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Abstract

The present thesis describes a Transformer-based neural network model that was

developed  in  order  to  detect  malicious  software.  We  believe  that  the  scientific

community should take advantage of the contribution of Transformer models in the field

of cybersecurity and go beyond the limits set by the classic natural language processing.

For  this  purpose  a  new and  more  sophisticated  algorithm was  created  based  on the

methodology used by the XLNet neural network which was proposed by the Google AI

Brain Team. The proposed XLCNN model detects malicious code with a higher success

rate than its predecessor. The method of detecting malware is based on the extraction and

analysis  of  metadata  contained  in  Windows  executable  files.  From  the  experiments

carried out, it was found that the size and architecture of the feed-forward neural network

in combination with the size of its input is one of the most important factors of XLCNN

for classification problems. To justify proving the concept of XLCNN as an effective

approach to detecting malware,  the success rate of the algorithm was measured for a

finite number of epochs compared to XLNet using exactly the same parameters as the

same inputs. Using this network has proven to be not only a reliable way for security

researchers  to  detect  malware,  but  also an effective  and highly  accurate  method that

offers high accuracy of 95.07%.

Keywords:  neural  network,  Transformers,  XLNet,  XLCNN,  malware  detection,

metadata
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 1 Introduction

 1.1  Statement
Malware is a program developed with the intent of breaking into a system to

monitor, intercept personal information, encrypt data or require ransom [125]. Due to the

critical threat  posed by malware in  cyberspace,  many different  methods and analysis

tools have been developed to detect it. One of these methods computes the file of the

under condition signature and compares it to the ones stored in a database containing

signatures  of  known  malware.  The  main  disadvantage  of  this  method,  which  most

antivirus tools use, is that, if the code is modified through processing called obfuscation,

then it is impossible to detect the existence of malware. Another disadvantage of this

method is that, if a new malware with unknown signature is used, then it is practically

impossible to detect it.

Another detection technique is based on malware behavior. The detection process

is  particularly  tedious  as  it  requires  isolating  the  file  and  placing  it  in  a  secure

environment, such as sandbox, and then supervising its behaviour by qualified personnel.

Observing behavior requires a lot of dedication and time while at the same time it may

not be effective as concealment techniques are improved and malware evolves to avoid

being  detected. Therefore,  more  complex,  mathematically  intelligent  and  automated

methods are required such as machine learning. Machine learning techniques, especially

Deep Learning is an excellent technique that deals with data variants [65] because not

only can it learn the given feature during the training process, but also automatically

extracts features from data to achieve the goal of classification [1]. When an infected file

is given as input to a deep learning algorithm, according to the characteristics it  has

learned from the training process, it can identify whether it is either malicious or benign.

The problem of detecting malware is considered a classification problem that has

two categories. One category is benign software and the other is malicious. The malware

and the benign category are then treated as natural language processing (NLP) models, as

the metadata of each file can be considered as sequence of words which can be used as

input to the neural network.  Metadata are a set of ASCII characters, many of which are

impossible to decode by the human agent even with the help of specialized programs, let

alone capable of extracting those features that contribute to its grouping. For this reason

we decided to evaluate some deep learning algorithms such as RNN [2], LSTM [3] and
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GRU [4] which have been firmly established as state-of-the-art approaches to sequence

modeling and transfer problems such as language modeling and automatic translation. 

After research it was found that there is a set of algorithms that is more accurate

and less time consuming than all the above methods. Initially, algorithms using attention

mechanisms  [5]  was  introduced  to  solve  machine  translation  problems.  Transformer

models gradually replaced RNNs in mainstream  Natural Language Processing NLP. The

Transformer  model  architecture  takes  a  new  approach  to  machine  learning  as  it

completely eliminates repetition. Transformers create attributes of each word using an

attention mechanism to understand how important all the other words in the sentence are.

Knowing these the renewed features of the word are simply the sum of the number of

linear  transformations  of  all  the  words’  features  weighted  by the  average  number of

linear transformations [5]. 

Despite the great effectiveness of the XLNet [6] Transformer model,  to the best

of  our knowledge,  no  other  security  research  has  implemented  malware  detection

techniques for Windows executables files using the XLNet model. In the present research

an XLNet model for the classification problem was implemented and then a completely

new Transformer model named XLCNN was proposed and developed. After comparing

these  two algorithms,  it  turned out  that  the  latter  is  more  accurate  in  detecting  new

malware. 

XLCNN uses a complex architecture in the feed forward neural network and this

is the main feature that distinguishes it from other Transformer models. The contribution

to the scientific community, both at the theoretical level as a new model was proposed

and at the level of implementation, is the provision of a pre-trained Transformer model

which will identify new malware using their metadata.

 1.2  Motivation
The  decision  to  propose the  XLCNN came  from  the  combination  of  cyber

security  with  Transformer  models  in  an  effort  to take  advantage  of  the  possibilities

offered by artificial  intelligence.  The main pillar  for the creation of  XLCNN was the

research effort of the Google team that created the XLNet model. XLCNN exceeded the

capabilities  of  its  predecessor  as  a  different  feedforward  neural  network  was

implemented.
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 1.3  Purpose - Objectives
The purpose of this thesis is to create a state of the art deep learning model, which

is able to classify executable files as malicious and benign. This goal was achieved using

the attention mechanism adopted by the XLNet and XLCNN Transformer models.

 1.4  Contribution
The main  contribution  of  this  thesis  is  the  creation  of  XLCNN and how the

scientific  community  but  also  cyber  security  researchers  will  be  able  to  use  its

capabilities as antivirus software, as it can successfully identify malware with high rate.

There is no need to apply a different algorithm in order to extract features from the data

set, as the XLCNN was designed to accept the input data as it is and to select by itself the

attributes that serve its purpose. It can also be used for general purpose problems, such as

natural language processing, next sentence prediction, multi labeled classification, etc.

The XLNet model was also used for the first time to detect malware in executable files.

Although the results  of XLNet were quite  high,  those of XLCNN were even higher,

despite the fact that the data used for the training were smaller than those used by other

researchers that use algorithms such as RNNs and LSTMs. This proves the effectiveness

of XLNet and XLCNN models against other deep learning algorithms.

 1.5  Related Work
There have been numerous attempts to detect malware based on Deep Learning,

however, only one of them has used the Transformer Architecture. Namely, MALBERT

[66]  has used BERT [10] for Malware Detection in Android Systems. They achieved an

accuracy of 97.61%. So we will elaborate on Malware Detection approaches based on

Deep Learning and present only representative examples. 

Hardy et al. [67] in DL4MD, based on the Windows Application Programming

Interface (API) calls extracted from the Portable Executable (PE) files study how the

Stacked Autoencoders (SAE) model can be designed for intelligent malware detection.

The SAEs model employs  greedy layerwise training operation for unsupervised learning,

followed by supervised parameter fine tuning. They achieve an accuracy of 95.64% in

the Testing phase. 
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In Rhode et al. [68] recurrent neural networks (RNNs) are used to predict whether

or  not  an  executable  is  malicious.  They  achieve  94% accuracy  using  5  seconds  of

execution  for  each  executable  file.  Pascanu  et  al.  [69]  also  use  RNNs  for  Malware

Classification. Echo State Networks (ESNs) and Recurrent Neural Networks are used for

the projection stage that extracts the figures. Echo State Networks have been successfully

used for predicting chaotic systems. They achieve a true positive rate of 98.3% and a

false positive rate of 0.1%. Kolosnjaji et al. [128] use Deep Learning for Classification of

System  Call  Sequences  based  on  data  extracted  from  VirusTotal.  They  achieve  an

average of 85.6% on precision.

Finally,  in  the  appendix  of  the  Book  [129]  called  “A  Survey  on  Malware

Detection from Deep Learning”, it is mentioned that the combination of a Convolutional

Network with LSTM had an accuracy of 89.4%, the Feedforward Neural Network 79.8%

and the Convolutional Network alone 89.2%.

 1.6  Structure of the study
Chapter 2 presents the most well-known types of malware and analyzes the way

in which they operate. Chapter 3 presents the two main categories, static and dynamic

analysis, which analyzes the behavior of malware in a system. Chapter 3 analyzes various

machine learning algorithms such as CNN, RNN and Transformers. Chapter 4 shows the

methodology of XLNet, its architecture and compares it with other Transformer models

such as BERT. Chapter 5 presents the basic architecture of XLCNN, the way in which

training  data  was collected,  the  extraction  of  metadata  from the executable  files  and

finally the comparison of the results with XLNet.
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 2  Background

 2.1  Malware types
A malware is defined as “any code added, altered or intentionally causing damage

to a software system or to impair the intended function of the system” [70]. Specifically

malware is part of a software or program that deliberately serves the malicious efforts of

an attacker and it comes in many forms for different purposes. Common terms used to

classify various types of malware are Trojans, worms, and viruses [24]. The fact that

malware can cause loss of information, money and lives is a major threat to technological

progress. 

The classification of warehousing is based on the performance characteristics of

the  program.  The  malicious  software  is  also  classified  based  on its  payload,  how it

exploits or weakens the system and how it spreads. This enables the discussed levers to

be divided into different types as discussed below. Traditionally, they were developed to

show one's  strengths,  for  fun aspects,  or  to  highlight  weaknesses  within  the  system.

Today,  however,  these  motivations  go to  the  greatest  betrayal.  We can now see the

spectrum of motivation from individual to national interest, and these days an entirely

new underground economy is based on malware [25]. Below is a brief overview of the

most popular types of malware

 2.1.1 Virus

A virus is a self-replicating part of a malware. It exists as an executable file and is

copied and distributed to other host systems. It is inactive and must be transmitted via

files or media files or network files. Depending on the complexity of the code, it may

modify copies of its own [71] viruses that can be used to damage the host computer and

network,  steal  information,  create  botnets,  advertise  and  steal  money,  among  other

malicious activities. 

 2.1.2 Trojans

A Trojan consists of two parts: a server that runs on the attacker's host and a

client that runs on the attacker's console [74]. Server code (usually very small in size,

some not  larger  than  KB)  is  not  sent  to  the  infected  person through  some malware
5



distribution method. In a typical setting, the attacker sends a file containing the server

code to the victim (for example, an image or PDF is large enough that the size of the

server is  smaller  than the total  size of the file).  When the user  double-clicks  on the

attacked file, they start the "Server" program included in the infected file. The server

usually runs in stealth mode and is not easily visible to the user and / or the file manager.

At this point, the server code in the infected file can communicate with the attacker's

client code in a number of ways. 

An easy way is to use a reverse connection in which the server code contains the

IP address from which the attacker wants to control the victim's computer. But there are

also much more sophisticated reverse connection methods.  Once launched,  the server

program contacts the console with client-side code allowing the attacker to now control

the victim's program. It can install new programs on the victim's computer (for example,

keyloggers), it can read every file on the victim's computer (for example, credit card and

bank information, personally identifying information), and more. Actually, he can control

the victim's computer using his keyboard from a remote location. 

In some cases, the Trojan is very obvious and makes many attempts to stay "out

of  sight".  They  take  open  control  of  the  victim's  car.  However,  a  more  dangerous

situation also occurs when the Trojan is out of sight and operates in stealth mode for a

long time, when the victim is unaware that his data (or his company's data) is being

downloaded by an unscrupulous attacker.

6Figure 1. Total number of malware detected by year (in million) [75]



 2.1.3 Worms
A  worm  is  a  piece  of  malware  that  can  spread  freely  across  a  network  by

exploiting  vulnerabilities  in  existing  software  to  compromise  a  system.  Worms  can

spread through networks in a number of ways. For example, worms can spread across a

network by using email to infect other computers or by using other file transfer protocols

to copy themselves to other systems. Worms can carry a payload. While some worms

may do nothing but spread from one computer to another (simply using bandwidth and

slowing  down  a  network),  others  can  do  dangerous  things  like  delete  files  on  one

computer or encrypt files so that the owner of the file must pay a ransom in order to

decrypt his files. Weaver et all [76] divides the worms into 3 categories.

Targeting. This suggests the mechanism by which the worm is used to attack

potential victims. Commonly used targeting mechanisms include scanning the network

for  vulnerable  hosts,  using  specific  target  lists,  using  the  "metaserver"  (which  is  a

regularly updated list of vulnerable servers) that the worm periodically queries to find

new targets, and topological worms that discover the structure of a network in order to

identify new targets, and “passive” worms that lie in wait for a target.

Distribution  Mechanisms.  Worms  can  spread  in  three  ways.  Self-generated

worms spread freely (eg, topological worms and worms that spread through the network

by scanning). Second Channel Worms are spread through an additional communication

channel,  such  as  a  remote  procedure  call.  Embedded  worms  spread  by  embedding

themselves in a standard communication channel.

Activation Mechanism.  Worms can be activated  either  by an explicit  human

action (e.g. via an infected email),  an explicit human activity that is identified by the

worm, triggering it, or injected into a host as part of a default process.

In general, topological worms and worms that propagate autonomously through

scanning can be incredibly fast. Notorious computer worms include: 

 Stuxnet [77]  is  probably  the  best-known  example  of  a  worm  in  recent  years.

