

UNIVERSITY OF MACEDONIA

GRADUATE PROGRAM

DEPARTMENT OF APPLIED INFORMATICS

DECENTRALIZED APPLICATIONS: DEVELOPMENT OF A

BLOCKCHAIN-BASED ACADEMIC DOCUMENTS VERIFICATION

PLATFORM

A master thesis presented by

Argyrios Margaritis

Thessaloniki, August 2021

iii

DECENTRALIZED APPLICATIONS: DEVELOPMENT OF A BLOCKCHAIN-

BASED ACADEMIC DOCUMENTS VERIFICATION PLATFORM

Argyrios Margaritis

Degree in Applied Informatics, University of Macedonia, 2018

Master Thesis

submitted for the partial fulfillment of the

DEGREE OF MASTER OF SCIENCE IN APPLIED INFORMATICS

Supervisor

Professor Alexander Chatzigeorgiou

Approved by examining board on November 1, 2021

Prof. Alexander

Chatzigeorgiou

Prof. Emmanouil Stiakakis Prof. Ioannis Mavridis

...................................

Argyrios Margaritis

...................................

 AM

iv

Abstract

Decentralized applications comprise a significant next step towards the new web.

Web 3.0 is a leap forward to open, trustless and permissionless networks. This

dissertation covers how cryptography can lay the foundation for the decentralized web to

become a reality. We follow the contribution of groundbreaking technologies like the

blockchain to a new domain of software engineering. Smart contracts development

emerges through second-generation blockchain platforms like Ethereum. Today, there is

a broad ecosystem of tools participating in dapp development. Complementary

decentralized technologies like the IPFS can assist in the implementation of feature-

complete solutions.

Furthermore, this thesis showcases the development of a decentralized academic

certificates registry prototype by the name CryptoCerts. CryptoCerts allows the

transparent and verifiable distribution of academic documents in an immutable and

trustless manner. The system consists of a modern web client written in React and smart

contracts written in Solidity deployed on the Ethereum blockchain. CryptoCerts

demonstrates how IPFS can be utilized for decentralized documents storage and how

users can navigate a dapp with an inclusive user experience. Last, we review the

challenges of coding cost-efficient smart contracts and suggest topics for future work.

Keywords: decentralized application, dapp, smart contracts, blockchain,

Ethereum, Solidity, IPFS, documents, certificates, verification, software engineering,

development, React, MetaMask

v

 Περίληψη

Οι αποκεντρωμένες εφαρμογές αποτελούν ένα σημαντικό νέο βήμα προς μια νέα

μορφή του διαδικτύου. Το Web 3.0 αποτελεί ένα βήμα προς δίκτυα ανοιχτά, μη

βασιζόμενα στην εμπιστοσύνη προς τρίτους και χωρίς την ανάγκη αδειοδότησης. Αυτή η

εργασία καλύπτει το πως η κρυπτογραφία μπορεί να θέσει τα θεμέλια για να γίνει το

αποκεντρωμένο διαδίκτυο πραγματικότητα. Ακολουθούμε τη συνεισφορά

πρωτοποριακών τεχνολογιών όπως το blockchain στη δημιουργία ενός νέου τομέα της

τεχνολογίας λογισμικού. Η ανάπτυξη έξυπνων συμβολαίων αναδύεται μέσα από τις

πλατφόρμες blockchain δεύτερης γενιάς όπως το Ethereum. Σήμερα, ένα ευρύ

οικοσύστημα από εργαλεία ανάπτυξης συνεισφέρουν στην ανάπτυξη αποκεντρωμένων

εφαρμογών. Άλλες εξίσου αποκεντρωμένες τεχνολογίες όπως το IPFS μπορούν να

συνδράμουν συμπληρωματικά στην υλοποίηση ολοκληρωμένων λύσεων.

Επιπρόσθετα, αυτή η διπλωματική εργασία παρουσιάζει την ανάπτυξη ενός

πρότυπου αποκεντρωμένου μητρώου καταχώρησης ακαδημαϊκών πιστοποιητικών με το

όνομα CryptoCerts. Το CryptoCerts επιτρέπει τη διαφανή και επαληθεύσιμη διανομή

ακαδημαϊκών εγγράφων με τρόπο αδιάβλητο και χωρίς την ανάγκη εμπιστοσύνης σε

τρίτα μέρη. Το σύστημα αποτελείται από έναν σύγχρονο πρόγραμμα πελάτη με

τεχνολογίες ιστού γραμμένο σε React καθώς και από έξυπνα συμβόλαια γραμμένα σε

Solidity και εγκατεστημένα στη blockchain πλατφόρμα του Ethereum. Το CryptoCerts

αναδεικνύει πως μπορεί να χρησιμοποιηθεί το IPFS σαν μία αποκεντρωμένη λύση

αποθήκευσης εγγράφων καθώς και πως οι χρήστες μπορούν να χρησιμοποιήσουν μια

αποκεντρωμένη εφαρμογή με μια εμπειρία χρήστη χωρίς αποκλεισμούς. Τέλος,

αναλύουμε τις προκλήσεις του προγραμματισμού οικονομικά αποδοτικών έξυπνων

συμβολαίων και προτείνουμε θέματα για μελλοντικές επεκτάσεις.

Λέξεις Κλειδιά: αποκεντρωμένες εφαρμογές, dapps, έξυπνα συμβόλαια,

blockchain, Ethereum, Solidity, IPFS, έγγραφα, πιστοποιητικά, επαλήθευση, τεχνολογία

λογισμικού, React, MetaMask

vi

Preface – Acknowledgements

Before you lies the dissertation "Decentralized Applications: Development of a

Blockchain-based Academic Documents Verification Platform." It was originated from

my long-time pursuit to enter into decentralized application development and acquire

hands-on experience with cutting-edge developments in software engineering. It has been

written to fulfil the graduation requirements of the Degree of Master of Science in

Applied Informatics. I was engaged in researching and implementing, and writing this

dissertation from July 2020 to August 2021.

I want to thank my supervisor, Prof. Alexander Chatzigeorgiou, for giving me the

opportunity to cooperate on a topic so intriguing and innovative. His invaluable guidance

and support served me well during this long process. Additionally, I would like to thank

Prof. Ioannis Mavridis and Prof. Emmanouil Stiakakis for their unreserved participation

in the examination board of this thesis. Last, I wish to thank my friends and family for

supporting me during the hard times. If I ever lost interest, you kept me motivated.

I hope you enjoy your reading.

Argyris Margaritis

Thessaloniki, October 19, 2021

vii

Table of Contents

1 Introduction 1

1.1 The evolution of the web 1

1.2 The web today 3

1.3 Centralization 4

1.4 The need for a decentralized web 4

1.5 Web 3.0, the stateful web 6

1.6 Structure of the thesis 7

2 Key Concepts 8

2.1 Cryptography 8

2.1.1 Types of Cryptography 10

2.1.2 Digital Signatures 12

2.2 Blockchain 14

2.2.1 Block structure 15

2.2.2 Block creation 16

2.2.3 Consensus models 16

2.2.4 Blockchain types 18

2.3 Smart contracts 20

2.3.1 Properties 21

2.3.2 Oracles 22

2.4 Decentralized applications 23

2.4.1 Characteristics 24

2.4.2 Benefits 25

2.4.3 Implications 25

3 Technologies Involved 27

3.1 Ethereum 27

3.1.1 Ether and Gas 28

3.1.2 Accounts 29

3.1.3 Token systems 29

3.2 Solidity 30

3.2.1 Source file structure 30

3.2.2 Contract structure 31

viii

3.3 OpenZeppelin 33

3.4 Truffle 34

3.5 Ganache 34

3.6 Interplanetary File System (IPFS) 35

3.7 React 36

3.8 Redux 37

3.9 Web3.js 38

3.10 MetaMask 38

3.11 Docker 39

3.11.1 Docker Compose 40

4 CryptoCerts 42

4.1 The problem 42

4.2 A decentralized academic certificate registry 43

4.2.1 Entities 43

4.2.2 Features 43

4.2.3 User stories 44

4.2.4 Wireframes 45

4.3 User experience 45

4.3.1 Connecting to the network 46

4.3.2 Creating an institution 49

4.3.3 Issuing a certificate 52

4.3.4 Validating a certificate 55

4.4 System architecture 57

4.5 The Smart Contracts 58

4.5.1 The Migrations contract 58

4.5.2 The CryptoCerts contract 59

4.6 The Client 66

4.6.1 Components 67

4.6.2 Context 68

4.6.3 Hooks 68

4.6.4 Redux store 68

5 Conclusion 70

5.1 Overview 70

ix

5.2 Future Work 71

6 References 72

Appendix A CryptoCerts wireframes A-1

Appendix B CryptoCerts source code B-1

x

Table of Figures

Figure 1 Yahoo in 1994 [69] .. 1

Figure 2 Internet usage since 2005. Adapted from [68] ... 3

Figure 3 Platforms increasing their control over user information 5

Figure 4 Centralized and Distributed Network [70] ... 6

Figure 5 The Caesar cipher .. 8

Figure 6 Secret Key Cryptography ... 10

Figure 7 Public Key Cryptography .. 11

Figure 8 Showcase of MD5 hash function ... 12

Figure 9 A digital signature scheme ... 13

Figure 10 Basic blockchain structure ... 15

Figure 11 Dapp architecture comparison [71] .. 24

Figure 12 How a dapp can utilize IPFS for document storage ... 36

Figure 13 Web3.js to node communication .. 38

Figure 14 MetaMask connected to localhost .. 39

Figure 15 The CryptoCerts system architecture ... 57

Figure 16 Docker stack topology ... 58

Figure 17 CryptoCerts UML diagram .. 60

Figure 18 CryptoCerts client source directory structure .. 66

xi

Table of Screenshots

Screenshot 1 CryptoCerts landing page ... 46

Screenshot 2 Functionality is limited without a connection ... 46

Screenshot 3 Unsupported desktop browser and no Web3 provider found messages 47

Screenshot 4 Incompatible mobile browser message ... 47

Screenshot 5 Wrong network is selected message ... 48

Screenshot 6 Connected to the blockchain ... 48

Screenshot 7 The user role icon and the connection notification 49

Screenshot 8 Menu updated with Administrator actions .. 50

Screenshot 9 Filling the institution creation form .. 50

Screenshot 10 CryptoCerts waiting for an institution creation transaction to complete .. 51

Screenshot 11 The new institution creation notification .. 51

Screenshot 12 The institutions list populated ... 52

Screenshot 13 Connecting as an institution .. 53

Screenshot 14 The institution user screen .. 53

Screenshot 15 The certificate creation form before and after input 54

Screenshot 16 The certificates list populated ... 55

Screenshot 17 The certificate validation form before and after input 55

Screenshot 18 The successful validation of a document .. 56

Screenshot 19 Invalid document response ... 56

xii

Table of Code

Code 1 An example contract written in Solidity .. 31

Code 2 An import statement ... 31

Code 3 A function modifier .. 32

Code 4 A smart contract event ... 33

Code 5 CryptoCerts backend Docker Compose YAML file .. 40

Code 6 Migrations.sol .. 59

Code 7 InstitutionFactory.sol ... 62

Code 8 CertificateFactory.sol ... 64

Code 9 CryptoCerts.sol .. 66

xiii

Table of Wireframes

Wireframe 1 Home screen (Guest) ... A-1

Wireframe 2 Institutions screen (Guest)... A-1

Wireframe 3 Certificate validation form (Guest) ... A-1

Wireframe 4 Certificates list (Student)... A-2

Wireframe 5 Institutions list (Administrator) ... A-2

Wireframe 6 Institution form (Administrator) ... A-2

Wireframe 7 Home screen (Institution) .. A-3

Wireframe 8 Certificates list (Institution) .. A-3

Wireframe 9 Certificate form (Institution) ... A-3

xiv

List of Abbreviations

IoT Internet of Things

AWS Amazon Web Services

SSO Single Sign-On

NSA National Security Agency

Dapp Decentralized Application

P2P Peer-To-Peer

SKC Secret Key Cryptography

PKC Public Key Cryptography

DES Data Encryption Standard

IBM International Business Machines

NBS National Bureau of Standards

AES Advanced Encryption Standard

RSA Rivest, Shamir, & Adleman

DSA Digital Signature Algorithm

ECC Elliptical Curve Cryptography

MD Message Digest

SHA Secure Hash Algorithm

NIST National Institute of Standards and Technology

CRUD Create Update Delete

PoW Proof of Work

PoS Proof of Stake

PoA Proof of Authority

DPoS Delegated Proof of Stake

API Application Programming Interface

KYC Know Your Customer

EVM Ethereum Virtual Machine

EOA Externally Owned Account

ERC Ethereum Request for Comment

NFT Non-Fungible Tokens

SPDX Software Package Data Exchange

JSON JavaScript Object Notation

xv

RPC Remote Procedure Call

CLI Command Line Interface

UI User Interface

IPFS InterPlanetary File System

DHT Distributed Hash Tables

SFS Self-certifying File System

IPLD InterPlanetary Linked Data

DAG Directed Acyclic Graph

CID Content IDentifier

JSX JavaScript XML

XML eXtensible Markup Language

DOM Document Object Model

VM Virtual Machine

CPU Central Processing Unit

YAML Yet Another Markup Language

ACEI Academic Credentials Evaluation Institute

MVP Minimum Valuable Produce

PDF Portable Document Format

UX User eXperience

BIP Bitcoin Improvement Proposal

ETH ETHereum ticker

UML Unified Modeling Language

CRA Create React App

ES ECMAScript

ECMA European Computer Manufacturers Association

ABI Application Binary Interface

zk-SNARK Zero-Knowledge Succinct Non-interactive Argument of Knowledge

1

 1 Introduction

 1.1 The evolution of the web

About 30 years ago, following the extended evolution of computer networking, a

new technological notion started spreading to a mainstream extend. A technology that

was destined to shape the identity of the modern world. By the early 1990s, the World

Wide Web will have emerged, connecting millions of computers around the globe.

The network of networks would be relatively static during its first years. Plain

pages consisting solely of text and images would pop out of the computer screens

presenting their host’s perspective to the world. The first era of the web, commonly

referred to as Web 1.0, offered no interactivity to its users. It shared many similarities

with the traditional media like radio and television broadcasts and consisted of providers

feeding content to a handful of passive surfers. Most websites were built using static

HTML pages stored in files and a few embedded styles. A typical example of that design

is depicted in [Figure 1].

As the audiences grew more extensive than before, many opportunities emerged,

and the future seemed without boundaries. Every business sector, organization, and

community sought online representation. Mass excitement followed by fear of missing

out led many to defy business fundamentals and fueled a frenzy that was about to burst in

Figure 1 Yahoo in 1994 [69]

2

early 2000. As it is widely known, the dot-com bubble, a severe financial crash came true

with the technology-dominated NASDAQ index plummeting up to 77% in 2 years [1].

The crisis caused billions to vanish into thin air but let the web progress into a

steadier boom. The web technology stack evolved, upgraded servers, and faster internet

connections spread the expansion. Many websites implemented features to allow their

users to contribute and generate content. Browsing got easier and data transmission more

viable. The interactive web, the second stage in the internet evolution, came into

existence. Web 2.0, commonly referred to nowadays, was coined during a brainstorming

conference between O’Reilly and MediaLive International in 2005 [2].

It is necessary to clarify that Web 2.0 has no distinct boundaries but a core of

principles and practices. During this stage, significant swifts happened on how software

tends to be released, incorporating more agile and ongoing methodologies. In addition,

more development companies moved away from the traditional software products to a

more Software as a Service (SaaS) approach incorporating the value of data.

Consequently, hosts are now the facilitators of user activities on their websites rather

than the sole providers of static content. Notable examples of this are the social media

networks and the media sharing platforms, which consist of the proven dominant portals

of the new web.

The evolution of web technologies, along with the 3G high-speed mobile

networks of the late 2000s, led to the rise of the mobile web. New portable, lightweight,

yet powerful devices, smartphones, and wearables hit the mass market, accessing the

internet from almost anywhere. Based on the annual report of the ITU for 2014 [3], the

number of mobile-broadband users reached 2.3 billion, while more than half of them

originated from developing countries.

