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Abstract

In this thesis, we propose a new neural architecture search algorithm that performs
network discovery in global search spaces. We introduce a novel network representa-
tion that organizes the topology on multiple hierarchical levels of varying abstraction
and develop an evolution based search process that exploits this structure to explore
the search space. Our approach involved a curation system that selects well perform-
ing network components and uses them in subsequent generations to build better
networks. Next, we investigate how the proposed method performs on different types
of data. First, we apply our method on an activity recognition time series dataset
and manage to discover a topology with impressive performance. We also test the
method on two image classification datasets, Fashion-MNIST and NAS-Bench-101
and achieve accuracies of 93.2% and 94.8% respectively in a small amount of time.

The code for this project can be found in https://github.com/ArisChristoforidis/

Dynamic-Hierarchical-NAS
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Introduction

The recent advances in the compute capabilities of modern hardware have resulted
in an increased interest in machine learning based approaches in the artificial intelli-
gence community, especially in the domain of neural networks. Using GPUs, deeper
networks with many parameters can now be constructed and trained on more so-
phisticated datasets to solve harder problems. One cumbersome aspect in neural
network design is determining the topology of the network, i.e. what neural layers
should be used and how they should be connected to provide adequate performance.
Neural architecture search aims to address this issue by providing a set of techniques
that automatically find well performing network topologies for sets of data. NAS has
successfully been applied to image classification problems, where it managed to build
networks with better performance than the state of the art hand built ones. However,
other types of datasets, such as time series data have been neglected. For instance,
only one [1] other publication examines the effect of NAS on time series datasets.
In this work, we develop a new NAS approach that tackles some common problems
present in other algorithms in the field and examine how our algorithm works for
time series datasets, while simultaneously evaluating our approach in conventional
benchmark problems.
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Theoretical Background

Neural Networks

An artificial Neural Network (ANN) is a directed network of neurons organized into
layers and connected to each other with weighted edges. ANNs operate by receiving
an input, propagating it to the different layers where it is transformed using the
activation function defined in the neurons of each layer, and producing an output
signal. ANNs are optimized through the training process, during which a set of
training data is processed by the network multiple times in order for the weights of
the neuron connections to be adjusted through back-propagation of the error between
the network’s output and the ground truth, typically calculated using an distance
metric.

A Deep Neural Network (DNN) is an artificial neural network that has more than
one hidden layers. Through training, DNNs learn to extract important information
from the input data in stages - the first layers of the network learn to identify low
level patterns while the subsequent layers use these patterns to identify progressively
higher level abstract concepts that are relevant for producing an accurate output.

Figure 1: A deep neural network.
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Convolutional Neural Networks (CNN) are deep neural networks that use convolu-
tions in the neurons of their hidden layers. These operate by sliding a kernel through
the input data and then calculating the activation function result on the transformed
input. Convolutional layers usually operate alongside pooling layers, which reduce
the size of their input based on a criterion. CNNs have many applications relating to
real life problems, such as vision (e.g. object detection, face recognition) and natural
language processing (e.g. speech to text, automatic text summarization).

Evolutionary Algorithms

An evolutionary algorithm (EA) is a meta-heuristic, stochastic algorithm that at-
tempts to solve an optimization problem by employing techniques and methodologies
inspired by the evolution processes of biological organisms. EAs operate on a popula-
tion of candidate solutions, whose quality is assessed by a fitness heuristic, and try to
iteratively improve these by applying a set of operators that produce new solutions.
Population members are called chromosomes and contain information about the pa-
rameters of the solution in an encoded format. Usually chromosomes are represented
as a fixed length binary number or a string, but many other representations are also
possible, depending on the problem at hand. Operators are functions that manip-
ulate members of the population, sometimes producing new chromosomes. One of
the most fundamental operators is the mutation operator, which has a small chance
to randomly modify a characteristic of a member of the population at each iteration
(also known as a generation). Another core operator that defines the subset of genetic
algorithms is the crossover operator, which works by selecting 2 members of the pop-
ulation (known as parents) and producing 2 new solutions (known as offsprings) by
combining characteristics from the parents. If the offspring solutions are good enough,
they are added to the population. The typical flow of an evolutionary algorithm is
the following:

Algorithm 1 General evolutionary algorithm

1: initializePopulation()
2: i← 0
3: while i ≤ generations limit do
4: applyOperators()
5: evaluateFitness()
6: applyFitnessThreshold()
7: i + +

Through this process, evolutionary algorithms try to adapt the members of the
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population to the environment, i.e. the problem. The fitness function is mainly used
in two ways. First, when applying an operator, the chromosome(s) to which it is
applied are usually selected at least partially due to their fitness scores. Second, it is
often used to simulate the existence of a filter, which acts as a threshold that removes
the weakest members of the population, keeping its size constant. This mechanism
not only ensures that the memory and CPU demands of the simulation remain the
same throughout the execution, but also removes undesirable solution characteristics
that should not be potentially reproduced in a subsequent generation by the use
of an operator. The evolution loop terminates when either the generation limit is
reached, or when at least one chromosome offers a satisfactory solution to the problem.
As generations pass, chromosomes should converge to a small set of characteristics
that construct the best solutions. Evolutionary algorithms, while offering a versatile
methodology which can produce good solutions to hard problems, are very dependent
on their parametrization. The hyperparameters of the algorithm vary from problem
to problem, and the resulting solutions may converge prematurely or not at all, if
these are not assigned correctly.

Reinforcement Learning

Reinforcement Learning (RL) is a machine learning domain in which the training data
is not provided by humans, but rather by dynamic simulations of the problem that
are generated during training. RL implements intelligent agents that operate on the
simulated environment through actions in order to maximize their reward, obtained
when they reach the goal. Typically RL is modeled as a Markov Decision Process
(MDP): An agent exists in the environment in a state s, defined by its properties
(e.g. position in space), equipped with a set of available actions A that allow them
to transition to state s′ The best action is selected by observing which transition has
the best expected reward r(s, s′). In classical RL, this information is stored on a
transition table which contains transition-rewards associations. The transition table
is calculated by simulating the interactions of the agent with the environment many
times, until the reward values converge. During this stage, agents have to balance
exploitation and exploration. During an exploitation step, agents perform the optimal
action as it appears on the incomplete transition table. During exploration, agents
select a less than optimal action in hopes of finding new, well performing strategies.

It becomes apparent that the size of the transition table can be a serious problem,
since a large number of transitions can be generated from a few states and actions.
Calculating all possible transition rewards is often time consuming and likely un-
helpful, since only one action per transition will be deemed optimal. To overcome
this issue, in Deep Reinforcement Learning (DRL) the transition table is replaced
by a deep neural network that learns the best policy by updating its weights. The
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agent states are encoded internally, which allows the model to assess states not pre-
viously encountered. Even though DRL offers very good results on hard problems,
the simulation and training procedures require much time.

Figure 2: Deep reinforcement learning.

Neural Architecture Search

Neural Architecture Search (NAS) is a research domain within the machine learning
field concerned with automated neural network design techniques and algorithms.
NAS treats the problem of neural architecture design as a search process where the
optimal neural network for a problem must be found in a search space defined by the
various allowed network parameters and other properties. NAS can be analyzed into
two smaller processes: search space design and optimization methods.

Search space design is the process of selecting which parameters of the network
should be constrained or fixed and which ones should allow for variability. A common
way of limiting the search space is manually selecting a network size and graph con-
figuration for the layers, performing NAS to find the optimal neuron type for every
layer. In a smaller search space, an exploration algorithm may be able to find good
networks more easily and terminate faster. However, setting bounds on the search
space makes it difficult to ensure that the optimal network for the problem will be
included within it. Moreover, since such an approach usually relies on empirical
knowledge, it is unlikely that the algorithm will produce novel architectures.
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Optimization methods encompass all those techniques that guide the search to-
wards better networks. These include both a transition strategy, i.e. finding a new,
unevaluated network from an evaluated one, and evaluation, which is the process
of assessing a network’s performance. The first is usually an evolutionary or RL
algorithm although alternative approaches such as Bayesian Inference or One-Shot
methods have also been proposed. The evaluation stage changes depending on the
optimization method. While normally network evaluation entails training said net-
work sufficiently and evaluating its accuracy (or any other metric) on the validation
set, some approaches perform partial training or even inference to assign a perfor-
mance value. Since training multiple networks is a very time consuming procedure,
such approaches have the potential to provide significant speedup on the algorithm,
at the expense of a less accurate evaluation.

Time Series

A time series is a sequence of data ordered by their observation time. There are many
real world domains that deal with problems where data is modeled in this fashion.
Examples of such problems include weather forecasting, stock price prediction, voice
recognition and disease spread modeling.

Following the traditional machine learning taxonomy, problems with labeled data
(that is, data where both input and target data is provided) are characterized as either
classification or regression problems. In classification, the predictive model must
select the target class to which the input data corresponds. In regression, the model
must predict a target numerical value from the given input. As far as the number of
variables per time step are concerned, a time series can be univariate, meaning that
only one variable is tracked, or multivariate, with more than one variables recorded
per step. While both input and target data can be either univariate or multivariate,
it is very common for problems to offer multivariate input data and univariate target
data. When time series contain human interpretable patterns, for example seasonal
fluctuation in the values of a variable, the data is said to be structured. Such patterns
help humans make sense of the data, but are often problematic when working with
machine learning systems. These are some of the core characteristics that must be
taken into account when designing predictive models for time series.
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Related Works

Search Space

There have been a number of works [2] concerning search space design for NAS. Search
space refers to the set of possible networks that can be constructed from a defined
set of parameters. There are three main approaches to this problem: global search
space, micro search spaces and hierarchical search spaces.

Global Search Space

In a global search space, also known as a macro-architecture search space, network
architectures can be formed from graphs of any size. Even though there are no
constraints in the graph structure, nodes in the graph should only represent neural
layers selected from a curated set of compatible layers for the target problem. It
is also a common practice to limit the ranges of the different layer parameters and
also the global hyperparameters of the problem. This is demonstrated in DeepNEAT
[3] where they show how they are able to converge to an optimal set of parameters
and automatically build dynamic networks of different sizes, outperforming the hand
built ones. A number of other publications show algorithms operating on global
search spaces, such as the works of Elsken et. al. [4] and Byla and Pang [5] that show
respectively how network morphism and ant colony optimization can produce well
performing networks. However, this approach is generally avoided due to its training
complexity, compared to other, simpler approaches that yield similar results.
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Figure 3: In global search space, the network is formed by iteratively searching for
the optimal layer or connection to maximize the network accuracy.

Micro Search Space

In micro search spaces, instead of searching the optimal architecture of the entire
network, the search is performed for a much smaller partition. This approach is based
on the empirical knowledge gained from architectures with remarkable performance,
such as the ResNet [6] and InceptionNet [7] architectures, where the network is made
up of repeating blocks or cells of neural micro-architectures. Knowing that good
networks consist of repeating blocks, architectures may be searched on a much smaller
set of networks by trying to find the optimal block, which is then repeated manually,
in accordance to the top architectures for the problem at hand. Zoph et al. [8]
operate on such space (named NASNet search space) by defining two types of cells,
Normal and Reduction cells that are repeated sequentially many times to form a full
network. They show that using this method, the search produces networks that can
outperform the current state of the art on the CIFAR-10 dataset.

Another remarkable work related to micro-architecture search is the composition
of the NAS-Bench-101 database. Ying et al.[9] define a constrained search space for
an Inception block that is repeated to create full networks, and then perform training
on all neural models in that search space on the CIFAR-10 dataset. They record
the accuracy of each network in a lookup table, and associate it with the micro-
architecture that was used to produce it. This allows other researches working on the
CIFAR-10 problem with a cell search approach to skip the training of networks and
simply lookup their accuracy values on the table (provided that they are searching
on the same space). Micro-architecture search is preferred by many researchers due
to its ability to dramatically reduce search space size and can be used in a variety of
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problems. However, it required substantial external knowledge about the domain of
the problem and the general architectures that perform well.

Figure 4: In micro search space, building a network entails finding a cell or set of
cells that are repeated on a fixed broader architecture.

Hierarchical Search Space

Hierarchical search spaces attempt to find a middle ground between macro and micro
search spaces by conducting an augmented search at both levels. The micro search
space contains cells with graphs comprised of neural layers, while the macro search
space has graphs where nodes are replaced by cells by the optimization algorithm.In
[3], Miikkulainen et al. update their DeepNEAT algorithm by restructuring the search
space as hierarchical, on CoDeepNEAT, and apply an evolutionary algorithm to de-
velop better populations in each set. At each evolution step they combine networks
from both populations by replacing the nodes at the networks of the macro population
with networks from the cell population to build the final networks. Their approach
is pretty straightforward, with only two search levels.

Liu et al. [10] present a more dynamic methodology, proposing an algorithm
that creates populations on arbitrary levels of up to a certain depth. Their modular
approach allows the to tackle the problem of image classification efficiently, iteratively
producing populations of performant networks trained on the CIFAR-10 dataset.
After training with 200 GPUs for 1 hour they manage to produce a state of the art
network with 3.6% error, which is a 97% decrease in search time.
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Figure 5: In CoDeepNEAT, networks are built by combining subgraphs from two
populations of blueprints and modules.

Optimization Methods

Optimization methods dictate how the search is conducted. The most common ap-
proaches are an evolutionary algorithm or reinforcement learning, due to their ability
to produce good networks. Lately, however, different publications explore alterna-
tive methodologies like bayesian optimization or one-shot methods in an attempts to
reduce search times.

