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ABSTRACT

The Capacitated Vehicle Routing Problem (CVRP) is a well-known NP-hard combinatorial optimization
problem with numerous real-world applications in logistics. In this work, we present a literature review
with recent successful parallel implementations of Variable Neighborhood Search regarding different
variants of vehicle routing problems. We conduct an experimental study for the CVRP using well-known
benchmark instances, and we present and investigate three parallelization strategies that coordinate
the communication of the multiple processors. We experimentally evaluate a non-cooperative and two
novel cooperation models, the managed cooperative and the parameterized cooperative strategies. Our
results constitute a first proof-of-concept for the benefits of this new parameterized cooperative approach,
especially in computationally hard instances.
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CHAPTER 1

Introduction

Combinatorial or discrete optimization problems have significant importance to many industrial
applications, with a vast number of uses and can be described as the effort to find an optimal solution
from a finite number of alternative solutions. The principal goal in optimization problems is to maximize
benefit, mostly defined by something such as profit, time or quality. In real-life applications, money and
time are limited resources, and this is the reason several constraints are applied in order to minimize
resources utilization.

All optimization problems can be reduced into mathematical formulas and can be formally de-
scribed as maximizing or minimizing a function by methodically choosing input values from a predefined
set. A generic form of optimization problems is as follows:

minimize f(x)

subject to

{
c(x) = 0

g(x) ≤ 0

(1)

where f(x) is the objective or cost function. The equality c(x) and the inequality g(x) are
called constraints. Of course if we flip the inequality we will form a maximization problem.

In real-world applications, we usually encounter more than one objective function, and we expect
conflicts between them since the improvement of one objective produces a disadvantage to another. In the
industry, on the one hand, problems are usually extremely complex and time-consuming, with multiple
constraints and many objectives. On the other hand, there are few computer resources, and there is a
lack of computation time.

This thesis focuses on those combinatorial optimization problems that arise in the functional
area of logistics and transportation management, specifically transport planning. The task of servicing
multiple client demands, subject to several constraints, while optimizing predefined criteria is known in
the Operational Research literature as the Vehicle Routing Problem.

The Vehicle Routing Problem and all its variants are NP-hard and therefore unlikely to be
solvable in polynomial time (Lenstra and Kan, 1981). As with many hard optimization problems, meta-
heuristics are often used with vehicle routing problems in order to find optimal or nearly optimal solutions,
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within a reasonable amount of time. In many real-life problems, approaching the optimal solution is a
time-consuming process. The requirements of this class of problems, stretch and frequently transcend
what regular off-the-shelf computing systems can offer.

In order to reduce the computational time, the application of parallelism to a metaheuristic
algorithm is a common practice. Apart from reducing the computational time, parallelization can increase
the exploration space and offer solutions with better quality. One of the major problems that arise from
the parallelization process concerns the communication between the model components. Communication
affects the performance and the scalability of parallel algorithms.

1.1 Thesis Overview and Hypothesis

1.1.1 Objectives

The objectives of this thesis are as follows:

1. To survey recent successful parallel implementations of the Variable Neighborhood Search meta-
heuristic regarding several variants of vehicle routing problems.

2. To present three parallelization strategies using the General Variable Neighborhood Search variant
to tackle the Capacitated Vehicle Routing Problem, in which we examine different approaches of
exchanging solutions among parallel executions.

3. To experimentally evaluate how the level of cooperation can affect the performance between non-
cooperative and cooperative models.

4. To improve the quality of the solutions by creating a new parallel model that filters communication
based on the tests performed.

1.1.2 Approach

Experimental research was carried for the Capacitated Vehicle Routing Problem using a parallel
version of the General Variable Neighborhood Search metaheuristic. Several parallel models were used
into well-known benchmark instances. Afterwards, a qualitative investigation of the results was carried.
This statistical analysis was done in order to compare the communication strategies of the parallel models,
under several simple and complex instances.

A second analysis followed, concerning the performance of the parallel models. The interpreta-
tion of this study provided the necessary information in order to make various modifications and apply
filters to coordinate the communication between the processors in order to increase performance and
create a parallel model that will carry the benefits from both worlds.
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1.1.3 Structure of this work

This thesis is organized as follows: In Chapter 2 we describe the VRP, its extensions and the
relevant scientific literature. In this chapter we mainly focus on the CVRP extension and we define its
mathematical formulation in subsection 2.2.1. In Chapter 3, we outline the solution methods for the
VRP and their efficiency. In Chapter 4, we describe the methodology and the configuration of the GVNS
approach. In Chapter 5, we describe the theory behind the parallelization of VNS and we present related
works in parallel VNS for several VRP variants. In Chapter 6, we present three parallel GVNS models
for the solution of the CVRP and discuss the cooperation strategies and the benefits and drawbacks
of communication. The methodology and the findings from this computational study are presented in
depth in Chapter 7. Chapter 7 also includes a study of the communication overhead among processes,
solution generation and exchange and a study of the benchmark instance parameters in subsection 7.3.2.
Finally, the conclusions and prospects are summarized in Chapter 8.

3



CHAPTER 2

Introduction to the Vehicle Routing Problem

2.1 The Vehicle Routing Problem

The Vehicle Routing Problem (henceforth referred to as the VRP) is one of the most well-studied
combinatorial optimization problems, and it emerges when one seeks an optimal route or a combination
of routes for a fleet of vehicles to accommodate a set of clients, given a set of constraints. The standard
VRP is known to be NP-hard since it generalizes the most influential and well-known combinatorial
optimization problems, the Travelling Salesman Problem (TSP) and the Bin Packing Problem (BPP)
which are both popular NP-hard problems (Garey, 1979). It can also be considered as a Set Packing (SP)
problem if the cost of each set is viewed as the distance of the associated optimal TSP tour (Balinski
and Quandt, 1964). A comprehensive definition of VRPs is:

“Vehicle Routing Problems are concerned with the delivery of some com-
modities from one or more depots to a number of customer locations with known
demand. Such problems arise in many physical systems dealing with distribution
networks. For example, delivery of commodities such as mail, food, newspapers,
etc. The specific problem which arises is dependent upon the type of constraints
and management objective.”

Achuthan et al. (1997)

The formal VRP representation is a directed graph G(E, V ), where V = 0, 1, ..., n depicts the
set of nodes and E is the set of arcs. The depot is the first node marked with zero, the rest of the nodes
i = 1, 2, . . . , n represent the clients. The demand of each client is di > 0. Every arc depicts a route from
node i to node j. The weight of every arc Cij > 0 represents the cost of moving from node i to node j.
When Cij = Cji then the VRP is symmetric, oppositely if Cij 6= Cji, the VRP is asymmetric.
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In view of those definitions, Vehicle Routing Problem is a general name for a wider class of
problems that can be described with the following:

• the items are conveyed from a depot to a client,

• drivers are assigned to a set of vehicles,

• given is the road network

• given is a set of clients where the goods are delivered.

2.2 Extensions of the Vehicle Routing Problem

The fact that numerous VRP variants exist with several applications in the industry, made the
VRP popular in the academic literature. The number of VRP variants have increased over the years.
The most common variants of VRP are as follows:

2.2.1 The Capacitated VRP variant (CVRP)

The CVRP is the most studied version of the VRP and it is the problem being studied in
this research. In this problem, the distribution of goods starts from a single depot and the goods are
conveyed by a homogeneous fleet of vehicles, meaning that vehicles that are available at the depot all
have the same capacity. An additional restriction is introduced, the vehicle capacity is considered an
extra constraint.

It should be noted that, in spite of the fact that there are several variants of VRP that attracted
substantial research efforts, according to an analysis of the Scopus scientific database, the CVRP proves
to be the most prevalent variant of the VRP. From the total number of articles, about 43% is about the
CVRP Gayialis et al. (2019).

Basic concepts and definitions

The CVRP, which was initially introduced by Dantzig and Ramser in 1959 (Dantzig and Ramser,
1959), belongs to the category of location routing problems and is a variation of the VRP, in which a
fleet of homogeneous delivery vehicles of limited carrying capacity must service known customer demands
from a depot, at a minimum transit cost. The figure 2.2.1 shows the graphic representation of a CVRP
example.

The CVRP is an NP-hard problem with significant impact on the fields of transportation,
distribution, and logistics, since transportation is usually a significant component of the cost of a product.
One of the major concerns of the industry has always been the minimization of the product cost, essential
both for the achievement of a more substantial profit as for the maintenance of a vantage over the
competition. In addition, a growing interest in reducing the environmental impact of their products
and services is also cultivated among companies, thus creating a trend towards greener management of
modern supply chain (Skouri et al., 2018).
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Figure 2.2.1 A depiction of the Capacitated Vehicle Routing Problem.

