveal(.,π,strev)(issue, statefind)

σπ(1) := U(pk, µπ(1), info), . . . , σπ(k) := U(pk, µπ(k), info),
immediately stored in strev

, once an execution terminates; Reveal(., π, strev) is an oracle,

which on input an index i, returns (π(i), strev
i).

5: If (σ1 = ⊥ ∨ . . . ∨ σk = ⊥)

6: v← (Jσ1 , ⊥K, . . . , Jσk , ⊥K) ∈ {0, 1}k
7: Else

8: v← (σ1, . . . , σk)

9: (i0, i1) ←$ S∗,Reveal(.,π,strev)(reveal, v, stateissue)

10: return 1 if-f π(i0) < π(i1) and S∗ never queried Reveal on indices i0, i1.

Figure 4.5: Security game for multi-execution selective-failure partial blindness.

with (mode find). We select a random permutation over {1, . . . , k} and give µπ(i) to user

i. All users use the same signer public key and info. If at least one user instance aborts

during mode issue, we merely notify S∗ which user instances aborted and which did not

through a binary vector v ∈ {0, 1}k . Otherwise, S∗ is given all message-signature pairs

in the original order. In mode reveal, the signer’s task is to link a message-signature

pair to an execution (i.e., find two input indices i0, i1 s.t. π(i0) < π(i1)). Furthermore,

we assume that S∗ has access to a Reveal oracle (with internal state strev
) during modes

issue and reveal, which on input i reveals the map {i 7→ (π(i), σi)}, provided that σi , ⊥.

The adversary wins if the indices he found were never queried to Reveal. Thus, S∗ can

reveal up to k − 2 maps before guessing, which implies the following:

Lemma 4.3.4. (Generalization of Proposition 3 from [77]) A selective-failure partially

blind signature scheme is also multi-execution selective-failure partially-blind.

4.3.3 Honest-user Unforgeability

In [167], the authors propose a strengthened notion of one-more unforgeability for

blind signatures, called unforgeability in the presence of honest users (or honest-user

unforgeability, for short). The idea is that an adversary could exploit the presence of

an honest user (modeled as an oracle P in Figure 4.6), and use him as an intermediary

to indirectly obtain signatures from the signer (it is not difficult to see that the absence

99

of such honest users leads to the classic notion of unforgeability of BSS [104, 155].

However, unforgeability is shown to be weaker than honest-user unforgeability [167]).

That way, the adversary may be able to produce more signatures than the number of

times he directly interacted with the signer. These kinds of attacks are not captured

by the notion of unforgeability for regular blind signatures.

Honest-user unforgeability however is given with regular blind signature schemes

in mind. Here, we adapt it for partially-blind signature schemes, thus obtaining an

even stronger notion of unforgeability for PBSS. We also show that the transformation

given in [167] is still relevant when it comes to PBSS, a result which we believe may be

of interest in its own right. Before giving the new definition, we must fix some notation.

Let P(sk, pk, ., .) be an oracle that on input µ (a message) and common information info,

executes the signature issuing protocol 〈S,U〉, thus obtaining a signature σ. Let trans

denote the transcript comprised of all messages exchanged between the parties in such

an interaction. When the protocol terminates, P returns (σ, trans). The execution of

〈S(sk, info),U(pk, µ, info)〉 by P is considered to be atomic, i.e., during a call to P, no

other interactions occur. If the interaction aborts, P returns (⊥, trans), where trans is

the transcript up to that point of execution.

Definition 4.3.3. An interactive partially-blind signature scheme PBSS = (KG, 〈S,U〉,

Ver) is honest-user unforgeable if Ver is deterministic, and for any efficient algorithm

U∗, we have Pr

[
HU −OMUFU∗

PBSS(1
λ) = 1

]
is negligible (as a function of λ), where

HU −OMUFPBSS(1
λ) is defined in Figure 4.7.

Replacing the condition of line 3 with ‘‘(µ∗i , σ
∗
i) , (µ j, σj), ∀i = 1, . . . , kinfo and ∀ j =

1, . . . , ninfo’’, and the condition of line 4 with ‘‘(µ∗i , σ
∗
i) , (µ

∗
j, σ
∗
j), ∀i, j = 1, . . . , kinfo, with

i , j ’’ we obtain the notion of strong honest-user unforgeability.

Note that when counting the interactions in which S returns ‘‘ok’’, we do not count

the interactions simulated by P. Also notice that line 3 of Figure 4.7 prevents U∗ from

winning in the unforgeability game by simply outputting a message-signature pair

that an honest user obtained for him.

Running a probabilistic algorithm on the exact same input will most likely result

in an entirely different output. We adapt the notion of probabilistic algorithms within

100

Figure 4.6: Schematic diagram of forgery in the presence of honest users. All queries

shown in the figure correspond to a particular info.

Game HU −OMUFPBSS(1
λ)

1: (pk, sk) ←$ PBSS.KG(1λ)

2: (info, (µ∗1, σ
∗
1), . . . , (µ

∗
kinfo+1, σ

∗
kinfo+1)) ←$ U∗〈S(sk),.〉∞,P(sk,pk,.,.)(pk)

kinfo := # complete, successful, direct interactions with S, using common information info.

Let µ1, . . . , µninfo
be the messages pertaining to info that were queried to P(sk, pk, ., .).

3: b1 := Jµ∗i , µ j, ∀i = 1, . . . , kinfo, and ∀ j = 1, . . . , ninfoK
4: b2 := Jµ∗i , µ∗j, ∀i, j = 1, . . . , kinfo + 1 with i , jK
5: b3 := JPBS.Ver(pk, µ∗i , info, σ∗i) = 1, ∀i = 1, . . . , kinfo + 1K
6: return b1 ∧ b2 ∧ b3

Figure 4.7: Security game for honest-user unforgeability of PBSS.

the context of PBSS. More formally, we have the following definition:

Definition 4.3.4. (Probabilistic PBSS) An interactive, partially-blind signature scheme

PBSS = (KG, 〈S,U〉,Ver) is called probabilistic if-f:

Pr


µ, info←$ {0, 1}

∗
, (pk, sk) ←$ PBSS.KG(1λ),

σ1 = σ2 σ1 ←$ 〈S(sk, info),U(pk, µ, info)〉,

σ2 ←$ 〈S(sk, info),U(pk, µ, info)〉


= negl(λ)

101

It is not hard to prove that the following holds:

Lemma 4.3.5. (Generalization of Lemma 10 from [167]) Any correct, probabilistic, and

strongly unforgeable PBSS is also strongly honest-user unforgeable.

Proof. We prove this Lemma by contradiction. To this end, suppose that PBSS is not

strongly honest-user unforgeable. As per the definition of strong honest-user unforge-

ability, there exists a PPT adversary A breaking the strong unforgeability property of

PBSS with noticeable probability. Then, A successfully outputs a single info and kinfo+1

message-signature pairs: (µ∗1, σ
∗
1), . . . , (µ

∗
kinfo+1, σ

∗
kinfo+1) for some kinfo ∈ N0, whereas S

only outputs ‘‘ok’’ after at most kinfo + 1 (direct) interactions with A. Furthermore, the

following properties are satisfied:

i) (µ∗i , σ
∗
i) , (µ

∗
j, σ
∗
j), ∀1 ≤ i < j ≤ kinfo + 1

ii) PBSS.Ver(pk, µ∗i , info, σ∗i) = 1, ∀i = 1, . . . , kinfo + 1

Next, let µ1, . . . , µninfo
be the messages queried through the honest user U (i.e., indi-

rectly), and let σ1, . . . , σninfo
be the corresponding signatures. Then we also have:

iii) {(µi, σi)} ∩ {(µ
∗
j, σ
∗
j)} = ∅, ∀i = 1, . . . , ninfo and ∀ j = 1, . . . , kinfo + 1

iv) PBSS.Ver(pk, µi, info, σi) = 1, ∀i = 1, . . . , ninfo with overwhelming probability (be-

cause PBSS is correct)

v) (µi, σi) , (µ j, σj), ∀1 ≤ i < j ≤ ninfo with overwhelming probability (because PBSS

is probabilistic)

We define the sequence of message-signature pairs:

(µ̃i, σ̃i) :=


(µ∗i , σ

∗
i) , if 1 ≤ i ≤ kinfo + 1

(µi, σi) , if kinfo + 1 < i ≤ kinfo + ninfo + 1

Properties ii) and iv) imply that PBSS.Ver(pk, µ̃i, info, σ̃i) = 1, ∀i = 1, . . . , kinfo+ninfo+1.

Additionally, properties i), iii) and v) imply that the elements of the above sequence

are pairwise distinct.

102

We now construct a simulator B to attack the strong unforgeability property of

PBSS. B runs the adversary A and honest-user U in a black-box manner. When A

makes an (indirect) query to U, B runs U and forwards the response to A. When either

A or U query the signer, B redirects their queries to an external signer S. When A

outputs his forgery, B outputs (µ̃i, σ̃i), i = 1, . . . , kinfo + ninfo + 1 (as defined above) as his

own forgery in the strong unforgeability game. We previously showed that these are

pairwise distinct and S returned ‘‘ok’’ as his status message at most kinfo + ninfo times.

Thus, PBSS is not strongly unforgeable, which contradicts our hypothesis. �

We now present a way to turn any unforgeable PBSS into an honest-user unforge-

able PBSS, that is analogous to the one from [167]. This transformation comes at the

expense of a negligible overhead compared to the original PBSS.

Construction 4.3.2. Let PBSS′ = (KG′, 〈S′,U′〉,Ver′) be an interactive partially blind

signature scheme. We define a new partially blind signature scheme PBSS = (KG, 〈S,U〉,

Ver) through the following algorithms:

• Key Generation. Algorithm KG(1λ) runs (sk′, pk′) ← KG′(1λ) and returns the

key pair.

• Signature Issuing Protocol. Signer S is identical to the original signer S′. User

U(pk, µ, info) chooses r ←$ {0, 1}
λ
, sets µ′ ← µ‖r, and then invokes the origi-

nal user U′(pk, µ′, info), who then interacts with S′(sk, info). When U′ outputs a

signature σ, U computes σ′← (σ, r) and returns σ′.

• Signature Verification. Algorithm Ver(pk, µ, info, σ′) parses σ′ as (σ, r) and

returns the result of Ver′(pk, µ‖r, info, σ).

Theorem 4.3.6. If correct, partially blind, and unforgeable PBSS exist, then there exist

PBSS which are complete, partially blind, unforgeable, and also honest-user unforge-

able.

Proof. It is trivial to see that if PBSS′ is correct and partially blind, then so is PBSS.

Thus, we only need to show that PBSS is honest-user unforgeable, if PBSS′ is unforge-

able. We will prove this by contradiction. Assume that PBSS′ is unforgeable but PBSS

103

is not honest-user unforgeable. Thus, as per Definition 4.3.3, there exists an efficient

adversary U∗ that wins in game HU −OMUFPBSS,U∗(1
λ) with noticeable probability.

We will construct an attacker B that breaks the unforgeability of PBSS′:

Setup. Algorithm B receives a public key pk as input and runs U∗ in a black-box

manner, simulating the oracles as follows:

Direct Signing Queries. If U∗ directly invokes the signing oracle S′, B simply relays

all messages exchanged between the malicious user and the signer.

Indirect Signing Queries. If U∗ indirectly invokes S′ through oracle P on message, µ ∈

{0, 1}∗, and common information info ∈ {0, 1}∗, then B chooses a random r ←$ {0, 1}
λ
,

sets µ′ ← µ‖r, and engages in an interactive PBSS with the signer S′, by assuming

the role of the honest user U′. When the protocol terminates, B obtains a signature

σ on message µ′, and common information info. He sets σ′ ← (σ, r), stores the tuple

(µ′, info, σ′) in a list L, and outputs σ′, along with the corresponding transcript trans

to the adversary U∗.

Forgery. Since U∗ is efficient, he eventually stops and outputs a single info, and a

sequence of message-signature pairs: (µ∗1, σ
∗
1), . . . , (µ

∗
kinfo+1, σ

∗
kinfo+1). In turn, B retrieves

all message-signature pairs (µ′1, σ
′
1), . . ., (µ

′
ninfo

, σ′ninfo
) pertaining to that particular info

from L (and discards the rest). He then parses σ∗i as (σ̃i, r∗i), sets µ̃i ← µ∗i ‖r
∗
i , ∀i =

1, . . . , kinfo+1, and outputs (µ′1, σ
′
1), . . . , (µ

′
ninfo

, σ′ninfo
), and (µ̃1, σ̃1) , . . . , (µ̃kinfo+1, σ̃kinfo+1).

Analysis. Because U∗ runs in polynomial-time and all queries are handled efficiently,

B runs in polynomial-time as well. Since U∗ succeeds in HU −OMUFPBSS,U∗(1
λ),

he outputs a single info and kinfo + 1 valid message-signature pairs. B simulated

the honest-user algorithm U′ to compute the message-signature pairs: (µ′1, σ
′
1), . . .,

(µ′ninfo
, σ′ninfo

), thus all these pairs are valid with overwhelming probability (due to cor-

rectness).

Observe that all messages are pairwise distinct. Indeed, consider the messages

(µ′1, . . ., µ
′
ninfo
) and (µ̃1, . . ., µ̃kinfo+1), pertaining to common information info. These

are of the form µ′i = µi‖ri, ∀i = 1, . . . , ninfo and µ̃ j = µ∗j ‖r
∗
j , ∀ j = 1, . . . , kinfo + 1, re-

spectively. Because the ri are chosen uniformly at random from {0, 1}λ, it follows

that (µ′1, . . . , µ
′
ninfo
) are pairwise distinct with overwhelming probability. Similarly,

104

because U∗ wins in HU −OMUFPBSS,U∗(1
λ), messages (µ∗1, . . . , µ

∗
kinfo+1) are pairwise

distinct and thus, (µ̃1, . . . , µ̃kinfo+1) are also distinct. Moreover, by definition we have

{µ1, . . . , µninfo
} ∩ {µ∗1, . . . , µ

∗
kinfo+1} = ∅, and thus, µ′i , µ̃ j, ∀i, j.

Next, we show that B could produce one more message-signature pair than the

number of successful, complete protocol interactions with S′. Because U∗ wins in

experiment HU −OMUFPBSS,U∗(1
λ), it follows that in at most kinfo of the protocol ex-

ecutions that B relayed between U∗ and S′, the signer returned ‘‘ok’’. Furthermore,

B executed a total of ninfo honest-user instances to simulate oracle P. Since U∗ suc-

cessfully outputs kinfo + 1 message-signature pairs for pairwise distinct messages µi,

it follows that B has asked a total of at most kinfo + ninfo queries in which S′ returned

‘‘ok’’. However, B returned a total of ninfo + kinfo + 1 message-signature pairs for info,

which contradicts our assumption that PBSS is unforgeable. �

4.4 A PBSS from Ring-SIS

We now present our lattice-based PBSS. Its time and space complexity are quasilinear,

Õ(n) in the security parameter, and its security will be proven in the random oracle

model under the worst-case assumption that Ring − SVPγ,∞ is hard to solve in the

ring Rq for γ = Õ(n4). Notice that it is possible for our scheme to be instantiated

with regular q-ary lattices and thus have its security based on regular SIS and SVP

instead. Here we describe only the more efficient ideal lattice variant. Our scheme

relies on carefully setting multiple interconnected parameters which are detailed in

Table 4.1 (sorted by order of appearance in our construction). All sets are subsets of

Rq = Zq[X]/〈Xn+1〉 and are defined by means of a l∞−norm bound. The third column

gives an indication of the asymptotic magnitude of the corresponding parameter/set

w.r.t. the main security parameter n. The last column provides insight as to the

role(s) that the corresponding parameter/set has in the interactive protocol, shown

in its entirety in Figure 4.8. Some sets introduce a correctness defect which can be

rectified by increasing the value of parameter φ, which improves performance but

requires a slightly stronger hardness assumption (by some constant factor). As in

105

Table 4.1: Scheme parameters for main security parameter n.

Parameter Value Asymptotics Purpose

n power of 2 - main security parameter

ds positive integer constant < q/(4n) O(1) secret key size, unforgeability

Ds {f ∈ Rq : ‖f‖∞ ≤ ds} O(1) secret key space

cm > 1/log(2ds) Õ(1) witness indistinguishability, leakage resilience

m bcm log qc + 1 Ω(log(n)) worst-case to average-case reduction

Dε {f ∈ Rq : ‖f‖∞ ≤ dε := 1} O(1) hash output size

φ positive integer constant ≥ 1 O(1) correctness, speed

Da {f ∈ Rq : ‖f‖∞ ≤ da := φndε} O(n) partial blindness

Da′ {f ∈ Rq : ‖f‖∞ ≤ da′ := φn(da + dε) + dε} O(n2) partial blindness

Gε {f ∈ Rq : ‖f‖∞ ≤ da′ − (da + dε)} O(n2) partial blindness

Dy {f ∈ Rq : ‖f‖∞ ≤ dy := φmn2dsdε} Õ(n2) witness indistinguishability

G∗ {f ∈ Rq : ‖f‖∞ ≤ dG∗ := dy − ndsdε} Õ(n2) witness indistinguishability, correctness defect

Dβ {f ∈ Rq : ‖f‖∞ ≤ dβ := φmndG∗} Õ(n3) partial blindness

G {f ∈ Rq : ‖f‖∞ ≤ dG := dβ − dG∗} Õ(n3) partial blindness, correctness defect

Gω {f ∈ Rq : ‖f‖∞ ≤ dω := da − dε} Õ(n) partial blindness, correctness defect

Gσ {f ∈ Rq : ‖f‖∞ ≤ dσ := dβ − dG∗} Õ(n3) partial blindness, correctness defect

Gδ {f ∈ Rq : ‖f‖∞ ≤ dδ := da′ − dε} O(n2) partial blindness, correctness defect

D {f ∈ Rq : ‖f‖∞ ≤ dD := dG∗ + dβ + ndsdω} Õ(n3) collisions under h

q ≥ 4dDmn
√

n log(n) Θ̃(n4
√

n) worst-case to average-case reduction

[159], we do not unwind the parameters ds and dε in favor of making the proofs of

some lemmas that involve them, easier to understand. In particular, for our scheme

dε will be the constant 1, but one can increase it in order to be able to sign hash values

of bit-length > n log(3).

4.4.1 Our Construction

We go on to provide definitions for the triplet of algorithms (KG, Sign = 〈S,U〉, Ver)

comprising our partially-blind signature scheme. Sample parameters are given in

Table 4.2.

• Key Generation. PBSS.KG(1n) chooses a secret key ŝ ←$ D
m
s (see Table 4.1),

and a homomorphic hash function h ←$ H(Rq,m). Next, it selects a function

com ←$ C(1
n) and a hash function H ←$ H(1

n) mapping {0, 1}∗ → Dε ⊂ D,

where C(1n) is a family of commitment schemes, mapping {0, 1}∗ × {0, 1}n →

{0, 1}n. It also selects a public hash function F : {0, 1}∗ → Rq that maps arbitrary

strings to a random public key, whose secret key is not known by anyone [7].

106

The algorithm computes the public key S ← h(ŝ) and gives the pair (ŝ,S) to the

signer. For simplicity, we will treat h, com,H, F and the rest of the parameters

in Table 4.1 as globally known. Alternatively, the signer can set the parameter

values and include them in the public key.

• Signature Issuing Protocol. The signature-issuing protocol PBSS.Sign is de-

scribed by the joint execution of algorithms S and U as depicted in Figure 4.8.

The signer’s private input is his secret key ŝ, whereas the user’s private input

is the message to-be-signed, µ. The common information info is assumed to be

negotiated outside the signature scheme and is thus treated as common input to

both parties. Eventually, the user obtains a signature (r, ẑ,ω, σ̂, δ) for message µ

and common information info. If the protocol needs to be restarted during Step

2, the user only selects new a←$ Da and a
′←$ Da′, and repeats the operations

that involve those, while keeping the same r ∈ {0, 1}n. However, if the protocol is

aborted during either Step 3 or Step 5, the user must select a new r as well, to

make the protocol executions independent of one another. Finally, by means of

Step 5 the signer can thwart a cheating user who has obtained a valid signature

but claims the contrary. In that case, the signer simply terminates the protocol,

leaving the user with what he has obtained.

• Signature Verification. PBSS.Ver(S, µ, info, (r, ẑ, ω, σ̂, δ)) returns 1 as output iff

ẑ ∈ Gm
, ω ∈ Gω, σ̂ ∈ Gm

σ, δ ∈ Gδ and ω + δ (mod 2dε + 1) = H
(
h(ẑ) + ωS, h(σ̂) +

δF (info), F (info), com(µ; r)
)
, and 0 otherwise.

4.4.2 Protocol Description

Our protocol is based on the 3-move witness-indistinguishable identification protocol

of [122], in which the signer proves knowledge of a secret key ŝ ∈ Dm
s such that

h(ŝ) = S, where S is the corresponding public key. The signer also uses a second

public key Z (the "tag" public key), which is generated from the common information

info with the help of a hash function. These two keys are used in conjunction by

the signer to sign a message in such a way that the resulting protocol is witness-

107

indistinguishable. We construct our protocol by combining [122] with the framework

of [7].

Upon commencing, the signer selects random nonce vectors ŷ1 ∈ D
m
y and ŷ2 ∈ Gm

∗

and computes commitments Y1 = h(ŷ1) and Y = h(ŷ2) + γZ, where Z = F (info), which

he then sends to the user. As is the case with all constructions that rely on the Fiat-

Shamir heuristic [74], the user computes the challenge ε as a function (involving H) of

Y1,Y, the ‘‘tag’’ public key Z, and the message to-be-signed, µ, and then ‘‘blinds’’ it by

computing ε
∗ = ε − a − a

′ (mod 2dε + 1), before sending it to the signer. The signer

computes e = ε
∗ − γ (mod 2dε + 1), and then the ‘‘blinded’’ signature ẑ

∗ = ŷ1 − eŝ.

Because h is a homomorphism, the user can check that h(ẑ∗) = Se + Y1 using public

knowledge only. Finally, the user ‘‘unblinds’’ the signature by computing ẑ = ẑ
∗ + ϐ̂

and ω = e + a, as well as σ̂ = ŷ2 + ϐ̂
′

and δ = γ + a
′
, which correspond to common

information info. There are a few issues that need to be addressed at this point.

First, the protocol must be complete. Second, the messages transmitted by the user

must be distributed independently of the signed message µ, in order to achieve partial

blindness. Finally, to prove unforgeability, we need to make sure that the messages

transmitted by the signer do not leak information about his secret key to the user. All

issues are addressed via rejection sampling [121, 122].

In Step 2, we need to make sure that the blinded challenge ε
∗

that the user com-

putes, leaks no information about the message being signed, and that it is uniformly

distributed. This is necessary because ω + δ (mod 2dε + 1) = ε (both ω and δ will be

part of the final signature) and thus ε
∗

needs to hide ε. This is done in two steps:

computing the blinded challenge, and then ‘‘shrinking’’ it modulo the range of coef-

ficients in Dε . First, to hide ε we rejection-sample ε − a − a
′

to make sure that it

falls within Gε . For that purpose, a
′
will need to be picked from a relatively larger set

than ε − a to ‘‘mask’’ the difference (and thus ε too). Otherwise, the user performs a

‘‘local restart’’ by picking fresh a and a
′
. The correctness defect introduced here can

effectively be lowered to 0 because the user can repeat it locally. Second, provided that

ε − a − a
′ ∈ Gε , we have to ensure that ε

∗ := ε − a − a
′ (mod 2dε + 1) is also distributed

uniformly over Dε before sending it to the signer. We achieve this by imposing a re-

108

Signer S(ŝ, info) User U(S, µ, info)

1 ŷ1 ←$ D
m
y

ŷ2 ←$ Gm
∗

γ←$ Dε

Z← F(info)

Y1 ← h(ŷ1)

Y← h(ŷ2) + γZ Y1, Y 2 Z← F(info)

r ←$ {0, 1}
n

C ← com(µ; r)

a←$ Da

a
′ ←$ Da′

ϐ̂←$ D
m
β

ϐ̂
′
←$ D

m
β

ε← H(Y1 + Sa + h(ϐ̂),

Y + Za
′ + h(ϐ̂

′
), Z,C)

If ε − a − a
′ < Gε then

Start over with fresh a, a
′

Else

3 e← ε
∗ − γ (mod 2dε + 1) ε

∗
ε
∗ ← ε − a − a

′ (mod 2dε + 1)

ẑ
∗ ← ŷ1 − eŝ

If ẑ
∗ < Gm

∗ then restart ẑ
∗, ŷ2, γ 4 e← ε

∗ − γ (mod 2dε + 1)

ẑ← ẑ
∗ + ϐ̂

ω← e + a

σ̂← ŷ2 + ϐ̂
′

δ← γ + a
′

If (ẑ < Gm ∨ ω < Gω∨

σ̂ < Gm
σ ∨ δ < Gδ∨

ω + δ (mod 2dε + 1) , H(h(ẑ) + ωS,

h(σ̂) + δZ, Z,C))

result← (C, a, a′, ϐ̂, ϐ̂
′
, ε)

5 If (result = ok) then stop result Else result← ok

Parse result← (C, a, a′, ϐ̂, ϐ̂
′
, ε)

If (ε∗ + a + a
′(mod 2dε + 1) = ε∧

ε = H(Y1 + Sa + h(ϐ̂), Y + Za
′ + h(ϐ̂

′
),

Z,C) ∧

e + a + γ + a
′(mod 2dε + 1)

= H(h(ẑ∗ + ϐ̂) + (e + a)S,

h(ŷ2 + ϐ̂
′
) + (γ + a

′)Z, Z,C) ∧

(ẑ∗ + ϐ̂ < Gm ∨ e + a < Gω∨

ŷ2 + ϐ̂
′
< Gm

σ ∨ γ + a
′ < Gδ)) then

restart

Output V ← (ŷ1, ŷ2, Y1, Y, ε
∗, ẑ∗, γ) Output (µ, info, (r, ẑ, ω, σ̂, δ)) or ⊥ if result , ok

Figure 4.8: The five-step, four-move signature issuing protocol (steps shown in boxed

numbers) for the proposed PBSS. All parameter and set definitions are given in Table

4.1. For brevity, we omit any verifications performed by the two parties w.r.t. the

domains from which the protocol messages come from.

109

striction on the "shape" of Gε . For our case of dε = 1, this can be achieved by requiring

that the range of coefficients in Gε is a multiple of 2dε + 1 = 3. However, notice that

if we require that 2[da′ − (da + dε)] + 1 = 2(φ2n2 − 1) + 1 ≡ 0 (mod 3), this is equivalent

to φ2 ≡ 2 (mod 3), which has no solutions. To fix this, we set the upper bound for the

coefficients inDa′ to be slightly higher, i.e., da′ := φn(da+1)+1 (or da′ := φn(da+dε)+dε

in general). By following the same rationale as above, for the case of dε = 1, we obtain

the congruence φ2 ≡ 1 (mod 3), which is satisfied by all natural numbers that are not

a multiple of 3. Thus, we need to select φ to be non-congruent to 0 modulo 3, which

is not a steep requirement at all, given the natural density of such numbers. All of

the parameter sets proposed in Table 4.2 satisfy this condition.

Upon receiving the ‘‘shrinked’’ blinded challenge ε
∗
, the signer computes e← ε

∗−γ

(mod 2dε + 1). Notice that this computation is done modulo 2dε + 1 in correspondence

to the computation of ε
∗

performed by the user during Step 2. Since both ε
∗

and γ

are uniform over Dε (which is isomorphic to Zn
2dε+1), e is also uniform over Dε . The

rationale behind the reduction modulo 2dε + 1 is to make the masking of e possible

during the next step of the protocol (it is otherwise impossible to apply Lemmas 2 and

4). Next, we use rejection sampling to hide eŝ (and thus ŝ) by adding to it a vector

ŷ1 from a relatively larger set, compared to ‖eŝ‖∞, and outputting the result only if

it falls within Gm
∗ . This results in ẑ

∗ = ŷ1 − eŝ appearing to be uniform over Gm
∗ ,

despite actually being related to secret key ŝ. However, if ẑ
∗ < Gm

∗ , the protocol must

be restarted. As we show in the next Section, the number of required trials can be

greatly reduced by increasing one of our scheme’s parameters.

Finally, rejection sampling is used again in Step 4 when the user attempts to ‘‘un-

blind’’ the components of the final signature. More specifically, the user masks e, γ, ẑ∗

and σ̂ with the help of a, a′, ϐ̂ and ϐ̂
′
, respectively (which were prepared during Step

2). Unfortunately, rejection sampling needs to be applied four times in total, which

considerably decreases the user’s chance of obtaining a signature without having to

restart the protocol (see for example the first column of Table 4.2). However, the cor-

rectness defect introduced during Step 4 can also be ameliorated by increasing one

of the scheme’s parameters (namely, φ) at the expense of a slightly stronger hardness

110

assumption. In particular, if any of ẑ
∗ + ϐ̂, e + a, ŷ2 + ϐ̂

′
or γ + a

′
does not fall within

Gm,Gω,Gm
σ or Gδ, respectively, the user sends (C, a, a′, ϐ̂, ϐ̂

′
) to the signer, who then

verifies whether the user has indeed failed to obtain a valid signature, or not. The

signer does so by tracing the computations performed on the user’s side. We stress

that without this fifth final step, it is impossible for the signer to know whether the

user successfully produced a valid signature during Step 4, or not. Indeed, the signer

does not know if ẑ ∈ Gm ∧ ω ∈ Gω ∧ σ̂ ∈ Gm
σ ∧ δ ∈ Gδ, because he has never seen any

of the masking terms ϐ̂, a, ϐ̂
′
, a′ that were used to compute ẑ,ω, σ̂, and δ, respectively.

