University of Macedonia
Department of Applied Informatics

Doctorate in Computer Science

Parallel and distributed processing of
big data streams and scheduling
algorithms

Nicoleta Tantalaki

Supervisor: Stavros Souravlas, Assistant Professor, University of
Macedonia
Advisors: Manos Roumeliotis, Professor, University of Macedonia,
Konstantinos Psanis, Associate Professor, University of Macedonia

February, 2021

Parallel and distributed processing of big data streams and scheduling algorithms
Copyright® 2020 Nicoleta Tantalaki
E-mail: nicoleta@uom.gr
Department of Applied Informatics, University of Macedonia
A thesis submitted for the degree of Doctor of Philosophy. February, 2021

Acknowledgements

There are many people without whom this thesis would not have been possible, and I
would like to thank all of them. First, I would like to express my earnest appreciation
to Prof. Stavros Souravlas, my mentor and supervisor, for his guidance, patience,
inspiration, and friendship. Prof. Souravlas is a great advisor and I am very thankful
for his constant support and valuable help during these years. I really appreciate his
knowledge in computer science, brilliant mind and skill in leading me to the threshold
of my mind. He never stopped helping me in improving my scientific, technical, and
writing skills. All my achievements would not have been possible if not supported by
him.

I am also grateful to Prof. Manos Roumeliotis for his insightful comments and
encouragement. Prof. Roumeliotis, together with Prof. Souravlas, encouraged me
towards the PhD studies and created a very pleasurable and genuine environment,
that initiated and fostered my passion in doing research. I must also acklowledge
Prof. Konstantinos Psanis, as his comments and remarks were essential for the quality
improvement of this thesis.

Moreover, I am thankful to Lauren Jones, Patrycja Lis and the rest of the Google’s
talent outreach team that hosted my visit to conferences in the UK and the Netherlands.
They opened a new world to me, and helped me get informed about modern technological
advancements and current trends in computer science. My participation in their program
initially triggered my will for research and then widened my research thoughts from
various perspectives. I also enjoyed the possibility of meeting very interesting people
and having fruitful conversations with them.

I am also grateful to all my friends with whom I shared ideas but most importantly
the laughters I needed to keep up working even under demanding conditions. In
particular, I would like to thank George Kalpakis, senior research associate at the
Centre for Research and Technology Hellas, for sharing his expertise and knowledge,
Zacharoula Papamitsiou, senior researcher at the Norwegian University of Science and
Technology, for the motivation and her invaluable feedback, and Konstantinos Chalkias,
cryptographer at Facebook, for giving me the necessary inspiration at the beginning of
my studies.

Most importantly, I would like to thank my parents, Charalampos and Georgia, that
made me who I am, love seeking knowledge and truth, for their infinite support through
my entire life and studies. I would also like to express my unconditional thankfulness
to my brother Themis, and to Constantinos who incessantly believed in my efforts, for
their encouragement, and patience. This thesis is dedicated to these people.

ii

Contents

1__Intr ion|
(1.1 Big data processing| . . .

1 Publications|

2 Big Data Stream Processing|

[2.1 Issues/Requirements in Big Data Stream Processing|

2.2 DSP Frameworks Assessmentl

[2.2.1 Evaluation and Comparison of Stream Processing Frameworks| .

[2.2.2 Comparison Results|

3 Related workl

[3.1 Data Stream Processing Systems (DSPS)|.

[3.2 Heuristic Scheduling Approaches|.

[3.2.1 Static Approaches Using Mini-batches|.

[3.2.2 Static Approaches in Operator-based Systems|

[3.2.3 Dynamic Approaches Using Mini-batches|

[3.2.4 Dynamic Approaches in Operator-based Systems|

3.3 Discussion].

[4 Task allocation and scheduling|

BT Prolining S »

#4.3.2 Task Scheduling|

“4.3.3 Overall Complexity|.

.4 Motivating Examples| . .
.41 Random Topology]
W42 Linear Topology]

iii

N O R

oo O\

11
17
17
21

24
24
26
26
29
31
32
34

[Experimental Results|
[5.1 Experimental Setup|

[5.2 Average Total Latency|,

[5.3 Percentage of Buffer

Memory Used|

[5.4 Load Balancing| . .
5.5 Throughput|

[6 An Application Example-Decision Making in IoT-enabled Agriculture|

[6.1 Precision Agriculture| o oo oL

[6.1.1 Decision making in Precision Agriculture|

[6.1.2 Challenges and Limitations|.

[6.2 Big Data in Agriculture] Lo oo

[6.2.1 Agricultural Big Data Systems|

[6.2.1.1 Advanced sensor technology systems|

[6.2.1.2 Risk management systems|.

[6.2.1.3 Agricultural management systems|.

[6.2.2 Challenges of Big Data Adoption in Agriculture|.
6221 Datacollectionl.

[6.2.2.2 Analysis techniques|

[6.2.2.3 Computing infrastructure|

[6.2.2.4 Storage and interpretation|

I(!‘:E Di:igu:i:ilgzl“

/__Conclusions|

iv

62
62
64
65
66
67

71
71
74
75
76
76
77
78
79
80
81
82
83
84

Abstract

Nowadays, we are witnessing the development of the so-called Internet of Things (IoT),
where devices collect data and exploit interconnectivity to transmit it for processing in the
cloud. Worldwide streams are expanding continuously, resulting in an accelerating need
to efficiently and timely handle these large amounts of data that arrive continuously.
Cloud computing technology with superior computational power and high reliability
rises as a promising solution for the challenges posed by data stream processing.

In-memory computing is used to meet performance related requirements like
latency and throughput that are extremely important in Data Stream Processing
(DSP) applications. Several different technologies have emerged specifically to
address the challenges of processing high-volume, real-time data, exploiting on-the-
fly computations. Distributed Stream Processing Systems (DSPSs) assign applications’
processing tasks to the available resources and route streaming data between them.
Efficient scheduling of processing tasks can reduce application latencies and eliminate
network congestions. However, the available in-built scheduling techniques of DSPSs
are far from optimal.

In this thesis, we need to solve the task scheduling problem which focuses on
which tasks to be allocated on which resources, and controls the order of job execution.
An overview of the available DSPSs is presented and a classification of the existing
scheduling policies is provided. In this way, useful information about the matters to
consider when designing an effective scheduling policy is revealed. Then, a general
formulation of the task scheduling problem is presented and a matrix-based, linear
scheme is provided. Differently from existing research efforts, that rarely consider
memory utilization in their analysis, the derived scheme is performed in a memory-
efficient and well-balanced manner. It takes advantage of pipelines to efficiently handle
applications, where there is need for heavy communication (all-to-all) between tasks,
assigned to pairs of components.

The scheme proposed in this thesis is static. However, when it comes to streams
of data, the input load usually fluctuates drastically over time. Dynamic schemes use
run-time adaptations and task re-scheduling to handle possible changes in the cluster but
this usually results in significant downtime and performance degradation. Rather than
re-configuring online the tasks’ allocation, the proposed scheme handles queue waiting
times efficiently and tries to maintain a stable and robust configuration by balancing
load between the cluster’s nodes. Of course, an adaptive version this approach would
increase its performance, so this extension is left for future work.

For concreteness, this approach is illustrated based on Apache Storm semantics.
The performance evaluation depicts the importance of constraining the required buffer
space and achieving load balance to improve the system’s performance and overcome
the challenges of running DSP applications. The proposed scheme was compared to
two state-of-the-art strategies; the default Storm scheduler and R-Storm. It was found
to outperform both the other strategies in terms of throughput, achieving an average of
25%-45% improvement under various scenarios, mainly as a result of reduced buffering
(= 45% less memory).

At the end of this work, the contribution of real-time data processing in an application
field is presented. The field of agriculture has to face difficult challenges due to numerous
technological transformations used for increasing productivity and products quality. In
precision agriculture, a key component is the use of IoT and various items like sensors,
control systems, robotics and autonomous vehicles that produce high velocity data
streams. Current advances in IoT and cloud computing have led to the development
of new applications that have great potential in precision agriculture. However, several
challenges arise as open research fields and future directions are revealed.

vi

[Teptindm

g Uépeg Jag mapatnpeiton pa expnxtixd avdmtuén Tou Awdwtiou twv Hpoyudtoy,
6mou TARUOC POENTHOV CUOKELWY GUVBEOVTOL X YENoYLoToloLy To Aladixtuo, Yo va
GUAAEYOUY DEDOUEVOL XAl VUL TOL UETUPELOUY OE XATOLNL APYLTEXTOVIXT) VEQOUS, HOTE Vi
UTOOTOLUY XATIAANAT emelepyacia. NUVEYOUEVEC POEC BEBOUEVKY GE OAO TOV XOGUO
AVUTTOGCOVTOL OLOXMS, ONULOVRYMVTAS ETLTOXTLIXY ovay®)) Vo OLOLYELPLOTOUUE QUTOV
TOV PEYGAO OYXO BEBOUEVWV TOU XUTUPUAVEL GUVEYOS, EYHOUE UL ATOTEAEOUATIXSL.
Ou teyvoloyieg uTohOYIOTIXC VEQOUS Y3QT GTNV LOYURT UTOAOYLOTIXT| DUVOUT XAl
Vv o€lomoTiol ToU TaEEYOUY, QAiVOVTOL XOVES VOl VTWUETWTICOUY TIC TPOXANOELS
mou yapaxtnelCouy Ty enclepyacia POV BEBOUEVWLYV.

Movtéha uTtohoYIoTIXAC UVAUNS YENOWOTO00VTAL, TEOXEWEVOU Vo ETLTELY YO0V
AMOUTACEL, amddooNe OMwe 1 Ypovoxaduotéenon xat 1 puiuanddoor, mou cival
eCoupeTind onpavTXES Yl xdle eqapuoyt| enclepyaciac powv dedopévewy (Data
Steam Processing- DSP). ITAn0cpa SlapopeTindy TeYVOLOYLOY el TEOXDPEL, EW0XE
YL VO OVTYETOTIOEL TIC TEOXANOES TNe emelepyaoiag LPmAol Oyxou BeBOUEVLV
OE TEAYHATIXO YPOVO, EXUETUAAELOUEYY uTohoYlopoUe on-the-fly. Kotaveunuéva ou-
oThuaTa emelepyasiag oMV BEBOUEVLY avVOIETOUY TIC ETEEOUC EQYAOIEC WULAC
EQUPUOYNC OTOUG BLETYIOUE TOPOUS %ot BEOUOAOYOUY POEC BEDOUEVKY UECA aTtd
oautéc. H amoteieoputind OpopoAOYNOY TWV EQYACWOY UTOPEl Vo UELOOEL TIg
YEOVOXUUC TERNOEIC LG EQUOUOYNC XOL VO TEPLORIGEL TN GuUPOENCT 6To dixTUO.
(261600, oL TEYVIXEC BPOHOAGYNONG oL Elvol EVOWUATWUEVES oTa dlodéotua DSP
oo T eV elvon ol BEATIOTEC BUVATEC.

Ynv mopovoa dlaten, yivetow mpoomdieln emiluong Tou mEOPAAuATO TNg
YPOVOOROUOAOYNONG TV EPYOOLOY GE CUOTAUATA ETELEQYACIAC POWY OEDOUEVLV.
To mpdéfinuo auté coTdlel oto Tmoleg epyooiec mpénel va tomovetndolv, ot
Toloug dtadéoiuoug mépoug xaL EAEYYEL TN OElpd TNG eXTEAEONC Toug. Apyixd,
yiveTow Wior EMOXOTNOY TV SLodéctuwy cuoTnudtwy DSP xou wio xatnyoplonoinon
TV OLWECUWY TEYVIXWY DPOUOAOYNONG antd UeAETH oyetixc Pihoypaglagc. Me
QUTOV TOV TPOTO, TEOEXUPAY Ol TUPAYOVTEC Tou TEETEL Vo AauBdvovTon umodn,
OToy OYEOWGETOL UKl AMOTEAEOUATIX TEYVXT Opopoldynone. ‘Emeita, yiveton
uovteAoToinoT Tou TEOBAAUNTOS Xt TaEoUGdlETon Evar YRouuxd oy Yua Bactouévo
OE UETACYNUATIOUOVC TVAXWY. Mg aviideon Pe T UTdEYOUOES TEOTACES TNG
BiBhoypagiog mou omdvia Aaudvouy UTOYN TNV XATAVIAKCT] UVAUNG OTNY oVEAUCT
TOUG, TO OYNHUO TOU TEOTElvVETL €8¢ eXTEAE(TOL PE €vay TEOTO Tou OloyetptleTan
OMOTEAEOUATIXG TN PVAUT ot EiVaL LlOOPROTNUEVO ¢ Teog Tov @opto. To oyfux
OUTO, EXUETAAAEVETOL TNV TEYVIXY| TNG OLUCWANVWONG, TEOXEWEVOU VoL Ol ELRIo TEL
OMOTENEOUATING EQUPUOYES, OTIOU UTEEYEL ovay XY YLl TAY|n) ETOWVGVIN UETOED TwV
EQYUOLOY OLUPORETIXMY TEAECTWV TNG EQPAPUOYTC.

To oyfua Tng mapoloag ueretn ebvan oTatind. (261600, OTNY TERITTWOT TWV POWY
OEDOUEVWY, O POETOC ELOOOOU PETUPBIAAETOL DRUC TIXG UE TNV TdEodo Tou Yeovou. Tu
OLUVOIXE. Oy UATA TEOCUEUOLOVTOL XAl TEUYUATOTOOUY XUTIANAES UETABOAEC 0T
OPOUOAOYTOT) TWV ERYUCLOY XAUTA T1) OLEAOKELN EXTEAECTC LG EQUPUOYHC, TROXEWEVOU
VO OLOYELPLOTOLY amoTeEAEoUUTIXG TIC aAlayéc oto cluster. Kdt té€tolo, duwg,

vii

odnyel o onuavTxég xaducteprioelg xat petwon g anddoorg tou cucthuatos. To
TPOTEWOUEVO Yot ovTE Vo ToOGUpUOLEL EX VEOU XOTA T1) BLEEXELL TG EXTEAEGNC, TNV
avdleoT TwV EMPEPOUC EQYACLOV LG EQURUOYNC, YEWILETAL UE EVOV UTOTEAEOUATING
TEOTO TIG OUPEC avaovAg xat pooToel var dlatnerioet o otadepn xou toyuen
eVduLoT, LooPEOTOVTAS TOV POETO UETALL Twv xOufuv Tou cluster. Magpog, Ui
ouvaLxy| €xdoon TNng Tapolcug TeocEyYlong Ya Pehtiwve TNV amddoch Tng, YU autd
xon 1) eméxTooT auth, ebvan pio amd TIC TEOTAOELS Yol UEAAOVTIXT EQEUVAL

o Adyoug euxplvelog, 1 Topoloo tpocéyylon yivetow ue Bdon tn onuactoloyio
Tou cuoTAuatog Apache Storm. H amotiunon tng amodotxdInTog TOU OYAUATOS
UTOOELXVUEL TNV OTUociol TOU TEPLOPIOUOD TN OMOUTOUUEVNS EVOLIUEOT UVAUNG XAl
¢ e€looppdnnong poeTou ot Peltinon g anddoong TOL CUCTAUNTOS XAl GTNV
OVTWUETOTLON TOV TROXAACEWY TNG EXTEAEOTS EQUOUOY®Y Tou enelepydlovial PoEg
oedopévewy. Katd v extéheon tov nelpaudtonv, tpaypatorotjinxe cdyxplon tou
TPOTEWVOUEVOL OYAUATOS UE TOV TEoXAopIoNEVO dpouoloynty) Tou Apache Storm,
xododg xan pe tov dpoporoynth R-Storm mou mpoéxude améd tn Pihoypagpux
avaoxornon. To moupdv oyfua Cemépaoce oe eminedo puduanddoons xar To BVO
oyfuata, tapéyoviac Beltinon g téEng tou 25%-45% und SupopeTixd cevdpla,
xupleg Yden ot pelworn yerong TG EVOLBUESTC UVHUNG (~45% Ayotepen pw’]pn).

Y10 Téhog g Tapoloag SluTE3ng, TapouctdleTal 1) CLVELCPOEY TNE emelepyaoiug
OEDOUEVWY OF TPAYHATIXG YpOvo o€ €va tedlo egapuoyrc. H yperjon cuoxeuwy IoT
A0 EQYUAEIWY OTOEG TOL AUTOVOUL OY LT, OL ACUQUATOL UGUNTARES X0 OL POUTOTIXES
XUTUOXEVES, TIOU TAPBYOUY GUVEYOS POEC BEBOUEVWY LYNATC TayUTNTAC, ATOTENODY
2l oty QopuoyY| Teax TGV Yewpyiag axpiBeiag. O mpwtoyevic Touéas xohelton
ONUEQEOL VOL AVTIIETWTIOEL LOLUTEPES TPOXANGELS Y8 GTNY TANUMEN TOV TEY VOAOYIXWY
UETAOY NUATIOUOY TOU TEXYHATOTOLOOVTAL, OOTE Vo aLENIEL 1) ToporywytxoTnToL XA 1)
TOLOTNTA TWV TUPAYOUEVWY TREOIOVIWY e oefaoud oto tepi3drroy. Néeg eqgupuoyec
UE PEYBEAES BUVATOTNTES €Y OLY 0EY(OEL VoL VAT TUGGOVTAL, TEOCTIOWVTAS VO EXUETAUA-
AeuTolV TNV TEdodo Tou Aladixtiou Ty Hpoyudtwy xou Tng UTohoYIG TIXAC VEQOUC.
261600, oL TEOXANOELS Elval TOAAES KO QPUVEQWVOUV VEX oVOLY TS TEDL EPELVAS XAl
UEAAOVTIXEC TAOELS.

viii

Chapter 1

Introduction

"Time isn’t the main thing. It’s the only thing."-Miles Davis

Over the past 20 years data has increased in a large scale and in various fields. This
tendency is accelerated by many recent developments. Devices interact with the external
environment to support decision-making. The reduced cost of sensing devices and
smartphones, together with the (almost) ubiquitous Internet connectivity, has fostered
the wide diffusion of new pervasive services and devices. Enhanced medical devices,
agricultural drones, crop yield mapping sensors, factory automation sensors, positioning
and tracking sensors in road or railway transport compose an endless list of products
and services. We are witnessing to the development of the so-called Internet of Things
(IoT), where devices collect data and exploit interconnectivity to transmit it to be stored
and processed in the cloud.

The term of big data is used exactly to refer to this increase in the volume of data
that is difficult to be stored, processed and analyzed through traditional technologies.
Big data is characterized by the 4 Vs, namely, volume, variety, velocity and value
that clearly depict the need for technologies, which require new forms of integration
to uncover fast, hidden values from large datasets that are diverse, complex and of
massive scale. Industries are more than ever interested in the high potential of big data
and many government agencies announce major plans to accelerate big data research
and applications. As the amount of data grows, the adoption of advanced processing
solutions and the need to use models to analyse it as it arrives, becomes imperative.

1.1 Big data processing

Parallel and distributed computing is a matter of predominant importance for alleviating
scale and timeline challenges in big data processing. The addition of cloud technologies
created new trends that achieve significant performance gains in data processing [1].
Two different processing modes are commonly used to elaborate data over distributed
computing resources; the batch and the stream processing.

Chapter 1. Introduction

In batch processing, data is stored usually on a distributed file system and the results
of processing are produced in batches. It is efficient in processing large data volumes, as
I/O operations on multiple data-items are batched. Batch processing systems compute
results that are derived from all the data they encompass. Jobs are set up so that they can
be completed without any human interaction. However, the time spent on processing
should not be an issue for the user and depending on the size of the data being processed
and the computational power of the system, output can be delayed significantly [2].
MapReduce [3]] is a batch-oriented data processing paradigm. Hadoop [4] is the most
used open source MapReduce implementation, available by several cloud providers. Itis
a programming model for processing large data sets with a distributed algorithm running
on many nodes that operate in parallel. In general, MapReduce is perfect for the delayed
data processing but for near real-time routines it doesn’t fit [2].

A broad class of data management and analysis problems requires support for
processing unbounded data with low latency and high throughput. Such problems
need continuous real-time processing, and sometimes require immediate action upon
the arrival of incoming data streams [5]]. In stream processing data is processed on-
the-fly, i.e., without storing it, so it can produce results in a near real-time fashion.
In-memory computing is used to meet the performance related requirements that are
important in streaming applications [6]. The area of stream processing is not new.
In 2005, Stonebraker et al. [7]] defined the requirements that should be met by a real-
time stream processing system to handle stream processing (or streaming) applications.
Recently, the multiplication of data stream sources (sensor networks, connected devices
etc) that is observed in the context of 10T, the consequent advent of the big data era and
the diffusion of the cloud computing paradigm have renewed the interest in streaming
applications. Many Distributed Stream Processing Systems (DSPSs) have emerged to
support processing of this data when it really matters, in real-time, the time it arrives.

1.2 Research motivation

The growth of data stream sources in the context of IoT promotes the need to use models
to process and analyse data as it arrives. More and more modern applications impose
tighter time constraints on a particular event. The resultant analysis yields information
that can provide companies with visibility into many aspects of their business and
customer activity, and enables them to respond rapidly to emerging situations. Much
of the data that companies receive in real time is more valuable at the time it arrives.
Environmental monitoring, fraud detection, emergency response are just a few examples
of applications that require timely processing of information. For instance, a public
transportation company can exploit information regarding user mobility and presence of
events within the city, to adjust in real time the number of buses within the city and their
route. Businesses can track changes in public preference on their brands and products by
continuously analyzing social media streams. There is no point in detecting a potential
buyer after the user leaves the e-commerce site. There is also no point in detecting
a credit card fraud after a transaction is completed [[8]. As an example, EBay detects

Chapter 1. Introduction

frauds from PayPal usage by analyzing 5 million real-time transactions every day. In
Linkedin’s streaming infrastructure, over 2 trillion messages are processed per day by its
DSPS, Samza [9]. Online machine learning is also another promising use case. There
are numerous use cases making the need for stream processing imperative.

Initially, it was interesting to identify what can be managed and accomplished when
taking advantage of this kind of data processing. Thus, an application field that relies
heavily on decision making using IoT devices and real-time decision making is chosen
to be examined. Smart agriculture, nowadays, has to take advantage of real-time data
communication and information processing to improve production yield, mitigating
the environmental effects and reducing cost. The possibilities and the perspectives of
real-time big data processing in precision agriculture are examined closely to verify its
applicability and usefulness, and identify future trends.

The next question that arose was how can this kind of data be processed and
this question formed the basis of this thesis. The unpredictable characteristics and
arrival patterns in streams of data pose unique challenges in processing. Challenges
arise from the need to work with huge amount of data, requiring immediate stream
processing capabilities. Managing in real-time incoming data that arrives continuously
at volumes and high velocity, far exceeds the capabilities of individual machines. In
this appealing environment, executing a streaming application demands the deployment
of distributed computing resources, which will execute it in a parallel. Moreover, to
meet performance related requirements like latency and throughput that are necessary
in streaming applications, in-memory computing will be needed [6}/10].

4 R

Definition: The allocation of tasks into the cluster, in such a way that the
completion time is minimized and the available resources are utilized in the
maximum possible degree is known as task scheduling. It focuses on which tasks
to be placed on which previously obtained resources, and controls the order of job
execution [11,{12]] and is an NP-hard problem [13,|14].

\ 7

Although there is extended literature on task scheduling in batch systems like Hadoop
[15L|16]], the techniques used do not fit in real-time processing of streams mainly because
of the difference in the computational model used in each case. In batch processing
systems, computations are assigned to the nodes where the required data is stored,
while in stream processing systems, most of the communicating tasks have to be placed
together on one node or rack.

Several technologies that differ in the way they handle data, have emerged, specifically
to address the challenges of processing high-volume, real-time data, taking advantage
of the inherent characteristics of parallel and distributed computing to meet these
challenges. The available in-built scheduling techniques of the DSPSs, though, are
far from optimal. For instance, round robin is the strategy used as the default scheduler
of Apache Storm [[17]] which is one of the most prominent open-source solutions for data
stream processing. Round robin does not take into account the cost of moving tuples
across the sequence of tasks (as defined by the user’s application). Most of the heuristics

Chapter 1. Introduction

found in the literature are based on a number of different assumptions, have different
optimization goals and aim at minimizing different utility functions, like latency and
network usage. However, these approaches rarely consider memory consumption in their
analysis and while they take into account the capability of the resources, they generally
ignore the need for load balancing.

1.3 Research methodology

We are interested in deploying stream processing applications over cloud infrastructures
that comprise distributed computing resources. This is a challenging task that requires:

* to understand the needs of streaming applications and the challenges of running
them over distributed environments exploiting task and data parallelism;

* to identify relevant performance attributes of applications and scheduling
considerations for stream processing jobs;

* to formulate efficient and effective scheduling solutions;
* to design approaches that can operate in a DSPS;

These key issues are faced, following these steps:

* collection of appropriate studies and review;

* problem identification and formulation;

* design of resolution approaches and development; and
 experimental evaluation.

In the first step, a literature search was conducted to collect, and thoroughly analyze
the existing studies, to understand the characteristics of data streams, and find suitable
approaches that can operate in the environment under investigation. The international
databases IEEE Xplore, Science Direct, ACM, Scopus, Google Scholar, and CiteSeer
were used to retrieve authoritative academic resources. These databases were chosen
because of their wide coverage of relevant literature and advanced bibliometric features,
such as suggesting related literature or citations. The literature between January 2010
and December 2019 was surveyed. The choice of the review period is a practical one
and takes into consideration the fact that big data is a rather recent phenomenon. There
was only one exception. Stonebraker’s et al. [7] paper "The Requirements of Real-
Time Stream Processing", goes back in 2005 but valued as a crucial prototype that still
characterises modern stream processing frameworks in the big data industry.

The study was restricted to a number of papers having the highest quality and
considered as the most important resources in this field. Papers with higher impact (that
is, higher number of citations) were chosen. An exception is made for papers published

Chapter 1. Introduction

in 2017-2019, where papers with a small number of citations were also accepted. In this
way, gray literature, though quite informative for big data industry solutions, was avoided.
Nevertheless, official documentation of several existing frameworks complemented
the related articles. Papers referring to matters of interest (e.g. parallel/distributed
processing, stream processing, scheduling, etc.) in the cloud that do not make actual use
of big data and their inherent characteristics (i.e. volume, velocity, variety) were further
filtered out. Papers not referring to stream processing of big data were also filtered
out, as literature is much more rich when it comes to processing of already stored big
data and Hadoop MapReduce [3] scheduling enhancements. In this way, the number of
papers qualified was severely restricted according to a set of constraints.

The selected literature was then analyzed in detail to extract the information relevant
to this thesis’ research needs. Additional literature that had not been identified so far, was
retrieved in this step as well if they were referred to by ‘related work.” This ‘snow-ball’
approach resulted in additional articles and web-items from which relevant information
was extracted as well. Information was analysed and synthesised.

By exploring the latest research contributions, it was possible to:

* identify and understand the most relevant features of stream processing applica-
tions;

* identify the most representative mechanisms used by prominent DSPSs to satisfy
the stream processing requirements. We focus on open-source solutions with
active community support.

* identify matters to consider when designing an effective scheduling approach

* design suitable scheduling approaches that can operate in the aforementioned
DSPSs.

Following the steps mentioned previously, a suitable representation of streaming
applications and system resources was identified with the aim of formulating the
task allocation and scheduling problem. Leveraging on linear algebra, matrix-based
transformations were used to provide a solution to the problems. The derived approach
reduced the required buffer size to effectively speed up processing and tried to balance
load. Based on the analysis’ results regarding the available DSPSs, the operator-based
model (described in Chapter 2) and Apache Storm’s [|17]] semantics were used to describe
this work. Finally, the resulting scheduler’ s efficiency was validated and its performance
was compared with other two strategies from the state of the art.

1.4 Thesis contribution

The main goal of this thesis is to present, analyze, model, and develop solutions for
the scheduling of streaming applications over distributed infrastructures in the cloud.
A static task allocation and scheduling scheme, performed in a memory-efficient and
well-balanced manner is proposed.

Chapter 1. Introduction

Although many feasible scheduling solutions can be found in the literature, they
rarely consider memory consumption in their analysis. If streams are not managed
carefully processing delays can become unacceptable and lead to long queues at a
processing node, buffer overflows, and memory exhaustion. The approach presented
in this thesis is inspired by the idea that the reduction of the required buffer space can
minimize tuple losses (and possible re-submissions) and overhead delays that heavily
affect system’s performance. Pipelines can further help towards this direction. Moreover,
load balance can also optimise the system’s performance. Multiple stream processing
computations should be interleaved on the same machine to reduce the number of needed
connections and assure high throughput and increased performance. On the other hand,
heavily used machines result in memory waste, node failures and increased network
congestion [18]].Elaborate orchestration over a collection of machines is needed to meet
the required performance for streaming applications and reduce costs in the cloud.

The main contributions of this thesis are the following:

» Existing scheduling policies for DSPSs are classified to develop a general
taxonomy that summarizes the main choices of current solutions;

* A general topology-aware, static formulation of the task allocation and scheduling
problem is provided, using matrix transformations as an extension of Apache
Storm. This scheme, though, is generic and could be integrated to any DSPS,
and suitable for deployment and use in large-scale clusters. Moreover, while the
proposed scheduler considers only static scheduling for now, it can be extended to
dynamic scenarios but this is left for future work as described in Chapter 7. The
resulting approach:

— reduces the required buffer space to increase throughput and reduce the
number of tuple losses;

— reduces the inter-node communication cost to decrease the application’s
latency;

— is balanced, increasing the overall system’s performance;
— is periodic, reducing the number of necessary computations and;
— has linear complexity, determining faster computations.
* The policy presented is validated and evaluated, relying on experiments that run
on system prototypes and compare its performance with the round robin strategy,

that is the default Apache Storm scheduler, and the R-Storm [|19] scheduler from
the state of the art.

1.5 Thesis outline

The rest of this thesis is organised as follows: Chapter 2 refers to big data stream
processing. The available execution models are presented, a number of issues and

Chapter 1. Introduction

requirements of streaming applications are discussed and mechanisms used to face them
in the big data era are referred. Dominant frameworks for stream processing (DSPSs)
are evaluated based on several functionality characteristics, and are compared to reveal
reasons for selecting each candidate solution.

Chapter 3 presents the related work regarding both execution models already
incorporated in prominent DSPSs, and heuristics found in literature. In this chapter,
this work is positioned with respect to the state of the art, and important scheduling
considerations for stream processing jobs are discussed.

In Chapter 4, the operator placement and scheduling problem is investigated. At
first, the design of Apache Storm is described. Then the mathematical background of
the desired scheme is presented based on Storm’s semantics. The task allocation and
scheduling algorithms of proposed scheme are also presented in this chapter, which also
includes the proof of the scheme’s linear complexity. Motivating examples are used to
depict the application of the presented algorithms.

Chapter 5 reports the experiments done on this thesis. A discussion on the findings
of the experiments is also included. The evaluation demonstrates the importance of
constraining the required buffer space and achieving load balance to overcome the
challenges of running DSP applications.