The massive generation of unstructured data needed to be permanently stored and

efficiently retrieved to be analyzed forced new types of storage to emerge and pushed the

NoSQL databases into the foreground. Defined as Big Data, the new web era introduced

a mixed concept for data preserved in significant volumes. As a result, the necessity of a

new discipline dedicated to data cleansing, preparation, and analysis was revealed. The

field of Data Science materialized [4].

3

 1.2 The web today

As the dawn of the third decade in the 21st century arises, everyday life gets

overrun by the astonishing achievements of the digital era. From work and finance to

social relationships and entertainment, every aspect is affected by the impact of data

permeating our lives through the internet. In the new global economy, digital growth is a

significant indicator.

As illustrated in [Figure 2], there has been a steady rise in the number of users

worldwide navigating the web over the past 15 years. In addition, these figures are

expected to skyrocket during the current year, as the COVID-19 pandemic forced even

more people to stay indoors and, by extension, online. There are reports [5] revealing a

marked increase of 7.4% in the annual digital growth up to as of October 2020,

approaching the significant percentage of 60% of the total world population.

As described in the previous section, the dot-com bubble burst in the early 2000s.

A critical reader would have expected the financial crisis to have fragmented the

technological businesses ever since. In contrast, today’s web is dominated by a handful

of tech giants worth incredible amounts of dollars. As an indicative example, Apple Inc.

was the first one trillion dollars company in history by August 2018 [6]. The FAAMG

(originated from the term FANG coined by Tim Cramer in 2013 [7]) is an acronym that

stands for the five giant companies in the high-tech industry, namely Facebook, Amazon,

Apple, Microsoft, and Google-parent Alphabet. As of July 2020, the FAAMG stocks

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
er

ce
n
ta

g
e

to
 w

o
rl

d
 p

o
p

u
la

ti
o

n

In
te

rn
et

 u
se

rs
 (

b
il

li
o

n
s)

Internet users (billions) Percentage to world population

Figure 2 Internet usage since 2005. Adapted from [68]

4

ruled the benchmark S&P 500 index by more than 22% to a greater extent than they did

in 2000 [8].

Based on the numbers presented, it is clear that the digital world holds the most

significant role in modern civilization. It is now necessary to step back and reflect on

how all these are supported.

 1.3 Centralization

From the earlier days of the web, the client-server model laid the foundation of

the internet’s interconnectivity. The client is a computer that sends a request, while the

server is also a computer that responds to it by sending information back to the client. An

important aspect that needs to be highlighted is the central position of the server in the

client-server model. The server stands in the middle, serving requests simultaneously

from the clients surrounding it. There is no way in this model for the clients to

communicate with each other directly, even if they are located next to each other in the

physical world.

Today’s clients consist of billions of users surfing the web from their computers

or smartphones and the massive number of IoT devices from sensors to smart cars or

refrigerators. Similarly, the servers have also evolved. From dedicated computers run by

individuals to host their website during Web 1.0, the vast need for performance to

efficiently respond to the unimaginable number of requests moved the servers from

houses to gigantic data centers. The picture drawn is one of the billions of clients served

every second by massive racks of servers co-located in specific places. Predictably, this

creates a centralized model with servers playing a critical role and is often described as

the single point of failure.

 1.4 The need for a decentralized web

The perils of centralization have been seen in the cases of significant incidents

experienced on cloud providers comprising the backbone of the internet. On November

25th, 2020, a flaw in the Kinesis Data Streams API of the Amazon Web Services (AWS)

[9] caused an outage affecting most North American data centers, knocking offline

popular third-party services. Most recently, another incident happened during the peak

hours of December 14th, 2020, as an internal storage quota issue in Google Cloud

infrastructure [10] caused chaos in Europe. Major Google services like Gmail and

YouTube were inaccessible for hours. However, most significantly, most of the third-

5

party vendors utilizing Google for Single Sign-On (SSO) authentication were unable to

operate.

Besides capacity and availability issues, centralization has also taken its toll most

significantly on users’ data, privacy, and security. All data from those tracking their

activity to those comprising their digital identity are often collected and stored in

corporate data centers. A data breach at Equifax in 2017 [11] revealed the security risks

associated with user details stored in a specific location. In 2013, many top-secret

documents disclosed by ex-NSA contractor Edward Snowden revealed shocking

evidence about mass surveillance projects by profit data-controlling entities on a global

scale [12]. At the same period, another data scandal broke out related to Facebook.

Millions of personal profiles were collected and analyzed without user consent by the

British political consulting firm Cambridge Analytica toe used in political advertising

[13].

The examples presented above are just the peak of the iceberg regarding the

course the web has taken during its evolution in the 2010s. The bigger picture is drawn

around the lack of control over information in a disrupted balance between the users and

the platforms, as depicted in Figure 3. Bruce Sterling quite accurately outlined this back

in 2012 in his annual conversation with Jon Lebkowsky on The WELL about the state of

the world:

In 2012 it made less and less sense to talk about “the Internet,” “the PC business,”

“telephones,” “Silicon Valley,” or “the media,” and much more sense to just study Google,

Apple, Facebook, Amazon, and Microsoft. These big five American vertically organized

silos are re-making the world in their image. [14]

This is indeed a very troubling fact. A few large platforms guide the most traffic to

online news sources and have enormous influence over what sources of information the

public consumes daily. This could lead to severe problems ranging from censorship by

the national government to less obvious or unpremeditated favoring the content users see

Figure 3 Platforms increasing their control over user information

6

based on experimental, unaudited recommendation system algorithms integrated into

those consolidated platforms.

 1.5 Web 3.0, the stateful web

Apparent from the previous paragraph, an alternative route to centralization

appears mandatory. The solution may lay in a different approach in the networking

model itself.

 The peer-to-peer model is nothing new. Popularized in the late 1990s with the

launch of Napster, a pioneer file-sharing software, it became the zeitgeist of internet

enthusiasts with the conception of the BitTorrent protocol in the early 2000s. Peer-to-

peer, or P2P as it is commonly referred to, is a distributed application architecture based

on equally privileged interconnected peers that form a peer-to-peer network. With the

absence of a central server, the P2P model tackles the problem at its root. Schematically

depicted in [Figure 4], the user can be connected to numerous peers, simultaneously

optimizing resource consumption and bandwidth based on location or other physical

network factors. P2P networks have also been proved far more resilient. Any of the peers

can go offline without disrupting the operation of the network as a whole. In contrast to

the client-server model, the more users utilizing a distributed resource in a P2P network,

the more available that resource becomes to the rest of the network, offering a solution to

today’s scalability issues.

The idea of a decentralized web shares the opinion that some of the principles of

P2P networking can be applied, apart from file-sharing, to websites and web

applications. This concept of web, also named Web 3.0, promotes autonomy and reveals

a new stage of progression on digital culture gradually taking hold. For the above vision

to become a reality, another technology already known but sidelined for years had to be

incorporated.

Figure 4 Centralized and Distributed Network [70]

7

As a notion further analyzed in the next chapter, the blockchain was presented

widely to the public with the release of the Bitcoin peer-to-peer currency in 2009 [15].

This novel peer-to-peer network protocol can be used for peers to agree on the state of a

distributed ledger of transactions. The immutability of blocks participating in a chain is

achieved by cryptography. Blockchains redefine the data structures of the web and lay

the foundation needed for storage and security for P2P distributed applications in a

trustless, decentralized way. This kind of decentralized applications, or dapps, is the

subject dealt with in the current dissertation.

 1.6 Structure of the thesis

This thesis attempts to provide an overview of the nature of the decentralized

applications and the hands-on development of CryptoCerts, a document verification

platform for academia. Chapter 2 defines the theoretical background required on

cryptography, proceeding with key concepts like blockchain, smart contracts, and

decentralized applications. In Chapter 3, the current ecosystem for the development of

dapps, along with the most widely-used tools. The development methodology of

CryptoCerts is followed in Chapter 4, complemented with showcases of the user

experience and smart contract code review from the software engineering perspective.

Finally, Chapter 5 concludes our thoughts on dapp development and proposes interesting

topics for further research.

8

 2 Key Concepts

To understand how decentralized applications achieve their goals, we need to lay

the theoretical framework and explain the key concepts enabling this software

development.

 2.1 Cryptography

Cryptography is the study and practice of developing protocols to render a piece

of information secret. While this definition covers the vital part of private

communication necessary for various circumstances from the Antiquity to modern days,

it is pretty generic. For the reader to grasp the utility of cryptography for modern

applications, the notion of an adversary must be incorporated, as it was introduced by

Ron Rivest in 1990 [16]. Indeed, the modern application of cryptography includes the

practice of keeping secret information away from adversaries.

There is a need here also to clarify some of the standard terms used in the

cryptography domain. The initial state of a message about to be transmitted is called the

plaintext, while the encrypted form is called the ciphertext. The process of converting the

plaintext to ciphertext is defined as encryption. On the other hand, the task to transform

the ciphertext back to plaintext is described as decryption. The finite sequence of steps

that can be followed like a procedure, therefore the algorithm required to encrypt and

decrypt a message, is commonly referred to as a cipher. One of the simplest ciphers

known from history, referred to as Caesar cipher, was used by Julius Caesar for his

private written communication [17, p. 49]. Based on substitution, the cipher involved a

simple shift by three positions upwards on the alphabet on the plaintext letters, as

depicted in Figure 5. The reverse operation was performed for the decryption.

Figure 5 The Caesar cipher

9

A key concept differentiating encryption from encoding is the existence of a key.

A key is a very accordant term used for a separate piece of information required for

encryption and decryption to be performed. If a parallel could be drawn between a cipher

and a padlock, the cryptographic key is the actual key that allows its owner to lock and

unlock the padlock without a hassle. As the following section will describe, the key is

often generated using a specific process. The cipher refers to encryption and decryption

algorithms, and the term cryptosystem describes both procedures and the key generation.

The web is an insecure communications system. The reason why the internet

today is far more secure than it was in the 1970s and the 1980s lies with the extended

usage of cryptography. The generic definition described in the previous paragraph arises

because the threats are diverse, and cryptography provides ways to counter them

efficiently. When we transmit data online, we need specific properties, and their role is to

protect against a particular type of threat. These are:

➢ Confidentiality. The ability to protect from non-authorized disclosure of

information. Confidentiality should be performed so that the actual

information remains hidden from unauthorized parties, and its very

existence shall not be revealed.

➢ Integrity. The protection from unauthorized alteration. The integrity of a

message shall be preserved and easily verifiable by the receiver to confirm

whether the actual message payload has been modified during the

transmission. This also includes inadvertent data corruption due to noise

in the transmission channel, often in telecommunications.

➢ Authentication. The assurance that the user or the entity at the other end

of the communication channel is who they say they are. Knowing the

sender’s identity also applies to data authentication, the ability to verify

that the party indeed sent the message we believe it was sent from and not

an impostor or a spy.

➢ Non-repudiation. The ability to ensure that no parties can claim they did

not interact in communication when they did. This includes both non-

repudiation of destination: the denial of receiving a message and non-

repudiation of origin: the denial of sending a message.

It is essential to clarify that many of the above properties are not achieved

separately and more than often overlap with others. Similarly, encrypting a message to

10

preserve confidentiality also provides integrity, as the decryption algorithm would

require the message to be unaltered for the decryption to be successful.

 2.1.1 Types of Cryptography

Moving forward to approach the blockchain, we need to describe more the

various types of cryptography today. Those are Secret Key Cryptography (SKC), Public

Key Cryptography (PKC), and Hash Functions.

 2.1.1.1 Secret Key Cryptography (SKC)

Secret Key Cryptography uses a single key to encrypt and decrypt data. Both

encryption and decryption utilize the same shared key used by both the sender and the

receiver. The scheme depicting a secret key cryptosystem Figure 6 appears symmetrical,

so this kind of cryptography is also referred to as symmetric key cryptography.

The challenge in this type of cryptography is the secure distribution of the secret

key. The reason is that the only way to fortify the security of the information in a shared

secret key cryptographic system is to protect the secrecy of the secret key. This need

requires both participants to communicate through a secure channel before the

cryptographic transmission takes place.

Known examples of modern algorithms based on Secret Key Cryptography

include the Data Encryption Standard (DES), an algorithm designed by IBM in the 1970s

and adopted by the National Bureau of Standards (NBS) in 1977 [18]. The US

government moved to its successor, the Advanced Encryption Standard (AES), in 2001

[19].

Figure 6 Secret Key Cryptography

11

 2.1.1.2 Public Key Cryptography (PKC)

Public Key Cryptography utilizes two mathematically related keys. Knowing one

of the keys does not enable someone to determine the other key easily. One key is used to

encrypt the plaintext and the other key to decrypt the ciphertext. There is no restriction

on which key is applied first, but the importance is that both keys are required in order

for the cryptosystem to work. One of the keys is public, and its owner can freely

distribute it to the other parties. The other key is private and shall be kept secret and

never revealed. The employment of a pair of keys made this type of cryptography also be

known as asymmetric cryptography. This asymmetry appears schematically below in

Figure 7.

Public Key Cryptography is considered to be the most significant development in

cryptography in the past centuries. It was first described by Martin Hellman and

Whitfield Diffie in 1976 [20]. It is primarily used today for authentication, non-

repudiation, and key exchange.

A notable application of Public Key Cryptography is the RSA cryptosystem,

named out of Ronald Rivest, Adi Shamir, and Leonard Adleman, who invented it [21].

Thousands of software products use RSA for key exchange, digital signatures, or

encryption of small data blocks. Other well-regarded asymmetric key techniques for

varied purposes include the Diffie Hellman key exchange protocol, the Digital Signature

Algorithm (DSA), the ElGamal encryption system, and lots of developments in the field

of Elliptic-curve cryptography (ECC).

Figure 7 Public Key Cryptography

12

 2.1.1.3 Hash Functions

Hash Functions are algorithms that use no key. They are also known as message

digests and one-way encryption. In this approach, one-way mathematical functions

generate a fixed-length hash value from the input. The critical aspect is that while the

hash functions are relatively easy to calculate, the output hash is very difficult to

reproduce the initial input.

Hash functions can map an indeterminable size of plaintext into a fixed size hash,

and they are typically used to provide a digital fingerprint of data. A minor change in

input will result in a completely different output, as shown in Figure 8. Therefore, many

systems employ hash algorithms to ensure the integrity of files or passwords. Hashing is

also commonly used with digital signatures, as we will discover in the next section.

Famous hash algorithms include the Message Digest (MD) algorithms. However,

the latest version, MD5, was identified as cryptographically broken and unsuitable for

further use in 2008 [22]. Popular alternatives include the Secure Hash Algorithms (SHA).

Although specific variants of SHA-2 are still considered robust and secure, SHA-3 was

standardized by The National Institute of Standards and Technology (NIST) in 2015

[23]. SHA-3 is based on Keccak sponge functions.

 2.1.2 Digital Signatures

Digital signatures are the public-key fundamentals of message authentication. It is

common in the physical world to use handwritten signatures on written messages as they

bind someone with a message. Equivalently, a digital signature is a method that binds a

Figure 8 Showcase of MD5 hash function

13

person to digital data. This binding can be verified by the recipient of the message or any

other party.

In cryptography, a digital signature is a value calculated from the message and a

secret key known only by the sender. Consequently, a digital signature scheme is heavily

based on Public Key Cryptography (PKC). Such a scheme can be depicted in Figure 9.

Here are the process steps in detail:

1. The Signer passes data to a hash function and generates a hash.

2. The hash value is passed as input to the signature algorithm along with the

Signer’s private key. The algorithm produces the digital signature for the

given hash.

3. The signature is attached to the data and sent to the Verifier.

4. The Verifier uses the digital signature as input to the verification

algorithm along with Signer’s public key. The verification algorithm

produces an output.

5. The Verifier also passes the received data to the same hash function and

generates a hash.

6. The verification relies on whether the hash value and the output of the

verification algorithm are equal.