However, as we will prove in Section 4.4.3, the signer cannot be tricked into restarting

the protocol by a malicious user, unless the latter is able to find collisions for h in

D × D. Additionally, for proving unforgeability we will require that com is binding.

Finally, to prevent the signer from learning information about the signed message, µ,

across restarts, we will require that com is also hiding.

Table 4.2: Sample parameter instantiations for our PBSS. Parameters are set so that

the collision problem is hard to solve [122, 162]. The parameters in the first column

use the mildest hardness assumption, the set of the second column aims to reduce

the number of required repetitions, and the third set aims to decrease the signature

size, while keeping the number of required repetitions small (other trade-offs are also

possible). For the second and third column, the optimisation goal is denoted in bold

face. In all cases, the Hermite factor is taken to be 1.007, and the estimated security

level is 92 bits [81, 135]. To decrease the expected number of repetitions (e5/φ
as

we prove in Theorem 4.4.3), we need to increase the value of the parameter φ, thus

sampling our masking vectors throughout the protocol from larger sets. Finally, as

we discuss in Section 5.2, φ must not be a multiple of 3 (in case dε = 1).

Parameter Sample Instantiations

n (power of 2) 2048 2048 2048

q (prime ≈ n7
) ≈ 277 ≈ 277 ≈ 277

φ 1 29 16

ds 1 1 21619

m 78 78 5

Repetitions 148 1.19 1.37

Secret key size 31.65 kB 31.65 kB 19.71 kB

Public key size 19.71 kB 19.71 kB 19.71 kB

Signature size 1868.8 kB 2260.6 kB 168.3 kB

Communication 3078.84 kB 3664.6 kB 320.72 kB

111

4.4.3 Analysis and Security

We now provide theorems and supporting lemmas showing that our proposed scheme

satisfies the basic security requirements of leakage-resilient PBSS, namely: correct-

ness, partial blindness, unforgeability, and leakage resilience. Once we have estab-

lished the baseline security of our scheme, we consider further extensions of the

security model.

Correctness

The next lemma is also required for our analysis, as it provides a bound (w.r.t. the

infinity norm) for the product of any pair of polynomials in Rq, when they are reduced

modulo Xn + 1.

Lemma 4.4.1. (Lemma 3.2 in [159, p. 28]) Let a, b ∈ Rq be arbitrary polynomials. Then

‖ab mod (Xn + 1)‖∞ ≤ n‖a‖∞‖b‖∞.

Theorem 4.4.2. (Correctness) Let g(n) = ω(log5(n)). Our PBSS is correct after at most

g(n) (or, an expected number of e5/φ
) repetitions.

Proof. First, note that if no restarts occur, the protocol produces a valid signature.

That is, for all honestly generated key pairs (ŝ,S), all messages µ ∈ {0, 1}∗, all common

information info ∈ {0, 1}∗, and all signatures (r, ẑ,ω, σ̂, δ) we have: ẑ ∈ Gm,ω ∈ Gω, σ̂ ∈

Gm
σ, δ ∈ Gδ, and h(ẑ)+ωS = h(ẑ∗+ ϐ̂)+ (e+a)S = h(ŷ1−eŝ+ ϐ̂)+ (e+a)S = Y1+aS+h(ϐ̂).

Additionally, we have: ω + δ = (e + a) + (γ + a
′) = (e + γ) + (a + a

′). Therefore, by

reducing modulo 2dε +1, we obtain: ω+δ(mod 2dε +1) = (e+γ)+ (a+a
′)(mod 2dε +1) =

ε
∗ + a + a

′(mod 2dε + 1) = ε.

Thus, we have shown that: ω+δ (mod 2dε+1) = H(h(ẑ)+ωS, h(σ̂)+δF (info), F (info), com(µ, r)),

and PBSS.Ver(S, µ, info, (r, ẑ,ω, σ̂, δ)) returns 1 as its output.

Next, we consider all possible restart cases and address the introduced correctness

error in each one of them:

Restarts occurring at Step 2. Restarts during this step do not affect correctness

at all, because the user just performs them locally. By applying Lemma 2.5.8, with

k = n, A = da + dε and B = da′ = φn(da + dε) + dε to ensure that ε − a − a
′ ∈ Gε , we

112

obtain an expected number of trials which is constant (e1/φ
), and which decreases as

φ increases.

Restarts occurring at Step 3. In Step 3, the signer rejection-samples ẑ
∗ = ŷ1 −

eŝ to ensure that it lies in Gm
∗ . According to Lemma 4.4.1, ‖eŝ mod (Xn + 1)‖∞ ≤

ndsdε . Therefore, if we apply Lemma 2.5.8 with k = mn, A = ndsdε and B = dy, we

conclude that the probability of success is e−1/φ
and the maximum number of trials is

ω(log(n)) during this step. Thus, after an expected number of e1/φ
trials, the protocol

successfully proceeds to Step 4.

Restarts occurring after Step 4. During the ‘‘Unblind Phase’’ of Step 4, the user

requires that ẑ
∗ + ϐ̂ ∈ Gm, ŷ2 + ϐ̂

′
∈ Gm

σ, e + a ∈ Gω, and γ + a
′ ∈ Gδ. Otherwise, he

requests a protocol restart from the signer. By applying Lemma 2.5.8 with k = mn, A =

dG∗, B = dβ to ẑ
∗ + ϐ̂, we obtain a success probability e−1/φ

and a maximum number

of trials of ω(log(n)). Similarly, for ŷ2 + ϐ̂
′

with k = mn, A = dG∗, B = dβ = φmndG∗,

Lemma 2.5.8 yields a success probability e−1/φ
and a maximum number of trials of

ω(log(n)). For e+a, Lemma 2.5.8 with k = n, A = dε, and B = da = φndε yields a success

probability of e−1/φ
. Finally, for γ+ a

′
, if we apply Lemma 2.5.8 with k = n, A = da + dε,

and B = φn(da + dε) + dε yields a success probability of e−1/φ
.

In total, after at most g(n) = ω(log5(n)), or an expected number of e5/φ
restarts, the

protocol is indeed complete. �

Remark 6. Note that all operations involved in our scheme (including restarts), as well

as sizes of private keys, public keys and signatures are of quasilinear complexity.

Remark 7. Also note that the parameter φ controls the number of trials. Increasing

its value, decreases the expected number of protocol restarts, and vice-versa.

Partial Blindness

In proving that our construction is partially blind, we follow an approach similar to

[159, p. 14] and show that all protocol messages exchanged between the user and

the signer, along with the final output, are distributed independently from the signed

message. For our analysis, we treat each of the exchanged messages and the output

signature as random variables.

113

Theorem 4.4.3. (Partial Blindness) If com is θ
(h)
com - hiding, then our PBSS is (∞, θ

(h)
com) -

partially-blind.

Proof. As per PBlindPBSS(1
n) (see Section 4.2.1), the malicious signer chooses common

information info, and two messages µ0, µ1, and then interacts with two honest users,

U(S, µb, info) and U(S, µ1−b, info), after a secret coin flip b←$ {0, 1}.

Distribution of ε
∗
. Let ε

∗
b, ε
∗
1−b be the first protocol messages of users U(S, µ0, info)

and U(S, µ1, info), respectively. Both are of the form ε − a − a
′ (mod 2dε + 1), with

ε − a ∈ {f ∈ Rq : ‖f‖∞ ≤ da + dε } and a
′

is distributed uniformly over Da′. First,

notice that by Lemma 2.5.7 with k = n, A = da + dε and B = da′, it follows that

∆(εb − ab − a
′
b, ε1−b − a1−b − a

′
1−b) = 0. By applying Lemma 2.3.1 to random variables

εb−ab−a
′
b and ε1−b−a1−b−a

′
1−b, with f (X) = X (mod 2dε + 1), we have ∆(ε∗b, ε

∗
1−b) = 0.

Distribution of ẑ. Let ẑ0, ẑ1 be part of the final output of U(S, µ0, info) and U(S, µ1, info)

respectively; Note that both are of the form ẑ
∗ + ϐ̂, for ẑ

∗
∈ Gm

∗ and ϐ̂ ←$ D
m
β . Addi-

tionally, both ẑ0 and ẑ1 lie in Gm
because the users perform rejection sampling (Step

4) on these random variables. Therefore, their coefficients are bounded in absolute

value by dβ − dG∗. From Lemma 2.5.7 with k = mn, A = dG∗ and B = dβ, we infer that

∆(ẑ0, ẑ1) = 0.

Distribution of ω. Let ω0,ω1 be part of the final output of U(S, µ0, info) and U(S, µ1, info)

respectively. Both are of the form e + a, for e ∈ Dε and a ←$ Da. Additionally, both

ω0 and ω1 lie in Gω because the users perform rejection sampling (during Step 4) on

these random variables. Therefore, their coefficients are bounded in absolute value

by da − dε . By applying Lemma 2.5.7 with k = n, A = dε and B = da = φndε , we infer

that ∆(ω0,ω1) = 0.

Distribution of σ̂. Let σ̂0, σ̂1 be part of the final output of U(S, µ0, info) and U(S, µ1, info)

respectively. Both are of the form ŷ2 + ϐ̂
′
, for ŷ2 ∈ Gm

∗ and ϐ̂
′
←$ Dm

β . Additionally,

both σ̂0 and σ̂1 lie in Gm
σ because the users perform rejection sampling (during Step

4) on these random variables. Therefore, their coefficients are bounded in absolute

value by dβ − dG∗. By applying Lemma 2.5.7 with k = mn, A = dG∗ and B = dβ, we infer

that ∆(σ̂0, σ̂1) = 0.

Distribution of δ. Let δ0, δ1 be part of the final output of U(S, µ0, info) and U(S, µ1, info)

114

respectively. Both are of the form γ+a
′
, for γ ∈ Dε and a

′←$ Da′. Additionally, both δ0

and δ1 lie in Gδ because the users perform rejection sampling (Step 4) on these random

variables. Therefore, their coefficients are bounded in absolute value by da′ −dε . From

Lemma 2.5.7 with k = n, A = dε and B = da′ = φn(da + dε) + dε > dε , we infer that

∆(δ0, δ1) = 0.

Distribution of Y1,Y, ŷ2, γ and r. These random variables are all either sampled

uniformly at random from some domain, or distributed independently from the signed

message µ. We note that e (which can be computed from ε
∗

and γ) is also uniform

over Dε , since its computation is done within Dε .

Restarts. Restarts are distinguished into two types: those that occur during Step 2

and can be handled locally by the user, and those that occur after Step 4 and cause

the protocol to start over. Notice that we do not need to deal with restarts occurring

in Step 3, because they do not affect partial blindness as per game PBlindPBSS(1
n).

• Restarts during Step 2: Because com is statistically hiding and the user selects

a new set of r, a, a′, ϐ̂, ϐ̂
′

every time he performs a restart during Step 2 of the

signature-issuing protocol, each protocol execution is statistically independent

from any preceding execution. Therefore our scheme is (∞, θ
(h)
com) - partially blind,

since com is statistically θ
(h)
com - hiding.

• Restarts caused after Step 4: The user submits (C, a, a
′, ϐ̂, ϐ̂

′
, ε) to the signer.

The signer is then able to trace the computations performed on the user’s side

and can determine whether a restart is truly necessary. Note that the signer

works with the commitment, C, instead of the original message, µ. Again, due to

com’s statistical hiding property, µ remains statistically hidden from the signer,

since he does not possess the corresponding decommitment parameter r which

would allow him recovery of µ. Thus, our scheme achieves statistical instead of

perfect partial blindness.

�

Remark 8. Based on the previous discussion, if com is perfectly hiding (i.e., θcom = 0),

then PBSS is partially blind in a perfect sense, whereas if com is statistically hiding,

115

PBSS is partially blind in a statistical sense. In either case, a malicious signer only

gains a negligible amount of information from protocol restarts, at best.

Unforgeability

The generalized Forking Lemma from [32] is a probabilistic result that lies at the core

of proving the unforgeability of our scheme. Additionally, to simulate the signing

oracle in the unforgeability game of Section 4.2.1, we will also need two supporting

lemmas. The first states that for each public key S in our protocol, there exist (with

overwhelming probability) at least two distinct corresponding secret keys ŝ, ŝ′.

Lemma 4.4.4. (Lemma 3.6 in [159, p. 29]) Let h ∈ H(Rq,m). For every secret key

ŝ ←$ D
m
s , there exists (with overwhelming probability) a second ŝ

′
∈ Dm

s \ {ŝ} with

h(ŝ) = h(ŝ′).

The next lemma is based on Lemma 3.7 from [159], suitably adapted for our con-

struction. Informally, it states that if we interpret the components of a (malicious)

user’s view as random variables, then the user is unable to tell which of (at least)

two possible keys ŝ, ŝ′ ∈ h−1(S) ∩ Dm
s was used during the signature-issuing protocol,

except with negligible advantage.

Lemma 4.4.5. Let h ∈ H(Rq,m) and S ∈ Rq. For any message µ ∈ {0, 1}∗ and any two

distinct secret keys ŝ, ŝ′ ∈ Dm
s with h(ŝ) = h(ŝ′), the resulting protocol views (Y1,Y, ε

∗, ẑ∗,

ŷ2, γ) and (Y′1,Y
′, ε∗

′

, ẑ
∗′, ŷ′2, γ

′) are witness-indistinguishable.

Proof. Initially, observe that Y1 and Y
′
1 do not depend on the choice of secret key. The

same holds for Y and Y
′
. Furthermore, ε

∗
and ε

∗′
are independent of any particular

ŷ1 ∈ h−1(Y1) ∩ D
m
y because Y1 statistically hides ŷ1 through h. Moreover, ŷ2 and

ŷ
′
2, as well as γ and γ

′
are all sampled independently of the secret key. Finally, we

have to show that ẑ
∗

and ẑ
∗′

are also distributed independently of the secret key.

For that, let e be any factor used by the signer during Step 3 of our protocol, to

compute ẑ
∗
, i.e.: ẑ

∗ = ŷ1 − eŝ ∈ Gm
∗ . Next, we set ŷ

′
1 := ŷ1 − ŝe + ŝ

′
e, which implies

that ẑ
∗ = ŷ

′
1 − ŝ

′
e. We then easily see that ŷ

′
1 ∈ h−1(Y1) ∩ D

m
y . Indeed, ŷ

′
1 ∈ h−1(Y1)

because h(ŷ′1) = h(ŷ1 − ŝe + ŝ
′
e) = Y1 − eS + eS = Y1. Additionally, ŷ1 ∈ D

m
y since:

116

‖ŷ
′
1‖∞ = ‖ẑ

∗+ ŝ
′
e‖∞ ≤ ‖ẑ

∗
‖∞+ ‖ŝ

′
e‖∞ ≤ dy−ndsdε+ndsdε = dy, where the last inequality

follows from Lemma 4.4.1. In conclusion, no malicious user can distinguish whether

the honest signer is using secret key ŝ with a masking term ŷ1 or ŝ
′

with a masking

term ŷ
′
1, both of which yield the same output. �

We now prove that our construction is unforgeable, provided that the commitment

scheme is binding, and the collision problem Col(H(Rq,m,D)) being hard.

Theorem 4.4.6. (Unforgeability) Let Sig denote the signature issuing oracle and H the

hashing oracle. Let TSig and TH denote the cost functions for simulating the oracles

Sig and H respectively, and let 0 ≤ c < 1 be the probability of restarting the protocol.

Our PBSS is (t, qsig, qH, θ)-unforgeable if com is (t′, θ/2)-binding, and Col(H(Rq,m,D))

is (t′, θoverall/2)-hard, where t′ = t + q
qsig

H
(qsigTsig + qHTH) and θoverall is noticeable if θ is

noticeable.

Proof. Let A be an efficient forger who successfully breaks unforgeability within time

t and with noticeable probability, θ. By exploiting A’s capability of forging signatures

in a black-box manner, we will construct a simulator B, such that B either breaks the

binding property of com, or solves the collision problem.

Setup. Simulator B flips a coin b ←$ {0, 1}. If b = 0, B selects h ←$ H(Rq,m).

Otherwise, it is given the description of h as input. B initializes a list LH ← ∅ of query-

hash pairs of the form (Rq ×Rq ×Rq × {0, 1}
∗,Dε), a list LF ← ∅ for queries to F which

are of the form ({0, 1}∗,Rq) , and a list LSig ← ∅ of message-signature pairs of the form

({0, 1}∗ × {0, 1}∗,Gm × Gω × Gm
σ × Gδ). It then picks ŝ←$ D

m
s and computes S← h(ŝ).

Moreover, B randomly pre-selects random oracle answers h1, . . . ,hqH
←$ Dε , a random

tape ρ, and runs A(S; h1, . . . ,hqH
; ρ) in a black-box way.

RO Queries. On input (u, v, Z,C), B determines if (u, v, Z,C) has previously been

queried to H by checking whether (u, v, Z,C) ∈ LH. If the answer is affirmative, B

returns the same output ε as before, to remain consistent. Otherwise, B returns the

first unused hi and stores
(
(u, v, Z,C),hi

)
in LH.

PBS Queries. B acts as the signer according to the protocol in Figure 4.8 and fills in

LSig after A produces his output.

117

Forgery. Since adversary A is efficient, he eventually stops, outputting:
(
µ1, info,

(r1, ẑ1,ω1, σ̂1, δ1)
)
, . . . ,

(
µ , info, (r , ẑ ,ω , σ̂ , δ )

)
, where  = kinfo + 1 for pairwise distinct

messages. If b = 0, the reduction tries to find two pairs (µ∗1, info, (r∗1 , ẑ
∗,ω∗, σ̂∗, δ∗))

and (µ∗2, info, (r∗2, ẑ
∗,ω∗, σ̂∗, δ∗)) with µ∗1 , µ∗2, and returns (µ∗1, r

∗
1), (µ

∗
2, r
∗
2) to break com’s

binding property. If no such pair is found, it simply aborts. If b = 1, the simulator

locates a message-signature pair ((µ†, info), (r†, ẑ
†,ω†, σ̂†, δ†)), where (µ†, info) has never

been queried to the signing oracle. The algorithm computes u
† = h(ẑ†)+Sω

†
and v

† =

h(σ̂†) + F (info)δ† and rewinds the adversary to the point where (u†, v†, F (info), com(µ†,

r†)) was queried to the hashing oracle H. Let 1 ≤ I ≤ qH be the index of that query.

B then re-runs A(S; h1, . . . ,hI−1, h
′
I, . . . ,h

′
qH

; ρ) with new random responses to queries

with index ≥ I, but using the same random tape ρ. Eventually, A will output a new

forgery ((µ‡, info), (r‡, ẑ‡,ω‡, σ̂‡, δ‡)) using the same random oracle query as in the first

run (after polynomially bounded time because A is efficient and all of his queries are

handled efficiently). B then returns (ẑ
† + ŝω

†, ẑ‡ + ŝω
‡), if ω

† , ω
‡
, as a solution to the

Collision Problem and aborts otherwise (an event that as we will explain, occurs with

negligible probability).

Analysis. A’s environment is perfectly simulated and restarts occur with the same

probability as in the original protocol. Therefore, A has no advantage whatsoever in

distinguishing the simulation.

For b = 0, B (t
′

, θ/2)-breaks com’s binding property, if A successfully attacks com’s

binding property to break unforgeability.

For b = 1, we assume that A breaks unforgeability without attacking com. Since at

least one of the produced signatures was not obtained via an interaction, the probabil-

ity that B correctly guesses its index is at least
1

kinfo+1 . Next, notice that A can success-

fully predict the output of the random oracle H with probability 1/|Dε |. By applying the

general Forking Lemma of [32], we can determine that after rewinding, A is again suc-

cessful in producing a forgery, using the same random oracle query as in the first run

with probability θfrk ≥ (1− c)(θ − 1
|Dε |
)(
θ−1/|Dε |

qH
− 1
|Dε |
), where the additional (1− c) factor

accounts for a potential restart during the second run. Therefore, with probability at

least θfrk, the following relation holds: h(ẑ†)+Sω
† = h(ẑ‡)+Sω

‡
. This can equivalently

118

be written as: h(ẑ†−ẑ
‡+ŝ(ω†−ω‡)) = 0.We observe that with overwhelming probability,

ω
† , ω

‡
. Indeed: ω

† = ((ε∗†−γ†) mod(2dε+1))+a
† = ((ε†−a

†−a
′†−γ†) mod(2dε+1))+a

†
.

Similarly, we have: ω
‡ = e

‡+a
‡ = ((ε‡−a

‡−a
′‡−γ‡) mod(2dε +1))+a

‡. By subtracting,

we get: ω
† − ω

‡ = ((ε† − a
† − a

′† − γ
† − ε

‡ + a
‡ + a

′‡ + γ
‡) mod (2dε + 1)) + a

† − a
‡. If

ω
†−ω‡ = 0, then ε

‡−γ‡ (mod 2dε +1) is determined by polynomials selected by A and

polynomials determined by B before rewinding. However, both ε
‡

and γ
‡

are randomly

selected by B after rewinding. Therefore, the probability that ω
† = ω

‡
is

1
|Dε |
= 1
(2dε+1)n

which is negligible in n. Thus, ω
† , ω

‡
with overwhelming probability 1 − 1/|Dε |.

Next, if ω
† , ω

‡
then with a probability of at least 1/4, we have ẑ

†
− ẑ
‡ + ŝ(ω† −

ω
‡) , 0. Indeed, by Lemma 4.4.4, there exists another ŝ

′ , ŝ (with overwhelming

probability). Furthermore, because of Lemma 4.4.5, the signing protocol is witness-

indistinguishable and therefore there is a probability of at least 1/2 that the signer’s

output corresponds to ŝ
′
. Because the signer possesses the secret key while the

user does not, and because of Lemma 4.4.5, all protocol messages are distributed

independently of the secret key, even if ẑ
†
− ẑ
‡ + ŝ

′
(ω† − ω‡) = 0, B has at least 1/2

chance of claiming that ẑ
†
− ẑ
‡ + ŝ(ω† − ω

‡) , 0. Since ẑ
†
− ẑ
‡ + ŝ(ω† − ω

‡) , 0,

we deduce that ẑ
† + ŝω

† , ẑ
‡ + ŝω

‡
. Furthermore, since ‖ẑ

† + ŝω
†‖∞, ‖ẑ

‡ + ŝω
‡‖∞ ≤

dG + ndsdω < dD, we obtain (ẑ
† + ŝω

†, ẑ‡ + ŝω
‡) as a collision of h in D × D, with

probability: θcol ≥
1

4(kinfo+1) (1 −
1
|Dε |
)θfrk, which is noticeable due to θ.

Restarts. Finally, we argue that the only way for a user to obtain a valid signature

from an aborted interaction, is if he can solve the collision problem for h in D. Indeed,

for an abort to occur in Step 5, the user needs to ‘‘convince’’ the honest signer by

sending him result = (C, a, a′, ϐ̂, ϐ̂
′
, ε), which together with his view of the interaction

(Y1,Y, ε
∗, ẑ∗, ŷ2, γ, e), satisfy the abort criteria:

ε
∗ + a + a

′ (mod 2dε + 1) = ε (4.1)

H(Y1 + Sa + h(ϐ̂),Y + Za
′ + h(ϐ̂

′
), Z,C) = ε (4.2)

119

e + a + γ + a
′ (mod 2dε + 1) = H(h(ẑ∗ + ϐ̂) + S(e + a),

h(ŷ2 + ϐ̂
′
) + Z(γ + a

′), Z,C)
(4.3)

ẑ
∗ + ϐ̂ < Gm ∨ e + a < Gω ∨ ŷ2 + ϐ̂

′
< Gm

σ ∨ γ + a
′ < Gδ (4.4)

Suppose that the malicious user successfully obtains a forged signature (r0, ẑ0, ω0, σ̂0, δ0)

from an aborted interaction. Thus, we may assume that (r0, ẑ0,ω0, σ̂0, δ0) satisfies all

of the verification criteria from Section 5.3. First, observe that the adversarial user

may succeed by hiding ε
′ , ε in the computation of ε

∗
. However, to achieve this

he would need to predict the output of H, which happens with a negligible proba-

bility of
1
|Dε |

. Thus, we have ε = ε
′

with an overwhelming probability of 1 − 1
|Dε |

.

Because ε = ω0 + δ0 (mod 2dε + 1) = ω + δ (mod 2dε + 1), it follows from (4.3) that

h(ẑ∗ + ϐ̂) + S(e + a) = h(ẑ0 + ω0ŝ). Equivalently, this can be written as:

h(ẑ∗ + ϐ̂ + ŝ(e + a)) = h(ẑ0 +ω0ŝ). (4.5)

Next, notice that with an overwhelming probability of at least 1− 1
|Dε |

, we have ω0 =

e + a (unless e + a < Gω, in which case we have a contradiction because we know that

ω0 ∈ Gω). Indeed, the only way for the malicious user to obtain a ω0 , e+a, is if during

Step 2 he used an a0 = ω0 − ω + a, which implies that he would have to successfully

guess ω, which he can do only with a negligible probability of
1
|Gω |
≤ 1
|Dε |
= 1
(2dε+1)n .

From Bayes’ rule, we can determine that the probability that e+a ∈ Gω, given that (4.4)

holds is
e−1/φ−e−4/φ

1−e−4/φ , a constant. Similarly, with an overwhelming probability of at least

1 − 1
|Dε |

, we have δ0 = γ + a
′
(unless γ + a

′ < Gδ, in which case we have a contradiction

because δ0 ∈ Gδ). Finally, with an overwhelming probability of at least 1− 1
|Dε |

, we have

σ̂0 = ŷ2+ϐ̂
′
(unless ŷ2+ϐ̂

′
< Gm

σ, in which case we have a contradiction because we know

that σ̂0 ∈ Gm
σ). Thus, the only possible case for condition (4.4) to hold, is if ẑ

∗+ ϐ̂ < Gm
.

Observe that in that case, the arguments of h in (4.5) cannot be equal because then

ẑ
∗ + ϐ̂ = ẑ0, which contradicts the hypothesis that ẑ0 ∈ Gm

. Therefore, we have

ẑ
∗+ ϐ̂ , ẑ0, and since ‖ẑ0+ω0ŝ‖∞ < dD and ‖ẑ

∗+ ϐ̂+ ŝ(e+a)‖∞ ≤ dG∗ +dβ+ndsdω = dD,

we have a collision in D. Thus, by applying the law of total probability, we can deduce

120

that the overall probability of obtaining valid signatures out of aborted interactions is:

θabort ≥ (1 −
1
|Dε |
)4(e

−1/φ−e−4/φ
1−e−4/φ)

3θ, which is noticeable if θ is noticeable. In conclusion, if

b = 1, A’s overall success probability is θoverall ≥ min(θcol, θabort), which is noticeable if

θ is noticeable. �

By combining Theorem 4.4.6 with Theorem 2.5.5, we obtain the following:

Corollary 4.4.1. The proposed PBSS is unforgeable if solving Ring − SVPγ,∞ is hard in

the worst case, for approximation factors γ ≥ 16dDmn log2(n) = Õ(n4), in ideal lattices

of Rq.

Remark 9. As a consequence of Theorem 4.4.6, if we require that qsig = o(n), our

construction benefits from the subexponential hardness of ideal lattice problems.

Remark 10. Because e is reduced modulo 2dε + 1 in Step 3 of our signing protocol, we

have a milder worst-case hardness assumption of Õ(n4), compared with the BSS from

[159], which is based on the worst-case hardness of Ring − SVP for approximation

factors in Õ(n5). We believe that this ‘‘trick’’ could also be used on [159] to improve

the hardness assumption therein.

Remark 11. Notice that our proof also covers the case in which the forger U∗ attempts

to forge the common part information info (i.e., kinfo = 0). Alternatively, one could

cover this case by resorting to the modular technique of ‘‘ID-reduction’’ [138], and by

exploiting the witness-indistinguishability of our scheme.

Leakage Resilience

In proving leakage-resilience for our scheme, we rely on the core observation of [109],

which states that any collision-resistant hash function (our underlying hash-function

is proven collision-resistant in [125]) is a leakage-resilient one-way hash function when

certain conditions are imposed on the leakage oracle (these conditions are necessary

because the recent work of [113] shows that for some leakage scenarios, leakage-

resilience is impossible to achieve). This observation is also used by other works to

construct leakage-resilient primitives [109, 159].

121

In the next theorem, we establish leakage resilience for our construction. In proving

leakage resilience, we will show that the secret key’s conditional min-entropy: H∞(sk |

Leak(sk)) = minsk′{− log(Pr [sk = sk′ | Leak(sk)])} is large enough for the scheme to be

secure. The proof closely follows the corresponding proof of [159], with the additional

observation that Z = F (info) is not related to the signer’s secret key, and thus does

not leak information about ŝ.

Theorem 4.4.7. (Leakage Resilience) Let cm = ω(1) and let L := log(|Ds |
m) = mn log(2ds+

1) denote the length of the signer’s secret key in the proposed PBSS. Given S = h(ŝ) and

a total secret-key leakage f (ŝ) of λ = δL = (1 − o(1))L bits, the conditional min-entropy

H∞ of ŝ, is positive with overwhelming probability.

Proof. We follow the same conservative approach as in [159] and treat the public key

S as additional leakage. Notice that Z = F (info) is not related to the signer’s secret

key, and thus we do not treat it as a source of additional leakage for ŝ. We define the

function g(ŝ) := f (ŝ)‖S with a total tolerated leakage of at most λ′ = λ + n log(q) bits.

Next, apply Lemma 1 from [109] to g, λ′, and H′ = 1, with ŝ being the random variable.