Discovered by security vendor Kaspersky Labs in 2013, [77] reportedly launched by

Israeli and US intelligence agencies Stuxnet was signed with a certificate stolen from

two software makers  in  Taiwan.  I  did.  Stuxnet  was targeting  the Natanz  pyknosis

7



facility in Iran. The Stuxnet code has infected computers in several countries [78] but

has not been reported to adversely affect SCADA systems other than Nutanz. Stuxnet

launched the first social  engineering attack to introduce a Stuxnet-infected Memory

Stick. The worm spread rapidly. When infecting a host, Stuxnet first checked to see if

it was a special type of Siemens equipment commonly used in nuclear facilities. In that

case, the dropper program dropped the malicious code into the main () program loop of

the  Siemens  controller.  The  malicious  code  contained  a  number  of  variants  that

targeted a particular type of controller.

 Mydoom [79] appear in emails with this message, prompting users (mostly Windows)

to click on the attachment that affects their machine. Different versions of the Mydoom

have different scales, one of which has a backdoor installed on the hunting machine so

that the machine can be controlled remotely. Mydoom is thought to have used a large

amount of Internet bandwidth when it targeted the Internet in 2004. 

 Morris worm  [80] were a mix of sophisticated and rustic. The overall  design was

simple. It checks your computer's system configuration to find, access, and reduce the

number  of  breaks  on any machine.  The worm enabled  the  heuristic  knowledge  of

Internet  topology  and  trust  to  help  spread  and  target  two  different  machine

architectures. While it is particularly effective to detect potential attack targets, it also

requires  time-consuming work of  essaying passwords  for  individual  user  accounts,

which is the "whole attack" aspect. Nevertheless, it was a sacrifice of its own success

because  it  could  not  control  exponential  growth.  The  Morris  worm  was  rampant

because it had no global data or control points.

 2.1.4 Adware
Adware,  which  is  short  for  Advertising  Supported  Software,  automatically

delivers the ads that are seen in website pop-up ads and displayed by the software. Most

are designed by advertisers to serve as a revenue generating tool. Some adware may be

bundled with spyware, making it very dangerous as it can track user activity and steal

user information [71]. 
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 2.1.5 Rootkit
This is a program that uses some tools to avoid detection on the system. These

tools are highly invasive and difficult to remove because they are very sophisticated and

complex programs created to hide within the legitimate process of infected computers.

They are designed to give you full control of your system and get the highest possible

permissions on your computer, among other possible malicious activities [81]. Due to the

bypass technology used in rootkits, most security vendors' solutions are ineffective in

detecting and removing them, so their detection and removal relies heavily on manual

labor.  These  may  include  monitoring  your  computer  system for  anomalous  activity,

analyzing memory dumps, and scanning system file signatures.

 2.1.6 Bots
Bots are programs designed to perform specific operations. Bots are derived from

robots  that  were  first  developed  to  handle  IRC-Internet  relay  chat  channels,  which

appeared in 1989 as a text-based communication protocol [81]. Some bots are used for

legitimate purposes such as video programming and other online competitions. Malicious

bots are designed to create botnets. Botnets are defined as a network of host computers

(zombies/bots) controlled by an attacker or botmaster. Bots infect other computers and

infect other connected computers, thus creating a network of computers called botnets.

Bots  are  commonly  used  as  Spambots  for  DDOS  attacks,  scraping  server  data,

distributing malware on WebSpiders, and downloading files from sites. Captcha tests are

used to protect websites from being hacked by human users [81].

 2.1.7 Ransomware
Ransomware is a type of malicious software that prevents users from accessing or

blocking the system or files by locking the screen or encrypting files until the ransom is

paid [82]. In most cases, ransomware leaves users with only a few options, which only

allows the victim to communicate with the attacker and pay the ransom. 

The  most  common  types  of  ransomware  use  several  types  of  encryption,

including symmetric and public-key based encryption schemes. Ransomware that relies

on public-key encryption is particularly difficult to mitigate, because encryption keys are
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stored in remote command and control (C&C) servers. There is usually a time limit for

paying the ransom, a special  website  for users to purchase cryptocurrencies  (such as

bitcoin)  and  step-by-step  instructions  on  how  to  pay  the  ransom.  The  life  cycle  of

modern-day  ransomware  typically  consists  of  the  following  stages:  distribution,

infection, C&C communication, file discovery, file encryption, and ransom demand. 

One  of  the  most  recent  and  popular  ransomware  was  WannaCry  [83].   The

WannaCry  ransomware  (also  known  as  Wana  Decrypt0r,  WCry,  WannaCry,

WannaCrypt, and WanaCrypt0r) was observed in a massive attack in several countries on

May  12,  2017  [83].  According  to  various  reports  from  security  vendors,  a  total  of

300,000 systems in more than 150 countries have been severely damaged. The attack

affected a wide range of sectors, including healthcare, government, telecommunications,

and oil/gas production.  The image below shows the message displayed on the victim's

computer screen by WannaCry.

10

Figure 2. Screenshot of the ransom note left on an infected system by WannaCry [83]



The difficulty of defending against WannaCry is due to its ability to spread to

other systems using worm components. This feature requires a defense mechanism that

makes the  attack  more  effective  and can react  quickly  and in  real  time.  In addition,

WannaCry has a cryptographic component based on public key cryptography. 

During  the  infection  phase,  WanaCry  uses  Eternal-Blue  and  Double  Pulsar

exploits that were allegedly leaked in April 2017 by a group called Shadow Brokers.

Eternal Blue exploited the threat of server message block (SMB) that Microsoft patched

on March 14, 2017 and described in the security bulletin MS17-010 [84]. This threat

allows opponents to execute remote codes by sending specially designed messages to the

SMBV  One  server,  connecting  to  TCP  ports  139  and  445  Windows  systems.  In

particular, this threat affects all non-structured versions of Windows, from Windows XP

to Windows 8.1, except Windows 10. 

DoublePulsar  is  a  persistent  backdoor  that  can  be  used  to  access  previously

compromised systems and run code so that the attacker can install additional malware on

the system [83]. During the distribution process, the Wannakri worm component actively

uses Eternal  Blue for initial  infection by SMB vulnerability by searching for suitable

TCP ports  and,  if  successful,  attempts  to  implant  doublepulsar  backdoor  on  infected

systems. 

 2.2  Malware analysis
Legitimate users are protected against malicious code by using antivirus software

that identifies, analyzes it and alerts the user accordingly. Typically, an antivirus tool is

equipped with a signature database that is used to identify potential known or common

threats in the matching process. The malware analyst retrieves the suspicious piece of

code and analyzes it to determine if it is harmful. When a threat is confirmed in the code,

the analyst searches for a specific model of threat and develops a signature for that code

(malware)  and the  signature is  added to the database to  deal  with specific  malware.

Although  this  manual  process  may  seem  trivial  and  completing  the  task  is   time

consuming and subject to errors as there are many variations of the same code. Statistics

show that antimalware vendors encounter thousands of malicious codes every day.

Malware  analysis  has  become  an  important  and  essential  skill  for  security

professionals and forensic investigators. Malware analysis not only enables the analyst to
11



understand the purpose of the malicious code, but also provides insight into the evolving

trend of malware, providing analysts with a tool to improve their detection methods.

Stuxnet [26] is one of the latest images of such motivations. Malware advertises

itself through an open or vulnerable network service using vulnerabilities in the targetted

system,  removable  devices  [26,  27]  or  through  social  engineering  using  a  series  of

infectious  agents.  To  combat  malware,  systems  now  have  antivirus  programs.  Most

antivirus programs include a scanner and a signature database. The scanner matches the

file on the user's system and matches the available signatures. The alert is created and the

user is notified when a match is found. 

Typically, two methods are used to analyze malware. Static and dynamic analysis.

The  difference  between  the  two  methods  is  that  dynamic  analysis  detects  malicious

behavior during the execution of the sample code, whereas the static approach does not

execute the code. 

 2.2.1 Static Analysis

Analyzing  a  program  without  examining  it  to  see  its  behavior  is  commonly

known as  static  analysis.  This  can  be  done in  a  variety  of  ways,  depending  on the

availability of the code and its presentation. Static analysis can help diagnose memory

errors and improve program execution if its source code is available [28, 29]. It can also

be used to perform a viable binary check with various tools [30]. Static analysis may be

requested before or after dynamic analysis, or may be performed as a separate procedure.

Sometimes  it  is  done  to  see  if  the  analysts  have  lost  anything  suspicious  after  the

dynamic analysis. And the initial dynamic analysis is done to understand and understand

this behavior before applying the code of conduct in the real environment. 

Static  analysis refers  to  scanning  portable  executable  files  (PE  files)  without

executing them. Malware usually uses binary packers such as UPX and ASP pack shell

to avoid scanning [32]. It  must be unzipped before the PE file can be analyzed. The

disassembly tool, such as IDA Pro and OlleyDbg, can be used to decompress a Windows

executable file, display assembly instructions, provide information about malware, and

extract the template to identify attackers.

Detective patterns can be tracked in static analysis such as Windows API calls,

string signatures, control flow graphs (CFGs), C code (operation code) frequencies, and
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byte sequences n-grams [33]. In the following, we explain the main features in static

analysis. Almost all programs use the Windows API (short for Application Programming

Interface) to communicate with the entire operating system. For example, “OpenFileW”

in “Kernel32.dll” is a Windows API that creates a new file or opens an existing one. 

Therefore, API calls reveal the behavior of the programs and can be considered as

a necessary indication in the warehousing check. For example, the Windows API calls

“WrightProcessMemory”,  “LoadLibrary”  and  “CreateRemoteThread”  are  suspicious

behaviors  that  are  used  by  malware  to  process  DLL  injections,  while  rarely  come

together in a legal set. DLL injection is discussed in the Memory Analysis section. Wires

are a good indicator of malicious existence. Strings reflect the intentions and goals of the

attacker because they often contain serious semantic information [32]. For example, the

following string "This program cannot be run in DOS mode" indicates a malicious file

when  it  appears  outside  the  typical  PE  header,  a  common  feature  of  droppers  and

installers. 

Control Flow Graph (CFG): A CFG is a directed graph that shows the control

flow of a program. Blocks of code are represented by nodes, and control flow paths are

represented by edges. If malware is detected, CFG can be used to track the behavior of

PE files and extract the program structure [34]. 

Opcodes  are  the first  part  of  a machine  code notation  (also called  a machine

language)  that  indicates  which  operations  should  be  performed  by  the  CPU.  Whole

machine language instructions with opcode and optional all, one or more operands (for

example, “sub ebx 1”, “add eax ecx” and “mov eax 9”). Opcode can be used as a feature

to detect  malware by checking the opcode frequency or by calculating  the similarity

between op code sequences. 

There are all the sequential effects of the sequence of n-gram [35]. For example,

the word "MALWARE" is a sequence of 7 letters long, which can be divided into 3-

grams:  “MAL”,  “ALW”,  “LWA”,  “WAR” and “ARE”.  N-gram is  implemented  with

various identification features such as API calls  and opcodes. In addition to previous

features, there are other features used in static analysis such as file size and function

length. Networking features such as TCP / UDP ports, destination IP, and HTTP requests

are static analysis features. Key research on malware signature theft techniques is Kirat

and Vigna [36]. They were able to extract techniques from 2810 malware models and

classify them into 78 types of stolen signature techniques. 
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Hashemi and Hamzeh presented a new approach that extracts a unique opcode

from the executable file and converts it into a digital image. The visual features are then

extracted from the image using the local binary pattern (LBP), which is one of the most

popular  texture  extraction  methods  in  image  processing.  Finally,  machine  learning

methods  are  used  to  detect  malware.  The  proposed  detection  technique  obtained  an

accuracy  rate  of  91.9% [37].  Shaid  and Maarof  also  suggested  showing  malware  as

images. Their technique captures malware API calls and converts them into visual signals

or images [38]. 

On the other hand, Salehi et al. [39] and Han et al. [40] built their techniques

based on the extracted API calls. Salehi et al. extract API calls from each binary file and

uses API frequencies to learn the classifier. Then, three feature sets “API Call List”, “API

Arguments”  and “API  and Argument  List”  were  generated,  and  each  set  was  tested

separately. The results showed that the API argument list is better than the other two sets

with an accuracy of 98.4% and a false positive rate of about 3%. Similarly, Han et al.

Gets the API from the Import Address Table (IAT) using static analysis. They compared

the extracted API sequence to another sequence and calculated the similarity between

them to classify the malware family. Han et al. found that malware in the same family is

about 40% identical, and the calculated false positive rate is 16%. Similarly, Cheng et al.

[41]  analyzed  native  API  sequences  using  WinDbg  tools  and  implemented  Support

Vector Machine to detect shellcode malware. They used a very small training set and

were able to achieve an accuracy rate of 94.37%. However, the false negative rate was

44.44%.  Table  1 shows  the  results  of  the  surveyed  papers  who  have  made  a

comprehensive static analysis of their  malware inspection methodology.  The following

sub-sections describe the related shortcomings of static analysis and the signature based

analysis.