In Chapter 6, the precision agriculture paradigm is examined, as an application field of
real-time big data processing. Initially, attention is paid to machine learning techniques,
that mainly support decision making in precision agriculture. Their possibilities and
limitations are identified. Then, the application of big data in agriculture is discussed
and the most promising areas of use are revealed. Opportunities and challenges that
arise along with a cost-benefit-analysis are further analyzed.

Finally, in Chapter 7, the results and contributions of this work are summarized and
directions and trends for future research are indicated.

Chapter 1. Introduction

1.6 Publications

Part of the work in this thesis has previously appeared in international journals (J) and
conference (C) papers.

Chapter 2: Big Data Stream Processing
J1. N. Tantalaki, S.Souravlas and M. Roumeliotis (2020)."A review on big data real-

time stream processing and its scheduling techniques", International Journal of Parallel,
Emergent and Distributed Systems, 35:5,571-601, DOI: 10.1080/17445760.2019.1585848

Chapter 3: Related work
J2. N. Tantalaki, S. Souravlas, M. Roumeliotis and S. Katsavounis (2020)."Pipeline-

Based Linear Scheduling of Big Data Streams in the Cloud", IEEE Access, vol. 8,
117182-117202, 2020, doi: 10.1109/ACCESS.2020.3004612
and

Jn

Chapter 4: Background and problem formulation and
Chapter 5: Experimental Results
C1. N. Tantalaki, S. Souravlas, M. Roumeliotis, and S. Katsavounis (2019)."Linear

Scheduling of Big Data Streams on Multiprocessor Sets in the Cloud". In
IEEE/WIC/ACM International Conference on Web Intelligence (W1 *19). Association for
Computing Machinery, New York, NY, USA, 107-115. DOIL:https://doi.org/10.1145/335
0546.3352507

and

J2)

Chapter 6: Decision Making in IoT-enabled Agriculture
J3. N. Tantalaki, S. Souravlas and M. Roumeliotis (2019)."Data-Driven Decision Mak-

ing in Precision Agriculture: The Rise of Big Data in Agricultural Systems", Journal of
Agricultural & Food Information, 20:4, 344-380, DOI: 10.1080/10496505.2019.1638264
C2. N.Tantalaki, S.Souravlas and M. Roumeliotis (2017)."Big Data Tools To

Support Real-Time Decision Making In Business Operations-A View to The Future
of Agriculture". In 6th International Symposium & 28th National Conference on
Operational Research. 81

Chapter 2

Big Data Stream Processing

"Technology makes possibilities. Design makes solutions"-John Maeda

Data streams is not a recently developed concept but it is becoming more important in the
aforementioned context of [oT. When data arrives fast and needs to be processed with real-
time restrictions, processing and analyzing are tasks that traditional data-warehousing
environments cannot handle easily due to high latency and cost [20]. Centralized
computing systems have been around in technological computations for years. In
such systems, one central computer controls the peripherals and performs complex
computations. Centralized computing systems require expensive hardware to process
huge volumes of data and support multiple online users concurrently. Under these
circumstances, cloud computing systems, that are typically characterized by scalable and
elastic resources, arose to exploit parallel and distributed processing technology. Users
can share computing resources, which can be virtualized and allocated dynamically in
the cloud.

Streaming applications are represented using a directed acyclic graph (DAG), where
vertices are the operators and the edges are the channels for dataflow between operators
[21]]. The processing can go through operators in a particular order, where the operators
can be chained together, but the processing must never go back to an earlier point in the
graph.

Running on a distributed infrastructure, the design of DSP applications tries to
conveniently exploit different forms of parallelism among the operators. Task parallelism
is the concurrent execution of different operators on the same or different data. Data
parallelism is the concurrent execution of multiple instances (replicas) of the same
operator on different parts of the stream. The number of parallel instances of an operator
determines the operator’s replication degree (also known as parallelization degree).

In Figure 2.1 we see a DAG used to process a stream of sensor data. There is one
data source and six operators with different parallelization degree i.e different number of
tasks. Links between operators in the topology indicate how tuples are passed around.
Each operator’s code is executed by threads (we can assign one task per thread). Data is
loaded from sensors and separated by sensor type. The data from the first sensor (A) is

9

Chapter 2. Big Data Stream Processing

Analyze data Alert on

Summarize data from sensor A critical status

Parallelism

Parallelism Hint=3

Hint=5

Read data form Seperate data
sensors by sensor

type

Store data

Parallelism
Hint=4
Compute mean

Figure 2.1: A DAG example-"Working with sensor data"

summarized and then analyzed in real-time. In case of a critical value, an alert is sent.
Data is also saved for long-term storage and possibly other analysis. Data from sensor
B is used to compute a mean value (e.g. per minute) and then is stored in the same store
as the data for sensor A.

The dynamic nature of data streams makes the efficient placement of applications’
processing tasks on the available cloud resources challenging. Several technologies
have emerged specifically to address the challenges of processing high-volume, real-time
data. DSPSs take advantage of the inherent characteristics of parallel and distributed
computing to meet these challenges.The demand of elaborate orchestration over a
collection of machines is a factor of crucial importance in such systems but the their
available in-built scheduling techniques are far from optimal. These systems differences
and ideal use cases are not yet, clear enough.

DSPSs are designed to handle data streams and manage continuous queries. They
execute continuous queries that are not only once performed, but are continuously
executed until they are explicitly uninstalled. They produce results as long as new data
arrives in the system and data is processed on the fly without the need for storing it.
Data is usually stored after processing. Stream processing systems differ from batch
processing systems, due to the requirement of real time data processing. The term
“real time processing system” refers to a system that responds within “real-world” time
deadlines. It guarantees that a certain process will be executed within a given period,
maybe a few seconds, depending on the quality of service constraints. The term “real-
time” is a bit redundant but many systems use the term to describe themselves as low
latency systems.

There are two execution models used in stream processing [22]:

1. The Stream-Dataflow Approach, where an application is viewed as a dataflow

graph with operators and data dependencies between them (sometimes referred as
operator-based approach). A task encapsulates the logic of a predefined operator

10

Chapter 2. Big Data Stream Processing

like filter, window, aggregate or join or even a routine with user-specified logic. A
data stream between two operators represents an infinite sequence of data produced
by a task, which is available for further consumption. Everything is automatically
pipelined.

2. The Micro-Batch Approach, that offers a solution to enable processing data
streams on batch processing systems. With micro-batching, we can treat a
streaming computation as a sequence of transformations on bounded sets by
discretizing a distributed data stream into batches, and then scheduling these
batches sequentially in a cluster of worker nodes.

In this section, basic features of data stream processing are introduced. In particular,
this chapter:

1. highlights the challenges associated with processing streams of big data in Section
2.1

2. provides an overview of the mechanisms that are used to face them in the same
section

3. presents basic characteristics of dominant DSPSs mainly in matters of performance
and fault tolerance in Section 2.2.1

4. compares these DSPSs based on a list of criteria and presents relevant benchmarks
in Section 2.2.2

and from (1)-(4): Informs potential users about the criteria to consider when choosing a
framework for a specific job.

In the following paragraph, the issues and requirements that stream processing
systems have to meet to excel at real-time stream processing applications are presented.
The analysis done there relies mostly on Stonebraker’s work [7] but presents the
mechanisms used nowadays in the big data era to face relevant challenges. The
major available solutions, according to a number of surveys [6,[21}23-28]], which
satisfy the stream processing requirements discussed in this section, are Apache Spark
Streaming [29], Storm [[17], Flink [30] and Samza [9]. These solutions are open-source
solutions with active community support.

2.1 Issues/Requirements in Big Data Stream Processing

Stonebraker [7]] introduced the requirements for real-time processing of data streams
to provide high-level guidance of what to look for when evaluating stream processing
solutions. The most prevalent of them can characterize the available stream processing
frameworks for big data in ways that are presented below and could be further enhanced.
A real-time stream processing system has to:

11

Chapter 2. Big Data Stream Processing

1. “Process messages in-stream without any requirement to store them to
perform any operation or sequence of operations.”
Performance related requirements like latency and throughput are extremely
important in streaming applications. To meet these requirements, processing
has to be done without the costly storage operation. MapReduce can handle large
datasets but works using permanent storage. Thus, it fails when it comes to real-
time data processing, as it is designed to perform batch processing on voluminous
amounts of data. In-memory computing provides a solution to this problem and is
based on using a distributed main memory system to store and process big data in
real time. Main memory delivers higher bandwidth and better latency compared
to hard disk. Even if the framework uses memory for caching the frequently used
data, the whole job execution performance will be improved significantly [31]].

Despite the dropping price of memory, using large amounts of RAM to run
everything in-memory can be expensive, so proper mechanisms are needed to
handle it in an effective way.

If streams are not managed carefully, processing delays can become unacceptable
and lead to long queues at a processing node, buffer overflows, and memory
exhaustion. Multiple stream processing computations should be interleaved on
the same machine to reduce the number of needed connections and assure high
throughput and increased performance. On the other hand, heavily used machines
result in memory thrashing, node failures and increased network congestion.
Overloaded and underutilized machines should be avoided as imbalances lead to
increased computations and deteriorate system’s performance [18]. Moreover,
despite the dropping price of memory, using large amounts of RAM to run
everything in-memory can be expensive, so proper mechanisms are needed to
handle it in an effective way.

Spark Streaming is a system that arose to provide in-memory computation
effectively. It processes all data in-memory, only interacting with the storage layer
to initially load the data into memory and at the end to persist the final results.
To implement in-memory computations, Spark uses a model called Resilient
Distributed Datasets (RDDs), its in-memory abstraction to work with data. Flink
also offers in-memory computations. Its core is built on a data flow streaming
engine whose fundamental functionality is pipelining i.e. all tasks have to be
online simultaneously in order for the data to be able to flow through the tasks
regardless of the node, that a task might reside on [25]. Storm runs also in-
memory to process big data at in-memory speed. Memory is a resource of crucial
importance for a DSMS. Since in-memory computing is not only about storing
but also processing big data in real-time, problems like efficient task scheduling
is a matter that it has to deal with [[31]].

2. “Support a proper querying language with extensible stream oriented
primitives.”

12

Chapter 2. Big Data Stream Processing

Stream processing systems receive input streams from one or more sources and
organize the computations into a directed graph of operators either explicitly
or implicitly. When organised explicitly, systems are known as compositional.
They offer basic building blocks for composing custom operators and topologies.
The user has to implement the whole logic himself and the operators are
defined as implementations of classes. When organized implicitly, systems are
called declarative and developers are provided with high-level languages that are
automatically translated by the system into the operator graph [22], [27].

Querying mechanisms are needed to detect events of interest or compute
real-time analytics. General purpose languages like Java have been used as
programming tools in streaming applications but using low-level programming
schemes results in long development cycles and high maintenance costs. Using a
stream processing system with no support for SQL like query languages, requires
sound knowledge on imperative style programming and distributed systems to
effectively utilize it. Support for SQL-like continuous query languages or SQL
with streaming extensions can help towards this direction. SQL remains a reliable
query language with high performance for real-time analytics but has limitations
when dealing with huge amounts of data [32]]. Systems adopt SQL-like languages
that represent the processing as queries that get repeatedly and continuously
evaluated as new data becomes available. New projects like SQLStream [33]
and Apache Calcite [[34]] emerge to execute queries over big data using a set of
streaming-specific extensions to standard SQL. Amazon Redshift [35] is built
around industry-standard SQL, with added functionality to manage very large
datasets and support high-performance analysis and can be combined with DSPSs
like Apache Spark or Storm. There are a number of efforts towards providing users
the ability to quickly and cost-effectively build real-time analytics dashboards and
applications that can continuously process very high volumes of streaming data.

There is a concept of vital importance when it comes to data stream mining.
The data set is assumed to be infinite, creating problems in processing. Not all
operators can be evaluated over streams. A stream processing engine has to know
when to finish an operation on a stream of data and output an answer. Traditional
methods have the advantage of knowing the total size of the set. Sampling is
a tool that addresses this problem. Windowing is a sampling method defining
the scope of an operation and is a heavily used approach in stream processing.
An unbounded stream of data is split into finite sets, called windows, based on
specified criteria, like time. A window can be conceptualized as an in-memory
table where events are added and removed and computations are calculated on each
window of events. In [36] and [37] there are detailed analysis over windowing
features. There are stream processing frameworks that offer only the basics, like
Storm, Samza. Spark Streaming supports only time windows having a size and
slide that are multiple of the batch size it creates. On the contrary, Spark Structured
Streaming, a new component in Spark 2.0, offers more windowing possibilities.

13

Chapter 2. Big Data Stream Processing

Flink also offers a wide range of windowing features. Tumbling windows, sliding
windows, session windows and global windows are pre-implemented while users
can also implement their own windows. The notions of windowing and time, and
the windowing semantics used by prominent stream processing frameworks are
further discussed in [38]].

3. “Use mechanisms to provide resiliency against stream imperfections including
out-of-order or missing data which are commonly present in real-world data
streams.”

Incomplete datasets, destroyed data, the presence of outliers or biases in the
training affect the analysis’ accuracy. Missing data is a phenomenon that is
inevitable in distributed communication environments. A transmission loss due
to broken link between sensors or a malfunctioning sensor leads to missing values
from the data. A sensor accident can lead to permanent missing values while a
temporal disconnection or network delay leads to temporal loss as data may arrive
in a short while [39].

The assessment of data quality demands significant human involvement and
expert knowledge but when it comes to large volumes of unstructured data
even semi-automated approaches are not practical. Streaming data and real-
time processing outweigh data quality, making data quality management more
imperative than ever. To the best of our knowledge, the above problems have
not been addressed effectively so far, but there is growing interest towards this
direction [39], [40].Techniques like outlier detection, dimensionality reduction,
cross-validation and bootstrapping are valuable tools in data quality management
but until recently, data quality research has primarily focused on structured data,
stored in relational databases and file systems.

Streaming data is also typically not well ordered in time. Event-time ordered
data is uncommon in many real-world, distributed input sources. While receiving
a stream of an IoT sensor readings for example, some devices might be offline, and
send data after some time. Keeping a strictly time-constrained system waiting, is
not an appealing solution. Keeping all windows open forever would also consume
all available memory. When it comes to real-time processing, there must be a
mechanism to allow windows to stay open for a while. Watermarks are such a
mechanism. They enable streaming systems to emit timely, correct results when
processing out-of-order data. They are used as a heuristic, assuming that all events
before a specific time have been observed. This technique is further explored
in [37]]. Most prominent DSPSs (e.g. Spark Structured Streaming, Storm, Samza,
Flink etc.) implement watermarking techniques.

4. “Ensure that the apps are up and available and the integrity of the data
should be maintained at all times despite failures. The system should have

14

Chapter 2. Big Data Stream Processing

the capability to efficiently store, access state information and combine it with
live streaming.”

Network failures, lack of resources, and network software bugs can cause even
more problems in large-scale distributed computing. When large sets of such
components are working together there is high probability that at least one
component may fail at a given time. Almost all stream processing systems
in big data industry provide the ability to recover automatically from faults.
Several techniques have been developed to recover fast enough so that the normal
processing can continue with the minimal effect to the overall performance.
We distinguish three main categories for recovery in stream processing; precise
recovery, rollback recovery and GAP recovery (the interested reader can refer
to [41]] for a thorough analysis of fault tolerance in stream processing engines).
Precise recovery provides no evidence of a failure afterwards but there is an
increase in latency. In rollback recovery the output produced after a failure
is “equivalent” to, but not necessarily the same as, the output of an execution
without failure. For example, information may be processed more than once when
a failure happens. In GAP recovery, the loss of information is expected in favor
of reduced recovery time and runtime overhead.

Storm and Samza use upstream backup techniques that provide roll-back
recovery. Generally speaking, a stream processing system can use the upstream
backup method to avoid any checkpointing overhead e.g. disk I/Os and data
structures (checkpointing is also available in both aforementioned systems). When
it comes to state, though, Storm requires the user to manually handle recovery of
state [42]. Apache Zookeper [43] has to be used to maintain its cluster state
while Samza makes state changes fault tolerant by modeling them as an output log
(commitlog or changelog) to a Kafka topic [44]]. Systems like Spark Streaming
that work with batches usually re-execute the necessary computations in case of
failures, yielding the same output regardless of them due to RDDs, that can be
recomputed deterministically. RDDs are immutable, meaning that no worker node
can modify it, it can only process it and output some results. Each RDD can trace its
lineage back through its parent RDDs and ultimately to the data on disk [42]. Flink
implements different recovery mechanisms; rollback/restart for finite streams and
distributed snapshotting for infinite streams. Flink’s checkpointing mechanism
stores consistent snapshots of the data stream and operators’ state. These fault
recovery methods lead to different processing guarantees for each system (and
provide fault tolerance in different ways) that are further examined in Section 2.2.

5. ““Be able to distribute its processing across multiple processors and machines
to achieve incremental scalability. Ideally, the distribution should be
automatic and transparent.”

15

Chapter 2. Big Data Stream Processing

Streams do not have preset lifespan, arrive at non predefined rates and are
voluminous. If not managed carefully, processing delays can become unacceptable
and lead to long queues at a processing node, buffer overflows, and memory
exhaustion. The number of stream computations are much more than the number
of machines available for processing. Multiple stream processing computations
should be interleaved on the same machine to reduce the number of needed
connections and assure high throughput and increased performance. On the
other hand, if heavily used machines result in memory thrashing, node failures
and increased network congestion. Moreover, a possible node failure will bring
down most of the application. Overloaded and underutilized machines should be
avoided as imbalances deteriorate system’s performance.

Running algorithms in a sequential manner is not efficient. Algorithms should
run in parallel with streams of data also partitioned to many distributed processing
units (task and data parallelism). Moreover, unlike stateless computations, stateful
computations cannot simply be replicated on multiple machines with streams of
data been processed in e.g. a simple round robin fashion in parallel. Horizontal
scaling requires adapting the graph of processing elements, exporting and saving
operators’ state for replication, fault tolerance and migration [5]. As stream
processing queries are often treated as long running that cannot be restarted
without incurring a loss of data, and the application’s reconfiguration and re-
balancing may be time-consuming, the initial task assignment, where processing
elements are deployed on available computing resources becomes more critical
than in other systems. Processing must be orchestrated carefully over a collection
of machines making task scheduling over a set of machines, a challenge to be
faced by this doctoral research.

6. ‘“‘Have a highly-optimized, minimal-overhead execution engine to deliver real-
time response for high-volume applications”

The aforementioned rules make no sense alone, unless an application can process
high-volumes of streaming data with very low latency and high throughput, to
meet the real-time demands. The ability to process large volumes of data on the
fly, as soon as they become available, is a fundamental requirement in today’s
information systems. There is a rapid increase in the number of available stream
processing engines. However, each engine defines its own processing model and
execution semantics that affect its performance. For instance, Apache Storm uses
the dataflow execution model where streams of data are processed tuple by tuple
on continuous operators. On the other hand, Spark streaming creates small batches
of streaming data and execute them based on its batch processing engine. More
details on ways that can enhance the DSP systems performance are examined in the
following chapter, regarding available heuristics along with the relevant discussion.

16

Chapter 2. Big Data Stream Processing

Taking into account the aforementioned requirements, the nature of streams poses
several processing challenges. The matters of performance and message processing
assurance seem to rise to the top when choosing a framework for a specific application.
In the following sections, we are going to further examine the aforementioned available
DSPSs with respect mainly to these matters to further check and compare their
capabalities, and the results of their built-in mechanisms.

2.2 DSP Frameworks Assessment

Research and developments in big data stream processing systems are ongoing and of
great interest against the challenges posed by business trends.The available frameworks
have several differences in their architecture and in the processing model they use.
Choosing a system that can guarantee fault-tolerant, high performance stream processing
based on user’s needs is quite cumbersome. To support such a decision, brief reviews
over initial solutions [23,31,45] and comparisons based on the basic selection criteria
such as language support and documentation [24]] soon led to full surveys over a number
of available choices [5,[21}25,27,146]]. Most of these works focus on metrics like
latency, throughput and message processing assurance and the need for benchmarks to
support potential users is usually praised. Details on aspects like memory and resource
management are also usually thoroughly discussed [25]] just like the need for research on
scheduling of streaming tasks to support aspects like fault tolerance and high performance
of the execution engine [27].

To select the major solutions and perform a comparison between them, several
surveys ([5,21,23-25,27,[31,/46] were consulted. We selected a subset of the state
of the art systems, able to satisfy the stream processing requirements mentioned in the
previous section, that use the most representative mechanisms to do so. Finally, open-
source solutions with active community support were selected to enable working with
scheduling practices in the following chapters. The mechanisms overviewed to handle
the stream processing requirements provide different functionality characteristics to each
DSPS.

In this section, the functionality of a streaming engine is divided mainly in terms of
performance and fault tolerance to permit the evaluation of the selected DSPSs. The
aforementioned related surveys were also helpful in defining the list of criteria used
for the purposes of this study. This chapter also presents experiments conducted, to
investigate the performance and the fault tolerance mechanisms used.

2.2.1 Evaluation and Comparison of Stream Processing Frame-
works

All steaming solutions examined in this section use a parallel and distributed architecture
that allows portioning of data streams and parallelisation across a cluster of machines.
The attributes that are also examined are the following:

17

Chapter 2. Big Data Stream Processing

Processing Model: The selection of a processing model for a system varies from
batch processing and micro-batch processing to stream processing tuple by tuple. Batch
processing systems such as MapReduce are beyond our interest.

Stream Primitive: Refers to the main data structure in a streaming system. These
systems use various words for such concepts.

Latency: Refers to the elapsed time from job submission to receiving the first response.

State Management: Streaming computations can be either stateless or stateful. “A
stateless program looks at each individual event and creates some output based on that
last event”. For example a streaming program might receive traffic data and raise an
alert in the event of traffic light violations. “A stateful program creates output based
on multiple events taken together” [47]]. For example, creating an alert after receiving
two traffic light violations that differ by less than 5 minutes is a stateful computation.
The frameworks examined use various strategies to store state or may not store state at all.

Throughput: Refers to the average number of jobs or tasks or operations performed per
time unit.

Delivery Guarantee: Refers to the “level of correctness” of the results produced after
a failure and a successful recovery of the system compared to what the results would
be without any failures. Stream processing systems are characterized by the following
three semantics [9]:

* at-most-once delivery, which drops messages in case they are not processed
correctly, or in case the processing unit fails. This is usually the least desirable
outcome as messages may be lost.

* at-least-once delivery, which tracks whether each input was successfully processed
within a preset timeout. It this way, it guarantees that messages are redelivered and
re-processed after a failure. If a task fails, no messages are lost, but some messages
may be redelivered. In case the effect of a message on state is idempotent, no
problem occurs if the same message is processed more than once. A duplicate
update will not change the result. However, for non-idempotent operations such
as counting, at-least-once delivery guarantees can give incorrect results. This
approach is good enough for many use cases but it may cause duplicates.

* exactly-once semantics, which uses the same failure detection mechanism as the
at-least-once mode. Messages are actually processed at least once, but duplicates
can be avoided via various techniques. Such systems guarantee that the final result
will be exactly the same as it would be in the failure-free scenario. This is the
most desirable feature but it is difficult to guarantee in all cases.

18

Chapter 2. Big Data Stream Processing

Table 2.1: Classification of Streaming Solutions

Platform/ Processing Stream Latency Throughput Stateful Guarantee Programming API Contributers
Criteria Framework Primitive Operations Model languages (Github)
(10/2020)
Storm Streaming Tuple Subsecs Low No At least once Compositional Any 339
(exactly with
Trident)
Spark Streaming Micro-Batch ~ Dstream Few Secs High Yes Exactly once Declarative ~ Java, Scala, 1565
R, Python
Samza Streaming Message Subsecs High Yes Atleast once Compositional JVM 122
languages
Flink Hybrid DataStream Subsecs High Yes Exactly once ~ Declarative ~ Java, Scala, 765
Python

Programming Model: Systems can be either compositional when users have to model
the streaming application as graph explicitly or declarative when users are provided with
higher level abstractions.

API languages: Refers to the languages that someone can be used to develop an
application for this framework.

Contributers: Refers to the respective community of contributors based on Github.
Table 2.1 summarizes how four different frameworks support the above features.

Storm implements the dataflow model. The topology of an application is described by
using operators (or components), named “spouts” and “bolts”, referring to data sources
and elements that process data in the form of tuples respectively [48]]. Since a tuple
is processed as it arrives, Storm has sub-second latency. Its mechanism supports low
throughput mainly because of its acknowledge mechanism. Each record that is processed
from an operator sends an acknowledgement back to the previous operator, indicating
that it has been processed. This mechanism may also falsely classify a number of records
as non-aknowledged. Therefore, these records will have to be re-processed leading to
even lower throughput.

However, it is based on the ‘fail fast, auto restart’ approach that allows it to restart
the process once a node fails without disturbing the entire operation. This feature makes
Storm a fault-tolerant engine. To provide guaranteed delivery, it uses the upstream
backup mechanism along with record acknowledgements [17]. In case of failure (e.g.
worker failure), if not all acknowledgements have been received, the records are replayed
by the spout [49]. In this way, no data loss will occur but duplicate records may pass
through the system. Mutable states may be incorrectly updated twice. That’s why it
offers at-least-once delivery guarantee. In some cases, dropping data is not a problem so
users can disable the fault tolerance mechanism by setting the number of acker bolts to
0. Micro-batch processing is offered by Trident Storm for higher throughput. In Storm
Trident the state can be managed automatically, so it does guarantee state consistency
(exactly-once delivery) but state is kept in a replicated database which is expensive, as

19

Chapter 2. Big Data Stream Processing

all updates are replicated across the network [42]. Apache Storm is a compositional
system that expects user to explicitly define the application DAG.

Spark Streaming batches up events within a short frame before processing arrived data
and is the most active project in terms of community numbers (mainly because of the
batch processing capabilities of Apache Spark). At the low-level, data is represented as
RDDs and computations on these RDDs can be represented as either transformations
or actions. The abstraction for data streams is called Dstream and it consists of an
RDD sequence, containing data of a certain stream interval. DStreams let users apply
transformations to them.

Streaming computations in Spark Streaming represent a series of batch computations
of a definable time interval size [S0]. Adapting the batch methodology for stream
processing involves buffering the data as it enters the system leading to few seconds
latency. There is a penalty of latency equal to the micro-batch duration. Waiting to flush
the buffer also leads to an increase in latency. Nevertheless, the buffer allows Spark
Streaming to handle a high volume of incoming data, increasing overall throughput [46].
As we can see there is a trade-off between low latency and high throughput. Systems
based on micro-batching can achieve high throughput but in case processing of a batch
takes longer in downstream operations than in the batching operations, the micro-batch
will take longer than configured. This may lead to more and more batches queueing
up (or to a growing mini-batch size) [44]. While Spark Streaming may be adequate for
many projects, it is not a true real-time system. Zaharia et al. [51] mention, though, that
while this model is slower than true streaming, the latency can be minimized enough for
most real-world projects due to the use of RDDs. RDDs allow in-memory computations
in a fault-tolerant manner, avoiding writing outputs to replicated, disk storage systems,
yielding to time consuming disk I/Os. Spark Streaming provides support for both stateful
and stateless computations and guarantees that batch level processing will be executed
in an exactly once manner. This is achieved by tracking the lineages in each DStream.
All state in Spark Streaming is stored in RDDs [51]. It is a declarative system as it
introduces several abstractions for representing data and managing different types of
computations. The code defines just the functions that need to be performed on the data
and Spark implies the corresponding DAG from the functions called.

Samza is a stream-processing framework based on the Publish/Subscribe model. It
listens to a data stream, processes messages which are its stream primitive as they arrive,
one at a time, and outputs its result to another stream. It is tightly tied to the Apache
Katka messaging system [44] for streaming data between tasks. Kafka offers replicated
storage of data that can be accessed with low latency, so Samza jobs can have latency
in the low milliseconds when running with it. Samza allows tasks to maintain state by
storing it on disk (typically using Kafka). This state is stored on the same machine as the
processing task, to avoid performance problems. By co-locating storage and processing
on the same machine, Samza is able to achieve high throughput [9]]. It also tracks whether
amessage is delivered or not and it redelivers it in case of failure, to avoid data loss using
a checkpointing system but can only deliver at least once guarantees. If a Samza task

20

Chapter 2. Big Data Stream Processing

fails and is restarted, it may double-count some messages that may have been consumed
since the last checkpoint was written. The topology of a Samza job is explicitly defined
by the user’s code [27].

Flink is an hybrid solution [52]. The need to manage different workloads under
a coherent architecture led to several design patterns with the most popular being
the “Lambda Architecture”. The complexity of using different batch and streaming
architectures paved the way to the “Kappa architectural” pattern that fuses the batch and
stream layers together. Flink is a materialization of the Kappa archtecture. Despite the
fact that it relies on a streaming execution model, it is possible to process both bounded
and unbounded data, with two APIs running on the same distributed streaming execution.
The basic data abstraction for stream processing is called DataStream. It executes
arbitrary dataflow programs in a data-parallel and pipelined manner, which results in
achieving low latency. Apache Flink’s dataflow programming model provides event-at-
a-time processing. Tuples can be collected in buffers with an adjustable timeout before
they are sent to the next operator to turn the knob between throughput and latency. It
performs at large scale, running on thousands of nodes with very good throughput and
latency characteristics based on existing benchmarks. When using stateful computations,
it ensures exactly once semantics. Apache Flink includes a lightweight fault tolerance
mechanism based on distributed checkpoints. Its algorithm periodically draws consistent
snapshots of the current state of the distributed system without missing information and
without recording duplicates. These snapshots are stored to a durable storage. In case
of failure the latest snapshot is restored, the stream source is rewinded to the point when
the snapshot was taken, and is replayed [30]]. Flink is a declarative system, providing
higher level abstractions to users like Spark. The DAG is implied by the ordering of the
transformations while its engine can reorder the transformations if needed.

2.2.2 Comparison Results

The provided overview reveals that there is no system able to do everything and no system
that does nothing. All systems do something but they do it differently. Benchmarking
can be a good way to compare them, especially when it has been done by third parties.
To shed some light on the performance of the above engines, a few experiments that
investigate latency, throughput and the impact of their fault tolerance mechanism have
been conducted. Some examples are provided below:

* Cordova [49]] compared Spark Streaming and Storm Trident. He provided a
benchmark of both systems over different tasks and processing tuples of different
sizes. The main conclusion was that Storm Trident is around 40% faster than
Spark, processing tuples of small size. However, as the tuple’s size increased,
Spark has better performance maintaining the processing times.

e Chintapalli et al. [53] designed and implemented a real-world streaming
benchmark focusing on Storm, Flink and Spark Streaming and found that Storm

21

Chapter 2. Big Data Stream Processing

and Flink have much lower latency than Spark Streaming at fairly high throughput.
On the other hand, Spark Streaming is able to handle higher throughput and its
performance is quite sensitive to the batch duration setting.