Finding an optimal solution for the CVRP is generally a computationally difficult problem.
Exact algorithms exist, but those are not considered efficient due to the computational nature of all
NP-hard problems, which leads to markedly long periods of computation time when in the process of
solving problems with many customers. Many different exact algorithms are proposed in the literature
for the CVRP (Baldacci et al., 2010). Laporte and Nobert (Laporte and Nobert, 1987) gave a survey
covering early exact methods for the CVRP. Toth and Vigo (Toth and Vigo, 2002) delivered a complete
overview of exact methods for the CVRP. For more insight into the literature of exact methods, the
interested reader is referred to the work by Cordeau et al. (Cordeau et al., 2007).

CVRP mathematical formulation

Several mathematical formulations have been proposed for the VRP (O. et al., 2015), such as
the Vehicle Flow Formulation (VFF), the Commodity Flow Formulation (CFF), and the Set Partitioning
Formulation (SPF).

This study works on the simplest version of the CVRP problem, with the assumption of a
homogeneous vehicle fleet (same capacity). VFF is employed in order to formulate the CVRP, under the
assumption that the number of vehicles is unlimited and the goal is to obtain a solution that minimizes
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the total travel cost. VFF uses discrete variables associated with each arc that count the number of
times that the edge is traversed by a vehicle. The number of variables is polynomially bounded, and the
number of constraints is exponential (Toth and Vigo, 2002).

Let G = (V,E) be an undirected weighted graph where V = {0, n} and i = 0 the depot and
i = 1, . . . , n the customers. By E we denote the set of edges, i.e., the roadways between the customers.
V is the set of vertices, K is the available number of vehicles, and S the set of clients. Each edge (i, j)

is associated with a non-negative cost cij and a binary variable xij (whether it is traversed or not). The
CVRP formulation is as follows:

min

n∑
i=0

n∑
j=0

cijxij

s.t.

∑
i∈V

xij = 1 ∀i ∈ V \{0} (1)

∑
j∈V

xij = 1 ∀j ∈ V \{0} (2)

∑
i∈V

xi0 = K (3)

∑
j∈V

x0j = K (4)

∑
i/∈V

∑
j∈V

xij ≥ r (S) ∀S ⊆ V \{0}, S 6= 0 (5)

xij ∈ (0, 1) (6)
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Constraints 1 and 2 impose the in-degree and out-degree constraints so that precisely one edge
enters and leaves each vertex associated with a customer, respectively.

Constraints 1 and 2 impose the in-degree and out-degree constraints so that precisely one edge
enters and leaves each vertex associated with a client, respectively. Constraints 3 and 4 impose client
degree requirements for the depot. Constraint 5 is called the Capacity-Cut Constraint (CCC) and imposes
both the connectivity of the solution and the vehicle capacity requirements. Capacity-Cut Constraints
(CCCs) specify that each cut specified by vertex sets (S, S′) is crossed by a number of edges not less
than r(S), where r(S) stands for the minimum number of vehicles needed to serve set S. Constraint 6
describes the binary nature of variables xij , in other words, value 1 is assigned if edge (i, j) ∈ E belongs
to the optimal solution and 0 otherwise.

2.2.2 The Green VRP variant (G-VRP)

Green logistics or environmentally friendly logistics is an active research area that comes to focus
when corporations are trying to decrease their carbon footprint voluntarily in response to a constantly
increasing concern about climate change, or to adopt new environmental regulations. Occasionally, there
are difficulties to overcome when there is insufficient refueling support for the vehicles, or limited vehicle
driving range. Furthermore, ever so often the concern for global warming leads to new investments in
environment-friendly transportation, that promote R&D activities.

2.2.3 The VRP with Backhauls (VRPB)

The VRP with Backhauls, also known as the linehaul-backhaul problem, pertains to the general
class of delivery and collection VRP. In this class of problems, the clients are divided into two subsets,
the linehaul and backhaul clients. In the first category, linehaul clients need goods to be delivered from
the depot. In the second category, the backhaul clients have a given quantity of goods to be picked up
and conveyed to the depot. In real-world problems, separate distribution and collection services on the
same route are very popular, and that is the reason why VRPB is so common.

2.2.4 The Multi-Depot VRP variant (MDVRP)

The Multi-Depot Vehicle Routing Problem (MDVRP) is a prevalent problem with many real-
life applications. The differentiation with VRP is that the set of customers will be served by a fleet of
vehicles originating from multiple depots. This means that the vehicle has no obligation to return to its
initial depot after serving the clients; preferably, it can pick the closest one. The optimization criterion
of Multi-Depot VRP is to minimize the distance traveled.

2.2.5 The Multi-Echelon VRP variant (MEVRP)

The Multi-Echelon Vehicle Routing Problem (MEVRP) is an extension of the Capacitated VRP,
where the transport from a single warehouse to the clients is accomplished by routing and connecting
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the vehicle through central warehouses called satellites while minimizing the overall transportation cost.
MEVRP has widespread real-life applications because it seeks to utilize existing resources other than
optimizing the whole distribution process.

2.2.6 The Multi-Trip VRP variant (MTVRP)

The Multi-Trip VRP (MTVRP) also known as VRP with Multiple-use of vehicles (VRPM) is
a popular problem in the context of real-world applications. The main differentiation from the VRP is
that rather than using a vehicle for only one route, vehicles may perform several routes. Specifically,
if there are constraints that impose a small number of clients per route (small capacity or limited fleet
size), then the quality of services can only be achieved when vehicles are reused. A new constraint is
introduced, the sum of the duration of the tours ascribed to a vehicle should not surpass a given trip
duration. It should be noted that not all vehicles are necessarily used. Also, in some papers, MTVRP
has slight differences in the definition Cattaruzza et al. (2016).

2.2.7 The Open VRP variant (OVRP)

The Open VRP (OVRP) is a variant of VRP in which each route is a sequence of customers. The
main differentiation from the classical VRP is that vehicles are not required to return to the depot after
the end of the route, or likewise, the return trip to the depot is not charged. The Open vehicle routing
problem has not gained much attention in the literature compared to other VRP variants Gurpreet and
Vijay (2014).

2.2.8 The Time Dependent VRP variant (TDVRP)

The Time-Dependent VRP variant (TDVRP) was first introduced in 1992 by Malandraki and
Daskin (Malandraki and Daskin, 1992) and by Hill and Benton (Hill and Benton, 1992). In this VRP
extension the added constraint is the total time spent on the routes by the vehicles. Time must be
minimized. The trip time that the vehicle spends between two clients or between a client and the depot
also becomes an important factor. Instead of relying only on the distance between the clients, the
TDVRP also factors the time of the day. On many occasions time-windows may also be given, as well
as the maximum allowable duration of each route.

The TDVRP can be divided into 3 categories (Gendreau et al., 2015) depending on the quality
and the progression of the information related to travel times, namely:

• Static and deterministic time-dependent VRP,

• Static and stochastic time-dependent VRP,

• Dynamic time-dependent VRP
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2.2.9 The VRP with Satellite Facilities variant (VRPSF)

In the VRP with Satellite Facilities (VRPSF), satellites are utilized in order to refill the vehicle
during a tour, allowing drivers to make deliveries to the clients until the end of their shift, without
necessarily returning to the central depot (Gayialis et al., 2018; Bard et al., 1998).

2.2.10 The VRP with Time Windows variant (VRPTW)

The VRP with Time-Windows follows the CVRP in popularity. It accumulates a 37% of the
total research in the Scopus scientific database. The VRPTW objective is to find a collection of routes
of minimal total traveling cost, much like the classical VRP, but constrained by a time interval within
which the clients that have to be served are prioritized.

VRPs with time window constraint can be divided into two different categories:

i. VRPs with Hard Time Window (VRPHTW). The time-window constraint must be satisfied,

ii. VRPs with Soft Time Window (VRPSTW). Failure to conform to the time-window con-
straint does not affect the feasibility of the solution. The solution that violates the Time-Window
constraint receives a penalty in the objective function, thus increasing the solution cost.

2.2.11 Other VRP variants

Several other variants of the VRP that are derivatives of the above exist, such as:

• Multi-Trip VRP with Backhauls (MTVRPB) (Salhi et al., 2014),

• Fleet Size and Mix VRP with Backhauls (FSMVRPB) (Salhi et al., 2013),

• VRP with Backhauls and Time Windows (VRPBTW) (Zhong and Cole, 2005),

• Dynamic VRP (DVRP) (Pillac et al., 2013).