 

Table 1. Static analysis results for malware detection

Author Year Dynamic

feature

Classifier Datadet

Malware/Beni

gn

Acc FP

Liang 2016

[119]

API calls DT, ANN,

SVM

M=12,199 91.3% -
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Mohaisen

2013 [120]

File system,

registry,

network

SVM, DT,

KNN

M=1,980 95% 5%

Mohaisen

2015 [121]

File system,

registry,

network

SVM, DT,

KNN

M=115,000 99% -

Galal 2017

[122]

APIs sequence DT, RF, SVM M=2,000/

B=2,000

97.2% -

Ki 2015 [123] APIs sequence - M=23,080 99.8% 0%

Fan 2015

[124]

User API,

native API

J48, NB, SVM M=773/B=253 95.9% 5%

 2.2.1.1 Shortcomings of Static Analysis

Since the source code for most programs is not readily available, the static

analysis  approach  is  difficult  to  counter  malware  and  reduces  its  application.

Analyzing binaries with a static approach comes with complexity and challenges.

Disassembly is an essential part of static binary analysis and can easily be obscured

by simple obfuscation measures. Some malware with strong evasion and obfuscation

techniques, such as the presence of opaque constants, obscures the disassembly of

binary executables and cannot  allow the analysis of the resulting code [31]. Such

obfuscation techniques  modify the program flow, make variables inaccessible, and

disable tracking of values stored in registers. These limitations of the static approach

motivate the development of analytical techniques that can overcome the breakouts

and code transformations mentioned above and analyze malicious programs more

accurately and reliably. 

 2.2.1.2 Signature based Analysis

The majority of available antivirus software uses a signature approach. This

approach extracts a unique signature from the captured malware file and uses that

signature to detect similar malware. The executable data bytes is first extracted and
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then used as input for a hash function. The most common function used for such

cases is called Sha-256 [55]. Its effect is used as an identification for this malware.

Therefore, this method has a low false positive (FP) rate. However, it is not difficult

for  attackers  to  change the signature  of  the  malware to  avoid being detected by

antivirus  software.  The  signature  database  is  much  more  efficient  and  faster  in

detecting known malware,  but is unable to capture newly released malware [42].

The signature approach relies  on  the implementation of static  analysis  to  extract

stable  byte  sequences  from malicious  executable  file.  Figure  3 shows  a  general

signature-based procedure for detecting malware. 

Shortcomings  of  signature-dased  analysis have  created  another  problem  for

signature-based  approaches  using  transcription  techniques.  These  techniques  include

dead code entry,  register  re-mapping,  instruction replacement,  and code manipulation

[43].
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Figure 3: Signature-based procedure [42]



 Dead  Code  Insertion: This  simple  code  obfuscation  technique  changes  the

appearance  by  adding  some  no-op  (NOP)  statements  or  inserting  ineffective

PUSH / POP statements into the program, but keep its same behavior.

 Register reallocation: This technique works by switching registers or assigning

register values to unused registers. For example, EAX is reassigned to the EBX

register. 

 Subroutine reorganization: Subroutines are a group of program operations that

perform  a  particular  task.  This  technique  randomly  changes  the  order  of

subroutines in a particular program.

 Command  replacement: This  technique  replaces  the  original  command  that

performs the same function with an equivalent  command,  such as replacing  a

MOV command with a PUSH command.

 Code integration: Malware code that has been incorporated into another legal

program. To use this technique, the malware code decompiles the target program

and inserts itself into the source code [44]. Code integration is considered one of

the most advanced obfuscation techniques that allow malware to evade detection. 

 2.2.2 Dynamic Analysis

Dynamic  Analysis  [45] refers to the process of analyzing a  code or script by

running a code or script and observing its  actions.  These actions can be observed at

different levels, from the lowest possible level (binary code itself) to the entire system

(such as changes to the registry or file system). The purpose of dynamic analysis is to

expose the malicious activity of performing an executable file while it is running, without

compromising  the  security  of  the  dynamic  platform.  From  a  defensive  standpoint,

malware must be loaded into RAM and run by a hosting CPU, so there is  a risk of

malware being infected during dynamic analysis.

Furthermore,  dynamic analysis does not translate  binary code into code at  the

assembly level. Although the disassembly process may seem straightforward, there are a

number of techniques that attackers use to produce different assembly code from actually

executing  the  disassembler  program.  By  avoiding  the  disassembly  process  and  not

relying  on  the  binary  code  of  the  parsed  file,  dynamic  analysis  is  resistant  to  such
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malware bypass techniques [46]. Although static analysis cannot detect changes made to

code during execution, dynamic analysis is resistant to it. 

The last  comprehensive  survey in  the field  of dynamic  malware analysis  was

conducted  in  2012  [46].  Since  then,  new  types  of  malware  (ransomware  and

cryptominers)  and new analytical  techniques  (such as  volatile  memory  forensics  and

side-channel analysis) have emerged. The survey was conducted to fill in the gaps and

provide researchers with important information about the progress of the area. 

Malware analysis is a structured process. The scan should begin by removing any

wrapping that is applied to the binary code to hide from the scan tool (a process called

unpacking [47, 48]). After receiving the unzipped file, a static analysis method can be

applied  to  better  understand  the  file.  If  the  file  matches  the  signature  of  the  known

malware, the scanning process can be skipped altogether. Therefore, static analysis is a

fundamental step that reduces the need for further analysis. Depending on the analysis

plan chosen for the task, other measures must be taken. Figure 4 shows a summary of the

steps  required  for  each  analysis  design,  grouped  according  to  their  functionality.  A

detailed explanation follows. 

Most  dynamic  techniques  focus  on  API  calls  that  represent  the  behavior  of

malware. Liang et al. [49] introduced a behavior-based variant classification technique
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Figure 4: Dynamic malware analysis steps [46]



that captures API calls from running malware and creates a multi-layered dependency

chain based on call  dependencies.  This technique can measure the similarity  between

malware variants.

Unlike static analysis, dynamic analysis does not rely on binary code analysis and

looks  for  meaningful  patterns  or  signatures  that  indicate  the  maliciousness  of  the

analyzed file. Such a static approach can be susceptible to many evasive techniques (e.g.

packing, distortion,  etc.).  Compared to static  scans,  dynamic scans are more efficient

because  they  do  not  require  disassembling  and  scanning  infected  files.  In  addition,

dynamic scanning can detect  known and unknown malware.  In addition,  obscure and

polymorphic  malware  cannot  escape  dynamic  detection.  However,  dynamic  analysis

requires a lot of time and resources.

The following three sections will transform the three most common techniques

used  in  dynamic  malware  analysis:  function  call  monitoring,  function  hooking

implementation and information flow tracking (IFT). Understanding these three methods

provides  a  consistent,  general  picture  of  the  malware  executable.  Functional  call

monitoring  aims  to  investigate  functional  behavior,  function  hooking  implementation

gains full access to the actual arguments on the code stack and can perform the required

analysis steps, while IFT also provides information on what data a malicious binary is

interested in at runtime. Thus, the analyst has a clear idea of the behavior of the malware

and how it affects the smooth operation of the system [23]. 

 2.2.2.1 Function Call Monitoring

A  function  usually  consists  of  code  that  performs  a  specific  task,  such  as

calculating a mathematical concept or creating a file. While the use of functions can lead

to  simple  code  reuse  and  easy  maintenance,  the  property  that  makes  the  functions

interesting for property analysis  is that they are usually used for abstractions ranging

from implementation  details  to  semantic  rich  representations.  For  example,  it  doesn't

matter if the result of a particular algorithm that applies the sort function matches the

sorted input. When it comes to code analysis, such abstractions help you to get an idea of

the behavior of the program. One way to keep track of what the program is saying is to

block those calls. The process of intercepting function calls is called interception [50].

The process of the analyzed program takes place in such a way that in addition to the
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intended  function,  the  so-called  interceptor  function  is  called.  This  hook  function  is

responsible for implementing essential parsing functions, such as writing a call to a log

file or analyzing input parameters. 

Application programming interface (API). Features that make up a consistent

set of features, such as manipulating files and communicating over a network, are often

grouped into so-called application programming interfaces (APIs). The operating system

typically provides several APIs that an application can use to perform common tasks.

These  APIs  are  available  at  different  layers  of  abstraction.  Network  access  can  be

provided, for example, by an API that focuses on the content sent in TCP packets, or by a

low-level API that allows an application to create a packet and write it directly to a raw

socket. In the Windows operating system, the term Windows API refers to a set of APIs

that provide access to various functional categories such as networking, security, system

services, and management. 

System  calls.  Software  software  running  on computer  systems,  running shelf

operating  system  products,  is  generally  divided  into  two  main  parts.  When  normal

applications, such as word processors or image manipulation programs, run in so-called

user mode, the operating system runs in kernel mode. Only code that runs in kernel mode

has  direct  access  to  system mode.  This  partition  prevents  user-mode processes  from

interacting directly with the system and its environment. For example, it is not possible to

open or create a file directly for user space processing. Instead, the call operating system

provides a particularly well-defined API: the system call interface. Through system calls,

the user-mode application can request the operating system to perform limited actions on

its behalf. Therefore, to create a file, the user-mode application needs to use a specific

system call that describes the path, name, and access method of the file. After the system

call is triggered, the system switches to kernel mode (that is, privileged operating system

code is executed). By verifying that the calling genre application has sufficient access

rights  for  the  desired  action,  the  operating  system  acts  on  behalf  of  the  user-mode

applications. 

In the case of a file creation instance, the result of a system call is what is known

as a file descriptor, where any other user mode application related to that file interacts

(for example, writing to a file). This is done through manipulation. In addition to the full

use of resources (within the limits of the operating system), a malware sample typically

cannot operate within its limits. Therefore, malware (like any other application) that is
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running in the user's space and needs to communicate with its environment should call

the relevant system calls. Since system calls are the only way for a user to access or

interact with their environment for mode operation, this interface is designed for dynamic

malware analysis. Especially interesting. However, there are some well-known examples

of malware that manipulate Daniel's methods [50]. Such events do not necessarily use the

system call interface and can avoid this method of analysis.

Windows native API. The Windows Native API [51] resides between the system

call interface and the Windows API. Although the Windows API remains constant for

any version of the Windows operating system, the native API is not limited as such and

may change with different service pack levels of the same Windows version. Native APIs

are typically invoked from higher level APIs, such as the Windows API, to implement

system calls and perform any necessary pre- or post-processing of arguments or results.

Legitimate apps typically communicate with the operating system via the Windows API,

but malicious code can bypass this layer and interact directly with native APIs to thwart

monitoring solutions that only hook to Windows APIs. This of course comes with an

additional burden on the malware author to design the malware to cover all the different

versions of the native API.  Since there is  no official  and comprehensive Native API

documentation,  it  requires  a  lot  of  knowledge  of  Windows  internals.  Similarly,  a

malware author may decide to ignore the native API and invoke system calls directly

from the malware. While this is possible, it requires an even less in-depth knowledge of

the documented interface. 

Results of Function Hooking. Hooking API tasks enables the analysis tool to

monitor program behavior at the abstraction level of the related task. While meaningfully

rich observations can be made by hooking up Windows API functions, a more detailed

view of the same behavior can be obtained by observing the native API. The fact that the

user  must  make  system  calls  to  interact  with  their  environment  through  the  space

application  suggests  that  this  interface  deserves  special  attention.  However,  this

limitation only applies to malware that runs in user mode. A malware running in kernel

mode can perform the desired tasks directly without going to the system call interface. 

21



 2.2.2.2 Function hooking implementation

Depending on the availability of the program's source code, different approaches

can be used to hook functions. If the source code is available, call to hook functions can

be inserted at appropriate places in the source code. Alternatively, compiler flags (eg -

finstrument-functions  in  GCC  [Free  Software  Foundation])  [52]  can  be  used  to

implement  hooks.  Binary  rewrite  is  used  when  the  program  to  be  analyzed  is  only

available in binary form. To do this, two approaches can perform the necessary analysis.

 

 Rewrite the monitored function in such a way that the function calls the hook

before executing its original code.

 Find and edit all call sites (ie call statements) when, when executed, hook up the

monitoring function.

In both approaches, the hook function gains full access to the actual arguments on

the stack and can perform the required analysis steps. Also, if the function is requested by

a function pointer (for example, functions in shared libraries), this value can be changed

to indicate the binding function. In the Windows operating system, the Detours Library

function is available to facilitate call binding [50]. 

The idea behind Detours [53] is to use target function rewriting to implement

interception of function calls. This is achieved by redirecting the control flow from the

function to the analysis function, which in turn can call the original function. The control

flow  deviation  is  implemented  by  rewriting  the  original  instructions  of  the  original

function with an unconditional jump in the analysis code. The overwritten instructions

are saved and copied into the so-called trampoline function. This trampoline consists of

secured instructions and an unconditional jump to the original function according to the

overwritten instructions. As soon as the monitored application calls the linked function,

new instructions  redirect  the control flow to the parsing code.  This code can do any

preprocessing (e.g. cleaning up arguments) and has full control over the control flow.

