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Abstract

Entity Resolution (ER) is the process of locating records which represent the same real-world
entity, within a single dataset or across different datasets. ER exists for several years now and
has been evolving constantly, since it has to keep up the pace with the developments in
technology, as well as in the field of data management. All these years, various techniques
have been used for the implementation of the ER process, like blocking, filtering, and
matching, in order to improve its performance and effectiveness. However, ER faces new
challenges in the age of big data analytics we live in, since traditional methods of handling
data have not proved very efficient. Hence, ER in turn must evolve further, so as to adapt to
the modern world of Big Data analytics. In this work we study the ER process, how it is divided
in stages and present popular methods used in each stage. We focus on Blocking techniques
and specifically on Improved Suffix Array Blocking with Bloom Filters. After implementing this
method serially, we study how to apply parallelization, using Apache Spark. We conduct
comparative experiments between the serial and parallel execution, present the results and
examine the significant improvement in efficiency, when the process is executed in parallel.
Our conclusions indicate that ER methods, if applied in a distributed manner, are capable of
handling Big Data.

Keywords: Entity Resolution, Big Data, Blocking, Filtering, Inverted Index, Suffix Array
Blocking, Bloom Filter, parallel execution, Apache Spark, Scala, Java



MepiAnyin

H AweuBétnon Ovrotitwv (Entity Resolution, ER) eival pla Swadikacia pe tnv omoia
gvtonilovrtal eyypadEg, oL onoieg avadEpovral oTnyv 8La ovtoTNTA TOU MPAYUOTIKO KOGLOU,
EVTOC €VOG GUVOAOU 1N LETAEL TTEPLOCOTEPWY CUVOAWV deSopévwy. H AleuBétnon Oviothtwy
UTTAPXEL £6W KaL XpovLa Kal eEeAiooeTal ouveXwS, adol TpEMEeL va cUPBadilel Le TIg eEeAIEeLS
TOOO OTOV XWPO TN Texvoloyiag 6co kal otnv Slaxeipion Sedopévwy. e 6Ao autd Tto
Slaotnua, yla tnv ulomoinon tg cuykekpLpévng dtadikaoiag kattnv BeAtiwon tng anddoaong
KOL TNG OUTOTEAECHATIKOTNTAC TNG, €Xouv XpnolpomolnBel 6ladopeq TEXVIKEG, OTWG
opadomnoinon (blocking), d\tpdapilopa (filtering) | avtiotoixion (matching). Qotoco, n ER
OVTIHETWITI(EL VEEG TIPOKANOELC Ta TeAeutaia xpovia, adol MePLOGOTEPO MAPASOCLAKES
uEBobol, Sev eival kal TO00 AnMoSoTIKEG WG MPOG TNV enetepyaoia peydAlwv dsopévwy (Big
Data). Zuvenwc, kot n AleuBétnon OVToTATWY LIE TN OELPA TNG TIPETEL va e€eALyBel mepeTaipw,
WOTE VO TPOCOPHUOCTEL OTOV GUYXPOVO KOOHO TNG avaAuoncg LeyaAlwv SeSouévwy. I auTh
Vv epyaocia, pehetolpe tnv Sladikacio AleuBétnong Ovrottwy, Ta oTAdla oto omoia
SlapBpwvetal Kol TapouoLld{ov e KAmoLeG SnUodiAeic peBodouc ou XpnoLomoLloUVTaL Ot
KaBe otablo. Eotidlovpe oe TeEXVIKEG opadomoinong Kot el8kd otnv texvikn Suffix Array
Blocking with Bloom Filter. AdoU UAOTIOINOOUUE TNV OUYKEKPLUEVN TEXVIKI OELPLAKA,
peAetolpe mwe Ba edapuocouvpe maparinAomnoinon pe tnv xprion tou Apache Spark.
ALe€AYOUE OUYKPLTIKA TELPAUATO HETOED TNG OELPLAKNG KoL TNG MAPAAANANG eKTEAEGNG TNG
Sladkaoiag, mapousLAlOULE TO AMOTEAECHOTA Kol EEETATOUE TNV ONMAVTLKY BeATiwaon otnv
anodoon, otav n dladwkaocia ektedeital moapdAAnAa. Ta CUUMEPACUATA O UTIOSEKVUOUV
OTL oL puéBodol mou xpnaotuomololvtal otnv AleuBétnon OvIoTATWY, €AV €PAPUOCTOUV HE
£VOV KOTOVEUNMEVO TPOTIO, ELVOL LKAVEG VO SLAXELPLOTOUV peyaha Sedopéval.

Né€eig KAebia: AlcuBétnon Ovrtotntwy, peydla Sedopéva, opadomoinon, ¢Atpdploua,
napdAAnAn enefepyaocia
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1. Introduction

1.1 The Problem

For several years now, the era that followed the rapid evolution of computer systems is
characterized by the development of all kinds of applications and services, aiming at improving
one’s everyday life, in terms of work or personal life (Enterprise Applications, Cloud
Computing, Email, Social Networking, newsfeed, Streaming Services for music or movies etc.).
The global expansion of such services demands the support of huge infrastructures, which end
up bearing countless data volumes, stored, and accessed in many different methods.
Nowadays, the world has reached the point where a significant part of one’s social and
professional activity is carried out through mobile applications or services. More particularly,
anyone can register in several platforms using more than one personal or professional
accounts. This leads to a situation where an individual is referred to by a number of separate
applications in various ways (Bhattacharya & Getoor, 2007). And there is more to it, since the
word individual is not necessarily confined only to humans but may also represent any other
object which constitutes an entity inside an application (organizations, products, brands,
services and so on).

So, in several cases, we come upon datasets where multiple records, and not necessarily
identical, may refer to the same real-world entity (Benjelloun, et al., 2009). This happens
usually when a dataset does not use identifiers for the objects it stores (Bhattacharya &
Getoor, 2007). It also happens when a database originates from the consolidation of smaller
ones, since a real-world entity may be described in various ways across multiple datasets
(Vassilis Christophides, et al., 2015). The problem we have to deal with is the fact that
referencing the same real-world entity in numerous and perhaps distinctive ways is an
indication of information redundancy across different systems or the existence of duplicate
records, in case of a single dataset.

In order to solve this problem, we use Entity Resolution (“ER”), which is the process of
identifying (and sometimes merging) distinct and unrelated descriptors which allegedly
represent the same real-world object. Locating such records, especially when no unique
identifiers have been used in a dataset, is not a simple process, and it requires a bit of
guesswork (Benjelloun, et al., 2009). Ironically, ER itself is known by several names, such as
record linkage, reference reconciliation or deduplication, and although it has a long history
(since 1950s) it still remains active, especially because of the evolution of “Big Data” (Getoor
& Machanavajjhala, 2012).

1.2 Goal of this thesis

Discovering similar records inside datasets has been proved to be a substantial procedure
when it comes to organizations that handle huge data volumes. For example, locating
duplicate records inside a database or consolidating a company’s customer databases
stemming from several subsidiaries. After all, applications have been storing and managing a
large amount of data (structured or unstructured) for years, therefore an application’s



efficiency and performance highly depends on the quality and quantity of its data. Since ER
aims at locating similar records inside a dataset and solves the problem by merging or deleting
them, it can and probably has already become a powerful tool towards data volume reduction
and an increase in data quality.

The goal of this thesis is to prove that if we use parallelization techniques in the
implementation of ER methods, not only can we achieve a significant improvement in the
performance of the process, but also this performance boost comes without any tradeoff
regarding the quality of the results. Specifically, we study blocking techniques and implement
Improved Suffix Array Blocking with Bloom Filters method (Vries, et al., 2011), both serially
and in parallel. Regarding the parallel implementation we use Apache Spark, which performs
exceptionally fast and the results of experimenting on several datasets of various sizes, shows
that ER process shows a remarkable performance on very large datasets. Therefore, if
executed in parallel ER is able to process big data.

1.3 Outline of this thesis

The introductory part of this study presents the circumstances that led to the development of
ER process, its purpose, and the goal of this thesis.

Chapter 2 refers to the theoretical background of ER and presents techniques, used to
implement the stages of the process. The chapter focuses on matching, blocking, and filtering
techniques and presents the most popular of each.

In Chapter 3, Suffix Array Blocking is presented in detail, as well as its improved version, which
is the one we focus in this work. Bloom Filters are also explained.

Chapter 4 contains details of the implementation of Improved Suffix Array Blocking with
Bloom Filters. Apache Spark and the Scala programming language, which are the tools that
are used for the parallel implementation, are presented, also. We explain how this method is
implemented, both serially and in parallel.

Chapter 5 presents the results of the experiments conducted, regarding the performance and
the way each method utilizes the available resources.

In Chapter 6, we present our conclusions on how much performance gain there is, by using
Apache Spark to parallelize ER methods. Some limitations, regarding the experiments, are
mentioned, as well as some interesting matters for future work.



2. Theoretical Background

As its name implies, ER’s scope are entities of the real world. From this point of view, our
attention is drawn to those datasets, where each record represents a real-world entity. An
entity, inside a dataset, is described by the relative record’s set of attributes, which are usually
in the form of <key, value> pairs. Of course, it depends on the storage method each
application uses. Instead of <key, value> pairs, data may be stored in a relational database
(where the equivalent of the key is the column name) or in any other structured or
unstructured form. However, lately, in cases where a large amount of data needs to be
processed, in contrast with more traditional and concrete data models, like the relational, the
world of data has turned to more robust and flexible models such as the attribute-value sets
(Vassilis Christophides, et al., 2015). Intuitively, we could assume that a record’s attributes,
combined together, compose its distinct identifier. From now on we refer to such an identifier,
as entity. For example, regarding a dataset where records contain personal information about
people, an entity could have the form:

e = {id: 0001, lastame: xxxxxxxx, firstname: yyyyyyy, gender: M, ...}

Similarly, we assume that a dataset of records that corresponds to entities, constitutes a
collection of entities.