An observant reader would notice that a hash of the data was created instead of

signing the original data using the signature algorithm. This decision lies in the efficiency

of the scheme. As the data verified can grow quite large on many occasions, signing

Figure 9 A digital signature scheme

14

using a signing algorithm could be proved computationally expensive and slow. On the

contrary, hash values are relatively small in length while guaranteeing data integrity. So,

encrypting a hash is far more efficient than encrypting the original data.

 2.2 Blockchain

After we have covered the underlying fundamentals of cryptography and

cryptographic concepts, we can proceed to a significant notion of this dissertation.

Blockchain, a disruptive technology, is considered the basis for providing any reliable

and secure decentralized solution.

The notion of blockchain dates back to 1991, when a cryptographically secured

chain of blocks was described for the first time by S. Haber and W.S Stornetta. [24]

Seven years later, computer scientist N. Szabo worked on a project named “bit gold.” Bit

gold was about a decentralized digital currency that incorporated property chains

powered by solving cryptographic puzzles. The project never reached maturity as it ran

into a “double-spending problem,” proving it unusable for its cause. [25]

In 2008, at the origin of a financial crisis, a project that would disrupt digital

history and bring blockchain back to the surface came into existence. A pseudonymous

author named Satoshi Nakamoto submitted a paper to a cryptography mailing list titled

“Bitcoin: A Peer-to-Peer Electronic Cash System.” [15] The paper laid out the schema

for a peer-to-peer network that would support a “system for electronic transactions

without relying on trust.” Bitcoin incorporates a chain of digital signatures along with a

proof-of-work system. The network avoids the double-spending issue thanks to the

incentives provided to its peers. Shortly after the dissemination of the paper, the Bitcoin

blockchain came into being with the genesis block mined on January 3rd, 2009.

Moving away from cryptocurrencies, we will define a blockchain as a distributed

database or a public ledger of records or transactions managed by a peer-to-peer network

based on a consensus protocol. [26] The data is recorded in blocks of valid transactions,

and the ledger is shared and available to all nodes. The network operates in a trustless

way which eliminates the need for a central authority. The identity of participants is

verified with the utilization of cryptographic algorithms.

A defining feature of blockchain is immutability. Compared to a regular database

that supports the CRUD (Create – Read – Update – Delete) operations, blockchain

supports only the CR part. Each block in the ledger cannot be erased after the verification

15

from the majority of the participants. The history of transactions is permanent and

unalterable. The former characteristic also enables traceability, meaning any transaction

can be traced back to its verified owner. Blockchains also own a part of their reputation

to the reliability of the peer-to-peer network. The ledger is distributed and replicated in

its entirety on every node. Therefore, if one or more of them are pushed offline, the

integrity of the records is still preserved. All blockchain operations, from identity

verification to the addition and verification of new blocks, are based on cryptography.

Public key cryptography, hashing, and digital signatures are utilized [27]. These

underlying mechanisms make blockchain a highly secure type of technology.

 2.2.1 Block structure

As the name discloses, blockchain consists of a sequence of blocks. How each

block is structured can reflect the integrity of this type of storage. Depending on the exact

design of the block, the details it includes may vary. A generic blockchain structure can

be depicted in Figure 10.

Each block consists of a header and a representation of the transactions it

includes. The header can include the current block hash, the hash of the previous block,

and a timestamp. As discussed in a previous section, hashing functions preserve the

data’s integrity while keeping the output to a fixed length. We create an immutable chain

by hashing the block and including its checksum into the next block. Any alteration at

any part of a block would result in an altered hash and, consequently, an invalid chain.

Blocks also include sets of transactions that are hashed and encoded into a Merkle

tree. A Merkle tree is also known as a binary hash tree. It is a data structure that can store

Figure 10 Basic blockchain structure

16

large data sets that can be summarized and verified efficiently using cryptographic

hashes. The most common hash functions used in first-generation blockchains are SHA-

2, like the SHA-256 variant Bitcoin blockchain uses [15].

 2.2.2 Block creation

New blocks are produced repeatedly in the distributed network. Every

participating node can submit its transactions to a shared pool, but only those who can

get into the next block are appended to the chain. The act of creating a new block in a

blockchain network and getting it signed as the next block of the chain is called mining,

and the peers who participate in this process are known as miners.

Mining is part of blockchains’ security process that creates a competitive

environment where all miners are trying to validate data and check that everyone else

who has mined a block has done so correctly. Therefore, validating blocks are often

accompanied by some reward from the network. Additionally, it is not uncommon for

participants to include a fee in their transactions to incentivize miners to prioritize them

over others in constructing the next block. For the peer-to-peer network to operate

without trusted intermediaries, the process of maintaining the distributed ledger must

generate enough incentive for attracting miners. Network rewards and transaction fees

serve as incentives, and blockchain protocols typically distribute them using a native

token. [28]

Depending on how the consensus is established on a given network, the mining

process can differ significantly from model to model.

 2.2.3 Consensus models

The mechanisms that dictate how a decentralized, trustless blockchain network

reaches an agreement are called consensus models. More often, this agreement refers to

which block will be appended next to the blockchain. There are many models developed

over the years like the Proof of Work (PoW), the Proof of Stake (PoS), the Proof of

Authority (PoA), and the Delegated Proof of Stake (DPoS). Following, we are going to

describe the first two as the most famous examples.

 2.2.3.1 Proof of Work (PoW)

The Proof of Work (PoW) model is the most prominent example of consensus

mechanisms. Hal Finney first introduced the Proof of Work model in 2004 for securing

17

digital money through the idea of “reusable proof of work” using the SHA hashing

algorithm. It describes a process that allows a party to prove that a significant amount of

computational effort has been expended. Any observer should be able to verify the act of

work with minimal effort.

A typical form of Proof of Work includes the repeatedly hashing of a given input.

At the same time, the miner attaches a random nonce to it to calculate a checksum with

the requested characteristics. For example, with ‘blockchain’ as an input to the SHA-256

hash function, we look for a ciphertext that should start with five leading zeroes

(‘000000’). In order to solve this puzzle, there is no way around it other than use brute

force. A daring miner should start by concatenating the initial string with zero, thus

‘blockchain0’, compute the checksum, and check its validity. If it does not comply with

the requirement, he must increment the nonce by one and make another attempt.

blockchain0 → bd4824d8ee63fc82392a6441444166d22ed84eaa6dab11d4923075975acab938

blockchain1 → db0b9c1cb5e9c680dfff7482f1a8efad0e786f41b6b89a758fb26d9e223e0a10

blockchain2 → 3108428714518b4a2519e37ff8dce64d37c6ff9d8916cc6596391165db52c2b8

…

blockchain1041 → 00007f73e777e83b01302b5fd5bc9905960c6398c7b24d0f2cc6a3e0c5cd3522

This process will require 1042 attempts, but eventually, a valid output will be

generated. In an actual application of Proof of Work, the requested hash could include 18

or more leading zeroes, which would take a significant amount of iterations. However, it

becomes evident that regardless of the computing power required to produce a valid

hash, the act of verifying it remains as trivial as passing the indicated solution to the hash

function and check the result. [29]

Mining does not validate transactions in systems that operate using the Proof of

Work as this task is pretty light computationally. It is used for building a reliable

commitment against an attack instead. As more blocks are attached to the chain over

time, the sum of computing power required to tamper them becomes too cumbersome for

an attacker to undertake. Consequently, the actual state of consensus becomes more

robust as time passes by. If an attacker wanted to reverse or forge a transaction that

happened a couple of blocks in the past, it would have to surpass the current growth rate

of the blockchain and recompute all the blocks added after the altered block. So, it is

18

apparent that all Proof of Work blockchains remain secure as long there is enough

computing power supporting them in mining. [30]

Consequently, Proof of Work receives lots of criticism as the hashing power it

requires for a mainstream blockchain network to operate leads to significant energy

consumption.

 2.2.3.2 Proof of Stake (PoS)

The Proof of Stake (PoS) model is a promising consensus mechanism often

suggested in place of Proof of Work. Miners in Proof of Stake are called validators. In

this model, participants put up their balance of native blockchain tokens as collateral. In

return, they get authorization over new blocks in proportion to the amount they stake.

Validators are chosen randomly to create blocks and are responsible for validating and

confirming blocks they do not create. The act of validation blocks is often referred to as

attestation.

In essence, validators get additional authority from ownership over time. As

miners, they get rewarded for creating new blocks and attesting to blocks others created.

A peer’s stake also acts as an additional incentive to encourage good validator behavior.

An unreliable validator can lose a portion of their stake for failing to validate blocks or

even their entire stake if it attempts to perform as a bad actor. Attesting to malicious

blocks can also lead to loss of collateral. [31]

In contrast to Proof of Work, validators do not need significant computing power

to perform their duties as they are randomly selected and not competing with each other.

Proof of Stake reinstates energy efficiency and lifts any hardware limitations, allowing a

broader audience of peers to participate in consensus. Proof of Stake should lead to a

stronger immunity against centralization in blockchain networks where token distribution

is allocated evenly. There are also indications that Proof of Stake networks could deal

with scaling issues more efficiently using techniques like sharding.

 2.2.4 Blockchain types

Blockchains can be classified into different categories based on data accessibility,

participation authorization, and core functionality with smart contract support. [32]

 2.2.4.1 Accessibility

Based on data access, we can identify the following blockchain types:

19

• Public: In this type, anyone can read and submit transactions providing a

pair of keys. It is typical for the protocol and code to be open-sourced and

maintained by an open community. The network operates in a trustless

way. Examples of public blockchain networks are Bitcoin and Ethereum.

• Private: In this type, the blockchain is tightly controlled and established

between trusted entities. A person or an organization operates the

network. In this case, nobody can create new blocks or transactions on the

network, verify the ledger history or participate in the consensus without

explicit authorization from the owner or the central administrator.

Blockchains in this category are based on solid trust to the owner and the

participants of his choosing.

• Consortium or Federated: In this type, multiple groups of organizations

form a consortium and are the only ones allowed to submit transactions

and read from the shared ledger. This model attempts to balance public

and private blockchains in trust and efficiency and is often seen as partly

decentralized. Examples of consortium blockchains are Hyperledger and

R3CEV.

• Hybrid: In this new type belong networks that combine public, private, or

consortium blockchains to streamline transactions. It is another attempt to

combine the best of both worlds by keeping information confidential and

verifiable by allowing access through a smart contract.

 2.2.4.2 Participation

Based on the need for authorization to participate, blockchains can be divided

into the following categories:

• Permissionless: In this type, the ledger is shared with anyone to create

new blocks without permission from a central authority. Participation in

the network and blocks verification is allowed to everyone and is achieved

using their computing resources.

• Permissioned: In this type, participation is only permitted after explicit

authorization from an authority. There are cases of permissioned

blockchains in which the access to transaction history or the creation of

new blocks can also be limited to specific participants. Code distribution

20

can be open or closed source. In permissioned blockchains, consensus

mechanisms can be nonexistent as the network operates on trust between

peers. This aspect makes networks of this type high-speed and efficient. In

case of malicious activity, the central authority can ban the bad actor and

roll back any unpermitted changes. However, permissioned blockchains

are considered to sacrifice decentralization in favor of performance.

• Hybrid: There is also a possibility of a hybrid model between

permissionless and permissioned blockchains. In this type, a node is

participating in a permissionless as well as a permissioned blockchain to

achieve inter-blockchain communication. There might be cases of a single

network to be configured to support both permissioned and permissionless

operations.

 2.2.4.3 Core functionality

Blockchains can be placed in the following categories based on the core

functionality and the smart contract support:

• Stateless: In this type, the blockchain network focus is chain functionality

and transaction optimization. A new peer joins the networks can obtain

the current state from the other nodes in the network. Each transaction can

be validated using self-included information. An example of a stateless

blockchain network is Bitcoin. The networks supporting similar core

functionality are also considered first-generation blockchains or

blockchain 1.0.

• Stateful: In this type, the networks provide smart contract support and

transaction computing capabilities. Stateful blockchains introduce logic to

optimize and protect their state and, they are often considered blockchain

platforms. A blockchain of this category can support a wide variety of

applications by being programmed.

 2.3 Smart contracts

The next generation of blockchain technology has brought back a notion that

incorporated smart contracts that Szabo first envisioned in 1994. [33] There is no widely

accepted definition for smart contracts, but their functionality can be described as

agreeing on contingencies derived from a decentralized consensus with low resource

21

automated execution. Lin William Cong and Zhiguo He attempt to generally define a

smart contract as:

Smart contracts are digital contracts allowing terms contingent on

decentralized consensus that are tamper-proof and typically self-enforcing

through automated execution. [34, p. 9]

 Smart contracts are not digital contracts that rely on a trusted intermediary or

authority to define consensus and supervise execution. They are also not incorporating

artificial intelligence, as the name may imply. Smart contracts can be programmed. They

can be thought of as autonomous software programs that, when triggered, execute

automatically and compulsorily the rules and conditions set during their implementation.

They may aim to enforce an agreement or fulfill a legal contract, execute a transaction,

verify or streamline a process. [35]

 Smart contracts based their modern existence on blockchain technology. Szabo

envisioned that the conception of smart contracts would require the use of cryptography

to secure the agreements. However, he did not have any means to guarantee enforcement

or transfer of value. The execution of smart contracts on the blockchain ensures that the

contract’s rules and conditions are tamper-proof. The execution of each contract is

recorded as an immutable transaction stored in the blockchain. In turn, smart contract

theory appears to lay the foundation of software development on blockchain and makes

decentralized applications a reality. They take the static ledger and transform it into a

dynamic system able to execute business logic.

 2.3.1 Properties

In an attempt to identify a smart contract accurately, the following characteristics

can be extracted:

• Smart contracts are deterministic. This property means that if a contract

distributed in various copies on several nodes receives a specific input, the

same output shall be expected on all nodes. Therefore, a smart contract

must not include any aspect of randomness or be affected by execution

time.

22

• Smart contracts are immutable. This characteristic is the reason why

smart contracts need to be executed on a blockchain. Blockchain enforces

immutability. As soon as a contract is deployed on the public ledger, it

cannot be modified. This aspect is mandatory for trust but introduces

some challenges in case of bugs in the code.

• Smart contracts are verifiable. When a contract is being deployed on the

blockchain, it receives a unique address. Any affected parties can use the

address to locate the contract and verify its code and contents before

proceeding with its execution.

• Smart contracts are executed in a limited context. This property means

the contract can access their state, the context of the transaction that called

them, and some information about the most recent blocks.

• Smart contracts are decentralized. A contract is executed on the local

blockchain instance of a node, but as all instances share the same initial

state, they deterministically produce the same final state. Thus the whole

network operates as a single decentralized world computer.

 2.3.2 Oracles

The rules and conditions in a smart contract determine when an action should be

executed. When a particular value or combination of values has been achieved, the smart

contract is being executed. Its execution, based on preconfigured algorithmic steps,

performs a series of operations, resulting in a new state or the emission of an event. The

result of the execution is written in the blockchain along with the effect on the

participating parties.

There might be cases when the value or the condition required is outside the

network boundaries the contract is executed. This situation leads to a problem as it

dramatically limits the ability of smart contracts to handle real-world problems. A

solution is provided by entities called oracles. In the blockchain and smart contracts

context, an oracle is an agent that locates and verifies real-world events and transmits

them as data in the blockchain. The primary responsibility of oracles is to provide this

kind of data to smart contracts in a secure and trusted way. Such data could be the value

23

of temperature, a successful money transaction, the increase of a stock price, or the

inflation percentage.

There are many types of oracles, depending on how they are being utilized.

Software oracles can handle information that can be found online on the web. The

sources of the information may vary and could include company or organization

websites. These oracles fetch the data from its online resources and forward them to any

subscribed smart contract. Other smart contracts require information directly from the

physical world. For example, a smart contract could require values from a sensor located

at a particular location. The greatest challenge with hardware oracles is their ability to

report measurements without sacrificing data security. Oracles can also be classified

based on the direction of the information. Inbound oracles can transmit information to

smart contracts from external sources. Similarly, outbound oracles can send information

to external world interfaces from smart contracts.

 2.4 Decentralized applications

A decentralized application (dapp) is built on a decentralized network that

combines a smart contract and a frontend user interface. In contrast to web applications,

dapps do not rely on a regular backend server or a single computer to run, but they are

executed on the nodes of a peer-to-peer network. The frontend part of a dapp can be

written in any language, just like an ordinary application, and make calls to its backend.

