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Abstract 

 

The amount of digital data is growing faster than ever, so the need for users’ privacy has become 

critical. In today’s world, everything is centralized; be it the Internet traffic, Social Media, Banks, E-

commerce or Medical. Tech giants constantly collect the users’ data and analyze it, to provide 

improved services to customers. However, the way in which these data are collected and processed 

is kept a secret in order to have an edge over competition. Unfortunately, there are more than few 

incidents where huge amounts of sensitive data were leaked, intentionally or due to lack of proper 

security. This excessive concentration of infrastructure, immensely affects Artificial Intelligence (AI) 

research. To properly train today’s gigantic neural models, an individual needs access to corporate 

data centers for computing power and data storage. 

The aforementioned factors highlight the necessity for decentralized systems in which there is no 

central authority to oversee node coordination. Such systems put a priority on data ownership and 

privacy, equal participation, and fault tolerance. Decentralization has the potential to benefit research 

as a whole. The greater the number of people who have access to the raw information and tools, the 

more novel ideas are bound to emerge. The democratization of AI removes entry barriers for 

individuals and organizations to begin experimenting. It lowers the total cost of developing AI 

solutions, as communities of programmers and users begin to utilize and enhance related technologies 

to create more powerful solutions. The openness of such systems, in which everything is made freely 

available to others, also aids in the development of required skills and, as a result, promotes 

innovation. However, democratization can help with another crucial component of AI: Even the most 

complex systems created by highly experienced engineers might be biased, introducing prejudice or 

serious flaws. Because of the higher variety of sources present in decentralized contexts, data 

diversity can mitigate biases that may be lurking in narrow datasets. 

LEARNAE, the proposal presented in this thesis, attempts to address all of the aforementioned 

issues by utilizing novel Distributed Ledger Technology (DLT). By combining multiple DLT 

networks, it synthesizes an ecosystem in which individuals can train Deep Neural Networks 

collaboratively. There are no hardware or interconnection specifications that must be met, and 

everyone can contribute according to their capabilities. The process is completely asynchronous, with 

no locks caused by slow workers, and all nodes have equal rights to the produced models. When data 

privacy is a concern, LEARNAE can be configured to prevent training data from being shared. The 

generated swarm is based on purely peer-to-peer topology, with no need for central authorities. These 
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features, combined with data duplication, result in a network with no single-point-of-failure. The 

coordinating algorithm is platform agnostic, thus any DLT can be used as the underlying 

infrastructure. The final additions include an incentivization subsystem, which enables LEARNAE 

to attract participants who have no interest in the generated model, by offering them a reward 

proportional to their overall contribution. 
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1 Introduction 

 

Artificial intelligence has regained scientific interest, mostly due to the availability of big data. The 

growth of the Internet, social networks, and online sensors have resulted in the everyday production 

of a tremendous quantity of information. This unprecedented data availability propelled Machine 

Learning innovation. 

Deep Neural Networks is one field of study that has benefitted significantly from this phenomenon. 

Numerous use cases now need massive models with millions of parameters, and big data has been 

shown to be critical for their successful training. Many approaches have been suggested by the 

scientific community for creating more accurate models. Typically, these techniques need high-

performance infrastructure, which limits their applicability to big companies and institutions with the 

necessary financial resources. 

Another issue is privacy; anybody who leases computing power from a remote data center must 

trust an organization with their data. Regrettably, sensitive information has been leaked in many 

instances, either for financial gain or due to security issues. However, there is a dearth of study on 

open communities of individuals using commodity hardware, who would like to cooperate in a non-

binding and decentralized manner. 

Our work on LEARNAE attempts to fill this gap, providing a way to train Artificial Neural 

Networks, featuring pure decentralization, data ownership and fault tolerance. 

 

1.1 Synopsis of architecture 

 

LEARNAE [1]–[5] introduces a novel approach to resolving the aforementioned issues via the use of 

novel distributed technologies. It establishes a completely decentralized environment in which 

individual Machine Learning (ML) researchers may cooperate with equal roles and full access to 

findings, all without the need for costly equipment. Meanwhile, they may maintain control of their 

sensitive data by using contemporary permissionless networks. 

When it comes to Artificial Neural Network (ANN) training, there are many approaches that claim 

to be decentralized. However, upon closer examination, one may see that the idea of decentralization 

itself can take on a variety of forms. Scaling from low to high degrees of decentralization, the 
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literature discusses methods that include a parameter server, a cluster of parameter servers, peers with 

elevated roles, and ultimately, pure peer-to-peer topologies. 

Our approach is based on the last scheme; thus, all participating nodes have the same set of rights, 

and none of them is essential for the training process to take place. LEARNAE makes use of 

innovative Distributed Ledger Technology (DLT) to distribute data. The coordinating algorithm is 

platform-agnostic; the present implementation makes use of two novel technologies: (a) IPFS [6], a 

decentralized file system, and (b) IOTA [7], a network architecture focused on the Internet of 

Things (IoT). This approach provides great resilience, since all information is transmitted using 

gossip protocols, which eliminates the possibility of a single point of failure. LEARNAE uses data 

parallelism [8][9], where each worker stores and processes the whole model locally, using its own 

training data. 

Following processing on workers, the generated models must be merged. All parameters of the 

local model are averaged with the corresponding parameters of a chosen remote model during each 

averaging phase [10]. This introduces additional stochasticity into the system, thus increasing its 

overall final accuracy. Nodes may also share training data using the same decentralized method in 

situations where privacy is not a concern. 

The collaborative training procedure is designed to operate with topologies that are loosely 

connected. There is no need for synchronization, and all data remains on the network for peers to 

consume at their own pace. Additionally, there is no indirect leakage, since the broadcasted models 

are progressively influenced by the weights of remote models generated by neighbors, making reverse 

engineering practically impossible. 

 

1.2 Design Decisions 

 

LEARNAE does not require servers or any type of synchronization because it is totally based on 

distributed peer-to-peer technology. Its target use cases are environments with commodity-hardware 

nodes and networking infrastructure that may have significant latency and loose connection. Through 

the use of innovative Distributed Ledger Technology, we are able to collect data from a variety of 

sources, including lightweight Internet of Things (IoT) devices. 

Our proposal employs data parallelism, which means that each worker keeps a local copy of the 

whole model and executes it using only a portion of the training data. LEARNAE uses weight 
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averaging for model merging, which implies that after the training phase, all model parameters are 

averaged with the corresponding parameters of a remote worker's model. 

Generally, to gather, integrate, and re-distribute averaged data, a central server can be employed. 

While using a server speeds up training in many cases, it also provides a single point of failure and a 

bandwidth bottleneck in big networks. This disadvantage can be overcome by increasing the number 

of servers that work together. When the presence of a server is neither practical or desired, some of 

the participants' peers are assigned specialized coordinating roles, while continuing to perform all 

other training activities. At the opposite end of the spectrum are systems in which no node takes on 

additional coordinating functions, resulting in a truly decentralized environment, as is the case in our 

design. 

The training collaboration might be synchronous or asynchronous. In synchronous designs the 

coordinating entity guarantees that only results from the same training period are merged. In 

asynchronous architectures there is no such need, and the results of a worker can be incorporated into 

the global model using more flexible criteria. Synchronous training may converge faster because it 

avoids combining models that are less relative, but it may produce locks from sluggish peers, 

compromising the entire process. While asynchronous training optimizes worker utilization, it suffers 

from gradient staleness, which implies that by the time a sluggish worker submits their findings, the 

global model is already out of sync. Although LEARNAE is designed to be asynchronous, it does 

provide features that, when used in future implementations, may create a configurable level of 

synchronicity. 

Our proposal can work in situations where participants are hesitant to share sensitive training 

information. Training-data related communications are inhibited in such cases, and all sent data 

consists only of models developed by nodes after their training or averaging sessions. In that way the 

network indirectly leverages the useful information contained in all training data, through the models 

these data produced. 

 

1.3 Methodology 

 

1.3.1 Proof of Concept 

 

In [1], we proposed the fundamentals of a novel architecture (LEARNAE) that utilizes different 

types of Distributed Ledger Technology, to create an ecosystem for decentralized ANN training. 
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The concept made the assumption of loosely connected peer-to-peer topologies with unstable 

connections and unexpected downtimes. In that study, we specified four distinct roles from which 

nodes may choose, based on their processing power and data availability. The idea was evaluated 

by simulating a training swarm of 10 peers, using virtualization methods on a single computer. 

 

1.3.2 Real-world deployment 

 

In [2], we evaluated the proposed algorithm in real-world scenarios. LEARNAE was installed on a 

15-computer local network using commodity hardware and networking. The experiments examined 

the averaging process and resulted to tangible gains in model accuracy. 

 

1.3.3 Resilience Study & IoT Embedding 

 

In [3], we extended the deployment to a group of 20 Virtual Private Servers (VPS) and assessed the 

resilience provided by data duplication. This was accomplished by implementing a new subsystem 

that simulated network disruptions and peer downtime. LEARNAE was able to withstand critical 

disconnections with no degradation to the produced model's performance. Additionally, that study 

introduced a novel way for embedding low-energy IoT sensors without compromising the overall 

decentralized philosophy. 

 

1.3.4 Basic Peer Incentivization 

 

In [4], we added another piece to the puzzle: a mechanism for incentivizing peers to join the 

training swarm, even if they have no interest in the neural network generated. This is accomplished 

via the incorporation of a reward subsystem within LEARNAE; as a result, peers who contribute to 

collaboration may earn a proportionate digital payout.  

This first implementation served as a proof of concept, so it was rather simplistic: Every time a 

peer improved his local model by using the remote model of a neighbor, the peer sent a direct 

micropayment to that neighbor. For this scheme to work we made the assumption that all 

participants would acknowledge the help offered to them, and give the appropriate rewards.  
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Of course, this is not always the case, so in the next development phase we significantly 

enhanced the incentivization algorithm, to anticipate peers who attempt to evade sending rewards to 

others. 

 

1.3.5 Advanced Peer Incentivization 

 

Our work in [5] was a major paradigm-shift regarding incentivization. We proposed a way of 

utilizing a novel distributed concept, Decentralized Autonomous Organizations, to consolidate the 

rewarding algorithm. Prior to training session, all participants have to lock a specific amount of 

digital assets, declaring in that way their commitment to the process.  

During the collaborative training, peers exchange metadata regarding the level of contribution 

for all participants. The result is the creation of a shared ledger which contains the quantified 

information about the help each node has offered to the swarm. The consistency of this ledger 

depends on the honesty of the peers, so the whole scheme works well when the majority is 

benevolent.  

After model training, each peer is rewarded according to its reputation in this shared ledger. The 

conducted experiments showed that our algorithm managed to greatly mitigate reward-evading 

attempts by a high percentage of malicious actors. 

 

1.4 Thesis Contributions 

 

Unlike all previous decentralized systems, LEARNAE makes no reference to a common model. 

Rather than that, each participating peer maintains its own model and makes use of the knowledge of 

its neighbors to improve it. The majority of similar methods make an effort to spread execution in 

order to reduce training time. It is critical to emphasize that LEARNAE takes a unique path: It focuses 

not only on improved models, but also on completely democratizing the process, by prioritizing the 

following features: 

• Peer-to-peer. With a true peer-to-peer architecture, all nodes have the same level of access to 

the neural models generated. None of them provides an essential or privileged role. 

• Resilience. The whole procedure is immune to node failures and large-scale network 

disruptions, ensuring that there is no single point of failure. 
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• Persistency. All (meta)data may be optionally retained on the network, as long as the policy 

of the members permits. This is critical in situations when additional nodes may join the 

training at any point throughout the process. 

• Privacy. The coordinating algorithm may be set to run in a privacy-preserving mode, in which 

peers cooperate without sharing sensitive data. 

• Polymorphism. Participants may select from many distinct roles, based on the processing 

power and training data availability. 

• Heterogeneity. Due to the fully asynchronous nature of the scheme, significant hardware 

differences are mitigated, thus there are no locks. 

To the best of our knowledge, no other proposal sets and fulfils these priorities. The research 

conducted within this thesis resulted in the following publications: 

• S. Nikolaidis and I. Refanidis, “Learnae: Distributed and Resilient Deep Neural Network 

Training for Heterogeneous Peer to Peer Topologies,” in Engineering Applications of Neural 

Networks, Cham, 2019, pp. 286–298. doi: 10.1007/978-3-030-20257-6_24. 

• S. Nikolaidis and I. Refanidis, “Privacy preserving distributed training of neural networks,” 

Neural Comput & Applic, vol. 32, no. 23, pp. 17333–17350, Dec. 2020, doi: 10.1007/s00521-

020-04880-0. 

• S. Nikolaidis and I. Refanidis, “Using distributed ledger technology to democratize neural 

network training,” Appl Intell, Mar. 2021, doi: 10.1007/s10489-021-02340-3. 

• S. Nikolaidis and I. Refanidis, “Incentivizing Participation to Distributed Neural Network 

Training,” in Proceedings of the 22nd Engineering Applications of Neural Networks 

Conference, Cham, 2021, pp. 364–374. doi: 10.1007/978-3-030-80568-5_30. 

 

1.5 Thesis Structure 

 

The rest of this Thesis is structured as follows: 

Section 2 presents fundamental aspects relative to our work, such as Artificial Intelligence, 

Machine Learning, Neural Networks, Distributed Computing, Distributed Ledger Technology, 

Gossip Protocols, Distributed Hash Tables, Blockchain, and Internet of Things.  

Section 3 presents our initial research, simulating a LEARNAE network using 10 Docker images 

on a single machine. This study offered insight about various parameters of the proposed 

environment.  
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Section 4 presents the experiments conducted on a real-life deployment. For this purpose, we used 

a typical local area network comprised by 15 commodity personal computers. This deployment was 

enhanced with the implementation of LEARNAE’s proposal regarding IoT, where lightweight 

sensors were emulated by using Single Board Computers. Additionally, we studied and quantified 

the resilience of our architecture during network disruptions.  

Section 5 presents our first incentivization mechanism, which aims to bring aboard peers who have 

no interest in the produced neural model. This is achieved by rewarding the helpful nodes with digital 

assets.  

Section 6 consolidates and upgrades the incentivization algorithm, to mitigate the effect of 

malicious participants, by introducing the concept of Decentralized Autonomous Organizations.  

Section 7 presents our conclusions on our study regarding LEARNAE, and poses future research 

directions. 
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2 Background 

 

2.1 Artificial Intelligence 

 

2.1.1 Steps towards Machine Learning 

 

Conventional programming is a sequence of commands instructing a computer what to do in an 

explicit way. To deal with problems where the solution cannot be strictly formalized, we need 

heuristic methods; algorithms that manage to achieve good-enough results in acceptable timeframes, 

by following non-typical and non-optimal approaches. This area is divided into five main sectors:  

(1) Searching 

(2) Pattern Recognition 

(3) Learning 

(4) Planning 

(5) Induction 

The roughest way to solve a problem is to randomly scan for solutions in a -usually vast- solution 

space. Pattern Recognition, combined with Learning, can use the experience accumulated by Search, 

to construct generalizations that can further reduce searching time. Planning analyzes the problem 

and can replace Search with a significantly smaller, applied on an optimized solution space. During 

Induction, the system attempts to reconstruct the problem’s environment. The created model is then 

used to solve similar problems in a broader area. 

There is a minimum amount of information we need to have about a problem to be able to solve 

it. In cases where the system searches for a solution by consecutive trials, we must have some kind 

of comparator, a function that takes a pair of trial outcomes and returns the best one. Assuming that 

the relationship between trials is transitive, thus 

 

𝐼𝐹 (𝑻𝒓𝒊𝒂𝒍𝟏 𝑖𝑠𝐵𝑒𝑡𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑻𝒓𝒊𝒂𝒍𝟐) & (𝑻𝒓𝒊𝒂𝒍𝟐 𝑖𝑠𝐵𝑒𝑡𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑻𝒓𝒊𝒂𝒍𝟑)  

𝑇𝐻𝐸𝑁 (𝑻𝒓𝒊𝒂𝒍𝟏 𝑖𝑠𝐵𝑒𝑡𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑻𝒓𝒊𝒂𝒍𝟑) 

 

we can define some kind of progress and get the best-found result in a given timeframe.  The process 

can be significantly optimized if we have extra structure on the search space, like an index of similarity 
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between two points. In this way we can send the exploration to more promising directions. Such a 

structure is called a heuristic connection. In most AI systems this structure is the Loss Function, 

which takes the problem’s parameters as arguments and returns a value that indicates the quality of a 

candidate solution.  

 

2.1.1.1 Searching 

 

A popular way of searching unexplored solution spaces is Hill Climbing. Assume that there are 𝑁 

inputs, 𝑥1, 𝑥2, … , 𝑥𝑁, and one output 𝐿(𝑥1, 𝑥2, … , 𝑥𝑁). The goal is to maximize 𝐿 by adjusting the 𝑁 

input values. The problem is that we are not aware of an analytical form for 𝐿 function, thus we cannot 

use conventional differentiation methods. An approach is to randomly select a point and explore the 

area around it, always following the direction with the steepest ascent. The process is based on 

repeatedly estimating the gradient component 𝜕𝐿/𝜕𝑥𝑖 separately for each 𝑥𝑖 coordinate. This is the 

most fundamental form of Hill Climbing, while a large number of more sophisticated variations have 

been proposed. 

An obvious problem of this method is that it can be trapped in a local peak which is not a 

satisfactory optimum. The system could overcome this dead-end by increasing the searching step. It 

is important to outline that there is no generic solution that applies to all problems. An efficient 

exploration pattern should probably include multiple techniques executed iteratively or even 

recursively.  

 

2.1.1.2 Pattern Recognition 

 

An intelligent system must be able to scan the input data and group them into categories, by extracting 

the heuristically significant features. The methods for such classification may vary, from simple 

matching against predefined prototypes, to complex extraction of important properties contained in a 

property-list. Perhaps the most challenging problem of this procedure is how to invent new 

heuristically-useful properties in order to create a recognition scheme.  

There is an unlimited number of techniques, and their combinations, a system can use to solve a 

problem. To be successful it has to choose an optimal-enough subset of them, in order to finish the 

job using realistic resources. After the classification process, the objects grouped together should 

share a common characteristic that is of heuristic value [11]. For example, if the input objects are 
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geometrical shapes, a pattern recognition system could extract a useful property by counting the 

number of corners, as shown in Figure 1. 

 

 

Figure 1: Image transformations for property extraction 

 

 

2.1.1.3 Learning 

 

A good way to solve a new problem is to follow a method called Basic Learning Heuristic. This 

method suggests that we should benefit from past related knowledge, by trying similar solutions that 

succeeded on similar problems. Obviously, a new problem will never be exactly the same as previous 

ones, so we have to create a generalization that can lead to useful inductive inference.  

The learning capabilities of a system can be based on a reinforcement process. Such a system 

generates a variety of behaviors and uses a Trainer who applies a Reinforcement Operator, 𝑍, on 

them. The role of this operator is to judge the quality of these behaviors, amplify the promising ones 

and diminish all others [12].  

Suppose that, under predefined environment conditions, we want the system to make a specific 

choice. During the 𝑛𝑡ℎ trial we can reward this decision by amplifying its probability, 𝑝𝑛; this can be 

achieved if we apply the reinforcement operator 𝑍+: 

 

𝑝𝑛+1 = 𝑍+(𝑝𝑛) = 𝜃 ∙ 𝑝𝑛 + (1 − 𝜃) 0 < 𝜃 < 1 

 

In case the system makes a wrong decision and must be discouraged, we can apply a negative 

reinforcement [13]: 

 

𝑝𝑛+1 = 𝑍−(𝑝𝑛) = 𝜃 ∙ 𝑝𝑛 

 

Transformation 1 
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This reinforcement scheme has a drawback: Its dependence on a rigid Trainer, which can limit the 

system’s ability to solve more complex problems. This issue can be mitigated by a method called 

Secondary Reinforcement, which suggests that the machine can learn to generalize what the Trainer 

does. This can be seen as consecutive self-reinforcement corrections regarding relevant subproblems. 

The heuristic concept behind this is that any signal which in the past was linked to, for example, 

positive reinforcement is likely to indicate that something good has just happened.  

 

2.1.1.4 Planning 

 

Planning refers to the process of analyzing a problem, splitting it into a number of subproblems and 

selecting which of them to investigate, in order to reduce the resources needed for the final solution. 

The Logic Theory Machine [14][15] is considered to be a landmark in heuristic programming, and 

was a first attempt to prove theorems in logic.  

Given that for a complex problem there is a vast number of inference methods that can be applied, 

perhaps the most challenging difficulty is to find an efficient way to decide where and when to use 

each one. This is not an easy task, because in a specific stage a method may not directly solve the 

problem but instead may help creating new subproblems that can assist to finding a solution.  

The most straightforward concept of planning is using a simplified model. The first step is to find 

a similar problem but with less detail and complexity, that can be solved with a set of simpler methods. 

Then we can use this solution as a plan for the original problem. Probably the selected methods will 

need to be expanded in detail to keep up with the new requirements. But this enhancement will add 

to the total search time, not multiply it.  

 

2.1.1.5 Induction 

 

A machine with inductive ability can construct general statements about events beyond its recorded 

experience. Let’s assume a system that groups statements into “true” and “false” ones. The system is 

initialized by a large number of labeled data which can easily recognize afterwards. But how can the 

system generalize the acquired knowledge to label new statements? An efficient method is to generate 

a formal language where the true statements are grammatical and the false ones are not. Using this 

language and obeying its rules we could create more statements, and presumably these will tend to 
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be more like the true ones [16]–[19]. If the predictions fail to be consistent with new inputs, the 

system can periodically make small changes to the existing rules. 

 

2.1.3 Unexplainability and Incomprehensibility 

 

For decades AI systems were in fact a digital representation of the distilled knowledge of field experts. 

Frequently based on decision trees, were the perfect way of modeling human decision making. Thus, 

the function of those systems was naturally understandable by developers and even users. During the 

last years there was a cataclysmic paradigm shift in the leading AI methodology, towards Machine 

Learning systems based on Deep Neural Networks. Such systems manage to achieve exceptional 

performance by utilizing Big Data. Although these systems can produce optimal results with minimal 

human assistance, the sacrifice that has to be made is about explainability, comprehensibility, and 

transparency [20][21]. This lack of understanding is less in narrow AI systems applied on limited 

domains, but skyrockets when the application field broadens.  

We are approaching an era when the size and complexity of Artificial Deep Neural Networks will 

exceed those of the human brain, generating results which rely on billions of contributing factors. 

