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Abstract 

 
In this work, we test several GARCH models; linear, non-linear, univariate, 
and multivariate models are constructed to find which one best models 
volatility characteristics. Another important aspect of this study is the best 
models for forecasting, according to loss functions. In addition, volatility 
spillover effects and covolatility spillover effects are also studied in our 
series using univariate and multivariate models. Lastly, optimal hedge ratios 
are discussed, and their capabilities are tested using hedging effectiveness 
index. Through this paper, GARCH, EGARCH and GJR models are being 
used with three distributions (Normal, t-student and GED), while for 
multivariate models we use diagonal GARCH and DCC, with the latter being 
used for the optimal hedge ratios mostly.  
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1. Introduction 
 

1.1.  History  
In United States, utilities were considered monopolies, and many customers did not 
have many choices choosing their utility, depending on the area. Without many 
competitors in particular areas, the markets functioned as a monopoly, controlling 
prices, keeping high retail prices for consumers.  When energy markets deregulated, 
retail firms were created, producing, and selling utilities, increasing competition, 
lowering prices, and benefiting consumers. To better understand the deregulation in 
U.S., we must begin from the Great Depression. When the stock market crashed in 1929, 
energy industry was affected severely as well. Many energy firms closed, and the 
markets became an oligopoly, where entities could affect prices. Government had to 
step in and regulate the markets, to prevent aggressive pricing that would affect 
consumers. That’s why in 1935 the Congress passed the Public Utilities Holding 
Company Act (PUHCA), in their first attempt to regulate the energy market.  The act 
(PUCHA) was passed by Congress with new rules on how the energy could be sold. 

 

1.1.1.  Energy Crisis 1970 
 

The energy crisis of 1970 occurred when United States, Australia, and Western Europe 
experienced shortages in petroleum. The worst and most famous in history periods of 
the crisis, were the petroleum crisis of 1973 and the energy crisis of 1979. The main 
reason behind the 1973 crisis was the Yom Kippur War. Yom Kippur war was a conflict 
between Israel and Arab states led by Egypt and Syria. United States helped Israel, by 
providing it with ammunition. Arab States had warned western countries, and especially 
United States to stop supporting Israel. However, the support was not halted, and as a 
result OAEPC (Organization of Arab Petroleum Exporting Countries) proclaimed an oil 
embargo and stopped exporting oil to U.S. and countries that helped Israel, and 
therefore, supply dropped and prices increased, causing the petroleum crisis of 1973. 
In the end, U.S. negotiated with Arab States, Egypt, and Syria, and  Israel pulled back 
from Sina. OPEC observed that it had a major role in the energy markets and in the 
world economy. The energy crisis of 1979 started with the Iranian revolution,  when 
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Ayatollah Khomeini took control, after Mohammad Raza Pahlavi was forced to fly away 
because of the protests. While the country was still producing and exporting oil, it did 
it in a much lower volume, lowering production and supply, and therefore increasing 
prices. The energy crisis of 1979 created the Public Utility Regulatory Policies of Act 
(PURPA). The act was enacted to encourage cogenerate and renewable resources and 
promote competition for electric generation. 

1.1.2. Energy policy from 1990 through 2000 
 

The decade started with the invasion of Kuwait from Iraq, later leading to the Gulf War 
that lasted for 1 month, 1 week and 4 days (17 January – 28 February 1998). Margaret 
Thatcher and George H. W. Bush deployed forces in Saudi Arabia, urging other 
countries to send troops as well. This was the biggest troop deployment since World 
War II, where 35 countries in total provided troops. But the war remained between 7 
countries: Saudi Arabia, Kuwait, United States, United Kingdom, France, Egypt against 
Iraq.  To prevent United States troops strike from the Persian Gulf, Iraqi soldiers dumbed 
approximately 4,000,000 of US barrels, creating a massive spill, named “The Gulf War 
oil spill”. There are some disagreements, whether this oil spill caused environmental 
damage in the gulf, with most opinions yielding that it indeed had a significant long-
term environmental damage. The spill caused WTI prices to increase in January 22 from 
21.63 to 24.91. However, this is not as serious to the WTI prices as the first day of US 
and its allies attack on Iraq, on 17 January, where WTI prices plunged to $21.48 from 
32.25. This worried many experts that with the War, the oil prices could reach as high 
to $60 per barrel. Many oil companies such as Exxon, America Petrofina Inc., Marathon 
Oil lowered their wholesale gasoline prices. The following graph X.X shows the 
implications of Gulf War on the crude WTI prices and that the worrying expectations of 
crude oil prices after the war never happened.               

       

                   Figure 1. 1: Implications of Gulf War on crude oil prices, Source: Fred St. Louis 
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The department of Energy presented to President Bush some policy options, to avoid 
in the future political mismanagements and involvements in Wars that would again hurt 
energy prices and cause fear in the energy markets. In February 1991, Bush 
administration proposed to Congress energy policies that would increase oil, natural 
gas, and nuclear power production, including oil and gas exploration in the Arctic 
National Wildfire Refuge. But democrats and environmentalists opposed those policies. 
In June 1991, Congress rejected those proposals. After the end of Gulf War, that took 
with it the fears of oil prices increase, the Congress passed the Energy Policy Act of 1992 
( EPAct92). The Act focused on tax creation and subsidies for energy efficiency and 
renewable energy technologies. It also changed Federal Power Act (FPA) and Public 
Utility Holding Company Act (PUHCA) that helped restructure the electricity industry.  

During their presidential election, Clinton and Gore (later president and vice president), 
were supporters of environmental improvement and were afraid of the climate change. 
His energy policies, as a president, where to implement higher taxes based on energy 
consumption, to encourage energy conservation, reduce the country’s deficit and 
reduce pollution associated with the combustion of fossil fuels. However, Congress was 
against those proposals, and only passed a higher tax in gasoline prices. Until the end 
of the decade, the Congress passed no act, but Clinton signed many environmentally 
friendly orders such as “Executive Order 12856”, requiring federal agencies to reduce 
pollution as much as possible and to report to the community any toxic chemicals that 
are related into the environment. Those orders influenced the department of energy 
policy, and the consequence was a decrease in funding for coal and nuclear technology 
and an increase in funding for renewable and energy efficiency technologies increased. 

 

1.1.3. 9/11 Terrorist attacks  
 

The 9/11 Terrorist attacks had serious implications for the stock market. But oil did not 
receive a significant shock. More precisely, market chaos, panic selling, and disastrous 
loss of value prevailed in the day of the attack and NYSE and NASDAQ remained closed 
until September 17th. In addition, many brokerage firms were unable to function since 
they had their offices in the World Trade Centre. In the day of the attack, the Dow Jones 
fell 684 points. At the close of trading that Friday, Dow Jones was down more than 14%, 
S&P 500 index lost 11.6% and NASDAQ plunged 16%. Gold saw an increase, increasing 
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6%, confirming the financial uncertainty. Oil and gas also soared. Crude oil WTI, reached 
after the attack $29.59 from $27.65 on September 11th, not a significant price increase, 
but a consecutive price increase, 4 days in a row. It seemed that the America – Middle 
East relationships will never be the same, and that the price increase of oil will be 
permanent. However, that was not the case. The oil prices reached their pre-attack 
levels approximately a week after.   

 

1.1.4. International Oil Markets History  
 

Oil was discovered by Colonel Drake and William A. Smith in 1859. From then it had 
undergone four distinct phases between 1859 and 1960, when OPEC was formed. The 
first pre-OPEC phase was named “period of gold rush”. As soon as oil was discovered, 
it triggered an oil rush, were the owners of the lands tried to pump as much oil as 
possible. At that time oil had limited use. In the second phase, named “the phase of 
standard oil domination”, John D. Rockefeller changed and dominated the petroleum 
markets. He entered the refining business in 1863 in Cleveland Ohio and with Henry 
Flagler set up the Standard oil Company in 1870. Rockefeller took control of refineries, 
transportation and distribution segments, controlling 90-95% of refineries in United 
States through aggressive mergers and acquisitions between 1870 and 1880. Through 
economies of scale, Rockefeller suppressed his competitors and established a physical 
monopoly. His empire got threatened, as soon as other countries discovered they had 
resources of the “black gold”, such as Russia. Texas region had plenty of resources as 
well, and new companies such as Texas Oil Company and Gulf Oil Company became 
competitors as well. Lastly, new legal and regulatory frameworks in 1890 threatened 
Standard oil more. During the early 1910’s, oil started replacing coal as the dominant 
fuel in the world. The automobile sector increased demand for oil, so did the breakout 
of World War I. Industrialized economies realized the need of oil in the future and 
started investing in crude oil production. In 1928, this increased production led to a 
decrease in prices. The fourth phase was initiated by a series of major developments 
and situations. First, Middle East made it’s presence in the oil market, due to it’s huge 
reserve potential. Venezuela became a major producer in South America. Oil exporting 
countries demanded bigger share in oil profits. The importance of oil grew more with 
the breakout of World War II. In addition, seven oil companies at that time controlled 
the entire supply chain and had influenced the market and lastly, the USA became a 
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net importer of oil from the oil pioneer and requested changes in the pricing policy, 
since now they were mostly importing oil from Middle East and were not net exporters. 
USA faced an increase in the production costs at that time, but policies of market 
expansion resulted in lower prices in the international markets and affected the revenue 
income of host governments from royalty payments. Competition from Middle East 
brought new issues as well. America administration became concerned with a big 
proportion of imports coming from Middle East and imposed some import quotas to 
increase the price of importing and try to increase the domestic production of oil. 
Finally, in 1960 the Organization of Petroleum Exporting Countries was established in 
Iraq in September 1960, by five leading oil producing states: Iran, Iraq, Kuwait, Saudi 
Arabia and Venezuela. OPEC’s main goal was to coordinate petroleum policies of states 
to secure a fair and stable remuneration for their outputs. The organization was 
established in a time, where the oil production was rising, and prices were decreasing. 