In relation to our problem, sometimes we come upon the situation where, within a collection
of entities (or across different collections), two distinct entities refer to the same real-world
object. In this case, these entities are considered duplicates and some action must be taken.
ER applies in locating and eliminating duplicate entities:

e within a single entity collection, a case known as deduplication
e across multiple entity collections, a case known as record linkage (Papadakis, et al.,
2019)

2.1 Techniques

The ER process has evolved over the years and the wider the spectrum of applications that
make use of it becomes, the more techniques are employed towards producing more efficient
and accurate results. These techniques are grouped depending on the stage they are used at.
In its basic approach, ER compares entities in order to locate the duplicate ones. This is the
matching stage, and it is carried out by applying a proper similarity algorithm on each pair of
entities. With respect to the range of the entities taken into account, so as to clarify whether
two entities are matching or not, we come upon two approaches:

e Pairwise ER, where the decision to match a pair of entities considers only the two
entities compared, ignoring any common relations to other entities whose
information could affect the result of the comparison (Benjelloun, et al., 2009),
(Getoor & Machanavajjhala, 2012).

e Collective ER, on the other hand, apart from the two entities under comparison,
makes use of information extracted from entities related to the above. Basically,



collective ER goes beyond the limitation of the strict similarity measures by exploiting
the relations between entities and gathering additional information. This way, the
relational evidence may lead to a possible match in cases where a strict similarity
function would fail due to linguistic divergencies (Bhattacharya & Getoor, 2007),
(Vassilis Christophides, et al., 2015).

In this work, we deal with pairwise ER.

The simplest and more obvious method of locating duplicates in a collection of entities (or
across more collections) is to compare each entity with all others, in pairs. However, taking
into consideration the huge size of modern datasets, this brute force approach seems
infeasible due to an excessive number of comparisons, so other techniques come into
consideration. To be able to apply an optimization, first we need to figure out which part of
the brute force solution can be left out of the process. Actually, there is no point in comparing
clearly dissimilar entities (e.g., men to women), so we must find a way of eliminating pointless
comparisons. An effective and quite popular technique, ideal for our purpose, is the blocking
technique, which is incorporated as a new stage, before matching, within the ER process. The
idea of blocking is to group the entities in smaller collections in such a way, that each collection
contains only entities which have a strong possibility of matching. This way no unnecessary
comparisons occur.

Lately, ER process, even if it includes a blocking stage, has also been considered as open to
further improvement, thereby the filtering stage has been introduced. Filtering is a part of the
matching process; its scope is a specific group of entities (produced in the blocking stage) and
it precedes the matching stage. In general, during the filtering stage, an entity, within its block,
is assigned with a subset of matching candidates, filtering out entities that cannot match with
it.

2.2 Matching

As we have already mentioned, records inside a dataset are defined by a set of attributes,
which compose an identifier called entity. ER aims at locating entities that refer to the same
real-world object, therefore it is safe to assume that values of an entity’s attributes, represent
details about the corresponding real-world object. For example, regarding a person, some of
the attributes might be one’s personal information (firstname, lastname, date of birth etc.).
Thus, it would make sense to consider as matching records, those which share the same values
in a significant set of attributes, and this set of attributes must guarantee as much as possible
the uniqueness for each entity. We should point out, though, the fact that not all attributes
need to be compared between entities, because depending on each dataset’s scope, highly
mutable information may be stored as well (e.g.,, work address or product’s order
information). Usually, these comparisons are implemented inside a matching function, which
is adapted to the characteristics of the dataset under examination.

In general, the matching function compares two entities via a carefully selected subset of their
attributes and decides whether they are matching or not. An ideal matching function would
locate all the matching entities inside a collection, but this is not realistic, since entities that



refer to the same real-world entity, due to several reasons (such as different input practices
or synonyms usage), can be slightly or considerably different. Taking this into account, we can
comprehend the fact that, a matching function is actually able to detect only a fraction of the
existing matching entities. On the other hand, the limited number of attributes used for
identification, could result in a number of false matches, a case known as false positives,
because distinct entities may share the same attributes (e.g., it is common for relatives to be
namesakes of each other).

As we have already mentioned, an entity is essentially a dataset record, which represents a
real-world object and is defined by a set of attributes in the form of <key, value> pairs.
Furthermore, a convenient subset of these attributes constitutes a unique identifier for the
entity. Expressing the above formally, let A be a set of attribute names and V be a set of
attribute values. We also consider each dataset as a collection of entities, denoted as €. Then
an entity e; € € can be defined as e; = {(a;,v;)|a; € 4,v; € V} and two entities e;, e; € €
match if they represent the same real-world object (Vassilis Christophides, et al., 2015).

ER’s assignment is the detection of matching entities within a collection of entities or across
two or more collections (Papadakis, et al., 2019). The techniques used to accomplish this are
based on the definition of a boolean matching function M which reviews two entities e;, e; €
€ and decides if they refer to the same real-world entity or not. Therefore, when M(e;, e;) =
true, then e; and e; match, denoted by e; = e; . On the contrary, if M(e;, ej) = false, the
matching function considers that e; and ejrefer to different entities, , denoted by e; # ej
(Papadakis, et al., 2019), (Vassilis Christophides, et al., 2015).

Intuitively, we can assume that two entities can be considered as matching when there is
enough similarity between their equivalent attribute values (Vries, et al., 2011). Hence, the
matching function is essentially a wrapper to the actual entity comparison tool, a similarity
function sim, which calculates at what degree two entities are similar to each other. Similarity
functions, generally, consider various criteria to perform the desired comparisons between
two entities. The final decision depends on a threshold value 8. When the similarity between
two entity profiles e;, ej exceeds the threshold 8, then M(el-, ej) = true, otherwise

M(e;, ;) = false. More formally:

M(e; ) = true, if sim(e;, ¢;) = 0 where e;, e; € £
v false, otherwise v

(Vassilis Christophides, et al., 2015)

The fact that ER covers a large spectrum of applications, many of which use data from various
sources, or the data are characterized by significant heterogeneity, is the main reason why a
strict matching function cannot do the job. That is why the matching function should be able
to detect similar and not strictly identical entity profiles, exploiting the fact that a high value
of similarity between t (leseHwTeiH & Levenshtein, 1965)wo entities implies that they are
likely to match.

(Vassilis Christophides, et al., 2015)

Another significant matter is the effectiveness of the matching function. It could prove to be
quite helpful in terms of finding the most suitable function for an examined dataset. A
matching function’s effectiveness can, in fact, be measured. Several metrics have been
introduced, but we mention only a couple of them. Let P be the set of all the actual matching
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entity pairs and F be the set of the pairs that our matching function detected. Then we can
define the following metrics:

|POF|
[P
|POF]

e  Precision: ar The fraction of the matches identified, (Papadaksis, et al., 2019)

e Recall:

, the fraction of the matches identified

An ideal matching function would detect all existing matches, and nothing more, hence both
the above quotients’ result would be 1 (100%). An effective matching function, on the other
hand, tends to maximize the identified existing matches, while minimizing the false matches.

2.3 Similarity Functions

A similarity function is a real-valued function, and its purpose is to measure how similar two
objects are, in a quantitative manner. Such functions produce a result within a specific range.
Usually, the boundaries of this range correspond to the function’s result when two objects are
identical and the result when two objects are dissimilar, respectively. There exist various
similarity functions, but in this work, we are interested specifically in those which compare
text objects. Such functions may be character based or token based and some of them are
presented, briefly, as follows.

Character based similarity functions, in general, consider the edit operations (Insertion,
Deletion, Substitution) required, so that they can transform one string into another:

e Levenshtein distance (/leBeHwTeiH & Levenshtein, 1965) (Jaro, 1989)
This metric calculates the minimum number of edit operations required to transform
the one string into the other. Edit operations are Insertion, Deletion or Substitution
of a single character and Transposition of two adjacent characters.

e Jaro Similarity (Jaro, 1989)
Let 51, s, be two compared strings of length |s;| and |s,|, respectively, and |c| the
number of common characters between s;and s,. Two characters are considered as

common if they are the same and their positions within the compared strings differ

[max(|521|,|52|)]

no more than — 1. Let also t be the number of transpositions which must

occur, between matching characters being in different positions. Then
c c—t
)

Jaro(sy,s3) = = ((—+ —

3 "4l |52| ¢

Token based similarity functions inspect the set of tokens, which exist within two strings (e.g.

n-length substrings). Let S;,S, be two sets of tokens, derived from each of the two strings
under comparison:

e Jaccard Similarity
This metric compares the number of common tokens, divided by the number of all
unique tokens.
ARARVY

d(S;,S,) = ——————
Jaccard(S,,S5) 15,0 S, ]



e Dice Similarity
This metric compares the number of common tokens, divided by the average number
of tokens per string.
ANEARYY
dice(§,5;) = ————
1S1] + 1521
e Overlap Similarity
This metric compares the number of common tokens, divided by the number of
unique tokens in the smaller set.
[S1 N S|

overlap($1,5,) = Lo e

2.4 Complexity

The naive approach of ER is the brute force approach, where each entity must be compared
to all the others (Figure 1), while searching for possible matches. This results in a quadratic
time complexity process (Papadakis, et al., 2019), a problem which can become even worse
with respect to the size of the examined dataset. Not to mention the fact that the matching
function, itself, is likely to be computationally expensive.