Evolutionary Algorithms

Evolutionary algorithms are widely used in NAS to explore the search space. Angeline
et al. [11] are one of the first groups of researches to develop an evolutionary algo-
rithm for the purposes of neural architecture search. They initialize their populations
by creating graphs randomly, sampling from uniform distributions to set the various
network parameters, such as the node count or the initial edge weights. The networks
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are then evaluated and the selection operator is applied, which discards the bottom
50% of the networks (using fitness as the criterion). The remaining networks produce
offsprings by mutation, classified as either parametric or structural mutations. Para-
metric mutations add gaussian noise to the weights of the network, while structural
mutations add or remove nodes and edges. The mutation severity of a network is
controlled by a temperature parameter which is a function of the fitness, and dictates
that more drastic mutations be made on networks with poorer performance. They
test their method on the William’s trigger problem, a regular language inducing task
and the ant problem, three progressively more difficult tasks. While these problems
are trivial for today’s systems, and the solutions to all of them can be modeled with
a simple finite state automaton, the performance of their algorithm is nevertheless
impressive, managing to construct networks that achieve near-perfect (and sometimes
perfect) scores on the datasets of the different problems within 1000 generations.

In 2002, Stanley and Miikkulainen [12] manage to incorporate the crossover opera-
tor for NAS, presenting NEAT, a genetic algorithm that can evolve neural topologies.
They too want to operate on a global search space and produce graphs of different
sizes, so they define a novel genome representation with dynamic length to encode
each network. These track the information for the nodes and edges separately. Node
genes are quite simple and contain neural layer information. Edges, on the other
hand, contain additional information besides their source and destination node in-
dices, which allows the different operators to be applied to the network. Edges can
be enabled or disabled depending on the evolution process and the mutations that
occur. The most crucial piece of information on the edge genes is the innovation num-
ber, an integer which tracks the generation that each edge was added to the network
graph. When a node is added to the graph between two other nodes the edge connect-
ing them is disabled and two new edges are added. The innovation number is used to
line up the edge genes of the two parent chromosomes in order to apply the crossover
operator. Genes with the same innovation number are matched and inherited ”as is”
by the resulting offsprings. In order to increase the efficiency of NEAT, the popula-
tion is segmented into species based on network similarity which serve in maintaining
local topological innovations and optimizing them by performing crossover between
the members of each group. The performance of the algorithm is evaluated by two
tasks: the XOR problem, where the neural network, given its input, must predict the
output of a XOR gate, and the pole balancing problem, where the network must learn
how to correctly apply force to a vertical moving pole of variable height to prevent it
from falling flat. The algorithm manages to find optimal topologies that solve both
problems by performing much fewer network evaluations than comparable methods
(∼ 33.000 evaluations compared to ∼ 169.000 and ∼ 84.000 evaluations)

The algorithm is extended in their most recent work [3], where the authors present
DeepNEAT, a more complete version of their evolutionary algorithm that also opti-
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mizes for global training parameters (e.g. learning rate, momentum) and node hy-
perparameters (e.g. kernel size, number of filters), that in turn get their values from
bounded sets. Networks are assigned continuous parameters via gaussian distribution
sampling and discreet parameters by random bit flipping. The best networks pass
on their parameters to their offsprings which results in good parameter combinations
in the evolved networks after many generations. While this extension on the origi-
nal algorithm does not introduce any new ideas, it updates the methodology so it is
applicable to deep neural networks.

Miikkulainen then adapts the algorithm to operate on hierarchical search spaces
with CoDeepNEAT, which works on two distinct populations, one for the macro-
architecture and one for the micro-architecture, named blueprints and modules re-
spectively. The populations are evolved separately, and their members are combined
randomly to construct full networks. The fitness for each blueprint or module is the
average fitness of all the networks that they exist in. In a first evaluation, the algo-
rithm succeeds in finding a performant network topology for the CIFAR-10 dataset,
which, even though doesn’t surpass comparable methods, manages to converge much
faster with minimal error difference. Next, using LSTM neurons, they show the per-
formance of their approach by tackling the problem of image captioning using the
MSCOCO dataset. After training with 100 GPUs for 37 generations (each genera-
tion taking about an hour to complete) the evolved model manages to outperform
the hand-designed baseline model.

Overall, evolutionary algorithms are a good fit for NAS. Their open-ended nature
allows researchers to easily implement virtually any strategy through the population
representation and the operators that are applied to it. They are generally relatively
fast (compared to other NAS techniques) and manage to discover optimal or near
optimal architectures on most problems. However, these algorithms often require
manual tuning of their parameters in order to perform well in different types of
problems.

Reinforcement Learning

Reinforcement Learning can be applied to NAS to produce state of the art networks.
Instead of using hand made algorithms to automatically build networks, neural archi-
tectures are developed by a separate neural network acting as an agent. In its basic
form, at each iteration, the agent receives the current network topology (which serves
in defining the current state) and expands it through its available actions. These are
typically characterized by the different layers and connections that can be added to
the network in an attempt to improve it. The agent learns the optimal actions (i.e.
modifications) to a network in order to improve its existing state.

Zoph and Le use Deep Reinforcement Learning to design deep neural networks
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for the problem of image classification on the CIFAR-10 and ImageNet datasets,
with impressive results. In their first work [13], they propose using an RNN as a
supervisor agent that receives the output of the last layer and uses it to construct
the next layer in a series of 5 steps: first, predict the filter height and width, then
the stride height and width and finally the number of filters. This set of basic steps
is expanded with two anchor steps, that are used to receive and incorporate the
signal of skip connections from previous cells and also from the internal components
of the current cell. The agent is trained using the REINFORCE algorithm. When
trained, it will design architectures that maximize its expected reward. In order to
limit the network size, a layer number threshold is used that increases as training
progresses and determines when the agent should stop adding layers to the network.
The search is conducted on 800 GPUs, training on 800 network topologies in parallel.
When evaluated on CIFAR-10, the resulting optimal network achieves an error rate of
3.65%. The algorithm is also tested on the Penn Treebank dataset, where it exhibits
a test set perplexity of 62.4, a 3.6 perplexity improvement over the state of the art,
while simultaneously producing a new novel cell architecture that outperforms the
LSTM cell on that dataset.

In their succeeding publication [8] they improve upon this algorithm by defining
the NASNet search space, which consists of two distinct types of cells, normal and
reduction cells, the architectures of which must be optimized. In the full network
architecture, the cells are repeated many times to form a deep neural network. The
controller network that acts as the agent is again a recurrent neural network that
receives the outputs of the two previous cells and outputs a series of 5 actions that
dictate how the next cell should be formed. Each action takes into account the
previously selected action. The 5 actions are: select a hidden state from the two
previous cells, select a second hidden state, select an operation to apply to the first
hidden state, select an operation to apply to the second hidden state and finally,
select a combination operator to merge the results into one layer and output the
cell signal. The operations are selected from a set of neural layers that contains
identity, convolutional, average and max pooling layers with different kernel sizes. At
every iteration, the agent makes 2 predictions sequentially, one for the normal cell
and one for the reduction cell. The agent itself is trained through proximal policy
optimization. After training on 500 GPUs for 4 days, the agent manages to produce
state of the art topologies that achieve a remarkable 2.4% error rate on CIFAR-10.
When the same architecture is transferred over to the ImageNet dataset and trained
from scratch, it achieves 82.7% top 1 accuracy and 96.2% top 5 accuracy. The authors
also make remarks about the efficiency of the classification models, which offer a 28%
computational demand reduction over the previous state of the art model. As for the
search process itself, it is 7 times faster than similar previous approaches.

Cai et al.[14] further build upon this algorithm by incorporating a methodology
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that allows for the creation of branching networks. They propose using their Net2Net
operators [15] that replace a neural layer with an equivalent multi branch cell, a
technique which is shown to improve network efficiency. This is done recursively and
produces a tree like structure for every layer that is replaced. A network produced
from the original algorithm undergoes this secondary procedure which changes one
layer type at each step. The new network inherits the weights from the original
network and is further trained on the additional layers. The method is evaluated
on the CIFAR-10 dataset by replacing layers on pre-trained networks, training them,
and evaluating their performance. The replacement is done on the convolutional and
pooling layers, which are replaced with branching equivalents. Starting from a small
network with 87.07% accuracy, they manage to increase its performance to 95.11%
with about 2 days of training on 5 GPUs. On a second experiment on the Street View
House Numbers dataset, the algorithm manages to find a state of the art architecture
that achieves an accuracy score of 98.17%.

To summarize, even though RL is an effective method for discovering state of the
art networks in a topology search space, it has very high computational costs that
stem from the need to train not only the topologies, but also the agent. There is also
the need for manual restriction on the properties of the model (mainly its size) as it
is expected of the agent to keep adding layers in an attempt to increase the network
performance. Finally, even though the resulting networks usually outperform those
built by other methods, the performance difference does not justify the difference in
resource demands.

Bayesian Optimization

Bayesian Optimization (BO) in the context of NAS typically refers to methods that
attempt to speed up the underlying algorithm by employing an estimation model to
replace the processes that are time consuming. In most cases, the high temporal
costs stem from the need to sufficiently train and evaluate the candidate models on
the target dataset.

Liu et al. [16] propose using an LSTM model to estimate network performance
instead of conventional training on the NASNet space in order to discover the optimal
architecture faster. In order to train this surrogate network, they modify the cell ar-
chitecture generation constraints as following: starting from 1, they set the maximum
number of blocks per network. At each iteration, this number is increased by 1. This
means that initial networks will be small and easy to train. The surrogate model uses
a population of candidate networks with their actual accuracies computed to train.
At each subsequent iteration, one extra block is added to each candidate network
via the RNN controller. The network performance is estimated by the LSTM model,
after which the K most promising cells are used to build, train networks, and update
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the weights of the surrogate model. When evaluating the algorithm on the CIFAR-10
and ImageNet datasets, the algorithm manages to achieve state of the art error rates
(at the time of publication) of 3.41% on CIFAR-10 and 74.2% (top 1) and 91.9% (top
5) on ImageNet. The use of the surrogate network also contributed to a 8x speedup
and 5x efficiency increase over the vanilla RL approach.

Lopes and Alexandre [17] employ BO along an evolutionary algorithm in their
HMCNAS algorithm, which evolves populations of hidden markov chains that are
used to produce deep neural networks. In their implementation, each hidden markov
chain (HMC) is an acyclic graph where the nodes are layer types and edge weights
contain the probability of the source node having the destination node as the next
layer. They create an initial population by making the HMC graphs for a selection
of 34 handmade architectures, such as the ResNet, DenseNet, MobileNet v2 and
others, each model trained for 1 epoch. The evolutionary algorithm keeps the best
15% of the networks intact, while the rest of the networks are replaced by new ones
generated using BO as following: starting with a default input layer, a random HMC is
selected and a second layer is connected to the input, sampled based on the transition
probabilities for that chain. The process is repeated until a new hidden markov chain
is built. The corresponding model is formed and trained partially to get the fitness of
the HMC. The algorithm manages a test error of 9.41% on CIFAR-10 with just 0.24
GPU days (evaluated on a single GTX 1080) of training, which is quite a bit lower
than comparable NAS methods.

Bayesian optimization techniques have the potential to speedup otherwise low
efficiency algorithms in NAS. Incorporating such methods in the standard neural
architecture search algorithms can potentially speed up the convergence times, aiding
in the faster discovery of good networks. However, the speedup that these methods
offer often results in decreased accuracy in the best found network, compared to that
of other methods, such as reinforcement learning.

One-shot Methods

One-shot methods operate on the principle that different network topologies may
share weights, since the inner layers of networks are used to perform generic feature
extraction. The idea typically involves building a hyper-graph containing every pos-
sible network topology using a set of layers, and then extracting select architectures
by sampling edges along a path from the input node of the hyper-graph to the out-
put node. Common edges between two paths translate to layer connections that have
shared weights in the two corresponding networks, and thus only need to be calculated
(trained) once. This form of weight sharing allows the topology evaluation procedure
to exploit the training of previously examined networks and reduce training times on
the newer networks by only training the weights of the layers that are connected with
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new edges on the hyper-graph for which the weights have not yet been calculated.
Pham et al. [18] show the effectiveness of the approach by applying a straightfor-

ward one-shot methodology on the NASNet search space, which was known to have
notoriously high resource demands when explored with deep reinforcement learning
methods. Their proposed approach utilizes a controller LSTM network acting on the
directed acyclic hyper-graph of topologies for the convolutional and reduction cells.
The search process consists of two alternating training steps: training shared weights
in the DAG and training the controller. In the first step, a set of child models are
sampled from the hyper-graph and trained in order to calculate the weights for the
parameters of the models. The value of shared weights should be updated using the
Monte Carlo estimate, which calculates the average of the gradient weighted by the
loss of each model using the weights. However, the authors find that the weights
in the hyper-graph can be set by training any single network that incorporates the
corresponding connection, removing the need to sample a set of networks in order to
get more general values. In the second step, the weights of the LSTM controller are
trained using the REINFORCE algorithm in order to maximize the expected reward,
which is a function of the performance of the selected model on the validation set. The
LSTM controller learns to build networks by sampling paths on the hyper-graph that
lead to progressively better performance, without having to train each network from
scratch. Using a single GTX 1080Ti GPU, they manage to find a performant network
for the CIFAR-10 dataset, achieving a 3.54% error which can be further reduced to
2.89% if the training data is augmented wit cutout regularization. Even though this
is not a state of the art score, it is very close to the 2.65% state of the art error, with
the approach being about 1000 times faster. Similarly, on problems such as the Pen
Treebank dataset, the algorithm manages a state of the art 55.8 test perplexity by
designing custom RNN cells using a DAG with neural layers and operators.