 

1.2. Energy Market, Supply and Demand  
 

Energy demand usually refers to any kind of energy used to satisfy energy needs. For 
example, for cooking, using electronic devices, washing, etc. Industrials and factories 
also have demand for energy, either for electricity uses, as the previous mentioned, or 
exploiting energy as a raw material. For example, a petrochemical company uses energy 
to exploit it’s chemical properties, rather than it’s electricity output.  In other words, 
individuals, companies, countries have a different “equation” for energy demand, 
depended on their needs and utility functions. To derive energy demand, we have to 
make a three-stage analysis. First, will the household or factory switch or not to 
commercial energies? The switching choice is affected by the available income and 
willingness to spend money for commercial energies. Higher willingness to spend 
money for commercial energy means higher demand for commercial energy. The 
second stage is to decide for the appliances to be used, if chooses of course to use 
commercial energy. In this stage, two important parameters need to be decided. If there 
are other available fuel choices and type of appliance should be used for this appliance. 
The last stage is the level of utilization. High use or low use? This leads us to the classic 
microeconomic concept of utility maximization, that derives from consumer (entity) to 
consumer (entity). Since the utility maximization problem is a classic microeconomic 
concept, we are not going to cover this. But we need to explain how this created 
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demand is going to get covered and bring equilibrium in the energy markets. Supply is 
created, with respect to the costs and the benefits that will derive from an investment 
in energy production. If the value of benefits is bigger than the costs, then investments 
in the energy sector will be executed to cover the vast energy demand. Of course, in 
real life, when costs are higher that does not mean the energy production will stop, but 
the sector, either private or public, responsible for the energy production, tries to find 
ways to minimize costs, seek for financing, maximize benefits for the investment of 
energy production.   In addition, energy sector assets tend to be capital intensive. Often 
capital cost accounts for a large part of the average cost, and consequently, per unit 
costs fall with higher sizes, showing economies of scale. An implication of such capital 
intensiveness and economies of scale, is that the marginal costs tend to be low 
compared to average costs and as a result any pricing in marginal costs (perfect 
competition) would lead to losses. Capital intensives need big investments to keep 
marginal costs in a level beyond average costs, and as bigger installations provide 
economies of scales, few suppliers tend to control the market share creating a 
monopoly environment.  But suppliers could create natural monopolies, that usually 
don’t face legal issues, by finding a way to decrease costs, and especially average cost, 
lowering marginal costs as well. In general, however energy markets could be 
characterized as competitive markets with some assumptions, with marginal costs and 
average costs equal in the long run.  An implication of such capital intensiveness and 
economies of scale is that the marginal costs tend to be lower than the average costs, 
and a competitive pricing result in financial losses. Therefore, there needs to be a  

 

                              
                                                        Table 1. 1: M&A’s in the oil sector during the 4th merger wave 
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premium in price, to make the pricing equal at least to the minimum average cost. It 
would not be viable for the firms operating in the energy sector to keep producing in 
their maximum capacity, treating fixed costs as sunk costs. This procedure would in fact,  
not bring the firm in it’s break-even point and the excess supply would have created 
storage problems. Through time, the problem of excess capacity and capital 
intensiveness has been resolved, with horizontal integrations in the oil industry, and 
regulation in the electricity industries. Horizontal integration implies linking with firms in 
the industry, usually at the same stage of value chain and approximate size, either 
through mergers and acquisitions or cartels. During the 4th merger wave, many firms 
in the oil industry, either integrated horizontal through M&A’s, or attempted to. The 
table above presents some important M&A’s during the 4th merger wave, and some 
years after it, in the oil industry. 

                               

1.3.   Energy Market Outlook 2021 and Forward  
 

The previous and current year could be characterized as “odd years”. Crude oil spot 
and future markets reached below zero levels for the first time, bewildering the markets. 
On a different market, the gas market, prices soared significantly, even 800% in some 
areas. The main cause behind that, were the cold months of January and February. 
Temperatures were so low that caused freeze-offs, a situation when wells shut down 
because of liquids freezing pipeline. In addition, demand for electricity, gas and oil kept 
rising. From one side there was lower gas supply and from the other increase in gas 
demand, driving prices high. According to EIA energy outlook 2021 and its projections, 
the gas consumption will keep rising while the consumption of petroleum and other 
liquids will slow. Renewable energy consumption will increase rapidly, so will it’s 
production. For year 2021, petroleum and other liquids remain number 1 source of 
energy consumption. That is because the transportation sector is the one that consumes 
the most petroleum and other liquids. But petroleum is essential for retail products and 
industrial uses, as a production input, as well.  Projection show that renewable energy 
consumption will increase and that is because federal policies have encouraged 
investments in renewable sources, increasing supply. In addition, new technologies have 
also driven down costs for installation of solar and wind panels. The decreased costs 
and profit margins had consequently the entrance of many investors, companies, 
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individuals, and as a result transformed the market environment into a more 
competitive than before. Before natural gas reach their rapid increase in prices in 2021, 
in 2020 there was oversupply of natural gas, and as a result prices dropped, reaching 
their lowest prices since 1990. In addition, mines close to limit the spread of COVID-19, 
and therefore supply dropped. EIA projects that electricity generation from gas will have 
an upward trend, while coal generation will increase in 2022, as electricity demand, until 
it returns to its long term and constant decline structure. On the petroleum markets, 
EIA projects that onshore crude oil production, will continue with it’s current trend that 
started from 2010, and Southwest will be the region that will dominate the oil production 
for the upcoming years, while the West coast will  face a decline in the oil production. 
A quick scenario analysis shows that, if oil prices reach their projections and be high, 
the exports would be face an upward slope, reaching it’s maximum exports in 2040 
approximately, where US will export 10 million barrels per day. On the other hand, the 
worst-case scenario, where the prices of oil are low, shows that US would import every 
year more barrels of oil.  

1.4.   Risk in Energy markets   

The value of correctly measuring risk in energy markets is becoming essential day by 
day. Several legislations, the deregulation of the energy market converting it from 
monopoly to competitive marketplace, the environmental concerns, and the financial 
markets do have significant impact in energy markets. Energy and environmental 
financial markets are rising but they are still immature financial markets. When we talk 
about risk, companies bear the brunt. According to Markus Burger, Bernhard Graeber 
and Gero Schindlmayr (Markus Burger), first thing we need to do is to identify risk and 
the result we get is a risk map for a specific company, by which factors is the total firms 
risk associated with energy risk derived from (Markus Burger). Among the six the most 
important and hard to manage  

                                 

    Figure 1. 2 : Risk Map, source: Managing energy risk, a practical guide for risk management in power, gas, and other markets 
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is credit risk. Unlike market risk, credit risk can not be observed so easily. The correct 
management and identification of credit risk needs an exhaustive audit and check, as 
well as significant information. The corresponding Lehman Brothers in energy markets 
(which also had implications in the energy market) could be Enron, because it caused 
firms to re-evaluate the way they were managing credit risk. Enron was a famous 
electricity and gas company based in Houston, and while they were reporting significant 
revenues (nearly $101 billion during 2002) they were hiding their losses in offshore 
accounts. Therefore, the economic results of the year showed significant profits and an 
appreciation of the stock price, while in reality the firm may had losses and the stock 
was way too overpriced. Clear policy and no conflicts of interest are also vital for a 
minimization of a firm’s exposure to energy and total risk. The market risk refers more 
to the risk that arise between the contracts purchased and the contracts sold, the 
imbalance between those two that can cause risk to one counterpart. Liquidity risk can 
be categorized in market liquidity risk, which refers to the lack of marketability of a 
contact and it’s difficulty to be converted in cash, and funding liquidity risk, where 
liabilities cannot be met, or they do so in damaging prices.  

2. Literature Review  
 

Mitigating and Quantifying volatility in energy markets is of great interest for various 
types of investors, businesses, governments. For example, an oil company could see its 
revenues shrink in the balance sheet, if a sudden drop in prices occurred. Forecasting 
that price fluctuation could have prevented the profit decline. The administration for 
example could have hedged the company’s position. In addition, a speculation about a 
worldwide commodity, such as crude oil, could be proved a lucrative investment. Oil 
prices have crucial part on macroeconomy and inflation and forecasting them is 
important for the appropriate monetary policy decisions. But oil dynamics vary 
substantially over time, being affected not only by their fundamentals, but also from 
many factors in the macro-finance sphere, and overall, that is what makes difficult the 
prediction. This uncertainty in oil markets do indeed affect in general energy markets. 
An appropriate model and method should be used. In their paper, Wei et al (2010) (Yu 
Wei) found by comparing three linear GARCH models and six non-linear GARCH 
models that there is no superior model, but non-linear models tend to have better 
forecasting power than linear models. Therefore investors, companies or government 
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entities for monetary policy decision making must not relay on standard models, but 
they must test several, and which one fits the best and more accurate according to their 
data. In their paper, Manera et. al. (2014) (Matteo Manera) found that energy futures 
markets are procyclical with the market (S&P 500), and that speculation stabilize prices 
in energy futures markets, not destabilizing them, as Stein (1987) (Stein) and Hart and 
Kreps (1986) (Hart) had suggested. In their study, Kang & Yoon (2013) (Sang Hoon Kang) 
sought to identify a good model for forecasting volatility in petroleum futures. Out of 
sample analysis indicated  that results differ relative to the data, and that investors 
should be cautious when estimating volatility in petroleum futures markets. They also 
found that FIGARCH models with ARFIMA models capture better long-memory features 
than GARCH and IGARCH models. In a different approach and paper, Nomikos and 
Pouliasis (2011) (Nikos K. Nomikos) showed that Mix distribution GARCH and Markov 
Regime Switching  GARCH (MRS GARCH) models obtain better accuracy in out of 
sample analysis than conventional GARCH models for petroleum futures and propose 
that financial analysts use these models in the volatility modelling process of oil prices. 
They also quantify risk with Value at Risk approaches, finding that GARCH-X model is 
the most consistent while VaR based on Extreme Value Theory indicates results suitable 
for risk-averse investors. Hung et. al. (2008) (Yuan-Hung Hsu Ku) found that VaR with 
Heavy Tail  

 
               Figure 2. 1 :  WTI, Brent, Henry Hub and NY Harbor Heating oil spot prices, Source EIA 
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distribution GARCH models, outperform GARCH models with normal and student 
distribution, in terms of failure rate. In their study the fractional integrated model 
indicates that shocks in volatility of heating oil and unleaded gasoline futures returns 
scatter exponentially, converging to a GARCH model, having serious implications in for 
value at risk estimations, pricing of oil derivatives and hedge ratios. In each case, 
accuracy of the results is biased. But oil spot and future prices can not only be affected 
from the markets of their refining products, but also from other energy markets, such 
as the natural gas markets and electricity markets. A look in the graph (above) indicates 
that between 2002 and 2008, before the financial crisis, oil prices kept an upward trend. 
In the same period, heating oil and natural gas seemed to follow the same trend, with 
natural gas being more volatile, indicating in general that markets may affect prices 
from one market  to other. Efimova and Serletis (2014) (Serletis) found that there is 
unidirectional volatility spillover effects, and volatility from one market affects volatility 
in a different market, with hierarchy from oil to gas to electricity markets. Results also 
indicate that univariate models perform more accurate forecasts and the conditional 
correlation for oil-gas and oil-electricity decreases dramatically in periods of slow 
economic growth or recession, indicating a procyclical move, while correlation for gas-
electricity increases for the same period. Since 2011, dynamic correlations for all pairs of 
commodities decreased, while the reason has not been investigated. Wang et. al. (2012) 
(Yudong Wang) showed that the relationship between crude oil and other refining 
products is characterized by volatility asymmetry and spillover effects, meaning that the 
returns and (or) the variance of one market is affected by another market, in that case 
oil is affected by its refineries. They additionally show that multivariate GARCH models 
perform better forecasts than univariate models. Karali and Ramirez (2014) (Berna 
Karali), found indirect volatility spillover effects between natural gas and crude oil 
markets and between natural gas and the heating oil markets, and found direct volatility 
spillover effects from natural gas returns to crude oil returns. Several major effects that 
caused macroeconomic shocks, such as Hurricane Katrina, Asian financial crisis, and  
U.S. invasion in Iraq created a volatile situation in oil spot and future markets, while 
terrorist attacks on September 11 seemed it would change West’s relationships with 
Middle East. Lehman Brothers did not affect crude oil, but it did affect heating oil. They 
also found that crude oil markets exhibit much more volatility from March through 
November, heating oil has less seasonality, and natural gas does not have seasonality 
at all.  On April 20th, 2020, crude oil in US has reached negative prices for the first time 
in history, after oil producers left out of space to store the oversupply of oil, with 