As covered in the previous paragraph, a smart contract is a piece of software that

exists on the blockchain and executes precisely as programmed. Once a contract is being

deployed to the network, there is no way to change it. Decentralized applications derive

their nature from their backend components. They are controlled by logic written into the

contract and not by an individual. This property is also a challenge as the smart contract

powering an application needs to be designed carefully and tested thoroughly.

It must also be noted that decentralized applications existed before the

introduction of blockchains. Examples of decentralized applications are BitTorrent and

Tor, designed to execute on peer-to-peer networks that are not powered by blockchain.

The difference between a conventional web application and a decentralized

application in the context of smart contracts and blockchains can be depicted

schematically in [Figure 11]. A client-server application utilizes its frontend application

to make HTTP requests to a backend API hosted on centralized servers. At the same

24

Figure 11 Dapp architecture comparison [71]

time, a decentralized application uses the same technologies for its client to make calls to

the interfaces of smart contracts hosted on a blockchain.

 2.4.1 Characteristics

The unique nature of decentralized applications inherits some very peculiar

characteristics from its blockchain backend. [36] Some of them are listed below:

• They are decentralized. These kinds of applications are independent and

designed not to be controlled as a group. Their code is distributed to all

peers of the network to be executed independently.

• They are deterministic. Dapps result at the same output given a specific

input, irrespective of the environment they are executed. This

characteristic is also a core property of smart contracts.

• They are Turing-complete. Based on computability theory, dapps are

computationally universal. They are able to perform any action a modern

programming language can perform.

• They are isolated. Decentralized applications are executed in a virtual

environment running on the blockchain network, and therefore, they are

fault-tolerant. In case of a bug or a severe malfunction, the application

will not prevent the network from normal functioning.

25

 2.4.2 Benefits

Like any traditional app, a dapp’s purpose is to provide a solution to a problem.

However, decentralized applications development introduces some notable advantages

and benefits that typical applications do not.

Decentralized applications offer zero downtime. The smart contract powering a

dapp is deployed on every node participating in the network. The network will always be

able to respond to clients looking to interact with it. Denial-of-service attacks are not

possible against a decentralized application as the peer-to-peer network will mitigate any

attempt.

Dapps also provide user privacy. Public key cryptography is used for identity

verification against smart contracts and dapps. The users do not need to provide their

real-world identity to interact with them.

A significant feature of decentralized applications is censorship resistance. No

entity or central authority can block users from deploying or transacting with a dapp or

reading data from the blockchain network.

Decentralized applications provide complete data integrity. Any piece of

information stored on the blockchain is immutable and irrefutable preserved by

cryptographic algorithms. No transactions can be erased, so data cannot be forged.

Trustless transactions are another unique characteristic of dapps. There is no

central authority or intermediate required for smart contracts to be analyzed and executed

standardly. This behavior may not be the case on centralized applications where the users

have to trust the server’s owner that will not misuse records, tamper with data, or even

get hacked.

Last but not least, decentralized applications are open-sourced. The code executed

in the backend in smart contracts is deployed on the blockchain, so there is no way to

conceal malicious code. This aspect allows a dapp to be reviewed thoroughly by the

open-source community to identify bugs or hidden pitfalls.

 2.4.3 Implications

Of course, decentralized applications are not perfect and come with their own set

of disadvantages and issues. Next, we will try to identify the most known implications

dapps development often encounters.

26

Decentralized applications are hard to maintain. The code and the data of a dapp

are deployed on the blockchain, which makes them hard to modify. Blockchain

developers often face difficulties to publish updates to their applications or the data

stored by them. Once a dapp is deployed, even bugs and security risks are irreversible in

the old version.

Decentralization comes at a price. Decentralized applications deal with serious

performance overhead. To benefit from the advantages of blockchains, every node in the

network must run and store every transaction. Decentralized consensus also takes its toll.

Consequently, there is considerable performance overhead for dapps, and scaling is one

of the primary challenges they face today.

Dapps can face network congestion issues. The current model of blockchain

platforms provides limited resources. If a dapp is not efficiently using network resources,

the entire lattice can be hampered. If transactions are being produced faster than the

network’s capacity, the pool of unconfirmed transactions can grow significantly, leading

to increased transaction fees and delays.

Decentralized applications lack on user-friendly experience. As it is still at its

early stages, the dapp ecosystem can be challenging for the average user. There is a stack

of tools required to interact with the blockchain in a truly secure way. Key stores are one

of the biggest challenges modern decentralized applications face. A lost key can turn the

corresponding identity unretrievable.

An often overlooked aspect of decentralized software development has to do

centralized implementations. A dapp running on a blockchain does not enforce

decentralization on all aspects of the development stack. Many dapps are neutralized by

centralized techniques incorporated as the second layer to the blockchain, often to

improve user experience. External services store keys or other private information,

frontend clients served from centralized servers, or hybrid models that incorporate

business logic to be executed on a server before being written to the blockchain are

common examples. All the above can eliminate the benefits of decentralized applications

running on the blockchain.

Last, decentralized applications cannot handle KYC easily. Many centralized

applications rely on user verification which can be easy when a single authority oversees

the process. In the dapp model, there is no such entity, and for Know-Your-Customer,

verification can be challenging in application domains that require it.

27

 3 Technologies Involved

In this section, we will describe technologies implementing the fundamental

theoretical concepts presented up to this point. Many of these projects are pioneers in the

domain of decentralized applications and still drive the current developments.

 3.1 Ethereum

In 2013, an introductory technical paper was published by a young programmer,

Vitalik Buterin. Highly influenced by Satoshi Nakamoto and the Bitcoin network,

Buterin reinstates some of the blockchain concepts and combines them with the

conceptions of Nick Szabo. He identifies that Bitcoin does support scripting capabilities

that could be associated with smart contracts. However, Bitcoin scripting presents several

significant limitations, as the absence of a Turing-complete language and the lack of

state. Instead of inheriting Bitcoin limitations, Buterin proposes a new protocol named

Ethereum for building decentralized applications. [37]

Ethereum incorporates a blockchain with a built-in Turing-complete

programming language allowing anyone to write smart contracts and decentralized

applications. The smart contract developer can create his own rules for ownership,

transactions, and state management functions.

Formal development of Ethereum started in early 2014 with the specification of

putting executable smart contracts in the blockchain. The Ethereum Virtual Machine

(EVM) is described in the Ethereum yellow paper as the computation engine which acts

as a decentralized computer. EVM exists on every node participating in the Ethereum

network. It is the part of Ethereum that runs execution and smart contract deployment. A

contract is written in a high-level programming language and is compiled into a binary

string named bytecode. EVM bytecode is the VM-level machine language that consists

of opcodes, operation code instructions for the EVM to execute.

The first release of Ethereum was launched in 2015. The Ethereum Foundation, a

non-profit organization, was created. To fund the development, Buterin and other co-

founders launched a crowdsourcing campaign to sell participants Ether, the native

Ethereum tokens. The public funding round was surprisingly successful, with the

Ethereum Foundation raising several million to kickstart operations. Since then, the

platform has evolved rapidly, with hundreds of developers involved worldwide.

28

 3.1.1 Ether and Gas

Ethereum includes its native currency named Ether. As mentioned in the

whitepaper, Ether:

“serves the dual purpose of providing a primary liquidity layer to allow for

efficient exchange between various types of digital assets and, more importantly, of

providing a mechanism for paying transaction fees” [38].

So, like Bitcoin, Ether is rewarded to miners as an incentive to protect the

network security. Additionally, it serves as a mechanism for paying fees per transaction

for anti-spam purposes. The smallest denomination of Ether is a Wei, named after the

computer scientist Wei Dai. An Ether consists of 1018 Wei.

Transaction fees are part of the incentive mechanism in Ethereum as they are in

Bitcoin. However, there is a difference in how they are represented and computed. In

Bitcoin, the transaction fee is the difference in value between the input and the output of

a transaction. On the other hand, fees in Ethereum are not fixed as they are dependent on

the code to be executed as part of the transaction. As stated in the whitepaper, a fee exists

“to prevent accidental or hostile infinite loops or other computational wastage in code.”

They introduce a limit to the Turing-completeness nature of Ethereum’s high-level

programming language. While the language is Turing-complete, the developer is limited

in the number of steps he can introduce in the implementation. As transactions are

executed on every node in the blockchain network, a computational-heavy transaction

burdens everyone. This way, fees also act as a measure against spam.

Every Ethereum transaction includes two fields named STARTGAS and GASPRICE.

The STARTGAS is the maximum amount of gas the transaction has available to use. The

GASPRICE is the fee the sender is willing to pay per unit of gas consumed. As a result, the

total fee is calculated by multiplying the total gas the transaction used to execute with the

GASPRICE. If the total gas exceeds the amount of STARTGAS provided, then the transaction

is reverted.

It is crucial to access that Ethereum manages to decouple the execution cost and

the fluctuation in the value of Ether with fiat currencies by providing a separate field for

the gas price. This approach is necessary if, for example, the price of Ether increases

exponentially on the cryptocurrency market. A transaction with a fixed price per

29

computation could become prohibitive. This issue is mitigated through the use of

GASPRICE. In the previous scenario, even if the amount of gas consumed by a particular

transaction remains constant, the gas price can be reduced to allow the network to operate

at a reasonable cost.

 3.1.2 Accounts

The global state of Ethereum is enclosed in account objects that can interact

through messages with one another. Each account is identified by an address of 20 bytes

and maintains its own state. There are two types of accounts, externally owned accounts

(EOA) and contract accounts. Accounts of the first type are controlled by private keys

and have no code associated with them. Accounts belonging to contracts are controlled

by their contract code and have the relevant code associated with them.

The differences between the two account types are vital in understanding how

Ethereum works. An externally owned account can send messages to other externally

owned or contract accounts by creating and signing transactions using its private key. A

message between two externally owned accounts is a transfer of value between the two.

However, the message to a contract account activates the contract’s code executing

various actions defined by it. Those actions could be the transfer of tokens, the minting

of new tokens, a write to storage, a calculation, the creation of a new account, to name a

few. It should also be noted that contract accounts cannot initiate new transactions on

their own. A contract account can only fire transactions in response to other transactions

from either an externally owned account or a contract account. Consequently, any action

that impacts the blockchain is always initiated by a transaction controlled by an

externally owned account.

 3.1.3 Token systems

As Ethereum allows decentralized implementations, it introduces new notions

like blockchain tokens. A token is a digital asset that exists on a blockchain but is not a

built-in currency. It can be created and owned but also transferred to others, creating

economic systems. Token systems are pretty easy to implement in Ethereum. [39]

It is essential to understand that a currency, or token system, fundamentally acts

like a database with certain constraints. The database can execute a single operation

simulating a transaction. A transaction is performed by subtracting X units from balance

A and adding them to balance B. The constraints enforce that balance A had at least X

30

units before the transaction, and A must approve the transaction. To implement a token

system, all that is needed is to implement this logic into a smart contract. [40]

One of the most renowned Ethereum tokens is ERC20, and it has emerged as the

technical standard. [41] ERC20 is used as an interface for all smart contracts to

implement by providing a list of rules for fungible tokens. Other standards like the

ERC721 represent ownership of non-fungible tokens (NFTs), where each token is

unique. [42] Various types of NFTs have become popular the recent years leading the

frenzy of digital collectibles.

 3.2 Solidity

Smart contracts are written in a higher-level language than the bytecode format of

the Ethereum Virtual Machine (EVM). Solidity is the most popular smart contract

language. As the Ethereum Foundation explains:

Solidity is a contract-oriented, high-level language for implementing smart

contracts.... It was influenced by C++, Python, and JavaScript and is designed to target the

Ethereum Virtual Machine (EVM).... Solidity is statically typed, supports inheritance,

libraries, and complex user-defined types, among other features. [43]

Solidity has reached version 0.8.9 at the time of this writing. However, as version

0.8.x has introduced many breaking changes, numerous libraries did not have the time to

adapt, so we relied on version 0.7.0 to implement the current thesis project.

 3.2.1 Source file structure

Solidity source files can contain numerous contract definitions, import and

pragma directives, struct, enum, function error, and constant definitions. As an example,

let us inspect the following Solidity contract in Code 1:

31

1. // SPDX-License-Identifier: GPL-3.0
2. pragma solidity >=0.4.16 <0.9.0;
3.
4. contract SimpleStorage {
5. uint storedData;
6.
7. function set(uint x) public {
8. storedData = x;
9. }
10.
11. function get() public view returns (uint) {
12. return storedData;
13. }
14. }
15.

Code 1 An example contract written in Solidity

 At the first line, we encounter the Software Package Data Exchange (SPDX)

license identifier. [44] In most circumstances, a contract code will be available as open-

source. Every source file is encouraged to include a comment specifying the license

under which it was released. The compiler does not validate this tag, but it is included in

the contract bytecode metadata.

 The pragma keyword found on the second line is used to indicate specific

compiler features and checks. Every source file should be annotated with a version

pragma to prevent incompatible compiler versions from introducing breaking changes to

the code. For this example, the pragma directive specifies that the source code was

written for Solidity versions as early as 0.4.16. At the same time, it supports newer

versions up to 0.9.0 but without including it.

 The above example does not include one, but Solidity supports import statements

following the JavaScript syntax shown in Code 2:

1. import "./filename.sol";

Code 2 An import statement

The above statement dictates that all global symbols for the source file specified

by the import path should be included in the current file. This statement would be placed

below the pragma version directive and above the contract definition.

 3.2.2 Contract structure

In Solidity, contracts are very similar to classes in object-oriented programming

languages. A Solidity contract consists of a collection of code and data. The contract

code refers to its functions, while the contract data refers to its state. Every contract

32

contains multiple declarations of state variables, functions, modifiers, events, errors,

struct, and enum types as parts of its structure. [45]

➢ State variables

State variables are variables that store their values permanently with the contract.

The state variables can be modified by transactions executing code that modifies their

values. An example of a state variable is the storedData variable of the SimpleStorage

contract above.

➢ Function modifiers

Functions are very similar to other high-level programming languages. However,

function modifiers are unique to Solidity. A function modifier looks like a function but

uses the keyword modifier instead of the keyword function. The modifiers are called

before the actual function and thus can change the function's behavior. They are

prevalent to provide access control to functions which use should be limited according to

specific conditions.

1. // SPDX-License-Identifier: GPL-3.0
2. pragma solidity >=0.4.22 <0.9.0;
3.
4. contract Purchase {
5. address public seller;
6.
7. modifier onlySeller() { // Modifier
8. require(
9. msg.sender == seller,
10. "Only seller can call this."
11.);
12. _;
13. }
14.
15. function abort() public view onlySeller { // Modifier usage
16. // ...
17. }
18. }
19.

Code 3 A function modifier

A function modifier with the name onlySeller can be found at line 10 in Code 3

above. The modifier validates whether the contract caller is the seller stored in the state

variable using the require built-in function. If the validation fails, it will trigger an

exception with the description passed as the second argument. The _; command will be

reached otherwise, meaning the function execution will continue as if the modifier was

never applied. The modifier is applied on function abort() at line 15.

33

➢ Events

Events are interfaces to EVM loggers. [46] Applications can subscribe and listen

to events through the Ethereum client. When emitted, they are stored as part of the

transaction log along with the arguments supplied. If an argument is labeled as indexed,

it will be converted into a topic and become searchable. An event can have up to three

topics. The Log and its event data are not accessible from within contracts, not even from

the contract created. An example of a contract event declaration is located at line 5 in

Code 4 below. The event is fired using the emit keyword inside the bid() function on

line 9.

1. // SPDX-License-Identifier: GPL-3.0
2. pragma solidity >=0.4.21 <0.9.0;
3.
4. contract SimpleAuction {
5. event HighestBidIncreased(address indexed bidder, uint amount); // Event
6.
7. function bid() public payable {
8. // ...
9. emit HighestBidIncreased(msg.sender, msg.value); // Triggering event
10. }
11. }
12.