D m |+ o0 |T|lw
J0n || & |0 T |w

-~ =

— PN |

Kk EEIXE Bl rww

3

Figure 1: Naive brute force approach



Whatever optimization method we decide to apply, the goal cannot be simply to cut down
the number of comparisons, and therefore reduce time complexity. Caution needs to be taken
in order to avoid missing a significant number of potential matches. For this reason, we have
to be able to evaluate ER techniques in terms of performance, using the following quantitative
evaluation criteria:

o [Effectiveness: the amount of the actual matches identified
e [fficiency: the computational cost for the identification of the matches (could be
measured by the number of comparisons that took place during the ER process)

Considering the fact that the brute force approach maximizes the effectiveness, since it can
locate all actual matches, but also diminishes efficiency due to the considerably high
computational cost leads us to the estimation that there is a tradeoff between Effectiveness
and Efficiency. Intuitively, as far as ER is concerned, to improve efficiency, we must sacrifice
effectiveness, to some extent. In fact, our realistic purpose is to optimize efficiency at the
lower possible cost of effectiveness.

Consequently, various techniques have been adopted with a view to reduce the
computational cost of the ER process and optimize its performance, while at the same time
trying to minimize any loss in precision, so as to make ER applicable to real world (large)
datasets. The two most popular techniques, and the ones this work examines, are Blocking
and Filtering.

2.5 Blocking

The main reason behind the quadratic complexity of a brute force pairwise ER approach is the
vast number of comparisons, which take place among entities. Hence, the primary goal is the
reduction in comparisons. Of course, the perfect solution would be to examine only the actual
matching entities, but this is not feasible. After all, if we were able to know with certainty
which entity pairs match no action would have to be taken. However, we must be careful in
keeping the matches ratio as high as possible to maintain the credibility of ER process.
Considering the above, it is obvious that the basic idea of blocking is to improve ER efficiency
by diminishing as many as possible of the estimated comparisons, while at the same time keep
the anticipated missed matches at the lowest possible level, so that ER effectiveness is not
adversely affected to a large extend (Papadakis, et al., 2019).

Blocking, basically, distributes entities into separate blocks, based on some preliminary
similarity criteria. Entities that meet the same similarity criteria are considered as possible
matches and they are placed within the same blocks. An entity may be placed in more than
one blocks, depending on whether the applied technique permits it or not. After the
distribution phase is completed, each block contains entities that are likely to be similar. The
most important part, though, is the fact that, entities which have a very low probability of
being a match, do not co-exist within the same blocks. So, when the matching phase is
reached, which is the next step in the ER process, comparisons are performed solely between
entities within the same block (while rather pointless comparisons are avoided).

It is a fact that no ideal blocking algorithm exists, mainly because the data themselves are not
likely to be ideally registered inside datasets. Heterogeneous sources, misspellings, different



input methods, etc. result in further divergence, concerning the similarity criteria. Hence, it is
reasonable to assume that this technique comes to some cost. There is the possibility of
missing some of the existing matches due to the fact that the blocking algorithm might place
two actually similar entities in different blocks. Thus, those two objects are never compared
to each other, a case known as false negative. As a rule, a blocking algorithm is considered
successful if it manages to maintain a decent balance between effectiveness and efficiency.
(Papadakis, et al., 2019)

Up to this day, various blocking methods have been implemented, some of which are the
following:

Standard Blocking (or Traditional Blocking) (Sunter & Fellegi, )

A carefully selected entity attribute (or set of attributes) serves as the blocking key.
Entities that share the exact same blocking key are placed within the same block. This
method is exceptionally accurate considering the potential matches within a block,
due to the strict blocking key policy. However, the slightest misspelling in one of the
blocking key attributes, leads to a missing match.

Suffix Array Blocking (Aizawa & Oyama, 2005)

A carefully selected set of attributes, combined together, constitutes an identifier for
each entity, called a Blocking Key Value (BKV) (Vries, et al., 2011). From each BKV, all
possible suffixes (usually longer than a minimum length value) are generated. Each
distinct suffix servers as a blocking key and all entities with common suffixes deriving
from them, are placed in the same block. It is obvious that each entity is placed in as
many blocks as there are suffixes generated by its BKV. This method is more effective
than Standard Blocking because it is not affected by misspellings in the largest
(starting) part of the BKV. However, misspellings towards the end of the BKV
(especially near the minimum length value character) lead to missed matches.

Q-Grams Blocking (Christen, 2012) (Papadakis, et al., 2015)

In this method, BKVs are constructed according to Suffix Array Blocking, but now, each
BKV generates all possible g-length substrings (e.g., for g = 4, BKV “JohnDoe”
generates 4-grams {John, ohnD, hnDo, nDoe } ). Each distinct g-gram serves as a
blocking key and all entities sharing a g-gram are placed in the same block. This
method is more resilient that Suffix Array Blocking because it is not affected by any
misspellings anywhere across the BKV. It is, however, less efficient due to additional
redundancy and because block sizes are not limited (Papadakis, et al., 2019).

Sorted Neighborhood Blocking (Mauricio A. Hernandez, 1995)

As in Standard Blocking, a proper set of attributes is selected to form the blocking key.
All blocking keys are sorted alphabetically, and the sorting is extended to the
referenced entities. Using a sliding window, of fixed size x, on the sorted entity list, all
the entities within the widow, are compared to the last one in it (Figure 2).
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Figure 2: Sorted Neighborhood Blocking, with Sliding Window

e Sorted Blocks (Draisbach & Naumann, 2011)

Similarly to Sorted Neighborhood, a proper set of attributes is selected to form the
blocking key, and blocking keys and their referenced entities are sorted. Entities are
distributed in blocks according to some prefix of the blocking keys. The comparisons
take place in two stages. During the first stage, all entities within a block are compared
to each other. At the second stage, a sliding window of fixed size begins by including
the last k entities of the current block and the first entity of the next block. Each time
the window slides by one position, towards the next block, all comparisons between
entities of different blocks are performed. The window stops sliding when it reaches
the first k entities of the next block (Figure 3).
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Figure 3: Sorted Blocks with Sliding Window

e Token Blocking (Papadakis, et al., 2011)
In this method, all possible tokens must be generated from all attribute values of each
entity. Every distinct token serves as a blocking key and all entities referenced by a
blocking key are placed within the same block. It is of no significance whether
common tokens between different entities stem from different attributes or not.
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2.6 Filtering

Blocking generates several blocks based on some preliminary similarity criteria (e.g., n-length
prefixes, for texts). ldeally, entities within a collection would be evenly distributed within
blocks, but this is practically infeasible. If, for example, the blocking key is a 4-length prefix,
the size of the derived blocks vary depending on the popularity of the prefix (“inte-“ prefix is
quite common in words, and probably produces a large block, “brut-“, on the other hand, is
not that common, thus a small block arises).

Since blocking techniques aim at improving ER efficiency, the fact that we may end up having
to process blocks with significant differences in size, indicates that block processing times
vary, respectively. So, there is a possibility that the improvement we expected is not achieved,
inthe end. One way to overcome such a setback, is to enforce some constraints, like maximum
block size. While this solution secures the efficiency of ER process at some extent, there are
still a few drawbacks (e.g., what happens with entities that satisfy the same blocking criteria,
but are placed inside different blocks? How much more complex may the blocking algorithm
become?).

A different approach to improve blocking efficiency is to include filtering, as a new stage in
the ER process. Filtering takes place after the blocking process and before the matching phase.
That is why, sometimes it is referred as post-blocking or meta-blocking, and some other times
as initial matching process. Filtering, essentially, performs quick and not that accurate
comparisons between entities within a block, with the purpose of excluding from the
subsequent matching phase entities that are not likely to be a match. For this to succeed, the
filtering key must be, not only different, but also enhanced compared to the blocking key.
Instead of a 4-length prefix (which is the blocking key), for example, filtering could use a 5-
length prefix or a complete word as a key.

Blocking and filtering do not exclude each other from the ER process, but they cooperate
towards improving ER efficiency. In a sense, Blocking performs a grouping in data which incurs
both false positives and false negatives, so effectiveness is slightly affected, while filtering
eliminates true negatives, so efficiency is further improved (Papadakis, et al., 2019).

11



3. Selected Method

The basic approach is the so-called Traditional Blocking. According to this method, some
carefully selected attributes are used separately or in combination to compose the blocking
key. All records that share the exact same key are placed in the same block. While traditional
blocking is remarkably accurate at locating matching records, it bears some serious
disadvantages, especially when large datasets are involved:

e The exact matching condition used to allocate records in blocks, leads us to select a
single attribute or a small subset of attributes as the blocking key components. Also,
the selected attributes are usually the ones considered as somewhat generic (postal
code, gender) and not the highly personalized ones (last name). Even though this
practice aims at raising the matching accuracy rate, it also results in large sized blocks,
therefore in a significantly high number of pairwise comparisons.

e The exact key matching condition is expected to miss record matches due to existing
flaws of any kind within the data (misspellings, errors, missing information etc.).

In this work we study an improved version of Suffix Array Blocking (Aizawa and Oyama [2005]),
a method which deals effectively with the issues of traditional blocking. Suffix Array Blocking
stands out for its speed and performance, though it may raise some questions regarding
accuracy, depending on the datasets and the fields composing the blocking key.

