
University of Macedonia

Department of Applied Informatics

Decentralized Deep Neural Network Training

via Distributed Ledger Technology

A Doctoral Thesis

by

Spyridon Nikolaidis

Supervisor:

Professor Ioannis Refanidis

Thessaloniki, Greece

2022

2

Devoted to my family

3

Disclaimer

I hereby declare that this thesis is my own original work and has not been submitted before to any

institution for assessment purposes.

Whilst every effort has been made to ensure the accuracy of the information supplied herein, the

University of Macedonia cannot be held responsible for any errors or omissions.

Further, I have acknowledged all sources used and have cited these in the reference section.

4

Acknowledgements

I would like to thank my supervisor, Professor Ioannis Refanidis, for his unwavering

encouragement and scientific backing. His suggestions and comments were immensely helpful

during the development of this thesis.

Next, I would like to thank the other two members of my doctoral committee, Professor Nikolaos

Samaras and Assistant Professor Ilias Sakellariou, for their assistance.

I would also like to thank my family for their patience and unconditional support.

5

Three-member committee

1. Professor Ioannis Refanidis

Department of Applied Informatics, University of Macedonia

2. Professor Nikolaos Samaras

Department of Applied Informatics, University of Macedonia

3. Assistant Professor Ilias Sakellariou

Department of Applied Informatics, University of Macedonia

Seven-member committee

1. Professor Ioannis Refanidis

Department of Applied Informatics, University of Macedonia

2. Professor Nikolaos Samaras

Department of Applied Informatics, University of Macedonia

3. Assistant Professor Ilias Sakellariou

Department of Applied Informatics, University of Macedonia

4. Professor Konstantinos Margaritis

Department of Applied Informatics, University of Macedonia

5. Assistant Professor Panagiotis Papadimitriou

Department of Applied Informatics, University of Macedonia

6. Professor Konstantinos Diamantaras

Department of Information and Electronic Engineering, International Hellenic University

7. Professor Dimitrios Kalles

School of Science and Technology, Hellenic Open University

6

Abstract

The amount of digital data is growing faster than ever, so the need for users’ privacy has become

critical. In today’s world, everything is centralized; be it the Internet traffic, Social Media, Banks, E-

commerce or Medical. Tech giants constantly collect the users’ data and analyze it, to provide

improved services to customers. However, the way in which these data are collected and processed

is kept a secret in order to have an edge over competition. Unfortunately, there are more than few

incidents where huge amounts of sensitive data were leaked, intentionally or due to lack of proper

security. This excessive concentration of infrastructure, immensely affects Artificial Intelligence (AI)

research. To properly train today’s gigantic neural models, an individual needs access to corporate

data centers for computing power and data storage.

The aforementioned factors highlight the necessity for decentralized systems in which there is no

central authority to oversee node coordination. Such systems put a priority on data ownership and

privacy, equal participation, and fault tolerance. Decentralization has the potential to benefit research

as a whole. The greater the number of people who have access to the raw information and tools, the

more novel ideas are bound to emerge. The democratization of AI removes entry barriers for

individuals and organizations to begin experimenting. It lowers the total cost of developing AI

solutions, as communities of programmers and users begin to utilize and enhance related technologies

to create more powerful solutions. The openness of such systems, in which everything is made freely

available to others, also aids in the development of required skills and, as a result, promotes

innovation. However, democratization can help with another crucial component of AI: Even the most

complex systems created by highly experienced engineers might be biased, introducing prejudice or

serious flaws. Because of the higher variety of sources present in decentralized contexts, data

diversity can mitigate biases that may be lurking in narrow datasets.

LEARNAE, the proposal presented in this thesis, attempts to address all of the aforementioned

issues by utilizing novel Distributed Ledger Technology (DLT). By combining multiple DLT

networks, it synthesizes an ecosystem in which individuals can train Deep Neural Networks

collaboratively. There are no hardware or interconnection specifications that must be met, and

everyone can contribute according to their capabilities. The process is completely asynchronous, with

no locks caused by slow workers, and all nodes have equal rights to the produced models. When data

privacy is a concern, LEARNAE can be configured to prevent training data from being shared. The

generated swarm is based on purely peer-to-peer topology, with no need for central authorities. These

7

features, combined with data duplication, result in a network with no single-point-of-failure. The

coordinating algorithm is platform agnostic, thus any DLT can be used as the underlying

infrastructure. The final additions include an incentivization subsystem, which enables LEARNAE

to attract participants who have no interest in the generated model, by offering them a reward

proportional to their overall contribution.

8

Table of Contents

1 Introduction... 17

1.1 Synopsis of architecture .. 17

1.2 Design Decisions ... 18

1.3 Methodology ... 19

1.3.1 Proof of Concept .. 19

1.3.2 Real-world deployment .. 20

1.3.3 Resilience Study & IoT Embedding .. 20

1.3.4 Basic Peer Incentivization .. 20

1.3.5 Advanced Peer Incentivization .. 21

1.4 Thesis Contributions.. 21

1.5 Thesis Structure ... 22

2 Background ... 24

2.1 Artificial Intelligence .. 24

2.1.1 Steps towards Machine Learning ... 24

2.1.1.1 Searching .. 25

2.1.1.2 Pattern Recognition .. 25

2.1.1.3 Learning.. 26

2.1.1.4 Planning .. 27

2.1.1.5 Induction ... 27

2.1.3 Unexplainability and Incomprehensibility ... 28

2.2 Artificial Neural Networks .. 28

2.2.1 General Structure ... 28

2.2.2 Learning Methods .. 31

2.2.2.1 Supervised Learning ... 31

2.2.2.2 Unsupervised Learning... 31

2.2.2.3 Reinforcement Learning ... 31

2.2.3 Evolutionary Artificial Neural Networks ... 32

2.2.4 Stochastic Gradient Descent .. 32

2.2.5 Neural Model Averaging ... 34

2.3 Distributed Computing .. 35

9

2.3.1 Concerns... 35

2.3.2 Communication Cost.. 35

2.3.3 Distributed systems .. 36

2.3.4 Types of distributed applications ... 37

2.3.4.1 Improving performance .. 37

2.3.4.2 Improving fault-tolerance ... 38

2.4 Distributed Ledger Technology... 38

2.4.1 The Elements of a Distributed Ledger ... 38

2.4.2 Challenges of Distributed Consensus .. 41

2.4.2.1 Fault-tolerant Distributed Consensus ... 41

2.4.2.2 Byzantine Fault-Tolerant Consensus.. 41

2.4.3 Case study: The Nakamoto Consensus Algorithm .. 42

2.4.4 The Security-Decentralization-Scalability Trilemma .. 44

2.4.5 Identity management .. 45

2.4.6 How DLT can transform Artificial Intelligence .. 45

2.5 Gossip Protocols .. 46

2.5.1 Random Walk protocols... 46

2.5.2 DHT-based protocols ... 47

2.6 Blockchain Technology ... 47

2.6.1 Definition ... 47

2.6.2 Cryptography Fundamentals .. 48

2.6.2.1 Cryptographic Hash Functions ... 48

2.6.2.2 Asymmetric Cryptography ... 49

2.6.3 Addresses ... 50

2.6.4 Transactions ... 50

2.6.5 Blocks... 51

2.6.5.1 Block Structure ... 51

2.6.5.2 Block propagation and synchronization ... 52

2.6.6 Distributed Consensus.. 53

2.6.6.1 Consensus Models .. 54

2.6.6.1.1 Proof of Work ... 54

2.6.6.1.1.1 Mining Difficulty Analysis .. 55

10

2.6.6.1.2 Proof of Stake ... 56

2.6.6.2 Conflict resolution .. 57

2.6.7 Smart Contracts .. 58

2.7 Internet of Things .. 59

2.7.1 IoT Fundamentals .. 59

2.7.2 DLT for Internet of Things .. 60

2.7.3 DLT-IoT Interaction Level .. 61

2.8 IPFS ... 61

2.8.1 Design .. 61

2.8.2 Protocol Stack .. 63

2.8.2.1 Identities ... 63

2.8.2.2 Network .. 63

2.8.2.3 Routing ... 65

2.8.2.4 Exchange .. 65

2.8.2.5 Objects .. 68

2.8.2.6 Files .. 70

2.8.2.7 Naming ... 72

2.9 IOTA ... 73

2.9.1 The Tangle ... 73

2.9.2 System Stability ... 76

2.9.3 Masked Authenticated Messages ... 78

2.9.4 Seeds & keys .. 79

2.9.5 Coordinator .. 80

2.9.6 Snapshots & Permanodes ... 80

2.10 Ethereum ... 80

3 Privacy preserving distributed training of neural networks .. 82

3.1 Related work.. 82

3.2 Implementation .. 83

3.2.1 Parallelism type .. 83

3.2.2 Propagation .. 83

3.2.3 Coordination... 84

3.2.4 Synchronicity ... 84

11

3.2.5 Data privacy ... 85

3.3 System architecture ... 85

3.3.1 Overview .. 85

3.3.2 Node Roles ... 85

3.3.3 Message Types ... 86

3.3.3.1 Slice hashlist ... 86

3.3.3.2 Remote model... 86

3.3.3.3 Slice use stats.. 86

3.4 Simulation ... 88

3.5 Experiments ... 91

3.5.1 Scope .. 91

3.5.2 Collaborative training sessions .. 92

3.5.3 Sample graphs .. 92

3.5.3.1 Number of peers in training mode .. 92

3.5.3.2 Number of peers in averaging mode .. 93

3.5.3.3 Data sent ... 94

3.5.3.4 Successful averagings... 98

3.5.3.5 Resilience ... 100

3.5.3.6 Overall network accuracy ... 102

3.6 Summary ... 104

4 Using Distributed Ledger Technology to Democratize Neural Network Training 105

4.1 Related work.. 105

4.1.1 Centralized synchronous .. 105

4.1.2 Centralized asynchronous .. 106

4.1.3 Decentralized synchronous .. 106

4.1.4 Decentralized asynchronous .. 107

4.2 LEARNAE system .. 109

4.2.1 Coordinating algorithm .. 109

4.2.2 IoT Implementation.. 110

4.2.3 Configuration of the MAM Stream. ... 111

4.2.4 IoT evaluation .. 114

4.2.4.1 Sensor Setup ... 114

12

4.2.4.2 Dataset Characteristics ... 114

4.2.4.3 Data Publishing .. 114

4.3 Fault tolerance evaluation ... 114

4.3.1 Low Epoch Conditions... 116

4.3.2 Optimal Epoch Conditions ... 118

4.4 Data balancing ... 119

4.5 Benefits of proposed architecture .. 120

4.6 Summary ... 122

5 Incentivizing Participation to Distributed Neural Network Training 123

5.1 Proposed architecture .. 123

5.2 Incentivization algorithm .. 125

5.2.1 Reward Function .. 125

5.3 Distributed proof of identification ... 125

5.3.1 Smart Contract Deployment ... 126

5.3.2 PoID Propagation and Rewarding.. 126

5.3.3 Shielding against fraudulence .. 126

5.4 Conducted experiments ... 126

5.5 Summary ... 129

6 Consolidating Incentivization in Distributed Neural Network Training via Decentralized

Autonomous Organization ... 131

6.1 Proposed architecture .. 131

6.2 The concept of Decentralized Governance ... 132

6.2.1 Background Theory.. 132

6.2.2 Decentralized Autonomous Organizations .. 133

6.3 LEARNAE’s Decentralized Autonomous Organization ... 136

6.4 Experimental results .. 140

6.4.1 Network with no malicious nodes .. 141

6.4.2 Network with 10% malicious nodes .. 142

6.4.3 Discussion .. 145

7 Conclusions and Future Work .. 146

7.1 Conclusions ... 146

7.2 Future Work .. 148

13

List of Tables

Table 1: Gradient iterations of popular SGD optimizers ... 33

Table 2: Sample input texts and their digests .. 49

Table 3: Attempts to solve PoW puzzle ... 55

Table 4: Proof of Work simulation .. 55

Table 5: Encryption types of MAM streams .. 79

Table 6: Comparison of previous approaches .. 82

Table 7: Different approaches regarding training coordination ... 84

Table 8: Supported node types and their features .. 86

Table 9: Node tasks .. 87

Table 10: Data sent – Peers & Total .. 94

Table 11: Collaborative overall network accuracy per dataslice size .. 104

Table 12: Configuration of VPS nodes .. 113

Table 13: Main hardware/software specifications of the emulated sensor 113

Table 14: Metrics of data transmitted by the SBC ... 115

Table 15: The improvement in convergence (distributed vs stand-alone) 119

Table 16: Mean model accuracy values (stand-alone vs distributed) .. 121

Table 17: Typical parameters of a DAO proposal ... 137

14

List of Figures

Figure 1: Image transformations for property extraction ... 26

Figure 2: Workflow of an artificial neuron .. 29

Figure 3: Structure of an Artificial Neural Network .. 30

Figure 4: Examples of neural network topologies ... 30

Figure 5: Types of distributed architectures .. 37

Figure 6: The three layers of a DLT system .. 40

Figure 7: Data propagation using gossip protocol ... 44

Figure 8: Example of a Blockchain transaction ... 51

Figure 9: Typical structure and linking of blocks .. 52

Figure 10: A split to the blockchain caused by conflicting blocks .. 58

Figure 11: Layers of an IoT system with typical examples ... 60

Figure 12: The protocol stack of IPFS ... 62

Figure 13: Probability of sending a block to a debtor .. 66

Figure 14: Representation of transactions in the Tangle.. 73

Figure 15: Conflict resolution in the IOTA Tangle ... 74

Figure 16: The Branch Cumulative Weight over time ... 75

Figure 17: The singly-linked list of a MAM stream .. 78

Figure 18: The structure of a Merkle Tree representing N data fragments .. 81

Figure 19: Dataflow between nodes of different roles ... 87

Figure 20: Workflow of a node’s “Listening thread” .. 88

Figure 21: Workflow of a node’s “Working thread” ... 89

Figure 22: Average Accuracy per Slice Size (Overuse Threshold: 6) ... 90

Figure 23: Average Accuracy per Overuse Threshold (Slice Size: 6250) ... 90

Figure 24: Total Bytes Sent per Slice Size (Overuse Threshold: None) ... 90

Figure 25: Average Resilience per Slice Size (Overuse Threshold: 2) .. 91

Figure 26: Duplicate Data Sent per Slice Size (Overuse Threshold: None) 91

Figure 27: Number of peers in training mode .. 93

Figure 28: Number of peers in averaging mode .. 95

Figure 29: Data sent – Peers & Total ... 96

Figure 30: Data sent – Peers .. 97

15

Figure 31: Successful average operations .. 98

Figure 32: Successful average operations % .. 99

Figure 33: Resilience ... 101

Figure 34: Sample snapshot of availability dispersion (random peer) ... 101

Figure 35: Overall network accuracy ... 102

Figure 36: Collaborative overall network accuracy per dataslice size ... 103

Figure 37: Data flow between different node roles .. 110

Figure 38: The principal parts of a Full Node's workflow ... 111

Figure 39: The structure of MAM messages created by LEARNAE .. 112

Figure 40: The number of online peers for different Offline Probability .. 115

Figure 41: Mean Accuracy and Spread per Offline Probability (Low Epochs) 116

Figure 42: Comparison of Mean Accuracy for different Offline Probability (Low Epochs) 117

Figure 43: Mean Resilience and Spread .. 117

Figure 44: Mean Accuracy and Spread per Offline Probability (Optimal Epochs) 118

Figure 45: Comparison of Mean Accuracy for different Offline Probability (Optimal Epochs) 119

Figure 46: Total amount of data sent by each peer .. 120

Figure 47: Number of peers training/averaging ... 121

Figure 48: Successful averaging attempts .. 121

Figure 49: Mean model accuracy (stand-alone vs distributed) .. 122

Figure 50: The major parts of a node's workflow (incentivization in yellow color) 123

Figure 51: Additional workflow section .. 124

Figure 52: Structure of DPoID Smart Contract ... 127

Figure 53: Work type distribution .. 128

Figure 54: Cumulative success rate of averaging process ... 128

Figure 55: Progress of model accuracy .. 129

Figure 56: Cumulative number of Eth payments ... 129

Figure 57: Cumulative amount of Eth sent .. 130

Figure 58: Architectural layers of DAO .. 136

Figure 59: Shared Contribution Vector of Node #i (assuming 100 participants) 138

Figure 60: Shared Contribution Ledger (assuming 100 participants) .. 138

Figure 61: The updated workflow of a LEARNAE full node .. 139

Figure 62: Stages of LEARNAE’s DAO ... 141

16

Figure 63: Progress of credit balances in case of no malicious peers .. 143

Figure 64: Correction in credit balances in case of no malicious peers .. 143

Figure 65: Progress of credit balances in case of 10% malicious peers .. 144

Figure 66: Correction in credit balances in case of 10% malicious peers 144

Figure 67: Credit balance discrepancy due to malicious peers .. 145

17

1 Introduction

Artificial intelligence has regained scientific interest, mostly due to the availability of big data. The

growth of the Internet, social networks, and online sensors have resulted in the everyday production

of a tremendous quantity of information. This unprecedented data availability propelled Machine

Learning innovation.

Deep Neural Networks is one field of study that has benefitted significantly from this phenomenon.

Numerous use cases now need massive models with millions of parameters, and big data has been

shown to be critical for their successful training. Many approaches have been suggested by the

scientific community for creating more accurate models. Typically, these techniques need high-

performance infrastructure, which limits their applicability to big companies and institutions with the

necessary financial resources.

Another issue is privacy; anybody who leases computing power from a remote data center must

trust an organization with their data. Regrettably, sensitive information has been leaked in many

instances, either for financial gain or due to security issues. However, there is a dearth of study on

open communities of individuals using commodity hardware, who would like to cooperate in a non-

binding and decentralized manner.

Our work on LEARNAE attempts to fill this gap, providing a way to train Artificial Neural

Networks, featuring pure decentralization, data ownership and fault tolerance.

1.1 Synopsis of architecture

LEARNAE [1]–[5] introduces a novel approach to resolving the aforementioned issues via the use of

novel distributed technologies. It establishes a completely decentralized environment in which

individual Machine Learning (ML) researchers may cooperate with equal roles and full access to

findings, all without the need for costly equipment. Meanwhile, they may maintain control of their

sensitive data by using contemporary permissionless networks.

When it comes to Artificial Neural Network (ANN) training, there are many approaches that claim

to be decentralized. However, upon closer examination, one may see that the idea of decentralization

itself can take on a variety of forms. Scaling from low to high degrees of decentralization, the

18

literature discusses methods that include a parameter server, a cluster of parameter servers, peers with

elevated roles, and ultimately, pure peer-to-peer topologies.

Our approach is based on the last scheme; thus, all participating nodes have the same set of rights,

and none of them is essential for the training process to take place. LEARNAE makes use of

innovative Distributed Ledger Technology (DLT) to distribute data. The coordinating algorithm is

platform-agnostic; the present implementation makes use of two novel technologies: (a) IPFS [6], a

decentralized file system, and (b) IOTA [7], a network architecture focused on the Internet of

Things (IoT). This approach provides great resilience, since all information is transmitted using

gossip protocols, which eliminates the possibility of a single point of failure. LEARNAE uses data

parallelism [8][9], where each worker stores and processes the whole model locally, using its own

training data.

Following processing on workers, the generated models must be merged. All parameters of the

local model are averaged with the corresponding parameters of a chosen remote model during each

averaging phase [10]. This introduces additional stochasticity into the system, thus increasing its

overall final accuracy. Nodes may also share training data using the same decentralized method in

situations where privacy is not a concern.

The collaborative training procedure is designed to operate with topologies that are loosely

connected. There is no need for synchronization, and all data remains on the network for peers to

consume at their own pace. Additionally, there is no indirect leakage, since the broadcasted models

are progressively influenced by the weights of remote models generated by neighbors, making reverse

engineering practically impossible.

1.2 Design Decisions

LEARNAE does not require servers or any type of synchronization because it is totally based on

distributed peer-to-peer technology. Its target use cases are environments with commodity-hardware

nodes and networking infrastructure that may have significant latency and loose connection. Through

the use of innovative Distributed Ledger Technology, we are able to collect data from a variety of

sources, including lightweight Internet of Things (IoT) devices.

Our proposal employs data parallelism, which means that each worker keeps a local copy of the

whole model and executes it using only a portion of the training data. LEARNAE uses weight

19

averaging for model merging, which implies that after the training phase, all model parameters are

averaged with the corresponding parameters of a remote worker's model.

Generally, to gather, integrate, and re-distribute averaged data, a central server can be employed.

While using a server speeds up training in many cases, it also provides a single point of failure and a

bandwidth bottleneck in big networks. This disadvantage can be overcome by increasing the number

of servers that work together. When the presence of a server is neither practical or desired, some of

the participants' peers are assigned specialized coordinating roles, while continuing to perform all

other training activities. At the opposite end of the spectrum are systems in which no node takes on

additional coordinating functions, resulting in a truly decentralized environment, as is the case in our

design.

The training collaboration might be synchronous or asynchronous. In synchronous designs the

coordinating entity guarantees that only results from the same training period are merged. In

asynchronous architectures there is no such need, and the results of a worker can be incorporated into

the global model using more flexible criteria. Synchronous training may converge faster because it

avoids combining models that are less relative, but it may produce locks from sluggish peers,

compromising the entire process. While asynchronous training optimizes worker utilization, it suffers

from gradient staleness, which implies that by the time a sluggish worker submits their findings, the

global model is already out of sync. Although LEARNAE is designed to be asynchronous, it does

provide features that, when used in future implementations, may create a configurable level of

synchronicity.

Our proposal can work in situations where participants are hesitant to share sensitive training

information. Training-data related communications are inhibited in such cases, and all sent data

consists only of models developed by nodes after their training or averaging sessions. In that way the

network indirectly leverages the useful information contained in all training data, through the models

these data produced.

1.3 Methodology

1.3.1 Proof of Concept

In [1], we proposed the fundamentals of a novel architecture (LEARNAE) that utilizes different

types of Distributed Ledger Technology, to create an ecosystem for decentralized ANN training.

20

The concept made the assumption of loosely connected peer-to-peer topologies with unstable

connections and unexpected downtimes. In that study, we specified four distinct roles from which

nodes may choose, based on their processing power and data availability. The idea was evaluated

by simulating a training swarm of 10 peers, using virtualization methods on a single computer.

1.3.2 Real-world deployment

In [2], we evaluated the proposed algorithm in real-world scenarios. LEARNAE was installed on a

15-computer local network using commodity hardware and networking. The experiments examined

the averaging process and resulted to tangible gains in model accuracy.

1.3.3 Resilience Study & IoT Embedding

In [3], we extended the deployment to a group of 20 Virtual Private Servers (VPS) and assessed the

resilience provided by data duplication. This was accomplished by implementing a new subsystem

that simulated network disruptions and peer downtime. LEARNAE was able to withstand critical

disconnections with no degradation to the produced model's performance. Additionally, that study

introduced a novel way for embedding low-energy IoT sensors without compromising the overall

decentralized philosophy.

1.3.4 Basic Peer Incentivization

In [4], we added another piece to the puzzle: a mechanism for incentivizing peers to join the

training swarm, even if they have no interest in the neural network generated. This is accomplished

via the incorporation of a reward subsystem within LEARNAE; as a result, peers who contribute to

collaboration may earn a proportionate digital payout.

This first implementation served as a proof of concept, so it was rather simplistic: Every time a

peer improved his local model by using the remote model of a neighbor, the peer sent a direct

micropayment to that neighbor. For this scheme to work we made the assumption that all

participants would acknowledge the help offered to them, and give the appropriate rewards.

21

Of course, this is not always the case, so in the next development phase we significantly

enhanced the incentivization algorithm, to anticipate peers who attempt to evade sending rewards to

others.

1.3.5 Advanced Peer Incentivization

Our work in [5] was a major paradigm-shift regarding incentivization. We proposed a way of

utilizing a novel distributed concept, Decentralized Autonomous Organizations, to consolidate the

rewarding algorithm. Prior to training session, all participants have to lock a specific amount of

digital assets, declaring in that way their commitment to the process.

During the collaborative training, peers exchange metadata regarding the level of contribution

for all participants. The result is the creation of a shared ledger which contains the quantified

information about the help each node has offered to the swarm. The consistency of this ledger

depends on the honesty of the peers, so the whole scheme works well when the majority is

benevolent.

After model training, each peer is rewarded according to its reputation in this shared ledger. The

conducted experiments showed that our algorithm managed to greatly mitigate reward-evading

attempts by a high percentage of malicious actors.

1.4 Thesis Contributions

Unlike all previous decentralized systems, LEARNAE makes no reference to a common model.

Rather than that, each participating peer maintains its own model and makes use of the knowledge of

its neighbors to improve it. The majority of similar methods make an effort to spread execution in

order to reduce training time. It is critical to emphasize that LEARNAE takes a unique path: It focuses

not only on improved models, but also on completely democratizing the process, by prioritizing the

following features:

• Peer-to-peer. With a true peer-to-peer architecture, all nodes have the same level of access to

the neural models generated. None of them provides an essential or privileged role.

• Resilience. The whole procedure is immune to node failures and large-scale network

disruptions, ensuring that there is no single point of failure.

22

• Persistency. All (meta)data may be optionally retained on the network, as long as the policy

of the members permits. This is critical in situations when additional nodes may join the

training at any point throughout the process.

• Privacy. The coordinating algorithm may be set to run in a privacy-preserving mode, in which

peers cooperate without sharing sensitive data.

• Polymorphism. Participants may select from many distinct roles, based on the processing

power and training data availability.

• Heterogeneity. Due to the fully asynchronous nature of the scheme, significant hardware

differences are mitigated, thus there are no locks.

To the best of our knowledge, no other proposal sets and fulfils these priorities. The research

conducted within this thesis resulted in the following publications:

• S. Nikolaidis and I. Refanidis, “Learnae: Distributed and Resilient Deep Neural Network

Training for Heterogeneous Peer to Peer Topologies,” in Engineering Applications of Neural

Networks, Cham, 2019, pp. 286–298. doi: 10.1007/978-3-030-20257-6_24.

• S. Nikolaidis and I. Refanidis, “Privacy preserving distributed training of neural networks,”

Neural Comput & Applic, vol. 32, no. 23, pp. 17333–17350, Dec. 2020, doi: 10.1007/s00521-

020-04880-0.

• S. Nikolaidis and I. Refanidis, “Using distributed ledger technology to democratize neural

network training,” Appl Intell, Mar. 2021, doi: 10.1007/s10489-021-02340-3.

• S. Nikolaidis and I. Refanidis, “Incentivizing Participation to Distributed Neural Network

Training,” in Proceedings of the 22nd Engineering Applications of Neural Networks

Conference, Cham, 2021, pp. 364–374. doi: 10.1007/978-3-030-80568-5_30.

1.5 Thesis Structure

The rest of this Thesis is structured as follows:

Section 2 presents fundamental aspects relative to our work, such as Artificial Intelligence,

Machine Learning, Neural Networks, Distributed Computing, Distributed Ledger Technology,

Gossip Protocols, Distributed Hash Tables, Blockchain, and Internet of Things.

Section 3 presents our initial research, simulating a LEARNAE network using 10 Docker images

on a single machine. This study offered insight about various parameters of the proposed

environment.

23

Section 4 presents the experiments conducted on a real-life deployment. For this purpose, we used

a typical local area network comprised by 15 commodity personal computers. This deployment was

enhanced with the implementation of LEARNAE’s proposal regarding IoT, where lightweight

sensors were emulated by using Single Board Computers. Additionally, we studied and quantified

the resilience of our architecture during network disruptions.

Section 5 presents our first incentivization mechanism, which aims to bring aboard peers who have

no interest in the produced neural model. This is achieved by rewarding the helpful nodes with digital

assets.