Because H = L = mn log(2ds + 1), we have:

Pr [g(ŝ) ∈ Y] ≥ 1 − 2λ
′−H+H ′ = 1 − 2λ+n log(q)−L+1, (4.6)

which we want to be ≥ 1 − 2−p(n)
. For any function p(n) such that ω(log(n)) ≤ p(n) ≤

O(n log(n)), we bound the relative leakage from above by δ ≤ 1 − p(n)+n log(q)+1
L =

1 − Θ(n log(n))
cmΘ(n log(n)) = 1 − 1

ω(1) = 1 − 1
o(1) . As a result, (4.6) becomes: Pr [g(ŝ) ∈ Y] ≥

1 − 2(1−
p(n)+n log(q)+1

L)L+n log(q)−L+1 = 1 − 2p(n)
. Thus, δL = (1 − o(1))L leakage bits yield

a non-zero conditional min-entropy with overwhelming probability 1 − 2−p(n) ≥ 1 −

2−ω(log(n))
. �

Remark 12. From Theorem 6, we see that if we additionally require that cm = ω(1)

(e.g., by choosing cm = log(n)) for m := bcm log(q)c + 1, then our PBSS retains its

quasi-optimal performance and is also leakage-resilient.

122

4.5 Additional Security Properties

In this Section, we discuss several extensions of the classic security model of PBSS that

are applicable to our construction. We consider honest-user unforgeability, selective-

failure blindness, and dishonest-key blindness. To the best of our knowledge, none of

these properties have previously been examined in the context of PBSS.

4.5.1 Dishonest-key Partial Blindness

In the definition of (partial) blindness, we implicitly assumed that the signer generates

its secret and public keys through the scheme’s key generation algorithm. However, we

would like to ensure that partial blindness still holds even when the signer maliciously

selects its keys. Our scheme’s partial blindness proof does not rely on any specific

properties of the public key and thus satisfies this strengthened notion of partial-

blindness as well.

4.5.2 Selective-failure Partial Blindness

The notion of partial blindness does not cover cases in which the protocol has to be

aborted prematurely. However, we would like to ensure that partial blindness also

holds in cases where the signer is able to cause one of the protocol executions to abort

by choosing one of the messages µ0 or µ1 from some secret distribution. Our scheme

is selective-failure partially-blind because it makes use of the transformation of Con-

struction 4.3.1. Indeed, the signer’s view is limited to commitments on the messages

he signs, and uncovering them would require it to break com’s hiding property. This

modification comes at the expense of only a negligible computational overhead. By

extension, our scheme is also multi-execution selective-failure partially-blind.

4.5.3 Honest-user Unforgeability

Our scheme can easily be modified to use the transformation of Construction 4.3.2.

The user commits to µ‖r′ for some r′ ←$ {0, 1}
n

instead of µ during Step 2. If any

restarts occur during Step 2, r′ needs to be resampled as well. Finally, r′ will be

123

included in the final signature and the verification condition becomes:

ω + δ (mod 2dε + 1) = H
(
h(ẑ) + ωS, h(σ̂) + δF (info), F (info), com(µ‖r′; r)

)
.

4.6 Conclusions, Open Problems and Future Work

In this chapter, we presented the first leakage-resilient, lattice-based PBSS in the lit-

erature. Our construction has the same 4-move structure and uses a commitment

scheme like the scheme from [159]. Its performance is quasi-optimal and its security

is proven in the ROM under milder worst-case ideal lattice assumptions compared to

[159]. Besides being quantum-resistant, our construction is also honest-user unforge-

able, selective-failure blind, dishonest-key blind, and can withstand sub-exponential-

time attacks, and limited side-channel attacks against the signer’s secret key thanks

to its leakage resilience.

Following the publication of this chapter’s construction, the work of [98] pointed

out a very subtle but essential flaw in the proof strategy employed by a wide range

of proposals [159, 21, 20, 42], including the present construction. In particular, it

states that the scheme’s witness indistinguishability alone is insufficient to infer that

the pair (χ̂, χ̂′) obtained by rewinding the adversary with partially different random

oracles [32] is a non-trivial collision for h. Witness indistinguishability merely implies

that there exist two distinct secret keys sk, sk′, leading to identical protocol transcripts

(Lemma 8 from [155]). Hence, constructing partially-blind signature schemes from

lattice assumptions remains an open problem. Here, an interesting research direction

would be to investigate whether the modular framework of [97, 98] can be further

extended to render partially-blind signature schemes.

124

Chapter 5

A Framework for Blind Signatures

with Revocable Sessions

5.1 Introduction

Blind signature Schemes (BSS) were pioneered by D. Chaum [53] and have since

become a focal cryptographic primitive for many privacy-preserving applications such

as e-cash [53], e-voting [158], wireless sensor networks [186], anonymous credentials

[27] (used e.g.: in Microsoft’s U-Prove technology [146]), and cryptocurrencies [184].

Informally, a BSS is an interactive protocol between a signer S (holding some secret

key sk) and a user U (holding the corresponding public key pk and a message m).

After the interaction is complete, U should obtain a valid signature σ on m. The

protocol needs to be correct (i.e., the output signature can be verified using pk and

m) and additionally, it needs to satisfy two properties: blindness (i.e., S does not

obtain any information w.r.t. m) and one-more unforgeability (i.e., no more valid

signatures can be created beyond the ones received after interacting with S). Since

their conception, a plethora of BS constructions has been proposed under various

hardness assumptions like RSA [53, 54, 55], DLP [50], bilinear pairings [87], etc. BS

schemes can be rendered based on general complexity assumptions [75, 65, 104] but

these result in schemes that are very inefficient. On the contrary, schemes proven

secure in the ROM generally lead to much more feasible solutions. [97] presents a

125

general framework for rendering BS schemes, secure in the ROM, from any (perfect)

linear hash function family. Unfortunately, the aforementioned works are based on

hardness assumptions that are vulnerable to Shor’s algorithm [169]. Given the rapid

development in quantum computers, there is an increased interest for constructions

secure under quantum-resistant assumptions.

Lattice-based cryptography is a prime candidate for the post-quantum era as it

boasts a plethora of attractive features such as: worst-case to average-case reduc-

tions [14], simplicity, efficiency, parallelizability, and is suitable for a wide scope of

(advanced) applications. A common phenomenon in lattice-based cryptography is that

cryptographic constructions usually exhibit some form of a noticeable correctness er-

ror. This makes designing blind signature schemes from lattice assumptions a very

challenging task because security arguments from the number-theoretic world do not

trivially carry over (if at all), making security analysis quite arduous. The first attempt

towards a lattice-based BSS in the literature was made in [159] in an effort to adapt the

Okamoto-Schnorr framework [139] to the lattice setting, using Lyubashevsky’s iden-

tification scheme [122] as its basis. The proposed scheme addresses the correctness

error with an additional move which serves as a means of allowing the user to prove

that it did not obtain a valid signature from a session, thus triggering a session restart.

However, as [98] showed, the unforgeability proof is flawed due to an incomplete ar-

gument when applying the Forking Lemma [30]. Later works [21, 116, 42, 19, 143]

also share this flaw in their unforgeability proofs. More recently, [98] proposed the

first provably secure BSS in the ROM as an instantiation of a generic framework for

designing blind signature schemes from linear hash function families with noticeable

correctness error. However, in order to reduce the correctness error of the resulting

BS scheme, [98] relies on trees of commitments from [19] which results in a blow-up

in the number of bits that need to be transmitted per session. The more recent work of

[12] also deviates from the idea of correctness error by following a completely different

paradigm from [98] in order to construct a round-optimal BS scheme, secure in the

ROM.

We therefore ask the following question: Can we do something simpler and that is

126

more natural to the lattice setting (which is more in line with classical, but incorrect

works in this area [159, 21])?

Result 1: We propose for the first time, a general framework that is capable of cap-

turing schemes like [159, 21]. In doing so, we first revisit the definitions for blindness

and one-more unforgeability of BSS to take into account that a signing session may

fail to produce a signature. In addition, like in [159], we endow the user with the

ability to prove to the signer that he failed to obtain a signature from a signing session

through a proof-of-revocation (PoR) which if deemed valid, results in a session being

revoked (i.e., counts as if it did not take place).

Result 2: We describe a generic 4-move construction of BSRS schemes from any

linear hash function family with noticeable correctness error and prove its security in

the ROM. We aim for our construction to be modular, straightforward to implement

and to avoid the use of any heavy machinery like NIZK proofs.

Result 3: We demonstrate the efficacy of our novel framework, by providing a con-

crete instantiation of our generic scheme from lattice assumptions (namely, R − SIS).

Surprisingly, despite having an additional move, our scheme only needs to transmit a

fraction (of about 22.2) of the amount of bits that [98] does for the same level of 128-bit

security. Furthermore, our scheme achieves signatures that are ≈ 12% shorter for the

same level of bit security.

Unfortunately, we can only prove blindness in the weaker honest signer model

[104]. It is interesting to see if we can construct a scheme that is secure in the pres-

ence of malicious signers [75]. Moreover, our construction comes with an exponential

security loss in the reduction from the underlying R − SIS assumption, which is inher-

ent from the proof technique of Pointcheval and Stern [155]. This severely restricts the

number of signatures that can be issued per public key to a poly-logarithmic amount.

While our scheme might not be practical by itself (our instantiation has signature sizes

in the order of megabytes), we still believe that our modular framework is of theoretical

interest for designing and analyzing blind signature schemes from lattice assumptions

and could potentially lead to more practical solutions. Finally, another restriction in-

herited from the Okamoto-Schnorr paradigm is that in order to achieve concurrent

127

unforgeability under revokes, the signer can only issue a poly-logarithmic (in the se-

curity parameter) number of signatures per public key [98]. However, increasing the

amount to polynomial seems within reach [152, 107].

5.1.1 Technical Overview

Definitional Model. Our starting point is a remark from [98] which states that for

BS schemes with noticeable correctness error [159, 21, 19], the standard definition

of unforgeability [104] is significantly weakened. The reason behind this is that an

interaction with the signer may fail to yield a valid signature (with noticeable proba-

bility), even for honest adversaries. For example, if N interactions take place but the

forger only obtains K < N valid signatures, it still has to come up with at least N + 1

valid signatures in order to win (i.e., it has to make up for the N − K failed sessions

on its own before even producing any forgeries). The adversary’s position can thus

become needlessly difficult within this context. This motivates the question: what if

the adversary could somehow prove to the signer that it did not obtain a signature?

We define blind signatures with revocable sessions (BSRS) as a natural extension

of canonical (i.e., three-move) BS schemes [97, 98] with a fourth move. The user is

capable of producing a PoR through which a session can be revoked, allowing for a

new interaction to take place. This PoR should only work iff the user truly failed to

obtain a signature. The fourth move helps the signer ascertain the truth of the user’s

claim that it did not obtain a valid signature despite following the protocol. Since a

session can be revoked, the definitions for blindness and unforgeability need to take

this into account.

First, recall the definition of blindness in the (honest-signer) model [104]. The

adversarial signer picks messages msg0,msg1 of its own choosing and it generates

a secret key/public key pair using the BS scheme’s key generation algorithm. It

then interacts with two user sessions, holding mb and msg1−b, respectively, after a

secret coin toss b. After both interactions are completed, the signer obtains a pair of

signatures (σ0, σ1), where possibly (σ0, σ1) = (⊥,⊥) if either session failed to produce

a signature and it has to correctly guess b. This setting is limited in that it cannot

128

capture our setting where the user can output a PoR π along with a signature σ,

potentially triggering a restart.
1

We extend the definition as follows: if a session

outputs σ = ⊥, the signer learns which session failed and is given the corresponding

PoR π. If π is valid, the session is reinitialized. This process keeps repeating until both

sessions have obtained valid signatures, and only then is the signer given (σ0, σ1). The

signer wins if it can guess b. We call this property blindness under revokes.

Next, recall the definition of unforgeability [104]. The signer generates its keys

via the key generation algorithm and then interacts with an honest signer. Once the

interaction is complete, the user wins if it can output at least one more valid signature

than there were interactions. This definition only has meaning if a session always

outputs a valid signature. However, this is not the case in our setting because a

session may have been revoked. Therefore, the ‘‘winning condition’’ must exclude any

sessions that have been revoked. We call this property unforgeability under revokes.

Notice that this definition is more flexible in the sense that it does not force an adver-

sary to make up for any failed sessions. Instead, the adversary can simply prove that

it did not obtain a signature, and the challenger will exclude these sessions. Most im-

portantly, this eliminates the need to reduce the blind signature scheme’s correctness

error to negligible (like [98] does).

Generic Constructions. At a high-level, our generic constructions (see Section 5.3

for details) follow the typical three-move structure of identification schemes to provide

a proof of knowledge of a secret key sk ∈ Dsk s.t. F(sk) = pk, where pk is the public

key.

At the outset, the signer transmits a commitment R := F(r) to a random vector

r ∈ Dr . Upon receiving R, the user samples masking parameters α, ϐ and computes

a challenge c as a function (involving H) of R, α, ϐ, and the message-to-be-signed msg,

which it sends to the signer. The signer receives c and responds with s := c · sk+ r. By

the linearity of F, F(s) = pk · c+R should hold. Furthermore, the user ‘‘unblinds’’ (s, c)

with the help of the blinding parameters to obtain the final signature (s′, c′) on msg.

Because of the correctness error of F, even if both parties behave honestly, there is no

1
Indeed, the signer interacts with each user session at most once.

129

guarantee that the user will obtain a valid signature when unblinding.
2

This is the

intuition behind having the additional move serving as a means of allowing the user

to prove through a PoR that a protocol restart is necessary. Here, it is important to

ensure that the PoR does not leak any information about the message, that the signer

can detect a cheating user, and that it is infeasible for the user to come up with a fake

PoR for a session from which it obtained a valid signature. We address these issues

by having the user commit to the actual message with the help of a collision-free hash

function during Step 2. Moreover, a PoR comprises of only the necessary random

values that the user sampled during Step 2, along with its commitment to m. This

allows the signer to trace the computations performed on the user’s side and to revoke

a session if necessary (if a PoR is invalid, the signer does nothing).

We now give some basic intuition behind the proof of Theorem 5.3.5. In brief, we

reduce our scheme’s unforgeability under revokes from the collision-resistance of the

underlying LHF. At a high level, we follow the steps of [98] by running an adversary M

against unforgeability under revokes, twice. On the second run, we use the same input

I and user randomness ω, but partially change the vector from which random oracle

responses come from h to h
′
. The intuition here is to obtain two distinct (and short)

preimages χ, χ′ for F, forming a collision. Both χ, χ′ depend on M’s internal state

and our main tool for showing that χ , χ′ with high probability is the Subset Forking

Lemma from [98]. Because we distinguish between closed or revoked sessions, applying

the probabilistic method from [98] is not straightforward and requires a very careful

analysis. For example, this comes up when we need to bound the event of obtaining

the most likely short preimage of F on the first execution of M. For revoked sessions in

particular, the user will need to separately commit on the blinding parameters using a

collision-free hash function G for our argument to go through. Of course, this also has

implications on our proof of blindness under revokes when we need to show that each

signature could have resulted from either session transcript (for some appropriately

distributed user-side randomness).

2
This is due to applying the well-known rejection sampling technique.

130

5.1.2 Related work, problems and limitations

The first provably secure BS scheme from lattice assumptions was proposed in [98]

along with a modular framework for constructing canonical BS schemes from any

linear hash function family with noticeable correctness error. As we discussed earlier,

the authors reduce the correctness error induced by the underlying LHF with an

aborting technique from [19] which involves trees of commitments. However, this

leads to a more complex and less natural solution in the lattice setting.

A very recent work [12] follows a different paradigm from [139] and proposes a

very efficient and round-optimal construction of blind signature schemes in the ROM.

In brief, their scheme works as follows: on input the verification key Sig.vk of some

signature scheme Sig, and a message m, the user samples a homomorphic encryption

key HE.sk := (s̄, e) from the LWE error distribution. The corresponding decryption

key HE.pk is computed via a hash function H (modeled as a random oracle) on input

Sig.vk and a session identifier sid, and using a linear operation involving (s̄, e). The

user then homomorphically encrypts the message CTm := HE.Enc(HE.pk,m) just as

in [43] and sends (HE.pk,CTm) to the signer, along with respective NIZK proofs of

well-formedness. On input Sig.sk, the signer verifies the two NIZK proofs, and then

homomorphically evaluates Sig’s signing algorithm on CTm to produce and output an

encrypted signature CTσ. Upon receiving CTσ, the user homomorphically decrypts it

to obtain the final blind signature σ. Concretely, if Sig is instantiated with a (abort-

free) variant of Dilithium-G [68], the estimated signature size is ≈ 3 KB for ≈ 128 bits

of security in the ROM. Furthermore, their adversaries are limited to obtaining 256

signatures.

While their construction shows great promise for practical use, there are several

serious roadblocks barring implementation. First, by design, the signing algorithm

Sig.SignSig.sk acts as a circuit on which the ciphertext must be homomorphically eval-

uated by the signer. However, Sig.SignSig.sk internally uses a hash function modeled

as a random oracle and as such, this hash function must also be evaluated homo-

morphically. Unfortunately, choosing such a hash function is a highly non-trivial

matter. While the authors provide some basic intuition on how to approach the prob-

131

lem, this still remains a major open problem. Second, the homomorphic encryption

scheme itself needs to be chosen carefully and in a way capable of handling the diverse

formats involved during the homomorphic signing. Ensuring compatibility between

the homomorphic encryption format and the format needed for evaluating the hash

function seems particularly tricky to ensure when instantiating Sig.Sign with their

proposed abort-free variant of Dilithium-G’s signing algorithm
3
. Finally, Dilithium-G

compresses the signature elements with Huffman codes. However, in [12] this will

need to be done under the homomorphic encryption layer, which could be expensive

to implement. Addressing all of these problems simultaneously will likely require a

very masterful implementation.

5.1.3 Relation to impossibility results for blind signatures.

In [78], the authors give an impossibility result for 3-move BS. Their main result states

that finding black-box reductions from unforgeability to non-interactive problems is

hard, unless the problems involved were already easy, and it captures many prior BS

proposals [5, 53, 155]. However, it does not apply to instantiations of our 4-move

framework because it is impossible for one to tell if the user truly obtained a valid

signature within 3 moves since the user has not revealed the masking parameters

that he uses to produce his final signature, and may need to restart (to retain its

anonymity). This is important because under our scheme, the components of the final

signature must satisfy a ‘‘shortness’’ condition for the signature to be deemed valid.

In [108], the authors give an impossibility that rules out black-box constructions of

blind signatures from one-way functions. This impossibility result also does not apply

to our construction because the underlying hash function is collision resistant [125].

Finally, the meta-reduction of [27] also does not apply to our work because the hard

computational problem underlying our scheme’s unforgeability (R − SIS) does not rely

on a unique-witness relation between public and secret keys.

3
Fisher-Yates shuffle no longer works for mapping to Dilithium-G’s challenge space because this

task must be done homomorphically.

132

5.1.4 Organization

In Section 5.2 we recall the notion of linear hash function families with correctness

error and introduce for the first time the notion of blind signatures with revocable

sessions (BSRS) along with their syntax and security model. Section 5.3 provides a

detailed description of our generic construction of BSRS schemes from any linear hash

function family with correctness error. Our generic constructions are formally proven

secure in the ROM. Finally, in Section 5.4 we provide a concrete instantiation of our

generic construction from lattice assumptions.

In this chapter, we reprint the main construction in [144], of which the dissertation

author was the main investigator and author.

5.2 Preliminaries

To facilitate the presentation of our proofs, in this chapter we adopt the standard

notion of prose-based security games [32, 170]. We denote the binary output of a

game G with an adversary A as G
A

and say that A wins in G iff G
A = 1.

5.2.1 Linear Hash Function Families with Correctness Error

We recall the definition of linear hash function families with correctness error which

was recently defined in [98], and is a generalization of linear hash function families

with perfect correctness [97].

Definition 5.2.1. (Linear Hash Function Family with Correctness Error) A linear hash

function family LHF is a tuple of algorithms (PGen, F). On input the main security

parameter, algorithm PGen returns parameters par, implicitly defining sets

S = S(par), D = D(par), and R = R(par),

where S is a ring such that D and R form modules over S. Parameters par also

133

implicitly define 9 filter sets

Sxxx ⊆ S, xxx ∈ {c′, c, β} and Dyyy ⊆ D, yyy ∈ {sk, s, r, s′, α}

For the rest of the write-up, we will assume that par is fixed and implicitly given to

all algorithms. Note that, for linear hash function families with no correctness error,

we have Sxxx = S and Dyyy = D.

We assume an algorithm F that implements a module homomorphism from D to

R i.e.,

F(s1 · x + s2 · y) = s1 · F(x) + s2 · F(y), ∀s1, s2 ∈ S and ∀x, y ∈ D .

Moreover, we assume that F has λ+1 bits of min-entropy; i.e., for all (even unbounded)

algorithms A, we have: Pr
x←$D,y←$A(par)

[F(x) = y] ≤ 2−(λ+1)
.

We also recall certain properties of linear hash functions that will be essential for

the security analysis of our blind signature. We start by defining torsion-freeness and

regularity which we will use when proving one-more unforgeability for our scheme.

Definition 5.2.2. (Torsion-free Elements from the Kernel) We say that LHF has a

torsion-free element from the kernel if for all par generated with PGen, there exist

z∗ ∈ D \ {0} s.t. (i) F(z∗) = 0; and (ii) for all c1, c2 ∈ Sc satisfying (c1 − c2) · z∗ = 0 we

have c1 = c2.

Note that the existence of such an element implies that F is not a 1-1 mapping.

Definition 5.2.3. (Regularity) We call LHF (ε,Q′)-regular, if for all par generated with

PGen, there exist sets D′sk,D
′
r and a torsion-free element from the kernel z∗ s.t.

|D′sk |

|Dsk |
·

(
|D′r |

|Dr |

)Q′

≥ 1 − ε/4,

where

D′sk := {sk ∈ Dsk : sk + z∗ ∈ Dsk}

and

D′r := {r ∈ Dr : r + cz∗ ∈ Dr, ∀c ∈ Sc}.

134

We then define enclosedness error for LHF, which is directly linked to the correct-

ness error of blind signature schemes like ours and [98]. Setting a small enclosedness

error makes it easier to construct a blind signing protocol with a small correctness

error.

Definition 5.2.4. (Enclosedness Errors) We say that LHF has enclosedness errors

(δ1, δ2, δ3) if for all par ∈ PGen(1λ), c′ ∈ Sc′, c ∈ Sc, s ∈ Ds, sk ∈ Dsk ,

Pr
β←$Sβ

[β + c′ < Sc] < δ1, Pr
r←$Dr

[c · sk + r < Ds] < δ2, and Pr
α←$Dα

[α + s < Ds′] < δ3.

For our blindness proof, we need to define an additional property for LHF called

smoothness.

Definition 5.2.5. (Smoothness) We say that LHF is smooth if the following conditions

hold for all par ∈ PGen(1λ):

(S1) For all s ∈ Ds and s′ ∈ Ds′, we have ‖s′ − s‖∞ ∈ Dα.

(S2) For all s1, s2 ∈ Ds and random variables α∗ ←$ {α ∈ Dα |α + s1 ∈ Ds′}, α̂←$ {α ∈

Dα |α + s2 ∈ Ds′} we have that α∗ + s1 and α̂ + s2 are identically distributed.

(S3) For all s1, s2 ∈ Ds and random variables α∗ ←$ {α ∈ Dα |α + s1 < Ds′}, α̂←$ {α ∈

Dα |α + s2 < Ds′} we have that α∗ + s1 and α̂ + s2 are identically distributed.

(S4) For all c′ ∈ Sc′ and c ∈ Sc, we have ‖c − c′‖∞ ∈ Sβ.

(S5) For all c′1, c
′
2 ∈ Sc′ and random variables β∗ ←$ {β ∈ Sβ |β + c′1 ∈ Sc}, β̂ ←$ {β ∈

Sβ |β + c′2 ∈ Sc} we have that β∗ + c′1 and β̂ + c′2 are identically distributed.

(S6) For all c′1, c
′
2 ∈ Sc′ and random variables β∗ ←$ {β ∈ Sβ |β + c′1 < Sc}, β̂ ←$ {β ∈

Sβ |β + c′2 < Sc} we have that β∗ + c′1 and β̂ + c′2 are identically distributed.

We finally define collision-resistance for LHF. Unlike standard collision-resistance

as defined in [97], we additionally require the candidate solution to be short.

135

Definition 5.2.6. (Collision Resistance) We define the collision resistance game for a

linear hash function family LHF as follows:

Game CRLHF:

• Setup. CRLHF samples parameters via par←$ LHF.PGen(1λ) and runs adversary

A on input par.

• Output Determination. When A outputs (x1, x2), CRLHF returns 1 iff: (i) F(x1) =

F(x2), (ii) x1 , x2, and (iii) x1, x2 ∈ D
′
, where

D′ := {s′ − c′ · sk : s′ ∈ Ds′, c′ ∈ Sc′, sk ∈ Dsk} ⊆ D . (5.1)

Otherwise, it returns 0.

We define the advantage of A in game CRLHF as AdvCRLHF(A) := Pr[CRA
LHF = 1] and

denote its running time by TimeCRLHF(A). We say that LHF is (ε, t)-collision resistant if

for all adversaries A, we have that

TimeCRLHF(A) ≤ t and AdvCRLHF(A) ≤ ε

5.2.2 Blind Signature Schemes with Revocable Sessions

The standard security properties of BS schemes are blindness and one-more unforge-

ability (OMUF) [104, 155]. Blindness requires that the adversarial signer must not

obtain any information on the signed messages, while one-more unforgeability states

that an adversarial user cannot obtain more signatures than the number of interac-

tions with the signer.

Observe that the notions of one-more unforgeability and blindness are not suitable

to describe the security of BS schemes with noticeable correctness error (e.g.: lattice-

based). Indeed, even if a user behaves honestly, it may be unable to obtain a valid

signature with noticeable probability. If l interactions are completed, the user still

has to come up with at least l + 1 signatures in order to win. We relax the definition

by giving the user the ability to prove that a session did not result in obtaining a

136

valid signature. These sessions are said to be revoked and are excluded from the final

count. If a session is revoked, the signer and the user can restart a session, hopefully

leading to the generation of a valid signature. This however is not compatible with the

definition of blindness where the signer only gets to interact with each session at most

once before attempting to link a pair of signatures to their respective transcripts. Mo-

tivated by these concerns, we define for the first time, blind signatures with revocable

sessions (BSRS) which consider the possibility of revoking a session through a proof

and restarting a session. We further elaborate on the differences of our definitional

model below.

We now define the syntax of blind signature schemes with revocable sessions.

Definition 5.2.7. (Blind Signature Schemes with Revocable Sessions) A blind signa-

ture scheme with revocable sessions is a four-move blind signature scheme BSRS and

is comprised by six algorithms BSRS = (PG,KG, S,U, CheckProof,Ver).

• BSRS.PG(1λ) : On input the main security parameter λ, the randomized param-

eter generation algorithm generates and returns scheme parameters par.

• BSRS.KG(par) : On input scheme parameters par, the randomized key generation

algorithm generates and outputs a secret/public key pair (sk, pk). Public key pk

implicitly defines the scheme’s challenge space C := C(pk) and is known to all

parties.

• BSRS.S : The signer algorithm is split into two sub-algorithms BSRS.S = (S1, S2),

where:

1. BSRS.S1(sk) : On input the secret key sk, the randomized algorithm BSRS.S1

returns a commitment R and a signer state stS.

2. BSRS.S2(sk,R, c, stS) : On input the secret key sk, a commitment R, a user

challenge c, and a signer state stS, the deterministic algorithm BSRS.S2

returns a response s, where possibly s = ⊥.

• BSRS.U : The user algorithm is split into two algorithms BSRS.U = (BSRS.U1,BSRS.U2),

where:

137

1. BSRS.U1(pk, R,msg) : On input the public key pk, a commitment R, and a

message msg from message space M, the randomized algorithm BSRS.U1

returns a challenge c from challenge space C, and a user state stU.

2. BSRS.U2(pk, R, c, s,msg, stU) : On input the public key pk, a commitment

R, a challenge c, a response s, a message msg, and the user state stU,

the deterministic algorithm BSRS.U2 outputs a signature σ and a proof-of-

revocation (PoR) π, where either σ = ⊥ or π = ⊥ (but not both).

• BSRS.Ver(pk, σ,msg) : On input the public key pk, signature σ, and message

msg ∈ M, the deterministic verification algorithm returns 1 if the signature is

valid, and 0 otherwise. We assume that BSRS.Ver returns 0 if σ = ⊥.

• BSRS.CheckProof(pk, tx, π, stS) : Is a deterministic auxiliary algorithm for check-

ing the validity of a given PoR w.r.t. a public key and a session transcript. On

input the public key pk, a session transcript tx4
, a PoR π, and the signer’s state

stS, it either returns 1 (valid) or 0 (invalid).

Algorithms BSRS.S2,BSRS.CheckProof, and BSRS.U2 are considered deterministic w.l.o.g.

because randomness can be transmitted through the states of the signer and user,

respectively. Figure 5.1 depicts the flow of interaction between a signer and a user

during a signing session.

Signer BSRS.S(sk) User BSRS.U(pk,msg)

(R, stS) ←$ BSRS.S1(sk) R

(c, stU) ←$ BSRS.U1(pk, R,msg)c

s ← BSRS.S2(sk, R, c, stS) s
(σ, π) ← BSRS.U2(pk, R, c, s,msg, stU)

π
Output View := (stS, R, c, s, π) Output σ

Figure 5.1: Interaction flow between signer BSRS.S and user BSRS.U.