Bender et al. [19] suggest that there is little need for complex systems for selecting
well performing networks from a hyper-graph. While studying the effects of weight
sharing on the search process, they come to the conclusion that through random net-
work sampling, the weights in the hyper-graph can be calculated and good networks
are bound to be discovered. Training the best performing networks in the one-shot
context from scratch results in competent models with weights that better suit the
topology. Training with 16 P100 GPUs for 80 GPU hours results in an average ac-
curacy of 95.9% on the CIFAR-10 dataset, using about 37.5% less parameters than
comparable models.

Liu et al. [20] propose DARTS, a one-shot methodology that relies on relaxation
of the search space to discover architectures fast. Instead of selecting a single neural
layer to be used to combine a set of edges in the hyper-graph, a softmax outputs the
weight of every available neural operation. This essentially leads to the training of a
hyper-network comprised of all possible topologies for the problem. The weights of

20



the softmax operations are updated iteratively until convergence. When this process
completes, the edges with the biggest weight are preserved, defining the final network,
while edges with small weights are pruned. They evaluate their method on CIFAR-
10 with a small search space in order to design convolutional and reduction cells for
NASNet and manage a 2.76% error with a cost of 6.5 GPU days.

In conclusion, one-shot methods offer a way to deal with the high computational
demands of training multiple networks during a topology search at a cost. Sharing
weights between topologies may not accurately reflect the performance of the archi-
tectures using the weights, but it can be used as a heuristic to rank them. After the
search process is complete, the topology with the best relative performance must be
trained from scratch in order to produce a competitive network. The main disadvan-
tage of the one-shot approach is the restrictions imposed on the search space by the
hyper-graph. As the number of nodes (neural layers and operators) at each ”level”
of the graph increases, the graph naturally becomes more dense, which in turn leads
to high memory demands for the saving of the shared weight matrices. This can be
mitigated if some edges between nodes are removed based on a set of rules, which
shrinks the search space. Using the hyper-graph also means that only networks up
to a certain size can be formed, as there is no way to design topologies that exceed
the length of the biggest path in the hyper-graph. These problems are evident by
reading through the literature on one-shot methods, where researchers often work on
micro-architecture topologies with a relatively small search space to achieve results.
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Theoretical Description

Goals

It is evident that NAS is a very computationally demanding field. Discovering and
evaluating an architecture is a slow process that often requires specialized infrastruc-
ture in order to be applied to problems. The works of many teams of researches
attempt to work around the main bottlenecks by employing a variety of methods.
The most common approach is to shrink the search space by imposing limitations on
the size of networks and the variety of their layers, reducing the expressiveness of the
design algorithm, but at the same time simplifying the search process. This is usually
achieved indirectly, by applying NAS to micro search spaces and building modular
networks comprised of repeated architecture blocks. Using empirical knowledge to
conduct search in a restricted search space is an effective technique that works on
many problems, but is also limited in its ability to produce extraordinary results.
The vast majority of discovered networks will have similar performance, while the
best topologies of each iteration will deviate slightly from the mean. Also, it can
only be applied to domains where prior knowledge regarding good network macro-
architectures are available.

Another interesting idea is to replace the conventional network scoring, done
through training and evaluating each architecture, with a predictive model, that can
produce an estimation of the performance of the model in a fraction of the time it
would take to evaluate it properly. Such systems are good additions to most NAS
algorithms, but their inclusion translates to yet another component that needs to be
configured and evaluated.

Proposed NAS techniques tackle the problems of the field in wildly different ways.
The key to designing an effective neural architecture search algorithm is to define a
rigid set of goals that should be achieved with it. Naturally, the first goal of any NAS
method is to discover relatively fast, with low computational costs. For this reason, an
evolutionary algorithm is is used as a base though which networks will be produced as
members of a population. Evolutionary algorithms have a very low overhead cost for
producing solutions and have been proven to be effective in designing good networks.
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They are also very versatile, allowing for easy and unrestricted network manipulation.
In comparison, RL methodologies perform better in finding state of the art networks,
but also require much more time and resources for training the supervisor network.
The second goal that was defined for the approach presented in this thesis is to allow
the search process to discover new network patterns that are not necessarily based
on empirical knowledge. Working with NAS at the cell level is shown to be effective
in other works; however the resulting architectures provide little knowledge about
the general rules of what makes a network effective. Artificial constraints guide the
discovery process towards a certain direction that the researchers believe contain the
optimal network for a problem, but there is no way to be certain about the fact
unless the entire search space is searched. On the other hand, global search spaces
can contain an infinite number of networks, which can hinder the algorithm by offering
too many choices in the search. NAS on global search spaces has been successful in
the past, but better and cheaper approaches exist. Hierarchical search spaces are
a decent middle ground, providing a structured way to explore a large search space
with few compromises. Most approaches work on two hierarchical levels, building
full networks by combining cell architectures with general macro architectures. The
proposed method is based on hierarchical search, performed on an arbitrary number
of levels. The approach is most similar to the work of Liu et. al. [10] where instead of
using two levels, they define N levels on which topologies are evolved. Here, networks
use a tree-like representation that allows them to have a variable number of levels.
This allows for the third goal of the algorithm to be satisfied: find the intermediate
architecture that are beneficial to the performance of the topology on the given data.
Typically seen in cell search spaces, researchers try to find good configurations of
layers that can be repeated as is, and increase network performance. By studying
architectures at higher levels of abstraction, it is possible that new abstract blocks be
discovered that are beneficial to the network overall. Studying how different blocks of
layers can be combined to maximize network performance helps in the advancement
of the field of deep neural networks.

Algorithm Overview

By combining an evolutionary approach with a novel network representation, an unre-
stricted, iterative network architecture search algorithm that can produce deep neural
networks of increasing complexity and performance may be built. The evolutionary
process operates on a population of candidate network architectures that start sim-
ple and are expanded through mutation. The algorithm does not use the crossover
operator for producing new offspring networks - even though it would be technically
possible, it is very hard to implement a system compatible with the network repre-
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sentation that would guarantee an increasing trend in the fitness of the population.
Candidate topologies are initialized by creating a random graph and replacing

each node with a neural module sampled from a notable modules list. The neural
module is the fundamental abstraction unit for the algorithm. A neural module can
either be a neural layer, such as a convolutional or pooling layer or a hierarchical
graph, as explained in the next section. The combination of these two terms into a
single concept allows for the representation of networks as polymorphic structures that
can be easily manipulated with the mutation operator. In fact, the whole candidate
topology can be represented as a neural module and is treated as such.

After initialization, the iterative process of the algorithm executes and proceeds to
evolve the population for a predefined number of generations. Each iteration begins by
applying the mutation operator to a number of members in the population. Mutating
networks changes their structure by adding nodes and edges to their graph. In similar
works, such as Mikkulainen et. al. [12] [3] the algorithm makes a single change to the
topology per mutation, by adding or removing a neural layer or a connection. This is
not the case in this work; at each mutation step, the network can change dramatically
and have multiple nodes and edges added to it. Another difference between the two
algorithms is that while CoDeepNEAT the option to remove nodes and edges exists
(in the form of disabling them in a candidate network), here mutation only increases
the size of the networks. This convention is set like that because it is expected that
larger networks perform better that small ones. However, a large network may have
inferior performance due to its topology, at which case it will be removed at the
appropriate stage.

Members of the population that are new or have been mutated at the current
iteration must be evaluated. This means that the corresponding networks have to
be constructed, trained and tested on the validation dataset. Training the candidate
architectures is an integral component of most NAS algorithms. The training proce-
dure serves in assessing the performance of each topology which is then utilized by
the iterative process in different ways. For example, in a genetic context, the per-
formance of each network can be used in the selection operator to determine which
members will be used to produce new candidate offspring topologies. Alternatively,
in reinforcement learning based NAS publications, the performance of each network is
usually used to train the controller network by incorporating the accuracy of the pro-
duced network in the loss function and backpropagating the error on the controller’s
weights. Training populations of networks is a slow process, and recent publications
often replace the procedure entirely by opting to use a predictive model. Usually, the
predictive model is another deep neural network that receives a topology as a graph,
calculates an internal embedding (in order to support graphs of different sizes) and
outputs a predicted accuracy score. That model is trained by providing it with topol-
ogy graphs and architectures that have been trained conventionally, with the explicit
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purpose of providing training data for it. It is worthwhile training the predictive
network in conjunction with the rest of the NAS process, feeding it sampled models
from each step so it can continuously improve its accuracy as the process progresses,
which also removes the need for the existence of a scored topology dataset at the start
of the algorithm.

While it is clear that an accuracy estimation model is effective, such a component
is not used in this work. Instead, each model is trained partially for a number of
epochs determined by a complexity heuristic. The complexity refers to the size of the
graph in terms of number of nodes, i.e. the total numbers of neural layers in it. For
a given graph G = (V,E) the complexity heuristic is defined as:

complexity =
|V |
C

(1)

where C is a constant positive integer, typically between 1 and 4. A network with
more neural layers is bound to be more complicated and require more training than
a smaller network in order for the algorithm to acquire a representative accuracy
score. The constant C can be adjusted as needed to control the amount of additional
training that should be performed for every extra neural node. After the complexity
of a topology has been calculated, the number of training epochs is calculated as
follows:

training epochs = max (1,min (
module.complexity

max (log(generation + 1), 1)
,max epochs)) (2)

where MAX EPOCHS is the maximum number of training epochs allowed. This
value is not just a ceiling for the number of epochs that a network can be trained
for, but also indirectly acts as an implicit threshold that penalizes networks with too
many parameters. If a network is too large, it will not be trained to its full potential
and its recorded accuracy will be lower than its true accuracy. This translates to a
worse fitness which affects how the topology is utilized in later stages. The intuition
behind this heuristic is that smaller networks with less parameters need less time
to converge, while bigger networks require more training time to accurately exhibit
their performance. The purpose of the complexity heuristic is to speed up the training
process in the population by quickly estimating the amount of training each network
requires. If all networks were trained for a constant number of epochs, a significant
amount of time would be lost in the training of small, already converged networks,
due to the need to set the epoch count to a high number in order to accommodate for
the larger networks that are created in later iteration and demand sufficient training.
Training the population is the most time intensive part of the algorithm.

After training the appropriate networks, the notable modules list is updated to
contain the most performant parts of the topologies in the population. Updating the
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notable modules is a multi-step procedure that is analyzed later in the thesis. In
the last part of the evolution loop, the networks with the lowest fitness scores are
eliminated. The number of networks to be eliminated is expressed as a percentage
over the total number of networks in the population. At the end of each iteration,
the threshold fitness value for the population is calculated based on this percentage,
after which point all networks with fitness scores less than the threshold are deleted.
In order to keep the population size constant, an equivalent number of new candidate
networks as those deleted is generated and inserted into the population in order to
be evaluated at the next generation. Replacing networks is a key component in the
algorithm because it filters out topologies that are either too simple, too complex or
just don’t have a suitable layer and connection configuration to produce good results.
Furthermore, the percentage of the population that is replaced directly influences
the rate at which new modules enter the notable modules list. The frequency at
which the replacement process runs is itself controlled by a separate parameter which
determines how many iterations should pass between every replacement pass. If the
number is high, multiple mutations are applied to the same networks, increasing their
size and their sophistication. If the number is low, the notable modules list is updated
faster which leads to a faster convergence on the network topology. Depending on
the problem and the available layers, this value needs to be tunes to provide optimal
results.

This high level overview of our proposed algorithm serves in gaining an initial
intuition about the different systems at play. The snippet below contains pseudocode
for the algorithm in a more compact form, highlighting the structure of the underlying
evolutionary process. Certain components are abstracted behind functions that will
be analyzed in later. In the following sections, we will begin expanding on the different
routines and structures that are used throughout the algorithm and the ways they
are interlinked.
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Algorithm 2 Dynamic Hierarchical NAS - Overview

1: . Create initial population with random topologies.
2: population← {}
3: for i← 0 to population size do
4: module← createNeuralModule ()
5: population.add (module)

6: for generation← 0 to generation count do
7: for each module ∈ population do
8: mutate(module)
9: . Clamp the training time between 1 and the maximum number of epochs.
10: training epochs = max (1,min ( module.complexity

max (log(generation+1),1)
,max epochs))

11: accuracy ← trainAndEvaluate(module, training time)
12: module.setF itness(accuracy)

13: updateModulesList(population)
14: . Apply threshold to eliminate weaker topologies.
15: if generation mod delete interval == 0 then
16: networks to replace← network replace pct ∗ population size
17: . Sort population by fitness(ascending).
18: sort(population)
19: for i← 0 to networks to replace do
20: population[i]← createNeuralModule ()

Hierarchical Network Representation

Evolutionary algorithms operate on members of the population in order to find a near
optimal solution to a specific problem. Inspired by traditional biology, the population
contains entities called chromosomes, each of which is a solution to the problem.
Chromosomes use a user-defined encoding in order to contain the properties of the
solution. Thus, its format should be sufficiently descriptive so that its information
can be used to reliably solve the problem. The encoding should also be flexible, to
allow the different operators to change parameters in the solution easily. A secondary
requirement for the encoding is to be lightweight, especially in cases where populations
are large. Other requirements may be set in a case by case basis, depending on the
particular characteristics of the problem.

In the domain of NAS, a chromosome or solution is the topology of a neural
network which, when trained, performs well in the given dataset. It is very common
for researchers to adopt a representation that uses a fixed length array to encode the
graph information. In this case, each element in the array usually holds information
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about neural layers which are combined to form the candidate solution. This approach
is often preferred because of its ease of implementation and manipulation with the
evolutionary operators. However, it is also very restrictive in the allowed network
structure and size. Even if ”no-operation” layers are used, there is still a maximum
size limitation on the constructed topologies. A better solution is introduced in [12]
where chromosomes take the form of lists that can be expanded. This somewhat
complicates the implementation of the different operators, but the authors manage
to make it work successfully.