Section 6 consolidates and upgrades the incentivization algorithm, to mitigate the effect of

malicious participants, by introducing the concept of Decentralized Autonomous Organizations.

Section 7 presents our conclusions on our study regarding LEARNAE, and poses future research

directions.

24

2 Background

2.1 Artificial Intelligence

2.1.1 Steps towards Machine Learning

Conventional programming is a sequence of commands instructing a computer what to do in an

explicit way. To deal with problems where the solution cannot be strictly formalized, we need

heuristic methods; algorithms that manage to achieve good-enough results in acceptable timeframes,

by following non-typical and non-optimal approaches. This area is divided into five main sectors:

(1) Searching

(2) Pattern Recognition

(3) Learning

(4) Planning

(5) Induction

The roughest way to solve a problem is to randomly scan for solutions in a -usually vast- solution

space. Pattern Recognition, combined with Learning, can use the experience accumulated by Search,

to construct generalizations that can further reduce searching time. Planning analyzes the problem

and can replace Search with a significantly smaller, applied on an optimized solution space. During

Induction, the system attempts to reconstruct the problem’s environment. The created model is then

used to solve similar problems in a broader area.

There is a minimum amount of information we need to have about a problem to be able to solve

it. In cases where the system searches for a solution by consecutive trials, we must have some kind

of comparator, a function that takes a pair of trial outcomes and returns the best one. Assuming that

the relationship between trials is transitive, thus

𝐼𝐹 (𝑻𝒓𝒊𝒂𝒍𝟏 𝑖𝑠𝐵𝑒𝑡𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑻𝒓𝒊𝒂𝒍𝟐) & (𝑻𝒓𝒊𝒂𝒍𝟐 𝑖𝑠𝐵𝑒𝑡𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑻𝒓𝒊𝒂𝒍𝟑)

𝑇𝐻𝐸𝑁 (𝑻𝒓𝒊𝒂𝒍𝟏 𝑖𝑠𝐵𝑒𝑡𝑡𝑒𝑟𝑇ℎ𝑎𝑛 𝑻𝒓𝒊𝒂𝒍𝟑)

we can define some kind of progress and get the best-found result in a given timeframe. The process

can be significantly optimized if we have extra structure on the search space, like an index of similarity

25

between two points. In this way we can send the exploration to more promising directions. Such a

structure is called a heuristic connection. In most AI systems this structure is the Loss Function,

which takes the problem’s parameters as arguments and returns a value that indicates the quality of a

candidate solution.

2.1.1.1 Searching

A popular way of searching unexplored solution spaces is Hill Climbing. Assume that there are 𝑁

inputs, 𝑥1, 𝑥2, … , 𝑥𝑁, and one output 𝐿(𝑥1, 𝑥2, … , 𝑥𝑁). The goal is to maximize 𝐿 by adjusting the 𝑁

input values. The problem is that we are not aware of an analytical form for 𝐿 function, thus we cannot

use conventional differentiation methods. An approach is to randomly select a point and explore the

area around it, always following the direction with the steepest ascent. The process is based on

repeatedly estimating the gradient component 𝜕𝐿/𝜕𝑥𝑖 separately for each 𝑥𝑖 coordinate. This is the

most fundamental form of Hill Climbing, while a large number of more sophisticated variations have

been proposed.

An obvious problem of this method is that it can be trapped in a local peak which is not a

satisfactory optimum. The system could overcome this dead-end by increasing the searching step. It

is important to outline that there is no generic solution that applies to all problems. An efficient

exploration pattern should probably include multiple techniques executed iteratively or even

recursively.

2.1.1.2 Pattern Recognition

An intelligent system must be able to scan the input data and group them into categories, by extracting

the heuristically significant features. The methods for such classification may vary, from simple

matching against predefined prototypes, to complex extraction of important properties contained in a

property-list. Perhaps the most challenging problem of this procedure is how to invent new

heuristically-useful properties in order to create a recognition scheme.

There is an unlimited number of techniques, and their combinations, a system can use to solve a

problem. To be successful it has to choose an optimal-enough subset of them, in order to finish the

job using realistic resources. After the classification process, the objects grouped together should

share a common characteristic that is of heuristic value [11]. For example, if the input objects are

26

geometrical shapes, a pattern recognition system could extract a useful property by counting the

number of corners, as shown in Figure 1.

Figure 1: Image transformations for property extraction

2.1.1.3 Learning

A good way to solve a new problem is to follow a method called Basic Learning Heuristic. This

method suggests that we should benefit from past related knowledge, by trying similar solutions that

succeeded on similar problems. Obviously, a new problem will never be exactly the same as previous

ones, so we have to create a generalization that can lead to useful inductive inference.

The learning capabilities of a system can be based on a reinforcement process. Such a system

generates a variety of behaviors and uses a Trainer who applies a Reinforcement Operator, 𝑍, on

them. The role of this operator is to judge the quality of these behaviors, amplify the promising ones

and diminish all others [12].

Suppose that, under predefined environment conditions, we want the system to make a specific

choice. During the 𝑛𝑡ℎ trial we can reward this decision by amplifying its probability, 𝑝𝑛; this can be

achieved if we apply the reinforcement operator 𝑍+:

𝑝𝑛+1 = 𝑍+(𝑝𝑛) = 𝜃 ∙ 𝑝𝑛 + (1 − 𝜃) 0 < 𝜃 < 1

In case the system makes a wrong decision and must be discouraged, we can apply a negative

reinforcement [13]:

𝑝𝑛+1 = 𝑍−(𝑝𝑛) = 𝜃 ∙ 𝑝𝑛

Transformation 1
Leave only points
at the edge of a

solid region

Transformation 2
Leave only vertex

points

Property Function
CountPoints()

“5”

27

This reinforcement scheme has a drawback: Its dependence on a rigid Trainer, which can limit the

system’s ability to solve more complex problems. This issue can be mitigated by a method called

Secondary Reinforcement, which suggests that the machine can learn to generalize what the Trainer

does. This can be seen as consecutive self-reinforcement corrections regarding relevant subproblems.

The heuristic concept behind this is that any signal which in the past was linked to, for example,

positive reinforcement is likely to indicate that something good has just happened.

2.1.1.4 Planning

Planning refers to the process of analyzing a problem, splitting it into a number of subproblems and

selecting which of them to investigate, in order to reduce the resources needed for the final solution.

The Logic Theory Machine [14][15] is considered to be a landmark in heuristic programming, and

was a first attempt to prove theorems in logic.

Given that for a complex problem there is a vast number of inference methods that can be applied,

perhaps the most challenging difficulty is to find an efficient way to decide where and when to use

each one. This is not an easy task, because in a specific stage a method may not directly solve the

problem but instead may help creating new subproblems that can assist to finding a solution.

The most straightforward concept of planning is using a simplified model. The first step is to find

a similar problem but with less detail and complexity, that can be solved with a set of simpler methods.

Then we can use this solution as a plan for the original problem. Probably the selected methods will

need to be expanded in detail to keep up with the new requirements. But this enhancement will add

to the total search time, not multiply it.

2.1.1.5 Induction

A machine with inductive ability can construct general statements about events beyond its recorded

experience. Let’s assume a system that groups statements into “true” and “false” ones. The system is

initialized by a large number of labeled data which can easily recognize afterwards. But how can the

system generalize the acquired knowledge to label new statements? An efficient method is to generate

a formal language where the true statements are grammatical and the false ones are not. Using this

language and obeying its rules we could create more statements, and presumably these will tend to

28

be more like the true ones [16]–[19]. If the predictions fail to be consistent with new inputs, the

system can periodically make small changes to the existing rules.

2.1.3 Unexplainability and Incomprehensibility

For decades AI systems were in fact a digital representation of the distilled knowledge of field experts.

Frequently based on decision trees, were the perfect way of modeling human decision making. Thus,

the function of those systems was naturally understandable by developers and even users. During the

last years there was a cataclysmic paradigm shift in the leading AI methodology, towards Machine

Learning systems based on Deep Neural Networks. Such systems manage to achieve exceptional

performance by utilizing Big Data. Although these systems can produce optimal results with minimal

human assistance, the sacrifice that has to be made is about explainability, comprehensibility, and

transparency [20][21]. This lack of understanding is less in narrow AI systems applied on limited

domains, but skyrockets when the application field broadens.

We are approaching an era when the size and complexity of Artificial Deep Neural Networks will

exceed those of the human brain, generating results which rely on billions of contributing factors.

Even in cases where the AI system can provide a reasoning on the solution it proposes, this

explanation may be either too long to be surveyed [22][23], or too complex to be understood [24].

For example, a neural network could potentially be converted to a huge decision tree of if statements.

That would not make it understandable, but just human-readable. As a result, developers face a

dilemma: Either oversimplify their model to grasp understandability and lose in terms of accuracy,

or allow the incomprehensible complexity and achieve optimal, often superhuman, results. Perhaps

this aspect of DNN should not be surprising, since they are modeled after the very physical structure

of the human brain, which is still considered a black box.

2.2 Artificial Neural Networks

2.2.1 General Structure

An Artificial Neural Network (ANN) is a model trying to simulate the structure and functionality of

the biological brain. Its building block is the Artificial Neuron, an entity that transforms multiple

29

inputs into one output. The inputs of a neuron are weighted, thus each one is multiplied by a different

numeric value; the weighted inputs and a bias value are added together (Figure 2).

Figure 2: Workflow of an artificial neuron

The result serves as the input of an Activation Function, 𝐹, which determines the neuron’s output:

𝑦(𝑘) = 𝐹 (∑(𝑤𝑖(𝑘) ∙ 𝑥𝑖(𝑘)) + 𝑏

𝑚

𝑖=0

)

The activation can be any mathematical function, and is selected according to the use case. The

most useful functions are Step, Linear and Sigmoid.

Step function is binary, thus it has only two possible output values. Which one will be the result

depends on whether the input exceeds a threshold value:

𝑦 = {
𝐴 , 𝑖𝑛𝑝𝑢𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝐵 , 𝑖𝑛𝑝𝑢𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Artificial neurons using this function are called perceptrons and are often used in the last layer for

solving classification problems. In contrast, Linear activation functions can do simple

transformations and are common in input layers. Sigmoid1 function can be calculated with low

processing cost, a feature important when dealing with a large number of weight updates.

1 https://en.wikipedia.org/wiki/Sigmoid_function

Activation

Sum

Multiplication

+
+

Input1

Input2

InputN

. . .

Weight1

WeightN

Weight2
. . .

Bias

 Output

30

The true potential is revealed when we connect multiple artificial neurons into layers, where the

output of each layer serves as the input of the next one, forming a Neural Network (Figure 3). The

connections between neurons are not random; researchers have come up with several standardized

topologies, depending on the type of the problem that must be solved.

Figure 3: Structure of an Artificial Neural Network

Based on their interconnection topology, Artificial Neural Networks can be divided into two basic

classes, Feed-forward and Recurrent (Figure 4). Feed-forward networks (FNN) form an acyclic

graph, where the information flows in one direction from input to output. In Recurrent networks

(RNN) neurons may supply data to other neurons in previous layers, forming a semi-cyclic graph.

The ultimate goal of all methods is to set the values of weights and biases in a way that minimizes

the model’s cost function.

(a) Feed-forward

(b) Recurrent

Figure 4: Examples of neural network topologies

. . .
. . .

Input1

Input2

InputN

. . .
. . .

Output

Output
Layer

Hidden
Layers

Input
Layer

1

1

1

2

2

2

N

M

K

3

Input1

Input2

Output

Input1

Input2

Output

31

2.2.2 Learning Methods

The major paradigms of Machine Learning are (1) Supervised, (2) Unsupervised and (3)

Reinforcement. The literature contains a large number of algorithms for each one of them.

2.2.2.1 Supervised Learning

This technique requires training data that contain pairs of input and anticipated output. During the

learning phase, training data enter the system and the model’s parameters are adjusted to agree with

the desired outcome. Supervised Learning can also be referred as Classification. There is a wide range

of classifiers that can be used, like Multilayer Perceptron, Support Vector Machines, k-Nearest

Neighbor, Naive Bayes, Decision Tree, etc. A downside is that choosing the right classifier is not a

strict deterministic process, but most of the times is a matter of experience and intuition. After training

there is a validation stage where the neural network is checked against a limited testing dataset

unknown to the system.

2.2.2.2 Unsupervised Learning

This method adjusts the model’s parameters trying to minimize a given cost function. Unsupervised

Learning usually targets estimation problems like statistical modelling, compression and clustering.

The difference compared to other techniques is that the input data are unlabeled. The cost function is

essentially a numeric representation of the solution’s quality.

2.2.2.3 Reinforcement Learning

During Reinforcement Learning usually no data are given in advance. Input is generated by the

interaction with the environment and the model is readjusted to maximize some notion of long-term

reward. Reinforcement Learning may use several algorithms to find the policy that generates the

maximum reward. A usual weakness of this method is the extremely large number of possible

policies. Many methods have been proposed to overcome this weakness, including Value Function

Approaches or Direct Policy Estimation. This type of machine learning generally excels in cases

32

where there is a trade-off between a short-term versus a long-term reward. It can be successfully

applied to tasks that require sequential decision making, such as telecommunications and games.

2.2.3 Evolutionary Artificial Neural Networks

Artificial Neural Networks adapt to input data by changing their parameters. It is worth noting that

there is a special class of ANN that support an additional adaptation process, beyond training, called

Evolution. Evolutionary Artificial Neural Networks (EANN) have the ability to alter various aspects

of their functioning, using methods such as Learning Rule Adaptation, Input Feature Selection,

Connection Weight Initialization, Rule Extraction, etc. In that way EANN have better ability to adapt

to dynamic environments undergoing significant changes, with no need for human intervention.

Evolutionary Algorithms (EA) is a class of population-based stochastic search algorithms, based

on concepts found in natural evolution. EA are useful in cases of complex problems with many local

optima, since they are less likely to be trapped than gradient-based explore methods [25][26].

Evolution in ANN can be manifested in three major levels: Connection weights, architecture and

learning rules. Thus, in practice, EANN have the ability to adapt the connection weights, alter their

model’s topology and discover novel learning rules.

2.2.4 Stochastic Gradient Descent

Machine Learning is an effort to analyze a data distribution in order to extract useful conclusions that

will allow predictions on future data. A data distribution is a probability distribution 𝐷 over a data

domain 𝑍. If 𝑋 is a set of images and 𝑌 a set of words, a prediction task could work over the domain

𝑍 = 𝑋 × 𝑌 to label each image according to what it contains. For the training process the system

could use a subset of the data, 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ 𝑍. The function of the machine learning model is to

generate a prediction for any given data point 𝑧 ∈ 𝑍. The prediction’s quality is measured by

differentiable non-negative scalar-valued loss function, 𝑙(𝜃, 𝑧), where 𝜃 are the parameters of 𝑧. Let’s

denote by 𝐿 the average training loss [27] under a data set 𝑆 = (𝑧1, 𝑧2, … , 𝑧𝑛):

𝐿(𝜃, 𝑆) =
1

𝑛
∑ 𝑙(𝜃, 𝑧𝑖)

𝑛

𝑖=1

33

The aim of a Machine Learning process is to find parameters 𝜃 that minimize this loss. The

dominant algorithm for training neural networks is the mini-batch Stochastic Gradient Descent

(SGD) [28][29][30][31][32]. Given an initial point 𝜃0 ∈ 𝛩, SGD aims to iteratively minimize the

stochastic gradient. The iterations are

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂𝑡 ∙ 𝑔(𝜃𝑡−1, 𝐵𝑡)

where 𝐵𝑡 is a random subset of training examples and 𝜂𝑡 the learning rate. For any 𝜃 ∈ 𝛩 and 𝐵 ⊂ 𝑆,

the estimate of the objective’s gradient is

𝑔(𝜃, 𝐵) =
1

|𝐵|
∑▽ 𝑙(𝜃, 𝑧) + 𝜆 ▽ 𝑅(𝜃)

𝑧∈𝐵

Some of the most commonly used variants are SGD with momentum [33][30][34], Nesterov

momentum [35][34] and Adam [36]. Table 1 demonstrates the gradient iterations of the first two.

Table 1: Gradient iterations of popular SGD optimizers

SGD with momentum Nesterov momentum

𝝊𝒕+𝟏 ← 𝜸 ∙ 𝝊𝒕 + 𝒈(𝜽𝒕, 𝑩𝒕)

𝜽𝒕+𝟏 ← 𝜽𝒕 − 𝜼𝒕 ∙ 𝝊𝒕+𝟏

𝜐𝑡+1 ← 𝛾 ∙ 𝜐𝑡 + 𝑔(𝜃𝑡, 𝐵𝑡)

𝜃𝑡+1 ← 𝜃𝑡 − 𝜂𝑡 ∙ 𝑔(𝜃𝑡, 𝐵𝑡) − 𝜂𝑡 ∙ 𝛾 ∙ 𝜐𝑡+1

According to the above, these optimizers fallback to plain SGD for 𝛾 = 0. Considering a constant

learning rate 𝜂𝑡 = 𝜂, at a given iteration 𝑡:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ∙ 𝜐𝑡+1 = 𝜃0 − 𝜂 ∙ ∑ 𝜐𝑢+1 =

𝑡

𝑢=0

= 𝜃0 − 𝜂 ∙ ∑ ∑ 𝛾𝑢−𝑠 ∙ 𝑔(𝜃𝑠, 𝐵𝑠)

𝑢

𝑠=0

𝑡

𝑢=0

34

For any fixed 𝜏 ∈ {0, … , 𝑡}, the coefficient of the gradient 𝑔(𝜃𝑡, 𝐵𝜏) in the update above is

𝜂 ∙ ∑ 𝛾𝑢−𝜏
𝑡

𝑢=𝜏

To evaluate the contribution of a specific mini-batch gradient, we define the effective learning

rate, 𝜂𝑒𝑓𝑓, as the value of this coefficient at the end of the training:

𝜂𝑒𝑓𝑓 = lim
𝑇→∞

∑ 𝜂 ∙ 𝛾𝑢−𝜏

𝑇

𝑢=𝜏

=
𝜂

1 − 𝛾

2.2.5 Neural Model Averaging

One way to parallelize neural network training, is to partition data and distribute them to different

nodes. Local models can then be averaged every few mini-batches. The challenge in a such parallel

process is to exploit the extra computing power and, in the same time, mitigate the communication

cost. Neural network training is often a non-convex process. Roughly speaking, increasing the mini-

batch size can give a better estimate of the gradient and, in result, can lead to a better convergence

rate [37]. In a traditional distributed scheme, multiple nodes produce gradients of different

minibatches; the gradients are then gathered and reduced by a node; finally, the averaged parameters

are redistributed to all nodes in order to update their local models. It has been shown that increasing

mini-batch size does not always result to a better model [37].

An alternative approach is to average parameters instead of gradients, reducing in this way the

frequency of data exchange. If parameters are averaged after each weight update, the process is

equivalent to gradient averaging. But if averaging is done every 𝑛 minibatches, update can be

described as

𝜃𝑡+𝑛 = 𝜃𝑡 + ∑ 𝛼 ∙ 𝑔𝑡+𝑖 = 𝜃𝑡 + ∑ 𝛼 ∙
𝜕

𝜕𝜃
𝐹(𝑥, 𝜃𝑡+𝑖)

𝑛−1

𝑖=0

𝑛−1

𝑖=1

𝜃𝑡+𝑛
̅̅ ̅̅ ̅̅ = 𝜃𝑡̅ + ∑ 𝛼 ∙

𝜕

𝜕𝜃
𝐹̅(𝑥, 𝜃𝑡+𝑖)

𝑛−1

𝑖=0

35

where 𝜃 is the model parameter and 𝛼 is the learning rate. In case 𝜃 changes every 𝑛 updates, this

process can be viewed as an approximation to gradient averaging. Additionally, as proved in [38][39],

model averaging for convex problems is guaranteed to converge, so an unsupervised pre-training

phase could direct the process towards areas of minima that can offer better generalization.

2.3 Distributed Computing

2.3.1 Concerns

Large-scale cloud computing, despite many years of availability, remains out of reach for the majority

of researchers. Although there are many successful platforms, like Hadoop2 and Spark3, backed by

tech giants (Google, Microsoft, Amazon), average users trying to setup an infrastructure still have to

deal with great difficulties. The reason is that almost all of these platforms were designed having in

mind on-premise installations at large scale. A novice user has to decide on many, sometimes

confusing, issues like instance type, cluster size, pricing model, programming model, task

granularity, etc.

2.3.2 Communication Cost

Most of the modern distributing computing frameworks are inspired by the prevalent concepts Map

and Reduce. During Map stage, nodes apply a computation on parts of the input data, producing an

intermediate type of information. Next, they exchange this information with their peers. Finally, in

the Reduce stage, they calculate the final results by applying a computation on the combined data.

Studies on many distributed systems, including machine learning algorithms, prove that a large

portion of the needed time is consumed for exchanging data. Depending on the application, it is

observed that 33% to 70% of the overall execution time is spent on communication [40][41].

Let’s consider a distributed framework consisting of 𝐾 nodes that takes 𝑁 inputs and calculates 𝑄

arbitrary outputs. During the Map stage, each input is processed locally to generate 𝑄 intermediate

values. Thus, the network calculates a total of 𝑄 ∙ 𝑁 values, which can be split into 𝑄 groups of 𝑁

values. Then each subset can be used to calculate the correspondent output. During the data

2 https://hadoop.apache.org
3 https://spark.apache.org

36

exchanging phase, and for every output, a node must receive 𝑁 intermediate values to proceed with

Reduce. Of course, aiming to reduce communication cost, the system will not transfer values to a

node that already have them in its local storage.

2.3.3 Distributed systems

There are many different definitions of Distributed Systems in the literature. The one thing all of them

have in common is the requirement of multiple processors. Of course, systems with multiple

processors extend to a vast architectural space, from single machines to networks of independent

workstations.

For example, Vector Computers [42] utilize many processors to execute the same operations to

different sets of data. Dataflow and Reduction Machines [43] execute different operations to different

data sets. Multiprocessor Systems [44] have several autonomous processors which have access to a

shared memory. Multicomputers [45] are similar to multiprocessors but, instead of having a shared

memory, they exchange information by messaging via a network. An approach that has no need for

sophisticated hardware is a group of independent computers connected to a local or wide-area

network, running a distributed operating system or application [46].

Experts disagree on which of the above architectures are to be considered distributed. Some claim

that the term fits only the cases that have geographically dispersed entities, and that all others fall

under the term parallel systems. A definition that, in our view, optimally addresses this issue is the

following: An architecture can be considered distributed if it consists of multiple autonomous

processing units, which do not share memory but communicate using messages over a network of any

type and any size.

In such a system, each processor executes operations on its own set of data, using its own local

memory and storage. The above definition of a distributed system is not concerned about the type of

underlying network, as long as it serves its purpose as a medium every time a peer needs to exchange

data.

The network speed has a significant impact to the performance and, thus, the use cases of the

distributed system. Architectures with fast and reliable communication are termed closely coupled,

while systems with slow and unreliable networking are referred to as loosely coupled (Figure 5).

37

(a) Shared memory

(b) Message passing

Figure 5: Types of distributed architectures

2.3.4 Types of distributed applications

When designing a new system, we should choose a distributed architecture for a number of important

reasons. Leveraging execution on multiple workstations could result to one or more of the following

benefits: (a) Decreased execution time, (b) Increased reliability, (c) Increased availability.

2.3.4.1 Improving performance

A usual reason for choosing a distributed system is the need for higher execution speed. This can be

achieved by running different parts of an algorithm on different workstations. If the algorithm is

CPU CPU CPU …

Shared memory

…
Local

memory

CPU

Local
memory

CPU

Local
memory

CPU …

Network bus

38

properly optimized for parallel execution, this approach can often result to decreased execution time,

despite the unavoidable communication overhead. The same effect can be achieved by using multiple-

processor systems with shared memory. An important downside about the latter is that such systems

cannot scale to large numbers, such as thousands of processors or more.

A design decision that can have major impact on the result is the grain of parallelism that will be

used. This is the amount of computation between two subsequent communications. Fine-grain

systems communicate frequently, while large-grain spend more of their time executing computations

and communicate more rarely. Since communication is the performance bottleneck in most cases,

fine-grain parallelism is best suited for closely couped systems [47][48]. On the other hand, large-

grain can be used for both closely and loosely coupled distributed systems [49][50][51].

2.3.4.2 Improving fault-tolerance

Distributed systems have a fundamental property called partial failure. Since each processor is

autonomous and independent, a failure in one of them does not affect the others. Reliability can

therefore be enhanced by replicating critical functions on several processors. Although replication

can be also applied to shared memory multiprocessors, such systems cannot survive intense physical

disasters. So, in implementations that handle extremely critical data, the geographic dispersion of a

loosely coupled distributed system is the only way to overcome this kind of danger.

2.4 Distributed Ledger Technology

2.4.1 The Elements of a Distributed Ledger

In a DLT network, the term Ledger refers to the set of data held by the majority of nodes. The most

common key-concepts described in literature are:

- Transaction: A proposed event which attempts to change the current ledger state.

- Log: A list of proposed -but still unconfirmed- events, which are to be subject of network

consensus rules.

- Record: An event which has already been subject to consensus rules. A record that has not

yet been propagated to the network is often tagged as candidate.

39

- Journal: The set of records held by a node. Because most of DLT are eventually consistent

systems, the data on different nodes may not be identical. Sometimes, while network has

not reached consensus, they may even be contradicting.

- Ledger: The set of records held by the majority of the nodes, already approved by the

network consensus. As time passes and new records are appended, it becomes increasingly

difficult to revert an existing record.

The participants of a DLT network can have different roles, depending on the level of engagement

they wish to have:

- Auditors: Check and validate proposed transactions and records. Also, may perform system

audits.

- Validators: Generate candidate sets of records; they are often called miners or farmers.

- Light nodes: Query auditors regarding the current state of the ledger.

- End-users: Users who access the network via one of its gateways.

A DLT system can be divided to 3 different layers:

- Protocol: A fundamental set of rules which define how the system should operate under

every condition. This layer also describes the initial state of the ledger, usually called the

genesis record.

- Network: Defines the rules under which actors can participate to the network, how they

communicate, what they can and cannot do. Ensures that critical processes, like proposing

and validating transactions, are executed by the proper nodes.

- Data: This layer manages the information stored in the ledger. Sets the rules on how a

record is structured and in what ways it can be modified. It can also contain rules on how

code is executed, in DLT that support such a feature.

Putting it all together, a protocol is a theoretic construct which comes to life when utilized by a

real network, thus a number of independent-yet-connected nodes. Protocol and network layers

implement the data layer to enable the management of all information related to the DLT system

(Figure 6).

- Dependencies set the boundaries of the DLT system and determine the need it may have

for external resources in order to function properly.

- Initialization contains all the processes that are required for the successful launching of the

DLT system. This includes the creation of the genesis component which describes in detail

the starting state of the ledger.

40

Figure 6: The three layers of a DLT system

- Governance refers to the predefined procedures which enable the modifications of the

existing protocol. It specifies who and when can embed changes, aiming to fix potential

security issues, add new features, or improve performance.

- Access Control contains the rules that describe the level of access each participant has to

the ledger. This level can escalate from a simple transaction issuing, up to critical

governance modifications.

- Data Broadcast is the process of transmitting information to connected nodes. In a typical

use case, information is propagated to whole network. But in an attempt to reduce the

synchronization latency, novel proposals introduce communication between a subset of

peers. Such concepts may be found in literature under the term channeling (fast transactions

between two specific parties) or sharding (network divisions sharing a common

characteristic).

- Transaction Processing refers to the rules that define the way transactions are managed,

including broadcasting and validation. Due to the probabilistic nature of most distributed

consensus protocols, a record that is impossible (occurred after a checkpoint) or practically

infeasible to revert, is called permanently settled. The rest -newer- transactions are called

provisionally settled.

- Data Structure defines in strict terms the form of every bit of information stored or

transmitted in the DLT network.

