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Περίληψη 

Η ραγδαία εξέλιξη της τεχνολογίας, το ανταγωνιστικό περιβάλλον, καθώς και ο τεράστιος όγκος 

δεδομένων που είναι διαθέσιμος σήμερα, κρίνουν επιτακτική την ανάγκη των επιχειρήσεων να 

στραφούν προς τη νέα ψηφιακή πραγματικότητα. Η αυτοματοποίηση των διαδικασιών αλλά και 

η λήψη αποφάσεων μέσω της αξιοποίησης των δεδομένων με τη χρήση νέων μεθόδων, όπως η 

τεχνητή νοημοσύνη και η μηχανική μάθηση αποτελούν πρωταρχικό στόχο των οργανισμών. Αυτό 

το ενδιαφέρον παρουσιάζεται έντονο και στον τομέα των τραπεζών. Η ανάλυση του μεγάλου 

όγκου των δεδομένων που διαθέτουν συνυπολογίζοντας την ιδιαιτερότητα αυτών με βάση τον 

προσωπικό τους χαρακτήρα αποτελεί μία πρόκληση για αυτές. Η ανάλυση και η αξιολόγηση του 

πιστωτικού κινδύνου συνιστά μία από τις πιο σημαντικές διαδικασίες των χρηματοπιστωτικών 

ιδρυμάτων. Στην παρούσα διπλωματική εργασία, αναπτύχθηκαν 3 μοντέλα εποπτευόμενης 

μηχανικής μάθησης, με τα οποία γίνεται ταξινόμηση των πελατών μίας τράπεζας σε «καλούς» ή 

«κακούς» με βάση την πιθανότητα αθέτησης των υποχρεώσεών τους. Οι αλγόριθμοι που 

χρησιμοποιήθηκαν είναι οι Random Forest, KNN και Decision Trees. 
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Abstract 

The rapid evolution of the technology, the competitive environment, as well as the huge amount 

of data that is available today, lead businesses to switch to the new digital reality. Automation of 

processes and decision-making through the use of data using new methods such as artificial 

intelligence and machine learning are a primary objective of organizations. This interest is strongly 

present in the banking sector, too. The analysis of the large volume of data that is available, 

whereas taking into account their personal nature is a huge challenge for financial institutions. 

Credit risk analysis and assessment is one of the most important processes for this kind of business. 

In this dissertation, 3 models of supervised machine learning were developed, which classify 

bank's customers into "good" or "bad" based on the probability of default on their obligations. The 

algorithms used are Random Forest, KNN and Decision Trees. 
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Credit Risk Analysis with machine learning 

1.Introduction 
 

For over two hundred years, in the field of prediction of the bankruptcy of an organization most 

evaluations were done subjectively (Bellovary, Giacomino, and Akers, 2007; Li and Miu, 2010; 

de Andrés, Landajo, and Lorca, 2012). It was not until the twentieth century that more quantitative 

procedures came gained some attention; like the seminal univariate analysis work of Beaver (1966) 

and multiple discriminant analysis work of Altman in the 1960s. Their work exhibited the capacity 

to predict an organization's failure even five years before it happens. Such data is a resource not 

only to the organization or investors, but also to numerous different partners, for example, 

suppliers and employees (Wilson and Sharda, 1994). 

To get a better understanding of the importance and the potential effects of a bankruptcy of an 

organization on everyone, we have to remember what happened to Lehman Brothers Holdings Inc.    

If they had a reliable forecasting algorithm, they could have seen the patterns and prevent this 

catastrophy from happening.  Companies all over the world would love to have a system like that 

to help them predict possible crisis and take actions to avoid it. 

According to McKinsey & Co, the risk functions in banking institutions should be very different 

by 2025. The expansion of regulations, growing customer expectations and the evolution of risk 

types are expected to lead to new products, services and risk management techniques. Machine 

learning can enable the creation of more accurate risk models by locating complex, non-linear 

patterns in large data sets. It is expected that machine learning will be applied in many areas within 

a bank, especially in the area of risk management function. 

The study seeks to examine the extent to which machine learning, which has become a very 

important factor for businesses, has been researched in the context of risk management in the 

banking industry. The aim of the dissertation is to analyze and evaluate the machine learning 

techniques applied in risk management in financial institutions and to examine possible problems 

that have been identified. The dataset that is used in this thesis can be found on Kaggle, in which 

32,581 borrowers’ data is included. It provides information about age, income, home status, 

employment length, loan intent, loan amount, loan grade, interest rate, loan to income ratio, 

historical default and loan status of each borrower. 
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The next chapter presents the literature review of a part of the extraordinary volume of published 

work about credit risk analysis with machine learning. The third chapter offers a brief analysis of 

the main ML techniques such as logistic regression, support vector machines, decision trees used 

in machine learning in the field of credit risk analysis and a presentation of their advantages and 

disadvantages. In chapter 4, we develop three different models with real data and discuss the results 

and their efficacy on improving business decisions. Chapter 5 follows with the conclusions of the 

study. 
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2. Literature review 
 

2.1. Introduction 

 

According to studies on the subject of credit risk analysis with machine learning, it seems that ML 

techniques are superior to traditional statistical models (Malhotra, 2003). The study by Malhotra 

showed that neural networks have better results than traditional statistical techniques. However, 

Huang and Day (2013) showed that Support Vector Machine (SVM) models have better accuracy 

rates among the 17 classification models surveyed, in terms of credit score. This is supported by 

Khemakhem and Boujelbene (2017), who conducted a study on credit risk assessment for Tunisian 

banks and compared traditional models with modern Artificial Neural Networks (ANN) and SVM. 

Nwulu and Nnamdi (2011) performed a comparative analysis of SVMs and ANNs for credit rating 

and concluded that ANNs performed slightly better than SVMs.  

Credit risk assessment is done through the development of classification models, in order to 

distinguish between reliable and unreliable customers (Dima et al., 2009). A common approach to 

credit risk assessment is to apply some sort of classification technique to previous customer data 

so that we can find some relationship between customer characteristics and loan repayment failure. 

There seems to be a growing research interest in assessing credit risk through machine learning 

techniques. 

Recent studies have found that artificial intelligence (AI) techniques, such as SVM and neural 

networks, perform better than traditional statistical models and optimization techniques for 

assessing credit risk due to the weight coordination flexibility. The following pages cover a part 

of the surveys related to each type of credit risk separately. 

 

2.2. Credit scoring 

 

Credit scoring using machine learning is generally done using some kinds of classifier that 

differentiates between trusted and unreliable customers using previous customer data. The ML 

techniques used by researchers for credit scoring are neural networks, SVM, Naive Bayes, 

Bayesian Networks, Decision Tree, Hybrid models and Ensemble models. Neural networks have 

become increasingly popular with researchers in recent years. Li et al. (2002) proposed a model 
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based on the Back-Propagation (BP) algorithm to determine good versus bad creditors. Hu and 

Tang (2006) proposed an informed credit risk assessment based on artificial neural network 

(ANN), which measures the applicant's credit score. The most suitable candidates for this model 

are the commercial banks that have incomplete data. Dima et al. (2010) proposed an ANN model 

for corporate credit risk assessment to classify good creditors from bad ones. In their document, 

they assess the risk of the company defaulting on an international sample of 3,000 companies 

applying for credit at an international bank operating in Romania. The sample includes the general 

population of companies in Romania. Based on their past credit history, they have divided 

companies into seven categories. They made their estimates first using logit regression and then 

ANN (Artificial Neural Networks) and compared the results with Standard & Poor's. 

Tomczak and Zieba (2014) in their study, proposed a new machine learning technique which 

utilizes the Classification Restricted Boltzmann Machine (ClassRBM) to construct the credit 

scoreboard. Scoreboards are the simplest models to interpret and can be easily applied to any 

banking system. Unlike standard methods, their approach uses the powerful classifier 

(ClassRBM), deals with the unequal class distribution problem, and constructs an extremely 

understandable and easy-to-apply scoring model. Baesens et al. (2003) analyzed three real-life data 

sets and presented the results. The analysis was performed using neural network rule extraction 

techniques. It was concluded that neural rule extraction techniques can be used for credit risk 

analysis. As can be seen, the researchers are moving to hybrid systems with neural networks. 

Huang et al. (2005) proposed the classification of state commercial bank loan applicants using 

fuzzy neural networks. 

Oreski et al. (2012) proposed a hybrid system with Genetic Algorithm (GA) and ANN for 

applicants' creditworthiness. In this model, the selection of features is done using GA and sorting 

using ANN. The proposed hybrid system was found to be competitive with other models. This 

article presents an advanced new heuristic algorithm, the Neural Network Hybrid Genetic 

Algorithm (HGA-NN), which is used to increase the classification accuracy in credit risk 

assessment by identifying an optimal feature subset. The performance of the proposed classifier is 

evaluated using a set of credit data collected at a Croatian bank, and the results are further validated 

in another set of real-world credit data selected from a UCI database. The classification accuracy 

is compared to that presented in the literature. The findings were very promising for feature 

selection and classification in retail credit risk assessment and show that the HGA-NN is a 
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promising addition to existing data mining techniques. Djemaiel et al. (2016) studied a hybrid 

neural network model created using a combination of the Radial basis function (RBF) neural 

network and the Elman neural network. The data framework was defined using big data. The 

proposed model proved effective when used to classify customers as "good" or "bad" based on 

their credit scores. Therefore, the proposed hybrid model may be a good choice when choosing a 

grading technique for credit scoring. SVM is a widely researched classification technique for 

creditworthiness for many reasons. SVMs provide an excellent generalization capability. It is also 

relatively easy to train. SVMs respond relatively well to multidimensional data. Many have used 

SVM to score credit. Farquad et al. (2011) in their article, proposed a hybrid SVM model for 

customer relationship management (CRM) purposes. The approach consists of three phases. In the 

first phase the SVM-RFE (SVM-recursive feature elimination) is used to reduce the feature set. 

The reduced data set is then used in the second phase to obtain an SVM model. The rules are then 

created using the Naive Bayes Tree (NBTree) in the final phase. The dataset analyzed in this study 

is about the prediction of Churn to the bank card customers (Business Intelligence Cup 2004) and 

is extremely unbalanced with 93.24% loyal and 6.76% churned customers. From the empirical 

results it is observed that the proposed hybrid surpassed all the other techniques tested. Feng et al. 

(2009) suggested the PCA-based SVM classification model for dimensional reduction for 

commercial banks. It is similar to the PCA-SVM model proposed by Farquad et al (2011).  A 

comparison with the backpropagation neural network (BP) showed that the raw SVM method is 

more accurate and effective than this. Gestel et al. (2003) proposed a Least Squares SVM classifier 

for a credit score that surpassed traditional SVM classifiers. This method proved to be better than 

the traditional Linear Discriminant Analysis (LDA) and Logistic Regression models. 

In addition to neural network and SVM-based approaches, several other classification techniques 

are proposed for creditworthiness. Although not a popular classification model for credit score, the 

Naive Bayes approach has also been suggested. Vedala and Kumar (2012) proposed a Naive Bayes 

rating for credit rating. This rating is mainly done on e-lending platforms which uses social 

networks to expand its database. Okesola et al. (2017) also studied a Naive Bayes classification 

model for creditworthiness. The input variables in this method are the demographic and material 

indicators. A modern approach to creditworthiness is the decision tree method (Hand et al., 1997). 