* Perera et al. [54]] compared Flink with Spark against two benchmarks, Intel
HiBench Streaming and Yahoo Stream. Both systems performed similarly under
different loads but Flink demonstrated a slightly better performance at lower event
rates, mainly because of Spark Streaming’s micro-batch technique. The CPU
utilization was similar in both systems but when it came to memory usage, Flink
needed less amount of memory than Spark.

e Lu et al. [55] also proposed a benchmark definition named StreamBench. They
applied StreamBench to Spark Streaming and Storm. They found that Spark tends
to have larger throughput (even about 5 times that of Storm’s) and less node failure
impact compared to Storm. Storm, though, has much lower latency (even 50 times
less) than Spark, except with complex workloads under large data scale, for which
its latency may be multiple times of Spark’s.

» Karimov et al. [56] proposed a benchmark framework and conducted experiments
with Storm, Spark and Flink. Both Flink and Spark are robust to fluctuations in
the data arrival rate in aggregation workloads while for join queries, Flink behaves
better. In case latency is a priority, Flink seems to be the best choice and has better
overall throughput when tested in aggregation and join queries.

To provide accurate and customized recommendations, we can’t completely rely
on benchmarking in stream processing as even a small change in configuration or use
case can completely change the numbers. Moreover, the above technologies may have
established themselves as leaders but they have strong supporting communities and are
evolving very fast. Consequently, it is not easy to make a clear ranking with quantifiable
results. Combining the above overview (Table 2.1) with available benchmarks, though,
some conclusions, arise:

» Storm works with very low latency but can deliver duplicates and cannot guarantee
ordering by default configuration. Since it does not provide implicit support
for state management, it does not fit in cases of complex event processing.
Nevertheless, it excels in case of non-complicated streaming use cases, where
latency is of crucial importance, due to its true streaming nature and maturity.

e Samza has to be integrated tightly with Kafka and YARN to provide high
performance, flexibility, and state management. It is not easy to be used without
them in the processing pipeline, while deploying such a system would require
extensive testing to make sure that the topology is correct. Nevertheless, in case
these technologies are already incorporated, it is a mature, fault tolerant solution
providing high performance (both in matters of latency and throughput).

22

Chapter 2. Big Data Stream Processing

* Spark is very popular, mature and widely adopted with a strong community
supporting it. It provides high throughput, it is fault tolerant because of its micro-
batch nature providing exactly one guarantee, and can be used in case sub-latency
is not required. Nevertheless, it lags behind Flink in many advanced features. Its
new release (Structured Streaming) is equipped with several good features and
promises to yield subsecond latency, but at the time of writing, it’s early for this
ambition to be achieved.

* Flink provides true stream processing with batch processing support. It is heavily
optimized, incorporating several innovations like light weighted snapshots and it
seems that it’s the leader in the DSMS landscape. As we saw, most of the wanted
aspects (low latency, high throughput, exactly once guarantee, state management)
are provided. Nevertheless, there was lack of adoption initially and its maturity is
a matter of concern. Its community support is also smaller than Spark’s. However,
this seems to change rapidly.

Consequently, the best possible answer provided to users that want to learn which is
the best possible solution is that it depends on their needs. Future considerations should
also be taken into account. For instance, in simple cases Storm may seem a good idea.
Nevertheless, in case advanced requirements involving complex event processing like
aggregations and joins occur later, or batch-oriented tasks should also be implemented,
advanced streaming frameworks like Spark Streaming or Flink should be preferred.
Changes in existent infrastructure and re-training employees may lead to huge costs in
time and money.

Finally, we should keep in mind that coding in declarative systems is much easier
than in compositional as users are provided with higher level abstractions and imply the
DAG through their coding. Optimizations can be done by the system. Nevertheless, in
compositional systems the code is at the complete control of the developer. If there is a
need for fast and easy implementation, systems like Spark or Flink should be preferred
but if complete control over the application’s graph is needed, then Storm or Samza
should be chosen.

As noticed, the best fit for each situation depends upon several factors. Understanding
the mechanisms and characteristics of the aforementioned architectures makes it easier
to pick or at least filter down the available options. Work-in-progress evaluation can
then support users to make the best possible choice based on their needs. Changes
in configuration, tuning or available infrastructure can alter the results and lead to
severe improvements. Scheduling strongly affects the performance and fault tolerance
in a stream processing system [27]]. Most streaming systems allow the user to specify
custom scheduling for tasks and the interest on this aspect grows widely. This led to the
investigation of the task placement and scheduling problem in a distributed setup. In the
next chapter, relevant efforts are reviewed and this thesis is positioned with respect to
the state of the art.

23

Chapter 3

Related work

"Curiosity, especially intellectual inquisitiveness, is what separates the truly alive from
those who are merely going through the motions."-Tom Robbins

A number of DSPSs has been developed in academic, open source, and industry
communities. Initially, Section 3.1 focuses on the scheduling techniques of the systems
discussed in the previous chapter. Then Section 3.2 presents different scheduling
approaches found in the literature, that can be incorporated in these systems. In particular,
this chapter:

1. presents an up-to-date overview and classification of scheduling policies for DSPSs
(Section 3.2) and positions this work with respect to the state of the art in Section
3.2.2.

2. detects the factors that affect scheduling decisions in the discussion of Section 3.3.

and based on (1)-(2) informs the potential user about the matters to consider when
designing an effective scheduling technique for a DSPS.

3.1 Data Stream Processing Systems (DSPS)

The historical evolution of stream processing frameworks is described in [57].
Traditional Database Management Systems (DBMSs), that were built around a persistent
storage to optimize user-triggered queries, evolved to Data Stream Management Systems
(DSMSs) that execute continuous queries to provide updated answers as soon as new
data arrives. DSMSs, also offer an SQL-like declarative language to define continuous
queries. As an example, Aurora [58] was an early implementation of a DSMS, that
was used to parallelize streaming computations including rich operation and windowing
semantics. Initially, it was designed as a single site stream-processing engine. Its
predecessor, Borealis [59]] was a stream processing engine that focused on balancing
load on individual machines and distributing load shedding in static environments.
Borealis was based on ROD (resilient operator distribution) to determine the best operator

24

Chapter 3. Related work

distribution plan, trying to be closest to an “ideal” feasible set, having a maximum set
of machines underloaded.

At the aftermath of Big Data and the IoT, new challenges were posed to traditional
stream processing engines. These challenges arose from the need to work with huge
amount of data, requiring massive parallel stream processing capabilities. Data stream
processing systems (DSPSs) were implemented to do for real-time processing, what
Hadoop did for batch processing, using in-built scheduling techniques.

As mentioned in Chapter 2, the major available DSPSs are Apache Spark Streaming,
Storm (and its descendant, Heron), Flink and Samza [6]]. These solutions are open-source
with active community support but there are also commercial solutions like Amazon
Kinesis [60], and IBM InfoSphere Streams [61]]. Spark Streaming and Storm are the two
main representatives of the available execution models for processing streams.

Apache Spark Streaming [29] batches up events within a short frame before
processing the arrived data, offering full in-memory computations. Jobs are applied
on DStreams according to users’ application’s operators. Each job is portioned into
tasks and a Spark’s scheduler is responsible for their assignment to available resources.
Its scheduler runs jobs in FIFO fashion and each application tries to use all available
nodes. Although job dependencies can be captured with FIFO, this approach can result
in increased latency when a long running job delays jobs behind it [6].

Apache Storm [|17] follows the operator-based model, as it processes a tuple as it
arrives. It uses a round-robin strategy to assign tasks to nodes’ slots equally. In this
way, logical links between tasks are not taken into consideration and the inter-node
communication costs may increase. This simplistic scheduling method frequently leads
to low efficiency in load balancing among the available worker nodes.

Apache Flink [30] can support the same capabilities as Spark but works as a native
stream engine and handles several challenges better than Spark in stream processing
(e.g. in case of recovery and latency). It also seems to have more capabilities than
Storm. Nevertheless, Storm has a larger community and as it is a mature project, there is
extensive literature on scheduling techniques on it. Apache Flink relies on a streaming
execution model but can process both bounded and unbounded data, with two APIs
running on the same distributed streaming execution. Its core is built on a data flow
streaming engine, whose fundamental functionality is pipelining. A slot in a machine
runs one pipeline which consists of multiple successive (communicating) tasks. Its
system defines which tasks may share a slot and which tasks must be strictly placed into
the same slot. It employs a schedule-once, long-running allocation of tasks and uses
an immediate scheduling and a queued scheduling algorithm that work in an arbitrary
fashion. The first one returns a slot immediately when there is a request, while the
second one queues the request and returns the slot, whenever it is available.

Apache Samza [9] provides a unified programming API for both batch and stream
processing. It is based on the publish/subscribe model that listens to a data stream and
processes messages (tuples in Storm) as they arrive, one at a time. It is tightly tied to
the Apache Kafka messaging system [44] for streaming data between tasks and Apache
YARN [62] the for distribution of tasks among nodes in a cluster. YARN is configured
to use a fair scheduler with continuous-scheduling enabled.

25

Chapter 3. Related work

The aforementioned DSPSs are presented in the corresponding categories of Table
3.1. All systems provide an abstraction layer where to execute DSP applications and
allow their users to focus solely on the application logic. Tasks related to the application
placement, distribution, and execution are managed by the frameworks themselves but
the approaches incorporated in these systems are not optimal. They do not take into
consideration the application’s structure that is about to be executed or prior knowledge of
the cluster’s condition. However, these systems allow users to specify custom scheduling
for tasks.

3.2 Heuristic Scheduling Approaches

Several heuristic algorithms, that attempt to choose the optimal scheduling technique to
maximize their performance have been proposed. Stream processing systems following
the micro-batch approach have several advantages over stream processing systems that
process data by one record at a time, like fast recovery from failures, better load balancing
and scalability. Micro-batch systems are optimized for throughput but have increased
query response time, since each input has to wait until a batch is formed. Extremely
small batches could possibly minimize this extra latency, but this would cost extra
overhead. On the other hand, operator-based stream processing works better when we
have to deal with strict real-time constraints but is prone to faults [63]]. To provide
the necessary system performance at high load incoming data, efficient scheduling of
streaming applications with additional processing mechanisms are needed.

Scheduling decisions are devided in offline (using static algorithms) and online (using
dynamic algorithms). Algorithms may rely on predefined characteristics of streaming
topologies (offline) or may gather information by monitoring systems (online). Offline
decisions rely on the knowledge a scheduler has before any task is placed and running.
Online decisions refer to information gathered during the execution of user’s application,
after the initial placement of its tasks over the cluster’s nodes. We are going to further
examine and categorize works proposing heuristic algorithms (or sometimes even whole
architectures) that try to choose the optimal placement of resources and task executors
to maximize their performance.

In the following sections, heuristics regarding the scheduling problem in DSPSs
found in literature are reviewed. Most of the heuristics are implemented based on
Apache Storm. Table 3.1 presents a classification of the prominent DSPSs described
above and heuristic approaches found in literature, grouped by their execution model
and the type of scheduling decisions they make.

3.2.1 Static Approaches Using Mini-batches

Spark Streaming belongs in this category. In most static scheduling approaches
over systems that use micro-batches, the matter of batch-sizing is a factor of crucial
importance. Such systems do not deal the way the systems places the data but with the
data itself. Batch-sizing affects latency and can facilitate the scheduling and possible

26

Chapter 3. Related work

suonewIojsue) XIejA

WwIoIS ‘e1qa3[Vy Jeaury K3orodoy, AuIyoO J01e12dQ 1Ll e 19 pye[RyUR],
s9INqLIe SaLIdN) peorIopm
WwIoIS ‘Juruwressold Jeaur| ‘s00In0say ‘A3010do], AUIPO 10jeradQ l9L] Sj10Mamreayg
‘S)uamIAIMbAY S90IN0SAY
MU Surwwrer3olq Jesur ‘s00In0say ‘A3010doy, AuIPOo 10je10dQ sz ‘1 19 uaguer
SurwureiSo1g Jesury sjuowaImboy $901M0STY
uol§ ‘Jurwrea3old orwreuk(q ‘s00Inosay ‘A3o010doy, AUIPO 10je10dQ |pL] I9MPaYds-LIA
sanqre Sod)
‘SJuaWAIINbaY S90IN0SIY
[1IA(GIN SurureiSord reaury ‘s001n0say ‘A3o10dog, AUIPO 1o1e10dQ l€L] ‘Te 19 TunapIR)
wiIolS a3pojmouy Lord v QOUBULIOJIS] ‘SIIINOSIY AuIyO J01812dQ |21l 'Te 19 A[yasy
K109y} Suronang)
‘JuruwresSold Jeaur| QOUBULIONQ] ‘PROTIOM
WwIolS ‘a3pojmouy Lond y ‘$00In0say ‘A3010do], AuIPO Joje12dQ gL uveyquuuiS pue epnys
Suruonnied ydein PEROIOA
BIA(IN ‘a3pomouy Lord v “ogel], ‘sooInosay ‘A3ojodoy, AuIPO 10je10dQ | TL] I9MPpayos-1
Suruonnied ydein
uLol§ ‘a3poimouy orid v peopyIop, ‘oryely, ‘A3ojodog, AUIPO 10)e10dQ loL] I9mpayos-4
Surwureidolg Jesury
‘WPTIoS[e dO1jun)
[1IA(GIN ‘a3pormouy tiorid v dourwIo}dq ‘A3o010dog, AUIPO 1o1e10dQ |69] WmI03S VO
Surwwersold reaury sjuawaIbay $90IN0sAY
WI0)S ‘T0JO3A 0OUB[EQUI S0INOSIY ‘$90IN0SY AUIPO 101e10dQ [89]] urr0)s-gy
Surwwrer3orq Jeaur| sjuowaInboy sa0Inosay
wiojg “Qoue)SIp ueapIONy ‘Sdqg ‘s901nosay ‘ASojodoy, UIPO 101e10d(|61 wa03S-y
wIolS uIqoI-punoy K3orodoy, AuIyO J01e12dQO 1,9l 1e 19 ofpRIUY
- KiooyJ, ydein $901n0s9Y ‘A3o1odoy, AUIYPO 10jerodQ €T 19Y207] pue ZUdqUIPIF
Surnpoyos e - AuIyO J01e12dQO |6] eZUIRg
urqoy punoy - UIPO Jo1e10dQ [L1] w0y
sononb
Korjod (QINTV QOURWLIOJIS]
yredg ‘Jonuod uonsaguod DL ‘A3orodoy, QUIPO SOYIIBQ-OIOTA 199] a1zzaq
yredg heliigf PpeoTIopM QUIPO SOYIIBQ-OIOTIA |s9] 'Te 19 oery
anbruyoay,
uonezrundQ uoneIa PEOPIOM
yreds jurod-pexiq ‘onpour [onuo)) S90INOSIY QUIPO SOYOIBQ-OIOTIA [p9ll ‘1€ 39 seq
|67 Surureang
0414 - SUIO SAYIIRG-OIIA saedg
SuoISII(PPOIN
pasn SJSA uo pasegq SSAUAIBMY SUINpaydS uonnNIXY waYsAS

‘SyIomawrely eyep 31q 3urssadord weans ur sayorordde Surnpayds Jo MAIAIAO UY :]°¢ AqeL

27

SurIojluoOly 9yer Weans vle(

Surweidold reaur ‘4dd QOUBULIONR]
M-I ‘uonouny S92INOSIY
WI0}S oy asuodsar s, wolskS A3ojodoy, auruO paseq JojeradQ 8] 1oeyRS
OIS
SurI0)TUOIN QOUBWLIOJIO]
UOIOH Surwurergor resury PEODIOM auruO paseq 1ojeradQ €8] uorreyq
SuLIOITUOIA
Surwwrer3or Ieaur| 9yer weans ejeq
(sonuond) S90IN0SY
wI0}§ K391ens 11y QW] Jq ‘A3o1odog, uruO paseq 101e12d(|z8] wreanys-7
SuLIoJIUOIA] ogel],
a3pomouy riord v PROIOA
- ‘Topoul XINEBIA A3ojodoy, auruO paseq JojeradQ |18l 1® 39 Suswi-Sua
SuLIOIUOIA
‘uruurerSo1d Ireaur | orgeiy,
wIo)g ‘uruIed SUIYORN ‘peOIOM duruQ paseq JojeradQ |ogl] uLi03S-1,
SurIojuoN oreIy,
wiIo)S Surwuwrer3org reaur| PRODIOM uru) paseq 1ojeradQ [L9] (GrureuL() ‘[39 ofPIUY
SuLI0)TUOIN
Surwwrer3oid Ieaur|
“JI0m)aU UOSYOR[QOUBULIONR]
wI01S ‘lopowr Sumanb Suepy $90IN0SY uruQO paseq 1oeradQp le9ll SYa
SurI0)IUOIA QOUBWLION]
yredg ‘[opow [01UO0)) SUTUIBYT ANJRI)] $92IN0SY auruQO $YIIBQ-OIITA l6L] 19497
SUuLIOITUOIA
‘SUTUILO T JUSUIAOIOFUISY QOUBWILIONI]
yreds “dIVA ‘0414 ‘k3orodoy, auruQ §9Y0)eq-0IIN [8L] 12Mpayds-v
Surnpayos panang) pue 9)eIpawWW]
‘KITeo0] sey, S90INOSIY auruQ (praqAH)paseq Joyerad lo€] Surg
SUOISII(PPOIN
pasn SdSA uo pasegq SSAUAIBMY SUINPIYIS uonnNIIXY wI)SAS

Chapter 3. Related work

(PanunuoD) :7°€ A[qeL

28

Chapter 3. Related work

rescheduling of tasks and data. Attempts like [64] and [[65]] rely on dynamically adjusting
batch intervals, according to the number of events arrived in current interval. For
example, reducing the interval near data peaks proved to be a good choice to smooth
the overall delay time. Their approaches are implemented on the existing scheduling
framework of Spark Streaming.

Towards this direction, choosing an appropriate group size of mini-batches is
important to ensure that Drizzle [66] achieves the desired performance. This topology-
aware strategy has as main goal to decouple processing intervals from coordination
intervals. Assuming the data sources remain the same, and the cluster configuration is
static, the same task-to-worker mapping can be used for every micro-batch. An adaptive
group-size tuning algorithm inspired by TCP congestion control is used to combine
multiple micro-batches into a single message. During the execution of a group, counters
are used to track the amount of time spent in various parts of the system and a policy
analogous to AIMD determines the coordination frequency for a job. Query optimization
techniques are used to achieve better throughput. Drizzle is implemented by extending
Apache Spark to achieve lower latency and faster failure recovery.

3.2.2 Static Approaches in Operator-based Systems

Apache Storm and Samza belong in this category. Most of the heuristics found in
literature are based on Storm. Eidenbenz and Locher [[13]] established a theoretical
foundation for the task allocation problem in systems like Apache Storm. They used a
fixed set of resources with uniform capacities and bandwidth and stream topologies are
expressed as directed serial parallel decomposable graphs.In their work they also prove
that the task allocation problem is NP-hard.

Aniello et al. [[67]] proposed a topology-aware scheduler for Storm. Their approach
identifies possible sets of operators’ threads to be scheduled on the same slot by
looking how components are interconnected within the topology (DAG). Finally slots are
assigned to nodes in a round robin fashion. Their approach tries to balance the total CPU
demand of each worker. As load imbalances are possible due to workload fluctuations,
monitoring is used by their dynamic adaptive scheduler to handle these cases, but this is
described in Section 3.2.4. This approach improves system’s performance by reducing
the inter-node communication cost and the required buffer space (for each task and thus
for each worker node).

Peng et al. [19] implemented R-Storm, a topology and resource-aware scheduling
approach that also schedules adjacent components’ tasks as close as possible to reduce
communication latency using breadth first traversal (BFS). It also tries to maximize the
resource usage in a slot to minimize resource waste in nodes, using a resource-aware
distance function. R-Storm’s scheduler yields better performance than the default round-
robin Storm’s scheduler but it cannot control the performance when CPU sharing occurs.
To minimize the resources wastage, De Xiang et al. [68] implemented a scheduling
algorithm with the consideration of the worker nodes’ load, named RB-storm. To do so,
they applied a Resource Imbalance Vector (RIV) to represent the imbalance of resource
utilization in tasks and worker nodes. Both Peng et al. [19] and De Xiang et al. [68]]

29

Chapter 3. Related work

worked with homogeneous clusters and considered memory as a constraint in their
analysis. Resource waste is minimized with respect to the knowledge about the node
capacities and the task requirements but this information has to be provided by the user.

Smirnov et al. [69] proposed another topology-aware strategy that also takes into
consideration system’s performance. Their approach is based on a genetic algorithm
(GA) and uses performance models of executors on specified nodes to estimate their
throughput. In their experiments, they allowed CPU-sharing between tasks and they
proved that maximum tasks’ performance can be achieved via minimum CPU sharing,
consuming though the maximum number of cores. In their experiments, GA scheduler
was better in handling the high workload in several topologies, whereas R-Storm’s
and Storm’s performance remained almost equal and low. Their performance models
demand either history data or data collected during runtime.

Taking advantage of prior knowledge, Eskandari et al. [[70] presented P-scheduler.
This scheduler uses data transfer rates between tasks and topology workload obtained by
running the known topology a priori. It places highly-communicating task pairs to the
same working node applying hierarchical graph partitioning. Their work assumes that the
cluster is homogeneous. Later, they extended their work [[71] in heterogeneous clusters
and proposed I-Scheduler, an iterative graph partitioning-based heuristic algorithm.
This approach finds partitions of highly communicating tasks, sized according to node
capacities and fuses each partition into a single task. A node’s capacity is defined as the
sum of the CPU speed for all cores within a node. While these schedulers can estimate
the necessary number of nodes for an application and maximize resource utilization,
memory resources and their consumption are not taken into account.

Shukla and Simmbhan [72] also utilized a priori knowledge of the tasks’ performance
(using micro-benchmarks) to get a predictable scheduling behavior given a fixed input
stream rate. Apart from assigning threads to the working nodes to ensure an expected
performance, they also examined the matter of allocation of threads and resources for
a DAG. This means that their scheduler determines the appropriate number of replicas
per task and quanta of computing resources. Their analysis is based on CPU and
memory resources and offer lower resource requirements and VM cost compared to
R-Storm. Benchmarking of application on a particular cluster prior to its run in
production was also used by Rychly’s et al. [12] resource and performance aware strategy.
Their scheduling algorithm works on heterogeneous clusters and employs design-time
knowledge (a tagging process is required) and benchmarking to take decisions.

In several cases, the allocation problem is considered as a linear programming
problem (e.g. [19,68,69,72]). Taking advantage of linear programming privilleges,
Cardellini et al. [73]] provided a solution that takes into consideration the heterogeneity
of computing and network resources to optimize different QoS requirements. Their
proposed formulation considers user-oriented QoS attributes like end-to-end latency
and application availability, and network-related attributes like network usage, inter-
node traffic, and elastic energy. Memory consumption is not considered in their QoS
metrics. Workload balancing and distribution are also not considered.

Towards this direction, Al-Sinayyid and Zhu [74] proposed MT-scheduler that uses a
dynamic programming technique to efficiently map a DAG onto heterogeneous systems.

30

Chapter 3. Related work

They proposed a polynomial-time heuristic solution that is based on computing and data
transfer requirements, and the capacity of the underlying cluster resources. Memory is
not considered in node attributes in this work. Their system performance optimization
is realized by estimating and minimizing the time incurred at the computing and transfer
bottlenecks. To avoid system overloading, the scheduler is called periodically to update
the mapping process.

JanBen et al. [75] also assumed a static environment with heterogeneous resources.
In their work, QoS metrics like response time, bandwidth congestion, and resource
fitting are combined into an optimization function to implement metaheuristic methods
for near-optimal task placements. Unlike most approaches that work with Apache Storm,
they extended Apache Flink’s scheduling workflow.

Mortazavi-Dehkordi & Zamanifar [/6] combined linear programming with queries’
attributes. They proposed Bframework that examines the topology structure of a query
to estimate the size of output stream flow of its operators to profile and partition them.
Different scheduling strategies are applied to each partition. At first, operators are
assigned to thread computing units and the identified threads are assigned to processes.
Their offline scheduler (they also extended their work to dynamic environments) finally
assigns the processes to a set of available computing nodes. The aim is to minimize the
inter-operator traffic load and thus the tuple latency of the accepted queries, distribute
and balance the operators’ workload. The complexity of their solution is logarithmic
and memory is not considered in cluster resources.

This work belongs in this category. It presents a static and topology-aware
formulation that represents the task allocation and scheduling problem. The operator-
based execution model and Apache Storm’s semantics are used as in most of the systems
mentioned in the literature. DAGs are used to represent streaming applications. The
developed policy uses linear algebra and matrix transformations for all the necessary
processes, while linear programming seems to be the dominant strategy in most of the
aforementioned solutions.

Most of the static topology and resource-aware policies try to improve the system’s
performance by considering the topology’s structure and the capability of the resources,
but they generally ignore the resource load. The policy in this thesis improves the
system’s performance using an algorithm of linear complexity on a given topology’s
structure, that takes advantage of a pipeline-based strategy to reduce the required buffer
space. Also most of the state of the art strategies ignore the memory consumption issue..

Traffic and workload-aware policies discussed above demand either prior knowledge
to improve system’s performance or users to provide design time information. However,
users usually ignore the application’s run-time resource demands. Of course, dynamic
approaches can adapt to run-time needs but this requires monitoring and re-scheduling
as discussed in the sections below.

3.2.3 Dynamic Approaches Using Mini-batches

Generic scheduling solutions for provisioning to applications competing for cloud
resources in most of the aforementioned systems assume that users know the amount

31

Chapter 3. Related work

of resources their application needs, and how to distribute these resources internally.
Dynamic solutions try to resolve this and make systems adaptive based on the cluster’s
conditions. To face the dynamism inherent in streaming workloads using mini-batches,
Cheng et al. [78] proposed A-scheduler. It is an adaptive scheduling approach that
dynamically schedules multiple jobs concurrently using different policies based on
their dependencies. The data dependency between jobs is identified by profiling the
DAG of an application while accepting a job submission. A resource allocator applies
Fair scheduling for independent jobs and FIFO for dependent ones. It also collects
performance statistics like end-to-end latency for each job and system throughput
to automatically adjust the job parallelism settings and resource sharing policies.
The tuning problem was formulated as a reinforcement learning process that uses a
performance-aware approach. A-scheduler was implemented in Spark.

Chen et al. used pre-scheduling to design Lever [79]. The authors focus on the
straggler problem; re-scheduling stragglers during the task execution period, increases
the processing time of the micro-batches and causes expensive data relocation, as the
data has already been dispatched. However, batched stream processing jobs are usually
recurring with predictable characteristics. Lever monitors and periodically collects and
analyzes the historical job profiles of the recurring micro-batch jobs. It then predicts
stragglers using an Iterative Learning Control (ILC) model, which is designed to track
control of the systems working in a repetitive mode, to estimate node capacities. Finally,
suitable helper nodes are chosen. This approach was implemented as an extension of
Spark Streaming.

3.2.4 Dynamic Approaches in Operator-based Systems

Fu et al. [63] designed and implemented DRS, a dynamic, operator-based, resource-
aware scheduler. Their greedy algorithm takes into account the number of operators in
an application and the maximum number of available processors that can be allocated to
them, and tries to find an optimal assignment of processors that results in the minimum
expected total sojourn time. They estimated the total sojourn time of an input by
modeling the system as an open queuing network (OQN). The performance model is
built based on a combination of one of Erlang’s models and the Jackson network. The
system monitors the actual total sojourn time and checks if the performance falls, or
if the system can fulfil the constraint with less resources and reschedules if necessary.
DRS was integrated into Apache Storm.

As already discussed, Storm’s scheduler apart from using all the available worker
nodes, it also does not consider links between tasks that are about to be hosted in
these nodes. Inter-node and inter-process traffic are factors that make a significant
impact on system’s performance. Aniello’s et al. [67] second scheduler and 7-Storm
[80] are approaches that take into consideration the communication patterns of the
application to reduce the inter-node and inter-slot traffic in the cluster by assigning tasks
that communicate with each other to the same node or adjacent nodes. Workload and
traffic load information are collected at run-time. 7-Storm can also estimate future load
using a machine learning prediction method. Both approaches adapt the initial allocation

32

Chapter 3. Related work

of executors to the evolution of the load and use Apache Storm for their approaches
evaluation. Meng-meng et al. [81]] obtain the topology by recording workload of nodes
and communication traffic through switches a priori. A matrix model is used to describe
the real-time task scheduling problem. They evaluated their algorithm by deploying
their own stream processing platform SpeedStream and comparing to Apache Storm’s
and S4’s algorithms.

Elasticity is a matter of crucial importance in online environments to determine how
to scale for data stream fluctuating with time and schedule resources according to the
current arrival rate of a stream. Dawei et al. [82] proposed an elastic online scheduling
framework (E-stream), that works with multiple DAGs, using the available capacity of
computing nodes and the input rate of data stream. E-stream quantifies computation and
communication cost, relationships between the input and output stream of a vertex, and
adjusts the degree of parallelism of vertices in the graph that has to be scaled in or out.
When it comes to scheduling, E-stream monitors whether DAGs require more resources
and reschedules them using a priority-based Earliest Finish Time first (EFT) strategy
by keeping the system fairness degree guaranteed. E-stream was developed based on
Storm.

Floratou et al. [83] focus on service level objectives (SLO) that have to be
maintained in case of unpredictable load variation and hardware or software performance
degradation. They introduced Dhalion, a self-regulating system on top of Heron that
collects metrics during runtime to detect possible problems, and apply appropriate
policies. The first policy provisions resources dynamically for throughput maximization
and the second one, takes as input a throughput SLO, and adjusts the parallelism of
application’s operators or provides the necessary resources to maintain it.

Safaei [84] presented a whole architecture for a real-time streaming engine in a
multiprocessing environment, paying attention to the value of velocity. Queries and
some of their characteristics are assigned to the clusters but are accepted if their deadline
can be satisfied. System’s response time to a query is computed using a function that
takes into consideration a number parameters (details about the function can be found
in [[85]]). This performance-aware algorithm compares the execution time of each query
to the query’s deadline and selects the highest priority query and allocates it to the
proper cluster of processors using a First-Fit algorithm. Then each cluster selects from
its waiting queue of queries using the EDF (Earliest Deadline First) algorithm. The
selected query is then processed in parallel via a proposed deadline-aware dispatching
method; Several parameters were checked to evaluate and compare this prototype to
Storm while authors mention some penalties as far as it concerns memory usage and
tuple losses.

Most of the aforementioned dynamic approaches work with monitoring and re-
scheduling which are time-consuming. On the other hand, having overloaded or
underutilized machines can lead to increased computations and deteriorate system’s
performance. While the proposed scheme considers only static scheduling for now, it
handles queue waiting times efficiently. Rather than re-configuring online the tasks’
allocation to cope with changes in the stream rates as dynamic techniques do, it tries to

33

Chapter 3. Related work

maintain a stable and robust configuration by balancing load between the cluster’s nodes.

Of course an adaptive version of this scheme would increase its performance, so this
extension is left for future work. The main idea behind this extended work is to model the
possible system changes (for example, different number of tasks per executor or different
number of nodes) as a task redistribution problem, formed by sets of linear Diophantine
equations (more details are found in Section 7. Conclusions). Such a strategy would be
more comparable to the dynamic schemes that are described above.