 

18 
 

demand being insignificant and decreased. The losses for investors, producers and the 
economy in whole were massive, and even though this might be an unpresented and 
not suitable example, it can be assumed that market participants try to avoid such losses 
and hedge their positions. The most common way to hedge a position, either in a 
financial product or commodity, is through derivatives. The most used are futures, 
forwards, and options. For example, an oil producer fears that the price of oil would 
decrease next month, and he will see a decline in profits. He can take short position in 
a future or forward contract, or a long position in a put option (or short position in a 
call option) and hedge his position. This procedure however needs to be completed 
with an appropriate number of derivatives contracts, relative to the initial position. 
Optimal portfolio weights and optimal hedge ratios is of great importance in the 
academic and real world as well. Chang et. al. (2011) (M. M. Chian-Lin Chang) found 
that optimal portfolio ratios for brent crude oil, more futures hold are needed in a 
portfolio than spot markets, while for WTI crude oil, BEKK models showed that larger 
proportion in spot markets than future markets is needed. CCC, VARMA-GARCH and 
DCC models showed holding bigger proportion in futures than spot. In addition, they 
found that optimal hedge ratios recommend short hedgers to short in crude oil futures 
with a higher proportion of one dollar long in crude oil spot. With the construction of 
hedging effectiveness indices, they concluded that variance is hedged better in WTI, 
and that the best model is diagonal BEKK. The exact same authors in a different paper, 
Chang et. al. (2010) (Chia-Lin Chang), found volatility asymmetries in both positive and 
negative oil shocks. Volatility spillover effects were presented from WTI and Brent to 
Dubai and Tapin oil markets, confirming that WTI and Brent are the world benchmarks. 
Lastly, they found that the optimal portfolio holds WTI and Brent in a bigger proportion 
than Dubai and Tapin. Additionally, in a paper already mentioned, Wang et. al. (2012) 
(Yudong Wang) showed that for hedging crude oil with heating oil or conventional 
gasoline, scalar BEKK models do give better results compared to other multivariate 
models, but if jet fuel is used, diagonal BEKK is the optimal. 

             

                           Figure 2. 2 : WTI spot prices and returns 2015-2021 (not negative values) , Source Fred St Louis 
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                                                                        Table 2. 1: Literature Review summary 

3. Data  
In this paper, we use daily price data (in US dollars per barrel) of Brent spot, WTI (West 
Texas Intermediate)  crude oil spot and future markets, Henry Hub spot and future 
markets and New York harbor heating oil, from January 7, 1998, to May 10, 2021. Data 
were obtained from Fred St Louis, EIA, and S&P Global Market Intelligence. On 20 April, 
WTI spot and future prices reached negative levels. The estimated returns calculated 
later, gave us a significant number, with significant deviation from the mean. Since we 
care for the long-run effects of the energy markets, it may be better to exclude these 
two outliers. All sample prices are converted to log returns, to make the series 
stationary. We take the first logarithmic differences of every series.  

                        𝑟𝑒𝑡𝑢𝑟𝑛𝑠 = 𝑙𝑜𝑔                                                             (1)                        

After that, stationarity for each series was tested and ensured. The table below, presents 
the descriptive statistics of our series returns. While WTI spot and futures markets have 
similar values in mean and standard deviation, we can see that the spot market  tends   
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                                          Table 3. 1: Descriptive Statistics of series returns 

to be more volatile than future markets. Compared to all other markets, gas market 
presented to be riskier than the other. This is attributed to the significant increase in 
prices in February, because of the pipelines freeze of, that decreased supply, while 
demand was rising, and consequently, gas prices experienced an unpresented 
aggressive inflation in prices.  

4. Methodology  
 

4.1.    Linear Univariate GARCH models 
 

GARCH models are the most used method to interpret risk in many markets, such as 
the financial markets and in this case the energy markets. Tim Bollerslev (1986) 
(Bollerslev) introduced the GARCH models, as a generalization of the ARCH models of 
Engle (1982) (R. F. Engle). In a similar way as the ARMA models, Bollerslev embedded 
the autocorrelations and partial autocorrelations for the squared process to identify 
variance behaviour. The simplest GARCH model, is the GARCH(1,1) model. For simplicity 
in this paper, we will use this process and not try to identify the best GARCH, linear and 
non-linear (presented later) models with the use of Akaike Information. The equation 
for GARCH(1,1) is the following:  

                                        𝜎 = 𝛼 + 𝛼 𝜀 + 𝛽 𝜎                                            (2) 

Term α0 is the constant term, which shows how much the volatility will increase or 
decrease with all the other terms constant. Term α1 is also known as ARCH term and 
measures the extent to which a volatility shock today feeds through into next period’s 
volatility. Term β1  also known as GARCH term, indicates how past volatility affects 
today’s volatility, the volatility dependence. ARCH term usually tends to be low, while 
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GARCH term tends to be high. A GARCH model with high α and low β tends to be 
spikier than a series with a low α and a high β. Adding together the ARCH and GARCH 
term we get the rate at which the volatility shock today feeds through into next period’s. 
When the sum is equal to 1, we have infinite volatility persistence, and the series is a 
non-stationary process. In that case, our GARCH models is called Integrated GARCH 
(IGARCH). The closer the sum to 1, the higher the volatility persistence. In our paper, we 
do use GARCH(1,1) model for our univariate analysis, but we do examine and test the 
best mean equation for each series. The selection for the best mean equation is made 
according to the lowest information criteria, in our case, AIC. We also add the returns 
of S&P 500 to increase the explanatory power of the model, if applicable. There are 
instances where the returns of the market make some coefficients statistically 
insignificant and therefore it is better to not use the returns of the market in the model. 
There are also cases where we include insignificant lags of the ARMA process, because 
the AIC indicates that this is the best model. Last, the model must satisfy the residual 
diagnostics. The autocorrelation is an issue in this paper where different models could 
not fix. After the best mean equation is selected, if we do have ARCH effects, the 
creation of GARCH models is appropriate. We test both linear and nonlinear models 
with 3 distributions: Normal, t-student and GED distribution. Among the 3 types of 
univariate GARCH models that will be examined the one with the lowest AIC and that 
satisfies the residual diagnostic test will be selected as the best model for volatility 
modelling. As already mentioned, our data is WTI spot and futures market, excluding 
the  day of negative prices to gain more robust results, Henry Hub gas spot and future 
prices, New York Harbor Heating oil spot and future prices and Brent oil spot market. 
Starting with Henry Hub gas spot prices, our results showed that the best model mean 
equation to use is ARMA(3,5), where the MA(4) term is not statistically significant, but 
we are still going to keep it, as our AIC indicates. Constant term and market return 
where statistically insignificant when added. Ljung Box test showed that we have 
autocorrelation for 20 lags, so did Q2. Breusch Godfrey LM test for serial correlation 
showed no presence of serial correlation for lag 2, the one with the lowest AIC. The 
model was found to have ARCH effects and GARCH models were necessary.  

𝑟 = 𝜑 𝐴𝑅(1) + 𝛷 𝐴𝑅(2) + 𝜑 𝐴𝑅 + 𝛩 𝑀𝐴(1) + 𝛩 𝑀𝐴(2) + 𝛩 𝑀𝐴(3) + 𝛩 𝑀𝐴(4) + 𝛩 𝑀𝐴(5)                         (3)                                                                                 

The same mean equation implies as well for gas futures, but with 4 MA terms, and the 
returns of the market added. Thus, our mean equation for gas futures returns in 
ARMA(3,4) with the returns of the market. All terms are statistically significant, and we 
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do have autocorrelation according to Q stat and Q2 for 20 lags.  According to Breusch 
Godfrey LM test, we do not have serial correlation, but we do have ARCH effects. For 
WTI crude oil spot markets, the best mean equation to use  is ARMA(5,5) with S&P 500 
returns. Terms AR(1), MA(1), AR(5) and MA(3) are statistically insignificant, while all other 
were significant. Running a Wald coefficient test, we obtain p-value=0.000 and reject 
the null hypothesis that the coefficients are statistically insignificant. The estimation may 
have given as the insignificant results, due to multicollinearity. The returns of the S&P 
500 show that if the market returns increase by 10%, WTI spot returns will increase by 
3.85%. There is autocorrelation but not serial correlation, and construction of GARCH 
models is needed since we do have ARCH effects. For WTI futures, the optimal mean 
equation is ARMA(4,4) with returns of the market added. All variables are statistically 
significant, there is presence of autocorrelation and ARCH effects, but not of serial 
correlation according to Breusch Godfrey LM test.  

 𝑟 = 𝜑 𝐴𝑅(1) + 𝜑 𝐴𝑅(2) + 𝜑 𝐴𝑅(3) + 𝛷 (4) + 𝜃 𝑀𝐴(1) + 𝜃 𝑀𝐴(2) + 𝜃 𝑀𝐴(3) + 𝜃 𝑀𝐴(4) + 𝛽𝑟𝑠𝑝500         (4) 

In this case, if market returns increase by 10%, WTI futures returns will increase by 4.11%, 
indicating a stronger affection that the market returns have in futures markets than spot. 
For heating oil markets, spot and futures, the best models to use as mean equation are 
ARMA(4,4) with the market and ARMA(4,4) without the market respectively. For spot 
markets, MA(2) and AR(2) term were found to be insignificant, and that is something 
Wald test coefficient could not fix. According to Q-stat there is no autocorrelation for 
20 lags, while Q2 showed presence of autocorrelation. For our futures market model, 
every coefficient is statistically significant and there is no autocorrelation. For both 
markets, there is no serial correlation, but there are ARCH effects. Lastly, for our brent 
markets, our best model was ARMA(5,0) with only AR(1) term statistically significant. By 
removing all variables and resulting in a AR(1) we would get a significant larger AIC, so 
we kept AR(5) as our model, and kept a curiosity about the 4 insignificant terms and 
what they would mean in our analysis, since the lags denote days of the week. Market 
returns coefficient, seemed to be statistically significant and was added, where a 10% in 
S&P 500 returns would increase brent spot market returns by 3%. There is 
autocorrelation, but not serial correlation and GARCH models are needed to interpret 
risk.  
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4.2. Non-Linear Univariate GARCH models  
 

However, GARCH(1,1) models are simple, and since then many variants and extensions 
have been developed to solve 2 important issues that arise with GARCH models: i) Non-
negative constraints may still be violated ii) GARCH models do not account for 
asymmetry and leverage effects. Two famous models to resolve this issue and specially 
to capture leverage effects are the exponential GARCH model, also known as EGARCH, 
and the GJR GARCH model, taken its abbreviations from Glosten, Jaganathan and 
Runkle. The EGARCH model, was suggested by Nelson in 1991. The variance equation 
is given by: 

                                         

Where the first term is constant, the second is the GARCH term in natural logarithm , 
the third is the leverage term or asymmetry term and the fourth is the ARCH term.  
Since we now have logarithms in our models, even if the parameters are negative σ2 

will be positive. We can account now for leverage effects when γ is negative. That 
indicates a negative relationship between risk and returns. If γ is positive there is still 
asymmetry, since good news have higher impact on volatility than bad news. If γ is 0 
there is no asymmetric volatility. When we have leverage effect, bad news affect volatility 
more than good news. If leverage effects occur that can be visualized with the news 
impact curve. According to Baillie and DeGennaro (1990) (DeGennaro) the risk-return 
relation depends on the error distribution, so again we will examine the normal, t-
student and GED distribution. To ensure stationarity in EGARCH models, α+β+γ/2 must 
be less than 1. GJR model are identical to GARCH, but the asymmetry term is also added.  