3.1 Suffix Array Blocking

Suffix Array Blocking (Aizawa & Oyama, 2005) follows the steps of traditional blocking in
relation to attribute selection and the composition of the initial blocking key or the BKV.
However, the BKV is not directly used for the distribution of records into blocks. Instead, a
group of additional keys is derived from the BKV to apply partitioning. In fact, the BKV is
analyzed to its suffixes, with character length greater than a predefined minimum length [,,,;,,
and each one of these suffixes serves as the key to a separate block. For example, let there be
a dataset containing personal information (last name, first name, home address, phone) and
after thorough investigation we decide on a blocking key which consists of last name and first
name values. For the initial blocking key value of “JohnThompson” and minimum suffix length
lmin = 4 the suffix array generated contains the values showed in Table I:

Table I: Generated suffixes of minimum length L,,,;,, = 4, from “JohnThompson” BKV

JohnThompson
ohnThompson
hnThompson
nThompson
Thompson
Hompson
Ompson
mpson

pson
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Now, all suffixes generated from each records initial blocking key are then inserted in a central
indexing structure, sorted in alphabetical order. This indexing structure serves as an inverted
index (inverted Indexes are used in cases where values are used to locate keys). Every suffix
has a reference to a record in the dataset. This is the record which generated the
corresponding BKV, the suffix is derived from. An example of such an index, containing suffixes
from initial blocking keys “JohnThompson®, “JohnThomson” and “BartSimpson” is shown in
Table II:

Table Il: Inverted Index structure, sorted alphabetically

artSimpson
BartSimpson
hnThompson
hnThomson
hompson
homson
impson
JohnThompson
JohnThomson
mpson

mpson

mson
nThompson
nThomson
ohnThompson
ohnThomson
ompson
omson

pson

pson
rtSimpson
Simpson
Thompson
Thomson

W NP WW W ELNDNEPENREPDNMNENWEREDNDNERER WONERPRDNDNPRERE WW

tSimpson

Using the Inverted Index structure, we query each suffix (which also serves as the blocking
key), retrieve all its referenced records and group them together within the same block. Now,
each block contains references to the records related to the respective blocking key (suffix).
According to Table I, suffixes “mpson” and “pson” include in the respective blocks both
records that generated “JohnThompson” and “BartSimpson” BKVs. Another important feature
is the fact that each distinct suffix displayed in Table Il, corresponds to a block, therefore a
record (e.g., Bart Simpson) referenced by more than one suffixes, is placed within multiple
blocks. However, this redundancy is something we need.
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Depending on the popularity of each suffix within the examined dataset, blocks might differ
in size, more or less. A maximum block size parameter (L,,,55) is also defined to avoid highly
sized blocks, a situation which may adversely affect efficiency. If the number of records
referenced in a block exceeds the [,,;,s value, then the block must be removed. This is a
necessary precaution to protect the method’s efficiency, since there are some quite popular
suffixes (like -ing) that are expected to generate huge blocks, filled with not so relevant
entities, leading to many unnecessary comparisons.

The l,,,ps parameter along with a careful choice of the l,,;,, value protect the technique’s
efficiency, without risking effectiveness. Besides, blocks defined by low length but rare
suffixes remain valid. At the same time, the information in removed (large) blocks, can still be
retrieved through other blocks, since the multiple suffixes of a blocking key allow a significant
but useful number of redundant blocks.

For instance, let’s examine what happens in a situation with the following BKVs:

biomedical
methodical
paramedical
parodical
periodical
radical
syndical

Let lin =4 and s = 6

Each one of these seven BKVs generates the following identical suffixes: {“ical”, “dical”}

This means that two blocks are created, with “ical” and “dical” as blocking keys respectively,
and these blocks contain seven records, each. Since block size cannot exceed the [,;;,s = 6
limit, these two blocks are eventually purged. However, all the above records continue to
participate in the matching stage, since they are also referenced by other suffixes, that still
remain active as blocking keys.

In general, Suffix Array blocking proves itself to be efficient due to several reasons:

e The potential matching records are grouped into rather small blocks. These blocks
have also a high degree of relevance.

e The Suffix Array blocking algorithm is low in complexity, in contrast to more traditional
methods

e Any value errors that may exist at the beginning of a BKV do not affect the efficiency
of the technique. The corresponding records are placed into a proper block with a
smaller suffix as a key. Thus, any redundancies produced with this method offers a
powerful advantagewith respect to the effectiveness.

o The suffix logic gives us the opportunity to work with attributes combinations in order
to define blocking keys. As a result, the blocks produced are quite smaller than the
ones that would be created by single attribute keys. For example, in a very large
dataset, a key value “John” (first name attribute), probably refers to a lot more
records than a key value “JohnThompson” (first/last name attributes combination).
More important, the records referenced by the latter key have a higher matching
probability than those reference by the former one.
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3.2 Improved Suffix Array Blocking

Nevetheless, Standard Suffix Array Blocking is not a perfect method, and it can reveal its
vulnerabilities under specific conditions, such as the following:

Since the suffixes generated are of length > 1,,,;,,, all the suffixes of a BKV contain the
last l,,in characters of this key. This means that when an error occurs within the last
lmin characters of the BKV (e.g., a spelling mistake), this error is inherited by all
suffixes produced by this specific BKV. Therefore, matching records, whose BKVs differ
due to such an error, do not have any matching suffix, and eventually are placed in
different blocks.

As is already mentioned, blocks containing more than L,,,;,s references to records are
automatically removed from the process. A very important detail we need to keep in
mind, is the fact that each suffix references at least the same number of records with
longer suffixes, generated by the same BKV. Thus, when a suffix of length k is removed
due to block size restrictions, all suffixes of the same BKV with length < k are removed
as well. So far everything seems absolutely normal, however this is a case where the
chances of achieving correct blocking via smaller suffixes may diminish significantly.
More specifically, if a spelling mistake occurs at the beginning of a suffix of length k,
which generates a large block, matching fails since all potential matching suffixes of
length < k, (where the spelling mistake is present) are also excluded.

The improvement proposed by (Vries, et al., 2011) is based on the following:

1. A simple way of overcoming the problem of BKV value errors, which result in the

placement of highly similar records in different blocks, is to group blocks with highly
similar blocking keys (suffixes)
Suffix comparisons, regarding grouping, are performed using Jaro similarity function.
For this action to be efficient we must avoid, in general, an excessive number of
comparisons between BKV suffixes:
a. There is absolutely no point in comparing suffixes produced by the same BKV
(as shown in Table 1, they are remarkably similar but differ only in the leading
character).s
b. The comparisons must be limited only between similar suffixes that are
produced by different BKVs.
Since BKV suffixes are already sorted in the index list (Table 1), suffixes generated by
the same BKV are scattered all through the list.
The applied sorting in the index list (Table 1), has brought most of the similar suffixes
from different BKVs close or next to each other.

Having considered all the above, we can avoid unnecessary and ineffective suffix comparisons
by grouping together blocks defined by suffixes that are neighboring in the index list. This can
be applied with a sliding window technique, according to which suffix comparisons take place
only within each window. The size of the sliding window may vary depending on the dataset’s
specifications. It is important, though, to remember that larger window sizes may offer higher
accuracy, but they can also diminish efficiency at a notable level.
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Therefore, Improved Suffix Array Blocking deals properly with the vulnerabilities of the
standard method, especially when grouping is applied by the sliding window approach. In
most of the cases where some spelling mistake causes slightly different BKVs, some of their
suffixes end up close enough within the ordered inverted index structure, so there is a strong
possibility of them being grouped together. Of course, there are cases where BKVs contain so
many errors, that hardly any suffixes end up close enough to be grouped together. This
probably means that the differences between these records’ attributes are of such extend
that they cannot be matched, anyway.

We should also mention the fact that this technique’s complexity remains low (just like the
Standard Suffix Array blocking technique). Even though the grouping stage is included, it
seems that it does not have a significant effect on the total complexity of the procedure.
Actually, in the worst-case scenario, where:

e The average BKV length is k

e The minimum suffix length [,,s = 1

e The number of records to match one anotherisn
e Every suffix is grouped together

the query time, for a single record, equals O(knlogkn). Of course, if normal datasets are
involved, records are distributed into separate blocks, therefore the query time becomes
O(blogkn) where b value is determined by the quality of the dataset. More potential
matches cause higher b values. (Vries, et al., 2011)

A description of the studied algorithm, where the above procedure is defined, implemented
by (Vries, et al., 2011), is shown in the following Table Ill:

Table Ill: Improved Suffix Array Algorithm

Input:

1. R, and Ry: The sets of records to find matches between
2. j; : Similarity threshold for the suffix comparison function
3. L5 : The minimum suffix length

4. L,ps - The maximum block size

Let II be the inverted index structure used
Let C; be the resulting set of candidates to be used when matching with a record rp;

//Index construction
For record ry; € Ry:

Construct BKV bg; by concatenating key fields
Generate suffixes Qg from bqi where g = {sql, Sq2r- s sqy},
lagi| =¥ = |bgi| — lms + 1and sgj = bgsubstring(|bgi| — s —Jj + 1, |bgi|)
For suffix Sgij € ag;:
Insert s4;; and a reference to r; into I1
//Large Block Removal
For every unique suffix sy into I1 :
If the number of record references paired with s¢ > L :
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Remove all suffix-reference pairs where the suffix is s¢

//Suffix grouping (Improved Suffix Array only)
For each unique suffix sy into I1 (sorted alphabetically):
Compare sy to the previous suffix s, using the chosen comparison function (e.g., Jaro)
If Jaro(sg,sg) > j; : (highly similar)
Group together the suffix-reference pairs corresponding to sy and s, using set
join on the two sets of references

//Querying to gather candidate sets for matching
Forrecordr,; € Ry:
Construct BKV b,,; by concatenating key fields
Generate suffixes Api from bp,- where a,; = {spl, Sp2,-- ,spy},
|apl-| =y= |bp,-| — lps + 1and sy; = by;.substring(|byi| — Lyps —j + 1,
For suffix 5,; € ay;:
Query I1I for a list of record references that match sp;
Add these references to the set C; (no duplicates)

bpi|)

3.3 Bloom Filters

So, with Improved Suffix Array Blocking we have made some progress regarding the reduction
in comparisons between entities which probably do not match. However, a new issue has
come up. Now, in contrast to the traditional blocking, each record’s BKV generates several
suffixes. This means that the inverted index is queried several times for each record that
searches for matching candidates. This can cause some adverse effects on the process, since
the index structure is stored on disk, which makes queries expensive, and especially when no
results are returned, all this disk reading work is done in vain.