Data Structure
Code execution

Access

Control

Data

Broadcast

Transaction

Processing

Dependencies Initialization Governance

Data Layer

Network Layer

Protocol Layer

41

- Code Execution includes the structure of executable code, in cases where smart contracts

are supported.

2.4.2 Challenges of Distributed Consensus

2.4.2.1 Fault-tolerant Distributed Consensus

The problem of reaching consensus in a fully distributed network has been studied by the scientific

community for many decades. In contemporary DLT systems, where there is no shared memory, the

participants have to agree on the valid global state by exchanging peer-to-peer messages. Each node

𝑁𝑖 has its own state 𝑆𝑖, which can be updated as a result of the communication with its neighbors. In

the case of open-access networks there is always the scenario of malicious actors trying to manipulate

the system to their benefit. In centralized systems, this effect can be easily detected using straight-

forward techniques; but in a decentralized environment the attackers can use the established rules in

a seemingly legitimate way, trying to influence the consensus algorithm. The attempted manipulation

could be either pushing the consensus to a state that yields profit to the attackers, or just sabotaging

with contradicting messages, making it impossible for the network to reach any consensus. Such

attack vectors are referred to as Byzantine Failures [52].

2.4.2.2 Byzantine Fault-Tolerant Consensus

A consensus protocol is called Byzantine Fault Tolerant (BFT) when it can withstand a number of

attacks to the peer reputation system which supports its consensus mechanism. The problem can

originate from one or more Faulty-or-Malicious (FoM) participants. Any distributed consensus

protocol must meet the following four requirements [53][54][55] regarding its non-FoM nodes:

(a) Termination: Every node must come to a specific result as its output; (b) Agreement: Every

node eventually ends up with the same output 𝑦; (c) Validity: If all nodes have the same input 𝑥, then

all end up with the same output 𝑦 = 𝑥; (d) Integrity: The final consensus value 𝑦 must have been

proposed by a number of nodes.

For a protocol to achieve these requirements, the underlying decentralized network must satisfy

[56] the condition 𝑁 ≥ 3 ∙ 𝑀 + 1, where 𝑁 is the total number of nodes and 𝑀 is the number of FoM

ones.

42

2.4.3 Case study: The Nakamoto Consensus Algorithm

The Nakamoto Consensus is the emblematic algorithm behind the first widely adopted permissionless

blockchain, Bitcoin [57], and served as the basis for many other consensus schemes. Its large-scale

application allowed researchers to uncover its weaknesses and propose solutions in the form of new

and improved consensus algorithms.

Nakamoto proposed the Probabilistic Finality specification, according to which a block can either

be accepted or rejected. When accepted, there is still a chance it will be eventually rejected, but the

probability of this scenario diminishes exponentially as new blocks are appended to the chain. This

incrementally-achieved consensus is an unavoidable feature of any system containing asynchronous

processes. Thus, for short periods of time the network may be found in inconsistent states, but in the

end it will always reach consensus, a characteristic called Eventual Consistency4.

Nakamoto consensus utilizes the Proof of Work mechanism to mitigate Sybil Attacks5, making

multiple identities practically impossible. Transactions are broadcasted immediately using gossip

protocols and in case of conflicts the longest chain always wins. The production of new blocks is

assigned to miners, participants who wish to dedicate processing power to the network. In return, they

are rewarded with newly minted native tokens, and also fees paid by users who conduct transactions.

To ensure that every block is sufficiently propagated before the next block is published, the difficulty

of the mining cryptographic puzzle is adjusted every 2016 blocks, depending on the global hashing

power. With this adjustment new blocks are generated approximately every 10 minutes (Algorithm

1).

Figure 7 shows how a new block is propagated in a peer-to-peer network that is structured as an

undirected graph. The circles represent nodes and the numbers indicate the number of hops required

for the new block to reach a node. Solid arrows are used when a peer informs its neighbors of the new

block and sends it to them; dotted arrows show cases where the informed neighbor has already

received the new block from another peer. In this example, the new block is generated by node 𝐴 and

propagated to nodes 𝐵, 𝐶 and 𝐸 in 1 hop. Node 𝐸 propagates the block to node 𝐻 (2 hops), but node

𝐹 already received the block from 𝐶 (2 hops), so this message from 𝐸 will be ignored by 𝐹. In

heterogeneous networks a node may receive a block from a path that may not be the shortest, due to

the differences in peer processing power and connection speed.

4 https://en.wikipedia.org/wiki/Eventual_consistency
5 https://en.wikipedia.org/wiki/Sybil_attack

43

Algorithm 1: Overview of the Nakamoto consensus protocol

// Join the network

Bootstrap to hard-coded nodes;

start thread: Listen for messages;

// Work cycle

repeat {

 Select longest chain;

 call ComposeNewBlock();

 // Local block generation failed

 if received block from another peer {

 Append block to chain;

 interrupt ComposeNewBlock();

 }

 // Local block generation succeeded

 if ComposeNewBlock() returns block {

Append block to chain;

 Broadcast block;

 }

}

// Block generation via Proof of Work

function ComposeNewBlock() {

 Create header:

 Embed digest of previous block’s header;

Embed timestamp;

repeat {

 Create new nonce;

 Calculate Hash(header|nonce);

 } until Hash has N leading zeros;

 // N sets the mining difficulty

Embed proposed transactions;

return block;

}

44

Figure 7: Data propagation using gossip protocol

The resilience of a classic distributed system is expressed simply as the number of FoM actors it

can tolerate. For systems based on PoW consensus, tolerance is characterized by the percentage of

adversarial hashing power the system is able to overcome. It is proved [58] that the critical condition

a network must meet, is that the time PoW needs to generate a new block, to be longer than the time

needed for the network to synchronize. When this condition is fulfilled, a majority (more than 50%)

of benevolent hashing power will always manage to ensure proper convergence, even for an ever-

growing size of blockchain.

2.4.4 The Security-Decentralization-Scalability Trilemma

A decentralized consensus protocol should seek a balance between three critical objectives:

- Security; refers to the system’s ability to overcome both faulty and malicious peers.

- Decentralization; refers to the dispersed distribution of network governance power.

- Scalability; refers to the ability of efficiently dealing with rising event throughput and

larger network size.

Most of the times there can be a tradeoff between these three features, the importance of which is

dictated by each use case. Lower security can lead to higher scalability. For example, decreasing the

time interval between blocks in a PoW network, can yield higher transaction rate but also leads to

lower security, since it is easier to orchestrate a 51% attack [59]. Generally, more decentralization

A

E

3

1

0

1

2

3

2

4

2

3

1

C

B

D

G

F

I

K

H

J

45

means less synchronization. So, higher geographic diversity makes censorship harder for suppressing

regimes, but also introduces more heterogeneity: The discrepancy in connection speeds creates an

unfair division, since peers with low latency have the advantage in winning the race of block

publishing and validating. As a result, in a heterogeneous network well-connected nodes can commit

consensus attacks with far less than 50% of the total hashing power. All these parameters must be

evaluated and adjusted, so the distributed system can serve the purpose it was built for.

2.4.5 Identity management

A DLT user is uniquely identified by their Public Key Certificate. In most public systems the user

first generates a key pair and then derives their identity as a hash of the public key. This hash can be

used as their transaction address and can hold digital assets. To prove ownership and manage these

assets, a user has to sign every transaction using the corresponding private key. Due to the absence

of a centralized certificate authority, secure key management by the participants is essential [60].

Losing private keys has irrevocable impact, since the user permanently loses its ability to prove

ownership.

2.4.6 How DLT can transform Artificial Intelligence

The integration of DLT and AI can be mutually beneficial. Both fields have weaknesses, many of

which can be addressed by such a consolidation [61][62]. AI algorithms rely heavily on data to train

models that can infer and make decisions. The quality of their results depends on the quality of the

input data, which must be consistent and trustworthy. DLT networks have all the prerequisites to

assure the integrity and credibility of the provided data. Every bit of information is cryptographically

signed, validated, and agreed on by all participants. So, AI systems can be certain that the data have

not been tampered with. Distributed ledgers ensure that training will be fed continuously, since the

decentralized architecture will overcome any connectivity disruptions. The immutability of the

provided data can help to mitigate unaccountability, by providing a trustful infrastructure which

retains the training history and makes it easily available to all parties. In cases where the validity of

results produced by code execution is a priority, hybrid systems can utilize on-chain execution of AI

algorithms via smart contracts. The other way around, AI can offer important services to DLT

46

systems, by analyzing their real-world performance. So, it can infer and propose ways to optimize

their data exchanging, their consensus algorithm, etc.

2.5 Gossip Protocols

Generally, routing refers to how nodes are selected to relay data through the network. There are many

proposals [62][63][64] aiming to classify routing methods, but gossip protocols used by modern

decentralized systems have some fundamental differences compared to traditional networks.

2.5.1 Random Walk protocols

In Random Walk protocols, data are propagated using random paths. The peers use hop-by-hop

routing, meaning that the initiator only selects the first relay node, which in turn picks the second and

so on, until the message reaches its final destination. The selection is usually random. Random Walk

protocols are often combined with peer-to-peer network topologies. In early systems designed for

anonymous web browsing, like [66], a user randomly selects a peer and sends their message. The

peer flips a biased coin to decide whether to send the message to another random peer, or directly to

its final destination. The reply from the receiver follows the same path in reverse order.

Other studies [67] propose a dynamic peer-to-peer network, which establishes circuit-based

connections using layered encryption. An anonymous route is iteratively set by the nodes on the route.

Each node is aware only of a subset of peers and not the entire network. After an initiator selects the

first node, it randomly selects a witness for each hop thereafter, and asks the next hop to extend the

route with the assistance of the witness. Finally, each node proposes a set of candidates for the next

hop, and the corresponding witness chooses one of them as the next hop.

There are also proposals [68] for fully decentralized network overlays that operate on IP level. At

first, the initiator selects a set of nodes to form a route through the overlay network; then, a tunnel is

established via these nodes. Using a gossip-based protocol based on Name-Dropper [69], node

information is stored in a ring model and lookups are carried out using the Chord Algorithm [70].

47

2.5.2 DHT-based protocols

Tasks that are easy to complete in a traditional network, may be challenging in a fully distributed one.

For example, the task of locating a node. One solution is to use Distributed Hash Tables (DHT) to

overcome the lack of a centralized shared storage. The DHT is usually a database with key-value

pairs. The keys are generated by hashing a unique piece of information that identifies the indexed

data. The values may contain routing information, file contents, etc. To achieve efficient searching

for DHT-based networks, several lookup strategies have been proposed. Kademlia6 locates the nodes

on their estimated distance using a XOR metric; Chord7 uses a clockwise circle metric, where at each

hop of the lookup the distance to the node is decreased at least by half; Pastry8 carries out lookups

based on numerical identifiers. DHT structures can work even in cases where nodes are not aware of

all other peers. In fact, having a partial view of the network can result to improved scalability, higher

resilience to attacks, and better load balancing.

2.6 Blockchain Technology

2.6.1 Definition

Blockchain technology introduces a fully decentralized and secure system based on a distributed

ledger. It has no need for a central authority to bootstrap the trust among participants; in fact, it is

designed to work among mutually distrustful parties. In contrast to traditional distributed computing

with a clear client-server model, blockchains allow participants to be both clients (by issuing events)

and servers (by validating events).

With the exception of a few privacy-oriented cases, blockchain events are publicly available,

although the participants are identified by a pseudonym, usually an alphanumeric hash. To efficiently

achieve consensus, researchers leveraged previous related work, like Byzantine Fault Tolerant9

consensus and Secure Multi-Party Computation10.

6 https://en.wikipedia.org/wiki/Kademlia
7 https://en.wikipedia.org/wiki/Chord_(peer-to-peer)
8 https://en.wikipedia.org/wiki/Pastry_(DHT)
9 https://en.wikipedia.org/wiki/Byzantine_fault
10 https://en.wikipedia.org/wiki/Secure_multi-party_computation

48

In use cases where the real-world identity of the participants is a necessity, a permissioned

blockchain can offer a solution. In order to join the network, everyone has to undergo an

authentication procedure usually contacted by a centralized authority. Given the stronger

identification framework, permissioned blockchains can implement multi-level access control. The

network governance is assigned to a private entity, or a consortium of such [71].

2.6.2 Cryptography Fundamentals

2.6.2.1 Cryptographic Hash Functions

Hash Functions calculate a concise fixed-size output, called digest, from an input of arbitrary size

(𝐻𝑎𝑠ℎ(𝑑𝑎𝑡𝑎) = 𝑑𝑖𝑔𝑒𝑠𝑡). Hash functions have the following properties:

- Hashing the same input always produces the exact same output.

- Can provide a proof that data were not changed. Anyone can reapply the hash function and

verify that it produces the same digest.

- Even a slight change to the input leads to a completely different result.

- They are preimage resistant. Given a specific output, it is computationally infeasible to

find the corresponding input.

- They are collision resistant. It is computationally infeasible to find two different inputs that

create the same output and it is unlikely that this will happen unintentionally.

As computationally infeasible is considered any attempt to explore a vast output space using brute-

force methods. For example, a popular cryptographic hash function is the Secure Hash Algorithm11

with an output length of 256 bits (SHA-256). The digest of this hashing function is usually displayed

as a 64-character hexadecimal string (Table 2).

The output space contains 2256 (approximately 1077) different hashes, making it resistant to

exhaustive search. Modern distributed networks utilize hash functions to create unique identifiers and

to ensure data immutability.

There are cases where a system must generate a hash string which is always different, even for the

same input data. This can be achieved by the use of a cryptographic nonce, an arbitrary number that

is used only one time.

11 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

49

The unique digest is produced by hashing a combination of the input data and the nonce value:

ℎ𝑎𝑠ℎ(𝑑𝑎𝑡𝑎 + 𝑛𝑜𝑛𝑐𝑒) = 𝑑𝑖𝑔𝑒𝑠𝑡

Table 2: Sample input texts and their digests

Input Data SHA-256 Digest

A

559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd

B

df7e70e5021544f4834bbee64a9e3789febc4be81470df629cad6ddb03320a5c

C

6b23c0d5f35d1b11f9b683f0b0a617355deb11277d91ae091d399c655b87940d

Cryptographic

Hash

Functions

e4526e7dcd04ce6816287b25da39ba08786ef85b74e5a5e05855773643077a61

2.6.2.2 Asymmetric Cryptography

Using symmetric cryptography if two parties need a secure way to communicate, they need to

exchange the key that will be used for both encryption and decryption. But this requires an alternative

safe channel, which in many cases cannot be easily established.

Unlike symmetric method, asymmetric cryptography has no need for an already-secure channel.

Every actor has a pair of keys, a private and a public one. The private key is known only to owner,

while the public key can be freely broadcasted. The public key is generated from the private key,

using well-established one-way mathematical functions. This process can be easily reproduced and

its results can be verified by anyone. Due to the nature of these functions, one cannot follow the

opposite direction, thus the private key cannot be derived when having the corresponding public key.

Asymmetric cryptography allows participants to verify both the authenticity and the integrity of

messages in trustless communications. A useful feature of this method is that private key can be used

for encryption and public key for decryption, or vice versa. A sender can encode a message with

private key and send it to receiver; the receiver can use sender’s public key to verify the transmission.

50

The other way around, a sender can encrypt a message using receiver’s public key; the receiver can

authenticate the message by decrypting it with its own private key.

A downside of asymmetric cryptography is that it is slow to execute. In order to enjoy the best of

both worlds, in many cases systems use a hybrid approach: The slow asymmetric method is utilized

to encrypt a -relatively small- symmetric key, which in turn is used for the rest of the communication.

Such an approach speeds up the whole process by greatly reducing the needed encryption overhead.

In many blockchain networks, private keys are used to digitally sign transactions, while public keys

are used to derive addresses and verify signatures.

2.6.3 Addresses

Most permissionless decentralized systems advocate data ownership via pseudo-anonymity.

Participants can freely create as many identifications they want, which are pairs of a private and a

public key. These keys are not associated in any way with real-world identities, but all transactions

are permanently recorded and publicly available. This last statement is false only in specific cases of

privacy networks, where transactions are validated by the distributed consensus, but their details are

not accessible.

Blockchain networks often apply hashing functions to public keys in order to generate addresses.

An address is a public identification and can represent a digital token wallet, an issued transaction, or

even a smart contract. Most blockchain networks offer services -called explorers- to browse the

content and the previous activity of their addresses.

2.6.4 Transactions

Many of the contemporary decentralized cryptographic networks, such as blockchains, are

constructed as immutable databases. Changes can only be implemented as cumulative additions to

their state. In most of the cases, changes happen through transactions. These are interactions between

participants and are used to express asset exchanges and -when the network supports it- code

execution and data manipulation in smart contracts.

The consensus protocol will not allow a typical transaction to generate or destroy assets. So, in

every transaction the total amount of input assets must be equal to the total amount of the output

assets, as seen in Figure 8. In this example 𝐵𝑜𝑏 owns 10 tokens which received at a previous time

51

from 𝐴𝑙𝑖𝑐𝑒. He wants to send 7 tokens to 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, so he issues a new transaction. The algorithm will

send 7 tokens to 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, but at the same time it will send the remaining 3 tokens back to 𝐵𝑜𝑏 as

change, in order to maintain the transaction balance. Depending on the implementation, the change

can be sent either to the same or to a different address belonging to 𝐵𝑜𝑏.

Thus, what a transaction can alter is the participants owning the engaged assets. Particularly for

blockchains, submitted transactions are enclosed to blocks. There can even be blocks with zero

transactions, since empty blocks can also contribute to overall security by creating longer chain. In

order for a bad actor to impose their malicious version of truth, they will need more resources to

produce an even longer chain.

Figure 8: Example of a Blockchain transaction

To ensure their authenticity, the broadcasted transactions are digitally signed by their issuers and

contain their public key. The signing process proves access to the corresponding private key and can

be easily verified by everyone.

2.6.5 Blocks

2.6.5.1 Block Structure

Transactions that are consistent to the ledger status and properly signed, are grouped into blocks and

propagated to the network. The structure of a block may differ for each implementation, but most

networks include the fields shown in Figure 9.

from Bob
to Bob

(as change)

from Bob
to Charlie

from Alice
to Bob

Transaction
(issued by Bob)

10
tokens

IN

7
tokens

OUT

3
tokens

OUT

52

Networks that are based on a Proof of Work (PoW) consensus algorithm, utilize the nonce value

to create a unique cryptographic puzzle for each block. Nodes will compete to solve it in order to win

mining rewards. Since solving the puzzle requires processing power, the network is shielded against

spamming from bad actors. The amount of protection is proportional to the total hashing power of all

participating peers.

Figure 9: Typical structure and linking of blocks

2.6.5.2 Block propagation and synchronization

Block propagation mechanisms can be divided into the following categories:

- Advertisement-based. When node 𝐴 receives the information of a block, it sends an 𝑖𝑛𝑣

message to its neighbors. If node 𝐵 doesn’t have the information of this block, will reply

to 𝐴 and ask for it. Neighbors who already have the information, ignore the message from

𝐴. When 𝐴 receives the reply message from 𝐵, sends the requested block.

BLOCK (N+1)

[DATA]

• Event #1

• Event #2

.

.

• Event #K

[HEADER]

• Current block number

• Previous block header hash

• Current block data hash

• Nonce value

• Current block size

• Timestamp

BLOCK (N)

[DATA]

• Event #1

• Event #2

.

.

• Event #M

[HEADER]

• Current block number

• Previous block header hash

• Current block data hash

• Nonce value

• Current block size

• Timestamp

53

- Sendheaders. This is an improvement to the previous propagation mechanism. Node 𝐵

sends a 𝑠𝑒𝑛𝑑ℎ𝑒𝑎𝑑𝑒𝑟𝑠 message to 𝐴. When 𝐴 receives the information of a block, will

immediately send the block header to 𝐵. Since this method has no need for 𝑖𝑛𝑣 messages,

it can speed up the block propagation.

- Unsolicited push. When a node generates a new block, it broadcasts it to the network. There

are no 𝑖𝑛𝑣 and 𝑠𝑒𝑛𝑑ℎ𝑒𝑎𝑑𝑒𝑟𝑠 messages, so the speed of block propagation process is

further improved.

- Relay network. This mechanism uses a transaction pool shared by all peers. Each

transaction is designated a global ID, hence mitigating the broadcasted block size and

network load.

- Hybrid. This method utilizes a combination of push and advertisement propagation. If node

𝐴 is connected to 𝑁 peers, will push the block to √𝑁 of them and will advertise block’s

hash to the rest 𝑁 − √𝑁.

The block synchronization mechanism can diversify for different blockchains. Let’s assume node

𝐴 requests synchronization from block 𝐵. A typical scenario could include the following steps:

1) Node 𝐴 sends a 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝐻𝑒𝑎𝑑𝑒𝑟𝑠 message to node 𝐵, asking for the latest block.

2) Node 𝐵 replies to this message by sending the requested block header.

3) Node 𝐴 requests 𝑀𝑎𝑥𝐻𝑒𝑎𝑑𝑒𝑟𝐹𝑒𝑡𝑐ℎ blocks, in an attempt to find a common ancestor. The

number of blocks returned by 𝐵 may be equal to or less than the value of

𝑀𝑎𝑥𝐻𝑒𝑎𝑑𝑒𝑟𝐹𝑒𝑡𝑐ℎ.

4) If node 𝐴 cannot find a common ancestor, will continue to send 𝐺𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝐻𝑒𝑎𝑑𝑒𝑟𝑠

messages, requesting one block header at a time.

5) When node 𝐴 discovers a common ancestor, requests synchronization starting from that

block. The blocks needed for the syncing will be grouped into packs that cannot contain

more of 𝑀𝑎𝑥𝐻𝑒𝑎𝑑𝑒𝑟𝐹𝑒𝑡𝑐ℎ.

2.6.6 Distributed Consensus

The most important function of a distributed system is to establish a consensus. There are many

models a network can implement to achieve a global agreement regarding its state. There are issues

that have to be dealt with, like who publishes the next block and how are conflicts resolved. Things

54

get more complicated because of the lack of trust among the peers; the only information a node knows

about its neighbors is their public address, which is usually just a hash string.

For any consensus model to work, blockchain networks need a solid starting point, an initial block

called genesis. Every peer that joins the network must agree upon this block and, using this as a base,

can verify all following blocks. If a valid second blockchain branch appears, most consensus

algorithms will approve the longest one because it required the most effort.

2.6.6.1 Consensus Models

2.6.6.1.1 Proof of Work

One of the most widespread consensus algorithms is Proof of Work (PoW). In this model the next

block is published by the peer that solves first a difficult mathematic problem. Although the problem

is hard to solve, a proposed solution can be easily verified by everyone. Many distributed networks

need an approximately constant rate of block production. This can be achieved by periodically

modifying the difficulty of the PoW puzzle. The difficulty goes up when the total hashing power of

the network is increased and vice versa. Such an adaption offers resistance to Sybil Attacks from

actors who possess extensive processing power. A popular PoW puzzle among modern blockchain

networks is using a hash function to produce digests with specific characteristics. For example, let’s

assume that the proposed block’s header is the string “ProofOfWork” and nonce is an integer number.

Participating peers could compete for it, by trying to find a nonce for which:

𝑆𝐻𝐴256(ℎ𝑒𝑎𝑑𝑒𝑟 + 𝑛𝑜𝑛𝑐𝑒) = 𝑑𝑖𝑔𝑒𝑠𝑡 𝑤𝑖𝑡ℎ 𝑁 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑧𝑒𝑟𝑜𝑠

By changing 𝑁, the network can modify the PoW difficulty and with it the rate at which blocks

are published. For 𝑁 = 1, a node can solve the puzzle after 16 hashing attempts, as shown in Table

3.

Cryptographic hashing of lengthy data can be an extremely computational intense process. For the

short string “ProofOfWork” of this example, a commodity computer would need exponentially

increased amount of time for consequent values of 𝑁, as shown in Table 4.

On the other hand, when a peer broadcasts its solution, all other participants can instantly verify

its validity and reach consensus.

55

Table 3: Attempts to solve PoW puzzle

Header + Nonce SHA256 Digest

ProofOfWork0 263a40e975437811bca5aab9ff9a82db6fcd725c0092a6a7a63d9cdf5a8a0997

ProofOfWork1 ea82db3755316339a31b1cd501c121b44721d6f494dea43f112efbd22631b6be

ProofOfWork2 5eecdd4dd548898572cd1dfdbbd0cfa0c43ec733832e246c3c042549040e79dd

ProofOfWork3 abd4ec4dd1703f7bc56b79733d473e1cea6a832fe82cd2c42fdf6c77fe8e7486

ProofOfWork4 c55da0001787f85554abdb72806bc20675aaf784a5d38e1c9a02ddd04b2a2476

ProofOfWork5 4f42c8dfd8266fbede41c3bfbc11540924b4c59dafcd523732192d1b60f68f3b

ProofOfWork6 1b32ee3f06829ce71087996d2f1ba47e3c861292aa7912c94d55e8f9d43f902a

ProofOfWork7 4f792c842a3c68d48627b066fa35cb012154724de8116fbbe33034a88ddde354

ProofOfWork8 4cfb10445e93145935864fe05f6b6793f1587635f0b866b8cefdf7572eaff8f8

ProofOfWork9 be37f6aeb9e8d1d30a62a0b6ea9688b9cd8dcf7c0edffd8f5908bd33527b9e98

ProofOfWork10 3e7110e326067c72f68c2357a73a384829f426fc8facc77873f48f19a5c45e52

ProofOfWork11 57635a7f1607d36cc24fe71620df274991c4174df31d0f6268365498c91b8c2c

ProofOfWork12 44d81a5c83e09ca63af5cbaa79694a69ec7b4f0acd2340e8b94dfe7c2dd7348f

ProofOfWork13 c01d9cc19907f549d5186554878855d4bd70faa347d55fad08d294efd9dca7f3

ProofOfWork14 4caed8b6251fbae092edf516eddf4b980a47845f001891fc3bea0bd02a002195

ProofOfWork15 0c3bb4677f061c875a48e3f48b3654bd740b7260a33dc2180bb0dfbf7e8f870b

Table 4: Proof of Work simulation

Requirement

(number of leading zeros)

Elapsed Time

(seconds)

Iterations Tested

(number of hashes)

1 0.016 16

2 0.018 101

3 0.055 3586

4 1.247 177859

5 6.690 878395

6 46.278 6297346

2.6.6.1.1.1 Mining Difficulty Analysis

Let’s assume a network based on a PoW consensus algorithm. A random node 𝑛 will need 𝑡𝑛 time to

solve the cryptographic puzzle associated to a specific block. As expected, this time depends on the

instantaneous probability node 𝑛 solves the puzzle, 𝑃𝑛. The value of this probability is related to (a)

56

the hashing power, 𝐻𝑛, the node possesses, and (b) the current difficulty of the PoW puzzle, 𝐷,

dictated by the network’s total hashing power. Thus, the probability is:

𝑃𝑛 =
𝐻𝑛

𝐷

The difficulty is periodically adjusted, so that the expected interval between two consequent

blocks, 𝑇, is near-constant. Using the properties of exponential distributions and having 𝑁 as the set

of participating nodes:

𝑇 =
1

∑ 𝑃𝑖𝑖∈𝑁
=

1

∑
𝐻𝑖

𝐷𝑖∈𝑁

=
𝐷

∑ 𝐻𝑖𝑖∈𝑁

The conclusion is that difficulty 𝐷 is equal to the average block duration for block generation,

multiplied by the network’s total hashing power:

𝐷 = 𝑇 (∑ 𝐻𝑖

𝑖∈𝑁

)

Thus, as the network grows, PoW protocol increases difficulty and vice versa. Combining the

above equations:

𝑃𝑛 =
1

𝑇

𝐻𝑛

∑ 𝐻𝑖𝑖∈𝑁

The last equation shows that the probability for a node to win a block, increases by its hashing

power but decreases by the combined power of all other participants.