Szwabe and Misiorek (2018) proposed a decision tree model for credit decision making. 
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Bayraci and Susuz (2019) in their study, applied a Deep Neural Networks (DNN) with multiple 

hidden layers to assess the risk profiles of loan clients on datasets taken from a Turkish commercial 

bank. They compared the predictive ability of deep learning method vs Logistic Regression (LR), 

Decision Tree, Naïve Bayes and Support Vector Machines (SVM). The results indicated that, the 

DNN model improves the performance of a credit scoring system in terms of balanced accuracy 

when compared to the other models. 

 

2.3. Non-Performing Asset (NPA)  

 

Another type of credit risk assessment technique is the NPA. This has to do with predicting which 

loan is likely to become default, so that appropriate measures can be taken to address the situation.  

Baruah (2018) studied the applications of artificial intelligence in 4 leading Indian banks and 

concludes that the use of Machine Learning in customer data leads to better service and provides 

the customers with a better experience, both in terms of speed and in quality. 

D'Monte (2018) concluded that machine learning algorithms can connect users to various banking 

services, track their spending behavior and their behavior pattern so that it can identify any 

transaction that is questionable because it does not match the customer profile. 

 Ahmad and Ariff (2007) studied the credit risks in the developed economies of Australia, USA, 

Japan, France and the emerging economies of India, Malaysia, Thailand, Mexico. The study 

concluded that the credit risk in the banks of emerging economies is higher than that of developed 

economies. The ML techniques used for default prediction are different types of neural networks, 

SVMs and hybrid models. Zhang (2011) suggested a default early warning risk model based on 

the BP Neural Network algorithm. A BP Neural Network is trained in data samples to determine 

the default risk. Makrygiannis and Markopoulos (2016) proposed the default provision using the 

feedforward ANN, which takes into account the financial and personal information of the loan 

applicant. The proposed model was found to give really good accuracy. Feki et al. (2012) proposed 

methods of distinguishing banks by the percentage of non-performing loans (NPLs). It was 

performed using different approaches of multiclass SVM and Gaussian models. 
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2.4. Fraud detection 

 

Fraud in financial transactions can jeopardize the reputation of financial institutions among their 

customers as well as cause great losses. Banks and financial institutions invest in refining 

fraudulent machine learning algorithms and fraud detection systems (Abakarim et al., 2018). Fraud 

detection is a binary classification problem. The idea is to apply an appropriate classifier to the 

problem, which will be trained in an appropriate data set. The main approaches to tackling credit 

card fraud are ML techniques such as SVM and decision tree. 

Zareapoor and Shamsolmoali (2015) published an article on fraud detection using different 

techniques, such as Naïve Bayes, KNN and SVM. In their work, they raise concerns about the 

availability of real data as financial institutions do not disclose their data because it is confidential 

and sensitive. So, investigations end to work on fake data. Another problem is that, most of the 

time the data is imbalanced as the number of fraudulent transactions is only 2% and 98% of the 

transactions are legal. They refer to their concerns about the large amount of data and the 

computation time required for an algorithm to run in these cases. One of the major challenges 

frequently mentioned in many research papers is that machine learning algorithms need to be 

updated regularly so that malicious attempts can be recorded in real time. 

AdaBoost is used in the work of Randhawa et al. (2018) on credit card fraud detection and 

examines many different machine learning models, such as Naïve Bayes, Random Forest, etc. The 

study states that AdaBoost is very sensitive to anomalies and extreme values. Boltzmann (RBM) 

machines can be used to reconstruct data in an uncontrolled learning environment. Pumsirirat et 

al. (2018) and Yan et al.’s paper (2018) used python's Keras framework to implement a high-level 

Neural Network. They used the H2O package to calculate the Mean Square Error. In Chouiekha 

and El Haj [10], Convolutional Neural Networks (CNN) are used to detect fraud. A database of 

18,000 artificial images was created, depicting 300 customer activities for over 60 days. A CNN 

(Convolutional Neural Network) has been applied to the images to detect fraudulent activity. 

Gyamfi and Abdulai (2018) used SVM with Spark (SVM-S) to process data streams representing 

good and bad customer behavior and then use them to assess the validity of new transactions. 

Kotsiantis et al. (2006) predicted fraudulent financial statements using a decision tree. The decision 

tree proved to achieve the best performance among all the classifiers examined. Ravishankar et al. 
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(2011) conducted an analysis to detect financial statement fraud using data mining techniques. The 

Probabilistic Neural Network (PNN) surpassed all others. 

 

2.5. The research trends in credit risk assessment 

 

As structural changes in the global financial market have taken place as well as an increase in the 

overall level of risk, it has become imperative to study credit risk assessment. Over the last 20 

years, much progress has been made in the area of credit risk assessment. Credit rating models are 

made up of two basic and still popular statistical tools: Linear Discriminant Analysis (LDA) and 

logistic regression (LR). As times change, new methods have arrived such as Neural Networks, 

SVMs, k-NNs and Decision Trees. There are many other methods as described above. However,  

Hybrid models and ensemble models are becoming increasingly popular. Primary research 

conducted in the field of credit risk assessment uses non-linear classification algorithms, such as 

neural networks and SVMs. SVM has received a lot of attention in the machine learning 

community. Few attempted to score credit using the Naive Bayes classification (Vedala et al., 

2012). For all three types of credit risk assessment techniques, researchers have also proposed 

several hybrid models that combine parts of two or more algorithms. 

 

2.6. Machine Learning 

 

Machine learning is considered as a tool that finds application in various problems, especially in 

fields that require data processing and interpretation (Awad and Khanna, 2015). It enables data 

patterns to be searched for in order to extract important information from data analysis. Machine 

learning programs can be continuously trained and improved and can be applied to problems that 

require complexity and adaptability (Shalev-Shwartz and Ben-David, 2014). 

The machine learning programs used in search engines and motor vehicles can be adopted and 

applied in the financial sector as well. The financial sector, with the help of technological 

developments, has been able to extract and analyze a very large volume of data on markets and 

consumers. Machine learning is increasingly being adopted by economists every day, with the aim 

of reducing costs, increasing productivity and managing risk. New needs and new regulations 

pushed banks to automate (Financial Stability Board, 2017). Although machine learning 
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algorithms are considered more effective in dealing with complex nonlinear relationships, they are 

considered difficult to interpret in these cases (Galindo and Tamayo, 2000). There has been a huge 

increase in the volume of data in financial institutions (FI) in recent years, and one of the reasons 

this has happened is the digitization process. This data comes from a variety of sources, such as 

consumer applications, consumer interactions, and other external sources. 

Organizations want to automate and develop their analytical capabilities in various areas, such as 

risk management, thereby increasing interest in machine learning and artificial intelligence in FI 

(Van Liebergen, 2017). Machine learning is able to influence every aspect of the FI business 

model, improving understanding of customer preferences and needs, risk management, fraud 

detection, behavior monitoring, customer support, and even automated verification identity when 

combined with biometric elements. 

Van Liebergen (2017) explains the use of machine learning in financial institutions. It refers to 

credit risk modeling, credit card fraud detection and money laundering. He also emphasizes that 

machine learning algorithms are trained in some data and their effectiveness is tested in different 

data. This could complicate the development and evaluation of the models. 

Machine learning is also used in the Securities and Exchange Commission (SEC) in the risk 

assessment process. The same algorithms can serve as a guide for a bank on how they can be 

applied to fraud detection (Bauguess, 2015). 

One of the disadvantages of machine learning, it is argued, is that the results it provides are often 

difficult to interpret. It is also argued that they are sensitive to extreme values, resulting in 

conflicting forecasts (Bacham et al., 2017) 

Neural networks, SVM models, classification trees and random forest seem to be the most 

researched algorithms in the credit risk analysis area. 

 

2.6.1. Support Vector Machines (SVMs)  

 

The "Support Vector Machine" (SVM) is a supervised machine learning algorithm used in 

classification problems. SVMs are based on the idea of finding a hyperplane that best divides a 

dataset into two classes, as shown in the image below. 
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Figure 1: support vector machines representation 

                                          

SVM has been applied to the design of credit risk and credit rating models (Bellotti and Crook, 

2009, Cao et al., 2013, Van Gestel et al., 2003, Huang et al., 2007, Lai et al., 2007). Wang et al. 

(2005) present a weighted SVM model with promising results in credit risk analysis. Huang et al. 

(2007) developed a credit rating model to assess an applicant's credit score from input attributes 

based on a hybrid SVM. 

Yeh and Lien (2009) recognized that predicting the likelihood of a customer’s default is a 

challenge faced by researchers and needs further studying. Raei et al. (2016) investigated a new 

hybrid model for estimating the likelihood of corporate customers defaulting on a commercial 

bank. The research combines a two-stage approach, i.e., combining the predictive power of logit 

models and nonlinear techniques such as neural networks. The overall accuracy of this hybrid 

model proved to be superior to both basic models (Brown and Mues, 2012). 

 

Banks seek to develop effective models that can assess the likelihood of default of their customers. 

(Barboza et al., 2017) try out machine learning models to predict bankruptcy one year before it 

happens, comparing the performance with the results of the traditional methods. They report 

significant prediction accuracy and also suggest that ML techniques can be easily applied for 

substantial classification accuracy compared to traditional methods. Despite concerns about the 

model's explanatory capacity ML models could be a significant help. A bank could benefit from 

the ability of a model to select the financial ratios that are most relevant to the forecasting process 

and also from the high level of their accuracy. 

https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html
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2.6.2. Decision trees 

 

The decision tree is a structure of nodes and edges - based on which the population is classified 

using an explanatory variable (xi) at each node and making a decision about the different options 

(Breiman et al., 1984). The top of the tree is the root node, the next levels of nodes are the child 

nodes and at the bottom of the tree are the terminal nodes which describe the final classification 

(Anderson, 2007). 

 

 

Figure 2: Decision trees representation 

                                               

 

The way in which the decision is made and the criteria in which the breaking will take place, 

determines the type and complexity of the decision tree (Anderson, 2007). In its simplest form, 

especially when there is insufficient data available for analysis (e.g., medical data), the set of 

decisions and rules is determined empirically by a team of experts. Usually, however, analytical 

tools are used to make decisions and set the rules. 

The best-known methods for applying credit risk are (Li & Zhong, 2012) CART (Classification 

and Regression Trees) by Breiman et al. (1984). The aim is to define homogeneous classes of the 

population, in terms of risk level, while at the same time to maximize the difference in risk levels 

between classes. 

https://elf11.github.io/2018/07/01/python-decision-trees-acm.html
https://elf11.github.io/2018/07/01/python-decision-trees-acm.html
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The most important advantages of using decision trees are mentioned below (Anderson, 2007 and 

Genriha and Voronova, 2012): 

 

• As a non-parametric method, not many assumptions are required for its use. 

• The calculations are usually simple and the selection of variables and breaks are done with 

a specific statistical measure. 

• For simple trees, the results are transparent, interpretable and easy to implement.  

• They can be a quick and easy way to identify very low or very high-risk borrowers. 

 

On contrary, some main disadvantages of the decision trees are: 

 

• They generally do not give as good estimates as regression models. In fact, they are selected   

            mainly when there is a limited data availability.  

• Often associated with overfitting issues.  

• It is not as flexible as other methods, for example, neural networks. 

 

2.6.3. Random forests 

 

Random forests are the generalization of decision trees, where the estimate for each node is derived 

as the average of the estimates given for this node by a large set of random trees (Breiman, 2001).  
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Figure 3: Random forest representation 

 

In order to increase the degree of accuracy of the estimation, the individual trees that make up the 

forest should be as unrelated as possible. In random forests, the following three parameters 

(hyperparameters) should usually be defined (Beutel et al., 2019): 

 

• The number of decision trees for the forest. 