Code 4 A smart contract event

 3.3 OpenZeppelin

OpenZeppelin is a crypto cybersecurity company providing tools for secure smart

contract development and performing security audits for multi-million crypto

organizations and platforms. One of its core projects, OpenZeppelin Contracts, is a

library for secure smart contract development. The OpenZeppelin library lays a solid

foundation for Solidity dapp development by maintaining and extending reusable

community-vetted code. [47]

OpenZeppelin smart contracts provide implementations for popular Ethereum

standards. Many ERC (Ethereum Request for Comment) tokens are included, like the

fungible ERC20 or the non-fungible ERC721 tokens. Another domain that OpenZeppelin

supports is smart contract access control. Contracts that provide a general role-based

access mechanism or simpler ownership patterns are available. Other provided

implementations include utilities like SafeMath that protect against mathematical

operations overflows and underflows or multiple proxy patterns that may provide

contract upgradeability. [48]

34

 3.4 Truffle

Truffle Suite is an open-source toolbox for decentralized applications

development supported by Consensys. The Truffle framework is one of the most popular

smart contract development tools that allows compiling, testing, debugging, and

deploying any blockchain project powered by the Ethereum Virtual Machine (EVM).

[49]

Truffle provides support at all stages of the smart contract development lifecycle.

It allows the developer to focus on other parts of the dapp development by handling

contract artifacts, library linking, custom deployments, and other complex Ethereum

operations. Additionally, it provides a framework for automated contract testing. Smart

contract development is pretty fault intolerant, so Truffle assists in building robust code

by writing test cases in JavaScript using powerful and proven testing frameworks like

Mocha and Chai. Another unique feature of Truffle is the ability to introduce scriptable

migration and deployment processes. A complete migration history allows the developer

to support any changes that may affect the smart contract code during development or in

the future. The framework also handles deployments to support any Ethereum network

making smart contracts available on any public or private blockchain. [50]

Truffle comes with its command-line tools like Console and Develop. Both

interfaces provide a convenient way to interact with smart contracts for testing and

debugging purposes. Truffle Console allows interactive communication with any

Ethereum client such as Ganache or geth. On the other hand, Truffle Develop spawns a

development blockchain and allows instant communication with any compiled contract.

Truffle is supported by a large community that contributes, among others, to the

creation of Truffle boxes. Truffle boxes are preconfigured boilerplate projects, including

everything from Solidity contracts to helpful libraries and frontend views.

 3.5 Ganache

Ganache is part of the Truffle Suite ecosystem. It is a high-end development tool

that allows running a local blockchain for Ethereum and Corda decentralized application

development. [51] The local chain is optimized for developing, deploying, and testing

projects and smart contracts in a safe and deterministic environment. Utilizing Ganache

streamlines the development process that otherwise would require money and time to use

real blockchain networks.

35

Ganache allows the user to fork any Ethereum network without the need to

bootstrap a node. It provides a JSON-RPC interface like an actual node. As a versatile

development tool, Ganache supports snapshot and revert state mechanisms and fast-

forward in time. It also provides the ability to control the creation of new blocks by either

choosing instant mining, on-demand, or on a custom interval. Ganache can also

impersonate any account for the user without the need to own the private keys.

It comes into two variants: an embedded graphical user interface called Ganache

UI and a command-line interface named Ganache CLI. Both versions are available for

Windows, MacOS, and Linux.

 3.6 Interplanetary File System (IPFS)

The Interplanetary File System (IPFS) is a pure peer-to-peer distributed file

system. Like pre-existing peer-to-peer networks, IPFS builds upon the ideas of

Distributed Hash Tables (DHTs), BitTorrent, Git, and Self-Certifying File System (SFS).

It attempts to simplify and connect successful techniques into a single system. [52]

As with most decentralized technologies, IPFS aims to remove the central points

from the architecture, giving the nodes the same capabilities. IPFS nodes store IPFS

objects in local storage. They are connected and transfer objects, which can represent

files or any other data structure.

IPFS relies on three fundamental principles: content addressing, Directed Acyclic

Graphs (DAGs), and Distributed Hash Tables (DHTs).

Content addressing is used to identify content by what is included rather than

where it is located. Therefore, every piece of information on the IPFS protocol has a

content identifier or CID, essentially the content hash. Using Interplanetary Linked Data

(IPLD), which can link between different hash-linked data structures to allow their

unification [53], IPFS manages to identify and address content on the network uniquely.

IPFS takes advantage of Directed Acyclic Graphs (DAGs) and specifically

Merkle DAGs. This variant of DAGs has each node have a unique identifier that is a

hash of the node’s content. [54] This mechanism allows identifying data objects by the

value of their hash, which is essentially content addressing. IPFS splits data into blocks

to build a Merkle DAG and allow parts of a single file to be more efficiently distributed

in the network. This approach also allows duplicate content referenced by the same node

and only updated parts to receive new CIDs.

36

IPFS uses Distributed Hash Tables (DHTs) for content discovery. As a hash table

is a database of hash keys to values, a distributed hash table is a table that is split across

all peers in a distributed network. [55] In IPFS, a node in search of content has to query

the DHT twice. Once to find out which nodes host the blocks comprising the content it is

after and once more to locate those nodes through the routing table.

Figure 12 How a dapp can utilize IPFS for document storage

IPFS can empower decentralized applications as it enables them to store large

files off-chain and put immutable permanent links using content addressing in the

blockchain transactions. This methodology is also followed by CryptoCerts, which

utilizes IPFS for storing actual documents, as the example depicted in Figure 12.

 3.7 React

React, or React.js is an open-source JavaScript library used to build user

interfaces for single-page applications. It is used for handling the view layer in a

declarative way for both web and mobile applications. [56]

The framework was first created by Jordan Walke, a software engineer working

for Facebook. In 2011 a prototype was used for Facebook’s search element, and the

following year, Facebook deployed React for its newsfeed. At the same time, the newly

acquired Instagram adopted the framework too. In 2013 React gets released as an open-

sourced project. [57]

React’s philosophy is all about reusable UI components. It focuses on building

encapsulated components that manage their state and uses them to make more complex

user interfaces. The framework aims to be fast, scalable, and straightforward.

React uses JSX for templating. JSX is an XML-like syntax extension of

JavaScript that assists in working with user interfaces inside the code. This feature is

37

helpful as React components contain both markup and logic in the same file as they are

considered inherently coupled. However, the framework is flexible, and JSX is not

required in case of preference.

Another unique feature of React is the single-way data flow model. A set of

immutable values are passed to the components as properties. The component cannot

directly modify any properties. Instead, components are provided callback functions to

pass any events from user interaction up to components hierarchy. This process is known

as “properties flow down; actions flow up.” A recent addition that allows extracting

reusable stateful logic from components not hierarchically related is called React hooks.

React also introduces the virtual DOM (Document Object Model) concept as part

of its internals. This mechanism allows the framework to keep a representation of how

the user interface should look in memory. When the state has changed, the framework

syncs the virtual DOM with the “real” DOM. This process is called reconciliation and

allows React to stay declarative.

 3.8 Redux

As the requirements for modern web applications grow more complex than

before, JavaScript applications must manage more state in code. This necessity

introduced tools that make state mutations predictable by imposing restrictions on how

and when the update should happen. Such a tool is Redux, a global state manager that

often is integrated into React applications. [58]

Redux introduces three fundamental principles to keep stateful logic consistent:

• A single point of truth – The global state is stored within a single store.

• The state is read-only – State changes only by emitting an action.

• The state is changed only by pure functions – The managing functions

should be deterministic with no side effects.

In Redux, a pure function that takes action and the current state of the application

and returns a new state is called a reducer. An action describes the event that happened,

and the reducer needs to determine how the state will be affected, if at all. Last, the

central state container is also known as the Redux store. It can be split up into slices that

contain reducer logic depending on the features of the application.

38

 3.9 Web3.js

Web3.js is a collection of JavaScript libraries that allow interaction with the

Ethereum ecosystem. [59] As a convenience library, web3.js uses a provider to connect

to a local or remote Ethereum node. The Ethereum provider JavaScript API is itself very

simple and wraps Ethereum JSON-RPC formatted messages. This flow is depicted below

in Figure 13.

Figure 13 Web3.js to node communication

Web3 provides separate modules for different network functionality. The most

popular is eth, which consists of tools for the Ethereum blockchain and smart contracts.

CryptoCerts client uses web3.js for typical operations like fetching the active network

identifier or the connected accounts and interacting with the CryptoCerts smart contract

interface. Other modules include the net for interacting with network properties and

protocol-specific modules like the shh focusing on Ethereum’s peer-to-peer whisper

protocol.

 3.10 MetaMask

MetaMask is an Ethereum web browser extension that acts as an Ethereum

wallet. [60] More than that, Metamask provides an interface for Ethereum-based

decentralized applications; it is a Web3 provider. It essentially acts as a bridge between

the blockchain and the browser.

MetaMask allows users to manage accounts and their keys while isolating them

from the application context. This approach provides improved security over storing the

user keys on a single central server or even in the web browser local storage.

39

The developer only has to interact with the window.ethereum object that gets

populated once MetaMask is installed. When a request for a blockchain transaction is

being made, MetaMask will prompt the user with all the required details for review.

Figure 14 MetaMask connected to localhost

Additionally, MetaMask allows connecting to the main Ethereum blockchain or

other test networks without running a node locally. This feature is achieved using an

intermediate service named Infura that hosts the nodes and exposes an HTTP API to

them. However, this could be considered as a compromise to decentralization.

CryptoCert does not utilize Infura and asks MetaMask to connect to a local blockchain

network exposed by Ganache, as seen in Figure 14.

 3.11 Docker

Docker is an open-source platform that allows run applications using containers.

[61] It enables developers to package their code and operating system, libraries, and

dependencies required to run in any environment. Docker provides many benefits,

including environment isolation, consistency, and portability of code.

Docker is a containerization platform. Containerization provides an alternative to

virtualization, but it is essentially virtualization at the operating system level. Containers

enable virtualization capabilities into the Linux kernel and allocate resources between

multiple applications components of a single host operating system. This process can be

parallelized with a hypervisor that makes it possible for multiple virtual machines (VMs)

40

to share the same CPU, memory, and other resources of a hardware server. However,

containerization offers much more cost-effective scalability and improved performance.

Containers existed for many decades, but they took off the ground in 2013 with

Docker's emergence. [62] Docker evolved into an industry standard for containers by

providing simple tools for developers that accelerated their adoption. The toolkit

provides a single API that supports building, deploying, running, updating, and stopping

containers with single commands that can be easily automated.

Docker containers are created out of images. A Docker image contains the

required source code and all the tools and dependencies to run as a container. A running

container is an instance of a Docker image. To compose an image, a developer can write

the sequence of commands as instructions for building it in the form of a Dockerfile.

There is also the option to use an existing image available on a shared registry like the

Docker Hub.

 3.11.1 Docker Compose

Among other tools, the Docker ecosystem has introduced Docker Compose.

Compose allows the user to create stacks with multiple containers that will reside on the

same host. Docker Compose uses a YAML file that allows the developer to configure the

containers of his application as services. [63] An example YAML file is shown in Code 5

below. This file is being used to define the backend stack of the CryptoCerts dapp.

1. version: "3.7"
2.
3. services:
4. truffle:
5. container_name: truffle
6. image: truffle-image
7. build: .
8. volumes:
9. - .:/dapp
10. entrypoint: sh
11. command: '-c "sleep 1d"'
12. ganache-cli:
13. container_name: ganache-cli
14. image: trufflesuite/ganache-cli:latest
15. volumes:
16. - ganache_db:/data
17. ports:
18. - 8545:8545
19. command: "--db /data -a 10 -d --mnemonic '${MNEMONIC}'"
20.
21. volumes:
22. ganache_db:
23.

Code 5 CryptoCerts backend Docker Compose YAML file

41

 Everyday use cases for Docker Compose include the spin-up of development

environments with a single command, automated testing environments as part of CI/CD

pipelines, and deployments to single host production servers. For multi-host deployments

in clusters, Docker Compose can be combined with the Docker Swarm Mode

orchestrator.

42

 4 CryptoCerts

A part of the current dissertation was implementing a fully functional

decentralized application to showcase the concepts and the tools presented up to this

point. This section is dedicated to giving an overview of the functionality and the

implementation details of a prototype dapp named CryptoCerts.

 4.1 The problem

Education is a crucial part of our lives, and a degree or a diploma from a

recognized institution can increase the chances of a bright career. As a result, an

academic certificate has become one of the most sought-after necessities. As assets of

great value, academic credentials were inevitably targeted by malicious actors. Fake

degrees are a widespread menace in the modern world. According to a report from ACEI

Global, forged academic certificates is a billion-dollar industry. [64]

In an attempt to identify the problem, we should emphasize that the traditional

certificate system is based on trust. As part of the global employment process, an

employer can be identified as the trustor. On the other hand, the trustees are the job

candidates, former academic students in our context. When a candidate presents his

certificate to an employer, the employer has the option to trust that the certificate is valid.

He can trust that the candidate did not participate in any fraudulent activities to produce

this certificate. As both the candidate and the employer are not familiar with each other

based on initial trust theory, the employer might have to contact the academic institution

to authenticate the certificate.

Of course, the trust schema can extend to another relationship between the

employer and the academic institution. In that additional schema, the employer trusts the

university for the activity in which professors and university officials have assessed that

the students have achieved the learning outcomes claimed by the certificate they

received. For the sake of simplicity, we assume that academic institutions around the

globe are credible and account for trusted authorities.

A proposed solution to the forged credentials problem could be introducing a

system to eliminate any need for trust between the transactors. The system will verify the

authenticity of the issued certificates by checking the integrity and the validity of the

documents directly from the trusted authorities. Blockchain technology can power the

43

system to ensure the immutability of records and the validity of the transactions through

rules coded in smart contracts. This implementation will eliminate the aspect of trust and

turn the process transparent and trustless. ACEI Global also referred to blockchain as a

technology solution to forged credentials in the past. [65]

 4.2 A decentralized academic certificate registry

CryptoCerts is a decentralized academic certificate registry for Web3. The

application utilizes the Ethereum blockchain to safeguard the issuance of academic

documents, especially certificates and degrees, from educational institutions and

organizations to their students. The complete code of its final implementation is

referenced in Appendix B.

 4.2.1 Entities

For the prototype version of a decentralized registry, we can identify the

following user roles as system entities:

• The Administrator – He is the sole smart contract owner. He is also

responsible for bootstrapping the application by registering the accounts

of the Institutions.

• The Institutions – They represent the academic institutions or

organizations participating in the registry. They issue academic

certificates or other documents and assign them to Students.

• The Students – They represent the designated students that receive any

issued certificates or documents in their name.

• The Guests – This is not an explicit role and includes any observer not

actively participating in the registry. As the data are all deployed on a

public blockchain, anyone can verify them. CryptoCerts provides

convenient tools for that purpose.

 4.2.2 Features

Next, we will cover the functionality and the features included in CryptoCerts:

• Institutions are able to issue and assign academic certificates to their

students in a decentralized and immutable way utilizing smart contracts

running on the distributed ledger of the Ethereum blockchain.

44

• Students can browse the certificates assigned to them and prove

ownership by their private key. Using CryptoCerts, they can also fetch a

copy of the actual document, stored distributedly in the InterPlanetary File

System (IPFS).

• Third-party guests can validate any genuine digital document in their

possession against the blockchain records to verify its integrity and

authenticity.

Adding rich features that may come across a full-pledged registry platform was

never considered in scope for this project. This dissertation aims to provide a proof of

concept version, a minimum viable product (MVP).

 4.2.3 User stories

CryptoCerts was developed following well-established agile software engineering

methodologies. For the initial requirement analysis, the following user stories were

composed:

✓ “As an Administrator, I want to be able to create a new Institution by

providing its Name, Location, and Account Address.”

✓ “As an Administrator, I want to be able to edit the Title and the Location

of an existing Institution.”

✓ “As an Institution, I want to be able to issue a new Certificate by

providing its Title, the Student Account Address and by attaching a

genuine copy of the actual PDF document.”

✓ “As an Institution, I want to be able to browse through the Certificates

my Institutions have already issued.”

✓ “As an Institution, I want to be able to download a copy of the document

of any Certificate I have already issued.”