Definition 5.2.8. (Correctness) We say that BSRS = (PG,KG, S,U, Ver,CheckProof) has

correctness error δ, if for all messages msg from message space M, par ∈ PG(1λ),

4
We use (R, c, s) and tx interchangeably to denote the session transcript throughout this chapter.

138

(sk, pk) ∈ KG(par), we have

Pr
(View,σ)←$〈BSRS.S(sk),BSRS.U(pk,msg)〉

[BSRS.Ver(pk,msg, σ) = 1] ≤ δ

We now provide the security model for BSRS. In particular, we give definitions for

blindness under revokes and one-more unforgeability under revokes.

Recall the definition of blindness in the (honest-signer) model [104]. The adversar-

ial signer S∗ picks messages msg0,msg1 from message space M of his own choosing

and it generates a secret key/public key pair using the BS scheme’s key generation

algorithm. It then interacts with two user sessions, holding msgb and msg1−b, respec-

tively, after a secret coin toss b ←$ {0, 1}. After both interactions are completed, the

signer obtains a pair of signatures (σ0, σ1), where possibly (σ0, σ1) = (⊥,⊥) if either

session failed to produce a signature. S∗ wins if it can correctly guess b. We modify

the definition to allow each user to output a PoR π along with a signature σ. Further-

more, if a session outputs σ = ⊥, the signer learns which session failed and is given

the corresponding PoR π. If π is valid, the session is reinitialized and a new interaction

can take place with that particular user (this is done by invoking oracle ReInit). This

process keeps repeating until both sessions have obtained valid signatures, and only

then is the signer given (σ0, σ1). S∗ wins if it can guess b. At the end of the game,

S∗’s view consists of a list of tuples of the form (tx, π) of transcripts and PoRs for each

session.
5

We now give the formal definition for blindness under revokes.

Definition 5.2.9. (Blindness under Revokes) We define blindness under revokes of a

four-move BSRS against an adversary A via the following game:

Game RBlindBSRS(1
λ):

• Setup. RBlindBSRS(1
λ) generates parameters via par←$ BSRS.PG(1λ), and sk, pk

via (pk, sk) ←$ BSRS.KG(par). It samples a random bit via b ←$ {0, 1} and sets

b1 := b and b2 := 1 − b. It then runs A on input par, sk, pk.

• Online Phase. When A outputs messages m̃sg0, m̃sg1, RBlindBSRS(1
λ) assigns

5
Notice that for the last tuple, π = ⊥.

139

msg0 := m̃sgb and msg1 := m̃sg1−b and sets sess1 := init and sess2 := init. A has

access to the following oracles:

1. Oracle U1(sid, R): On input a session identifier sid and a commitment R, if

sid < {1, 2} or sesssid , init, the oracle returns ⊥. Otherwise, it marks the

session as open via sesssid := open, it sets Rsid := R and generates a state and

a challenge as (stsid, csid) ←$ BSRS.U1(pk,Rsid,msgbsid
). It returns (sid, csid)

to the adversary.

2. Oracle U2(sid, s): On input a session identifier sid and a response s, if the

session is open, the game marks the session as closed and sets ssid := s. It

then generates a signature/PoR pair as (σbsid
,πbsid

) ←$ BSRS.U2(pk,Rsid, csid, ssid, stsid).

If σbsid
= ⊥, the oracle outputs (sid, closed,πbsid

). Otherwise, if both sessions

are closed and have yielded valid signatures (i.e., σ0, σ1 , ⊥), the oracle re-

turns (σ0, σ1). Otherwise, it returns (sid, closed).

3. Oracle ReInit(sid, R, c, s,π): On input a session identifier sid, a commitment

R, a challenge c, a response s, and a PoR π, it first checks that sesssid =

closed (if not, the oracle simply terminates). It sets tx := (R, c, s) and runs

BSRS.CheckProof(pk, tx,π) to compute a bit b∗. It sets sesssid := init iff b∗ = 1.

Otherwise, nothing is done.

• Output Determination. When A outputs a bit b′, RBlindBSRS(1
λ) returns 1 iff

b = b′. Otherwise, it returns 0.

We define the advantage of adversary A in game RBlindBSRS(1
λ) as AdvRBlind

BSRS (A) :=��Pr[RBlindA
BSRS(1

λ) = 1] − 1/2
��. We say that BSRS is statistically blind under revokes if

for all adversaries A, AdvRBlind
BSRS (A) ≈ 0.

One-more unforgeability [104] states that an adversarial user U should be unable

to produce even a single signature more than it should be able to learn through

interacting with the signer S. Our definition of one-more unforgeability under revokes

is similar to standard unforgeability of BSS [104]. However, because of the scheme’s

noticeable correctness error, a session might not yield a valid signature even for an

140

honest adversarial user. As such, (i) we provide (through oracle Revoke) the user with

a means of proving to the signer that a session did not yield a valid signature, thus

marking it as revoked (i.e., as if it never occurred), and (ii) we modify the game’s winning

condition to exclude revoked sessions from the required number of signatures that the

adversary has to output (i.e., QS2(A) − Qrev(A) + 1 signatures instead of QS2(A) + 1).

More formally, we have:

Definition 5.2.10. (One-More Unforgeability under Revokes) We define the (concur-

rent) one-more unforgeability under revokes for a four-move BSRS against an adver-

sary A via the following game:

Game OMUFBSRS(1
λ):

• Setup. OMUFBSRS(1
λ) generates parameters via par←$ BSRS.PG(1λ) and sk, pk

via (sk, pk) ←$ BSRS.KG(par). It initializes sid := 0 and invokes A on input par

and pk.

• Online Phase. A can access the following oracles:

1. Oracle S1 : takes no input. It samples a fresh session identifier by setting

sid := sid+1 and sSesssid := open and generates (stsid,Rsid) ←$ BSRS.S1(sk).

Then it returns (sid,Rsid).

2. Oracle S2(sid, c) : takes as input a session identifier sid and a challenge

c. If sSesssid , open, it returns ⊥. Otherwise, it sets sSesssid := closed and

generates the response via ssid ←$ BSRS.S2(sk, stsid,Rsid, c) and it returns

ssid.

3. Oracle Revoke(sid,π) : takes as input a session identifier sid and a PoR

π. If sSesssid = closed, it computes b := BSRS.CheckProof(π) and it sets

sSesssid := revoked iff b = 1. Otherwise, nothing is done.

• Output Determination. When A outputs tuples (msg1, σ1), . . . , (msgl(A), σl(A)),

OMUFBSRS(1
λ) tallies the numbers of: open sessions QS1(A) := #{k | sSessk =

open}, closed sessions QS2(A) := #{k | sSessk = closed}, and revoked sessions

Qrev(A) := #{k | sSessk = revoked}. It returns 1 iff (i) msgi , msg j, ∀i , j, (ii)

141

BSRS.Ver(pk,mi, σi) = 1, ∀i ∈ [l(A)], and (iii) l(A) ≥ QS2(A)−Qrev(A)+1. Otherwise,

it returns 0.

We define the advantage of adversary A in game OMUFA
BSRS(1

λ) as AdvOMUF
BSRS (A) :=

Pr[OMUFA
BSRS(1

λ) = 1]. We say that BSRS is (ε, t,QS1,QS2,Qrev)-OMUF-secure under

revokes if for all adversaries A satisfying:

TimeOMUF
BSRS (A) ≤ t, QS1(A) ≤ QS1, QS2(A) ≤ QS2, Qrev(A) ≤ Qrev (5.2)

we have AdvOMUF
BSRS (A) ≤ ε. We say that A breaks (ε, t,QS1,QS2,Qrev)-OMUF security of

BSRS if it satisfies (5.2) and AdvOMUF
BSRS (A) > ε.

5.3 Blind Signatures from Linear Hash Functions with

Noticeable Correctness Error

In this section, we present a generic compiler for blind signature schemes with revo-

cable sessions from any linear hash function with noticeable correctness error.

5.3.1 Our Construction

We now give the formal description of our generic construction. For our construction,

we use the following building blocks:

• A smooth linear hash function family LHF = (PGen, F) with enclosedness errors

(δ1, δ2, δ3).

• A hash function H : {0, 1}∗ → C := Sc′ modeled as a programmable random

oracle.

• A collision-free hash function G : {0, 1}∗ → V := {0, 1}λ modeled as a random

oracle.

At a high-level, our protocol follows the three-move structure of identification

schemes to prove knowledge of a secret key sk ∈ Dsk s.t. F(sk) = pk, where pk is

the public key.

142

The signer transmits a commitment R := F(r) to a random vector r ∈ Dr . The user

receives R and it samples masking parameters α, ϐ and computes a challenge c as a

function (involving H) of R, α, ϐ, and the message msg, which it sends to the signer. The

signer receives c and responds with s := c ·sk+r. Because F is linear, F, F(s) = pk ·c+R

must hold. To obtain the final signature (s′, c′) on msg, the user ‘‘unblinds’’ (s, c) with

the help of the blinding parameters. Because of the correctness error of F, even if

both parties follow the protocol, a valid signature is not guaranteed. We address

this issue with an additional fourth move through which the user can prove that the

session needs to be revoked. To avoid the PoR leaking information about msg, we let it

comprise by random values that the signer sampled before computing the challenge.

In addition, to avoid revealing msg to the signer, the user computes its challenge using

a commitment C := G(msg, ρ) for decommitment parameter ρ. The PoR also allows the

signer to intercept users that make false claims of revocation. As we later argue, the

user can only come up with a fake PoR for a session if it is able to guess the output of

H.

Construction 5.3.1. We define our generic four-move blind signature scheme BSRS[LHF,

H,G] = (PG,KG, S,U,CheckProof,Ver) as follows:

• BSRS.PG(1λ) : On input λ, algorithm BSRS.PG generates and returns scheme

parameters par as per the specifications of column 2 of Table 5.1.

• BSRS.KG(par) : On input par, algorithm BSRS.KG samples sk ←$ Dsk . It sets

pk := F(sk), and returns (sk, pk).

• BSRS.S1(sk) : On input a secret key sk, BSRS.S1 picks a random nonce vector

r ←$ Dr and computes R := F(r). It returns the commitment R and a state

stS := (r).

• BSRS.U1(pk,R,msg) : On input a public key pk, a commitment R, and a message

msg ∈ {0, 1}∗, algorithm BS.U1 picks masking parameters α←$ Dα and ϐ←$ Sβ,

a decommitment parameter ρ ←$ {0, 1}
λ
, and randomness ρ′ ←$ {0, 1}

λ
. It

commits to the message-to-be-signed as C := G(msg, ρ), and to the masking

143

parameters by computing γ := G(α, ϐ, ρ′). It sets R
′ := R + F(α) + ϐ · pk and com-

putes the challenge c
′ := H(R′, γ,C). It then masks the challenge by computing

c := c
′+ϐ. If c < Sc, then c ‘‘leaks’’ information about c

′
(which will be part of the

final signature) and BSRS.U1 must restart, picking new masking parameters and

randomnesses to maintain user anonymity. Otherwise, the user returns c and

a state stU = (α, ϐ, γ, c′, ρ, ρ′). It should be noted that restarts during BSRS.U1 do

not affect correctness.

• BSRS.S2(sk, c, stS) : On input a secret key sk, a blinded challenge c, and state

stS = (r), BSRS.S2 computes a response s := r + c · sk. Rejection sampling is

necessary at this point to make s statistically independent of sk. If s < Ds, it sets

s := ⊥. In any case, the algorithm returns s and a state stS = (r).

• BSRS.U2(pk, s, stU) : On input a public key pk, a response s and a state stU =

(α, ϐ, γ, c′, ρ, ρ′), BS.U2 sets S := F(s). If the signer computed his response ac-

cording to the protocol, then S = c · pk + R and s ∈ Ds should hold (otherwise,

BS.U2 sets σ := ⊥ and π := (α, ϐ, ρ′, c′,C)). BS.U2 then ‘‘unblinds’’ by comput-

ing s
′ := s + α and rejection-sampling s

′
. If s

′ < Ds′, BS.U2 sets σ := ⊥ and

π := (α, ϐ, ρ′, c′,C). On the contrary, if s
′ ∈ Ds′, BS.U2 sets σ := (c′, s′, γ, ρ)6 and

π := ⊥7
. BS.U2 outputs σ and sends π to the signer as a notification.

• BSRS.CheckProof(pk, tx,π, stS) : On input a public key pk, a session transcript

tx = (R, c, s), a PoR π = (α, ϐ, ρ′, c′,C), and a state stS = (r), auxiliary algorithm

CheckProof sets γ := G(α, ϐ, ρ′), R
′ := R + F(α) + ϐ · pk, c̃1 := H(R′, γ,C), and

c̃2 := H(F(s + α) − c
′ · pk, γ,C). It computes b1 := Js ∈ DsK, b2 := Jc − ϐ = c

′K,

b3 := Jc′ = c̃1K, b4 := Jc′ = c̃2K, b5 := Js + α < Ds′K, b := ∧5
i=1bi and it returns b.

• BSRS.Ver(pk, σ,msg) : On input a public key pk, signature σ = (c′, s′, γ, ρ), and

message msg, BSRS.Ver sets R
′ := F(s′) − c

′ · pk and computes b1 := Jc′ =

H(R′, γ,G(msg, ρ))K, b2 := Js′ ∈ Ds′K and b3 := Jc′ ∈ Sc′K. It returns b1 ∧ b2 ∧ b3.

6
Notice that randomness ρ′ is not included in the final signature, while ρ is. This is done in order to

be able to prove blindness under revokes (see Theorem 5.3.2).

7
Notice that if a session yields a valid signature, then the tuple (α, ϐ, ρ′, c′,C) cannot be used as a

PoR. This is the reason for setting π := ⊥.

144

5.3.2 Protocol Description

At the outset, the signer samples its masking parameter r ←$ Dr and computes a

commitment R := F(r) which it transmits to the user. It stores r in its internal state

stS for future use.

The user receives R and it samples its own masking parameters α ←$ Dα and

ϐ ←$ Sβ, as well as random bitstrings ρ, ρ′ ←$ {0, 1}
λ
. It commits to the message-

to-be-signed msg with the help of random oracle G and randomness ρ by computing

C := G(msg, ρ). It also commits to its blinding parameters with the help of G and

randomness ρ′ by computing γ := G(α, ϐ, ρ′). It forms the ‘‘blinded’’ commitment

R
′ := R + F(α) + ϐ · pk and then computes a challenge c

′
as a function (involving H) of

R
′, γ and C. Because c

′
will be part of the output signature, the user applies rejection

sampling to it by computing the blinded challenge c := c
′ + ϐ and sending it to the

signer iff c ∈ Sc. Otherwise, it repeats the entire step with fresh masking parameters

and randomnesses. The user stores c
′
, along with its masking parameters (α, ϐ) and

random coins (ρ, ρ′) in its internal state stU.

The signer receives c and computes its response s := r + c · sk (r is transmitted

through stS). Rejection sampling is necessary here in order to statistically decouple s

from secret key sk. As such, it only sends s to the user if it falls within Ds (otherwise,

it sends ⊥ to indicate failure).

To obtain its signature on msg, the user ‘‘unblinds’’ response s with the help of

blinding parameter α by computing s
′ := s + a. To make s

′
independent of s, the

user performs rejection-sampling one more time and only keeps s
′

iff it falls within

Ds′. If rejection-sampling fails, the user forms its PoR as π := (α, ϐ, ρ′, c′,C) and

sends it to the signer, requesting for the session to be revoked. Otherwise, the user

outputs σ := (c′, s′, γ, ρ) as the blind signature on msg. It is important to notice that

randomness ρ is necessarily included in the signature in order to enable verifying

that the signature is w.r.t. msg. On the contrary, ρ′ is deliberately excluded from

the output signature in order to be able to argue about the scheme’s blindness under

revokes property during our security analysis.

Complications during a signing session are handled with an additional fourth move

145

through which the user can request for a session to be revoked. This is done by pre-

senting a PoR to the signer, which comprises of the random values that the signer

picked before computing the challenge, and which allow the signer to trace the com-

putations performed on the user’s side of the protocol. However, to avoid revealing msg

to the signer, the user computes its challenge using a ‘‘commitment’’ C := G(msg, ρ)

for decommitment parameter ρ instead. Furthermore, a fake PoR allows the signer to

intercept users that make false claims of revocation. As we will later argue, a mali-

cious user can only come up with a fake PoR for a session if it is able to guess the

output of H.

5.3.3 Analysis and Security

We now provide theorems and supporting lemmas showing that our construction

satisfies all security requirements, namely: correctness, blindness under revokes,

and one-more unforgeability under revokes in the honest-signer model.

Theorem 5.3.1. (Correctness) Let LHF = (PGen, F) be a linear hash function family with

enclosedness errors (δ1, δ2, δ3), H : {0, 1}∗ → C, and G : {0, 1}∗ →V be hash functions.

Then BSRS[LHF, H,G] has correctness error at most δ2 + δ3.

Proof. The proof is trivial and is omitted for brevity. �

We now state that our generic constructions satisfy statistical blindness under

revokes.

Theorem 5.3.2. (Blindness Under Revokes) Let LHF = (PGen, F) be a smooth linear

hash function family and let H : {0, 1}∗ → C, and G : {0, 1}∗ → V be random oracles.

Then BSRS[LHF,H,G] is statistically blind under revokes against honestly generated

keys, relative to all par ∈ PGen(1λ).

Proof. Let A be an adversary in game RBlindBSRS[LHS,H,G],par(1
λ). Let SA denote the

event that A succeeds and let ε = ε(λ) denote its advantage s.t. Pr[SA] := ε + 1
2 . A ob-

tains as input a valid pair of keys (sk, pk) ∈ BSRS.KG(1λ). Thus, we can write pk = F(sk).

After its execution, A holds (msg0, σ0), (msg1, σ1), where σi is a signature on message

146

msgi. The adversary also possesses lists of transcripts: T1 := [(R1,1, c1,1, s1,1,π1,1), . . . ,

(R1,k1−1, c1,k1−1, s1,k1−1,π1,k1−1), (R1,k1, c1,k1, s1,k1,⊥)], and T2 := [(R2,1, c2,1, s2,1,π2,1), . . .,

(R2,k2−1, c2,k2−1, s2,k2−1,π2,k2−1), (R2,k2, c2,k2, s2,k2,⊥)] corresponding to interactions with

the first and second user, respectively. A’s goal is to correctly match each list of

transcripts to the resulting message/signature pair.

Furthermore, let Bad denote the event in which the adversarial signer makes a

query of the form:

• G(?, ρ1,t), where 1 ≤ t ≤ k1 (resp., G(?, ρ2,t), where 1 ≤ t ≤ k2). For ρ1,k1, ρ1,k2,

this must occur before these are revealed to the adversary as part of the final

signatures.

• G(?,?, ρ′1,t), where 1 ≤ t ≤ k1 (resp., G(?,?, ρ′2,t), where 1 ≤ t ≤ k2) before ρ′1,t

(resp., ρ′2,t) is revealed through an invocation of oracle ReInit. For ρ′1,k1
(resp.,

ρ′2,k2
) in particular, this can occur at any time during the game.

In case event Bad occurs, RBlindBSRS[LHS,H,G],par(1
λ) aborts and A outputs a uniform

bit. If A makes QG queries to oracle G, then Pr[SA \ Bad] ≥ ε + 1
2 −

2·2·QG

2λ
.

Notice that because each protocol run is statistically independent of any previ-

ous runs (since all user-side randomness is sampled anew by the respective honest

users), the adversary only learns a negligible amount of information from each run.

Furthermore, since each proof πsid, j, j ∈ [ksid − 1] contains all the necessary user-side

randomness, the adversary can trivially check that such runs do not match to any of

the two output message/signature pairs. Therefore, the adversary wins only if it can

match the final tuples (i.e., the ones for which he does not know the randomness via

some proof πsid,ksid) to the output message/signature pairs. As such, in the following,

we ommit the ksid index above and always implicitly refer to the final tuple of a list of

transcripts. We prove our theorem through the following claims:

Claim 1. For each of the four combinations (Tsid, σi), where (sid, i) ∈ {1, 2} × {0, 1}, there

exists user-side randomness rndUsid,i := (αsid,i, ϐsid,i, ρ
′
sid,i) of the user algorithm which

results in the tuple (Tsid, σi).

147

Proof. Define the function sess : {0, 1} → {1, 2} such that sess(i) is the signing session

which resulted to the pair (msgi, σi). Let αsid,i := s
′
i − ssid, ϐsid,i := csid − c

′
i, and

let ρ′sid,i := ρ′i if sess(i) = sid, and ρ′sid,i ←$ {0, 1}
λ
, otherwise. Furthermore, let

γsid,i := G(αsid,i, ϐsid,i, ρ
′
sid,i). Notice that because randomness ρ′ is not included in the

final signature, we can always use some ρ′sid,i ←$ {0, 1}
λ

and program G such that

γi := G(αi, ϐi, ρ
′
i) = G(αsid,i, ϐsid,i, ρ

′
sid,i) =: γsid,i. We want to show that H(Rsid + csid ·

pk, γsid,i,Ci) = c
′
i, where Ci = G(msgi, ρi) for some ρi ←$ {0, 1}

λ
. Since Tsid is a valid

transcript, we have F(ssid) = Rsid + csid · pk. Therefore,

Rsid + ϐsid,i · pk + F(αsid,i) = Rsid + (csid − c
′
i) · pk + F(s′i − ssid)

= Rsid + (csid − c
′
i) · F(sk) + F(s′i − ssid)

= s
′
i − c

′
i · pk

Since σi is a valid signature, we have c
′
i = H(F(s′i) − c

′
i · pk, γi,G(msgi, ρi)). �

Claim 2. The real randomness (rndU1,b, rndU2,1−b) used in RBlindBSRS[LHS,H,G],par(1
λ)

is identically distributed to the ‘‘fake’’ randomness (rndU1,1−b, rndU2,b).

Proof. Because LHF is smooth, condition (S2) implies that α1,b and α2,1−b are identically

distributed to α1,1−b and α2,b, respectively. Similarly, condition (S5) implies that ϐ1,b

and ϐ2,1−b are identically distributed to ϐ1,1−b and ϐ2,b, respectively. Finally, ρ′1,b, ρ
′
2,1−b,

as well as ρ′1,1−b, ρ
′
2,b are all distributed uniformly over {0, 1}λ. �

The above two claims directly imply Theorem 5.3.2. �

We will now show that OMUF security of BSRS[LHF,H,G] is implied by the collision

resistance of LHF. To this end, we will make use of the following two lemmas:

Lemma 5.3.3. (Subset Forking Lemma [97]) Fix any integer Q ≥ 1 and a set H s.t.

|H | ≥ 2 as well as a set of side outputs Σ, instances I, and a randomness space Ω.

Let C be an algorithm that on input (I,h) ∈ I × HQ
and randomness ω ∈ Ω returns a

tuple (j, σ), where 0 ≤ j ≤ Q and σ ∈ Σ. We partition its input space I × Ω × HQ
into

148

setsW1, . . . ,WQ where for fixed 1 ≤ j ≤ Q, Wj is the set of all (I, ω,h) that result in

(j, σ) ← C(h, I;ω) for some arbitrary side output σ.

For any 1 ≤ j ≤ Q and B ⊂ Wj define

acc(B) := Pr
(I,ω,h)←$I×Ω×H

Q
[(I, ω,h) ∈ B]

frk(B, j) := Pr
(I,ω,h)←$I×Ω×H

Q,h′←$H
Q |h[j−1]


(h j , h

′
j) ∧

(((I, ω,h) ∈ B) ∧ ((I, ω,h′) ∈ B))

 .
Then

frk(B, j) ≥ acc(B) ·

(
acc(B)

4
−

1

|H |

)
.

Lemma 5.3.4. (Generalized Splitting Lemma [98]) Let n ∈ N and X1, . . . ,Xn be finite

sets. Let B ⊂ X := X1 × . . . × Xn be such that

Pr
x←$X

[x ∈ B] := ε.

For any S ⊂ [n], α ≤ ε and i1 < . . . < i|S̄ | and X′
S := Xi1 × . . . × Xi |S̄ | , define

BS,α := {(x1, . . . , xn) ∈ X | Pr
x′←$X′S

[xS,x′ ∈ B] ≥ ε − α},

where

xS,x′ :=


xi, if i ∈ S

x
′
i, otherwise

.

Then the following statements hold:

1. Pr
x←$X

[x ∈ BS,α] ≥ α

2. ∀x ∈ BS,α : Pr
x′←$X′S

[xS,x′ ∈ B] ≥ ε − α

3. Pr
x←$X

[x ∈ BS,α | x ∈ B] ≥ α/ε

Theorem 5.3.5. (One-more unforgeability under revokes) If LHF is a (ε,QS1)-regular,

(ε′, t′)-collision resistant, linear hash function family with a torsion-free element from the

149

kernel, then BSRS[LHF,H,G] is (ε, t,QS1 , QS2,Qrev,QH,QG)-OMUF-secure under revokes,

where

ε′ = O
©­­«
©­«ε2 −

(
|Sc |

|C|

)QS2

·
Q

QS2
+1

H
Q

QS2

S1

|C|

ª®¬
3

1

Q2
H

Q3
S2

ª®®¬
and t′ = 2t.

Proof. Consider an adversary M that breaks (ε, t,QS1,QS2,Qrev,QH,QG)-OMUF security

under revokes of BSRS[LHF,H,G] in the random oracle model. We use M in a black-box

way to construct an adversary B against the (ε′, t′)-collision resistance of LHF. W.l.o.g.,

we will assume throughout the proof that QS1(M) = QS1,QH(M) = QH,QG(M) = QG,

l(M) = QS2(M) −Qrev(M)+ 1, as well as QS1 ≥ QS2 +Qrev and QS2 ≥ Qrev. We will argue

about our scheme’s unforgeability under revokes through a sequence of game hops

[170]:

Game0: This corresponds to the real world. In this game, M interacts with the un-

forgeability game from Definition 5.2.10. The signer is simulated as in Construction

5.3.1. Thus, AdvGame0(M) = AdvOMUF
BSRS[LHF,H,G](M).

Game1 : In this game, random oracle H is simulated through lazy sampling.

• Setup: Setup is the same as in Game0. The challenger keeps track of queries

made to oracle H with the help of a dictionary H := {}.

• Online Phase: M can access the following oracles:

1. Oracle S1 : Is the same as in Game0.

2. Oracle S2 : Is the same as in Game0.

3. Oracle Revoke : Is the same as in Game0.

4. Oracle CheckProof : Is the same as in Game0. The only difference is that

now, the challenger will check if (R′, γ,C) and (F(ssid + α) − c
′ · pk, γ,C) have

150

both been queried to H before computing c̃1, and c̃2, respectively.
8

If both

have previously been queried, it sets flag := 1 (otherwise, it sets flag := 0)

and then invokes H. Let b := ∧5
i=1bi. If b = 0, the oracle returns 0. Otherwise

(i.e., b = 1), if flag = 0, the game aborts. Otherwise, it returns 1.

5. Oracle H : On input R
′
, commitment γ and some string s ∈ {0, 1}∗, the chal-

lenger checks with dictionary H if H[R′, γ, s] , ⊥ (i.e., if it is already defined)

and if so, it returns that particular value. Otherwise, it sets H[R′, γ, s] ←$ C.

It returns the value H[R′, γ, s].

6. Oracle G : Is the same as in Game0.

• Output Determination: The challenger behaves exactly as it would in Game0.

The only difference is that for each output message/signature pair, the chal-

lenger will ensure that the signature is not the result of M having guessed the

output of oracle H without a query. This is done before verifying each individual

signature. In particular, for each (msgt, σt), where σt := (c′t, s
′
t, γt, ρt), ∀t ∈ [l(M)],

the challenger checks if (F(s′t)−c
′
t ·pk, γt,G(msgt, ρt)) has previously been queried

to H, and if so, it sets a flag := 1 (otherwise, it sets flag := 0). It then invokes

BSRS.Ver to verify the signature. If BSRS.Ver outputs 0, the game returns 0. If

BSRS.Ver outputs 1 and flag = 0, the game aborts. Otherwise, it outputs 1.

Claim 3. Let E1 denote the event in which M successfully guesses the output of oracle

H, without querying it. Then, Pr[E1] ≤
QH
|C|

.

Proof. Notice that Game1 is identical to Game0, unless the game aborts either during

CheckProof ’s execution, or before verifying the output signatures during Output De-

termination. This will happen iff M predicts H’s output without querying the oracle.

As a result, M will be able to either revoke a closed session from which he obtained

a valid signature, or to forge a valid signature on his own. By the union bound, the

probability of M making such a guess is at most
QH
|C|

. Thus, the statistical difference

between Game1 and Game0 is at most
QH
|C|

. �

8
This can be done with simple lookups in H, in amortized O(1) time.

151

Remark 13. Notice that this game hop rules out the event in which a user success-

fully hides a challenge c
′′ , c

′
in the computation of c during BSRS.S2. Indeed, if

c = c
′ + ϐ = c

′′ + ϐ
′
for ϐ , ϐ

′
, then ϐ = c

′′ + ϐ
′ − c

′
. While a malicious user can control

c
′′

and ϐ
′
, he will need to predict c

′
, which is an output of H.

Game2 : In this game, we simulate oracle G through lazy sampling. Simulation is

done in a way that excludes collisions.

• Setup: Setup is the same as in game Game1. The challenger keeps track of his

responses with the help of dictionary G := {}.

• Online Phase: M can access the following oracles:

1. Oracle S1 : Is the same as in Game1.

2. Oracle S2 : Is the same as in Game1.

3. Oracle Revoke : Is the same as in Game1.

4. Oracle CheckProof : Is the same as in Game1.

5. Oracle H : Is the same as in Game1.

6. Oracle G : On input a string s ∈ {0, 1}∗, and randomness ρ ∈ {0, 1}λ, the

oracle checks with dictionary G if G[s, ρ] , ⊥ and if so, it returns that

particular value. Otherwise, it sets G[s, ρ] ←$ V. If there already exists a

different key (s∗, ρ∗) in dictionary G s.t. G[s∗, ρ∗] = G[s, ρ], the game aborts.