• The number of randomly selected variables to be examined in each breaking.  

•  N The minimum number of observations that each terminal node should have, which also 

determines the complexity of the trees. 

 

Some of the crucial random forests’ advantages are: 

 

• Reduction of overfitting compared to decision trees. 

• Modeling linear and non-linear relationships. 

• Quite good and accurate estimates. 

• High dimensionality. 

 

 

 

 

https://levelup.gitconnected.com/random-forest-regression-209c0f354c84
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On the other side, the main disadvantages are: 

 

• There is no transparency and control over how the model works, except for the definition 

of parameters.  

 

2.6.4 K-Nearest neighbors (KNN)  

 

The K-Nearest neighbors (KNN) method (Cover and Hart, 1967) is a simple non-parametric 

technique which is based on machine learning and data mining and is used for classification and 

regression purposes. The aim is to categorize each observation in a group. To achieve this, the 

algorithm examines the k nearest neighbors of a new observation (test sample) that has not yet 

been categorized and then assigns this observation to the class that is most common to these 

neighbors.  

 

Figure 4: KNN representation 

https://github.com/artifabrian/dynamic-knn-gpu
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The distance between observations is defined by a metric (e.g., Euclidean distance, Minkowski, 

Manhattan, Euclidean, Cosine and Hamming). The method is simple and also a good approach in 

case the analyst wants to add new observations to the training sample quickly and easily. The main 

drawbacks of the method are (Anderson, 2007): 

 

• The algorithm only does the classification but does not calculate final probabilities. 

• There is no transparency in how decisions are made. 

•  The computational times may be long. 

• Finally, the KNN algorithm is very much subject to the phenomenon known as 'curse of 

dimensionality' and as reported by Shalev-Shwartz & Ben-David (2014), the sample size 

is necessary to achieve a relatively small estimation error increases exponentially with the 

number of the predictive variables. 

 

3. Data and Methodology 

3.1. The dataset 

 

The dataset that is going to be used for the purpose of this thesis can be found on Kaggle and it 

contains data for 32,581 borrowers and 11 variables (Age, Annual income, Home ownership, 

Employment length, Loan intent, Loan grade, Loan amount, Interest rate, Loan status, Percent 

income, Historical default, Credit history) related to each borrower.  

 

The following table presents these variables and a simple description of each one of them. 

 

https://www.kaggle.com/laotse/credit-risk-dataset
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Table 1: Dataset variables 

 

 

Table 2: Descriptive Statistics of  Numerical variables 

 

 

 

Feature Name Description 

person_age Age in years 

person_income Annual Income in dollars 

personhomeownership Home ownership 

personemplength Employment length (in years) 

loan_intent Loan intent 

loan_grade Loan grade 

loan_amnt Loan amount in dollars 

loanintrate Interest rate 

loan_status Loan status (0 is non default 1 is default) 

loanpercentincome Percent income 

cbpersondefaultonfile Historical default 

cbpresoncredhistlength Credit history length 

 



22 

 

Table 3: Target variable 

 

 

 
Table 4: Categorical variables 

 
 

 

3.2. Methodology 

 

3.2.1. Steps 

 

There are three categories of machine learning, which are supervised learning, unsupervised 

learning, and reinforcement learning. In supervised learning, an input and an output variable are 

necessary, whereas a training set based on predefined inputs and outputs is used for teaching the 

models to predict the correct output in the future. In unsupervised learning, patterns are discovered 

from unlabeled data, while in reinforcement learning the learning system tries to learn through 

direct interaction with the environment. In this thesis, supervised learning algorithms were used. 

The steps for this classification problem are described below. 
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Data Acquisition: The most important and key element in analytics is the data that is used. The 

volume as well as the quality of data makes the analysis challenging, as the results and their 

accuracy are strongly affected by them. 

 

Data Preprocessing: The data preparation refers to the transformation of raw data or even 

encoding in order to make it machine readable. It plays an extremely significant role in learning 

procedure. Handling missing or inconsistent values and outliers, encoding categorical variables, 

dimensionality reduction and features selection are some of the requirements. In this step, the 

creation of several graphs is very helpful, as meaningful insights can be provided. 

 

Model selection: There is a variety of algorithms used in machine learning and each of them is 

more or less suitable across different problems. The scope is to identify the model that will lead to 

the highest accuracy. Another key question that needs to be answered before implementing an 

algorithm is whether the problem corresponds to classification or clustering. In this study, 

classification techniques were used. 

 

Training: The original dataset is split into training and test data. The first is used to train a model, 

where the second is used to evaluate how accurate is the output prediction. 

 

Evaluation: This step is very critical, as it depicts the model’s performance in new cases that they 

were not part of the educational process. For this scope, several evaluation metrics are used 

according to the machine learning category that is used each time.  

 

Hyperparameter Tuning: This process refers to determining which configuration of 

hyperparameters leads to the best performance. Except from the model parameters, there is another 

kind, which called “hyperparameters”, that is not possible to be learned during the training process 

and they contain useful information regarding the model’s complexity or how fast is its ability to 

learn. For example, a hyperparameter is the k in the KNN algorithm. 

Prediction: After all the above-mentioned processes, the trained model is now ready to predict the 

most likely output value given a specific input using real time data. 
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3.2.2. Python and scikit-learn library 

 

In the present work, the data analysis and the model’s development are done using Python as the 

programming language and the scikit-learn library for the models.  

Machine learning continues to grow rapidly. Artificial Intelligence makes it possible to create 

innovative solutions to real problems, such as fraud detection, personal assistants, spam filters. 

The need for intelligent solutions to real-world problems leads to the further development of 

artificial intelligence in order to automate tasks that are difficult for programming without AI. The 

Python programming language is considered the best algorithm for automating such tasks and 

offers greater simplicity than other programming languages. 

Scikit-learn library is the best python’s free machine learning library that can be used to simplify 

the task of coding and implementing Machine Learning algorithms. Scikit-learn includes a number 

of different machine learning algorithms, such as random forest, SVM and KNN. 

It is a collection of the most effective tools for statistical modeling and machine learning. Some of 

these tools include regression, classification, clustering, dimensionality reduction. It is primarily 

written in Python and is based on SciPy, NumPy and Matplotlib libraries. It has been developed 

by David Cournapeau in 2007 as part of Google Summer Code. Subsequently, Gael Varoquaux, 

Fabian Pedregosa, Alexandre Gramfort and Vincent Michel, from the French Institute for 

Computer Science and Automation Research, released a beta version of v0.1 in 2010. Since then, 

newer versions have been released. Scikit-learn is a community-based project where everyone can 

contribute to their development. 

 

Scikit-learn has some main advantages: 

 

• The library is distributed free of charge with minimal legal restrictions and licensing 

restrictions. 

•  It is easy to use. 

•  It is very flexible and serves real purposes such as predicting consumer behavior. 

•  It is supported and updated by many partners in the international online community. 
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3.2.3. Data preprocessing 

 

As the first step of the analysis, the dataset is being checked for missing values: 

 

 

 

In the dataset there are two fields with null values. Employment length contains 895 null values 

and Interest rate contains 3116 null values.  

 

 

Figure 5: NA values check 

                                                     

After identifying the missing values that are contained in the dataset, we are replacing them with 

the mean value of each variable. 
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3.2.4. Exploratory Data Analysis 

In the past few years, a new sector of Data Analysis has emerged. Exploratory Data Analysis 

(EDA) is the part of Data Analysis that explores raw or structured data and visualizes it through 

multiple kind of plots, graphs and techniques. It is essential in a real-life machine learning or data 

analytics projects to investigate the characteristics and the information a dataset gives, with the 

ultimate goal of knowing the form, the type, the distribution, the correlations and the basic statistics 

of the data from an analyst.  

▪ Numerical Data 

For the numerical data of the dataset, histograms are created. A histogram is a graph that displays 

numerical data in groups of bars with different height. Grouping is based on the different values 

of the variable – feature is designed and its range. Except of being a method to plot the values of 

a variable, histograms help gaining information about the distribution of it, as well as the frequency 

of exact several values.  

Below are displayed the histograms of numerical the following features: person_age, 

person_income, person_emp_length, loan_amnt, loan_int_rate, loan_status, loan_percent_income 

and cb_person_cred_hist_length: 
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Figure 6: Histograms of Numerical Data (Distribution and values) 

                                                      

▪ Categorical Data 

Following the analysis of the categorical data, we are creating graphs that have similar meaning 

and practical application to histograms for numeric features. These graphs are named count plots 

and are bar graphs. Basically, they count the values of the categories for each one of them, so again 

the height of a bar diverges as in the histogram. Each bar represents one category of the categorical 

variable. 

A count plot of the categorical variable person_home_ownership is presented below, where it is 

obvious that the two main types of customers who request a loan, have a rent or mortgage. 
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Figure 7: Count plot – Bar graph: Type of ownership 

                                                                               

Furthermore, the following graph is a count plot of the categorical variable loan_intent, which 

reveals that the customers request a loan mainly for educational and medical purposes, while the 

rest reasons are coming next with no such a big difference. 

 

 

Figure 8: Count plot – Bar graph: Type of intention 

 

In addition, the grade of loan per person (loan_grade) is displayed with the following count plot, 

in which, customers with grades B and D are greater than 20,000 of the totals. 
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Figure 9: Count plot – Bar graph: Grade of loan 

 

A count plot of the categorical variable cb_person_default_on_file is also presented below.    

 

 

Figure 10: Count plot – Bar graph: Historical default 
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• Mixed Plots 

The following charts are comparative bar graphs (like count plots) of the categorical data, but 

this time compared to the 2 classes (0-1) of the target. 

 

Figure 11: Bar graph – Comparison of Class variable values in categorical features 
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In the continue, three violin plots are shown. Violin plots are quite useful, because they give us 

information about the values, the distribution and the range of a categorical variable compared to 

the values and distribution of a numeric variable. 

 

Figure 12: Violin plot of the Percentage of personal Income by the type of Loan intention 
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Figure 13: Violin plot of the Employment Length (in Years) by the type of Loan Intention 

 

Figure 14: Violin plot of the Percentage of personal Income by the type of Loan Grade 
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• Correlation Plots 

 

In order to see if the variables in the dataset correlate with each other, the creation of two last 

graphs is necessary. The first refers to a correlation matrix that has been created in a heatmap 

plot. The second is a pair plot, which is a very useful graph for observing distribution of each 

variable in the diagonal and correlations on all other cells, both in comparison with the 2 groups 

of class variable. 

 

Figure 15: Correlation matrix (Heatmap plot) 
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Each square shows the correlation between the variables on each axis. Correlation ranges from -1 

to +1. Values closer to zero means there's no linear trend between the 2 variables. The closer to 1 

the correlation is, the more positively correlated they are and the stronger their relationship is. This 

means that if one increases, the other will increase too. A correlation closer to -1 is similar, but 

instead of both variables, if one variable increases, the other will decrease. The diagonals are all 

equal to 1 because those squares are correlating each variable to itself. The correlation between 

two variables is higher when the number in the square is larger and the color is darker. The plot is 

also symmetrical about the diagonal since the same two variables are being paired together in those 

squares. Thus, the correlation matrix shows that there is not any significant correlation between 

the variables. There is a low correlation between loan amount and personal income which is not 

surprising. 