                          𝜎 = 𝛼 + 𝛼 𝑢 + 𝛽𝜎 + 𝛾𝑢 𝐼                                      (6)             

Here, It-1 denotes a dummy variable, where it takes 1 as value, when yesterday’s news is 
negative, otherwise it takes 0. For leverage effect we would see γ>0 and that means 
when negative news occur, volatility will increase by γ. 

 

(5) 
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4.3. Univariate GARCH models volatility spillovers 
 

A well-known method and established in the literature for spillover effects using 
univariate GARCH models is that Christiansen (2007) (Christiansen) used for 
measuring volatility spillovers in European market bonds. This paper was based in 
Bekaert and Harvey (1997) (C. R. Geert Bekaert), A Michaelidis, Serena Ng (2000) 
(Alexander Michaelides) , and Bekaert et al. (2005) (H. C. Geert Bekaert), where all 
considered volatility spillover effects on the international bond markets. In our paper 
however, the 7 series will make more difficult this procedure that the author 
mentioned followed. Our approach will be to treat volatility as a mean equation. We 
will estimate the conditional variances and save them, from the best selected GARCH 
models that we found in result section 5.1. and then run a 7-variate VAR model with 
the conditional variances as our variables. The interpretation will be identical with 
that followed in section 5.4 for diagonal BEKKs mean equations. With this method 
we will count for long-term spillovers in the markets. Our 7-variate VAR(1) model will 
be:  

                                    𝑌 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑣𝑎𝑟𝑤𝑠
𝑣𝑎𝑟𝑤𝑓
𝑣𝑎𝑟𝑔𝑠
𝑣𝑎𝑟𝑔𝑓
𝑣𝑎𝑟ℎ𝑠
𝑣𝑎𝑟𝑔𝑓
𝑣𝑎𝑟𝑏𝑠 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                𝑀 =

𝜇
𝜇
⋮

𝜇_7 

                   

                            𝐴 =  

𝑎 ⋯ 𝑎
⋮ ⋱ ⋮

𝑎 ⋯ 𝑎
       𝑌 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑣𝑎𝑟𝑤𝑠(−1)

𝑣𝑎𝑟𝑤𝑓(−1)

𝑣𝑎𝑟𝑔𝑠(−1)

𝑣𝑎𝑟𝑔𝑓(−1)

𝑣𝑎𝑟ℎ𝑠(−1)
𝑣𝑎𝑟𝑔𝑓(−1)
𝑣𝑎𝑟𝑏𝑠(−1) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

         

,where ws stands for WTI spot, wf for WTI futures, gs for gas spot, gf for gas futures, 
hs for heating oil spot, hf for heating oil spot and bs for brent spot. More details 
about VAR models functionality are stated in section 4.5 

.  

4.4. Univariate GARCH models Forecasting 
 

  (7) 
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So far, we have seen the history performance of our data. But market participants, 
governments, entities, investors etc, are interested in the future performance, the one 
that cannot be observed. That is why we need to find an appropriate model for 
forecasting. In papers of Wei et. al. (2010) (Yu Wei) and Nomikos and Pouliasis (2011) 
(Nikos K. Nomikos), the sample is separated into “in-sample” and “out of sample”, when 
the first one is used for volatility modelling and the latter for forecasting. In our paper, 
we are going to remove the last 30 observations, and re-run our models to forecast the 
30 last observations and find for each series the best one. That said, our sample for 
estimation will be from 7th January 1998 until 22nd March 2021, while our forecast period 
with 30 observations will be 23rd March 2021 until 10th May 2021. The best model will be 
selected according with the loss functions or accuracy statistics. We will use the Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute 
Percentage Error (MAPE).  

                             RMSE= 𝑛 (∑ (𝜎  − 𝜎 ))                                                  (8)  

                             MAE= 𝑛 ∑ |𝜎 −  𝜎 |                                                      (9) 

                              MAPE=𝑛 ∑ | |                                                         (10) 

In our Loss functions, n is the number of forecasts, σ2
τ  is the actual volatility and 𝜎  is 

the estimated volatility in day t.  The results for our models, the forecasted returns, and 
the derived variance, are presented in section 5.2. The forecast method used, is the 
dynamic forecast, meaning that the forecasted value of the dependent variable is used.  

4.5. Multivariate GARCH models, BEKK, DCC  
 

While univariate models give us a picture of how the markets are affected by their own 
characteristics and risks, it is more important in economy and markets to search how 
each market affects one another. To do that, univariate models are not suitable to give 
us answers. Multivariate models for mean and variance equation need to be presented. 
For our mean equation we will be using a seven-variate VAR(1) model. VAR models 
have more than one-time dependent variable. Each variable depends not only in its 
past values, but also in other variables and their past values as well. In essence, 
multivariate time series help us understand the relationship between several variables. 
The advantages of using VAR as our mean equation is the dependence with other 
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variables and that we do not need to specify which variables are endogenous and 
exogenous – all variables are endogenous. However VAR models are still a-theoretical.  
For simplicity, we will use only 1 lag to our variables, and that is how VAR(1) arises. One 
method for the optimal leg selection would have been the information criteria, while a 
different approach would have been the cross-equation restriction. Our variables that 
will be used are the returns of our series, WTI spot, WTI futures, gas spot, gas futures, 
heating oil spot, heating oil futures and brent spot. As already tested, the prices of our 
series require the logarithmic first differences to become stationary. We could have 
tested for cointegration among the prices, but since we have many variables, we 
eliminate the possibility for cointegration and for simplicity we instantly use our returns 
for our VAR model, as mean equation.  

                                               𝑌 = 𝑀 + 𝐴𝑌 + 𝜀                                                  (11)                            

Where Yt, M, A and Yt-1 are all matrices, with Yt being our dependent variables, M the 
constant terms, Yt-1  our lagged variables and A our coefficients for our variables, a 7x7 
matrix as shown below.  

                                Yt = 

⎣
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⎢
⎢
⎡
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⎤

 

 

Where dlog for every case, indicates the logarithmic differences, while ws stands for 
WTI spot, wf for WTI futures, gs for gas spot, gf for gas futures, hs for heating oil spot, 
hf heating oil futures and bs for brent spot. Off-diagonal elements, contribute to return 
spillover effects among the markets. For our variance equation we will use 2 models, 
Diagonal BEKK models and Dynamic Conditional Correlation models (DCC). 

(12) 
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4.5.1. Diagonal BEKK models 
 

Baba et. al.(1985) (Baba) and Engle and Kroner (1995) (R. K. Engle) considered the BEKK 
models, a multivariate GARCH model, extension from the univariate GARCH models. 
BEKK models help us explain the volatility transmission between series.  

                                    𝐻𝑡 = 𝐶 𝐶 + 𝐴𝜀 𝜀 𝐴 + 𝐵𝐻 𝐵′                                         (13)               

The above, illustrates the simplest BEKK GARCH model specified with all orders set to 1. 
A and B are k x k matrices parameters and C is a triangular matrix that ensures positive 
definiteness as well.  Model is estimated using Quasi Maximum Likelihood estimation 
using the following Likelihood function:  

                               𝑙 =  − 𝑙𝑜𝑔2𝜋 −  ∑ (𝑙𝑜𝑔 |𝐻𝑡| + 𝛣 𝛨𝑡𝐵 )                           (14) 

Volatility spillover effects are indicated by the coefficients of matrix A. Suppose the 
above BEKK model, a bivariate GARCH. Matrix A coefficients would have been:  

                                                    AA’=
𝑎 𝑎
𝑎 𝑎                                                    (15) 

The diagonal elements of the matrix would suggest volatility spillover effects from one 
market to another, meaning that a21 measures volatility spillover from market 2 to 
market 1 while a12 measures volatility from market 1 to market 2.  For B matrix 
respectively, the off-diagonal elements help account for volatility persistence among 
the markets. However full BEKK models, recently have been criticized, since the “curse 
of dimension”, meaning the high number of parameters to be estimated, makes the 
process difficult and by using QMLE, asymptotic and irregular properties in the 
parameters occur. To fix this, using diagonal BEKK GARCH models, McAleer et al. (2009) 
(McAleer.), showed that QMLE in diagonal BEKK produce consistent and asymptotically 
normal parameters. For Diagonal BEKK models, the off-diagonal elements are zero. The 
matrices A and B are given as.  

                            A= 
𝑎 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎

 ,    B= 
𝑏 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏

                               (16) 

We can see that in this case we can’t count for volatility spillover effects, since the off-
diagonal elements are zero, but we can observe and test for the significance of partial 
covolatility spillovers. Spillover are defined in three categories : i) Full volatility spillover, 
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where the returns shock from an asset k affects the volatility of a different asset i, ii) full 
covolatility spillover, when the return shock from an asset k affects the covolatility 
between two different assets i and j and iii) partial covolatility, when the returns shock 
from an asset i, affects the covolatility between two assets, i and j.  

i) Full volatility spillovers :               ,   k≠i                                           (17) 

ii) Full covolatility spillovers :          ,    i≠j, k≠i,j                             (18) 

iii) Partial covolatility spillovers:        ,    i≠j                                           (19) 

However, Chang et al. (2019) (C.-L. M. Chang) mentioned that the A matrix explains the 
weights for the return shocks, and does not display volatility spillover effects. In this 
paper, we are going to follow the method of Chang et al. (2019) (C.-L. M. Chang), the 
same as Zolfaghari et al.(2020) (Mehdi Zolfaghari) have used. We are going to calculate 
the partial covolatility spillover effects with the formula αii x αjj x εj, t-1. By that we will be 
able to check if there is partial covolatility between the markets. Our BEKK model will 
be the simple BEKK(1,1) model, using our 7 series. We use t-student distribution for non-
normality. 