Even in cases where the AI system can provide a reasoning on the solution it proposes, this 

explanation may be either too long to be surveyed [22][23], or too complex to be understood [24]. 

For example, a neural network could potentially be converted to a huge decision tree of if statements. 

That would not make it understandable, but just human-readable. As a result, developers face a 

dilemma: Either oversimplify their model to grasp understandability and lose in terms of accuracy, 

or allow the incomprehensible complexity and achieve optimal, often superhuman, results. Perhaps 

this aspect of DNN should not be surprising, since they are modeled after the very physical structure 

of the human brain, which is still considered a black box.  

 

2.2 Artificial Neural Networks 

 

2.2.1 General Structure 

 

An Artificial Neural Network (ANN) is a model trying to simulate the structure and functionality of 

the biological brain. Its building block is the Artificial Neuron, an entity that transforms multiple 
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inputs into one output. The inputs of a neuron are weighted, thus each one is multiplied by a different 

numeric value; the weighted inputs and a bias value are added together (Figure 2). 

 

 

Figure 2: Workflow of an artificial neuron 

 

The result serves as the input of an Activation Function, 𝐹, which determines the neuron’s output: 

 

𝑦(𝑘) = 𝐹 (∑(𝑤𝑖(𝑘) ∙ 𝑥𝑖(𝑘)) + 𝑏

𝑚

𝑖=0

) 

 

The activation can be any mathematical function, and is selected according to the use case. The 

most useful functions are Step, Linear and Sigmoid.  

Step function is binary, thus it has only two possible output values. Which one will be the result 

depends on whether the input exceeds a threshold value: 

 

𝑦 = {
𝐴 , 𝑖𝑛𝑝𝑢𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐵 , 𝑖𝑛𝑝𝑢𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 

 

Artificial neurons using this function are called perceptrons and are often used in the last layer for 

solving classification problems. In contrast, Linear activation functions can do simple 

transformations and are common in input layers. Sigmoid1 function can be calculated with low 

processing cost, a feature important when dealing with a large number of weight updates.  

 
1 https://en.wikipedia.org/wiki/Sigmoid_function 
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The true potential is revealed when we connect multiple artificial neurons into layers, where the 

output of each layer serves as the input of the next one, forming a Neural Network (Figure 3). The 

connections between neurons are not random; researchers have come up with several standardized 

topologies, depending on the type of the problem that must be solved.  

 

 

Figure 3: Structure of an Artificial Neural Network 

 

Based on their interconnection topology, Artificial Neural Networks can be divided into two basic 

classes, Feed-forward and Recurrent (Figure 4). Feed-forward networks (FNN) form an acyclic 

graph, where the information flows in one direction from input to output. In Recurrent networks 

(RNN) neurons may supply data to other neurons in previous layers, forming a semi-cyclic graph. 

The ultimate goal of all methods is to set the values of weights and biases in a way that minimizes 

the model’s cost function.  

 

 

(a) Feed-forward 

 

(b) Recurrent 

Figure 4: Examples of neural network topologies 
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2.2.2 Learning Methods 

 

The major paradigms of Machine Learning are (1) Supervised, (2) Unsupervised and (3) 

Reinforcement. The literature contains a large number of algorithms for each one of them. 

 

2.2.2.1 Supervised Learning 

 

This technique requires training data that contain pairs of input and anticipated output. During the 

learning phase, training data enter the system and the model’s parameters are adjusted to agree with 

the desired outcome. Supervised Learning can also be referred as Classification. There is a wide range 

of classifiers that can be used, like Multilayer Perceptron, Support Vector Machines, k-Nearest 

Neighbor, Naive Bayes, Decision Tree, etc. A downside is that choosing the right classifier is not a 

strict deterministic process, but most of the times is a matter of experience and intuition. After training 

there is a validation stage where the neural network is checked against a limited testing dataset 

unknown to the system. 

 

2.2.2.2 Unsupervised Learning 

 

This method adjusts the model’s parameters trying to minimize a given cost function. Unsupervised 

Learning usually targets estimation problems like statistical modelling, compression and clustering. 

The difference compared to other techniques is that the input data are unlabeled. The cost function is 

essentially a numeric representation of the solution’s quality. 

 

2.2.2.3 Reinforcement Learning 

 

During Reinforcement Learning usually no data are given in advance. Input is generated by the 

interaction with the environment and the model is readjusted to maximize some notion of long-term 

reward. Reinforcement Learning may use several algorithms to find the policy that generates the 

maximum reward. A usual weakness of this method is the extremely large number of possible 

policies. Many methods have been proposed to overcome this weakness, including Value Function 

Approaches or Direct Policy Estimation. This type of machine learning generally excels in cases 
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where there is a trade-off between a short-term versus a long-term reward. It can be successfully 

applied to tasks that require sequential decision making, such as telecommunications and games. 

 

2.2.3 Evolutionary Artificial Neural Networks 

 

Artificial Neural Networks adapt to input data by changing their parameters. It is worth noting that 

there is a special class of ANN that support an additional adaptation process, beyond training, called 

Evolution. Evolutionary Artificial Neural Networks (EANN) have the ability to alter various aspects 

of their functioning, using methods such as Learning Rule Adaptation, Input Feature Selection, 

Connection Weight Initialization, Rule Extraction, etc. In that way EANN have better ability to adapt 

to dynamic environments undergoing significant changes, with no need for human intervention.  

Evolutionary Algorithms (EA) is a class of population-based stochastic search algorithms, based 

on concepts found in natural evolution. EA are useful in cases of complex problems with many local 

optima, since they are less likely to be trapped than gradient-based explore methods [25][26]. 

Evolution in ANN can be manifested in three major levels: Connection weights, architecture and 

learning rules. Thus, in practice, EANN have the ability to adapt the connection weights, alter their 

model’s topology and discover novel learning rules. 

 

2.2.4 Stochastic Gradient Descent 

 

Machine Learning is an effort to analyze a data distribution in order to extract useful conclusions that 

will allow predictions on future data. A data distribution is a probability distribution 𝐷 over a data 

domain 𝑍. If 𝑋 is a set of images and 𝑌 a set of words, a prediction task could work over the domain 

𝑍 = 𝑋 × 𝑌 to label each image according to what it contains. For the training process the system 

could use a subset of the data, 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ 𝑍. The function of the machine learning model is to 

generate a prediction for any given data point 𝑧 ∈ 𝑍. The prediction’s quality is measured by 

differentiable non-negative scalar-valued loss function, 𝑙(𝜃, 𝑧), where 𝜃 are the parameters of 𝑧. Let’s 

denote by 𝐿 the average training loss [27] under a data set 𝑆 = (𝑧1, 𝑧2, … , 𝑧𝑛): 

 

𝐿(𝜃, 𝑆) =
1

𝑛
∑ 𝑙(𝜃, 𝑧𝑖)

𝑛

𝑖=1
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The aim of a Machine Learning process is to find parameters 𝜃 that minimize this loss. The 

dominant algorithm for training neural networks is the mini-batch Stochastic Gradient Descent 

(SGD) [28][29][30][31][32]. Given an initial point 𝜃0 ∈ 𝛩, SGD aims to iteratively minimize the 

stochastic gradient. The iterations are 

 

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 ∙ 𝑔(𝜃𝑡−1, 𝐵𝑡) 

 

where 𝐵𝑡 is a random subset of training examples and 𝜂𝑡 the learning rate. For any 𝜃 ∈ 𝛩 and 𝐵 ⊂ 𝑆, 

the estimate of the objective’s gradient is 

 

𝑔(𝜃, 𝐵) =
1

|𝐵|
∑▽ 𝑙(𝜃, 𝑧) + 𝜆 ▽ 𝑅(𝜃)

𝑧∈𝐵

 

 

Some of the most commonly used variants are SGD with momentum [33][30][34], Nesterov 

momentum [35][34] and Adam [36]. Table 1 demonstrates the gradient iterations of the first two. 

 

Table 1: Gradient iterations of popular SGD optimizers 

SGD with momentum Nesterov momentum 

 

𝝊𝒕+𝟏 ← 𝜸 ∙ 𝝊𝒕 + 𝒈(𝜽𝒕, 𝑩𝒕) 

 

𝜽𝒕+𝟏 ← 𝜽𝒕 − 𝜼𝒕 ∙ 𝝊𝒕+𝟏 

 

𝜐𝑡+1 ← 𝛾 ∙ 𝜐𝑡 + 𝑔(𝜃𝑡, 𝐵𝑡) 

 

𝜃𝑡+1 ← 𝜃𝑡 − 𝜂𝑡 ∙ 𝑔(𝜃𝑡, 𝐵𝑡) − 𝜂𝑡 ∙ 𝛾 ∙ 𝜐𝑡+1 

 

According to the above, these optimizers fallback to plain SGD for 𝛾 = 0. Considering a constant 

learning rate 𝜂𝑡 = 𝜂, at a given iteration 𝑡: 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ∙ 𝜐𝑡+1 = 𝜃0 − 𝜂 ∙ ∑ 𝜐𝑢+1 =

𝑡

𝑢=0

 

= 𝜃0 − 𝜂 ∙ ∑ ∑ 𝛾𝑢−𝑠 ∙ 𝑔(𝜃𝑠, 𝐵𝑠)

𝑢

𝑠=0

𝑡

𝑢=0
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For any fixed 𝜏 ∈ {0, … , 𝑡}, the coefficient of the gradient 𝑔(𝜃𝑡, 𝐵𝜏) in the update above is 

 

𝜂 ∙ ∑ 𝛾𝑢−𝜏
𝑡

𝑢=𝜏
 

 

To evaluate the contribution of a specific mini-batch gradient, we define the effective learning 

rate, 𝜂𝑒𝑓𝑓, as the value of this coefficient at the end of the training: 

 

𝜂𝑒𝑓𝑓 = lim
𝑇→∞

∑ 𝜂 ∙ 𝛾𝑢−𝜏

𝑇

𝑢=𝜏

=
𝜂

1 − 𝛾
 

 

2.2.5 Neural Model Averaging 

 

One way to parallelize neural network training, is to partition data and distribute them to different 

nodes. Local models can then be averaged every few mini-batches. The challenge in a such parallel 

process is to exploit the extra computing power and, in the same time, mitigate the communication 

cost. Neural network training is often a non-convex process. Roughly speaking, increasing the mini-

batch size can give a better estimate of the gradient and, in result, can lead to a better convergence 

rate [37]. In a traditional distributed scheme, multiple nodes produce gradients of different 

minibatches; the gradients are then gathered and reduced by a node; finally, the averaged parameters 

are redistributed to all nodes in order to update their local models. It has been shown that increasing 

mini-batch size does not always result to a better model [37]. 

An alternative approach is to average parameters instead of gradients, reducing in this way the 

frequency of data exchange. If parameters are averaged after each weight update, the process is 

equivalent to gradient averaging. But if averaging is done every 𝑛 minibatches, update can be 

described as 

 

𝜃𝑡+𝑛 = 𝜃𝑡 + ∑ 𝛼 ∙ 𝑔𝑡+𝑖 = 𝜃𝑡 + ∑ 𝛼 ∙
𝜕

𝜕𝜃
𝐹(𝑥, 𝜃𝑡+𝑖)

𝑛−1

𝑖=0

𝑛−1

𝑖=1

 

 

𝜃𝑡+𝑛
̅̅ ̅̅ ̅̅ = 𝜃𝑡̅ + ∑ 𝛼 ∙

𝜕

𝜕𝜃
𝐹̅(𝑥, 𝜃𝑡+𝑖)

𝑛−1

𝑖=0
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where 𝜃 is the model parameter and 𝛼 is the learning rate. In case 𝜃 changes every 𝑛 updates, this 

process can be viewed as an approximation to gradient averaging. Additionally, as proved in [38][39], 

model averaging for convex problems is guaranteed to converge, so an unsupervised pre-training 

phase could direct the process towards areas of minima that can offer better generalization.  

 

2.3 Distributed Computing 

 

2.3.1 Concerns 

 

Large-scale cloud computing, despite many years of availability, remains out of reach for the majority 

of researchers. Although there are many successful platforms, like Hadoop2 and Spark3, backed by 

tech giants (Google, Microsoft, Amazon), average users trying to setup an infrastructure still have to 

deal with great difficulties. The reason is that almost all of these platforms were designed having in 

mind on-premise installations at large scale. A novice user has to decide on many, sometimes 

confusing, issues like instance type, cluster size, pricing model, programming model, task 

granularity, etc.  

 

2.3.2 Communication Cost 

 

Most of the modern distributing computing frameworks are inspired by the prevalent concepts Map 

and Reduce. During Map stage, nodes apply a computation on parts of the input data, producing an 

intermediate type of information. Next, they exchange this information with their peers. Finally, in 

the Reduce stage, they calculate the final results by applying a computation on the combined data. 

Studies on many distributed systems, including machine learning algorithms, prove that a large 

portion of the needed time is consumed for exchanging data. Depending on the application, it is 

observed that 33% to 70% of the overall execution time is spent on communication [40][41]. 

Let’s consider a distributed framework consisting of 𝐾 nodes that takes 𝑁 inputs and calculates 𝑄 

arbitrary outputs. During the Map stage, each input is processed locally to generate 𝑄 intermediate 

values. Thus, the network calculates a total of 𝑄 ∙ 𝑁 values, which can be split into 𝑄 groups of 𝑁 

values. Then each subset can be used to calculate the correspondent output. During the data 

 
2 https://hadoop.apache.org 
3 https://spark.apache.org 
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exchanging phase, and for every output, a node must receive 𝑁 intermediate values to proceed with 

Reduce. Of course, aiming to reduce communication cost, the system will not transfer values to a 

node that already have them in its local storage.  

 

2.3.3 Distributed systems 

 

There are many different definitions of Distributed Systems in the literature. The one thing all of them 

have in common is the requirement of multiple processors. Of course, systems with multiple 

processors extend to a vast architectural space, from single machines to networks of independent 

workstations.  

For example, Vector Computers [42] utilize many processors to execute the same operations to 

different sets of data. Dataflow and Reduction Machines [43] execute different operations to different 

data sets. Multiprocessor Systems [44] have several autonomous processors which have access to a 

shared memory. Multicomputers [45] are similar to multiprocessors but, instead of having a shared 

memory, they exchange information by messaging via a network. An approach that has no need for 

sophisticated hardware is a group of independent computers connected to a local or wide-area 

network, running a distributed operating system or application [46].  

Experts disagree on which of the above architectures are to be considered distributed. Some claim 

that the term fits only the cases that have geographically dispersed entities, and that all others fall 

under the term parallel systems. A definition that, in our view, optimally addresses this issue is the 

following: An architecture can be considered distributed if it consists of multiple autonomous 

processing units, which do not share memory but communicate using messages over a network of any 

type and any size. 

In such a system, each processor executes operations on its own set of data, using its own local 

memory and storage. The above definition of a distributed system is not concerned about the type of 

underlying network, as long as it serves its purpose as a medium every time a peer needs to exchange 

data.  

The network speed has a significant impact to the performance and, thus, the use cases of the 

distributed system. Architectures with fast and reliable communication are termed closely coupled, 

while systems with slow and unreliable networking are referred to as loosely coupled (Figure 5). 
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(a) Shared memory 

 

(b) Message passing 

Figure 5: Types of distributed architectures 

 

2.3.4 Types of distributed applications 

 

When designing a new system, we should choose a distributed architecture for a number of important 

reasons. Leveraging execution on multiple workstations could result to one or more of the following 

benefits: (a) Decreased execution time, (b) Increased reliability, (c) Increased availability.  

 

2.3.4.1  Improving performance 

 

A usual reason for choosing a distributed system is the need for higher execution speed. This can be 

achieved by running different parts of an algorithm on different workstations. If the algorithm is 

CPU CPU CPU … 

Shared memory 

… 
Local  

memory 

CPU 

Local  
memory 

CPU 

Local  
memory 

CPU … 

Network bus 



38 
 

properly optimized for parallel execution, this approach can often result to decreased execution time, 

despite the unavoidable communication overhead. The same effect can be achieved by using multiple-

processor systems with shared memory. An important downside about the latter is that such systems 

cannot scale to large numbers, such as thousands of processors or more. 

A design decision that can have major impact on the result is the grain of parallelism that will be 

used. This is the amount of computation between two subsequent communications. Fine-grain 

systems communicate frequently, while large-grain spend more of their time executing computations 

and communicate more rarely. Since communication is the performance bottleneck in most cases, 

fine-grain parallelism is best suited for closely couped systems [47][48]. On the other hand, large-

grain can be used for both closely and loosely coupled distributed systems [49][50][51].  

 

2.3.4.2 Improving fault-tolerance 

 

Distributed systems have a fundamental property called partial failure. Since each processor is 

autonomous and independent, a failure in one of them does not affect the others. Reliability can 

therefore be enhanced by replicating critical functions on several processors. Although replication 

can be also applied to shared memory multiprocessors, such systems cannot survive intense physical 

disasters. So, in implementations that handle extremely critical data, the geographic dispersion of a 

loosely coupled distributed system is the only way to overcome this kind of danger. 

 

2.4 Distributed Ledger Technology 

 

2.4.1 The Elements of a Distributed Ledger 

 

In a DLT network, the term Ledger refers to the set of data held by the majority of nodes. The most 

common key-concepts described in literature are: 

- Transaction: A proposed event which attempts to change the current ledger state. 

- Log: A list of proposed -but still unconfirmed- events, which are to be subject of network 

consensus rules. 

- Record: An event which has already been subject to consensus rules. A record that has not 

yet been propagated to the network is often tagged as candidate. 
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- Journal: The set of records held by a node. Because most of DLT are eventually consistent 

systems, the data on different nodes may not be identical. Sometimes, while network has 

not reached consensus, they may even be contradicting.  

- Ledger: The set of records held by the majority of the nodes, already approved by the 

network consensus. As time passes and new records are appended, it becomes increasingly 

difficult to revert an existing record. 

The participants of a DLT network can have different roles, depending on the level of engagement 

they wish to have: 

- Auditors: Check and validate proposed transactions and records. Also, may perform system 

audits.  

- Validators: Generate candidate sets of records; they are often called miners or farmers. 

- Light nodes: Query auditors regarding the current state of the ledger. 

- End-users: Users who access the network via one of its gateways. 

A DLT system can be divided to 3 different layers: 

- Protocol: A fundamental set of rules which define how the system should operate under 

every condition. This layer also describes the initial state of the ledger, usually called the 

genesis record.  

- Network: Defines the rules under which actors can participate to the network, how they 

communicate, what they can and cannot do. Ensures that critical processes, like proposing 

and validating transactions, are executed by the proper nodes. 

- Data: This layer manages the information stored in the ledger. Sets the rules on how a 

record is structured and in what ways it can be modified. It can also contain rules on how 

code is executed, in DLT that support such a feature. 

Putting it all together, a protocol is a theoretic construct which comes to life when utilized by a 

real network, thus a number of independent-yet-connected nodes. Protocol and network layers 

implement the data layer to enable the management of all information related to the DLT system 

(Figure 6). 

- Dependencies set the boundaries of the DLT system and determine the need it may have 

for external resources in order to function properly.  

- Initialization contains all the processes that are required for the successful launching of the 

DLT system. This includes the creation of the genesis component which describes in detail 

the starting state of the ledger. 
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Figure 6: The three layers of a DLT system 

 

- Governance refers to the predefined procedures which enable the modifications of the 

existing protocol. It specifies who and when can embed changes, aiming to fix potential 

security issues, add new features, or improve performance.  

- Access Control contains the rules that describe the level of access each participant has to 

the ledger. This level can escalate from a simple transaction issuing, up to critical 

governance modifications. 

- Data Broadcast is the process of transmitting information to connected nodes. In a typical 

use case, information is propagated to whole network. But in an attempt to reduce the 

synchronization latency, novel proposals introduce communication between a subset of 

peers. Such concepts may be found in literature under the term channeling (fast transactions 

between two specific parties) or sharding (network divisions sharing a common 

characteristic).  

- Transaction Processing refers to the rules that define the way transactions are managed, 

including broadcasting and validation. Due to the probabilistic nature of most distributed 

consensus protocols, a record that is impossible (occurred after a checkpoint) or practically 

infeasible to revert, is called permanently settled. The rest -newer- transactions are called 

provisionally settled.  

- Data Structure defines in strict terms the form of every bit of information stored or 

transmitted in the DLT network. 
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- Code Execution includes the structure of executable code, in cases where smart contracts 

are supported. 

 

2.4.2 Challenges of Distributed Consensus 

 

2.4.2.1 Fault-tolerant Distributed Consensus 

 

The problem of reaching consensus in a fully distributed network has been studied by the scientific 

community for many decades. In contemporary DLT systems, where there is no shared memory, the 

participants have to agree on the valid global state by exchanging peer-to-peer messages. Each node 

𝑁𝑖 has its own state 𝑆𝑖, which can be updated as a result of the communication with its neighbors. In 

the case of open-access networks there is always the scenario of malicious actors trying to manipulate 

the system to their benefit. In centralized systems, this effect can be easily detected using straight-

forward techniques; but in a decentralized environment the attackers can use the established rules in 

a seemingly legitimate way, trying to influence the consensus algorithm. The attempted manipulation 

could be either pushing the consensus to a state that yields profit to the attackers, or just sabotaging 

with contradicting messages, making it impossible for the network to reach any consensus. Such 

attack vectors are referred to as Byzantine Failures [52]. 

 

2.4.2.2 Byzantine Fault-Tolerant Consensus 

 

A consensus protocol is called Byzantine Fault Tolerant (BFT) when it can withstand a number of 

attacks to the peer reputation system which supports its consensus mechanism. The problem can 

originate from one or more Faulty-or-Malicious (FoM) participants. Any distributed consensus 

protocol must meet the following four requirements [53][54][55] regarding its non-FoM nodes: 

(a) Termination: Every node must come to a specific result as its output; (b) Agreement: Every 

node eventually ends up with the same output 𝑦; (c) Validity: If all nodes have the same input 𝑥, then 

all end up with the same output 𝑦 = 𝑥; (d) Integrity: The final consensus value 𝑦 must have been 

proposed by a number of nodes. 

For a protocol to achieve these requirements, the underlying decentralized network must satisfy 

[56] the condition 𝑁 ≥ 3 ∙ 𝑀 + 1, where 𝑁 is the total number of nodes and 𝑀 is the number of FoM 

ones.  
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2.4.3 Case study: The Nakamoto Consensus Algorithm 

 

The Nakamoto Consensus is the emblematic algorithm behind the first widely adopted permissionless 

blockchain, Bitcoin [57], and served as the basis for many other consensus schemes. Its large-scale 

application allowed researchers to uncover its weaknesses and propose solutions in the form of new 

and improved consensus algorithms. 