 

 

Figure 16: Pair plot Graph 
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The most critical factor affecting the success of machine learning procedure is the training and 

testing process. An effective training process improves the quality of the model created. Datasets 

divide into two parts for training and testing according to some rules. After the machine learning 

model is trained based on the training data, it has to be tested using the testing data. In the case 

that is being examined in this thesis, before the training process, the categorical variables have to 

be converted – labeled into numerical, and that can be done by using the label encoding method. 

Label encoding is a machine learning encoding technique that allows us to convert categorical and 

text data (columns) to numerical, so that they can be used in the machine learning models. Label 

encoder just encodes categorical data to a number for each of these values from the columns. 

Python and scikit-learn have multiple easy ways to do this to a dataset automatically. Another 

famous encoder is One-Hot-Encoder. After the last conversion we make, we get the last form of 

the dataset for use which is described perfectly by following heatmap – information map and the 

pair plot graph. 
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Figure 17: Final Heatmap (Correlation Matrix) 
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From the heatmap above that corresponds to the final dataset, we can make some conclusions 

about the correlations between the variables and the information gained from them. Some of these 

conclusions are described below: 

 

• In the diagonal of the heatmap, the only values we get equal to 1. This happens because 

correlation between a variable and the same (2 times) is 100%. 

• In the squares with light green color, there is a very good relationship and correlation 

between the two characteristics. For example, loan_amnt and loan_percent_income have 

high correlation equals to 0.57, which means that a good information is provided about the 

data regarding these two variables. Another example of same pair of variables is 

loan_int_rate with loan_grade. There are many other pairs of good correlations as it can be 

observed in this graph. 

• In the squares with values less than 0, a useful outcome cannot be retrieved. Negative 

correlation means that the correlation between the two variables is bad and there is no 

information given from them. For example, person_income with loan_percent_income 

have a value equal to -0.25. 

• Finally, for the light pink squares it can be highlighted that they are not bad, but not good 

enough as well to draw a conclusion about the information might be given from these 

variables. 
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The pair plot that corresponds to the final dataset is shown below. 

 

 

Figure 18: Final Pair plot Graph 
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Last but not least, before creating and evaluating the machine learning models, the dataset is split 

in two parts, the train set which contains the 80% of the initial dataset and the test set which 

contains the rest 20% of the observations. Using the function stratify (stratify = y) in training, we 

take the advantage of the usage of keeping the same rate of each group of the class variable in the 

training and test sets. As a result, it is guaranteed that the percentage of values from the two classes 

(0-1) of the target group is the same in both training and test set. 

 

3.2.5. Evaluation – Metrics 

In this chapter, the results of the machine learning models that have been created before are 

analyzed. In order to do this, it is necessary to describe briefly the evaluation metrics that the 

analysis is based on. 

 

• Confusion Matrix  

 

 

Figure 19: Confusion matrix 

 

Confusion Matrix is by far the most important tool for evaluating classification machine learning 

models. It is a matrix that represents the actual values (the real values of the dataset) in y axis in 

comparison with the predicted values (the values that were predicted by the models) in x axis. Both 

actual and predicted values are separated to positive and negative class (1-0). The meaning is that 

https://laptrinhx.com/understanding-confusion-matrix-and-applying-it-on-knn-classifier-on-iris-dataset-3528695590/


40 

 

the class variable is binary and takes two values, 0 for negative fact-class and 1 for positive fact-

class. As a result, the matrix that is created has four squares and it contains four groups of values.  

These values are the following: 

 

TP (True positive): Actual value and predicted value are positive (1-1), meaning that model’s 

prediction was correct (correct classification). 

FP (False Positive): Actual value is negative, but predicted value is positive (0-1), meaning that 

model’s prediction was wrong (wrong classification). 

FN (False Negative): Actual value is positive, but predicted value is negative (1-0), meaning that 

model’s prediction was wrong. 

TN (True Negative): Actual value and predicted value are negative (0-0), meaning that model’s 

prediction was correct. 

 

TP, FP, FN and TN values can be written either as a specific number of all Test set inputs, for 

example the number of TP predictions in Test set, or as a percentage of each square.  

Confusion matrix is usually represented as a heatmap. 

 

• Precision and Recall 

 

The mathematical formulas of these two metrics are: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

Precision is a metric that shows how accurate the model is. In other words, it measures how many 

of the observations are actual positive out of the predicted positive. It is a good measure to 

determine, when the costs of false positive are high. 
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Recall measures how many of the actual positives the model predicts it as positive (True Positive). 

This evaluation metric should be chosen as the model’s metric, when there is a high cost associated 

with false negative.  

 

• F1 Score  

 

Below is the mathematical formula for F1 score: 

 

F1 Score = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

F1 score provides a single score to measure both precision and recall. 

 

• ROC – AUC score and ROC curve 

 

The Receiver Operator Characteristic Curve or simpler ROC curve is an evaluation metric curve 

for binary classification problems (classification problems where class variable is binary). It is a 

probability curve that plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at 

various threshold values and essentially separates the ‘signal’ from the ‘noise’. The Area Under the 

Curve (AUC) or ROC-AUC score is a probability that defines the measure of the ability of a 

classifier to distinguish between the 2 classes and is used as a summary of the ROC curve. This is 

also known as ROC-AUC score and is another powerful accuracy score for evaluating 

Classification Machine Learning Models. 
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Figure 20: ROC curve and ROC-AUC 

 

Based on the evaluation metrics that were used in this thesis, the Random Forest model performs 

better than the others on the given imbalanced dataset. In the case that is examined, recall is a more 

important metric to take into account given that the problem contains false negatives values, 

meaning that the model predicts that someone is not going to default but they do. Having said that, 

the decision tree performs better in this metric, but the Random Forest has an overall better 

performance in all the metrics. 

 

3.2.6. Hyperparameter tuning 

The best way to think about hyperparameters is like the settings of an algorithm that can be adjusted 

to optimize performance, just as the knobs of an AM radio are turned to get a clear signal. While 

model parameters are learned during training, hyperparameters must be set by the data scientist 

before training. 

To improve the KNN’s model performance grid search is the most common approach. It 

exhaustively searches through all possible combinations of hyperparameters during training the 

phase. For example, consider a KNN model. We can specify a grid of number of neighbors (K = 

1, 2, 3) and two metrics (p=1, 2). The grid search starts training a model of K = 1 and p=1 and 

calculates its accuracy score. In the sequence, it continues to train models of (K = 2, p = 1), (K = 

3, p = 1), (K = 1, p = 2), ..., and (K = 3, p = 2) and obtains their score values. Based on the accuracy 

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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scores, the grid search will rank the models and determine the set of hyperparameter values that 

give the highest accuracy score.  

 

Using grid search, it can be seen that the best number of neighbors is 13, while the optimal distance 

metric is Euclidean and p=2.  

 

For the random forest’s classifier, the two main hyperparameters are: 

• n_estimators:  The n_estimator parameter controls the number of trees inside the classifier. 

Using many trees to fit a model is not always the best case. It may not cause any overfitting 

but it can certainly increase the time complexity of the model. The default number of 

estimators is 100 in scikit-learn. 

• max_depth: It governs the maximum height up to which the trees inside the forest can 

grow. It is one of the most important hyperparameters when it comes to increasing the 

accuracy of the model. It is important to set its value appropriately to avoid overfitting. The 

default value is set to None. 

In the Random Forest model, the default parameters are performing better than any other case. 

 

For the decision tree’s classifier, the main hyperparameters are: 

• Criterion: The function to measure the quality of a split. Supported criteria are “gini” for 

the Gini impurity and “entropy” for the information gain.  

• max_depth: The maximum depth of the tree. If None, then nodes are expanded until all 

leaves are pure or until all leaves contain less than min_samples_split samples. 

• max_features: The number of features to consider when looking for the best split: 

• min_samples_leaf: The minimum number of samples required to be at a leaf node. A split 

point at any depth will only be considered if it leaves at least min_samples_leaf training 

samples in each of the left and right branches. This may have the effect of smoothing the 

model. 
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3.2.7. SMOTE: Synthetic Minority Oversampling Technique 

Resampling data is one of the most common approaches to use when there is an imbalanced 

dataset. There are two main methods for this: Undersampling and Oversampling. Most of the 

times, oversampling is preferred over undersampling techniques. The reason is that, in 

undersampling, instances that may be carrying some important information tend to be removed 

from the data.  

SMOTE method is an oversampling technique where the synthetic samples are generated for the 

minority class. This algorithm helps to overcome the overfitting problem caused by random 

oversampling. It focuses on the features to generate new instances with the help of interpolation 

between the positive instances that lie together. 

In order to see if oversampling gives a better machine learning model, the SMOTE implementation 

is used, provided by the imbalanced-learn Python library in the SMOTE class. The SMOTE class 

acts like a data transform object from scikit-learn and the process follows the steps: first it must be 

defined and configured, then it fits on a dataset, and finally it applies to the old dataset and creates 

a new transformed version of the dataset. 

More specifically: 

• A SMOTE instance is defined, with default parameters that will balance the minority class 

and then create a transformed version of the dataset. 

• Then the same models and the same evaluation methods will be tried, using a SMOTE 

transformed version of the dataset. 

 

3.2.8. Feature Importance Techniques 

Nowadays, in machine learning projects is essential to extract information for the features of the 

data. Sometimes, some features have no contribution in predictions and modelling and they are 

practically useless. On the contrast, some features may contain the biggest amount of information 

for the dataset given. In this case, we have to construct models training only these essential 

characteristics. In this dissertation, we used permutation importance technique for KNN algorithm 

and we implemented the default model’s importance for Decision Tree and Random Forest. As a 

conclusion, most informative features are described and summarized in the following table: 
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Table 5: Feature Importance 

 

 

From the table above it can be concluded that the variables – characteristics which are the most 

important and carry the biggest amount of information of this dataset are the person_income, 

person_home_ownership, loan_grade and loan_percent_income.  

In the continue, the machine learning procedure that is followed in this study is described. 12 

machine learning classification models have been created using 3 different algorithms: Decision 

Trees, Random Forest and KNN. In each algorithm, four different models have been developed and 

the order that has been followed, is displayed below. 

1) Initial Model - For each machine learning algorithm, an initial model is created and the 

parameters that are used are only the default. 

2) Model with best parameters (after hyper tuning) - After creating the initial model, the next 

step is to search for the best parameters that maximizing the performance of it via 

Randomized Search CV technique of hyper tuning procedure. After finding these 

hyperparameters, they are used to create and evaluate a new second model.   
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3) Model after feature importance implementation - The third model of each algorithm is a 

model being trained, tested and evaluated resulting to which features are best for this 

algorithm. 

4) Model using SMOTE method - The final model of each algorithm is a model being trained, 

tested and evaluated to SMOTE – oversampled dataset, considering that the original data is 

imbalanced in class variable. This means that the volume of the data points of each class is 

not the same. 

4. Empirical Results 

4.1 Decision Tree Classifier Results 

The best decision tree model that concluded from this analysis was the one that was built on Smote 

dataset. The best parameters which were identified are the following:  

1) criterion='gini' 

2) min_samples_leaf=1 

3) min_samples_split=2 

 

                 

Figure 21: Confusion Matrix of Decision tree Smote model 
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From the confusion matrix above, it can be concluded that from 10,190 people, 9,419 were 

predicted in the correct class. Furthermore, 4,674 people were classified in class 0, which means 

that they would take a loan and that was correct as they did take the loan, while 4,745 classified in 

class 1, which means they would not take a loan and actually they did not take it.  