✓ “As an Institution, I want to be able to edit the Title of a Certificate I

have already issued.”

✓ “As a Student, I want to be able to browse through all the Certificates

already assigned to me from all the Institutions.”

✓ “As a Student, I want to be able to download a copy of the document of

any Certificate I have been assigned to.”

45

✓ “As a guest, I want to be able to browse through the Institutions

participating in the registry.”

✓ “As a guest, I want to be able to upload a copy of a document and get a

response on its authenticity.”

 4.2.4 Wireframes

Based on the features described above in natural language from the end user’s

perspective, we extracted a series of wireframes.

Wireframes are created to arrange elements to accomplish a particular purpose

best. They aim to inform about a business objective or a creative idea. A wireframe

depicts an application page layout, including interface elements, navigational systems,

and how they work together. The wireframe usually lacks typographic style, color, or

graphics, since the main focus lies in functionality, behavior, and priority of content.

CryptoCerts wireframes can be found in [Appendix A].

We should also highlight that both the user stories and the presented wireframes

are not expected to match the final implementation fully. They are both lightweight

methods that allow the development team to identify a product requirement quickly.

 4.3 User experience

As mentioned before, decentralized applications lack user experience. For

example, the average user may find it challenging even to navigate an application that

requests him to connect a wallet instead of creating an account. Consensys, a leading

company in blockchain application development, considers user onboarding one of the

obstacles of dapp adoption. They introduced a framework of best practices named

Rimble to guide decentralized applications UI/UX guidelines. Rimble provides Web3

components to assist developers in preserving a smooth user experience. [66]

CryptoCerts attempts to adopt some of these principles, guiding the user with new

concepts like authentication and transaction signing. In the following paragraphs, we

present the basic operations of the decentralized certificate registry from the user

viewpoint.

46

 4.3.1 Connecting to the network

Connection requires some technical preparation, and we need to guide new users

through it. This process involves helping them use a supported browser, access the right

network, and install MetaMask as a Web3 provider in the case of desktop. At the same

time, we need to avoid ruining a great experience by overwhelming our users with

information as soon as they land on the dapp.

Screenshot 1 CryptoCerts landing page

As seen in Screenshot 1, the CryptoCerts landing page informs the user about the

application’s features and keeps the experience simple. CryptoCerts acts passively and

will let users navigate pages that do not require connection, even using an unsupported

browser or connecting to the wrong network.

Screenshot 2 Functionality is limited without a connection

At this point, the vertical navigation bar on the left is available, but only the

Home link is active, representing the current page. The “Validate a document” button is

deactivated and displays a tooltip on mouse hover that not all capabilities are available.

Both can be seen in Screenshot 2. The user is currently a guest using a conventional

47

browser equipped with no Web3 capabilities. There is no way to provide any blockchain

information at this point.

Screenshot 3 Unsupported desktop browser and no Web3 provider found messages

As soon as the user clicks on the “Connect” button in the upper right corner, he

will receive more information about the current state. CryptoCerts include educational

popup messages to walk the user through the process of using a decentralized

application. A message will provide options if the user uses an incompatible browser

with no Web3 capabilities. In case the user uses a supported browser but no Web3

provider is available, a message will let him know and suggest he install MetaMask by

providing a link. The two cases appear in Screenshot 3 above. Even if the user somehow

reaches CryptoCerts from a mobile device, an attempt to connect will detect his setup

and guide him appropriately, depicted in Screenshot 4.

Screenshot 4 Incompatible mobile browser message

At this point, the user has to install MetaMask to continue the interaction with the

application. Next time he attempts to connect, CryptoCerts will check the active network

the Web3 provider is pointing. As this prototype is deployed on a local Ganache instance

and not the main Ethereum network, we need to ensure this is also the case for

48

MetaMask. If not, the application notifies the user to switch his network to the correct

one, as seen in Screenshot 5.

Screenshot 5 Wrong network is selected message

Eventually, the user will fulfill all the prerequisites required to use a decentralized

application. He uses a Web3-compatible browser with a Web3 provider installed that

points to the right blockchain network.

At this stage, a new set of functionality unlocks for the user. The application can

populate pages with data from the blockchain records. Fulfilling the relevant user stories,

a guest user can see a list of the participating institutions and also be able to validate a

document against the registry records. Both links are now available in the vertical

navigation bar, and the “Validate a document” button is active, as seen in Screenshot 6.

Screenshot 6 Connected to the blockchain

We should clarify that those operations do not require a transaction from an

account, so the user does not need to import his keys yet.

49

 4.3.2 Creating an institution

Let us try to write some records to the blockchain by importing some academic

institution accounts. This functionality is only available to the owner of the smart

contract, the application administrator. The user has to prove his identity, and the only

way to do so in the decentralized web is by providing his keys.

CryptoCerts does not handle user keys directly. This part concerns the Web3

provider, MetaMask, in our case. The user will have to leave the page and complete the

operation outside the browser’s viewport. Naturally, this may confuse or alert the average

user as it exceeds the flow of a conventional web application. Following the best

practices, CryptoCerts will provide the required feedback to guide the user.

As soon as the user clicks the “Connect” button, several events occur on the

screen. MetaMask is triggered by the application and fires a connection notification in

the form of a popup window. At the same time, a CryptoCerts popup message with a

spinning loader and a set of instructions appears. As the MetaMask connection

notification can easily be discarded by miss clicking, the persistent message on the dapp

encourages the user to seek the notification and complete the connection.

Screenshot 7 The user role icon and the connection notification

50

The Web3 provider will guide the user to prove his identity either by importing

his private key directly or in the form of a BIP32-compatible seed phrase. By using the

account associated with the contract owner, CryptoCerts identifies the user as the

Administrator. A user menu appears in the top right corner of the screen instead of the

connection button. The user role icon appears on it. Additionally, an on-screen

notification is triggered on the lower right corner, informing the user that is now

connected using an account. Both are depicted in Screenshot 7.

Screenshot 8 Menu updated with Administrator actions

As the application Administrator, the “Create Institution” menu item is now

available on the navigation bar, as seen in Screenshot 8. Clicking on it, the user transfers

himself to a new page containing the institution creation form. The specific fields

required for this demo are the institution name, location, and, most importantly, its

externally owned account identifier. The form validates the account to ensure no invalid

addresses are assigned. The relevant screen is depicted in Screenshot 9.

Screenshot 9 Filling the institution creation form

The user is about to perform a transaction. The information will be passed as

arguments to the CryptoCerts smart contract, and the result will be written to the

blockchain as part of a new block. Another series of events get triggered when the

51

Administrator clicks the “Save” button to submit the form, as seen in [Screenshot 10].

MetaMask shows another notification requesting the user to confirm a new transaction.

The address of the smart contract is displayed along with the gas cost details.

Simultaneously, CryptoCerts draws another variant of the spinner popup message on the

screen instructing the user to confirm the transaction.

Screenshot 10 CryptoCerts waiting for an institution creation transaction to complete

A successful transaction through the Web3 provider will trigger the CryptoCerts

contract, which will update its state according to the institution data provided and emit a

new institution creation event. The CryptoCerts client, already a subscriber for these

events, will capture it and update the user interface appropriately. The popup message

gets discarded, and a relevant notification is displayed to the user, as we can see in

Screenshot 11.

Screenshot 11 The new institution creation notification

 To confirm that the new institution user has been registered, we navigate to the

institution list page using the vertical navigation bar. As expected, our new university is

now part of the blockchain, as depicted in Screenshot 12 below.

52

Screenshot 12 The institutions list populated

 4.3.3 Issuing a certificate

Up to this point, we have presented how the interaction with the decentralized

application is performed. The basic operations like connecting a user account and

confirming transactions have been covered. Let us proceed to our primary business

objective, creating a new academic certification document directly in the blockchain.

In the previous paragraph, acting as the application Administrator, the user

created a new institution. We will use it to issue a new certificate to a student. To

disconnect, we click on the Administrator roll icon and select “Disconnect.” A

CryptoCert notification will confirm we are disconnected, and the application will

redirect us to the landing page with only the guest areas available. We log out from our

Web3 provider, and we will log back in with the keys that control our institution account.

As soon as we click the “Connect” button, the familiar connection windows will

appear, as seen in Screenshot 13. This time we select our second account, which accounts

for the institution we created earlier.

53

Screenshot 13 Connecting as an institution

Completing the operation will result in CryptoCerts identifying us as an

institution. The user role icon appears in the upper right corner; a notification confirms

we are connected, and the vertical menu renders some new items, “Certifications” and

“Create Certificate.” All are seen in the following Screenshot 14.

Screenshot 14 The institution user screen

54

 We click to create a new certificate, and we find ourselves transferred to a new

form. We fill in the certificate title, the student address, and by clicking on the document

drop area, we select the actual document containing an imaginary master’s degree. If the

drop area is inactive, we will have to ensure our IPFS daemon is running as this is a strict

requirement to store the document. As this is not the case, we can see the form before

and after the input in the following Screenshot 15.

Screenshot 15 The certificate creation form before and after input

 We are about to trigger another type of transaction against the smart contract

certification creation interface this time. Clicking on the “Save” button will cause

MetaMask and CryptoCerts to wait for our confirmation. As soon as it is done, the dapp

client will upload the document to the IPFS network, which will create a new CID for it,

basically the document hash. Similar to the institution creation transaction, the contract

will update its state, storing the CID of the document under a new certificate record along

with the student address. The student has been awarded a degree, and the blockchain is

going to store it for eternity. A new notification appears, and the certificate is now

available to be downloaded in the certificates list as depicted in [Screenshot 16].

 We should note that the certificates list appearing here is filtered to include all the

certificates issued by the connected institution. Switching to the student address, the user

will face the certificates list populated with any certificates assigned to him by any

institution in the network. We are going to skip this walkthrough as it is very similar to

the steps already covered.

Last, we shall clarify that even if the certificates list is unavailable to the guests

through the app as the current version, the blockchain records remain public. Anyone

55

knowing the CryptoCerts smart contract address could query its storage and extract all

the data stored.

Screenshot 16 The certificates list populated

 4.3.4 Validating a certificate

Last, we must impersonate a guest user trying to validate a certificate document

against the decentralized registry. As mentioned before, this process does not require a

connected account as it does not include any transactions.

Clicking either on the “Validate a document” button on the CryptoCerts landing

page or the “Validate” menu item in the vertical navigation bar, the user navigates to the

certificate validation form depicted in Screenshot 17.

Screenshot 17 The certificate validation form before and after input

56

Similar to the certificate creation form, the form remains inactive if the IPFS

daemon runs into any issues. In this case, the form accepts the certificate document we

downloaded before as a student. When we press “Validate,” the client generates the hash

of the selected document and searches for a match against the blockchain records. If the

certificate document is registered and remains intact, the application will report a success

message and the certificate creation transaction details in JSON format. This case can be

seen in Screenshot 18. On the other hand, if the document supplied does not correspond

to a certificate registered in the registry or its contents have been modified to a single bit,

CryptoCerts will reject the file and print a relevant message as depicted in Screenshot 19.

Screenshot 18 The successful validation of a document

Screenshot 19 Invalid document response

57

 4.4 System architecture

Following the architecture of the decentralized applications we reviewed in

paragraph 2.4 , CryptoCerts consists of a web client for the frontend and a smart contract

running on the blockchain for the backend part. In order to preserve true decentralization,

no third-party services were utilized. The application is designed to run independently on

every node connected to the blockchain network. The system architecture is depicted in

Figure 15.

Figure 15 The CryptoCerts system architecture

The CryptoCerts client is written in JavaScript using the React framework, the

Redux state manager, and the web3.js libraries. The backend contracts are written in

Solidity utilizing the Truffle framework. Additionally, the IPFS network was utilized as

decentralized documents hosting provider. An IPFS daemon should also operate in the

system to support this functionality. Every part will be examined separately in the

following paragraphs.

For the development version of CryptoCerts, the Ethereum node has been

replaced by Ganache CLI, which acts as a blockchain emulator. For testing convenience,

Ganache CLI is configured to generate a fixed number of accounts, crediting them with

100 ETH each in order for them to be able to transact with the blockchain. The exact

accounts and unique private keys can be obtained from the Ganache CLI container output

or the CryptoCerts contracts repository setup instructions. The preconfigured accounts

can also be imported as a batch using a BIP32-compatible seed phrase to a compliant

Web3 provider like MetaMask.

58

In order to improve the portability of the project, the environment has been

containerized using Docker containers. The details of the Docker containers topology can

be reviewed in Figure 16.

Figure 16 Docker stack topology

All data are stored in persistent Docker volumes allowing them to be wiped and

start fresh at any time, in contrast to an immutable blockchain ledger or an actual IPFS

node. All containers communicate through the host system, acting as a hub, with a set of

port-forwarding rules in the Docker Compose manifests. At the same time, the IPFS node

is configured to run in offline mode to reduce the network bandwidth overhead required

for a development setup.

 4.5 The Smart Contracts

CryptoCerts backend consists of the two contracts written in Solidity v0.7. Those

are Migrations and CryptoCerts.

 4.5.1 The Migrations contract

The Migrations contract is a helper provided by the Truffle framework for smart

contract development. It provides the guidelines the framework needs to deploy a smart

contract. As mentioned in paragraph 3.4 , Truffle migrations are compiled into JavaScript

files that handle the evolution on the blockchain. The records of those migrations are

written on the blockchain using the Migrations contract. We will describe how this task

is performed by inspecting the contract code in Code 6.

59

1. // SPDX-License-Identifier: MIT
2. pragma solidity >=0.4.22 <0.8.0;
3.
4. contract Migrations {
5. address public owner = msg.sender;
6. uint256 public last_completed_migration;
7.
8. modifier restricted() {
9. require(
10. msg.sender == owner,
11. "This function is restricted to the contract's owner"
12.);
13. _;
14. }
15.
16. function setCompleted(uint256 completed) public restricted {
17. last_completed_migration = completed;
18. }
19. }
20.

 Code 6 Migrations.sol

The Migrations contract includes a popular pattern in Solidity as part of its

restricted modifier. The modifier acts as an authorization middleware to the functions it

is applied. Its simplest form validates that the contract owner performs the incoming call

and rejects any calls that fail to meet that requirement. The owner’s address is stored at

the contract creation in the owner address variable.

As its main functionality, the Migration contract stores the integer corresponding

to the last applied JavaScript migration script located in the migrations folder. This

operation is done using the setCompleted function and the last_completed_migration

variable.

 4.5.2 The CryptoCerts contract

The CryptoCerts contract comprises the backend business logic of the

CryptoCerts decentralized application. This contract is where the institutions and the

certificates are registered as part of the blockchain state.

As mentioned in subsection 3.2 , smart contracts could be parallelized with

classes in object-oriented programming, and as such, they can use design patterns like

inheritance. Inheritance can be used for logical inheritance, but it can also be used simply

to organize the code by grouping similar logic into different contracts. The CryptoCerts

contract consists of five contracts: Context, Ownable, InstitutionFactory,

CertificateFactory, and the CryptoCerts wrapper contract. An atypical UML class

diagram describing the relations between the contracts can be found in Figure 17.

60

Figure 17 CryptoCerts UML diagram

➢ Context and Ownable

Context and Ownable contracts are part of the OpenZeppelin package described

in paragraph 3.3 . The first provides helper functions our main contracts utilize for the

current execution context, including the transaction sender and its data. The latter offers a

basic access control mechanism, where there is an account named as the owner that can

be granted exclusive access to specific functions. This module is a more polished version

of the restricted modifier, the Migrations contract included. Both Context and Ownable

contracts are defined as abstract, and they provide their functionality through inheritance.

61

➢ SafeMath

 The SafeMath contract is a library. Libraries in the context of Solidity are

reusable contracts offering functions other contracts can call. SafeMath is a wrapper over

Solidity’s arithmetic operations with added overflow checks. Arithmetic operations as of

Solidity v0.7 wrap on overflow. This behavior can easily result in bugs because

programmers usually assume that an overflow raises an error, which is standard in high-

level programming languages. SafeMath restores this expectation by reverting the

transaction when an arithmetic operation overflows. Solidity v0.8 announced that it

provides this functionality natively. However, for this project’s scope but we should rely

on an external library.