• The Stochastic Vehicle Routing Problem (Cordeau et al., 2007).

• The single VRP with deliveries and selective pickups (SVRPDSP) (Gribkovskaia et al., 2008).

The continued research of the VRP notwithstanding, there is no algorithm that optimally
solves every problem, not even a specific VRP variant. Many diverse algorithms and methods have
been proposed to this end for certain VRP classes, but they tackle only a particular issue in order to
reduce the number of variables under consideration. In real-world applications, heuristic or metaheuristic
algorithms are used as solutions.
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CHAPTER 3

Solution methodology for VRP problems

As mentioned in section in 2.1, VRP and all its extensions are NP-hard. There are various
methods and procedures to solve a VRP or approximate a solution in a decent running time. The vast
majority fall into 3 main categories. Those categories are Exact, Heuristic, Metaheuristic, Approximation
and Simulation. For the sake of completeness, in this section, we briefly review all available approaches.

3.1 Mathematical modelling for the VRP (Exact algorithms)

Exact solutions guarantee that the exact optimal solution is found, but as a consequence of
the fact that the VRP belongs to NP-Hard class, there are limitations to what this method can offer
— the time needed to calculate an exact solution increases when there are many customers to visit.
Consequently, for real-world problems of the VRP, heuristics are used. Exact algorithms can be divided
into the following categories (Laporte, 1992):

(a) Direct tree search (DTS)

(i) Assignment lower bound

(ii) k-degree centre tree

(b) Dynamic programming (DP) (Burrows et al., 1972)

(c) Integer linear programming (ILP)

(i) Vehicle flow formulation

(ii) Set partition & column generation

Focusing on CVRP problems, Branch-and-Cut algorithms (ILP) were the best performing al-
gorithms until the early 2000s (Naddef and Rinaldi, 2002). Up until then, there were instances from the
literature with only 50 nodes that could not be solved to optimality, while the most challenging CVRP
instance that was solved had 134 nodes (Augerat et al., 1995).

It was Fukasawa Fukasawa et al. (2005) who at that moment in time demonstrated his Branch-
and-Cut-and-Price algorithm (BCP) and proved that the combination of cut and column generation
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is much more effective than each of those techniques taken alone (Poggi and Uchoa, 2014). Fukasawa
solved all instances from sets A,B,E,F,M,P with up to 100 customers, as well as instances M-n121-k7
and F-n135-k7. Only instances M-n151-k12, M-n200-k16 and M-n200-k17 remained unsolved. BCP is a
hybrid of branch and bound and column generation. In 2007, the biggest instance for the CVRP that
has been solved to optimality contained 135 nodes (Pisinger and Ropke, 2007).

In 2016, a new milestone was set by consistently solving CVRP instances up to 199 nodes using
BCP algorithm (Pecin et al., 2016), while the bigger instance that was solved had 360 nodes (instance:
Golden19, 45 hours). Even though breaking the barrier of 200 nodes was a significant advancement upon
the previous record of 150 nodes, there still is a big obstacle that has to be surpassed when using exact
algorithms. The effort involved to synthesize, code, and implement those extremely refined, sophisticated
BCPs in a simple problem requires a significant effort. A skilled team could need several months of work
to devise these algorithms for a specific task and those often correspond to only one variant of the VRP.

Pessoa et al. in 2009, proposed a generic BCP solver that encircles a large class of VRPs.
Those authors (Pessoa et al., 2019) showed that the overall performance of their generic BCP in several
problems produced better solutions than the best existing specialized algorithms. They managed to
solve to optimality five instances from the X set for the first time. The largest instance had 548 nodes
(instance: X-n548-k50). The maximum time needed to solve some of those instances was sixteen days,
while the minimum was two days.

The size of the instances that were solved in optimality across the years can be seen in 3.1.
Denoted with an asterisk are individual instances that the researcher managed to solve and not a batch
of instances.

Table 3.1 Exact algorithm performance on CVRP through the years
Year Instance details Customers Algorithm Hours

1995 - 50 Branch-and-Cut
2003 - 80 Branch-and-Cut

2006 A,B,E,F,M,P,
M-n121-k7 and F-n135-k7 ≤ 100 on sets, 135 BCP -

2016 M-n200-k16 199 BCP 7.95
2016 Golden_19 360* BCP 45.11
2019 X-n284-k15 283 Generic BCP 264
2019 X-n322-k28 322 Generic BCP 134.4
2019 X-n393-k38 392 Generic BCP 139.2
2019 X-n469-k138 468 Generic BCP 364.8
2019 X-n548-k50 547 Generic BCP 48
2019 X-n548-k50 547 Generic BCP 48

The latest set with benchmark instances for the CVRP contains instances that range from 6000
to 30000 (Arnold et al., 2019). Based on the above, this set is currently beyond the capabilities of any
exact algorithm, when there is a need for it to be solved fast.

Even the X set Uchoa et al. (2017a) with nodes ranging from 100 to 1000 is considered very
hard if not impractical to craft and use exact algorithms on the harder instances. These new instances
constituted a unique challenge for the research community. Through the years, feasible solutions for all
those instances are provided by heuristics and metaheuristics methods.
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At the conference of the German Operations Research Society in Hamburg in 2016, a statement
by Sörensen jokingly referred to as “Sörensen’s conjecture” reads as follows:

“In the real world, solving optimization problems using exact methods is
a waste of resources.”

Sörensen et al. (2016)

Popular integer or constraint programming solvers are principally based on Tree Search tech-
niques (branch-and-bound, branch-and-cut, branch-cut-price). These methods explore the solution space
by recursively instantiating variables forming a solution vector. Operating in exponential time, the main
disadvantage is the restriction to small and medium-scale problems. If tree search techniques execute
without termination, they offer no more guarantee on the solution quality than any heuristic approach.
Numerous real-life VRPs require thousands of 0-1 decisions variables, which are out of tree search scope
(Ibrahim et al., 2019).

On the contrary, commercial robust general-purpose heuristic solvers dealing with nonlinear 0-1
models, produce high-quality solutions in extremely short running times without any tuning. One good
example of a commercial heuristic solver is LocalSolver (Benoist et al., 2011).

3.2 Approximation algorithms for the VRP

In real-world problems, it is reasonable to expect a solution for an essential task or a minimal
instance of about 200 customers, but it is likely to get that solution within several days or weeks. In
contrast, there is a special type of algorithm called approximation algorithms that are time efficient and
designed to produce provably good quality solutions, close to the optimal one, in provably polynomial
computation time. An approximation algorithm has an approximation ratio of a(n), if for any input of
the problem, the cost C of its solution is within factor ρ of the cost of the optimal solution C∗, i.e.

max

(
C

C∗
,
C∗

C

)
This definition works for minimization and maximization problems. It would be perfect if the approxi-
mation ratio ρ is a small constant, but for various hard problems, the best-known approximation ratio ρ
depends either or both on the input size n and some other parameters linked to the problem (Vazirani,
2003).

3.3 Simulation methods for the VRP

In VRP problems, the reliability of a route can be defined as the probability that the route
does not suffer a failure. This probability aspect makes it possible to get an acceptable solution by using
simulation methods. The use of simulation tools in VRPs is scarce and uncommon (Juan et al., 2013).
When simulation methods are used, researchers use them in order to obtain estimates of the cost and
the reliability of each solution. Simulation methods use what-if analyses for producing various scenarios,
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picking the best one, and applying these in the principal algorithms (Alexander et al., 2014). One way
to achieve the generation of those scenarios is to use a Monte Carlo Simulation.

Monte Carlo Simulation (MCS) can be described as a set of methods that make use of random
number generation to solve specific stochastic or deterministic problems. Heuristic methods for the
CVRP can be combined with Simulation methods. Fernández de Córdoba et al. applied MCS along
with the Clarke and Wright heuristic for tackling the CVRP. Those authors (de Córdoba et al., 2000)
confirmed that Monte Carlo simulations are useful in implementing heuristic algorithms for different
Routing Problems. Two crucial advantages of MCS are that (i) they are easy to implement, and (ii) they
can adapt quickly to any problem.

3.4 Heuristics for the VRP

Frequently, in real-world problems, truly optimal solutions are rarely found, and it is considered
natural to compromise the quality of the solution in order to acquire a solution in a reasonable time.
The diversity and randomness, which is intrinsic in real-world tasks can be dealt with heuristic solutions.