                                                                          

Table 6: Full Classification Report – Decision Tree 

 

                                 

Table 7: Accuracy score vs ROC-AUC score – Decision Tree 

 

 

Table 8: Comparison Results for All Decision Tree Classification Models 

 



48 

 

 

Figure 22: Comparison of ROC curves for all Decision Tree Models 

Overall, from decision tree algorithm two models have been created with very high accuracy – over 

90%, which means that decision tree classification models are quite efficient for credit risk analysis 

with machine learning modelling.  

4.2 Random Forest Classifier Results 

The best random forest model of the four that have been created was the one that was built on Smote 

dataset. The parameters which led to the best performance were the following: 

1) criterion='gini' 

2) min_samples_leaf=1 

3) min_samples_split=2 

4) n_estimators=100 
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Figure 23: Confusion Matrix of Random Forest Smote model 

From the above confusion matrix, it can be resulted that from 10,190 people, 9,730 were predicted 

in the correct class. Furthermore, 5,022 people were classified in class 0, which means that they 

would take a loan and that was correct as they did take it, whereas 4,708 classified in class 1, which 

means they would not take a loan and actually they did not take it. 

 

Table 9: Full Classification Report – Random Forest 

 

Table 10: Accuracy score vs ROC-AUC score – Random Forest 
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Table 11: Comparison Results for All Random Forest Classification Models 

 

 

Figure 24: Comparison of ROC curves for all Random Forest Models 

Overall, from random forest algorithm all the four models that have been created, had very high 

accuracy – over 90%, which means that random forest models are the most efficient for credit risk 

analysis using machine learning techniques.  

4.3 KNN Classifier Results 

The best KNN model of the four that have been created was the one that was built with the best 

parameters after hyper tuning implementation. These parameters are the following: 

1) metric='euclidean' 

2) n_neighbors=13 

3) p=2 
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Figure 25: Confusion Matrix of KNN Hypertuned model 

From the above confusion matrix, it is concluded that from 6,517 people, 5,500 were predicted in 

the correct class. Furthermore, 4,796 people were classified in class 0, which means that they would 

take a loan and that was correct as they did take it, while 704 classified in class 1, which means that 

they would not take a loan and actually they did not take it. 

                 

Table 12: Full Classification Report – KNN 
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Table 13: Accuracy score vs ROC-AUC score – KNN 

 

 

Table 14: Comparison Results for All KNN Classification Models 

 

 

Figure 26: Comparison of ROC curves for all KNN Models 

Overall, from all the four K-Nearest Neighbors models that have been created, they have very 

slightly good accuracy – between 80-85%, which means that random forest and decision tree 

models are much better and efficient for credit risk analysis with machine learning modelling.  
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4.4 Summary Results 

Following the analysis per each model separately, a few final important comparisons of the machine 

learning results are presented. In the following tables, are shown the best results of each machine 

learning algorithm in 3 phases:  

1) Comparing all 12 models that have been deployed,  

2) Comparing all models trained in the original – real dataset, and  

3) Comparing all models trained in oversampled – smote dataset.  

All comparisons are based on the three most important machine learning evaluation metrics: 

Accuracy (F-1 score), ROC accuracy (ROC-AUC score) and ROC curves. 

 

Table 15: Comparison Results for the best model of each machine learning algorithm 

 

 

Figure 27: Comparison of ROC curves for the best models 
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Table 16: Comparison Results for the best model of each machine learning algorithm based on the original dataset 

 

 

Figure 28: Comparison of ROC curves for the best models based on the original dataset 

 
Table 17: Comparison Results for the best model of each machine learning algorithm based on oversampled data 
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Figure 29: Comparison of ROC curves for best models on smote data 

As a conclusion, the decision tree, random forest and K-nearest neighbors classification models 

achieve high-level predictions and a large amount of correct classifications in credit risk 

classification machine learning problems and in machine learning classification problems in finance 

in general. Especially, random forest classifier had the best overall performance in this analysis, as 

best Random Forest model had 95.4858% accuracy and 95.4858% ROC accuracy (ROC-AUC 

score). 

5.Conclusions 

The future of machine learning in the banking and financial sector is expected to be great, 

especially in the field of risk management. Machine learning techniques will be developed and 

applied to banking data in an effort to improve their operations. The ability of machine learning 

models to analyze large volumes of data in a relatively easier way and with greater reliability is 

very important. Machine learning, having important applications in risk management, can enable 

the creation of more accurate risk models by locating complex, non-linear patterns in large data 

sets. 
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In this dissertation an evaluation and analysis of the literature around the application of machine 

learning in risk management in the financial sector was presented. Most of the research seems to 

focus on credit risk management. One could attribute this to the fact that credit risk is considered 

the most important risk for a financial organization. More specifically, the credit risk management 

problems have been investigated concerned creditworthiness. The advantages and disadvantages 

of different machine learning techniques in solving specific risk management problems were 

studied, which can be further studied and evaluated. 

The review showed that applying machine learning to risk management, such as credit risk, has 

been extensively investigated. However, it could be further explored for some areas where large-

scale data analysis with complex and non-linear calculations are required. 

As banks and financial institutions want to increase their risk management capabilities, it would 

be useful to explore how machine learning can be applied to the combination of different risks and 

improve the potential for reducing these risks. Areas such as behavioral risk could also be explored, 

in other words behavioral and activity monitoring. This improves risk management in financial 

institutions. 

In the present work, twelve machine learning models such as decision tree, random forest and 

nearest neighbors were also studied and the analysis of the metrics of the models showed that both 

K-nearest neighbors, decision trees and random forest models are quite accurate in predicting the 

correct class for each person in our classification credit risk problem. More specifically, the best 

performance was achieved based on oversampled data, as 82.3%, 92.4% and 95.5% was the 

accuracy of KNN, Decision tree and Random Forest algorithm respectively. However, if we have 

to choose one machine learning algorithm for our future work and analysis, it is essential to use 

Random Forest, because it was examined as the most accurate by 95.5%.  

Finally, it is important to highlight that several kinds of transformations in the original dataset 

contributed to taking the last form of the dataset that finally used for training and testing the 

models. It is true, that, when it comes to imbalanced datasets, working on the original data or 

working on oversampled data is a topic that raises a great conversation between researchers and 

scientists, and depends on many different factors. Having said that, using the SMOTE method of 

over-sampling the minority (abnormal) class can achieve, in general, better classifier performance 

in this problem. However, this doesn’t mean that they are better for every use in machine learning 

tasks.  
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Although machine learning is considered as a useful tool for credit risk analysis and default 

prediction, there are several limitations connected to this type of analysis. The most important 

limitation is data quality and predictive strength. An essential prerequisite to build a good and 

trustful model is the acquisition of a high-quality volume of representative data. Identifying the 

characteristics that highly affect defaulting or not is one of the greatest challenges. As economic 

conditions are continuously and rapidly changing, whereas new customers, new products and new 

trends are being introduced, new features, variables and correlations are needed to be taken into 

account. All these limitations are present in this study, as the dataset contains only 32,581 

borrowers and their characteristics, which are limited and disclosure only a small part of all these 

parameters that could contribute to borrowing or not. 

Personal data and its use are a very sensitive subject that concerns businesses and financial 

institutions. As time changes and more data is available, further research can be done taking into 

account larger and more complex datasets. New features and new techniques can be used in future 

projects, as machine learning and artificial intelligence in general are rapidly growing. In addition, 

decisions made by financial institutions using machine learning algorithms and their results can be 

used as the input for future research, leading in this way to a new type of assessment based on 

historical records for both right and wrong calls.  
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Appendix 

 

Python code 

 

1. # Import libraries 
2.   
3. import pandas as pd 
4. import matplotlib.pyplot as plt  
5. import numpy as np 
6. import scipy 
7. import sklearn 
8. import seaborn as sns 
9. import missingno as msno 
10. from sklearn.preprocessing import LabelEncoder 
11. from sklearn.model_selection import train_test_split 
12. from sklearn.feature_selection import SelectKBest 
13. from sklearn.feature_selection import chi2 
14. from imblearn.over_sampling import SMOTE 
15. from sklearn.inspection import permutation_importance 
16. from sklearn.neighbors import KNeighborsClassifier 
17. from sklearn import metrics 
18. from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, 

roc_curve, accuracy_score 
19. from imblearn import under_sampling, over_sampling 
20. from sklearn.ensemble import RandomForestClassifier 
21. from sklearn.tree import DecisionTreeClassifier 
22. from sklearn import svm 
23. from sklearn.model_selection import RandomizedSearchCV 
24. from imblearn.pipeline import Pipeline 
25. from sklearn.model_selection import RepeatedStratifiedKFold 
26.   
27. # Upload Dataset 
28. import io 
29. from google.colab import files 
30.   
31. uploaded = files.upload() 
32.   
33. df = pd.read_csv(io.BytesIO(uploaded['credit_risk_dataset.csv'])) 
34.   
35. df 
36.   
37. """Data cleaning 
38.   
39. Handling NA values 
40. """ 
41.   
42. # Checking NA values in our dataset 
43. for i in df.columns: 
44.     print('Column:',i) 
45.     print('Number of N/As:',df[i].isna().sum()) 
46.   
47. print("We have 895 missing values in 'person_emp_length' feature and 3116 in 'loan_int_rate' 