Nakamoto proposed the Probabilistic Finality specification, according to which a block can either 

be accepted or rejected. When accepted, there is still a chance it will be eventually rejected, but the 

probability of this scenario diminishes exponentially as new blocks are appended to the chain.  This 

incrementally-achieved consensus is an unavoidable feature of any system containing asynchronous 

processes. Thus, for short periods of time the network may be found in inconsistent states, but in the 

end it will always reach consensus, a characteristic called Eventual Consistency4.  

Nakamoto consensus utilizes the Proof of Work mechanism to mitigate Sybil Attacks5, making 

multiple identities practically impossible. Transactions are broadcasted immediately using gossip 

protocols and in case of conflicts the longest chain always wins. The production of new blocks is 

assigned to miners, participants who wish to dedicate processing power to the network. In return, they 

are rewarded with newly minted native tokens, and also fees paid by users who conduct transactions. 

To ensure that every block is sufficiently propagated before the next block is published, the difficulty 

of the mining cryptographic puzzle is adjusted every 2016 blocks, depending on the global hashing 

power. With this adjustment new blocks are generated approximately every 10 minutes (Algorithm 

1). 

Figure 7 shows how a new block is propagated in a peer-to-peer network that is structured as an 

undirected graph. The circles represent nodes and the numbers indicate the number of hops required 

for the new block to reach a node. Solid arrows are used when a peer informs its neighbors of the new 

block and sends it to them; dotted arrows show cases where the informed neighbor has already 

received the new block from another peer. In this example, the new block is generated by node 𝐴 and 

propagated to nodes 𝐵, 𝐶 and 𝐸 in 1 hop. Node 𝐸 propagates the block to node 𝐻 (2 hops), but node 

𝐹 already received the block from 𝐶 (2 hops), so this message from 𝐸 will be ignored by 𝐹. In 

heterogeneous networks a node may receive a block from a path that may not be the shortest, due to 

the differences in peer processing power and connection speed. 

 
4 https://en.wikipedia.org/wiki/Eventual_consistency 
5 https://en.wikipedia.org/wiki/Sybil_attack 
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Algorithm 1: Overview of the Nakamoto consensus protocol 

 

// Join the network 

Bootstrap to hard-coded nodes; 

start thread: Listen for messages; 

 

// Work cycle 

repeat { 

 

 Select longest chain; 

 call ComposeNewBlock(); 

 

 // Local block generation failed 

 if received block from another peer { 

  Append block to chain; 

  interrupt ComposeNewBlock(); 

 } 

 

 // Local block generation succeeded 

 if ComposeNewBlock() returns block { 

Append block to chain; 

  Broadcast block; 

 } 

} 

 

// Block generation via Proof of Work 

function ComposeNewBlock() { 

 

 Create header: 

  Embed digest of previous block’s header; 

Embed timestamp; 

 

repeat { 

  Create new nonce; 

  Calculate Hash(header|nonce); 

 } until Hash has N leading zeros; 

 // N sets the mining difficulty 

 

Embed proposed transactions; 

 

return block; 

} 
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Figure 7: Data propagation using gossip protocol 

 

The resilience of a classic distributed system is expressed simply as the number of FoM actors it 

can tolerate. For systems based on PoW consensus, tolerance is characterized by the percentage of 

adversarial hashing power the system is able to overcome. It is proved [58] that the critical condition 

a network must meet, is that the time PoW needs to generate a new block, to be longer than the time 

needed for the network to synchronize. When this condition is fulfilled, a majority (more than 50%) 

of benevolent hashing power will always manage to ensure proper convergence, even for an ever-

growing size of blockchain. 

 

2.4.4 The Security-Decentralization-Scalability Trilemma 

 

A decentralized consensus protocol should seek a balance between three critical objectives: 

- Security; refers to the system’s ability to overcome both faulty and malicious peers. 

- Decentralization; refers to the dispersed distribution of network governance power. 

- Scalability; refers to the ability of efficiently dealing with rising event throughput and 

larger network size. 

Most of the times there can be a tradeoff between these three features, the importance of which is 

dictated by each use case. Lower security can lead to higher scalability. For example, decreasing the 

time interval between blocks in a PoW network, can yield higher transaction rate but also leads to 

lower security, since it is easier to orchestrate a 51% attack [59]. Generally, more decentralization 
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means less synchronization. So, higher geographic diversity makes censorship harder for suppressing 

regimes, but also introduces more heterogeneity: The discrepancy in connection speeds creates an 

unfair division, since peers with low latency have the advantage in winning the race of block 

publishing and validating. As a result, in a heterogeneous network well-connected nodes can commit 

consensus attacks with far less than 50% of the total hashing power. All these parameters must be 

evaluated and adjusted, so the distributed system can serve the purpose it was built for. 

 

2.4.5 Identity management 

 

A DLT user is uniquely identified by their Public Key Certificate. In most public systems the user 

first generates a key pair and then derives their identity as a hash of the public key. This hash can be 

used as their transaction address and can hold digital assets. To prove ownership and manage these 

assets, a user has to sign every transaction using the corresponding private key. Due to the absence 

of a centralized certificate authority, secure key management by the participants is essential [60]. 

Losing private keys has irrevocable impact, since the user permanently loses its ability to prove 

ownership. 

 

2.4.6 How DLT can transform Artificial Intelligence 

 

The integration of DLT and AI can be mutually beneficial. Both fields have weaknesses, many of 

which can be addressed by such a consolidation [61][62]. AI algorithms rely heavily on data to train 

models that can infer and make decisions. The quality of their results depends on the quality of the 

input data, which must be consistent and trustworthy. DLT networks have all the prerequisites to 

assure the integrity and credibility of the provided data. Every bit of information is cryptographically 

signed, validated, and agreed on by all participants. So, AI systems can be certain that the data have 

not been tampered with. Distributed ledgers ensure that training will be fed continuously, since the 

decentralized architecture will overcome any connectivity disruptions. The immutability of the 

provided data can help to mitigate unaccountability, by providing a trustful infrastructure which 

retains the training history and makes it easily available to all parties. In cases where the validity of 

results produced by code execution is a priority, hybrid systems can utilize on-chain execution of AI 

algorithms via smart contracts. The other way around, AI can offer important services to DLT 
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systems, by analyzing their real-world performance. So, it can infer and propose ways to optimize 

their data exchanging, their consensus algorithm, etc. 

 

2.5 Gossip Protocols 

 

Generally, routing refers to how nodes are selected to relay data through the network. There are many 

proposals [62][63][64] aiming to classify routing methods, but gossip protocols used by modern 

decentralized systems have some fundamental differences compared to traditional networks.  

 

2.5.1 Random Walk protocols 

 

In Random Walk protocols, data are propagated using random paths. The peers use hop-by-hop 

routing, meaning that the initiator only selects the first relay node, which in turn picks the second and 

so on, until the message reaches its final destination. The selection is usually random. Random Walk 

protocols are often combined with peer-to-peer network topologies. In early systems designed for 

anonymous web browsing, like [66], a user randomly selects a peer and sends their message. The 

peer flips a biased coin to decide whether to send the message to another random peer, or directly to 

its final destination. The reply from the receiver follows the same path in reverse order.  

Other studies [67] propose a dynamic peer-to-peer network, which establishes circuit-based 

connections using layered encryption. An anonymous route is iteratively set by the nodes on the route. 

Each node is aware only of a subset of peers and not the entire network. After an initiator selects the 

first node, it randomly selects a witness for each hop thereafter, and asks the next hop to extend the 

route with the assistance of the witness. Finally, each node proposes a set of candidates for the next 

hop, and the corresponding witness chooses one of them as the next hop.  

There are also proposals [68] for fully decentralized network overlays that operate on IP level. At 

first, the initiator selects a set of nodes to form a route through the overlay network; then, a tunnel is 

established via these nodes. Using a gossip-based protocol based on Name-Dropper [69], node 

information is stored in a ring model and lookups are carried out using the Chord Algorithm [70].  
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2.5.2 DHT-based protocols 

 

Tasks that are easy to complete in a traditional network, may be challenging in a fully distributed one. 

For example, the task of locating a node. One solution is to use Distributed Hash Tables (DHT) to 

overcome the lack of a centralized shared storage. The DHT is usually a database with key-value 

pairs. The keys are generated by hashing a unique piece of information that identifies the indexed 

data. The values may contain routing information, file contents, etc. To achieve efficient searching 

for DHT-based networks, several lookup strategies have been proposed. Kademlia6 locates the nodes 

on their estimated distance using a XOR metric; Chord7 uses a clockwise circle metric, where at each 

hop of the lookup the distance to the node is decreased at least by half; Pastry8 carries out lookups 

based on numerical identifiers. DHT structures can work even in cases where nodes are not aware of 

all other peers. In fact, having a partial view of the network can result to improved scalability, higher 

resilience to attacks, and better load balancing. 

 

2.6 Blockchain Technology 

 

2.6.1 Definition 

 

Blockchain technology introduces a fully decentralized and secure system based on a distributed 

ledger. It has no need for a central authority to bootstrap the trust among participants; in fact, it is 

designed to work among mutually distrustful parties. In contrast to traditional distributed computing 

with a clear client-server model, blockchains allow participants to be both clients (by issuing events) 

and servers (by validating events).  

With the exception of a few privacy-oriented cases, blockchain events are publicly available, 

although the participants are identified by a pseudonym, usually an alphanumeric hash. To efficiently 

achieve consensus, researchers leveraged previous related work, like Byzantine Fault Tolerant9 

consensus and Secure Multi-Party Computation10.  

 
6 https://en.wikipedia.org/wiki/Kademlia 
7 https://en.wikipedia.org/wiki/Chord_(peer-to-peer) 
8 https://en.wikipedia.org/wiki/Pastry_(DHT) 
9 https://en.wikipedia.org/wiki/Byzantine_fault 
10 https://en.wikipedia.org/wiki/Secure_multi-party_computation 
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In use cases where the real-world identity of the participants is a necessity, a permissioned 

blockchain can offer a solution. In order to join the network, everyone has to undergo an 

authentication procedure usually contacted by a centralized authority. Given the stronger 

identification framework, permissioned blockchains can implement multi-level access control. The 

network governance is assigned to a private entity, or a consortium of such [71]. 

 

2.6.2 Cryptography Fundamentals 

 

2.6.2.1 Cryptographic Hash Functions 

 

Hash Functions calculate a concise fixed-size output, called digest, from an input of arbitrary size 

(𝐻𝑎𝑠ℎ(𝑑𝑎𝑡𝑎)  =  𝑑𝑖𝑔𝑒𝑠𝑡). Hash functions have the following properties: 

- Hashing the same input always produces the exact same output. 

- Can provide a proof that data were not changed. Anyone can reapply the hash function and 

verify that it produces the same digest. 

- Even a slight change to the input leads to a completely different result. 

- They are preimage resistant. Given a specific output, it is computationally infeasible to 

find the corresponding input. 

- They are collision resistant. It is computationally infeasible to find two different inputs that 

create the same output and it is unlikely that this will happen unintentionally. 

As computationally infeasible is considered any attempt to explore a vast output space using brute-

force methods. For example, a popular cryptographic hash function is the Secure Hash Algorithm11 

with an output length of 256 bits (SHA-256). The digest of this hashing function is usually displayed 

as a 64-character hexadecimal string (Table 2).  

The output space contains 2256 (approximately 1077) different hashes, making it resistant to 

exhaustive search. Modern distributed networks utilize hash functions to create unique identifiers and 

to ensure data immutability.  

There are cases where a system must generate a hash string which is always different, even for the 

same input data. This can be achieved by the use of a cryptographic nonce, an arbitrary number that 

is used only one time.  

 

 
11 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms 
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The unique digest is produced by hashing a combination of the input data and the nonce value: 

ℎ𝑎𝑠ℎ(𝑑𝑎𝑡𝑎 + 𝑛𝑜𝑛𝑐𝑒) = 𝑑𝑖𝑔𝑒𝑠𝑡 

 

Table 2: Sample input texts and their digests 

Input Data SHA-256 Digest 

 

A 

 

559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd 

 

B 

 

df7e70e5021544f4834bbee64a9e3789febc4be81470df629cad6ddb03320a5c 

 

C 

 

6b23c0d5f35d1b11f9b683f0b0a617355deb11277d91ae091d399c655b87940d 

Cryptographic 

Hash 

Functions 

e4526e7dcd04ce6816287b25da39ba08786ef85b74e5a5e05855773643077a61 

 

 

2.6.2.2 Asymmetric Cryptography 

 

Using symmetric cryptography if two parties need a secure way to communicate, they need to 

exchange the key that will be used for both encryption and decryption. But this requires an alternative 

safe channel, which in many cases cannot be easily established.  

Unlike symmetric method, asymmetric cryptography has no need for an already-secure channel. 

Every actor has a pair of keys, a private and a public one. The private key is known only to owner, 

while the public key can be freely broadcasted. The public key is generated from the private key, 

using well-established one-way mathematical functions. This process can be easily reproduced and 

its results can be verified by anyone. Due to the nature of these functions, one cannot follow the 

opposite direction, thus the private key cannot be derived when having the corresponding public key.  

Asymmetric cryptography allows participants to verify both the authenticity and the integrity of 

messages in trustless communications. A useful feature of this method is that private key can be used 

for encryption and public key for decryption, or vice versa. A sender can encode a message with 

private key and send it to receiver; the receiver can use sender’s public key to verify the transmission. 
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The other way around, a sender can encrypt a message using receiver’s public key; the receiver can 

authenticate the message by decrypting it with its own private key.  

A downside of asymmetric cryptography is that it is slow to execute. In order to enjoy the best of 

both worlds, in many cases systems use a hybrid approach: The slow asymmetric method is utilized 

to encrypt a -relatively small- symmetric key, which in turn is used for the rest of the communication. 

Such an approach speeds up the whole process by greatly reducing the needed encryption overhead. 

In many blockchain networks, private keys are used to digitally sign transactions, while public keys 

are used to derive addresses and verify signatures. 

 

2.6.3 Addresses 

 

Most permissionless decentralized systems advocate data ownership via pseudo-anonymity. 

Participants can freely create as many identifications they want, which are pairs of a private and a 

public key. These keys are not associated in any way with real-world identities, but all transactions 

are permanently recorded and publicly available. This last statement is false only in specific cases of 

privacy networks, where transactions are validated by the distributed consensus, but their details are 

not accessible.  

Blockchain networks often apply hashing functions to public keys in order to generate addresses. 

An address is a public identification and can represent a digital token wallet, an issued transaction, or 

even a smart contract. Most blockchain networks offer services -called explorers- to browse the 

content and the previous activity of their addresses. 

 

2.6.4 Transactions 

 

Many of the contemporary decentralized cryptographic networks, such as blockchains, are 

constructed as immutable databases. Changes can only be implemented as cumulative additions to 

their state. In most of the cases, changes happen through transactions. These are interactions between 

participants and are used to express asset exchanges and -when the network supports it- code 

execution and data manipulation in smart contracts. 

The consensus protocol will not allow a typical transaction to generate or destroy assets. So, in 

every transaction the total amount of input assets must be equal to the total amount of the output 

assets, as seen in Figure 8. In this example 𝐵𝑜𝑏 owns 10 tokens which received at a previous time 
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from 𝐴𝑙𝑖𝑐𝑒. He wants to send 7 tokens to 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, so he issues a new transaction. The algorithm will 

send 7 tokens to 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, but at the same time it will send the remaining 3 tokens back to 𝐵𝑜𝑏 as 

change, in order to maintain the transaction balance. Depending on the implementation, the change 

can be sent either to the same or to a different address belonging to 𝐵𝑜𝑏.  

Thus, what a transaction can alter is the participants owning the engaged assets. Particularly for 

blockchains, submitted transactions are enclosed to blocks. There can even be blocks with zero 

transactions, since empty blocks can also contribute to overall security by creating longer chain. In 

order for a bad actor to impose their malicious version of truth, they will need more resources to 

produce an even longer chain. 

 
 

Figure 8: Example of a Blockchain transaction 

 

To ensure their authenticity, the broadcasted transactions are digitally signed by their issuers and 

contain their public key. The signing process proves access to the corresponding private key and can 

be easily verified by everyone. 

 

2.6.5 Blocks 

 

2.6.5.1 Block Structure 

 

Transactions that are consistent to the ledger status and properly signed, are grouped into blocks and 

propagated to the network. The structure of a block may differ for each implementation, but most 

networks include the fields shown in Figure 9. 
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Networks that are based on a Proof of Work (PoW) consensus algorithm, utilize the nonce value 

to create a unique cryptographic puzzle for each block. Nodes will compete to solve it in order to win 

mining rewards. Since solving the puzzle requires processing power, the network is shielded against 

spamming from bad actors. The amount of protection is proportional to the total hashing power of all 

participating peers. 

 

 

Figure 9: Typical structure and linking of blocks 

 

2.6.5.2 Block propagation and synchronization 

 

Block propagation mechanisms can be divided into the following categories: 

- Advertisement-based. When node 𝐴 receives the information of a block, it sends an 𝑖𝑛𝑣 

message to its neighbors. If node 𝐵 doesn’t have the information of this block, will reply 

to 𝐴 and ask for it. Neighbors who already have the information, ignore the message from 

𝐴. When 𝐴 receives the reply message from 𝐵, sends the requested block. 
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- Sendheaders. This is an improvement to the previous propagation mechanism. Node 𝐵 

sends a 𝑠𝑒𝑛𝑑ℎ𝑒𝑎𝑑𝑒𝑟𝑠 message to 𝐴. When 𝐴 receives the information of a block, will 

immediately send the block header to 𝐵. Since this method has no need for 𝑖𝑛𝑣 messages, 

it can speed up the block propagation. 

- Unsolicited push. When a node generates a new block, it broadcasts it to the network. There 

are no 𝑖𝑛𝑣 and 𝑠𝑒𝑛𝑑ℎ𝑒𝑎𝑑𝑒𝑟𝑠 messages, so the speed of block propagation process is 

further improved. 

- Relay network. This mechanism uses a transaction pool shared by all peers. Each 

transaction is designated a global ID, hence mitigating the broadcasted block size and 

network load. 

- Hybrid. This method utilizes a combination of push and advertisement propagation. If node 

𝐴 is connected to 𝑁 peers, will push the block to √𝑁 of them and will advertise block’s 

hash to the rest 𝑁 − √𝑁. 

The block synchronization mechanism can diversify for different blockchains. Let’s assume node 

𝐴 requests synchronization from block 𝐵. A typical scenario could include the following steps: 

1) Node 𝐴 sends a 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝐻𝑒𝑎𝑑𝑒𝑟𝑠 message to node 𝐵, asking for the latest block.  

2) Node 𝐵 replies to this message by sending the requested block header. 

3) Node 𝐴 requests 𝑀𝑎𝑥𝐻𝑒𝑎𝑑𝑒𝑟𝐹𝑒𝑡𝑐ℎ blocks, in an attempt to find a common ancestor. The 

number of blocks returned by 𝐵 may be equal to or less than the value of 

𝑀𝑎𝑥𝐻𝑒𝑎𝑑𝑒𝑟𝐹𝑒𝑡𝑐ℎ. 

4) If node 𝐴 cannot find a common ancestor, will continue to send 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝐻𝑒𝑎𝑑𝑒𝑟𝑠 

messages, requesting one block header at a time. 

5) When node 𝐴 discovers a common ancestor, requests synchronization starting from that 

block. The blocks needed for the syncing will be grouped into packs that cannot contain 

more of 𝑀𝑎𝑥𝐻𝑒𝑎𝑑𝑒𝑟𝐹𝑒𝑡𝑐ℎ. 

 

2.6.6 Distributed Consensus 

 

The most important function of a distributed system is to establish a consensus. There are many 

models a network can implement to achieve a global agreement regarding its state. There are issues 

that have to be dealt with, like who publishes the next block and how are conflicts resolved. Things 
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get more complicated because of the lack of trust among the peers; the only information a node knows 

about its neighbors is their public address, which is usually just a hash string. 

For any consensus model to work, blockchain networks need a solid starting point, an initial block 

called genesis. Every peer that joins the network must agree upon this block and, using this as a base, 

can verify all following blocks. If a valid second blockchain branch appears, most consensus 

algorithms will approve the longest one because it required the most effort.  

 

2.6.6.1 Consensus Models 

 

2.6.6.1.1 Proof of Work 

 

One of the most widespread consensus algorithms is Proof of Work (PoW). In this model the next 

block is published by the peer that solves first a difficult mathematic problem. Although the problem 

is hard to solve, a proposed solution can be easily verified by everyone. Many distributed networks 

need an approximately constant rate of block production. This can be achieved by periodically 

modifying the difficulty of the PoW puzzle. The difficulty goes up when the total hashing power of 

the network is increased and vice versa. Such an adaption offers resistance to Sybil Attacks from 

actors who possess extensive processing power. A popular PoW puzzle among modern blockchain 

networks is using a hash function to produce digests with specific characteristics. For example, let’s 

assume that the proposed block’s header is the string “ProofOfWork” and nonce is an integer number. 

Participating peers could compete for it, by trying to find a nonce for which: 

 

𝑆𝐻𝐴256(ℎ𝑒𝑎𝑑𝑒𝑟 + 𝑛𝑜𝑛𝑐𝑒) = 𝑑𝑖𝑔𝑒𝑠𝑡 𝑤𝑖𝑡ℎ 𝑁 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜𝑠 

 

By changing 𝑁, the network can modify the PoW difficulty and with it the rate at which blocks 

are published. For 𝑁 = 1, a node can solve the puzzle after 16 hashing attempts, as shown in Table 

3. 

Cryptographic hashing of lengthy data can be an extremely computational intense process. For the 

short string “ProofOfWork” of this example, a commodity computer would need exponentially 

increased amount of time for consequent values of 𝑁, as shown in Table 4.  