2.6.6.1.2 Proof of Stake

Proof of Stake (PoS) consensus model is based on the principal that the more resources a user has

invested (staked) into a system, the more likely they will work for its success. Most blockchain

networks have native tokens the value of which is related to the amount of utility the system offers,

57

as a store of value, transaction mechanism, decentralized application platform, etc. Peers who invest

on these tokens are interested in the well-being of the ecosystem, so they can be trusted that they will

never act maliciously. PoS also includes a cryptographic puzzle, but its difficulty decreases with the

amount of staked assets. So, the energy required for block production can be significantly mitigated

for high staking nodes.

In order to enhance the engagement needed for staking, most systems require the staked assets to

be locked in a way that they cannot be spent for a period of time. The likelihood of a peer being

selected to publish a block is tied to the ratio of its stake. For example, if a peer owns 1% of the total

tokens, it will be selected 1% of the time. This directly proportional method is the simplest form of

PoS consensus. Many other methods have been designed adding more complexity to the selection

algorithm, such as voting systems (Delegated PoS - DPoS), staking age factors, etc.

An important advantage of PoS compared to PoW, is that it does not need intensive calculations

and, thus, high energy consumption. For this reason, many existing ecosystems are redesigning their

PoW consensus model in an attempt to be more friendly to the environment.

2.6.6.2 Conflict resolution

In all distributed systems, due to the lack of a central coordinating entity and the unavoidable network

latency, for short periods of time there are different versions of truth propagating the network. The

system has to deal with these conflicts as fast as possible in order to maintain its consistency.

For example, in a blockchain network two peers can broadcast blocks at almost the same time. It

is possible these conflicting blocks are accepted by different subsets of participants, creating a

temporary split to the blockchain, as shown in Figure 10.

Conflicts can occur even if there is no malicious intent. Usually, the reason behind them is the way

information is propagated to the network via gossip protocols, allowing peers with slightly diverse

views. In most implementations such a conflict will be solved after the network agrees on the next

published block. That block will be attached to one of the conflicting blocks, making one of the

branches longer than the other.

So, everyone will consider the longer chain as valid, and the other block will be flagged as

orphaned. Since the conflicting blocks may contain different sets of events, the events of the orphaned

block are queued to an event pool, in order to be included in a future block.

58

Figure 10: A split to the blockchain caused by conflicting blocks

In this example, if the next block is attached to the one published by 𝐶ℎ𝑎𝑟𝑙𝑖𝑒, 𝐵𝑜𝑏’𝑠 block is

marked as orphaned. Its events not present in 𝐶ℎ𝑎𝑟𝑙𝑖𝑒’𝑠 block (that is 𝐷𝑒𝑙𝑡𝑎) will be stored into the

event pool. Although event 𝐷𝑒𝑙𝑡𝑎 was valid at the time of its first submission, it is possible to be

rejected as invalid in a later time. This could happen if the events of 𝐶ℎ𝑎𝑟𝑙𝑖𝑒’𝑠 block (or a subsequent

one) change the blockchain state in a way that turns 𝐷𝑒𝑙𝑡𝑎 event invalid. For example, if events

represent token transactions, 𝐷𝑒𝑙𝑡𝑎 event will not be allowed to spend tokens that were already spent

by 𝐸𝑝𝑠𝑖𝑙𝑜𝑛, 𝑍𝑒𝑡𝑎 or 𝐸𝑡𝑎 events.

As a conclusion, the validity of a blockchain event cannot be evaluated in strict terms. The event

gains an increasing level of assurance over time, as other blocks are appended to its branch.

Theoretically, an entity with access to enormous amounts of processing power could start building a

new branch onto the genesis block and render invalid the entire blockchain. It is the size of the chain

that can make such an attempt practically impossible. Furthermore, some implementations

periodically generate checkpoints to consolidate the global state; all blocks up to the latest checkpoint

are by default considered valid and cannot be discarded.

2.6.7 Smart Contracts

The term Smart Contract (SC) was defined [72] as “a computerized transaction protocol that executes

the terms of a contract. The general objectives of smart contract design are to satisfy common

…

Block number: N
Publisher: Alice

- Event Alpha
- Event Beta
- Event Gamma

…

Block number: N+1
Publisher: Bob

- Event Delta
- Event Epsilon
- Event Zeta

Block number: N+1
Publisher: Charlie

- Event Epsilon
- Event Zeta
- Event Eta

59

contractual conditions, minimize exceptions both malicious and accidental, and minimize the need

for trusted intermediaries”.

Smart Contracts were introduced with 2nd generation blockchains, and allow decentralized code

execution. There are specialized programming languages, created to allow users to easily develop

such programs. The execution takes place in a protected virtual machine (VM) implemented in the

node software.

There are numerous protection layers to prohibit abuse; for example, every SC is assigned a

reasonable amount of time for its execution, based on the complexity of its code. The VM will

terminate a SC that exceeds this limit to avoid infinite loops that could lead, intentionally or

accidentally, to Denial of Service. The produced code is deterministic, thus, given the same state, the

contract consistently produces the exact same result. Beyond the algorithm, a SC may have its own,

private or public, resident data.

The code and the public data can be reviewed and executed by everyone. Inputs can be passed via

parameters using a special type of on-chain transaction. The SC is executed by the participating peers

and its results are validated by the network’s consensus mechanism.

Since the execution of a SC requires processing power from several nodes, the user who requested

its execution has to pay a fee, usually in the form of the blockchain’s native token. The fee may vary

significantly depending on the complexity of the contract’s code.

2.7 Internet of Things

2.7.1 IoT Fundamentals

There are two major reasons behind the recent paradigm shift from conventional computer-aided

systems to smart systems: The advances in IoT sector and the explosion of Big Data. The combination

of these two factors allowed the analysis of enormous amounts of data and the extraction of hidden

information, that can lead a system to intelligent decisions.

An IoT system, which is essentially a network of smart devices, consists of the following layers,

as shown in

Figure 11:

60

- Perception Layer: A large variety of devices including sensors, controllers and tags. Some

of them can affect their physical environment through actuators. The devices can

communicate via wired or wireless connections.

- Communication Layer: Protocols that control information exchange in various

environments. Depending on use case, connections may be wired or wireless, directional

or omnidirectional, long or short ranged, with low or typical energy consumption.

- Application Layer: Almost any sector that utilizes data flows from geographically diverse

devices, can benefit from the transition to IoT. The basic idea is to implement a strongly

bound digital twin ecosystem, that can manage the data generated by events on the sector’s

physical environment.

Figure 11: Layers of an IoT system with typical examples

2.7.2 DLT for Internet of Things

The recent advances in microelectronics and low-consumption communication technology pushed

the evolution of smart systems, that can achieve data-driven decision making [73]. Internet of Things

paradigm considers a physical environment and creates its digitized version, forming a cyber-physical

system. In such a system the building blocks exchange information, based on which they can alter the

system’s behavior. In many use cases these blocks are heterogeneous, resource-constraint, and poorly

APPLICATION Layer
Supply Chain – Health –
Smart Grid – Research

COMMUNICATION Layer
Bluetooth – Wifi – Cellular – LoRa

PERCEPTION Layer
Cameras – Microphones – Motion detectors –

Biometric scanners – Thermometers –
QR/Bar code readers – RFID tags

61

connected, weaknesses that can be addressed by using DLT technology. In fact, DLT is the ideal

complement to IoT, since it may bring a combination of critical features like security, privacy,

reliability, scalability and interoperability. Architectures that extend to both worlds could be referred

to as DLT of Things (DLToT).

2.7.3 DLT-IoT Interaction Level

When designing systems that leverage the power of both DLT and IoT, an aspect to take into account

is the level of interaction between them. There are three alternatives, as described below:

- Exclusive IoT-IoT communication: This is the fastest implementation, since almost all

traffic is conducted directly between the IoT devices. Only a minor amount of exchanged

data is saved in DLT storage, for aspects that require decentralized authentication and

immutability.

- Exclusive DLT-IoT communication: In this scenario all traffic goes through DLT nodes.

This approach results to architectures with lower communication speeds due to increased

overhead. On the other hand, it ensures full recording of every system interaction,

guaranteed by the tamper-proof consensus mechanism of the DLT.

- Hybrid communication: Implementations that use both of the above types of

communication in a balanced way [74][75]. One of the challenges in such cases is how to

choose the optimal communication type for each operation. Usually, the system’s processes

are divided into two groups: those that need minimum latency and those that require

immutability and/or permissionless trust.

2.8 IPFS

2.8.1 Design

Interplanetary File System (IPFS) combines features from Git [76] and BitSwap12, which is an

algorithm for incentivizing data replication (based on BitTorrent [77]). IPFS implements a

decentralized filesystem for permissionless peer-to-peer topologies.

12 https://github.com/ipfs/specs/tree/master/bitswap

62

During IPFS setup, a node gets a unique hash string which is its identification when

communicating with other peers. For every file that is added, the node assigns to it a cryptographic

hash based solely on the file's contents. If the file is larger than a predefined size, it is divided into

chunks that get their own hashes and are stored independently. In contrast to most other filesystems,

IPFS does not use an addressing method based on the storing location of the file, instead all files can

be fetched just by knowing their unique hash. For this type of addressing to work, every node

maintains a copy of a Distributed Hash Table (DHT), which is a ledger inspired by [78][79][80]. The

DHT contains information about where data chunks can be retrieved from.

IPFS follows a simple but effective incentivization mechanism. Each peer maintains a list of

chunks stored locally and a list of chunks it needs. It also preserves a balance of verified bytes

exchanged with every other peer. This balance acts as a credit system which indicates the level of

participation to the swarm.

Using gossip-style communication the nodes attempt to obtain the data they need, but at the same

time they try to improve their reputation with their neighbors; because by doing so they improve the

chances they will find chunks that they will need in the future.

IDENTITIES:
Node identity

generation and
verification

NETWORK:
Configurable

network protocols
for connecting

peers

ROUTING:
Selection of

optimal route
to retrieve an

object

EXCHANGE:
Management of

block distribution,
incentivizing data

replication

OBJECTS:
A Merkle DAG,

containing content-
addressed immutable

entities

FILES:
A filesystem

that supports
versioning,

based on Git

NAMING:
A self-certified
mutable name

system

Figure 12: The protocol stack of IPFS

63

IPFS is all about decentralization, so it has no need of any form of central entities. Since there is

no server-based storage, all space is offered by the participating peers. When a node needs a file, it

obtains it from another peer and then stores it locally. How long a file remains available on a specific

node, depends on the embedded garbage collection system. If a peer decides a file is important

enough, it can pin the file and thus retain it indefinitely on local storage.

The IPFS stack contains seven different sub-protocols, as presented in Figure 12.

2.8.2 Protocol Stack

2.8.2.1 Identities

Nodes participating to an IPFS swarm are identified by a cryptographic hash. This is called NodeId

and is generated (Algorithm 2) using the static puzzle of S/Kademlia [78]. The NodeId consists of a

public/private key pair, which are encrypted and stored locally. The NodeId is created by hashing the

peer’s public key. When a node detects a neighbor for the first time, checks whether

ℎ𝑎𝑠ℎ(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. 𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦) = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. 𝑁𝑜𝑑𝑒𝐼𝑑

If this check fails, the node terminates all communication with that neighbor. A node can use

different identity each time it joins the network. But such a tactic is not recommended, since it would

lose accrued benefits gained by its previous participation. IPFS can utilize multiple cryptographic

hash functions, so in every use case the best-suiting one can be selected. Hash digests are stored in

multihash format, which includes a header describing the function and the digest length in bytes.

2.8.2.2 Network

IPFS relies on heavy network communication; for that purpose, it can use any transport protocol like

WebRTC13 or uTP [81]. If necessary, reliability can also be ensured using SCTP [82]. For

13 https://webrtc.org

64

connectivity and authenticity IPFS uses ICE NAT14 traversal techniques and HMAC15 with sender’s

public key.

Regarding peer addressing, IPFS does not rely on or assume access to IP, but uses a new way to

express both an address and its corresponding protocol. This expression is called multi-address

(multiaddr) and may contain encapsulation details. For example:

SCTP/IPv4 connection

/ip4/10.20.30.40/sctp/1234/

SCTP/IPv4 connection proxied over TCP/IPv4

/ip4/5.6.7.8/tcp/5678/ip4/1.2.3.4/sctp/1234/

Algorithm 2: IPFS algorithm for identity generation

type Multihash []byte

type PublicKey []byte

type NodeId Multihash

type PrivateKey []byte

type Node struct {

 NodeId NodeID

 PubKey PublicKey

 PriKey PrivateKey

}

difficulty = <integer parameter>

n = Node{}

do {

 n.PubKey, n.PrivKey = PKI.genKeyPair()

 n.NodeId = hash(hash(n.PubKey))

 p = count_preceding_zero_bits(n.NodeId)

} while (p < difficulty)

14 https://en.wikipedia.org/wiki/Interactive_Connectivity_Establishment
15 https://en.wikipedia.org/wiki/HMAC

65

2.8.2.3 Routing

IPFS nodes use a Distributed Hash Table to be able to find the address of other peers and objects.

The routing protocol is based on S/Kademlia, Coral [82] and Mainline [80], so it makes a distinction

for the values stored in the DHT. Small objects, less than 1KB, are stored directly on the DHT, while

for larger objects the DHT stores the NodeIDs of peers that can serve these objects. Algorithm 3

shows the routing interface.

Algorithm 3: IPFS routing interface

type IPFSRouting interface {

 FindPeer(node NodeId)

 // gets a particular peer’s network address

 SetValue(key []bytes, value []bytes)

 // stores a small metadata value in DHT

 GetValue(key []bytes)

 // retrieves small metadata value from DHT

 ProvideValue(key Multihash)

 // announces this node can serve a large value

 FindValuePeers(key Multihash, min int)

 // gets a number of peers serving a large value

}

2.8.2.4 Exchange

A block exchange strategy that works well in practice is a sigmoid scaled by a debt ratio. Let the debt

ratio, 𝑟, between a node and another peer be

𝑟 =
𝑏𝑦𝑡𝑒𝑠_𝑠𝑒𝑛𝑡

𝑏𝑦𝑡𝑒𝑠_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 + 1

66

and the probability of sending a block to a peer be

𝑃(𝑠𝑒𝑛𝑑 | 𝑟) = 1 −
1

1 + 𝑒6−3𝑟

As shown in Figure 13, a node will provide more data to peers that have been helpful in the past,

and will be sparing to unknown nodes. This exchange strategy (i) provides resistance to sybil attacks

by actors who would attempt to create multiple identities, (ii) protects relationships that, although

proven successful in the past, suffer from temporary issues, and (iii) downgrades unhelpful

relationships until they start to provide value.

Figure 13: Probability of sending a block to a debtor

IPFS nodes maintain a local ledger containing the accrued credit or debt with all the known peers.

Each time a connection is activated, the communicating nodes send each other the ledger of their

previous exchanges (Algorithm 4). If discrepancies are found, the ledger is reinitialized from scratch.

Algorithm 4: IPFS exchange ledger & protocol

type Ledger struct {

 owner NodeId

 partner NodeId

 bytes_sent int

 bytes_received int

 timestamp Timestamp

}

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5

P
ro

b
ab

ili
ty

 o
f

se
n

d
in

g

Debt ratio

67

type BitSwap struct {

 ledgers map[NodeId]Ledger

 // Ledgers known to this node, including inactive

 active map[NodeId]Peer

 // currently open connections to other nodes

 need_list []Multihash

 // checksums of blocks this node needs

 have_list []Multihash

 // checksums of blocks this node has

}

type Peer struct {

 nodeid NodeId

 ledger Ledger

 // Ledger between the node and this peer

 last_seen Timestamp

 // timestamp of last received message

 want_list []Multihash

 // checksums of all blocks wanted by peer

 // includes blocks wanted by peer’s peers

}

interface Peer {

 open (nodeid :NodeId, ledger :Ledger);

 // peers send ledgers until they agree

 send_want_list (want_list :WantList);

 send_block (block :Block) -> (complete :Bool);

 // peers exchange want_lists and blocks

 close (final :Bool);

 // peers deactivate a connection

}

Algorithm 5: IPFS object format

type IPFSLink struct {

 Name string

68

 // name or alias of this link

 Hash Multihash

 // cryptographic hash of target

 Size int

 // total size of target

}

type IPFSObject struct {

 links []IPFSLink

 // array of links

 data []byte

 // opaque content data

}

2.8.2.5 Objects

On top of DHT and BitSwap, IPFS creates a Merkle Directed Acyclic Graph inspired by Git, where

the links between objects are cryptographic hashes of the targets embedded in the sources. This layer

provides properties such as content addressing, tamper resistance and deduplication. Algorithm 5

shows the general format of an IPFS object. IPFS allows applications to format the data field in

whatever way they see fit. Due to the embedded IPFSLink list, a user can easily browse all referenced

objects. For example, the (UNIX-inspired) 𝑙𝑠 command called with a multihash, will result:

> ipfs ls /QtLZ5T162Dmj5jng7SubMh5Dgyeayn5FR4vx

QtYk6gq61DYaQ8Nhk7cqyU7rLcnSa7dSHQ4 34556 ObjectMnemonicName1

QteHB3NmRQ5srJ7Jrd8gMPuu48hp9zeyTtR 457262 ObjectMnemonicName2

QtF54hhwVHsjVu5Z78FZ7Kk6fozf8Jj9lWE 1794 ObjectMnemonicName3

<object multihash> <object size> <link name>

Additionally, IPFS can recursively resolve all referenced objects:

69

> ipfs refs –recursive \ /QtLZ5T162Dmj5jng7SubMh5Dgyeayn5FR4vx

QtYk6gq61DYaQ8Nhk7cqyU7rLcnSa7dSHQ4

QtjH6JHhjH7jLiop8jYi9uHhkyY0T4GHopi

QteHB3NmRQ5srJ7Jrd8gMPuu48hp9zeyTtR

QtkGj7Fa52KlyV7VKEk73JsjVu5Z78FZ7Ke

QtF54hhwVHsjVu5Z78FZ7Kk6fozf8Jj9lWE

Qt89Jhecn84K48HWbser73JElu48hp9zeyt

Traversing IPFS objects can be achieved by using a simple string path API, similar to conventional

filesystems or web URLs:

format

/ipfs/<hash-of-object>/<name-path-to-object>

example

/ipfs/QtgXLYk1gq61DYjaQ8Nhkcq4ykU7rLc5nSa/myfile

Since there is no global root, referencing an object must start from the hash of an object

hierarchically above it. If an object resides deep inside a path, it can be retrieved by using any of the

objects above it as the first reference hash. For example, the object 𝑝𝑎𝑟𝑒𝑛𝑡1/𝑝𝑎𝑟𝑒𝑛𝑡2/𝑝𝑎𝑟𝑒𝑛𝑡3/

𝑚𝑦𝑓𝑖𝑙𝑒, can be retrieved in any of the following ways:

/ipfs/<parent1hash>/<parent2>/<parent3>/myfile

/ipfs/<parent2hash>/<parent3>/myfile

/ipfs/<parent3hash>/myfile

/ipfs/<myfilehash>

IPFS can perform object-level cryptographic operations. An encrypted or signed object is wrapped

in a special frame that allows encryption and verification of the raw data (Algorithm 6).

Cryptographic operations alter the object’s hash, thus creating a new different object. IPFS can utilize

70

user-specified keychains to verify signatures and decrypt data. The decryption key is needed for even

traversing encrypted objects, since the links between them can be encrypted as well.

Algorithm 6: IPFS encrypted object format

type EncryptedObject struct {

 Object []bytes

 // raw object data encrypted

 Tag []bytes

 // optional tag for encryption groups

}

type SignedObject struct {

 Object []bytes

 // raw object data signed

 Signature []bytes

 // hmac signature

 PublicKey []multihash

 // multihash identifying key

}

2.8.2.6 Files

To implement a versioned filesystem on top of the Merkle DAG, IPFS defines the following set of

objects: (i) blob, a variable-size block of data (ii) list, a collection of blobs or other lists (iii) tree, a

collection of blobs, lists, or other trees (iv) commit, a snapshot in the version history of a tree.

Blobs are the most basic way to represent a file. It is an addressable amount and they cannot contain

links to other objects:

{

 "user key": "user data"

 // blobs have no links

}

71

Lists contain an ordered sequence of blob or list objects. They are used to represent a large file, by

concatenating the listed objects. More complex data structures, like linked lists and balanced trees,

can be represented by embedding child lists:

{

 "data": ["blob", "list", "blob"],

 // lists have an array of object types as data

 "links": [

 { "hash": "Qte1Ykgq61DYa5Q8Nhrkcq6yU7rLcn7Sa7d",

 "size": 34680 },

 { "hash": "QtNm1RQ5sJJrdg4MPuu48pz5eygT6tRo39t",

 "size": 2341 },

 { "hash": "QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z",

 "size": 12769 }

 // lists have no names in links

]

}

Trees can contain references to blobs, lists, other trees, or commits. They are used to represent a

directory, leveraging the path naming mechanism provided by the Merkle DAG:

{

 "data": ["blob", "list", "blob"],

 // trees have an array of object types as data

 "links": [

 { "hash": "Qte1Ykgq61DYa5Q8Nhrkcq6yU7rLcn7Sa7d",

 "name": "MneumonicName1", "size": 65628 },

 { "hash": "QtNm1RQ5sJJrdg4MPuu48pz5eygT6tRo39t",

 "name": "MneumonicName2", "size": 7176 },

 { "hash": "QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z",

 "name": "MneumonicName3", "size": 84913 }

 // trees do have names

]

}

72

Commits represent a snapshot in the version history of any IPFS object:

{

 "data": {

 "type": "tree",

 "date": "2021-06-05 09:26:08Z",

 "message": "This is a commit message."

 },

 "links": [

 { "hash": "Qte1Ykgq61DYa5Q8Nhrkcq6yU7rLcn7Sa7d",

 "name": "parent", "size": 54694 },

 { "hash": "QtNm1RQ5sJJrdg4MPuu48pz5eygT6tRo39t",

 "name": "object", "size": 4495 },

]

}

2.8.2.7 Naming

The content-addressed and versioned DAG of objects, which is the immutable backbone of the IPFS

infrastructure, offers significant advantages. These include effortless caching and integrity checks,

optimized bandwidth usage, and permanent links.

But a vast number of applications require a degree of mutability. IPFS can overcome this barrier by

using self-certified naming, thus a mutable addressing system that allows the same name to always

point to the latest version of an object. Using the naming scheme from SFS [83][84], IPFS constructs

a mutable and cryptographically assigned global namespace.

Every node is assigned a mutable namespace at

/ipns/<NodeId>

where

NodeId = hash(node.PublicKey)

73

Thus, a node can publish objects under its namespace, as:

/ipns/QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z/

/ipns/QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z/folder1

/ipns/QtQDqxo9Kmd9zLyquoC9gAP8fCL1gWnHZ7z/folder1/file1

2.9 IOTA

2.9.1 The Tangle

The IOTA (meaning extremely small) project has as its goal to develop a completely decentralized

network connecting all IoT devices. There are projections16 predicting that the number of connected

IoT devices will surge to 50 billion by 2030. It is obvious this will be accompanied by a huge increase

of data transmitted by those devices. In many cases the devices are low-energy sensors that record

data regarding environmental conditions, traffic, personal health, etc.

Figure 14: Representation of transactions in the Tangle

(green: confirmed, red: unconfirmed, gray: tips)

To overcome the scalability issues encountered by blockchains, IOTA is based on a Directed

Acyclic Graph (DAG), which was named Tangle17. The Tangle's building blocks are transactions. If

16 https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology
17 http://www.descryptions.com/Iota.pdf

74

a node needs to attach a new transaction, it must confirm two previous ones (Figure 14), so -unlike

blockchains- increased activity is expected to result in better performance and security for the

network. Thus, IOTA attempts to achieve consensus via a permissionless procedure, using the Tangle

as DLT and propagating transactions throughout the network via a gossip protocol.

Each time a node needs to attach a transaction, chooses two previous unconfirmed transactions

(called tips) to approve. The selection is made using Markov Chain Monte Carlo18 (MCMC)

algorithm. Tangle transactions are not synchronized and the nodes are not always aware of all of the

broadcasted transactions. So, independent branches may appear, as shown in the example of Figure

15. Transactions 6, 7, 8, 11, 12 consist Branch 𝐴, and transactions 5, 9, 10, 13 consist Branch 𝐵.

These two branches are temporarily independent, with no interconnection and no common

transactions. The node which issues transaction 12 by validating 8 and 11, is not aware of the events

in Branch 𝐵.

It is possible the two branches to have conflicting transactions. When transaction 14 is attached, it

validates 10 and 11, and every transaction linked to them is verified. This simultaneous validation of

the two branches will detect and eliminate any conflicts that might exist. Then the consensus protocol

decides which branch will be chosen as valid, while the other one will be abandoned. In this example,

transactions 12 and 13 are not referenced by 14; they will be verified with a subsequent new

transaction.

Figure 15: Conflict resolution in the IOTA Tangle

18 https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

2

13

1

3

4

5

6

7

9

8
12

11

10 14

Branch A

Branch B

75

The main rule used to decide between conflicting transactions is to execute the tip selection

algorithm multiple times [85][86][87]. The MCMC algorithm has to select between the available tips,

so it must use a metric to evaluate the importance of each branch. This metric is its accumulated

weight, defined as the sum of the weights of all the transactions it contains. As a result, long branches

tend to grow even further, while short ones tend to become isolated with low certainty probability.

The level of adoption a transaction enjoys from the Tangle grows proportionally to the number of

new tips, and can be calculated by using accumulated weight analysis. As proven in [85], at a specific

time, 𝑡, the accumulated weight 𝑊(𝑡) is

𝑊(𝑡) ≈ 2 ∙ 𝑒
0.352𝑡

𝑇

where 𝑇 is the average time that a node needs to issue a new transaction, including PoW.

Figure 16 shows a plot of the behavior of the accumulated weight of a transaction. The graph

contains two areas: (i) The curved adaptation period, where the weight is exponentially increased.

During that time the transaction is referenced by an increasing subset of the new ones. (ii) The linear

certainty period, where the transaction is linked to practically all new ones; thus, the transaction has

a high probability that it will not be abandoned.

Figure 16: The Branch Cumulative Weight over time

B
ra

n
ch

 C
u

m
u

la
ti

ve
 W

ei
gh

t

Time

Adaptation (exponential) Certainty (linear)

76

2.9.2 System Stability

To provide an insight into the system’s stability, we assume the following:

1) The total number of tips at time 𝑡, 𝐿(𝑡), fluctuates around a constant value and does not

escape to infinity, since such a steep increase would result to unapproved transactions left

behind. Let this value be 𝐿0.

2) Transactions are issued by a large population of independent entities; thus, their number

can be modeled after a Poisson point process [88].

3) The rate of this Poisson process, 𝜆, remains constant in time.

4) All nodes have approximately the same processing power and in average they need time ℎ

to complete the computations needed for issuing a transaction.

5) At any given time, a node is not aware of the current state of the Tangle, but the one exactly

ℎ time ago. This means that a transaction attached at time 𝑡, becomes visible to the network

at time 𝑡 + ℎ. The tips attached in the time interval [𝑡 − ℎ, 𝑡) are “hidden”, meaning that

they are not yet visible to the network.

If number of “revealed” tips (the ones that were attached before time 𝑡 − ℎ) is 𝑟, then

𝐿0 = 𝑟 + 𝜆 ∙ ℎ

At time 𝑡 there are also around 𝜆 ∙ ℎ transactions that were tips at time 𝑡 – ℎ, but are not tips anymore.

When a new transaction is about to be attached to the Tangle, it must select a transaction to approve.