G returns the value G[s, ρ].

• Output Determination: Is identical to Game1.

Claim 4. Let E2 denote the event in which simulation of oracle G through lazy sampling

fails. Then, Pr[E2] ≤
2·Q2

G

2λ
.

Proof. The game will abort if during an invocation of G, there already exists a different

key in G, mapping to the same value. Discovering such a collision occurs with proba-

bility at most
Q2

G

2λ
. Thus, by the union bound, the probability that the oracle simulation

152

fails is at most
Q2

G

2λ
+

Q2
G

2λ
(since oracle G is invoked twice on the user’s side). Moreover,

notice that Game2 is identical to Game1, unless E2 occurs. Therefore, the statistical

difference between Game2 and Game1 is at most
2·Q2

G

2λ
. �

Game3 : We change Game2 to additionally require that the challenger correctly guesses

the exact number of closed and revoked sessions that M will have during the Output

Determination phase. If the guess is incorrect, the game aborts.

• Setup: The challenger makes a guess (κ, r) ∈ {0, . . . ,QS2} × {0, . . . ,Qrev} for the

exact number of closed and revoked sessions with M, respectively. Setup is the

same as Game2.

• Online Phase: M can access the following oracles:

1. Oracle S1 : Is the same as in Game2.

2. Oracle S2 : Is the same as in Game2.

3. Oracle Revoke : Is the same as in Game2.

4. Oracle CheckProof : Is the same as in Game2.

5. Oracle H : Is the same as in Game2.

6. Oracle G : Is the same as in Game2.

• Output Determination: Is identical to Game2. However, before checking the

winning condition, the game aborts if QS2(M) , κ or Qrev(M) , r.

Claim 5. Let E3 denote the event in which Game3 incorrectly guesses M’s number of

closed and revoked sessions. Then, AdvGame3(M) = 1
(QS2

+1)(Qrev+1) · AdvGame2(M).

Proof. Notice that Game3 is identical to Game2, unless the former incorrectly guesses

the number of closed and revoked sessions. Furthermore, we observe that the winning

condition for Game2 is independent of E3. Thus, AdvGame3(M) := Pr[Game
M
3 = 1] =

Pr[Game
M
2 = 1] · Pr[Ec

3] = AdvGame2(M) · 1
(QS2

+1)(Qrev+1) . �

Corollary 5.3.1. AdvGame3(M) ≤ 1
(QS2

+1)(Qrev+1) · (AdvOMUF
BSRS[LHF,H,G](M) +

QH
|C|
+

2·Q2
G

2λ
).

153

Wrapping Adversaries Ai. For each 1 ≤ i ≤ QS2 −Qrev + 1, we define an auxiliary

wrapper algorithm Ai which perfectly simulates M’s interface in Game3, in order to

extract a short preimage of LHF. These wrappers will later be used as a core component

to construct an adversary B against the collision resistance of LHF.

Throughout the proof, we denote the challenge space by C := Sc′ = Sc′(par) and by

|C| ≥ 22λ
its size. We denote the set from which our algorithms draw their randomness

by Ω := {0, 1}N × VQG × D
QS1
+QS2

+Qrev

r , where N ∈ N. Note that for fixed randomness

ω, Ai becomes deterministic. The description of Ai is as follows:

• Setup: On input an instance I = (sk, par), a vector of random oracle responses

h ∈ CQH, and random tape ω = ((ωM, κ, r), g, r) ∈ Ω, Ai sets R := F(r), pk :=

(F(sk), par), and initializes a counter sid := 0. It also initializes dictionaries

H := {} (used for keeping track of the responses of oracle H), Ind := {} (used for

keeping track of the index within h, corresponding to each query made to oracle

H), and G := {}, as well as counters qid := 0 and gid := 0. Ai then runs M on

input pk.

• Online Phase: M can access the following oracles:

1. Oracle S1 : This oracle receives no input. It samples a fresh session iden-

tifier sid := sid + 1 and sSesssid := open. It also intitializes internal ses-

sion variables csid, αsid, ϐsid, γsid, ρ
′
sid, ssid, c

′
sid,Csid,R

′
sid to ⊥. Then it returns

(sid,Rsid).

2. Oracle S2(sid, c) : On input a session identifier sid and a (blinded) chal-

lenge c, if the session is not open, the oracle returns ⊥. Otherwise, it sets

sSesssid := closed. Provided that c ∈ Sc (if not, it returns ⊥), it sets csid := c

and computes its response as ssid := csid · sk + rsid. If ssid < Ds, it returns

⊥. Otherwise, it returns ssid.

3. Oracle Revoke(sid,π) : On input a session identifier sid and PoR π, if

sSesssid = closed, the oracle computes a bit b := CheckProof(sid,π). It sets

sSesssid := revoked iff b = 1. If sSesssid , closed, nothing is done.

154

4. Oracle CheckProof(sid,π) : On input a session identifier sid and PoR π,

the oracle parses the PoR as π := (α, ϐ, ρ′, c′,C) and sets γ := G(α, ϐ, ρ′),

R
′ := Rsid + F(α) + ϐ · pk. Ai checks if (R′, γ,C) and (F(ssid + α) − c

′ · pk, γ,C)

have both been queried to H. If both have previously been queried, it sets

flag := 1 (otherwise, it sets flag := 0). It then computes c̃1 := H(R′, γ,C),

c̃2 := H(F(ssid + α) − c
′ · pk, γ,C) as well as b1 := Jssid ∈ DsK, b2 := Jcsid − ϐ =

c
′K, b3 := Jc′ = c̃1K, b4 := Jc′ = c̃2K, b5 := Jssid + α < Ds′K, and b := ∧5

i=1bi. If

b = 0, the oracle returns 0. Otherwise (i.e., b = 1), if flag = 0, Ai internally

aborts M.
9

Otherwise (i.e., flag = 1), it updates its internal variables by

setting: αsid := α, ϐsid := ϐ, c′sid := c
′, ρ′sid := ρ,Csid := C, γsid := γ,R′sid := R

′
,

and it returns 1.

5. Oracle H(R′, γ, s) : On input R
′
, commitment γ, and string s ∈ {0, 1}∗, the

oracle checks with dictionary H if H[R′, γ, s] , ⊥ (i.e., if it is already defined)

and if so, it returns that particular value. Otherwise, it samples a fresh

identifier qid := qid + 1 and sets H[R′, γ, s] := hqid. It also stores index qid

to dictionary Ind via Ind[R′, γ, s] := qid. It returns the value H[R′, γ, s].

6. Oracle G(s, ρ) : On input a string s ∈ {0, 1}∗, and randomness ρ ∈ {0, 1}λ, the

oracle checks with dictionary G if G[s, ρ] , ⊥ (i.e., if it is already defined)

and if so, it returns that particular value. Otherwise, it samples a fresh

identifier gid := gid + 1 and sets G[s, ρ] := ggid. If there already exists a

different key (s∗, ρ∗) in dictionary G s.t. G[s∗, ρ∗] = G[s, ρ], Ai internally

aborts M. G returns the value G[s, ρ].

• Output Determination: Let (msg1, σ1), . . . , (msgl(M), σl(M)), where σt := (c′t, s
′
t, γt,

ρt), ∀t ∈ [l(M)] be M’s output after interaction. First, Ai checks that the output

message-signature pairs contain pairwise-distinct messages (if not, Ai internally

aborts M). Next, for each t ∈ [l(M)], Ai checks if (F(s′t) − c
′
t · pk, γt,G(msgt, ρt))

has previously been queried to H, and if so, it sets flag := 1 (otherwise, it sets

flag := 0). It then invokes BSRS.Ver to verify (msgt, σt). If BSRS.Ver outputs 1 and

9
We implicitly assume that whenever this occurs, Ai returns the value (0, 0).

155

flag = 0, the signature is the result of M guessing H’s output and thus, Ai returns

(0, 0). If BSRS.Ver outputs 0, the signature is not valid, and Ai returns (0, 0). For

t ∈ [l(M)], Ai sets internal variables as Ĵt := Ind[F(s′t)−c
′
t ·pk, γt,G(msgt, ρt)], ĥt :=

h
Ĵt
, ŝ′t := s

′
t, χ̂t := ŝ

′
t − ĥt · sk. Moreover, it defines internal variables Ĵ, ĥ, ŝ′, χ̂ for

each revoked session. This is done by setting k := 1 and iterating over t ∈ [sid].

If sSesst = revoked, it sets Ĵl(M)+k := Ind[R′t, γt,Ct], ĥl(M)+k := h
Ĵl(M)+k

, ŝ′l(M)+k :=

st + αt, χ̂l(M)+k := ŝ
′
l(M)+k − ĥl(M)+k · sk and k := k + 1. Ai then tallies the numbers

of: open sessions QS1(M) := #{k | sSessk = open}, closed sessions QS2(M) :=

#{k | sSessk = closed}, and revoked sessions Qrev(M) := #{k | sSessk = revoked}.

If QS2(M) , κ or Qrev(M) , r, Ai returns (0, 0). If the winning condition l(M) =

QS2(M) −Qrev(M) + 1 is satisfied, Ai returns (Ĵi, χ̂i). Otherwise, it returns (0, 0).

Analysis of Adversary Ai. Consider the variables Ĵi, χ̂i, ĥi, and ŝ
′
i. Concretely, the

variable χ̂i := ŝ
′
i − ĥi · sk results from the i-th valid blind signature, whereas the index

Ĵi indicates which random oracle query corresponds to this signature.

We will fix an execution of Ai via the tuples I = (sk, par),h, and Ai ’s randomness ω.

Define the setW of successful inputs of Ai as the set of all tuples (I, ω,h) which lead

to a successful run of Ai, i.e.,
10

W := {(I, ω,h) | Ĵi , 0; (Ĵi, χ̂i) ← Ai(I,h;ω)}

Note thatW is independent of i and, by construction of Ai, i.e.,

ε= AdvOMUF
BSRS[LHF,H,G](M)

= Pr

par←$BSRS.PG(1λ),(sk,ω,h)←$(Dsk×Ω×C
QH)

[(sk, par, ω,h) ∈ W]

The following lemma is the first component required for our analysis:

Lemma 5.3.6. Let P denote the set of parameters par such that:

Pr

(sk,ω,h)←$(Dsk×Ω×C
QH)

[(sk, par, ω,h) ∈ W] ≥ ε/2.

10
For simplicity, below we ignore the statistical additive errors incurred by the previous game hops.

156

Then, Pr
par←$BSRS.PG(1λ)

[par ∈ P] ≥ ε/2.

Proof. We argue by contradiction. To this end, assume that Pr
par←$BSRS.PG(1λ)

[par ∈ P] <

ε/2. But then we have:

ε := Pr

par←$BSRS.PG(1λ),(sk,ω,h)←$(Dsk×Ω×C
QH)

[(sk, par, ω,h) ∈ W]

=
∑
par

Pr

(sk,ω,h)←$(Dsk×Ω×C
QH)

[(sk, par, ω,h) ∈ W] · Pr
par′←$BSRS.PG(1λ)

[par′ = par]

=
∑

par∈P

Pr

(sk,ω,h)←$(Dsk×Ω×C
QH)

[(sk, par, ω,h) ∈ W] · Pr
par′←$BSRS.PG(1λ)

[par′ = par]

+
∑

par<P

Pr

(sk,ω,h)←$(Dsk×Ω×C
QH)

[(sk, par, ω,h) ∈ W] · Pr
par′←$BSRS.PG(1λ)

[par′ = par]

< 1 ·
∑

par∈P

Pr
par←$BSRS.PG(1λ)

[par′ = par] + ε/2 ·
∑

par<P

Pr
par′←$BSRS.PG(1λ)

[par′ = par]

= Pr
par←$BSRS.PG(1λ)

[par ∈ P] + ε/2 · Pr
par←$BSRS.PG(1λ)

[par < P]

< ε/2 + 1 · ε/2 = ε

which is a contradiction. �

From this point on, we fix some arbitrary parameters par ∈ P and make the con-

vention that I = (sk, par) ←$ I samples sk uniformly from Dsk(par) (but keeps par

fixed). Thus, we will assume, from here on out, that Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ W] =

AdvOMUF
BSRS[LHF,H,G](M) ≥ ε/2. Moreover, Ĵi, χ̂i, ĥi, and ŝ

′
i can be seen as random variables

whose distribution is induced by the uniform distribution on (I×Ω×CQH), and whose

outcome is uniquely determined given (I, ω,h) ∈ W. Thus, we will write

(Ĵi(I, ω,h), χ̂i(I, ω,h)) ← Ai(I,h;ω)

In the following, when stating probability distributions over I, ω, and h, unless spec-

ified differently, we will always refer to uniform distributions. That is, (I, ω,h) ←$

157

(I ×Ω × CQH). We consider the following probability for fixed (I, ω,h), j, c, and i:

Pr

h
′←$C

QH |h[j−1]

[Ĵi(I, ω,h′) = j ∧ χ̂i(I, ω,h
′) = c] (5.3)

We denote by ci, j(I, ω,h) the lexicographically first value c s.t. probability (5.3) is

maximized when (I, ω,h), j, and i are fixed. We then write Ci(I, ω,h) = ci,Ĵi(I,ω,h)(I, ω,h).

Put differently, Ci(I, ω,h) represents the most likely value that random variable χ̂i takes

after re-running Ai on some instance I, randomness ω, and a conditionally sampled

vector of RO responses h
′
. For fixed i, j, we define Bi, j ⊂ W as

Bi, j := {(I, ω,h) ∈ W | Ĵi(I, ω,h) = j ∧ χ̂i(I, ω,h) , Ci(I, ω,h)}

and let

βi, j := Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Bi, j]

δi, j := Pr

(I,ω,h)←$(I×Ω×C
QH),h′←$C

QH |h[j−1]


χ̂i(I, ω,h) , χ̂i(I, ω,h′)

∧ Ĵi(I, ω,h) = Ĵi(I, ω,h′) = j


Notice that βi, j represents the probability of not getting the most likely value for χ̂i on

the first run of Ai (i.e., before conditionally re-sampling h
′
). Finally, δi, j represents the

probability of successfully extracting a collision by running adversary Ai twice.

The following inequality can be proven in our context in a way verbatim to [97].

Lemma 5.3.7. For all i, j : δi, j ≥ βi, j(
βi, j
8 −

1
2|C|).

We now prove the following lemma, which is the core component for reducing collision

resistance to one-more unforgeability for our construction.

Lemma 5.3.8. There exist i ∈ [QS2 −Qrev + 1], j ∈ [QH] s.t.:

βi, j >

ε2

8 −

(
|Sc |
|C|

)QS2
·

Q
QS2

+1

H
·(
QS1

+QS2
QS1

)

|C|

2QH(QS2 −Qrev + 1)
.

Proof. The proof of this lemma consists of three parts: (i) modelling the OMUF adver-

158

sary’s confusion about the challenger’s input leading to a particular transcript, and

showing that under certain restrictions, for each such input, there exists exactly one

other ‘‘mirror’’ input that could have led to the exact same transcript, (ii) bounding

the event of getting the most likely candidate collision on the first run out of both a

challenger using the actual input and a challenger using the ‘‘mirror’’ input, and (iii)

showing that the set of inputs for which (i) holds is not too small.

Modelling M’s Confusion about Ai’s Input. Recall algorithm Ai and its internal

variables. On input (I = (sk, par), ω = (ωM
11, g, r),h), Ai runs M on pk = F(sk) and

randomness ωM and answers its queries using the components of vectors g, r, and

h. We can thus fix an execution of M (within Ai) via a tuple of the form (I, ω,h) =

(I, (ωM, g, r),h). In the following, c(I, ω,h) denotes the vector of blinded challenges

csid as defined each time oracle S2 is invoked. Furthermore, we have assumed that

F : D → R has a torsion-free element z
∗ ∈ D \ {0} from the kernel. Thus, (i) F(z∗) = 0,

and (ii) ∀c1, c2 ∈ Sc s.t. (c1 − c2) · z
∗ = 0 we have c1 = c2.

We model adversary M’s confusion about the challenger’s input leading to a par-

ticular session transcript through the following mapping:

Lemma 5.3.9. We define the mapping Φ :W → (I ×Ω × CQH):

Φ((sk, par), (ωM, g, r),h) := ((sk + z
∗, par), (ωM, g, r − z

∗ · c(I, (ωM, g, r),h)),h),

where we make the convention that for v ∈ D ∪ C ∪ R, v · ⊥ := 0. Let

Win j := {(I, ω, h) ∈ W : Φ(I, ω, h) ∈ Φ(W) ∩W} ⊂ W

Then the restriction Φin j :Win j → Φ(W) ∩W of Φ toWin j is injective.

Proof. For the proof we require the following claim.

11
In the analysis that follows, we will w.l.o.g. implicitly assume that κ and r are included as part of

M’s randomness ωM.

159

Claim 6. Let (I, ω,h) ∈ W. If Φ(I, ω,h) ∈ W, then the tuples (I, ω,h) and Φ(I, ω,h) fix

the same execution of M.

Proof. To this end we consider all values in the view of M.

• Initial input to M. Since Φ does not alter the values of ωM and par, we only

need to verify that M obtains the same public key in both executions. This is

ensured via F(sk + z
∗) = F(sk) + F(z∗) = F(sk) = pk.

• Outputs of oracle S1. Oracle S1 consecutively returns tuples of the form

(sid,Rsid), where F(rsid) = Rsid. These are the same in both executions since

F(rsid) = Rsid = Rsid − 0 · c(I, ω,h) = F(rsid − z
∗ · c(I, ω,h)).

• Outputs of oracle S2. Oracle S2 consecutively returns the values from ssid :=

c·sk+rsid (or⊥, in case ssid < Ds). Note that the first value csid,1 in both executions

is the same (as it only depends on values that we have already argued to remain

the same in both executions), i.e., csid,1 = csid,1(I, ω,h) = csid,1(Φ(I, ω,h)). Thus,

ssid,1(I, ω,h) = rsid,1 + sk · csid,1(I, ω,h)

= rsid,1 − z
∗ · csid,1(I, ω,h) + z

∗ · csid,1(I, ω,h) + sk · csid,1(I, ω,h)

= (rsid,1 − z
∗ · csid,1(Φ(I, ω,h))) + (sk + z

∗) · csid,1(Φ(I, ω,h))

= ssid,1(Φ(I, ω,h))

• Outputs of oracle Revoke. Oracle Revoke does not return any values.

• Outputs of oracle G. Oracle G consecutively returns the values from g. These

remain the same in both executions since they depend on g, and the randomness

ωM of the adversary.

• Outputs of oracle H. Oracle H consecutively returns the values from h. These

remain the same in both executions since they depend on R, g,h, and the ran-

domness ωM.

160

Thus, M sees identical values in both executions corresponding to (I, ω,h) andΦ(I, ω,h).

This implies that (I, ω,h) and Φ(I, ω,h) fix the same execution of M, which proves the

claim.

�

Towards a contradiction, suppose thatΦin j is not injective. Thus, for distinct tuples

(I, (ωM, g, r),h) , (I′, (ω′M, g
′, r′),h′) inWin j , we haveΦin j(I, (ωM, g, r),h) = Φin j(I′, (ω′M, g

′
,

r
′),h′). This implies ωM = ω

′
M
, g = g

′
and h = h

′
. Similarly, sk + z

∗ = sk′ + z
∗
, which

implies sk = sk′. Finally, r − z
∗ · c(I, (ωM, g, r),h) = r

′ − z
∗ · c(I′, (ω′

M
, g′, r′),h′). Since

Φin j(I, (ωM, g, r),h) = Φin j(I′, (ω′M, g
′, r′),h′), by Claim 6, (I, (ωM, g, r),h) and (I′, (ω′

M
, g′, r′),

h
′) fix the same execution and therefore also c(I, (ωM, g, r),h) = c(I′, (ω′

M
, g′, r′),h′). This

implies r = r
′
, leading to the contradiction (I, (ωM, g, r),h) = (I′, (ω′M, g

′, r′),h′). Hence,

Φin j is injective. �

Bounding the Probability of Obtaining the Most Likely Preimage. We now define

the sets B :=
⋃
i, j
Bi, j and its complement G := W \ B. That is, for all (I, ω,h) ∈ G,

we have χ̂k(I, ω,h) = Ck(I, ω,h), ∀k ∈ [QS2 + 1]. The following lemma will help to

upper bound the probability that χ̂ takes different values (i.e., differs in at least one

component) as a result of distinct instances I = (sk, par), I′ = (sk + z
∗, par).

Lemma 5.3.10. For any fixed (I, (ωM, g, r)) ∈ I ×Ω,

Pr

h←$C
QH

[(I, (ωM, g, r),h) ∈ G ∧ Φ(I, (ωM, g, r),h) ∈ G] ≤

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

.

Proof. We argue by contradiction. Thus, assume that there exists some (I, (ωM, g, r)) ∈

I ×Ω:

Pr

h←$C
QH

[(I, (ωM, g, r),h) ∈ G ∧ Φ(I, (ωM, g, r),h) ∈ G] >

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

.

Notice that the internal variables Ĵ j(I, (ωM, g, r),h), j = 1, . . . ,QS2 + 1 can be fixed to

161

pairwise-distinct values {u1, . . . , uQS2
+1} ∈ [QH]

QS2
+1

such that:

Pr

h←$C
QH


((I, (ωM, g, r),h) ∈ G) ∧ (Φ(I, (ωM, g, r),h) ∈ G)

∧
(∀ j : Ĵ j(I, (ωM, g, r),h) = u j

)  >
(
|Sc |

|C|

)QS2

·

(QS1
+QS2

QS1

)
|C|

.

Then, the vector of blinded challenges c(I, (ωM, g, r),h) can also be fixed to a vector

d ∈ (Sc ∪ {⊥})
QS1
+QS2 with exactly QS1 entries equal to ⊥ which has the property:

Pr

h←$C
QH


((I, (ωM, g, r),h) ∈ G) ∧ (Φ(I, (ωM, g, r),h) ∈ G)

∧
(∀ j : Ĵ j(I, (ωM, g, r),h) = u j

)
∧ (c(I, (ωM, g, r),h) = d)

 >
1

|C|
QS2 · |C|

.

Finally, all entries of h with (distinct) indices {v1, . . . , vQH−QS2
−1} from [QH]\{u1, . . . , uQS2

+1}

can be fixed to those of some vector h̄ := (h̄1, . . . , h̄QH−QS2
−1) ∈ C

QH−QS2
−1

:

Pr

h←$C
QH


((I, (ωM, g, r),h) ∈ G) ∧ (Φ(I, (ωM, g, r),h) ∈ G)

∧
(∀ j : Ĵ j(I, (ωM, g, r),h) = u j

)
∧ (c(I, (ωM, g, r),h) = d)

∧
(∀ι : hvι = h̄ι

)


>
1

|C|
QS2
+1
|C|

QH−QS2
−1
=

1

|C|QH
.

Because random variable h takes a particular value k ∈ CQH with probability exactly

1/|C|QH, the event in the above probability must contain at least two distinct elements

k,k′ ∈ CQH. Furthermore, the above probability statement guarantees that k and k
′

have identical entries, except for those with indices in {u1, . . . , uQS2
+1}. Thus w.l.o.g.,

let i = ut, t ∈ [QS2 + 1] be the first index such that: ki , k
′
i and km = k

′
m, ∀m < i.

• Case 1: If sSesst was completed (i.e., flag set to closed), then

Ct(I, (ωM, g, r),k) = ct,Ĵt (I,(ωM,g,r),k)
(I, (ωM, g, r),k)

= ct,ut (I, (ωM, g, r),k) = ct,ut (I, (ωM, g, r),k
′)

= ct,Ĵt (I,(ωM,g,r),k
′)(I, (ωM, g, r),k

′) = Ct(I, (ωM, g, r),k
′) (5.4)

By Claim 6, Ĵt(I, (ωM, g, r),k) = Ĵt(Φ(I, (ωM, g, r),k)) = ut and ŝ
′
t(I, (ωM, g, r),k) =

162

ŝ
′
t(Φ(I, (ωM, g, r),k)). Furthermore, because (I, (ωM, g, r),k) ∈ G andΦ(I, (ωM, g, r),k)) ∈

G, we know that χ̂t(I, (ωM, g, r),k) = Ct(I, (ωM, g, r),k) = ŝ
′
t(I, (ωM, g, r),k) − sk · kut

and χ̂t(Φ(I, (ωM, g, r),k)) = Ct(Φ(I, (ωM, g, r),k)) = ŝ
′
t(Φ(I, (ωM, g, r),k))−(sk+z

∗)·kut .

Putting this together, we obtain:

Ct(I, (ωM, g, r),k) = ŝ
′
t(I, (ωM, g, r),k) − sk · kut

= ŝ
′
t(Φ(I, (ωM, g, r),k)) − sk · kut

= ŝ
′
t(Φ(I, (ωM, g, r),k)) − sk · kut + z

∗ · kut − z
∗ · kut

= ŝ
′
t(Φ(I, (ωM, g, r),k)) − (sk + z

∗) · kut + z
∗ · kut

= Ct(Φ(I, (ωM, g, r),k)) + z
∗ · kut (5.5)

Similarly, we can show that:

Ct(I, (ωM, g, r),k
′) = Ct(Φ(I, (ωM, g, r),k

′)) + z
∗ · k′ut . (5.6)

Combining (in this order) equations (5.5), (5.4), and (5.6), we obtain:

Ct(Φ(I, (ωM, g, r),k)) + z
∗ · kut = Ct(I, (ωM, g, r),k)

= Ct(I, (ωM, g, r),k
′)

= Ct(Φ(I, (ωM, g, r),k
′)) + z

∗ · k′ut (5.7)

Because we have fixed c(I, (ωM, g, r),k) = c(I, (ωM, g, r),k
′) = d, we have:

Ct(Φ(I, (ωM, g, r),k)) (5.8)

= Ct(I′, (ωM, g, r − z
∗ · c(I, (ωM, g, r),k)),k)

= Ct(I′, (ωM, g, r − z
∗ · d),k)

= Ct(I′, (ωM, g, r − z
∗ · d),k′) (5.9)

= Ct(I′, (ωM, g, r − z
∗ · c(I, (ωM, g, r),k

′)),k′)

= Ct(Φ(I, (ωM, g, r),k
′)), (5.10)

163

where (5.9) follows again from the facts that ∀ j < ut : k j = k
′
j and Ĵt(Φ(I, (ωM, g, r),k)) =

Ĵt(Φ(I, (ωM, g, r),k
′)) = ut. By combining (5.7) and (5.10), it now follows that

z
∗ · kut = z

∗ · k′ut . Thus, torsion-freeness of z
∗

implies that kut = k
′
ut which

contradicts the assumption that kut , k
′
ut .

• Case 2: If sSesst was revoked, then let aut, but (respectively, a
′
ut, b

′
ut) be the blind-

ing parameters used to obtain kut (respectively, k
′
ut). Notice that these are the

same for both random oracle vectors since the query to oracle G is made be-

fore kut and k
′
ut are returned through random oracle H. Furthermore, by the

collision-freeness of G, the commitment binds to the same blinding parameters.

Therefore, the blinded challenges are kut +but = dut = k
′
ut +but which implies that

kut = k
′
ut , which again contradicts the hypothesis that kut , k

′
ut .

�

We can lift the restriction of fixed (I, ω) ∈ I ×Ω, thus obtaining the following:

Corollary 5.3.2. Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, (ωM, g, r),h) ∈ G∧Φ(I, (ωM, g, r),h) ∈ G] ≤

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

.

Showing that Win j is not too small. Let Dsk and Dr denote the sets of secret keys

and r’s, respectively; then E := Dsk ×D
QS1
r and Ein j := {(sk, r) ∈ E | (sk+ z

∗, r− c · z∗) ∈

E, ∀c ∈ Sc} ⊂ E. Accordingly, ∀(sk, r) ∈ E \ Ein j : (sk + z
∗, r − c · z∗) < E. Since Φ maps

sk to sk + z
∗

and r to r − c(I, ω,h) · z∗, if (sk, r) ∈ Ein j and (sk, (ωM, g, r),h) ∈ W then

(sk, (ωM, g, r),h) ∈ Win j .

The following two lemmas can easily be proven:

Lemma 5.3.11. Pr

(sk,(ωM,g,r),h)←$(I×Ω×C
QH)

[(sk, (ωM, g, r),h) ∈ Win j] ≥ ε
2/8.

Proof. In the Generalized Splitting Lemma, we set X1 := Dsk and X3 := D
QS1
r and

accordingly, S := {1, 3}. This implies the existence of a set BS,ε/2 such that:

Pr

(sk,(ωM,g,r),h)←$(I×Ω×C
QH)

[(sk, (ωM, g, r),h) ∈ BS,ε/2] ≥ ε/2.

164

and such that for all (sk, (ωM, g, r),h) ∈ BS,ε/2,

Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W] ≥ ε/2.

The latter inequality can be rewritten as

Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W ∧ (sk′, r′) ∈ E \ Ein j]

+ Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W ∧ (sk′, r′) ∈ Ein j]

= Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W] ≥ ε/2. (5.11)

By the (ε,QS1)-regularity of H, at most an ε/4 fraction of (sk′, r′) ∈ E satisfy (sk′, r′) ∈

E \ Ein j . Thus, for all (I, ω,h) = (sk, (ωM, g, r),h) ∈ BS,ε/2,

Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W ∧ (sk′, r′) ∈ E \ Ein j]

≤ Pr
(sk′,r′)←$E

[(sk′, r′) ∈ E \ Ein j] ≤ ε/4

By inequality (5.11), we obtain that for all (I, ω,h) = (sk, (ωM, g, r),h) ∈ BS,ε/2,

ε/2 ≤ Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W]

= Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W ∧ (sk′, r′) ∈ Ein j]

+ Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W ∧ (sk′, r′) ∈ E \ Ein j]

≤ Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ W ∧ (sk′, r′) ∈ Ein j] + ε/4

≤ Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ Win j] + ε/4

which implies that for all (I, ω,h) = (sk, (ωM, g, r),h) ∈ BS,ε/2,

Pr
(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ Win j] ≥ ε/4.