Heuristic methods can be divided into two main categories:

• Construction heuristics,

• Improvement heuristics

These two methods will be discussed in detail in the next sections.

3.4.1 Construction Heuristics

A construction heuristic is an algorithm that constructs a solution incrementally according to
some rules. In CVRP problems, in every iteration, a new tour is attached to the solution consecutively,
and parts previously created remain unchanged. Each route is an individual sub-problem and can be
built sequentially or in parallel. The main construction heuristics for the CVRP fall into the following
categories:

(a) TSP based heuristics can be used for solving VRPs, in order to construct multiple tours,
apply the problem constraints and then filter out unwanted tours. Tours may be built by adding
nearest nodes, farthest nodes or random nodes.

(b) Insertion heuristics begin with a sub-tour and then extend this tour by inserting the remain-
ing nodes consecutively until all nodes have been included. Insertion rules may vary. A simple
greedy strategy is to insert a node in the cheapest possible route repeatedly.

(c) Cluster-First Route-Second (CFRS) method is used to build clusters of nodes and then
determine a feasible route per cluster. The following algorithms use Cluster-First Route-Second
method:
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(c.i) The Sweep algorithm (Gillett and Miller, 1974; Wren and Holliday, 1972; Lampkin
and Wren, 1972), can only be implemented in planar VRPs. Sweep algorithm scans the surface
in Euclidean space. Nodes are combined in order to form a cluster by rotating a ray centered
at the depot. While increasing the polar angle centered at the depot, nodes are added to the
route in the order they appear. If a node is feasible, it is included in the route; on the other
hand, if a node is not feasible, a new route is created. The implementation of Gillette and
Miller (Gillett and Miller, 1974) can do some post-optimization steps by switching nodes.

(c.ii) The Petal algorithm (Ryan et al., 1993), aims to construct a subset of feasible routes
and then solve a set partitioning problem. It is an extension of the Sweep algorithm. Every
route is called a petal. It is often observed that optimal solutions for several problems exhibit
petal-shaped geometric structures (Ryan et al., 1993). Clustering methods that promote
such geometric features (figure 3.4.1) often achieve near-optimal solutions for practical-sized
problems.

Figure 3.4.1: Optimal solution of A-n44-k6 using PCM GVNS. The solution exhibits petal-shaped
structure.

(c.iii) Fisher and Jaikumar algorithm (FJ) solves a Generalized Assignment Problem
(GAP) to form the clusters (Fisher and Jaikumar, 1981). This algorithm was introduced for
the capacitated vehicle routing problem. A cluster indicates a collection of customers or a
city, visited by a vehicle (Hashimoto et al., 2010). FJ algorithm was modified by Koskosidis
et al. (Koskosidis et al., 1992) in order to also work with the CVRPTW.

(c.iv) Taillard algorithm (Taillard, 1993a) also works only for planar VRPs. The main
differentiation is that it decomposes the main problems into sub-problems by formulating reg-
ularly separated clusters. It assumes that the depot is centered and the clusters are around the
depot. Taillard’s algorithm determines neighborhoods by using the λ−interchange generation
mechanism (Osman, 1993).
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(d) Unlike CFRS,Route-First, Cluster-Second algorithms (RFCS) (Newton and Thomas, 1974;
Bodin and Berman, 1979; Beasley, 1983) create several capacitated VRP routes from a single tour.
RFCS runs in two different phases. In the first phase, a large route that serves all customers is
formed, similar to a TSP solution, while ignoring all side constraints. In the second phase, this large
tour is sectioned into several sub-routes from the depot, that honor constraints. RFSC algorithm
is a general and flexible method but is seldom used because, as stated above (c.ii), clustering-first
methods often achieve near-optimal solutions due to the geometric features.

(e) In 1964, the famous Clarke and Wright Saving algorithm (Clarke and Wright, 1964) were
developed. The number of vehicles in VRP in which CW is used is unfixed and is considered as a
decision variable. CW savings algorithm is applied to both directed and undirected problems VRPs.
In directed VRPs, CW produces a lower quality of solutions (Vigo, 1996). This heuristic method
relies on iteratively linking routes in order to create a single route that produces the maximum
cost saving. In the figure 3.4.2, the first step of the CW algorithm is shown.

Figure 3.4.2 Savings algorithm. Initial connections with a depot and first iteration of CW.

The algorithm starts with one route for every customer, and in every iteration, the number of routes
is reduced by merging two routes that give max savings (S) (Figures 3.4.3). The classical Savings
formula (Sij) is depicted in Equation 1. In this equation, i and j represent a pair of customers, D
is the depot and the function dist(x, y) calculates the distance between two given points.

Sij = dist(D, i) + dist(D, j)− dist(i, j) (1)
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Algorithm 1: Pseudo code for the Clark Write Savings algorithm (CW)
1 initialiseRoutes();
2 l← CalcAndSortSavings();
3 for i← 1 to lmax do
4 Rl[i][0], Rl[i][1] ← findRoutes(lij);
5 if feasibleMerge(Ri, Rj) then
6 combineRoute(Ri, Rj) ;
7 end
8 end

The algorithm 1 operates in the following way:

1 Construct n routes: c0 → c1 → c0, for each i ≥ 1. Calculate the savings which is
given by equation 1 then sort the savings list in descending order.

2 A parallel and a sequential version of the algorithm are available. In contrast with
the parallel version, the sequential version can only construct one route at a time.

i. Parallel version: In essence, the parallel version searches for the best
feasible merge. Given a saving sij from the top of the savings list, determine
if two routes exist that can be feasible when merged. One of the two routes
should contain the edge (i, 0) and the other the edge (0, j). In order to merge
them delete (0, j) and (i, 0) and insert (i, j).

ii. Sequential version: For every route (0, i, . . . , j, 0) Find the first
merge Ski or Sjl that can be feasibly merged into the current route with
another route containing (k, 0) or (0, l). Apply the merge and repeat the
process on the same route. If no other merge exists, proceed to the next
route.

3 Repeat step 2 until no additional savings can be achieved.

According to Laporte and Semet (2002) the parallel version of the savings method definitely domi-
nates the sequential one. The same authors point out a disadvantage of Clarke and Wright’s saving
algorithm. In spite of the fact that CW produces good routes at the beginning, it tends to generate
less satisfying routes towards the end, including some that are problematic. In order to address
this issue Gaskell (1967) and Yellow (1970) proposed a route shape parameter λ. The generalized
savings is of the form:

Sij = dist(D, i) + dist(D, j)− λ ∗ dist(i, j) (2)

The λ parameter is putting more emphasis on the distance between the nodes to be connected. It
has been reported that λ = 0.4 or λ = 1 yields good results (Golden et al., 1977).
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Figure 3.4.3 Savings algorithm. Start, first iteration, and last iteration.

3.4.2 Improvement Heuristics

In contrast with Construction heuristics, Improvement Heuristics are algorithms that, in every
iteration, apply an improvement to the initial solution. The initial solution can be generated randomly
or by using one of the construction heuristics mentioned above. The improvements in the initial solution
can be to exchange clients between two routes, placing a client to a different route, swap two or more
clients within the same route in order to alter the visiting sequence. In order for those improvements
to happen, a local search is employed as a mean to produce an acceptable move from one solution to
another inside a neighborhood structure. A neighborhood is a collection of all the possible solutions that
can be reached from one solution by performing only one move. Common neighborhood structures for
the CVRP are:

A. Intra-route Neighborhoods,

i 2-opt (figure 3.4.4),

ii 3-opt,

iii Or-opt (2H-opt)

B. Inter-route Neighborhoods

i λ-interchange,

ii relocate (figure 3.4.4),

iii swap (figure 3.4.4),

iv cross,

v generalized insertion

The process of improvement ends when a predefined stopping criterion is met. Standard stop-
ping criteria are (i) time, (ii) number of iterations and (iii) stagnation of improvements through a certain
number of iterations.

In CVRP the neighborhood structures that are usually employed are Relocate, Swap and 2-opt,
as well as their generalizations. These neighborhoods are ample to ensure that most solutions emerging
from a local search include optimal routes (Toffolo et al., 2019).
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Figure 3.4.4 In a 2-opt, when removing two edges, there is only one alternative possible solution.

Figure 3.4.5 In relocate, a node is removed from a route and placed into another route.