In this work, an original, novel representation scheme is used to encode network
information in the chromosomes. The inspiration behind it was the idea that neural
networks are black box models that receive an input and produce an output, while
their internal processes remain hidden. Neural networks are computational graphs;
in their most basic form they can be comprised of a single hidden layer. In a similar
manner, the black box idea can be extended to the notion of the neural layer: even
though their computations are well defined and understood, they can still be treated
as a model that receives an input and calculates an output. Naturally, in a neural
network graph, a group of connected layers form a sub-graph that can adhere to the
same principle. At a higher level, different sub-graphs can form even larger sub-
graphs, and eventually the full network. Treating every entity in this fashion allows
for the definition of a universal abstraction construct, the neural module. A neural
module is defined as a computational graph of any size that can process an input
and produce an output. Each node in a neural module can represent either a neural
layer or another neural module. Starting from a full neural network, neural layers
and then neural modules can iteratively be organized into sub-graphs, ultimately
building a hierarchical graph structure. At the top, a graph with only just one node
represents the entire network. It is connected to an input and output nodes which
provide and receive the data and the result respectively. Lower level neural modules
also get auxiliary input/output nodes to direct the flow of the data. The input data
is propagated into the lower level neural modules, until it reaches the neural layers
at the bottom of the hierarchy. The data flows from an abstract graph of a module
to the abstract graphs of the neural modules corresponding to each node by being
directed to every node in the internal neural modules’ abstract graph recursively.
After all the neural layers in a neural module complete their data processing, their
combined result is formed and sent on the next hierarchical level as the result of the
neural module in which they belong.

One of the implicit consequences of this representation is that it is possible to
have hierarchical graphs with varying depths. This removes the need to introduce
”no-operation” or identity layers to the set of available layers for the optimization
algorithm. Another important result is that the maximum depth of the graph does
not have to be defined. Depending on the execution of the evolution process, the
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hierarchical graph will always result in a valid network. Of course, many different
hierarchical graphs can result in the same network. The hierarchical structure is only
utilized by the algorithm, while the final result is a normal neural network graph,
i.e. a computational graph with nodes representing neural layers. The process which
extracts a neural network from a neural module operates by replacing each node in its
computational graph, also called the abstract graph, with the computational graph
of the corresponding neural module. When this is done recursively on all hierarchical
branches, the resulting graph is the full neural network.

The hierarchical representation is designed to satisfy the 3rd goal set earlier, which
is to find intermediate architectures that provide good performance on the problem.
This is an extension of searching for micro architectures, which are sub graphs that
contain neural layers. If a neural module containing just neural layers is considered
a block or cell equivalent (using the terminology of other NAS publications) then its
higher level neural module would be an intermediate level block containing neural
modules and possibly some neural layers on its graph. Considering that a key feature
of deep neural networks is repeating cells in different ways, combining higher level
cells should achieve the same result.

It should also be noted that the hierarchical representation can be used to organ-
ise layers in existing, handmade, state of the art topologies. Consider for instance
the topology of InceptionNet, a deep neural network , initially designed for image
classification datasets. It is constructed by repeating a cell architecture called the
Inception Module that performs features extractions at different resolutions, along
with a selection of intermediate layers that link the different cells.

Figure 6: The InceptionNet model.

The authors of the original paper understandably focus more on the novel archi-
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tecture of the Inception Module. However, by observing the complete architecture, it
is clear that there are multiple other repeating sub graphs that can form cells, such
as the classification heads, or the modified Inception Module on the first and second
classification branches. These 2 sub graphs, along with the Inception Module are clear
examples of sub graphs that can be represented as a low level neural module. How-
ever, it is possible to add more abstraction to the construct by defining yet another
neural module one level higher than the previous ones, whose computational graph
describes the way the three lower level neural modules are connected together. In the
original InceptionNet, this high level, abstract module is repeated twice. Continuing
this process will result in the creation of a rigid hierarchy with only one module at the
top, containing information for the entire network. The same can be applied to all
network architectures. The hierarchical representation is designed for the construc-
tion of networks with repeating patterns at multiple levels, which describes many well
performing models such as the VGG, ResNet, EfficientNet and others.

Network Generation

In the previous section we saw how an existing network may be organised into dif-
ferent levels of neural modules using the hierarchical representation. The process of
organising a network such as the InceptionNet by hand is useful for acquiring a basic
intuition about the representation structure, but doesn’t really explain how the sys-
tem can be utilized by a generative routine in an evolutionary context. This section
analyzes the evolutionary process’ network generation algorithm, and how it takes
advantage of the hierarchical representation to initialize networks with increasingly
more complex topologies organically.

A significant weakness of successful NAS publications, such as the works of Zoph
et. al. and Mikkulainen et. al. is the slow pace with which topologies are con-
structed and improved. In both cases, candidate networks start with a single layer
and are iteratively improved by adding nodes and edges to the graph, either via a
reinforcement learning model in the first case, or with the use of a genetic algorithm
in the second. An important consequence of the hierarchical representation is that
it allows for an improvement on the first part of the problem, which is the topic of
this section. There are 2 points at which network generation occurs in the algorithm.
The first one is before the evolution loop, where the initial population of networks is
created. The second one is at the end of a generation, when new population members
are generated to replace those just deleted by the threshold filter. In both cases, the
generation algorithm produces a neural module in two steps.

The process begins by selecting the number of nodes N in the neural module’s
abstract graph. This parameter can be set as a constant value, or be sampled from
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a distribution to add variance to the members of the population. In either case,
the number should not be too high because it is very easy to exceed computational
resource limits. On the first step of the network generation, N neural modules are
sampled from the notable modules list. Each neural module in the list has an average
fitness which is used as the weight for the sampling step. Neural modules with higher
average fitness values are more likely to be part of the generated neural module.
During the second step, a random computational directed graph is created for the new
module. The graph has N nodes, each one representing a randomly assigned neural
module from the set of modules sampled in the first step. Instead of using one of the
many available network generation algorithms that are available, a custom one was
designed to ensure that the resulting graphs adhere to two basic rules guaranteeing
that the resulting neural networks are valid and do not waste computational resources.
The first rule is that every node in the graph must have at least one input edge and
at least one output edge. In the case where a node has no incoming edges (source
node), no signal can reach the neural layers of the corresponding neural module, so
it never participates in the training and is in no way useful to the resulting network.
On the other hand, if a node has no outgoing edges (sink node), even though it can
receive a signal from previous nodes and perform a calculation, the result is not used
in any way by the network, rendering it useless. This also means that its incoming
weights are not being trained through loss backpropagation, offering no contribution
to the preceding layers. Furthermore, its inclusion adds a computational burden that
slows down the training process for no reason.

The graph generator creates graphs focusing on this rule. The first step in graph
generation is to create one node for the input signal and one for the output signal.
These are auxiliary nodes that are added to control the flow of the graph, and do not
actually correspond to a neural layer or module. After that, N unconnected nodes are
placed on the graph space. Next, a random number of edges are created, starting from
the input node and directed at a random subset of the unconnected nodes. At least
one edge must connect the input node with the neural module nodes in order to allow
the information to be transmitted through the network. A similar procedure happens
for the output node. A number of module nodes are randomly selected and connected
to the output node in order to propagate the data to the rest of the network. At this
point, some nodes in the graph have no incoming edges, some have no outgoing edges,
and some are not connected at all. The next step is to distinguish unconnected and
partially connected nodes into two sets, depending on the type of connection they are
missing (the two sets can have common elements). At each case, an edge is added
to complete the missing connection: nodes with no incoming connections get an edge
from a random node to them and nodes with no outgoing connection get an edge
from them to another random node. This method guarantees that all nodes in the
graph will be connected properly. However, there is a second issue that may arise:
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there might be cycles in the graph. Even though there are cases where cycles are
used in deep neural networks (e.g. RNNs) they are avoided in convolutional neural
networks (which is what NAS mainly focuses on), as they tend to run into issues with
vanishing gradients very often, which are normally not present in sequential neural
networks. For this reason, the second rule states: the directed computational graph
must be acyclic. To enforce this, after the topology has been generated, a routine
checks the graph for cycles [21]. If there are any, the previous step runs over again,
generating a brand new graph to be evaluated for cycles. If a generated graph has no
cycles, it is valid and the neural module can be created.

Figure 7: The graph generation occurs in 3 stages: first, N nodes are created. Next,
a random number of nodes are connected with the input and output nodes. Then,
nodes with no incoming or outgoing connections get random edges with a randomly
assigned node in the graph. If there are no cycles, the graph is valid and nodes can
get assigned neural modules.
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At training time, each member of the population recursively replaces each node
in its abstract graph with the abstract graph of the neural module it represents,
until the resulting complete graph is comprised of just neural modules representing
layers. The novelty of this approach results from the fact that each neural module
can represent a sub graph of any size. Contrary to other approaches where nodes and
edges are assigned one by one, associating a node of an abstract graph with a neural
module adds an entire new segment to the neural network. Unlike micro architecture
search, it is not just a small topology being added - each module can be deeply
complex, itself combining other, lower level topologies to be formed. Even though
this behaviour is highly desirable, it can be the source of a significant problem: if
the number of nodes in the abstract graph is anything other than small, an explosion
in the number of layers in the network may occur. This happens because all lower
level neural modules except the lowest level ones (those that represent a single neural
layer) will also have the same amount of nodes (or a similar amount, if the number
is sampled from a distribution. Thus, the number should be sufficiently small, as to
expect this immediate formation of a moderate sized network right at initialization.
The actual initial network size is tied to the iteration number - as the algorithm
progresses, more complex network will be initialized each generation.

Network Mutation

Every evolutionary process needs to incorporate a set of operators that improve the
initial population by modifying the candidate solutions. While there are many differ-
ent functions that can be applied to a set of chromosomes, they have to be compatible
with their structure or alternatively be designed with their properties in mind. The
proposed hierarchical representation is designed to provide many benefits at the evo-
lutionary algorithm at a cost. The drawback to this chromosome formulation is that
it is very restrictive in terms of what operations can be applied to it. Due to its novel
structure, most typical evolutionary functions, such as the crossover function, cannot
be applied out of the box. As a result, custom operators must be designed to allow
solutions to improve and produce better results.

Modifications to candidate topologies are performed through the mutation op-
erator, which is the standard operator for evolutionary algorithms. The mutation
operator has a chance to get triggered in each candidate at every iteration, randomly
changing a set of properties of the solution. Typically, mutating a graph would mean
making a modification in its nodes or edges, such as adding or removing a node or
an edge. Mikkulainen et. al. implement the mutation operator in their work by
introducing functions that can temporarily disable a node or edge in a network, while
preserving the information so it can be enabled again in a later iteration in the same
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manner. In this work, mutation functions operate in two ways: in the node level by
replacing a simple neural module for a more complex one, and in the edge level by
adding an edge or set of edges to the candidate network. Yet again, the hierarchical
architecture allows for the rapid modification of networks by incorporating the level
of the neural module being modified in the hierarchy.

Starting with the node mutation, this operation is the most transformative of the
two, because it adds an entire sub graph to a select position in the topology. This
action is performed by selecting a random neural module representing a single layer
from any level in the hierarchy of a candidate and replacing it with a neural module
sampled from the notable modules list. The process is simple: starting from the top
level of a candidate, a node in its abstract graph is chosen at random. If the selected
node represents a neural layer, it is replaced with another neural module from the
notable modules list. Otherwise, the process repeats for the nodes of the abstract
graph of the chosen node.

Algorithm 3 Node mutation

1: procedure mutateNode(module : NeuralModule)
2: . Sample a random index from a uniform distribution.
3: idx← U(0,module.child modules.size())
4: selected node← module.child modules[idx]
5: if selected node.module type == ABSTRACT MODULE then
6: mutateNode(selected node)
7: else
8: selected node.module type← ABSTRACT MODULE
9: generateRandomGraph(selected node)
10: sampleChildModules(selected node)
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Figure 8: Node mutation in an abstract graph. A neural node in the hierarchy is
randomly selected and replaced with a neural module from the notable modules list.
In this example, the green node is replaced with the abstract module with an average
fitness of 0.45. Expanding the new node reveals its internal components.