165

Putting things together, we have:

Pr

(sk,(ωM,g,r),h)←$(I×Ω×C
QH)

[(sk, (ωM, g, r),h) ∈ Win j]

= Pr

(sk,(ωM,g,r),h)←$(I×Ω×C
QH),(sk′,r′)←$E

[(sk′, (ωM, g, r
′),h) ∈ Win j]

=
∑

(Î,ω̂,ĥ)∈(I×Ω×CQH)

Pr[(sk′, (ωM, g, r
′),h) ∈ Win j ∧ (sk, (ωM, g, r),h) = (Î, ω̂, ĥ)]

≥
∑

(Î,ω̂,ĥ)∈BS,ε/2

Pr[(sk′, (ωM, g, r
′),h) ∈ Win j ∧ (sk, (ωM, g, r),h) = (Î, ω̂, ĥ)]

=
∑

(Î,ω̂,ĥ)∈BS,ε/2

Pr
(sk′,r′)←$E

[(sk′, (ω̂M, ĝ, r
′), ĥ) ∈ Win j] · Pr

(Î,ω̂,ĥ)←$(I×Ω×C
QH)

[(I, ω,h) = (Î, ω̂, ĥ)]

≥
ε

4
·

∑
(Î,ω̂,ĥ)∈BS,ε/2

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) = (Î, ω̂, ĥ)]

=
ε

4
· Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ BS,ε/2] ≥
ε

4
·
ε

2
=
ε2

8
.

�

The following lemma can be proven analogously to [98].

Lemma 5.3.12. Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B] ≥
1

2

©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

ª®®¬ .
Proof. In the following, let Gin j := Win j ∩ G and Bin j := Win j ∩ B. Since for all

(I, ω,h) ∈ Win j , we have Φ(I, ω,h) = Φin j(I, ω,h) ∈ W = G ∪ B, we can partition Gin j

into subsets G
g
in j and Gb

in j , such that all elements in G
g
in j are mapped into G via Φin j ,

while elements in Gb
in j are mapped into B via Φin j . It follows that:

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Gin j]

= Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Gg
in j] + Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω, h) ∈ Gb
in j] (5.12)

166

By Corollary 5.3.2 we also know that:

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Gg
in j] ≤

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

(5.13)

Because Φin j is injective, we have:

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Gb
in j] ≤ Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B] (5.14)

By combining (5.12), (5.13), and (5.14), we infer that:

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Gin j]

≤

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

+ Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B].

From this, we can lower bound Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B] as

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B] ≥ Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Bin j]

= Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Win j] − Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Gin j]

≥ Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Win j] − Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B]

−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

.

However, by Lemma 5.3.11 we know that Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Win j] = ε2/8,

which in turn implies that:

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B] ≥
1

2

©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

ª®®¬ .
�

167

Completing the Proof of Lemma 5.3.8. We are now ready to prove Lemma 5.3.8, i.e.,

we show that there exist i ∈ [QS2 −Qrev + 1], j ∈ [QH] such that βi, j >
1

2QH(QS2
−Qrev+1) ·©­« ε2

8 −

(
|Sc |
|C|

)QS2
·

Q
QS2

+1

H
·(
QS1

+QS2
QS1

)

|C|

ª®¬ . Toward a contradiction, suppose instead that for all

i ∈ [QS2 −Qrev + 1], j ∈ [QH], we have that:

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Bi, j] <
1

2QH(QS2 −Qrev + 1)
·
©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

ª®®¬ .
By Lemma 5.3.12, we have:

1

2

©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

ª®®¬ ≤ Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ B]

= Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈
⋃
i, j

Bi, j] ≤
∑
i, j

Pr

(I,ω,h)←$(I×Ω×C
QH)

[(I, ω,h) ∈ Bi, j]

<
1

2

©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

ª®®¬
which is a contradiction. �

Extracting Collisions for LHF from the Forgery. We now describe an adversary

B that makes use of the previously defined wrapping adversaries Ai in a black-box

manner, in order to win in game CRLHF. Notice that because B guesses the number

of closed and revoked sessions that the OMUF adversary M will have at the end

of the simulation, the advantage of winning in CRLHF is multiplied by a factor of

1
(QS2

+1)(Qrev+1) .

• Setup: On input par←$ LHF.PGen(1λ), B guesses the number of closed sessions

κ∗ ←$ {0} ∪ [QS2], the number of revoked sessions r∗ ←$ {0} ∪ [Qrev], and an

index i∗ ←$ [QS2 −Qrev + 1], a secret key sk ←$ Dsk , a vector of random oracle

responses h←$ C
QH, randomness ω := (ωM, g, r) ←$ Ω, and it runs Ai∗ on input

I = ((sk, par),h; ((ωM, κ
∗, r∗), g, r)).

168

• Intermediate Phase: When Ai∗ returns a pair (Ĵi∗, χ̂i∗), and as long as Ĵi∗ , 0

(if not, B aborts by returning ⊥), B conditionally resamples a second random

vector h
′←$ C

QH |h[Ĵi∗−1] and runs Ai∗ a second time with the same randomness

((ωM, κ
∗, r∗), g, r) and the same instance I but replacing h by h

′
.

• Output Determination: When Ai∗ returns a pair (Ĵ
′

i∗, χ̂
′
i∗), B outputs (χ̂i∗, χ̂

′
i∗) iff

Ĵi∗ , Ĵ
′

i∗ and χ̂i∗ , χ̂
′
i∗. Otherwise, it outputs ⊥.

Analysis of Adversary B. Notice that in the case that B does not abort, by definition

of Ai∗ we have,

F(χ̂i∗) = F(ŝ′i∗ − ĥi∗ · sk) = S
′

Ĵi∗
− h

Ĵi∗
· pk = R

′

Ĵi∗

Because Ai∗ sees identical answers for the first Ĵi∗−1 queries to H, it behaves identically

in both runs until it receives the answer to the Ĵi∗-th query to H. In particular, Ai∗ poses

the same Ĵi∗-th query to H which means that F(χ̂i∗) = R
′

Ĵi∗
and therefore F(χ̂i∗) = F(χ̂′i∗).

For par ∈ P, we now consider:

Pr
(χ̂i∗,χ̂

′
i∗)←$B(par)

[χ̂i∗ , χ̂
′
i∗ ∧ F(χ̂i∗) = F(χ̂′i∗)]

=

QH∑
j=1

Pr[χ̂i∗ , χ̂
′
i∗ ∧ F(χ̂i∗) = F(χ̂′i∗) ∧ Ĵi∗ = Ĵ

′

i∗ = j]

=

QH∑
j=1

Pr[χ̂i∗ , χ̂
′
i∗ ∧ Ĵi∗ = Ĵ

′

i∗ = j] =
QH∑
j=1

δi∗, j ≥
1

QS2 −Qrev + 1
· max

i∈[QS2
−Qrev+1]

QH∑
j=1

δi, j

≥ max
i, j

βi, j

2(QS2 −Qrev + 1)

(
βi, j

4
−

1

|C|

)

>

ε2

8 −

(
|Sc |
|C|

)QS2
·

Q
QS2

+1

H
·(
QS1

+QS2
QS1

)

|C|

32Q2
H
(QS2 −Qrev + 1)3

·
©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

−
8QH(QS2 −Qrev + 1)

|C|

ª®®¬ ,
where for the first inequality we used that

∑
δi∗, j = max

i

∑
δi, j with probability at

least
1

QS2
−Qrev+1 . Moreover, we have applied Lemmas 5.3.7 and 5.3.8 in the second to

last and last inequality, respectively (relative to our choice of par). By reintroducing

169

randomness over the choice of parameters par, we finally obtain:

ε′ = AdvCRLHF(B) = Pr
par←$LHF.PGen(1λ),(χ̂i∗,χ̂

′
i∗)←$B(par)

[χ̂i∗ , χ̂
′
i∗ ∧ F(χ̂i∗) = F(χ̂′i∗)]

≥ Pr
par←$LHF.PGen(1λ),(χ̂i∗,χ̂

′
i∗)←$B(par)

[χ̂i∗ , χ̂
′
i∗∧F(χ̂i∗) = F(χ̂′i∗) | par ∈ P]· Pr

par←$LHF.PGen(1λ)
[par ∈ P]

≥

ε2

8 −

(
|Sc |
|C|

)QS2
·

Q
QS2

+1

H
·(
QS1

+QS2
QS1

)

|C|

32Q2
H
(QS2 −Qrev + 1)3

·
©­­«
ε2

8
−

(
|Sc |

|C|

)QS2

·

Q
QS2
+1

H
·
(QS1

+QS2
QS1

)
|C|

−
8QH(QS2 −Qrev + 1)

|C|

ª®®¬·
ε

2

= O
©­­«
©­«ε2 −

(
|Sc |

|C|

)QS2

·
Q

QS2
+1

H
Q

QS2

S1

|C|

ª®¬
2

1

Q2
H

Q3
S2

ª®®¬ ·
ε

2

= O
©­­«
©­«ε2 −

(
|Sc |

|C|

)QS2

·
Q

QS2
+1

H
Q

QS2

S1

|C|

ª®¬
3

1

Q2
H

Q3
S2

ª®®¬
where the second-to-last equality holds for QS1 ≥ QS2 + Qrev and because Qrev ≤ QS2.

Finally, the last equality holds because ε = O(ε2).

�

5.4 A Concrete Instantiation Based on R − SIS

We now present a concrete instantiation of our generic construction from the R − SIS

lattice assumption. The LHF we will rely on is the one from [122], which is also used

in [98, 159].

Solving R − SISq,n,m,d is equivalent to finding short vectors in the related lattice

Λ⊥q (â) := {ẑ ∈ Rm
q :

∑m
i=1 ai · zi = 0}, where â ←$ R

m
q . [81] provides a classification of

algorithms for finding short vectors in random lattices, in terms of the Hermite factor

η. These algorithms compute a vector whose length is ηn
times the length of the short-

est lattice vector. To estimate the concrete hardness of R − SISq,n,m,d we use a Hermite

factor of η ≈ 1.005. To estimate the length of the shortest vector (in l∞ norm), we use the

following estimation from [122]: svη(n, q) := min {q, 22
√

n log (q) log (η) · (n log (q)/log (η))−1/4}.

170

Table 5.1: Parameter definitions for the lattice-based LHF.

Parameter Definition Instantiation

λ main security parameter 128

n integer power of 2 1024

m dimension of a secret key vector > log(q)/log(2d) 179

q prime ≥ 4dmn
√

n log(n) 23574

ι # of irreducible factors of Xn + 1 modulo q 32

δ l∞ of a torsion-free element from the kernel 219

(2δ + 1)mn > qn, δ < q/2
dsk l∞ of a secret key 2169

dc′ l∞ of random oracle H’s outputs 285

u integer 4

v integer 4

w integer 4

dβ undc′ ≈ 297

dc dβ − dc′, dc <
q1/ι

2
√
ι

≈ 297

dr ≥ vmn2dsk dc ≈ 2295

ds dr − ndsk dc ≈ 2295

dα wmnds ≈ 2315

ds′ dα − ds ≈ 2315

d d < 1
2sv1.005(n, q) ≈ 2316

Signature size ≈ n log (2dc′) + mn log (2ds′) + 2λ 6.91 MB

Communication overhead ≈ mn log (2dr) + n log (2dc) + mn log (2ds) 12.97 MB

(in case of a revocation) +mn log (2dα) + n log (2dβ) + n log (2dc′) + 2λ +6.93 MB

For our scheme’s unforgeability under revokes we will rely on the same conjecture

as [98]:

Conjecture 2. If d < sv1.005(n, q) then no efficient algorithm can solve R − SISq,n,m,d.

The R − SIS Linear Hash Function Family. We set our parameters as described in

column 2 of Table 5.1. In addition, we define the sets:

S := Rq, D := Rm
q , and R := Rq,

As well as the family of sets:

B(w) := { f ∈ R : ‖ f ‖∞ ≤ w},w ∈ N

To ensure that LHF is collision resistant, we need to set d < 1
2sv1.005(n, q) and select

171

D′ ⊆ B(d)12
.

The filter sets are defined for xxx ∈ {β, c, c′} and yyy ∈ {sk, r, s, s′, α} as:

Sxxx := B(dxxx) ⊆ S, Dyyy := Bm(dyyy) ⊆ D .

The following lemma from [159] is essential for estimating the membership of sums

and products of elements from D to specific filter sets.

Lemma 5.4.1. Let k, da, db and φ be positive integers, s.t. db ≥ φknda. Then, for all

â ∈ Bk
q (da), we have

Pr

b̂←$B
k
q (db)
[‖â + b̂‖∞ ≤ db − da] > e−1/φ − o(1).

Enclosedness Errors. First, we compute the enclosedness errors of LHF based on the

parameters defined in Table 5.1. The following lemma is implied directly from the way

the parameters are defined and by applying Lemma 5.4.1.

Lemma 5.4.2. If dβ, dr, dα, dc, ds, ds′ are defined as in Table 5.1 and LHF is defined as

above, then LHF has enclosedness errors equal to:

(1 − e−1/u + o(1), 1 − e−1/v + o(1), 1 − e−1/w + o(1)).

By Theorem 5.3.1, BSRS[LHF,H,G] has a correctness error of approximately 0.44.

Smoothness. It is easy to show that LHF is smooth. The proof is identical to the one

for Lemma 4 in [98].

Lemma 5.4.3. If ds and dc are defined as in Table 5.1, then LHF is smooth.

Torsion-Free Elements from the Kernel. If dc is set to be sufficiently small, then by

selecting an appropriate prime q, we can apply the main result of [127] to ensure that

there exists ẑ
∗
∈ Rm

q \ {0} s.t. F(ẑ∗) = 0.

12
The set D ′ is defined in equation (5.1).

172

Lemma 5.4.4. Let n ≥ ι > 1 be powers of 2 and q ≡ 2ι + 1 (mod 4ι) be a prime. Then

Xn + 1 factors into ι irreducible polynomials Xn/ι − r j modulo q and any y ∈ Rq \ {0}

satisfying 0 < ‖y‖∞ < 1√
ι
· q1/ι

is invertible in Rq.

Thus, we require dc <
q1/ι

2
√
ι
. Then for c1, c2 ∈ Sc, (c1−c2)ẑ

∗ = 0 =⇒ c1 = c2 because

otherwise c1 − c2 has an inverse and thus, ẑ
∗ = 0. Thus, ẑ

∗
is a torsion-free element

from the kernel.

We also need to ensure that there exists ẑ
∗
∈ Rm

q s.t. ‖ẑ
∗
‖∞ < q/2. To this

end, let Bδ := {x̂ ∈ Rm
q : ‖x̂‖∞ ≤ δ}. If δ is set s.t. |Bδ | = (2δ + 1)mn > qn = |R |,

then by the pigeonhole principle, there exist distinct x̂1, x̂2 ∈ Bδ s.t. F(x̂1) = F(x̂2).

Then ẑ
∗ := x̂1 − x̂2 is a (short) torsion-free element from the kernel because ‖ẑ

∗
‖∞ =

‖x̂1 − x̂2‖∞ ≤ δ < q/2.

Collision Resistance. To estimate the hardness of finding collisions in LHF we state

the following simple lemma.

Lemma 5.4.5. If R − SISq,n,m,2d is (ε, t)-hard, then LHF is (ε, t) collision-resistant.

Proof. Let A be an adversary winning in the collision resistance game. A returns

(χ̂1, χ̂2) s.t. F(χ̂2 − χ̂1) = 0. In particular, the values returned by our adversary

against collision resistance from the proof of Theorem 5.3.5 are bounded by ‖χ̂i‖∞ ≤

ds′ + ndc′dsk < 2ds′. Thus, for the reduction we set d = 2ds′. With the parameter set of

Table 5.1, both d and
1
2svδ(n, q) are approximately equal to ≈ 2316

. This implies that

(χ̂1, χ̂2) is a solution to R − SISq,n,m,2d because ‖χ̂2 − χ̂1‖∞ < 2d < svδ(n, q). �

Unforgeability Under Revokes. To make the bound in Lemma 5.3.10 negligible, we

need a sufficiently large challenge space C = Sc′. Concretely, we set QH = QS1 = 2128

and QS2 = Qrev = log (128) = 7 to safeguard against any attacks through a lattice

variant of the Generalized ROS attack described in [98]. For our parameter choices,

the bound in Lemma 5.3.10 is less than 2−128
.

Regularity. By selecting dsk and dr as in Table 5.1, our LHF is (ε,Q′)-regular, where

ε = 2−128
and Q′ = QS2 = 7.

173

Lemma 5.4.6. Let ε = 2−128
and Q′ = 7. Then for our selection of dsk, dr , LHF is

(ε,Q′)-regular, i.e.,

|D′sk |

|Dsk |
·

(
|D′r |

|Dr |

)Q′

≥ 1 − ε/4 = 1 − 2−130,

where

D′sk := {ŝk ∈ Dsk : ŝk + ẑ
∗
∈ Dsk}

and

D′r := {r̂ ∈ Dr : r̂ + cẑ
∗
∈ Dr, ∀c ∈ Sc}.

Proof. By our choices of dsk and dr , we have:

|D′sk |

|Dsk |
≥ 1 − 2−130,

(
|D′r |

|Dr |

)Q′

≥ 1 − 2−130, and dr ≥ vmn2dsk dc.

The result is then immediate by the Bernoulli inequality. �

Sizes. We select a prime q ≈ 23574
so that q ≡ 2ι + 1(mod 4ι), where ι = 32 and Xn + 1

factors into a product of ι irreducible polynomials modulo q and Lemma 5.4.4 can

be applied. The signature consists of four parts: c
′, ŝ′, γ, and ρ. The size for c

′
and

ŝ
′

are respectively n log (2d′c) and mn log (2ds′). Also, γ and ρ take up 128 bits each.

Concretely, our instantiation outputs signatures of approximately 6.91 MB which is

slightly smaller than the instantiation of [98] whose signatures are approximately 7.73

MB for the same security level (i.e., 128 bits). However, despite having an additional

move, our scheme has a significantly smaller communication overhead of only 19.9

MB in the worst case (i.e., when a PoR is transmitted) compared to [98] which needs

to transmit 440.83 MB per session (i.e., approximately 22.2 times larger compared to

our instantiation). This is largely due to the fact that in the scheme of [98], the signer

needs to transmit a large number of commitments during his first move. This results

in the aforementioned bottleneck.

174

5.5 Conclusions, Open Problems and Future Work

In this chapter, we revisited the problem of rendering blind signature from linear

hash function families with noticeable correctness error in the random oracle model

(ROM) [98]. We proposed for the first time a new cryptographic primitive called blind

signatures with revocable sessions (BSRS) to model four-move schemes in which the

user is able to prove that he did not obtain a valid signature from a session and can ask

for the session to be revoked [159]. We provided a general framework for constructing

BSRS schemes from any linear hash function family with noticeable correctness error

and proved its security in the ROM by expanding upon the techniques introduced in

[98]. We instantiated our general framework from the standard R − SIS assumption.

Our lattice-based scheme relies on very simple cryptographic primitives and greatly

outperforms the blind signature scheme of [98] in terms of communication overhead

and achieves slightly more compact signature sizes. While our construction is still not

practical enough to be used in practice, we believe that it may motivate future works

in this area.

175

Chapter 6

Proxy Signatures from Ideal

Lattices–Secure in All Rings

6.1 Introduction

A digital signature scheme allows a signer possessing a valid public/secret key pair to

issue signatures on digital documents in a way that provides authentication of both

the contents of the document, and the identity of its creator. However, in a real-world

setting, the signer may be faced with overwhelming traffic (e.g.: having to accom-

modate thousands of users at any given time), or may need to become unavailable

(e.g.: for maintenance) for a set amount of time, without denying users its services.

Unfortunately, typical digital signatures do not cope with these problems very well.

Proxy signature schemes were introduced in [128] and aim to address precisely this

problem. They typically allow an entity termed the designator to authorize another

entity called a proxy signer, allowing the latter to issue signatures on its behalf. This

provided flexibility is particularly useful when resources such as time and/or compu-

tational power are a concern. As such, proxy signature schemes have found numerous

applications in distributed computing where delegation of rights is very commonplace.

Some applications include e-cash systems [175], business-to-consumer mobile agents

for e-commerce [56], grid computing [102], and global distribution networks.

176

6.1.1 Contributions and Related work.

Since their conception [128], numerous proxy signature schemes (and variants thereof)

have appeared in the literature [112, 176, 175, 102]. However, the vast majority of

them rely on classical number-theoretic hardness assumptions like the discrete loga-

rithm problem or large integer factorization, which are known to be vulnerable against

Shor’s algorithm [169]. There have also been a few lattice-based proxy signature

schemes [103, 183]. However, the construction of [103] was broken in [178], while

the construction of [183] relies
1

on R − SIS with a specific choice for f (i.e., the quo-

tient ring’s underlying polynomial). While there are currently no algorithms exploiting

the additional algebraic structure induced by choosing f = X2k + 1, the recent works

of [17, 61] show that the choice ring affects the hardness of either the worst-case or

average-case problems. Following this observation, [124] proposed basing the security

of lattice-based cryptographic schemes on the simultaneous average-case hardness of

problems in every ring.

In this chapter, we present a provably-secure (in the ROM) proxy signature scheme

with warrant. Our scheme is inspired by the digital signature scheme of [124], which

has the benefit of basing its security on the simultaneous hardness of ideal lattice

problems in all polynomial rings whose quotient polynomial’s degree satisfies a certain

relation. This very strong security guarantee gives us a lot of confidence on our

construction because unlike the work of [183], our proposal could potentially remain

unassailable even if weaknesses for a particular choice of quotient polynomial are

found.

6.1.2 Organization

In Section 6.2 we recall the definitions of lattice problem variants that will serve as the

foundation for our constructions, as well as the syntax and security model of proxy

signature schemes. Section 6.3.1 provides a detailed description of our constructions,

followed by formal proofs of security. In this chapter, we reprint the main construction

in [141], of which the dissertation author was the main investigator and author.

1
For efficiency reasons

177

6.2 Preliminaries

Throughout this chapter, we denote the main security parameter by n. We will denote

the polynomial ring Zq[X] by Rq and all operations will implicitly take place in it.

Elements in Rq are of the form a =
∑k

i=0 ai X i
, where ai ∈ {−b

q
2c, . . . , b

q
2c} and k ∈ N0.

For polynomial a ∈ Rq with degree deg (a), we will denote by ‖a‖∞ := maxi=0,...,deg (a) |ai |

and ‖a‖1 :=
∑deg (a)

i=0 |ai | the l∞ and l1 norms, respectively. We also define the sets

R<n
q := {a ∈ Rq : deg (a) < n} and R<n

q,i := {a ∈ Rq : deg (a) < n ∧ ‖a‖∞ ≤ i}. For a

polynomial a ∈ Rq, and a monic polynomial f with deg (f) = n, the expression a (mod

f) denotes the unique polynomial r ∈ R<n
q for which there exists a polynomial q ∈ Rq

s.t.: a = qf + r.

6.2.1 Lattice Problem Variants

The construction presented in this chapter will have its security based on the following

variants of SVP and SIS originally defined in [124]. These variants of SVP and R − SIS

are defined w.r.t. a specific irreducible polynomial f in the worst-case.

Definition 6.2.1. (f−SVPγ(Λ)) We define the f−SVPγ(Λ) problem through the following

game:

Game f − SVPγ(B):

• Setup. On input a lattice Λ = Λ(B) that corresponds to an ideal of the quotient

ring Z[X]/〈f〉 and an approximation factor γ ∈ [1,∞), the game invokes adversary

A on input B and γ.

• Output Determination. When A outputs a vector v̂, the game returns 1 iff v̂ ∈ Λ

and ‖v̂‖∞ ≤ γ ·minŵ∈Λ−{0}(‖ŵ‖∞). Otherwise, it returns 0.

Definition 6.2.2. (f − SISk,q,β) We define the f − SISk,q,β problem through the following

game:

Game f − SISk,q,β:

• Setup. On input polynomials a1, . . . , ak ←$ Rq/〈f〉, the game invokes adversary

A on input k, q, β, and a1, . . . , ak .

178

• Output Determination. When A outputs polynomials z1, . . . , zk ∈ Z[X], the

game returns 1 iff ‖zi‖∞ ≤ β, ∀i ∈ [k] and
∑k

i=1 aizi = 0 (mod f). Otherwise, it

returns 0.

The f − SISk,q,β problem is on the average case, at least as hard as f − SVPγ on the

worst case.

Theorem 6.2.1. (Adapted from Theorem 5.1 in [125]) For any monic, irreducible (over the

integers) polynomial f and q > 2θfβkn1.5 log n, if there exists a PPT algorithm that solves

the f−SISk,q,β problem with noticeable probability, then there exists a PPT algorithm that

solves f − SVPγ problem with γ = θfβkn log2 n for any lattice Λ that corresponds to an

ideal in Z[x]/〈f〉.

In [124], the following two average-case problems over the polynomial ring Rq =

Zq[x] are also defined. Notice that they are defined independently of any particular f.

As such, there is no reduction (mod f) and we furthermore upper-bound the degrees

of the solution polynomials.

Definition 6.2.3. (Homogeneous R<n
q −SISk,d,β) We define the homogeneous f−SISk,q,β

problem through the following game:

Game R<n
q − SISk,d,β:

• Setup. On input polynomials a1, . . . , ak ←$ R
<n
q , the game invokes adversary A

on input k, d, β, and a1, . . . , ak .

• Output Determination. When A outputs polynomials z1, . . . , zk ∈ R
<d
q,β, the

game outputs 1 iff ∃ j ∈ [k] s.t. z j , 0 and
∑k

i=1 aizi = 0. Otherwise, it outputs 0.

Definition 6.2.4. (Inhomogeneous R<n
q − SISk,d1,d2,s,c,β) We define the inhomogeneous

R<n
q − SISk,d1,d2,s,c,β problem through the following game:

Game R<n
q − SISk,d1,d2,s,c,β:

• Setup. On input polynomials a1, . . . , ak ←$ R
<n
q and s1, . . . , sk ←$ R

<d1
q,s , the

game sets t :=
∑k

i=1 aisi and invokes A on input k, d1, d2, s, c, β, a1, . . . , ak , and t.

179

• Output Determination. When A outputs polynomials z1, . . . , zk ∈ R
<d2
q,β and

c ∈ R<d2−d1+1
, the game returns1 iff 0 < ‖c‖1 ≤ c and

∑k
i=1 aizi = tc. Otherwise,

it outputs 0.

Under certain circumstances, the inhomogeneous R<n
q − SIS problem is at least as

hard as the homogeneous R<n
q − SIS problem.

Lemma 6.2.2. (Lemma 3.4 from [124]) Suppose that the following relationships are

satisfied:

1. 0 ≤ d1 < d2 ≤ n

2. s > 2
λ

kd1
−1
· q

n+d1
kd1

3. sc < q/4

If there is a PPT algorithm that solves the inhomogeneous R<n
q − SISk,d1,d2,s,c,β problem

in time t with probability θ, then there is s PPT algorithm that solves the homogeneous

R<n
q − SISk,d2,β+sc problem in time poly(n) + t and with probability ≥ 1

2 (θ − 2−λ).

Finally, the next lemma establishes a reduction from the f− SISk,q,β problem to the

homogeneous R<n
q − SISk,d,β problem.

Lemma 6.2.3. (Lemma 3.2 in [124]) If there exists a PPT algorithm that solves the

homogeneous R<n
q − SISk,d,β problem in time t and with probability θ, then there is a

PPT algorithm that solves f − SISk,q,β in time poly(n) + t with probability θ as long as

d ≤ deg (f) ≤ n.

6.2.2 Syntax and Security Model

Proxy signature schemes were originally proposed in [128]. Their security model was

later refined in [112] and formalized in [37]. According to [37], a proxy signature

scheme is comprised by four algorithms (KeyGen,ProxyKeyGen,ProxySign,ProxyVerify).

Their specification is the following:

Key Generation. Algorithm KeyGen inputs the security parameter n and produces

the scheme’s public parameters. Additionally, it outputs the public and secret keys

(pk(i), sk(i)) for i ∈ {D,P} of the designator and proxy signer, respectively.

180

Proxy Key Generation. Algorithm ProxyKeyGen inputs the designator’s keys (pk(D), sk(D))

and a warrant
2 W ∈ {0, 1}∗ and outputs a proxy key psk.

Proxy Sign. Algorithm ProxySign inputs the proxy signer’s keys (pk(P), sk(P)), the proxy

key psk, and the message-to-be-signed µ ∈ {0, 1}∗ and outputs a valid proxy signature

sig.

Proxy Verify. Algorithm ProxyVerify inputs a message µ, a purported signature sig,

and the public keys of the designator and proxy signer. The algorithm outputs 1 if the

signature is valid, and 0 otherwise.

A proxy signature is secure if it satisfies the following properties [37]:

Unforgeability: Valid proxy keys can only be created by the designator. Furthermore,

valid proxy signatures can only be issued by an authorized proxy signer.

Verifiability: Given a proxy signature, it must be possible to verify that it truly origi-

nated from a proxy signer, authorized by the designator.

Strong Identifiability: Any issued proxy signature must uniquely identify the proxy

signer who issued it.

Strong Undeniability: Once having issued a valid proxy signature, the proxy signer

cannot deny its issuance.

Key Dependence: Proxy keys created by the designator must depend on his secret

key.

