
Neural architecture search
for time series

MSc in Artificial Intelligence and Data Analytics
Final Presentation

Student name: Christoforidis Aristeidis
Supervisor: Margaritis Konstantinos

Background

Neural architecture search(NAS) is a research domain concerned with
automated neural network design techniques and algorithms. NAS is analyzed
into search space design and optimization methods.

Search space design describes the process of defining the set of networks
that can be created by a NAS algorithm.

Optimization methods dictate how the search is conducted and how the
process discovers new networks.

Proposed search space design approaches

Global(Macro) search space Micro search space

Proposed search space design approaches

Hierarchical search space

Proposed optimization methods

Evolutionary algorithms: Evolve a population of candidate topologies to discover better
performing networks. Candidates topologies are trained and validated to assess their
fitness.

Reinforcement learning: Train an agent to construct deep neural networks by iteratively
adding layers and making connections between them. The agent’s loss function
incorporates the accuracy of the constructed network on the given dataset.

One-shot methods: Use weight sharing schemes in a hypergraph of neural operations that
is trained in segments and discover the optimal topology in a restricted search space.

Bayesian optimization: Use an estimation model to predict the performance of a topology
and an acquisition function (the above methods can be incorporated here) in order to
sequentially design new topologies.

● Global search spaces are hard to conduct search due to the seer number
of available network topologies.

● Constrained search spaces are often too restrictive and obstruct the
process of discovering new performant architectures.

● Network expansion techniques are usually slow - evaluating a network
after a single change in a layer or connection is computationally
expensive.

Common issues in neural architecture search

Initial idea

● State of the art networks are usually built by repeating architectural
segments(e.g. InceptionNet).

● Instead of distinguishing between the micro and macro architecture of a
network, it is possible to use a hierarchical representation to represent a
topology in multiple intermediate-level modules of varying complexity.

● This can potentially allow for a faster network creation and expansion,
where networks evolve by adopting large well performing segments.

Hierarchical network representation

Core concept: represent each neural network as a dynamic hierarchical
graph.

Neural module: a fundamental data structure for representing
computational graphs and neural layers.

● Each node in the computational graph is another neural module.
● The top level of the dynamic hierarchical graph is just one neural module,

representing the whole network.
● When all nodes are fully expanded, the resulting graph contains only

neural layers.
● Networks can be created and modified using custom evolution

mechanics.

Representation example

Neural moduleInput Output

Depth:0 (Root)

Representation example

Input Output

Depth:0 (Root)

Depth:1

Depth:1

Depth:1

Depth:1

Depth:1

Representation example

Input Output

Depth:0 (Root)

Depth:1

Depth:1

Depth:1

Depth:1

2

2

2

Depth:1

22

Representation example

Input Output

Depth:0 (Root)

Depth:1

Depth:1

Depth:1

Depth:1

2

2

2

Depth:1

2
Depth:2

33

Evolution

1) Initialize a notable modules list. This originally contains the allowed neural
layers.

2) Create the population. Each network has one node, which is a neural module
sampled(weighted sampling based on fitness) from the notable modules list. At
the start, all networks will essentially have one neural layer.

3) Perform mutation.
a) Node mutation: a random neural node is selected and replaced with a random neural

graph. Each of the nodes on the new graph is assigned a neural module from the notable
modules list.

b) Edge mutation: An edge is added to a randomly selected neural graph of the network.

4) Evaluate modified networks.
5) Update notable modules list.
6) Delete low accuracy networks from the population and replace them with new

networks.

Node mutation

INPUT OUTPUT

INPUT OUTPUT

INPUT OUTPUT

Neural module Average fitness

CONV_3.N 0.29

POOL_2.M 0.18

CONV_1.H 0.23

ABSTRACT_MODULE 0.45

Notable modules list

Edge mutation
INPUT OUTPUT

Evaluating topologies with NORD(Neural Operations
Research and Development)
NORD is a research framework

that simplifies the process of

developing NAS algorithms by

abstracting the process of

designing and evaluating neural

networks on common

benchmark datasets.

Fitness assessment

● All modules in a candidate’s hierarchy are assigned the same fitness.
● Modules that perform well in a variety of situations will have higher

average fitness values in the candidates & notables lists.
● Well performing higher level modules phase out simpler modules that

appear more often because the latter are more likely to occur in networks
with poor performance.

Updating notable modules

● Neural modules that already exist on the notable modules list have their
average fitness values updated.

● Modules that are not on the notable modules list must first be placed in a
candidate modules list. This list holds modules that have been encountered at
least once. If a candidate module is encountered more than a minimum amount
of times, and its average fitness is high enough, it is promoted to “notable” and
enters the notable modules.

● The notable modules list has a fixed size, so when the module limit is exceeded,
the weakest modules are deleted.

● Candidate modules have a TTL timer. If they are not encountered the required
amount of times before they expire, they are placed in a blacklist.

● The blacklist also contains modules that were removed from the notable
modules.

Notable modules update logic

After each generation, candidate modules with expired TTLs are added to the blacklist.

Abstract
Module

Update fitness on
notable modules

Module exists on notable
modules

Module doesn’t exist on notable
modules

Do not consider

Module exists on
blacklist

Module doesn’t exist on
blacklist

Module exists
on candidate

modules Update average
fitness and

occurrence count

Module doesn’t exist on
candidate modules

Add module to
the candidate

modules

Promote to notable
modules. Add worst
notable modules to

blacklist

Occurrence count > threshold & module
fitness > min(notable modules average

fitness)

Add module to
blacklist

Occurrence count > threshold & module
fitness < min(notable modules average

fitness)

Experiments

The proposed method was tested in 3 different benchmarks:

● 1 time series classification dataset
● 2 image classification datasets

The evolution algorithm builds convolutional neural networks using a variety
of convolutional and pooling operations with different properties.

All tests were conducted in the Google Colaboratory platform. A single NVIDIA
T4 GPU was used for the training and evaluation of the candidate networks.

Experiments: Human activity recognition(1/3)

● Problem: classify 7 distinct actions performed by humans using the

acceleration data from a chest-mounted sensor for the 3 axes.

● Sampling frequency is 52Hz.

● There are 26 lags of overlap between pairs of consecutive instances.

● Data was collected from 15 participants: 11 are used for training networks

and 4 for evaluating network performance.

Experiments: Human activity recognition(2/3)

Root module

Module A Module B Module C

Experiments: Human activity recognition(3/3)

Best network accuracy: 74.3%

Experiments: Fashion-MNIST (1/2)

● Problem: classify 28x28 grayscale images of 10 different types of articles

of clothing and accessories.

● 60000 samples in train set, 10000 samples on the test set.

Experiments: Fashion-MNIST (2/2)

Best network accuracy: 93.2%

Network has 23 operations and 93 connections (too complex to visualize).

Experiments: NAS-Bench-101(1/2)

● NAS-BENCH-101 is a lookup table that contains the accuracy scores of all

network topologies for the CIFAR-10 dataset in a constrained space.

● Network accuracy values can be obtained instantly by providing the

structure of a module that has up to 7 nodes and 9 edges using 3

operations(1x1 & 3x3 convolutions, 3x3 max pooling).

Experiments: NAS-Bench-101(2/2)

Best network accuracy: 94.8%

Repository

https://github.com/ArisChristoforidis/NAS-Timeseries

https://github.com/ArisChristoforidis/NAS-Timeseries

Questions?