Generally, it is a fact that querying a dataset stored on disk, even if it is done only to check the
existence of a record, comes to a cost. Then, when we just want to test a record’s existence
within a dataset, maybe we should look for a faster and a less expensive technique, one that
does not have to query the dataset itself. Like having a checklist with guests, so when a guest
arrives his name is checked before entering the building. This way we always know who are
inside the building, just by checking the list. We do not have to shout names and expect
someone inside to respond. This is where Bloom filters come of use.

A Bloom filter (Bloom Burton, 1970) is basically a data structure, organized in such a way that
it can test whether an element exists in a collection of data or not. Although the conclusion is
based on probability theories, the process proves to be remarkably reliable. A Bloom filter
requires an array of bits, which serves as index for the elements stored in a collection. At first,
while the collection is still empty, all bits within the array are initialized to zero (0) value. Every
time an element is added to the collection, k hash functions with range equal to the array size
are applied to its value (usually its string representation or in our case its BKV). All these
functions return a value which points to a position inside the array of bits and, so the
respective bit’s value is turned to one (1) (Figure 4). This is the indexing phase of the process.
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Figure 4: Bloom Filter implementation using k hash functions (Vries, et al., 2011)

There is, however, an alternative implementation which makes use of a single hash function
with the addition of a random number generator. Instead of k hash functions to an elements
BKV, only one hash function is applied, and the result is used as the seed for the random
generator in order to generate k random numbers, which point to k positions inside the array
of bits (Figure 5).
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Figure 5: Bloom Filter implementation using one hash function
and a random number generator (Vries, et al., 2011)

When we want to retrieve an element’s information, before querying the collection we check
if this element is inside it. The Bloom filter applies the proper hash functions on the examined
element’s value and compares the results with the bit values in the respective positions inside
the array. If, and only if, all these bits have a value of one, then there is a high probability that
this element is within the collection, therefore we can proceed by performing the query.
Instead, when at least one bit has a value of zero, we are a hundred percent certain that the
element is not present inside the collection, hence any query performed would be a lost cause.
From the above, we can conclude that the Bloom filter process eliminates false negatives,
while it is prone to false positives. However, even if a falsely positive outcome results in a
useless query on the dataset, the total process’ cost is raised to a reasonable extent and that
is outweighed by the true negative results, which saves us the cost of not proceeding queries
(Vries, et al., 2011).

Let n be the number of bits the Bloom filter array consists of and k the number of hash
functions used. If n is the number of distinct elements inserted into the dataset, and therefore
have invoked relative updates in the Bloom filter array, the probability  of a specific bit in this
array to be set to 1 is given as follows:

kn
r= (1 - l) ~ e~kn/m (Bloom Burton, 1970)

m

and the false positive rate p of the Bloom filter is:

L\kn K K
p= (1— (1— ;) ) z(l— e m) = (1—r)¥ (Bloom Burton, 1970)
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4. Implementation Issues

In this work we aim at applying some modern techniques in order to make the algorithm in
Table Ill more efficient. The anticipated performance boost can be achieved with
parallelization, as when data are processed in parallel, they are distributed across different
processing units (e.g., nodes of a cluster), reducing the time needed for the operations on the
data to complete. So Improved Suffix Array Blocking with Bloom Filters algorithm is
implemented both serially and in parallel, in order to conduct some comparative tests and
demonstrate how different the two implementations are, in terms of performance. Regarding
our parallel implementation of the Improved Suffix Array Blocking process, we create a Spark
application written in Scala, while for the serial implementation, the application is written in
Java.

4.1 Apache Spark
4.1.1 What is Apache Spark

One of the most popular frameworks for processing Big Data and the one we are using to
perform our tests on Blocking and Filtering, in parallel, is Apache Spark. To understand what
itis and how it came to life we need to make a historical review. When we refer to the efficient
managing and processing of high volumes of data, a typical example that comes to our mind
is search engines. Search engines, today, attain such speed regarding indexing and searching
within data across the web, that once seemed inconceivable.

Specifically, one of the most powerful and efficient search engines is the one used by Google.
It searches and indexes data in such a scale, that traditional tools, like relational database
management systems or conventional storage systems are unable to handle. To accomplish
this, Google developed its own arsenal of Big Data tools:

1. Google File System (GFS)
This is an enhanced distributed file system, also fault-tolerant, able to handle large
amounts of data

2. Bigtable
This is a distributed system, built on GFS, to handle the storage of semi-structured
data, and it can scale to a very large extent

3. MapReduce (MR)
This is a framework, that offers programmers the opportunity to write relatively
simple programs that handle reliably and in-parallel huge volume of distributed data
across GFS or Bigtable. An MR application, essentially, exploits the MR system, so that
the part of the program responsible for complex computations on the data is executed
directly on the location of the data. This way, data distributed over the network is
minimal, hence MR benefits significantly in terms of performance improvement. A
simple description of an MR process is the following. Since large datasets are not
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stored in a single location but are spread across clusters, MR uses cluster workers
which take over the process of computations in an aggregate way. At the same time,
the results of these computations are written to a file, also somewhere within the
distributed file system, and is directly accessible to the MR application.

Google, by publishing three whitepapers, regarding the above technologies (“Google File
System” (Ghemawat, et al., ), “MapReduce: Simplified data processing on large clusters”
(Dean & Ghemawat, 2004) and “Bigtable: a distributed storage system for structured data”
(Chang, et al., 2006)), inspired the development of Hadoop file system (HDFS), which became
after some time part of a complete framework, known as Apache Hadoop. Apache Hadoop’s
purpose (like Google’s tools) is to make available several tools that allow simple programs to
handle and process, in a distributed manner, exceptionally large sets of data, across clusters
of computers.

Despite its initial impact, Hadoop gradually begun to lose ground for a number of reasons. It
seemed a bit difficult to handle, its MR API felt annoyingly verbose, it demanded a lot of setup
code, but mostly, consecutive MR jobs required the intermediate computation results to be
written to local disks, causing serious performance issues, due to heavy disk 1/0. At the same
time, new trends in Big Data world, like Machine Learning or Streaming, lead to the
development of a new set of tools for Hadoop (Apache Hive, Apache Storm, Giraph and
others), so that these new workloads could be handled. Nevertheless, this was not enough
and new ways of improving Hadoop and MR were examined (Jules S. Damji, Brooke Wenig,
Tathagata Das, Denny Lee, 2020).

This new challenge was undertaken by researchers who had already worked on Hadoop
MapReduce and after a while project Spark came to life. Simply put, Spark had to be simpler,
faster and easier than Hadoop MR, hence its development focused on system enhancement
regarding the following:

e High fault tolerance

e Parallel in an exceptionally large extent

e In-Memory storage for intermediate results between consecutive computations
e APIs in multiple languages

e Support for other workloads

According to Apache, Spark is an open-source unified analytics engine, designed for large scale
data processing (https://spark.apache.org/, n.d.). It includes a number of libraries for Machine
Learning (MLLib), SQL for interactive queries (SparkSQL), stream processing for interacting
with real-time data (Spark Srtream) and graph processing. Some of its distinctive features are
the following:

e Spark accomplishes high speed by fully exploiting the latest years’ hardware
development. On the one hand multicore CPUs facilitate multithreading and parallel
processing, while on the other hand the availability of hundreds of gigabytes of
memory, helps in preserving intermediate computation results in memory, instead of
writing them on disks.

e Spark offers simplicity in programming applications, mainly by providing developers
with its fundamental data structure, the so called Resilient Distributed Document
(RDD), a fault-tolerant collection of records managed in-parallel. Even more, several
types of data structures may derive from an RDD, serving any kind of requirements.
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Also, there is a quite sufficient number of operations that can be applied on these
data structures, known as transformations or actions and they are available in many
programming languages.

e Spark is able to read data from any external source available, so its mechanism is
mainly focused on computations, which are performed in-parallel and in-memory,
making the process particularly fast.

4.1.2 How it works

Apache Spark is fast and resilient. It can perform computations in a large amount of data,
accomplishing both high speed and data consistency. But, beyond contemporary hardware
improvement (CPUs, memory, multithreading, ...) it is all about how to benefit from this by
dividing the whole process in tasks and coordinating them optimally. Spark engine consists of
some key components which work in a synergistic manner on a cluster of computers, to
achieve distributed processing.