Figure 3.4.6 In swap (exchange), two nodes from different routes swap places.
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Improvement heuristics frequently fail to obtain a global optimum because they regularly get
trapped in a local optimal solution. This condition has led to the development of global optimization
heuristics, also called metaheuristics. In order to produce a new solution out of the current one, meta-
heuristics use a heuristic which guides the search approach and can temporarily accept a less optimal
solution to avoid local minima.

3.5 Metaheuristics

Metaheuristics can find applications in complex problem-solving in a wide array of fields ranging
from finance to production management and engineering and pose as the most promising and practical
solution methods for the VRP (Gendreau et al., 2007). Like heuristics, metaheuristic optimization
methods may not ensure that an optimal solution is found, but they produce a satisfactory solution,
in less time (Rothlauf, 2011). A metaheuristic is considered to be successful on a given optimization
problem if it can achieve a balance between the exploitation of the collected search experience and the
exploration of the unexplored search space to identify regions with high-quality solutions.

A rudimentary way to describe the metaheuristics is heuristics guiding other heuristics. As
suggested by the Greek prefix “meta”, metaheuristics are higher-level heuristics, in contrast with problem-
specific heuristics. In 2003, Glover and Kochenberger issued a handbook that provided a comprehensive
definition of metaheuristics:

“Metaheuristics, in their original definition, are solution methods that
orchestrate an interaction between local improvement procedures and higher level
strategies to create a process capable of escaping from local optima and performing
a robust search of a solution space. Over time, these methods have also come to
include any procedures that employ strategies for overcoming the trap of local op-
timality in complex solution spaces, especially those procedures that utilize one or
more neighborhood structures as a means of defining admissible moves to transi-
tion from one solution to another, or to build or destroy solutions in constructive
and destructive processes.”

Glover and Kochenberger (2003)

One might argue that an accurate and more precise definition of metaheuristics is still debated.
A more recent definition of metaheuristics is:

“A metaheuristic is a high-level problem-independent algorithmic frame-
work that provides a set of guidelines or strategies to develop heuristic optimiza-
tion algorithms. The term is also used to refer to a problem-specific implemen-
tation of a heuristic optimization algorithm according to the guidelines expressed
in such a framework.”

Sörensen and Glover (2013)
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3.5.1 Classification of Metaheuristics

Metaheuristics are part of a very diverse group of algorithms including: Variable Neighbor-
hood Search (VNS), Tabu Search (TS), Genetic Algorithms (GA), Greedy Randomized Adaptive Search
Procedures (GRASP), Ant Colony Optimization (ACO), Simulated Annealing (SA), Swarm Intelligence
(SI), Large Neighborhood Search (LNS), Iterated Local Search (ILS), Scatter Search (SS), Metaheuristic
Hybrids and others (Gendreau and Potvin, 2010). Variable Neighborhood Search is the method used in
this thesis and will be discussed further in section 3.6.

Based on several of their distinctive attributes and aspects, a systematic classification for meta-
heuristics is possible. A thorough study has been made by Birrattari et al. (2001); Nesmachnow (2014);
Jaradat et al. (2016) in order to describe and classify them. They generally fall into two main categories:

A. Population-based vs. single-point search,
Population-based search uses a population of search points instead of one single search point.
Population based: ACO, GA

B. Memory usage vs. memory-less methods,
The use of the search experience (memory) is another distinctive characteristic.
Memory is used in TS and ACO and partially in GA and ILS

C. One vs. various neighborhood structures,
Multiple neighborhoods are used in VNS and ILS and partially in GA.

D. Single trajectory vs discontinuous trajectory methods,
Trajectory-based metaheuristics can be separated into two groups. Single trajectory methods im-
prove a single solution over and over again in an iterative fashion, improving only one solution
in its neighborhood and forming a search trajectory in the neighborhood solution space. Discon-
tinuous trajectory methods perform large jumps in the search space (discontinuous walk). Single
trajectory methods include SA and TS. Discontinuous trajectory methods include VNS, GA, ACO,
ILS, GRASP.

E. Nature-inspired vs. non-nature inspiration,
SA, GA and ACO are nature-inspired.

3.6 Variable Neighborhood Search metaheuristic

VNS is a metaheuristic, or framework for building heuristics, proposed by Nenad Mladenović
and Pierre Hansen in 1997 (Mladenović and Hansen, 1997). VNS and its variants are generally perceived
as a very efficient approach for various hard optimization problems. VNS and several VNS hybrids
have been used in order to solve standard versions of the vehicle routing problem along with practical
applications of routing problems (Hansen et al., 2009).

The key concept of VNS is systematically changing the neighborhood for a given solution. This
process is accomplished in two phases. The first is a descent phase that attempts to find a local or a
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global optimum and the second is a perturbation phase, that is designed to disrupt the process in order
to escape the area of the corresponding valley (Hansen et al., 2008).

VNS follows a discontinued trajectory (thus classified as a discontinuous method). The repeti-
tive utilization of local searches structures facilitates distant jumps from one neighborhood structure to
another. Neighborhoods (N1, N2, . . . , Nn−1, Nn) can be arbitrarily chosen, but it is a good practice not
to overlap (N1 ∈ N2 ∈ . . . ∈ Nn−1 ∈ Nn) because it may generate an ineffective search resulting in a
large number of solutions that can be revisited (Blum and Roli, 2003).

Following the generation of the initial solution, the process of VNS starts. The VNS process can
be analyzed into three steps: shaking, local search and move. Shaking step randomly selects a solution S′

that belongs in the same neighborhood of the current solution S using the same neighborhood operator.
Local search generates a solution S′′ from S′ using any neighborhood structure. When local search ends,
if S′′ is better than S′ then S′′ replaces S′ and the iteration through the neighborhood structures begins
again. If there is no improvement, the algorithm moves to the next neighborhood n + 1 and a new
shaking phase begins using this neighborhood structure.

After choosing an initial solution s, a descent starts in order to find a better solution. When
there is no direction of descent, the local search heuristic stops. The steepest direction of descent is
called best improvement (Algorithm 2) and is commonly used.

Finding the best solution within a neighborhood structure may be time-consuming, an alterna-
tive is to use the first descent heuristic where a move is made as soon as a direction for the descent is
found. This is illustrated in Algorithm 3. The neighborhood change exists in all schemes. It is a central
part of the underlying logic of the VNS method and is responsible for the solution move within a VNS
framework. Neighborhood change is illustrated in Algorithm 4.

VNS method, illustrated in Algorithm 5, is based on three simple facts:

Fact A. A local minimum with respect to one neighbourhood structure is not necessarily a
local minimum for another neighbourhood structure

Fact B. A global minimum is a local minimum with respect to all possible neighbourhood
structures

Fact C. For many problems, local minima with respect to one or several neighbourhoods are
relatively close to each other.

Algorithm 2: Pseudo code for the Best Improvement function
1 repeat
2 x′ ← x;
3 // Explore all neighborhoods and return the solution with the lowest/maximum

objective function value
4 x← argminy∈N(x)f(y);
5 until f(x) ≥ f(x′);

While the first two proposals are apparent, the third proposal is not so obvious and emerges as
an empirical result. It is often observed in practice that regularly a local optimum gives some information
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Algorithm 3: Pseudo code for the First Improvement function
1 repeat
2 x′ ← x;
3 // Reset neighborhood counter
4 i← 0;
5 repeat
6 // Move to next neighborhood structure
7 i← i+ 1;
8 // Find the best neighbor in N(x)
9 x← argmin(f(x), f(xi)), x ∈ N(x);

10 until ( f(x) < f(x′i) or i = |N(x)| );
11 until f(x) ≥ f(x′);

Algorithm 4: Pseudo code for the Neighborhood Change function based on best improvement
input : x,x′,k
output: x,k

1 if f(x′) < f(x) then
2 x← x′

3 // Move back to the first neighborhood
4 k ← 1

5 else
6 k ← k + 1
7 // Next neighborhood
8 end

regarding the global optimum, in the way that in two different solutions some variables possibly have
the same values. Though, no information is given on what these variables are (Hansen et al., 2009).