3.3 Discussion

Literature review clearly depicts that the existing solutions proposed for determining the
applications’ scheduling differ in terms of optimization goals, modeling assumptions,
and resolution approach. The diversity of the clusters where the evaluation of the
aforementioned systems took place does not let us make safe comparisons between
them. Moreover, differences in applications’ inherent characteristics and in data streams
used (e.g. their transfer rate, their realistic nature etc.) are also major impediments to
safe comparisons.

The taxonomy provided, reveals that there are more available enhancements that use
the operator based model in stream processing than the micro-batch. However, there
are enough scheduling approaches for batch processing systems like Spark that might
also fit in systems using the micro-batch model but they are not included in this review,
since they have not been tested in stream processing. The observed parameters that
affect decisions of the presented scheduling techniques are mainly topology, available
resources, and workload. System’s performance is also important, when it comes to
online decisions.

Topological issues: Most scheduling decisions in static approaches rely on the topology
that has to be run. When there is not a large processing burden, the system
throughput relies heavily on the network communication latencies. Given the topology,
communication patterns can be found, inter-node and inter-process traffic can be reduced,
and the throughput is then expected to increase drastically. For example, the linear and
star topologies (tested in R-Storm) necessarily involve larger number of communications
and it is no surprise that the throughput improvements are more significant compared to
Storm, when these topologies were tested, since Storm does not take into account the
inter-node and inter-process traffic. Assigning the most communicating tasks together
on one node or rack (task-locality) is a need that differentiates stream processing from
batch processing, which pays attention to data locality instead (assigning computations
to the nodes where the required data is stored).

Resources issues: The processing of big data requires a large amount of CPU cycles,
memory, network bandwidth, and disk I/O. Especially in stream processing, memory
becomes of crucial importance. It is essential to effectively schedule the tasks, in
a manner that minimizes task completion time and increases utilization of resources.

34

Chapter 3. Related work

Resource-awareness is a common need both in the static and dynamic approaches studied.
Such strategies try to take advantage of node utilization. In GA Storm, the authors
have shown that their strategy performs better when the tasks are shared between the
maximum amount of cores, thus, we have the fewer possible number of tasks per core.
Maximum tasks’ performance can be achieved via minimum CPU sharing, consuming
though the maximum number of cores. This is an obvious assumption, however it poses
a question: How will a resource-aware strategy fully utilize a CPU? As an answer to this
question, most strategies presented above (except GA Storm) have to fully assign one
CPU per component of the topology. This means that, in an heterogeneous environment,
the CPUs with higher computational power should be scheduled to process tasks that
require heavier processing, while in an homogeneous environment, scheduling is based
on the assumption that the CPUs available have enough capacity.

Cluster heterogeneity affects the static scheduling decisions. Smirnov [69]]proved
experimentally that throughput is highly determined by the type of CPU. In the
aforementioned systems, authors usually indicate if the proposed schemes target at a
homogeneous or at a heterogeneous environment. In R-Storm, the nodes on which the
tasks are scheduled are determined by a distance function, that is based on the resource
availability. However, the scheduling strategy was implemented for homogeneous
clusters, where all the CPUs are assumed to have similar computational power. In
cases where different CPU architectures exist, resource-aware scheduling cannot be
easily applied. For the example of R-Storm, a CPU selected from a group of available
CPUs based on the “nearby” available resources criterion, is not guaranteed to work
as expected (complete processing), unless it is known in advance that all the CPUs are
identical. Aniello et al. [[67] have dealt with heterogeneous nodes and considered the
CPU speed in their predictions. Their strategy was based on moving tuples across a
chain of hops after they have been sent by a spout, until its processing ends up in an
ack bolt. As an example of moving tuples, if an executor is taking 10% CPU utilization
on a 1GHz CPU and migrates on a node with 2GHz CPU, the CPU utilization would
become 5%. With similar CPUs, such a scheduling would require load balancing to
increase utilization. However, load balancing necessarily involves careful selection of
the tuples assigned to each CPU and some a priori knowledge regarding the size of
the tuples. Moreover, Rychly et al. [12] have shown that their resource-aware, worst,
standard, and best scheduling approach provide the same results on an homogeneous
platform while significant improvement of the best scheduling over the worst and the
average scheduling is shown with increasing heterogeneity, because the best schedule
fully utilizes the differences in hardware.

Workload issues: When it comes to dynamic approaches, workload seems to influence
most scheduling decisions. Workload characteristics become of crucial importance when
it comes to micro-batch processing systems as they help to determine the appropriate
batch size on scheduling decisions ([65], [[64]). Generally, the idea to deal with this
issue is to try to adjust the stream sizes accordingly. When smaller streams are used,
there is a faster adaptation to system changes. In operator-based systems, workload-
aware approaches can help towards mitigating overloading in a worker node. When a

35

Chapter 3. Related work

machine’s computational resources are not adequate to handle the processing needs, its
capacity can be set to a fraction of its actual capacity to prevent overloading (just like
T-Storm does) but this is not enough. Large load spikes lead to bottlenecks, possible
backpressures and the overall system throughput decreases. Dynamic systems try to face
this issue. However, frequent load balancing and state migration techniques can increase
overhead and consequently latency. On the other hand, the reduced rate of scheduling
can lead to inaccuracy. Workload fluctuations demand elaborate handling.

Elasticity refers to the ability of a cloud to allow a service to allocate additional
resources or release resources on demand to match the application’s workload.
Nevertheless, without adjusting the parallelism of components, a topology’s throughput
reaches a ceiling above which adding more machines will not improve performance.
Scheduling a topology among unnecessary number of machines can cause an increase
in communication latency. Elasticity is a matter of crucial importance in online
environments as the input rate can vary drastically in streaming applications and
operators’ replication degree needs to be configured to maintain system’s performance.
Unfortunately, most of the available solutions require users to manually tune the number
of replicas per operator but users usually have limited knowledge about the runtime
behavior of the system [6,14]]. Several approaches (e.g. [14,[82,83,/86-88]]) try to
deal with replication runtime decisions in stream processing. Elasticity becomes even
more challenging in stream processing environments where computations are generally
stateful. Guaranteeing fault-tolerance and dynamic load balancing for stateful operators
demands state transfer which is quite cumbersome. The interested reader can refer to
Hoffmann et al. [89] and Monte et al. [90] for more details on state migration.

Performance issues: Execution environments are not static. Load fluctuations, possible
hardware failures and changing network topologies are very common. Overloaded and
underutilized machines can deteriorate system’s performance. Consequently, systems
should be able to handle failures and changes of the execution environment. A system’s
performance can be either monitored during run-time or derived from old executions’ or
benchmarks’ statistics. Monitoring performance characteristics like total sojourn time
(DRS), query execution time (Safaei’s approach) or throughput (A-Scheduler), can help
systems either adjust their behavior accordingly online or construct models for effective
decision making. Dynamic scheduling techniques [14,/18,|63} 67,76, 80-83,/88,,91}92]
monitor the queue waiting times and performance parameters (e.g. workload, traffic
load, system’s latency and throughput) during run-time and update tasks’ replication
degree and their placement [72]). Dynamic techniques, while advantageous, can lead to
local optima for individual tasks without regard to global efficiency of the dataflow. This
introduces latency and cost overheads or offer weaker guarantees for the desired QoS.
The application’s reconfiguration and re-balancing, consisting of migrations and scaling
operations may also be time-consuming (e.g. ~ 200 secs in Storm [72]), and entail a
significant service interruption when it comes to real-time stream processing. Recent
works try to develop techniques to deal with application’s downtime (e.g. [[72,83,87,92]).

As we see, the performance of a DSPS depends on multiple factors. The capacity
and the capabilities of the underlying cluster environment in which the processing is

36

Chapter 3. Related work

taking place will always limit its performance. Achieving low-latency, high-throughput
processing of streams, requires an effective task scheduling that reduces the number
of task migrations, allocates the number of dependent and independent tasks in a near
optimal manner to decrease the overall computation time of a job, and improves the
utilization of cluster resources. It’s certainly clear that scheduling constitutes a critical
factor for systems’ performance.

Prior to providing a scheduling solution, the following chapter presents Apache
Storm’s preliminaries. Apache Storm’s semantics were chosen to describe this work, as
it is a mature project, with a very large community and popularity in cloud computing
industry, due to its reliability and good processing mode. This approach, though, is
generic to any data flow system and suitable for deployment and use in large-scale
clusters. As mentioned earlier, Apache Storm is highly scalable with the ability to
continue calculations in parallel at the same speed under increased load and reliable. It
has been clocked to process 1 million messages of 100 bytes size on a single node which
makes it one of the fastest technology platforms.

37

Chapter 4

Task allocation and scheduling

"Any sufficiently advanced technology is indistinguishable from magic."-Arthur C.
Clarke’s third law

Apache Storm [|17] is an open source, scalable, and fault-tolerant DSPS designed for
distributed clusters. As already discussed in previous chapters, its default operator
placement policy evenly distributes the processing elements of an application on the
available nodes in the cluster, aiming at load sharing but cannot guarantee load balance.
It is among the first open source solutions of modern DSPSs, and is used by several
research efforts to evaluate scheduling algorithms.

In this chapter, the way Apache Storm represents and executes a stream processing
application is initially described in Section 4.1. Its semantics are then going to be used
to:

 present in details the mathematical background and problem formulation behind
the provided prototype design (Section 4.2)

» provide a task allocation and scheduling scheme as an extension of Storm, that
reduces the required buffer space and the inter-node communication costs to
increase system’s performance, is balanced and periodic, and has linear complexity
(Section 4.3).

The application of the derived scheme is depicted using motivating examples in Section
4.4.

4.1 Preliminaries in Storm

Apache Storm allows application developers to write applications that process streams
comprised of tuples of data. It represents a streaming application as a Directed Acyclic
Graph (DAG), where the vertices show the operators that encapsulate processing logic
(called components in Storm) and the edges show the data flow direction. Apache
Storm uses the terms topology for a DAG while a task is a component’s instance . The

38

Chapter 4. Task allocation and scheduling

components of a DAG are divided to spouts and bolts. A spout is a source of streams in
a topology and a bolt receives streams, processes them, and forwards them for further
processing.

We distinguish between the logical and physical abstraction in Storm. Fig. 4.1
shows the intercommunication of tasks within a common topology in Storm (logical
abstraction). There is one spout, and four bolts, and each component has four tasks.
Links between components in the topology indicate how tuples are passed around.

Part of defining a topology includes specifying for each bolt which streams it should
receive as input. A stream grouping defines how a stream should be partitioned
among bolts’ tasks. Shuffle grouping is the most commonly used grouping [93]]. It
distributes tuples in a uniform randomly across the tasks. An equal number of tuples
should be processed by each bolt. It is ideal when the processing load needs to be
distributed uniformly across the tasks and when there is no requirement of any data-
driven partitioning. It can be useful for doing atomic operations such as a math operation
but in case the operation can’t be randomly distributed (e.g. in case of word count), it
does not fit.

In the physical layer, there is a master node (Storm’s default scheduler is a part
of the Nimbus daemon on the master node) and a set of physical machines (worker
nodes) that can host multiple operators. Nimbus communicates and cooperates with
a Zookeeper [43]] service to maintain a consistent list of active worker nodes and to
detect failures. ZooKeeper, is a shared in-memory service for managing configuration
information and enabling distributed coordination. Slots on each worker node indicate
the number of workers (Java Virtual Machines-JVMs) that can run on this node. The
number of slots are typical set to the number of cores and execute a part of the topology.
Each worker running is launched and monitored to have possible failures handled by
a Supervisor executing on its worker node. Supervisors run on each node, to start or
terminate workers according to the Nimbus assignments. The Nimbus and Supervisors
are themselves stateless. But with Zookeeper, some state information is stored so that
things can begin where they were left off if a node crashes or a daemon dies unexpectedly.

Each operator’s code is executed by threads or executors and multiple threads of
the same component execute the same computation on different parts of the stream, in
parallel. The number of parallel instances of an operator (i.e. replicas) determine the
operator’s replication degree (also known as parallelization degree). In Apache Storm, it
is set when a topology is submitted by the user (the interested reader can check Appendix
A to see how this can be done in a common application). Consequently, each component
in a Storm topology has several executors and each executor can have several tasks. By
default, Storm will run one task per thread. Each JVM can host a number of threads
from different components of the same topology.

Storm’s default scheduler distributes the tasks of bolts and spouts uniformly across
all the nodes in the cluster in a round robin fashion, but in this way it is not possible to
balance load. Tasks from a single bolt or spout will most likely be placed on different
physical machines but the main consideration in this strategy is that the communication
between tasks is not taken into account. It is a common assumption that nearby tasks
would most probably communicate during processing, so high communication latencies

39

Chapter 4. Task allocation and scheduling

Stage 0 Stage 1 Stage 2

Figure 4.1: Intercommunication of tasks in a streaming application

can be improved, if we achieve task locality.

This approach looks at how components are interconnected within the topology to
determine what are the executors (instances) that should be assigned to the same or
nearby nodes. The key idea is to use communication patterns among executors, trying
to place the most communicating executors, as close as possible. Such a scheduling
is executed before the topology is started, so neither the load nor the traffic are taken
into account, and consequently no constraint about memory or CPU is considered.
Not taking into account these points, obviously limits the effectiveness of an offline
scheduler but the pipeline-based scheduling technique that is used, tries to balance load
and decrease queue waiting times, enabling a very simple implementation that provides
a good performance. It also avoids possible application downtimes, that are usually the
case in dynamic approaches to implement the necessary reconfigurations.

Without loss of generality, it is assumed that the tuple processing time of all the
tasks is almost the same (this is a logical assumption also used by shuffle grouping,
see [13,72]). Under this hypothesis, we can divide the overall processing into a set
of well-defined processing steps and stages. These terms are defined in the following
section.

4.2 Problem Formulation

Let us consider a cluster of N nodes, and an application topology like the one Fig. 4.1,
where the interconnection between the components is shown. In this figure, there are

40

Chapter 4. Task allocation and scheduling

4 bolts and 1 spout, each of them having 4 threads. Each thread executes one task, so
we can refer to tasks and threads interchangeably from this moment on. We define the
initial matrix, M;,;;, as a table that stores the tasks assigned to each node by the default
round-robin Storm scheduler. This table can have two forms: in the first form, the tasks
are indicated as letters and in the second they have been replaced by numbers.

[N() N] N2 N3 N4 NS]
Q R S T A B
My =

Cc D E F G H
I J] K L M N
0 P Q Q Q Q
4.1)
[No Ny N» N3 Ns Ns |
0O 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17

18 19 @ O @ O |

The tasks indicated by € are added by the model as “dummies” and they are used
to avoid empty values in M;,;;. In the numbered representation, the dummy tasks are
circled. A dummy task plays no role in the actual processing.

Without loss of generality, we assume that the tuple processing time of all the tasks
is almost the same. Under this hypothesis, we can divide the overall processing into a
set of well-defined processing steps and stages. In Definitions 1 and 2, these terms are
rigorously defined.

Definition 1: In our context, a processing step defines a set of communications
between nodes (which result in communications between tasks), such that each
node receives stream parts from one node only. Once received, these stream parts
are assigned to proper threads, which, in their turn, are executed on the data
received.

Definition 2: In our context, a processing stage defines the points of a logical
path of spouts and bolts that a stream has to follow, from its generation until the
end of its processing.

J

In the example of Fig. 4.1, there are 3 stages: Stage 0, where the stream parts move
from the spout to Bolt 1, Stage 1, where stream parts move from Bolt 1 to Bolts 2 and 3,
and Stage 2, where stream parts move from Bolts 2 and 3 to Bolt 4. Let us define such
an initial task allocation as A(t, N), where ¢ is the number of tasks per spout/bolt and
N is the set of nodes in the cluster. Proposition 1 forms the basis of the task allocation.

41

Chapter 4. Task allocation and scheduling

Algorithm 1 that is presented in Section 4.3.1 derives directly from the proof of this
proposition.

__

Proposition 1: The initial matrix of Eq.(4.1) can always be transformed into

an intermediate task allocation matrix, M}, ., where the rows of M} ., define a
communication between the cluster’s nodes, such that each node will be receiving
stream parts from one node at a time.

Proof: If we want to derive a mathematical formula describing the round-robin
placement of tasks in M;,;;, this would be

Mt (i, j) = iN + J, 4.2)

where j is the column index, j € [0...N — 1], i is the row index, i € [O, . L%J - 1],
and 7 is the total number of tasks in the system. For our example, the application
of Eq.(4.2) would produce the arithmetic representation of Eq.(4.1). By dividing
M;y;; by t, we obtain an intermediate matrix, M ;, which represents tasks with their
corresponding component IDs (assuming that the spout has ID=0, and bolts 1-4 have
IDs 1-4, respectively). The ID=5 corresponds to the dummies:

(00 001 1
, 112222
Minia 3333 44|°
| 445555
(4.3)
[Q R S T A B
_|CDEF GH
|13 KL MN
0P QQQQ

Actually, M . shows the initial allocation of spout/bolt tasks into the system’s nodes.
Now, G = gcd(t, N) is set as the greatest common divisor of # and N. Thus, we can
find integers " and N’, such that t = G and N = N’G. Under this assumption, let
us consider two rows of M l.’ Lir» one with row index i and one with row index i’, where
i’ =i+ ut’, for some integer u. Then,

IN+j
t

Ml.’m.t(i,j) = “4.4)
P I'N+j (i+ut’)N+j
M, () = P - 4.5)

42

Chapter 4. Task allocation and scheduling

By subtracting (4.4) from (4.5), we get

((+ut') N+j—iN-j
t

N+ ut’N+j—iN—j
t

_ut'N _ ut’'GN’

ot ot

M (7', J) = My, (i,) =

All the above divisions are integer. The notion of a class will help us proceed with
the proof.

Definition 3: A class k is defined as a group of the row indices of M .., such that

init’
i (modt) = k.

Because ut’GN’ is divided by N’, in every column, all the elements of M/, with

row indices that differ by ¢’ will produce the same modulo when divided by N’. These
elements are G in total and can be brought together by following the steps below:

1. For all the row indices of M! ., find all the k values, such that i (mod ¢’) = k.
These distinct k values are called classes.

2. Take the first row i, such that i (mod ') = k, that is { belongs to class k.

3. All the row indices in every class will move to a new row index:

lpew =

%| + kG (4.6)

The row transpositions will generate a transposed matrix M;,.,. The transposed
matrix M/,, has two properties: (1) For every column of M;,,, each class’s elements
produce the same modulo when divided to N’, and (2) M;,, can be divided into a set of
t’ x N’ sub-matrices of size G X G. In other words, it is a matrix with #’ rows and N’
columns of square sub-matrices of size G X G. The notation A is used to denote these

square sub-matirces:

Aoo Ao1 ... Aon—
Ao Ay ... Ay
4 _ > ’ 3
M., = :) .) 4.7)
Ap10 Ap-11 .. Ap_in—

each element of M/

/- 1 described by the following indices:

- i row index of M/ as a whole, i € [0,... L%J - 1]

trn

43

Chapter 4. Task allocation and scheduling

- j column index of M;,, as a whole, j € [0,...,N — 1]

- r row index of sub-matrices, r € [0,...,t — 1]

- ¢ column index of sub-matrices, ¢ € [0,..., N’ — 1]

- r’ row index of an element within a sub-matrix, »’ € [0,...,G — 1]

- ¢’ column index of an element within a sub-matrix, ¢’ € [0,...,G — 1]

Now, since the elements of M/,, are, in groups, having the same modulo N’ values,
we can express M/,

{rn @8 a sum of a constant factor M| and a matrix M, where:

0 0 0
1 XN’ 1 XN 1 x N’
M| = . : . . (4.8)
(G-1)XN (G-1)xXN ... (G=-1)xN’
N/
M = V t,“ 4.9)

Note that M7 is a matrix with G in total rows whose elements are multiplied by N’,
while the M} derives by applying Eq.(4.2) on the elements of a sub-matrix of size G X G,
substituting r for i, N’ for N, and c¢ for j, and dividing by ¢’ instead of 1,0 < r <t — 1
and for0 <c < N' - 1.

To complete the proof for Proposition 1, we need to show that the elements of M}
can be aligned in such a manner that all the rows contain different elements, since M| is
a constant.

Assume that two of the G X G sub-matrices in the same row of M/, have the same
elements. Because these sub-matrices are a sum of a constant part M| and a variable
part M}, the variable part M is examined. Eq.(4.9) states that the row index r of the
sub-matrices M;,, has the same modulo when divided by ' but ¢ (mod ¢’) is different

for the sub-matrix columns. Therefore, to have a row of different sub-matrices, at most
N’ — 1 sub-matrices need to be moved from row r to row r,,,,, using the formula:

Frew = (rN' + ¢)(mod t") (4.10)

Because (rN’ + ¢)(mod ¢’) = rN’ (mod ') + ¢ (mod ¢’), it follows that the sub-
matrices found in the same row have the same rN’ (mod ¢’) value, but their ¢ (mod ¢’)
value changes between consecutive columns.

Finally, to separate the same-valued elements found in each row of a sub-matrix
because of the constant factor of M { (see Eq.(4.8)), these elements need to be circularly
moved to different rows in the sub-matrix, so that they are put in diagonal positions. This
can be done because these matrices are square, of size G X G. Thus, every row element
will move to a new row index r,,,,, according to:

Frow = (" +¢’) (mod G) 4.11)

44

Chapter 4. Task allocation and scheduling

Now, the elements of every row of M/ are different between them. The

transformations of Eq.(4.10) and Eq.(4.11) produce M’ Thus, if we read each

inter®
row element M as a target node for the corresponding node label in every column
(for example, nodes Np — N5 in Eq.(4.1)), then each row represents a processing step,
where each node communicates with only one other node and Proposition 1 is proven.

45

Chapter 4. Task allocation and scheduling

Proposition 1.1 proves the periodicity of the transformations described and proved above.

Proposition 1.1: The transformation procedure that leads to a task allocation
matrix is periodical and its period is LCM((t, N), the least common multiple of t
and N.

Proof: Assume that two tasks 7, and 7,, are initially distributed in node n and belong
to the same class k. Then, n = r; mod N and n = 7, mod N. From these two
relationships, it follows that

(ty—n) mod N = 0 (4.12)
(tuy—=n) mod N = 0 (4.13)

From Eq.(4.12) and (4.13), it follows that:
(tx—1t,) mod N =0 (4.14)

Suppose that 7, is located at line iy and ¢, is located at line i>. Since these two tasks
belong to the same class k, from the definition of classes, we have: i; mod ¢’ = k and
i mod t’ = k. From these two relation ships, we have

(it—k) mod?t = 0 (4.15)
(b—k) mod? = 0 (4.16)

From Eq.(4.15) and (4.16), we get:

(i1 —i;) mod =0
= G(i1 —ip) mod Gt = 0
Gt'=t .
= G(i1—i) modt = 0 “4.17)
However, i| = % and i, = tﬁ”, so Eq.(4.17) becomes
G(ty—t
N
= ’ G t _t
N:G>N M modt = 0
GN’
,—1t
M mod: = 0
NI
N’=int N'(ty—t
geger —(;\/’ w) modt = 0 or
(tx—t,) modt = 0 (4.18)

46

Chapter 4. Task allocation and scheduling

Let us rewrite Eq.(4.14) and (4.18):

(ta—ty) mod N =0
(th—ty) mod =0,

from which it follows that
(ta—1t,) mod LCM(t,N)=0 (4.19)

Equation 4.19 states that the two tasks differ by the LCM of r and N. Thus all tasks that
differ by this quantity can be distributed in the same manner. [

Proposition 2 forms the basis of task scheduling. Algorithm 2, that is presented in Section
4.3.2, derives directly from the proof of this proposition and along with Algorithm 3
constitute our task scheduling approach.

Proposition 2: The task allocation defined by the intermediate task allocation
matrix, M, , can be refined to map to the specific application’s DAG, so that the
communicating tasks can be (to the maximum extent) placed in nearby nodes and

produce the final task allocation-scheduling matrix, M, .

Proof: If we view the elements of rows of M, as component IDs (and further, as tasks)
rather than target nodes, then Proposition 2 is shown. Indeed, to see that Proposition 2
also holds, one can easily see that each of the A square sub-matrices, in its final form,
has G elements in each diagonal. In this context a diagonal is a group of G elements
that belong to the same component.

By reading the DAG, we can easily see the interconnection between the components.
Then, we can interchange the diagonals of the N” sub-matrices over each row of M/
in a proper way, so that each sub-matrix has component IDs that in fact are settled to
communicate by the application. Because M, has ' rows and N’ columns of square
sub-matrices of size G X G, it follows that, every diagonal of each row sub-matrix can
be transferred to at most N’ — 1 different sub-matrices over the row, indication that each
diagonal can change position at most N’ — 1 times. This completes the proof of existence

for Proposition 2. =

4.3 Task Allocation and Scheduling Approach

This thesis’ scheme is divided into three parts: task allocation, communication
refinement and task scheduling, which are described in the following paragraphs.

4.3.1 Task Allocation

The task allocation strategy is a straight forward implementation of the proof presented
for Propositions 1 and 2. In Algorithm 1, the proof of Proposition 1 is organized in

47

Chapter 4. Task allocation and scheduling

steps, so that the initial task allocation is produced. Then, the diagonal movements
discussed to prove the existence of Proposition 2 result in Algorithm 2, that constitutes
the refinement of the task allocation. The communication refinement of the Ml.’mr, the
matrix that derives from the application of Algorithm 1, uses as an input:

* a Bitmap matrix that represents the actual communications between the DAG’s
components (rows and columns refer to component IDs and "1" is used every time
a communication between the corresponding components exists)

e the matrix M’ which contains the discrete elements of each G X G submatrix in
each row in ascending order and

* an R array that contains the non-communicating components in each G X G sub-
matrix (each row represents a component ID and its elements depict the component
IDs with which it does not communicate, in descending order).

The function check_swap is called to make the necessary diagonals’ interchanges,
and gives as an output the refined allocation table M’ .

Algorithm 1: Task allocation
input : An application graph organized in n spouts/bolts of 7 tasks A cluster of
N nodes
output : An M/ depicting a task allocation policy, such that each node

inter
receives stream parts from one node at a time

1 begin

2 Declare M/, ., such that Vi € [O, . L%J - 1] and
Vjiel0,....N-1]: M, =T

Set G = ged(t,N), ' = £, N' = %

Find all the classes &, such that i (mod ¢') = k

if a row index i € k then

3
4
5
6 | inew=%+kG
7
8
9

end
Define the ' X N’ sub-matrices of size G X G
Move all the sub-matrices with similar values to different rows using Eq.(4.10)
10 Move all the similar values within each sub-matrix to different rows using
Eq.(4.11)/ M, has been generated

inter

4.3.2 Task Scheduling

To perform the task scheduling, the inter-node communications need to be arranged. In
this context, we can see M’, ., 4 @ communication schedule, where each row corresponds
to a processing step, as defined in Definition 1. An all to all communication between

48

Chapter 4. Task allocation and scheduling

Algorithm 2: Communication refinement

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

input : The task allocation matrix M, derived from the application of

Algorithm 1 on an application graph

Bitmap: A matrix representing the existing communications between
components

M'’: An array consisting the elements of each G X G submatrix in each
one of its rows in ascending order

R™: An array containing the non-communicating components in each
G X G submatrix in descending order
output : A refined allocation-scheduling table M }in

Function main()
num_of_swaps =0
fori=0 ro N'-2do
forj=i+1to N —1do
‘ check_swap(i,j)
end
end
check_swap(i,j)
k = 0// Index used in R~
forx =0 to G-1do
fory=0to G-1do
source= M'[i, x]
target=M'[],y]
if Bitmap|[source,target] == 1 then

if num_of_swaps < {%J then
swap(R™ [source, k], target)
k=k+1
num_o f_swaps = num_o f_swaps + 1
Store to M}m
else
num_o f_swaps =0
GoTo Line 3

end

end
end

end

all the cluster nodes requires N rows for M’, " In cases where N > ¢, we need to add

f

another % rows of sub-matrices. Such matrices are always available, since, N > ¢/
(the number of sub-matrix columns is > than the number of sub-matrix rows). The
sub-matrices chosen to be added include the missing communications. This addition

49

Chapter 4. Task allocation and scheduling

Algorithm 3: Task scheduling
input : Number of stages, s, number of processing steps, P, time required to
process a stream part, &
output : M }dm depicting a task scheduling policy with equal processing load per
node

1 begin
20=0
3 while processing not complete do

4 {

5 time =0h;

6 for[=0tos—1
7|

8 if 6 — [> 0 then
9

stage; — steps_; mod p)

10 else stage; — 0

11 }

12 Execute communications defined by the processing step
3 0=0+1;

results in a square N X N M }in matrix and is necessary before applying the scheduling
approach of Algorithm 3.

To read the communications, we view the label on top of each column of M’ .y a8
the sending node and the corresponding row elements as the receiving nodes. The
intra-node communications that result from this scheme are very useful, as they perform
task communications internally within a node, thus inter-node communication costs are
reduced. Of course we are also interested that the communication between neighboring
nodes is mapped in the columns as well, to the larger possible extent. This is guaranteed
by the way this refinement is performed using Algorithm 2.

Each application runs in processing stages (defined in Definition 2). The task
scheduling approach organizes the communication between tasks in a pipeline-based
fashion, such that: (1) At each processing step, each node receives stream parts which
are delivered to the proper tasks for processing, from one node only, (2) The processing
load is balanced between the nodes available.

The time is divided into time slots of duration /&, where A is the constant time
required to process each stream part. We will use the notation “a step occupies a stage”,
to show that, from the set of all the stream parts that need to be transferred and processed
by the tasks at this stage, the system transfers only the stream parts between the node
pairs defined in the step. The rationale between this scheme is the following: At every
time slot, different steps occupy different processing stages, thus, each node receives
mostly streams processed at different stages of the application (thus, different tasks are
occupied). This reduces the buffer space that would be required if a task had to process

50

Chapter 4. Task allocation and scheduling

many stream parts arriving simultaneously to its node. Algorithm 3 gives the pseudo-
code of the task scheduling approach. The application of Algorithms 1,2 and 3 are
depicted by the motivating examples of Section 4.4.

4.3.3 Overall Complexity

The transformations required by the provided task allocation and scheduling scheme are
of three types:

1. the transformations required to move the classes in the same part of M;,,,
2. the transformations of Eq.(4.10-4.11), that will generate the processing steps, and

3. the transformations used for refinement.

The first type is defined by Eq.(4.6) and at most t’ rows change position at each class.
The transformations described by Eq.(4.10) moves at most N' — 1 sub-matrices and
the transformations of Eq.(4.11) introduce another G simultaneous moves. Finally, the
refinement phase includes at most N’ — 1 moves of diagonal elements to a new sub-matrix
in every row of sub-matrices. Since we have ¢’ such rows, the refinement requires at
most (N’ — 1)t moves. Totally, this scheme requires ¢’ + N’ — 1 + (N’ — 1)#’ moves, so
its cost is O (¢, N’), a linear dependence on ¢’ and N’.