The replacement of the neural layer with a neural module doesn’t necessarily mean
that that new addition will be more complex than the old module - especially in the
first iterations, it is very possible that a neural layer will be replaced by another
neural layer. This implementation of node mutation creates balanced hierarchical
graphs that are comprised of abstract modules at the top and more neural layers
at the lower levels of the hierarchy. The reason this happens is because it is less
likely for lower level neural modules to be mutated due to the iterative sampling
that would have to occur for such an event to take place. Neural layers in higher
levels naturally have a higher chance of being converted first. As a result, the overall
structure of the network is more rigid, with the different sub graphs manipulating the
data cooperatively, similarly to the way it would be processed in a man-made graph.
In contrast, if the node mutation were to be performed at a neural layer at a uniformly
sampled level in the hierarchy, the network density could differ significantly from sub
graph to sub graph. This is not desirable behaviour as it could lead to erroneous
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topologies.
The second operation is the edge mutation, which is far simpler than the previous

one. This operation adds a directed edge between two neural modules at a level in the
hierarchy of a candidate network. Even though it is similar to the previous operation,
this one can fail if there is no way to add an edge to the selected sub graph without
creating a cycle. The mutation function operates as follows: starting from the top
level of the hierarchical graph, decide in a stochastic manner whether an edge is to be
added at this level or on deeper level, on the abstract graph of a child neural module.
If the edge is to be added on the current level, generate a list with all the possible
edges that can be added to the graph of this module without creating a cycle. If
there are no such edges, the mutation fails. If there are valid directed edges, one is
selected at random from the list and added to the graph. In the case that the edge is
to be added to a child module, a non trivial neural module (i.e. a neural module that
has more than just a single layer) is selected and the procedure runs for its abstract
graph instead.
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Algorithm 4 Edge mutation

1: function mutateEdge(module : NeuralModule)
2: nodes← module.abstract graph.getNodes()
3: . Track whether an edge can be added on this hierarchical level.
4: can add edge← true
5: while true do
6: visit child← U(0, 1)
7: if visit child == true ‖ can add edge == false && nodes.size() > 0

then
8: idx← U(0,module.child modules.size())
9: selected node← module.child modules[idx]
10: result← mutateEdge(selected node)
11: if result == FAILURE then
12: nodes.remove(selected node)
13: else
14: return SUCCESS
15: else if can add edge == true then
16: . Get all edges that can be added to the graph.
17: possible edges← getAllPossibleEdges()
18: if possible edges.size() == 0 then
19: can add edge← false

20: while possible edges.size() > 0 do
21: . Sample an edge
22: edge idx← U(0, possible edges.size())
23: edge← possible edges[edge idx]
24: . Create a copy of the abstract graph.
25: graph copy ← copy(module.abstract graph)
26: graph copy.addEdge(edge)
27: if hasCycles(graph copy) then
28: possible edges.remove(edge)
29: else
30: module.abstract graph← graph copy
31: return SUCCESS
32: can add edge← false
33: else
34: return FAILURE
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Figure 9: Edge mutation in an abstract graph. In this example hierarchy, the second
abstract module in the upper level is selected for edge mutation. Expanding its
topology, a random edge is added between two neural modules.

It is apparent that the stochastic element determined whether the function will
place an emphasis on creating edges at higher or lower levels. If, for example, there is
a 50% chance of adding the edge at the current level and 50% chance of adding it on
a child module, the algorithm will greatly favor adding edges high in the hierarchy.
This can be beneficial because edges on abstract graphs of higher levels translate to
more actual edges in the final network topology. An edge between two nodes in an
abstract graph means that all neural modules of the abstract graph of the neural
module of the source node will be connected with all neural modules of the abstract
graph of the neural module of the destination node. If the edge placement is favored
on lower level modules, the changes to the computational graph will be less severe
and more localized in the sense that the connection will be established between nodes
that share a common parent. High level edge additions allow for the connection of
more disconnected areas of the network, which may prove to be useful in some cases.

38



However, they are also more likely to connect many different areas in a way that slows
down the training process without offering a benefit in performance.

In order to determine the type of mutation to be applied to a candidate net-
work, a random number is sampled from a uniform distribution. Then, a decision
is taken depending on the sampled value: whether to mutate a node, edge or leave
the module as is. In other methods with more than one operator, mutation is very
rarely performed, and is used in order to offer some external variation to solutions
that may tend to converge. In our case, since mutation is the only operator, there is
little justification for not using it on every network at each iteration. As such, the
chance for skipping mutation on a network could be set to zero, which leads to a
more rapid network expansion. Alternatively, some networks will not be mutated at
each iteration, and thus not be reevaluated, which reduces the amount of time needed
per loop. As for the chance of the other two events, a node mutation is undoubtedly
a more transformative operation and should probably have a lower chance to occur
compared to edge mutation, which only affects the flow of data in the network.

Fitness Evaluation

After the networks are built, they must be assigned a fitness value. The fitness value
is a scoring metric that determines how performant each network is in relation to the
other candidate networks. All evolution methods implement a scoring function that
evaluates a chromosome and calculates its fitness for the problem at hand. The fitness
value determines the degree to which the evolution process exploits each solution’s
characteristics in subsequent iterations. In other works, the properties of the best
solutions at each iteration tend to be incorporated in other candidate solutions in an
attempt to further improve the population. Furthermore, a good fitness value of a so-
lution translates to a longer survival in the population, by virtue of not being affected
by techniques such as fitness cutoff thresholds which aim to purify the population by
removing its worst performing members and replacing them with new ones.

In the context of neural architecture search, where solutions are neural topolo-
gies, the fitness function must relate to network performance on the given dataset.
The obvious way of assessing network performance is to adequately train a network
and calculate its accuracy and other relevant metrics. Another approach is to use
a predictive model, such as a graph neural network, to estimate the performance of
a network. While that method is initially attractive because it greatly reduces the
assessment time for the population at each iteration, it has two disadvantages: the
estimations are prone to a certain degree of error, and the predictive model requires
training. For this work, the fitness of each topology is equal to the accuracy of the
corresponding trained network when evaluated on the validation data set. The degree
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of training for each network varies depending on its complexity in order to save time
by avoiding training topologies for more than they need to be trained. Training a
network is a straightforward process that can yield fitness values for the candidate
topologies. Using the hierarchical network representation, the calculated fitness value
will correspond to the entire topology, which can be represented by the top level neu-
ral module of each candidate member in the process. This however, is not the full
extent to which the fitness value is used. It is important to know which parts of the
network are significant and beneficial to the entire topology. This refers to the lower
level neural modules that form sub graphs in the architecture and serve a purpose in
improving the performance of the network by transforming the input data in various
ways. In a sense, these child neural modules can be considered properties of the over-
all solution - they are smaller networks with their own set of properties and solve a
particular, internal problem. Consequently, these can too be evaluated indirectly in
relation to the fitness of the entire network. Assigning a fitness value to all modules in
the hierarchy of a candidate reveals the most useful sub graph schemes in the popula-
tion, similar to how some properties are highlighted for their ability to produce good
solutions. Neural modules that are present in many well performing networks should
be considered useful and used by the mutation process more often than modules that,
when combined with others, create problematic topologies. Finding these modules is
a two part process which begins by calculating values for al neural module compo-
nents in topology’s hierarchy and then using them to rank and promote modules in
the notable modules list (which will be analyzed in the next chapter).

Three different approaches were considered for carrying out the process of assign-
ing fitness values to child modules. The first approach operates by taking a parent
module’s fitness and splitting it evenly on the child modules of its abstract graph.
This is done recursively, which results in all modules from the top to the bottom of
the hierarchy getting assigned their fitness values. Due to the fitness division that oc-
curs at every hierarchical level, higher level modules have higher fitness values while
neural layers in the bottom have much lower fitness values. The intuition of this
method is that the contribution of a single neural layer or small sub graph to the
entire topology is smaller than that of a much larger sub graph. Taking this fact into
account, complex, higher level modules should be preferred for the construction of
candidate topologies.
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Figure 10: In the first fitness distribution policy, the fitness of a module is split evenly
among its children.

The second approach is more complicated, taking into account the structure of
the hierarchical sub graphs in a candidate. A fitness flow mechanism is responsible
for evenly distributing the fitness of a module in an abstract graph, as if it had the
properties of a liquid. Once again, starting at the top, the process begins in the first
abstract graph by assigning the entire fitness value to its input node. The value is
then spread evenly among its outgoing edges, producing the fitness values for the
next set of nodes. If a node has more than one incoming edges, it receives the sum
of the fitness values of the nodes that feed into it. This continues for every node
in the abstract graph, until the entire fitness is aggregated in the output node (this
approach dictates that the input and output nodes must have the same fitness values
for the process to have worked correctly). Each module in the hierarchy gets its
fitness and continues by performing the same procedure on its abstract graph using
the fitness value assigned by its parent as the initial value that will be distributed. The
logic behind this approach is that connections are important and should be taken into
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account when evaluating modules in the hierarchy. Nodes that have multiple incoming
edges are more significant because they combine different signals together. Topologies
with known patterns such as skip connections boost the evaluation of internal nodes,
indicating their importance in the network. This also means that the same neural
module can exhibit different fitness values, depending on how it is connected when
placed at different points in the graph.

Figure 11: In the second fitness distribution policy, the fitness of a module flows
evenly through the different paths.

The third approach is the simplest of the three: given a fitness value of a candidate
in the population, all internal neural modules in the hierarchy get assigned that value
too, independently of their complexity or depth. This is the same technique used by
[3], although it is applied to a population of chromosomes with different structure.
than those proposed here. The idea is that good modules should consistently appear
on well performing networks, therefore their fitness should not be penalized by their
position or the depth in which they appear. However, an important problem may
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arise here: how will more complex modules be highlighted for their performance when
compared to lower level modules, since all modules in a topology are assigned the same
value? This issue is handled organically by the algorithm through the candidate and
notable modules lists in a way that will be explained in the next section.

Figure 12: In the third fitness distribution policy, all modules in the hierarchy of a
neural module get the root fitness.

Out of the three approaches, the one utilized in the algorithm is the third one,
since it provided better results in the conducted experiments. Even though each
fitness assignment technique has certain advantages and drawbacks, applying the
same fitness to all modules in a hierarchy produces the best results in terms of finding
the best performing architectures. Fitness evaluation of each module is controlled by
an internal flag in the chromosome that marks whether a neural module requires a
fitness evaluation. All new candidate architectures initially require evaluation. After
that, networks may need to be reevaluated in the case of a mutation, at which point
the resulting network is treated as an entirely new topology. The modified or added
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module triggers a recursive flag update to its parent that travels all the way to the
top of the hierarchy. When it is time for an evaluation, the algorithm only checks
the top module for each candidate and acts accordingly. If an update is needed, all
modules of the network get updated fitness values. Otherwise, the candidate fitness
is not reevaluated.

Candidate and Notable Modules

The notable modules list has been mentioned a few times already. It is the final
component of the algorithm and its function is the cornerstone of the entire process.
Its use it to index those neural modules that consistently provide good performance
when included in a computational graph. In reality, this data structure is an associa-
tive table that contains neural modules and their corresponding properties, such as
their average and cumulative fitness, their complexity values and other info which is
used to perform the sampling operations. There are 2 additional lists that are imple-
mented along the notables list: the candidate modules list and the banned modules
list (also called blacklist). This section analyzes their purpose and the way these 3
structures interface with each other and the rest of the evolutionary process in order
to push the search forward.

The evolutionary process operates by creating populations of candidate topologies,
evaluating each one, distinguishing the modules that have a better than average
performance and using them to construct the next iterations of populations. In order
to create topologies, the network generation function samples neural modules from the
notable modules list, and then assigns each module to a node in a randomly generating
abstract graph. The graph, along with the sampled modules, form a topology which
is also considered a new neural module with the aforementioned as its properties. The
notable modules list is initialized by creating and inserting into it a set of predefined
neural modules, each representing a single neural layer (essentially graphs with one
node). These should be layers that are typically used to solve the type of problem
the dataset poses. Usually, convolutional and pooling layers with different properties
make up the layer list. The first population members are created by combining these
simple neural layers in different permutations, building slightly more complex neural
modules. The new networks are trained and evaluated, and all the modules under
the hierarchy are assigned fitness values. Modules that are already recorded in the
notable modules list have their average fitness values updated. In order to update
the average fitness of a module in the list with the fitness of the module in a new
network, the following snippet is used:
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Algorithm 5 Average fitness update

1: procedure recordFitness(module : NeuralModule, new fitness : int)
2: module.average fitness← module.occurrence count∗module.average fitness+new fitness

occurrence count+1

3: module.occurrence count + +

This initially concerns simple modules, like the modules representing neural layers
that make up the computational graphs of the candidates. As for the new, higher
level modules that have not yet been recorded in the notables list, they have to first be
placed in the candidate modules list, where they will remain until it can be determined
whether or not they are of quality. The key feature of the notable modules list is its
constrained size - it can only contain a predefined number of modules. In order to
insert a new, well performing module in the list, if the list is full, another module with
worse average fitness must be removed. This has two purposes: the first is to create
an evolutionary pressure that forces the process to only maintain the best performing
modules, which will eventually also lead to population convergence. The second is
to force the algorithm to work with progressively higher levels of abstraction in its
modules, by replacing simpler modules with more complex ones as more generations of
populations are produced. Considering the fitness evaluation scheme that was selected
in the last section, a valid question may arise: how can the process replace simple
modules for more complex ones, if all modules in the hierarchy get the same fitness
value? This can be answered by considering the probability of two new modules of
different complexity being created. The most trivial neural module, an independent
neural layer, can occur very frequently in many networks in the population. As such,
its average fitness will be affected by all topologies in which it is included. This
includes not only good networks, but also bad topologies that fail to exploit the layer
properly due to the structure of their graph. A more complex module will be harder
to create: the abstract graph and the sampled layers would have to be identical to the
prototype. As such, a much smaller subset of networks will contain it. The quality
of these architectures is bound to show less variance: depending on the quality of the
module (and the other modules at use), these topologies will lean towards a better
or worse performance. As a result the fitness of the neural module, if it is actually
good, will be averaged by a set of networks with better average fitnesses. This ensures
that more complex architectures will be replacing the simpler ones as the discovery
process continues.