On the other hand, when a peer broadcasts its solution, all other participants can instantly verify 

its validity and reach consensus.  
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Table 3: Attempts to solve PoW puzzle 

Header + Nonce SHA256 Digest 

ProofOfWork0 263a40e975437811bca5aab9ff9a82db6fcd725c0092a6a7a63d9cdf5a8a0997 

ProofOfWork1 ea82db3755316339a31b1cd501c121b44721d6f494dea43f112efbd22631b6be 

ProofOfWork2 5eecdd4dd548898572cd1dfdbbd0cfa0c43ec733832e246c3c042549040e79dd 

ProofOfWork3 abd4ec4dd1703f7bc56b79733d473e1cea6a832fe82cd2c42fdf6c77fe8e7486 

ProofOfWork4 c55da0001787f85554abdb72806bc20675aaf784a5d38e1c9a02ddd04b2a2476 

ProofOfWork5 4f42c8dfd8266fbede41c3bfbc11540924b4c59dafcd523732192d1b60f68f3b 

ProofOfWork6 1b32ee3f06829ce71087996d2f1ba47e3c861292aa7912c94d55e8f9d43f902a 

ProofOfWork7 4f792c842a3c68d48627b066fa35cb012154724de8116fbbe33034a88ddde354 

ProofOfWork8 4cfb10445e93145935864fe05f6b6793f1587635f0b866b8cefdf7572eaff8f8 

ProofOfWork9 be37f6aeb9e8d1d30a62a0b6ea9688b9cd8dcf7c0edffd8f5908bd33527b9e98 

ProofOfWork10 3e7110e326067c72f68c2357a73a384829f426fc8facc77873f48f19a5c45e52 

ProofOfWork11 57635a7f1607d36cc24fe71620df274991c4174df31d0f6268365498c91b8c2c 

ProofOfWork12 44d81a5c83e09ca63af5cbaa79694a69ec7b4f0acd2340e8b94dfe7c2dd7348f 

ProofOfWork13 c01d9cc19907f549d5186554878855d4bd70faa347d55fad08d294efd9dca7f3 

ProofOfWork14 4caed8b6251fbae092edf516eddf4b980a47845f001891fc3bea0bd02a002195 

ProofOfWork15 0c3bb4677f061c875a48e3f48b3654bd740b7260a33dc2180bb0dfbf7e8f870b 

 

Table 4: Proof of Work simulation 

Requirement 

(number of leading zeros) 

Elapsed Time 

(seconds) 

Iterations Tested 

(number of hashes) 

1 0.016 16 

2 0.018 101 

3 0.055 3586 

4 1.247 177859 

5 6.690 878395 

6 46.278 6297346 

 

2.6.6.1.1.1 Mining Difficulty Analysis 

 

Let’s assume a network based on a PoW consensus algorithm. A random node 𝑛 will need 𝑡𝑛 time to 

solve the cryptographic puzzle associated to a specific block. As expected, this time depends on the 

instantaneous probability node 𝑛 solves the puzzle, 𝑃𝑛. The value of this probability is related to (a) 
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the hashing power, 𝐻𝑛, the node possesses, and (b) the current difficulty of the PoW puzzle, 𝐷, 

dictated by the network’s total hashing power. Thus, the probability is: 

 

𝑃𝑛 =
𝐻𝑛

𝐷
 

 

The difficulty is periodically adjusted, so that the expected interval between two consequent 

blocks, 𝑇, is near-constant. Using the properties of exponential distributions and having 𝑁 as the set 

of participating nodes: 

 

𝑇 =  
1

∑ 𝑃𝑖𝑖∈𝑁
=

1

∑
𝐻𝑖

𝐷𝑖∈𝑁

=
𝐷

∑ 𝐻𝑖𝑖∈𝑁
 

 

The conclusion is that difficulty 𝐷 is equal to the average block duration for block generation, 

multiplied by the network’s total hashing power: 

 

𝐷 = 𝑇 (∑ 𝐻𝑖

𝑖∈𝑁

) 

 

Thus, as the network grows, PoW protocol increases difficulty and vice versa. Combining the 

above equations: 

𝑃𝑛 =
1

𝑇

𝐻𝑛

∑ 𝐻𝑖𝑖∈𝑁
 

 

The last equation shows that the probability for a node to win a block, increases by its hashing 

power but decreases by the combined power of all other participants. 

 

2.6.6.1.2 Proof of Stake 

 

Proof of Stake (PoS) consensus model is based on the principal that the more resources a user has 

invested (staked) into a system, the more likely they will work for its success. Most blockchain 

networks have native tokens the value of which is related to the amount of utility the system offers, 
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as a store of value, transaction mechanism, decentralized application platform, etc. Peers who invest 

on these tokens are interested in the well-being of the ecosystem, so they can be trusted that they will 

never act maliciously. PoS also includes a cryptographic puzzle, but its difficulty decreases with the 

amount of staked assets. So, the energy required for block production can be significantly mitigated 

for high staking nodes. 

In order to enhance the engagement needed for staking, most systems require the staked assets to 

be locked in a way that they cannot be spent for a period of time. The likelihood of a peer being 

selected to publish a block is tied to the ratio of its stake. For example, if a peer owns 1% of the total 

tokens, it will be selected 1% of the time. This directly proportional method is the simplest form of 

PoS consensus. Many other methods have been designed adding more complexity to the selection 

algorithm, such as voting systems (Delegated PoS - DPoS), staking age factors, etc. 

An important advantage of PoS compared to PoW, is that it does not need intensive calculations 

and, thus, high energy consumption. For this reason, many existing ecosystems are redesigning their 

PoW consensus model in an attempt to be more friendly to the environment. 

 

2.6.6.2 Conflict resolution 

 

In all distributed systems, due to the lack of a central coordinating entity and the unavoidable network 

latency, for short periods of time there are different versions of truth propagating the network. The 

system has to deal with these conflicts as fast as possible in order to maintain its consistency. 

For example, in a blockchain network two peers can broadcast blocks at almost the same time. It 

is possible these conflicting blocks are accepted by different subsets of participants, creating a 

temporary split to the blockchain, as shown in Figure 10. 

Conflicts can occur even if there is no malicious intent. Usually, the reason behind them is the way 

information is propagated to the network via gossip protocols, allowing peers with slightly diverse 

views. In most implementations such a conflict will be solved after the network agrees on the next 

published block. That block will be attached to one of the conflicting blocks, making one of the 

branches longer than the other.  

So, everyone will consider the longer chain as valid, and the other block will be flagged as 

orphaned. Since the conflicting blocks may contain different sets of events, the events of the orphaned 

block are queued to an event pool, in order to be included in a future block. 
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Figure 10: A split to the blockchain caused by conflicting blocks 

 

In this example, if the next block is attached to the one published by 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, 𝐵𝑜𝑏’𝑠 block is 

marked as orphaned. Its events not present in 𝐶ℎ𝑎𝑟𝑙𝑖𝑒’𝑠 block (that is 𝐷𝑒𝑙𝑡𝑎) will be stored into the 

event pool. Although event 𝐷𝑒𝑙𝑡𝑎 was valid at the time of its first submission, it is possible to be 

rejected as invalid in a later time. This could happen if the events of 𝐶ℎ𝑎𝑟𝑙𝑖𝑒’𝑠 block (or a subsequent 

one) change the blockchain state in a way that turns 𝐷𝑒𝑙𝑡𝑎 event invalid. For example, if events 

represent token transactions, 𝐷𝑒𝑙𝑡𝑎 event will not be allowed to spend tokens that were already spent 

by 𝐸𝑝𝑠𝑖𝑙𝑜𝑛, 𝑍𝑒𝑡𝑎 or 𝐸𝑡𝑎 events. 

As a conclusion, the validity of a blockchain event cannot be evaluated in strict terms. The event 

gains an increasing level of assurance over time, as other blocks are appended to its branch. 

Theoretically, an entity with access to enormous amounts of processing power could start building a 

new branch onto the genesis block and render invalid the entire blockchain. It is the size of the chain 

that can make such an attempt practically impossible. Furthermore, some implementations 

periodically generate checkpoints to consolidate the global state; all blocks up to the latest checkpoint 

are by default considered valid and cannot be discarded. 

 

2.6.7 Smart Contracts 

 

The term Smart Contract (SC) was defined [72] as “a computerized transaction protocol that executes 

the terms of a contract. The general objectives of smart contract design are to satisfy common 

… 
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contractual conditions, minimize exceptions both malicious and accidental, and minimize the need 

for trusted intermediaries”. 

Smart Contracts were introduced with 2nd generation blockchains, and allow decentralized code 

execution. There are specialized programming languages, created to allow users to easily develop 

such programs. The execution takes place in a protected virtual machine (VM) implemented in the 

node software.  

There are numerous protection layers to prohibit abuse; for example, every SC is assigned a 

reasonable amount of time for its execution, based on the complexity of its code. The VM will 

terminate a SC that exceeds this limit to avoid infinite loops that could lead, intentionally or 

accidentally, to Denial of Service.  The produced code is deterministic, thus, given the same state, the 

contract consistently produces the exact same result. Beyond the algorithm, a SC may have its own, 

private or public, resident data.  

The code and the public data can be reviewed and executed by everyone. Inputs can be passed via 

parameters using a special type of on-chain transaction. The SC is executed by the participating peers 

and its results are validated by the network’s consensus mechanism.  

Since the execution of a SC requires processing power from several nodes, the user who requested 

its execution has to pay a fee, usually in the form of the blockchain’s native token. The fee may vary 

significantly depending on the complexity of the contract’s code. 

 

2.7 Internet of Things 

 

2.7.1 IoT Fundamentals 

 

There are two major reasons behind the recent paradigm shift from conventional computer-aided 

systems to smart systems: The advances in IoT sector and the explosion of Big Data. The combination 

of these two factors allowed the analysis of enormous amounts of data and the extraction of hidden 

information, that can lead a system to intelligent decisions. 

An IoT system, which is essentially a network of smart devices, consists of the following layers, 

as shown in  

Figure 11: 
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- Perception Layer: A large variety of devices including sensors, controllers and tags. Some 

of them can affect their physical environment through actuators. The devices can 

communicate via wired or wireless connections. 

- Communication Layer: Protocols that control information exchange in various 

environments. Depending on use case, connections may be wired or wireless, directional 

or omnidirectional, long or short ranged, with low or typical energy consumption. 

- Application Layer: Almost any sector that utilizes data flows from geographically diverse 

devices, can benefit from the transition to IoT. The basic idea is to implement a strongly 

bound digital twin ecosystem, that can manage the data generated by events on the sector’s 

physical environment.  

 

 
 

Figure 11: Layers of an IoT system with typical examples 

 

2.7.2 DLT for Internet of Things 

 

The recent advances in microelectronics and low-consumption communication technology pushed 

the evolution of smart systems, that can achieve data-driven decision making [73]. Internet of Things 

paradigm considers a physical environment and creates its digitized version, forming a cyber-physical 

system. In such a system the building blocks exchange information, based on which they can alter the 

system’s behavior. In many use cases these blocks are heterogeneous, resource-constraint, and poorly 
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connected, weaknesses that can be addressed by using DLT technology. In fact, DLT is the ideal 

complement to IoT, since it may bring a combination of critical features like security, privacy, 

reliability, scalability and interoperability. Architectures that extend to both worlds could be referred 

to as DLT of Things (DLToT). 

 

2.7.3 DLT-IoT Interaction Level 

 

When designing systems that leverage the power of both DLT and IoT, an aspect to take into account 

is the level of interaction between them. There are three alternatives, as described below: 

- Exclusive IoT-IoT communication: This is the fastest implementation, since almost all 

traffic is conducted directly between the IoT devices. Only a minor amount of exchanged 

data is saved in DLT storage, for aspects that require decentralized authentication and 

immutability. 

- Exclusive DLT-IoT communication: In this scenario all traffic goes through DLT nodes. 

This approach results to architectures with lower communication speeds due to increased 

overhead. On the other hand, it ensures full recording of every system interaction, 

guaranteed by the tamper-proof consensus mechanism of the DLT. 

- Hybrid communication: Implementations that use both of the above types of 

communication in a balanced way [74][75]. One of the challenges in such cases is how to 

choose the optimal communication type for each operation. Usually, the system’s processes 

are divided into two groups: those that need minimum latency and those that require 

immutability and/or permissionless trust. 

 

2.8 IPFS 

 

2.8.1 Design 

 

Interplanetary File System (IPFS) combines features from Git [76] and BitSwap12, which is an 

algorithm for incentivizing data replication (based on BitTorrent [77]). IPFS implements a 

decentralized filesystem for permissionless peer-to-peer topologies. 

 
12 https://github.com/ipfs/specs/tree/master/bitswap 
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During IPFS setup, a node gets a unique hash string which is its identification when 

communicating with other peers. For every file that is added, the node assigns to it a cryptographic 

hash based solely on the file's contents. If the file is larger than a predefined size, it is divided into 

chunks that get their own hashes and are stored independently. In contrast to most other filesystems, 

IPFS does not use an addressing method based on the storing location of the file, instead all files can 

be fetched just by knowing their unique hash. For this type of addressing to work, every node 

maintains a copy of a Distributed Hash Table (DHT), which is a ledger inspired by [78][79][80]. The 

DHT contains information about where data chunks can be retrieved from. 

IPFS follows a simple but effective incentivization mechanism. Each peer maintains a list of 

chunks stored locally and a list of chunks it needs. It also preserves a balance of verified bytes 

exchanged with every other peer. This balance acts as a credit system which indicates the level of 

participation to the swarm.  

Using gossip-style communication the nodes attempt to obtain the data they need, but at the same 

time they try to improve their reputation with their neighbors; because by doing so they improve the 

chances they will find chunks that they will need in the future. 
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Figure 12: The protocol stack of IPFS 
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IPFS is all about decentralization, so it has no need of any form of central entities. Since there is 

no server-based storage, all space is offered by the participating peers. When a node needs a file, it 

obtains it from another peer and then stores it locally. How long a file remains available on a specific 

node, depends on the embedded garbage collection system. If a peer decides a file is important 

enough, it can pin the file and thus retain it indefinitely on local storage.  

The IPFS stack contains seven different sub-protocols, as presented in Figure 12. 

 

2.8.2 Protocol Stack 

 

2.8.2.1 Identities 

 

Nodes participating to an IPFS swarm are identified by a cryptographic hash. This is called NodeId 

and is generated (Algorithm 2) using the static puzzle of S/Kademlia [78]. The NodeId consists of a 

public/private key pair, which are encrypted and stored locally. The NodeId is created by hashing the 

peer’s public key. When a node detects a neighbor for the first time, checks whether 

 

ℎ𝑎𝑠ℎ(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. 𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦)  =  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. 𝑁𝑜𝑑𝑒𝐼𝑑 

 

If this check fails, the node terminates all communication with that neighbor. A node can use 

different identity each time it joins the network. But such a tactic is not recommended, since it would 

lose accrued benefits gained by its previous participation. IPFS can utilize multiple cryptographic 

hash functions, so in every use case the best-suiting one can be selected. Hash digests are stored in 

multihash format, which includes a header describing the function and the digest length in bytes. 

 

2.8.2.2 Network 

 

IPFS relies on heavy network communication; for that purpose, it can use any transport protocol like 

WebRTC13 or uTP [81]. If necessary, reliability can also be ensured using SCTP [82]. For 

 
13 https://webrtc.org 
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connectivity and authenticity IPFS uses ICE NAT14 traversal techniques and HMAC15 with sender’s 

public key.  

Regarding peer addressing, IPFS does not rely on or assume access to IP, but uses a new way to 

express both an address and its corresponding protocol. This expression is called multi-address 

(multiaddr) and may contain encapsulation details. For example: 

 

SCTP/IPv4 connection 

/ip4/10.20.30.40/sctp/1234/ 

 

SCTP/IPv4 connection proxied over TCP/IPv4 

/ip4/5.6.7.8/tcp/5678/ip4/1.2.3.4/sctp/1234/ 

 

Algorithm 2: IPFS algorithm for identity generation 

 

type Multihash []byte 

type PublicKey []byte 

type NodeId Multihash 

 

type PrivateKey []byte 

type Node struct { 

  NodeId NodeID 

  PubKey PublicKey 

  PriKey PrivateKey 

} 

 

difficulty = <integer parameter> 

n = Node{} 

do { 

  n.PubKey, n.PrivKey = PKI.genKeyPair() 

  n.NodeId = hash(hash(n.PubKey)) 

  p = count_preceding_zero_bits(n.NodeId) 

} while (p < difficulty) 

 

 

 

 
14 https://en.wikipedia.org/wiki/Interactive_Connectivity_Establishment 
15 https://en.wikipedia.org/wiki/HMAC 
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2.8.2.3 Routing 

 

IPFS nodes use a Distributed Hash Table to be able to find the address of other peers and objects. 

The routing protocol is based on S/Kademlia, Coral [82] and Mainline [80], so it makes a distinction 

for the values stored in the DHT. Small objects, less than 1KB, are stored directly on the DHT, while 

for larger objects the DHT stores the NodeIDs of peers that can serve these objects. Algorithm 3 

shows the routing interface. 

 

Algorithm 3: IPFS routing interface 

 

type IPFSRouting interface { 

 

  FindPeer(node NodeId) 

  // gets a particular peer’s network address 

 

  SetValue(key []bytes, value []bytes) 

  // stores a small metadata value in DHT 

 

  GetValue(key []bytes) 

  // retrieves small metadata value from DHT 

 

  ProvideValue(key Multihash) 

  // announces this node can serve a large value 

 

  FindValuePeers(key Multihash, min int) 

  // gets a number of peers serving a large value 

 

} 

 

 

 

2.8.2.4 Exchange 

 

A block exchange strategy that works well in practice is a sigmoid scaled by a debt ratio. Let the debt 

ratio, 𝑟, between a node and another peer be 

 

𝑟 =
𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡

𝑏𝑦𝑡𝑒𝑠_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 +  1
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and the probability of sending a block to a peer be 

 

𝑃(𝑠𝑒𝑛𝑑 | 𝑟) = 1 −
1

1 + 𝑒6−3𝑟
 

 

As shown in Figure 13, a node will provide more data to peers that have been helpful in the past, 

and will be sparing to unknown nodes. This exchange strategy (i) provides resistance to sybil attacks 

by actors who would attempt to create multiple identities, (ii) protects relationships that, although 

proven successful in the past, suffer from temporary issues, and (iii) downgrades unhelpful 

relationships until they start to provide value.  

 

 

Figure 13: Probability of sending a block to a debtor 

 

IPFS nodes maintain a local ledger containing the accrued credit or debt with all the known peers. 

Each time a connection is activated, the communicating nodes send each other the ledger of their 

previous exchanges (Algorithm 4). If discrepancies are found, the ledger is reinitialized from scratch.  

 

Algorithm 4: IPFS exchange ledger & protocol 

 

type Ledger struct { 

  owner NodeId 

  partner NodeId 

  bytes_sent int 

  bytes_received int 

  timestamp Timestamp 

} 
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type BitSwap struct { 

  ledgers map[NodeId]Ledger 

  // Ledgers known to this node, including inactive 

 

  active map[NodeId]Peer 

  // currently open connections to other nodes 

 

  need_list []Multihash 

  // checksums of blocks this node needs 

 

  have_list []Multihash 

  // checksums of blocks this node has 

} 

 

type Peer struct { 

  nodeid NodeId 

  ledger Ledger 

  // Ledger between the node and this peer 

 

  last_seen Timestamp 

  // timestamp of last received message 

 

  want_list []Multihash 

  // checksums of all blocks wanted by peer 

  // includes blocks wanted by peer’s peers 

} 

 

interface Peer { 

  open (nodeid :NodeId, ledger :Ledger); 

  // peers send ledgers until they agree 

 

  send_want_list (want_list :WantList); 

  send_block (block :Block) -> (complete :Bool); 

  // peers exchange want_lists and blocks 

 

  close (final :Bool); 

  // peers deactivate a connection 

} 

 

 

Algorithm 5: IPFS object format 

 

type IPFSLink struct { 

  Name string 
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  // name or alias of this link 

 

  Hash Multihash 

  // cryptographic hash of target 

 

  Size int 

  // total size of target 

} 

 

type IPFSObject struct { 

  links []IPFSLink 

  // array of links 

 

  data []byte 

  // opaque content data 

} 

 

 

2.8.2.5 Objects 

 

On top of DHT and BitSwap, IPFS creates a Merkle Directed Acyclic Graph inspired by Git, where 

the links between objects are cryptographic hashes of the targets embedded in the sources. This layer 

provides properties such as content addressing, tamper resistance and deduplication. Algorithm 5 

shows the general format of an IPFS object. IPFS allows applications to format the data field in 

whatever way they see fit. Due to the embedded IPFSLink list, a user can easily browse all referenced 

objects. For example, the (UNIX-inspired) 𝑙𝑠 command called with a multihash, will result: 

 

 

> ipfs ls /QtLZ5T162Dmj5jng7SubMh5Dgyeayn5FR4vx 

 

QtYk6gq61DYaQ8Nhk7cqyU7rLcnSa7dSHQ4  34556 ObjectMnemonicName1 

QteHB3NmRQ5srJ7Jrd8gMPuu48hp9zeyTtR 457262 ObjectMnemonicName2 

QtF54hhwVHsjVu5Z78FZ7Kk6fozf8Jj9lWE   1794 ObjectMnemonicName3 

 

<object multihash> <object size> <link name> 

 

 

Additionally, IPFS can recursively resolve all referenced objects: 
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> ipfs refs –recursive \ /QtLZ5T162Dmj5jng7SubMh5Dgyeayn5FR4vx 

 

QtYk6gq61DYaQ8Nhk7cqyU7rLcnSa7dSHQ4 

QtjH6JHhjH7jLiop8jYi9uHhkyY0T4GHopi 

QteHB3NmRQ5srJ7Jrd8gMPuu48hp9zeyTtR 

QtkGj7Fa52KlyV7VKEk73JsjVu5Z78FZ7Ke 

QtF54hhwVHsjVu5Z78FZ7Kk6fozf8Jj9lWE 

Qt89Jhecn84K48HWbser73JElu48hp9zeyt 

 

 

Traversing IPFS objects can be achieved by using a simple string path API, similar to conventional 

filesystems or web URLs: 

 

 

# format 

/ipfs/<hash-of-object>/<name-path-to-object> 

 

# example 

/ipfs/QtgXLYk1gq61DYjaQ8Nhkcq4ykU7rLc5nSa/myfile 

 

 

Since there is no global root, referencing an object must start from the hash of an object 

hierarchically above it. If an object resides deep inside a path, it can be retrieved by using any of the 

objects above it as the first reference hash. For example, the object 𝑝𝑎𝑟𝑒𝑛𝑡1/𝑝𝑎𝑟𝑒𝑛𝑡2/𝑝𝑎𝑟𝑒𝑛𝑡3/

𝑚𝑦𝑓𝑖𝑙𝑒, can be retrieved in any of the following ways: 

 

 

/ipfs/<parent1hash>/<parent2>/<parent3>/myfile 

/ipfs/<parent2hash>/<parent3>/myfile 

/ipfs/<parent3hash>/myfile 

/ipfs/<myfilehash> 

 

 

IPFS can perform object-level cryptographic operations. An encrypted or signed object is wrapped 

in a special frame that allows encryption and verification of the raw data (Algorithm 6). 