4.4 Motivating Examples

We consider two different topologies; a random and a linear as motivating examples.
Figs. 4.2 and 4.6 show the interconnection between the components that are used.

4.4.1 Random Topology

In Fig. 4.2 the topology consists of 4 bolts and 1 spout and the maximum number of
threads ¢ per component, is 6. Each thread executes one task, so we can refer to tasks
and threads interchangeably from this moment on. A cluster of N=9 nodes will be used
in this case. Additional dummy threads are added to components that have less than ¢
tasks to define an initial matrix, M;,;;, as a table that stores the tasks assigned to each
node by the default round-robin Storm scheduler. This table can have two forms: in the
first form, the tasks are indicated as letters and in the second they have been replaced by
numbers.

[No Ni N N3 Ny Ns N¢ N7 Ng]
U V W X Y Z A B C
D E ® F G H I ® @&
Myp:=|3J K L M ©®© © N 0 P |=
Q R O Q @ Q@ Q@ Q Q
Q Q Q Q Q Q Q Q Q
Q2 Q Q Q Q Q Q Q Q|

51

Chapter 4. Task allocation and scheduling

Parallelism
Hint=6 Hint=5

Parallelism
Hint=4

Figure 4.2: Intercommunication of tasks within a random topology (DAG) with heavy
communications.

[No Ni N N3 N4 Ns Ng Ny
o 1 2 3 4 5 6 17
9 10 @ 12 13 14 15 @
18 19 20 21 @ @ 24 25
27 28 9 & O & &8 &
¥ ©® ® ©® ©® O @ O
B ¥ O B O v 9 e

DOBOR O > Z

The tasks indicated by €2 are added by the model as “dummies”, they are used to avoid
empty values in M;,;;, and assure that all the desired nodes take part in the allocation
procedure. In the numbered representation, the dummy tasks are circled. A dummy
task plays no role in the actual processing. The resulting table is an ¢ X N matrix. By
dividing M;,;; by ¢, we obtain an intermediate matrix, Ml.’m.t, which represents tasks with
their corresponding component IDs (assuming that the spout has ID=0, and bolts 1-4
have IDs 1-4, respectively). The IDs 5, 6, 7 and 8 correspond to components containing
dummies:

52

Chapter 4. Task allocation and scheduling

init —

NN W = O
NN MW = O
o N W N O
o0 O\ LW N O
0O O\ W N O
0N Nk o =
I IR, I N SR
00 |~ N —

NN RW = O

We also have G = gcd(6,9) = 3, thus ' = 2 and N’ = 3. Because ¢’ = 2, there are
two classes, k = 0 and k = 1. According to Definition 3, row indices 0, 2 and 4 belong to
class k = 0 and row indices 1, 3 and 5 belong to class k = 1. According to Eq.(4.6), row
i = 0 is the first row of class 0 and as LgJ +0x 3 =0, it will remain in the same position.

The next row in class k = 0 is the row with i = 2. It will move to row L%J +0x3=1.
The last row in class k£ = 0 is the row with i = 4. It will move to row L%J +0x3=2.
For class k = 1, we have row i = 1, that will move to row |_%J +1x3 =3, rowi =3, that
will move to row L%J + 1 X3 =4 and row i = 5, that will stay in row L%J +1x3=>5.
To summarize, we have the following moves:

Row 0 will stay in row O

Row 1 will move to row 3

Row 2 will move to row 1

Row 3 will move to row 4

Row 4 will move to row 2

Row 5 will stay in row 5

resulting into a transformed matrix M;,,:

(0000001 1 1]
333333444
| 666666777
m=IT 11222222
444555555
|7 778888 8 8|

The horizontal line separates the elements of the two classes. Class k = 0 elements
are at the top rows and class k = 1 elements are at the bottom rows. Also, note that, in
every column of M;,,, each classe’s elements produce the same modulo when divided
to N’ = 3. Next, we can note that M. can be divided into a set of #/ X N’ sub-matrices

trn
of size G X G:

53

Chapter 4. Task allocation and scheduling

Mirn Ao [Arn A2 |~
[0 0 0|0 O O]1 1 1]
33 3|33 3|4 44
|6 66666777
1111222222
4 4 4|5 5 5|55 5
77 7|8 8 8/88 8

Now, by applying the row transformations of Eq.(4.10), M/, becomes

trn

(0000|2221 11
333|555/444
Ly _ |66 6/88 8777
m=1T 1 1[0 0 0]2 2 2
4 4 4|3 33/55°5
7 7 7|6 6 6|8 8 8

and by applying the row transformations of Eq.(4.11), we get the M/

inter”

No Ni N Ns Ny Ns No¢ N; Ng
0 6 3 2 8 5 1 17 4
30 6 5 2 8 4 1 7
M, =6 3 0 8 5 2 7 4 1
1 7 4 0 6 3 2 8 5
4 1 7 3 0 6 5 2 8
7 4 1 6 3 0 8 5 2

To start the communication refinement, the matrices Bitmap, M’, and R~ are defined
as they are necessary for the implementation of Algorithm 2.

No Ny N» N3 N4 Ns Ng N7 Ng

—
)
)
)
)
)
)
)

Bitmap =

e NelelelNeNeNoNe el
S oo oo o o0
S oo oo oo
S oo oo oo
el eBeoleBel i)
S oo oo o o0
S oo oo o o0
eleoBeoBeoBeololele)
el eoBeolBeoBeololele)

54

Chapter 4. Task allocation and scheduling

Based on Algorithm 2, the first swap occurs fori =0, j =2, x =0and y = 0 as:

* source = M’'[0,0] =0
* target = M’'[2,0] =1

* Bitmap|0,1] =
component ID=1

— N O

~ W

~N o0 O\

. R7

N A WO I
N = O = O Nk W

1 as there is a communication from component ID=0 to

and this leads to a swap between elements 6 (R™[0,0]) and 1 (target) in matrix M’,, .
Moreover, fori =1, j=2,x=0and y = 1:

e source =2
* target =4

* Bitmap|2,4] =
component [D=4

I

1 as there is a communication from component ID=2 to

and this leads to a swap between elements 8 and 4 in matrix M’ fin. Finally, M }in

becomes:

No Nj N» N3 Ny Ns Ng¢ N7 Ng
0 I 3 2 4 5 6 7 8

30 1 5 2 4 8 6 7

Iy 1 3 0 4 5 2 7 8 6
fin 6 7 8 0 1 3 2 4 5
8 6 7 3 0 1 5 2 4

7 8 6 1 3 0 4 5 2

No Ni N2 N; Ny Ns Ng¢ N7 Ng

U A J] F N Q O Q Q

K V B Q G 0 Q Q Q

= C L W P Q H Q Q Q

Q Q Q X D M I Q Q

Q QO 0 Q Y E Q Q R

QO QO Q0 Q Q zZ O Q Q

Chapter 4. Task allocation and scheduling

Now we can also view M}m as a communication schedule. An all to all

communication between all the cluster nodes requires N rows for M }m. In our example,

we add another % = 1 row of sub-matrices to M }m to make it a square 9 X 9 matrix.
The sub-matrices chosen to be added include the missing communications and our
scheduling matrix becomes as follows:

No Ni N, Ny Ny Ns Ng¢ N7 Ng

stetp 0 O 1 3 2 4 5 6 7 8

step1 3 0 1 5 2 4 8 6 7

step2 1 3 0 4 5 2 7 8 6

M. = step3 6 7 8 O 1 3 2 4 5
fimn™ step4 8 6 7 3 0 1 5 2 4
step 5 7 8 6 1 3 0 4 5 2

stetp 6 2 4 5 6 7 8 0 1 3

step 7 5 2 4 8 6 7 3 0 1

step 8 4 5 2 7 8 6 1 3 0

The pipeline that derives from the application of Algorithm 3 in the example of Fig.
4.2 is shown in Fig. 4.3(a). Fig. 4.3(b) shows the task communications performed after
implementing Step 0, when the pipeline is already full. In our context, the pipeline is full
once all the steps have gone through all the stages once (unlike the usual interpretation,
which states that all the stages are full). When this is the case, we have a communication
pattern between the application’s tasks, such that the number of multiple part streams
loaded to a task is minimized, thus minimizing the need for buffer space. From Fig.
4.3(b), one can see that the communication from task J to P can only be implemented
after the communication from D to J. The first implementation of step 1, results in a
communication between the JVMs of nodes 4 and 2 transferring a stream part from D to
J (task D has already received and can deliver a stream part). Then the implementation
of step 0, transfers a stream part between the JVMs of nodes 2 and 3 i.e. from task J to
task P. This is depicted by the dashed arrow connecting tasks D and J in Fig. 4.3(b) as
it refers to Step 1.

Moreover, we see a case where possible buffering is required in Step 0; two tasks
from node 5 (M and H) communicate with task O in the same node. In such cases (which
sometimes are inevitable when multiple components forward tuples to a single one), we
could monitor an increase in queue waiting times and tuple latencies. The burden can
become even worse when the application workload is increased.

A dynamic scheme could adopt data parallelism and scale out the number of parallel
instances for the operator that is overloaded and becomes a bottleneck and/or increase the
number of VMs that run in the cluster [[72]. Possible task migrations would be needed to
reduce resource utilization imbalances between nodes. Elastic data parallelism during
run-time, makes a system adaptive to changes in the execution environment but in
systems like Apache Storm, the required reconfiguration and restart of the application
also results in significant downtime [14,|18]].

56

Chapter 4. Task allocation and scheduling

time Oh 1h 2h 3h 4h 5h 6h 7h 8h 9h

Stage 0 U—>(SZO V—>(SZ1 U—>ASz
V—A W—A W—C
X—B| X—E| X—=D
Y—D| Y—>B| Y=E
Z—E| Z—D| Z—B

S3 S4 S5 S6 S7

St. 1
age -

C—K C—>FSI C—L
A—L | A—K | A—F
B—F B—L B—K
D—G| D—] | D—H
E—H E—G D—M
E—-M E—]J

Stage 2 S0 S1 S2

S3 S4 S5 S6

G—0 | S3 54 S5
M0 MoN 1-Q
I—R
(@)
Stage 0 Stage 1 Stage 2

Pipeline
stall
p

The dashed communication
is performed in Step 1,(4,2)

(b)

Figure 4.3: (a) Pipeline-based scheduling for the random topology example (b)Task
communications after implementing processing step 0, when the pipeline is already full.

In a static scheme, when several tuples arrive simultaneously from different tasks
to the same task, more than one tuples could fail to be processed or a tuple could be
selected to be processed and let the remaining be processed in the next processing step,
where the same communication occurs. In the first case, the tuple could be replayed later
or could be missed based on the fault-tolerance guarantees that would be needed in the
specific user’s topology (at-least-once guarantee in contrast to at-most-once guarantee).
This would either increase tuple latency or the system would provide the least desirable
outcome in matters of reliability, as messages would be lost [6]. In case of keeping
the tuples to be processed in the next appropriate step, the required buffer space would
increase.

The presented approach provides an efficient solution for the aforementioned scenario
and implements a pipeline stall. The duration of this stall equals to the time required to

57

Chapter 4. Task allocation and scheduling

process the remaining tuples by the corresponding tasks. In our example the stall’s
duration equals to & as we just need to let task O process the tuple received from e.g.
task M (in case the tuple received by task H was initially selected to be processed).

Stage x+1

Figure 4.4: A complex scenario

This solution can prove its value in
more complex scenarios like the one
presented in Fig. 4.4. During Step O,
three different tasks from Node 2 (tasks
I, M, and Q) send stream parts to a single
task of Node 3 (task T). Simultaneously,
in Step 1, two different tasks from Node
1 send stream parts to be processed to
a task (0) in Node 2. In this case, the
duration of the pipeline stall equals the
maximum time needed by a task to process
all its stream parts as can be seen in Fig.
4.5. In this case this duration equals
t = 2h as 0 will take t = h to process
the remaining part from the second task,
while T will need ¢ 2h to process
the remaining parts from the other two
tasks that wanted to communicate with
it.

Stall
time 2h 3h 4h 5h 6h
Stage x 31
B—0O
E74 4 O E—O S2 S3
Stage x+1 S0 |

1-T

IMAT! | M—>T S1 S2

AT QT

Figure 4.5: Pipeline stall

58

Chapter 4. Task allocation and scheduling

4.4.2 Linear Topology

Parallelism Parallelism Parallelism Parallelism
Hint=3 Hint=4 Hint=3 Hint=4

Figure 4.6: Intercommunication of tasks within a linear topology (DAG) with heavy
communications.

In Fig. 4.6 a linear topology with 3 bolts and 1 spout is represented. The maximum
number of threads ¢ per component, is 4. A cluster of N=8 nodes will be used in this
example. The resulting initial matrix, M;y;;, is the following:

No Ny N N3 N4y Ns Ng Ny
L M N © A B C D
Mpyz=|E F G ® H I 1 K
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q
By dividing M;,;; by t, we obtain an intermediate matrix, M; .. The IDs 4, 5, 6 and 7
correspond to components containing dummies:
000O0OT1T1T11
Mo = 22223333
mit 4 4 4 45555
6 6 6 677 717

In this example we have G = gcd(4,8) = 4, thus ' = 1 and N’ = 2. Because
t’ = 1, there is only one class and consequently, there is no need to transpose lines. The
transposed matrix M;,, is equivalent to M . and can be divided into a set of #" x N’
sub-matrices of size G X G:

M, = Noo | Aoy | =

N~ N O
[©) N~ \S B an]
()N SN\ B an]
AN~ O
~N N W =
~N L W =
~ LN W =
~N LN W =

Eq.(4.10) does not result in row transformations in M/, (there is only one row), but

trn

59

Chapter 4. Task allocation and scheduling

time oOh 1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h

S0 S1
Stage 0 L—D L—B

M—AM—D
N—CN—A

S0 S1
D—F A—F
A—GB—G
B—E C—E

S0 S1
Stage 2 F—] F—H

G—KG—J] S2 S3 S84 S5 S6 S7 S8
E—H E—I

S2 S3 | S4 S5 S6 S7 S8| SO S1

Stage 1

S2 1S3 S4 S5 S6/|S7 S8 | SO

Stage 0 Stage 1 Stage 2

Figure 4.7: (a) Pipeline-based scheduling for the linear topology example (b)Task
communications after implementing processing step 0, when the pipeline is already
full.

Eq.(4.11), results in the following allocation matrix M_ . :

No N; N2 N; Ny Ns Ng N;
0 6 4 2 1 7 5 3

inter —

[)N N\]

0o 6 4 3 1 7 5
2 0 6 5 3 1 7
4 2 0 7 5 3 1

The communication refinement algorithm leads to two swaps; 6 with 1, and 4 with
3 that result in the following M }l.n:

60

Chapter 4. Task allocation and scheduling

No Ni N» N3 Ny Ns Ne Np
0 1 3 2 6 71 5 4
M}, 2 0 1 3 4 6 7 5 =
32 0 1 5 4 6 7
1 3 2 0 7 5 4 6
No Ni N» N3 Ny Ns Ne N
L A HE QQ Q Q
= F MBI QQ Q Q
J G N C Q Q Q @
D K Q Q Q Q Q Q

Now we can also view M }m as a communication schedule that after adding 1 row of
sub-matrices to include the missing communications, becomes as follows:

No Ny N» N3 Ny Ns Neg Ny

step 0 0 1 3 2 6 7 5 4
step1 2 0 1 3 4 6 7 5
step2 3 2 0O 1 5 4 6 7
My,=step3 1 3 2 0 7 5 4 6
stepd 6 7 5 4 0 1 3 2
step 5 4 6 7 5 2 0 1 3
step 6 5 4 6 7 3 2 0 1
step 7 7 5 4 6 1 3 2 0

The pipeline that derives from the application of Algorithm 3 in the example of Fig. 4.6
is shown in Fig. 4.7(a). Fig. 4.7(b) shows the task communications performed after
implementing Step 0, when the pipeline is already full.

61

Chapter 5

Experimental Results

"Everything must be taken into account. If the fact will not fit the theory—let the theory
go."-Agatha Cristie

In this section, the efficacy and efficiency of the proposed approach is evaluated under
different utilization scenarios. Itis also discussed how the performance of this scheduling
approach is evaluated to investigate its potentialities and critical points.

At first, the experimental setup is described in Section 5.1. In the following sections,
two sets of experiments are presented, as will be described in the following paragraph:

1. The first set of experiments is used to investigate the average latency (Section 5.2),
the percentage of buffer memory used (Section 5.3), the load balancing per node
(Section 5.4), and finally the throughput (Section 5.5) to compare the system’s
performance against the default Apache Storm’s scheduler, using a random and a
linear topology.

2. Inthe second set, the proposed system is compared with one more scheduler, Peng’s
et al. [19] scheduler, named R-Storm, to examine their throughput using a diamond
and a linear topology (Section 5.5). R-Storm is chosen as it has been included as
an alternative scheduler for Apache Storm, as of v1.0.1.. It tries to reduce the inter
communication latency between adjacent tasks just like the presented approach,
and takes into consideration memory usage. It is a resource-aware strategy that
tries to maximize resources utilization (also discussed in Section 3.2.2.)

5.1 Experimental Setup

The proposed scheduling strategy is evaluated using a simulation environment at
GRNET’s cloud service ~okeanos-knossos, which provides a wide range of choices to
develop, debug, and evaluate an experimental system. Our experimental Storm cluster
consists of nodes that run Ubuntu 16.04.3 LTS with an Intel Core i7-8559U Processor
system and clock speed at 2.7GHz, 6 CPUs, and 16 Gb RAM per node. Further, there is

62

Chapter 5. Experimental Results

Supervisor Supervisor
(worker3) (worker4)
Supervisor
(worker2)
-
s
Storm UL
(stromui)
Superise etc/hosts
\ . 83.212.74.137 zkserver.ok-kno.grnetcloud.net zkserver
Nimbus = gos=— 83.212.74.137 nimbus.ok-kno.grnetcloud.net nimbus
(nimbus) 4 83.212.74.137 stormui.ok-kno.grnetcloud.net stormui
1 83.212.74.244 workerl.ok-kno.grnetcloud.net worker1
Zookeeper 83.212.75.44 worker2.ok-kno.grnetcloud.net worker2

(zkserver) | 83.212.75.49 worker3.ok-kno.grnetcloud.net worker3

83.212.75.53 worker4.ok-kno.grnetcloud.net worker4

Figure 5.1: Example of Storm Cluster

all-to-all communication between the nodes, which are interconnected at a speed of 100
Mbps. The data transfer rates between the cluster nodes are assumed to be equal, but
their proximity differs (nodes with smaller index difference are consider to be located at
lower distances between them). The characteristics of the cluster are presented in Table
5.1. The tuples generated are set to have equal size, 8Kb.

Apache Storm 1.2.3 was set up on top of Ubuntu machines along with the
prerequisites, JDK 8 and Maven 3.3.9, that is used to build the project. The master
node runs three important services Zookeeper (v. 3.4.14), Storm UI, and Nimbus and
worker nodes run the Supervisor daemon, as can be seen in the example of Fig.5.1. The
corresponding hosts file is also depicted and should be placed in each node to make sure
that all nodes can communicate with each other.

The application topology

used strongly influences the Table 5.1: Experimental Environment
overall behavior of a scheduler.
To conduct the necessary ex- CPU Intel Core i7-8559U 2.7GHz

Hardware Memory 16Gb

periments, two topologies were
Network Speed 100 Mbps

run: (a) A random topology

with four bolts and one spout, Software Operating System Ubuntu 16.04.3 LTS
where the maximum number of

threads per component, is 6 (see
Fig.4.2) (b) A linear topology with three bolts and one spout. The maximum number
of threads ¢ per component, is 4 (see Fig.4.6). For the sake of readability, an example
topology written for Apache Storm is postponed to Appendix.

A cluster with N = 9 worker nodes, each with 4 slots was used to run both topologies.
One extranode, designated as the master node to host the Nimbus and Zookeeper services
was also used in both cases. The default Storm scheduler, which is the most widely used

63

Chapter 5. Experimental Results

comparison candidate in the literature, was used for the comparisons.

Since 0.8.0 release, Apache Storm allows users to plug in their custom scheduler
in order to apply a custom scheduling policy. A custom scheduler has to implement
the IScheduler interface, which contains two methods; prepare (Map conf) and
schedule(Topologies topologies, Cluster cluster). The custom schedul-
ing policy is implemented in the schedule (Topologies topologies, Cluster
cluster) method. Necessary configurations should be made in the storm. yaml file of
Nimbus to set the new scheduler. On GitHub (https://github.com/nicoletnt/PipelineStorm)
there is the code used to run a simulation of the propose scheduler, along with necessary
configurations done to the nodes, and the needed .pom files that contain configuration
details, used by Maven to build the project.

5.2 Average Total Latency

This set of experiments focus on the comparison of the overall runtime behavior of our
scheduling strategy against the default Storm scheduler. The average latency refers to
the time needed by tuples to traverse the entire topology.

10

Average Latency per tuple (Our Scheme) —— Average Latency per tuple (Our Scheme) ——
1y Average Latency per tuple (Default Scheduler) —x—,; 9r Average Latency per tuple (Default Scheduler) —<— 4
10} <
X 8+
9l
el 7 ,
o 8 - iy e
g =i L g ol x
g 7t — o 18 I
=] x g x x
Z 6l L // E 5 L \ L
> il il > \ _—
Q L 5 e % P
g st 1 o 5 4 < S e
g o g — \ L
4 4} . S B e
X
2l 2 Z s
/x'/
i Ir
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0123 456 7 8 910111213 141516 17 18 19 20 0123 456 7 8 910111213 141516 17 18 19 20
Time (in minutes) Time (in minutes)
(@) (b)

Figure 5.2: Average latency comparisons between our strategy and the default scheduler:
(a) Random topology (b) Linear topology.

To fairly estimate the overall latency we worked as follows:

a) Each tuple has to "travel" some distance (nodes with close ID numbers are
considered to be placed more closely) from the node that has processed it until the
node that will continue the processing.

b) A tuple can either be buffered or directly be processed. However, in cases where
there is no buffer space available, the tuple is not omitted. Instead, it is resent after
a short period. Although this is not always the case (some systems prefer to omit
such tuples), this type of policy can be helpful in examining the overall latency.

64

Chapter 5. Experimental Results

In the experiments presented, a buffer space of 32 Mb was assigned per task, which
is enough to accommodate about 4K tuples. The other settings (number of threads
and nodes) are as described in the previous subsection. Fig.5.2(a) shows the average
tuple latency for the random topology, while Fig.5.2(b) shows the average tuple latency
for the linear topology. In both cases, our strategy presents lower latencies, but the
average gain is higher when the linear topology is used (25% and 40% respectively).
There is a combination of reasons behind this result: First, the linear topology has even
smaller inter-node traffic when executed in a pipeline fashion, compared to the random
topology. However, reducing the inter-node communication cost is not always sufficient
to guarantee lower latencies. It is also important to consider that, the proposed strategy
avoids having intensively loaded paths between nodes, and this is especially true in the
linear case. In the random topology, there are cases where a task may receive large loads
(see the example of Fig.4.3). Therefore, this strategy pays-off specifically for linear
applications, in that it reduces the overall latency to almost 40% compared to the default
scheduler.

5.3 Percentage of Buffer Memory Used

Although there are 3 main resources involved in the overall evaluation of a stream
scheduling strategy (network links, CPU and memory), in this paragraph, it is shown
that the proposed strategy requires much less memory space compared to the default
scheduler.

100 50

Average Memory used (Our Scheme) —+— Average Memory used (Our Scheme) ——

90 - Average Memory used (Default Scheduler) —«— - Average Memory used (Default Scheduler) ———

o
=1

401

=
=}

=
=}
X

30| T

'S
=)
.

20+

Memory percentage used (%)
s 3
X
Memory percentage used (%)
AV

[N
S
3
S
X
X

-

. ¥ o

- % S

— 4 % Lt
S

S
\

——
-

i

— e

L ,L\X\

X
R A
-

— 7;:;,, It It It It It It It L L L L L It It L 0 =,
23456 7 8 9 1011121314 1516 17 18 19 20 0123

4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20
Time (in minutes) Time (in minutes)

(a) (b)

=]
(=]
—

Figure 5.3: Average memory use comparisons between our strategy and the default
scheduler: (a) Random topology (b) Linear topology

In the plots of Fig.5.3(a) and 5.3(b), we see the average memory usage for the random
and linear topology, respectively. Specifically, when the random topology is executed,
the results have indicated that the default scheduler uses, in the worst case, about 70%

65

Chapter 5. Experimental Results

of the available memory space available. This is due to the fact that some nodes become
overloaded for some periods of time and require more buffering. The proposed strategy
uses at most 26% of the memory space, in cases where pipeline stalls may occur (thus
buffering is required). For the linear case, the memory space required is reduced for
both strategies, however, the improvement offered by the strategy presented, is higher,
primarily because only about 7% of the memory resources is consumed in this case
(some tuples needed to be bufferred due to network flaws, so re-transmissions were
necessary). In fact, in a linear topology, our strategy can have each task receive a tuple
at a time thus buffering is not generally required.

5.4 Load Balancing

In this part of the study it is examined whether the developed strategy offers indeed
satisfactory balancing between the nodes. The tuple size was reduced to 1KB, to have
faster processing time per tuple and the tuples processed at each node were measured.

30 — — — T —
0 98 Node0 —+— Node3 Node6 —+— o Node0 —+— Node3 Node6 —+—
E Nodel —~— Node4 Node7 —x— '§]4 Nodel —«— Node4 Node7 —x—
5 261 Node2 NodeS —— Node§ —— | & [Node2 Node5 —=— Node8 —x— |
24 % =%
= =z 12}
—g 22+ 2 / —g
9] L / W A 2 10
£ 13 / / \x =
£ 16+ /\ / / g

/ / 8 4 N\

8 14 . /\/ (7o\ 8 7\ 7
o N/ 7a\Y/ o
2 12t \/ xS) /A g
= N = 6l
Z 10+ i = /i
bS] AN\ 3 i
g g| / / Z & i
S S 4 /
) /& 3
o 6f 1)
&n o0
& 4t £ ool
5] o
> >
< 27 <

0

0—
012 3 45 6 7 8 910111213 141516 17 18 19 20
Time (in minutes)

(a) (b)

0123 456 7 8 910111213 141516 17 18 19 20
Time (in minutes)

Figure 5.4: Load balancing in a: (a) Random topology (b) Linear topology

The results have shown that, for both topologies, the 9 nodes receive almost balanced
processing load (see Fig.5.4(a) and 5.4(b)). Some divergences (an average of 7%)
appear in the random topology scenario, where nodes 3 to 5 appear to process more
load compared to the others. This can be explained in two ways: (1) these nodes have
processed more pipeline stalls (cases where tasks inside these nodes receive more tuples,
which are buffered and pipeline stalls are used), (2) these nodes suffer less data losses
during transmissions. When the topology is linear, the load delivered to the nodes is
more balanced, as seen in Fig.5.4(b): there is a “one-to-one” component communication
and “one-to-one” inter-node communication and the small imbalances that appear can
be explained by the fact that not all the task communications defined by the proposed
scheduler are actually defined in the application. The default Storm scheduler does not

66

Chapter 5. Experimental Results

provide any mechanism for handling the communication between tasks in a stepwise
manner, so generally it achieves no balancing.

5.5 Throughput

This section provides the results of two different sets of experiments: (i) First, the average
throughput (tuples/min) of the designed strategy is compared to the throughput of the
default round-robin scheduling strategy. (ii) Then the proposed system is compared to
the default scheduler and R-Storm under different scenarios, to verify the fact that it can
achieve better throughput performance.

(i) The average throughput is defined as the rate of tuples being processed by the
topology’s bolts. For the random topology, the number of threads was varied from 3 to 6
and the throughput values were averaged. Tuples were being processed over a period of
20 minutes. Throughput is mainly affected by the inter-node communication required,
and the possible delay, when a tuple is buffered to be processed at a later time.

Tuples/min (Our Scheme) —+— | Tuples/min (Our Scheme) —+— |

=
=
T
N
=
T

Tuples/min (Default Scheduler) ——

/\‘f

\ /
\
/\\ //
/]
X
N /

Tuples/min (Default Scheduler) ——

=N
>
T
Y
=3
T

=
=)
:

\/
Yy

19}
=)
T

s
<

Z

/
/
\/
/
/
/\/
N \(X) S

=N
=)
T

Average Throughput (tuples in thousands/min)
z 2
x\ 1
/
S 1
4 |
v 1
<
S
Average Throughput (tuples in thousands/min)
3
é
h
/
AN

N
=
T
IS
=
—
X
/
/
£
\

¥}
S
T
[
(=1
T
>

0 | | | | | | | | | | | | | | | | | | | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 23 45 6 7 8 9 10111213 141516 17 18 19 20 012 3 456 7 8 9 10111213 141516 17 18 19 20
Time (in minutes) Time (in minutes)

(a) (b)

Figure 5.5: Throughput comparisons between our strategy and the default scheduler: (a)
Random topology (b) Linear topology

The results shown in Fig.5.5(a) indicate that the proposed strategy outperforms the
default round robin strategy. It offers an average of 25% improvement in throughput.
There are two main reasons for this improvement: (i) As the total time increases, the
round-robin strategy suffers large numbers of tuples, which are not processed in-time,
due to node over-utilization (for example, when multiple tuples are submitted from
different tasks to a certain task). These tuples are either buffered, or omitted (in such a
case they are re-submitted for processing), and (ii) This strategy places the relevant tasks
to the same or nearby nodes (refinement process). This type of placement decreases the
total tuple processing time, as the inter-node communication cost is reduced. For larger
number of threads and a maximum runtime of 20 minutes, the overall improvement
approached 35%.

67

Chapter 5. Experimental Results

For the linear topology, the number of threads was varied from 2 to 4 and the results
were averaged. Again, the presented strategy outperforms the default scheduler by
an average of 40%. Larger throughput increases were noticed compared to the random
topology. This is explained by the fact that the developed approach buffers fewer tuples in
the linear topology case, compared to the random one. Fig.5.5(b) shows the experimental
results for the linear topology case.

(ii) In the second set of experiments

(regarding the throughput of our strategy), Spout 0
the proposed strategy was compared with 86
the default Storm scheduler and R-Storm. Bolt 1 55 Bolt 2

8 worker nodes and 1 node designated
as the master node, running Nimbus and
Zookeeper, were used and two different

topologies; a diamond (Fig.5.6(a)) and e
a linear (Fig.5.6(b)) were run. The

diamond topology, consists of one spout, Parallelism
two intermediate bolts one sink bolt. Each

component consists of 10 tasks. The linear @ /\ m
0000 0000 o Ol o
topology has one spout and four bolts and W @ U

the number of tasks is 16, 16, 8, 4 and 1 et 7 et et 7
re SpCCtiVCly. Parallelism Parallelism Parallelism Parallelism Parallelism

The results obtained justify the claim, o e e e
that when there is a special care on
the buffering of incoming tuples, that is,
buffering is reduced and thus the highest
percentage of tuples are processed as they arrive to the proper target node, then the
average throughput increases. The R-Storm does not have any special mechanism for
reducing the buffer space required. Instead, it expects the user to provide the node
capacities and the task requirements, in order to perform allocation of threads and
manage the available resources. From Fig.5.7(a) it can be seen that the provided strategy
offers an improvement of ~ 35% compared to R-Storm as the time increases for the
diamond topology.