6.3 A Proxy Signature from Ideal Lattices - Secure in

All Rings

6.3.1 Our Construction

We go on to provide definitions for the algorithms (KeyGen,ProxyKeyGen,ProxySign,

ProxyVerify) comprising our proxy signature scheme.

Key Generation. Algorithm KeyGen initializes the parameters summarized in Table

6.1, which we will consider publicly known by everyone, and which relate to the

2
The warrant may contain legal information such as the authorization period, identifying information

of the designator and proxy signer, etc.

181

Table 6.1: Scheme parameters for main security parameter n.

Parameter Description Bounds

n main security parameter -

q coefficient modulus prime

k number of polynomials used in secret keys positive integer

s bound for the absolute value of secret-key polynomial coefficients positive integer s.t.: ‖si‖∞ = s, ∀i
d1 maximum degree of secret-key polynomials + 1 0 ≤ d1 < d2 ≤ n
d2 maximum degree of masking polynomials + 1 0 ≤ d1 < d2 ≤ n
c Hamming weight of challenges positive integer in {0, . . . , d2 − d1}

σ designator and proxy signer standard deviation 11sc
√

d2k
Rq := Zq[X] polynomial ring in which operations take place -

C := {c ∈ R<d2−d1+1
q,1 : ‖c‖1 ≤ c} Challenge space -

parametrization of R<n
q − SIS. We also make use of a cryptographic hash function

H : {0, 1}∗ → C modelled as a programmable RO.

The designator picks polynomials s
(D)
1 , . . . , s

(D)
k ←$ R

<d1
q,s and a

(D)
1 , . . . , a

(D)
k ←$ R

<n
q

and computes: t
(D) :=

∑k
i=1 a

(D)
i s

(D)
i . The designator’s public key is comprised by

polynomials (s
(D)
1 , . . . , s

(D)
k), whereas his public key is comprised by (a

(D)
1 , . . . , a

(D)
k , t(D)).

Similarly, the proxy signer picks polynomials s
(P)
1 , . . . , s

(P)
k ←$ R

<d1
q,s and a

(P)
1 , . . . , a

(P)
k ←$

R<n
q and computes: t

(P) :=
∑k

i=1 a
(P)
i s

(P)
i . He keeps polynomials (s

(P)
1 , . . . , s

(P)
k) secret,

and publishes (a
(P)
1 , . . . , a

(P)
k , t(P)).

Proxy Key Generation. To generate a proxy key for warrant W ∈ {0, 1}∗, the des-

ignator picks masking polynomials e
(D)
1 , . . . , e

(D)
k ∈ R

<d2
q s.t.: e

(D)
i ∼ Dd2

σ , ∀i. He then

computes a challenge c as a function of the ‘‘commitment’’
∑k

i=1 a
(D)
i e

(D)
i and the war-

rant W , as well as ‘‘responses’’ z
(D)
i := s

(D)
i c

(D) + e
(D)
i , ∀i. He also rejection-samples the

response polynomials to make them statistically independent from his secret key. If

rejection sampling succeeds and the response polynomials satisfy a certain bound, the

designator sets WD→P := (z(D)1 , . . . , z
(D)
k , c(D)) as the proxy key and sends it, along with

the warrant W to the intended proxy signer. The process is summarized in Algorithm

5.

Proxy Sign. The proxy signer receives (W,WD→P), parses (z
(D)
1 , . . . , z

(D)
k , c(D)) := WD→P

and verifies that it is a valid signature of the warrant W under the designator’s pub-

lic key. If this is the case, he picks masking polynomials e
(P)
1 , . . . , e

(P)
k ∼ Dd2

σ , ∀i

and computes his own challenge c
(P)

as a function of ‘‘commitment’’ polynomials

182

Algorithm 5 ProxyKeyGen((s(D)1 , . . . , s
(D)
k), (a

(D)
1 , . . . , a

(D)
k),W)

1: e
(D)
1 , . . . , e

(D)
k ∈ R

<d2
q , s.t.: e

(D)
i ∼ Dd2

σ , ∀i;
2: c

(D) := H(
∑k

i=1 a
(D)
i e

(D)
i ,W);

3: z
(D)
i := s

(D)
i c

(D) + e
(D)
i , ∀i;

4: b := Rejection_Sample((z(D)1 , . . . , z
(D)
k), (s

(D)
1 c

(D), . . . , s
(D)
k c

(D)), 11, sc
√

d2k);
5: if (b = 0 or ∃i ∈ [k] : ‖z(D)i ‖∞ > 5σ) then

6: goto Step 1;

7: WD→P = (z
(D)
1 , . . . , z

(D)
k , c(D));

8: return (W,WD→P);

∑k
i=1 a

(P)
i e

(P)
i and the message-to-be-signed µ. He then computes ‘‘response’’ poly-

nomials z
(P)
i := s

(P)
i c

(P) + e
(P)
i , ∀i ∈ [k] and rejection-samples them to ensure that

his own secret key does not leak any information. If rejection sampling succeeds

and the ‘‘response’’ polynomials satisfy a certain bound, the proxy signer outputs

(z
(D)
1 , . . . , z

(D)
k , z

(P)
1 , . . . , z

(P)
k , c(D), c(P)) as the proxy signature of message µ.

Algorithm 6 ProxySign(µ,W,WD→P)

1: Parse (z
(D)
1 , . . . , z

(D)
k , c(D)) := WD→P;

2: if

(
(∃i ∈ [k] : deg (z(D)i) ≥ d2 ∨ ‖z

(D)
i ‖∞ > 5σ) ∨ (c(D) , H(

∑k
i=1 a

(D)
i z

(D)
i − t

(D)
c
(D)

, W)
)

then

3: Reject (W,WD→P);

4: e
(P)
1 , . . . , e

(P)
k ∈ R

<d2
q , s.t.: e

(P)
i ∼ Dd2

σ , ∀i;
5: c

(P) := H(
∑k

i=1 a
(P)
i e

(P)
i , µ);

6: z
(P)
i := s

(P)
i c

(P) + e
(P)
i , ∀i;

7: b := Rejection_Sample((z(P)1 , . . . , z
(P)
k), (s

(P)
1 c

(P), . . . , s
(P)
k c

(P)), 11, sc
√

d2k);
8: if (b = 0 or ∃i ∈ [k] : ‖z(P)i ‖∞ > 5σ) then

9: goto Step 4;

10: return (z
(D)
1 , . . . , z

(D)
k , z

(P)
1 , . . . , z

(P)
k , c(D), c(P));

The Rejection_Sample procedure used in Algorithms 5 and 6 is the same as the

one described in Algorithm 1, with the only difference being that here we rely on the

infinity norm, instead of the Euclidean norm.

Proxy Verify. A proxy signature

(
z
(D)
1 , . . . , z

(D)
k , z

(P)
1 , . . . , z

(P)
k , c(D), c(P)

)
is valid w.r.t.

message µ, and warrant W , against designator public key (a
(D)
1 , . . . a

(D)
k , t(D)), and proxy

signer public key (a
(P)
1 , . . . a

(P)
k , t(P)) iff all of the following conditions hold:

183

1. ‖z
(D)
i ‖∞ ≤ 5σ, ∀i = 1, . . . , k,

2. c
(D) = H(

∑k
i=1 a

(D)
i z

(D)
i − t

(D)
c
(D),W),

3. ‖z
(P)
i ‖∞ ≤ 5σ, ∀i = 1, . . . , k,

4. c
(P) = H(

∑k
i=1 a

(P)
i z

(P)
i − t

(P)
c
(P), µ).

6.3.2 Analysis and Security

We now provide security proofs for our construction. We show that our scheme is:

verifiable, strongly identifiable, strongly undeniable, unforgeable and that the proxy

key depends on the designator’s secret key.

Proposition 6.3.1. (Verifiability) The proposed scheme is verifiable.

Proof. Conditions 1 and 2 of Algorithm ProxyVerify certify that the proxy signer is

warranted, by means of (z
(D)
1 , . . . , z

(D)
k , c(D)), to issue signatures on the designator’s

stead. �

Proposition 6.3.2. (Strong Identifiability) The proposed scheme is strongly identifiable.

Proof. Algorithm ProxyVerify receives the proxy signer’s public key (a
(P)
1 , . . . , a

(P)
k , t(P))

as input and thus uniquely identifies a signature’s issuer. �

Proposition 6.3.3. (Strong Undeniability) The proposed scheme is strongly undeniable.

Proof. Polynomials (z
(P)
1 , . . . , z

(P)
k , c(P)) were computed by the proxy signer during the

ProxySign algorithm of Figure 6, using his secret key (s
(P)
1 , . . . , s

(P)
k). Any proxy signa-

ture produced by the proxy signer is linked to his secret key and thus, he cannot deny

its issuance. �

Proposition 6.3.4. (Key Dependence) The proxy key used by the proxy signer depends

on the designator’s secret key.

Proof. The proxy key WD→P was produced using the designator’s secret key and thus

depends on it. �

184

We establish unforgeability in two parts: unforgeability of the proxy key and un-

forgeability of the proxy signature. To this end, we consider the following ‘‘hybrid’’

signing algorithm HybridSign.

Algorithm 7 HybridSign(µ, (a1, . . . , ak, t))

1: c←$ C;

2: Select z1, . . . , zk ∈ R
<d2
q s.t. zi ←$ Dd2

σ , ∀i;
3: if (|zi‖∞ > 5σ) then

4: Go to Step 1;

5: Program H s.t. c = H(
∑k

i=1 aizi − tc, µ);
6: return (z1, . . . , zk, c) with probability 1/M ≈ 1/3, otherwise go to Step 1;

Lemma 6.3.1. (Lemma 4.1 in [124]) Suppose that the random oracle H is already

programmed on v values. Then the statistical distance between the output of the signing

procedure and the above hybrid signing algorithm, which does not take any secret keys

si as inputs, is at most 2−95 + v(
√

2πσ − 1)−d2.

We now establish our scheme’s unforgeability property.

Theorem 6.3.2. (Unforgeability) Suppose that there exists a PPT adversary A, that

successfully forges a proxy signature after a total of at most t queries to the HybridSign

oracle and the random oracle H, with noticeable probability θ. Then there exists a PPT

algorithm with the same complexity as A that solves R<n
q − SISk,d1,d2,s,2c,10σ or R<n

q −

SISk,d2,10σ with noticeable probability ≥ 1
2

(
θ − 1

|C|

) (
θ−1/|C|

t − 1
|C|

)
.

Proof. We first observe that any party other than the designator and a proxy signer

possesses less information than the designator. As such, we can assume w.l.o.g.

that the adversary attempting to forge is the designator himself. The adversary uses

his secret key to compute a proxy key WD→P for warrant W . Therefore, in order to

completely forge a proxy signature (z
(D)
1 , . . . , z

(D)
k , z

(P)
1 , . . . , z

(P)
k , c(D), c(P)), the adversary

needs to forge the (z
(P)
1 , . . . , z

(P)
k , c(P)) part of the signature.

To prove the reduction, we construct a simulator S that uses the adversary as a

black-box in order to solve the R<n
q − SISk,d1,d2,s,2c,10σ problem or the R<n

q − SISk,d2,10σ

problem. We observe that the input distributions of the two problems are identi-

cal. Indeed, let (a1, . . . , ak, t) be an instance of the R<n
q − SISk,d1,d2,s,2c,10σ problem and

185

(a′1, . . . , a
′
k) be an instance of the R<n

q − SISk,d2,10σ problem. If S chooses s
′
1, . . . , s

′
k ←$

R
<d1
q,s and computes t

′ =
∑k

i=1 a
′
is
′
i, then ∆

(
(a1, . . . , ak, t); (a

′
1, . . . , a

′
k, t
′)
)
= 0. Thus the

two distributions are perfectly indistinguishable.

Setup. The simulator S receives the scheme parameters as input, prepares a random

input instance for one of the two aforementioned problems and publishes it as its

public key. We denote this public key as (a
(S)
1 , . . . , a

(S)
k , t(S)). We will show that if the

adversary successfully forges on a message that was never seen by S, then the latter

can solve the R<n
q −SISk,d1,d2,s,2c,10σ problem. On the contrary, if A forges on a message

that was previously seen by S, then the latter can solve the R<n
q − SISk,d2,10σ problem.

The probability that we get a match is 1/2. S also initializes two lists Lsig ← ∅ and

LH ← ∅ to be able to remain consistent in case the adversary repeats queries. We

simulate the adversary’s environment as follows:

Random Oracle queries. On input a tuple of the form (u, µ), S checks if there exists

an entry (c,u, µ) ∈ LH and returns c if that is the case. Otherwise, it picks c ←$ C,

stores (c,u, µ) in LH and returns c to the adversary.

Sign queries. On input message µ, S first checks if there already exists a tuple of the

form (µ, z
(S)
1 , . . . , z

(S)
k , c) ∈ Lsig for the queried message. If that is the case, it returns

(z
(S)
1 , . . . , z

(S)
k , c) to the adversary. Otherwise, it runs HybridSign

(
µ, (a

(S)
1 , . . . , a

(S)
k , t(S))

)
and stores the output tuple (µ, z

(S)
1 , . . . , z

(S)
k , c) in Lsig. It outputs (z

(S)
1 , . . . , z

(S)
k , c) to

the adversary. Notice that by Lemma 6.3.1, the adversary has a very small chance

of distinguishing between a signer running HybridSign and ProxySign. This property

allows us to simulate the adversary’s environment.

Forgery and Analysis. Eventually
3
, A produces a forged, valid signature (z

(S)
1 , . . . , z

(S)
k , c)

for some message µ ∈ {0, 1}∗. The signature’s validity implies that c = H(
∑k

i=1 a
(S)
i z
(S)
i −

t
(S)

c, µ). The probability that the adversary outputs a polynomial c ∈ C satisfying this

relation without querying to the random oracle is only 1/|C|. Therefore, with probabil-

ity 1 − 1/|C|, c was programmed into H. We further distinguish between the following

cases:

3
After polynomially upper-bounded time since A runs in PPT and all of its queries are handled

efficiently.

186

• Case 1: If c was directly programmed into H by a random oracle query and A

forged a signature (z1, . . . , zk, c) for a new message µ′ that S never saw, then

that signature satisfies the relations ‖zi‖∞ ≤ 5σ and c = H(
∑k

i=1 a
(S)
i zi − t

(S)
c, µ′).

Because A never queried H on input (
∑k

i=1 a
(S)
i zi − t

(S)
c, µ′), the probability that a

valid forged signature was successfully produced is 1/|C|. We ‘‘rewind’’ A to the

point where c was programmed into H, changing all responses from that point

onward with new uniform responses from C. Suppose that c
′
is the new reply of

H to the same query. According to the General Forking Lemma [32], the proba-

bility that A successfully forges again and that c
′ , c is ≥

(
θ − 1

|C|

) (
θ−1/|C|

t − 1
|C|

)
.

Thus, S has now obtained a new relation c
′ = H(

∑k
i=1 a

(S)
i z
′
i − t

(S)
c
′, µ′), where:∑k

i=1 a
(S)
i zi − t

(S)
c =

∑k
i=1 a

(S)
i z
′
i − t(S)c′. That last relation is equivalent to:

k∑
i=1

a
(S)
i (zi − z

′
i) = t

(S)(c − c
′),

where 0 < ‖c−c
′‖1 ≤ c+c = 2c, deg (c − c

′) < d2−d1+1, ‖zi−z
′
i ‖∞ ≤ 5σ+5σ = 10σ

and deg (zi − z
′
i) < d2. Thus, in this case, S outputs (z1 − z

′
1, . . . , zk − z

′
k, c− c

′) as

a solution to the Inhomogeneous R<n
q − SISk,d1,d2,s,2c,10σ problem.

• Case 2: Let us now assume that c has been programmed into H indirectly,

through a signing query, and thus the forged signature pertains to some message

µ that S has seen. Further, let (z′1, . . . , z
′
k, c) be the signature that S outputs

w.r.t. message µ. For (z′1, . . . , z
′
k, c) to be a valid signature, at least one of the

z
′
i polynomials needs to be different from the corresponding zi. Because c is

the same for both signatures, we have: H(
∑k

i=1 a
(S)
i zi − t

(S)
c, µ) = H(

∑k
i=1 a

(S)
i z
′
i −

t
(S)

c, µ), which by the collision-resistance of H implies that:

k∑
i=1

a
(S)
i zi − t

(S)
c =

k∑
i=1

a
(S)
i z
′
i − t

(S)
c

Therefore,
k∑

i=1

a
(S)
i (zi − z

′
i) = 0,

187

where zi , z
′
i for some index i ∈ [k]. Furthermore, ‖zi − z’i‖∞ ≤ 5σ + 5σ = 10σ

and deg (zi − z
′
i) < d2. Thus, in this case, S outputs (z1 − z

′
1, . . . , zk − z

′
k) as a

solution to the Homogeneous R<n
q − SISk,d2,10σ problem.

�

By combining Lemmas 6.2.2 and 6.2.3 with Theorems 6.2.1 and 6.3.2 as shown

in Figure 6.1, we obtain the following corollary:

Corollary 6.3.1. The only entity that can create proxy signatures in the proxy signature

scheme of Section 6.3 is an authorized proxy signer. Any other entity that can forge

proxy signatures can be twisted into an algorithm for solving the f− SVP problem for all

f with d2 ≤ deg (f) ≤ n.

Unforgeability of the proxy key is analogous and omitted for brevity.

R<n
q − SISk,d2,10σ

f − SISk,q,10σ, ∀f s.t.:

d2 ≤ deg (f) ≤ n

f − SISk,q,2sc+10σ, ∀f

s.t.: d2 ≤ deg (f) ≤ n

f − SVP, ∀f s.t.:

d2 ≤ deg (f) ≤ n

R<n
q − SISk,d1,d2,s,2c,10σ

R<n
q − SISk,d2,2sc+10σ

Forge proxy key/signature

Theorem 6.3.2
Theorem 6.3.2

Lemma 6.2.2 Lemma 6.2.3

Theorem 6.2.1

Lemma 6.2.3 easier than

Figure 6.1: Schematic representation of the sequence of reductions culminating in

our scheme’s unforgeability.

188

6.4 Conclusions, Open Problems and Future Work

In this chapter we presented a new, provably-secure (in the ROM) proxy signature

scheme from worst-case lattice assumptions. Like the proxy signature scheme of

[183], breaking our scheme’s unforgeability implies solving f − SVP. However, unlike

[183], which requires carefully picking the quotient polynomial f, our construction

relies on the simultaneous hardness of f − SVP on exponentially-many polynomials f

with d2 ≤ deg (f) ≤ n.

A potential future research direction would be the investigation of constructing

proxy blind signature schemes [176] based on lattice assumptions, as all currently

known constructions rely on classical number theoretic assumptions.

189

Bibliography

[1] Digital Single Market, howpublished = https://eur-lex.europa.eu/

legal-content/fr/txt/html/?uri=celex:32006l0123, note = Ac-

cessed: 2021-12-02.

[2] Number of cryptocurrencies worldwide from 2013 to November 2021,

howpublished = https://www.statista.com/statistics/863917/

number-crypto-coins-tokens, note = Accessed: 2021-12-02.

[3] Post-Quantum Cryptography, howpublished = https://csrc.nist.gov/

projects/post-quantum-cryptography/round-3-submissions,

note = Accessed: 2021-12-02.

[4] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the

(im)possibility of blind message authentication codes. In David Pointcheval,

editor, Proc. of the 2006 The Cryptographers’ Track at the RSA Conference on

Topics in Cryptology, pages 262–279, Berlin, Heidelberg, 2006. Springer-Verlag.

[5] Masayuki Abe. A secure three-move blind signature scheme for polynomially

many signatures. In Proc. of the Int. Conf. on the Theory and Application of Cryp-

tographic Techniques: Advances in Cryptology, EUROCRYPT ’01, pages 136–151,

London, UK, UK, 2001. Springer-Verlag.

[6] Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo

Kim and Tsutomu Matsumoto, editors, Proc. of the Int. Conf. on the Theory and

Applications of Cryptology and Information Security: Advances in Cryptology -

ASIACRYPT, pages 244–251, Berlin, Heidelberg, 1996. Springer-Verlag.

190

https://eur-lex.europa.eu/legal-content/fr/txt/html/?uri=celex:32006l0123
https://eur-lex.europa.eu/legal-content/fr/txt/html/?uri=celex:32006l0123
https://www.statista.com/statistics/863917/number-crypto-coins-tokens
https://www.statista.com/statistics/863917/number-crypto-coins-tokens
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[7] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signa-

tures. In Mihir Bellare, editor, Proc. of the 20th Annual Int. Cryptology Conference

on Advances in Cryptology, pages 271–286, London, UK, UK, 2000. Springer-

Verlag.

[8] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.

Solving the shortest vector problem in 2n
time using discrete gaussian sampling:

Extended abstract. In Proceedings of the Forty-Seventh Annual ACM Symposium

on Theory of Computing, STOC ’15, page 733{742, New York, NY, USA, 2015.

Association for Computing Machinery.

[9] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Ann. of

Math, 2:781–793, 2002.

[10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the

standard model. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT

2010, pages 553–572, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[11] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed

dimension and shorter-ciphertext hierarchical ibe. In Proceedings of the 30th

Annual Conference on Advances in Cryptology, CRYPTO’10, page 98{115, Berlin,

Heidelberg, 2010. Springer-Verlag.

[12] Shweta Agrawal, Damien Stehle, and Anshu Yadav. Towards practical and

round-optimal lattice-based threshold and blind signatures. Cryptology ePrint

Archive, Report 2021/381, 2021. https://eprint.iacr.org/2021/381.

[13] Dorit Aharonov and Oded Regev. Lattice problems in np conp. J. ACM,

52(5):749{765, September 2005.

[14] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In

Proc. of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96,

pages 99–108, New York, NY, USA, 1996. ACM.

191

https://eprint.iacr.org/2021/381

[15] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized reduc-

tions (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium

on Theory of Computing, STOC ’98, page 10{19, New York, NY, USA, 1998. As-

sociation for Computing Machinery.

[16] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest

lattice vector problem. In Proceedings of the Thirty-Third Annual ACM Symposium

on Theory of Computing, STOC ’01, page 601{610, New York, NY, USA, 2001.

Association for Computing Machinery.

[17] Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-

stretched ntru assumptions. In Proceedings, Part I, of the 36th Annual Inter-

national Cryptology Conference on Advances in Cryptology — CRYPTO 2016 -

Volume 9814, page 153{178, Berlin, Heidelberg, 2016. Springer-Verlag.

[18] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann.

Blaze: Practical lattice-based blind signatures for privacy-preserving applica-

tions. Cryptology ePrint Archive, Report 2019/1167, 2019. https://ia.cr/

2019/1167.

[19] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. On

lattice-based interactive protocols: An approach with less or no aborts. Cryptol-

ogy ePrint Archive, Report 2020/007, 2020. https://eprint.iacr.org/

2020/007.

[20] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. On

lattice-based interactive protocols with aborts. Cryptology ePrint Archive, Report

2020/007, 2020. https://eprint.iacr.org/2020/007.

[21] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann.

Blaze: Practical lattice-based blind signatures for privacy-preserving applica-

tions. In Joseph Bonneau and Nadia Heninger, editors, FC, pages 484–502,

Cham, 2020. Springer International Publishing.

192

https://ia.cr/2019/1167
https://ia.cr/2019/1167
https://eprint.iacr.org/2020/007
https://eprint.iacr.org/2020/007
https://eprint.iacr.org/2020/007

[22] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, and Özgür Dagdelen. Tesla:

Tightly-secure efficient signatures from standard lattices. Cryptology ePrint

Archive, Report 2015/755, 2015. https://eprint.iacr.org/2015/755.

[23] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices.

Theor. Comp. Sys., 48(3):535{553, apr 2011.

[24] Andreas Antonopoulos and Gavin Wood. Mastering Ethereum: Building Smart

Contracts and DApps. O’Reilly Media, 1st edition, 2018.

[25] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio,

Chris Peikert, and Alon Rosen. Swifftx: A proposal for the sha-3 stan-

dard. Available from: https://www.eecs.harvard.edu/˜alon/PAPERS/

lattices/swifftx.pdf, 11 2008.

[26] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer Communications

Security, CCS ’13, page 1087{1098, New York, NY, USA, 2013. Association for

Computing Machinery.

[27] Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind

signature schemes. In Kazue Sako and Palash Sarkar, editors, Advances in

Cryptology — ASIACRYPT 2013, pages 82–99, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[28] W. Banaszczyk. New bounds in some transference theorems in the geometry of

numbers. Mathematische Annalen, 296(4):625–636, 1993.

[29] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search.

SIAM Journal on Computing, 23(1):97{119, February 1994.

[30] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model

and a general forking lemma. In Proc. of the 13th ACM Conf. on Computer and

Communications Security, CCS ’06, pages 390–399, New York, NY, USA, 2006.

ACM.

193

https://eprint.iacr.org/2015/755
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifftx.pdf

[31] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In Proc. of the 1st ACM Conf. on Computer and

Communications Security, CCS ’93, pages 62–73, New York, NY, USA, 1993.

ACM.

[32] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-

work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances

in Cryptology - EUROCRYPT 2006, pages 409–426, Berlin, Heidelberg, 2006.

Springer Berlin Heidelberg.

[33] O. Blazy, P. Gaborit, J. Schrek, and N. Sendrier. A code-based blind signature.

In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2718–

2722, June 2017.

[34] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.

Short blind signatures. Journal of Computer Security, 21(5):627–661, September

2013.

[35] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Compact round-

optimal partially-blind signatures. In Ivan Visconti and Roberto De Prisco, edi-

tors, Security and Cryptography for Networks, pages 95–112, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg.

[36] Johannes Blömer and Jean-Pierre Seifert. On the complexity of computing short

linearly independent vectors and short bases in a lattice. In Proceedings of the

Thirty-First Annual ACM Symposium on Theory of Computing, STOC ’99, page

711{720, New York, NY, USA, 1999. Association for Computing Machinery.

[37] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy

signature schemes for delegation of signing rights. J. Cryptol., 25(1):57{115,

January 2012.

[38] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian

Schaffner, and Mark Zhandry. Random oracles in a quantum world. In Pro-

194

ceedings of the 17th International Conference on The Theory and Application of

Cryptology and Information Security, ASIACRYPT’11, page 41{69, Berlin, Heidel-

berg, 2011. Springer-Verlag.

[39] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over

binary fields and new tools for lattice-based signatures. In Proc. of the 14th Int.

Conf. on Practice and Theory in Public Key Cryptography Conf. on Public Key

Cryptography, PKC’11, pages 1–16, Berlin, Heidelberg, 2011. Springer-Verlag.

[40] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based snargs

and their application to more efficient obfuscation. Cryptology ePrint Archive,

Report 2017/240, 2017. https://ia.cr/2017/240.

[41] R. B. Boppana, J. Hastad, and S. Zachos. Does co-np have short interactive

proofs? Inf. Process. Lett., 25(2):127{132, may 1987.

[42] Samuel Bouaziz-Ermann, Sébastien Canard, Gautier Eberhart, Guillaume

Kaim, Adeline Roux-Langlois, and Jacques Traoré. Lattice-based (partially) blind

signature without restart. Cryptology ePrint Archive, Report 2020/260, 2020.

https://eprint.iacr.org/2020/260.

[43] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. Fhe cir-

cuit privacy almost for free. In Matthew Robshaw and Jonathan Katz, editors,

CRYPTO, pages 62–89, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[44] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien

Stehlé. Classical hardness of learning with errors. In Proceedings of the Forty-

Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, page 575{584,

New York, NY, USA, 2013. Association for Computing Machinery.

[45] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key fhe

with short ciphertexts. In Proceedings, Part I, of the 36th Annual International

Cryptology Conference on Advances in Cryptology — CRYPTO 2016 - Volume

9814, pages 190–213, Berlin, Heidelberg, 2016. Springer-Verlag.

195

https://ia.cr/2017/240
https://eprint.iacr.org/2020/260

[46] Murray R. Bremner. Lattice Basis Reduction: An Introduction to the LLL Algorithm

and Its Applications. CRC Press, Inc., USA, 1st edition, 2011.

[47] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation results

on the ‘‘one-more’’ computational problems. In Tal Malkin, editor, Topics in

Cryptology – CT-RSA 2008, pages 71–87, Berlin, Heidelberg, 2008. Springer

Berlin Heidelberg.

[48] Daniel R. L. Brown. Irreducibility to the one-more evaluation problems: More

may be less. Cryptology ePrint Archive, Report 2007/435, 2007. https://

eprint.iacr.org/2007/435.

[49] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivi-

ous transfer. In Moni Naor, editor, Proc. of the 26th Annual Int. Conf. on Advances

in Cryptology, pages 573–590, Berlin, Heidelberg, 2007. Springer-Verlag.

[50] Jan L. Camenisch, Jean-Marc Piveteau, and Markus A. Stadler. Blind signa-

tures based on the discrete logarithm problem. In Alfredo De Santis, editor,

Advances in Cryptology — EUROCRYPT’94, pages 428–432, Berlin, Heidelberg,

1995. Springer Berlin Heidelberg.

[51] Bo Carlsson. The digital economy: what is new and what is not? Structural

Change and Economic Dynamics, 15(3):245–264, 2004. Contains the special is-

sue New and Old Economy: The Role of ICT in Structural Change and Economic

Dynamics.

[52] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or

how to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology

– EUROCRYPT 2010, pages 523–552, Berlin, Heidelberg, 2010. Springer Berlin

Heidelberg.

[53] David Chaum. Blind signatures for untraceable payments. In David Chaum,

Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages

199–203, Boston, MA, 1983. Springer US.

196

https://eprint.iacr.org/2007/435
https://eprint.iacr.org/2007/435

[54] David Chaum. Blind Signature System, pages 153–153. Springer US, Boston,

MA, 1984.