Cryptographic operations alter the object’s hash, thus creating a new different object. IPFS can utilize 
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user-specified keychains to verify signatures and decrypt data. The decryption key is needed for even 

traversing encrypted objects, since the links between them can be encrypted as well. 

 

Algorithm 6: IPFS encrypted object format 

 

type EncryptedObject struct { 

  Object []bytes 

  // raw object data encrypted 

 

  Tag []bytes 

  // optional tag for encryption groups 

} 

 

type SignedObject struct { 

  Object []bytes 

  // raw object data signed 

 

  Signature []bytes 

  // hmac signature 

 

  PublicKey []multihash 

  // multihash identifying key 

} 

 

 

2.8.2.6 Files 

 

To implement a versioned filesystem on top of the Merkle DAG, IPFS defines the following set of 

objects: (i) blob, a variable-size block of data (ii) list, a collection of blobs or other lists (iii) tree, a 

collection of blobs, lists, or other trees (iv) commit, a snapshot in the version history of a tree. 

Blobs are the most basic way to represent a file. It is an addressable amount and they cannot contain 

links to other objects: 

 

 

{ 

  "user key": "user data" 

  // blobs have no links 

} 
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Lists contain an ordered sequence of blob or list objects. They are used to represent a large file, by 

concatenating the listed objects. More complex data structures, like linked lists and balanced trees, 

can be represented by embedding child lists: 

 

 

{ 

  "data": ["blob", "list", "blob"], 

  // lists have an array of object types as data 

 

  "links": [ 

    { "hash": "Qte1Ykgq61DYa5Q8Nhrkcq6yU7rLcn7Sa7d", 

      "size": 34680 }, 

    { "hash": "QtNm1RQ5sJJrdg4MPuu48pz5eygT6tRo39t", 

      "size": 2341 }, 

    { "hash": "QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z", 

      "size": 12769 } 

    // lists have no names in links 

  ] 

} 

 

 

Trees can contain references to blobs, lists, other trees, or commits. They are used to represent a 

directory, leveraging the path naming mechanism provided by the Merkle DAG: 

 

 

{ 

  "data": ["blob", "list", "blob"], 

  // trees have an array of object types as data 

   

  "links": [ 

    { "hash": "Qte1Ykgq61DYa5Q8Nhrkcq6yU7rLcn7Sa7d", 

      "name": "MneumonicName1", "size": 65628 }, 

    { "hash": "QtNm1RQ5sJJrdg4MPuu48pz5eygT6tRo39t", 

      "name": "MneumonicName2", "size": 7176 }, 

    { "hash": "QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z", 

      "name": "MneumonicName3", "size": 84913 } 

    // trees do have names 

  ] 

} 
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Commits represent a snapshot in the version history of any IPFS object: 

 

 

{ 

  "data": { 

    "type": "tree", 

    "date": "2021-06-05 09:26:08Z", 

    "message": "This is a commit message." 

  }, 

  "links": [ 

    { "hash": "Qte1Ykgq61DYa5Q8Nhrkcq6yU7rLcn7Sa7d", 

      "name": "parent", "size": 54694 }, 

    { "hash": "QtNm1RQ5sJJrdg4MPuu48pz5eygT6tRo39t", 

      "name": "object", "size": 4495 }, 

  ] 

} 

 

 

 

2.8.2.7 Naming 

 

The content-addressed and versioned DAG of objects, which is the immutable backbone of the IPFS 

infrastructure, offers significant advantages. These include effortless caching and integrity checks, 

optimized bandwidth usage, and permanent links.  

But a vast number of applications require a degree of mutability. IPFS can overcome this barrier by 

using self-certified naming, thus a mutable addressing system that allows the same name to always 

point to the latest version of an object. Using the naming scheme from SFS [83][84], IPFS constructs 

a mutable and cryptographically assigned global namespace. 

Every node is assigned a mutable namespace at 

 

/ipns/<NodeId> 

 

where 

 

NodeId = hash(node.PublicKey) 
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Thus, a node can publish objects under its namespace, as: 

 

 

/ipns/QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z/ 

/ipns/QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z/folder1 

/ipns/QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z/folder1/file1 

 

 

2.9 IOTA 

 

2.9.1 The Tangle 

 

The IOTA (meaning extremely small) project has as its goal to develop a completely decentralized 

network connecting all IoT devices. There are projections16 predicting that the number of connected 

IoT devices will surge to 50 billion by 2030. It is obvious this will be accompanied by a huge increase 

of data transmitted by those devices. In many cases the devices are low-energy sensors that record 

data regarding environmental conditions, traffic, personal health, etc. 

 

 

Figure 14: Representation of transactions in the Tangle 

(green: confirmed, red: unconfirmed, gray: tips) 

 

To overcome the scalability issues encountered by blockchains, IOTA is based on a Directed 

Acyclic Graph (DAG), which was named Tangle17. The Tangle's building blocks are transactions. If 

 
16 https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology 
17 http://www.descryptions.com/Iota.pdf 
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a node needs to attach a new transaction, it must confirm two previous ones (Figure 14), so -unlike 

blockchains- increased activity is expected to result in better performance and security for the 

network. Thus, IOTA attempts to achieve consensus via a permissionless procedure, using the Tangle 

as DLT and propagating transactions throughout the network via a gossip protocol. 

Each time a node needs to attach a transaction, chooses two previous unconfirmed transactions 

(called tips) to approve. The selection is made using Markov Chain Monte Carlo18 (MCMC) 

algorithm. Tangle transactions are not synchronized and the nodes are not always aware of all of the 

broadcasted transactions. So, independent branches may appear, as shown in the example of Figure 

15. Transactions 6, 7, 8, 11, 12 consist Branch 𝐴, and transactions 5, 9, 10, 13 consist Branch 𝐵. 

These two branches are temporarily independent, with no interconnection and no common 

transactions. The node which issues transaction 12 by validating 8 and 11, is not aware of the events 

in Branch 𝐵.  

It is possible the two branches to have conflicting transactions. When transaction 14 is attached, it 

validates 10 and 11, and every transaction linked to them is verified. This simultaneous validation of 

the two branches will detect and eliminate any conflicts that might exist. Then the consensus protocol 

decides which branch will be chosen as valid, while the other one will be abandoned. In this example, 

transactions 12 and 13 are not referenced by 14; they will be verified with a subsequent new 

transaction. 

 

 

Figure 15: Conflict resolution in the IOTA Tangle 

 
18 https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo 
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The main rule used to decide between conflicting transactions is to execute the tip selection 

algorithm multiple times [85][86][87]. The MCMC algorithm has to select between the available tips, 

so it must use a metric to evaluate the importance of each branch. This metric is its accumulated 

weight, defined as the sum of the weights of all the transactions it contains. As a result, long branches 

tend to grow even further, while short ones tend to become isolated with low certainty probability. 

The level of adoption a transaction enjoys from the Tangle grows proportionally to the number of 

new tips, and can be calculated by using accumulated weight analysis. As proven in [85], at a specific 

time, 𝑡, the accumulated weight 𝑊(𝑡) is 

 

𝑊(𝑡) ≈ 2 ∙ 𝑒
0.352𝑡

𝑇  

 

where 𝑇 is the average time that a node needs to issue a new transaction, including PoW. 

Figure 16 shows a plot of the behavior of the accumulated weight of a transaction. The graph 

contains two areas: (i) The curved adaptation period, where the weight is exponentially increased. 

During that time the transaction is referenced by an increasing subset of the new ones. (ii) The linear 

certainty period, where the transaction is linked to practically all new ones; thus, the transaction has 

a high probability that it will not be abandoned. 

 

 

Figure 16: The Branch Cumulative Weight over time 
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2.9.2 System Stability 

 

To provide an insight into the system’s stability, we assume the following: 

1) The total number of tips at time 𝑡, 𝐿(𝑡), fluctuates around a constant value and does not 

escape to infinity, since such a steep increase would result to unapproved transactions left 

behind. Let this value be 𝐿0. 

2) Transactions are issued by a large population of independent entities; thus, their number 

can be modeled after a Poisson point process [88]. 

3) The rate of this Poisson process, 𝜆, remains constant in time.  

4) All nodes have approximately the same processing power and in average they need time ℎ 

to complete the computations needed for issuing a transaction. 

5) At any given time, a node is not aware of the current state of the Tangle, but the one exactly 

ℎ time ago. This means that a transaction attached at time 𝑡, becomes visible to the network 

at time 𝑡 + ℎ. The tips attached in the time interval [𝑡 − ℎ, 𝑡) are “hidden”, meaning that 

they are not yet visible to the network.  

If number of “revealed” tips (the ones that were attached before time 𝑡 − ℎ) is 𝑟, then 

 

𝐿0 = 𝑟 + 𝜆 ∙ ℎ 

 

At time 𝑡 there are also around 𝜆 ∙ ℎ transactions that were tips at time 𝑡 –  ℎ, but are not tips anymore. 

When a new transaction is about to be attached to the Tangle, it must select a transaction to approve. 

Since there are around 𝑟 tips known to the node, and 𝜆 ∙ ℎ transactions which are not tips anymore, 

the selected transaction is a tip with probability 

 

𝑟

𝑟 + 𝜆 ∙ ℎ
 

 

So, the mean number of selected tips is 

 

2 ∙ 𝑟

𝑟 + 𝜆 ∙ ℎ
 

 



77 
 

According to our assumption that the number of tips remains roughly the same, the mean number of 

selected tips should be equal to 1: 

 

2 ∙ 𝑟

𝑟 + 𝜆 ∙ ℎ
= 1 → 𝑟 = 𝜆 ∙ ℎ 

 

So: 

 

𝐿0 = 𝑟 + 𝜆 ∙ ℎ = 2 ∙ 𝜆 ∙ ℎ 

 

If we generalize the Tangle’s validation mechanism by assuming that new transactions reference not 

2, but 𝑘 existing tips, the calculation gives the following formula: 

 

𝐿0
(𝑘)

=
𝑘 ∙ 𝜆 ∙ ℎ

𝑘 − 1
 

 

As noted, a new transaction cannot be approved during for a time interval of ℎ after its attachment. 

When this period ends, the Poisson flow of approvals has a rate of 

 

2 ∙ 𝜆

𝐿0
 

 

So, the expected time for a transaction to be approved is approximately: 

 

𝑇𝐴 =
ℎ + 𝐿0

2 ∙ 𝜆
= 2 ∙ ℎ 

 

At any specific time, 𝑡, the set of transactions that were tips during the period 

 

𝑠 ∈ [𝑡, 𝑡 + ℎ(𝐿0, 𝑁)] 

 

constitutes a cutset; any path from a transaction issued at time 𝑡’ >  𝑡 to the genesis, must pass 

through this set.  



78 
 

Although useful to get an insight, the purely random tip selection is not the optimal algorithm for 

real-life applications. This is because it allows “lazy” nodes to always select a fixed pair of old 

transaction. It also permits bad actors to issue a huge number of new tips which all reference a fixed 

set of previous transactions. In that way these actors acquire for their transactions an inflated 

probability to be referenced by future tips. 

The IOTA Tangle’s tip selection algorithm is a work in progress. Improved implementations are 

proposed and tested, in order to achieve the security, scalability, and decentralization required for the 

wide-scale adoption of this novel technology. 

 

2.9.3 Masked Authenticated Messages 

 

The Tangle supports feeless zero-value transactions that serve the purpose of data streams, called 

Masked Authenticated Messages (MAM). We propose a way of embedding these streams into the 

LEARNAE scheme, to be utilized as a completely distributed way of acquiring data from lightweight 

IoT devices. 

MAM streams are based on a structure called singly-linked list. A message stream consists of 

several messages, where each message contains a pointer to the next one. Anyone who knows the 

address of a specific message, they can only access the stream that follows that message, a feature 

known as forward secrecy (Figure 17). 

 

 

Figure 17: The singly-linked list of a MAM stream 

 

Regarding privacy, there are three types of MAM streams. In Public mode there is no restriction, 

and everyone who knows a stream's address can read the messages. In Restricted mode only those 

who know a sidekey can access the stream. In Private mode the stream can be accessed only by its 

creator because it is required to know the secret hash string (called seed) that created the stream. 
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Table 5: Encryption types of MAM streams 

Mode Address Message decryption key 

Public Root Root 

Private Hash ( Root ) Root 

Restricted Hash ( Root + Sidekey ) Root + Sidekey 

 

MAM uses a signature scheme based on Merkle Trees [89] to sign the cipher digest of an encrypted 

message. The root of the Merkle tree is used as the ID of the channel and each message contains the 

root of the following tree. All messages are encrypted with a one-time pad that consists of the channel 

ID and the index of the key used to sign the message. An additional nonce may be used as a revocable 

encryption key. The resulting cipher hash is signed using the private key belonging to one of the 

leaves. The encrypted payload, the signature and the leaf's siblings are then published to the Tangle, 

where anyone knowing the symmetric key can find and decrypt it (Table 5). 

 

2.9.4 Seeds & keys 

 

In the IOTA Tangle network every new use gets a randomly generated seed, which is an alphanumeric 

string consisting of 81 trytes19. For every user an unlimited number of private keys can be created, by 

hashing the concatenation of the seed and the address index, a positive auto-increased integer [90]. 

By hashing a private key, the system can generate the corresponding public key, which is used as the 

user’s address. The keys can be used to prove ownership of addresses. Assets from all the addresses 

that are linked to the same seed, are summed to create the account’s total balance [91]. 

The IOTA protocol aims to be resistant to attacks from quantum computers and their vast 

processing abilities. For that purpose the network uses Winternitz One-Time Signatures (WOTS) 

[91][92] which -beyond their quantum resistance- are faster than elliptic curve cryptography [93]. 

The use of WOTS has a negative side effect; Each time a user sends assets from a specific address, a 

fraction of the corresponding private key can potentially be extracted by analyzing the transaction’s 

signing data. So, repeatedly sending tokens from the same address can compromise the account’s 

 
19 https://en.wikipedia.org/wiki/Ternary_numeral_system 
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security. There are many proposals to overcome these issues [91], some of which are to be 

implemented into the upcoming versions of the Tangle’s protocol.  

 

2.9.5 Coordinator 

 

The security of the Tangle depends on the size of the network. As the number of participants grows, 

so does the resilience to attacks. To allow the network to reach that critical size, the first phase of the 

Tangle’s operation is based on a centralized safeguard, called Coordinator. This is a special node 

which issues one transaction every 2 minutes. These transactions, called milestones, are by default 

instantly considered 100% confident [87]. Coordinator degrades the system’s decentralization in 

order to increase security. Newer implementations of the Tangle with no need for coordinator have 

been proposed, and are already being evaluated in the IOTA’s TestNet.  

 

2.9.6 Snapshots & Permanodes 

 

IOTA allows zero-value transactions with no fees. This fact can generate a large amount of exchanged 

data, skyrocketing the needed storage space. To mitigate this problem, there is a periodic process 

called Snapshotting. When a snapshot occurs, all data regarding the network history is purged, and 

the only that is kept is the current state, thus the amount contained in addresses that have a non-zero 

balance. In the latest implementation, snapshotting is a policy decided and applied locally, thus every 

node determines when and how to truncate its database via a snapshot. It is very likely that many 

applications will require access to the whole Tangle history. For these cases a node could -under 

proper incentivization- retain all transaction data; such nodes are called Permanodes.  

 

2.10 Ethereum 

 

Internet connectivity is steadily expanding to more sectors of human activity. Among many other 

similar projects, Ethereum is an attempt to build a generalized transaction-based state machine. Such 

a project could facilitate interactions between consenting parties who would otherwise have no means 

to trust each other. This goal could be achieved by a system which can autonomously enforce 

agreements that were described using an unambiguous language. A tamper-proof algorithmic 
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decision system can offer attributes that are often difficult to find in the physical world, such as 

clarity, incorruptibility, transparency and objectivity.  

Transactions are the mechanism for system transitions between valid states. Formally: 

 

𝜎𝜏+1 ≡ 𝛱(𝜎𝑡 , 𝐵) 

 

𝐵 ≡ (… , (𝑇0, 𝑇1, … )) 

 

𝛱(𝜎, 𝛣) ≡ 𝛺(𝛣, 𝛶(𝛶(𝜎, 𝛵0), 𝛵1) … ) 

 

Where 𝜎𝜏, 𝜎𝜏+1 are the states before and after block 𝐵, 𝑌 is the state transition function, 𝛱 is the 

block-level state transition function, and 𝛺 is the block-finalization state transition function, which 

also includes the mining rewards.  

The World State is a mapping between 160-bit addresses and account states, serialized as a 

Recursive Length Prefix (RLP). It is maintained in a Modified Merkle Patricia Tree (Figure 18), a 

persistent data structure for mapping between 256-bit binary fragments and arbitrary-length binary 

data. The trie provides a single value that identifies a given set of key-value pairs; traversing the trie 

from root to leaf, reconstructs a single key-value pair.  

 

 

Figure 18: The structure of a Merkle Tree representing N data fragments 
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3 Privacy preserving distributed training of neural 

networks 

 

3.1 Related work 

 

The majority of AI/ANN applications include the use of a parameter server [94][10], which requires  

high-performance infrastructure. Although decentralized efforts, such as [95]–[97], use local 

optimization and asynchronous model merging to reduce communication requirements, the parameter 

server remains a bandwidth barrier, limiting scalability. Other distributed deep learning systems 

[98][99] are capable of circumventing this barrier, but they need low latency networking, which 

results in high setup cost and limited applicability. 

While proposals such as [100] emphasize average-performance hardware, they rely on frameworks 

such as [101], which are optimized for synchronous environments, and therefore are not the best 

option for loosely linked peers. 

The following Table 6 compares the aforementioned characteristics, taking into account alternative 

approaches of asynchronous data parallelization. 

 

Table 6: Comparison of previous approaches 
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LEARNAE ✓ ✓ ✓ ✓ ✓ ✓ 

Downpour SGD  ✓    ✓ 

Sandblaster L-BFGS  ✓    ✓ 

Elastic Averaging SGD       

Hogwild       
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LEARNAE pushes the boundaries of decentralization and tolerance to the limit. Due to the fact 

that it is based entirely on distributed peer-to-peer technology, it does not need servers or any kind of 

synchronization. Its intended use cases are environments with commodity-hardware nodes and 

networking infrastructure that may have high latency and loose connectivity. Our method enables 

flexible data collection from a number of sources, including lightweight Internet of Things devices, 

through novel Distributed Ledger Technology. 

A collaborative training scheme that has some similarities to our approach is Federated Learning 

(FL) [102]–[104]. In systems that are based on FL, model training takes place on the peers without 

explicitly exchanging data samples. The process can be either centralized or decentralized, and local 

models are periodically combined to generate a global model. Our proposal introduces both 

alterations and extensions to FL method. Primarily, during a LEARNAE session there is no global 

model; each peer attempts to improve its own local model by selective parameter averaging, thus the 

knowledge of its neighbors provides intuition for further solution space exploration. Additionally, our 

approach leverages novel DLT networks to propose: (a) a way for dealing with unreliable 

environments via data duplication, (b) a scheme for consolidating data aggregation from IoT devices, 

and (c) an incentivization mechanism to attract additional processing power. Considering the above, 

LEARNAE is a proposal for a complete ready-to-use ecosystem, which lowers the entry-level barrier 

for individuals who wish to experiment with Deep Neural Network training. 

 

3.2 Implementation 

 

3.2.1 Parallelism type 

 

The initial choice was between model and data parallelism [105][8][9]. It's worth noting that there 

are proposals that implement systems with hybrid design. LEARNAE makes use of data parallelism, 

where each worker retains the full model locally and processes it using a portion of the training data. 

 

3.2.2 Propagation 

 

Following worker processing, the generated models must be merged. The two primary techniques 

for doing this are weight and update averaging, each of which has distinct benefits and disadvantages. 

LEARNAE employs weight averaging, which means that after the training phase, the actual values 
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(not just the updates) of all model parameters are averaged -under specific conditions- with the actual 

values of the corresponding parameters of a model generated by a remote worker [106]. 

 

3.2.3 Coordination 

 

Merging the models is also possible with varying degrees of decentralization, as shown in Table 7. 

A parameter server's job is to collect, combine, and re-distribute averaged data. While using a server 

speeds up training in most instances, it also introduces a single point of failure and – in large size 

networks – a bandwidth bottleneck. This disadvantage may be addressed by increasing the number 

of servers that collaborate with one another. When the presence of a server is not possible or desirable, 

some of the participating peers are given specific coordination responsibilities while simultaneously 

doing all other training duties. At the other end of this spectrum are systems in which no node assumes 

extra coordinating responsibilities, resulting in a completely distributed environment, which is the 

design choice taken in our proposal. 

 

Table 7: Different approaches regarding training coordination 

Level of decentralization Coordination entity 

None Parameter server 

Low Cluster of parameter servers 

Medium Some peers have elevated role 

High None 

 

3.2.4 Synchronicity 

 

The training procedure may be synchronous or asynchronous. In synchronous designs the 

coordinating entity guarantees that only results from the same training period are merged. There is 

no such need in asynchronous designs, and the outcomes of a worker may be integrated into the global 

model using more flexible criteria. Each method offers a number of advantages and disadvantages. 

Synchronous training may converge quicker since it avoids the merging of very dissimilar models, 

but it may encounter locks from slow peers, delaying the whole process. While asynchronous training 

maximizes worker utilization, it suffers from gradient staleness, which means that by the time a slow 
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worker sends their results, they are already out of sync with the global model. Numerous mitigation 

methods [107] have been suggested to address these drawbacks, resulting in a large number of 

variations, particularly for Asynchronous Stochastic Gradient Decent. Although LEARNAE is 

designed to be asynchronous, it includes capabilities that, when utilized in future implementations, 

may introduce a configurable degree of synchronicity. 

 

3.2.5 Data privacy 

 

LEARNAE is capable of operating in environments where participants are reluctant to provide 

sensitive training data. In such situations, training-data related communications are disabled, and all 

transmitted data consist only of models generated by nodes after their training or averaging sessions. 

In that way the network indirectly leverages the useful information contained in all training data, by 

averaging the models these data produced. 

 

3.3 System architecture 

 

3.3.1 Overview 

 

LEARNAE is built on a flexible scheme that adapts to a variety of environments. In terms of data, 

it supports use cases in which all training data are put into the network during the initial phase, before 

any training. Additionally, it supports scenarios in which data feeding is a continuous task and neural 

model improvement is an always-evolving procedure (online training).  