For the linear topology (Fig.5.7(b)) the results indicate that the improvement
approaches almost 45% compared to R-Storm. This is because that the developed
strategy generally buffers less tuples when running a purely linear topology compared
to diamond or random topologies. In such topologies, tasks may receive multiple tuples
from other tasks, which can’t be processed simultaneously, thus they are bufferred. Then,
all bufferred tuples are processed in an extra step (pipeline stall), as explained in the text.

A final observation is that, there is a period of time (in the first seconds of execution)
that R-Storm outperforms the proposed strategy. This is explained by the fact that this
strategy needs to execute once all the communicating steps and have the pipelines full,
in order to start performing more efficiently. When this occurs, the developed scheme
clearly outperforms R-Storm.

Parallelism
Hint=10

0000 /!

Bolt_3

Parallelism
Hint=10

Figure 5.6: Experimental topologies.

68

Chapter 5. Experimental Results

80 T T T T T T T T T T T T T T 180 T T T T T T T T T T T T T
= Tuples/min (Our scheme) —— =170 Tuples/min (Our scheme) ——
E 0l Tuples/min (Default Scheduler) —~— | g 160 Tuples/min (Default Scheduler) —<—
3 Tuples/min (R-Storm) k2 [Tuples/min (R-Storm)]
5 £ 1501]
2 60 1 3
2 g 140+ 1
= = 1301 7
& sof B B
~

3 \//\//\ \,/‘ 8 120t /\/\/\/\(|
Saol /\/ 1 S0l 1
E Pl S 100}]
2 2 A\
J:::D 30+ //k“/ SN s fb 90+ L / =]
3 A XN 3 AN Y
2 O 2 8ot i e TN 4
£20F - 1 E N

S 0L < 1
2 2 6
5 10 15 | 1
> >
M Z 50+ g

40

0 I I I I I I I I I I I I I I L I I I I I I I L I I I I I
80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680
Time (in seconds) Time (in seconds)

(a) (b)

Figure 5.7: Throughput comparisons between our strategy, R-Storm and the default
scheduler: (a) Diamond topology (b) Linear topology

69

Chapter 6

An Application Example-Decision
Making in IoT-enabled Agriculture

"The goal is to turn data into information, and information into insight."- Carly Fiorina

By 2050, the world’s population is expected to be 34% larger than today. According
to the Food and Agriculture Organization of the United Nations [94], to keep up with
rising population, global food production must increase by 70% in order to feed the
world. This poses the challenge of improving agricultural productivity, while lowering
its environmental footprint.

Advancements in crop growth modelling, progress in the use of tools to monitor and
collect information from farms in a less labor-intensive manner, and global navigation
systems give rise to precision agriculture, in which precise measurements at local points
and data-intensive approaches support decision-making [95]. Over the past decade,
machine learning techniques have been deployed across precision agriculture to provide
more accurate solutions, mainly because of the capability to handle highly complex and
non-linear agricultural problems [96,97]. Machine learning techniques have different
potential, are of different complexity and computational requirements, and continually
evolve. As model complexity increases, more data must be collected.

With the wide application of IoT technology and the amounts of data produced, smart
agricultural design can efficiently realize the function of real-time data processing and
improve the development of precision agriculture [98].

The Problem: In the process of analyzing and processing a large amount of
planting and environmental data, how to extract valuable information from these
massive agricultural data, is a pressing problem to be solved.

Machine learning and data mining techniques are expected to be instrumental
in meeting the challenges facing global agriculture, and in identifying significant
opportunities by taking advantage of big data. However, the collection and analysis
of large, complex, heterogeneous data, coming from the variety of sources encountered

70

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

in agriculture, cannot be accomplished with traditional machine learning methods such
as linear regression. While agronomic models will play a role in the interpretation of
data, big data transforms agriculture from model- to data-driven.

To address such knowledge gaps, this chapter:

1. examines how the most promising field, machine learning, is applied to extract
information from agricultural data to support precision agriculture in Section 6.1.1

2. presents the current limitations of machine learning to support decision making
in agriculture in Section 6.1.2

3. enhances the awareness for the potential implications of big data analytics in
agriculture, presenting existing opportunities and promising areas of applications
in Section 6.2.1, and

4. sheds light on the factors that delay big data adoption in agriculture, providing
future directions, open issues, and research trends in Section 6.2.2, to speed up
adoption.

6.1 Precision Agriculture

In traditional agriculture, crops have been treated under the assumptions of uniform
soil, nutrient, moisture, weed, and insect conditions. This has several times led to
over-applications or under-applications of pesticides, irrigation, fertilizers, and other
treatments [99]. The advent of Global Positioning Systems (GPS) and Global Navigation
Satellite Systems (GNSS) enabled the practice of precision agriculture, that can be
defined as "the collection of real-time data from farm variables and use of analytics for
smart decisions in order to maximize yields, minimize environmental impact and reduce
cost" [[100].

The factual base of precision agriculture is the spatial and temporal variability of
soil and crop factors between and within fields. The goal of collecting geo-referenced
data is to generate more accurate descriptions of system aspects to inform decisions.
New challenges to the successful implementation of precision agriculture stems from
technology advances and the huge increase of data both in number of records and
variables. The augmented possibilities for data storage, high-throughput, and fully
automated technologies have been rapidly generating large-scale data in agricultural
settings.

6.1.1 Decision making in Precision Agriculture

Multiple linear regression and linear mixed models have been used in soil mapping, where
the variability of a target soil property is explained by its relationships with other soil
and climate factors, with shortcomings like autocorrelation and non-linearity between
variables [[101]]. In agricultural practices, a variety of interrelated factors influence crop

71

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

production. In complex situations, where data are not linearly related and several outliers
exist, linear regression models were not found useful in understanding yield response
and did not provide accurate predictions even within sub—field regions, thought to be
homogeneous [[102-104].

The high complexity and non-linearity of problems faced in agriculture required
methods able to approximate complex mappings by integrating data coming from
different sources and exploiting the information contained in the obtained reference
samples. These methodologies are represented by machine learning techniques
[105,106]. Artificial neural networks (ANN), support vector machines (SVM), decision
trees (DT), and random forests (RF) are machine learning techniques frequently applied
for agricultural management purposes and the most commonly used in the literature. The
decision on which technique to choose depends on the dataset available and the problem’s
complexity. Existing studies that search for the best technique for specific agricultural
aspects do not always present the same conclusions and cannot provide global solutions.
Machine learning techniques have been used in several agricultural applications targeting
mainly crops, soil, weeds and diseases, and weather/climate change [107].

Crops. Applications targeting crops are mainly cases of yield estimation or the
recognition and estimation of crop features. Accurate and timely forecast of yield
is required for marketing, storage, and transportation decisions. Machine learning
methods, capable of handling non-linear relationships, can process a large number of
inputs. Inputs from different sensing systems like soil (e.g., salt, organic matter) or
climate characteristics can be combined to predict yield accurately and provide crop
recommendations on-time [[I08-H111]]. The estimation of crop features’ values is also
needed in order to better understand the environmental dynamics at a region of interest
[112,]113]. Crop recognition is used for the automatic identification and classification
of crop species in a fast and cost-effective manner, avoiding the use of human experts
[114H117].

Soil. Applications for soil include the estimation of soil components, temperature,
and soil moisture content. The knowledge of spatial variability of soil components helps
understanding variabilities in production. Accurate estimations of soil properties are
needed to optimize soil management, make nutrient planning, and take land-use decisions
[118]. Land management practices in agriculture may also target the prevention of floods
and landslides to reduce negative environmental impacts. Carbon storage estimation has
gained increasing attention in recent years [101,|119], due to its interaction with the
earth’s climate system. Maintaining and increasing SOC stocks through improved land
use and management practices can help to counteract increasing atmospheric carbon
dioxide concentrations.

Moreover, soil moisture monitoring enhances the understanding of water exchange
rate at the atmosphere/ground interface and has motivated the development of airborne
and satellite microwave sensors [[120]. Accurate soil moisture estimations can provide
high-resolution maps of water content and in tandem with on-time temperature and
weather estimates can contribute to the enhancement of irrigation systems and the

72

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

maintenance of the climatological balance [121}122].

Diseases and weed detection. Uniformly applying pesticides or fertilizers over an
area of interest leads to high financial and significant environmental cost. Residues in
crops, water contamination, and impacts on ecosystems are just some of the consequences
of this practice. Machine learning techniques can combine various parameters and
perform complex, non-linear modeling of crop yield dependence on nutrients to have
optimal agro-chemicals input targeted in terms of time and place [123]].

Plant diseases are often associated with several physiological and visual modifications
of their host plants, but their visual monitoring at early stages in the field is time-
consuming and expensive. Alternative evaluation methods like hyperspectral imaging
and non-imaging sensors have proven to be useful for detection of early-stages of
vegetation stress, identifying small differences in vegetation cover abundances, or
measuring leaf pigment concentrations. For precision plant protection, disease detection
methods must facilitate an automatic classification of the diseases [[124}125]]. Apart from
diseases, weeds are also a serious threat for producers. They are difficult to be detected
between crops, but remote sensing technologies allow us to build accurate classifiers,
in order to distinguish weeds from both diseased and healthy crops [126-128|]. Tools
detecting and removing weeds can then minimize the need for herbicides and human
intervention.

Weather and climate change. Weather and climate conditions have a profound
influence on the growth and yield of crops, affect fertilizer and irrigation requirements,
and incidence of pests and diseases. Extreme weather conditions can damage the whole
production and cause serious soil erosion, while crop quality during movement from field
to storage or to market is severely affected by unpredictable changes in weather. Climate
Smart Agriculture is a term that refers to simultaneously improving farm productivity
and incomes, increasing adaptive capacity to climate change effects, and reducing green
house gas emissions from farming, with the use of an integrated set of technologies and
practices [129]. Most persistent issues in this category of applications evolve around
capturing the huge heterogeneity of interdisciplinary data. The development of models
combining historical data with real-time data collected from several meteorological
stations seems promising in providing accurate and in time forecasts to support producers
and mitigate the weather effects [130,/131].

While agriculture is strongly affected by climate and weather conditions, it is also
one of the economic sectors that strongly affects climate change itself. The relationship
between agriculture and climate change is two-way. Precision agriculture can lower
emissions by better targeting inputs to spatial and temporal needs of the fields. Improved
soil, water, fertilizer, and pest management can significantly reduce greenhouse gas
emissions, while maintaining similar yields and reducing production costs. Advanced
machine learning techniques proved valuable to imitate the complex, nonlinear issues in
the ecological, climatological, and environmental fields [[132]].

Tantalaki et al. [107] presents an extensive review of research dedicated to
applications of machine learning in agricultural production systems with works

73

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

categorized based on the aforementioned applications’ target. The interested reader
can refer to this work to explore where the field of data analysis in agriculture has been,
where it is now, and where it is likely to go. The need to manage data that arrives
continuously at volumes and high velocity, rises to the top for reasons described below.

6.1.2 Challenges and Limitations

Data-driven models show promise for automating and significantly improving accuracy,
computational efficiency, and cost of various tasks in precision agriculture but some
issues are raised [105,(133-136]:

» Spatial variability: Spatial variability is of crucial importance to understand
the interaction of important variables that affect crop variability. One serious
limitation of using the aforementioned models is that they assume homogeneity;
fields are not usually homogeneous, leading to false assumptions in yield
simulations. The appropriate size of management zone should be carefully
identified by experts when making decisions regarding input usage.

» Temporal variability: Appropriate technique selection for each given dataset may
vary a lot from one year to another, since new data is always incorporated.
Methodologies for optimal data fusion and for making models able to exploit
information at different temporal scales are needed to improve the temporal
consistency and accuracy of the estimation process.

* Variable selection: It is difficult to establish a constant set of attributes that
guarantee good results all the time for all techniques, while some agricultural
datasets may also be difficult to model for any technique due to high complexity
of the crop behavior. It might make sense that adding more features to the total
set of possible features would increase models’ performance, but a large number
of irrelevant features simply increases the possibility to overfit. The challenge for
next generation models includes not only modelling the known factors affecting
crop yield but also incorporating all of the important factors. This requires the
collection of large and suitable datasets that describe the production process.

* Datasets availability: Complicated models with many features compared to the
training examples, are likely to overfit. The application of machine learning
methods combined with sensing technologies, conducted on small areas with
small samples of data, leads to a low ability to generalize the learned parameters
to areas with different characteristics. The availability of large datasets from
diverse sources is necessary to achieve better generalization.

Farming systems are affected by various factors like environmental conditions, soil
characteristics, managing of crop diseases and weeds, and water availability. Lack
of data restricts the capabilities of existing models to include factors of importance
and be accurate enough to gain users’ confidence in their abilities to provide reliable

74

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

results. However, the amount of data collected on farms through sensors like yield
monitors, drones, or portable devices has increased dramatically over the last decade.
The availability of high quality spectral, spatial, and temporal resolution data can lead
to refined and robust models. The types of data have also changed, because, apart from
simple numerical values, data may include qualitative measures, images, or videos. The
desire to collect information on soil and crop variability and respond to such variability
on a fine-scale has become the goal of precision agriculture. The use of big data aims
at supporting this goal and the use of real-time analytics for on-time decision making
will further provide the competitive advantage needed for farmers who adopt the IoT
ecosystem. However, even when large datasets can be available, machine learning
techniques that focus on learning from data, still have to face challenges, as described in
Section 6.2.2.

6.2 Big Data in Agriculture

The emergence of trends like the IoT, robotics, and cloud computing allowed for
an increase in the volume, velocity and variety of data generated in agriculture.
Metadata capturing management practices and technologies, such as seeding depth, seed
placement, cultivar, machinery diagnostics, time and motion, dates of tillage, planting,
scouting, spraying, and input application are considered big data in agriculture [137].
We consider that big data analysis in agriculture does not need to satisfy all the
three V’s dimensions—velocity, volume and variety. Based on precision agriculture
applications, the use of sensors and GNSS to create spatial variability maps can lead
to high volumes of data. The highest volume appears in remote sensing applications
because of the large sizes of the images used. Taking into consideration that weed
and disease detection require urgent action, relevant projects and alert systems demand
high velocity. Nevertheless, soil and crop related approaches for production estimations
do not demand immediate actions and rarely have to deal with data of high velocity.
Decisions on weather forecasting (e.g., decisions for irrigation or fertilization) also need
to be made at almost real time. Papers referring to weeds and diseases, dealing with
production security, do not have to access a variety of data to address a problematic
issue. On the other hand, modeling of weather and climate change needs various data
sources to provide accurate forecasting and support producers’ tasks [95]]. Innovative
technical and analytical strategies have been developed to cope with such data and are
gradually gaining popularity.

Both big data and precision agriculture derived from the advent and application
of information and communication technologies (ICT), yet they are not synonymous.
Precision agriculture involves site-specific application of inputs and the use of yield
monitors. It employs graphical comparisons of field maps as its dominant method
of analysis. However, identifying complex interactions across several production
factors and multiple years requires more sophisticated methods. Analytics is a major
differentiating feature of big data and methods for their implementation are presented
in Section 6.2.2.2. Despite these differences, precision agriculture provides an input

75

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

for big data for analytics. Big data analytical platforms in the cloud, and machine
learning techniques that drive artificial intelligence are helpful, when fully realized
[95,105138-140]. We can consider precision agriculture and big data as complementary
to each other. In the following section, the agricultural big data systems are grouped into
three categories. Each category is described, and application examples and promising
areas of big data application are presented, based on the research conducted.

6.2.1 Agricultural Big Data Systems

Agricultural big data systems can be divided into three categories. Most of the
applications found in the literature use advanced machine learning techniques. Different
approaches are used in several agricultural areas. Specifically, these systems take
advantage of IoT technologies but have different scopes. As such, we divide them
into three domains:

* Advanced sensor technology systems - refers to systems that collect data
to characterize spatial and temporal variability in the production system and
determine actions to be taken in field.

* Risk management systems - refers to systems that use advanced analytic
techniques to manage the risk of crop failure. These systems attempt to make
risk management specific to field location, soil type, and desired yields and assess
the most probable risks on a given farm. Weather and climate change adaptation
and mitigation are common matters of interest in such systems.

* Agricultural management systems - refers to systems that provide smart farming
solutions. They address farm needs like accounting, food market access and
traceability, and wireless linking of farm managers, operators, consumers, and
stakeholders, to provide support for better management practices.

6.2.1.1 Advanced sensor technology systems

Remote sensing provides efficient ways to collect information over very large
geographical areas. The availability of spatially and temporally referenced input
and output data, incorporating the effects of climate and soil on yields, allows
rapid and accurate estimation of production relationships and surpasses the traditional
experimental approach [[106}/134]. Production systems, deploying robotics, advanced
sensors, and big data analytics, enables farmers to manage their farms on much
smaller, and consequently more precise, scales [[139-141]]. Real-time data processing
technologies have seen an unprecedented growth due to their crucial impacts by
providing live monitoring and real-time analytics. The resultant analysis can support the
automation of numerous agriculture procedures.

Several firms are active with precision agriculture trials using environmental sensors
and big data analytics software to maximize yields at a reduced cost [142,/143]]. For
instance, Monsanto that purchased Climate Corporation for its weather data and modeling

76

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

technology, and John Deere that bought Precision Planting to increase the machine
learning capabilities of its farm equipment [140,|144]. There are also open source
projects that focus in farm automation. For example, Handsfreehectare [[145]] is a project
that aims to use solely automated machines in order to grow arable crops remotely.

Using images from remote sensing instruments like drones or satellites is a recent
practice to approximate agriculture problems by image analysis [146,/147]. Generating
accurate but also timely maps with high spatial resolution using image samplings remains
a scientific challenge in agriculture. For instance, [148] used Landsat multi-temporal
scenes and took advantage of the short-wave infrared bands that proved to be extremely
useful in efficiently identifying differences between crops. They combined the newly
acquired data with spectral data from Landsat satellites over a 15-year period and used
supercomputers to handle the huge amount of data. Their Deep Neural Network (DNN)
managed to distinguish the crops studied and estimate production with 95% overall
accuracy just two to three months after planting. Their approach seems promising
enough to be scaled up to large geographic extents.

Object recognition and classification from aerial and satellite imagery using DNN is
one of the most promising areas of big data application in agriculture. Crops are systems
with increasing complexity in shape and appearance. CNNs have shown excellent
capabilities in extracting useful information from images. Moreover, the learned features
obtained from pretrained CNN models can generalize properly even in different domains
for those in which they were trained [[149]]. In-time accurate maps derived from high
spatial resolution satellites can determine apart from growing conditions, and threats to
support best farm management practices on a local scale [148]].

So far, methods to collect and process agricultural data from monitoring devices were
usually time-consuming as demanded either to get the data manually from the device or
use a proprietary cloud as a broker. However, the increasing need to process the growing
size of the generated data on-the-fly led to a shift from storing and processing historic
data towards using event-driven and scalable web architectures. For instance, Wang et
al. [150] proposed an infrastructure to allow the continuous agricultural machine data
flow to the cloud to automate farming processes. The processed data successively stream
to various external endpoints such as mobile or web applications for interpretations and
visualizations. Real-time alerts and feedback for diagnosis, maintenance and monitoring
of various agricultural aspects can in this way, be immediately provided.

6.2.1.2 Risk management systems

Management of risk due to field location, soil type, and mainly to heat stress or freeze is
a matter of crucial importance in agriculture. A specific circumstance for farming is the
influence of the weather and especially its volatility. Merging datasets is a key operation
for data analytics in this case. Regional climate models are used to combine information
from global models with regional and local meteorological records to provide climate
information for smaller spatial units and support real-time adaptation to climate and
weather changes [129]/134, 141].

Math et al. [[151] proposed an IoT based real-time local weather station to support

77

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

precision agriculture activities. Their system provides farmers with means to automate
common agricultural practices like irrigation, fertilization and harvesting at the right
time. The proposed system also supports the efficient use of agricultural resources at
the the right time, when needed by the crops while providing predictions of weather
conditions in near future. Towards this direction, Climate Corporation’s platforms use
in-season imagery and DL to help producers identify issues early and take action to
protect and improve yield [152].

A promising domain of big data application in agriculture that relies in this category,
although it is not based on real-time processing, is the facilitation of agriculture insurance
policies. Weather satellites with wide-area coverage, used in tandem with accurate big
data machine learning algorithms that combine the collected meteorological data with
auxiliary data (e.g., planting/production records over different areas) can be employed
to predict possible crop failures across large regions [129]. In this way, insurers can
improve the prediction of potential crop performance beyond what weather alone might
allow. When greater insight and understanding of crop production risk is developed,
better risk management solutions and personalized insurance policies can be offered,
and the risk can be priced accurately. Machine learning techniques are valuable in
such systems due to their ability to handle heterogeneous data and capture nonlinear
and high-order interactions in dynamic environments [153]]. Several attempts have been
made recently to establish insurance programs in developing countries [[154,|155]].

6.2.1.3 Agricultural management systems

ICT enables farmers to exchange information, establish cooperation, and collaborate. As
farmers get connected, software management systems emerge. Agricultural management
systems arise to provide accounting services, linking farmers with farm managers and
operators, and give benchmarking abilities to farmers by connecting them. Their aim is
to help farm operators and agribusinesses around the world collect, integrate, and analyze
huge amounts of data from different sources to support their business decisions. Such
systems provide smart farming solutions. Smart farming is a term that extends precision
agriculture by basing management tasks not only on field-specific data, but also on data
enhanced by context and situation awareness, triggered by real-time events [[139]]. For
instance, studies conducted in developing world small farms indicate that farmers are not
able to sell harvests due to oversupply or lack of necessary information [156]. Tools for
better yield and demand predictions can enable crops to be integrated to the international
supply chain [95]. Marcu et al. [157]] provide a comparative study between the most
common agriculture IoT platforms that enable farmers to perform real-time actions and
bring together the users (farmers) and professional suppliers.

Singh et al. [[158] proposed a big data analytics approach that collects and analyzes
social media data using vector machines to identify issues related with supply chain
management in food industries. Their approach led to a cluster of words informing
supply chain decision makers about ways to improve various segments of food supply
and thus support production planning and scheduling. Social media text analytics
can inform decision makers about improving various segments of food supply chain

78

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

management [95,/158]]. Demand and supply are affected by many unpredictable factors
that interact in a complex manner. Analyzing and interpreting details on market behavior
and consumers’ preferences from several sources in real-time can assist producers in
making better and faster decisions to satisfy customer requirements. Moreover, spatial
mining techniques on collected data can be used to identify regions susceptible to
possible disasters (e.g., severe weather conditions), to predict locations inappropriate for
sensitive crops, and update the supply chain accordingly [[138]].

Table 6.1 presents the opportunities provided by the use of big data in agriculture
and the potential benefits. Collecting and analyzing big data generated by automated
systems, including digital images and other data from ground sensors, unmanned
systems, or remote sensing satellites, and their combination with already existing data
pose challenges to successful implementation of precision agriculture. Emerging fields
of data mining and machine learning methods are promising approaches to gain insight
from such data [95,97,|138,/140,/159]]. These methods can help analyzing bigger and
more complex data, to uncover hidden patterns and reveal trends fast and accurately.
The potential of these techniques in big data analysis, though, have not been adequately
appreciated in agriculture for a number of reasons examined below.

6.2.2 Challenges of Big Data Adoption in Agriculture

Most of the available open platforms mentioned previously result from recent projects;
their challenge is still the broad adoption, to determine final success. Many of them
may still be under development and have not reached their full potential yet. There
are several publications describing precision agriculture but reports with evaluation of
the economics of big data adoption in agriculture are much less numerous [95,/160].
However, systems’ marketplace adoption can be monitored as a means to assess whether
there are benefits from their technology.

Several big data applications seem to be suited to large farms and industries (i.e.,
Climate Corp and Monsanto) that already use data in their decision-making and have
access to data captured from machinery, greater access to capital, and resources [|152].
Smaller intercropped fields, though, may require more manual labor and less mechanized
processes. However, there is little research examining this assumption [161,/162]. Big
data could potentially be very useful for non-industrial farming practices, but emerging
moral and ethical questions about access, cost, and support should be addressed to
realize this benefit. During this initial phase, benefits from data are not so large for
the farmers. Concerns are held among growers, that the benefits and risks of big
data related developments will be unevenly distributed. Concerted efforts are needed
to lay the foundations required for everyone who wants to participate, to be able to
participate [[161]]. This involves at least improving access to Internet connections even in
very remote areas, and by not excluding smaller farmers (e.g., due to high start-up costs
and complex contract arrangements) [162]. The interested reader in these concerns can
check [152,[1611]162].

Expectations from the big data adoption in agriculture are high but this adoption is
relatively slow. Next, the challenges that have to be faced to leverage the value that big

79

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

data have to offer in agriculture are described.

6.2.2.1 Data collection

In agricultural applications, big data comes from various sources either in real-time
or not. Combining data from a variety of sources raises concerns about matters of
data quality and data fusion, and the access to collected big data raises concerns about
security and privacy.

Data-driven methods demand clean and relevant data to be utilized. Incomplete
datasets, destroyed data, and the presence of outliers or biases in the training set
affect models’ accuracies. The assessment of data quality demands significant human
involvement and expert knowledge. Even semi-automated approaches are not practical
when it comes to large volumes of data. Event monitoring and real-time processing
of streams of data that are highly applied in agriculture further deteriorate data
quality. Techniques like outlier detection, data transformations, cross-validation, and
bootstrapping are valuable tools in data quality management, but until recently, data
quality research has primarily focused on structured data stored in relational databases
and file systems.

IoT data in agriculture usually comes in streams from sources in geographical
proximity and is more likely to be correlated. The spatiotemporal correlation of
data permits advanced sensing techniques like compressive sensing to minimize the
sampling rate and consequently the network traffic load [[163,/164]], but demand real-time
anomaly detection algorithms [[165]]. Research on data quality management is ongoing.
Computational techniques to tackle the aforementioned challenges are needed [40].

The traditional multi-source data fusion just handles structured data [166]. However,
the availability of large datasets is necessary to help data-driven models achieve better
generalization. Recent advancements in cloud computing and distributed processing for
voluminous data computing could help integrate resources in different scales but this
is insufficient. New methods are also needed to tackle the challenges of data fusion,
representation, and cleansing but this still remains an obstacle for the exploitation of IoT
big data in agriculture [[167]]. Deep learning models have been shown to be very effective
in integrating data from different sources and can handle successfully representation
problems like the “semantic gap” [134}/168,169].

The practice of big data collection also raises concerns over access and security.
The ability of researchers to conduct large scale and big data oriented research strongly
depends on the availability of farm data. Ag-Analytics [[170] is a platform that supports
stakeholders for this purpose. Recently, more big datasets are becoming publicly
available [171L|172]. Nevertheless, data sharing demands special attention to matters
of data privacy and security [173]. Recommendations for governing security, data
ownership, data protection, and data use should be set by farm alliances and agriculture
technology providers. Federal legislation protecting farm data is also required.

80

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

6.2.2.2 Analysis techniques

Big data needs extraordinary techniques to efficiently process its large volume within
limited run times. Hypothesis testing and machine learning are the most commonly
used ways for data analysis [174]. Agricultural analysis is largely statistical. Its main
intention is to understand the underlying system through an analysis of observations.
Such approaches start with a theory and lead to one or more hypotheses. Statistical
significance tests try to extract conclusions for the population using small samples of as
much as possible high quality data. Nevertheless, in the case of big data, the sample used
may represent even the entire population. The underlying concept of big data relies more
on correlation and less on causation [106,/175]]. However, there are examples where the
two are effectively combined [174]].

Machine learning techniques do not use preconceived relationships from theory but
begin with the data, to examine possible relationships among variables [79,/106L 175].
Nevertheless, the collected datasets are large and complex making it difficult to deal with
typical machine learning techniques. Such techniques often perform poorly when applied
to agricultural data. Scalable and parallel techniques are needed to cope with voluminous
data. Moreover, big data collected in agriculture violate common assumptions underlying
several machine learning and analytics methods, such as the independence and identical
distribution of data (i.i.d assumptions). Big data in agriculture exhibits spatio-temporal
autocorrelation, has heterogeneity and high dimensionality, is nonstationary, and usually
has to be processed in a real-time manner [[106}/138.|176].

For instance, if we consider adjacent plots, we will find similar soil-type, climate,
and precipitation. Models that are inaccurate or inconsistent with the dataset may be
extracted, if we ignore auto-correlation during data analysis. A variety of spatiotemporal
methods used for traditional data could be extended to handle agricultural big data
[1774179].

The unstructured streaming data received from several diverse agricultural sources
are multi-dimensional. Having many dimensions gives rise to accumulated error terms
and there is no guarantee that every dimension is especially useful for performing
analysis [[106,/138L|176]. Statistical and machine learning techniques do not lower the
dimensionality of the problem in a deterministically exact way and they exhibit the “curse
of dimensionality” [178]]. The are several techniques in handling high-dimensional data
like Principal Component Analysis and Incremental Singular Value Decomposition, but
most of them are based on dimension reduction and usually fail to extract the core value
from massive big data [79].

Moreover, machine learning models are not appropriate for non-stationarity (i.e.,
cannot be used when new climate and weather patterns or new and improved crops arise),
but big data in agriculture exhibit non-stationarity. Most methodologies learn through
historical datasets. Consequently, models trained on specific observations should be
combined with mechanistic models based on theory and domain knowledge to explore
explanatory relationships [138]]. Since many agricultural applications are time-sensitive
and depend on data freshness, developed models must be retrained to reflect the evolution
of data. For learning from high speed streams of data, online learning should be

81

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

integrated with traditional techniques and theory [178].

Several current advanced machine learning models have gained a considerable
amount of interest as promising frameworks for handling big data in agriculture. Deep
learning is of crucial importance in providing predictive analytics solutions for large-
scale datasets, especially with the increased processing power and the advances in
graphics processors. DNNs can work with thousands of parameters, but complex models
can overfit easily. Increasing the dataset to model the interactions among production
variables at different locations and seasons could relieve the overfitting problem but can
be unrealistic and costly. RFs using multiple predictor functions (to avoid using just one
overfitted function) and kernel methods like SVMs could be useful solutions to avoid
overfitting, but SVMs suffer from serious scalability problems in both memory use and
computation time [79,97]. To speed up learning, the novel learning algorithm, extreme
learning machine (ELM) is proposed to deal with high velocity of data; it is able to
provide extremely fast learning speed and achieve better generalization.

To handle the big datasets that accompany precision agriculture, analytics methods
must scale up in parallel and distributed ways, avoiding high computational complexity.
Advances in cloud computing and parallel/distributed architectures can help towards
this direction. Cloud computing can be used to integrate sources in different locations,
and then the data input can be partitioned into a distributed and parallel architecture.
The combination of machine learning and parallel training implementation techniques
provides potential ways to process big data. Developed models, though, should be
compatible with parallel computing; unfortunately, not all algorithms can be distributed
or implemented in parallel form. As a successful example, Parallel SVM (PSVM) [180]
reduces memory and time consumption. In Baldominos et al. [181]] a scalable machine
learning service is introduced for stream processing and real-time analysis.