The parsing code can then immediately return to the caller or call the original function by

calling the trampoline. Since the original function is called by the parsing code, this code

is  monitored  when  the  function  returns  and  can  then  carry  out  any  necessary  post-

processing.
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Detours offers two alternative ways to apply the necessary modifications to the

program. (1) it modifies the binary files before they are loaded and executed, or (2) it

maintains  an  already-loaded  binary  in-memory  image.  The  first  technique  requires

adding additional partitions to a binary file while on disk. You need to modify the file's

disk structure to accommodate additional code. The binary modification that is already

executed is performed by DLL injection. First, all the payload (i.e. parsing functions) are

compiled into a DLL. A new thread is created in the running binary that loads this DLL.

When starting a DLL, the inventory handles the binary as described above (eg, create

trampolines, overwrite the initial instructions of the target function). 

Debugging techniques can also be used to invoke certain functions. Breakpoints

can  be  added  at  the  call  site  or  in  the  monitoring  function.  When  a  breakpoint  is

triggered, the debugger who has full access to the memory contents and the processor

status of the debugging process is given control. Thus, an instrumental debugger can be

used to perform planned analysis. 

If available, the link infrastructure provided by the operating system can be used

to  monitor  system  actions.  The  Windows  operating  system,  for  example,  provides

mechanisms  for  specifying  messages  and associated  binding  functions.  Whenever  an

application receives a specific message (for example, a key was pressed on the keyboard

or a button on the mouse was pressed), the hook function is executed. Changing dynamic

shared libraries can serve as another means of monitoring function calls. For analysis

purposes,  native  libraries  can  be  renamed  and  replaced  by  stub  libraries  with  link

functions. These stubs can emulate the native behavior or call the native function in the

library by renaming it. This method can fully capture the interaction of a program with a

given API. 

 2.2.2.3 Information Flow Tracking

An orthogonal method of monitoring function calls while the program is running

is an analysis of how the program processes data. The goal of information flow tracking

as shown in Figure 3 is to shed light on the dissemination of “interesting” data across the

system while a program that manipulates this data is running. Generally, the data to be

monitored  is  labeled  (contaminated)  accordingly.  The  pollution  label  is  promoted

whenever data from the app is processed. For example, deployment statements usually
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broadcast the source pollution label to the target. In addition to clear cases, policies that

describe  how  pollution  labels  are  promoted  in  more  difficult  situations  should  be

implemented. In such a scenario, using the contaminated pointer as the source address

evaluates to a contaminated value when indexing an array or conditional expression.

 

 2.3  Malware Detection

 2.3.1 Windows PE 

The PE file format was introduced as part of the original Win32 specification by

Microsoft. However, PE files are derived from the previous Common Object File Format

(COFF) found in VAX / VMS. Because there was a need for a common file format for all

versions of Windows on all supported CPUs, it was decided to use the term "Portable

Executable". To a large extent, this goal has been achieved in the same format used in

Windows NT, Windows 95, and Windows CE [56]. Figure 1 shows the structure of the

PE file compiled by the VC ++ compiler with C / C ++ language on the Win 32 platform.
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When  an  executable  file  is  loaded  into  memory  (for  example,  by  calling

LoadLibrary) then certain areas of a PE file are mapped to the address space. This results

in the data structure being identical on disk and in memory. The bottom line is that if the

user knows how to find an object in a PE file, it is almost certain that he can find the

same information when the file is loaded into memory [56]. It is important to note that

PE files are not simply mapped to memory as a single memory mapping file, but the

Windows loader first examines the PE file and then decides which parts of the file will be

assigned to the appropriate memory locations. Moving an item to the disk file may be

different  from  moving  it  once  it  is  loaded  into  memory.  However,  there  is  all  the

information that can be done to translate from disk offset to memory offset [56].
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Figure  6:  Figure  1.  General  C/C++

compiler PE file structure [57]



 2.3.2 Obfuscation Techniques

Obfuscated malware  is  defined  by  structural  and  syntactic  comparisons  and

variations of existing malware. These are divided into 3 groups. Packed, metamorphic

and polymorphic malware depending on the detection technique used [71]. 

 2.3.2.1 Packed Malware

Most  malware  authors  repair  or  install  multiple  packages  to  create  different

versions of the same malware code. Perdisci, et al [72] claim that more than 80% of the

new malware discovered are already packaged versions of existing malware.  Packers

shrink the file  to  a smaller  size,  and encryption is  sometimes  applied  to  compressed

versions of the file to make the unpacking process easier. Some packers are customized

by malware authors and can be used to determine if a file is compromised without the

need  for  further  analysis,  but  there  are  many  commercial  packers  that  are  readily

available online.

 2.3.2.2 Oligomorphic Malware

Also  called  “semipolymorphic”  malware  [71],  it  uses  several  decryption

procedures  that  are  randomly  selected  during  infection  to  avoid  signature-based

detection. The Whale virus was the first malware to use this technique, carrying dozens

of different descriptors and choosing one at random. 

 2.3.2.3 Polymorphic Malware

Polymorphic malware, like oligomorphic malware, uses decryption procedures to

change the appearance of runtime codes with each infection. They have a wide variety of

decryption mechanisms as they tend to use mutation mechanisms. Mutation engines do

all the logical calculations when reorganizing code to prevent signature match detection.

The decryptor is executed first after the malware is copied to the machine, and it allows

the malware to run. When the malware replicates, it encrypts the new malware with a

different key and includes the new decryption procedure in the new code. However, it

can only generate a few hundred decoders to be detected [73]. 
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 2.3.2.4 Metamorphic Malware

The body of the malicious code has been changed by a combination of different

abominable techniques rather than appearance. Entering null bytes, reassigning registers,

and transposing codes transforms the body of the code into a new generation, but works

the same way [71]. That way, every change in malware generated looks different,  so

signature  preparation  and  signature-based  detection  are  very  difficult.  Unlike  most

polymorphic malware, which decrypts into a permanent body of code in memory, there

may be different codes of metamorphic malware, which means that detection in memory

is based on algorithmic scanning. Metamorphic malware can also inject and bind its code

to the host program, making it difficult to detect malware.
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 3  Machine Learning

 3.1  CNN
According to the Todd K. Barrett and David G. Sandier research work, there are

many different neural network architectures [62]. The differentiation is located mainly by

the  way  the  processing  nodes  are  interconnected,  by  the  different  calculation  of

arithmetic operations performed by each node, but also by the way it is chosen to train

the  neural  network  [62].  CNN  exploits  local  correlations  using  local  connectivity

between nearby layer neurons [63]. As shown in Figure 7, the neurons in the m layer are

connected to three adjacent neurons in the (m - 1) layer. 

The value of a υx
ij neuron  at position x of the jth feature map in the layer number i

is denoted as follows [63]:

                                                 uij
x=g(bij+∑

m
∑
p=0

Pi −1

wijm
p υ (i −1 ) m

x +p )                                            (1)

where m indexes the feature map in the previous layer ((i − 1)th layer) connected to the

current feature map, w ijm
p  is the weight of position p connected to the mth feature map, P i

is the width of the kernel toward the spectral dimension, and b ij is the bias of jth feature

map in the ith layer [63].

The output of the convolutional layer is usually the input to a pooling layer. The

purpose of the concentration layers is to gradually reduce the spatial area (height, width)

of the matrix without affecting its depth. In this way the number of trainable parameters

in the network is reduced and consequently the computational cost is reduced by always

checking the overfitting [64].
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 3.2  RNN
Due to increasing computing resources, recurring neural networks (RNNs), which

have been around for decades but their full potential has only recently begun to be widely

recognized  such  as  convolutional  neural  networks  (CNNs),  have  recently  created

significant growth in deep learning. In recent years, RNNs have played an important role

in  the  fields  of  computer  vision,  natural  language  processing  (NLP),  semantic

comprehension, speech recognition, language modeling, translation, image description,

and human action recognition. 

In prior studies, a number of approaches based on traditional machine learning,

including SVM [58], K-Nearest Neighbour (KNN) [59] , Random Forest (RF) [60] and

others, have been proposed and have achieved success for a malware detection system. In

recent  years,  deep  learning,  a  branch  of  machine  learning,  has  become  increasingly

popular  and  has  been  applied  to  malware  detection.  Studies  have  shown  that  deep

learning goes far beyond traditional methods. Most authors use a deep learning approach

based on a deep neural network to detect flow-based abnormalities,  and experimental

results show that deep learning can be applied to malware detection.

Recurrent neural networks include input units, output units, and hidden units, and

the hidden unit completes the most important task. The RNN model has essentially a

one-way flow of information from the input modules to the hidden modules,  and the

composition of the one-way information flow from the previous temporal module to the

current timing module is shown in Figure 8. Τhe hidden modules can be considered as

the storage of network, remembering information from end to end. When we unfold the

RNN, we can see that it incorporates deep learning. An RNNs approach can be used for

supervised classification learning.

Recurrent neural networks have introduced a directional loop that can memorize

previous information and apply it to the current output, which is the essential difference

from  traditional  Feed-forward  neural  networks  (FNNs).  The  previous  output  is  also

related to the current output of a sequence and the nodes between the hidden levels are no

longer connected. Instead, they have connections [61]. Not only the output of the input

layer but also the output of the last hidden layer acts at the input of the hidden layer.
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Figure 8: Recurrent Neural Network (RNNs) Architecture

 

 3.3  Transformers
Recurrent models  usually  contribute  primarily  to  the  mathematical  calculation

along the symbol positions of the input and output inputs. They create a hidden position

sequence, as a function of the previous hidden state - 1 and the input for the position,

using alignment of the positions in steps at the calculation time. This inherently later

nature results in the divergence of parallelism in the mathematical operations performed

in the training examples.  This is  a  problem when there are  long lengths,  as memory

constraints  limit  the  total  computation  time.  By  applying  the  Transformer  model

architecture, significant improvements in computational efficiency are achieved through

factorization tricks [7] and under computational conditions [8], while at the same time

improving the performance and efficiency of the model. However, the basic restraint of

sequential calculation continues to exist.

The attention mechanisms [5] are now the most powerful and effective tool for

modeling  sequences  and  conversion  models  in  various  tasks,  as  without  taking  into

account  their  distance  in  the  input  or  output  sequences,  they  allow the  modeling  of

dependencies.  However,  in  many  cases,  these  attention  mechanisms  are  used  in

conjunction  with  an  iterative  network  with  the  goal  of  improving  neural  network

performance. The attention mechanism [5] directs a neural network to focus on those

features  that  are  important  for achieving a  goal,  which  can be a  problem of  sorting,

translating or even predicting future values. There is a wide range of applications that

include sequence-based models  that  focus  on deep neural  networks.  In the following
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sections, I will describe the Transformer, get its attention and discuss its advantages over

other models.

 3.3.1 Attention Mechanism

The foundations of the extended neural GPU [11], ByteNet [12] and ConvS2S

[13], which use convergent neural networks as the basic building block, while calculating

hidden representations for all  input and output positions,  are to reduce the sequential

computation. In these models, the number of functions required to associate signals from

two arbitrary input or output locations increases in distance between locations, linearly

for  ConvS2S  and  logarithmically  for  ByteNet,  making  it  more  difficult  to  learn

dependencies  between  remote  locations  [5].  Although  at  a  cost  of  reduced  effective

resolution  due  to  weighted  average  focus  positions,  the Transformer  architecture  is

reduced to a fixed number of functions.

Self-attention,  sometimes  called  intra-attention,  is  a  mechanism  of  attention

associated  with  different  positions  of  an  individual  sequence  in  order  to  compute  a

representation of the sequence. Self-attention has been used successfully in a variety of

tasks, such as abstract summarizing, text engaging, reading comprehension, and learning

independent  sentence  representation  tasks.  End-to-end  memory  networks  rely  on  a

repetitive attention mechanism instead of a repetitive sequence, and have been shown to

perform well in simple languages, language modeling tasks, and answering questions.

The Transformer is  the first  switching model that  without the use of RNN or

sequence-aligned sequence relies solely on self-attention to calculate its input and output

representations. A function of attention is to map a query and arrange a set of key value

pairs in the output, where query, keys, values and output are all vectors. The output is

calculated by the weighted portion of the values, where the weight assigned to each key

is correlated with the query match function with that key. 

 3.3.2 The Transformer model architecture
If not all, then most competing neural sequence switching models have a encoder-

decoder architecture as shown in the figure 9 below . Here, the encoder maps a sequence

of  continuous  representations  z  =  (z1,.  ..,  zn)  to  an  input  representation  sequence  of

symbols (x1, ..., xn). Since, the decoder then generates an output (y1, ..., ym) of symbols
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one element at a time. Consumes the previously created symbols as an additional input

when creating the next one, while at each step the model applies automatic regression. 