In summary, there is no constraint on when training data can be fed to the network, which is 

important when streaming sensor data from IoT devices. 

 

3.3.2 Node Roles 

 

There are four distinct types of node roles that provide operational flexibility (Table 8). The role of a 

node is determined by the availability of training data and its computing capacity. The first three roles 

need sufficient computing power to support participation to IPFS swarm. The fourth role is reserved 

for the IoT sector, since data streaming through MAM messages may be done even by light-weight 

sensor devices. The dataflow between nodes with varying responsibilities is shown in Figure 19. 
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Table 8: Supported node types and their features 

Node role Platform Model training Data feeding 

Full IPFS + IOTA Yes Yes 

Trainer IPFS + IOTA Yes No 

Feeder (fat) IPFS No Yes 

Feeder (thin) IOTA No Yes 

 

As is the case with all publish-subscribe systems, the channel ID (IPFS or IOTA) serves as the 

connecting link between peers. By knowing this ID, a peer may join the network and participate in it 

by listening for and sending messages. Encryption and/or authentication may be implemented at any 

step of the data exchange process if necessary. The Listening thread of a node's process is shown in 

Figure 20. 

 

3.3.3 Message Types 

 

3.3.3.1 Slice hashlist 

 

This message includes the hash of a file that was uploaded to IPFS by a node. The file includes a 

list of hashes for training dataslices that the same peer also made accessible through IPFS. 

 

3.3.3.2 Remote model 

 

This message includes the hash of a file that was uploaded to IPFS by a node. The file includes an 

HD5 model of that peer. Other model information is also provided, such as the model's attained 

accuracy, and maturity, defined as the number of training cycles completed prior to its construction. 

 

3.3.3.3 Slice use stats 

 

This message notifies all peers that a particular dataslice has been utilized for training by a peer. 

This information facilitates the overuse threshold feature, which allows limiting the number of times 

a dataslice may be utilized for training on various nodes. 
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Figure 19: Dataflow between nodes of different roles 

 

 

Table 9: Node tasks 

Task Description 

Adding Add new data to IPFS 

Pinning Make remote IPFS data available locally 

Training Train local model 

Averaging Average local and a remote model 
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As stated in Table 9, a peer may perform up to four tasks. To optimize node usage, LEARNAE 

runs each task on a separate thread. All of them may be executed concurrently, except for the pair 

Training/Averaging, which requires read-write access to the local model. The workflow of a whole 

node is shown in Figure 21. 

 

Figure 20: Workflow of a node’s “Listening thread” 

 

Utilizing Keras framework, a basic Neural Network was used for evaluation, based on a sequential 

model with 16 hidden dense layers ranging from 30 to 100 neurons with ReLU activation function. 

The default SGD optimizer was used along with Binary Cross-entropy loss function. 

 

3.4 Simulation 

 
This initial approach was simulated on a virtual network of ten workstations. The network was built 

on a single commodity computer using Docker containers. The coordinating application was 

developed in C#, including the node remote management and the logging system. As shown in the 

following figures, simulation was used to investigate the impact of many critical variables such as 

data slice size and overuse threshold, as well as other resilience-related factors such as duplication 

level and overhead. The simulation results indicated that increasing the slice size has a beneficial 

effect on the average accuracy of the generated models (Figure 22). Reduced overuse threshold leads 

in slightly improved accuracy, since it decreases repeated training with the same data (Figure 23). 
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Figure 21: Workflow of a node’s “Working thread” 
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As anticipated, the total number of bytes transmitted is proportional to the slice size chosen (Figure 

24). Average resilience (Figure 25) is defined as the number of nodes that possess a requested 

slice/model. The percentage of duplicate data transmitted is shown in Figure 26, which is an inevitable 

overhead associated with gossip-based protocols.  

Although initially very high, this percentage rapidly declines over time and is minimized for larger 

slice sizes. 

 

 

Figure 22: Average Accuracy per Slice Size (Overuse Threshold: 6) 

 

 

Figure 23: Average Accuracy per Overuse Threshold (Slice Size: 6250) 

 

 

Figure 24: Total Bytes Sent per Slice Size (Overuse Threshold: None) 
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Figure 25: Average Resilience per Slice Size (Overuse Threshold: 2) 

 

 

Figure 26: Duplicate Data Sent per Slice Size (Overuse Threshold: None) 

 

3.5 Experiments 

 

3.5.1 Scope 

 

We demonstrate the first implementation of a real LEARNAE network, consisting of a typical LAN 

of 15 commodity PCs. Each machine has comparable hardware and software specs and lacks powerful 

GPUs, since we are comparing “stand-alone versus collaborative” training, and not actual values. The 

overall objective is to investigate the feasibility of utilizing contemporary DLTs as a mechanism for 

data diffusion, with the goal of gaining advantages from this cooperation that would not have been 

feasible with a stand-alone approach. 

Additionally, the privacy benefits of this method will be discussed. The application scenarios are 

far from uncommon: A group of peers want to train a Neural Network cooperatively. They all agree 

to join as long as they are not required to disclose sensitive data. We propose a fault-tolerant approach 

for doing this via the use of distributed protocols to exchange just models, not training data. 
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LEARNAE's coordinating algorithm combines (averages) the transmitted models, resulting in 

improved models for all peers. The underlying assumption is that training data derived from diverse 

individuals exhibit some degree of consistency, which is true for the vast majority of the targeted use 

cases. Scenarios that allow for the exchange of training data will also be extensively investigated in 

the upcoming chapters. 

 

3.5.2 Collaborative training sessions 

 

The dataset used for this analysis (HEPMASS20) includes ten million instances of 28 attributes. The 

framework was evaluated with dataslice sizes of 500, 1000, 2000, 5000, 10000, and 50000 to show 

the effect of dataslice size on execution time, quantity of model data transferred, and obtained 

accuracy. All training sessions were conducted using Python and the Keras framework, with 32 

instances as the default minibatch size. After training with a single slice, each node informs the rest 

of the network that the resultant model is ready for sharing and weight averaging. 

 

3.5.3 Sample graphs 

 

The remainder of this section highlights many important LEARNAE features via the use of sample 

graphs of sessions performed with 500 and 2000 instance dataslices. As anticipated, sessions based 

on 500-instance dataslices take longer to finish, a fact that is shown in all following figures. That is 

because, immediately after consuming a dataslice, a peer notifies others of the availability of a new 

model. Therefore, by increasing the number of dataslices results to a larger number of available 

models on the network, thus increased work in queue for all nodes.  

 

3.5.3.1 Number of peers in training mode 

 

To begin averaging their local model, each peer must complete at least one training session (high 

values at graph start - Figure 27). Peer after peer consumes all local data, and the training process 

concludes. The time needed depends on the processing power of the node and the random rate at 

which it prefers training over averaging during each work cycle. 

 
20 https://archive.ics.uci.edu/ml/datasets/HEPMASS 
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As previously mentioned, 500-instance dataslices take longer to converge due to the additional 

processing cost associated with the increased number of models propagating the network. 

 

 

(a) Dataslices of 500 instances 

 

(b) Dataslices of 2000 instances 

Figure 27: Number of peers in training mode 

 

3.5.3.2 Number of peers in averaging mode 

 

While averaging may begin concurrently with training, it may continue even after all available 

training data on all peers have been consumed. During the averaging phase, a peer inspects remote 

models via their broadcasted metadata and, if they meet specific criteria, fetches their chunks from 
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several remote nodes and checks them locally to see whether they may contribute to the local model's 

improvement via weight averaging. 

The technique a peer employs to determine if a distant model is a candidate for averaging is a point 

of high interest in our study, since an optimum strategy for selecting the most helpful models would 

result in increased overall efficiency. During these experiments, a remote model must pass two 

distinct tests. If its claimed accuracy (as specified in the metadata of its announcement message) is 

greater than the local one, an averaging operation will be attempted. If the averaged model improves 

the accuracy of the peer when using the local dataset, the peer adopts the model. 

As shown in Figure 28, as peers attain a high level of accuracy, the likelihood of a successful 

averaging decreases. This fact leads in fewer new models being broadcasted to the network; as a 

consequence, the peers have less work to do and the whole process converges. 

Because a node cannot conduct both training and averaging, these four graphs are complimentary 

when examined in detail. 

 

3.5.3.3 Data sent 

 

Figure 29 shows the total amount of data sent by all nodes. All information exchange is carried out 

by IPFS, the distributed nature of which has a big impact on data availability and load balancing. 

When a model is becoming available to the network, it is split into multiple chunks. So, when a peer 

asks for this slice, it may receive the correspondent chunks from different neighbors.  

As expected, smaller size of dataslices results to higher network utilization, since there is a larger 

number of models announced to the participants, more averaging attempts, thus higher data transfer. 

Table 10 shows the exact values for the two sessions. 

 

Table 10: Data sent – Peers & Total 

Dataslice size 

(Instances) 

Total data sent 

(Gigabytes) 

500 5.342 

2000 2.375 
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(a) Dataslices of 500 instances 

 

 

(b) Dataslices of 2000 instances 

 

Figure 28: Number of peers in averaging mode 
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(a) Dataslices of 500 instances 

 

 

(b) Dataslices of 2000 instances 

 

Figure 29: Data sent – Peers & Total 
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(a) Dataslices of 500 instances 

 

(b) Dataslices of 2000 instances 

 

Figure 30: Data sent – Peers 

 

 

The training data possessed by peers will never be of precisely equivalent quality, so each node 

will initially achieve different accuracy. As seen in Figure 30, peers that reach high accuracy during 

the early stages will be asked more frequently to send their local models to others. 
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(a) Dataslices of 500 instances) 

 

 

(b) Dataslices of 2000 instances 

 

Figure 31: Successful average operations 

 

3.5.3.4 Successful averagings 

 

When a peer trains a new model, it makes it accessible to the rest of the network by broadcasting a 

packet containing the model's information. All participating nodes keep track of these messages and 

use them to determine if a remote model should be used to improve their local one. If a remote model 

satisfies specific criteria, the node retrieves it and attempts to average its own weights. This approach 
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may or may not result in a better local model than the current one. If it does, the peer considers the 

averaging to be successful and accepts the produced model. As expected, the number of successful 

averagings is greater for smaller dataslices, as the total number of attempts is also greater (Figure 31). 

 

 

(a) Dataslices of 500 instances 

 

(b) Dataslices of 2000 instances 

 

Figure 32: Successful average operations % 

 

Figure 32 shows the typical curve of averaging success rate. At start, there is a noticeable accuracy 

disparity across peers, given the fact that the quality of training data used to train each of them may 

differ considerably. Initially, the graph shows a spike, as less accurate nodes benefit from the 
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information given by their more accurate neighbors. When the accuracy discrepancies among the 

peers are reduced, the success rate of averagings marginally decreases for a brief period of time. The 

network then begins to profit from freshly consumed data and improved models published during the 

training phase. The success rate increases as the training period progresses. Following then, only 

averaging is performed and all members attempt to improve their models further by using the 

network's most recent combined models. 

Finally, peers reach maximal convergence, all efforts are halted, and the successful averaging 

percent is stabilized at a terminal value. 

 

3.5.3.5 Resilience 

 

The term "resilience" refers to the amount of different remote peers that can supply a requested chunk 

of either a model or training data at any given moment. Because this study focuses on privacy-

preserving setups, all network data is related to stored neural models. 

The initial surge (Figure 33) occurs because all nodes must first complete a training phase, during 

which their models are broadcasted and rapidly fetched by other peers. Due to the fact that averaging 

increases the number of broadcasted models, we notice a temporary decrease in data availability. 

Finally, as averaging declines, new model creation decreases, stabilizing the resilience value. 

 

 

(a) Dataslices of 500 instances 
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(b) Dataslices of 2000 instances 

 

Figure 33: Resilience 
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Figure 34: Sample snapshot of availability dispersion 

(random peer) 

 

On both setups (50000-instance training data, 500 and 2000-instance dataslices), the terminal value 

of resilience was around 4.3, indicating that chunks requested by nodes were stored in an average of 

4.3 other peers. Figure 34 illustrates the dispersion of chunk availability (orange dots) and resilience 

value (gray area) of a random peer participating in a 15-node training session utilizing 2000-instance 

dataslices. 

Our proposal emphasizes resilience, since one of LEARNAE's primary objectives is fault tolerance 

and the ability to continue collaborative training even if a part of the network is disrupted. In practice, 
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a resilience score of 4.3 indicates that the process could continue without obstruction even if a 

significant portion of the nodes were disconnected. 

 

 

(a) Dataslices of 500 instances 

 

(b) Dataslices of 2000 instances 

Figure 35: Overall network accuracy 

 

3.5.3.6 Overall network accuracy 

 

The mean value of the final accuracy of all participating nodes was used as a measure for the 

network's achieved accuracy (Figure 35). The following graphs illustrate how the dataslice size 

selection impacts overall accuracy. From a theoretical standpoint, there are two critical opposing 
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forces at work throughout a LEARNAE collaborative training session. By selecting bigger dataslices, 

the proportion of pure training in the whole process is enhanced. This leads in a more efficient training 

process and more accurate models. However, bigger dataslices have the disadvantage of decreasing 

the likelihood of effective averaging and the associated advantages to overall accuracy. As shown in 

Figure 36, there is a sweet spot for this tradeoff that results in optimum neural models. This was 

accomplished in the current setup, for dataslices containing 2000 instances. 

The same image illustrates the advantages of LEARNAE's coordinating algorithm in comparison 

to a stand-alone scenario in which all peers train their models independently of one another. For the 

sweet spot, the accuracy gain is maximized (green diamond). The actual numerical statistics are 

included in Table 11. 

At the graph's right edge, where all data is treated as a single dataslice, both techniques provide 

the same result since no effective averaging can occur, and the LEARNAE network degenerates into 

a collection of isolated workstations. 

 

 

Figure 36: Collaborative overall network accuracy per dataslice size 

 

The important experimental conclusion is that it is possible for a number of participants (in this 

case 15) to co-exploit their sensitive training data without exposing them to others, in order to 

collaboratively achieve improved neural models. The gain in accuracy is expected to be positively 

affected when increasing the number of peers.  
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Table 11: Collaborative overall network accuracy per dataslice size 

Dataslice size 

(Instances) 

15 peers with 

data-privacy enabled 

(%) 

Stand-alone 

(%) 

500 79.56 

79.14 

1000 79.73 

2000 79.78 

5000 79.61 

10000 79.47 

50000 79.16 

 

 

3.6 Summary 

 

Our work is a first approach on leveraging Distributed Ledger Technology for purely decentralized 

NN training. In first phase, being a proof-of-concept, it had a limited applicability and it was tested 

solely on a single machine using virtualization containers. 

Then we expanded our work and applied it to realistic conditions. The coordination algorithm was 

tested on a local network of PCs with moderate hardware specifications. Our methodology followed 

an exclusively comparative logic, since our concern was not actual performance, but possible benefits 

originating from this decentralized collaboration.  

The experiments indicated that our proposal can offer tangible gain to collaborating peers, without 

compromising data privacy. The results showed a significant improvement compared to nodes 

working in isolation. 
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4 Using Distributed Ledger Technology to Democratize 

Neural Network Training 

 

4.1 Related work 

 

Related studies can be grouped in four major categories, depending on how they deal with the two 

key characteristics, centralization and synchronicity. Centralized solutions need the presence of a 

management entity, such as a parameter server or a node with enhanced permissions. This often 

results in a communication bottleneck and necessitates the use of high-performance networking; it 

also results in the creation of a single point of failure. On the other hand, synchronous approaches 

impose some kind of time-based coordination between the peers. There are solutions in which all 

nodes must operate in exact concurrent phases and others in which they must share a common clock. 

Often, these solutions are troubled by locks and stale updates caused by slow workers. 

The following sections summarize previous proposals, which include the following: 

1) centralized synchronous 

2) centralized asynchronous 

3) decentralized synchronous 

4) decentralized asynchronous 

 

4.1.1 Centralized synchronous 

 

Sandblaster L-BFGS [10] and Parallel minibatch SGD [108] both need a parameter server and a high-

performance infrastructure. 

By estimating redundancy, Parameter Server [109] provides methods to minimize the impact of 

slow nodes and introduces fault management. FireCaffe [99] is built on the Caffe [110] framework, 

employs a proprietary MapReduce protocol, and needs high-speed networking. CaffeOnSpark is 

based on the DistBelief paradigm and is implemented on top of the Spark framework. Additionally, 

each peer acts as a parameter server for a subset of the model. BigDL [111] mostly follows the 

CaffeOnSpark concepts, with the exception of the parameter exchange method. It requires distinct 

training and data exchange cycles, which results in a strictly synchronous functioning scheme. MPCA 
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SGD [100] partitions the model into shards that are reduced and shared independently, requiring a 

driver node to coordinate the process. 

 

4.1.2 Centralized asynchronous 

 

HOGWILD [96] minimizes communication requirements by using local optimization and 

asynchronous model merging through a parameter server. DistBelief [10] is a well-known technique 

that makes use of a cluster of parameter servers and their peers. Each server-worker group is 

responsible for a subset of the model. Following each cycle, the peers must download the updated 

version of the joint model.  

Adam [36] clusters the parameter servers and tries to reduce network traffic by offloading certain 

processing from the workers to the servers. Elastic Averaging SGD (EASGD) [95] runs the optimizers 

on the nodes, which interact with a parameter server separately every N work cycles. MXNet [98] 

defines a hierarchical parameter server topology in which intermediary nodes may function as proxy 

servers.  

Petuum [112] introduces the concept of staleness norms in order to improve synchronicity and 

convergence speed. Selective SGD [97] minimizes communication requirements by using local 

optimization and asynchronous model merging via a parameter server. TensorFlow [94] may be 

regarded the successor of DistBelief, since it incorporates automated computation graph optimization, 

which significantly simplifies distributed model parallelism. 

 

4.1.3 Decentralized synchronous 

 

SparkNet [113] adopts FireCaffe's methodology while attempting to adapt to low-bandwidth 

networks. It implements decentralized synchronous training. Thus, for N cycles, each worker 

executes a separate optimizer in isolation. Averaging is then used to decrease the size of the resultant 

models.  

Prior to the start of the next computing cycle, the averaged model is broadcast to all workers and 

takes the place of their local models. The nodes in Decentralized Parallel Stochastic Gradient Descent 

(D-PSGD) [114] are synchronized through a shared clock and exchange parameters after each training 

cycle. 
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4.1.4 Decentralized asynchronous 

 

GoSGD [115] implements the EASGD algorithm using a mesh topology for peer organization. Every 

Nth cycle, a randomized algorithm selects the pairs of workers who will exchange data [116]. On top 

of the Spark framework, DeepSpark [117] tries to implement EASGD on commodity hardware. 

Asynchronous Decentralized Parallel Stochastic Gradient Descent (AD-PSGD) [118] is built on a 

ring-based network architecture, and after each iteration, each worker chooses a neighbor for 

averaging, at which point both workers replace their local models with the averaged one. 

Recent work has focused on improving resource utilization, either via parallelization of computation 

and communication or through the use of intuitive scheduling. Dianne [119] is a Java-based 

distributed framework that makes use of the Torch backend. It decomposes the neural network into 

distinct building blocks and associates each block with a particular node. It contains components for 

training and assessing models with the help of a parameter server. 

MXNet-MPI [120] is a modified version of MXNet that aims to integrate the best features of 

synchronous and asynchronous solutions. It proposes clustering the workers into groups that run SGD 

with AllReduce separately. Scalability and fault tolerance are enforced via this clustering. Horovod 

[121] utilizes MPI to build a new training layer for AllReduce and integrates it into Tensorflow. 

Because it is primarily concerned with GPUs, it makes extensive use of libraries that support many 

GPUs on a single worker. Due to the fact that it sets a priority on computing speed, it lacks scalability 

and fault tolerance. 

ByteScheduler [122] is predicated on the premise that splitting and reordering tensor transmissions 

may enhance performance in distributed environments. It proposes that by altering the transmission 

order of the neural layers, training speed may be improved and the effect of communication overhead 

can be minimized. BytePS [123] is an open source project that focuses on heterogeneous architectures 

using GPU clusters. It makes an effort to optimize distributed training tasks by using their spare CPU 

and bandwidth resources. [124] proposes a compressed SGD using Nesterov's momentum that is two-

way (both to and from workers). To minimize communication costs, it divides the gradient into blocks 

that are compressed and sent in a 1-bit format via a scaling factor. Independent Subnet Training [125] 

divides the neural network into a set of equal-depth subnetworks. Each work cycle entails training 

the subnet on a local level and sharing results with other peers. The method does not need parameter 

aggregation, since there are no shared parameters across the subnets. This feature increases subnet 

independence and lowers the necessity for communication. 
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The Computation and Communication Decoupled SGD (CoCoDSGD) algorithm [126] proposes 

a method for parallelizing computation and communication. The workers do not share data on a per-

iteration basis, but rather on a periodic basis. This leads in more efficient resource use and cost savings 

associated with communication. Geryon [127] is a proposal for speeding CNN training by including 

a network-level scheduling algorithm. It categorizes model parameters according to their degree of 

urgency. The parameters that have the greatest effect on the model's quality are prioritized and 

transmitted first. Geryon accelerates the training process but has no impact on the model accuracy 

achieved. 

Another communication scheduler is Preemptive AllReduce Scheduling for Expediting 

Distributed DNN Training (PACE) [128]. It is based on scheduling AllReduce tensors in advance 

using the DAG from DNN training. It aims to determine the optimum level of granularity for tensor 

communication in order to maximize the overlap between communication and computation functions. 

As a consequence of this scheduler, overhead is reduced and bandwidth utilization is maximized. 

Priority-based Parameter Propagation for Distributed DNN Training (P3) [129] is a two-part 

technique that includes parameter slicing and priority-based updating. The first method subdivides 

the model layers into smaller sublayers and independently synchronizes them. The second determines 

the priority of each slice depending on its recurrence in the following iteration. P3 guarantees that the 

most critical slices always have the necessary network resources. 

The concepts around which SwitchML [130] is founded are as follows: To begin, parameter 

changes may be split into pieces that can be handled separately. Second, SGD aggregation may be 

performed independently on various subsets of the input data, regardless of their order. Third, 

machine learning training is robust to approximations of its compute operations. The authors suggest 

a technique in which the switch pipeline processes the generated chunks and packet loss may be 

tolerated via the use of a lightweight switch scoreboard mechanism and a retransmission mechanism 

controlled exclusively by end hosts. 