feature") 
48.   
49. # Or with plot checking 
50. # Visualize missing values as a matrix 
51. msno = msno.matrix(df) 
52.   
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53. # Fill missing values with the aerage average(mean) of the feature. 
54.   
55. df['person_emp_length'].fillna(df['person_emp_length'].mean(),inplace=True) 
56. df['loan_int_rate'].fillna(df['loan_int_rate'].mean(),inplace=True) 
57.   
58. # Now check again 
59.   
60. for i in df.columns: 
61.     print('Column:',i) 
62.     print('Number of N/As:',df[i].isna().sum()) 
63.   
64. print("We have not missing values now.") 
65.   
66. """# Exploratory Data Analysis""" 
67.   
68. # Dataset statistics 
69. df.describe().T 
70.   
71. # Our dataset information 
72. df.info() 
73. print("So we have 4 categorical variables and 8 numeric.") 
74.   
75. # Histograms for numerical Data 
76. df.hist(bins=50, figsize=(20,15)) 
77. plt.show() 
78.   
79. # Check the distribution of our Target variable (0 No - 1 Yes) 
80. plt.hist(df['loan_status']) 
81. plt.title('Distribution of Class variable', fontsize = 30) 
82. plt.xlabel('Loan', fontsize = 15) 
83. plt.ylabel('Count', fontsize = 15) 
84. plt.grid() 
85. plt.show() 
86.   
87. print(df.loan_status.value_counts()) 
88. print("We have 25473 people on class 0 and 7108 on class 1.") 
89.   
90. # checking the Distribution of variable 'person_home_ownership' 
91.   
92. plt.figure(figsize=(15,10)) 
93. sns.countplot(df['person_home_ownership'], palette = 'inferno') 
94. plt.title('Each Percon Type of Ownership', fontsize = 30) 
95. plt.xlabel('Type of ownership', fontsize = 15) 
96. plt.ylabel('count', fontsize = 15) 
97.   
98. plt.show() 
99.   
100. # checking the Distribution of variable 'loan_intent' 
101.   
102. plt.figure(figsize=(15,10)) 
103. sns.countplot(df['loan_intent'], palette = 'pastel') 
104. plt.title('Each Person Intention for Loan', fontsize = 30) 
105. plt.xlabel('Type of Intention', fontsize = 15) 
106. plt.ylabel('count', fontsize = 15) 
107.   
108. plt.show() 
109.   
110. # checking the Distribution of variable 'loan_grade' 
111.   
112. plt.figure(figsize=(15,10)) 
113. sns.countplot(df['loan_grade'], palette = 'inferno') 
114. plt.title('Grade of Loan from A to G for each Person', fontsize = 30) 
115. plt.xlabel('Grade of Loan', fontsize = 15) 
116. plt.ylabel('count', fontsize = 15) 
117.   
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118. plt.show() 
119.   
120. # checking the Distribution of variable cb_person_default_on_file 
121.   
122. plt.figure(figsize=(15,10)) 
123. sns.countplot(df['cb_person_default_on_file'], palette = 'pastel') 
124. plt.title('Historical Default', fontsize = 30) 
125. plt.xlabel('Answer', fontsize = 15) 
126. plt.ylabel('count', fontsize = 15) 
127.   
128. plt.show() 
129.   
130. # Mixed plots 
131.   
132. fig, ax = plt.subplots(2,2,figsize = (30,20)) 
133. plt.tight_layout(pad = 3) 
134.   
135. sns.countplot(data = df, x ='person_home_ownership',hue = 'loan_status',ax =ax[0,0], 
136.              palette = "rocket_r").set_title('Loan Ratio by Person Ownership') 
137. sns.countplot(data = df, x ='loan_intent',hue = 'loan_status',ax =ax[0,1], 
138.              palette = "rocket_r").set_title("Loan ratio By Person's Type of Intention") 
139. sns.countplot(data = df, x ='loan_grade',hue = 'loan_status',ax =ax[1,0], 
140.              palette = "rocket_r").set_title('Loan ratio by its Grade') 
141. sns.countplot(data = df, x ='cb_person_default_on_file',hue = 'loan_status',ax =ax[1,1], 
142.              palette = "rocket_r").set_title('Loan ratio by Historical default') 
143.   
144. # fig, axs = plt.subplots(nr,nc) 
145. sns.color_palette("pastel") 
146. plt.figure(figsize=(20,15)) 
147. sns.violinplot(x='loan_intent',y='loan_percent_income',data=df,linewidth=0.3) 
148. sns.despine() 
149. plt.title("Violin Plots of Percentage of Income by Loan Intention") 
150. plt.show() 
151.   
152. # fig, axs = plt.subplots(nr,nc) 
153. sns.color_palette("pastel") 
154. plt.figure(figsize=(20,15)) 
155. sns.violinplot(x='loan_intent',y='person_emp_length',data=df,linewidth=0.3) 
156. sns.despine() 
157. plt.title("Violin Plots of Employment time length by Loan Intention") 
158. plt.show() 
159.   
160. # fig, axs = plt.subplots(nr,nc) 
161. sns.color_palette("pastel") 
162. plt.figure(figsize=(20,15)) 
163. sns.violinplot(x='loan_grade',y='loan_percent_income',data=df,linewidth=0.3) 
164. sns.despine() 
165. plt.title("Violin Plots of Percentage of Income by Loan Grade") 
166. plt.show() 
167.   
168. # Check for outliers 
169. plt.figure(figsize=(80, 30)) 
170. df.boxplot() 
171.   
172. # Heatmap - information map 
173. plt.figure(figsize=(15,15)) 
174. heatmap = sns.heatmap(df.corr(), annot=True ,cmap =sns.diverging_palette(10, 110, n=100)) 
175.   
176. # Pairplot  
177.   
178. pairplot = sns.pairplot(df, hue = 'loan_status') 
179.   
180. """# Data Preparation""" 
181.   
182. # Encoding categorical data with LabelEncoder Technique 
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183.   
184. # Define label_encoder   
185. label_encoder = LabelEncoder() 
186. # Encode labels in columns 'Type' and 'Method.  
187. df['person_home_ownership'] = label_encoder.fit_transform(df['person_home_ownership']) 
188. df['loan_intent'] = label_encoder.fit_transform(df['loan_intent'])  
189. df['loan_grade'] = label_encoder.fit_transform(df['loan_grade']) 
190. df['cb_person_default_on_file'] = 

label_encoder.fit_transform(df['cb_person_default_on_file']) 
191.   
192. df.info() 
193.   
194. df 
195.   
196. # Let's see now how heatmap and pairplot look 
197.   
198. # Heatmap - information map 
199. plt.figure(figsize=(25,25)) 
200. heatmap = sns.heatmap(df.corr(), annot=True ,cmap =sns.diverging_palette(10, 110, n=100)) 
201.   
202. # Pairplot  
203. pairplot = sns.pairplot(df, hue = 'loan_status') 
204.   
205. # Final Check 
206. # Which are the unique values for each feature? 
207. for i in df.columns: 
208.     print('Column Title',i) 
209.     print('# Unique Values:',len(df[i].unique())) 
210.     print('Unique Values:',df[i].unique()) 
211.     print() 
212.   
213. """# Feature Importances""" 
214.   
215. X = pd.DataFrame(df) 
216. X = X.drop(['loan_status'], axis=1) 
217. y = df[['loan_status']] 
218.   
219. X 
220.   
221. y 
222.   
223. X.info() 
224.   
225. # K-best Method 
226. best_features = SelectKBest(score_func=chi2, k=11) 
227. fit = best_features.fit(X,y) 
228. df_scores = pd.DataFrame(fit.scores_) 
229. df_columns = pd.DataFrame(X.columns) 
230. feature_scores = pd.concat([df_columns, df_scores], axis=1) 
231. feature_scores.columns = ["Feature","Score"] 
232. print(feature_scores.nlargest(11,"Score")) 
233.   
234. # Permutation Importance method (for KNN) 
235.   
236. # define the model 
237. model = KNeighborsClassifier() 
238. # fit  
239. model.fit(X, y) 
240. # perform permutation importance to get the importances of the features 
241. results = permutation_importance(model, X, y, scoring='accuracy') 
242. # get importance 
243. importance = results.importances_mean 
244. # summarize feature importance 
245. for i,v in enumerate(importance): 
246.  print('Feature: %0d, Score: %.5f' % (i,v)) 
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247. # plot feature importance 
248. plt.bar([x for x in range(len(importance))], importance) 
249. plt.show() 
250.   
251. print('Best Features are only 2: person_income and loan_amount, but if we have to select 

5: person_age, person_income,person_home_ownership,person_emp_length,loan_amount.') 
252.   
253. # Decision Tree Classifier Feature Importance method 
254.   
255. # define the model 
256. model = DecisionTreeClassifier() 
257. # fit  
258. model.fit(X, y) 
259. # get the importances of the features based on decision tree model 
260. importance = model.feature_importances_ 
261. # summarize feature importance 
262. for i,v in enumerate(importance): 
263.  print('Feature: %0d, Score: %.5f' % (i,v)) 
264. # plot feature importance 
265. plt.bar([x for x in range(len(importance))], importance) 
266. plt.show() 
267.   
268. print('Based on Decision Tree model importances, best 5 features of dataset are: 

person_income, person_home_ownership, loan_intent, loan_grade, loan_percent_income ') 
269.   
270. # Random Forest Classifier Feature Importance method 
271.   
272. # define the model 
273. model = RandomForestClassifier() 
274. # fit 
275. model.fit(X, y) 
276. # get the importances of the features based on random forest model 
277. importance = model.feature_importances_ 
278. # summarize feature importance 
279. for i,v in enumerate(importance): 
280.  print('Feature: %0d, Score: %.5f' % (i,v)) 
281. # plot feature importance 
282. plt.bar([x for x in range(len(importance))], importance) 
283. plt.show() 
284.   
285. print('Based on Decision Tree model importances, best 5 features of dataset are: 

person_income, person_home_ownership, loan_grade,loan_int_rate, loan_percent_income ') 
286.   
287. """# Smote dataset""" 
288.   
289. # If we take for granted that our dataset is imbalanced, we have to make an oversampling 

or undersampling technique to make it balanced. 
290. # So we will use Smote technique 
291.   
292. # transform the dataset 
293. oversample = SMOTE() 
294. X_smote, y_smote = oversample.fit_resample(X, y) 
295.   
296. X_smote= pd.DataFrame(X_smote)  
297. y_smote = pd.DataFrame(y_smote) 
298.   
299. X.info() 
300.   
301. X_smote.columns = 

['person_age','person_income','person_home_ownership','person_emp_length','loan_intent','loa
n_grade','loan_amnt', 

302.                     
'loan_int_rate','loan_percent_income','cb_person_default_on_file','cb_person_cred_hist_lengt
h'] 

303.   
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304. y_smote.columns = ['loan_status'] 
305.   
306. X_smote 
307.   
308. y_smote 
309.   
310. """# Machine Learning models 
311.   
312. For each machine learning algorithm, we will create 4 models: 1st in initial dataset, 2nd 

after hyper tuning (finding best parameters), 3rd after feature importance data and 4th in 
Smote dataset 

313.   
314. ### Decision Tree Classifier 
315.   
316. 1) Initial 
317. """ 
318.   
319. # Train, Test, Split 
320. X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, 

random_state=152, stratify=y) 
321.   
322. # Define the model 
323. clf_1 = DecisionTreeClassifier() 
324.   
325. # Fit the model 
326. clf_1.fit(X_train,Y_train) 
327.   
328. # Make prediction 
329. pred_1 = clf_1.predict(X_test) 
330.   
331. # Accuracy score  
332. print('Accuracy score of Decision Tree model 1 is:', accuracy_score(Y_test, pred_1)) 
333.   
334. # Confusion Matrix 
335. conmat_1 = confusion_matrix(Y_test, pred_1)  
336. print(conmat_1)  
337. plt.figure(figsize=(10,8))  
338. plt.title('Confusion Matrix of Decision Tree 1st Model')  
339. sns.heatmap(conmat_1, annot=True, cmap="Purples", fmt="d",cbar=True) 
340.   
341. # Classification Report  
342. print('Classification Report of Decision Tree 1st Model') 
343. print(classification_report(Y_test, pred_1)) 
344.   
345. # ROC-AUC score 
346. print('ROC-AUC score of 1st Decision Tree Model is:', roc_auc_score(Y_test, pred_1)) 
347.   
348. """2) Hypertuning """ 
349.   
350. # Setup the parameters and distributions to sample from: param_dist 
351. param_dist = {"max_depth": range(1,5), 
352.               "min_samples_split": range(10), 
353.               "min_samples_leaf": range(1,5), 
354.               "criterion": ["gini", "entropy"]} 
355.   
356. # Define Hypertuning model 
357. tree_cv = RandomizedSearchCV(estimator=DecisionTreeClassifier(), param_distributions= 

param_dist, cv=5, return_train_score=False) 
358.   
359. # Fit  
360. tree_cv.fit(X_train,Y_train) 
361.   
362. # Best parameters 
363. print('Best parameters for Decision Tree Classification are:', tree_cv.best_params_) 
364.   
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365. # Train, Test, Split 
366. X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, 

random_state=152, stratify=y) 
367.   
368. # Define the model 
369. clf_2 = DecisionTreeClassifier(min_samples_split=4, min_samples_leaf=2, max_depth=4, 

criterion='gini') 
370.   
371. # Fit the model 
372. clf_2.fit(X_train,Y_train) 
373.   
374. # Make prediction 
375. pred_2 = clf_2.predict(X_test) 
376.   
377. # Accuracy score  
378. print('Accuracy score of Decision Tree model 2 is:', accuracy_score(Y_test, pred_2)) 
379.   
380. # Confusion Matrix 
381. conmat_2 = confusion_matrix(Y_test, pred_2)  
382. print(conmat_2)  
383. plt.figure(figsize=(10,8))  
384. plt.title('Confusion Matrix of Decision Tree 2nd Model')  
385. sns.heatmap(conmat_2, annot=True, cmap="Purples", fmt="d",cbar=True) 
386.   
387. # Classification Report  
388. print('Classification Report of Decision Tree 2nd Model') 
389. print(classification_report(Y_test, pred_2)) 
390.   
391. # ROC-AUC score 
392. print('ROC-AUC score of 2nd Decision Tree Model is:', roc_auc_score(Y_test, pred_2)) 
393.   
394. """3) Feature importance""" 
395.   
396. X_2 = X[['person_income','person_home_ownership','loan_intent', 'loan_grade', 