Since there are around 𝑟 tips known to the node, and 𝜆 ∙ ℎ transactions which are not tips anymore,

the selected transaction is a tip with probability

𝑟

𝑟 + 𝜆 ∙ ℎ

So, the mean number of selected tips is

2 ∙ 𝑟

𝑟 + 𝜆 ∙ ℎ

77

According to our assumption that the number of tips remains roughly the same, the mean number of

selected tips should be equal to 1:

2 ∙ 𝑟

𝑟 + 𝜆 ∙ ℎ
= 1 → 𝑟 = 𝜆 ∙ ℎ

So:

𝐿0 = 𝑟 + 𝜆 ∙ ℎ = 2 ∙ 𝜆 ∙ ℎ

If we generalize the Tangle’s validation mechanism by assuming that new transactions reference not

2, but 𝑘 existing tips, the calculation gives the following formula:

𝐿0
(𝑘)

=
𝑘 ∙ 𝜆 ∙ ℎ

𝑘 − 1

As noted, a new transaction cannot be approved during for a time interval of ℎ after its attachment.

When this period ends, the Poisson flow of approvals has a rate of

2 ∙ 𝜆

𝐿0

So, the expected time for a transaction to be approved is approximately:

𝑇𝐴 =
ℎ + 𝐿0

2 ∙ 𝜆
= 2 ∙ ℎ

At any specific time, 𝑡, the set of transactions that were tips during the period

𝑠 ∈ [𝑡, 𝑡 + ℎ(𝐿0, 𝑁)]

constitutes a cutset; any path from a transaction issued at time 𝑡’ > 𝑡 to the genesis, must pass

through this set.

78

Although useful to get an insight, the purely random tip selection is not the optimal algorithm for

real-life applications. This is because it allows “lazy” nodes to always select a fixed pair of old

transaction. It also permits bad actors to issue a huge number of new tips which all reference a fixed

set of previous transactions. In that way these actors acquire for their transactions an inflated

probability to be referenced by future tips.

The IOTA Tangle’s tip selection algorithm is a work in progress. Improved implementations are

proposed and tested, in order to achieve the security, scalability, and decentralization required for the

wide-scale adoption of this novel technology.

2.9.3 Masked Authenticated Messages

The Tangle supports feeless zero-value transactions that serve the purpose of data streams, called

Masked Authenticated Messages (MAM). We propose a way of embedding these streams into the

LEARNAE scheme, to be utilized as a completely distributed way of acquiring data from lightweight

IoT devices.

MAM streams are based on a structure called singly-linked list. A message stream consists of

several messages, where each message contains a pointer to the next one. Anyone who knows the

address of a specific message, they can only access the stream that follows that message, a feature

known as forward secrecy (Figure 17).

Figure 17: The singly-linked list of a MAM stream

Regarding privacy, there are three types of MAM streams. In Public mode there is no restriction,

and everyone who knows a stream's address can read the messages. In Restricted mode only those

who know a sidekey can access the stream. In Private mode the stream can be accessed only by its

creator because it is required to know the secret hash string (called seed) that created the stream.

79

Table 5: Encryption types of MAM streams

Mode Address Message decryption key

Public Root Root

Private Hash (Root) Root

Restricted Hash (Root + Sidekey) Root + Sidekey

MAM uses a signature scheme based on Merkle Trees [89] to sign the cipher digest of an encrypted

message. The root of the Merkle tree is used as the ID of the channel and each message contains the

root of the following tree. All messages are encrypted with a one-time pad that consists of the channel

ID and the index of the key used to sign the message. An additional nonce may be used as a revocable

encryption key. The resulting cipher hash is signed using the private key belonging to one of the

leaves. The encrypted payload, the signature and the leaf's siblings are then published to the Tangle,

where anyone knowing the symmetric key can find and decrypt it (Table 5).

2.9.4 Seeds & keys

In the IOTA Tangle network every new use gets a randomly generated seed, which is an alphanumeric

string consisting of 81 trytes19. For every user an unlimited number of private keys can be created, by

hashing the concatenation of the seed and the address index, a positive auto-increased integer [90].

By hashing a private key, the system can generate the corresponding public key, which is used as the

user’s address. The keys can be used to prove ownership of addresses. Assets from all the addresses

that are linked to the same seed, are summed to create the account’s total balance [91].

The IOTA protocol aims to be resistant to attacks from quantum computers and their vast

processing abilities. For that purpose the network uses Winternitz One-Time Signatures (WOTS)

[91][92] which -beyond their quantum resistance- are faster than elliptic curve cryptography [93].

The use of WOTS has a negative side effect; Each time a user sends assets from a specific address, a

fraction of the corresponding private key can potentially be extracted by analyzing the transaction’s

signing data. So, repeatedly sending tokens from the same address can compromise the account’s

19 https://en.wikipedia.org/wiki/Ternary_numeral_system

80

security. There are many proposals to overcome these issues [91], some of which are to be

implemented into the upcoming versions of the Tangle’s protocol.

2.9.5 Coordinator

The security of the Tangle depends on the size of the network. As the number of participants grows,

so does the resilience to attacks. To allow the network to reach that critical size, the first phase of the

Tangle’s operation is based on a centralized safeguard, called Coordinator. This is a special node

which issues one transaction every 2 minutes. These transactions, called milestones, are by default

instantly considered 100% confident [87]. Coordinator degrades the system’s decentralization in

order to increase security. Newer implementations of the Tangle with no need for coordinator have

been proposed, and are already being evaluated in the IOTA’s TestNet.

2.9.6 Snapshots & Permanodes

IOTA allows zero-value transactions with no fees. This fact can generate a large amount of exchanged

data, skyrocketing the needed storage space. To mitigate this problem, there is a periodic process

called Snapshotting. When a snapshot occurs, all data regarding the network history is purged, and

the only that is kept is the current state, thus the amount contained in addresses that have a non-zero

balance. In the latest implementation, snapshotting is a policy decided and applied locally, thus every

node determines when and how to truncate its database via a snapshot. It is very likely that many

applications will require access to the whole Tangle history. For these cases a node could -under

proper incentivization- retain all transaction data; such nodes are called Permanodes.

2.10 Ethereum

Internet connectivity is steadily expanding to more sectors of human activity. Among many other

similar projects, Ethereum is an attempt to build a generalized transaction-based state machine. Such

a project could facilitate interactions between consenting parties who would otherwise have no means

to trust each other. This goal could be achieved by a system which can autonomously enforce

agreements that were described using an unambiguous language. A tamper-proof algorithmic

81

decision system can offer attributes that are often difficult to find in the physical world, such as

clarity, incorruptibility, transparency and objectivity.

Transactions are the mechanism for system transitions between valid states. Formally:

𝜎𝜏+1 ≡ 𝛱(𝜎𝑡 , 𝐵)

𝐵 ≡ (… , (𝑇0, 𝑇1, …))

𝛱(𝜎, 𝛣) ≡ 𝛺(𝛣, 𝛶(𝛶(𝜎, 𝛵0), 𝛵1) …)

Where 𝜎𝜏, 𝜎𝜏+1 are the states before and after block 𝐵, 𝑌 is the state transition function, 𝛱 is the

block-level state transition function, and 𝛺 is the block-finalization state transition function, which

also includes the mining rewards.

The World State is a mapping between 160-bit addresses and account states, serialized as a

Recursive Length Prefix (RLP). It is maintained in a Modified Merkle Patricia Tree (Figure 18), a

persistent data structure for mapping between 256-bit binary fragments and arbitrary-length binary

data. The trie provides a single value that identifies a given set of key-value pairs; traversing the trie

from root to leaf, reconstructs a single key-value pair.

Figure 18: The structure of a Merkle Tree representing N data fragments

Data1

Hash(Data1)

Data2

Hash(Data2)

Hash(Hash(Data1),Hash(Data2))

DataN-1

Hash(DataN-1)

DataN

Hash(DataN)

Hash(Hash(DataN-1),Hash(DataN)) …

…
…

MerkleRoot

82

3 Privacy preserving distributed training of neural

networks

3.1 Related work

The majority of AI/ANN applications include the use of a parameter server [94][10], which requires

high-performance infrastructure. Although decentralized efforts, such as [95]–[97], use local

optimization and asynchronous model merging to reduce communication requirements, the parameter

server remains a bandwidth barrier, limiting scalability. Other distributed deep learning systems

[98][99] are capable of circumventing this barrier, but they need low latency networking, which

results in high setup cost and limited applicability.

While proposals such as [100] emphasize average-performance hardware, they rely on frameworks

such as [101], which are optimized for synchronous environments, and therefore are not the best

option for loosely linked peers.

The following Table 6 compares the aforementioned characteristics, taking into account alternative

approaches of asynchronous data parallelization.

Table 6: Comparison of previous approaches

P

ee
r-

to
-p

ee
r

R

es
il

ie
n
ce

P

er
si

st
en

cy

P

ri
v
ac

y

P

o
ly

m
o
rp

h
is

m

H

et
er

o
g
en

ei
ty

LEARNAE ✓ ✓ ✓ ✓ ✓ ✓

Downpour SGD  ✓    ✓

Sandblaster L-BFGS  ✓    ✓

Elastic Averaging SGD      

Hogwild      

83

LEARNAE pushes the boundaries of decentralization and tolerance to the limit. Due to the fact

that it is based entirely on distributed peer-to-peer technology, it does not need servers or any kind of

synchronization. Its intended use cases are environments with commodity-hardware nodes and

networking infrastructure that may have high latency and loose connectivity. Our method enables

flexible data collection from a number of sources, including lightweight Internet of Things devices,

through novel Distributed Ledger Technology.

A collaborative training scheme that has some similarities to our approach is Federated Learning

(FL) [102]–[104]. In systems that are based on FL, model training takes place on the peers without

explicitly exchanging data samples. The process can be either centralized or decentralized, and local

models are periodically combined to generate a global model. Our proposal introduces both

alterations and extensions to FL method. Primarily, during a LEARNAE session there is no global

model; each peer attempts to improve its own local model by selective parameter averaging, thus the

knowledge of its neighbors provides intuition for further solution space exploration. Additionally, our

approach leverages novel DLT networks to propose: (a) a way for dealing with unreliable

environments via data duplication, (b) a scheme for consolidating data aggregation from IoT devices,

and (c) an incentivization mechanism to attract additional processing power. Considering the above,

LEARNAE is a proposal for a complete ready-to-use ecosystem, which lowers the entry-level barrier

for individuals who wish to experiment with Deep Neural Network training.

3.2 Implementation

3.2.1 Parallelism type

The initial choice was between model and data parallelism [105][8][9]. It's worth noting that there

are proposals that implement systems with hybrid design. LEARNAE makes use of data parallelism,

where each worker retains the full model locally and processes it using a portion of the training data.

3.2.2 Propagation

Following worker processing, the generated models must be merged. The two primary techniques

for doing this are weight and update averaging, each of which has distinct benefits and disadvantages.

LEARNAE employs weight averaging, which means that after the training phase, the actual values

84

(not just the updates) of all model parameters are averaged -under specific conditions- with the actual

values of the corresponding parameters of a model generated by a remote worker [106].

3.2.3 Coordination

Merging the models is also possible with varying degrees of decentralization, as shown in Table 7.

A parameter server's job is to collect, combine, and re-distribute averaged data. While using a server

speeds up training in most instances, it also introduces a single point of failure and – in large size

networks – a bandwidth bottleneck. This disadvantage may be addressed by increasing the number

of servers that collaborate with one another. When the presence of a server is not possible or desirable,

some of the participating peers are given specific coordination responsibilities while simultaneously

doing all other training duties. At the other end of this spectrum are systems in which no node assumes

extra coordinating responsibilities, resulting in a completely distributed environment, which is the

design choice taken in our proposal.

Table 7: Different approaches regarding training coordination

Level of decentralization Coordination entity

None Parameter server

Low Cluster of parameter servers

Medium Some peers have elevated role

High None

3.2.4 Synchronicity

The training procedure may be synchronous or asynchronous. In synchronous designs the

coordinating entity guarantees that only results from the same training period are merged. There is

no such need in asynchronous designs, and the outcomes of a worker may be integrated into the global

model using more flexible criteria. Each method offers a number of advantages and disadvantages.

Synchronous training may converge quicker since it avoids the merging of very dissimilar models,

but it may encounter locks from slow peers, delaying the whole process. While asynchronous training

maximizes worker utilization, it suffers from gradient staleness, which means that by the time a slow

85

worker sends their results, they are already out of sync with the global model. Numerous mitigation

methods [107] have been suggested to address these drawbacks, resulting in a large number of

variations, particularly for Asynchronous Stochastic Gradient Decent. Although LEARNAE is

designed to be asynchronous, it includes capabilities that, when utilized in future implementations,

may introduce a configurable degree of synchronicity.

3.2.5 Data privacy

LEARNAE is capable of operating in environments where participants are reluctant to provide

sensitive training data. In such situations, training-data related communications are disabled, and all

transmitted data consist only of models generated by nodes after their training or averaging sessions.

In that way the network indirectly leverages the useful information contained in all training data, by

averaging the models these data produced.

3.3 System architecture

3.3.1 Overview

LEARNAE is built on a flexible scheme that adapts to a variety of environments. In terms of data,

it supports use cases in which all training data are put into the network during the initial phase, before

any training. Additionally, it supports scenarios in which data feeding is a continuous task and neural

model improvement is an always-evolving procedure (online training).

In summary, there is no constraint on when training data can be fed to the network, which is

important when streaming sensor data from IoT devices.

3.3.2 Node Roles

There are four distinct types of node roles that provide operational flexibility (Table 8). The role of a

node is determined by the availability of training data and its computing capacity. The first three roles

need sufficient computing power to support participation to IPFS swarm. The fourth role is reserved

for the IoT sector, since data streaming through MAM messages may be done even by light-weight

sensor devices. The dataflow between nodes with varying responsibilities is shown in Figure 19.

86

Table 8: Supported node types and their features

Node role Platform Model training Data feeding

Full IPFS + IOTA Yes Yes

Trainer IPFS + IOTA Yes No

Feeder (fat) IPFS No Yes

Feeder (thin) IOTA No Yes

As is the case with all publish-subscribe systems, the channel ID (IPFS or IOTA) serves as the

connecting link between peers. By knowing this ID, a peer may join the network and participate in it

by listening for and sending messages. Encryption and/or authentication may be implemented at any

step of the data exchange process if necessary. The Listening thread of a node's process is shown in

Figure 20.

3.3.3 Message Types

3.3.3.1 Slice hashlist

This message includes the hash of a file that was uploaded to IPFS by a node. The file includes a

list of hashes for training dataslices that the same peer also made accessible through IPFS.

3.3.3.2 Remote model

This message includes the hash of a file that was uploaded to IPFS by a node. The file includes an

HD5 model of that peer. Other model information is also provided, such as the model's attained

accuracy, and maturity, defined as the number of training cycles completed prior to its construction.

3.3.3.3 Slice use stats

This message notifies all peers that a particular dataslice has been utilized for training by a peer.

This information facilitates the overuse threshold feature, which allows limiting the number of times

a dataslice may be utilized for training on various nodes.

87

Figure 19: Dataflow between nodes of different roles

Table 9: Node tasks

Task Description

Adding Add new data to IPFS

Pinning Make remote IPFS data available locally

Training Train local model

Averaging Average local and a remote model

88

As stated in Table 9, a peer may perform up to four tasks. To optimize node usage, LEARNAE

runs each task on a separate thread. All of them may be executed concurrently, except for the pair

Training/Averaging, which requires read-write access to the local model. The workflow of a whole

node is shown in Figure 21.

Figure 20: Workflow of a node’s “Listening thread”

Utilizing Keras framework, a basic Neural Network was used for evaluation, based on a sequential

model with 16 hidden dense layers ranging from 30 to 100 neurons with ReLU activation function.

The default SGD optimizer was used along with Binary Cross-entropy loss function.

3.4 Simulation

This initial approach was simulated on a virtual network of ten workstations. The network was built

on a single commodity computer using Docker containers. The coordinating application was

developed in C#, including the node remote management and the logging system. As shown in the

following figures, simulation was used to investigate the impact of many critical variables such as

data slice size and overuse threshold, as well as other resilience-related factors such as duplication

level and overhead. The simulation results indicated that increasing the slice size has a beneficial

effect on the average accuracy of the generated models (Figure 22). Reduced overuse threshold leads

in slightly improved accuracy, since it decreases repeated training with the same data (Figure 23).

89

Figure 21: Workflow of a node’s “Working thread”

90

As anticipated, the total number of bytes transmitted is proportional to the slice size chosen (Figure

24). Average resilience (Figure 25) is defined as the number of nodes that possess a requested

slice/model. The percentage of duplicate data transmitted is shown in Figure 26, which is an inevitable

overhead associated with gossip-based protocols.

Although initially very high, this percentage rapidly declines over time and is minimized for larger

slice sizes.

Figure 22: Average Accuracy per Slice Size (Overuse Threshold: 6)

Figure 23: Average Accuracy per Overuse Threshold (Slice Size: 6250)

Figure 24: Total Bytes Sent per Slice Size (Overuse Threshold: None)

80

80,5

81

81,5

%

- 1 hour session -

3125

6250

12500

25000

50000

100000

80,4

80,9

81,4

%

- 1 hour session -

None

8

6

4

2

0

5.000.000.000

10.000.000.000

B
yt

es

- 1 hour session -

3125

6250

12500

25000

50000

100000

91

Figure 25: Average Resilience per Slice Size (Overuse Threshold: 2)

Figure 26: Duplicate Data Sent per Slice Size (Overuse Threshold: None)

3.5 Experiments

3.5.1 Scope

We demonstrate the first implementation of a real LEARNAE network, consisting of a typical LAN

of 15 commodity PCs. Each machine has comparable hardware and software specs and lacks powerful

GPUs, since we are comparing “stand-alone versus collaborative” training, and not actual values. The

overall objective is to investigate the feasibility of utilizing contemporary DLTs as a mechanism for

data diffusion, with the goal of gaining advantages from this cooperation that would not have been

feasible with a stand-alone approach.

Additionally, the privacy benefits of this method will be discussed. The application scenarios are

far from uncommon: A group of peers want to train a Neural Network cooperatively. They all agree

to join as long as they are not required to disclose sensitive data. We propose a fault-tolerant approach

for doing this via the use of distributed protocols to exchange just models, not training data.

1

6
N

o
d

es

- 1 hour session -

3125

6250

12500

25000

50000

100000

0

10

20

30

%

- 1 hour session -

3125

6250

12500

25000

50000

100000

92

LEARNAE's coordinating algorithm combines (averages) the transmitted models, resulting in

improved models for all peers. The underlying assumption is that training data derived from diverse

individuals exhibit some degree of consistency, which is true for the vast majority of the targeted use

cases. Scenarios that allow for the exchange of training data will also be extensively investigated in

the upcoming chapters.

3.5.2 Collaborative training sessions

The dataset used for this analysis (HEPMASS20) includes ten million instances of 28 attributes. The

framework was evaluated with dataslice sizes of 500, 1000, 2000, 5000, 10000, and 50000 to show

the effect of dataslice size on execution time, quantity of model data transferred, and obtained

accuracy. All training sessions were conducted using Python and the Keras framework, with 32

instances as the default minibatch size. After training with a single slice, each node informs the rest

of the network that the resultant model is ready for sharing and weight averaging.

3.5.3 Sample graphs

The remainder of this section highlights many important LEARNAE features via the use of sample

graphs of sessions performed with 500 and 2000 instance dataslices. As anticipated, sessions based

on 500-instance dataslices take longer to finish, a fact that is shown in all following figures. That is

because, immediately after consuming a dataslice, a peer notifies others of the availability of a new

model. Therefore, by increasing the number of dataslices results to a larger number of available

models on the network, thus increased work in queue for all nodes.

3.5.3.1 Number of peers in training mode

To begin averaging their local model, each peer must complete at least one training session (high

values at graph start - Figure 27). Peer after peer consumes all local data, and the training process

concludes. The time needed depends on the processing power of the node and the random rate at

which it prefers training over averaging during each work cycle.

20 https://archive.ics.uci.edu/ml/datasets/HEPMASS

93

As previously mentioned, 500-instance dataslices take longer to converge due to the additional

processing cost associated with the increased number of models propagating the network.

(a) Dataslices of 500 instances

(b) Dataslices of 2000 instances

Figure 27: Number of peers in training mode

3.5.3.2 Number of peers in averaging mode

While averaging may begin concurrently with training, it may continue even after all available

training data on all peers have been consumed. During the averaging phase, a peer inspects remote

models via their broadcasted metadata and, if they meet specific criteria, fetches their chunks from

94

several remote nodes and checks them locally to see whether they may contribute to the local model's

improvement via weight averaging.

The technique a peer employs to determine if a distant model is a candidate for averaging is a point

of high interest in our study, since an optimum strategy for selecting the most helpful models would

result in increased overall efficiency. During these experiments, a remote model must pass two

distinct tests. If its claimed accuracy (as specified in the metadata of its announcement message) is

greater than the local one, an averaging operation will be attempted. If the averaged model improves

the accuracy of the peer when using the local dataset, the peer adopts the model.

As shown in Figure 28, as peers attain a high level of accuracy, the likelihood of a successful

averaging decreases. This fact leads in fewer new models being broadcasted to the network; as a

consequence, the peers have less work to do and the whole process converges.

Because a node cannot conduct both training and averaging, these four graphs are complimentary

when examined in detail.

3.5.3.3 Data sent

Figure 29 shows the total amount of data sent by all nodes. All information exchange is carried out

by IPFS, the distributed nature of which has a big impact on data availability and load balancing.

When a model is becoming available to the network, it is split into multiple chunks. So, when a peer

asks for this slice, it may receive the correspondent chunks from different neighbors.

As expected, smaller size of dataslices results to higher network utilization, since there is a larger

number of models announced to the participants, more averaging attempts, thus higher data transfer.

Table 10 shows the exact values for the two sessions.

Table 10: Data sent – Peers & Total

Dataslice size

(Instances)

Total data sent

(Gigabytes)

500 5.342

2000 2.375

95

(a) Dataslices of 500 instances

(b) Dataslices of 2000 instances

Figure 28: Number of peers in averaging mode

96

(a) Dataslices of 500 instances

(b) Dataslices of 2000 instances

Figure 29: Data sent – Peers & Total

97

(a) Dataslices of 500 instances

(b) Dataslices of 2000 instances

Figure 30: Data sent – Peers

The training data possessed by peers will never be of precisely equivalent quality, so each node

will initially achieve different accuracy. As seen in Figure 30, peers that reach high accuracy during

the early stages will be asked more frequently to send their local models to others.

98

(a) Dataslices of 500 instances)

(b) Dataslices of 2000 instances

Figure 31: Successful average operations

3.5.3.4 Successful averagings

When a peer trains a new model, it makes it accessible to the rest of the network by broadcasting a

packet containing the model's information. All participating nodes keep track of these messages and

use them to determine if a remote model should be used to improve their local one. If a remote model

satisfies specific criteria, the node retrieves it and attempts to average its own weights. This approach

99

may or may not result in a better local model than the current one. If it does, the peer considers the

averaging to be successful and accepts the produced model. As expected, the number of successful

averagings is greater for smaller dataslices, as the total number of attempts is also greater (Figure 31).

(a) Dataslices of 500 instances

(b) Dataslices of 2000 instances

Figure 32: Successful average operations %

Figure 32 shows the typical curve of averaging success rate. At start, there is a noticeable accuracy

disparity across peers, given the fact that the quality of training data used to train each of them may

differ considerably. Initially, the graph shows a spike, as less accurate nodes benefit from the

100

information given by their more accurate neighbors. When the accuracy discrepancies among the

peers are reduced, the success rate of averagings marginally decreases for a brief period of time. The

network then begins to profit from freshly consumed data and improved models published during the

training phase. The success rate increases as the training period progresses. Following then, only

averaging is performed and all members attempt to improve their models further by using the

network's most recent combined models.

Finally, peers reach maximal convergence, all efforts are halted, and the successful averaging

percent is stabilized at a terminal value.

3.5.3.5 Resilience

The term "resilience" refers to the amount of different remote peers that can supply a requested chunk

of either a model or training data at any given moment. Because this study focuses on privacy-

preserving setups, all network data is related to stored neural models.

The initial surge (Figure 33) occurs because all nodes must first complete a training phase, during

which their models are broadcasted and rapidly fetched by other peers. Due to the fact that averaging

increases the number of broadcasted models, we notice a temporary decrease in data availability.

Finally, as averaging declines, new model creation decreases, stabilizing the resilience value.

(a) Dataslices of 500 instances

101

(b) Dataslices of 2000 instances

Figure 33: Resilience

N

u
m

b
er

 o
f

p
ro

v
id

er
s

Time elapsed (minutes)

Figure 34: Sample snapshot of availability dispersion

(random peer)

On both setups (50000-instance training data, 500 and 2000-instance dataslices), the terminal value

of resilience was around 4.3, indicating that chunks requested by nodes were stored in an average of

4.3 other peers. Figure 34 illustrates the dispersion of chunk availability (orange dots) and resilience

value (gray area) of a random peer participating in a 15-node training session utilizing 2000-instance

dataslices.

Our proposal emphasizes resilience, since one of LEARNAE's primary objectives is fault tolerance

and the ability to continue collaborative training even if a part of the network is disrupted. In practice,

102

a resilience score of 4.3 indicates that the process could continue without obstruction even if a

significant portion of the nodes were disconnected.

(a) Dataslices of 500 instances

(b) Dataslices of 2000 instances

Figure 35: Overall network accuracy

3.5.3.6 Overall network accuracy

The mean value of the final accuracy of all participating nodes was used as a measure for the

network's achieved accuracy (Figure 35). The following graphs illustrate how the dataslice size

selection impacts overall accuracy. From a theoretical standpoint, there are two critical opposing

103

forces at work throughout a LEARNAE collaborative training session. By selecting bigger dataslices,

the proportion of pure training in the whole process is enhanced. This leads in a more efficient training

process and more accurate models. However, bigger dataslices have the disadvantage of decreasing

the likelihood of effective averaging and the associated advantages to overall accuracy. As shown in

Figure 36, there is a sweet spot for this tradeoff that results in optimum neural models. This was

accomplished in the current setup, for dataslices containing 2000 instances.

The same image illustrates the advantages of LEARNAE's coordinating algorithm in comparison

to a stand-alone scenario in which all peers train their models independently of one another. For the

sweet spot, the accuracy gain is maximized (green diamond). The actual numerical statistics are

included in Table 11.

At the graph's right edge, where all data is treated as a single dataslice, both techniques provide

the same result since no effective averaging can occur, and the LEARNAE network degenerates into

a collection of isolated workstations.

Figure 36: Collaborative overall network accuracy per dataslice size

The important experimental conclusion is that it is possible for a number of participants (in this

case 15) to co-exploit their sensitive training data without exposing them to others, in order to

collaboratively achieve improved neural models. The gain in accuracy is expected to be positively

affected when increasing the number of peers.

104

Table 11: Collaborative overall network accuracy per dataslice size

Dataslice size

(Instances)

15 peers with

data-privacy enabled

(%)

Stand-alone

(%)

500 79.56

79.14

1000 79.73

2000 79.78

5000 79.61

10000 79.47

50000 79.16

3.6 Summary

Our work is a first approach on leveraging Distributed Ledger Technology for purely decentralized

NN training. In first phase, being a proof-of-concept, it had a limited applicability and it was tested

solely on a single machine using virtualization containers.

Then we expanded our work and applied it to realistic conditions. The coordination algorithm was

tested on a local network of PCs with moderate hardware specifications. Our methodology followed

an exclusively comparative logic, since our concern was not actual performance, but possible benefits

originating from this decentralized collaboration.

The experiments indicated that our proposal can offer tangible gain to collaborating peers, without

compromising data privacy. The results showed a significant improvement compared to nodes

working in isolation.