Even though new neural modules can be directly compared to existing modules
in the notables list, using their fitness values, there is a potential pitfall that must
be avoided: it is not fair to compare the fitness of a new module that only just
appeared with the average fitness of a module that has appeared multiple times in
the population. In the first case, the performance of that module is heavily tied
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to their specific position in the topology. Even if it is a top level module, its fitness
does not necessarily reflect how well it could work as an internal module with just one
sample. As a result, if for example its fitness is good, it could replace a module on the
notables list that has a lower average fitness but is actually quite adaptable. In order
to have a proper comparison between a newly formed neural module and those on the
notable modules list, an average fitness must be evaluated for the former, aiming to
provide a more representative picture about its quality and deal with edge cases where
a module is assigned an exceptional score due to the inclusion of other modules in the
network. This is where the candidate modules list comes in. This list is yet another
associative table for modules where new chromosomes are initially placed before a
comparison between them and the notable modules is deemed valid. The candidate
modules list has a much larger size compared to the notable modules in order to
allow a large set of modules to be stored. When a new module is first encountered
in the population it is recorded in the candidate modules list. New modules occur
at initialization and with each mutation: when a module in the hierarchy is modified
either by changing a node or an edge, its parent modules and all other modules from
that one to the top (following the parent chain) are also considered modified and could
possibly make up new modules. All new modules in a chromosome are recorded in
the candidates list. Each module is associated with a block of information similar
to that of the notable modules, concerning the fitness, module occurrence count and
also a time-to-leave (TTL) counter. The last data object is unique to this particular
list and its existence is crucial to the practical application of the algorithm. The
purpose of the candidate modules list is to hold modules until they are generated
naturally in the population more times than a predefined threshold, at which point
their average fitness of those occurrences can be compared to the average fitness of
the modules on the notables list. Ideally, the size of the candidate modules list would
be set to infinite, to allow all encountered modules to be stored there, until it could be
evaluated whether they should be promoted to notables or not. Unfortunately, this is
not physically possible as realistically the algorithm is constrained by computational
limitations. The workaround for this issue is to introduce a maximum size for the
candidate modules list and also add an expiry timer to modules in it. Each module
has a limited number of generations after the time it was first recorded to reach the
threshold occurrence count. It is reasonable to assume that if a neural module scheme
of a certain complexity has not occurred in a number of generations, it is probably
not going to occur again, because the modules in the notables that would be needed
to create it have probably been replaced with new modules of higher complexity.
The actual TTL value is individually calculated for each module by multiplying its
complexity with a base TLL factor:

TTL = BASE TTL ·module.complexity (3)
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The TTL is reduced by 1 for all candidate modules whenever a generation is
complete. If the TTL of a module reaches 0 and the module has no yet been pro-
moted to notable, the module is removed from the candidates list and placed in the
banned modules list. The blacklist contains all modules that are not to be recorded
in the candidates list, should they be encountered in the population. All modules
in a network hierarchy are compared against those in the blacklist, and if there is a
match, that module is skipped. The existence of the banned modules list allows for
the continuous insertion and deletion of elements from the candidates list, which is
necessary for introducing new modules to it and the notable modules list.

At the end of each generation, candidate modules that have exceeded the occur-
rence threshold have a single chance of being promoted to notable modules. If there is
space for N more modules in the notables list, the top N candidate modules with the
best average fitness are promoted to notable modules. Then, if there is no free space
left in the notables but there are still candidate modules with enough occurrences
and a better fitness than that of some notables, those candidates are promoted and
the previously notable modules are placed in the blacklist. This is done to indicate
to the algorithm that it should not consider modules that were considered good in
the past, but are now too simplistic and obsolete. Finally, if a candidate module
has achieved the occurrence requirement but does not exhibit an average fitness good
enough for the notables list, it is placed in the blacklist. This is the expected case of a
configuration that is simply not good enough, and should therefore not be considered.

Figure 13: The process of curating a module using the 3 records.

Even though the mutation operator is the only one used in the algorithm, the
function of the candidates and notables list could be considered an alternative to a
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crossover operator. The concept is common in both this implementation and that
of a typical crossover operation: parts of well performing chromosomes are combined
together with the use of a rule to produce better solutions that combine characteristics
from their parents. In our case, the desirable properties (the good neural modules)
have to be added to the notables list in order to be sampled at later generations
through mutation, while crossover is usually applied directly to two or more members
in the population. This indirect implementation of a familiar idea is designed to
circumvent the problems that would arise when trying to crossover two hierarchically
represented networks, when the depth and the structure of those networks differs.
They key difference between the two approaches is that when sampling from the
notables list, the information about the origin of the module is not transferred to the
new network - the topology is selected because it is considered generally good. Even
though the mutation implementation is roughly equivalent to a genetic algorithm with
crossover, the algorithm is not classified as such: The three external data structures
are the main source of new modules to networks, not other ”parent” chromosomes.

This concludes the theoretical description of the algorithm. The three lists of
modules are at the core of the search process, continuously recording topologies of
increasing complexity, comparing them with the best found architectures and pro-
moting them to notable in order to change the set of building blocks used by the
network generation process. The search changes, starting small and eventually using
abstract module topologies to synthesize deep neural networks that provide superior
performance when compared with their predecessors. With the appropriate config-
uration, the algorithm should be able to traverse the search space efficiently and
find well performing architectures for many current datasets and machine learning
problems.
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Technical Description

This chapter concerns the implementation of the algorithm and its features in order
to conduct performance assessment. For this project the programming language of
choice is Python 3 due to its ease of use and the abundance of machine learning
libraries that are available, allowing those interested to develop new novel algorithms
efficiently by mitigating the need for writing core functionality from scratch. In the
following sections, the overall structure of the search process will be laid out through
the analysis of the three most significant that define it. By the end of this chapter,
it will be apparent how the different obstacles that arise during the implementation
are overcome, making the process computationally viable.

Representing Neural Modules

The representation of the population members is arguable one of the most important
details in an evolutionary algorithm. Using a standard type to represent the complex
hierarchical modules would be a very difficult task - there are too many complex
properties to encode in a string, for example. For this reason, the custom class of
NeuralModule was defined, containing all the relevant properties in an easy to use and
programmatically modify format. This class is used to create objects during network
initialization that automatically assume a random topology, ready to be expanded.
A neural module accepts an optional parent module during its creation in order to
establish a link between the two and calculate its depth, which is equivalent to that
of its parent incremented by 1. During initialization, no parent module is provided,
indicating that that module is the root of a neural hierarchy and has a depth of 1. If
the module occurs as a result of a mutation, it also receives a module template object
called ModuleProperties, which is a minimal packaging of the necessary neural module
characteristics in order to be replicated. In the case that no template is provided (the
module is a top level module), a random module is sampled from the notable modules
using the normalized fitness of each of the modules as weights. In both cases, the
aquired template is used to set the rest of the parameters in the neural module. The
first such parameter is the module type. The module type is implemented as an
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enum and indicates whether the neural module represents a single neural layers or a
complex abstract module. The next two parameters are the layer type and abstract
graph, and their assignment depends on the module type. When dealing with the
module type of ”neural layer”, the layer type is a string describing the selected layer
and its properties, while the abstract graph is undefined. Additionally, the number
of children in case of a mutation is sampled at random here, from a distribution of
choice. If the module type is ”abstract module”, the layer type is undefined and
ultimately ignored, while the abstract graph is a directed acyclic graph (DAG). In
order to work with graph objects, the networkx package is used. Networkx provides
a set of convinient classes and functions that allow for the creation and manipulation
of graphs. A DAG in networkx is defined as a set of nodes along with a set of edges
represented as node pairs, where the first node in each pair is the source node for the
edge and the second node is the destination. Nodes are referenced using a unique
integer id, each referring to a specific child module. Next, a dictionary is initialized to
retain associations between graph node indices and neural module object references.
Dictionaries are python’s default version of associative arrays that organize data in
key/value pairs offering fast access speeds at the expense of memory. There are two
distinct cases when building the dictionary: if there is a ModuleProperties instance
provided in the constructor, it supplies the new chromosome with a sorted list of
module properties for the children of the template network, allowing the module to
create identical child modules recursively and associate them with the correct node
index. If the properties are not provided, which happens in the case of mutation,
the association dictionary is initialized by creating a new random module (with no
properties) for each node and associating it with it through its id. These new modules
will randomly sample their topologies from the notables list and embed them in the
full graph of the candidate. The abstract graph must be generated only in the case
of mutation, where a simple neural module is converted to an abstract module. This
is achieved by employing algorithm 3 presented in the previous chapter. Separate
from the regular mutation phase of the algorithm ,an initial mutation is triggered
automatically when initializing a candidate with the module properties of a template
that is a single neural layer. This is a case that occurs at the start of the search
process, while the notable modules list only contains the templates for the allowed
neural layers, the lowest form of abstraction. The mutation aims to jumpstart the
process by immediately forcing it to make candidates one level of abstraction higher
than that of the notable modules. Each neural module in the population dynamically
updates and caches its module properties for later reference by the search processes.
The properties update is triggered by a mutation of a neural module of a certain
depth in the network: similarly to the fitness update, the modified module sends a
signal upwards that notifies each module in the chain between the mutated one and
the top module that the topology has changed and their module properties need to
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be recalculated. Modules not in the affected branch will not be modified. They are
treated as inner topologies that remained intact from the mutation, which results
in considerable computational savings, compared to, say, recalculating the module
properties for all modules in a hierarchy whenever a mutation occurs. The update
entails dereferencing the old module properties object and making an new instance
from scratch, using the new values for the data of the module.

The ModuleProperties object records the following information for a given mod-
ule: module type, layer type (irrelevant on abstract modules), abstract graph, a list of
child module properties, sorted by the index of the corresponding node in the abstract
graph, and the number of total nodes and edges in the full graph. If the module type
is ”neural layer”, the abstract graph is null, the list of child module peroperties is
empty, the number of total nodes is 1 and the number of edges is 0. These attributes
are used to calculate a unique hash for each combination of properties that may oc-
cur. The hash is used so that a ModuleProperties object can act as a key in the 3
lists later on. Python supports the hash calculation of a tuple (an immutable set
of variables) provided that each variable is of a hashable data type, like an integer
or string. The module type and layer are an enum and string respectively, which
are hashable types. However, the abstract graph is a complex object that requires
special attention. For each complex neural module, the abstract graph is generated
randomly. Two graphs may only differ in the ids assigned to each node, but be essen-
tially identical in terms of what child modules they use and how they are connected
together. The hashing algorithm should be impartial to the actual node indices and
edge combinations between them and be able to identify when two abstract graphs
are computationally equivalent. In other words, the same hash value must be pro-
duced for any two graphs if they are structurally equivalent irregardless of their node
labeling. This is necessary in order to later check if a module of a candidate has
been encountered before, and take the appropriate actions in the 3 lists. Two graphs
that have the same number of nodes, edges and also possess the same edge connec-
tivity are called isomorphic. Therefore, the hash of two isomorphic graphs should
be the same. This is something that can be achieved with the Weisfeiler-Lehman
(WL) hash function [22]. The WL hash function has the ability to produce hashes
for graphs and detect isomorphism using the WL test. Producing the hash is an
iterative process in which the hash neighborhoods of each node are aggregated and
used as the updated node labels many times until convergence. The final hash of the
algorithm is obtained by hashing a histogram of the converged labels for all nodes
in the graph. It should be noted that while this algorithm ensures that isomorphic
graphs will get identical hashes, there is a small chance that non isomorphic graphs
are assigned the same hash. This is hardly a problem in our case, since the WL hash
only corresponds to the structural hash of the abstract graph that will be combined
with hashes of the other properties of the module in order to produce a final hash
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for the module properties object which it represents. Consequently, the chance of the
module properties objects of two non identical neural modules being the same is very
small, as all other attributes (including child modules) would also have to be identical
in order to produce the same hash. After performing hashing for the structure of the
graph, the module properties of the child modules must also be hashed, each exe-
cuting the process above. Neural modules at the bottom only use their module type
and layer type to produce their hashes, so when the recursive hash call reaches them,
they can quickly calculate their hash values. The aggregated hashes are appended to
the end of the attributes tuple for the module properties object being hashed, along
with the module type, layer type and abstract graph (structural) hash. The tuple
goes through python’s default hash function and produces a unique hash which can
be used to identify that specific properties object. The hash for the properties of
each candidate is cached in the object to save computational resources and slightly
speedup training. Other neural modules that are generated in the evolution and have
the same properties construct and identical properties object, which in turn produces
the same hash and can be used to identify data in the 3 lists later on.