'loan_percent_income']] 
397.   
398. X_2 
399.   
400. # Train, Test, Split 
401. X_train_2, X_test_2, Y_train_2, Y_test_2 = train_test_split(X_2, y, test_size = 0.2, 

random_state=152, stratify=y) 
402.   
403. # Define the model 
404. clf_3 = DecisionTreeClassifier() 
405.   
406. # Fit the model 
407. clf_3.fit(X_train_2,Y_train_2) 
408.   
409. # Make prediction 
410. pred_3 = clf_3.predict(X_test_2) 
411.   
412. # Accuracy score  
413. print('Accuracy score of Decision Tree model 3 is:', accuracy_score(Y_test_2, pred_3)) 
414.   
415. # Confusion Matrix 
416. conmat_3 = confusion_matrix(Y_test_2, pred_3)  
417. print(conmat_3)  
418. plt.figure(figsize=(10,8))  
419. plt.title('Confusion Matrix of Decision Tree 3rd Model')  
420. sns.heatmap(conmat_3, annot=True, cmap="Purples", fmt="d",cbar=True) 
421.   
422. # Classification Report  
423. print('Classification Report of Decision Tree 3rd Model') 
424. print(classification_report(Y_test_2, pred_3)) 
425.   
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426. # ROC-AUC score 
427. print('ROC-AUC score of 3rd Decision Tree Model is:', roc_auc_score(Y_test_2, pred_3)) 
428.   
429. """4) Smote""" 
430.   
431. # Train, Test, Split 
432. X_train_3, X_test_3, Y_train_3, Y_test_3 = train_test_split(X_smote, y_smote, test_size = 

0.2, random_state=152, stratify=y_smote) 
433.   
434. # Define the model 
435. clf_4 = DecisionTreeClassifier() 
436.   
437. # Fit the model 
438. clf_4.fit(X_train_3,Y_train_3) 
439.   
440. # Make prediction 
441. pred_4 = clf_4.predict(X_test_3) 
442.   
443. # Accuracy score  
444. print('Accuracy score of Decision Tree model 4 is:', accuracy_score(Y_test_3, pred_4)) 
445.   
446. # Confusion Matrix 
447. conmat_4 = confusion_matrix(Y_test_3, pred_4)  
448. print(conmat_4)  
449. plt.figure(figsize=(10,8))  
450. plt.title('Confusion Matrix of Decision Tree 4th Model')  
451. sns.heatmap(conmat_4, annot=True, cmap="Purples", fmt="d",cbar=True) 
452.   
453. # Classification Report  
454. print('Classification Report of Decision Tree 4th Model') 
455. print(classification_report(Y_test_3, pred_4)) 
456.   
457. # ROC-AUC score 
458. print('ROC-AUC score of 4th Decision Tree Model is:', roc_auc_score(Y_test_3, pred_4)) 
459.   
460. """5) Combine and Compare all ROC curves""" 
461.   
462. # roc curve for models 
463. fpr1, tpr1, thresh1 = roc_curve(Y_test, pred_1) 
464. fpr2, tpr2, thresh2 = roc_curve(Y_test, pred_2) 
465. fpr3, tpr3, thresh3 = roc_curve(Y_test_2, pred_3) 
466. fpr4, tpr4, thresh4 = roc_curve(Y_test_3, pred_4) 
467.   
468. # plot roc curves 
469. plt.style.use('seaborn') 
470.   
471. plt.figure(figsize=(20,10)) 
472.   
473. plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Initital') 
474. plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Hypertuned') 
475. plt.plot(fpr3, tpr3, linestyle='--',color='red', label='Feature Importance') 
476. plt.plot(fpr4, tpr4, linestyle='--',color='yellow', label='Smote') 
477. plt.plot([0,1],linestyle='--', color = 'blue') 
478. # title 
479. plt.title('ROC curves of Decision Tree Classification Models') 
480. # x label 
481. plt.xlabel('False Positive Rate') 
482. # y label 
483. plt.ylabel('True Positive rate') 
484. plt.legend(loc='best') 
485.   
486. plt.show() 
487.   
488. """### Random Forest Classifier 
489.   
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490. 1) Initial 
491. """ 
492.   
493. # Train, Test, Split 
494. X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, 

random_state=152, stratify=y) 
495.   
496. # Define the model 
497. clf_5 = RandomForestClassifier() 
498.   
499. # Fit the model 
500. clf_5.fit(X_train,Y_train) 
501.   
502. # Make prediction 
503. pred_5 = clf_5.predict(X_test) 
504.   
505. # Accuracy score  
506. print('Accuracy score of Random FOrest model 1 is:', accuracy_score(Y_test, pred_5)) 
507.   
508. # Confusion Matrix 
509. conmat_5 = confusion_matrix(Y_test, pred_5)  
510. print(conmat_5)  
511. plt.figure(figsize=(10,8))  
512. plt.title('Confusion Matrix of Random FOrest 1st Model')  
513. sns.heatmap(conmat_5, annot=True, cmap="Purples", fmt="d",cbar=True) 
514.   
515. # Classification Report  
516. print('Classification Report of Random Forest 1st Model') 
517. print(classification_report(Y_test, pred_5)) 
518.   
519. # ROC-AUC score 
520. print('ROC-AUC score of 1st Random Forest Model is:', roc_auc_score(Y_test, pred_5)) 
521.   
522. """2) Hypertuning""" 
523.   
524. # Setup the parameters and distributions to sample from: param_dist 
525. param_dist = {"n_estimators": [50, 150, 200, 250], 
526.               "max_depth": range(1,5), 
527.               "min_samples_split": range(10), 
528.               "min_samples_leaf": range(1,5), 
529.               "criterion": ["gini", "entropy"]} 
530.   
531. # Define Hypertuning model 
532. rf_cv = RandomizedSearchCV(estimator=RandomForestClassifier(), param_distributions= 

param_dist, cv=5, return_train_score=False) 
533.   
534. # Fit 
535. rf_cv.fit(X_train,Y_train) 
536.   
537. # Best parameters 
538. print('Best parameters for Random Forest Classifier are:', rf_cv.best_params_) 
539.   
540. # Train, Test, Split 
541. X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, 

random_state=152, stratify=y) 
542.   
543. # Define the model 
544. clf_6 = RandomForestClassifier(n_estimators=250, min_samples_split=5, min_samples_leaf=1, 

max_depth=4, criterion='entropy') 
545.   
546. # Fit the model 
547. clf_6.fit(X_train,Y_train) 
548.   
549. # Make prediction 
550. pred_6 = clf_6.predict(X_test) 
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551.   
552. # Accuracy score  
553. print('Accuracy score of Random Forest model 2 is:', accuracy_score(Y_test, pred_6)) 
554.   
555. # Confusion Matrix 
556. conmat_6 = confusion_matrix(Y_test, pred_6)  
557. print(conmat_6)  
558. plt.figure(figsize=(10,8))  
559. plt.title('Confusion Matrix of Random Forest 2nd Model')  
560. sns.heatmap(conmat_6, annot=True, cmap="Purples", fmt="d",cbar=True) 
561.   
562. # Classification Report  
563. print('Classification Report of Random Forest 2nd Model') 
564. print(classification_report(Y_test, pred_6)) 
565.   
566. # ROC-AUC score 
567. print('ROC-AUC score of 2nd Random Forest Model is:', roc_auc_score(Y_test, pred_6)) 
568.   
569. """3) Feature Importance""" 
570.   
571. X_3 = X[['person_income','person_home_ownership','loan_grade', 'loan_int_rate', 

'loan_percent_income']] 
572.   
573. # Train, Test, Split 
574. X_train_4, X_test_4, Y_train_4, Y_test_4 = train_test_split(X_3, y, test_size = 0.2, 

random_state=152, stratify=y) 
575.   
576. # Define the model 
577. clf_7 = RandomForestClassifier() 
578.   
579. # Fit tme model 
580. clf_7.fit(X_train_4,Y_train_4) 
581.   
582. # Make prediction 
583. pred_7 = clf_7.predict(X_test_4) 
584.   
585. # Accuracy score  
586. print('Accuracy score of Random Forest model 3 is:', accuracy_score(Y_test_4, pred_7)) 
587.   
588. # Confusion Matrix 
589. conmat_7 = confusion_matrix(Y_test_4, pred_7)  
590. print(conmat_7)  
591. plt.figure(figsize=(10,8))  
592. plt.title('Confusion Matrix of Random Forest 3rd Model')  
593. sns.heatmap(conmat_7, annot=True, cmap="Purples", fmt="d",cbar=True) 
594.   
595. # Classification Report  
596. print('Classification Report of Random Forest 3rd Model') 
597. print(classification_report(Y_test_4, pred_7)) 
598.   
599. # ROC-AUC score 
600. print('ROC-AUC score of 3rd Random Forest Model is:', roc_auc_score(Y_test_4, pred_7)) 
601.   
602. """4) Smote""" 
603.   
604. # Train, Test, Split 
605. X_train_3, X_test_3, Y_train_3, Y_test_3 = train_test_split(X_smote, y_smote, test_size = 