6.2.2.3 Computing infrastructure

Big data demand not only novel analytical paradigms to extract information, but also
compatible parallel computing frameworks and novel wireless solutions, that may be too
elaborate for an individual farmer. In farm management, several technical challenges
exist, as diverse and high-dimensional data streams from sensors should be ingested
in real time, delivered and analyzed usually in short time, to meet the demands posed
by several agricultural applications [134]]. Real-time analysis platforms are needed to
deal with online remote sensing data and combine it with offline data from one or more
distributed data centers. Precision agriculture relies heavily on event monitoring that
demands data stream processing and consequently requires lower latency and higher
bandwidth. Also the amount of disk input/output (I/O) has to be minimized.

The parallelism of Hadoop (the most used open source implementation of
MapReduce) [4]] is suitable for batch processing and products for performing advanced
analytics on stored big data have largely been built over Hadoop. Nevertheless, Hadoop
is not appropriate for nearly real-time routines due to its disk I/O intensiveness as
already discussed in the previous chapters. In-memory computing eliminates significant
amount of disk I/Os and thus reduces data processing time, enabling the immediate

82

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

analysis of live data. Real-time stream processing engines like Apache Storm [17]],
Spark Streaming [29] and Flink [30] have been developed for this purpose. Modules
that can work with these systems like Mlib [[182] and GraphLab [183]] provide common
machine learning operations, while others like Tensorflow [184] are designed to build
sophisticated machine learning models like DNNs in real-time. An initial prototype that
combines the aforementioned tools to provide real-time analytics in farm is presented
in [[185]] and has been tested with various farms showing prominent results.

6.2.2.4 Storage and interpretation

Results are delivered to target destinations like databases, micro-services, and messaging
systems via supported application programming interfaces. Cloud computing, apart from
realizing the needed scalability for machine learning algorithms, can also enhance storage
capacity through necessary infrastructure. Big data storage led to the development of
NoSQL databases (e.g. Hbase [186]], Cassandra [187], and MongoDB [188]]). Many big
data tools rely on open source software solutions, which dramatically reduces costs, but
expenditures related to hardware, its maintenance, and the training of potential users are
matters still to be faced.

Massive amounts of data cannot be interpreted by producers. Big data and its
resultant analysis will not have much impact unless it is understood, adopted, and
adapted by farmers and other managers. Visualization is a key component of services
intended to enhance precision agriculture. Techniques are needed to make analytics
work for producers and help them act on events as they happen. Visualization should be
considered as early as possible and in tandem with prior interdisciplinary domain expert
knowledge, provide accurate and on-time support for decision making. Needed action
should be clearly provided, as we cannot expect producers to hire predictors, analysts,
and decision-makers for their fields. Research on real-time processing of large volumes
of data combined with visualization tools providing interactive exploration is still in
progress but very promising [134}/189].

Ultimately, large-scale analysis of agricultural data to support business analytics in
high scale and speed necessitates investments in cloud infrastructures, while big data
processing demands advanced techniques of parallel and distributed computing. Most
traditional machine learning techniques are not inherently efficient or scalable to handle
the challenges posed by big data in agriculture. Several current advanced learning
methods, though, seem promising enough. Research funded by public organizations
and work for the common good are needed to make such tools and techniques enter the
public domain (and become open-sourced) [[152]. Once big data research evolves and
matures, it is expected that machine learning, given its history, will manage to tackle
the challenges posed by big data. Successful applications of big data, though, will be
determined not only by technology but by organizational and managerial factors, as
well. Strong multidisciplinary engagement by producers with agricultural economists,
biologists, computer scientists, and government organizations is needed to make the
needed scientific advancement. Table 6.1 presents the aforementioned challenges that

83

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

arise from the use of big data analytics in agriculture and mentions the requirements
needed to address them (costs).

6.3 Discussion

Challenges of agricultural production are increasing, making the need to understand
the complex agricultural ecosystems more imperative than ever. Machine learning
techniques are widely applied in precision agriculture due to their capabilities to mine
information hidden in agricultural data. The increasing availability of data through
advancements in ICT seems promising for enhancing innovation on strategic decision-
making by increasing models’ accuracy and generalization ability.

Without employing the data generated by precision agriculture practices, it is difficult
to predict if big data will have significant impact. On the other hand, learning
from massive data is expected to bring significant opportunities and transformative
potential for precision agriculture. We consider precision agriculture and big data as
complementary fields. Most of the cases mentioned in Sections 6.2.1.1, 6.2.1.2 and
6.2.1.3 have not been applied in farming practice yet or if they have, they have not
proven their value. As the time for big data is coming, the collection and analysis of
datasets is difficult to be dealt by traditional learning methods. These methods are not
inherently efficient or scalable enough to work well with large-volume agricultural
data exhibiting features like heterogeneity, high dimensionality and spatiotemporal
autocorrelation. Several challenges on learning from big data arise but the interest
to provide solutions in recent researches is apparent.

Advanced machine learning methods like convolutional neural networks offer higher
accuracy, robustness, flexibility, and generalization performance. Deep neural networks
seem to be the most promising technique for object recognition and classification from
satellite imagery. Algorithms used to cope with such voluminous data should be
easily distributed or implemented in parallel form. Big data also requires considerable
technical skills to handle analysis methods, frequently demanding real-time processing,
and parallel/distributed infrastructures as presented in the cost-benefit analysis of Teble
6.1.

The outlook for big data and machine learning in agriculture is very promising.
High-performance scalable learning systems for data-driven discovery can turn farm
management systems into artificial intelligence systems, providing richer real-time
recommendations and automation of several agricultural procedures. Emerging fields
of advanced machine learning and data mining combined with open datasets and
policy frameworks are expected to be instrumental in helping meet the challenges of
agricultural production in terms of productivity, environmental impact, food security,
and sustainability.

84

Chapter 6. An Application Example-Decision Making in loT-enabled Agriculture

Table 6.1: Opportunities, challenges and cost-benefit analysis of BD (analytics) adoption
in agriculture

Opportunities

Benefits

Characterize spatial and temporal variability in soil,
crop, and environmental characteristics on precise
scales

Determine growing conditions and identifying needs
and threats in (near) real time

Predict yield, weather, and threats (e.g. extreme
climate conditions, infections) accurately and on time

Explore hidden structures and extract common
features on farms across large regions and time scales

Challenges

Costs

Automation of agricultural procedures

Accurate and timely decision making in precision
agriculture

Better personalized on-farm management practices

Improved food access and supply chain management

Data quality issues

Data quality management techniques required

Data heterogeneity (data from multiple sources, with
different formats, different time points)

Data preparation, fusion and representation tech-
niques required

Data availability

Data initiatives and producers’ cultural change needed

Data security holes and privacy concerns

Laws and regulations needed

Spatiotemporal autocorrelation of data

Scalable spatiotemporal methods and explanatory
space-time analysis

High-dimensionality of data

Spurious correlations, noise accumulation (wrong

statistical inference, false conclusions, wrong
discoveries)
Effective dimension reduction methods, variable

selection methods and large datasets required

Combination of empirical and mechanistic models
required

Non-stationarity of data and velocity

Stream processing and online learning techniques
required

Real-time analysis frameworks for in memory
computations (batch and stream) required

Combination of empirical and mechanistic models
required

Voluminous datasets

Computational cost
Memory cost

Scalable analytics methods in parallel and distributed
ways required

Parallel/distributed infrastructure in the cloud re-
quire

Data Interpretation

85

Advanced visualization techniques required

Strong multidisciplinary engagement required

Chapter 7

Conclusions

Over the last decade, the exponential growth of data from the Internet of Thing (IoT),
social media, and sensing devices has introduced a massive flow of data. Real-time
big data technologies are adopted in a number of application fields like agriculture due
to their crucial impacts. The faster one can harness insights from data, the greater the
benefit in driving value, reducing costs, and increasing efficiency.

This thesis focuses on running DSP applications in the cloud. First, popular open-
source DSPSs (Chapter 2) are explored with regard to the mechanisms used to face the
requirements of DSP applications. The significance of scheduling decisions on systems’
performance and fault tolerance made us focus on the task placement and scheduling
problem, which determine which tasks to be placed on which nodes, and control the order
of task execution. Multiple stream processing computations should be interleaved on
the same machine to reduce the number of needed connections and assure the necessary
performance. On the other hand, heavily used machines result in memory waste, node
failures and increased network congestion. Overloaded and underutilized machines
should be avoided. Moreover, if streams are not managed carefully, processing delays
can become unacceptable and lead to long queues at a processing node, buffer overflows,
and memory exhaustion.

Several static and dynamic scheduling algorithms are investigated (Chapter 3) and,
based on the aforementioned issues, a scheduling scheme is proposed and comprises the
following steps: problem identification and formulation, design of resolution approaches,
prototype development, and experimental evaluation.

7.1 Major Contributions

In this thesis, the task allocation and scheduling problem to handle applications that
require hefty communication between nodes and tasks is investigated. Initially, a
taxonomy of scheduling approaches that reveal important scheduling considerations
for stream processing jobs is provided (Chapter 3). The observed parameters that affect
scheduling decisions in most schemes are mainly the application’s topology, the available
resources, and the system’s workload. Performance metrics are also important, when it

86

Chapter 7. Conclusions

comes to online decisions.

Then attention is shifted to the formulation of the task placement and scheduling
problem to provide a matrix-based approach. This approach is organized in a set of
communication steps, where there is an one-to-one communication between the system’s
nodes and offers a set of advantages (Chapter 4):

» The buffer space required per task is reduced, resulting in higher throughput, as
the largest percentage of tuples are processed as they arrive to the target node
(almost no buffering is required). In case of buffered tuples resulting from each
communication step, these are processed in a single step, where the pipeline is
stalled. This reduces the extra processing time that would be necessary, if these
tuples were processed at random times.

* The refinement phase employed by the developed strategy reduces the inter-
node communication costs, by refining the task allocation to map to the specific
application’s DAG, so that the communicating tasks can be (to the maximum
extent) placed in nearby nodes. In this way, communication latencies are reduced.

* There is almost complete load balancing in the network resulting in reduced
latencies and as the scheduler itself has linear complexity, it determines the
communication steps very fast.

* Finally, the scheduler is proven to be periodic, with a period equal to LCM(t, N).
This means, that once the first LCM(t,N) communications are arranged, the same
communication pattern can follow, in case of a bigger problem, where the number
of nodes or tasks is multiplied by an integer factor.

The experimental results have verified the advantages mentioned above (Chapter
5). The developed strategy offers reduced average latency and percentage of buffered
memory used, compared to the default scheduler. Also, it offers good load balancing. For
throughput testing, the approach presented is compared to the default scheduler as well
as to R-Storm. It outperforms both the other strategies and achieves higher throughput
(tuples/min) under different scenarios. The evaluation demonstrates the importance of
constraining the required buffer space and achieving load balance to improve the system’s
performance and overcome the challenges of running DSP applications (e.g. avoid tuple
losses).

One drawback of this work is that, when G = gcd(t, N) = 1, it needs to add a
minimum number of tasks, so that the G value becomes # 1. This needs to be done
before scheduling. A dynamic strategy would resolve this issue and is left for future
work. A dynamic approach will model the system changes in the form of redistribution
from R to R’, where R is the initial task distribution between nodes and R’ is the next
task distribution derived from the system changes. Both R and R’ will be modeled
via linear Diophantine equations (which are ideal for round robin distributions) and the
task redistribution will be determined by the solutions to the set of linear Diophantine
equations, R = R’.

87

Chapter 7. Conclusions

7.2 Future Directions

In this work, a static environment is assumed, in which bandwidth capacities and other
resources do not change over time. Ingestion rates are also assumed to be static, which
in reality is often not the case, due to possible changing network topologies and load
fluctuations. Systems should be able to handle failures and changes of the execution
environment. Continuous monitoring and adaption of schedules considerably improve
solutions for real environments and applications. As shown in the literature analysis
(Chapter 3) a dynamic version, where task replicas are introduced when necessary and
the number of nodes change during execution, should be computed and implemented,
as quickly as possible. Unfortunately, trying to maintain the necessary performance
in the presence of unpredictable load variations and hardware/software performance
degradation, making all the necessary reconfigurations is usually time-consuming and
error-prone. Reconfigurations cause application downtime and, if applied too often, they
can negatively impact the application performance.

A promising research direction regards the design of self-adaptive control policies. A
key challenge here is to let the system wisely select the most profitable adaptation actions
to enact. Reconfigurations should not rely on a single snapshot of the system, but should
take care of the overall performance over a period of time. To address some of these
challenges, machine learning techniques such as supervised learning and reinforcement
learning can potentially further improve the application management lifecycle (e.g. the
case of Dhalion [83]]). An area that will draw the attention of many researchers in the
future and may impact the ways streaming applications are managed, is the exploration
of machine learning in the context of self-regulating streaming systems.

Moreover, optimizing the deployment of multiple concurrent applications is also a
field for future research. An infrastructure should host multiple streaming applications,
each arriving and terminating with non anticipated characteristics, such as the number
of the needed nodes in the cluster or the parallelization degree of their components. In
such scenarios, it is worth investigating fair ways to achieve the desired performance
for each application with respect to the available resources to be shared (as scheduling
defines in the introductory section "achieve minimization of task completion time and
improve resource utilization"). We should always keep in mind that these requirements
may be stringent and possibly conflicting but they should be met in real-time.

Finally, in this thesis, attention is paid to a specific computing resource, memory, in an
attempt to reduce its utilization. Cloud computing technologies make it easy to acquire
and release computing resources. Software-defined networking (SDN) technologies
enable dynamic, efficient network configuration of large scale networks to improve
performance and monitoring, making it more like cloud computing than traditional
network management. These two technologies when combined, enable the infrastructure
to be programmable, making in this way, its run-time reconfiguration able to satisfy the
applications’ needs. SDN technologies provide mechanisms for allocating network
capacity to data flows, making it possible to determine the network paths that better
suit an application’s requirements (e.g. response time). Moreover, it allows to react to
possible network congestion by re-routing data streams. In this way, changing the initial

88

Chapter 7. Conclusions

task allocation or operators’ replication degree will not be needed. The combination of
cloud with SDN technologies rises promising in the future of data stream processing.

89

Appendix

In this appendix we present an example of a linear topology named ExclamationTopology
in Apache Storm. The programming language used is Java and Maven is used to package
it into a jar file, as it automates everything well.

This application has one spout (named "word") and two bolts (named "exclaim1"and
"exclaim2") with 6,4, and 4 tasks respectively. There is also a dummy bolt with 10 tasks
which does nothing. However, it is useful, as it provides our scheduler with the dummy
tasks needed.

The spout emits words, and each bolt appends the string "!!!" to its input. The nodes
are arranged in a line: the spout emits to the first bolt, which then emits to the second
bolt. If the spout emits the tuples ["Hello"] and ["space"], then the third bolt will emit

The nodes are defined by using the methods "setSpout" and "setBolt". These methods
take as input:

* a user-specified id; "word" for the spout and "exclaim 1", "exclaim 2", and
"dummy" for the bolts,

* an object containing the processing logic; TestWordSpout and ExclamationBolt
extend the BaseRichSpout and the BaseRichBolt classes that implement the
IRichSpout and IRichBolt interfaces accordingly. TestWordSpout emits 1-tuple
every 100ms from a predefined list of entries. ExclamationBolt appends the
string "!!!" to its input. It’s worth mentioning that in the "execute" method of
ExclamationBolt, the input tuple is passed as the first argument to "emit", and is
also acked on the final line based on the Storm’s reliability API for guaranteeing
no data loss.

* the amount of parallelism for each component. The amount of parallelism indicates
the number of threads that will execute the corresponding component across the
cluster. In case itis omitted, Storm will only allocate one thread for this component.

The component "exclaiml" is set to read all the tuples emitted by the component
"word" using a shuffle grouping, which means that tuples will be randomly distributed
from the input tasks to the bolt’s tasks. However, there are more ways to group data
between components. Likewise, the "exclaim2" component will read all the tuples
emitted by the component "exclaim1", using shuffle grouping, as well. The "dummy"

90

Chapter 7. Conclusions

bolt never receives tuples from any other component. This application demands 8
workers (JVMs). In our example this means that there will be 2 JVMs per machine,
since there are 4 working nodes in the cluster.

// ExclamationTopology.java

/7: *

* Licensed to the Apache Software Foundation (ASF) under one

* or more contributor license agreements. See the NOTICE file

* distributed with this work for additional information

* regarding copyright ownership. The ASF licenses this file

* to you under the Apache License, Version 2.0 (the

* "License"); you may not use this file except in compliance

* with the License. You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

* See the License for the specific language governing permissions and

* limitations under the License.

:':/

package org.apache.storm.starter;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.

org

org.

org

org.
org.
org.
org.

org

org.

org

apache.
apache.
apache.
.apache.
apache.
.apache.
apache.
apache.
apache.
apache.
.apache.
apache.
.apache.

storm.
storm.
.StormSubmitter;
storm.
storm.
storm.
storm.
storm.

storm

storm

storm

java.util.Map;

Config;
LocalCluster;

task.OutputCollector;
task.TopologyContext;
testing.TestWordSpout;
topology.OutputFieldsDeclarer;
topology.TopologyBuilder;

.topology.base.BaseRichBolt;
storm.
storm.
storm.
.utils.Utils;

tuple.Fields;
tuple.Tuple;
tuple.Values;

* This is a basic example of a Storm topology.

¥ /

public class ExclamationTopology4 {

public static class ExclamationBolt extends BaseRichBolt {
OutputCollector _collector;

@Override
public void prepare(Map conf, TopologyContext context,

91

Chapter 7. Conclusions

OutputCollector collector) {
_collector = collector;

}

@Override

public void execute(Tuple tuple) {
_collector.emit(tuple, new Values(tuple.getString(®) + "!!!"));
_collector.ack(tuple);

}

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}

public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("word", new TestWordSpout(), 6);
builder.setBolt("exclaiml", new ExclamationBolt(),
4) .shuffleGrouping("word");
builder.setBolt("exclaim2", new ExclamationBolt(),
4) .shuffleGrouping("exclaiml");
builder.setBolt("dummy",new ExclamationBolt(), 10);

Config conf = new Config(Q);
conf.setDebug(true);

if (args !'= null && args.length > 0) {
conf.setNumWorkers(8);

StormSubmitter.submitTopology("special-topology", conf,
builder.createTopology());
}

else {

LocalCluster cluster = new LocalCluster();
cluster.submitTopology("test", conf, builder.createTopology());
Utils.sleep(10000);

cluster.killTopology("test");

cluster.shutdown();

92

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan,
“The rise of big data on cloud computing: Review and open research issues,”
Information Systems, vol. 47, pp. 98 — 115, 2015.

K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in big data analytics,”
Journal of Parallel and Distributed Computing, vol. 74, no. 7, pp. 2561 — 2573,
2014, special Issue on Perspectives on Parallel and Distributed Processing.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, p. 107-113, 2008.

The Apache Software Foundation. "Welcome to Apache Hadoop". Accessed: 30
September 2018. [Online]. Available: http://hadoop.apache.org

M. Dias de Assuncao, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya, “Big
data computing and clouds: Trends and future directions,” Journal of Parallel and
Distributed Computing, vol. 79-80, pp. 3 — 15, 2015, special Issue on Scalable
Systems for Big Data Management and Analytics.

N. Tantalaki, S. Souravlas, and M. Roumeliotis, “A review on big data real-
time stream processing and its scheduling techniques,” International Journal of
Parallel, Emergent and Distributed Systems, vol. 35, no. 5, pp. 571-601, 2020.

M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 requirements of real-time
stream processing,” ACM SIGMOD Record, vol. 34, no. 4, p. 42-47, 2005.

Rajeshwari U and B. S. Babu, “Real-time credit card fraud detection using
streaming analytics,” in Proceedings of the 2nd International Conference on
Applied and Theoretical Computing and Communication Technology (iCATccT),
2016, pp. 439-444.

The Apache Software Foundation. "Samza-What is Samza?". Accessed: 30
September 2018. [Online]. Available: http://samza.apache.org

Z. Milosevic, W. Chen, A. Berry, and F. Rabhi, “Chapter 2 - real-time analytics,”
in Big Data, R. Buyya, R. N. Calheiros, and A. V. Dastjerdi, Eds. = Morgan
Kaufmann, 2016, pp. 39 - 61.

93

http://hadoop.apache.org
http://samza.apache.org

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

K. Govindarajan, S. Kamburugamuve, P. Wickramasinghe, V. Abeykoon, and
G. Fox, “Task scheduling in big data - review, research challenges, and prospects,”
in Proceedings of the Ninth International Conference on Advanced Computing

(ICoAC), 2017, pp. 165-173.

M. Rychly, P. Skoda, and P. Smrz, “Heterogeneity-aware scheduler for stream

processing frameworks,” International Journal of Big Data Intelligence, vol. 2,
no. 2, pp. 70-80, 2015.

R. Eidenbenz and T. Locher, “Task allocation for distributed stream processing,”
in Proceedings of the IEEE INFOCOM - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp. 1-9.

V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Optimal operator
deployment and replication for elastic distributed data stream processing,”

Concurrency and Computation: Practice and Experience, vol. 30, no. 9, p.
e4334, 2017.

W. Zhang, T. Rajasekaran, T. Wood, and M. Zhu, “Mimp: Deadline and
interference aware scheduling of hadoop virtual machines,” in Proceedings of the
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
2014, pp. 394-403.

Y. Wang and W. Shi, “Budget-driven scheduling algorithms for batches
of mapreduce jobs in heterogeneous clouds,” IEEE Transactions on Cloud
Computing, vol. 2, no. 3, pp. 306-319, 2014.

The Apache Software Foundation. "Apache Storm". Accessed: 30 September
2018. [Online]. Available: http://storm.apache.org/

T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara,
“Online scheduling and interference alleviation for low-latency, high-throughput

processing of data streams,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 12, pp. 3553-3569, 2017.

B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm: Resource-
aware scheduling in storm,” in Proceedings of the 16th Annual Middleware
Conference, ser. Middleware "15. ACM, 2015, p. 149-161.

Cheng-Zhang Peng, Ze-Jun Jiang, Xiao-Bin Cai, and Zhi-Ke Zhang, “Real-
time analytics processing with mapreduce,” in Proceedings of the International
Conference on Machine Learning and Cybernetics, vol. 4, 2012, pp. 1308-1311.

G. Hesse and M. Lorenz, “Conceptual survey on data stream processing systems,”
in Proceedings of the IEEE 2lst International Conference on Parallel and
Distributed Systems (ICPADS), 2015, pp. 797-802.

94

http://storm.apache.org/

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

P. Carbone, G. Gévay, G. Hermann, A. Katsifodimos, J. Soto, V. Markl, and
S. Haridi, “Large-scale data stream processing systems,” in Zomaya A., Sakr S.
(eds) Handbook of Big Data Technologies. Springer, 2017.

X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing systems
for big data,” in Proceedings of the 18th International Database Engineering
Applications Symposium, ser. IDEAS "14. ACM, 2014, p. 356-361.

R. Ranjan, “Streaming big data processing in datacenter clouds,” IEEE Cloud
Computing, vol. 1, no. 1, pp. 78-83, 2014.

C. Georgiadis, “An evaluation and performance comparison of different
approaches for data stream processing,” Master’s thesis, Uppsala University,
Department of Information Technology, 2016.

M. Dias de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data stream
processing and edge computing: A survey on resource elasticity and future

directions,” Journal of Network and Computer Applications, vol. 103, pp. 1 —
17, 2018.

S. Kamburugamuve and G. Fox, “Survey of distributed stream processing,”
2016. [Online]. Available: www.doi.org/10.13140/RG.2.1.3856.2968

M. Singh, M. A. Hoque, and S. Tarkoma, “A survey of systems for massive stream
analytics,” arXiv: Distributed, Parallel, and Cluster Computing, 2016.

The Apache Software Foundation. "Apache Spark". Accessed: 9 September
2018. [Online]. Available: http://spark.apache.org

The Apache Software Foundation. "Introduction to Apache Flink". Accessed: 30
September 2018. [Online]. Available: https://flink.apache.org/introduction.html

S. Shahrivari, “Beyond batch processing: Towards real-time and streaming big
data,” Computer Science, vol. 3, pp. 117-129, 2014.

C. Philip Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information Sciences, vol.
275, pp. 314 — 347, 2014.

SQLStream. Sqlstream | streaming sql analytics for kaftka kinesis. Accessed: 8
August 2018. [Online]. Available: https://sqlstream.com

E. Begoli, J. Camacho-Rodriguez, J. Hyde, M. J. Mior, and D. Lemire,
“Apache calcite: A foundational framework for optimized query processing over
heterogeneous data sources,” in Proceedings of the 2018 International Conference
on Management of Data, ser. SIGMOD *18. New York, NY, USA: ACM, 2018,
p. 221-230.

95

www.doi.org/10.13140/RG.2.1.3856.2968
http://spark.apache.org
https://flink.apache.org/introduction.html
https://sqlstream.com

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Amazon Web Services. "Amazon Redshift-The most popular and fastest
cloud data warehouse". Accessed: 21 November 2019. [Online]. Available:
https://aws.amazon.com/redshift/

K. Patroumpas and T. Sellis, “Maintaining consistent results of continuous queries
under diverse window specifications,” Information Systems, vol. 36, no. 1, p.
42-61, 2011.

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Ferndndez-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle, “The
dataflow model: A practical approach to balancing correctness, latency, and

cost in massive-scale, unbounded, out-of-order data processing,” Proceedings of
the VLDB Endowment, vol. 8, no. 12, p. 1792-1803, 2015.

L. Affetti, R. Tommasini, A. Margara, G. Cugola, and E. D. Valle, “Defining the
execution semantics of stream processing engines,” Journal of Big Data, vol. 4,
p. 12, 2017.

H. Yang, “Solving problems of imperfect data streams by incremental decision
trees,” Journal of Emerging Technologies in Web Intelligence, vol. 5, 2013.

V. Gudivada, A. Apon, and J. Ding, “Data quality considerations for big
data and machine learning: Going beyond data cleaning and transformations,”
International Journal on Advances in Software, vol. 10, pp. 1-20, 07 2017.

J.Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik,
“High-availability algorithms for distributed stream processing,” in Proceedings
of the 21st International Conference on Data Engineering (ICDE’05), 2005, pp.
779-790.

M. Zaharia, An Architecture for Fast and General Data Processing on Large
Clusters. Association for Computing Machinery and Morgan; Claypool, 2016.

The Apache Software Foundation. "Welcome to Apache Zookeeper". Accessed:
12 February 2017. [Online]. Available: https://zookeeper.apache.org

——. "Apache Kafka-A distributed streaming platform". Accessed: 30
September 2018. [Online]. Available: https://kafka.apache.org/

D. Namiot, “On big data stream processing,” International Journal of Open
Information Technologies, vol. 3, no. 8, pp. 48-51, 2015.

M. Singh, M. A. Hoque, and S. Tarkoma, “A survey of systems for massive
stream analytics,” arXiv: Distributed, Parallel, and Cluster Computing, 2016.
[Online]. Available: https://arxiv.org/pdf/1605.09021.pdf

E. Friedman and K. Tzoumas, Introduction to Apache Flink: Stream Processing
for Real Time and Beyond, 1sted. O’Reilly Media, Inc., 2016.

96

https://aws.amazon.com/redshift/
https://zookeeper.apache.org
https://kafka.apache.org/
https://arxiv.org/pdf/1605.09021.pdf

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting Started with Storm. O’Reilly
Media, Inc., 2012.

P. Cordova, “Analysis of real time stream processing systems
considering latency,” Data Science Association, Tech. Rep.,

04 2015. [Online]. Available: http://www.datascienceassn.org/content/
analysis-real-time-stream-processing-systems-considering-latency

S. Hagedorn, P. Gotze, O. Saleh, and K.-U. Sattler, “Stream processing platforms
for analyzing big dynamic data,” it - Information Technology, vol. 58, no. 4, pp.
195 - 205, 2016.

M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams: An
efficient and fault-tolerant model for stream processing on large clusters,” in
Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing,
ser. HotCloud’12. USENIX Association, 2012, p. 10.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,
“Apache flink™: Stream and batch processing in a single engine,” IEEE Data
Engineering Bulletin, vol. 38, pp. 28-38, 2015.

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu,
K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky, “Benchmarking streaming
computation engines: Storm, flink and spark streaming,” in Proceedings of the
IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2016, pp. 1789-1792.

S. Perera, A. Perera, and K. Hakimzadeh, “Reproducible experiments for
comparing apache flink and apache spark on public clouds,” ArXiv, vol.
abs/1610.04493, 2016. [Online]. Available: https://arxiv.org/pdf/1610.04493.pdf

R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking modern
distributed stream computing frameworks,” in Proceedings of the IEEE/ACM 7th
International Conference on Utility and Cloud Computing, 2014, pp. 69-78.

J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl,
“Benchmarking distributed stream data processing systems,” in Proceedings of
the IEEE 34th International Conference on Data Engineering (ICDE), 2018, pp.
1507-1518.

G. Cugola and A. Margara, “Processing flows of information: From data stream
to complex event processing,” ACM Computing Surveys, vol. 44, no. 3, Jun. 2012.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model and architecture
for data stream management,” The VLDB Journal, vol. 12, no. 2, pp. 120-139,
2003.

97

http://www.datascienceassn.org/content/analysis-real-time-stream-processing-systems-considering-latency
http://www.datascienceassn.org/content/analysis-real-time-stream-processing-systems-considering-latency
https://arxiv.org/pdf/1610.04493.pdf

Bibliography

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

N. Tatbul, Y. Ahmad, U. Cetintemel, J.-H. Hwang, Y. Xing, and S. Zdonik, Load
Management and High Availability in the Borealis Distributed Stream Processing
Engine. Springer Berlin Heidelberg, 2008, pp. 66-85.

R. Bhartia, “Amazon kinesis and apache storm-building a real-time sliding-
window dashboard over streaming data. amazon web services,” Amazon
Web Services, 2014. [Online]. Available: https://d0.awsstatic.com/whitepapers/
building-sliding-window-analysis-of-clickstream-data-kinesis.pdf

IBM. "IBM-Infosphere streams". Accessed: 30 September 2017. [Online].
Available: http://www-01.ibm.com/software/data/infosphere/stream

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another resource

negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing,
ser. SOCC ’13. ACM, 2013, pp. 1-16.

T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang,
“Drs: Dynamic resource scheduling for real-time analytics over fast streams,” in

Proceedings of the IEEE 35th International Conference on Distributed Computing
Systems, 2015, pp. 411-420.

T. Das, Y. Zhong, 1. Stoica, and S. Shenker, “Adaptive stream processing
using dynamic batch sizing,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SOCC *14. ACM, 2014, p. 1-13.

Xinyi Liao, Zhiwei Gao, Weixing Ji, and Yizhuo Wang, “An enforcement of real
time scheduling in spark streaming,” in Proceedings of the Sixth International
Green and Sustainable Computing Conference (IGSC), 2015, pp. 1-6.