Topology Evaluation with NORD

At each iteration, after the network mutation phase, each modified candidate member
of the population must be evaluated. That means using the modules in the hierarchy
of each candidate to construct the full computational graph using the abstract graph
and child references of each module, then using that as a guide in order to build an
actual trainable neural network, which in turn is trained and evaluated on a validation
set to return the fitness of the topology. Building the full computational graph is a
relatively easy process that involves starting from the top module in a hierarchy and
recursively replacing each node in the abstract graph with the abstract graph of its
corresponding child module until no nodes in the graph correspond to modules of type
”abstract module”, i.e. the graph is comprised of modules with ”neural layer” types
and properties. Converting that graph to a neural network entails using the infor-
mation in the graph to dynamically define an equivalent topology using the interface
functions and classes of an appropriate deep learning package such as Tensorflow or
PyTorch. This is not a very straightforward task: building and evaluating networks
is an intricate process that involves combining layers, being mindful about input and
output dimensions and building a robust data pipeline to feed the network with train-
ing samples. Even though building a topology graph is simple there are many details
that need to be worked out in order to build its neural network (e.g. how can the
input signals of two or more nodes be combined together in order to form the input for
another set of layers?). Since converting each candidate topology to a neural network
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is not a very viable approach considering the sheer number of candidate topologies in
the population throughout the generations, an automated topology conversion and
evaluation pipeline must be developed that can receive any topology, build and train
the appropriate network and produce an evaluation. Programming such a routine
by hand would be rather time consuming and burdersome, as there are many edge
cases that must be taken into account. Thankfully, there already is a solution in the
form of the Neural Operations Research and Development (NORD) package [23], a
python framework that simplifies the process of building and evaluating networks.
With it, it is possible to easily convert each candidate topology to an equivalent
neural network and get consistent and comparable evaluation results that guide the
evolutionary process. NORD is built on top of the PyTorch library which aims to
streamline the network building phase by offering a higher level interface for creating
deep neural networks. It is geared towards NAS research, allowing those interested
to easily train populations of networks on a set of benchmark datasets and develop
their algorithms and methods accordingly. The fundamental class of the framework
is the descriptor, which is used to build a neural network in steps just like a networkx
graph. After initializing the object, all that needs to be done is to call two simple
methods for adding layers and connections between them and the network will be
constructed. The add layer method receives a reference to the PyTorch layer, the list
of parameters as a dictionary and a layer name, for later reference. The connect layer
methods receives two layer names and forms a connection between them. Arguably
the most useful feature during this process is the framework’s ability to automati-
cally combine layers, resolving dimensionality inconsistencies by adding intermediate
layers that merge the output signals of incoming edges with the use of a suitable
operator. On our side, all that needs to be done is to associate the layer information
in the abstract modules with simple layers with a PyTorch module and a specific set
of parameters. In this implementation, the layer naming convention includes not only
the type of layer, but also its properties. For example, the layer name ”CONV 3.N”
refers to a convolutional layer with a kernel size of 3 and a default number of out-
put channels (N denotes ”normal” amount of output channels, in contrast to ”H”
which refers to half output channels of the default). Other parameters such as the
input channels and the number of strides are fixed and standard for all layers. As
a result, it is possible to build a PyTorch neural network with NORD from a neural
module as follows: first, build the full computational graph of the candidate module
and initialize a descriptor. Then, loop through all nodes in the full graph, read their
layer name and use the add layer method to add a new layer in the graph with the
appropriate layer reference and parameters dict. In addition, assign a representative
name to each added layer. After that, loop through all edges, and for each, figure out
the layer names of each end and use them to add a connection to the descriptor. It
should be noted that for some nodes in a graph, more than one PyTorch layers may
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be added to provide better results, e.g. a module representing a single convolutional
layer in the computational graph will correspond to a convolutional layer, a RELU
layer, a batch normalization layer and a dropout layer, all sequentially connected in
the descriptor graph.

Figure 14: The process of evaluating a topology with NORD.

Before a fitness score can be obtained, it is necessary to set up the evaluation pro-
cess. In a conventional PyTorch configuration, one would have to load the dataset for
a local or remote repository, perform the desired transformation and augmentation
operations to improve the quality of the training, split it into training and validation
partitions and initialize the corresponding data loaders in order to train in batches of
samples. Additionally, the optimizer and loss criterion would have to be initialized
in order to have the ability to backpropagate the error on the network weights and
adjust them through training. Finally, the training loop would have to be imple-
mented, with the standard zero gradient/predict/backpropagate/optimize structure.
Since this procedure is fairly standard, NORD conveniently abstracts the steps men-
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tioned above in a single class, the Evaluator. This component allows for the direct
comparison of deep learning models and methodologies by offering a platform where
machine learning methods can be evaluated against each other using standardized
benchmark datasets, configured in exactly the same way for each method. The same
evaluator and dataset can be configured for a set of methods and evaluate each one
using the same criteria, without deviating due to unrelated factors. To build this
object, the only information needed is an optimizer class reference and the dataset
name, along with some optional configuration parameters. The NORD package re-
tains an internal library of common machine learning datasets which include CIFAR-
10, Fashion-MNIST and others, each of which can be referenced using their names
as strings. The package provides a different function for each dataset which is used
internally to download the data from its official repository, perform all the standard
operations to it and prepare it for training automatically. The data is stored locally,
so it only downloaded once and stored to be used in consecutive sessions without
the need to re-download each time. Depending on the dataset, NORD configures the
proper loss function, removing the need to do it manually. Networks can be evaluated
easily by making a call to the descriptor evaluate function and providing a descriptor
object, the number of training epochs and the dataset name. The functions takes
care of the descriptor training and returns the value of the appropriate metric for the
dataset (e.g. accuracy for classification problems), along with the training time that
was required.

To summarize, we use NORD in order to evaluate candidate topologies with min-
imal friction. First, an evaluator is initialized, setting the target dataset for the NAS
method. Then, for each candidate in the population, the full graph is extracted by
calling the appropriate function on the top level module and is used to build a de-
scriptor equivalent. Next, each descriptor is passed to the evaluator which constructs
the corresponding network, uses the selected dataset to train it and returns its per-
formance on the validation set. Finally, the acquired value is used as the fitness for
each chromosome, following the procedure described in chapter 6.

The Module Manager

Implementing the candidate modules list, the notable modules list and the banned
modules list in practice is very easy. The ModuleManager class wraps the three data
structures and offers a set of easy to use functions that serve the various needs of the
evolutionary algorithm. It is initialized by defining the three module containers as
follows: the candidate modules is initialized as an empty dictionary, designed to hold
associations of ModuleProperties and TempPropertiesInfo pairs. The TempProper-
tiesInfo class is an extension of the PropertiesInfo class, which wraps the average
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fitness and occurrence count variables for an associated ModuleProperties object in-
stance, extending it by including the TTL counter for a candidate module. The no-
table modules is also initialized as a dictionary, but unlike the previous container, it
has content inserted into it immediately. Using an allowed layers list containing string
representations of layers and their parameters, the corresponding neural modules of
type ”neural layer” will be build to form a set of ModuleProperties-PropertiesInfo
where the ModuleProperties are extracted from the modules just formed and the
PropertiesInfo is initialized with zeros on both their variables. These will be used
to construct the first batch of new modules in the population offering a new level of
abstraction to the candidates. Finally, the banned modules list is an empty list. It
is not necessary to hold any type of association pairs in this list - its function is to
simply contain irrelevant neural modules (or minimal identifying information for each
of them, as will be shown in the next paragraphs).

The three containers are automatically updated by interacting with each other
when the on generation increase callback function is triggered in the ModuleManager
at the start of a new generation. The source of new module information is a process
triggered after the evaluation of a candidate which determines if each of the modules
in its hierarchy should be added or updated in the candidate modules. After a gener-
ation, the candidate modules dictionary should have several new modules, along with
the corresponding TempPropertiesInfo instances, retaining their fitness information.
The callback on the generation increase event performs the trade between the candi-
date and notable modules, and marks the modules of the two containers that should
be removed. More specifically, modules whose TTL has reached 0 on this genera-
tion and can’t participate in the promotion due to a low occurrence count, candidate
modules that fail the comparison test due to a low average fitness and notable mod-
ules that are demoted due to being replaced by a new candidate module should be
recorded in the blacklist. However, there is still the issue of size requirements for the
three data structures. While the candidate and notable modules have a maximum size
parameter to restrict the maximum size of their contents on RAM (and on the disk,
when saving the evolution state) the banned modules list is unconstrained. Simply
moving a ModuleProperties instance from the candidate or notable modules list to
the blacklist is not feasible, since that data structure would then explode in size along
with the whole process. At this point, the use of the blacklist should be considered:
it is only utilized to check whether or not a module that does not appear to be in
the candidate or notables list should be added to the candidate modules, or it is a
module that should be ignored. This details highlights the solution to the problem
of space. The actual properties (e.g. abstract graph, child module properties) of a
banned module do not matter. The only information needed is a unique identifier.
The hash of a module ModuleProperties instance conveniently happens to serve as
one. The hash is a simple integer, unique for every ModuleProperties instance that
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has a constant size, independent of the module size. Every time a new module must
be evaluated regarding whether or not it should enter the candidates, we can just
see if the hash of its ModuleProperties is in the banned modules list. If it is, it must
be ignored. Using just hashes in the blacklist minimizes the space required for its
contents. There is still a ceiling on how much data it can hold, but that number is
much larger. On a modern computer, a few billion hashes can be recorded in the
blacklist, which should be plenty of modules for the process to go through. There is
still however, a speed optimization that can be easily implemented. A serial search
must be performed for each module in a candidate to determine whether its hash
appears in the blacklist. This means that, on an unsorted list, all elements of the
list must be considered for every search invocation. As the size of the list grows, this
could be a potential source of delays. To alleviate that, all that needs to be done is
to keep the list sorted. Using the bisect package, new items can be introduced in a
collection such as a list so that they occupy the proper position to keep the collection
sorted. The package implements functions for finding the index of an item in order
to maintain a sorted configuration in lists, arrays etc. When a new module is being
searched on the blacklist, the result of running the ”search” function is the index of
the position that its hash should occupy, if it is to be inserted. Accessing that position
directly and comparing the current hash content with the hash of the module informs
the process of its next steps. If the two hashes are identical, then the module is in
the banned modules list and should be ignored. Else, the module in question is to be
recorded in the candidate modules. When a module from the candidate or notable
modules must be placed in the blacklist, a similar procedure occurs. The bisect search
function returns its appropriate position and the corresponding ModuleProperties’s
object hash is inserted there.
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Experiments

Introduction

In order to assess the performance of our method, the proposed algorithm is evaluated
by performing neural architecture search on a series of datasets. The problem domain
consists of a time series classification dataset and 2 conventional image classification
problems. The main motivation behind the choice of working with time series is
to investigate how well NAS methods perform on data samples with an underlying
temporal relationship. Working with time series offers a very important advantage
over image datasets, which are traditionally preferred: the lower dimensionality of
the data (1 dimension instead of 2 in the case of images) allows for the significantly
faster training of the candidate networks, allowing researchers to evaluate their NAS
algorithms in reduced time frames. Additionally, the two image classification datasets
are used as benchmarks so that our method can be compared to other NAS methods,
which generally illustrate their performance on such benchmarks.

The approach is similar for all datasets. For every dataset, the search space is
defined by setting a list of allowed operations, which correspond to neural layers with
specific properties that are to be used as the initial building blocks for the first neural
networks in the search. In later stages, such operations are grouped together in graphs
and are used through their inclusion in a higher level module in a candidate topology,
as explained in the previous chapters. As far as the time series data is concerned,
the actual neural operations are selected to form convolutional rather than recurrent
neural networks. Even though historically RNN and LSTM cells have been used as
the building blocks of networks in such problems in order to leverage their ability
to accept sequences of variable length, they have some serious disadvantages, the
main one being that RNN based networks are slow to train, which is amplified in the
domain of NAS, where large populations of candidate topologies must be trained and
evaluated. An alternative approach is to use CNNs with 1 dimensional convolutions
which makes fitting networks on temporal data practically possible, circumventing the
problem of parallelizing operations and achieving comparable results in faster time
frames. In this case, the convolutional kernels operate by incorporating information
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from data in the neighboring time steps to produce more elaborate internal signals
of the network, much like in the case of images. As an additional benefit to choosing
this approach for the time series data, there is a relative uniformity between the time
series classification datasets and the conventional image classification datasets, since
all problems in the experiments will be approached from the same angle (using mainly
convolutional and pooling layers).

All experiments were conducted in the Google Colaboratory platform. Google
colaboratory is a service which offers high end computational resources to academics
for research purposes, free of charge. Certain restrictions (e.g. limited amounts of
GPU access per day, lack of manual hardware choice) that are put in place to prevent
abuse had an effect on the algorithm evaluation process. The produced candidate
topologies were trained over a period of several days using a single T4 NVIDIA
GPU. In order to allow the evolution process to operate for more than the default
daily time limit imposed by the platform (which varies and can go up to 12 hours), a
custom state saving system was developed to save populations of topologies and other
relevant information, which is used in the next days to resume from where the search
had left off, instead of starting from scratch each time. Nevertheless, even though
the experiments are limited as far as NAS methods are concerned, the results clearly
show the merit and performance benefits of the proposed method.

Human Activity Recognition

The first benchmark problem that was tackled in order to evaluate the proposed
method was that of human activity recognition using accelerometer data from a
mounted sensor. Casale et al. [24] have published a novel time series dataset posing
the problem of classifying a set of 7 distinct actions performed by humans using the
acceleration data provided by a chest-mounted sensor for the 3 axes. The sampling
frequency of the accelerometer is 52HZ, meaning that 52 consecutive samples corre-
spond to 1 second of data. This is used as the sampling window by NORD, with 26
lags overlapping between each pair of consecutive instances, forming 3 time series(52
logs each) per sample (one for each axis), representing a single second and correspond-
ing to a target action. The authors collected the data by having subjects perform the
same activity for 2 minute intervals where the activity would have to be stated at the
beginning and would continue until the end of the time frame or the pressing of the
interrupt button, ensuring that there are no border cases in the dataset, i.e. activities
do not change throughout the span of the 1 second window. The 7 activities recorded
were: working at a computer, standing up and walking and going up and down stairs,
standing still, walking, going up and down stairs, walking and talking with someone,
and talking while standing. Some classes are groups of activities with overlapping
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items, which may make the task of classification slightly more difficult. The entirety
of the data was collected from a group of 15 participants, who performed activities
while equipped with the accelerometer sensor on their chests.