The  Transformer  model  architecture  uses  stacked  self-attention  and  perfectly

interconnected layers and follows this overall architecture for both the decoder and the

encoder,  shown  in  the  left  and  right  halves  of  Figure  9,  respectively.  Transformers

consists of two basic features, encoder and decoder.

The encoder is made up of a stack of n = 6 equal layers. Each level has two

sublayers. The first is a multi-head self-focus mechanism, and the second is a simple

feedforward network that is fully connected according to position. Α residual attachment

is used around each of the two sublayers and then and then normalization is applied at all

layers [14]. The output of each sublayer is called layer normalization (x + sublayer (x)),
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whereas sublayer (x) is  a function executed by the sublayer itself.  To facilitate  these

residual  connections,  all  sublayers  of  the  model,  as  well  as  the  embedding  layers,

produce an output of DimensionModel = 512. 

The decoder also has a set of equal levels n = 6. In addition to the two sublayers

in each encoder layer, the decoder inserts a third sublayer that pays multiple attention to

the output of the encoder stack. Like the encoder, residual connections are used around

each  sublayer, followed by level normalization. The self-focus sublayer in the decoder

stack is also modified so that the position does not go into the subsequent position. This

masking, combined with the fact that the output structure is compensated by a condition,

ensures  that  the prognosis  for  the  positivist  is  based  only on the  known output  at  a

position less than i.

 3.3.3     Scaled Dot-Product Attention

The special focus used by the Transformers is called "scaled dot product focus"

(Figure 10). Input includes dimension dk queries and keys and dimension dv values. It is

calculated the query product with all the keys, distribute each via  √dk, and applied the
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Figure 10. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of

severalattention layers running in parallel.



softmax function to weigh the values. In practice,  a focus function  is calculated on a

Matrix  Q of  questions  simultaneously.  Keys  and  values  are  also  packed  together  in

matrix K and V. The attention matrix of Q, K, V is calculated as:

                                Attention (Q , K , V )=softmax(QK T

√dk
)V                                  (2)

The two most commonly used attention functions are additive attention and dot

product  (multiplicative)  attention.  The  scalar  product  attention  is  identical  to  our

algorithm, except for the scale factor of 
1

√dk
. Extra attention calculates the compatibility

function using a feedback network with a single hidden layer.  Although the two are

similar in theoretical complexity, dot product attention is much faster and more space

efficient  in  practice,  as  it  can  be  implemented  using  highly  optimized  matrix

multiplication code. disregards the unscaled scaled product for values greater than dk

[15]. We suspect that for large values of dk, the dot products become large in magnitude,

pushing the softmax function towards regions where it has extremely small gradients. To

counteract this effect, we scale the scalar products of 
1

√dk
.

 3.3.4 Multi-Head Attention

Rather than performing a single attention function with keys, values, and dmodel

dimension queries, we have found it useful to linearly project queries, keys, and h-values

with different linear projections learned on the dk dimensions, dk and dv , respectively.

Then,  for  each  of  these  predicted  versions  of  queries,  keys,  and  values,  we  run  an

attention function in parallel,  producing two-dimensional  outputs.  They are combined

and re-projected, which gives the final values, as shown on the right of Figure 10. 

Multi-head focusing allows the model to jointly participate in information from

different representation sub-locations in different positions. With a single focus head, the

average prevents this. 
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                                   MultiHead (Q, K ,V )=Concat (head1 ,... , headh ) W O                     (3)

where   head i=Attention (QW i
Q ,KW i

K ,VW i
V ),

where  the  projections  are  parameter  matrices

W i
Q ∈ ℜd model ×d k ,W i

K ∈ℜdmodel× dk ,W i
V ∈ℜdmodel× dv.

 3.3.5 Embeddings and Softmax

Like  other  sequential  transduction  models,  transformers  use  the  embedding

learned to convert  input tokens and output tokens to dimensional modal vectors.  The

quotient is using the commonly learned linear transformation and the Softmax function to

convert  the output  to  the next  token possibility.  Transformers share the same weight

matrix between both the embedded layers and the pre-softmax linear transformation, as

in [17]. In embedded layers, the weight is multiplied by √dmodel. 
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 4 Transformer Models

 4.1  XLNet
XLNet  [6] is the latest and greatest model emerging from the evolving field of

Natural Language Processing (NLP). XLNet [6] paper combines recent developments in

NLP with innovative options for how to approach the language modeling problem. When

trained in  a  very large  data  set  of  words,  the  XLNet  model  achieves  state-of-the-art

performance for standard NLP tasks that belongs to the GLUE [126] benchmark. XLNet

is an automatic language regression model that extracts  the common probability of a

sequence of badges based on the iterative transformer architecture. Its educational goal

calculates the probability of a word sign that depends on all variants of the word signs in

a sentence, as opposed to those on the left or only those to the right of the sign.

Unsupervised  representational  learning  has  been  particularly  successful  in  the

field of natural language processing [18, 19, 20]. Typically, these methods pre-generate

neural networks in a large-scale unlabeled text company and then optimize models or

representations in later work. In the context of this common high-level idea, different

unsupervised pre-training objectives were explored in the literature. Among them, self-

aggressive language modeling and automatic coding (AC) were the two most successful

preparatory goals.

By comparison with classical deep learning methods aggregate expenditure (AE)-

based pre-training does not estimate density but aims to reconstruct the original data

from damaged input.  A notable example is BERT [10], which was the advanced pre-

workout approach. Given the sequence of input badges, a specific part of the badges is

replaced by a special symbol [MASK] and the model is trained to recover the original

badges from the damaged version.  As density estimation is  not part  of the objective,

BERT is permitted to use two-way frames for reconstruction. As a direct benefit, this

closes  the aforementioned two-way information gap in  autoregressive (AR) language

modeling [21], leading to improved performance. However, artificial symbols such as

[MASK] used by BERT during pre-training are absent from the actual data at the time of

refinement, resulting in pre-processing mismatch. In addition, since the provided insignia

are covered at the input, BERT is not able to model the possibility of sharing using the

product  rule  as  in  the  AR language  model.  In  other  words,  BERT assumes  that  the
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provided tokens are independent of each other, since undeciphered tokens are multiplied

as long-range, long-range dependency is more prevalent in natural language [22].

 4.1.1  Characteristics

In  this  section it  is  analyzed  XLNet,  a  generalized  autoregressive  model that

leverages  the  best  of  both  AR  language  modeling  and  AE  while  avoiding  their

limitations.

 First,  instead  of  using  a  fixed  forward  or  backward  engagement  sequence  as  in

conventional  AR models,  XLNet  maximizes  the  expected  probability  of  logging  a

w.r.t.  sequence according to the order of factorization of all  possible  permutations.

Thanks to the camouflage function, the environment for each position can consist of

chips  from  left  and  right.  In  anticipation,  each  position  learns  to  use  contextual

information from all positions, that is, by recording a two-way context [22].

 Second, as a generalized AR language model, XLNet is not based on data corruption.

Therefore, XLNet does not suffer from the pre-treatment-final coordination mismatch

to which BERT is subject. Meanwhile, the self-aggression goal also provides a natural

way of using the product rule to factorize the common probability  of the intended

brands, eliminating the independence case made at BERT. In addition to a new pre-

training goal, XLNet is improving architectural plans for pre-training.

 Inspired by the latest developments in AR language modeling, XLNet incorporates the

Transformer-XL partitioning mechanism and related Transformer-XL coding scheme

into  pre-training,  which  empirically  improves  performance  specifically  for  tasks

involving a larger text sequence [6].

 Naively  applying  a  Transformer  (-XL)  architecture  to  variant-based  language

modeling  does  not  work  because  the  ordering  factor  is  arbitrary  and  the  target  is

ambiguous. As a solution,  it s proposed to redefine the Transformer network (-XL)

[127]  to  remove  the  ambiguity.  Empirically,  under  comparable  experiment  setup,

XLNet consistently outperforms BERT [14] in a wide range of tasks such as GLUE
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language  comprehension  tasks,  reading  comprehension  tasks  such  as  SQuAD  and

RACE, text sorting tasks such as Yelp and IMDB-B work.

 4.1.2 Architecture

Figure 11: (a): Content stream attention, which is the same as the standard self-

attention. (b): Query stream attention, which does not have access information about the

content x z t . (c): Overview of the permutation language modeling training with two-

stream attention.

While  the  permutation  language  modeling  objective  has  desired  properties,  naive

implementation with standard Transformer parameterization may not work. To see the

problem, assume we parameterize the next-token distribution pθ (XZt = x | Xz <t ) using the

standard Softmax formulation

                        

                             pθ (X Zt=x|X Z<t )=
exp(e (x )T gθ ( Χ Ζ<t , Z t ))

∑
x '

exp (e ( x ' )Τ gθ ( XZ <t , Z t ) )
,                                    (4)
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where gθ (xz<t  )  denotes  the  hidden  representation  of  xz<t  produced  by  the  shared

Transformer network after proper masking. Now notice that the representation hθ (xz<t  )

does not depend on which position it will predict, i.e., the value of z t . Consequently, the

same distribution is predicted regardless of the target position, which is not able to learn

useful representations. To avoid this problem, suggested by the authors of XLNet to re-

parameterize the next-token distribution to be target position aware:

                   pθ (X Zt=x|X Z<t )=
exp(e (x )T gθ ( Χ Ζ<t , Z t ))

∑
x '

exp (e ( x ' )Τ gθ ( XZ <t , Z t ) )
,                                              (5)

where gθ(xz<t, zt ) denotes a new type of representations which additionally take the target

position z t as input. 

 4.1.3 Two-Stream Self-Attention

While the idea of target-aware representations removes the ambiguity in target

prediction, how to formulate gθ  (xz<t , zt  ) remains a non-trivial problem. Among other

possibilities, we propose to “stand” at the target position zt and rely on the position zt to

gather information from the context xz <t  through attention. For this parameterization to

work,  there  are  two  requirements  that  are  contradictory  in  a  standard  Transformer

architecture: 

(1) to predict the token xz t , gθ (xz <t , zt ) should only use the position zt  and not the

content x z t , otherwise the objective becomes trivial,

(2) to predict the other tokens xzj with j > t, gθ (xz<t , zt ) should also encode the

content  xzt  to  provide  full  contextual  information.  To  resolve  such  a  contradiction,

suggested from thw authors to use two sets of hidden representations instead of one:

 The content representation hθ (xz ≤t ), or abbreviated as hZt , which serves a similar role

to the standard hidden states  in  Transformer.  This  representation  encodes  both the

context and xZt itself.
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 The query representation g θ (xz <t , zt ), or abbreviated as g z t , which only has access to

the contextual information xz<t and the position zt , but not the content xZt , as discussed

above.

Computationally, the first layer query stream is initialized with a trainable vector, i.e. g i
(0)

= w,  while the content stream is set to the corresponding word embedding, i.e. h  i
(0)  =

e(xi). For each self-attention layer m = 1, . . . , M , the two streams of representations are

schematically updated with a shared set of parameters as follows (illustrated in Figures 1

(a) and (b)):

g zt  
(m)   ←  Attention(Q = g zt (m−1), KV = hz<t  

(m-1) ; θ),  (query stream: use zt but

cannot see xz t )

h zt 
(m)  ←  Attention(Q = h zt (m−1), KV = hz<=t 

(m-1) ; θ),  (query stream: use both z  t

and xz t )

where Q, K, V denote the query, key, and value in an attention operation [5]. The update

rule of the content representations is exactly the same as the standard self-attention, so

during finetuning, we can simply drop the query stream and use the content stream as a

normal Transformer(-XL).

 4.1.4 Partial Prediction

While  modulation  language  modeling  has  many  benefits,  it  is  a  much  more

difficult  optimization  problem  due  to  variation  and  causes  slow  convergence  in

preliminary experiments. To reduce the difficulty of optimization, was chosen to predict

only the last  insignia in order of factorization.  Formally,  we split  z into a non-target

subsequence  z  ≤c and a  target  subsequence  z>c ,  where c  is  the cutting  point.  The

objective is to maximize the log-likelihood of the target subsequence conditioned on the

non-target subsequence, i.e.,

         max θ EZ ∼ZT [ log ( pθ ( ΧΖ >c|XZ ≤c )) ]=EZ∼ZT [ ∑t=c+ 1

|z|

log pθ ( xZt|xZ<t )]       (6)
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Note that z > c is chosen as the target because it possesses the longest context in the

sequence given the current factorization order z. A hyperparameter K is used such that

about 1/K tokens are selected for predictions; i.e., |z|/(|z| − c) ≈ K. For unselected tokens,

their query representations need not be computed, which saves speed and memory.

 4.1.5 Relative Segment Encodings

Architecturally  XLNet differents  from BERT which  adds a  complete  segment

integration to the word integration in each location, extending the idea of the relevant

encodings from Transformer-XL to also codify the components. Given a pair of positions

i and j in the sequence, if i and j are from the same segment, segment coding is used s ij =

s+ or otherwise sij = s− , where s+ and s− are learnable model parameters for each attention

head. In other words, the purpose is to examine only whether the two positions are in the

same department, as opposed to examining which specific departments they come from. 