In section 3.7, all VNS schemes are analyzed. The basic schemes of VNS stem from the different
way of utilizing the three fundamental propositions mentioned above. The different ways of use are:

i. deterministic,

ii. stochastic,

iii. both deterministic and stochastic to each other.
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Algorithm 5: Pseudo code for the Variable Neighborhood Search algorithm (VNS)
input : s:, A random initial solution, tmax: Max execution time,

kmax: Max neighborhoods to be explored from a set of neighborhoods

output : The best solution

1 while stopping criteria are not met do
2 k ← 1
3 while k < kmax do
4 // Select a random solution s′ from the kth neighborhood Nk(S)
5 s′ ← Shake (s,Nk);
6 // Apply a local search starting from s′ to get a solution s′′

7 s′′ ← LocalSearch(s′)
8 if s′′ is better than s′ then
9 s← s′′

10 // Move back to the first neighborhood (Best Improvement strategy)
11 k ← 1

12 else
13 // Move to the next neighborhood
14 k ← k + 1

15 end
16 end
17 end

3.7 Basic VNS schemes and extensions

The basic schemes of VNS are the following:

A. Variable Neighborhood Descent (VND)

The VND method (Algorithm 6) is achieved if the change of neighborhoods is performed
in a deterministic way. On the contrary, VNS is a stochastic version of Variable Neigh-
borhood Descent (Talbi, 2009).
In step 5, best improvement is used. If the first improvement is used instead, then we
obtain the Sequential (piped) VND method. Sequential VND often performs substantially
better when dealing with very large neighborhoods.

B. Reduced VNS (RVNS)

In order to obtain the reduced VNS (RVNS) method, a random point (solution) is chosen
from the neighborhood Nk(x). Instead of starting a descent from this point, the value of
the new point is compared with the current solution and an update occurs in the case
of improvement, as seen in Algorithm 7. The two parameters tmax and kmax, used in
all schemes, represent the maximum CPU time allowed and the maximum number of
iterations between two improvements. The maximum number of iterations between two
improvements is regularly employed as a stopping condition. It has been observed that
the best value for the parameter kmax is often 2.

The RVNS is similar to a Monte-Carlo method, but it is more systematic and it is beneficial
in very large instances, for which local search is costly (Mladenović, 2011).
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C. Basic VNS (BVNS)

A combination of deterministic and stochastic changes of neighbourhood yields the Basic
VNS (BVNS) method (Mladenović and Hansen, 1997).

The BVNS method is shown in Algorithm 8. A common practice is to use successive
nested neighborhoods Nk. At the beginning, the solution is produced randomly (step
5). The first improvement local search, in step 7, is most commonly used but it can be
replaced with best improvement.

D. General VNS (GVNS)

When VND is applied as a local search procedure in VNS then a more generic VNS
emerges, called General Variable Neighborhood Descent (GVNS), as illustrated in Al-
gorithm 9. Employing this General VNS (VNS/VND) approach has led to the most
successful applications reported (Hansen et al., 2009).

E. Skewed VNS

The skewed VNS (SVNS) method tackles the problem of exploring valleys far from the
current best solution.

Admittedly, immediately after the best solution in a large region has been found, it is
essential to go some way to obtain an improved one. When the search for a new solution
-picked at random- is in a distant neighborhood, then the new solution may deviate
substantially from the current best. VNS then degenerates into the Multistart heuristic
which is known not to be very efficient (Hansen et al., 2009).

Considering this problem, Skewed VNS is proposed (Algorithm 11). In step 7, the best
among two solutions is kept. When the neighborhood changes a function αρ (x, x′′) is
used. ρ (x, x′′) is used to estimate the distance between the current solution s and the
local optimum found s′′.

The α parameter that feeds the NeighborhoodChangeS function, must be selected in such
a way that it is possible to explore areas well spaced from the s region. When ρ(x, x′′) is
small, then a large value for α should be selected in order to avoid frequent transitions to
solutions near the current one.

Two important extensions are:

A. Variable Neighborhood Decomposition Search (VNDS) VNDS is an extension of
the BVNS (Algorithm 12). In particular, this method is based on the logic of decomposing
the problem in problems with much smaller size.

The parameter td, represents the time allowed to solve each sub-problem. Considering
that the whole solution s is a set of properties, then the set y is the one assigned to the
properties of randomly generated s′, which are not s properties. BVNS is called in step
7, with s′ as the initial solution so that obtaining a local optimal y′ is achieved in the
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y domain. Then, s′′ is defined as the area in s′′ ← (s′/y) ∪ y′. VNDS can be time-
consuming but it is remarkable that the exploitation of certain marginal situations can
lead to a significant improvement in the solution.

B. Parallel VNS (PVNS)

Another extension of VNS is the Parallel VNS (PVNS) method. There are numerous
approaches to parallelize VNS. The first attempt to parallelize the VNS was presented in
García-López et al. (2002) some of which have been proposed for solving the p-Median
problem. VNS parallelization will be discussed in detail in Chapter 5.

Algorithm 6: Pseudo code for the standard Variable Neighborhood Descent algorithm (VND)
input : x,kmax

Init : Choose at random an initial solution s
Select a set on Neighborhoods Nn, n = 1, . . . , nmax.

output: The best solution

1 while stopping criteria is not satisfied do
2 k ← 1
3 while k < kmax do
4 // Standard VNS: best improvement. Sequential VND: first improvement.
5 Select the best solution S′ from the nth neighborhood Nn(S) of s
6 if s′ is better than s then
7 s′ ← s
8 k ← 1

9 else
10 k ← k + 1
11 end
12 end
13 end

Algorithm 7: Pseudo code for the Reduced Variable Neighborhood Search (RVNS) algorithm
input : s, kmax, tmax

output: s

1 repeat
2 k ← 1;
3 repeat
4 s′ ← Shake (s, k);
5 s, k ← NeighborhoodChange (s, s′, k);
6 until k = kmax;
7 t← CpuTime();
8 until t ≥ tmax;
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Algorithm 8: Pseudo code for the Basic Variable Neighborhood Search (BVNS) algorithm
input : s, kmax, tmax

output: the best solution

1 repeat
2 k ← 1;
3 repeat
4 // Select a random solution s′ from the nth neighbourhood
5 s′ ← Shake (s, k);
6 // Local search
7 s′′ ← FirstImprovement (s′);
8 // Change neighbourhood
9 NeighborhoodChange (s, s′′, k);

10 until k = kmax;
11 t← CpuTime();
12 until t ≥ tmax;

Algorithm 9: Pseudo code for the General Variable Neighborhood Search algorithm (GVNS)
input : s, lmax, kmax, tmax

output: the best solution

1 while t < tmax do
2 k ← 1;
3 while k < kmax do
4 // Select a random solution s′ from the nth neighbourhood
5 s′ ← Shake (s, k);
6 // Execute VND on the random solution
7 s′′ ← V ND (s′, lmax);
8 s, k ← NeighborhoodChange (s, s′′, k);
9 end

10 t← CpuTime();
11 end

Algorithm 10: Pseudo code for the Skewed VNS neighborhood change
input : s,s′′,k,a
output: s,k

1 if f(s′)− aρ(s′′, s) < f(s) then
2 // Move to better solution
3 s← s′′

4 // Initial neighborhood
5 k ← 1

6 else
7 k ← k + 1
8 // Next neighborhood
9 end
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Algorithm 11: Pseudo code for the Skewed VNS algorithm (SVNS)
input : s, kkmax, tmax, α
output: the best solution

1 while t < tmax do
2 k ← 1;
3 while k < kmax do
4 // Select a random solution s′ from the nth neighbourhood
5 s′ ← Shake (s, k);
6 s′′ ← FirstImprovement (s′);
7 KeepBest (sbest, s);
8 NeighborhoodChange (s, s′′, k, α);
9 end

10 s← sbest;
11 t← CpuTime();
12 end

Algorithm 12: Pseudo code for Variable Neighborhood Decomposition Search (VNDS)
input : s, kkmax, tmax, td
output: the best solution

1 while t < tmax do
2 k ← 1;
3 while k < kmax do
4 // Select a random solution s′ from the nth neighbourhood
5 s′ ← Shake (s, k);
6 y ← s′/s;
7 y′ ← BV NS(y, k, td);
8 s′′ ← (s′/y) ∪ y′;
9 s′′′ ← FirstImprovement (s′′);

10 s, k ← NeighborhoodChange (s, s′′′, k);
11 end
12 t← CpuTime();
13 end
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CHAPTER 4

The proposed GVNS solution approach

4.1 Initialization Phase

In order to find a feasible initial solution, the Savings algorithm of Clarke and Wright (1964) has
been implemented as described in section 3.4.1 (Figures 3.4.2 and 3.4.3). This construction heuristic
provided the initial solution for all parallel GVNS models, as it is one of the best and the most widely
known heuristic approach to solve the VRP.

4.2 Improvement Phase

4.2.1 Neighborhood structures used in the GVNS models

All models are using the same neighborhood structures, consisting of three widely used inter
and intra-route operators (Figure 4.2.1):

• 2-opt (Intra-route)
performing 2-interchange moves.