105

4 Using Distributed Ledger Technology to Democratize

Neural Network Training

4.1 Related work

Related studies can be grouped in four major categories, depending on how they deal with the two

key characteristics, centralization and synchronicity. Centralized solutions need the presence of a

management entity, such as a parameter server or a node with enhanced permissions. This often

results in a communication bottleneck and necessitates the use of high-performance networking; it

also results in the creation of a single point of failure. On the other hand, synchronous approaches

impose some kind of time-based coordination between the peers. There are solutions in which all

nodes must operate in exact concurrent phases and others in which they must share a common clock.

Often, these solutions are troubled by locks and stale updates caused by slow workers.

The following sections summarize previous proposals, which include the following:

1) centralized synchronous

2) centralized asynchronous

3) decentralized synchronous

4) decentralized asynchronous

4.1.1 Centralized synchronous

Sandblaster L-BFGS [10] and Parallel minibatch SGD [108] both need a parameter server and a high-

performance infrastructure.

By estimating redundancy, Parameter Server [109] provides methods to minimize the impact of

slow nodes and introduces fault management. FireCaffe [99] is built on the Caffe [110] framework,

employs a proprietary MapReduce protocol, and needs high-speed networking. CaffeOnSpark is

based on the DistBelief paradigm and is implemented on top of the Spark framework. Additionally,

each peer acts as a parameter server for a subset of the model. BigDL [111] mostly follows the

CaffeOnSpark concepts, with the exception of the parameter exchange method. It requires distinct

training and data exchange cycles, which results in a strictly synchronous functioning scheme. MPCA

106

SGD [100] partitions the model into shards that are reduced and shared independently, requiring a

driver node to coordinate the process.

4.1.2 Centralized asynchronous

HOGWILD [96] minimizes communication requirements by using local optimization and

asynchronous model merging through a parameter server. DistBelief [10] is a well-known technique

that makes use of a cluster of parameter servers and their peers. Each server-worker group is

responsible for a subset of the model. Following each cycle, the peers must download the updated

version of the joint model.

Adam [36] clusters the parameter servers and tries to reduce network traffic by offloading certain

processing from the workers to the servers. Elastic Averaging SGD (EASGD) [95] runs the optimizers

on the nodes, which interact with a parameter server separately every N work cycles. MXNet [98]

defines a hierarchical parameter server topology in which intermediary nodes may function as proxy

servers.

Petuum [112] introduces the concept of staleness norms in order to improve synchronicity and

convergence speed. Selective SGD [97] minimizes communication requirements by using local

optimization and asynchronous model merging via a parameter server. TensorFlow [94] may be

regarded the successor of DistBelief, since it incorporates automated computation graph optimization,

which significantly simplifies distributed model parallelism.

4.1.3 Decentralized synchronous

SparkNet [113] adopts FireCaffe's methodology while attempting to adapt to low-bandwidth

networks. It implements decentralized synchronous training. Thus, for N cycles, each worker

executes a separate optimizer in isolation. Averaging is then used to decrease the size of the resultant

models.

Prior to the start of the next computing cycle, the averaged model is broadcast to all workers and

takes the place of their local models. The nodes in Decentralized Parallel Stochastic Gradient Descent

(D-PSGD) [114] are synchronized through a shared clock and exchange parameters after each training

cycle.

107

4.1.4 Decentralized asynchronous

GoSGD [115] implements the EASGD algorithm using a mesh topology for peer organization. Every

Nth cycle, a randomized algorithm selects the pairs of workers who will exchange data [116]. On top

of the Spark framework, DeepSpark [117] tries to implement EASGD on commodity hardware.

Asynchronous Decentralized Parallel Stochastic Gradient Descent (AD-PSGD) [118] is built on a

ring-based network architecture, and after each iteration, each worker chooses a neighbor for

averaging, at which point both workers replace their local models with the averaged one.

Recent work has focused on improving resource utilization, either via parallelization of computation

and communication or through the use of intuitive scheduling. Dianne [119] is a Java-based

distributed framework that makes use of the Torch backend. It decomposes the neural network into

distinct building blocks and associates each block with a particular node. It contains components for

training and assessing models with the help of a parameter server.

MXNet-MPI [120] is a modified version of MXNet that aims to integrate the best features of

synchronous and asynchronous solutions. It proposes clustering the workers into groups that run SGD

with AllReduce separately. Scalability and fault tolerance are enforced via this clustering. Horovod

[121] utilizes MPI to build a new training layer for AllReduce and integrates it into Tensorflow.

Because it is primarily concerned with GPUs, it makes extensive use of libraries that support many

GPUs on a single worker. Due to the fact that it sets a priority on computing speed, it lacks scalability

and fault tolerance.

ByteScheduler [122] is predicated on the premise that splitting and reordering tensor transmissions

may enhance performance in distributed environments. It proposes that by altering the transmission

order of the neural layers, training speed may be improved and the effect of communication overhead

can be minimized. BytePS [123] is an open source project that focuses on heterogeneous architectures

using GPU clusters. It makes an effort to optimize distributed training tasks by using their spare CPU

and bandwidth resources. [124] proposes a compressed SGD using Nesterov's momentum that is two-

way (both to and from workers). To minimize communication costs, it divides the gradient into blocks

that are compressed and sent in a 1-bit format via a scaling factor. Independent Subnet Training [125]

divides the neural network into a set of equal-depth subnetworks. Each work cycle entails training

the subnet on a local level and sharing results with other peers. The method does not need parameter

aggregation, since there are no shared parameters across the subnets. This feature increases subnet

independence and lowers the necessity for communication.

108

The Computation and Communication Decoupled SGD (CoCoDSGD) algorithm [126] proposes

a method for parallelizing computation and communication. The workers do not share data on a per-

iteration basis, but rather on a periodic basis. This leads in more efficient resource use and cost savings

associated with communication. Geryon [127] is a proposal for speeding CNN training by including

a network-level scheduling algorithm. It categorizes model parameters according to their degree of

urgency. The parameters that have the greatest effect on the model's quality are prioritized and

transmitted first. Geryon accelerates the training process but has no impact on the model accuracy

achieved.

Another communication scheduler is Preemptive AllReduce Scheduling for Expediting

Distributed DNN Training (PACE) [128]. It is based on scheduling AllReduce tensors in advance

using the DAG from DNN training. It aims to determine the optimum level of granularity for tensor

communication in order to maximize the overlap between communication and computation functions.

As a consequence of this scheduler, overhead is reduced and bandwidth utilization is maximized.

Priority-based Parameter Propagation for Distributed DNN Training (P3) [129] is a two-part

technique that includes parameter slicing and priority-based updating. The first method subdivides

the model layers into smaller sublayers and independently synchronizes them. The second determines

the priority of each slice depending on its recurrence in the following iteration. P3 guarantees that the

most critical slices always have the necessary network resources.

The concepts around which SwitchML [130] is founded are as follows: To begin, parameter

changes may be split into pieces that can be handled separately. Second, SGD aggregation may be

performed independently on various subsets of the input data, regardless of their order. Third,

machine learning training is robust to approximations of its compute operations. The authors suggest

a technique in which the switch pipeline processes the generated chunks and packet loss may be

tolerated via the use of a lightweight switch scoreboard mechanism and a retransmission mechanism

controlled exclusively by end hosts.

TicTac [131] is a TensorFlow-based framework that aims to anticipate the sequence in which

parameters will be used by the underlying computational model. As a result, it optimizes network

transfers to minimize communication time. TonY [132] is a free and open-source orchestrator that

includes a client and a scheduler. Users may submit machine learning tasks via the client, and the

scheduler takes care of assigning resources, configuring the environment, and executing the machine

learning work in a distributed manner. [133] addresses the scalability issue that exists on public cloud

clusters due to their low interconnection bandwidth. It proposes a top-k sparsification library for

109

computation and communication that will be optimized. Additionally, it incorporates a multi-level

data caching technique to improve I/O functions and introduces a new parallel tensor operator to

speed up update operations. The aforementioned characteristics are used by a hierarchical

communication algorithm, which tries to combine sparsified gradients in order to maximize

processing power utilization.

4.2 LEARNAE system

4.2.1 Coordinating algorithm

The data flow between various kinds of nodes is shown in Figure 37. The workflow of a Full Node

is shown in Figure 38. When a collaborative session begins, peers who possess training data divide it

into predefined-size "dataslices." These files are added to IPFS individually and their hashes are

aggregated into a hashlist. This file is then added to the network's shared DHT, and its hash is

broadcasted (purple area). Each time a peer consumes a dataslice, the peer broadcasts a message

informing the other peers that the dataslice has been used. This facilitates LEARNAE's overuse

threshold feature, which allows users to set the maximum number of times a particular dataslice may

be utilized for training throughout the network.

When a peer gets a message indicating the availability of a dataslice, it retrieves its chunks from

several neighbors and adds it to the queue containing locally accessible dataslices; unless the slice

has already exceeded the preset overuse threshold, in which case the peer ignores it (red area).

Parallel to the aforementioned functions, peers randomly choose between training and averaging

in every work cycle, increasing the overall stochasticity. Following each training phase, peers add the

created local model to IPFS and announce its availability (green area). When a peer chooses

averaging, it looks through its local list of remote models. If a model with a claimed accuracy higher

than the local one is discovered, the peer fetches the remote model and averages it with the local one.

If this procedure results in an increase in local accuracy, the peer accepts the averaged model, adds it

to the shared DHT, and announces its availability to the network. The message regarding available

models includes information about the broadcaster's accuracy and the model's maturity, e.g., how

many work cycles preceded its development (blue area). After all averaging attempts have been

performed and the network has attained maximum convergence, each peer retrieves the one remote

110

model with the highest accuracy. This model is compared against the local dataset and, if it performs

better, it is accepted as is by the peer.

Figure 37: Data flow between different node roles

4.2.2 IoT Implementation

Our work introduces a way to incorporate data from lightweight IoT devices using the IOTA Tangle

(Figure 39). The participating peers that are capable of training models scan the Tangle for new

messages on a periodic basis. If they find new data, they save them locally.

Due to the Tangle's IoT-centric design, it works best when transmitted packages are not too big.

The next chapter contains details on the experimental metrics. The saved sensor data are kept in a

buffer and are added to the list of dataslices that are ready to be utilized for training when their size

reaches the preselected dataslice size; the buffer is then purged.

111

Figure 38: The principal parts of a Full Node's workflow

4.2.3 Configuration of the MAM Stream.

A MAM message may have a tag field in addition to the data part. Because the MAM API allows

searching by tag, LEARNAE uses it to connect all sensors associated with a particular training

session. Each sensor is linked with its own MAM stream. The first message is tagged with a pre-

112

agreed codename (which may correspond to the IPFS PubSub topic name) and includes the sensor

ID and its creation date. This head message indicates the location of the first data message, and so

on. All data is in JSON format.

Figure 39: The structure of MAM messages created by LEARNAE

The method of embedding an IoT sensor into a LEARNAE network consists of these steps:

(a) To begin, the enquiring peer seeks MAM messages with the specified tag from the

Tangle. If it finds a new message (e.g., with a first-seen address), attaches it to the list

of known sensors.

(b) Then, each time the peer scans for new IoT data, it starts checking the linked list's tip

of each known sensor.

(c) If it finds new data messages, it appends them to the local buffer and stores a pointer

to that last message; hence, the next times it checks the specific sensor, the search will

start from this pointer and not from the beginning of the whole stream.

113

Table 12: Configuration of VPS nodes

Metric Value

CPU QEMU Virtual CPU version 2.1.2 2.10 GHz (2 processors)

RAM 4 GB

Internet connection 50 Mbps

The enhancements to LEARNAE described here were tested via the use of a large number of

distributed training sessions. The network comprised of twenty workstations that were set as Virtual

Private Servers in the cloud (VPS). Their configuration was chosen to match that of a typical personal

computer, as shown in Table 12. A particularly compelling use of distributed training is in

environments where each peer has a very limited number of instances. In this case, cooperation may

help alleviate the data scarcity restriction and provide more accurate models.

Table 13: Main hardware/software specifications of the emulated sensor

Specification Value

CPU Quad Core 1.2 GHz 64 bit

RAM 1 GB

Network 100 Base Ethernet

Storage 16 GB Micro SD Card

Internet connection 50 Mbps

OS Raspbian

OS kernel version 4.19

OS image size 1136 MB

Framework of MAM-related code NodeJS (ver: 11.10.1)

In contrast to our prior research, the experiments in this phase concentrate only on such use cases,

limiting each peer's available training data to 5,000 instances. Because all tests are designed to ensure

anonymity, participating peers share just models, not training data. The following sections quantify

the proposed architecture's advantages.

114

4.2.4 IoT evaluation

4.2.4.1 Sensor Setup

To mimic an IoT sensor, we used a low-power SBC: the Raspberry Pi 3 Model B. The hardware

specs and major software/development decisions used to implement these tests are listed in Table 13.

4.2.4.2 Dataset Characteristics

The dataset employed was HEPMASS, which was created for the purpose of training systems on

exotic particle identification via the utilization of a high number of collisions. It contains 7 million

training instances (5 GB) and 3 million testing instances (2.5 GB). Each instance is approximately

750 bytes in size and is composed of 30 floating point integers (including metadata).

For these experiments, the data are sent uncompressed and unencrypted. Each dataset instance

simulates the reception of a new signal by a sensor. A transmission packet is composed of several

instances. This number is related to the instance size in order to generate packets with optimum

propagation across the Tangle.

4.2.4.3 Data Publishing

The training dataset was divided into 50-instance packets. As a result, each MAM message

broadcast to the Tangle was about 35 KB in size. This was determined to be the optimal value, since

lower values could not achieve maximum network utilization and higher values were sometimes

refused by IOTA nodes due to congestion or restrictions preventing misuse. Table 14 presents the

metrics of the sensor data publishing procedure.

4.3 Fault tolerance evaluation

To assess the negative impact of network disruptions, a new subsystem was implemented in

LEARNAE to simulate peers shutting down or experiencing connection issues. Three new testing

parameters control the severity of the simulated issues:

115

• Offline Cycle, which specifies the frequency with which the disconnection status is updated;

• Offline Duration, which specifies the duration of the disconnection;

• Offline Probability, which specifies the likelihood of the disconnection to occur.

Table 14: Metrics of data transmitted by the SBC

Metric Value

Instance size (approx.) 750 bytes

Instances per packet 50

Packet size (approx.) 35 KB

Number of transmitted packets 1000

Total time required 3 h 52 m 18 s

Time required per packet 13.9 s

Figure 40: The number of online peers for different Offline Probability

For these experiments, the first two values were set to 15, indicating that peer connectivity was

updated every 15 minutes and that the new state persisted until the next update. To study the impact

of these issues, all experiments were conducted with 0%, 20%, 40%, 60%, and 80% Offline

Probability. The fluctuation in the number of online peers throughout the trials is shown in Figure

40.

116

4.3.1 Low Epoch Conditions

A model may be enhanced by training and/or by averaging. When the number of epochs in a use

case is low, the effect of training is decreased and averaging plays a greater role. To illustrate the full

impact of network interruptions, early experiments were performed using a single training epoch. The

achieved mean accuracy and spread for each offline probability are shown in Figure 41, while they

are compared in Figure 42. For reference, these figures also depict the outcomes for a stand-alone

configuration, in which each peer trains its model independently using just its own data. As shown in

these figures, the proposed algorithm outperformed the stand-alone setup except for the 80% Offline

Probability. The extended final spread (orange region) in the latter example (f) shows that this was

the only case in which the network failed to reach proper convergence.

Figure 41: Mean Accuracy and Spread per Offline Probability (Low Epochs)

117

The ability to overcome difficulties caused by unavailable peers is described in LEARNAE's

terminology as resilience, an index defined as the total number of neighbors from whom a data chunk

may be retrieved at a given moment. To illustrate the obtained data replication, Figure 43 depicts the

evolution of mean resilience and its spread over the period of a training session with no simulated

disconnections. The final result of 6 indicates that on average, a requested chunk may be obtained

from 6 distinct remote peers out of a total of 20.

Figure 42: Comparison of Mean Accuracy for different Offline Probability

(Low Epochs)

Figure 43: Mean Resilience and Spread

118

4.3.2 Optimal Epoch Conditions

The optimum number of epochs for the configuration of these experiments was determined to be 10.

The following tests were conducted appropriately to maximize the beneficial impact of the training

phases. As shown in Figure 44, disruptions with an Offline Probability of up to 80% have no impact

on overall performance. The comparison of the achieved mean accuracy for various disconnection

rates is shown in Figure 45. Even with an 80% disconnection rate, the proposed averaging algorithm

was able to reduce the accuracy spread across peers by up to 3.24% (Table 15).

Figure 44: Mean Accuracy and Spread per Offline Probability

(Optimal Epochs)

119

4.4 Data balancing

Due to the fact that the quality of the training data differs across peers, the produced models will have

varying degrees of accuracy. This discrepancy is mode intense at the start of the collaborative session

and diminishes as the session progresses and averaging is finished. The proposed architecture's

distributed nature guarantees load balancing and the lack of congestion points. The quantity of data

provided by each participant is shown in Figure 46. Peers who develop more accurate models earlier

in the process must provide more data, since their model is heavily fetched by others. However, this

spike is just transitory, lasting only as long as their data's replication factor in the network remains

low.

Table 15: The improvement in convergence (distributed vs stand-alone)

Offline Probability (%)
Accuracy Spread (%)

[Stand-alone]

Accuracy Spread (%)

[Distributed]
Change in Spread (%)

0

5.60

3.04 -2.56

20 2.39 -3.21

40 2.52 -3.08

60 2.36 -3.24

80 3.15 -2.45

Figure 45: Comparison of Mean Accuracy for different Offline Probability

(Optimal Epochs)

120

Figure 46: Total amount of data sent by each peer

4.5 Benefits of proposed architecture

As shown in Figure 47, at the first stage when data are poured into the network, peers are evenly split

into two groups: training (green) and averaging (blue). After consuming all available data, no training

processes are invoked, and weight averaging takes over. This procedure concludes with global

convergence, at which point no peer can profit from model merging and thus the averaging phase

ends. The rightmost spikes in the blue region represent peers who already have high-quality models.

To maximize utilization when peers have no other queued work, they try averaging with newly

published remote models, even if their reported accuracy is lower than the local one. This results in

further parameter space exploration and, potentially, model improvement, without sacrificing

valuable processing time. The percentage of successful averaging attempts reached a maximum of

32% throughout the trials, while the mean value for all participants was 10%. These are the final

values obtained at the end of the session after the network had converged. During the first phase,

peers improved their accuracy at a rate of up to 70% via model merging (Figure 48).

To evaluate the proposed architecture's accuracy improvement, two sessions were conducted using

the optimum number of epochs. In the first instance, each peer trained their models independently.

The second was a LEARNAE session that had privacy features enabled. As shown in Figure 49 and

Table 16, there is a substantial increase in the accuracy of the generated models of 1.12% despite the

absence of training data exchange.

121

Figure 47: Number of peers training/averaging

Figure 48: Successful averaging attempts

Table 16: Mean model accuracy values (stand-alone vs distributed)

Method Model Accuracy

Stand-alone 78.74 %

Distributed (data privacy) 79.86 %

122

4.6 Summary

This study proposes and evaluates a novel method for embedding IoT sensors without compromising

the architecture's distributed nature. Additionally, it examines a critical feature known as resilience,

as well as the effect of network disruptions and untrustworthy peers.

As shown by the experiments, LEARNAE collaboratively achieves models with an increased

accuracy of up to 1.12% for the present configuration , without the need to share training data, but

rather by leveraging neighbor information through selective parameter averaging.

Figure 49: Mean model accuracy (stand-alone vs distributed)

123

5 Incentivizing Participation to Distributed Neural

Network Training

We suggest a method for incentivizing peers to participate in LEARNAE's collaborative

training sessions. So far, a LEARNAE swarm was composed of nodes that shared an interest in the

outcome and partnered to improve model accuracy. A novel incentivization system is now included;

peers may join a session and profit from their constructive averaging.

5.1 Proposed architecture

Figure 50: The major parts of a node's workflow (incentivization in yellow color)

124

The aforementioned incentivization mechanism is accomplished via the incorporation of a

gateway, capable of communicating with blockchains in order to both publish and collect data. The

architecture is platform agnostic and is compatible with any blockchain capable of executing code.

With a credit system in place, peers may reward helpful neighbors by sending them digital

micropayments for their contribution to successful averagings.

Figure 51: Additional workflow section

Our prior work includes a comprehensive description of the workflow of a node. Figure 50

illustrates how the new components are integrated into the current workflow, while Figure 51 shows

the modifications required to create the incentivization subsystem. At the time of the first execution,

a peer wishing to receive payments must deploy LEARNAE's Smart Contract to the Ethereum

Network. Following that, it must notify its neighbors by broadcasting a new type of metadata message

containing its IPFS ID and the Ethereum public address of its Smart Contract.

When LEARNAE is in private mode, no training data is sent, which means that peers who joined

only for the reward will almost certainly have no data of their own. In these cases, peers will randomly

adopt a remote model that was made available to the network in order to properly initialize their local

model. After that, they will fall back to the typical node workflow.

125

5.2 Incentivization algorithm

Each time a peer improves its local model by averaging with a remote one, the peer's incentivization

algorithm sends a micropayment in Eth to the creator of the remote model. The payment amount is

determined by a Reward Function that takes into account the amount of improvement in local model

accuracy.

5.2.1 Reward Function

For the conducted experiments, in order to evaluate the whole procedure, we used a simple

proportional formula:

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 = 𝑅𝑒𝑤𝑎𝑟𝑑𝐹𝑎𝑐𝑡𝑜𝑟 ∙ (𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 – 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

In general, any Reward Function, whether linear or not, may be utilized. Eventually, the law of

Supply and Demand will guide participants to the optimal amount of reward. This first

implementation assumes that peers who engage in and benefit from the generated model are

benevolent and will reward their helpful neighbors in order to maintain a relationship of trust.

We acknowledge that this method may be improved by anticipating bad actors who would benefit

from others' contributions without rewarding them. So, study in this area, within the scope of Game

Theory, will be a part of our future work.

5.3 Distributed proof of identification

Peers must be able to prove their identity in order for the incentivization to even exist. This would be

trivial if a certificate authority could be used, but in the case of LEARNAE every aspect must be

completely decentralized. As a result, we use Ethereum's Smart Contract architecture to provide a

mechanism for Distributed Proof of Identity (DPoID).

126

5.3.1 Smart Contract Deployment

When a peer joins a LEARNAE session, it must deploy a specific Smart Contract on the Ethereum

blockchain. Two data fields are included in this contract: "PoID" (Proof of Identification) and

"Timestamp." When a contract is created, its constructor method is automatically executed. The

creator-peer provides it with a single parameter (PoID), which is composed of its IPFSid and the

public Ethereum address associated with its digital wallet. Internally, the constructor assigns the

current date and time to the Timestamp field (Figure 52).

5.3.2 PoID Propagation and Rewarding

Following the deployment of the Smart Contract, the peer broadcasts the address of the contract

to its neighbors. To obtain the required data, all other nodes execute this Smart Contract's getPoid()

and getTimestamp() methods on the blockchain. Each node keeps a local directory containing the

IPFSid, the public Ethereum wallet address, and the timestamp for each Smart Contract broadcasted

to the network. For example: Peer A improves its local model by averaging it with a remote model

sent by peer B. Peer A scans its local directory for the Ethereum public wallet address associated with

peer B's IPFSid and sends a micropayment to that address.

5.3.3 Shielding against fraudulence

A malicious actor might try to hijack payments by broadcasting Smart Contracts with its own

Ethereum public wallet address but using the IPFSid of a more active peer. This attempt would be

recognized and ignored by its neighbors. This is due to the fact that the same IPFSid would be linked

with two different Ethereum public addresses. In such situations, the Smart Contract with the later

timestamp would be immediately rejected as fraudulent.

5.4 Conducted experiments

Our previous work demonstrated that collaborative training may provide advantages – in terms of

model accuracy – even with a small number of participants. The point of this study is to discuss some

early metrics for the incentivization system.

127

Figure 52: Structure of DPoID Smart Contract

The following graphs depict a LEARNAE session of 20 peers. Each of them possessed a local

dataset of 10000 examples, which was split into 10 groups of 1000 instances to facilitate averaging.

Data privacy was enabled, which means that nodes did not exchange training data.

As shown in Figure 53, the first phase is distributed evenly between training and averaging. Once

all available data has been consumed, peers devote their whole attention to averaging efforts. Finally,

as the swarm approaches convergence, averaging is unable to improve the models any further, and

the session concludes.

As shown in Figure 54, at the beginning the percentage of successful averagings is high, and peers

rapidly benefit from their neighbors' models. Even at the session's end, the mean percentage of

successful averagings is above 20%.

Figure 55 depicts the evolution of the mean model's accuracy.

128

Figure 53: Work type distribution

Figure 54: Cumulative success rate of averaging process

Figure 56 shows the number of Eth payments throughout the session. For the conducted

experiments, peers sent micro-payments 3-16 times (with a mean value of 9.4).

As shown in Figure 57, during the collaborative training, peers sent 0.0005-0.0068 Eth to their

neighbors (with a mean value of 0.003).

It is important to outline that the conducted experiments serve as a proof of concept; the actual

values of a real-life session would be auto-regulated by supply-and-demand of processing power.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100 110 120

N
u

m
b

er
 o

f
p

ee
rs

Session time (minutes)

Peers averaging Peers training

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Su
cc

es
sf

u
l a

ve
ra

gi
n

gs
 (

%
)

Session time (minutes)

Successful averagings (SPREAD) Successful averagings (mean)

129

5.5 Summary

We extended our previous research on Distributed Neural Network Training by including a subsystem

that incentivizes peers to participate in a LEARNAE session. In this scenario, peers who have no

interest in the generated model may join the swarm to profit from their constructive averaging. We

developed a technique for implementing a completely distributed proof of identification using

Ethereum's Smart Contracts and conducted proof-of-concept experiments to evaluate the basic

metrics.

Figure 55: Progress of model accuracy

Figure 56: Cumulative number of Eth payments

50

55

60

65

70

75

80

0 10 20 30 40 50 60 70 80 90

M
o

d
el

 a
cc

u
ra

cy
 (

%
)

Session time (minutes)

Model accuracy (spread) Model accuracy (mean)

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100 110 120

N
u

m
b

er
 o

f
p

ay
m

en
ts

Session time (minutes)

Eth payments (spread) Eth payments (mean) Payment occurred

130

Figure 57: Cumulative amount of Eth sent

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 10 20 30 40 50 60 70 80 90 100 110 120

A
m

o
u

n
t

o
f

Et
h

 s
en

t

Session time (minutes)

Eth sent (spread) Eth sent (mean)

131

6 Consolidating Incentivization in Distributed Neural

Network Training via Decentralized Autonomous

Organization

Our previous incentivization method is unable to deal with bad actors who refuse to pay the proper

rewards. To deal with this issue we introduce a novel incentivization scheme, based on the concept

of Decentralized Autonomous Organizations.

6.1 Proposed architecture

In order for any incentivization to work, peers must be able to verify their identities. A certificate

authority would make this straightforward, but in the case of LEARNAE everything must be fully

decentralized. We use Ethereum's Smart Contracts to build a Distributed Proof of Identity (DPoID).

To participate in a LEARNAE session, each participant must first deploy a Smart Contract to the

Ethereum network. This contract has two data fields: PoID (Proof of Identification) and

Timestamp. The creator-peer passes one parameter (PoID) to the network, which is comprised by (a)

its IPFSid, (b) its public Ethereum address of its digital wallet, and (c) its PublicKey. Internally, the

constructor assigns the current date and time to the Timestamp field.

After deploying the Smart Contract, the peer broadcasts the contract's address to its neighbors, and

all other nodes in the network execute the 𝑔𝑒𝑡𝑃𝑜𝑖𝑑() and 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝() methods to get the

required data, which are kept locally in every node’s storage.