                                      𝐻𝑡 = 𝐶 𝐶 + 𝐴𝜀 𝜀 𝐴 + 𝐵𝐻 𝐵′                                     (20) 

                C= 
𝑐 ⋯ 𝑐

⋮ ⋱ ⋮
0 ⋯ 𝑐

      A=
𝑎 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑎

     B=
𝑏 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑏

               (21) 

 

4.5.2. DCC models 
 

A different class of multivariate GARCH models is the Dynamic Conditional Correlation 
models, or DCC models in short. Proposed by Engle at 2002 (R. Engle), this model is 
related to CCC (Constant Conditional Correlation) but allows correlation to vary over 
time. The conditional covariance matrix in DCC, is defined as:  

                                                      𝑄 = 𝐷 𝑅 𝐷                                                     (22) 

Where Dt is diagonal matrix of conditional variances (Dt =diag (h1
1/2,…., hm

1/2 )) that can 
be estimated with a univariate GARCH model. In our case, the conditional variances will 
be estimated using a simple GARCH(1,1) with normal distribution. In equation 22, Rt 
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denotes the dynamic conditional correlation. The symmetric positive definitive matrix 
Qt is given by the equation below.  

                                           𝑄 = 𝑄(1 − 𝜃 − 𝜃 ) + 𝜃 (𝜀 𝜀 ′) + 𝜃 𝑄                              (23) 

,where θ1  and θ2 are scalar parameters to be estimated in the 1st and 2nd stage 
respectively, and for stability condition to be satisfied, their sum must be less than 1. 
When θ1  and θ2 are equal to 0, 𝑄  from equation X.X. is equivalent to CCC. The log 
likelihood function, used in the 2nd stage to maximize the conditional likelihood is:  

                                      𝑙(𝜃 |𝜃 ) = ∑ (log|𝑅 | + 𝑢 𝑅𝑡 𝑢 )                                (24) 

            

4.6. Multivariate GARCH models Forecasting  
 

In this section, we are not going to forecast volatility directly, but we are going to 
forecast returns, using a multivariate mean equation, thus a VAR(1) model with our 
returns. The results from loss functions discussed in section 4.4. (equations 8,9,10) will 
be compared with the results from univariate models, and the derived variance from 
those returns is probably better forecasted with what the loss functions will suggest. The 
only model in our multivariate analysis that could be used for volatility forecasting is 
diagonal BEKK. However with DCC models we could forecast the dynamic conditional 
correlations  for our series. We have results in Appendix  for dynamic forecasts in WTI 
spot and futures, heating oil spot and futures, gas spot and futures and lastly between 
WTI and heating oil spot prices. The forecasted correlations could help us in an out of 
sample analysis for optimal hedge ratios between the markets.  

 

 

4.7.  Optimal Hedge Ratios  
 

So far, we have modelled volatility (results in section 5) using univariate and multivariate 
models, we have seen how it moves during time and what are the characteristics of the 
series and we have also forecasted conditional variance and searched for the best 
model for forecast. But after those steps, when we already have find the presence and 
characteristics of the risk, how can market participants minimize the risk? In this section 
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we will discuss the optimal hedge ratios between spot and future markets. More 
detailed, using diagonal BEKK and DCC, we will estimate the optimal hedge ratios, from 
a long position to spot market , to a short position in futures markets. In equation 25, 
the dynamic optimal hedge ratio at time t is given. 

                                                   �̇� = 𝐶𝑜𝑣 , /𝑉𝑎𝑟 ,                                                   (25)                                          

To minimize the risk in a portfolio, for every dollar taken as a long position in spot 
market it should be hedged by a short position in futures markets equal to �̇� times the 
product in futures market (Chang et al. 2010a) (Chia-Lin Chang). Having found the 
optimal hedge ratios, we can calculate the returns that would have been produced in a 
hedging portfolio and compare them with the actual returns. That would give us a good 
measure of the hedging effectiveness. The returns are presented in equation 26. 

                                                    𝑟 , = 𝑟 , − �̇� × 𝑟 ,                                            (26) 

, where the negative sign in the equation displays the reverse position in the futures 
markets. The hedge will be effective, if the conditional variance of the adjusted returns 
is lower than the unhedged. Another way to measure the hedging effectiveness, is the 
“hedging effectiveness index” that Chang et al. (2011) ; Ku et al. (2007) (M. M. Chian-Lin 
Chang) used in their work, presented in Equation 27. 

                                                 𝐻𝐸 =                                       (27) 

,where var unhedged is the variance of the unhedged portfolio and var hedged is the 
variance of the hedged portfolio. Hedged variance will derive by the conditional 
variance of a GARCH(1,1) model, from the hedged returns, while the unhedged variance 
with the same model, from the original series. Hedging effectiveness will give us the 
final answer, whether the hedger is efficient and hedged series have lower variance or 
not. Contrary to literature review, we will estimate the optimal hedge ratio for our entire 
sample and not separate it into in-sample and out-of-sample. We will estimate optimal 
hedge ratios for WTI, heating oil and gas both with BEKK and DCC using as already 
mentioned the conditional covariances between the series and the variances from those 
two multivariate GARCH models and then we will compare the results.  
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5. Results  
 

5.1.       Results for Univariate GARCH models  
 

GARCH(1,1) and GJR results showed that gas spot markets are the spikiest series, with 
the highest ARCH term close to 0.18 on average, indicating strong volatility clustering 
and that a shock today feeds through next periods volatility significantly. Volatility 
dependence was also significant, close to 0.8 on average, indicating strong dependence 
with previous periods volatility. However the series is non-stationary with normal 
distribution. Leverage effects where not present in gas spot markets, and there is 
ambiguity whether there is asymmetry, since in some cases the asymmetry term was 
not statistically significant. The best model for volatility modelling was selected 
according to the lowest AIC and the one that captures the ARCH effects, and in some 
instances also satisfies the residual diagnostics tests (Appendix). Our best model 
according to AIC is EGARCH with t student distribution but could not capture ARCH 
effects. Therefore, our model with the second lowest AIC that could capture ARCH 
effects was EGARCH with GED distribution, with a p-value in ARCH test equal to 0.0566, 
indicating that ARCH effects are captured in 5% significance level. GJR models do 
capture better ARCH effects, with p-values ranging from 0.26 to 0.3, depending on the 
distribution. Therefore we could either pick EGARCH with GED distribution, or GJR with 
GED distribution as our optimal models for volatility modelling, depending on whether 
give more weight in the information criteria, or the ability to capture ARCH effects. Table 
5.1. gives a better view of the results. Gas futures are less spiky than spot markets, and 
that was also confirmed during the 2002 and 2020 gas prices surge. High gas spot 
prices occurred in winter of 2020 due to pipeline freeze-offs that decreased supply 
significantly. On the demand side, the cold winter increased rapidly demand and we 
saw a huge surge in gas spot prices. For GARCH models with normal and t student 
distribution in gas future markets we do get high volatility dependence and lower 
cluster, but when implementing GED distribution, the characteristics of our series 
change, and we do have low volatility persistence overall, meaning that volatility will  
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                                   Figure 5. 1: Gas spot returns and gas spot conditional variance with GARCH(1,1)  

 

fade away quicker when a shock occurs, but the degree of volatility feed is significant, 
since we have an ARCH term equal to 0.15. Non-linear GARCH models indicate that 
there are no leverage effects in gas futures markets since the asymmetry terms are not 
statistically significant. Our optimal model to use, was EGARCH with t distribution since 
it is the one with the lowest AIC and captures well ARCH effects according to LM ARCH 
test, with a p-value equal to 0.2686. In that case, gas futures markets have high volatility 
dependence, persistence and clustering and stationarity is questioned. Leverage effects 
are not present in gas futures markets, and we do not have serial correlation according 
to Q stat and Q2 for 20 lags. For WTI spot markets, there is not a model that can capture 
ARCH effects. The best is GJR with GED distribution, where ARCH LM test shows that 
we have a p-value equal to 0.01 for lag 1, but 0.07 for lag 3 and keeps increasing by 
adding more lags. It also has the 3rd lowest AIC. The asymmetry term for that model, is 
statistically significant and equal to 0.07395, indicating that there are leverage effects 
and bad news have higher impact in volatility. Q stat shows that we do not have serial 
correlation, and so does Q2. The series have high volatility dependence and persistence, 
while the lower ARCH term (0.045) indicates that is less spiky, and volatility does not 
feed in a significant manner future volatility. In WTI futures case, again we cannot 
capture ARCH effects in any model and increase of the lag number does not change 
the outcome. The model that captures best ARCH effects but still, not in significant way, 
is GJR with Normal distribution, where the F statistic for ARCH LM test is 7.69 and the 
AIC for the model is -4.82757. Both markets have high persistence and dependence, 
with high GARCH terms (0.906 for both spot  and futures markets) and significant 
positive asymmetry terms for our GJR models (and negative for our EGARCH models), 
indicating that we do have leverage effects in WTI spot and future markets. Thus, bad 
news increase volatility more than only good news would have. The impact in oil prices 
during COVID-19 crisis, dipped the WTI spot prices, also reaching negative for the first 
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time on 20th April 2020 (price -$37.63), affecting the May futures contract as well, were 
it fell 55.90%, to close at negative $37.62. Even before that, the WTI markets were facing 
uncertainty because of the pandemic outbreak and that can be seen in figures 5.2 and 
5.4, where March was 

   
      Figure 5. 2: Conditional Variance WTI spot GJR GED dist                Figure 5. 3: News Impact Curve WTI spot GJR GED 

a very volatile period for WTI markets. Figures 5.3 and 5.5 present the outcome of bad 
news on WTI spot and futures markets respectively, that the asymmetry term captured 
in GJR models. For heating oil markets only GJR models could capture ARCH effects 
with normal distribution after 1 lag for 5% and with GED distribution after 3 lags. 

    

   Figure 5. 4: Conditional Variance WTI futures GJR normal dist      Figure 5. 5: News Impact Curve WTI futures spot GJR normal   

Normal distribution captures better ARCH effects, but AIC is the 2nd highest. Therefore 
if we had to pick a model, we would pick either GJR with normal distribution ,where 
ARCH effects are better captured, or with GED distribution, where we have a lower 
information criteria. Asymmetry term is not statistically significant, indicating that 
heating oil spot markets do not have leverage effects. In addition, we do not have serial 
correlation in any distribution for 5% significance level. For both cases, our series have 
high volatility dependence and persistence, while volatility clustering is higher compared 
to WTI spot markets with GJR models. Therefore volatility in heating oil markets, do feed 
in higher degree future volatility, while WTI markets may present a more complex 
market, being affected by other variables and having a closer relationship with the world 
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of financial markets. Further research would give us a better view. On the other hand, 
for heating oil futures markets, our best model is EGARCH with t distribution, where p-
value of ARCH LM test is 0.1859, and it also has the lowest AIC. Q-stat shows serial 
correlation while Q2  implies no serial correlation for 5%. Heating oil futures have high 
volatility persistence and dependence, with a high GARCH term while the asymmetry 
term in EGARCH model is statistically significant and negative with a coefficient -
0.040611. The negative γ coefficient shows a negative risk-return relationship and counts 
for leverage effects. Figure 5.7 show the impact that negative news has on conditional 
variance. Lastly for brent spot markets, EGARCH with t student distribution is the model 

   