• Swap (Inter-route).
This neighborhood consists of swapping the positions of two clients (a and b) from different routes
(Routea and Routeb).

• Relocate (Inter-route)
In this local search operator, the customer is transferred from his current route Ra to a new route
Rb.

The GVNS method (Hansen et al., 2010), described in Algorithm 9, is used to improve the
initial solution given by the Clarke and Wright algorithm for all the proposed methods. The Variable
Neighborhood Descent (VND) in line 5 is described in Algorithm 6. By tmax, kmax, and lmax we denote
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Figure 4.2.1 Three neighborhood structures were used in all parallel models.

the maximum CPU time allowed before termination, the maximum number of shaking iterations, and
the number of neighborhood structures.

4.2.2 Best vs First Improvement

Best and first improvement are strategies that provide the means to decide the trajectory path.
The first strategy will accept only the best possible improvement within a neighborhood structure; thus,
the trajectory will take the steepest descent. On the contrary, the latter strategy referred to as the first
improvement immediately picks the first descent that improves the solution.

There are many examples of both in the literature. Usually, the first improvement strategy
is selected when neighborhoods are vast because finding the best solution within a large neighborhood
structure may be time-consuming. Experience seems to indicate that if the initial solution is chosen at
random, the first improvement rule yields better results, but if a constructive heuristic is used, then the
best improvement generates better solutions (Hansen et al., 2009).

In the proposed GVNS models, the steepest descent (best improvement) was applied. The
decision of adopting this strategy was based on several tests and prior experience from the literature.

4.2.3 Shaking

GVNS uses the shaking procedure based on stochastic transformations of the best solution, in
order to escape from local optimum solutions. In each iteration, the shaking procedure applies a number
of random jumps in a randomly selected neighborhood from a predetermined collection of neighborhoods.
The pseudo-code is presented in Algorithm 13. The maximum number of random jumps is set to six,
(kmax ' 6). After applying a randomly selected neighborhood k times (from a set of three neighborhoods)
in the incumbent solution, a new solution S′ is returned.
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Algorithm 13: Pseudo code for Shaking algorithm
input : S -incumbent solution, k: number of random jumps, lmax: max number of neighborhoods
output: new solution S′

1 // Randomly selected neighborhood (from the total lmax = 3 neighborhoods)
2 l← randominteger(1, lmax);
3 // Execute k times (1 < k < kmax)
4 for i = 1 to k do
5 switchcase(l);
6 case(1);
7 S′ ← Intra2Opt(S);
8 case(2);
9 S′ ← InterSwap(S);

10 case(3);
11 S′ ← InterRelocate(S);
12 end switch
13 end
14 return← S;
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CHAPTER 5

Parallelization of VNS

5.1 Parallel strategies for the VNS

Recently, the rise of multi-core processors along with cluster and grid computing popularity
attracted several researchers to design and develop new parallel metaheuristics. Parallel processing is
considered to be a cost-effective method for the fast solution of computationally hard problems. Except
for the availability of computing resources, the use of parallel metaheuristics has also increased since,
as it has been demonstrated by Bouthillier and Crainic (Le Bouthillier and Crainic, 2005), such parallel
algorithms are capable of both speeding-up the search and improving the robustness as well as the quality
of the solutions obtained.

The parallelization of the VNS serves the purpose of either obtaining an improvement in perfor-
mance or an increase of exploration space. Parallelization strategies for trajectory-based metaheuristics
(section 3.5.1) may be classified into one of the two categories (Shi and Zhang, 2018):

a. Low-level parallelism
The goal of this approach is to accelerate a sequential metaheuristic by executing in parallel
computing-intensive tasks. Such tasks frequently include the fitness evaluation of each solution
(Figure 5.1.1) and neighbor evaluation, using a thread per neighborhood (Figure 5.1.2) or even
multiple threads per neighborhood, thus dividing possible solutions of the neighborhood among
the available processors to look for the best one (Algorithm 14).

This strategy is usually realized using a master-slave topology. The sequential method is executed
on one processor (the master) while tasks are being dispatched to the other processors (the slaves).
The master process assembles and combines the results yielded by the slave processes and then
resumes the sequential algorithm. This approach barely aims to speed up computations, without
any effort to achieve a better exploration. The parallelization of the local search in the sequential
VNS is denoted as Synchronous Parallel VNS (SPVNS) as seen in Algorithm 14 given by Moreno-
Pérez et al. (2004).

b. High-level parallelism or multiple search strategy
In this strategy, parallelism is achieved by utilizing various concurrent explorations of the solution
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space. Several independent search processes are used. Every process defines a unique trajectory
in the search space from the same or a different initial solution point (Figure 5.1.3).

Search processes may communicate during the search to exchange useful information or at the end
to identify the best overall solution. When processes communicate during the search, the method
is called cooperative multi-search method. Communications may be performed synchronously or
asynchronously and may be event-driven or executed at predetermined or dynamically decided
moments.

Algorithm 14: Pseudo code for the Synchronous Parallel VNS (SPVNS)
output: the best solution

1 initialize(best_sol);
2 k ← 0;
3 while k < kmax do
4 k ← k + 1;
5 cur_sol← Shake (best_sol, k);
6 // Parallelize local search to balance load among the processors
7 par_loc_search(cur_sol);
8 if improved(cur_sol, best_sol) then
9 best_sol← cur_sol;

10 k ← 0

11 end
12 end

Algorithm 15: Pseudo code for the Parallel Local Search (PLS)
input : sol, cur_sol
output: the best solution

1 init_sol← cur_sol;
2 while (improved()) do
3 // Create chunks of work based on the cardinality of solutions
4 load← n−p

numproc
;

5 // parallel (pr ← 0; pr < numproc; pr ++)
6 tmp_sol(pr)← init_sol;
7 low ← pr ∗ load high← low + load;
8 while i< high do
9 i← i+ 1; while j < p do

10 j ← j + 1;
11 exchange(initsol, newsol, i, j)
12 if improve(new_sol, tmp_sol(pr)) then
13 tmp_sol(pr)← new_sol
14 end
15 end
16 // critical
17 if improve(tmp_sol(pr), cur_sol) then
18 tmp_sol(pr)← new_sol
19 end
20 end
21 // End parallel
22 end
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Figure 5.1.1 Parallel fitness evaluation of a solution

Figure 5.1.2 Parallel neighborhood exploration. In this example best improvement is used.
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Figure 5.1.3 Various concurrent explorations of the solution space
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5.2 Related works in parallel VNS for the VRP

The VNS algorithm is a trajectory-based metaheuristic. The evaluation of constraints and
objective components for each solution in the neighborhood in these kinds of algorithms is an embar-
rassingly parallel task (Schulz et al., 2013). Thus, several strategies for parallelizing a VNS algorithm
have been already proposed and analyzed in the literature (Pérez et al., 2005). Generally, contributions
to the VRP using parallel metaheuristics published before the year 2000 are not as numerous as for
other combinatorial optimization problems, as seen in Table 5.1. Besides the fact that the VNS is an
embarrassingly parallel task, one is surprised to realize that even fewer works have targeted the VRP
using VNS, as seen in Table 5.2. For more insight into the literature of solving VRP using additional
metaheuristics methods, the interested reader is referred to the work by Crainic (Crainic, 2008).
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Table 5.1 Parallel metaheuristics for VRP problem
Related work Parallel Metaheuristic VRP Problem

(Bouthillier and Crainic, 2005) Tabu Search, E.A.,
Post-optimization VRPTW

Bouthillier et al. (2005)
Tabu Search, E.A.,
Post-optimization,
Pattern identification

VRPTW

Polacek et al. (2008) VNS MDVRPTW
Subramanian et al. (2010) ILS - RVND VRPSPD
Cordeau and Maischberger (2012) ILS - Tabu Search VRP
Coelho et al. (2012) VNS SVRPDSP
Jin et al. (2014) Tabu Search VRP
Lahrichi et al. (2015) Integrative Cooperative Search MDPVRP
Wang et al. (2015) Simulated Annealing VRPSPDTW
Tu et al. (2017) ILS VRP
Polat (2017) VNS VRPDP

Table 5.2 Parallel VNS metaheuristic applied in several problems
Related work Parallel Metaheuristic Problem
García-López et al. (2002) VNS P-median
Crainic et al. (2004) VNS P-median
Aydin and Sevkli (2008) VNS Job shop scheduling
Polacek et al. (2008) VNS MDVRPTW
Coelho et al. (2012) VNS SVRPDSP
Polat (2017) VNS VRPDP
Antoniadis and Sifaleras (2017) VNS Inventory optimization problems
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5.2.1 Parallel VNS for the VRPTW

Polacek et al. (2008) introduced the first cooperative and adaptive implementation of a VNS
for the multi-depot Vehicle Routing Problem with Time Windows (VRPTW). The authors provided two
approaches for a parallel VNS. The parallelization approach of the two models is an extension of the
Cooperative Parallel Variable Neighborhood Search (CNVNS) by Crainic et al. (2004).