This  is  in  line  with  the  basic  idea  of  coding.  that  is,  by  modeling  only  the

relationships between positions. When i attends to j, the segment encoding s ij is used to

compute an attention weight a ij = (q i + b) > s ij , Where qi is the query vector as a standard

attention operation and b is the learnable head-specific bias vector. Finally, the value of

aij is added to the normal attention load. There are two advantages to using relative clause

encoding. First, the inductive bias of relative encoding improves generalization. Second,

it opens up the possibility of fine-tuning functions with three or more input segments.

This is not possible with full segment encoding. 

 4.1.6 Comparative analysis

XLNet used BooksCorpus and English Wikipedia  as part  of  preparatory  data,

which combines plain 13 GB text. In addition, Giga5 (16 GB text), ClueWeb 2012-B and

Common Crawl for pre-training are included. XLNet’s authors used heuristically to filter

aggressively  short  or  low quality  articles  for  ClueWeb 2012-B and Common Crawl,

which  leads  to  19  GB  and  110  GB  text  respectively.  After  tokenization  with

SentencePiece, it acquired 2.78B, 1.09B, 4.75B, 4.30B and 19.97B subword tracks for

Wikipedia, BooksCorpus, Giga5, ClueWeb and Common Crawl respectively, which total

32.89B.
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The  XLNet-Large  model  has  the  same  architecture  hyperparameters  as  the

BERT-Large, resulting in a similar model size. During the pre-training, a full sequence

length of 512 was used. First, to provide a fair comparison with BERT, XLNet-Large-

wikibooks  were  also  trained  only  in  BooksCorpus  and  Wikipedia,  where  all  pre-

preparatory hyper-parameters such as in the original BERT. Next, increase the training of

XLNet-Large using all the data sets described above. Specifically, the model was trained

in  512  TPU  v3  chips  for  500K  steps  with  Adam  weight  splitting  optimizer,  linear

learning rate splitting and batch size 8192, lasting about 5.5 days. It was observed that

the model still lags behind the data at the end of the training.

Since the recurrence mechanism is introduced,  authors used a bidirectional data

input pipeline where each of the forward and backward directions takes half of the batch

size. For training XLNet-Large, it  was set the partial  prediction constant K as 6. The

finetuning procedure follows BERT [10] except otherwise specified 3 . It was employed

an idea of span-based prediction, where we first sample a length L  [1, · · · , 5], and∈

then randomly select a consecutive span of L tokens as prediction targets within a context

of (KL) tokens.

Table 2. Fair comparison with BERT. All models are trained using the same data and hyperparameters as

in BERT. We use the best of 3 BERT variants for comparison; i.e., the original BERT, BERT with whole

word masking, and BERT without next sentence prediction.

Model SQuAD1.1 SQuAD2.0 RACE MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

BERT-Large 
(Best of 3)

86.7/92.8 82.8/85.5 75.1 87.3 93.0 91.4 74.0 94.0 88.7 63.7 90.2

XLNet-Large- 
wikibooks

88.2/94.0 85.1/87.8 77.4 88.4 93.9 91.8 81.2 94.4 90.0 65.2 91.1

Table 3. Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task,

and  on  ClueWeb09-B,  a  document  ranking  task.   indicates  using  ensembles.   indicates  our∗

implementations.  “Middle” and “High” in RACE are two subsets representing middle and high school

difficulty levels. All BERT, RoBERTa, and XLNet results are obtained with a 24-layer architecture with

similar model sizes (BERT-Large).

RACE Accuracy Middle High Model NDCG@20 ERR@20

GPT 59.0 62.9 57.4 DRMM 24.3 13.8
BERT 72.0 76.6 70.1 KNRM 26.9 14.9
BERT+DCMN 74.1 79.5 71.8 Conv 28.7 18.1
RoBERTa 83.2 86.5 81.8 BERT† 30.53 18.67

XLNet 85.4 88.6 84.0 XLNet 31.10 20.28
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Table 4. Comparison with state-of-the-art error rates on the test sets of several text classification datasets.

All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (BERT-

Large).

Model IMDB Yelp-2 Yelp-5 DBpedia AG Amazon-2 Amazon-5
CNN - 2.90 32.39 0.84 6.57 3.79 36.24
DPCNN - 2.64 30.58 0.88 6.87 3.32 34.81
Mixed VAT 4.32 - - 0.70 4.95 - -
ULMFiT 4.6 2.16 29.98 0.80 5.01 - -
BERT 4.51 1.89 29.32 0.64 - 2.63 34.17

XLNet 3.20 1.37 27.05 0.60 4.45 2.11 31.67

            

Table 5. Results on GLUE.  indicates using ensembles, and † denotes single-task results in a multi-task∗

row. All dev results are the median of 10 runs. The upper section shows direct comparison on dev data and

the lower section shows comparison with state-of-the-art results on the public leaderboard.

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B WNLI
BERT 86.6/- 92.3 91.3 70.4 93.2 88.0 60.6 90.0 -
RoBERTa 90.2/90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 -
XLNet 90.8/90.8 94.9 92.3 85.9 97.0 90.8 69.0 92.5 -
Multi-task ensembles on test (from leaderboard as of Oct 28, 2019)
MT-DNN∗ 87.9/87.4 96.0 89.9 86.3 96.5 92.7 68.4 91.1 89.0
RoBERTa∗ 90.8/90.2 98.9 90.2 88.2 96.7 92.3 67.8 92.2 89.0
XLNet∗ 90.9/90.9† 99.0† 90.4† 88.5 97.1† 92.9 70.2 93.0 92.5

For explicit reasoning tasks like SQuAD and RACE that involve longer context,

the performance gain of XLNet is usually larger. This superiority at dealing with longer

context  could come from the Transformer-XL backbone in  XLNet.  For  classification

tasks  that  already have  abundant  supervised  examples  such as  MNLI (>390K),  Yelp

(>560K) and Amazon (>3M), XLNet still lead to substantial gains.

 4.2  Other Transformer Models
Following  the  initial  publication  of  XLNet,  several  other  prefabricated  models  were

released, such as the RoBERTa [16] and the ALBERT [17]. Since ALBERT implies an

increase in the hidden model size from 1024 to 2048/4096 and therefore significantly

increases  the  number  of  calculations  in  FLOPs  terms,  ALBERT  excluded  from  the

following results, as it is difficult to draw scientific conclusions. To get a fair comparison
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with RoBERTa,  the experiment  in  this  section is  based on complete  data  and reuses

RoBERTa hyper-parameters.
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 5 The proposed malware detection approach 

 5.1  Backround Architecture

 5.1.1 Sequence-to-Sequence

Typically,  a  neural  network  for  sequence  modeling  of  classification  problems

consists of the following layers:

Εmbedding layer. In this layer the model receives a sequence of words and tries

to predict the probability of the next word appearing [86]. Specifically the input array,

which is a loosely-encoded (e.g., hot-encoded) input token, is mapped to a denser feature

layer. This is necessary because a high-dimensional feature vector is more capable of

encoding information about a particular token (the term for the text corpus) than a simple

hot-encoded vector. Ιnstead of a pre-trained vector of words being used in this work, a

state  of  the  art  tokenizer  [96]  was  deployed  specially  made for  the  classification  of

malicious applications using their metadata.

Encoder Layer. After mapping the input multidimensional  token, the sequence

passes  through  the  encoder  layer  to  compress  all  the  information  from  the  input

embedding  layer  (the  whole  sequence)  into  a  specific  vector  of  a  fixed  length.  The

encoder is made up of a stack of n = 24 equal layers. Each level has two sublayers. The

first  is  a  multi-head  self-focus  mechanism  and  the  second  is  a  simple  feedforward

network that  is  fully  connected  according  to  position.  A residual  attachment  is  used

around each of the two sublayers followed by normalization [14]. That is, the output of

each sublayer is called layer normalization (x + sublayer(x)), whereas sublayer(x) is a

function  executed  by  the  sublayer  itself.  To  facilitate  these  residual  connections  all

sublayers  of  the  model,  as  well  as  the  embedding  layers,  produce  an  output  of

DimensionModel = 512.    

Decoder layer.  The decoder layer takes this encoded feature vector and creates

the output token sequence. The decoder also has a set of equal levels n = 24. In addition

to the two sublayers in each encoder layer, the decoder inserts a third sublayer that pays

multiple attentions to the output of the encoder stack [130]. Like the encoder, it  uses

residual  connections  around each sublevel  followed by level  normalization.  The self-

focus sublayer in the decoder stack is also modified so that the position does not go into

the  subsequent  position  [5].  This  masking,  combined  with  fact  that  the  outputed
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embeddings are offset by one position, ensures that the predictions for the next position

can only depend on the known outputs in the previous positions.

Attention mechanism. The disadvantage of the encoder-decoder structure is that

the performance of the model degrades as the length of the original sequence increases

due to the limitation on how much information an encoded feature vector of a fixed

length  can  contain.  To  address  this  problem,  Bahdanau,  D.  et  al.  [87]  proposed  an

attention mechanism. In the attention mechanism the decoder tries to find the point in the

encoder  sequence  where  the  most  important  information  can  be  found and uses  that

information and previously decoded words to predict the next token in the sequence. A

function of attention is to map a query and arrange a set of key value pairs in the output

where query,  keys, values and output are all vectors. The output is calculated by the

weighted portion of the values, where the weight assigned to each key is correlated with

the query with the function matched with that key [88]. 

 5.1.2 AdamW Optimizer

The main contribution of AdamW [91] is to improve regularization in Adam [90]

by  separating  weight  reduction  from  gradient-based  updating.  In  a  comprehensive

analysis,  it  is  shown that  Adam  generalizes  significantly  better  with  split  weight

decomposition than with L2 regularization, achieving a 15% relative improvement in test

error.  This  is  true  for  various  image  recognition  data  sets  (CIFAR-10  and

ImageNet32x32), training budgets (100 to 1800 epochs) and learning rate graphs (fixed,

stepped and cosine annealing) [91]. The weight reduction of AdamW optimizer makes

the  optimal  settings  for  the  learning  rate  and  weight  reduction  factor  much  more

independent, which simplifies hyperparameter optimization. 

By disconnecting the weight loss and loss-based rating updates  in Adam, this

creates a variant of Adam (AdamW) with separate weight loss. After showing that L2

regularization and weight attenuation regularization are different in the adaptive gradient

algorithm,  the  question  arises  how they  differ  and  how their  effects  are  interpreted.

Equivalence  with standard SGD is very intuitive.  Both mechanisms bring the weight

closer to zero at the same rate. 

However,  this  is  not  the  case  with  the  adaptive  gradient  algorithm.  The  L2

regularization  applies  the  sum  of  the  loss  function  gradient  and  the  regularization

gradient  (ie,  the  weight  of  the  weight  L2),  but  only  the  attenuation  gradient  of  the
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separated weight. The loss function is applied (using the weight decay step separated by

the adjusted gradient procedure) [91]. In L2 regularization, both types of gradients are

normalized by their characteristic (abbreviated) volume, so that the weight x with a larger

characteristic  gradient  is  greater  than the  other  weights.  In  contrast,  detached  weight

attenuation regulates all weights at the same rate λ and weights x with a weight greater

than the standard L2 regularization. 

According to  Loshchilov et al. [91] weight decay  is equal to scale-adjusted L2

regularization for adaptive gradient algorithm with fixed preconditioner. Let O denote an

algorithm with fixed preconditioner matrix: 

                                          Mt = diag(s)−1 (with si > 0 for all I)                                         (7) 

Then, O with base learning rate α executes the same steps on batch loss functions

ft(θ)  with  weight  decay λ  as  it  executes  without  weight  decay  on the  scale-adjusted

regularized batch loss:

                                                    f t
sreg (θ )=f t (θ )+ λ '

2 α
‖θ ⊙√s‖2

2
                                        (8)

where and denote element-wise multiplication and square root,  and  λ '= λ
α

. 

It is pointed out that this theorem does not apply directly to practical adaptive

gradation algorithms, as this changes the preceding position with each step. However, it

can  provide  an  intuition  that  the  equivalent  loss  function  is  optimized  at  each  step:

parameters θi with a large inverse pre-conditioner si (which in practice would be caused

by historically large gradients in dimension i) are regularized relatively more than they

would be with L2 regularization,  specifically,  the regularization is proportional to  √si

[91].  In  XLCNN  learning  rate  was  set  to  1⋅10−3,  AdamW's  epsilon  for  numerical

stability was set to 1⋅10−6,  decoupled weight decay was set to 0.0, while the bias should

be corrected in each epoch.