A malicious actor could attempt to highjack payments by broadcasting a Smart Contract that

contains its own Ethereum public wallet address but with the IPFSid from another –more active–

peer. This effort would be detected and dismissed by its neighbors, due to the fact that the same

IPFSid would be associated with two distinct Ethereum public addresses. In such cases, The Smart

Contract with the later timestamp is immediately rejected as fraudulent. Detailed analysis of this

process can be found in our previous work.

132

6.2 The concept of Decentralized Governance

6.2.1 Background Theory

There is a novel technological development that has entered the domain of public organizations,

thanks to algorithmic systems [134]. The thing which defines these systems is Machine Learning,

which provides new ways to discover knowledge [135]. Artificial Intelligence applications use huge

datasets and statistical methods to infer connections that are sometimes hidden or not obvious. These

algorithms have the potential to offer significant new insights, therefore they are regarded as a very

strong tool for governance purposes [136].

Decision-making based on algorithmic analysis is grounded on a completely different logic than

traditional bureaucracy, since the latter usually leads to a decision taking into consideration single-

case information. Even though uncertainty is inherent in many decision-making processes,

algorithmic systems allow governance structures to use data analysis to quantify the uncertainty and

state the information as probabilities, to better rationalize the process. This method could offer, for

example, a powerful optimization tool to classify cases based on whether they should be the subject

of further investigation. Thus, algorithmic systems are a major shift in how an organization is

structured and they have the potential to fundamentally affect how governance is achieved. The term

Algocracy introduces the concept of exerting governance using algorithms. It is the evolution step

after Machine Bureaucracy and Infocracy.

Machine Bureaucracy is an administrative body that is defined by a distinct set of guidelines for

getting things done [137]. Work procedures in this context are quite organized and rule-based. A

single, standardized way of doing things dominates the Machine Bureaucracy, since every task must

be done in a very rigid manner. Hierarchization and formalization are both high, as is centralization,

with the buildup of decision-making capacity at the top of the organization. The underlying

technological infrastructure is the pivotal element of the organization. Because it is in charge of

standardization, it can thus be said that it is accountable for that implementation.

Infocracy is a form of organization, much like Machine Bureaucracy. The standardization of work

is programmed into the technology utilized by the organization, eliminating the need for participants

to learn rules that would improve uniformity [138]. Work standardization is extremely prevalent, but

all processes are set in motion by information systems following preset laws and regulations

[139][140]. This solidifies the technological structure's important role inside the organization. Work

133

is supported by information systems, which have created a fine-grained division of roles with plenty

of vertical control. Decisions at a lower organizational level may be taken at some extend, sometimes

with moderate decentralization. In addition, hierarchical and formalized organizational structures are

decreased, as compared to Machine Bureaucracy.

In Algocratic systems, non-routine labor may be done by using sophisticated technology.

Algorithms for data mining, pattern recognition, and prediction are all built using Machine Learning

[141][142]. Inherent uncertainty is measured and minimized by the algorithmic system's data analysis

[143].

Algocracy proposes that sophisticated technologies can push technology into decision-making

domains, by converting human judgement into standardized processes [144]. The algorithm is to be

used in both a unidirectional and bidirectional fashion, contrary to Machine Bureaucracy and

Infocracy, where work control is unidirectionally administered via the organization and information

infrastructure, respectively.

It is noteworthy that many of those algorithms depend on developer inputs, like their judgments,

perceptions and opinions, etc, that may have an impact on the learning process. This is significant

because the programmers may actually predetermine and guide the Machine Learning algorithm, and

in that way influence the decision-making results given by the system.

6.2.2 Decentralized Autonomous Organizations

A Decentralized Autonomous Organization (DAO) [145][146] is defined as a structure controlled by

laws written in code. Its members exert control through the transparency of these computerized

governance rules, and do not rely on central control. Transactions and regulations for a DAO are

stored on a blockchain [147][148][149]. The consensus mechanism of the blockchain ensures the

proper function of DAO, a critical feature since so far there is no concrete legal framework that covers

this novel kind of organization [150]. The benefits gained by the use of blockchain technology include

fault-tolerant distributed database, cryptography-based identification and permissionless

timestamping. When someone uses this method, they no longer have to rely on a trustworthy third

party in their transactions, making things easier and more straightforward.

The costs of a blockchain-based transaction, and the associated data-reporting, may be significantly

lower than traditional methods, due to the elimination of the need for multiple and independent

bureaucratic records and third-party fees that are typically charged in conventional procedures. Thus,

134

blockchain data might, at least in principle, replace public papers like deeds, titles and contracts, so

long as regulations allow it. Once a DAO launches, it could be structured to operate autonomously,

with Smart Contracts managed by a Turing-complete platform that would maintain full-scale

administrative support [151][152]. Decentralized self-government organizations aspire to be open

platforms where people control their relationships, their identity and their personal data [153].

In the Ethereum blockchain the Solidity programming language is what is used to create DAO code.

This code can be executed by creating on-chain Ether transactions. Ether, the digital asset of the

Ethereum network, is the fuel for all applications that leverage its blockchain. In order to start

functioning, a DAO needs Ether in its account, and thus, its priority is to obtain it. During the creation

phase the code is released, and the system allows Ether to be transferred to the DAO's Smart Contract

address.

In order to compensate senders of ether, a DAO generates tokens and assigns them to the senders

of the ether. The tokens provide to the participants the ability to vote and be part-owners. The amount

of created tokens depends on the amount of transferred Ether. There are no transfer fees for moving

tokens around after the Genesis phase has concluded.

When deployed, the settings for the Minimum DAO Creation Objective and Creation Phase Time-

period are given as arguments to the code. In case the total of DAO Creation Objective does not meet

the minimum before the end of the creation phase, all of the ether will be refunded. After the Creation

Phase has ended, the total Ether raised is denoted by 𝛯𝑟𝑎𝑖𝑠𝑒𝑑 and the total amount of tokens created

is denoted by 𝑇𝑡𝑜𝑡𝑎𝑙. Essentially, DAO is a structure that holds Ether and other Ethereum-based

tokens, and transfers them according to the organization’s code.

An individual who owns a DAO token may ask for DAO funds (denoted 𝛯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟) by proposing

a contract. If the proposal is accepted by the majority of the voting power, the DAO sends the

requested Ether to a smart contract representing the proposed project. The process of selecting a

contract can be enhanced with advanced features, such as collaboration with other DAOs and fetching

data from external sources called “Oracles”.

The number of votes someone has, is proportional to the number of tokens they own. Each proposal

has an allotted amount of time for discussion and a vote. Once a proposal has been approved, token

holders will be able to execute a DAO contract function which verifies that (i) the majority of votes

were in favor of the proposal, (ii) the minimum quorum percentage was met, and (iii) the proposal

has been approved. The DAO will fund the proposal if it has been approved, otherwise the proposal

will be closed.

135

A token holder has a say if they have at least one DAO token. The minimum number of tokens a

person must have to be able to influence a decision is denoted by 𝑞𝑚𝑖𝑛. An example of how some of

the most popular DAO calculate 𝑞𝑚𝑖𝑛 is as follows

𝑞𝑚𝑖𝑛 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑑
+

𝛯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∙ 𝑇𝑡𝑜𝑡𝑎𝑙

3 ∙ (𝛯𝐷𝐴𝑂 + 𝑅𝐷𝐴𝑂)

where 𝑑 is the 𝑚𝑖𝑛𝑄𝑢𝑜𝑟𝑢𝑚𝐷𝑖𝑣𝑖𝑠𝑜𝑟, 𝛯𝐷𝐴𝑂 is the amount of ether owned by a DAO and 𝑅𝐷𝐴𝑂 is the

amount of reward tokens owned by this DAO. The sum (𝛯𝐷𝐴𝑂 + 𝑅𝐷𝐴𝑂) is equal to the amount of

ether used to create DAO tokens plus the rewards received, or said another way, the total amount of

ether a DAO has ever received.

The above formula means that, initially and for 𝑑 = 5, a quorum of 20% of all tokens is required

for any proposal to pass. In the event 𝛯𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 equals the amount of ether a DAO has ever received,

then a quorum of 53.33% is required.

To prevent proposal spam, a deposit is needed in order to have a proposal reviewed; the deposit

will be returned if the majority approves the plan. The DAO will retain the deposit if a quorum is not

met. The required deposit amount may be modified by the DAO in a later proposal.

The DAO as a decentralized entity cannot be manipulated by any outside influences. Because it is

open-source, the organization and all of its code are visible and therefore impossible to corrupt, since

all program functions are managed on the blockchain.

Stakeholders must have complete consensus on every choice they need to make, such if one

member wishes to pull out their money. Bugs and other problems requiring democracy in the

decision-making process are also a concern, and all can be addressed by the DAO’s rules.

From a technological standpoint, a DAO is made up of one or more Smart Contracts which are

executed on the Ethereum blockchain using its distributed consensus mechanism. Ethereum offers a

blockchain with a built-in Turing-complete programming language, where users may design and

implement applications on their own terms. Smart Contract transaction costs are paid using

Ethereum's currency Ether. Figure 58 shows the theoretical layers of a Decentralized Autonomous

Organization.

136

Figure 58: Architectural layers of DAO

The data structure of a single proposal depends on the characteristics of each use case. For a typical

DAO, a proposal could have the parameters shown in Table 17.

6.3 LEARNAE’s Decentralized Autonomous Organization

The first stage of a LEARNAE training session is the establishment of its Decentralized Autonomous

Organization. During this period all participants have to deposit a predefined amount of digital assets.

These assets are immediately locked and constitute the DAO’s Contribution Fund. Each deposit

contains the participant’s Ethereum public address. This information, in conjunction with the data

contained in the DPoID Smart Contracts, are used to link a deposit to an IPFS ID. Since voting is not

INTERNET

Layer

BLOCKCHAIN

Layer

APPLICATION

Layer

TCP/IP

Infrastructure

P2P NETWORK OF COMPUTERS

Physical Network

CONSENSUS RULES

Governance

RECORD OF TRANSACTIONS

Assets

SMART CONTRACTS

Relations

DECENTRALIZED AUTONOMOUS ORGANIZATIONS

Governance

137

weighted, the DAO sends in return a single LEARNAE token to each member. Owning this token

grants the right to vote and submit proposals.

Table 17: Typical parameters of a DAO proposal

Parameter Description

𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡
The address where the amount of assets will go to if the proposal is

accepted.

𝑎𝑚𝑜𝑢𝑛𝑡
The amount of assets to transfer to recipient if the proposal is

accepted.

𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 A plain text description of the proposal.

𝑣𝑜𝑡𝑖𝑛𝑔𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 A Unix timestamp, denoting the end of the voting period.

𝑜𝑝𝑒𝑛
A Boolean which is false if the votes have already been counted,

true otherwise.

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑃𝑎𝑠𝑠𝑒𝑑
A Boolean which is true if a quorum has been achieved with the

majority approving the proposal.

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝐻𝑎𝑠ℎ
A hash to check validity of a proposal. Equal to

𝑠ℎ𝑎3(𝑟𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡, 𝑎𝑚𝑜𝑢𝑛𝑡, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎).

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝐷𝑒𝑝𝑜𝑠𝑖𝑡
The deposit the creator of a proposal has send to submit a proposal.

It is taken from the 𝑚𝑠𝑔. 𝑣𝑎𝑙𝑢𝑒 of a 𝑛𝑒𝑤𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 call;

𝑦𝑒𝑎 Number of tokens in favor of the proposal.

𝑛𝑎𝑦 Number of tokens opposed to the proposal.

𝑣𝑜𝑡𝑒𝑑𝑌𝑒𝑠 Simple mapping to check if a token holder has voted for it.

𝑣𝑜𝑡𝑒𝑑𝑁𝑜 Simple mapping to check if a token holder has voted against it.

𝑐𝑟𝑒𝑎𝑡𝑜𝑟 The address of the token holder that created the proposal.

When the period for fund raising expires, the network starts the collaborative training. Every time

a peer improves its local model by averaging with a remote one, the peer updates, signs with its

private key, and broadcasts its own Shared Contribution Vector (SCV). SCV is a record that contains

138

information on how much help a peer received by its neighbors, in its effort to improve its local neural

model (Figure 59).

 Node_00 Node_01 Node_02 ··· Node_97 Node_98 Node_99

Node_i [value] [value] ··· [value]

Figure 59: Shared Contribution Vector of Node #i (assuming 100 participants)

Peers gather broadcasted SCV messages and use them to construct their local copy of Shared

Contribution Ledger (SCL). SCL is an array comprised by all known SCV records and is used to

determine a general view of the contribution level throughout the network (Figure 60). Thus, the

value in row X and column Y of the SCL represents the help offered to peer X by peer Y.

When training phase concludes, participants submit their proposals regarding the amount of digital

assets they claim as reward for their contribution. Peers review the submitted proposals by comparing

them to their copy of SCL. They vote in favor of every consistent proposal and against of all others.

When voting period ends, the DAO automatically releases the whole amount of available funds,

distributed proportionally to all approved proposals (Figure 61, Figure 62). The procedure is taking

place on the blockchain and requires no central coordination.

 Node_00 Node_01 Node_02 ··· Node_97 Node_98 Node_99

Node_00 [value] ··· [value] [value]

Node_01 [value] [value] ···

Node_02 ··· [value]

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

Node_97 [value] [value] ··· [value]

Node_98 [value] ··· [value]

Node_99 [value] … [value]

Figure 60: Shared Contribution Ledger (assuming 100 participants)

139

F Figure 61: The updated workflow of a LEARNAE full node

140

The new DAO-based incentivization mechanism is a major paradigm shift compared

to the tipping method of our previous implementation. Although tipping was a more direct

way for a peer to reward the neighbors that actually offered help to that peer, it could not

ensure the compliance of the participants. Thus, there could be cases where malicious

actors might tamper the procedure to avoid paying. The new implementation is more

community-oriented: Peers reward neighbors according to their overall assistance to the

swarm.

All participants have to declare their engagement to the process, by depositing digital

assets to DAO’s Contribution Fund. Depending on their assistance during the training

phase, peers can end up with less or more assets in their balance, compared to their initial

deposit amount. Which one it will be, it depends on their “give help” / “get help”

equilibrium

6.4 Experimental results

To provide a proof-of-concept for the proposed incentivization architecture, we construct

and evaluate the results of an algorithm simulating the collaborative neural network

training. In these experiments the LEARNAE swarm consists of 100 participants. The

session is comprised of 50 cycles; during each cycle peers attempt to average their model

with a remote one.

The result of this attempt may be successful or not. The level of change to the local

model’s accuracy is expressed as a random number (range: Uniform[-10..10]), where

negative values indicate unsuccessful attempts. To simulate the discrepancy in node’s

hardware performance, every peer is uniformly assigned a random Contribution Factor

(range: Uniform[1..9]). The final level of change occurred by an averaging attempt is

calculated as:

𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[−10 , 10]

𝑖𝑓 (𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 > 0) 𝑡ℎ𝑒𝑛

𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒

141

Figure 62: Stages of LEARNAE’s DAO

The value of 𝑀𝑜𝑑𝑒𝑙𝐶ℎ𝑎𝑛𝑔𝑒 is also used as the amount of the reward given for this

successful averaging. During the initial phase, all participants have to deposit 1000 credit

units to DAO’s Contribution Fund.

To assess the efficiency of our incentivization proposal on mitigating the impact of

malicious nodes, we conducted experiments for both cases, (a) no malicious actors, and

(b) 10% of participants being malicious. In the following experiments, the period during

which DAO adapts the peer rewards in order to comply with the new incentivization

scheme, is denoted as Consolidation Phase.

6.4.1 Network with no malicious nodes

Figure 63 demonstrates the balance of each peer during a session with no malicious actors.

This means that when a peer achieves a successful averaging, willingly broadcasts the

Peers deposit
participation amount to
DAO’s rewarding pool.

1

Execution of LEARNAE’s
collaborative training. 2

Peers submit their rewarding
proposals, taking into

consideration their contribution.
3

Peers check proposals against
their copy of Shared

Contribution Ledger, and vote
on approval/rejection.

 4

DAO releases the total amount of
rewarding pool to approved
submitters, proportionally to

their contribution.

5

142

reporting message to the swarm, to let everyone know that a neighbor’s help resulted to

a specific level of model improvement. The message that is broadcasted is essentially the

updated version of its own SCV, signed with the node’s private key. The lines indicate

how a peer’s balance is progressing from this peer’s point of view.

During Consolidation Phase, the DAO applies the corrections introduced with our new

incentivization algorithm. Thus, every peer rewards its neighbors for their overall

contribution to the LEARNAE swarm. As expected, this paradigm shift results to

different final balances compared to simple tipping method. Figure 64 depicts these

differences. Out of 100 nodes, 47 ended up with increased balance at an average value of

+241.84 credit units; 53 nodes ended up with decreased balance at an average value of

−214.46 credit units.

6.4.2 Network with 10% malicious nodes

Figure 65 demonstrates the progress of every peer’s balance during a collaborative

session with 10 malicious nodes. For these experiments we define a “malicious” actor as

one who refuses to broadcast its updated SCV, in an attempt to avoid paying rewards to

others. The malicious peers are denoted with thick dashed lines. As shown in the chart, if

we just use our previous tipping method, the balance of the malicious nodes is only

increasing, since, although they avoid paying others, they still get rewards for their

contribution. The DAO’s Consolidation Phase is eliminating this malicious effort;

dishonest peers ultimately get rewarded not based on their tampered version of truth, but

rather according to the evaluation they got from the entire network. The correction is

visually expressed by the uniform distribution of malicious balances after the

Consolidation Phase.

Figure 66 depicts the balance differences between the two rewarding schemes. Out of

100 nodes, 51 ended up with increased balance at an average value of +272.59 credit

units; 49 nodes ended up with decreased balance at an average value of −283.71 credit

units. Regarding malicious actors, the achieved correction leads to a rough decline in their

final balance. The first 10 nodes being malicious, experience a substantial decrease in

their final balance. The average decrease for the malicious nodes is −608.56 credit units,

while the average value for all other reductions is −200.42 credit units.

143

Figure 63: Progress of credit balances in case of no malicious peers

Figure 64: Correction in credit balances in case of no malicious peers

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Fi
n

al
 B

al
an

ce
 D

if
fe

re
n

ce
 (

C
re

d
it

 U
n

it
s)

Participating Nodes

Consolidation

Phase

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

N
o

d
e

C
re

d
it

 P
o

in
ts

Collaboration Cycles

144

Malicious

Nodes

Figure 65: Progress of credit balances in case of 10% malicious peers

Figure 66: Correction in credit balances in case of 10% malicious peers

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Fi
n

al
 B

al
an

ce
 D

if
fe

re
n

ce
 (

C
re

d
it

 U
n

it
s)

Participating Nodes

Consolidation

Phase

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

N
o

d
e

C
re

d
it

 U
n

it
s

Collaboration Cycles

Dashed lines: Malicious nodes

145

6.4.3 Discussion

To evaluate our proposal’s efficiency on mitigating the effects of malicious actors who

attempt to abuse the incentivization mechanism, we conducted two distinct experiments:

(i) a session with no malicious actors and (ii) a session where 10% of the participants

denied to report the help they enjoyed from their neighbors, in order to evade giving the

appropriate rewards. Although most node metrics were randomly generated for the

simulations, in both cases we used the same randomization seed; thus, the contribution of

all peers was identical in both experiments. This allows us to quantify the correction

achieved by the Consolidation Phase. As shown in Figure 67, the mean discrepancy of

final balances between the two experiments was 3.2%. These results suggest that the

effect of a significant portion of malicious peers was successfully eliminated at the

expense of a minor decline in the final reward amount.

Figure 67: Credit balance discrepancy due to malicious peers

-15

-10

-5

0

5

10

15

B
al

an
ce

 D
is

cr
ep

an
cy

 d
u

e
to

B
ad

 A
ct

o
r

M
it

ig
at

io
n

 (
%

)

Participating Nodes

146

7 Conclusions and Future Work

7.1 Conclusions

In Chapter 3, we simulated a first approach for decentralized DNN training utilizing

Distributed Ledger Technology as the data diffusion mechanism. The simulation that was

contacted served as a proof-of-concept for the particular formula. Although the dataset

employed contains about 10 million instances, only a limited subset (100,000) of those

were used in this phase. The results indicated that such an architecture can offer useful

features in collaborative DNN training.

We then extended our research to include more realistic conditions. The coordination

algorithm was tested on a local network of PCs with moderate hardware specifications.

Our methodology was solely comparative in nature, since we were interested in the

potential advantages of decentralized collaboration over single node training, rather than

actual performance.

Our framework was tested in a variety of configurations to investigate the effects of

each parameter on the final outcome. Each of these setups was performed several times

to verify that all measurements were adequately consistent. Experiments demonstrated

that our approach may provide real benefits to participating peers without jeopardizing

data privacy. Finally, this research determined the optimum set of parameters to achieve

the greatest benefit in terms of model accuracy.

Although our experiments used just 15 workstations, they revealed a substantial

improvement over nodes operating in isolation. According to the information gained

from these trials, it is firmly concluded that increasing the total number of participating

peers should have a positive effect on this improvement.

In Chapter 4, we developed and tested a novel method for embedding IoT sensors

without compromising the architecture's distributed nature. Additionally, we examined a

critical feature called resilience, and the effect of network disruptions and unreliable

peers. Our experiments demonstrated that disruptions with an Offline Probability of up

to 80% had no effect on overall efficiency.

147

In Chapter 5 we extended our research on Distributed Neural Network Training, by

adding a subsystem that incentivizes peers to participate to a LEARNAE session. In this

scenario, peers who have no interest in the generated model can join the swarm to profit

from their constructive averaging. We developed a completely distributed Proof of

Identification method and performed proof-of-concept tests to assess the key metrics.

In Chapter 6 we addressed the limitations of the tipping incentivization method, since

it was not able to deal with bad actors who refuse to pay the proper rewards. We proposed

a novel mechanism that relies on a collaboratively generated contribution profile for each

participant. The whole swarm exchanges knowledge in order to build a Shared

Contribution Ledger, which is then used to allocate the rewards for the peers.

With these contributions, LEARNAE fulfills the following properties:

(a) Because it is built on a peer-to-peer architecture, it does not need a

central coordinating entity or nodes with elevated privileges.

(b) It accommodates participants with heterogeneous hardware, while

avoiding locks caused by slow workers.

(c) It offers a variety of roles, depending on processing power and the

availability of training data.

(d) It supports privacy mode, allowing peers to maintain ownership of

their sensitive data.

(e) By using data replication, it is capable of recovering from severe

network failures.

(f) It can retain all (meta)data indefinitely, allowing for the addition of

new peers at any moment.

(g) It democratizes the process, since participants have complete access

to all information and generated models and do not need costly or

sophisticated hardware.

(h) It offers a robust incentivization mechanism, to attract participants

who have no interest in the produced neural model.

Apart from typical training scenarios, this method can provide a solution for use cases

in which training data is constantly accumulated, such as via IoT sensors. Thus, peers

with same interests might establish a community to ensure that the best model is available

at any given moment. As shown by the experiments, LEARNAE collaboratively produces

148

models with an increased accuracy of up to 1.12% for the current configuration. That is

with no sharing of training data, but simply by leveraging the knowledge of neighbors via

selective parameter averaging. According to our tests, increasing the total number of

participants will enhance the benefits of the proposed algorithm.

7.2 Future Work

Numerous intriguing issues remain to be addressed. How effectively can an ecosystem

of this kind scale? How much can a large-scale deployment ultimately improve the

obtained results? How does the performance/resilience trade-off work in practice? How

effectively can the implemented algorithm work in conjunction with techniques such as

model sharding to achieve faster convergence? What extra information may be utilized

to improve the selection of candidate remote models for averaging? Are there any

experimental DLT platforms that can be a better match outperforming the ones reviewed?

Is this approach applicable to other training techniques, such as Random Forests, in which

each worker trains a single tree or a set of trees using their own sample of data?

The incentive algorithm must be evaluated on the following scenarios: (a) Sessions

without data privacy; in this case, peers who join only for the purpose of profiting would

donate their processing power to both training and averaging. (b) Sessions with two

separate groups: data suppliers and profiteers. These trials would enable an in-depth

examination of the digital asset exchange between these two groups.

All of the above will constitute the backbone of our future work.

149

References

[1] S. Nikolaidis and I. Refanidis, “Learnae: Distributed and Resilient Deep Neural Network

Training for Heterogeneous Peer to Peer Topologies,” in Engineering Applications of Neural

Networks, Cham, 2019, pp. 286–298. doi: 10.1007/978-3-030-20257-6_24.

[2] S. Nikolaidis and I. Refanidis, “Privacy preserving distributed training of neural

networks,” Neural Comput & Applic, vol. 32, no. 23, pp. 17333–17350, Dec. 2020, doi:

10.1007/s00521-020-04880-0.

[3] S. Nikolaidis and I. Refanidis, “Using distributed ledger technology to democratize

neural network training,” Appl Intell, Mar. 2021, doi: 10.1007/s10489-021-02340-3.

[4] S. Nikolaidis and I. Refanidis, “Incentivizing Participation to Distributed Neural Network

Training,” in Proceedings of the 22nd Engineering Applications of Neural Networks Conference,

Cham, 2021, pp. 364–374. doi: 10.1007/978-3-030-80568-5_30.

[5] S. Nikolaidis and I. Refanidis, “Consolidating Incentivization in Distributed Neural

Network Training via Decentralized Autonomous Organization,” (submitted).

[6] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” arXiv:1407.3561 [cs],

Jul. 2014, Accessed: Apr. 01, 2021. [Online]. Available: http://arxiv.org/abs/1407.3561

[7] S. Popov, O. Saa, and P. Finardi, “Equilibria in the Tangle,” Computers & Industrial

Engineering, vol. 136, pp. 160–172, Oct. 2019, doi: 10.1016/j.cie.2019.07.025.

[8] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep neural network

acoustic models using generalized maxout networks,” in 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 215–219. doi:

10.1109/ICASSP.2014.6853589.

[9] Y. Miao, H. Zhang, and F. Metze, “Distributed learning of multilingual dnn feature

extractors using gpus,” 2014.

[10] J. Dean et al., “Large Scale Distributed Deep Networks,” in Advances in Neural

Information Processing Systems, 2012, vol. 25. Accessed: Aug. 11, 2021. [Online]. Available:

https://papers.nips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html

[11] O. G. Selfridge, “Pattern recognition and modern computers,” in Proceedings of the

March 1-3, 1955, western joint computer conference, New York, NY, USA, Mar. 1955, pp. 91–

93. doi: 10.1145/1455292.1455310.

[12] B. F. Skinner, Science and human behavior. New York: Macmillan, 1953.

[13] R. R. Bush and F. Mosteller, Stochastic models for learning. Oxford, England: John

Wiley & Sons, Inc., 1955, pp. xvi, 365.

[14] A. Ehrenfeucht, “Allen Newell and Herbert A. Simon. The logic theory machine. A

complex information processing system. Institute of Radio Engineers, Transactions on

150

information theory, vol. IT-2 no. 3 (1956), pp. 61–79.,” The Journal of Symbolic Logic, vol. 22,

no. 3, pp. 331–332, Sep. 1957, doi: 10.2307/2963663.

[15] A. Newell, J. C. Shaw, and H. A. Simon, “Empirical explorations of the logic theory

machine: a case study in heuristic,” in Papers presented at the February 26-28, 1957, western

joint computer conference: Techniques for reliability, New York, NY, USA, Feb. 1957, pp. 218–

230. doi: 10.1145/1455567.1455605.

[16] R. J. Solomonoff, “An Inductive Inference Machine,” in IRE Convention Record, Section

on Information Theory, Part 2, 1957, pp. 56–62.

[17] R. J. Solomonoff, “The Mechanization of Linguistic Learning,” in Proceedings of the

Second International Congress on Cybernetics, Namur, Belgium, May 1958, pp. 180–193.