➢ InstitutionFactory

 InstitutionFactory is the concrete parent of CryptoCerts backend implementation.

As the name implies, this contract implements a factory pattern for creating institutions

and hosts all the relevant CRUD operations. The Solidity implementation can be

reviewed in Code 7.

1. // SPDX-License-Identifier: UNLICENSED
2. pragma solidity ^0.7.0;
3.
4. import "../node_modules/@openzeppelin/contracts/access/Ownable.sol";
5.
6. contract InstitutionFactory is Ownable {
7. event InstitutionCreated(
8. uint256 indexed id,
9. string name,
10. address indexed addr
11.);
12.
13. struct Institution {
14. string name;
15. string location;
16. bool isValid;
17. }
18.
19. mapping(address => uint256) public ownerToInstitution;
20. mapping(uint256 => address) public institutionToOwner;
21.
22. Institution[] public institutions;
23.
24. /**
25. * @dev Throws if called by any account who doesn't beloong to an Institution.
26. */
27. modifier onlyInstitution() {
28. require(
29. ownerToInstitution[_msgSender()] != 0,
30. "Caller is not an institution owner"
31.);
32. _;
33. }
34.

62

35. function createInstitution(string memory _name, string memory _location, address
_address) public onlyOwner {

36. institutions.push(Institution(_name, _location, true));
37.
38. uint256 id = institutions.length;
39. ownerToInstitution[_address] = id;
40. institutionToOwner[id] = _address;
41.
42. InstitutionCreated(id, _name, _address);
43. }
44.
45. function editInstitution(uint256 _id, string memory _name, string memory

_location) public onlyOwner {
46. institutions[_id].name = _name;
47. institutions[_id].location = _location;
48. }
49.
50. function deleteInstitution(uint256 _id) public onlyOwner {
51. Institution memory institution = institutions[_id];
52. institution.isValid = false;
53. ownerToInstitution[institutionToOwner[_id]] = 0;
54. institutionToOwner[_id] = address(0);
55. }
56.
57. function getInstitutionsCount() external view returns (uint256) {
58. return institutions.length;
59. }
60. }
61.

 Code 7 InstitutionFactory.sol

An institution is represented by a struct object containing its name and location

and a validity flag. The institution objects are pushed into a storage variable array named

institutions, and its index is being used the institution identifier it hosts. This

collection is essentially eternally written on the blockchain. We do not plan to reorder the

array, as this will be too costly in gas, rendering our contract unusable. So, keep the

index as an institution ID is considered safe. We need quick lookups based on the

institution ID and the owning address, and we implemented them as mappings. The

ownerToInstitution mapping links an account address to an institution ID, while the

institutionToOwner handles the reverse operation. Last, the InstitutionFactory contract

defines a new type of event called InstitutionCreated. This event will be used for

updating our client interface. It contains the institution identifier, its name, and its

account address.

The interface of the contract consists of the functions createInstitution,

editInstitution, deleteInstitution and getInstitutionsCount. Their operations are

pretty obvious. createInstitution creates a new institution object and stores it in the

institutions storage array. It populates our lookup mappings and emits an event that a

new institution has been created. We should note that this function utilizes the onlyOwner

63

access modifier from the Ownable parent contract, allowing its execution only to the

contract owner, thus the application Administrator. The editInstitution and

deleteInstitution functions update and void an institution in the storage array.

getInstitutionsCount is a helper returning the size of the storage array, and it is marked

as a view function, meaning that its execution does not require any gas.

➢ CertificateFactory

The CertificateFactory contract is the heart of our certificate registry. As

expected, it handles the certification creation and responds to any read-only queries

regarding the resource. We will review its implementation as seen in Code 9.

1. // SPDX-License-Identifier: UNLICENSED
2. pragma solidity ^0.7.0;
3.
4. import "../node_modules/@openzeppelin/contracts/math/SafeMath.sol";
5. import "./InstitutionFactory.sol";
6.
7. contract CertificateFactory is InstitutionFactory {
8. using SafeMath for uint256;
9.
10. event CertificateCreated(
11. uint256 indexed id,
12. bytes32 indexed digest,
13. address indexed addr
14.);
15.
16. struct Certificate {
17. string title;
18. bytes32 digest;
19. uint8 hashFunction;
20. uint8 size;
21. uint256 createdAt;
22. }
23.
24. mapping(uint256 => address) public certificateToInstitution;
25. mapping(address => uint256) public institutionCertificatesCount;
26.
27. mapping(uint256 => address) public certificateToStudent;
28. mapping(address => uint256) public studentCertificatesCount;
29.
30. Certificate[] public certificates;
31.
32. function createCertificate(
33. string memory _title,
34. bytes32 _digest,
35. uint8 _hashFunction,
36. uint8 _size,
37. address _address
38.) public {
39. Certificate memory cert = Certificate(
40. _title,
41. _digest,
42. _hashFunction,
43. _size,
44. block.timestamp
45.);
46. certificates.push(cert);
47. uint256 id = certificates.length;

64

48.
49. certificateToInstitution[id] = msg.sender;
50. institutionCertificatesCount[msg.sender] =

institutionCertificatesCount[msg.sender].add(1);
51.
52. certificateToStudent[id] = _address;
53. studentCertificatesCount[_address] =

studentCertificatesCount[_address].add(1);
54.
55. CertificateCreated(id, _digest, _address);
56. }
57.
58. function getCertificatesCount() external view returns (uint256) {
59. return certificates.length;
60. }
61.
62. function getCertificatesByInstitution(address _address) external view returns

(uint256[] memory) {
63. uint256[] memory result = new

uint256[](institutionCertificatesCount[_address]);
64.
65. uint256 counter = 0;
66. for (uint256 i = 0; i < certificates.length; i++) {
67. if (certificateToInstitution[i] == _address) {
68. result[counter] = i;
69. counter++;
70. }
71. }
72.
73. return result;
74. }
75.
76. function getCertificatesByStudent(address _address) external view returns

(uint256[] memory) {
77. uint256[] memory result = new uint256[](studentCertificatesCount[_address]);
78.
79. uint256 counter = 0;
80. for (uint256 i = 0; i < certificates.length; i++) {
81. if (certificateToStudent[i] == _address) {
82. result[counter] = i;
83. counter++;
84. }
85. }
86.
87. return result;
88. }
89. }
90.

 Code 8 CertificateFactory.sol

A struct object represents a certificate consisted of its title, its document hash, the

hash function code, the hash size, and finally, its creation time as the block number it was

created. To keep our registry futureproof, we store document hashes based on the

Multihash protocol [67]. So in case, IPFS changes the hash function or the length of its

CIDs, CryptoCerts will still be compatible. The certificate struct also takes advantage of

the Solidity struct packing feature by placing smaller integer sub-types next to each other

in the struct. In our case, _hashFunction uint8 and _size uint8 properties will be

clustered into a uint16, saving valuable gas from storage.

65

Similar to its parent, CertificateFactory utilizes a storage array for keeping the

certificate objects. We need to filter the certificates array by institution and student to

feed the corresponding client lists. Storing them into separate arrays is strictly prohibited

in the context of smart contract development. The excessive storage required to maintain

them will skyrocket the gas cost. Instead, we are going to rely on rebuilding these arrays

in memory on the fly. We need a certificate id to address mapping and an address to

certificate count mapping for this approach. We replicate this structure per associated

filter, resulting in the certificateToInstitution, institutionCertificatesCount,

certificateToStudent, and studentCertificatesCount mappings. CertificateFactory

also defines an event for newly created certificates containing their ID, document hash,

and student address. The client uses this event log to update the user interface and

validate documents against the blockchain records.

The CertificateFactory contract interface includes the createCertificate,

getCertificatesByInstitution, getCertificatesByStudent and getCertificatesCount

functions. Certificate creation forms a new certificate object based on the input data

received. The object is being pushed into the certificates storage array receiving its

identifier from the array index. Lookup mappings and counts are being updated.

Incrementing a count here is performed using the overflow-safe arithmetic operations of

the SafeMath library. Last, a new CertificateCreated event is being fired.

getCertificatesByInstitution and getCertificatesByStudent are quite similar in

implementing the certificates filtering based on the address passed. Last,

getCertificatesCount is a helper function returning the total count of the certificates in

the registry. All three getters are defined as views marking them free in terms of gas cost.

➢ CryptoCerts

This contract stands last in the line of inheritance, and it essentially renames and

wraps the backend functionality under a single contract. Its boilerplate code can be

reviewed in Code 9.

1. // SPDX-License-Identifier: UNLICENSED
2. pragma solidity ^0.7.0;
3.
4. import "./CertificateFactory.sol";
5.
6. contract CryptoCerts is CertificateFactory {
7. //
8. }
9.

66

 Code 9 CryptoCerts.sol

 4.6 The Client

The CryptoCerts client is a complete web application built using modern

technologies rather than a single web page. It is responsible for rendering the

CryptoCerts interface in a web browser, allowing the user to interact with the smart

contracts securely and transparently.

The web client is written in JavaScript ES6, also known as ECMAScript 2015,

the second major revision of JavaScript. The application is composed of several web

components following the approach of the React web framework. The modular

architecture allows a clear separation of concerns and enhances scalability.

For the project bootstrapping, we used the officially-supported Create React

Application (CRA) setup script. CRA provides a straightforward way to maintain a

scalable directory structure and a set of utility scripts to manage dependencies and spin

up a development server. The source directory structure of the CryptoCerts client is

depicted in Figure 18.

Figure 18 CryptoCerts client source directory structure

Truffle populates the contracts directory with a series of JSON files containing

the smart contract Application Binary Interfaces (ABIs). The ABIs expose the supported

contract interface for the web3.js library to communicate successfully. Any new

deployment to the blockchain will update these files to match the version of the contract

on-chain.

In the following paragraphs, we will describe briefly every component and state

controller comprising the CryptoCerts React client.

67

 4.6.1 Components

The React application consists of several reusable components. CryptoCerts is

written entirely using React Functional Components, which are essentially JavasScript

functions that return JSX. The implementation details of each component are considered

out of scope for the current analysis. However, we can briefly group them into the

following three categories based on their role and functionality:

• Layout – Components that contribute to the application layout

o MainLayout: Dictates the application layout

o TopBar: Displays the top navigation bar

o Header: Displays a consistent header on each page

o Content: Wraps the main content area

o SliderDrawer: Displays the vertical collapsible navigation menu

o ProtectedRoute: Renders a menu item using the React Router

• Pages – Components that participate in particular pages rendering

o Home: Renders the CryptoCerts landing page

o CertificateCard: Renders a card representing a certificate

o CertificateForm: Renders the certificate creation form

o CertificateList: Displays the certificates list page

o DocumentDropzone: Renders the document dropzone area

o InstitutionCard: Renders a card representing an institution

o InstitutionForm: Renders the institution creation form

o InstitutionList: Displays the certificates list page

o MaterialCarousel: Renders a carousel containing a list of items

o ValidatePage: Displays the document validation page

• Dialogs – Informative or warning dialogs notifying the user about an

action or an event

o Web3AlertDialog: Displays an alert dialog about browser and

Web3 provider incompatibility

o MetamaskDialog: Renders a loading dialog when an action is

required on MetaMask

o NetworkAlertDialog: Displays an alert dialog about the

connection to a wrong network

68

o ValidDocumentDialog: Renders the results dialog for a valid

document

o InvalidDocumentDialog: Renders the results dialog for an invalid

document

o Notification: Displays a notification in the bottom right corner

o Spinner: Renders the spinning loader on a MetamaskDialog

 4.6.2 Context

CryptoCerts utilizes context to pass data into several components in a parent-to-

child or top-down fashion. The following context providers were implemented:

• ConnectionProvider: Handles the connection state with the Web3

provider and listens to the institution and certificate creation events.

• DrawerProvider: Handles the state of the vertical collapsible navigation

bar

• NotificationProvider: Handles the state of on-screen notifications

 4.6.3 Hooks

The web client is written in React v17; thus, it supports the new concept of hooks.

CryptoCerts client uses hooks to provide universal access to the global state without

relying on components hierarchy. The following hooks have been implemented:

• useCryptoCerts: After the initial connection with the Web3 provider, this

hook provides the interface to the CryptoCerts smart contract

• useInterval: Utility hook which provides a ticker for the application to

poll the blockchain state

• useIpfs: Handles the connection with the IPFS daemon exposing an

interface that supports document upload/download and CID generation

 4.6.4 Redux store

CryptoCerts uses React with Redux to maintain a state container for all its

features to synchronize and function correctly.

One of the states a decentralized application has to be aware of is the state of the

blockchain. As part of a network, the contract state can change with any block added to

the chain. For this operation, the Truffle suite provides a preconfigured Redux store with

the name Drizzle that binds to a contract interface and notifies the application of any

69

changes. Unfortunately, at the time of this writing, Drizzle is quite experimental with

minimal documentation. As a result, a custom implementation using Redux was

promoted for CryptoCerts.

The following slices were introduced as part of our Redux store:

• connectionSlice: Holds the state of the connection with the Web3

provider. This state includes the active account and user role to enable or

disable particular features.

• institutionsSlice: Holds the contract state dedicated to institutions. The

supported operations include the creation of a new entity and fetching an

institution or a list.

• institutionsSlice: Holds the contract state dedicated to institutions. The

supported operations include the creation of a new entity and fetching an

institution or a list.

• certificatesSlice: Holds the contract state dedicated to certificates. The

supported operations include the creation of a new entity and fetching a

certificate or a list based on the active user account.

70

 5 Conclusion

Decentralized applications are still a very new concept. The majority of people

and businesses are unaware of the tangible benefits of blockchain that go far beyond the

initial use case of cryptocurrencies. The global community is already experimenting with

the technology, but using it still requires a leap of faith. At the same time, foremost

industry leaders like Microsoft and Facebook rush to secure a spot in the blockchain

space.

 5.1 Overview

This thesis presented the need for a decentralized web which may become more

apparent in the following years. We were able to identify the key concepts that enable

this transformation and describe an evolving ecosystem around the second generation of

blockchain platforms. The decentralized application development is not still a blueprint

but an emerging new type of software engineering.

The second part of this dissertation proves our case with the implementation of a

decentralized application that mitigates a real-world problem like academic certificate

forgery. We removed any intermediaries and provided an open platform that preserves

academic credentials transparency directly from the issuing authority. We complement

our implementation with the integration of IPFS as decentralized storage.

We successfully relied on user keys for their identification and blockchain

interaction. Additionally, we showcased that an inclusive user experience can be

achieved by focusing on the users' perspective. We also managed to do so without the

need for third-party services while preserving our approach's decentralization.

From the software engineering perspective, decentralized application

development proved to have many similarities to conventional software development.

This assertion is not only based on the fact that dapps share typical web clients with web

applications. The same agile software methodologies were able to be applied as described

from analysis to verification.

Last, particular traits of smart contract development were pointed out through the

implementation. The similarity of contracts to classes allows the adoption of object-

oriented programming patterns like inheritance. The aspect of the gas cost was

highlighted as a crucial concern that defined every step of our code design.

71

 5.2 Future Work

The development of decentralized applications proved to be too extensive to be

covered through a single dissertation. As part of future work, we could identify various

additions and enhancements to the current implementation.

An exciting topic to focus on is smart contract upgradeability. Smart contracts in

Ethereum are immutable by default. Once created, there is no way to be altered.

However, there are some cases when it is desirable to be able to modify them. We could,

for example, implement some additional features like a certificate update in CryptoCerts.

For that purpose, we could utilize proxy contracts. A proxy contract essentially acts like a

wrapper the user interacts with, and it is responsible for forwarding transactions to and

from the implementation contract.

Other concerns around decentralized applications include user identity issues or

unlinkability. It would be interesting to investigate how a student could recover the

certificates assigned to them in case of a lost key. An intriguing scenario could also cover

the ability of a student to remain unlinked to their certificates, only to provide proof for

some of them or to specific third parties. There are fascinating developments in the

domain of zero-knowledge proofs, like zk-SNARKs, that could assist in implementing

such functionalities.