0.2, random_state=152, stratify=y_smote) 
606.   
607. # Define the model 
608. clf_8 = RandomForestClassifier() 
609.   
610. # Fit tme model 
611. clf_8.fit(X_train_3,Y_train_3) 
612.   
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613. # Make prediction 
614. pred_8 = clf_8.predict(X_test_3) 
615.   
616. # Accuracy score  
617. print('Accuracy score of Random Forest model 4 is:', accuracy_score(Y_test_3, pred_8)) 
618.   
619. # Confusion Matrix 
620. conmat_8 = confusion_matrix(Y_test_3, pred_8)  
621. print(conmat_8)  
622. plt.figure(figsize=(10,8))  
623. plt.title('Confusion Matrix of Random Forest 4th Model')  
624. sns.heatmap(conmat_8, annot=True, cmap="Purples", fmt="d",cbar=True) 
625.   
626. # Classification Report  
627. print('Classification Report of Random Forest 4th Model') 
628. print(classification_report(Y_test_3, pred_8)) 
629.   
630. # ROC-AUC score 
631. print('ROC-AUC score of 4th Random Forest Model is:', roc_auc_score(Y_test_3, pred_8)) 
632.   
633. """5) Combine and Compare all ROC Curves""" 
634.   
635. # roc curve for models 
636. fpr1, tpr1, thresh1 = roc_curve(Y_test, pred_5) 
637. fpr2, tpr2, thresh2 = roc_curve(Y_test, pred_6) 
638. fpr3, tpr3, thresh3 = roc_curve(Y_test_4, pred_7) 
639. fpr4, tpr4, thresh4 = roc_curve(Y_test_3, pred_8) 
640.   
641. # plot roc curves 
642. plt.style.use('seaborn') 
643.   
644. plt.figure(figsize=(20,10)) 
645.   
646. plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Initital') 
647. plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Hypertuned') 
648. plt.plot(fpr3, tpr3, linestyle='--',color='red', label='Feature Importance') 
649. plt.plot(fpr4, tpr4, linestyle='--',color='yellow', label='Smote') 
650. plt.plot([0,1],linestyle='--', color = 'lightblue') 
651. # title 
652. plt.title('ROC curves of Random Forest Classification Models') 
653. # x label 
654. plt.xlabel('False Positive Rate') 
655. # y label 
656. plt.ylabel('True Positive rate') 
657. plt.legend(loc='best') 
658.   
659. plt.show() 
660.   
661. """### KNN Classifier 
662.   
663. 1) Initial 
664. """ 
665.   
666. # Train, Test, Split 
667. X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, 

random_state=152, stratify=y) 
668.   
669. # Define the model 
670. clf_9 = KNeighborsClassifier() 
671.   
672. # Fit the model 
673. clf_9.fit(X_train,Y_train) 
674.   
675. # Make prediction 
676. pred_9 = clf_9.predict(X_test) 
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677.   
678. # Accuracy score  
679. print('Accuracy score of KNN model 1 is:', accuracy_score(Y_test, pred_9)) 
680.   
681. # Confusion Matrix 
682. conmat_9 = confusion_matrix(Y_test, pred_9)  
683. print(conmat_9)  
684. plt.figure(figsize=(10,8))  
685. plt.title('Confusion Matrix of KNN 1st Model')  
686. sns.heatmap(conmat_9, annot=True, cmap="Purples", fmt="d",cbar=True) 
687.   
688. # Classification Report  
689. print('Classification Report of KNN 1st Model') 
690. print(classification_report(Y_test, pred_9)) 
691.   
692. # ROC-AUC score 
693. print('ROC-AUC score of 1st KNN Model is:', roc_auc_score(Y_test, pred_9)) 
694.   
695. """2) Hypertuning""" 
696.   
697. # Setup the parameters and distributions to sample from: param_dist 
698. param_dist = {"n_neighbors": range(1,15), 
699.               "metric": ['euclidean', 'manhattan', 'chebyshev', 'minkowski']} 
700.   
701. # Define Hypertuning model 
702. knn_cv = RandomizedSearchCV(estimator=KNeighborsClassifier(), param_distributions= 

param_dist, cv=5, return_train_score=False) 
703.   
704. # Fit 
705. knn_cv.fit(X_train,Y_train) 
706.   
707. # Best parameters 
708. print('Best parameters for KNN Classifier are:', knn_cv.best_params_) 
709.   
710. # Train, Test, Split 
711. X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, 

random_state=152, stratify=y) 
712.   
713. # Define the model 
714. clf_10 = KNeighborsClassifier(n_neighbors=13, metric='euclidean') 
715.   
716. # Fit the model 
717. clf_10.fit(X_train,Y_train) 
718.   
719. # Make prediction 
720. pred_10 = clf_10.predict(X_test) 
721.   
722. # Accuracy score  
723. print('Accuracy score of KNN model 2 is:', accuracy_score(Y_test, pred_10)) 
724.   
725. # Confusion Matrix 
726. conmat_10 = confusion_matrix(Y_test, pred_10)  
727. print(conmat_10)  
728. plt.figure(figsize=(10,8))  
729. plt.title('Confusion Matrix of KNN 2nd Model')  
730. sns.heatmap(conmat_10, annot=True, cmap="Purples", fmt="d",cbar=True) 
731.   
732. # Classification Report  
733. print('Classification Report of KNN 2nd Model') 
734. print(classification_report(Y_test, pred_10)) 
735.   
736. # ROC-AUC score 
737. print('ROC-AUC score of 2nd KNN Model is:', roc_auc_score(Y_test, pred_10)) 
738.   
739. """3) Feature Importance""" 
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740.   
741. X_4 = X[['person_age', 'person_income', 'person_home_ownership', 'person_emp_length', 

'loan_amnt']] 
742.   
743. # Train, Test, Split 
744. X_train_5, X_test_5, Y_train_5, Y_test_5 = train_test_split(X_4, y, test_size = 0.2, 

random_state=152, stratify=y) 
745.   
746. # Define the model 
747. clf_11 = KNeighborsClassifier() 
748.   
749. # Fit the model 
750. clf_11.fit(X_train_5,Y_train_5) 
751.   
752. # Make prediction 
753. pred_11 = clf_11.predict(X_test_5) 
754.   
755. # Accuracy score  
756. print('Accuracy score of KNN model 3 is:', accuracy_score(Y_test_5, pred_11)) 
757.   
758. # Confusion Matrix 
759. conmat_11 = confusion_matrix(Y_test_5, pred_11)  
760. print(conmat_11)  
761. plt.figure(figsize=(10,8))  
762. plt.title('Confusion Matrix of KNN 3rd Model')  
763. sns.heatmap(conmat_11, annot=True, cmap="Purples", fmt="d",cbar=True) 
764.   
765. # Classification Report  
766. print('Classification Report of KNN 3rd Model') 
767. print(classification_report(Y_test_5, pred_11)) 
768.   
769. # ROC-AUC score 
770. print('ROC-AUC score of 3rd KNN Model is:', roc_auc_score(Y_test_5, pred_11)) 
771.   
772. """4) Smote""" 
773.   
774. # Train, Test, Split 
775. X_train_3, X_test_3, Y_train_3, Y_test_3 = train_test_split(X_smote, y_smote, test_size = 

0.2, random_state=152, stratify=y_smote) 
776.   
777. # Define the model 
778. clf_12 = KNeighborsClassifier() 
779.   
780. # Fit the model 
781. clf_12.fit(X_train_3,Y_train_3) 
782.   
783. # Make prediction 
784. pred_12 = clf_12.predict(X_test_3) 
785.   
786. # Accuracy score  
787. print('Accuracy score of KNN model 4 is:', accuracy_score(Y_test_3, pred_12)) 
788.   
789. # Confusion Matrix 
790. conmat_12 = confusion_matrix(Y_test_3, pred_12)  
791. print(conmat_12)  
792. plt.figure(figsize=(10,8))  
793. plt.title('Confusion Matrix of KNN 4th Model')  
794. sns.heatmap(conmat_12, annot=True, cmap="Purples", fmt="d",cbar=True) 
795.   
796. # Classification Report  
797. print('Classification Report of KNN 4th Model') 
798. print(classification_report(Y_test_3, pred_12)) 
799.   
800. # ROC-AUC score 
801. print('ROC-AUC score of 4th KNN Model is:', roc_auc_score(Y_test_3, pred_12)) 
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802.   
803. """5) Combine and Compare all ROC curves""" 
804.   
805. # roc curve for models 
806. fpr1, tpr1, thresh1 = roc_curve(Y_test, pred_9) 
807. fpr2, tpr2, thresh2 = roc_curve(Y_test, pred_10) 
808. fpr3, tpr3, thresh3 = roc_curve(Y_test_5, pred_11) 
809. fpr4, tpr4, thresh4 = roc_curve(Y_test_3, pred_12) 
810.   
811. # plot roc curves 
812. plt.style.use('seaborn') 
813.   
814. plt.figure(figsize=(20,10)) 
815.   
816. plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Initital') 
817. plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Hypertuned') 
818. plt.plot(fpr3, tpr3, linestyle='--',color='red', label='Feature Importance') 
819. plt.plot(fpr4, tpr4, linestyle='--',color='yellow', label='Smote') 
820. plt.plot([0,1],linestyle='--', color = 'lightblue') 
821. # title 
822. plt.title('ROC curves of KNN Classification Models') 
823. # x label 
824. plt.xlabel('False Positive Rate') 
825. # y label 
826. plt.ylabel('True Positive rate') 
827. plt.legend(loc='best') 
828.   
829. plt.show() 
830.   
831. """Comparison Results""" 
832.   
833. # ROC curves for best model of each algorithm 
834.   
835. # roc curve for models 
836. fpr1, tpr1, thresh1 = roc_curve(Y_test_3, pred_4) 
837. fpr2, tpr2, thresh2 = roc_curve(Y_test_3, pred_8) 
838. fpr3, tpr3, thresh3 = roc_curve(Y_test, pred_10) 
839.   
840.   
841.   
842. # plot roc curves 
843. plt.style.use('seaborn') 
844.   
845. plt.figure(figsize=(20,10)) 
846.   
847. plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Decision Tree') 
848. plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Random Forest') 
849. plt.plot(fpr3, tpr3, linestyle='--',color='red', label='KNN') 
850. plt.plot([0,1],linestyle='--', color = 'lightblue') 
851. # title 
852. plt.title('ROC curves of Best Model of each Machine Learning algorithm') 
853. # x label 
854. plt.xlabel('False Positive Rate') 
855. # y label 
856. plt.ylabel('True Positive rate') 
857. plt.legend(loc='best') 
858.   
859. plt.show() 
860.   
861. # ROC curves for best model of each algorithm 
862.   
863. # roc curve for models 
864. fpr1, tpr1, thresh1 = roc_curve(Y_test, pred_2) 
865. fpr2, tpr2, thresh2 = roc_curve(Y_test, pred_5) 
866. fpr3, tpr3, thresh3 = roc_curve(Y_test, pred_10) 
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867.   
868.   
869.   
870. # plot roc curves 
871. plt.style.use('seaborn') 
872.   
873. plt.figure(figsize=(20,10)) 
874.   
875. plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Decision Tree') 
876. plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Random Forest') 
877. plt.plot(fpr3, tpr3, linestyle='--',color='red', label='KNN') 
878. plt.plot([0,1],linestyle='--', color = 'lightblue') 
879. # title 
880. plt.title('ROC curves of Best Model of each Machine Learning algorithm (Real Data)') 
881. # x label 
882. plt.xlabel('False Positive Rate') 
883. # y label 
884. plt.ylabel('True Positive rate') 
885. plt.legend(loc='best') 
886.   
887. plt.show() 
888.   
889. # ROC curves for best model of each algorithm 
890.   
891. # roc curve for models 
892. fpr1, tpr1, thresh1 = roc_curve(Y_test_3, pred_4) 
893. fpr2, tpr2, thresh2 = roc_curve(Y_test_3, pred_8) 
894. fpr3, tpr3, thresh3 = roc_curve(Y_test_3, pred_12) 
895.   
896.   
897.   
898. # plot roc curves 
899. plt.style.use('seaborn') 
900.   
901. plt.figure(figsize=(20,10)) 
902.   
903. plt.plot(fpr1, tpr1, linestyle='--',color='orange', label='Decision Tree') 
904. plt.plot(fpr2, tpr2, linestyle='--',color='green', label='Random Forest') 
905. plt.plot(fpr3, tpr3, linestyle='--',color='red', label='KNN') 
906. plt.plot([0,1],linestyle='--', color = 'lightblue') 
907. # title 
908. plt.title('ROC curves of Best Model of each Machine Learning algorithm (Smote Data)') 
909. # x label 
910. plt.xlabel('False Positive Rate') 
911. # y label 
912. plt.ylabel('True Positive rate') 
913. plt.legend(loc='best') 
914.   
915. plt.show() 
916.   
917.   
918.   
919.   
920.   
921.   
922.   
923.   
924.   
925.   

 