TicTac [131] is a TensorFlow-based framework that aims to anticipate the sequence in which 

parameters will be used by the underlying computational model. As a result, it optimizes network 

transfers to minimize communication time. TonY [132] is a free and open-source orchestrator that 

includes a client and a scheduler. Users may submit machine learning tasks via the client, and the 

scheduler takes care of assigning resources, configuring the environment, and executing the machine 

learning work in a distributed manner. [133] addresses the scalability issue that exists on public cloud 

clusters due to their low interconnection bandwidth. It proposes a top-k sparsification library for 
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computation and communication that will be optimized. Additionally, it incorporates a multi-level 

data caching technique to improve I/O functions and introduces a new parallel tensor operator to 

speed up update operations. The aforementioned characteristics are used by a hierarchical 

communication algorithm, which tries to combine sparsified gradients in order to maximize 

processing power utilization. 

 

4.2 LEARNAE system 

 

4.2.1 Coordinating algorithm 

 

The data flow between various kinds of nodes is shown in Figure 37. The workflow of a Full Node 

is shown in Figure 38. When a collaborative session begins, peers who possess training data divide it 

into predefined-size "dataslices." These files are added to IPFS individually and their hashes are 

aggregated into a hashlist. This file is then added to the network's shared DHT, and its hash is 

broadcasted (purple area). Each time a peer consumes a dataslice, the peer broadcasts a message 

informing the other peers that the dataslice has been used. This facilitates LEARNAE's overuse 

threshold feature, which allows users to set the maximum number of times a particular dataslice may 

be utilized for training throughout the network. 

When a peer gets a message indicating the availability of a dataslice, it retrieves its chunks from 

several neighbors and adds it to the queue containing locally accessible dataslices; unless the slice 

has already exceeded the preset overuse threshold, in which case the peer ignores it (red area). 

Parallel to the aforementioned functions, peers randomly choose between training and averaging 

in every work cycle, increasing the overall stochasticity. Following each training phase, peers add the 

created local model to IPFS and announce its availability (green area). When a peer chooses 

averaging, it looks through its local list of remote models. If a model with a claimed accuracy higher 

than the local one is discovered, the peer fetches the remote model and averages it with the local one. 

If this procedure results in an increase in local accuracy, the peer accepts the averaged model, adds it 

to the shared DHT, and announces its availability to the network. The message regarding available 

models includes information about the broadcaster's accuracy and the model's maturity, e.g., how 

many work cycles preceded its development (blue area). After all averaging attempts have been 

performed and the network has attained maximum convergence, each peer retrieves the one remote 
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model with the highest accuracy. This model is compared against the local dataset and, if it performs 

better, it is accepted as is by the peer. 

 

 

 

Figure 37: Data flow between different node roles 

 

 

4.2.2 IoT Implementation 

 

Our work introduces a way to incorporate data from lightweight IoT devices using the IOTA Tangle 

(Figure 39). The participating peers that are capable of training models scan the Tangle for new 

messages on a periodic basis. If they find new data, they save them locally.  

Due to the Tangle's IoT-centric design, it works best when transmitted packages are not too big. 

The next chapter contains details on the experimental metrics. The saved sensor data are kept in a 

buffer and are added to the list of dataslices that are ready to be utilized for training when their size 

reaches the preselected dataslice size; the buffer is then purged. 
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Figure 38: The principal parts of a Full Node's workflow 

 

4.2.3 Configuration of the MAM Stream.  

 

A MAM message may have a tag field in addition to the data part. Because the MAM API allows 

searching by tag, LEARNAE uses it to connect all sensors associated with a particular training 

session. Each sensor is linked with its own MAM stream. The first message is tagged with a pre-
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agreed codename (which may correspond to the IPFS PubSub topic name) and includes the sensor 

ID and its creation date. This head message indicates the location of the first data message, and so 

on. All data is in JSON format. 

 

 

Figure 39: The structure of MAM messages created by LEARNAE 

 

The method of embedding an IoT sensor into a LEARNAE network consists of these steps:  

 

(a) To begin, the enquiring peer seeks MAM messages with the specified tag from the 

Tangle. If it finds a new message (e.g., with a first-seen address), attaches it to the list 

of known sensors.  

(b) Then, each time the peer scans for new IoT data, it starts checking the linked list's tip 

of each known sensor.  

(c) If it finds new data messages, it appends them to the local buffer and stores a pointer 

to that last message; hence, the next times it checks the specific sensor, the search will 

start from this pointer and not from the beginning of the whole stream. 

 

 



113 
 

Table 12: Configuration of VPS nodes 

Metric Value 

CPU QEMU Virtual CPU version 2.1.2 2.10 GHz (2 processors) 

RAM 4 GB 

Internet connection 50 Mbps 

 

The enhancements to LEARNAE described here were tested via the use of a large number of 

distributed training sessions. The network comprised of twenty workstations that were set as Virtual 

Private Servers in the cloud (VPS). Their configuration was chosen to match that of a typical personal 

computer, as shown in Table 12. A particularly compelling use of distributed training is in 

environments where each peer has a very limited number of instances. In this case, cooperation may 

help alleviate the data scarcity restriction and provide more accurate models. 

 

Table 13: Main hardware/software specifications of the emulated sensor 

Specification Value 

CPU Quad Core 1.2 GHz 64 bit 

RAM 1 GB 

Network 100 Base Ethernet 

Storage 16 GB Micro SD Card 

Internet connection 50 Mbps 

OS Raspbian 

OS kernel version 4.19 

OS image size 1136 MB 

Framework of MAM-related code NodeJS (ver: 11.10.1) 

 

In contrast to our prior research, the experiments in this phase concentrate only on such use cases, 

limiting each peer's available training data to 5,000 instances. Because all tests are designed to ensure 

anonymity, participating peers share just models, not training data. The following sections quantify 

the proposed architecture's advantages. 
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4.2.4 IoT evaluation 

 

4.2.4.1 Sensor Setup 

 

To mimic an IoT sensor, we used a low-power SBC: the Raspberry Pi 3 Model B. The hardware 

specs and major software/development decisions used to implement these tests are listed in Table 13. 

 

4.2.4.2 Dataset Characteristics 

 

The dataset employed was HEPMASS, which was created for the purpose of training systems on 

exotic particle identification via the utilization of a high number of collisions. It contains 7 million 

training instances (5 GB) and 3 million testing instances (2.5 GB). Each instance is approximately 

750 bytes in size and is composed of 30 floating point integers (including metadata).  

For these experiments, the data are sent uncompressed and unencrypted. Each dataset instance 

simulates the reception of a new signal by a sensor. A transmission packet is composed of several 

instances. This number is related to the instance size in order to generate packets with optimum 

propagation across the Tangle. 

 

4.2.4.3 Data Publishing 

 

The training dataset was divided into 50-instance packets. As a result, each MAM message 

broadcast to the Tangle was about 35 KB in size. This was determined to be the optimal value, since 

lower values could not achieve maximum network utilization and higher values were sometimes 

refused by IOTA nodes due to congestion or restrictions preventing misuse. Table 14 presents the 

metrics of the sensor data publishing procedure. 

 

4.3  Fault tolerance evaluation 

 

To assess the negative impact of network disruptions, a new subsystem was implemented in 

LEARNAE to simulate peers shutting down or experiencing connection issues. Three new testing 

parameters control the severity of the simulated issues: 
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• Offline Cycle, which specifies the frequency with which the disconnection status is updated; 

• Offline Duration, which specifies the duration of the disconnection;  

• Offline Probability, which specifies the likelihood of the disconnection to occur. 

 

Table 14: Metrics of data transmitted by the SBC 

Metric Value 

Instance size (approx.) 750 bytes 

Instances per packet 50 

Packet size (approx.) 35 KB 

Number of transmitted packets 1000 

Total time required 3 h 52 m 18 s 

Time required per packet 13.9 s 

 

 

 

Figure 40: The number of online peers for different Offline Probability 

 

For these experiments, the first two values were set to 15, indicating that peer connectivity was 

updated every 15 minutes and that the new state persisted until the next update. To study the impact 

of these issues, all experiments were conducted with 0%, 20%, 40%, 60%, and 80% Offline 

Probability. The fluctuation in the number of online peers throughout the trials is shown in Figure 

40. 
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4.3.1 Low Epoch Conditions 

 

A model may be enhanced by training and/or by averaging. When the number of epochs in a use 

case is low, the effect of training is decreased and averaging plays a greater role. To illustrate the full 

impact of network interruptions, early experiments were performed using a single training epoch. The 

achieved mean accuracy and spread for each offline probability are shown in Figure 41, while they 

are compared in Figure 42. For reference, these figures also depict the outcomes for a stand-alone 

configuration, in which each peer trains its model independently using just its own data. As shown in 

these figures, the proposed algorithm outperformed the stand-alone setup except for the 80% Offline 

Probability. The extended final spread (orange region) in the latter example (f) shows that this was 

the only case in which the network failed to reach proper convergence. 

 

 

Figure 41: Mean Accuracy and Spread per Offline Probability (Low Epochs) 
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The ability to overcome difficulties caused by unavailable peers is described in LEARNAE's 

terminology as resilience, an index defined as the total number of neighbors from whom a data chunk 

may be retrieved at a given moment. To illustrate the obtained data replication, Figure 43 depicts the 

evolution of mean resilience and its spread over the period of a training session with no simulated 

disconnections. The final result of 6 indicates that on average, a requested chunk may be obtained 

from 6 distinct remote peers out of a total of 20. 

 

 

Figure 42: Comparison of Mean Accuracy for different Offline Probability 

(Low Epochs) 

 

 

Figure 43: Mean Resilience and Spread 
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4.3.2 Optimal Epoch Conditions 

 

The optimum number of epochs for the configuration of these experiments was determined to be 10. 

The following tests were conducted appropriately to maximize the beneficial impact of the training 

phases. As shown in Figure 44, disruptions with an Offline Probability of up to 80% have no impact 

on overall performance. The comparison of the achieved mean accuracy for various disconnection 

rates is shown in Figure 45. Even with an 80% disconnection rate, the proposed averaging algorithm 

was able to reduce the accuracy spread across peers by up to 3.24% (Table 15). 

 

 

Figure 44: Mean Accuracy and Spread per Offline Probability  

(Optimal Epochs) 
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4.4 Data balancing 

 

Due to the fact that the quality of the training data differs across peers, the produced models will have 

varying degrees of accuracy. This discrepancy is mode intense at the start of the collaborative session 

and diminishes as the session progresses and averaging is finished. The proposed architecture's 

distributed nature guarantees load balancing and the lack of congestion points. The quantity of data 

provided by each participant is shown in Figure 46. Peers who develop more accurate models earlier 

in the process must provide more data, since their model is heavily fetched by others. However, this 

spike is just transitory, lasting only as long as their data's replication factor in the network remains 

low. 

Table 15: The improvement in convergence (distributed vs stand-alone) 

Offline Probability (%) 
Accuracy Spread (%) 

[Stand-alone] 

Accuracy Spread (%) 

[Distributed] 
Change in Spread (%) 

0 

5.60 

3.04 -2.56 

20 2.39 -3.21 

40 2.52 -3.08 

60 2.36 -3.24 

80 3.15 -2.45 

 

 

Figure 45: Comparison of Mean Accuracy for different Offline Probability 

(Optimal Epochs) 
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Figure 46: Total amount of data sent by each peer 

 

4.5 Benefits of proposed architecture 

 

As shown in Figure 47, at the first stage when data are poured into the network, peers are evenly split 

into two groups: training (green) and averaging (blue). After consuming all available data, no training 

processes are invoked, and weight averaging takes over. This procedure concludes with global 

convergence, at which point no peer can profit from model merging and thus the averaging phase 

ends. The rightmost spikes in the blue region represent peers who already have high-quality models. 

To maximize utilization when peers have no other queued work, they try averaging with newly 

published remote models, even if their reported accuracy is lower than the local one. This results in 

further parameter space exploration and, potentially, model improvement, without sacrificing 

valuable processing time. The percentage of successful averaging attempts reached a maximum of 

32% throughout the trials, while the mean value for all participants was 10%. These are the final 

values obtained at the end of the session after the network had converged. During the first phase, 

peers improved their accuracy at a rate of up to 70% via model merging (Figure 48). 

To evaluate the proposed architecture's accuracy improvement, two sessions were conducted using 

the optimum number of epochs. In the first instance, each peer trained their models independently. 

The second was a LEARNAE session that had privacy features enabled. As shown in Figure 49 and 

Table 16, there is a substantial increase in the accuracy of the generated models of 1.12% despite the 

absence of training data exchange. 
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Figure 47: Number of peers training/averaging 

 

 

Figure 48: Successful averaging attempts 

 

Table 16: Mean model accuracy values (stand-alone vs distributed) 

Method Model Accuracy 

Stand-alone 78.74 % 

Distributed (data privacy) 79.86 % 
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4.6 Summary 

 

This study proposes and evaluates a novel method for embedding IoT sensors without compromising 

the architecture's distributed nature. Additionally, it examines a critical feature known as resilience, 

as well as the effect of network disruptions and untrustworthy peers. 

As shown by the experiments, LEARNAE collaboratively achieves models with an increased 

accuracy of up to 1.12% for the present configuration , without the need to share training data, but 

rather by leveraging neighbor information through selective parameter averaging. 

 

 

Figure 49: Mean model accuracy (stand-alone vs distributed) 
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5 Incentivizing Participation to Distributed Neural 

Network Training 

 

We suggest a method for incentivizing peers to participate in LEARNAE's collaborative 

training sessions. So far,  a LEARNAE swarm was composed of nodes that shared an interest in the 

outcome and partnered to improve model accuracy. A novel incentivization system is now included; 

peers may join a session and profit from their constructive averaging. 

 

5.1 Proposed architecture 

 

 

Figure 50: The major parts of a node's workflow (incentivization in yellow color) 
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The aforementioned incentivization mechanism is accomplished via the incorporation of a 

gateway, capable of communicating with blockchains in order to both publish and collect data. The 

architecture is platform agnostic and is compatible with any blockchain capable of executing code. 

With a credit system in place, peers may reward helpful neighbors by sending them digital 

micropayments for their contribution to successful averagings. 

 

 

Figure 51: Additional workflow section 

 

Our prior work includes a comprehensive description of the workflow of a node.  Figure 50 

illustrates how the new components are integrated into the current workflow, while Figure 51 shows 

the modifications required to create the incentivization subsystem. At the time of the first execution, 

a peer wishing to receive payments must deploy LEARNAE's Smart Contract to the Ethereum 

Network. Following that, it must notify its neighbors by broadcasting a new type of metadata message 

containing its IPFS ID and the Ethereum public address of its Smart Contract. 

When LEARNAE is in private mode, no training data is sent, which means that peers who joined 

only for the reward will almost certainly have no data of their own. In these cases, peers will randomly 

adopt a remote model that was made available to the network in order to properly initialize their local 

model. After that, they will fall back to the typical node workflow. 
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5.2 Incentivization algorithm 

 

Each time a peer improves its local model by averaging with a remote one, the peer's incentivization 

algorithm sends a micropayment in Eth to the creator of the remote model. The payment amount is 

determined by a Reward Function that takes into account the amount of improvement in local model 

accuracy. 

 

5.2.1 Reward Function 

 

For the conducted experiments, in order to evaluate the whole procedure, we used a simple 

proportional formula: 

 

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 =  𝑅𝑒𝑤𝑎𝑟𝑑𝐹𝑎𝑐𝑡𝑜𝑟 ∙  (𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 –  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 

 

In general, any Reward Function, whether linear or not, may be utilized. Eventually, the law of 

Supply and Demand will guide participants to the optimal amount of reward. This first 

implementation assumes that peers who engage in and benefit from the generated model are 

benevolent and will reward their helpful neighbors in order to maintain a relationship of trust.  

We acknowledge that this method may be improved by anticipating bad actors who would benefit 

from others' contributions without rewarding them. So, study in this area, within the scope of Game 

Theory, will be a part of our future work. 

 

5.3 Distributed proof of identification 

 

Peers must be able to prove their identity in order for the incentivization to even exist. This would be 

trivial if a certificate authority could be used, but in the case of LEARNAE every aspect must be 

completely decentralized. As a result, we use Ethereum's Smart Contract architecture to provide a 

mechanism for Distributed Proof of Identity (DPoID). 
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5.3.1 Smart Contract Deployment 

 

When a peer joins a LEARNAE session, it must deploy a specific Smart Contract on the Ethereum 

blockchain. Two data fields are included in this contract: "PoID" (Proof of Identification) and 

"Timestamp." When a contract is created, its constructor method is automatically executed. The 

creator-peer provides it with a single parameter (PoID), which is composed of its IPFSid and the 

public Ethereum address associated with its digital wallet. Internally, the constructor assigns the 

current date and time to the Timestamp field (Figure 52). 

 

5.3.2 PoID Propagation and Rewarding 

 

Following the deployment of the Smart Contract, the peer broadcasts the address of the contract 

to its neighbors. To obtain the required data, all other nodes execute this Smart Contract's getPoid() 

and getTimestamp() methods on the blockchain. Each node keeps a local directory containing the 

IPFSid, the public Ethereum wallet address, and the timestamp for each Smart Contract broadcasted 

to the network. For example: Peer A improves its local model by averaging it with a remote model 

sent by peer B. Peer A scans its local directory for the Ethereum public wallet address associated with 

peer B's IPFSid and sends a micropayment to that address. 

 

5.3.3 Shielding against fraudulence 

 

A malicious actor might try to hijack payments by broadcasting Smart Contracts with its own 

Ethereum public wallet address but using the IPFSid of a more active peer. This attempt would be 

recognized and ignored by its neighbors. This is due to the fact that the same IPFSid would be linked 

with two different Ethereum public addresses. In such situations, the Smart Contract with the later 

timestamp would be immediately rejected as fraudulent. 

 

5.4 Conducted experiments 

 

Our previous work demonstrated that collaborative training may provide advantages – in terms of 

model accuracy – even with a small number of participants. The point of this study is to discuss some 

early metrics for the incentivization system. 
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Figure 52: Structure of DPoID Smart Contract 

 

 

The following graphs depict a LEARNAE session of 20 peers. Each of them possessed a local 

dataset of 10000 examples, which was split into 10 groups of 1000 instances to facilitate averaging. 

Data privacy was enabled, which means that nodes did not exchange training data. 

As shown in Figure 53, the first phase is distributed evenly between training and averaging. Once 

all available data has been consumed, peers devote their whole attention to averaging efforts. Finally, 

as the swarm approaches convergence, averaging is unable to improve the models any further, and 

the session concludes.  

As shown in Figure 54, at the beginning the percentage of successful averagings is high, and peers 

rapidly benefit from their neighbors' models. Even at the session's end, the mean percentage of 

successful averagings is above 20%.  

Figure 55 depicts the evolution of the mean model's accuracy. 
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Figure 53: Work type distribution 

 

 

Figure 54: Cumulative success rate of averaging process 

 

Figure 56 shows the number of Eth payments throughout the session. For the conducted 

experiments, peers sent micro-payments 3-16 times (with a mean value of 9.4).  

As shown in Figure 57, during the collaborative training, peers sent 0.0005-0.0068 Eth to their 

neighbors (with a mean value of 0.003).  

It is important to outline that the conducted experiments serve as a proof of concept; the actual 

values of a real-life session would be auto-regulated by supply-and-demand of processing power. 

 

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100 110 120

N
u

m
b

er
 o

f 
p

ee
rs

Session time (minutes)

Peers averaging Peers training

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Su
cc

es
sf

u
l a

ve
ra

gi
n

gs
 (

%
)

Session time (minutes)

Successful averagings (SPREAD) Successful averagings (mean)



129 
 

5.5 Summary 

 

We extended our previous research on Distributed Neural Network Training by including a subsystem 

that incentivizes peers to participate in a LEARNAE session. In this scenario, peers who have no 

interest in the generated model may join the swarm to profit from their constructive averaging. We 

developed a technique for implementing a completely distributed proof of identification using 

Ethereum's Smart Contracts and conducted proof-of-concept experiments to evaluate the basic 

metrics. 

 

Figure 55: Progress of model accuracy 

 

Figure 56: Cumulative number of Eth payments 
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Figure 57: Cumulative amount of Eth sent 
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6 Consolidating Incentivization in Distributed Neural 

Network Training via Decentralized Autonomous 

Organization 

 

Our previous incentivization method is unable to deal with bad actors who refuse to pay the proper 

rewards. To deal with this issue we introduce a novel incentivization scheme, based on the concept 

of Decentralized Autonomous Organizations. 

 

6.1 Proposed architecture 

 

In order for any incentivization to work, peers must be able to verify their identities. A certificate 

authority would make this straightforward, but in the case of LEARNAE everything must be fully 

decentralized. We use Ethereum's Smart Contracts to build a Distributed Proof of Identity (DPoID). 

To participate in a LEARNAE session, each participant must first deploy a Smart Contract to the 

Ethereum network. This contract has two data fields: PoID (Proof of Identification) and 

Timestamp.  The creator-peer passes one parameter (PoID) to the network, which is comprised by (a) 

its IPFSid, (b) its public Ethereum address of its digital wallet, and (c) its PublicKey. Internally, the 

constructor assigns the current date and time to the Timestamp field. 

After deploying the Smart Contract, the peer broadcasts the contract's address to its neighbors, and 

all other nodes in the network execute the 𝑔𝑒𝑡𝑃𝑜𝑖𝑑() and 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝() methods to get the 

required data, which are kept locally in every node’s storage. 

A malicious actor could attempt to highjack payments by broadcasting a Smart Contract that 

contains its own Ethereum public wallet address but with the IPFSid from another –more active– 

peer. This effort would be detected and dismissed by its neighbors, due to the fact that the same 

IPFSid would be associated with two distinct Ethereum public addresses. In such cases, The Smart 

Contract with the later timestamp is immediately rejected as fraudulent. Detailed analysis of this 

process can be found in our previous work. 
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6.2 The concept of Decentralized Governance 

 

6.2.1 Background Theory 

 

There is a novel technological development that has entered the domain of public organizations, 

thanks to algorithmic systems [134]. The thing which defines these systems is Machine Learning, 

which provides new ways to discover knowledge [135]. Artificial Intelligence applications use huge 

datasets and statistical methods to infer connections that are sometimes hidden or not obvious. These 

algorithms have the potential to offer significant new insights, therefore they are regarded as a very 

strong tool for governance purposes [136]. 