Stage 112 Stage 113 Stage 114 Stage 115
parallelize parallelize Exchange Exchange Exchange

maplPartitions mapPartitiofls

Adgregate

mapPartitions

Exchange

4

Figure 6: Spark’s example of a Directed Acyclic Graph (DAG)

Spark makes use of the so called Directed Acyclic Graph (DAG). DAG contains many vertices
which represent a stage or a task and edges that connect each vertex with the next in line,
depending on the execution schedule (Figure 6). Since every Spark program includes a number
of query computations, DAG scheduler and query optimizer generate a proper computational
graph that can be broken into tasks in such a way, that they can be executed in parallel. So, if
this program is executed on a cluster of computers, these tasks can be distributed across
computers that play the worker role. However, for this to work, data must also be distributed
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across cluster nodes and Spark has an exceptionally efficient and resilient way of partitioning
data. In addition, Spark’s execution engine which improves memory and CPU usage for Spark
applications, as well as the fact that all intermediate computation results are kept in memory,
enhance its performance, remarkably.

In order to take advantage of Spark, an appropriate application must be created. A Spark
Application is based on Spark APls and is distinguished in two main parts, the driver program,
and the executors. To be able to access Spark functionality, an application needs some sort of
intermediary object, which in our case is a Spark Session object, created inside the driver
program. Then Spark reorganizes the application and generates a number of Jobs, which
basically are computations that can be analyzed further into Tasks and therefore are organized
into a DAG. Some of the job tasks can be executed in parallel, while others must follow a serial
execution plan, thus Spark organizes job operations in Stages. So, in a nutshell, a Spark
Application, through its Driver Program, gains access into Spark APIs, obtaining the
functionality of analyzing the program, acknowledging the necessary transformations,
creating the proper Jobs, which, in turn, are organized into Stages comprising of Tasks (Figure
7). (Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee, 2020)
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Figure 7: Spark Driver creating Jobs, Jobs creating Stages and Stages creating Tasks
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4.1.3 Spark’s Distributed Architecture

So, to put it simply, if we want to process a large amount of data, all we need to do is create
an uncomplicated program that performs some tasks upon the data, and then we let Spark
decide how to distribute these tasks among a cluster of computers, effectively and quickly
(Kane, Frank, 2017). To understand how this works we must take a look at the individual
components which constitute Spark’s distributed architecture.

The simple script we write (in Scala, Python or Java) is, actually, the Driver Program, and inside
the driver program reside the Spark Driver and the Spark Session. Another important
component is the Cluster Manager (Hadoop, Yarn, Kubernetes, Standalone Spark Cluster),
which serves as an orchestrator system. Cluster Manager is responsible for managing the
hardware resources and distributing the work properly. Its purpose is to find out where all
those different jobs must be assigned, in order to achieve the optimal result. And finally, there
are the Spark executors, which run on the cluster worker nodes and ensure that tasks are
executed, as scheduled.

Spark Application
Driver Program
(Spark Session)

Cluster
Manager

Spark Spark
Executor @ rrsnnsnnsnmnnmnnnnp Executor

Figure 8: Spark’s distributed architecture (Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee, 2020)

All the above components (Driver Program, Cluster Manager, Executors) are in constant
communication with each other. The Driver Program addresses the Cluster Manger but also
directly the executors. The Cluster Manager communicates with everyone, decides what to
run, where and when and gathers the partial results composing the final result. Finally,
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Executors talk to each other, so they remain synchronized. (Jules S. Damji, Brooke Wenig,
Tathagata Das, Denny Lee, 2020) (Kane, Frank, 2017).

4.1.4 Spark RDDs, DataFrames and Datasets

As mentioned previously, Spark breaks down an application in smaller units, that can be
executed in parallel. A specific computation, for example, on a dataset is assigned to a Stage
and the Stage, depending on the number of data partitions, assigns the computation on each
partition, to a Task. Eventually, a Task is a computation applied on a single partition of data,
and when all Tasks of a Stage are completed, then we can assume that the specific
computation, the stage has undertaken, has completed. In order for this to proceed, the data
must be in a distributable and resilient form.

RDD (Resilient Distributed Dataset) is the main abstraction (more particularly, a distributed
memory abstraction), provided by Spark. It is a collection of elements of data, it is immutable
and can be distributed across cluster nodes and be processed in parallel. In fact, distribution
and parallelization is the reason of the immutability of Spark data components. Immutable
data can be partitioned safely and easily since they exclude concurrent modifications via
multiple threads.

There are two types of operations that can be applied on an RDD. Transformations and
Actions. A transformation is the operation of generating a new dataset, by applying some
modifications or computations to another one (e.g., applying a map function on an RDD,
creates a new RDD). An action is the operation of returning the result of some computations
on an RDD, to the driver program (e.g., collect the results of a transformation). We should
point out the fact that an action call is what triggers the execution of transformations.

RDDs are recomputed every time they are called, so in a way, they are more of a set of
directions on how to transform data, than transformed data themselves. However, in cases
where multiple transformations may occur on the same dataset, Spark offers the option of
caching and persisting an RDD in memory, in order to be used efficiently for parallel
operations. (https://spark.apache.org/, n.d.)

DataFrames are also immutable and distributed data collections, but they are organized in
schemas, have named columns, as well as a definite data type for each column. One could say
that a DataFrame resembles a database table. This structural form of data offers many
conveniences on managing and operating on Spark’s DataFrames. Datasets, on the other
hand, are strongly typed immutable and distributed data collections. A DataFrame is
practically an untyped view of a Dataset (Dataset of Rows). Operations like transformations
and actions are available on Datasets and DataFrames. As in RDDs, an action must be called
to invoke the corresponding transformation (Jules S. Damji, Brooke Wenig, Tathagata Das,
Denny Lee, 2020).
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4.2 Scala

Scala is an object oriented as well as a functional programming language. Its development
started in 2001 in Lausanne, Switzerland by Martin Odersky and became publicly available in
2004. It has evolved significantly since then, and over the last years it grows in popularity. Its
name stems from the phrase Scalable Language, and this is due to the fact that it was
designed, from the beginning in manner of scaling up according to the programmer’s needs.
As a functional programming language, it offers the advantage of creating powerful programs
from simple components and it is suitable for writing small scripts to perform some individual
tasks. On the other hand, as an object-oriented language, it proves convenient for larger
systems construction. It interoperates seamlessly with Java, since it runs on the Java platform,
and can exploit all Java libraries (Martin Odersky, Lex Spoon, Bill Venners, 2011).

Scala’s syntax is rather compact and resembles that of Ruby or Python (No semicolons or type
annotations). Many of Scala’s components are library abstractions, providing the programmer
the ability to extend and adapt them according to her demands. It may not offer all possible
constructs one might need; however, it offers all the necessary tools to crate them. For
example, the interoperability with Java, combined with Scala’s adaptive philosophy, allow the
construction of new Scala objects by wrapping Java classes (Martin Odersky, Lex Spoon, Bill
Venners, 2011).

Scalais a pure object-oriented language. Every value that is created within a program is indeed
an object and every operation performed is an object’s method call. This is somehow different
from other object-oriented languages, where primitive values, for instance, are not objects
themselves or static methods that do not belong to any object are permitted.

Being, also, a fully functional language, Scala has the following properties:

e Functions are values of the same status

e Functions can be passed as arguments to other functions

e Functions can return other functions as a result

e Functions can be nested

e Functions can be anonymous

e Scala encourages immutability, which makes it ideal for programs executed in parallel

Since Apache Spark is itself written in Scala, this is something we have considered, in order to
decide which programming language, we are using for the parallel implementation. Choosing
Scala for Spark Application offers us a somewhat better performance, but not in a huge
degree. There are indeed some key differences between Java and Scala, but since they both
run on JVM, their performance cannot be that different. Besides, Scala is designed to be
interoperable with Java and can use any Java library or framework, because of the JVM. Some
of the differences between Java and Scala are the following:

e Javarequires longer lines of code, as well as a lot of boilerplate code.

e Java on the other hand, because of the detailed, code is less complex than Scala.

e Scala is a functional programming language and in fact it was designed as one, while
Java introduced functional programming in version 8.

e Scala enforces code in animmutable manner, which makes easier to apply parallelism.
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Nevertheless, as a general assumption, Scala is faster than Java and this is probably due to the
fact that Scala is compiled into bytecode faster than Java. Scala’s significantly better
performance though, comes when we are dealing with parallel execution, so regarding a Spark
application, the Scala language obviously has the advantage, over Java, in terms of both
performance and ease of syntax.

4.3 Implementations

In this work, we focus on Data Linkage, the situation where we bring together data from
different sources creating a more complete dataset. However, for this dataset to be
functional, we have to match records between the separate ones. So, we create matching
blocks following the Improved Suffix Array Blocking procedure. We may consider that two
separate datasets need to be consolidated, the reference dataset, and the linkage dataset.