 5.1.3 Linear Schedule with Warmup

Linear  schedule  with  warmup  creates  a  schedule  with  a  learning  rate  that

decreases linearly from the initial learning rate set in the optimizer to 0. In the XLCNN

model the AdamW optimization algorithm, which has been configured with a learning

rate α and a warm-up  factor ω has been implemented. The ω symbol is a sequence of

“warm-up factors” where ωt  [0, 1], which are used to reduce the step size of each∈
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iteration t. In particular, XLCNN implements a warm-up program by replacing α with αt

= α · ωt in the algorithm’s update rule [92]. A linear warm-up configured by a “warm-up

period” Τ  was applied by XLCNN model :

                                                     ωt
(linear ,T )=min(1 , 1

T
⋅ t)                                             (9)

In order to calculate the value for the number of warmup steps, the following formula
was used in XLCNN:

                                        st=0.25⋅∑
i=0

lt

(it ) ,                                         (10)

where sn is the number of warmup steps, lt is the total size of the training dataset and t ∈

Z is the iteration on each step.

 5.1.4 Embeddings

Given a sequential text input of T words {w1 , w2 , . . . , wT }, each word wt W,∈

is embedded into a dwrd-dimensional vector space by using the  following mathematical

function:

                                                                φθ ( wt )=Ef t                                                     (11)

The  dwrd-dimensional  matrix  E  ∈ℜd ( wrd x|W|)represents  all  the  learnable  word
embeddings in  the current layer,  just as the other parameters of the neural network. In
particular,  word embeddings  use a  lookup table  with a  much simpler  array indexing
operation, where E ∈ℜdwrd represents the embedding of the word wt.  For each word in
the sequence this lookup table function is then applied. The following matrix is produced
from the concatenation from all resulting word embeddings.
                                            φ1

θ ( w1 , w2 ,... , wT )=( Ew 1 ,Ew2 , ... , EwT )                                 (12)

where Ewt  ∈ ℜ( dwrd x T ) [93].

The usual learned linear transformation and softmax function to convert the decoder
output  to  predicted  next-token probabilities  is  also  used  in  XLCNN model.  XLCNN
share the same weight matrix between the two embedding layers and the pre-softmax
linear transformation,  similar to [6]. Those weights were multiplied in the embedding
layers,  by √dmodel.

 5.1.5 Dropout

Dropout is a specific neural reduction strategy implemented in the XLCNN’s feed

forward  neural  network in  order  to  significantly  optimize  its  architecture  while

maintaining competitive performance. The result is the creation of a much smaller and
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faster model due to the fact that some neurons have been zeroed. It also shows that the

model was trained from the beginning without the use of a pre-trained model. Overall,

the  application  of  Dropout  in  a  network  of  transformers  offers  the  following  key

advantages [95]:  

 Dropout deeply transforms transformers, stabilizes training and offers top performance
at various benchmarks.

 Small and efficient models of any depth can be automatically extracted from larger
models trained during the test without the need for modification.

 Dropout is easy to apply in any Transformer model.

The application of Dropout in XLCNN has as a result the prevention of excessive

overfitting  and  provides  a  way  to  effectively  integrate  multiple  architectural  neural

networks. The term "dropout" refers to those who enter the neural network (hidden and

visible) [94]. Disconnection from the unit  results  in the temporary termination of the

network with its incoming and outgoing connections. In the simplest case, each unit is

stored independently of the other units with a fixed probability p, where p can be selected

from the  test  set  [94].  In  XLCNN  the   probability  p  was  set  to  0.1,  which  seems

according  to  the  results  described  in  Chapter  V,  to  be  close  to  optimal  for  the  feed

forward neural networks. 

The XLCNN model includes all units that survived the dropout. A neural network

with n units can be thought of as a set of 2n possible thin neural networks. All these

networks have the same weighting, so the total number of parameters is still O(n2) or

less. For each presentation of each training example, a new thin network is selected and

trained. Thus, training a weighted neural network can be thought of as training a 2n thin

network with wide load sharing, where each thin network is trained very rarely, if at all. 

 5.1.6 Activation function

In XLCNN model it was proposed the Gaussian Error Linear Unit (GELU), a

neural  network  activation  function  with  high  performance.   xΦ(x),  is  the  GELU

activation function where Φ(x) is the standard Gaussian cumulative distribution function

[16].  XLCNN model used an “adaptive dropout network” which was trained jointly with

the GELU activation function by approximately computing local expectations of binary

dropout variables, computing derivatives using back-propagation, and using stochastic

gradient descent [97].
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GELU activation function is a combination from ReLUs [98], zoneout [131] and

dropout [97]. First, we notice that both ReLU activation function and  dropout produce a

neuronal output. The ReLU deterministically multiplies the input by zero or one, and the

dropout stochastically multiplies the input by zero. In addition, a new regularizer called

zoneout multiplies the inputs by one [131]. This functionality was merged by multiplying

the  input  by  zero  or  one,  but  the  values  of  this  zero-one  mask  are  stochastically

determined depending on the input [16]. 

In particular,  the neuron input  x can be multiplied  by m  Bernoulli  (Φ(x)),∼

where Φ(x) = P (X ≤ x), X  N (0, 1) is the cumulative distribution function of the∼

standard normal distribution.  This distribution is chosen because of the fact that neuron

inputs tend to follow a normal distribution especially with Batch Normalization. In this

setting, as x decreases, the inputs have a higher probability of being “dropped”, so the

transformation applied to x is stochastic and depends upon the input. This masking of the

input preserves  non-determinism and the dependence of the input  value as well.  The

stochastically chosen mask is reduced to a stochastic zero or an identical transformation

of the input data. 

Because  the  desired  result  from  a  neural  network  must  be  a  deterministic

decision, the above assumption leads to nonlinearity.  The nonlinearity is the expected

change of the stochastic regularizer at the input x, which is Φ (x) × Ix + (1 - Φ (x)) × 0x =

xΦ (x). This expression implies that x can be measured by how much larger it is than

other inputs. The cumulative distribution function of Gaussian is always treated with the

error function,  the Gaussian error linear component (GELU) can be defined as [16]: 

                                 GELU ( x )=xP ( X ≤ x )=xΦ ( x )=x⋅
1
2 [1+erf ( x

√2 )]                      (13)

where x is the input matrix. GELU can be defined approximately with:

                                      0.5 x (1+tanh (√ 2
π

( x+0.044715 x3 )))                                        (14)

or 

                                               xσ (1.702 x )                                                                       (15)

if greater feedforward speed is worth the cost of exactness [16].
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 5.2  The Proposed XLCNN Model
The  proposed  XLCNN  is  a  Transformer  model  having  an  encoder-decoder

structure. The main purpose of the encoding layer is to achieve a mapping between a

sequence  of  input  symbol  representations  (x1,  ...,  xn)  and  a  sequence  of  continuous

representations  z = (z1,  ...,  zn).  The decoder  having the value of the representation z,

outputs a sequence (y1, ..., ym) of symbols one element at a time [6]. At each step, the

model is spontaneously accepting the input of the symbols created in the previous step to

create  the  next  symbols.  XLCNN’s  model  architecture  is  a  multilayer  bidirectional

Transformer model based on the original implementation described in Yang, Z et al. [6].

XLCNN uses a composite self-attention layer and two fully connected layers inside the

feed forward network, as shown on the Figure 12.

XLCNN uses embeddings [86] with 32⋅103 token vocabulary. The first token of

each sequence  is  always a  special  classification  token ([CLS]).  The last  hidden state

corresponding to this token is used as a total sequence representation for classification

functions.  Pairs  of  sentences  are  packed  in  the  same  sequence.  The  sentences  were

separated  in  two  ways.  Firstly,  they  are  separated  with  a  special token  ([SEP])  [9].

Secondly, a learned embedding was added to each token that indicates whether it belongs

to the benign set or the malware set. For a particular token, its input representation is

built by combining the corresponding categories and position embeddings. 

XLCNN uses convolutional neural networks (CNNs) [9] in its core architecture.

Specifically, it uses 24 layers of feed forward neural networks, with each layer consisting

of 2 CNNs  having as input a matrix of dimensions [512 x 1 x 512] and producing an

output matrix of [512 x 1 x 2048] dimensions, 2 Linear Transformation layers and 1

Normalization layer.  Our experimental results have shown that this neuron architecture

is  the  most  efficient  in  malware  classification,  as  it  increases  network  performance,

reduces loss [100] and increases ultimate prediction accuracy. 

The main benefit  of this approach is that it  allows the network to be learning

while remaining unchanged, instead of having to be coded in the network as is the case

with the XLNet model. Our feed forward architecture with CNNs can learn much more

complex invariants (e.g to recognize malicious code only from the metadata it has), while

maintaining many of the advantages of the low number of CNN parameters [101]. This

results in faster training and easier learning compared to the XLNet. Figure 12 shows the

architecture of feed forward convolutional neural network.
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The vocabulary size of the XLCNN model, which defines the number of different

tokens that can be represented by the different input words, is set to 32⋅103. The linear

transformation is the same in different positions, but uses different parameters for each

layer. The additional convolutions neural networks have kernel size of 1. The inner-layer

has dimensionality nx = 512  and the dimensionality of output is nfS= 2048. We proposed

24 hidden layers in the transformer encoder  and 16 attention heads for each attention

layer.

The feed forward network of  XLCNN model consists of intertwined layers of

self-focus and direct communication.  Each feed-forward layer is a positional function

that processes each input vector independently. Let X  R∈ d be a vector corresponding to

some input text prefix. The feedforward layer FF(·) can be expressed as follows (biased

terms omitted): 

                                                    FF ( x )=f ( x⋅ KT )⋅V                                                   (16)

where, f is a non-linear function such as GeLU and K, V  R∈ dm ×d are parameter matrices

[5].

The effectiveness of XLCNN’s feed forward network depends on the memory of

previous  decisions.  Neural  memory  [89]  consists  of  dm key-value  pairs  that  we  call

memories. Each key is represented by a d-dimensional vector k i  R∈ d, and together they

form a matrix of parameters K  R∈ dm × d. Analogously,  the value parameter is defined as

V  R∈ dm × d. Given the input vector x  R∈ d, the distribution can be calculated by the
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Figure  12: Feed forward convolutional  neural network architecture with input matrix

[512 x 1 x 512] and output matrix [512 x 1 x 2048].



entire  key  and  uses  it  to  calculate  the  expected  value:   p (k i|x )∝exp ( x ⋅k i )

(11)

                                                  MN ( x )=∑
i

d m

p (k i|x ) vi                                                    (17)

where MN(x) is the neural memory of feed forward neural network. When the matrix is

added, a more compact formulation is created [89]: 

                                                    MN ( x )=softmax ( x⋅k T )⋅V                              (18)

In addition to the attention sublevels,  each of the encoder  and decoder  layers
contains a fully connected anticipation network that is applied to each position separately
and identically. It consists of two linear transformations with GeLU [16] activation in
between. The new feed forward neural network equation is as follows:

                                              FFN ( x )=max ( 0 , xW 1+b1 )⋅W 2+b2                                  (19)

where x  R∈ d is the input vector, W1, W2  the weights and b1, b2 the biases. The Figure 13

shows the graphical representation of the fully connected feed forward neural network

proposed for XLCNN.

The feed forward network accepts as input a vector of dimensions [512 x 1 x

512], which is multiplied by the learnable weight of dimensions [512 x 1 x 2048]. The

[512 x 1 x 2048] dimension matrix is multiplied by a constant α value and the result of

the  multiplication  between  the  learnable  bias  and  the  beta  value  is  added.  This

convolutional  equation is represented as follows: 

                                            C ( x )=β ⋅bm+a⋅ ( x ⋅wm )                                          (20)

where  β and α were set to 1, bm is the bias, x  R∈ d   is the input vector and wm   is the

learnable weight.
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In the next step the error of the above function was calculated using the Gaussian

error function [132] which is given by the completion of the Euler error [133] elevated to

-x in the square with limits from -x to x. The effect of completion multiplied by 2 for the

root π gives the possibility that a normally distributed random variable having an average

of 0 and a variation of 0.5 falls into the region [−x, x]. Τhe Gaussian error function can

be computed:

                                                      erf ( x )= 2
√π∫0

χ

e− x2

dx                                                 (21)

where  x  is  the  result  of   the  convolutional   equation.  Euler's  equation  was  used  to

calculate the Median Absolute Deviation (MAD) [134] through the equation:
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Figure  13: XLCNN  feed  forward  neural

network structure.



                                                  MAD ( x )=σ ⋅√2⋅erf ( x )−1 ⋅ 1
2                                          (22)

where σ=1 is the standard deviation, erf(x) is the Gaussian error function and x is the

input vector.

The Cumulative Distribution Function (CDF) [135] was then calculated, which shows

the probability that a value of the function is between zero and a value x, as shown in the

following mathematical form:  

                                                     G ( x )=MAD (x ) ⋅∫
0

x

e
− ( x− μ )2

2⋅σ 2

dx                                  (23)

where  the parameter μ is the mean or expectation of the distribution, σ is the standard

deviation and x is the input vector. The result of function G(x) was used as input for the

convolutional network, but also used as input for function G(x). The result of the second

iteration  marks  the  end of  the  first  sub-infrastructure  and the  start  of  the  second as

described below.

Initially,  the linear  transformation  function accepts  as input the result  of G(x)

whose dimensions are [512 x 1 x 512] and produces a dimension matrix  [512 x 1 x

2048].  It  is  essentially  a  mapping  between the  value  G(X)  and the  weights  that  are

towards  the  learning  process  [136].  The  mathematical  representation  of  the  above

sentence is described as:  

y=G ( x )⋅ wT+b                                                   (24)

where w is the learnable weight of the function y,  b the biases and G(x) is the CDF.