   Figure 5. 6: Conditional variance HO futures EGARCH t dist        Figure 5. 7: News Impact Curve HO futures EGARCH  

model that has the lowest AIC but does not capture well ARCH effects. The optimal 
model with low AIC (4th lowest) and that captures ARCH effects, is GJR with GED 
distribution. Brent spot markets, do have low ARCH term, indicating that they do have 
lower volatility clustering compared to other series we saw, while there is strong volatility 
dependence. The asymmetry term for our GJR model with GED distribution, is 
statistically significant and positive, equal to 0.070. That means we do have leverage 
effects and if negative news occurs, the conditional variance will increase more by 0.070. 
Q stat shows that we do have serial correlation while Q2 shows that we do not have for 
5% significance level. In summary, among all the series, GARCH models show that gas 
spot markets are the spikiest series, with significant ARCH term and volatility clustering, 
as well as persistence and dependence. Normal distribution could not fit well, and the 
process seemed to be non-stationary. Through several re-estimates, GED distribution 
seemed to be the more robust with the same results. The best model to use was either 
EGARCH with GED distribution, or GJR with GED distribution, depending whether our 
attention is more on the lowest information criteria or the ability to capture ARCH 
effects. On the other hand, gas futures markets seemed to have less cluster and not be 
as spiky as the spot market. Leverage effects where not present for those two markets. 
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WTI markets, both spot and futures, had significant volatility dependence and 
persistence, while ARCH term was not high according to GJR models, but it was 
significant according to GARCH models. The asymmetry term according to GJR GED for 
spot markets and GJR normal for futures markets showed presence of leverage effects, 
where bad news affect volatility more than only good news would have done. Heating 
oil spot markets do not have leverage effects and asymmetries, but GJR models 
indicated that they have higher volatility clustering from the WTI spot markets. On the 
other markets side, the heating oil futures market, leverage effects where present. Lastly 
for brent oil spot markets, the optimal model, GJR with GED distribution, showed very 
low volatility clustering, while linear GARCH models presented an ARCH term between 
0.6 and 0.8. Volatility dependence among previous periods volatility was significant and 
leverage effects as well.  
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                                                                                   Table 5. 1: Univariate GARCH results  

 

5.2. Results for Univariate GARCH spillover effects  
 

In the section above, we modelled volatility using univariate GARCH models and found 
the best univariate model for volatility modelling. To estimate the conditional variance, 
we will use the best models for volatility modelling found previously. That said, for WTI 
spot we will use GJR with GED distribution, for WTI futures GJR with normal distribution, 
for gas spot we will use GJR with GED distribution since it captures better the ARCH 
effects, for gas futures EGARCH with t distribution, for heating oil spot markets we will 
use GJR with GED distribution, for futures markets EGARCH with t distribution and for 
brent markets GJR with GED distribution. Lag length criteria suggest a VAR(8) system 
with AIC -98.36302. However we will use a simple VAR(1) model for simplicity, even 
though it is not the optimal model, with AIC -96.98788 where there is not significant 
difference. The coefficients between the own series (e.g. wtispot(-1) wtispot) are very 
close to one and that may indicate that our series are not stationary. To ensure 
stationarity we are going to get the first differences on our conditional variance and run 
the VAR model. Granger causality test showed in Appendix show that heating oil futures 
and brent spot markets granger causes WTI spot and future markets. In addition, WTI 
markets and brent spot markets granger causes heating oil future markets and help us 
explain and predict heating oil future markets values. Lastly, WTI markets also granger 
causes brent spot markets. All inverse roots of the AR polynomial have modulus less 
than 1 and lie inside the unit circle, implying that the VAR is stable.  
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                                                       Figure 5. 8 : Inverse Roots of AR Characteristic Polynomial  

The problem of autocorrelation and serial correlation could not be fixed with neither 
lag addition in our model. Therefore, even our optimal VAR(8) model, according to 
MAIC, is not sufficient to model the dynamics and the interpretation of the VAR results 
will be conducted with our VAR(1) model. Table 5.2. present the results for our VAR(1) 
model. We can see that WTI futures affect volatility of spot market, where an increase 
of 1 point in futures variance difference will increase spot variance difference by 0.095 
points. However the spillover from heating oil futures is more significant, with a 
coefficient equal to 0.46. Negative spillovers occur from WTI spot markets to futures 
variance, where an increase in spot markets variance will decrease futures market 
variance. Again heating oil futures markets, are the market with the highest spillover in 
WTI market, this time in futures markets, where an increase of 1 point in variance 
difference in heating oil futures will increase WTI futures variance difference by 0.55 
points. A negative spillover occurs in brent spot markets, where an increase in brent’s 
spot variance difference will decrease WTI futures variance difference. In gas markets 
and Heating oil spot markets, spillovers occur only with their product in different 
markets. That means there are spillovers from spot to futures and reverse. However, 
had heating oil futures markets increase in variance difference by 1%, heating oil spot 
markets variance  difference would drecrease by 0.22 points. Finally, spillovers for brent 
markets and heating oil futures arise from WTI markets and brent and heating oil futures 
markets correspondingly.  
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                       Table 5. 2 :  Long term spillovers using VAR model with conditional variances from Univariate GARCH models  

 

5.3. Results for Univariate GARCH models Forecasting 
 

Our results in summary show that the appropriate model for volatility modelling, is not 
the same with the model for forecasting. However, both in modelling and forecasting, 
ambiguity arises about the most efficient model to use.  With the use of our 3 loss 
functions, different efficient models arise for the same timeseries. To pick the best, we 
will see how the forecasted returns are compared with the actual. For gas spot markets 
Root Mean Squared Error suggest GJR with t distribution as the best model, while Mean 
Absolute Error suggests GJR with GED distribution. For gas futures, the RMSE suggest 
using GARCH with GED distribution, while MAE and MAPE are minimized with GJR GED 
distribution. In Heating oil markets, all three-loss function agree that GJR with normal 
distribution is the optimal model to use, while for the futures markets there is ambiguity. 
RMSE shows that it is minimized using GJR with t-student distribution, while MAE 
suggest GARCH(1,1) with GED distribution. For WTI spot markets according to RMSE the 
best model is to use EGARCH with normal distribution, while according to MAE and 
MAPE, GJR with normal distribution is the best model for forecasting. For futures market, 
EGARCH with t distribution is the best model according to MAE and MAPE, while 
according to RMSE is EGARCH with normal distribution. Lastly for Brent markets, RMSE 
and MAE agree that the best model to use is GJR with Normal distribution, while MAPE 
suggests EGARCH with normal distribution. As we can see, our best models differ 
depending on the loss function, but there is an agreement for the best model for 
forecasting in heating oil spot markets. A more advanced method to decide which 
model to use and which loss function is the best, is to run a SPA test. By trying to make 
a conclusion about the best model visually, to see how the values converge to the 
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actual, no clear deduction can be made. For WTI futures case only, it is possible that 
the fitted values come closer to the actual as presented in Appendix 

              
                                            Figure 5. 9: Forecasted returns and variance, gas spot GJR t distribution (RMSE) 

             
                                     Figure 5. 10: Forecasted returns and variance, gas spot GJR GED distribution (MAE) 

, even though some actual values are outside the confidence interval. Still this is a very 
abstract conclusion. Figures for forecasted variance and returns according to our loss 
functions are displayed in Appendix, so are results for our series and loss functions. In 
summary, in most cases optimal models for forecasting are not the same with optimal 
models for volatility modelling. In addition, while t and GED distribution seemed as the 
best to use in volatility modelling, for forecasting, normal distribution give better results 
in minimizing the loss functions most times. 

5.4. Results for Multivariate GARCH models, BEKK  
5.4.1. Partial covolatility spillovers – Diagonal BEKK model 

 

As already mentioned, according to Chang et al. (2019) (C.-L. M. Chang), matrix A in 
BEKK models is not capturing spillover effects. What they represent is the weights or 
multipliers for the returns shocks. In our paper, following Chang et al. (2019) (C.-L. M. 
Chang) method, to calculate partial covolatility spillover effects, as we use diagonal BEKK 
model, we multiply the weight of asset i times weight of asset j times the mean returns 
shock of asset j. As presented below in the  results for matrix A and the mean returns 
shocks for our series, the highest weight for return shock and the highest mean return 
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shock is for gas spot, confirming that it is probably the spikiest series with the highest 
volatility clustering. Year 2020 and the ongoing crisis of 2021 (no data) can confirm this, 
where gas prices maintain an aggressive upward trend in prices, with significant 
increases and returns. On the other hand, WTI, heating oil and brent markets, have 
weights that are very close to each other, ranging from 0.199409 to 0.231388.  The same 
implies for their mean returns shock as well, while gas futures is the only series with 
negative mean return shock and lowest weight for return shock among the series. In 
Appendix tables 5.14 and 5.15, correlation for returns and prices respectively are 
presented.  

                                    
                                      Table 5. 3: A(i,i) matrix and mean return shocks 

While there are strong correlations between spot and futures markets in prices, that 
changes dramatically when we give attention to returns. The same implies to oil 
markets, where correlations among brent, WTI spot and futures markets, and heating 
oil spot and futures markets decreases significantly in several combinations. However 
WTI spot and futures markets maintain strong correlation (but decreased) for returns as 
well. Table 5.4 gives us the results for our mean equation. Matrix A is sufficient to explain 
for return spillover effects among the markets. Statistical significance is not available, 
due to failure of likelihood to continue after a few iterations. We are going to assume 
that all are statistically significant for explanatory reasons. There is significant spillover 
from WTI future markets returns to WTI spot market returns, where a 1% increase in 
WTI futures returns in the previous day, would increase by 0.17%  WTI returns the next 
day. The impact from other markets is not even close to the impact the futures market 
has to spot, which is a conclusion that makes sense. For WTI futures markets, surprisingly 
heating oil future markets affect more WTI futures than WTI spot does. If heating oil 
futures returns increase by 1%, WTI futures returns will decrease by 0.08799% . For gas 
spot, the biggest spillover is from gas futures, where an increase of 1% in gas futures 
returns the previous day, would increase gas spot by 0.689%, while for gas futures, the  
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most significant spillover comes from WTI futures markets. For heating oil markets, spot 
and futures and brent, do have the highest impact on the returns spillovers. Specifically, 
would brent returns increase by 1%, heating oil spot would have increased by 0.033%, 
while heating oil future returns would have increased spot returns by 0.17%, where it is 
the dominant spillover (excluding its own market effect). Returns correlation among the 
two heating oil markets present a strong and positive correlation, however the negative 
impact from spot to future returns is significant. If heating oil spot markets increased by 
1%, heating oil futures markets would have increased by 0.076%. Lastly, brent market is 
affected significantly, excluding its own market, from WTI and heating oil futures, with 
the latter having the highest spillover effect between the two. Returns correlation 
among heating oil futures, WTI futures and brent spot is also high, positive, and 
significant. There is a quite strong linkage between those markets.  Table 5.5 presents 
the results for mean partial covolatility spillovers. Results for significance where not 
available, however we will assume the values as statistically significant. It can be 
observed that some values are very small and not significant all. The highest variance 
to other markets arises from gas spot markets, as can been seen in the 3rd column of 
series. The highest and most significant covolatility spillover is from heating oil spot 
markets to gas spot markets covolatility with heating oil spot. In gas futures, in every 
case, the variance is decreasing slightly and not increasing. In any other case, positive 
spillovers occur, but the significance of the results is not available. Covolatility spillovers 
from futures to spot and inversely is negligible. In summary, there are partial covolatility 
spillover, with the most volatile coming from gas spot markets, while in the gas futures, 
the spillovers are decreasing the volatility, but the values are extremely close to zero. 
WTI future and spot markets don’t have significant covolatility spillover effects, contrary 
to what we may have suspected. In our sample, gas spot markets tend to have more 
effect in those two markets. The same implies for heating oil spot and futures markets.  
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                                                                      Table 5. 4 : Diagonal BEKK mean equation 

     

                                                                 Table 5. 5: Average partial covolatility spillovers  

 

For our series, expect gas spot, our ARCH terms range between 0.03018 and 0.05354, 
while GARCH terms are above 0.9, indicating that the series (expect gas spot) have low 
clustering, and high dependence and persistence. However that is not the case for gas 
spot markets. They produce the highest constant among all other series, showing the 
risk these markets have, they have ARCH term equal to 0.188, indicating the significant 
reaction in shocks and the clusters, and they do have lower GARCH term. Concluding 
for gas spot markets, BEKK models show that they are the spikiest series among all, they 
have high persistence but not dependence, and they do produce the most significant 
volatility spillovers among the other markets. 