S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, M. J.
Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and adaptable stream processing

at scale,” in Proceedings of the 26th Symposium on Operating Systems Principles,
ser. SOSP’17. ACM, 2017, p. 374-389.

L. Aniello, R. Baldoni, and L. Querzoni, ‘“Adaptive online scheduling in storm,” in
Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems. ACM, 2013, pp. 207-218.

D. Xiang, Y. Wu, P. Shang, J. Jiang, J. Wu, and K. Yu, “RB-Storm: Resource
balance scheduling in apache storm,” in Proceedings of the 6th IIAI International
Congress on Advanced Applied Informatics (IIAI-AAI), 2017, pp. 419-423.

P. Smirnov, M. Melnik, and D. Nasonov, “Performance-aware scheduling of
streaming applications using genetic algorithm,” Procedia Computer Science,
vol. 108, pp. 2240-2249, 2017.

98

https://d0.awsstatic.com/whitepapers/building-sliding-window-analysis-of-clickstream-data-kinesis.pdf
https://d0.awsstatic.com/whitepapers/building-sliding-window-analysis-of-clickstream-data-kinesis.pdf
http://www-01.ibm.com/software/data/infosphere/stream

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

L. Eskandari, Z. Huang, and D. Eyers, ‘“P-scheduler: Adaptive hierarchical
scheduling in apache storm,” in Proceedings of the Australasian Computer Science
Week Multiconference, ser. ACSW *16. ACM, 2016, pp. 26:1-26:10.

L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “Iterative scheduling for distributed
stream processing systems,” in Proceedings of the 12th ACM International
Conference on Distributed and Event-based Systems, ser. DEBS 18. ACM,
2018, pp. 234-237.

A. Shukla and Y. Simmhan, “Model-driven scheduling for distributed stream

processing systems,” Journal of Parallel and Distributed Computing, vol. 117,
pp- 98 — 114, 2018.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in Proceedings of the
10th ACM International Conference on Distributed and Event-based Systems, ser.
DEBS ’16. ACM, 2016, pp. 69-80.

A. Al-Sinayyid and M. Zhu, “Job scheduler for streaming applications in
heterogeneous distributed processing systems,” The Journal of Supercomputing,
p- 20, 2020.

G. JanBen, I. Verbitskiy, T. Renner, and L. Thamsen, “Scheduling stream
processing tasks on geo-distributed heterogeneous resources,” in Proceedings of
the IEEE International Conference on Big Data (Big Data), 2018, pp. 5159-5164.

M. Mortazavi-Dehkordi and K. Zamanifar, “Efficient resource scheduling for the
analysis of big data streams,” Intelligent Data Analysis, vol. 23, no. 1, pp. 77-102,
2019.

N. Tantalaki, S. Souravlas, M. Roumeliotis, and S. Katsavounis, “Pipeline-based
linear scheduling of big data streams in the cloud,” IEEE Access, vol. 8, pp.
117 182117202, 2020.

D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive scheduling
of parallel jobs in spark streaming,” in Proceedings of the IEEE INFOCOM -
IEEE Conference on Computer Communications, 2017, pp. 1-9.

H. Jin, F. Chen, S. Wu, Y. Yao, Z. Liu, L. Gu, and Y. Zhou, “Towards low-latency
batched stream processing by pre-scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 3, pp. 710-722, 2019.

J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-aware online scheduling in
Storm,” in Proceedings of the IEEE 34th International Conference on Distributed
Computing Systems, Madrid, 2014, pp. 535-544.

99

Bibliography

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

C. Meng-Meng, Z. Chuang, L. Zhao, and X. Ke-Fu, “A task scheduling approach
for real-time stream processing,” in Proceedings of the International Conference
on Cloud Computing and Big Data, Wuhan, 2014, pp. 160-167.

D. Sun, H. Yan, S. Gao, X. Liu, and R. Buyya, “Rethinking elastic online
scheduling of big data streaming applications over high-velocity continuous data
streams,” Journal of Supercomputing, vol. 74, no. 2, pp. 615-636, 2018.

A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, “Dhalion: Self-
regulating stream processing in heron,” Proceedings of the VLDB Endowment,
vol. 10, no. 12, pp. 1825-1836, 2017.

A. A. Safaei, “Real-time processing of streaming big data,” Real-Time Systems,
vol. 53, no. 1, p. 144, 2017.

S. Mohammadi, “Continuous query response time improvement based on system
conditions and stream features,” Master’s thesis, University of Science and
Technology, Iran, 2010.

L. Xu, B. Peng, and I. Gupta, “Stela: Enabling stream processing systems to
scale-in and scale-out on-demand,” in Proceedings of the IEEE International
Conference on Cloud Engineering (IC2E), Berlin, 2016, pp. 22-31.

J. Li, C. Pu, Y. Chen, D. Gmach, and D. Milojicic, “Enabling elastic stream
processing in shared clusters,” in Proceedings of the IEEE 9th International
Conference on Cloud Computing (CLOUD), San Francisco, CA, 2016, pp. 108—
115.

D. Sun, S. Gao, X. Liu, F. Li, X. Zheng, and R. Buyya, “State and runtime-aware
scheduling in elastic stream computing systems,” Future Generation Computer
Systems, vol. 97, pp. 194 — 209, 2019.

M. Hoffmann, F. McSherry, and A. Lattuada, “Latency-conscious dataflow
reconfiguration,” in Proceedings of the 5th ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond, ser. BeyondMR’18, no. 1.
New York, NY, USA: ACM, 2018, pp. 1-4.

B. D. Monte, “Efficient migration of very large distributed state for
scalable stream processing,” in PhD@VLDB, 2017. [Online]. Available:
http://ceur-ws.org/Vol-1882/paper01.pdf

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Distributed qos-aware
scheduling in storm,” in Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, ser. DEBS "15. New York, NY, USA: ACM,
2015, pp. 344-347.

100

http://ceur-ws.org/Vol-1882/paper01.pdf

Bibliography

[92] T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed stream
data processing using deep reinforcement learning,” Proceedings of VLDB
Endowment, vol. 11, no. 6, pp. 705-718, 2018.

[93] G. Eisbruch, J. Leibiusky, and D. Simonassi, Continuous Streaming Computation
with Twitter’s Cluster Technology. O’Reilly Media, 2012.

[94] Food and Agriculture Organization of the United Nations. (2010)
"How to feed the world in 2050". Accessed: 13 February 2019.
[Online]. Available: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_
paper/\How_to_Feed_the_World_in_2050.pdf

[95] A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldd, “A review on the
practice of big data analysis in agriculture,” Computers and Electronics in
Agriculture, vol. 143, pp. 23 — 37, 2017.

[96] K. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning
in agriculture: A review.” Sensors, vol. 18, no. 8, p. 2674, 2018.

[97] G. Morota, R. Ventura, K. M. Silva, F. F, and S. Fernando, “Big data analytics
and precision animal agriculture symposium: Machine learning and data mining
advance predictive big data analysis in precision animal agriculture.” Journal of
Animal Science, vol. 96, no. 4, pp. 1540-1550, 2018.

[98] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An
overview of internet of things (iot) and data analytics in agriculture: Benefits and
challenges,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3758-3773, 2018.

[99] N. Wang and Z. Li, “8 - wireless sensor networks (wsns) in the agricultural and
food industries,” in Robotics and Automation in the Food Industry, ser. Woodhead
Publishing Series in Food Science, Technology and Nutrition, D. G. Caldwell,
Ed. Woodhead Publishing, 2013, pp. 171 — 199.

[100] P.P.Lerdsuwan P., “An energy-eflicient transmission framework for iot monitoring
systems in precision agriculture.” in ICISA 2017: Information Science and
Applications 2017, Lecture Notes in Electrical Engineering, Kim K., Joukov
N. (eds), 2017, pp. 714-721.

[101] J. Meersmans, F. De Ridder, F. Canters, S. De Baets, and M. Van Molle, “A
multiple regression approach to assess the spatial distribution of soil organic
carbon (soc) at the regional scale (flanders, belgium).” Geoderma, vol. 143, no.
1-2, pp. 1-13, 2008.

[102] S. Drummond, K. Sudduth, A. Joshi, S. Birrell, and N. Kitchen, “Statistical
and neural methods for site-specific yield prediction,” Transactions of the ASAE,
vol. 6, no. 1, pp. 5-14, 2003.

101

http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/\How_to_Feed_the_World_in_2050.pdf
http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/\How_to_Feed_the_World_in_2050.pdf

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

D. M. Lambert, J. Lowenberg-Deboer, and R. Bongiovanni, “A comparison of four
spatial regression models for yield monitor data: A case study from argentina.”
Precision Agriculture, vol. 5, no. 6, pp. 579-600, 2004.

E. Sadler, J. Jones, and K. Sudduth, “Modeling for precision agriculture:how
good is good enough, and how can we tell?” in Proceedings of the 6th European
Conference on Precision Agriculture, 2007, pp. 241-248.

I. Alj, F. Greifeneder, J. Stamenkovic, N. Maxim, and C. Notarnicola, “Review of
machine learning approaches for biomass and soil moisture retrievals from remote
sensing data,” Remote Sensing, vol. 7, no. 12, pp. 16398-16421, 2015.

K. H. Coble, A. K. Mishra, S. Ferrell, and T. Griffin, “Big Data in agriculture:
A challenge for the future,” Applied Economic Perspectives and Policy, vol. 40,
no. 1, pp. 79-96, 2018.

N. Tantalaki, S. Souravlas, and M. Roumeliotis, “Data-driven decision making
in precision agriculture: The rise of big data in agricultural systems,” Journal of
Agricultural & Food Information, vol. 20, no. 4, pp. 344-380, 2019.

G. RuB}, “Data mining of agricultural yield data: A comparison of regression
models.” in Lecture Notes in Computer Science, P. Perner (Ed.), 2009, pp. 24-37.

H. Zheng, L. Chen, X. Han, X. Zhao, and Y. Ma, “Classification and regression
tree (cart) for analysis of soybean yield variability among fields in northeast
china: The importance of phosphorus application rates under drought conditions,”
Agriculture, Ecosystems Environment, vol. 132, no. 1, pp. 98 — 105, 2009.

A. Gonzalez-Sanchez, J. Frausto-Solis, and W. Ojeda-Bustamante, “Predictive
ability of machine learning methods for massive crop yield prediction.” Spanish
Journal of Agricultural Research, vol. 12, no. 2, pp. 313-328, 2014.

X. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, and A. Mouazen, “Wheat
yield prediction using machine learning and advanced sensing techniques,’
Computers and Electronics in Agriculture, vol. 121, pp. 57 — 65, 2016.

M. J. Diamantopoulou, “Artificial neural networks as an alternative tool in pine
bark volume estimation,” Computers and Electronics in Agriculture, vol. 48, no. 3,
pp- 235 — 244, 2005.

D. Tuia, J. Verrelst, L. Alonso, F. Perez-Cruz, and G. Camps-Valls, “Multioutput
support vector regression for remote sensing biophysical parameter estimation,”
IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 4, pp. 804-808, 2011.

D. S. Kimes, R. F. Nelson, W. A. Salas, and D. L. Skole, “Mapping secondary
tropical forest and forest age from spot hrv data,” International Journal of Remote
Sensing, vol. 20, no. 18, pp. 3625-3640, 1999.

102

Bibliography

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

I. Nitze, U. Schulthess, and H. Asche, “Comparison of machine learning
algorithms random forest, artificial neural network and support vector machine to
maximum likelihood for supervised crop type classification.” in Proceedings of
the 4th Geobia, 2012, pp. 35-40.

R. Moreno, F. Corona, A. Lendasse, M. Grafia, and L. S. Galvio, “Extreme
learning machines for soybean classification in remote sensing hyperspectral
images,” Neurocomputing, vol. 128, pp. 207 — 216, 2014.

E. Raczko and B. Zagajewski, “Comparison of support vector machine, random
forest and neural network classifiers for tree species classification on airborne

hyperspectral apex images.” European Journal of Remote Sensing, vol. 50, no. 1,
pp- 144-154, 2017.

F. Lahoche, C. Godard, T. Fourty, V. Lelandais, and D. Lepoutre, “An innovative
approach based on neural networks for predicting soil component variability.”
in Proceedings of the 6th International Conference on Precision Agriculture and
Other Precision Resources Management, Minneapolis, MN, USA, 2003, pp. 803—
816.

K. Were, D. Bui, and S. B. Dick, @B, “A comparative assessment of support
vector regression, artificial neural networks, and random forests for predicting and
mapping soil organic carbon stocks across an afromontane landscape.” Ecological
Indicators, vol. 52, pp. 394-403, 2015.

L. Pasolli, C. Notarnicola, and L. Bruzzone, “Estimating soil moisture with
the support vector regression technique,” IEEE Geoscience and Remote Sensing
Letters, vol. 8, no. 6, pp. 1080-1084, 2011.

O. Rahmati, H. R. Pourghasemi, and A. M. Melesse, “Application of gis-based
data driven random forest and maximum entropy models for groundwater potential
mapping: A case study at mehran region, iran,” CATENA, vol. 137, pp. 360 —
372, 2016.

L. Hassan-Esfahani, A. Torres-Rua, A. Jensen, and M. Mckee, “Spatial root zone
soil water content estimation in agricultural lands using bayesian-based artificial
neural networks and high-resolution visual, nir, and thermal imagery.” Irrigation
and Drainage, vol. 6, no. 2, pp. 273-288, 2017.

D. Pokrajac and Z. Obradovic, “Neural network-based software for fertilizer
optimization in precision farming,” in Proceedings of the International Joint
Conference on Neural Networks, ser. IICNN’01, vol. 3, Washington, DC, USA,
2001, pp. 2110-2115.

T. Rumpf, A.-K. Mabhlein, U. Steiner, E.-C. Oerke, H.-W. Dehne, and L. Plumer,
“Early detection and classification of plant diseases with support vector machines

103

Bibliography

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

based on hyperspectral reflectance,” Computers and Electronics in Agriculture,
vol. 74, no. 1, pp. 91 — 99, 2010.

M. Jafari, S. Minaei, N. Safaie, and F. Torkamani-Azar, “Early detection and
classification of powdery mildew-infected rose leaves using anfis based on
extracted features of thermal images,” Infrared Physics Technology, vol. 76,
no. C, pp. 338-345, 2016.

S. Cereda, “A comparison of different neural networks for agricultural image
segmentation.” Master’s thesis, Politecnico di Milano, 2016. [Online]. Available:
https://www.politesi.polimi.it/bitstream/10589/133864/3/tesi.pdf

C. Andrea, B. B. Mauricio Daniel, and J. B. José Misael, “Precise weed and
maize classification through convolutional neuronal networks,” in Proceedings
of the IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, CA,
USA, 2017, pp. 1-6.

A. 1. De Castro, J. Torres-Sanchez, J. M. Pena, F. M. Jiménez-Brenes, O. Csillik,
and F. Lopez-Granados, “An automatic random forest-obia algorithm for early
weed mapping between and within crop rows using uav imagery,” Remote Sensing,
vol. 10, no. 2, 2018.

N. Rao, “Big data and climate smart agriculture - Review of current
status and implications for agricultural research and innovation in India.”
in Proceedings Indian National Science Academy, 2018. [Online]. Available:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2979349

M. Bendre, R. Thool, and V. Thool, “Big data in precision agriculture through
ict: Rainfall prediction using neural network approach.” in S. Satapathy, Y. Bhatt,
A. Joshi, and D. Mishra (Eds.) Proceedings of the International Congress on
Information and Communication Technology., 2016, pp. 165-175.

P. C. Deka, A. P. Patil, P. Y. Kumar, and S. R. Naganna, “Estimation of dew point
temperature using svm and elm for humid and semi-arid regions of india,” ISH
Journal of Hydraulic Engineering, vol. 24, no. 2, pp. 190-197, 2018.

X. Dou and Y. Yang, “Comprehensive evaluation of machine learning techniques
for estimating the responses of carbon fluxes to climatic forces in different
terrestrial ecosystems,” Atmosphere, vol. 9, no. 3, p. 83, 2018.

H. Guo, L. Wang, F. Chen, and D. Liang, “Scientific big data and digital earth.”
Chinese Science Bulletin, vol. 59, no. 35, p. 5066-5073, 2014.

M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, “Big data
for remote sensing: Challenges and opportunities,” Proceedings of the IEEE, vol.
104, no. 11, pp. 2207-2219, 2016.

104

https://www.politesi.polimi.it/bitstream/10589/133864/3/tesi.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2979349

Bibliography

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

J. Jones, B. B. Antle, J.M, K. Boote, R. Conant, 1. Foster, H. Godfray, and . T.
Wheeler, “Toward a new generation of agricultural system data, models, and
knowledge products: State of agricultural systems science.” Agricultural Systems,
vol. 155, pp. 269-288, 2017.

A. Chlingaryan, S. Sukkarieh, and B. Whelan, ‘“Machine learning approaches for
crop yield prediction and nitrogen status estimation in precision agriculture: A
review,” Computers and Electronics in Agriculture, vol. 151, pp. 61 — 69, 2018.

Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and W. Jie, “Remote
sensing big data computing: Challenges and opportunities.” Future Generation
Computer Systems, vol. 51, no. C, pp. 47-60, 2015.

S. Shekhar, P. Schnable, D. LeBauer, K. Baylis, and K. VanderWaal,
“Agriculture big data (agbd) challenges and opportunities from farm
to table.” 2017. [Online]. Available: https://pdfs.semanticscholar.org/c815/
75€059a826139b47367fceaac67a8£55tb07.pdf

S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt, “Big data in smart farming-a
review.” Agricultural Systems, vol. 153, pp. 69-80, 2017.

A. Weersink, E. Fraser, D. Pannell, E. Duncan, and S. Rotz, “Opportunities and
challenges for big data in agricultural and environmental analysis.” Annual Review
of Resource Economics, vol. 10, pp. 19-37, 2018.

A. Lesser, “Big data and big agriculture.” Analyst, Tech. Rep., 2014. [Online].
Available: https://gigaom.com/report/big-data-and-big-agriculture/

NEC. "Nec and dacom collaborate on precision farming solution to maximize
yields and reduce costs". Last time accessed on October 21st, 2018. [Online].
Available: https://www.nec.com/en/press/201410/global_20141023_03.html

N. Shendar. (2014) "Zadara storage helps farm intelligence build petabyte-scale
’big data for crops’ analytics service in the aws cloud.". Last time
accessed on November 26th, 2018. [Online]. Available: https://zadara.com/
blog/2014/03/20/zadara-storage-helps-farm-intelligence-build-petabyte-scale\
-big-data-for-crops-analytics-service-in-the-aws-cloud/

M. Carolan, “Publicising food: Big data, precision agriculture, and co-
experimental techniques of addition.” Sociologia Ruralis, vol. 57, no. 2, pp.
135-154, 2017.

"Handsfreehectare". Accessed: 11 January 2019. [Online]. Available:
http://www.handsfreehectare.com/

G. M. Alves and P. E. Cruvinel, “Big data environment for agricultural soil
analysis from ct digital images,” in Proceedings of the IEEE Tenth International

105

https://pdfs.semanticscholar.org/c815/75e059a826f39b47367fceaac67a8f55fb07.pdf
https://pdfs.semanticscholar.org/c815/75e059a826f39b47367fceaac67a8f55fb07.pdf
https://gigaom.com/report/big-data-and-big-agriculture/
https://www.nec.com/en/press/201410/global_20141023_03.html
https://zadara.com/blog/2014/03/20/zadara-storage-helps-farm-intelligence-build-petabyte-scale\-big-data-for-crops-analytics-service-in-the-aws-cloud/
https://zadara.com/blog/2014/03/20/zadara-storage-helps-farm-intelligence-build-petabyte-scale\-big-data-for-crops-analytics-service-in-the-aws-cloud/
https://zadara.com/blog/2014/03/20/zadara-storage-helps-farm-intelligence-build-petabyte-scale\-big-data-for-crops-analytics-service-in-the-aws-cloud/
http://www.handsfreehectare.com/

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Conference on Semantic Computing (ICSC), Laguna Hills, CA, 2016, pp. 429—
431.

D. Stratoulias, V. Tolpekin, R. De By, R. Zurita-Milla, V. Retsios, W. Bijker,
M. Alfi Hasan, and E. Vermote, “A workflow for automated satellite image
processing: From raw vhsr data to object-based spectral information for
smallholder agriculture,” Remote Sensing, vol. 9, no. 10, p. 1048, 2017.

Y. Cai, K. Guan, J. Peng, S. Wang, C. Seifert, B. Wardlow, and Z. Li, “A high-
performance and in-season classification system of field-level crop types using
time-series landsat data and a machine learning approach.” Remote Sensing of
Environment, vol. 210, pp. 35-47, 2018.

O. A. B. Penatti, K. Nogueira, and J. A. dos Santos, “Do deep features generalize
from everyday objects to remote sensing and aerial scenes domains?” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Boston, MA, 2015, pp. 44-51.

Y. Wang, A. Balmos, A. Layton, S. Noel, A. Ault, J. Krogmeier,
and D. Buckmaster, “An open-source infrastructure for real-time automatic
agricultural machine data processing,” in Annual International Meeting. American
Society of Agricultural and Biological Engineers, 01 2017.

R. K. M. Math and N. V. Dharwadkar, “Iot based low-cost weather station and
monitoring system for precision agriculture in india,” in Proceedings of the 2nd
International Conference on I-SMAC (1oT in Social, Mobile, Analytics and Cloud),
Palladam, India, 2018, pp. 81-86.

I. M. Carbonell, “The ethics of big data in big agriculture.” Internet Policy Review,
vol. 5, no. 1, 2016.

E. Biffis and E. Chavez, “Satellite data and machine learning for weather risk
management and food security.” Risk Analysis, vol. 37, no. 8, pp. 1508-1521,
2017.

"ACREAfrica". Accessed: 11 November 2018. [Online]. Available:
https://acreafrica.com

K. Raju, G. Naik, R. Ramseshan, T. Pandey, P. Joshi, K. Anantha,
A. Kesava Rao, and D. K. Charyulu. (2016) "Transforming weather index-based
crop insurance in India: Protecting small farmers from distress. status
and a way forward". Accessed: 6 December 2018. [Online]. Available:
https://core.ac.uk/download/pdf/78386894.pdf

N. Kshetri, “The emerging role of big data in key development issues:
Opportunities, challenges, and concerns.” Big Data Society, vol. 1, no. 2, 2014.

106

https://acreafrica.com
https://core.ac.uk/download/pdf/78386894.pdf

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

I. Marcu, C. Voicu, A. Drdgulinescu, O. Fratu, G. Suciu, C. Balaceanu, and
M. Andronache, “Overview of iot basic platforms for precision agriculture,”
in Poulkov V. (eds) Future Access Enablers for Ubiquitous and Intelligent
Infrastructures. FABULOUS 2019. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol. 283,

2019.

A. Singh, N. Shukla, and N. Mishra, “Social media data analytics to improve
supply chain management in food industries.” Transportation Research. Part E:
Logistics and Transportation Review, vol. 114, pp. 398-415, 2018.

R.Ip, L. Ang, K. Seng, J. Broster, and J. Pratley, “Big data and machine learning
for crop protection.” Computers and Electronics in Agriculture, vol. 151, pp.
376-383, 2018.

R. Lokers, R. Knapen, S. Janssen, van Randen Y., and J. Jansen, “Analysis
of big data technologies for use in agro-environmental science.” Environmental
Modelling Software, vol. 84, pp. 494-504, 2016.

E. Jakku, B. Taylor, A. Fleming, C. Mason, and P. Thorburn, “Big data, big trust
and collaboration: Exploring the socio-technical enabling conditions for big data
in the grains industry.” CSIRO, Tech. Rep., 2016, eP164134.

A. Fleming, E. Jakku, L. Lim-Camacho, B. Taylor, and P. Thorburn, “Is big data
for big farming or for everyone? perceptions in the australian grains industry,”
Agronomy for Sustainable Development, vol. 38, no. 3, p. 24, 2018.

D. Lee andJ. Choi, “Learning compressive sensing models for big spatio-temporal
data,” in Proceedings of the SIAM International Conference on Data Mining,
2015, pp. 667-675.

H. Zheng, J. Li, X. Feng, W. Guo, Z. Chen, and N. Xiong, “Spatial-temporal data
collection with compressive sensing in mobile sensor networks.” Sensors, vol. 17,
no. 11, p. 2575, 2017.

P.-Y. Chen, S. Yang, and J. McCann, “Distributed real-time anomaly detection

in networked industrial sensing systems,” Transactions on Industrial Electronics,
vol. 62, no. 6, pp. 3832-3842, 2015.

A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: The teenage years,”
in Proceedings of the 32Nd International Conference on Very Large Data Bases,
ser. VLDB ’06. Seoul, Korea: VLDB Endowment, 2006, pp. 9-16.

R. Nowak, R. Biedrzycki, and J. Misiurewicz, “Machine learning methods in

data fusion systems,” in Proceedings of the 13th International Radar Symposium,
Warsaw, Poland, 2012, pp. 400—-405.

107

Bibliography

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

N. Srivastava and R. Salakhutdinov, “Multimodal learning with deep boltzmann
machines,” The Journal of Machine Learning Research, vol. 15, no. 1, p.
2949-2980, 2014.

L. Zhang, Y. Xie, L. Xidao, and X. Zhang, “Multi-source heterogeneous data
fusion.” in Proceedings of the International Conference on Artificial Intelligence
and Big Data (ICAIBD), Chengdu, China, 2018, pp. 47-51.

J. Woodard, “Big data and Ag-Analytics: An open source, open data platform for
agricultural environmental finance, insurance, and risk.” Agricultural Finance
Review, vol. 76, no. 1, pp. 15-26, 2016.

"Open Ag Data Alliance". Accessed: 5 December 2018. [Online]. Available:
http://openag.io

"Global Open Data for Agriculture and Nutrition-A global partnership
advocating for food security". Accessed: 5 December 2018. [Online]. Available:
http://godan.info

M. Sykuta, “Big data in agriculture: Property rights, privacy and competition
in ag data services.” International Food and Agribusiness Management Review,
vol. 19, no. A, pp. 57-74, 2016.

D. P. C. Peters, K. M. Havstad, J. Cushing, C. Tweedie, O. Fuentes, and
N. Villanueva-Rosales, “Harnessing the power of big data: Infusing the scientific

method with machine learning to transform ecology.” Ecosphere, vol. 5, no. 6,
pp. 1-15, 2014.

H. Karimi, Big data: techniques and technologies in geoinformatics, F. C. P.
Boca Raton, Ed. Taylor Francis Group, 2014.

J. Fan, F. Han, and H. Liu, “Challenges of big data analysis.” National Science
Review, vol. 1, no. 2, pp. 293-314, 2014.

S. Shekhar, Z. Jiang, R. Ali, E. Eftelioglu, X. Tang, V. Gunturi, and X. Zhou,
“Spatiotemporal data mining: A computational perspective.” ISPRS International
Journal of Geo-Information, vol. 4, no. 4, pp. 2306-2338, 2015.

S. Li, S. Dragicevic, F. Antén Castro, M. Sester, S. Winter, A. Coltekin, and . T.
Cheng, “Geospatial big data handling theory and methods: A review and research

challenges.” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115,
pp. 119-133, 2016.

J. Golmohammadi, Y. Xie, J. Gupta, Y. Li, J. Cai, S. Detor, and . S. Shekhar,
“An introduction to spatial data mining.” Department of Computer Science and
Engineering University of Minnesota, Tech. Rep., 2018, TR 18-013. [Online].
Available: https://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/18-013_
0.pdf

108

http://openag.io
http://godan.info
https://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/18-013_0.pdf
https://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/18-013_0.pdf

Bibliography

[180] E. Y. Chang, PSVM: Parallelizing Support Vector Machines on Distributed
Computers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 213—
230.

[181] A. Baldominos, E. Albacete, Y. Saez, and P. Isasi, “A scalable machine learning
online service for big data real-time analysis,” in Proceedings of the IEEE
Symposium on Computational Intelligence in Big Data (CIBD), Orlando, FL,
2014, pp. 1-8.

[182] "Mllib is Apache Spark’s scalable machine learning library". Accessed: 16
January 2019. [Online]. Available: https://spark.apache.org/mllib/

[183] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: A framework for machine learning and data mining in the
cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716727, 2012.

[184] "Tensorflow-An end-to-end open source machine learning platform". Accessed:
16 October 16 2018. [Online]. Available: https://www.tensorflow.org/

[185] A. Roukh, F. N. Fote, S. A. Mahmoudi, and S. Mahmoudi, “Big data processing
architecture for smart farming,” Procedia Computer Science, vol. 177, pp. 78 —
85, 2020.

[186] The Apache Software Foundation. "Hbase". Accessed: 16 January 2019.
[Online]. Available: https://hbase.apache.org/

[187] ——. "Cassandra-Manage massive amounts of data, fast, without losing sleep".
Accessed: 16 January 2019. [Online]. Available: http://cassandra.apache.org/

[188] MongoDB. "MongoDB-The database for modern applications". Accessed: 16
January 2019. [Online]. Available: https://www.mongodb.com/

[189] M. Wachowiak, D. Walters, J. Kovacs, R. Wachowiak-Smolkov, and A. James,
“Visual analytics and remote sensing imagery to support community-based

research for precision agriculture in emerging areas.” Computers and Electronics
in Agriculture, vol. 143, no. C, pp. 149-164, 2017.

109

https://spark.apache.org/mllib/
https://www.tensorflow.org/
https://hbase.apache.org/
http://cassandra.apache.org/
https://www.mongodb.com/

	Introduction
	Big data processing
	Research motivation
	Research methodology
	Thesis contribution
	Thesis outline
	Publications

	Big Data Stream Processing
	Issues/Requirements in Big Data Stream Processing
	DSP Frameworks Assessment
	Evaluation and Comparison of Stream Processing Frameworks
	Comparison Results

	Related work
	Data Stream Processing Systems (DSPS)
	Heuristic Scheduling Approaches
	Static Approaches Using Mini-batches
	Static Approaches in Operator-based Systems
	Dynamic Approaches Using Mini-batches
	Dynamic Approaches in Operator-based Systems

	Discussion

	Task allocation and scheduling
	Preliminaries in Storm
	Problem Formulation
	Task Allocation and Scheduling Approach
	Task Allocation
	Task Scheduling
	Overall Complexity

	Motivating Examples
	Random Topology
	Linear Topology

	Experimental Results
	Experimental Setup
	Average Total Latency
	Percentage of Buffer Memory Used
	Load Balancing
	Throughput

	An Application Example-Decision Making in IoT-enabled Agriculture
	Precision Agriculture
	Decision making in Precision Agriculture
	Challenges and Limitations

	Big Data in Agriculture
	Agricultural Big Data Systems
	Advanced sensor technology systems
	Risk management systems
	Agricultural management systems

	Challenges of Big Data Adoption in Agriculture
	Data collection
	Analysis techniques
	Computing infrastructure
	Storage and interpretation

	Discussion

	Conclusions
	Major Contributions
	Future Directions