72

 6 References

[1

]

Investopedia, "Dotcom Bubble," 25 June 2019. [Online]. Available:

https://www.investopedia.com/terms/d/dotcom-bubble.asp. [Accessed 30

December 2020].

[2

]

T. O'Reilly, "What Is Web 2.0," 9 September 2005. [Online]. [Accessed 30 December

2020].

[3

]

International Telecommunication Union (ITU), "The World in 2014 - ICT Facts and

Figures," April 2014. [Online]. Available: https://www.itu.int/en/ITU-

D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf. [Accessed 31

December 2020].

[4

]

N. Yau, "Rise of the Data Scientist," 4 June 2009. [Online]. Available:

https://flowingdata.com/2009/06/04/rise-of-the-data-scientist/. [Accessed 31

12 2020].

[5

]

DataReportal, "Global Digital Growth October 2020," [Online]. Available:

https://datareportal.com/reports/digital-2020-october-global-statshot.

[Accessed 30 December 2020].

[6

]

Apple Inc., "Consolidated Financial Statements - Q3 2018," 31 July 2018. [Online].

Available:

https://s2.q4cdn.com/470004039/files/doc_financials/2018/q3/Q3FY18Consoli

datedFinancialStatements.pdf. [Accessed 01 January 2021].

[7

]

J. Cramer, "Does Your Portfolio Have FANGs?," 5 Feb 2013. [Online]. Available:

https://www.cnbc.com/id/100436754. [Accessed 1 January 2021].

[8

]

Financial Times, "Rise of the US mega-caps creates shaky ‘top-heavy’ market," 22

July 2020. [Online]. Available: https://www.ft.com/content/95aeb21d-8ade-

48f8-82e7-cbf4b85657aa. [Accessed 1 January 2021].

[9

]

Amazon Web Services, "Summary of the Amazon Kinesis Event in the Northern

Virginia (US-EAST-1) Region," 25 November 2020. [Online]. Available:

https://aws.amazon.com/message/11201/. [Accessed 1 January 2021].

[1

0

]

Google Cloud, "Google Cloud Infrastructure Components Incident #20013," 14

December 2020. [Online]. Available:

https://status.cloud.google.com/incident/zall/20013. [Accessed 1 January

73

 2021].

[1

1

]

Equifax Inc., "Equifax Announces Cybersecurity Incident Involving Consumer

Information," 7 September 2017. [Online]. Available:

https://www.equifaxsecurity2017.com/2017/09/07/equifax-announces-

cybersecurity-incident-involving-consumer-information/. [Accessed 1 January

2021].

[1

2

]

The New York Times Company, "Ex-Worker at C.I.A. Says He Leaked Data on

Surveillance," 9 June 2013. [Online]. Available:

https://www.nytimes.com/2013/06/10/us/former-cia-worker-says-he-leaked-

surveillance-data.html. [Accessed 1 January 2021].

[1

3

]

The Guardian, "Revealed: 50 million Facebook profiles harvested for Cambridge

Analytica in major data breach," 17 March 2018. [Online]. Available:

https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-

facebook-influence-us-election. [Accessed 02 January 2021].

[1

4

]

B. Sterling, Interviewee, Bruce Sterling on Why It Stopped Making Sense to Talk

About 'The Internet' in 2012. [Interview]. 27 December 2012.

[1

5

]

S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 31 October 2018.

[Online]. Available: https://bitcoin.org/bitcoin.pdf. [Accessed 2 January 2021].

[1

6

]

R. Rivest, T. H. Cormen and C. Leiserson, Introduction to Algorithms, Massachusetts:

The MIT Press, 1990.

[1

7

]

F. L. Bauer, Decrypted Secrets - Methods and Maxims of Cryptology, Berlin:

Springer, 1997.

[1

8

]

National Bureau of Standards (NBS), "Announcing the Data Encryption Standard

(DES)," 15 January 1977. [Online]. Available:

https://csrc.nist.gov/CSRC/media/Publications/fips/46/archive/1977-01-

15/documents/NBS.FIPS.46.pdf. [Accessed 07 09 2021].

[1

9

]

National Institute of Standards and Technology (NIST), "Announcing the Advanced

Encryption Standard (AES)," 26 November 2001. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf. [Accessed 7

September 2021].

74

[2

0

]

W. Dieffie and M. Hellman, "New Directions in Cryptography," 6 November 1976.

[Online]. Available: https://ee.stanford.edu/~hellman/publications/24.pdf.

[Accessed 7 September 2021].

[2

1

]

R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital," 1 February

1978. [Online]. Available: https://people.csail.mit.edu/rivest/Rsapaper.pdf.

[Accessed 7 September 2021].

[2

2

]

Software Engineering Institute, “MD5 vulnerable to collision attacks,” 31 December

2008. [Online]. Available: https://www.kb.cert.org/vuls/id/836068. [Accessed

7 September 2021].

[2

3

]

National Institute of Standards (NIST), "SHA-3 Standard: Permutation-Based Hash

and Extendable-Output Functions," 4 August 2015. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf. [Accessed 8

September 2021].

[2

4

]

S. S. Haber, "How to time-stamp a digital document," Journal of Cryptology, vol. 3,

no. 2, p. 99–111, January 1991.

[2

5

]

N. Szabo, "Bit Gold," 29 December 2005. [Online]. Available:

https://nakamotoinstitute.org/bit-gold/. [Accessed 06 October 2021].

[2

6

]

X. Li, P. Jiang, T. Chen, T. Chen and Q. Wen, "A Survey on the Security of

Blockchain Systems," Future Generation Computer Systems, August 2017.

[2

7

]

Z. Sheping, Y. Yuanyuan, L. Jing, Q. Cheng and Z. Jiangming, "Research on the

Application of Cryptography on the Blockchain," Journal of Physics:

Conference Series, vol. 1168, no. 3, 2019.

[2

8

]

Y. Sompolinsky and A. Zohar, "Bitcoin's Underlying Incentives - The unseen

economic forces that govern the Bitcoin protocol," ACM Queue, vol. 15, no. 5,

September 2017.

[2

9

]

A. Shapiro, "Blockchains: what are they and how do they work?," January 2019.

[Online]. Available:

https://www.researchgate.net/publication/348150425_Blockchains_what_are_t

75

 hey_and_how_do_they_work. [Accessed 06 October 2021].

[3

0

]

R. Zhang, Analyzing and Improving Proof-of-Work Consensus Protocols, Arenberg

Doctoral School - Faculty of Engineering Science, 2019.

[3

1

]

E. Muzzy, "What Is Proof of Stake?," ConsenSys Inc., 15 May 2020. [Online].

Available: https://consensys.net/blog/blockchain-explained/what-is-proof-of-

stake/. [Accessed 06 October 2021].

[3

2

]

V. Buterin, "On Public and Private Blockchains," The Ethereum Foundation, 07

August 2015. [Online]. Available: https://blog.ethereum.org/2015/08/07/on-

public-and-private-blockchains/. [Accessed 06 October 2021].

[3

3

]

N. Szabo, "Smart Contracts," 1994. [Online]. Available:

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Liter

ature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html.

[Accessed 06 October 2021].

[3

4

]

L. W. Cong and Z. He, "Blockchain disruption and smart contracts," March 2018.

[Online]. Available:

https://www.nber.org/system/files/working_papers/w24399/w24399.pdf.

[Accessed 06 October 2021].

[3

5

]

J. Stark, "Making Sense of Blockchain Smart Contracts," CoinDesk, 04 June 2016.

[Online]. Available: https://www.coindesk.com/markets/2016/06/04/making-

sense-of-blockchain-smart-contracts/. [Accessed 06 October 2021].

[3

6

]

The Ethereum Foundation, "Introduction to dapps," [Online]. Available:

https://ethereum.org/el/developers/docs/dapps/. [Accessed 06 October 2021].

[3

7

]

M. Swan, Blockchain, O'Reilly Media, Inc., 2015.

[3

8

]

V. Buterin, "A next-generation smart contract and decentralized application platform,"

14 January 2014. [Online]. Available: https://ethereum.org/en/whitepaper/.

[Accessed 04 October 2021].

[3 W. Chen, T. Zhang, Z. Chen, Z. Zheng and Y. Lu, "Traveling the token world: A

76

9

]

graph analysis of Ethereum ERC20 token ecosystem," April 2020. [Online].

Available:

https://www.researchgate.net/publication/341126900_Traveling_the_token_w

orld_A_graph_analysis_of_Ethereum_ERC20_token_ecosystem. [Accessed

06 October 2021].

[4

0

]

L. Lesavre, P. Varin and D. Yaga, "Blockchain Networks: Token Design and

Management Overview," National Institute of Standards and Technology

(NIST), Gaithersburg, MD, USA, 2021.

[4

1

]

F. Vogelsteller and V. Buterin, "EIP-20: Token Standard," November 2015. [Online].

Available: https://eips.ethereum.org/EIPS/eip-20. [Accessed 06 October 2021].

[4

2

]

E. William, S. Dieter, J. Evans and N. Sachs, "EIP-721: Non-Fungible Token

Standard," January 2018. [Online]. Available:

https://eips.ethereum.org/EIPS/eip-721. [Accessed 06 October 2021].

[4

3

]

Ethereum Foundation, "Solidity documentation," Ethereum Foundation, 13 July 2020.

[Online]. Available: https://docs.soliditylang.org/en/v0.7.0/index.html.

[Accessed 04 October 2021].

[4

4

]

The Linux Foundation, "SPDX IDs," The Software Package Data Exchange (SPDX),

[Online]. Available: https://spdx.dev/ids/. [Accessed 06 October 2021].

[4

5

]

R. Infante, Building Ethereum Dapps - Decentralized applications on the Ethereum

blockchain, Shelter Island, New York, USA: Manning, 2019.

[4

6

]

L. Hollander, "Understanding event logs on the Ethereum blockchain," March 2020.

[Online]. Available: https://medium.com/mycrypto/understanding-event-logs-

on-the-ethereum-blockchain-f4ae7ba50378. [Accessed 06 October 2021].

[4

7

]

OpenZeppelin, "OpenZeppelin," [Online]. Available: https://openzeppelin.com.

[Accessed 06 October 2021].

[4

8

OpenZeppelin, "Contracts - OpenZeppelin Docs," OpenZeppelin, [Online]. Available:

77

]

https://docs.openzeppelin.com/contracts/4.x/. [Accessed 06 October 2021].

[4

9

]

ConsenSys Software Inc., "Truffle - Overview - Documentation," [Online]. Available:

https://www.trufflesuite.com/docs/truffle/overview. [Accessed 06 October

2021].

[5

0

]

J. Chittoda, Mastering Blockchain Programming with Solidity, Birmingham, UK:

Packt Publishing, 2019.

[5

1

]

ConsenSys Software Inc., "Ganache - Overview - Documentation," [Online].

Available: https://www.trufflesuite.com/docs/ganache/overview. [Accessed 06

October 2021].

[5

2

]

Protocol Labs, "IPFS Documentation," [Online]. Available: https://docs.ipfs.io/.

[Accessed 06 October 2021].

[5

3

]

Protocol Labs, "IPLD Documentation," [Online]. Available: https://ipld.io/docs/.

[Accessed 06 October 2021].

[5

4

]

C. Helbling, "Directed Graph Hashing," 16 February 2020. [Online]. Available:

https://arxiv.org/pdf/2002.06653.pdf. [Accessed 06 October 2021].

[5

5

]

S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, "A Scalable Content-

Addressable Network," ACM SIGCOMM Computer Communication Review,

vol. 31, no. 4, p. 161–172, October 2001.

[5

6

]

Facebook Inc., "React - A JavaScript library for building user interfaces," Facebook

Inc., [Online]. Available: https://reactjs.org/. [Accessed 06 October 2021].

[5

7

]

RisingStack Engineering, "The History of React.js on a Timeline," 21 September

2021. [Online]. Available: https://blog.risingstack.com/the-history-of-react-js-

on-a-timeline/. [Accessed 06 October 2021].

78

[5

8

]

D. Abramov, "Redux: A Predictable State Container for JS Apps," [Online].

Available: https://redux.js.org/. [Accessed 06 October 2021].

[5

9

]

ChainSafe Systems, "web3.js - Ethereum JavaScript API," [Online]. Available:

https://web3js.readthedocs.io/. [Accessed 06 October 2021].

[6

0

]

MetaMask, "MetaMask - A crypto wallet & gateway to blockchain apps," ConsenSys

Inc., [Online]. Available: https://metamask.io/. [Accessed 06 October 2021].

[6

1

]

Docker, Inc., "Docker - Empowering App Development for Developers," [Online].

Available: https://www.docker.com/. [Accessed 06 October 2021].

[6

2

]

R. Osnat, "A Brief History of Containers: From the 1970s Till Now," 10 January

2020. [Online]. Available: https://blog.aquasec.com/a-brief-history-of-

containers-from-1970s-chroot-to-docker-2016. [Accessed 06 October 2021].

[6

3

]

Docker, Inc., "Docker Documentation - Overview of Docker Compose," [Online].

Available: https://docs.docker.com/compose/. [Accessed 06 October 2021].

[6

4

]

Academic Credentials Evaluation Institute, Inc. (ACEI),, «Diploma Mills & Fake

Degrees: A billion $$$ industry,» 24 May 2019. [Ηλεκτρονικό]. Available:

https://acei-global.org/diploma-mills-fake-degrees-a-billion-industry/.

[Πρόσβαση 06 October 2021].

[6

5

]

J. Saidi-Kuehnert, «Fighting Diploma Fraud & Protecting Credential Integrity with

Technology,» Academic Credentials Evaluation Institute (ACEI), 08 February

2019. [Ηλεκτρονικό]. Available: https://acei-global.blog/2019/02/08/fighting-

diploma-fraud-protecting-credential-integrity-with-technology/. [Πρόσβαση

06 October 2021].

[6

6

]

ConsenSys Inc., "Rimble Guides - Dapp patterns," [Online]. Available:

https://rimble.consensys.design/guides/ux/connect-a-wallet-conditions.

[Accessed 18 January 2021].

[6

7

Multiformats , «Mutlihash - Self-describing hashes,» Protocol Labs, [Ηλεκτρονικό].

79

]

Available: https://multiformats.io/multihash/. [Πρόσβαση 06 October 2021].

[6

8

]

International Telecommunication Union (ITU), "Statistics," [Online]. Available:

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. [Accessed 30

December 2020].

[6

9

]

Web Design Museum, "Gallery of Web Design History," [Online]. Available:

https://www.webdesignmuseum.org/exhibitions/web-design-in-the-90s/yahoo-

1994. [Accessed 30 December 2020].

[7

0

]

A. Dhakal and X. Cui, "Blockchain and Smart Contracts for Internet of Things: A

Systematic Literature Review," April 2018. [Online]. Available:

https://www.researchgate.net/publication/332671231_Blockchain_and_Smart_

Contracts_for_Internet_of_Things_A_Systematic_Literature_Review.

[Accessed 02 January 2021].

[7

1

]

S. Sayeed, H. Marco-Gisbert and T. Caira, "Smart Contract: Attacks and Protections,"

January 2020. [Online]. Available:

https://www.researchgate.net/publication/338926064_Smart_Contract_Attacks

_and_Protections. [Accessed 06 October 2021].

A-1

Appendix A CryptoCerts wireframes

Wireframe 1 Home screen (Guest)

Wireframe 2 Institutions screen (Guest)

Wireframe 3 Certificate validation form (Guest)

A-2

Wireframe 4 Certificates list (Student)

Wireframe 5 Institutions list (Administrator)

Wireframe 6 Institution form (Administrator)

A-3

Wireframe 7 Home screen (Institution)

Wireframe 8 Certificates list (Institution)

Wireframe 9 Certificate form (Institution)

B-1

Appendix B CryptoCerts source code

The code of the CryptoCerts decentralized application implemented as part of this

dissertation is hosted in the following two repositories hosted on GitHub.com, along with

detailed setup instructions:

➢ cryptocerts-contracts – https://github.com/lephleg/cryptocerts-contracts

➢ cryptocerts-client – https://github.com/lephleg/cryptocerts-client

		2021-11-12T13:51:15+0200
	Argyrios Margaritis