                                                     

                                       Table 5. 6 : Conditional Variance Equations BEKK model 
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In our analysis, it is a huge disadvantage that we do not have values for statical 
significance and residual diagnostics. We assumed that all our results are statistically 
significant for explanatory reasons but a  conclusion about the series modelled with 
BEKK is a little bit abstract.  

 

5.4.2. Comparison – Univariate and Multivariate Results 
 

 Both Univariate and Multivariate models confirm that gas spot markets are the spikiest 
series, with high volatility clustering. That means big changes in returns will follow big 
changes and small changes will follow small changes in a high degree. Univariate 
models showed that there are no leverage effects in both spot and future markets for 
gas. For BEKK models, all other series except gas spot have low ARCH terms and high 
GARCH terms, indicating that series are less spiky, but with high dependence on 
previous periods volatility. While there were small deviations between univariate and 
multivariate models in the GARCH term, the ARCH terms were very close. However 
multivariate models could not account for leverage effects since we did not 
incorporated the asymmetry term in the models. But results were not identical with gas 
futures. The univariate models showed a series with high ARCH term in the EGARCH 
models, whereas multivariate models show low volatility clustering.  However, issues 
arise for several series in univariate models, where the ability to capture the ARCH 
effects is not significant. Investigating the WTI markets, no univariate model was able to 
well capture the ARCH effects and we had to use the one that has the highest p-value 
but still was negligible. Leverage effects were found in the markets. Identical situation is 
on the heating oil spot markets as well, where the two best models for volatility 
modelling could still not capture ARCH effects. While leverage effects were not present 
in spot markets, they were in heating oil futures markets, a market with high 
dependence and persistence and low volatility clustering according to univariate and 
multivariate models. ARCH effects are well  captured with univariate models and they 
are sufficient for volatility modelling. Univariate models capture ARCH effects on brent 
markets, and they find asymmetries. Coefficients agree with the results of the 
multivariate models. Conditional variances from the univariate models, embedded into 
a VAR model to capture spillover effects found that heating oil futures have the highest 
impact in WTI spot and future markets. An increase in spot markets WTI volatility would 
decrease futures markets volatility. Negative spillover occurs as well in brent markets, 
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where an increase in brent markets will decrease variance in WTI futures. Gas markets 
and heating oil spot markets are affected from spot to future market, while would 
heating oil futures variance first differences increase by 1%, heating oil’s variance  
differences would decrease by 0.22 points. Spillover for brent markets and heating oil 
futures arise from WTI markets and brent and heating oil futures markets 
correspondingly. Partial covolatility spillovers showed that gas markets produce the 
most significant covolatility spillovers, confirming again the significant risk of the 
markets. In addition, strong covolatility spillovers from heating oil futures too. WTI 
markets have negligible spillover effects between them and with all other markets. 
Lastly, forecasts for univariate results showed ambiguity for the optimal model to use, 
since different loss functions suggested different models. In addition, best model for 
volatility modelling was not pared with the optimal model for forecasting. In forecasting 
normal distribution in most cases was the best for forecasting, in contrast to volatility 
modelling.  

 

 

5.5. Results for Multivariate GARCH models Forecasting 
and comparison with Univariate GARCH models 

 

As already mentioned, direct volatility forecasting was not possible, and the method we 
will follow is an indirect approach, by forecasting the returns to see how close they are 
to their actual. The comparison will not be based on the models, but whether if 
univariate or multivariate models  are better in forecasting. Our results are very close 
with the results in the univariate analysis. Table 5.7 present the loss functions for our 
series, the same as those with the univariate analysis. Values are very close to what we 
had in our univariate analysis. Between them, the one with the lowest loss function, does 
better job in forecasting returns and therefore, probably variance as well. Table 5.8  

 



 

45 
 

                             

                                                      Table 5. 7 : Results for multivariate forecasts – returns  

 

give us results for the best model to forecasted returns, and derived variance.  We can 
see that MAE suggests in every case univariate models as the best models to use, while 
RMSE suggest for WTI futures multivariate models. MAPE in all cases except gas futures, 
suggests as optimal model multivariate models, contrary to what the other two loss 
functions proposed. Overall, we could agree with what Serletis and Efimova (Serletis) 
have found , and conclude that univariate models forecast better volatility, even though 
we did not follow a direct approach and our result may be abstract, while Serletis and 
Efimova (Serletis) did. A further direct approach would give more robust results.  

                        

                                             Table 5. 8: Comparison between multivariate and univariate models  

5.6. Results for Optimal Hedge Ratios  
5.6.1. BEKK models  

Figure 5.6.1 presents the results of the dynamic hedge ratios, as equation X.X. showed. 
WTI hedged position of spot market with futures, is presented with the blue line. The 
maximum price is 1.3056, while the minimum is 0.3920. Values above 1 represent that 
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more futures are needed than spot, already hold in portfolio. Our lowest values for the 
dynamic optimal hedge ratios for WTI are presented for December of 2008. During that 
period prices were lowered, due to Lehman brothers collapse, however returns were 
volatile. In both cases the correlation is significant between prices and returns, and the 
low dynamic optimal hedge ratio may indicate that the very close relationship between 
those 2 series would have negligible impact on hedging.  

           
                                                       Figure 5.6. 1: Optimal Hedge ratios for WTI, heating oil and gas markets 

           

      Figure 5.6. 2: WTI spot and futures  prices for 2008 period                Figure 5.6. 3: WTI spot and futures returns for 2008 period         

On the other hand, what we observe for heating oil optimal hedge ratios, is negative 
prices for period 2000. This does not mean necessarly that the futures of heating oil is 
not a good hedger, but indicates that it may have been better for that period to take a 
long position in futures markets and not spot markets. Lastly, the highest values for the 
optimal hedge ratios are taking place in the gas markets, where the maximum price for 
the dynamic hedger is 4.3890 and the minimum is -0.8513. By looking at the below two 
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figures, 5.6.4 and 5.6.5, where values of the left axis is for the optimal hedge ratios and 
the right axis for the returns, the highest values for the optimal hedge ratios occur 
during the years 2002 and on the rough winter of 2020, where prices (and therefore 
returns as well) of spot and futures differ significantly. When a market participant would 
like to hedge his position, the ammount of futures he would need would have been 
significant. In our case in the gas markets, the futures contracts would have been in the 
range of something more than 3 and more than 4 dollars for every dollar in the spot 
markets, for those two increased volatile periods.  

                                     

                                                           Figure 5.6. 4: Optimal hedge ratio, and returns fors gas markets.  

 

                                                                           Figure 5.6. 5: Gas markets prices       

However, in order to test for the effectivness of the hedge ratios, we must test the 
difference on the returns with the hedger. According to Equation 26 the hedged series 
is the difference between the returns of the spot market of a series minus the adjusted 
returns for the spot market with the optimal hedge ratio for that particular market. For 
the hedger to be effective, the derived variance in the adjusted series must be lower 
than the original. Testing for WTI spot markets, the new adjusted variance of returns for 



 

48 
 

WTI spot must be lower than the original. In order to test that, we will model volatility 
using ARMA(0,0) and run a simple GARCH(1,1)  model with normal distribution to obtain 
the conditional variances for our simple and adjusted returns for our three markets.  

 

                                                  Figure 5.6. 6: unhedged vs hedged conditional variace for WTI markets        

Figure 5.6.6, displays the unhedged (left graph) and the hedged (right graph) 
conditional variance of WTI. We cant properly conclude, whether the hedged series are 
better or not. In some cases the hedged returns do have lower conditional variance, 
especially in the crucial period of 2020, however in some other cases of market stability, 
we do have higher variance. We also have higher  variance in the financial crisis period. 
We need to compute the hedging effectiveness index that Chang et al. (2011) ; Ku et al. 
(2007) (M. M. Chian-Lin Chang) used. Table  5.6.1 displays the hedging effectiveness 
index and OHR mean results. The mean optimal hedge ratio for WTI spot indicates that 
to hedge a one dollar long position in spot WTI, $0.9813 are required shorted in futures 
markets.  For December 22 of 2008, we get an unusually high value compared to results 
from literature, equal to -26.2139. For that specific period our hedged returns are -
22.9% 

               
                                                             Table 5.6. 1: Hedging Effectiveness and OHR table  BEKK  

,equal to approximately -25, or -2500%. For that specific period, our hedged returns 
are -23.09%, while the unhedged position is -6.44%. The optimal hedge ratios suggest 
for every $ in spot, hedging with $1,014 in futures markets, while the returns for WTI 
futures were 16.5%, and that is how the negative outlier in hedged returns occur. In 
other periods the same may imply and  extreme values arise. However, even with those 



 

49 
 

extreme negative values, the high kurtosis and negative asymmetry, the mean value of 
the index is 66%, indicating overall a decent hedging effectiveness. However those 
extreme negative values in certain periods of the sample are not persuasive for the 
effectiveness of the model, or the series at the certain period, to hedge at all. During 
the extreme negative price of 2008, conditional variance of the hedged returns, was 

 
                                    Figure 5.6. 7: Histogram and Descriptive Statistics for HE WTI 

significantly higher than the unhedged position, resulting to this extreme negative 
hedging effectiveness value. According to Wang et al. (2012) (Yudong Wang), diagonal 
BEKK models are the optimal models to hedge crude oil price with jet fuel. Chang et al. 
(2011) (M. M. Chian-Lin Chang) found that diagonal BEKK models are the best models 
to hedge crude oil spot markets using WTI future markets. Similar results , as in WTI 
markets, we obtain for heating oil markets, with extreme volatility during early 2000. 
Hedged returns did not performed better at all instances than unhedged series. For the 
crucial period of 2000, hedged returns had significantly higher variance than unhedged. 
Further research would be useful to determine if at certain periods , like this one, the 
correlation among the two markets is close to negative, and therefore a short position 
in the futures markets makes our returns worse, and therefore increases our volatility. 
In Appendix , Table 5.15, overall the correlation between spot and futures returns is very 
high at 0.8. However, figure 5.6.9 shows that the derived dynamic correlation from BEKK 
model a negative correlation for that period, that derived from the dynamic correlation 
from BEKK model, confirming our assumption. The mean HE index shows a value equal 
to 77.83%, but as in the WTI case, there are many extreme negative negative values  
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                                  Figure 5.6. 8: unhedged(left) vs hedged (right) conditional variance for heating oil markets 