Decision-making based on algorithmic analysis is grounded on a completely different logic than 

traditional bureaucracy, since the latter usually leads to a decision taking into consideration single-

case information. Even though uncertainty is inherent in many decision-making processes, 

algorithmic systems allow governance structures to use data analysis to quantify the uncertainty and 

state the information as probabilities, to better rationalize the process. This method could offer, for 

example, a powerful optimization tool to classify cases based on whether they should be the subject 

of further investigation. Thus, algorithmic systems are a major shift in how an organization is 

structured and they have the potential to fundamentally affect how governance is achieved. The term 

Algocracy introduces the concept of exerting governance using algorithms. It is the evolution step 

after Machine Bureaucracy and Infocracy.  

Machine Bureaucracy is an administrative body that is defined by a distinct set of guidelines for 

getting things done [137]. Work procedures in this context are quite organized and rule-based. A 

single, standardized way of doing things dominates the Machine Bureaucracy, since every task must 

be done in a very rigid manner. Hierarchization and formalization are both high, as is centralization, 

with the buildup of decision-making capacity at the top of the organization. The underlying 

technological infrastructure is the pivotal element of the organization. Because it is in charge of 

standardization, it can thus be said that it is accountable for that implementation. 

Infocracy is a form of organization, much like Machine Bureaucracy. The standardization of work 

is programmed into the technology utilized by the organization, eliminating the need for participants 

to learn rules that would improve uniformity [138]. Work standardization is extremely prevalent, but 

all processes are set in motion by information systems following preset laws and regulations 

[139][140]. This solidifies the technological structure's important role inside the organization. Work 
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is supported by information systems, which have created a fine-grained division of roles with plenty 

of vertical control. Decisions at a lower organizational level may be taken at some extend, sometimes 

with moderate decentralization. In addition, hierarchical and formalized organizational structures are 

decreased, as compared to Machine Bureaucracy.  

In Algocratic systems, non-routine labor may be done by using sophisticated technology. 

Algorithms for data mining, pattern recognition, and prediction are all built using Machine Learning 

[141][142]. Inherent uncertainty is measured and minimized by the algorithmic system's data analysis 

[143].  

Algocracy proposes that sophisticated technologies can push technology into decision-making 

domains, by converting human judgement into standardized processes [144]. The algorithm is to be 

used in both a unidirectional and bidirectional fashion, contrary to Machine Bureaucracy and 

Infocracy, where work control is unidirectionally administered via the organization and information 

infrastructure, respectively. 

It is noteworthy that many of those algorithms depend on developer inputs, like their judgments, 

perceptions and opinions, etc, that may have an impact on the learning process. This is significant 

because the programmers may actually predetermine and guide the Machine Learning algorithm, and 

in that way influence the decision-making results given by the system. 

 

6.2.2 Decentralized Autonomous Organizations 

 

A Decentralized Autonomous Organization (DAO) [145][146] is defined as a structure controlled by 

laws written in code. Its members exert control through the transparency of these computerized 

governance rules, and do not rely on central control. Transactions and regulations for a DAO are 

stored on a blockchain [147][148][149]. The consensus mechanism of the blockchain ensures the 

proper function of DAO, a critical feature since so far there is no concrete legal framework that covers 

this novel kind of organization [150]. The benefits gained by the use of blockchain technology include 

fault-tolerant distributed database, cryptography-based identification and permissionless 

timestamping. When someone uses this method, they no longer have to rely on a trustworthy third 

party in their transactions, making things easier and more straightforward. 

The costs of a blockchain-based transaction, and the associated data-reporting, may be significantly 

lower than traditional methods, due to the elimination of the need for multiple and independent 

bureaucratic records and third-party fees that are typically charged in conventional procedures. Thus, 
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blockchain data might, at least in principle, replace public papers like deeds, titles and contracts, so 

long as regulations allow it. Once a DAO launches, it could be structured to operate autonomously, 

with Smart Contracts managed by a Turing-complete platform that would maintain full-scale 

administrative support [151][152]. Decentralized self-government organizations aspire to be open 

platforms where people control their relationships, their identity and their personal data [153]. 

In the Ethereum blockchain the Solidity programming language is what is used to create DAO code. 

This code can be executed by creating on-chain Ether transactions. Ether, the digital asset of the 

Ethereum network, is the fuel for all applications that leverage its blockchain. In order to start 

functioning, a DAO needs Ether in its account, and thus, its priority is to obtain it. During the creation 

phase the code is released, and the system allows Ether to be transferred to the DAO's Smart Contract 

address. 

In order to compensate senders of ether, a DAO generates tokens and assigns them to the senders 

of the ether. The tokens provide to the participants the ability to vote and be part-owners. The amount 

of created tokens depends on the amount of transferred Ether. There are no transfer fees for moving 

tokens around after the Genesis phase has concluded. 

When deployed, the settings for the Minimum DAO Creation Objective and Creation Phase Time-

period are given as arguments to the code. In case the total of DAO Creation Objective does not meet 

the minimum before the end of the creation phase, all of the ether will be refunded. After the Creation 

Phase has ended, the total Ether raised is denoted by 𝛯𝑟𝑎𝑖𝑠𝑒𝑑 and the total amount of tokens created 

is denoted by 𝑇𝑡𝑜𝑡𝑎𝑙. Essentially, DAO is a structure that holds Ether and other Ethereum-based 

tokens, and transfers them according to the organization’s code.  

An individual who owns a DAO token may ask for DAO funds (denoted 𝛯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟) by proposing 

a contract. If the proposal is accepted by the majority of the voting power, the DAO sends the 

requested Ether to a smart contract representing the proposed project. The process of selecting a 

contract can be enhanced with advanced features, such as collaboration with other DAOs and fetching 

data from external sources called “Oracles”. 

The number of votes someone has, is proportional to the number of tokens they own. Each proposal 

has an allotted amount of time for discussion and a vote. Once a proposal has been approved, token 

holders will be able to execute a DAO contract function which verifies that (i) the majority of votes 

were in favor of the proposal, (ii) the minimum quorum percentage was met, and (iii) the proposal 

has been approved. The DAO will fund the proposal if it has been approved, otherwise the proposal 

will be closed. 
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A token holder has a say if they have at least one DAO token. The minimum number of tokens a 

person must have to be able to influence a decision is denoted by 𝑞𝑚𝑖𝑛. An example of how some of 

the most popular DAO calculate 𝑞𝑚𝑖𝑛 is as follows 

 

𝑞𝑚𝑖𝑛 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑑
+

𝛯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∙ 𝑇𝑡𝑜𝑡𝑎𝑙

3 ∙ (𝛯𝐷𝐴𝑂 + 𝑅𝐷𝐴𝑂)
 

 

where 𝑑 is the 𝑚𝑖𝑛𝑄𝑢𝑜𝑟𝑢𝑚𝐷𝑖𝑣𝑖𝑠𝑜𝑟, 𝛯𝐷𝐴𝑂 is the amount of ether owned by a DAO and 𝑅𝐷𝐴𝑂 is the 

amount of reward tokens owned by this DAO. The sum (𝛯𝐷𝐴𝑂 + 𝑅𝐷𝐴𝑂) is equal to the amount of 

ether used to create DAO tokens plus the rewards received, or said another way, the total amount of 

ether a DAO has ever received. 

The above formula means that, initially and for 𝑑 = 5, a quorum of 20% of all tokens is required 

for any proposal to pass. In the event 𝛯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 equals the amount of ether a DAO has ever received, 

then a quorum of 53.33% is required. 

To prevent proposal spam, a deposit is needed in order to have a proposal reviewed; the deposit 

will be returned if the majority approves the plan. The DAO will retain the deposit if a quorum is not 

met. The required deposit amount may be modified by the DAO in a later proposal. 

The DAO as a decentralized entity cannot be manipulated by any outside influences. Because it is 

open-source, the organization and all of its code are visible and therefore impossible to corrupt, since 

all program functions are managed on the blockchain.  

Stakeholders must have complete consensus on every choice they need to make, such if one 

member wishes to pull out their money. Bugs and other problems requiring democracy in the 

decision-making process are also a concern, and all can be addressed by the DAO’s rules. 

From a technological standpoint, a DAO is made up of one or more Smart Contracts which are 

executed on the Ethereum blockchain using its distributed consensus mechanism. Ethereum offers a 

blockchain with a built-in Turing-complete programming language, where users may design and 

implement applications on their own terms. Smart Contract transaction costs are paid using 

Ethereum's currency Ether. Figure 58 shows the theoretical layers of a Decentralized Autonomous 

Organization. 
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Figure 58: Architectural layers of DAO 

 

The data structure of a single proposal depends on the characteristics of each use case. For a typical 

DAO, a proposal could have the parameters shown in Table 17. 

 

6.3 LEARNAE’s Decentralized Autonomous Organization 

 

The first stage of a LEARNAE training session is the establishment of its Decentralized Autonomous 

Organization. During this period all participants have to deposit a predefined amount of digital assets. 

These assets are immediately locked and constitute the DAO’s Contribution Fund. Each deposit 

contains the participant’s Ethereum public address. This information, in conjunction with the data 

contained in the DPoID Smart Contracts, are used to link a deposit to an IPFS ID. Since voting is not 
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weighted, the DAO sends in return a single LEARNAE token to each member. Owning this token 

grants the right to vote and submit proposals. 

 

Table 17: Typical parameters of a DAO proposal 

Parameter Description 

𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡 
The address where the amount of assets will go to if the proposal is 

accepted. 

𝑎𝑚𝑜𝑢𝑛𝑡 
The amount of assets to transfer to recipient if the proposal is 

accepted. 

𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 A plain text description of the proposal. 

𝑣𝑜𝑡𝑖𝑛𝑔𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 A Unix timestamp, denoting the end of the voting period. 

𝑜𝑝𝑒𝑛 
A Boolean which is false if the votes have already been counted, 

true otherwise. 

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑃𝑎𝑠𝑠𝑒𝑑 
A Boolean which is true if a quorum has been achieved with the 

majority approving the proposal. 

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝐻𝑎𝑠ℎ 
A hash to check validity of a proposal. Equal to 

𝑠ℎ𝑎3(𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡, 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎). 

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝐷𝑒𝑝𝑜𝑠𝑖𝑡 
The deposit the creator of a proposal has send to submit a proposal. 

It is taken from the 𝑚𝑠𝑔. 𝑣𝑎𝑙𝑢𝑒 of a 𝑛𝑒𝑤𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 call; 

𝑦𝑒𝑎 Number of tokens in favor of the proposal. 

𝑛𝑎𝑦 Number of tokens opposed to the proposal. 

𝑣𝑜𝑡𝑒𝑑𝑌𝑒𝑠 Simple mapping to check if a token holder has voted for it. 

𝑣𝑜𝑡𝑒𝑑𝑁𝑜 Simple mapping to check if a token holder has voted against it. 

𝑐𝑟𝑒𝑎𝑡𝑜𝑟 The address of the token holder that created the proposal. 

 

When the period for fund raising expires, the network starts the collaborative training. Every time 

a peer improves its local model by averaging with a remote one, the peer updates, signs with its 

private key, and broadcasts its own Shared Contribution Vector (SCV). SCV is a record that contains 
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information on how much help a peer received by its neighbors, in its effort to improve its local neural 

model (Figure 59). 

 

 Node_00 Node_01 Node_02 ··· Node_97 Node_98 Node_99 

Node_i [value]  [value] ···  [value]  

 

Figure 59: Shared Contribution Vector of Node #i (assuming 100 participants) 

 

Peers gather broadcasted SCV messages and use them to construct their local copy of Shared 

Contribution Ledger (SCL). SCL is an array comprised by all known SCV records and is used to 

determine a general view of the contribution level throughout the network (Figure 60). Thus, the 

value in row X and column Y of the SCL represents the help offered to peer X by peer Y. 

When training phase concludes, participants submit their proposals regarding the amount of digital 

assets they claim as reward for their contribution. Peers review the submitted proposals by comparing 

them to their copy of SCL. They vote in favor of every consistent proposal and against of all others. 

When voting period ends, the DAO automatically releases the whole amount of available funds, 

distributed proportionally to all approved proposals (Figure 61, Figure 62). The procedure is taking 

place on the blockchain and requires no central coordination. 

 

 Node_00 Node_01 Node_02 ··· Node_97 Node_98 Node_99 

Node_00  [value]  ··· [value] [value]  

Node_01 [value]  [value] ···    

Node_02    ···  [value]  

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

Node_97  [value] [value] ···   [value] 

Node_98 [value]   ···   [value] 

Node_99  [value]  … [value]   

 

Figure 60: Shared Contribution Ledger (assuming 100 participants) 
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F Figure 61: The updated workflow of a LEARNAE full node 
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The new DAO-based incentivization mechanism is a major paradigm shift compared 

to the tipping method of our previous implementation. Although tipping was a more direct 

way for a peer to reward the neighbors that actually offered help to that peer, it could not 

ensure the compliance of the participants. Thus, there could be cases where malicious 

actors might tamper the procedure to avoid paying. The new implementation is more 

community-oriented: Peers reward neighbors according to their overall assistance to the 

swarm.  

All participants have to declare their engagement to the process, by depositing digital 

assets to DAO’s Contribution Fund. Depending on their assistance during the training 

phase, peers can end up with less or more assets in their balance, compared to their initial 

deposit amount. Which one it will be, it depends on their “give help” / “get help” 

equilibrium 

 

6.4 Experimental results 

 

To provide a proof-of-concept for the proposed incentivization architecture, we construct 

and evaluate the results of an algorithm simulating the collaborative neural network 

training. In these experiments the LEARNAE swarm consists of 100 participants. The 

session is comprised of 50 cycles; during each cycle peers attempt to average their model 

with a remote one. 

The result of this attempt may be successful or not. The level of change to the local 

model’s accuracy is expressed as a random number (range: Uniform[-10..10]), where 

negative values indicate unsuccessful attempts. To simulate the discrepancy in node’s 

hardware performance, every peer is uniformly assigned a random Contribution Factor 

(range: Uniform[1..9]). The final level of change occurred by an averaging attempt is 

calculated as: 

 

𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 =  𝑈𝑛𝑖𝑓𝑜𝑟𝑚[ −10 , 10 ] 

𝑖𝑓 ( 𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 >  0 ) 𝑡ℎ𝑒𝑛  

𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 
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Figure 62: Stages of LEARNAE’s DAO 

 

The value of 𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 is also used as the amount of the reward given for this 

successful averaging. During the initial phase, all participants have to deposit 1000 credit 

units to DAO’s Contribution Fund. 

To assess the efficiency of our incentivization proposal on mitigating the impact of 

malicious nodes, we conducted experiments for both cases, (a) no malicious actors, and 

(b) 10% of participants being malicious. In the following experiments, the period during 

which DAO adapts the peer rewards in order to comply with the new incentivization 

scheme, is denoted as Consolidation Phase. 

 

6.4.1 Network with no malicious nodes 

 

Figure 63 demonstrates the balance of each peer during a session with no malicious actors. 

This means that when a peer achieves a successful averaging, willingly broadcasts the 
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reporting message to the swarm, to let everyone know that a neighbor’s help resulted to 

a specific level of model improvement. The message that is broadcasted is essentially the 

updated version of its own SCV, signed with the node’s private key. The lines indicate 

how a peer’s balance is progressing from this peer’s point of view.  

During Consolidation Phase, the DAO applies the corrections introduced with our new 

incentivization algorithm. Thus, every peer rewards its neighbors for their overall 

contribution to the LEARNAE swarm. As expected, this paradigm shift results to 

different final balances compared to simple tipping method. Figure 64 depicts these 

differences. Out of 100 nodes, 47 ended up with increased balance at an average value of 

+241.84 credit units; 53 nodes ended up with decreased balance at an average value of 

−214.46 credit units. 

 

6.4.2 Network with 10% malicious nodes 

 

Figure 65 demonstrates the progress of every peer’s balance during a collaborative 

session with 10 malicious nodes. For these experiments we define a “malicious” actor as 

one who refuses to broadcast its updated SCV, in an attempt to avoid paying rewards to 

others. The malicious peers are denoted with thick dashed lines. As shown in the chart, if 

we just use our previous tipping method, the balance of the malicious nodes is only 

increasing, since, although they avoid paying others, they still get rewards for their 

contribution. The DAO’s Consolidation Phase is eliminating this malicious effort; 

dishonest peers ultimately get rewarded not based on their tampered version of truth, but 

rather according to the evaluation they got from the entire network. The correction is 

visually expressed by the uniform distribution of malicious balances after the 

Consolidation Phase. 

Figure 66 depicts the balance differences between the two rewarding schemes. Out of 

100 nodes, 51 ended up with increased balance at an average value of +272.59 credit 

units; 49 nodes ended up with decreased balance at an average value of −283.71 credit 

units. Regarding malicious actors, the achieved correction leads to a rough decline in their 

final balance. The first 10 nodes being malicious, experience a substantial decrease in 

their final balance. The average decrease for the malicious nodes is −608.56 credit units, 

while the average value for all other reductions is −200.42 credit units. 
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Figure 63: Progress of credit balances in case of no malicious peers 

 

Figure 64:  Correction in credit balances in case of no malicious peers 
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Malicious 

Nodes 

 

Figure 65: Progress of credit balances in case of 10% malicious peers 

 

 

Figure 66: Correction in credit balances in case of 10% malicious peers 
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6.4.3 Discussion 

 

To evaluate our proposal’s efficiency on mitigating the effects of malicious actors who 

attempt to abuse the incentivization mechanism, we conducted two distinct experiments: 

(i) a session with no malicious actors and (ii) a session where 10% of the participants 

denied to report the help they enjoyed from their neighbors, in order to evade giving the 

appropriate rewards. Although most node metrics were randomly generated for the 

simulations, in both cases we used the same randomization seed; thus, the contribution of 

all peers was identical in both experiments. This allows us to quantify the correction 

achieved by the Consolidation Phase. As shown in Figure 67, the mean discrepancy of 

final balances between the two experiments was 3.2%. These results suggest that the 

effect of a significant portion of malicious peers was successfully eliminated at the 

expense of a minor decline in the final reward amount. 

 

 

Figure 67: Credit balance discrepancy due to malicious peers  
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7 Conclusions and Future Work 

 

7.1 Conclusions 

 
In Chapter 3, we simulated a first approach for decentralized DNN training utilizing 

Distributed Ledger Technology as the data diffusion mechanism. The simulation that was 

contacted served as a proof-of-concept for the particular formula. Although the dataset 

employed contains about 10 million instances, only a limited subset (100,000) of those 

were used in this phase. The results indicated that such an architecture can offer useful 

features in collaborative DNN training. 

We then extended our research to include more realistic conditions. The coordination 

algorithm was tested on a local network of PCs with moderate hardware specifications. 

Our methodology was solely comparative in nature, since we were interested in the 

potential advantages of decentralized collaboration over single node training, rather than 

actual performance. 

Our framework was tested in a variety of configurations to investigate the effects of 

each parameter on the final outcome. Each of these setups was performed several times 

to verify that all measurements were adequately consistent. Experiments demonstrated 

that our approach may provide real benefits to participating peers without jeopardizing 

data privacy. Finally, this research determined the optimum set of parameters to achieve 

the greatest benefit in terms of model accuracy. 

Although our experiments used just 15 workstations, they revealed a substantial 

improvement over nodes operating in isolation. According to  the information gained 

from these trials, it is firmly concluded that increasing the total number of participating 

peers should have a positive effect on this improvement. 

In Chapter 4, we developed and tested a novel method for embedding IoT sensors 

without compromising the architecture's distributed nature. Additionally, we examined a 

critical feature called resilience, and the effect of network disruptions and unreliable 

peers. Our experiments demonstrated that disruptions with an Offline Probability of up 

to 80% had no effect on overall efficiency. 
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In Chapter 5 we extended our research on Distributed Neural Network Training, by 

adding a subsystem that incentivizes peers to participate to a LEARNAE session. In this 

scenario, peers who have no interest in the generated model can join the swarm to profit 

from their constructive averaging. We developed a completely distributed Proof of 

Identification method and performed proof-of-concept tests to assess the key metrics. 

In Chapter 6 we addressed the limitations of the tipping incentivization method, since 

it was not able to deal with bad actors who refuse to pay the proper rewards. We proposed 

a novel mechanism that relies on a collaboratively generated contribution profile for each 

participant. The whole swarm exchanges knowledge in order to build a Shared 

Contribution Ledger, which is then used to allocate the rewards for the peers.  

With these contributions, LEARNAE fulfills the following properties: 

(a) Because it is built on a peer-to-peer architecture, it does not need a 

central coordinating entity or nodes with elevated privileges. 

(b) It accommodates participants with heterogeneous hardware, while 

avoiding locks caused by slow workers. 

(c) It offers a variety of roles, depending on processing power and the 

availability of training data. 

(d) It supports privacy mode, allowing peers to maintain ownership of 

their sensitive data. 

(e) By using data replication, it is capable of recovering from severe 

network failures. 

(f) It can retain all (meta)data indefinitely, allowing for the addition of 

new peers at any moment. 

(g) It democratizes the process, since participants have complete access 

to all information and generated models and do not need costly or 

sophisticated hardware. 

(h) It offers a robust incentivization mechanism, to attract participants 

who have no interest in the produced neural model. 

Apart from typical training scenarios, this method can provide a solution for use cases 

in which training data is constantly accumulated, such as via IoT sensors. Thus, peers 

with same interests might establish a community to ensure that the best model is available 

at any given moment. As shown by the experiments, LEARNAE collaboratively produces 
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models with an increased accuracy of up to 1.12% for the current configuration.  That is 

with no sharing of training data, but simply by leveraging the knowledge of neighbors via 

selective parameter averaging. According to our tests, increasing the total number of 

participants will enhance the benefits of the proposed algorithm. 

 

 

7.2 Future Work 

 
Numerous intriguing issues remain to be addressed.  How effectively can an ecosystem 

of this kind scale? How much can a large-scale deployment ultimately improve the 

obtained results? How does the performance/resilience trade-off work in practice? How 

effectively can the implemented algorithm work in conjunction with techniques such as 

model sharding to achieve faster convergence? What extra information may be utilized 

to improve the selection of candidate remote models for averaging? Are there any 

experimental DLT platforms that can be a better match outperforming the ones reviewed? 

Is this approach applicable to other training techniques, such as Random Forests, in which 

each worker trains a single tree or a set of trees using their own sample of data? 

The incentive algorithm must be evaluated on the following scenarios: (a) Sessions 

without data privacy; in this case, peers who join only for the purpose of profiting would 

donate their processing power to both training and averaging. (b) Sessions with two 

separate groups: data suppliers and profiteers. These trials would enable an in-depth 

examination of the digital asset exchange between these two groups.  

All of the above will constitute the backbone of our future work. 
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