The algorithm distinct stages are the following:

1. Index Construction

e Read the reference dataset.

e For every record, create a Blocking Key Value (BKV) by concatenating the

predefined record fields.

e Then, for every BKV generate all possible suffixes, longer than minimum suffix

length value.

e Create Inverted Index structure, by inserting every suffix and a reference to

the record it derives from.
2. Large Block Removal
For every unique suffix within the Inverted Index Structure, if the referenced records
are more than the maximum block size value, remove the suffix and all its references.
3. Suffix Grouping.
e Sort Inverted Index structure and check If adjacent suffixes are similar
(according to Jaro Similarity method and a predefined similarity threshold).

e If so, then merge records referenced by similar suffixes in the same block.
However, there is some ambiguity on how to handle this stage. For example, let x, vy,
and z be three consecutive suffixes within a sorted Inverted Index. Similarity
comparison is performed between x-y and y-z suffixes. Now, we can approach this
situation in two ways:

a. Comparisons (x, y) and (y, z) are handled completely independently, that is if

x-y blocks are merged and y-z blocks are also merged, elements of block x and
elements of block z do not exist in common blocks.

b. If comparison (x, y) results in merging x-y blocks, then the new xy block is the

only one referenced by both x and y suffixes, so the next comparison between
y and z suffixes (if found similar), end up merging block xy with block z. In the
end if x is similar to y and y is similar to z, all elements from blocks x, y, z end
up in the same block.
In this work we have followed the second approach (b).
4. Create and fill out the Bloom Filter with the Inverted Index keys (suffixes)
5. Query Inverted Index for candidate sets for matching.
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e Read the linkage dataset, and for each record, create a Blocking Key Value
(BKV) by concatenating the predefined record fields.

e For every BKV generate all possible suffixes, longer than minimum suffix
length value.

e For every suffix, query the Bloom Filter, and if there is a positive response,
query the Inverted Index, get the list of referenced records by this suffix and
create a matching set for the currently examined linkage record.
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Figure 9: Overall Improved Suffix Array Blocking approach
with the addition of a Bloom Filter (Vries, et al., 2011)

4.4 Serial Implementation

Our implementation for the serial execution of the Improved Suffix Array Blocking process is
a program written in Java. Also, because in this work we study the possible advantages of
parallelizing ER methods for Big Data, even though our experimental datasets do not have the
size to be considered Big Data, our implementation must follow the plan of dealing with Big
Data. Therefore, we cannot, for example, load the whole dataset in a Java ArrayList, because
depending on the data volume and the available hardware resources, this approach may cause
corresponding exceptions. Instead, we keep the data in a storage system.

In this case, we store our datasets in a PostgreSQL relational database and we use the
following tables:

e Atable for the reference dataset.

e Atable for the linkage dataset.

e Atable for the temporary version of the Inverted Index, before the grouping stage. In
this table, each suffix is related to the BKV and the record, it is derived from.
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e A table for the Inverted Index, after the grouping stage. In this table, each suffix is
related to the record, it is derived from, but also to a block number.

e A table to store matching blocks. In this table, each record is related to a block, and
records from the linkage dataset are also stored here. In the Matching phase (not
implemented in this work) records associated with the same block are checked if they
refer to the same real-world entity.

We enhance query performance by adding indexes where it seems necessary.
The algorithm stages, adjusted accordingly for the Java implementation, become as follows:

1. Connect to database and start reading data from the reference dataset table. For each
record:
a. Concatenate predefined fields to construct BKV.
b. Generate all possible suffixes from BKV.
c. Store each suffix with a reference to the BKV and the record id it is derived
from in the temporary inverted index table.

2. Countreferences for each suffix within the temporary inverted index table and if more
than maximum block size value is found, delete all corresponding suffix — records
references.

3. Read from (sorted by suffix) the temporary inverted index table and compare each
record (current) to the previous one, performing a similarity check on suffix field. The
comparison takes place only if suffixes differ and were generated from different BKVs.
If suffixes are found similar, then all current records are updated to refer to the same
block as the previous suffix.

4. Fill out the Bloom Filter with suffixes from the Inverted Index table.

5. Read data from the linkage dataset table. For each record:

a. Concatenate predefined fields to construct BKV

b. Generate all possible suffixes from the BKV

c. For each suffix, query the Bloom Filter. If a positive response is given, then
query the Inverted Index table and collect the referenced records, creating a
group of possible matches for this linkage record.

4.5 Parallel Implementation

According to the description of the implemented algorithm (Table llI), this blocking method
is configured to be applied to a record linkage case, such as when we want to consolidate
two different datasets. The first part of the algorithm, essentially, creates an index after
processing all the data inside a specific and finalized dataset, the so-called reference dataset.
Consequently, it is safe to assume that we are dealing with an immutable dataset and an
immutable index. Likewise, the linkage dataset (the one that performs the queries on the
index) is also finalized and apparently also immutable. Since immutable data simplify parallel
processing, this algorithm is quite suitable for parallel implementation.

Regarding the potentially very large datasets, in the parallel approach, we manage things quite
differently than in the serial implementation. Spark handles hardware inadequacies in a very
efficient manner. In fact, there are no memory limits. According to Apache Spark, processed
data that do not fit in memory, are spilled to disk. Even cached datasets, when they exceed
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memory limits either they can be saved to disk or Spark may recompute them on the fly
(https://spark.apache.org/, n.d.). So, for the parallel implementation, we use the database,
only to read the input and store the output data. In the meantime, we are using Spark
Datasets.

Accordingly, the algorithm stages for the Spark Scala implementation become as follows:

ok wnNE

8.
9.

10.
11.
12.

13.

Connect to database and load input data in a Dataset.

Transformation(s): Concatenate predefined fields to construct BKVs.
Transformation(s): Generate all possible suffixes from each BKV.

Transformation(s): Create the temporary indexing structure.

Transformation(s): Create the Inverted Index after removing large blocks.
Transformation(s): Create the final Inverted Index structure after merging blocks,
referenced by similar suffixes.

Create and fill out the Bloom Filter, from the final Inverted Index

Connect to database and load linkage data in a Dataset.

Transformation(s): Concatenate predefined fields to construct linkage BKVs.
Transformation(s): Generate all possible suffixes from each linkage BKV.
Transformation(s): Select only linkage suffixes that seem to exist in the Bloom Filter
Transformation(s): Create matching blocks by joining linkage suffixes to the Inverted
Index

Store matching blocks in the database

Some helpful details:

Every step of the process may include more than one transformation.
Every step of the process, generates one or more Datasets, structured properly, so
that next step’ s transformations are as simple as possible.
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5. Experiments

In our experiments, we aim at studying the differences between execution in parallel of
Improved Suffix Array Blocking, enhanced with Bloom Filters (Figure 9), and serial execution.
Measurements are taken upon the time needed for the process to be completed, as a whole,
as well as individually for every step of the process. We should point out that our
measurements are used to demonstrate any improvement concerning only the performance
of the process. Besides, the algorithm is implemented as is, so its effectiveness is not affected.
If we study the Improved Suffix Array Blocking (with Bloom Filter) algorithm, as described in
the previous sections, we can see that it can be split in separate stages, which are considered
as distinct sub processes. These sub processes are used to carry out measurements for the
partial comparisons.

As input data, synthetic datasets are used in the experiments, which have been generated by
the Febrl tool, with its default settings (Christen, 2008). To compare parallel and serial
performance of the selected method and the scalability of each, we need to compare the
results after experimenting with a variety of dataset sizes. More particularly, we have
generated 6 datasets of different size:

1. 5k dataset: 2.000 original records and 3.000 duplicates, with a maximum of 5
duplicates for each original record

2. 25k dataset: 10.000 original records and 15.000 duplicates, with a maximum of 5
duplicates for each original record

3. 50k dataset: 20.000 original records and 30.000 duplicates, with a maximum of 5
duplicates for each original record

4. 125k dataset: 50.000 original records and 75.000 duplicates, with a maximum of 5
duplicates for each original record

5. 250k dataset: 100.000 original records and 150.000 duplicates, with a maximum of 5
duplicates for each original record

6. 500k dataset: 200.000 original records and 300.000 duplicates, with a maximum of 5
duplicates for each original record

These datasets consist of data representing people and the data is structured in the specified
columns:

e rec_id

e culture

® sex

e age

e date_of_birth
o title

e given_name
® surname

e state

e suburb

e postcode
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e street_number

e address_1

e address_2

e phone_number
e soc_sec_id

e blocking_number
e family_role

Our Improved Suffix Array setup is as follows:

1. Minimum suffix length, l,;,;, = 6
2. Maximum block size, l,,,s = 12
3. BKVis composed by fields {surname, given_name}, in this specific order

Hardware specifications:

e CPU: Ryzen 5 3600XT (12 Logical Processors)
e RAM: 16GB, 3200MHz
e Disk: M.2 NVMe, PCl Express 3.0

Our database server is a local PostgreSQL Server (v.14)
Improved Suffix Array with Bloom Filters process can be represented in a form of stages:

1. Stage 1: Read data, construct BKVS and generate suffixes, forming the first version of
the Inverted Index, then remove large blocks (removing blocks turned out to be a
rather fast task and should not be evaluated separately)

2. Stage 2: Merge blocks

3. Stage 3: Read duplicate dataset and create matching blocks for each duplicate record

In order to be able to draw more accurate conclusions, apart from the overall process, we also
measure the former stages separately.

5.1 Serial Execution vs Parallel Execution

In this section we present the results of serial and parallel execution of the Improved Suffix
Array Blocking (with a Bloom Filter) process. Results for both implementations per stage are
compared separately in addition to the overall process for all six generated datasets.
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5.1.1 Stage 1

Create Inverted Index and remove large blocks
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Figure 10: Stage 1 - Comparative performance graph
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We first present results from Stage 1 of the process, that is: Read data — Construct BKVs —
Generate suffixes — Build Inverted Index — Remove large blocks — Merge Blocks by similar

suffixes.