                       
                                          Figure 5.6. 9: Conditional Correlation HO spot and futures marekts diagonal BEKK 

during our sample period, that questions the effectivness overall. Looking at our returns 
for spot and futures markets, there are specific days where the spot market had negative 
returns while the futures closed with positive. The hedging may make our returns even 
worse and that is how these extreme values arise. Lastly for gas markets not big 
deviations in the index occur. The minimum value we obtain is -1.2165 or -122% and the 
maximum value 0.8558 or 85.6%. In that case, futures markets do work efficeintly as a 
hedger in most cases. But as presented in the graph below, even in this case, the index 
shows again many negative values and still it is not persuasive that gas futures can be 
used to hedge spot positions in gas markets. In addition, the mean of the hedging 
effectivness index is low, equal to 8.9%. In summary, our symmetric diagonal BEKK finds 
mean hedging effectiveness prices that are above average. However, there are several 
extreme negative values that questions the effectivness in certain occasions. Gas 
markets do produce lower deviations compared to the other two markets.  
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                                                           Figure 5.6. 10 : Hedging effectiveness index for gas markets  

 

5.6.2. DCC Models 
We have seen the optimal hedge ratios according to BEKK models. While for gas 
markets, there were no extreme outliers in the hedging effectiveness index, there are 
several significant outliers that questions the efficiency of hedging in the WTI and 
heating oil markets. The main reason for that is the difference in returns. In one market 
we had significant negative returns and in the other significant positive, in many periods 
through our sample. What the optimal hedge ratios should have indicated, is that the 
ratios should be negative, if the returns were negative in spot markets. That would imply, 
that is better if we would had positioned ourselves in futures markets, with significant 
positive returns. For WTI, heating oil markets and gas markets, we will use the DCC 
model to see the results we will get. We will run a DCC model using our 4 series together 
and a separate DCC model for the gas markets. That said, our DCC model will include 
WTI spot and future returns and heating oil spot and future returns in the 1st model, 
and gas spot and futures in the 2nd model. The optimal hedge ratios for our series are 
moving close to their conditional variances of the markets, contrary to what we saw in 
BEKK models, where the values where superior higher. That means that hedging will be 
negligible for small portfolio amounts, since for $1 in spot markets, approximately $0 
would be needed for hedging. For WTI markets, the hedging effectivness index shows 
that the futures markets, with the current optimal hedge ratios from DCC model, are 
extremely sufficient to hedge the spot position. The mean HE idex shows 99.86% 
efficiency for hedging, with a maximum value of 1.0015 and a minimum value of 0.9665 
for the COVID-19 period, as presented in Figure 5.6.11 below.  
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                      Figure 5.6. 11: Hedging effectivness, without covid (left chart) and with covid (right chart) in our sample 

However, we can not say that the hedging is effective in heating oil markets. The 
hedging effectivness index produced mostly negative significant values, probably 
indicating that with DCC analysis we can’t fing proper optimal hedge ratios to hedge 
our position, or that we should search for a different product to hedge our position, or 
even narrow and the change the sample of study.  The mean HE index value was -
25.17%, with a maximum value of 97.89%, and a minimum value of -1,235.94% for the 
COVID-19 crisis, with other significant negative outliers in years 98 2000-2002 and the 
financial crisis. Lastly for gas markets, results are quite similar with BEKK model, where 
no significant outliers arised and the efficiency of the index is slightly 

 
                                                              Table 5.6.2 : Hedging Effetiveness and OHR table DCC  

increased, from 0.0893 in BEKK model, to 0.898 in DCC model, with approximately the 
same minimum and maximum values.  

    
                              Figure 5.6. 12: Optimal Hedge ratios for WTI and Heating oil DCC (left axis HO&WTI, right axis Gas)  
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5.6.3. Comparison between BEKK and DCC for optimal hedge ratios 
 

The optimal hedge ratios for BEKK models produced values close to 1 for WTI crude oil, 
and for heating oil and gas spot markets with bigger deviations, with the latter even 
reaching the maximum optimal hedge ratio value of 4.389. That indicates, for a market 
participant to hedge his spot position of $1, $4.389 would have been required in futures 
markets. On the other side, DCC models, estimate optimal hedge ratios closer to their 
conditional variance, thus closer to 0, with gas markets again deviating during the 2020 
winter where gas prices surged. The hedging effectiveness index using BEKK model for 
WTI shows high mean value which resembels hedging efficiency. However the 
significant negative outliers does not persuade that the index is efficient at all. DCC 
models on the other side do give a very high hedging effectivness value close to 100%, 
with almost no outlliers. Clearly hedging is better in WTI markets using DCC models. 
On the contrary, heating oil markets do have better hedging efficeiny in BEKK models. 
But the negative outliers in certain periods of our sample arise ambiguity. A model to 
forecast these daily diffrences between spot and future prices is unlikely to be found. 
Finally for gas markets, BEKK and DCC produce identical results in hedging effectivenss, 
with the latter being sliglty better.  

  

 
                                                                 Table 5.6. 3: BEKK and DCC results 

 

6. Conclusions 
 

In this paper, we investigated the best GARCH models for volatility modelling, 
forecasting, checked for returns and variance spillovers among the markets and 
searched for the optimal hedge ratios from spot to future markets. In our sample, we 
found that gas spot markets are the spikiest energy market among the others, a 
statement that both univariate models and multivariate models can confirm. Leverage 
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effects were not present in gas markets, but they were in WTI markets, brent spot 
markets and heating oil futures markets. Heating oil futures markets is a market that 
causes a lot of variance spillovers, either direct according to the univariate analysis, or 
partial covolatility spillovers, where it’s variance affects the covariance between other 
markets. However, the most significant covolatility effects came from gas spot markets 
since they were the most volatile and also heating oil spot markets. Non-linear models 
did better work in modelling volatility and capturing ARCH effects. All other markets, 
excluding gas spot, have lower volatility clustering, and deviations do not feed in 
significant way future volatility. However, volatility dependence was higher in these 
series and persistence was strong in all energy markets. Therefore shock do fade away 
slowly in energy markets and significant deviations could have severe impact in the 
financial word and in the economies. Proper absorption must be achieved in countries 
and worldwide, when negative shocks occur in the energy markets, to prevent worst 
outcomes in world economy. Spillovers between WTI spot and future markets were 
negligible, while the biggest covolatility spillover comes from heating oil spot markets 
to gas spot markets. In terms of forecasting, different loss functions give different results 
for the optimal model to use, while in general univariate models are better in forecasting 
and our findings agree with the findings of Serleti and Efimova (Serletis). Finally, optimal 
hedge ratios using diagonal BEKK models present overall well mean hedging 
effectiveness values for WTI and heating oil markets, but they have significant negative 
values for certain periods, where the optimal hedge ratios suggested to have a long 
position in futures markets. For gas markets, during the 2020 surge, optimal hedge 
ratios even suggested hedging $1 position in spot markets with $4.39 dollars in futures 
markets. However, the hedging was not efficient overall. DCC models did a better job 
in hedging WTI markets with extreme efficiency, while for heating oil markets it is not 
the best model to use. In gas markets, the outcome and results were almost identical 
with the two models mentioned.  
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Appendix 
        

                                    Brent spot prices                                                                          WTI spot prices 

           
                            WTI Futures prices                                                  Henry Hub Natural Gas spot prices 

           
                   Henry Hub Natural Gas futures prices                                  Heating oil spot prices New York Harbor 

           
                          Heating oil futures prices New York Harbor                                                S&P 500 prices                                                                  

                                                                  

Figure 3. 1 : Plots of the series 
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                   WTI spot returns descriptive statistics                                           WTI futures returns descriptive statistics  

       
       Henry Hub Natural Gas spot returns descriptive statistics             Henry Hub Natural Gas futures returns descriptive statistics 

 

         

    Heating Oil NY Harbor spot returns descriptive statistics                   Heating Oil NY Harbor futures returns descriptive statistics 

          

                  Brent spot returns descriptive statistics                                               S&P 500 returns descriptive statistics 

        

Figure 3. 2 : Histograms of the returns of our series 
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                                Table 3. 2: Unit root tests for the prices of our series 
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                          Table 3. 3: Unit root tests for the returns of our series  
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                                    Table 5. 9: Mean Equations of our series 

 

 

                         

                       Table 5. 10: Residual Diagnostics Mean Equation of our series 
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                               Table 5. 11: Residual Diagnostics for variance Equation         
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                               Table 5. 12 : Granger causality tests 
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                      Table 5. 13 : Loss Functions for Forecasting by distribution 
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Forecasted returns and variance for the optimal univariate GARCH models for every 
series (left graph are returns and actual, right graph variance, forecast period: 

3/23/2021-5/10/2021 , 30 observations). 

 
                           

 

                          Figure 5. 11: Forecasted returns and variance, gas futures GARCH GED distribution (RMSE)  

 

                       Figure 5. 12: Forecasted returns and variance , gas futures GJR GED distribution (MAE & MAPE)  

 

                       Figure 5. 13: Forecasted returns and variance, heating oil futures GJR t distribution (RMSE) 
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                      Figure 5. 14: Forecasted returns and variance, heating oil futures GARCH GED distribution (MAE) 

 

                        Figure 5. 15: Forecasted returns and variance, WTI spot EGARCH normal distribution (RMSE)  

 

                        Figure 5. 16: Forecasted returns and variance , WTI spot GJR normal distribution (MAE&MAPE) 

 

                       Figure 5. 17 :Forecasted returns and variance, WTI futures EGARCH normal distribution (RMSE) 
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                         Figure 5. 18 : Forecasted returns and variance, WTI futures EGARCH t distribution (MAE&MAPE) 

 

                       Figure 5. 19 : Forecasted returns and variance, brent spot GJR Normal distribution (RMSE&,MAE) 

  

                             Figure 5. 20: Forecasted returns and variance, brent spot EGARCH normal distribution (MAPE)  
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                                      Price and Returns Correlations 

           
                                                               Table 5. 14: Price Correlation 

                

                                                                     Table 5. 15 : Returns Correlation 
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                            Dynamic Conditional Correlations DCC models 

   
                         Figure 5.6. 13: DCC WTI spot-futures                                         Figure 5.6. 14: DCC HO spot-futures 

     

                      Figure 5.6. 15: DCC Gas Spot-Future                                           Figure 5.6. 16: DCC WTI-HO Spot  

                    Forecasted Dynamic Conditional Correlations DCC models (30 obs)  

      
                 Figure 5.6. 17: DCC WTI Spot-Future Forecast                               Figure 5.6. 18: DCC HO spot-Future Forecast 

        

                 Figure 5.6. 19: DCC Gas Spot-Futures Forecast                            Figure 5.6. 20: DCC WTI HO spot Forecast  