[18] R. J. Solomonoff, “A new method for discovering the grammars of phrase structure

languages,” Unesco, Paris, France, 1959.

[19] R. J. Solomonoff, “A Preliminary Report on a General Theory of Inductive Inference.

(Revision of Report V-131),” Zator Co. and Air Force Office of Scientific Research, Cambridge,

Mass., ZTB-138, Nov. 1960.

[20] D. Silver et al., “Mastering the game of Go without human knowledge,” Nature, vol.

550, no. 7676, pp. 354–359, Oct. 2017, doi: 10.1038/nature24270.

[21] N. Bostrom, Superintelligence: Paths, Dangers, Strategies. Oxford, New York: Oxford

University Press, 2014.

[22] O. B. Bassler, “The Surveyability of Mathematical Proof: A Historical Perspective,”

Synthese, vol. 148, no. 1, pp. 99–133, 2006.

[23] E. Coleman, “The Surveyability of Long Proofs,” Foundations of Science, vol. 14, pp. 27–

43, Mar. 2009, doi: 10.1007/s10699-008-9145-8.

[24] R. V. Yampolskiy, “Efficiency Theory : a Unifying Theory for Information, Computation

and Intelligence,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 16, no. 4–

5, pp. 259–277, Oct. 2013, doi: 10.1080/09720529.2013.821361.

[25] D. B. Fogel, “An introduction to simulated evolutionary optimization,” IEEE

Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, Jan. 1994, doi: 10.1109/72.265956.

[26] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: comments on the

history and current state,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 3–

17, Apr. 1997, doi: 10.1109/4235.585888.

[27] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From

Foundations to Algorithms. Cambridge University Press, 2014.

[28] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of

Mathematical Statistics, vol. 22, no. 3, pp. 400–407, Sep. 1951, doi:

10.1214/aoms/1177729586.

151

[29] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a Regression

Function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, Sep. 1952, doi:

10.1214/aoms/1177729392.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, pp. 533–536, Oct. 1986, doi: 10.1038/323533a0.

[31] L. Bottou and O. Bousquet, “The Tradeoffs of Large Scale Learning,” in Advances in

Neural Information Processing Systems, 2008, pp. 161–168. Accessed: Aug. 06, 2021. [Online].

Available: http://leon.bottou.org/publications/pdf/nips-2007.pdf

[32] O. Bousquet, S. Gelly, K. Kurach, O. Teytaud, and D. Vincent, “Critical Hyper-

Parameters: No Random, No Cry,” arXiv:1706.03200 [cs], Jun. 2017, Accessed: Aug. 06, 2021.

[Online]. Available: http://arxiv.org/abs/1706.03200

[33] B. Polyak, “Some methods of speeding up the convergence of iteration methods,” Ussr

Computational Mathematics and Mathematical Physics, vol. 4, pp. 1–17, Dec. 1964, doi:

10.1016/0041-5553(64)90137-5.

[34] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization

and momentum in deep learning,” in International Conference on Machine Learning, May

2013, pp. 1139–1147. Accessed: Aug. 06, 2021. [Online]. Available:

http://proceedings.mlr.press/v28/sutskever13.html

[35] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate

of convergence o(1/k^2),” undefined, 1983, Accessed: Aug. 06, 2021. [Online]. Available:

https://www.semanticscholar.org/paper/A-method-for-unconstrained-convex-minimization-

with-Nesterov/ed910d96802212c9e45d956adaa27d915f5d7469

[36] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

arXiv:1412.6980 [cs], Jan. 2017, Accessed: Aug. 06, 2021. [Online]. Available:

http://arxiv.org/abs/1412.6980

[37] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-

dependent deep neural networks,” in in Proc. Interspeech ’11, pp. 437–440.

[38] R. McDonald, K. Hall, and G. Mann, “Distributed Training Strategies for the Structured

Perceptron,” in Human Language Technologies: The 2010 Annual Conference of the North

American Chapter of the Association for Computational Linguistics, Los Angeles, California, Jun.

2010, pp. 456–464. Accessed: Mar. 29, 2021. [Online]. Available:

https://www.aclweb.org/anthology/N10-1069

[39] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, and G. Mann, “Efficient Large-Scale

Distributed Training of Conditional Maximum Entropy Models,” Advances in Neural

Information Processing Systems, vol. 22, 2009, Accessed: Aug. 06, 2021. [Online]. Available:

https://proceedings.neurips.cc/paper/2009/hash/d81f9c1be2e08964bf9f24b15f0e4900-

Abstract.html

[40] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data transfers

in computer clusters with orchestra,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 98–

109, Aug. 2011, doi: 10.1145/2043164.2018448.

152

[41] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance Modeling of MapReduce Jobs in

Heterogeneous Cloud Environments,” in 2013 IEEE Sixth International Conference on Cloud

Computing, Jun. 2013, pp. 839–846. doi: 10.1109/CLOUD.2013.107.

[42] R. M. Russell, “The CRAY-1 computer system,” Commun. ACM, vol. 21, no. 1, pp. 63–

72, Jan. 1978, doi: 10.1145/359327.359336.

[43] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, “Data-Driven and Demand-

Driven Computer Architecture,” ACM Comput. Surv., vol. 14, no. 1, pp. 93–143, Mar. 1982, doi:

10.1145/356869.356873.

[44] A. K. Jones and P. Schwarz, “Experience Using Multiprocessor Systems—A

Status Report,” ACM Comput. Surv., vol. 12, no. 2, pp. 121–165, Jun. 1980, doi:

10.1145/356810.356813.

[45] W. C. Athas and C. L. Seitz, “Multicomputers: message-passing concurrent computers,”

Computer, vol. 21, no. 8, pp. 9–24, Aug. 1988, doi: 10.1109/2.73.

[46] A. S. Tanenbaum and R. van Renesse, “Distributed Operating Systems,” ACM Comput

Surv, vol. 17, no. 4, pp. 419–470, Dec. 1985, doi: 10.1145/6041.6074.

[47] C. L. Seitz, “The cosmic cube,” Commun. ACM, vol. 28, no. 1, pp. 22–33, Jan. 1985, doi:

10.1145/2465.2467.

[48] S. Ranka, Y. Won, and S. Sahni, “Programming a hypercube multicomputer,” IEEE

Software, vol. 5, no. 5, pp. 69–77, Sep. 1988, doi: 10.1109/52.7944.

[49] E. H. Baalbergen, “Design and implementation of parallel make,” Computing Systems,

vol. 1, pp. 135–158, 1988.

[50] H. E. Bal and A. S. Tanenbaum, “Distributed Programming with Shared Data,” 1988

Internation Conference on Computer Languages, pp. 82–91, 1988, doi:

10.1109/ICCL.1988.13046.

[51] T. A. Marsland, M. Olafsson, and J. Schaeffer, “Multiprocessor tree-search

experiments,” in Advances in computer chess, USA: Pergamon Press, Inc., 1986, pp. 37–51.

[52] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Trans.

Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982, doi: 10.1145/357172.357176.

[53] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. Hou, “Distributed Consensus Protocols and

Algorithms,” 2019, pp. 25–50. doi: 10.1002/9781119519621.ch2.

[54] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. John Wiley & Sons, 2004.

[55] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial

synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988, doi: 10.1145/42282.42283.

[56] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,”

J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980, doi: 10.1145/322186.322188.

153

[57] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Cryptography Mailing

list at https://metzdowd.com, Mar. 2009.

[58] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone Protocol: Analysis and

Applications,” in Advances in Cryptology - EUROCRYPT 2015, Berlin, Heidelberg, 2015, pp. 281–

310. doi: 10.1007/978-3-662-46803-6_10.

[59] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin network,” IEEE

P2P 2013 Proceedings, 2013, doi: 10.1109/P2P.2013.6688704.

[60] S. Eskandari, D. Barrera, E. Stobert, and J. Clark, A First Look at the Usability of Bitcoin

Key Management. 2015. doi: 10.14722/usec.2015.23015.

[61] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito, “Blockchain and IoT

Integration: A Systematic Survey,” Sensors, vol. 18, no. 8, Art. no. 8, Aug. 2018, doi:

10.3390/s18082575.

[62] T. Marwala and B. Xing, “Blockchain and Artificial Intelligence,” arXiv:1802.04451 [cs],

Oct. 2018, Accessed: Aug. 05, 2021. [Online]. Available: http://arxiv.org/abs/1802.04451

[63] P. Bell and K. Jabbour, “Review of point-to-point network routing algorithms,” IEEE

Communications Magazine, vol. 24, no. 1, pp. 34–38, Jan. 1986, doi:

10.1109/MCOM.1986.1092937.

[64] L. M. Feeney, A Taxonomy for Routing Protocols in Mobile Ad Hoc Networks. Swedish

Institute of Computer Science, 1999. Accessed: Aug. 06, 2021. [Online]. Available:

http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-21975

[65] X. Zou, B. Ramamurthy, and S. Magliveras, “Routing techniques in wireless ad hoc

networks — classification and comparison,” 2002.

[66] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web transactions,” ACM Trans.

Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, Nov. 1998, doi: 10.1145/290163.290168.

[67] M. Rennhard and B. Plattner, “Introducing MorphMix: peer-to-peer based anonymous

Internet usage with collusion detection,” in Proceedings of the 2002 ACM workshop on Privacy

in the Electronic Society, New York, NY, USA, Nov. 2002, pp. 91–102. doi:

10.1145/644527.644537.

[68] M. J. Freedman and R. Morris, “Tarzan: a peer-to-peer anonymizing network layer,” in

Proceedings of the 9th ACM conference on Computer and communications security, New York,

NY, USA, Nov. 2002, pp. 193–206. doi: 10.1145/586110.586137.

[69] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource discovery in distributed

networks,” in Proceedings of the eighteenth annual ACM symposium on Principles of

distributed computing, New York, NY, USA, May 1999, pp. 229–237. doi:

10.1145/301308.301362.

[70] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications,” ACM SIGCOMM Computer

Communication Review, vol. 31, vol. 31, Dec. 2001, doi: 10.1145/964723.383071.

154

[71] C. Cachin and M. Vukolic, “Blockchain Consensus Protocols in the Wild (Keynote Talk),”

in 31st International Symposium on Distributed Computing (DISC 2017), Dagstuhl, Germany,

2017, vol. 91, p. 1:1-1:16. doi: 10.4230/LIPIcs.DISC.2017.1.

[72] N. Szabo, “Smart Contracts.” 1994. Accessed: Aug. 05, 2021. [Online]. Available:

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinte

rschool2006/szabo.best.vwh.net/smart.contracts.html

[73] P. Lade, R. Ghosh, and S. Srinivasan, “Manufacturing Analytics and Industrial Internet

of Things,” IEEE Intelligent Systems, vol. 32, no. 3, pp. 74–79, May 2017, doi:

10.1109/MIS.2017.49.

[74] “Eth(Embedded) – Ethereum Clients on Embedded Devices,” 2017.

http://ethembedded.com/ (accessed Aug. 06, 2021).

[75] “raspnode,” 2017. https://raspnode.com/ (accessed Aug. 06, 2021).

[76] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and D. Mazières, “Replication, history, and

grafting in the Ori file system,” in Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, New York, NY, USA, Nov. 2013, pp. 151–166. doi:

10.1145/2517349.2522721.

[77] B. Cohen, “Incentives build robustness in BitTorrent,” Workshop on Economics of

PeertoPeer systems, vol. 6, Jun. 2003.

[78] I. Baumgart and S. Mies, “S/Kademlia: A practicable approach towards secure key-

based routing,” in 2007 International Conference on Parallel and Distributed Systems, Dec.

2007, pp. 1–8. doi: 10.1109/ICPADS.2007.4447808.

[79] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing content publication

with coral,” in Proceedings of the 1st conference on Symposium on Networked Systems Design

and Implementation - Volume 1, USA, Mar. 2004, p. 18.

[80] L. Wang and J. Kangasharju, “Measuring Large-Scale Distributed Systems: Case of

BitTorrent Mainline DHT,” presented at the IEEE International Conference on Peer-to-Peer

Computing, Sep. 2013. doi: 10.1109/P2P.2013.6688697.

[81] S. Shalunov, G. Hazel, B. Inc, J. Iyengar, and M. Kuehlewind, “Low Extra Delay

Background Transport (LEDBAT,” 2012.

[82] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing content publication

with coral,” in Proceedings of the 1st conference on Symposium on Networked Systems Design

and Implementation - Volume 1, USA, Mar. 2004, p. 18.

[83] D. Mazieres, “Self-certifying file system,” phd, Massachusetts Institute of Technology,

USA, 2000.

[84] D. Mazières, D. M. Eres, and M. F. Kaashoek, “Escaping the Evils of Centralized Control

with self-certifying pathnames,” in In the Proceedings of the 8th ACM SIGOPS European, 1998,

pp. 118–125.

155

[85] S. Popov, “The Tangle,” 2015. https://www.semanticscholar.org/paper/The-Tangle-

Popov/43586b34b054b48891d478407d4e7435702653e0 (accessed Aug. 06, 2021).

[86] M. Divya and N. B. Biradar, “IOTA-Next Generation Block chain,” 2018, doi:

10.18535/IJECS/V7I4.05.

[87] A. Gal, “The Tangle: an Illustrated Introduction,” IOTA Foundation Blog, Jan. 31, 2018.

http://blog.iota.org/the-tangle-an-illustrated-introduction-4d5eae6fe8d4 (accessed Aug. 06,

2021).

[88] S. M. Ross, Introduction to Probability Models. Academic Press, 2014.

[89] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,” in

Advances in Cryptology — CRYPTO ’87, Berlin, Heidelberg, 1988, pp. 369–378. doi: 10.1007/3-

540-48184-2_32.

[90] “One seed to sow your key(s),” IOTA Foundation Blog, Oct. 01, 2018.

http://blog.iota.org/one-seed-to-sow-your-key-s-f074f1bb6714 (accessed Aug. 06, 2021).

[91] S. Shafeeq, S. Zeadally, M. Alam, and A. Khan, “Curbing Address Reuse in the IOTA

Distributed Ledger: A Cuckoo-Filter-Based Approach,” IEEE Transactions on Engineering

Management, vol. 67, no. 4, pp. 1244–1255, Nov. 2020, doi: 10.1109/TEM.2019.2922710.

[92] J. Buchmann and J. Ding, Post-Quantum Cryptography: Second International

Workshop, PQCrypto 2008 Cincinnati, OH, USA October 17-19, 2008 Proceedings. Springer

Science & Business Media, 2008.

[93] S. Rohde, T. Eisenbarth, E. Dahmen, J. Buchmann, and C. Paar, “Fast Hash-Based

Signatures on Constrained Devices,” in Smart Card Research and Advanced Applications, Berlin,

Heidelberg, 2008, pp. 104–117. doi: 10.1007/978-3-540-85893-5_8.

[94] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” 2016, pp.

265–283. Accessed: Mar. 29, 2021. [Online]. Available:

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[95] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with Elastic Averaging SGD,”

arXiv:1412.6651 [cs, stat], Oct. 2015, Accessed: Mar. 29, 2021. [Online]. Available:

http://arxiv.org/abs/1412.6651

[96] F. Niu, B. Recht, C. Re, and S. J. Wright, “HOGWILD!: A Lock-Free Approach to

Parallelizing Stochastic Gradient Descent,” arXiv:1106.5730 [cs, math], Nov. 2011, Accessed:

Mar. 29, 2021. [Online]. Available: http://arxiv.org/abs/1106.5730

[97] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA,

Oct. 2015, pp. 1310–1321. doi: 10.1145/2810103.2813687.

[98] T. Chen et al., “MXNet: A Flexible and Efficient Machine Learning Library for

Heterogeneous Distributed Systems,” arXiv:1512.01274 [cs], Dec. 2015, Accessed: Mar. 29,

2021. [Online]. Available: http://arxiv.org/abs/1512.01274

156

[99] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “FireCaffe: near-linear

acceleration of deep neural network training on compute clusters,” arXiv:1511.00175 [cs], Jan.

2016, Accessed: Mar. 29, 2021. [Online]. Available: http://arxiv.org/abs/1511.00175

[100] M. Langer, A. Hall, Z. He, and W. Rahayu, “MPCA SGD—A Method for Distributed

Training of Deep Learning Models on Spark,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 11, pp. 2540–2556, Nov. 2018, doi: 10.1109/TPDS.2018.2833074.

[101] M. Zaharia et al., “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing,” 2012, pp. 15–28. Accessed: Mar. 29, 2021. [Online]. Available:

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[102] K. Bonawitz et al., “Towards Federated Learning at Scale: System Design,” in

Proceedings of Machine Learning and Systems, 2019, vol. 1, pp. 374–388. [Online]. Available:

https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-

Paper.pdf

[103] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges, Methods,

and Future Directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, Feb. 2020,

doi: 10.1109/MSP.2020.2975749.

[104] P. Kairouz et al., “Advances and Open Problems in Federated Learning,” MAL, vol. 14,

no. 1–2, pp. 1–210, Jun. 2021, doi: 10.1561/2200000083.

[105] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning with

COTS HPC systems,” in International Conference on Machine Learning, May 2013, pp. 1337–

1345. Accessed: Mar. 29, 2021. [Online]. Available:

http://proceedings.mlr.press/v28/coates13.html

[106] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of DNNs with Natural Gradient

and Parameter Averaging,” arXiv:1410.7455 [cs, stat], Jun. 2015, Accessed: Mar. 29, 2021.

[Online]. Available: http://arxiv.org/abs/1410.7455

[107] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient descent and its

application to data-parallel distributed training of speech DNNs,” pp. 1058–1062, Jan. 2014.

[108] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal Distributed Online

Prediction using Mini-Batches,” arXiv:1012.1367 [cs, math], Jan. 2012, Accessed: Mar. 29,

2021. [Online]. Available: http://arxiv.org/abs/1012.1367

[109] M. Li, “Scaling Distributed Machine Learning with the Parameter Server,” in

Proceedings of the 2014 International Conference on Big Data Science and Computing -

BigDataScience ’14, Beijing, China, 2014, pp. 1–1. doi: 10.1145/2640087.2644155.

[110] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,”

arXiv:1408.5093 [cs], Jun. 2014, Accessed: Mar. 30, 2021. [Online]. Available:

http://arxiv.org/abs/1408.5093

[111] J. Dai et al., “BigDL: A Distributed Deep Learning Framework for Big Data,”

arXiv:1804.05839 [cs], Nov. 2019, doi: 10.1145/1122445.1122456.

157

[112] E. P. Xing et al., “Petuum: A New Platform for Distributed Machine Learning on Big

Data,” IEEE TRANSACTIONS ON BIG DATA, p. 17, 2015.

[113] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “SparkNet: Training Deep Networks

in Spark,” arXiv:1511.06051 [cs, math, stat], Feb. 2016, Accessed: Mar. 30, 2021. [Online].

Available: http://arxiv.org/abs/1511.06051

[114] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can Decentralized

Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel

Stochastic Gradient Descent,” Advances in Neural Information Processing Systems, vol. 30,

2017, Accessed: Mar. 29, 2021. [Online]. Available:

https://proceedings.neurips.cc/paper/2017/hash/f75526659f31040afeb61cb7133e4e6d-

Abstract.html

[115] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for deep learning,”

arXiv:1611.09726 [cs, stat], Nov. 2016, Accessed: Mar. 30, 2021. [Online]. Available:

http://arxiv.org/abs/1611.09726

[116] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE

Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, Jun. 2006, doi:

10.1109/TIT.2006.874516.

[117] H. Kim, J. Park, J. Jang, and S. Yoon, “DeepSpark: A Spark-Based Distributed Deep

Learning Framework for Commodity Clusters,” arXiv:1602.08191 [cs], Sep. 2016, Accessed:

Mar. 30, 2021. [Online]. Available: http://arxiv.org/abs/1602.08191

[118] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous Decentralized Parallel Stochastic

Gradient Descent,” p. 10.

[119] E. De Coninck et al., “DIANNE: a modular framework for designing, training and

deploying deep neural networks on heterogeneous distributed infrastructure,” JOURNAL OF

SYSTEMS AND SOFTWARE, vol. 141, pp. 52–65, 2018, doi: 10.1016/j.jss.2018.03.032.

[120] A. R. Mamidala, G. Kollias, C. Ward, and F. Artico, “MXNET-MPI: Embedding MPI

parallelism in Parameter Server Task Model for scaling Deep Learning,” arXiv:1801.03855 [cs],

Jan. 2018, Accessed: Mar. 30, 2021. [Online]. Available: http://arxiv.org/abs/1801.03855

[121] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in

TensorFlow,” arXiv:1802.05799 [cs, stat], Feb. 2018, Accessed: Mar. 30, 2021. [Online].

Available: http://arxiv.org/abs/1802.05799

[122] Y. Peng et al., “A generic communication scheduler for distributed DNN training

acceleration,” in Proceedings of the 27th ACM Symposium on Operating Systems Principles,

New York, NY, USA, Oct. 2019, pp. 16–29. doi: 10.1145/3341301.3359642.

[123] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A Unified Architecture for Accelerating

Distributed {DNN} Training in Heterogeneous GPU/CPU Clusters,” 2020, pp. 463–479.

Accessed: Aug. 11, 2021. [Online]. Available:

https://www.usenix.org/conference/osdi20/presentation/jiang

158

[124] S. Zheng, Z. Huang, and J. Kwok, “Communication-Efficient Distributed Blockwise

Momentum SGD with Error-Feedback,” Advances in Neural Information Processing Systems,

vol. 32, 2019, Accessed: Mar. 30, 2021. [Online]. Available:

https://papers.nips.cc/paper/2019/hash/80c0e8c4457441901351e4abbcf8c75c-Abstract.html

[125] B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and C. M. Jermaine, “Distributed

Learning of Deep Neural Networks using Independent Subnet Training,” arXiv:1910.02120 [cs,

stat], Nov. 2020, Accessed: Mar. 30, 2021. [Online]. Available: http://arxiv.org/abs/1910.02120

[126] S. Shen, L. Xu, J. Liu, X. Liang, and Y. Cheng, “Faster Distributed Deep Net Training:

Computation and Communication Decoupled Stochastic Gradient Descent,” arXiv:1906.12043

[cs, math, stat], Sep. 2019, Accessed: Mar. 30, 2021. [Online]. Available:

http://arxiv.org/abs/1906.12043

[127] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating Distributed CNN Training by

Network-Level Flow Scheduling,” in IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications, Toronto, ON, Canada, Jul. 2020, pp. 1678–1687. doi:

10.1109/INFOCOM41043.2020.9155282.

[128] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive All-reduce Scheduling for Expediting

Distributed DNN Training,” in IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications, Toronto, ON, Canada, Jul. 2020, pp. 626–635. doi:

10.1109/INFOCOM41043.2020.9155446.

[129] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko, “Priority-based

Parameter Propagation for Distributed DNN Training,” arXiv:1905.03960 [cs], May 2019,

Accessed: Mar. 30, 2021. [Online]. Available: http://arxiv.org/abs/1905.03960

[130] A. Sapio et al., “Scaling Distributed Machine Learning with In-Network Aggregation,”

arXiv:1903.06701 [cs, stat], Sep. 2020, Accessed: Mar. 30, 2021. [Online]. Available:

http://arxiv.org/abs/1903.06701

[131] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Accelerating Distributed Deep

Learning with Communication Scheduling,” arXiv:1803.03288 [cs], Oct. 2018, Accessed: Aug.

11, 2021. [Online]. Available: http://arxiv.org/abs/1803.03288

[132] A. Hsu, K. Hu, J. Hung, A. Suresh, and Z. Zhang, “TonY: An Orchestrator for Distributed

Machine Learning Jobs,” p. 4.

[133] S. Shi et al., “Towards Scalable Distributed Training of Deep Learning on Public Cloud

Clusters,” arXiv:2010.10458 [cs], Oct. 2020, Accessed: Mar. 30, 2021. [Online]. Available:

http://arxiv.org/abs/2010.10458

[134] R. Peeters and M. Schuilenburg, “Machine justice: Governing security through the

bureaucracy of algorithms,” Inf. Polity, 2018, doi: 10.3233/IP-180074.

[135] R. Kitchin, “Big Data, new epistemologies and paradigm shifts,” Big Data & Society, vol.

1, no. 1, p. 2053951714528481, Apr. 2014, doi: 10.1177/2053951714528481.

[136] M. Veale and I. Brass, “Administration by Algorithm? Public Management Meets Public

Sector Machine Learning,” Social Science Research Network, Rochester, NY, SSRN Scholarly

159

Paper ID 3375391, 2019. Accessed: Dec. 05, 2021. [Online]. Available:

https://papers.ssrn.com/abstract=3375391

[137] H. Mintzberg, “Structure in 5’s: A Synthesis of the Research on Organization Design,”

Management Science, vol. 26, no. 3, pp. 322–341, 1980.

[138] A. Zuurmond, “De infocratie: een theoretische en empirische herori??ntatie op

Weber’s ideaaltype in het informatietijdperk,” Phaedrus, Den Haag, 1994.

[139] L. Lessig, Code: And Other Laws of Cyberspace, Version 2.0. 2006.

[140] A. Aneesh, “Global Labor: Algocratic Modes of Organization,” Sociological Theory, vol.

27, no. 4, pp. 347–370, Dec. 2009, doi: 10.1111/j.1467-9558.2009.01352.x.

[141] T. H. Cormen, Algorithms Unlocked. Cambridge, MA, USA: MIT Press, 2013.

[142] J. Wirtz et al., “Brave new world: service robots in the frontline,” Journal of Service

Management, vol. 29, no. 5, pp. 907–931, Jan. 2018, doi: 10.1108/JOSM-04-2018-0119.

[143] R. Mohabbat Kar, (Un)berechenbar?. Algorithmen und Automatisierung in Staat und

Gesellschaft. Berlin: Fraunhofer FOKUS, 2018.

[144] J. Danaher et al., “Algorithmic governance: Developing a research agenda through the

power of collective intelligence,” Big Data & Society, vol. 4, no. 2, p. 2053951717726554, Dec.

2017, doi: 10.1177/2053951717726554.

[145] N. Prusty, Building Blockchain Projects. Birmingham Mumbai: Packt Publishing Limited,

2017.

[146] U. W. Chohan, “The Decentralized Autonomous Organization and Governance Issues,”

Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 3082055, Dec. 2017.

doi: 10.2139/ssrn.3082055.

[147] P. Vigna and M. J. Casey, The Age of Cryptocurrency: How Bitcoin and the Blockchain

Are Challenging the Global Economic Order, Reprint edition. New York, N. Y: Picador, 2016.

[148] “Bitcoin moves beyond mere money | New Scientist.”

https://www.newscientist.com/article/dn24620-bitcoin-moves-beyond-mere-

money/?ignored=irrelevant (accessed Dec. 05, 2021).

[149] “The DAO of accrue,” The Economist, May 19, 2016. Accessed: Dec. 05, 2021. [Online].

Available: https://www.economist.com/finance-and-economics/2016/05/19/the-dao-of-

accrue

[150] N. Popper, “A Venture Fund With Plenty of Virtual Capital, but No Capitalist,” The New

York Times, May 22, 2016. Accessed: Dec. 05, 2021. [Online]. Available:

https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html

[151] D. J. Pangburn, “The Humans Who Dream Of Companies That Won’t Need Us,” Fast

Company, Jun. 19, 2015. https://www.fastcompany.com/3047462/the-humans-who-dream-of-

companies-that-wont-need-them (accessed Dec. 05, 2021).

160

[152] “Vapor No More: Ethereum Has Launched,” TechCrunch.

https://social.techcrunch.com/2015/08/01/vapor-no-more-ethereum-has-launched/ (accessed

Dec. 05, 2021).

[153] John Clippinger and David Bollier, From Bitcoin To Burning Man & Beyond. 2014.

Accessed: Dec. 05, 2021. [Online]. Available:

http://archive.org/details/FromBitcoinToBurningManBeyond