We can see in Figure 10 that both serial and parallel implementations, show an increasing
trend, regarding the execution time, according to the size of the dataset. However, we can
focus on some interesting observations:

e For smaller datasets (5k, 25k, 50k), serial execution is faster (this is confirmed by
carrying out the experiment, repeatedly). This could be an indication that distributed
processing techniques may not be suitable for a limited size of data. This is not very
strange though. Spark needs to do some work, under the hood, so the program can
run in parallel (data division, store information about the divided data, decide where
each data will be routed, collect results, recombine data, etc.) and this work takes

some time. So, this amount of time can be quite noticeable when data processing
completes very fast (in case of small datasets), but can be nullified, when data needs
more time to be processed (very large datasets).

e Parallel implementation has a smoother increasing trend than the serial.

e For larger datasets, serial implementation shows a quite sharp upward trend

33



5.1.2 Stage 2

Block Merging Stage
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Figure 11: Stage 2 - Comparative performance graph

For Stage 2 that refers to merging blocks by similar suffixes, as we can see in Figure 11, the
performed tasks are incredibly faster when executed in parallel and the difference in
performance increases remarkably as the dataset size grows larger (even up to 30 times
faster). This is a case where Apache Spark shows its potential very clearly. In fact, there is a
quite logical explanation of what happens here:

e In the serial implementation, all data produced during intermediate calculations are
stored (and therefore queried) in the database.

e Spark, on the other hand, stores all data coming from intermediate calculations in
memory (and if memory is insufficient, it stores them locally on disk) and performs no
query or transaction to the database. Simultaneously, Spark distributes tasks across
cluster nodes, gaining even more in speed.

e During this stage, Spark remains faster, even with smaller datasets.

It seems that the traditional two-tier approach, where a client application performs a large
number of transactions and queries in a database, while executing a job, no matter how
satisfactory the execution time is, based on conventional criteria, has a hard time keeping up
with a modern distributed approach.
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5.1.3 Stage 3

Matching Blocks for Data Linkage Stage
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Figure 12: Stage 3 - Comparative performance graph

For Stage 3, Read duplicates dataset — Query Bloom Filter and Inverted Index — Create
matching blocks, even though, at first glance, it seems that difference in speed between the
two methods is similar to stage 2, a closer look in Figure 12 provides us with some interesting
details:

e First, the difference in performance increases at a very large extend as the dataset
size grows larger, like in stage 2

e Asin Stage 1, Spark shows similar behavior when processing small datasets. Except
from the fact that in the 5k dataset, serial application performs better, we notice that
for datasets 5k, 15k and 50k execution time increases, until the 125k dataset, when
execution is reduced remarkably, even lower than execution time the smallest
dataset.

It is obvious that the larger the dataset the better the performance gains, when parallel
processing techniques like Spark applications, are recruited.
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5.1.4 Overall Process

Improved Suffix Array Blocking with Bloom Filters - Total time
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Figure 13: Overall Process comparative performance graph

By studying Figure 1, where the overall performance of the two methods is displayed, we can
see everything we noticed by analyzing the results of the individual stages:

A small advantage of Java application over Spark in quite small datasets.

Spark’s different behavior with smaller datasets and a boost in performance as
datasets grow larger

The enormous difference in performance, between the two methods, regarding very
large datasets

It would be helpful to do some calculations and view the difference in performance in a more
quantitative approach. The Spark application compared to the Java application is:

~2 times slower, regarding the 5k dataset (the smallest)
~2 times faster, regarding the 25k dataset

~3 times faster, regarding the 50k dataset

~7 times faster, regarding the 125k dataset

~9 times faster, regarding the 250k dataset

~11 times faster, regarding the 125k dataset

As far as Spark’s performance with small datasets is concerned, the problem occurs in Stages
1 and 3. Considering the fact that at the beginning of the process (which is included in stage
1) Spark does all the necessary work to organize data distribution across nodes and parallel
execution, while at the end of the process (included in stage 3) Spark collects results from all
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the nodes and recombines datasets, our assumption of the reasons for this reduced
performance, mentioned at Stage 1 analysis, seems logical.

5.2 Resources Usage

Another interesting view of the execution process is how each method exploits the available
resources. How is the load shared across logical processors and how memory is utilized.

By observing Figure 14 and Figure 15 we are able to notice that while CPU has a lot of
resources available, the Java application cannot exploit them because it is designed to run
serially. Therefore, it utilizes only of a small percentage of the available CPU (< 18%).
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Figure 14: Serial Execution - CPU Utilization

Have in mind that this snapshot is taken at the most demanding part of the execution process,
Stage 3 (linking data and creating matching blocks), where the application is performing
gueries and transactions on the database, so most of the CPU is used by the database server
(Figure 15).

175 Task Manager - O X
File Options  View
Processes Performance App history Startup Users Details Services
Y 19% 60% 8% 0% 2%
MName tatus CPU IMemory Digl Network GPU | GPU em
[ [5] PostgreSQL Server 7,6% 29MB B,hDMbps 0%
[ Client Server Runtime Process 39% 0,7MB 0% 0 Mbps 1,9% GPUOD
@ s () 25%  3109MB 0,1% 0 Mbps 0% GPUD
1F Task Manager 16% 26,1 MB 0% 0 Mbps 0%
% eclipse.exe (2) 14% 940,5 MB 0% 0 Mbps 0%
[5] Desktop Window Manager 0,6% 40,0 MB 0% 0 Mbps 03% GPUD
1 Windows Explorer (2) 03% 3,8MB 0% 0 Mbps 0%
% Snipping Tool 0,3% 10,6 MB 0% 0 Mbps 0%
[27] System interrupts 0,1% 0MB 0% 0 Mbps 0%
@ CTF Loader 0,1% 47MB 0% 0 Mbps 0%
E Microsoft Text Input Applicatio... 0,1% 59MB 0% 0 Mbps 0%
[ PostgreSQL Server 01% 34MB 0% 0 Mbps 0%
[ System 0,1% 0,1 MB 03% 0 Mbps 0%
< >

Figure 15: Serial Execution — PostgreSQL CPU and Memory Usage
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Let us focus on Figure 16, to understand how Spark manages to perform so efficiently. This is
a completely different kind of situation. Our program uses as many logical processors as
possible and distributes the tasks accordingly. Now, CPU Utilization has reached over 40%,
and as shown in Figure 17 (this snapshot was taken some seconds later), Spark application
utilizes 90% of the total CPU usage.
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Figure 16: Parallel Execution — CPU Utilization
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Figure 17: Parallel Execution — CPU and Memory Usage
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Some other interesting views concern database sessions and transactions. During the serial
execution of the process, active database sessions remain low (Figure 18) and transactions
per second are constantly at a high level (Figure 19).
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Figure 18: Serial Execution — Active Database Sessions
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Figure 19: Serial Execution — Number of transactions per second

In parallel execution, on the other hand, where transactions occur in a batch manner, during
the most expensive task, the number of sessions raises momentarily, while the number of
transactions remain low.
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Figure 20: Parallel Execution — Active Database Sessions
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Figure 21: Parallel Execution — Number of transactions per second
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6. Conclusions and Future Work

In this work we study the parallelization of Entity Resolution methods, so that they can be
applied on Big Data efficiently, while maintaining a high level of effectiveness. Particularly, we
focus on blocking and filtering techniques and analyze how to process a record linkage case,
where we aim at locating matching entities between two different datasets, using the
Improved Suffix Array Blocking approach, enhanced with a Bloom Filter (Vries et al. 2011). We
implement this method, both serially and in parallel, in order to compare the results and show
whether parallelization makes it suitable for large dataset processing.

6.1 Conclusions

Based on the experiments we conducted, our observations indicate that:

1. The larger the processed dataset is, the greater the difference in performance
becomes. In fact, while processing the largest dataset, in our experiments, parallel
processing was incredibly (more than 10 times) faster.

2. In case of relatively small datasets, parallel approach is still more efficient than the
serial one, but not to the extent we noticed when processing larger datasets.
Therefore, selecting parallel methods over a more traditional concept, poses a
tradeoff between the profit we have by the performance improvement, over the
financial cost of the necessary resources.

3. Parallel execution does not prove to be better than the serial, when applied in very
small datasets. In some tasks actually, it shows lower performance.

Regarding Apache Spark, we have also detected some interesting features:

1. Spark achieves an exceptional use of resources concerning CPU and memory
utilization. It takes advantage of every resource available to carry out each task and
distributes the workload very efficiently.

2. Spark performs computations very fast, especially when there is no need to interact
with a database. It justifies in the most emphatic way, the approach of loading input
datasets in immutable distributed data structures, and performing computations
directly on them.

3. Besides the fact that Spark may not be competitive enough when dealing with smaller
datasets, it seems that a threshold regarding data size exists (probably different for
each Spark system setup), above which parallelization offers by far better
performance.

6.2 Limitations of this study

There were some limitations, regarding the experimental part of this study, mainly concerning
the available hardware infrastructures:
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e Apache Spark application is executed on local mode because there is no cluster
available.

e PostgreSQL Server is also running locally and on the same workstation where the
Spark Application is executed.

e It was not possible to use cloud infrastructures (Azure, AWS, etc.)

However, we consider the 12 logical processors CPU, combined with the 16GB of RAM, a
decent setup for the purpose of this study.

6.3 Future Work

The purpose of this thesis is to prove that parallelization of ER methods, improves its
performance and makes it capable of processing big data. Particularly, in this work we study
a specific technique (Improved Suffix Array Blocking with Bloom Filters) which is applied on
the blocking stage of ER, only. It would be interesting to include in the experiments the
matching stage, also, to have an even better opinion of performance gain while parallelizing
the ER process, in total.

We made some useful observations regarding the results of the experiments, and it would be
interesting to experiment more on them in order to:

e Fully comprehend the reasons why Spark shows relatively low performance on very
small datasets.
e Examine how the parallelized ER performs, with a variation of max block size value.
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