The following neural layers and property combinations are selected for the opera-
tions list: 6 convolutional layers composed of kernels with size ∈ {1, 2, 3} and output
channel count ∈ {256, 512} and 3 average pooling layers and 3 max pooling layers with
kernel size ∈ {2, 3, 5}. As mentioned beforehand, in order to provide better results,
convolutional nodes are replaced with a convolutional/relu/batchnorm/dropout(with
dropout probability equal to 10%) layer group. The defined search space using this
set of operations is much larger than that of many other NAS publications that are
often limited to 5-7 operations [9] [8], while this experiment uses 12 distinct oper-
ations. As far as the core evolution is concerned, the population has a size of 50
candidate topologies, the notable modules list has a maximum size of 15 modules
(populated by 12 core modules at the start of the search), the base TTL value for
candidate topologies is 3 generations, the minimum candidate topology observation
count is 2 observations, with the fitness threshold activating at the end of every gen-
eration with the 40% worst performing topologies in the population being replaced
by new schemes. This last setting is fine tuned so that the well performing topologies
can remain in the population and have a chance to expand their structure, improving
their performance, while the ineffective networks are replaced completely, offering a
drastic contribution to the candidates list. The node mutation chance is set to 15%
while the edge mutation chance is set to 55%. At most, only one mutation may occur
at a given topology per generation. This is implemented by sampling from a uniform
distribution on the range [0, 1] and choosing the type of mutation based on the value
of the sample s where s ∈ [0, 0.15) corresponds to a node mutation, s ∈ [0.15, 0.7) cor-
responds to an edge mutation and s ∈ [0.7, 1] corresponds to no mutation. Each node
mutation resulted in the generation of an abstract graph with two nodes (excluding
the input and output nodes), rendering the following 5 combinations possible:

Using more than two internal nodes dramatically increases the number of possi-
ble graphs, greatly extending the time needed to promote new topologies. During
evaluation, the max number of training epochs was set to 20, with the actual number
varying per topology, calculated using equation 3. The evolution loop was executed
for 20 generations. The experiment was conducted over the course of 5 days, which
amounted to ∼ 15 hours of GPU time. The results are presented in figure 15.

In order to test the effectiveness of our method we test it against random search
(dashed lines). The random search is implemented by setting the same fitness value
for all candidate topologies, regardless of the modules’ performance on the validation
set. This gives all neural modules an equal chance of being promoted to notables,
provided that they meet the occurrence threshold (and that the notables list is not
full). The green lines in figure 15 show the fitness of the best network found at each
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Figure 15: Average and best network accuracy for the population during the archi-
tecture search for the activity recognition problem.

point in the evolution, while the blue lines show the average fitness of the topologies
in the population. Looking at the average fitness, it is evident that the proposed
method works well in improving the quality of the population. The candidate and
notable modules lists curate and highlight the most beneficial graph schemes, which
are used in subsequent generation to build more sophisticated networks that generally
perform better. This increases the average accuracy of the produced networks, raising
the elimination threshold along with it. However, new topologies that replace old
population members are not at a disadvantage compared to networks that survived the
fitness check, since they are formed from notable modules of complexity appropriate
to the current generation. On the other hand, the random search approach fails to
make any improvements in the overall quality of the population. Sampling modules
at random means that bad modules will not be removed from the population and will
have an equal chance of being selected, leading to mediocre results. While the curve
for the proposed method shows an increasing trend, the trend line for the random
selection is horizontal. In fact, the average population fitness of the hierarchical
approach moves into the range of the best fitness for the random method. In the
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same figure, the solid green line shows a significant advantage for the hierarchical
approach when the best constructed topologies are considered. In only 10 generations,
the best topology accuracy improves by 14%, during which time a better performing
topology is discovered on 3 occasions (generations 3,4,10). The best networks with
the random method start off with similar performance as the proposed method but
have just 1 slow improvement. In order for a network to improve in that case it
must a) be good enough to remain in the population and b) perform a favorable
mutation (which has a lower chance of happening when not taking into account the
accuracy metrics). For continuous improvements, these two conditions must be met in
consecutive generations, which is an event of decreasing probability as the number of
operations increases. The hierarchical algorithm stores good modules into its memory
(the notables list) and gives them priority over less performant ones by weighting the
sampling process with the average fitness. This means that if a good module in the
population gets ruined by an unfavorable mutation, its components may survive, even
if it fails the fitness check at the end of the next generation.

It is worth studying the best network fitness curve for the hierarchical approach
further, as it reveals details about the behavior of the algorithm. Between each im-
provement, there is a period of searching where better networks are not found. In
those generations, the algorithm essentially generates populations of networks in or-
der to reach the occurrence count for modules in the candidates list so that they can
be tested against the notable modules. The three parameters tied to this behavior
are the population size, the occurrence threshold and the base TTL. Increasing the
population size would reduce these periods of inactivity where better networks don’t
occur, but would increase the time required to go through a single generation. Re-
ducing the module occurrence threshold would make candidate modules perform the
promotion check faster at the expense of an accurate assessment which may lead to
the promotion of weak modules. Finally, while increasing the TTL may not have a
noticeable theoretical effect, one should be mindful of the potential memory related
problems that may arise from a very large list of candidate modules. Reducing the
TTL, on the other hand, can lead to the preemptive rejection of potentially useful
modules that failed to appear the required number of times in the population before
they expired. Balancing these 3 parameters (along with secondary variables such as
the mutation probabilities) is a crucial step that can determine the behavior of the
algorithm. For our limited computational resources, a small population with low oc-
currence count and a moderate TTL was preferred to minimize the time needed to
complete each generation, resulting in the observed behavior. If the algorithm were
to be deployed at a high performance computational cluster, the generations where a
better network is not discovered could be omitted by dealing with larger populations.

The best network after 20 generation achieves a validation accuracy score of 74.3%
and has the following structure:
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Figure 16: Discovered activity recognition network.

The final topology uses only 4 out of the 12 available operations. The evolution
algorithm has built a network that uses convolutions at the start in order to produce
latent signals which are then combined and passed through an average pooling layer
that is again combined with the outputs of a previous convolutional layer to produce
the output. This lines up with the way the deep convolutional networks for such
problems are built when designed by a researcher.

When observing the graph, one can begin to visualize how the hierarchical layers
are laid out. For example, the connections landing on the pooling layer are indicative
of an edge connection on the abstract nodes of a higher level. It is possible to visualize
the hierarchical structure by observing the abstract graphs of each level (depth):

Figure 17: Root module

Figure 18: Module A
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Figure 19: Module B

Figure 20: Module C

Each abstract graph represents a module that was sampled from the notable mod-
ules list. Different modules are combined in varying depths to construct a complete
network that can perform the requested classification task. In this case, three hierar-
chical layers were formed as a result of the aggregation of node mutation operations
into the sampled modules. At depth level 1, the network has a sequential structure
with one node feeding data into the next, which in turn produces the output. Moving
on depth level 2, the two nodes form a branching topology that propagates the data
to a set of paths with different operations. The module on the deepest level replaces
the abstract module on the first graph of depth 2, which creates a sub graph of neural
operations. Admittedly, this is probably not how a human would form the hierarchy
at this level, but it is very understandable for an evolutionary algorithm operating
with heuristics to do so. The produced structure arises from the configuration of the
hyperparameters of the graph generation: since exactly 2 nodes exist in any abstract
graph, in order to add complexity to a submodule, one of the nodes must undergo
mutation, increasing the depth of that branch. As far as the layer connections are
concerned, the signals of many layers are combined due to a connection in the abstract
graph of a parent module as expected, producing complex signals for the succeeding
layers (e.g. the pooling layer near the end). The increased connection mutation
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probability emphasizes edge additions, especially at the higher levels of the network,
which creates topologies with many combinations of latent information in the inner
layers of the network. Even though this generally produces more complex models
that require more time for training and inference, it is generally a convenient way
to ensure a baseline of performance in the accuracy of the model. Some connections
may be unnecessary - but they rarely reduce the prediction quality.

The overall structure of the hierarchy is consistent with the hand built models.
The most similar hand built architecture to our final result is probably InceptionNet.
The InceptionNet model is comprised of a set of branching blocks that are connected
sequentially . The produced topology resembles that form: on depth level 1, the
graph is sequential, while the lower level blocks have branching structures. In this
instance no abstract modules happen to be repeated (something that happens in
InceptionNet). This is probably a result of the low number of generations in the
evolution, although it could also be attributed to the algorithm building a more
specialized network that better fits the data. In any case, the network has the core
characteristics of human designed networks and performs well, which renders the
proposed method satisfactory.

Fashion-MNIST

In addition to the time series datasets, NAS is performed on a set of conventional
classification datasets. The first dataset, Fashion-MNIST, contains 28 × 28 sized
grayscale images of 10 different classes of articles of clothing and accessories. The
classes are the following: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker,
bag and ankle boot. There are 60000 images in the training set and 10000 images
on the test set. In order to work with images instead of time series, all that needs
to be done is to define the set of valid layers that can be used as building blocks
by the algorithm. Since training on 2D data involves a higher information load
on the network, the training and evaluation times are increased significantly. In a
attempt to speed up the search process, we define a set of 6 neural operations: 3 2D
convolutional layers with an output channel count of 32 and kernel size ∈ {1, 2, 3}
and 3 max pooling layers with kernel size ∈ {2, 3, 5}. Our algorithm is configured to
operate on a population of 20 modules (to adhere to temporal and size limitations),
with a maximum size of 10 modules in the notable modules list and a base TTL of 4
for candidate modules. The rest of the settings are identical to the activity recognition
network experiment. We perform a limited architecture search for 20 generations and
compare it with the results from a random search with the same settings. The quality
of the discovered networks is pictured in the graph below:
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Figure 21: Average and best network accuracy for the population during the archi-
tecture search for the Fashion-MNIST problem.

Our approach manages to discover a topology with an accuracy score of 93.2% in
generation 17. As expected, the random search offers inferior results in both average
network accuracy and best topology performance, achieving a top accuracy of 86.7%.
In fact, the average accuracy of the networks in the population on our approach sur-
passes the best performance of the random approach early on thanks to the sampling
technique used in the notable modules. Our approach compounds knowledge from
previous generations, which leads to the construction of better modules and networks
possessing good predictive abilities. The accuracy score achieved using this approach
is 3.71 percentage points from the state of the art score, achieved using a fine tuned
DARTS based solution [25]. This is a gap that could theoretically be covered if the
search runs for a higher number of generations or performing augmentation on the
dataset. In figure 21, there is no sign of convergence in the curves, which indicates
that a higher score is indeed possible. Additionally, DARTS works on the cell level,
which means that the search space is more constrained, a side effect that limits the
structure of the produced topologies.

The best network topology uses 23 neural nodes and 93 connections between them.
There are a total of 10 abstract modules used in the hierarchy, some of them repeating
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multiple times (e.g. modules G and J in the figures below). The evolutionary process
has maintained all 3 convolutional operations to be utilized at some point in the
network, but only 1 pooling operation (max pooling with a kernel size of 3). Since
the full network is too dense to be presented here in a meaningful way, we present
the best topology hierarchically, from top to bottom:

Figure 22: Root module

Figure 23: Module A

Figure 24: Module B
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Figure 25: Module C

Figure 26: Module D

Figure 27: Module E

Figure 28: Module F
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Figure 29: Module G

Figure 30: Module H

Figure 31: Module I

Figure 32: Module J
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CIFAR-10 (NAS-Bench-101)

For the last experiment, we apply our dynamic hierarchical NAS algorithm to the
CIFAR-10 dataset using the NAS-Bench-101 database [9]. While our approach is
designed with global search spaces in mind, we wanted to test how well it works on
cell search spaces too, where multiple restrictions are put in place. In this case, the
search space comprises of all cells with up to 7 nodes (neural operations) and 9 edges
(connections), using only 3 available operations: 1×1 and 3×3 convolutions (grouped
with an additional batch normalization and a RELU layers) and a 3× 3 max pooling
operation. There are 423624 possible cells in the search space. The discovered cell is
placed in designated positions in a larger, fixed convolutional topology to form a full
network.

Figure 33: The NAS-Bench-101 network skeleton.

NAS-Bench-101 contains records of accuracy for all networks built by the cells
in the defined search space which can be accessed using the cell topology adjacency
matrix as the key. After generating or mutating a candidate topology, we build the
corresponding descriptor object, pass it to NORD, which in turn performs the lookup
operation and returns the accuracy record instantly, without requiring the training
and evaluation of the network.

Since there are significantly fewer operations in this experiment, a smaller pop-
ulation size of 10 is set. Candidate modules reach their occurrence threshold much
faster, so new schemes are introduced quickly to the notable modules list. One thing
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that must be taken into account is the restrictions on the number of nodes and edges.
If a candidate cell topology exceeds the imposed limits, it can’t be evaluated. Never-
theless, the search algorithm manages to find a top performing cell topology in just
6 generations with an accuracy of 94.8%.

Figure 34: Discovered NAS-Bench-101 cell for the CIFAR-10 dataset.
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Conclusion

In this thesis we propose Dynamic Hierarchical NAS, an evolution based NAS tech-
nique that discovers new topologies in a global search space by continuously curating
a list of effective network submodules, combining them based on their fitness scores to
form full networks with progressively better performance scores. Our method takes
advantage of a novel hierarchical network representation that allows for the formation
of subgraphs of arbitrary complexity that can be broken down into distinct parts, each
of which is assigned a fitness score. Using 3 auxiliary module directories, we preserve a
knowledge base of modules, gradually introducing more abstract schemes that allow
for the rapid transformation of existing candidate networks, dramatically reducing
the time spent on mutation operations. While the approach still suffers from some
common problems present in most evolutionary algorithms, mainly the large amounts
of time required to train and evaluate candidate networks such negative effects are
mitigated in two ways. First, by allowing large scale mutations on networks, the pop-
ulation can converge faster compared to traditional mutation approaches that mutate
one neural operation or connection at a time. Second, by using a simple heuristic to
estimate the training time required for each candidate based on its graph complexity.
Furthermore, the modular design of the method theoretically allows for the complete
replacement of the training and evaluation components with a predictive model, sim-
ilar to the one used in [16] that estimates the performance of the candidates much
faster.

We apply the proposed algorithm to 3 datasets and show how a set of neural oper-
ations can be modified to conform to the special properties of the data. We perform
topology search on a time series dataset and a limited search on 2 conventional image
classification datasets and manage to develop competitive networks in short amounts
of time.

The code for this project can be found in https://github.com/ArisChristoforidis/

Dynamic-Hierarchical-NAS
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