Αfter  the application  of  the GELU function  which takes  as  input  the result  of  the y

function, some elements of the matrix with probability p=0.1 are zeroed according to the

definition of the Bernouli distribution [137]. Those tensors that remained intact and did

not zero were multiplied by a factor equal to
1

1− p . The Bernouli distribution applied as: 

     f(x, p) =|0 ,if x< p
x ,if x≥ p                                              (25)

In the second iteration of the second sub-infrastructure the result of the function

f(x, p) was a matrix of size [512 x 1 x 512] and was added with the tensors that were
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used as input at beginning before introduced into the feed forward network. In order to

reduce  the  training  time  of  the  feed  forward  neural  network  but  also  to  reduce  the

sensitivity in the final state, the normalization function [138] was introduced which is

given by the following formula:          

                                                            y=
x− E [ x ]

√Var [ x ]+ε
⋅ γ+β                                        (26)

where ε = 10-5  is the  denominator for numerical stability, γ and β are learnable affine

transform parameters and x is the input matrix. After this step the output matrix size

remained [512 x 1 x 512], as shown in Figure 12.

This repetitive structure but also the architecture itself makes the XLCNN unique in its

kind. The purpose of the repeating structure is to develop more complex connections

between neurons without having to increase the size of the matrix used as input, thus

reducing the execution time of mathematical operations.  

 5.3  Application on malware detection 
A state of the art analysis was used to identify the malware which results from the

combination of  XLCNN with the metadata of the Windows executable files. Different

sources were used to create the data set and combined for the purpose of model training.

To create the vectors, a tokenizer [96] was used which is specially trained for the purpose

of detecting malware. Figure 14 shows the steps followed for classifying files.

56Figure  14: Process of classifying executable files into malicious

and benign.



Initially, executable files consisting of 2 categories were collected, the infected
files and the benign ones.  Malicious archives come from two different sources, the Virus
Total  [106] and the Das Malwerk [107].  The benign files  were collected from the 3
distributions of Windows 7, 8 and 10 [108], [109], [110], which did not contain infected
files, as they came from clean installations. A python script file was then created and the
pefile library  [104]  was  used  to  export  metadata  from all  executable  files  collected,
whether they were malware or benign. They were then stored in a csv file and divided
into training data and testing data. The metadata became vectors through the tokenizer as
described by Sennrich R. et al. [105] and was used as input for the XLCNN model. Αfter
the training process the model recognized the hostile executable files with a success rate
of  95.07%.  The  following  sections  present  in  detail  the  steps  followed  for  dataset
creation, metadata extraction and the results of XLCNN.

 5.3.1 Source collection for malware detection

Two different data sets for malicious executable files were used and created from
scratch. The first one was created with the help of VirusTotal.  VirusTotal is one of the
most  popular  and  widely  used  scanning  services  by  researchers  and  industry
professionals  [106]. VirusTotal  provides file scanning services (for malware  analysis)
and URL scanning services (for detecting malware and phishing hosts). It works with
more than 70 security vendors to aggregate the results of their analyses [111]. 

The second set of data was retrieved from Das Malwerk [107] which has various types
of malware on its website. To retrieve the files,  a python script was created from scratch
using its request [115] and beautifulsoup libraries [116].  

The total number of malicious files retrieved from VirusTotal and Das Malwerk
was 3,117, with no duplicates, while the total number of benign data retrieved from the
three Windows distributions was 1,794, also without duplicates. The combination of the
total data constitutes the final number 4911. Of these, 10% of the  malicious data and
10% of the benign data were used to verify the XLCNN model. Therefore, 4452 size of
data were used for training and 446 size of data for verification. Within 100 epochs of
training, XLCNN managed to achieve a 95.07% accuracy rate.

 5.3.2 Metadata extraction

With the growing availability of malware resources the quality of the learning

process  depends  on  the  availability  of  these  resources  as  well  as  the  amount  and

expression of metadata used to explain them. The availability of malware resources is
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largely  provided  by  storing  these  objects  or  their  metadata  in  digital  repositories.

Reserves  generally  provide  malware  resources  for  exploration,  demonstration  and

acquisition.  Metadata  is  an important  factor  in  the ability  to  find learning objects  as

information provides additional details of learning objects. These descriptions may relate

to memory calls, address allocations, product name, product version, entropy and hash

signature.

Metadata were divided into two categories [102]. The first category consists of
metadata that describes the properties of the object that are not related to the domain to
which the object belongs. This metadata is general and can be applied to all learning
objects, regardless of domain or discipline. Examples of such metadata are file format,
language and so on. 

The second category pertains  to  metadata  that  describes  learning objects  with
domain-specific information. Many domains have developed classifications that classify
content within a particular domain. As an example of a domain-specific metadata is the
description of memory allocations in executable files in the field of cyber security.

Note that no feature export algorithm was used, but all available metadata was
used as input for XLCNN model.  The metadata in this research project was extracted
from the executable Windows files using a python library called pefile [104]. Pefile is a
multi-platform Python module to parse and work with Portable  Executable (PE) files
[103]. Most of the information contained in the PE file headers is accessible as well as all
the sections details  and data.  The structures defined in the Windows header  files  are
accessible as attributes in the PE instance. The naming of fields/attributes tries to adhere
to the  naming scheme in  those headers.  Some of  the tasks  that  Pefile  library makes
possible are [104]:

 Inspecting headers 

 Analyzing of sections' data 

 Retrieving embedded data 

 Reading strings from the resources

 Warnings for suspicious and malformed values

 5.4  Experimental implementation and results
The following experiments are done in order to evaluate the performance of the

proposed XLCNN.  The  experiments  mainly  examine  the  effect  of  feed  forward

convolutional neural networks which accept 512 size tensors as input and produce 2048

size tensors as output. As shown in Figure 15 one can observe that sensitivity is a fairly

large fact which suggests that the percentage of false negatives is small. From Τable 6 we

58



observe that out of the total of 283 malwares,  XLCNN successfully recognized 277 of

them while the 6 were erroneously estimated that they are benign files. Respectively, out

of  the  163  benign files  it  successfully  recognized  147  while  16  were  erroneously

estimated that they were malicious files.

Table 6. The results for sensitivity and specificity for XLCNN transformer model

               Desicion
                             XLCNN Transformer

Hypothesis True Hypothesis False

Malware 277 16

Benign 147 6

At  FPR  9.82%,  we  reported  the  recall  or  true  positive  rate  at  97.88%,  the
precision  or  positive  predictive  value  rate  at  94.54%,  F1 score at  96.18%,  AUC at
94.03%, accuracy at 95.07%. Miss rate or false negative rate (FNR) calculated at 9.82%,
specificity or true negative rate (TNR) at 90.18%, miss rate or false negative rate (FNR)
at 2.12%, negative predictive value (NPV) at 96.08% and false discovery rate (FDR) at
5.46% as shown on Table 7.
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Figure 16 shows the process of training the XLCNN for a period of 100 epochs
while Figure 17 shows the process during which the neural network is verified on data
which was not trained to determine the progress of the model. As shown in Figure  16
and Figure 17 the model has a linear increase in performance until the 3rd epoch while
from the  4th  to  the  13th  there  is  no  further  increase,  but  the  performance  remains
constant. From the 14th epoch until the last a logarithmic increase is observed. Note that
during  the  fine-tune  process,  our  model  stores  those  weights  that  have  the  highest
performance  during  the  validation  process  regardless  of  how large  the  percentage  is
during training. XLCNN took just 69 seasons to achieve maximum accuracy of 95.07%.
The red line represents XLCNN’s accuracy and the blue line  represents the loss.
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Figure 18 shows the training of XLCNN this time not depending on the epochs,
but  depending  on  the  repetitions  per  epoch.  Virtually  every  epoch  consists  of  4452
repetitions.  Ιn total  the repetitions  after  100 epochs are 445200. This diagram shows
more clearly the fluctuations of effectiveness during the training.

 5.4.1 Comparison with XLNet
After training for 100 epochs, XLCNN managed to achieve a score of 95.07% in

the testing data set and surpassed the XLNet which achieved a score of 93.49% as shown

in Table 7. We observe the recall of XLCNN is 97.88% clearly higher than that of XLNet

with a percentage  of 96.82%. The false positive ratio  (FPR) of XLCNN is lower by

2.45% while the True Negative Rate (TNR) is a higher, fact that proves that it predicts

malicious files with greater success compared to XLNet. The false negative rate (FNR)

of XLCNN is 1.5% lower and therefore less likely to incorrectly predict a malicious file

as  benign.  XLCNN  predicts  malware  files  with  94.54%  rate  and  benign  files  with

96.08% rate  compared to  XLNet which has a precision rate  of 93.19% and negative

predictive value (NPV) rate of 94.08%. The mistaken rejection of an actually malicious

file (FDR) of XLCNN is 1.34% lower compared with XLNet.  Finally as we can see

XLCNN has f1 score of 96.18% and AUC rate of 94.03%, higher than those of XLNet

which has f1 score of 95.97% and 92.27% AUC rate.
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Table  7. Comparison with state-of-the-art results on the test set between XLCNN and

XLNet

recall FPR TNR FNR precision NPV FDR f1 AUC accuracy

XLCNN 97.88 9.82 90.18 2.12 94.54 96.08 5.46 96.18 94.03 95.07

XLNet 96.82 12.27 87.73 3.18 93.19 94.08 6.80 94.97 92.27 93.49

Note  that  both  the  size  of  the  data  used  as  input  and  the  size  of  the  neural

networks  were  kept  the  same  in  both  models,  so  that  the  final  measurement  is

meritocratic and the effectiveness of one model over the other is decided. This  proves

that the  feed  forward neural network based on  convolutional neural networks is more

efficient than the classic XLNet, while the training time remains the same.
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 6 Epilogue

In  the  present  thesis,  the  techniques  with  which  the  analysis  of  malware  is

achieved were initially mentioned.  Typically, two methods were mentioned in order to

analyze malware. Static and dynamic analysis. Some categories of malware were then

reported, as well as the way in which they can infect a system or an organization, and

also the methods they use to avoid detection by antivirus software. Knowing the types of

malware and the techniques they use both to attack and to avoid detection, a state of the

art  algorithm  was  developed  based  on  the  transformer  models  called  XLCNN.  A

transformer  is  a  deep  learning  model  that  adopts  the  mechanism  of  attention,

differentially weighing the significance of each part of the input data. It is used primarily

in the field of natural language processing (NLP), but in this work it was used to classify

executable files into malicious and bening. In order to achieve such a thing, the attention

mechanisms  were  studied,  which  are  used  for  sequence  modeling.  Finally,  the

architecture of XLCNN was explained and compared to the XLNet model, which was

created by the Google team.

 6.1  Summary and conclusions
In  the  present  thesis,  the  creation  of  the  state-of-the-art  transformer  model

XLCNN proved that the addition of CNNs to the feedforward network in a combination

with Linear Transformation, GELU, Dropout and the Normalization layer offer a higher

success  rate  of  95.07% compared to  the  XLNet model  which  had  a  success  rate  of

93.49%. The same sizes of neural networks were used both in the architecture part and in

the data part, so that there is a meritocratic comparison of the two models. It was decided

that XLCNN was more accurate and we observe after fine-tune procedure, that out of the

total  of  283  malwares,  XLCNN successfully  recognized  277  of  them,  while  the  6

erroneously estimated that they are  benign files. Respectively, XLCNN recognized 147

out of the 163 benign files, while 16 erroneously estimated that they were malicious files.

Τhe analysis of the executable files was based on the metadata they have, which makes

malware  detection  quite  effective  in  combination  with  the  addition  of  the  trained

XLCNN Transofrmer model.
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 6.2  Limits and limitations of research
The  model  according  to  the  results  obtained  could  achieve  an  even  greater

success  rate in  its  prediction,  if  it  had more data  for its  training.  The success of the

XLCNN was determined by its effective classification, while it was trained with a small

amount of data, limitation that we cannot ignore. Another restriction was the size of the

tensors used as input. This limitation has to do with the memory of the graphics card

used to calculate the mathematical operations. The input size was [512 x 1 x 512] and the

output size was [512 x 1 x 2048], i.e. the maximum allowed by the computer. Possibly, if

larger matrix  sizes had been used as input,  the neural  network could stand out more

characteristics to make the classification.  Despite  the limitations  described above, the

experimental  results  have shown that  XLCNN is  on of  the most  effective  model  for

malware detection in terms of Windows executable files compared to those described in

related work section.

 6.3  Future Extensions
The deep learning technique used belongs to the category of supervised learning.

A  future  expansion  could  be  the  creation  of  a  network  to  detect  malware  without

supervision. A deep reinforcement learning algorithm like deep q learning [117] or actor

critic reinforcement learning [118] could be applied, which would take the XLCNN as a

pre-trained model.
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