[55] David Chaum. Blinding for unanticipated signatures. In David Chaum and

Wyn L. Price, editors, Advances in Cryptology — EUROCRYPT’ 87, pages 227–

233, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[56] H. Chen, P. P. Y. Lam, H. C. B. Chan, T. S. Dillon, J. Cao, and R. S. T. Lee.

Business-to-consumer mobile agent-based internet commerce system (magics).

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 37(6):1174–1189, Nov 2007.

[57] Jung Hee Cheon, JinHyuck Jeong, and Ji Sun Shin. Cryptoanalysis on á round-

optimal lattice-based blind signature scheme for cloud services
´
. Fut. Gener.

Comp. Systems, 95:100–103, 2019.

[58] Sherman S. M. Chow, Lucas C. K. Hui, S. M. Yiu, and K. P. Chow. Two im-

proved partially blind signature schemes from bilinear pairings. In Colin Boyd

and Juan Manuel González Nieto, editors, Proc. of the 10th Australasian Conf.

on Information Security and Privacy, pages 316–328, Berlin, Heidelberg, 2005.

Springer-Verlag.

[59] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[60] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial

knowledge and simplified design of witness hiding protocols. In Yvo G. Desmedt,

editor, Proc. of the 14th Annual Int. Cryptology Conf. on Advances in Cryptology,

pages 174–187, Berlin, Heidelberg, 1994. Springer-Verlag.

[61] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short

generators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-

Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, pages

559–585, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

197

[62] Ivan Damgård. Commitment schemes and zero-knowledge protocols. In

Ivan Bjerre Damgård, editor, Lectures on Data Security, Modern Cryptology in

Theory and Practice, Summer School, Aarhus, Denmark, July 1998, pages 63–86.

Springer-Verlag, Berlin, Heidelberg, 1999.

[63] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf.

Theor., 22(6):644{654, sep 2006.

[64] Irit Dinur. Approximating svp to within almost-polynomial factors is np-hard.

Theoretical Computer Science, 285(1):55 – 71, 2002. Algorithms and Complexity.

[65] Nico Döttling, Nils Fleischhacker, Johannes Krupp, and Dominique Schröder.

Two-message, oblivious evaluation of cryptographic functionalities. In Matthew

Robshaw and Jonathan Katz, editors, CRYPTO, pages 619–648, Berlin, Heidel-

berg, 2016. Springer Berlin Heidelberg.

[66] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice

signatures and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors,

Advances in Cryptology – CRYPTO 2013, pages 40–56, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg.

[67] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor

Seiler, and Damien Stehle. Crystals – dilithium: Digital signatures from module

lattices. Cryptology ePrint Archive, Report 2017/633, 2017. https://ia.cr/

2017/633.

[68] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor

Seiler, and Damien Stehle. Crystals – dilithium: Digital signatures from module

lattices. Cryptology ePrint Archive, Report 2017/633, 2017. Available from:

https://eprint.iacr.org/2017/633/20170627:201152.

[69] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based digital

signature scheme. IACR TCHES, 2018(1):238–268, 2018.

198

https://ia.cr/2017/633
https://ia.cr/2017/633
https://eprint.iacr.org/2017/633/20170627:201152

[70] Nico Döttling, Nils Fleischhacker, Johannes Krupp, and Dominique Schröder.

Two-message, oblivious evaluation of cryptographic functionalities. Cryptology

ePrint Archive, Report 2017/958, 2017. https://ia.cr/2017/958.

[71] Edward Eaton and Fang Song. A note on the instantiability of the quantum

random oracle. Cryptology ePrint Archive, Report 2019/1466, 2019. https:

//eprint.iacr.org/2019/1466.

[72] Thomas Espitau, Pierre-Alain Fouque, Benoı̂t Gérard, and Mehdi Tibouchi.

Side-channel attacks on bliss lattice-based signatures: Exploiting branch trac-

ing against strongswan and electromagnetic emanations in microcontrollers. In

Proc. of the 2017 ACM SIGSAC Conf. on Computer and Communications Security,

CCS ’17, pages 1857–1874, New York, NY, USA, 2017. ACM.

[73] Chun-I Fan and Chin-Laung Lei. User efficient blind signatures. Electronics

Letters, 34:544 – 546, 04 1998.

[74] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In Proc. on Advances in cryptology — CRYPTO

’86, pages 186–194, London, UK, UK, 1987. Springer-Verlag.

[75] Marc Fischlin. Round-optimal composable blind signatures in the common

reference string model. In Cynthia Dwork, editor, CRYPTO 2006, pages 60–77,

Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[76] Marc Fischlin and Nils Fleischhacker. Limitations of the meta-reduction tech-

nique: The case of schnorr signatures. In Thomas Johansson and Phong Q.

Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, pages 444–460,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[77] Marc Fischlin and Dominique Schröder. Security of blind signatures under

aborts. In Stanisław Jarecki and Gene Tsudik, editors, Proc. of the 12th Int.

Conf. on Practice and Theory in Public Key Cryptography: PKC ’09, pages 297–

316, Berlin, Heidelberg, 2009. Springer-Verlag.

199

https://ia.cr/2017/958
https://eprint.iacr.org/2019/1466
https://eprint.iacr.org/2019/1466

[78] Marc Fischlin and Dominique Schröder. On the impossibility of three-move

blind signature schemes. In Proc. of the 29th Annual Int. Conf. on Theory and Ap-

plications of Cryptographic Techniques, EUROCRYPT’10, pages 197–215, Berlin,

Heidelberg, 2010. Springer-Verlag.

[79] John Fraleigh. A First Course in Abstract Algebra. Pearson, USA, seventh edition,

2002.

[80] Georg Fuchsbauer and Damien Vergnaud. Fair blind signatures without random

oracles. In Daniel J. Bernstein and Tanja Lange, editors, Proc. of the 3rd Int.

Conf. on Cryptology in Africa, pages 16–33, Berlin, Heidelberg, 2010. Springer-

Verlag.

[81] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Eurocrypt,

EUROCRYPT’08, page 31{51, Berlin, Heidelberg, 2008. Springer-Verlag.

[82] Wen Gao, Yupu Hu, Baocang Wang, Jia Xie, and Momeng Liu. Identity-based

blind signature from lattices. Wuhan University Journal of Natural Sciences,

22:355–360, 08 2017.

[83] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman Co., USA, 1990.

[84] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique

Unruh. Round optimal blind signatures. In Phillip Rogaway, editor, Advances in

Cryptology – CRYPTO 2011, pages 630–648, Berlin, Heidelberg, 2011. Springer

Berlin Heidelberg.

[85] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type cryp-

tosystem from lwe. In Proceedings of the 29th Annual International Conference

on Theory and Applications of Cryptographic Techniques, EUROCRYPT’10, page

506{522, Berlin, Heidelberg, 2010. Springer-Verlag.

[86] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard

lattices and new cryptographic constructions. In Proc. of the 40th Annual ACM

200

Symposium on Theory of Computing, STOC ’08, pages 197–206, New York, NY,

USA, 2008. ACM.

[87] Essam Ghadafi. Efficient round-optimal blind signatures in the standard model.

In Aggelos Kiayias, editor, Financial Cryptography and Data Security, pages 455–

473, Cham, 2017. Springer International Publishing.

[88] John T. Gill. Computational complexity of probabilistic turing machines. In Pro-

ceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74,

page 91{95, New York, NY, USA, 1974. Association for Computing Machinery.

[89] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University

Press, USA, 2006.

[90] Oded Goldreich. P, NP, and NP-Completeness: The Basics of Computational

Complexity. Cambridge University Press, USA, 1st edition, 2010.

[91] Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of

lattice problems. J. Comput. Syst. Sci., 60(3):540{563, June 2000.

[92] S Goldwasser and M Sipser. Private coins versus public coins in interactive proof

systems. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of

Computing, STOC ’86, page 59{68, New York, NY, USA, 1986. Association for

Computing Machinery.

[93] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,

17(2):281{308, April 1988.

[94] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryp-

tion for circuits from lwe. In Rosario Gennaro and Matthew Robshaw, editors,

Advances in Cryptology – CRYPTO 2015, pages 503–523, Berlin, Heidelberg,

2015. Springer Berlin Heidelberg.

201

[95] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.

Flush, gauss, and reload – a cache attack on the bliss lattice-based signature

scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, IACR-CHES,

pages 323–345, Berlin, Heidelberg, 2016. Springer-Verlag.

[96] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-

based cryptography: A signature scheme for embedded systems. In Crypto-

graphic Hardware and Embedded Systems – CHES 2012, CHES’12, pages 530–

547, Berlin, Heidelberg, 2012. Springer-Verlag.

[97] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind sig-

natures from identification schemes. In Yuval Ishai and Vincent Rĳmen, edi-

tors, Advances in Cryptology – EUROCRYPT 2019, pages 345–375, Cham, 2019.

Springer International Publishing.

[98] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based

blind signatures, revisited. In Daniele Micciancio and Thomas Ristenpart, edi-

tors, CRYPTO, pages 500–529, Cham, 2020. Springer International Publishing.

[99] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector

problem to within almost polynomial factors. In Proceedings of the Thirty-Ninth

Annual ACM Symposium on Theory of Computing, STOC ’07, page 469{477, New

York, NY, USA, 2007. Association for Computing Machinery.

[100] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed con-

tracts: Anonymous on-blockchain and off-blockchain bitcoin transactions.

Cryptology ePrint Archive, Report 2016/056, 2016. https://ia.cr/2016/

056.

[101] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of

Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147,

1995.

202

https://ia.cr/2016/056
https://ia.cr/2016/056

[102] M. A. Jabri and S. Matsuoka. Dealing with grid-computing authorization using

identity-based certificateless proxy signature. In 2011 11th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing, pages 544–553, May

2011.

[103] Y. Jiang, F. Kong, and X. Ju. Lattice-based proxy signature. In 2010 Inter-

national Conference on Computational Intelligence and Security, pages 382–385,

Dec 2010.

[104] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signa-

tures. In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages

150–164, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[105] David Kahn. The Codebreakers: The Comprehensive History of Secret Communi-

cation from Ancient Times to the Internet. Scribner, USA, 1996.

[106] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second

Edition. Chapman Hall/CRC, 3rd edition, 2020.

[107] Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of

blind signature schemes. Cryptology ePrint Archive, Report 2021/806, 2021.

https://ia.cr/2021/806.

[108] Jonathan Katz, Dominique Schröder, and Arkady Yerukhimovich. Impossibility

of blind signatures from one-way permutations. In Yuval Ishai, editor, The-

ory of Cryptography, pages 615–629, Berlin, Heidelberg, 2011. Springer Berlin

Heidelberg.

[109] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded

leakage resilience. In Mitsuru Matsui, editor, Advances in Cryptology {– ASI-

ACRYPT 2009, pages 703–720, Berlin, Heidelberg, 2009. Springer Berlin Hei-

delberg.

[110] Subhash Khot. Hardness of approximating the shortest vector problem in lat-

tices. J. ACM, 52(5):789{808, sep 2005.

203

https://ia.cr/2021/806

[111] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment

of fiat-shamir signatures in the quantum random-oracle model. In Jesper Buus

Nielsen and Vincent Rĳmen, editors, Advances in Cryptology {– EUROCRYPT

2018, pages 552–586, Cham, 2018. Springer International Publishing.

[112] Seungjoo Kim, Sangjoon Park, and Dongho Won. Proxy signatures, revisited.

In Proceedings of the First International Conference on Information and Commu-

nication Security, ICICS ’97, pages 223–232, Berlin, Heidelberg, 1997. Springer-

Verlag.

[113] Ilan Komargodski. Leakage resilient one-way functions: The auxiliary-input

setting. In Proc., Part I, of the 14th Int. Conf. on Theory of Cryptography - Volume

9985, pages 139–158, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[114] Mahender Kumar, C. P. Katti, and P. C. Saxena. A secure anonymous e-voting

system using identity-based blind signature scheme. In Rudrapatna K. Shya-

masundar, Virendra Singh, and Jaideep Vaidya, editors, Information Systems

Security, pages 29–49, Cham, 2017. Springer International Publishing.

[115] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for

module lattices. Des. Codes Cryptography, 75(3):565–599, June 2015.

[116] Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, and Dung Hoang

Duong. A blind signature from module latices. In IEEE Conference on Depend-

able and Secure Computing (DSC), pages 1–8, 2019.

[117] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261(4):515–534, Dec 1982.

[118] Fagen Li, Mingwu Zhang, and Tsuyoshi Takagi. Identity-based partially blind

signature in the standard model for electronic cash. Mathematical and Computer

Modelling, 58(1):196 – 203, 2013. Financial IT & Security and 2010 International

Symposium on Computational Electronics.

204

[119] Chen Liang, Cui Yongquan, Tang Xueming, Hu Dongping, and Wan Xin. Hier-

archical id-based blind signature from lattices. In 2011 Seventh International

Conference on Computational Intelligence and Security, pages 803–807, 2011.

[120] Yehuda Lindell. Bounded-concurrent secure two-party computation without

setup assumptions. In Proc. of the 35th Annual ACM Symposium on Theory of

Computing, STOC ’03, pages 683–692, New York, NY, USA, 2003. ACM.

[121] Vadim Lyubashevsky. Lattice-based identification schemes secure under active

attacks. In Proc. of the Practice and Theory in Public Key Cryptography, 11th Int.

Conf. on Public Key Cryptography, PKC’08, pages 162–179, Berlin, Heidelberg,

2008. Springer-Verlag.

[122] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and

factoring-based signatures. In Mitsuru Matsui, editor, Proc. of the 15th Int. Conf.

on the Theory and Application of Cryptology and Information Security: Advances

in Cryptology, pages 598–616, Berlin, Heidelberg, 2009. Springer-Verlag.

[123] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David

Pointcheval and Thomas Johansson, editors, Proc. of the 31st Annual Int. Conf.

on Theory and Applications of Cryptographic Techniques, pages 738–755, Berlin,

Heidelberg, 2012. Springer-Verlag.

[124] Vadim Lyubashevsky. Digital signatures based on the hardness of ideal lattice

problems in all rings. In Proc., Part II, of the 22nd Int. Conf. on Advances in

Cryptology — ASIACRYPT 2016 - Volume 10032, pages 196–214, New York, NY,

USA, 2016. Springer-Verlag New York, Inc.

[125] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks

are collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,

and Ingo Wegener, editors, Proc. of the 33rd Int. Conf. on Automata, Languages

and Programming - Volume Part II, pages 144–155, Berlin, Heidelberg, 2006.

Springer-Verlag.

205

[126] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and

learning with errors over rings. J. ACM, 60(6), nov 2013.

[127] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in par-

tially splitting cyclotomic rings and applications to lattice-based zero-knowledge

proofs. In Jesper Buus Nielsen and Vincent Rĳmen, editors, EUROCRYPT, pages

204–224, Cham, 2018. Springer International Publishing.

[128] Masahiro Mambo, Keisuke Usuda, and Eĳi Okamoto. Proxy signatures for dele-

gating signing operation. In Proceedings of the 3rd ACM Conference on Computer

and Communications Security, CCS ’96, pages 48–57, New York, NY, USA, 1996.

Association for Computing Machinery.

[129] Ralph C. Merkle. A digital signature based on a conventional encryption func-

tion. In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages

369–378, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[130] D. Micciancio and O. Regev. Worst-case to average-case reductions based on

gaussian measures. In 45th Annual IEEE Symposium on Foundations of Com-

puter Science, pages 372–381, 2004.

[131] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to

within some constant. In Proceedings of the 39th Annual Symposium on Foun-

dations of Computer Science, FOCS ’98, page 92, USA, 1998. IEEE Computer

Society.

[132] Daniele Micciancio. Foundations of security analysis and design vi. chapter

The Geometry of Lattice Cryptography, pages 185–210. Springer-Verlag, Berlin,

Heidelberg, 2011.

[133] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,

faster, smaller. In David Pointcheval and Thomas Johansson, editors, Advances

in Cryptology – EUROCRYPT 2012, pages 700–718, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

206

[134] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions

based on gaussian measures. SIAM Journal on Computing, 37(1):267–302, April

2007.

[135] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J.

Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum

Cryptography, pages 147–191. Springer Berlin Heidelberg, Berlin, Heidelberg,

2009.

[136] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential

time algorithm for most lattice problems based on voronoi cell computations.

In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,

STOC ’10, page 351{358, New York, NY, USA, 2010. Association for Computing

Machinery.

[137] Kaisa Nyberg and Rainer A. Rueppel. A new signature scheme based on the dsa

giving message recovery. In Proceedings of the 1st ACM Conference on Computer

and Communications Security, CCS ’93, page 58{61, New York, NY, USA, 1993.

Association for Computing Machinery.

[138] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signa-

tures derived from identification. In Hugo Krawczyk, editor, Advances in Cryp-

tology — CRYPTO ’98, pages 354–369, Berlin, Heidelberg, 1998. Springer Berlin

Heidelberg.

[139] Tatsuaki Okamoto. Provably secure and practical identification schemes and

corresponding signature schemes. In Ernest F. Brickell, editor, CRYPTO, pages

31–53, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[140] Tatsuaki Okamoto. Efficient blind and partially blind signatures without ran-

dom oracles. In Shai Halevi and Tal Rabin, editors, Proceedings of the 3rd

Conference on Theory of Cryptography, pages 80–99, Berlin, Heidelberg, 2006.

Springer-Verlag.

207

[141] D. G. Papachristoudis, S. T. Halkidis, and G. Stephanides. An experimental

comparison of some lll–type lattice basis reduction algorithms. International

Journal of Applied and Computational Mathematics, 1:327–342, January 2015.

[142] Dimitrios Papachristoudis. A survey on lattice-based blind signatures and their

feasibility. Archives of Economic History, XXXIII, No. 2, 2021.

[143] Dimitrios Papachristoudis, Dimitrios Hristu-Varsakelis, Foteini Baldimtsi, and

George Stephanides. Leakage-resilient lattice-based partially blind signatures.

IET Information Security, 13:670–684(14), Nov 2019.

[144] Dimitrios Papachristoudis, Julian Loss, Foteini Baldimtsi, and George

Stephanides. A framework for blind signatures with revocable sessions, 2021.

(to be submitted to CRYPTO 2022).

[145] Dimitrios Papachristoudis and George Stephanides. Proxy signatures from ideal

lattices - secure in all rings. In Proceedings of the 35th Panhellenic Conference

on Mathematical Education ‘‘Mathematics: Research and Education in the 21st

century’’, pages 853–868, Athens, Greece, 2018. Panhellenic Mathematical So-

ciety.

[146] Christian Paquin and Greg Zaverucha. U-prove cryptographic specification v1.1

(revision 3). Technical report, Microsoft Corporation, December 2013.

[147] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector

problem: Extended abstract. In Proceedings of the Forty-First Annual ACM Sym-

posium on Theory of Computing, STOC ’09, pages 333–342, New York, NY, USA,

2009. Association for Computing Machinery.

[148] Chris Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput.

Sci., 10(4):283–424, March 2016.

[149] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To bliss-b or not to be:

Attacking strongswan’s implementation of post-quantum signatures. In Proc. of

208

the 2017 ACM SIGSAC Conf. on Computer and Communications Security, CCS

’17, pages 1843–1855, New York, NY, USA, 2017. ACM.

[150] Valentin Petrov. Sums of Independent Random Variables. Springer-Verlag Berlin

Heidelberg, 1st edition, 1975.

[151] Albrecht Petzoldt, Alan Szepieniec, and Mohamed Saied Emam Mohamed. A

practical multivariate blind signature scheme. In Aggelos Kiayias, editor, Fi-

nancial Cryptography and Data Security, pages 437–454, Cham, 2017. Springer

International Publishing.

[152] David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg,

editor, EUROCRYPT, pages 391–405, Berlin, Heidelberg, 1998. Springer Berlin

Heidelberg.

[153] David Pointcheval and Jacques Stern. Provably secure blind signature schemes.

In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology —

ASIACRYPT ’96, pages 252–265, Berlin, Heidelberg, 1996. Springer Berlin Hei-

delberg.

[154] David Pointcheval and Jacques Stern. New blind signatures equivalent to fac-

torization (extended abstract). In Proceedings of the 4th ACM Conference on

Computer and Communications Security, CCS ’97, page 92{99, New York, NY,

USA, 1997. Association for Computing Machinery.

[155] David Pointcheval and Jacques Stern. Security arguments for digital signatures

and blind signatures. Journal of Cryptology, 13(3):361–396, Jun 2000.

[156] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-

raphy. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory

of Computing, STOC ’05, page 84{93, New York, NY, USA, 2005. Association for

Computing Machinery.

[157] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Commun. ACM, 21(2):120{126, feb 1978.

209

[158] F. Rodrı́guez-Henrı́quez, Daniel Ortiz-Arroyo, and Claudia Garcı́a-Zamora. Yet

another improvement over the mu{varadharajan e-voting protocol. Computer

Standards Interfaces, 29:471–480, 05 2007.

[159] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe, editor, Ad-

vances in Cryptology — ASIACRYPT 2010, pages 413–430, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.

[160] Markus Rückert. Lattice-based Signature Schemes with Additional Features.

PhD thesis, Technische Universität, Darmstadt, January 2011.

[161] Markus Rückert and Dominique Schröder. Fair partially blind signatures. In

Daniel J. Bernstein and Tanja Lange, editors, Proc. of the 3rd Int. Conf. on

Cryptology in Africa, pages 34–51, Berlin, Heidelberg, 2010. Springer-Verlag.

[162] Markus Rückert and Michael Schneider. Estimating the security of lattice-based

cryptosystems. Cryptology ePrint Archive, Report 2010/137, 2010. eprint.

iacr.org/2010/137.

[163] C. P. Schnorr. Efficient identification and signatures for smart cards. In Gilles

Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 239–

252, New York, NY, 1990. Springer New York.

[164] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive

attacks. In Proceedings of the Third International Conference on Information

and Communications Security, ICICS ’01, pages 1–12, Berlin, Heidelberg, 2001.

Springer-Verlag.

[165] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.

Theor. Comput. Sci., 53(2):201–224, jun 1987.

[166] Berry Schoenmakers. Lecture notes: Cryptographic protocols (ver-

sion: 1.4). Available from: https://www.win.tue.nl/˜berry/

CryptographicProtocols/LectureNotes.pdf, 2 2019.

210

eprint.iacr.org/2010/137
eprint.iacr.org/2010/137
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf
https://www.win.tue.nl/~berry/CryptographicProtocols/LectureNotes.pdf

[167] Dominique Schröder and Dominique Unruh. Security of blind signatures re-

visited. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,

Public Key Cryptography – PKC 2012, pages 662–679, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

[168] Dominique Schröder and Dominique Unruh. Round optimal blind signatures.

Cryptology ePrint Archive, Report 2011/264, 2011. https://ia.cr/2011/

264.

[169] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing (SICOMP),

26(5):1484–1509, October 1997.

[170] Victor Shoup. Sequences of games: a tool for taming complexity in security

proofs. Cryptology ePrint Archive, Report 2004/332, 2004. https://eprint.

iacr.org/2004/332.

[171] Victor Shoup. A Computational Introduction to Number Theory and Algebra.

Cambridge University Press, USA, 2 edition, 2009.

[172] Jimmy Song. Programming Bitcoin: Learn How to Program Bitcoin from Scratch.

O’Reilly Media, Inc., 1st edition, 2019.

[173] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. Fair blind signa-

tures. In Louis C. Guillou and Jean-Jacques Quisquater, editors, Advances

in Cryptology — EUROCRYPT ’95, pages 209–219, Berlin, Heidelberg, 1995.

Springer Berlin Heidelberg.

[174] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient

public key encryption based on ideal lattices. In Mitsuru Matsui, editor, Ad-

vances in Cryptology – ASIACRYPT 2009, pages 617–635, Berlin, Heidelberg,

2009. Springer Berlin Heidelberg.

211

https://ia.cr/2011/264
https://ia.cr/2011/264
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

[175] Z. Tan and H. Xiao. Hierarchical proxy blind signature: A solution to e-cash

in the real world. In 2008 The 9th International Conference for Young Computer

Scientists, pages 1476–1480, Nov 2008.

[176] Zuowen Tan, Zhuojun Liu, and Chunming Tang. Proxy blind signature scheme

based on dlp. Journal of Software, 14, 11 2003.

[177] Haibo Tian, Fangguo Zhang, and Baodian Wei. A lattice-based partially blind

signature. Security and Communication Networks, 9(12):1820–1828, August

2016.

[178] Miaomiao Tian and Liusheng Huang. Breaking A proxy signature scheme from

lattices. I. J. Network Security, 14(6):320–323, 2012.

[179] Peter van Emde Boas. Another np-complete partition problem and the complex-

ity of computing short vectors in lattices. 1980.

[180] J Von von Neumann, A. W. Taub, and A. H. Taub. Various techniques used in

connection with random digits, notes by g e forsythe. National Bureau of Stan-

dards Applied Math Series, pages 36–38, 12 1951. Reprinted in von Neumann’s

Collected Works, 5 (1963), Pergamon Press, pp 768-770.

[181] Sebastiaan Von Solms and David Naccache. On blind signatures and perfect

crimes. Computer Security, 11(6):581–583, October 1992.

[182] P. Weill, S.S. Management, and S.S.M.C. for. Information Technology Infrastruc-

ture for E-Business. Creative Media Partners, LLC, 2018.

[183] C. Yang, P. Qiu, S. Zheng, and L. Wang. An efficient lattice-based proxy signa-

ture scheme without trapdoor. In 2015 International Conference on Intelligent

Information Hiding and Multimedia Signal Processing (IIH-MSP), pages 189–194,

Sep. 2015.

[184] Xun Yi and Kwok-Yan Lam. A new blind ecdsa scheme for bitcoin transaction

anonymity. In Asia-CCS, Asia CCS ’19, pages 613–620, New York, NY, USA,

2019. Association for Computing Machinery.

212

[185] Lili Zhang and Yanqin Ma. A lattice-based identity-based proxy blind signature

scheme in the standard model. Mathematical Problems in Engineering, 2014, 09

2014.

[186] R. Zhang, Y. Zhang, and K. Ren. Distributed privacy-preserving access control

in sensor networks. IEEE Trans. on Par. and Distr. Systems, 23(8):1427–1438,

Aug 2012.

[187] Yanhua Zhang. Forward-secure identity-based shorter blind signature from

lattices. American Journal of Networks and Communications, 5:17, 01 2016.

[188] Hongfei Zhu, Yu-an Tan, Xiaosong Zhang, Liehuang Zhu, Changyou Zhang,

and Jun Zheng. A round-optimal lattice-based blind signature scheme for cloud

services. Future Generation Computer Systems, 73(C):106–114, August 2017.

213

	Introduction
	Hard Computational Problems and Post-Quantum Cryptography
	Lattice-Based Cryptography
	Summary of Results
	Conclusion and Open Research Questions

	Definitions, Preliminaries and Basic Tools
	General Notation
	Algorithms and Asymptotic Notation
	Information Theory
	Probability Distributions
	Conditional Min-Entropy

	Computational Complexity Theory
	Lattice Theory
	Cryptographic Lattices
	Lattices and Discrete Gaussians
	Hardness Assumptions
	The Short Integer Solution Problem
	The Learning With Errors Problem
	Ideal Lattices
	Rejection Sampling
	Lattice Trapdoors

	Cryptographic Primitives and Tools
	Hash Functions and the Random Oracle Model
	The General Forking Lemma
	Merkle Trees
	Commitment Schemes
	Zero-Knowledge Proofs of Knowledge
	Homomorphic Encryption
	Digital Signature Schemes

	An Overview of Lattice-Based Blind Signature Schemes and their Feasibility
	Introduction
	Organization

	Preliminaries
	Signed Permutations
	Blind Signature Schemes

	Overview of Flawed Lattice-Based BSS
	Rückert's Blind Signature Scheme
	BLAZE
	BLAZE+
	Ermann's Blind Signature Scheme
	The Forking Lemma and Other Flawed Constructions

	Overview of Provably Secure Lattice-Based BSS
	Hauck et al.'s Blind Signature Scheme
	Agrawal et al.'s Blind Signature Scheme

	Relations to Impossibility Results
	Comparison With Other Post-Quantum Proposals
	Conclusions, Open Problems and Future Work

	Leakage–Resilient Partially–Blind Signatures from Lattices
	Introduction
	Contributions and Related Work
	Our technique and main challenges
	Relationship between the present work and impossibility results for blind signature schemes
	Organization

	Preliminaries
	Syntax and Security Model of Leakage–Resilient PBSS

	Extensions
	Dishonest-key Partial Blindness
	Selective-failure Partial Blindness
	Honest-user Unforgeability

	A PBSS from Ring-SIS
	Our Construction
	Protocol Description
	Analysis and Security

	Additional Security Properties
	Dishonest-key Partial Blindness
	Selective-failure Partial Blindness
	Honest-user Unforgeability

	Conclusions, Open Problems and Future Work

	A Framework for Blind Signatures with Revocable Sessions
	Introduction
	Technical Overview
	Related work, problems and limitations
	Relation to impossibility results for blind signatures.
	Organization

	Preliminaries
	Linear Hash Function Families with Correctness Error
	Blind Signature Schemes with Revocable Sessions

	Blind Signatures from Linear Hash Functions with Noticeable Correctness Error
	Our Construction
	Protocol Description
	Analysis and Security

	A Concrete Instantiation Based on R-SIS
	Conclusions, Open Problems and Future Work

	Proxy Signatures from Ideal Lattices–Secure in All Rings
	Introduction
	Contributions and Related work.
	Organization

	Preliminaries
	Lattice Problem Variants
	Syntax and Security Model

	A Proxy Signature from Ideal Lattices - Secure in All Rings
	Our Construction
	Analysis and Security

	Conclusions, Open Problems and Future Work