The worker processes communicate exclusively with the master process which operates as the
central memory that stores and manages the best found solutions. This allows an asynchronous co-
operation of individual processes. Each process runs exclusively on one processor and does not share
any resources with other search threads. The differentiation between the two schemes was achieved by
applying different parallelization strategies and by changing the configuration between cooperation.

The initial solution was constructed by attaching each customer “Ci“ to the nearest depot.
Then all customers associated with a depot are ordered with respect to increasing centers of their time
windows. The initial solution for both models is not necessarily feasible. The creation of a feasible
solution from the initial solution is charged to the VNS iterations that follow. The starting solution of
each thread is randomly chosen from the 10 best solutions the solution warehouse has stored, amplifying
the diversification of the search.

In the first approach, a coarse-grained cooperation scheme was introduced. The VNS threads
communicated their best solutions to the central memory (serving as a “master”). In this approach, every
thread has to search through a certain number of neighborhoods. The number of iterations performed
by each worker is vastly higher than the number of neighborhoods. The solution warehouse (master
process) can accept a non—improving solution if σ iterations have passed without improvement. For
this ascending move to occur, the value of the non-improving solution should not exceed θ percent of
the value of the best-found solution. If improving solutions are found, the iteration counter for allowing
an ascending move gets reset each time. This independent search favors exploration and, as the authors
report, reduces the communication with the master process, since at least 2 ∗ σ iterations are made
between communications.

In the second approach, a fine-granularity was realized. The key concept behind the fine-
grained cooperation scheme was to produce a parallel VNS, which maintains the successful properties
of the sequential VNS, that is to reproduce the way the sequential method works, only faster. Every
worker does not necessarily conclude the whole set of neighborhoods in one worker task. More precisely,
every kmax iterations a working process sends its new best solution value to the master process.

For both models, communication occurred at preset regular intervals determined by the number
of iterations (based on σ and kmax).

In order to report the contribution of cooperation between the two proposed VNS models, the
authors implemented the RPVNS introduced by García-López et al. (2002). The RPVNS does not use
any form of cooperation between the individual search threads. Every thread performs a complete VNS
run.

The performance was satisfying, but the second approach performed best, notably due to its
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higher adaptability to the problem instance.

When the problem instances are known in advance and suitable parameter configuration can be
made, then the fine-grained cooperation scheme is more suitable. For real-world problems which cannot
be analyzed in detail before applying the search, the coarse-grained cooperation scheme is better because
no a priori parameter tuning is required.

Both cooperation algorithms displayed satisfying run-time scalability. Specifically, utilizing
32 search threads, the runtime was reduced from 48.7 to 1.7 hours, also the best-known solution was
obtained for all 20 MDVRFTW instances, and in 11 cases new best solutions were found.
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5.2.2 Parallel VNS for the SVRPDSP

Coelho et al. (2012) proposed an approach for the Single Vehicle Routing Problem with Deliv-
eries and Selective Pickups based on a Hybrid General VNS (HGVNS). The parallel solution is hetero-
geneous since it is implemented in CPU and GPU and is called HP-HGVNS. The incentive behind this
approach is based on the decomposition & distribution of the workload. Since the most expensive part
of GVNS is to perform the best improvement local search in the VND method, the GPU is utilized in
order to take advantage of the fine-grain parallelism a GPU can offer.

The proposed algorithm based on VNS also includes a high-quality initial solution generator,
an integrated CPU–GPU diversification mechanism and four different GPU neighborhoods. The authors
names the Four-neighbourhood variable neighbourhood search (FN-VNS). The four different neighbour-
hood structures used are: Swap, 2−Opt, 1−OrOpt and 2−OrOpt.

Algorithm 16: Pseudo code for Four-Neighborhood VNS algorithm (FN-VNS)
input : itermax -iterations without improvement, CD: delivery customers, CP : pickup

customers, f(.): evaluation function, Nk(.): neighbourhoods, M : cost matrix, Q: vehicle
capacity, d: deliveries, p: pickups, r : revenues

output: the best solution

1 S ← InitialSolution(CD,CP,M,Q, d, p, r);
2 while iter ≤ itermax do
3 S′ ← S;
4 // In order to escape from deeper local optima,
5 // the number of consecutive moves can vary randomly

6 l← random number
[
|CD|+|Cp|

2

]
;

7 // Shake
8 for i = 1 to l do
9 k ← random number [1, 4];

10 S′′ ← random Neighbor fromNk(S
′);

11 S′ ← S′′;
12 end
13 for k = 1 to 4 do
14 R← LocalSearch(S′′, f(, ), Nk) ;
15 // Best Improvement
16 S∗ ← BI(R,S′′, Nk);
17 if f(S∗) < f(S)) then
18 S ← S∗;
19 k ← 1;
20 iter ← 0;
21 end
22 end
23 iter ← iter + 1;
24 end
25 return← S;

As shown in Algorithm 16, the computational cost of the search process is strongly dominated
by the local search (line 12 of Algorithm 16). This is justified by the complexity of the neighborhood
structures, which is O(N3), considering that it is required to perform an O(N) feasibility test for each
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of the O(N2) moves of each neighborhood.

The authors parallelized the most computationally demanding part of the code. The principal
idea is to exploit the massively parallel environment, the high memory bandwidth, and the efficient
thread scheduling mechanism of the GPU, to reduce the computational times and to allow tackling
larger problem instances. The CPU, on the other hand, is used for creating an initial solution, choosing
the operation to be performed, and checking for the best solution generated by the GPU.

The results are compared against other SVRPDSP solutions in literature provided by Bruck
et al. (2012). Concerning performance, the 1Or−Opt and 2Or−Opt local search scored a 27.26 and 43.75
speedup respectively, while the Swap local search had the lowest speedup values, from 1.91 to 14.36. HP-
HGVNS achieved an average speedup from 2.73 to 16.23. Dissecting the quality of the results, HGVNS
produced better solutions than the best results obtained in literature. FNVNS obtained 51 new better
solutions and 7 equal solutions, out of the 68 instances used with an average gap of 5.32% and variability
from the average solutions equal to 1.55%. Other recent works with hybrid CPU-GPU parallel VNS
methods include that of Antoniadis and Sifaleras (2017).
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5.2.3 Parallel VNS for the VRPDDP

Polat (2017), proposed a parallel metaheuristic algorithm for the Vehicle Routing Problem with
Divisible Deliveries and Pickups (VRPDDP).

In order to construct different initial solutions for each processor, an extension of the Savings
algorithm by Altınel and Öncan (2005) is used. By changing the parameter λ ∈ [0, 5] , µ ∈ [0, 3] , ν ∈ [0, 2]

of the Savings algorithm extension, various initial solutions for each processor are constructed.

The improvement of the initial solution is achieved by using a number of intra and inter-route
neighborhood structures commonly used in the literature. The 8 neighborhood structures used in the
VNS are the following:

a. Intra route neighborhood search operators:

i. swap, a random position change movement of two customers on the same route.

ii. 2-opt, swaps pairs of edges in the same route

iii. 3-opt, deletes three edges in a route and reconnects them in the same route

iv. Insertion, randomly selects a customer and moves it to a random position on the same
route.

b. Inter route search operators:

i. exchange(m,n), transfers m sequential customers from one route to another and in turn
transfers n sequential customers from the second route to the first

ii. Cross, exchange is a basic crossover structure between routes

iii. Shift(0,1), is a random movement of a customer from one route to another

iv. Replace(1,1), Is a random permutation movement between two customers from different
routes

The proposed VNS scheme accepts a new solution only if there is an improvement of the in-
cumbent solution. Once the region of the current solution has been extensively explored, in order to
avoid local optima and to achieve diversification, the author proposed a shaking scheme with two neigh-
borhoods, which are comprised of two sequential Replace(1, 1) operations (double Replace perturbation
operators).

In this approach, the author used asynchronous cooperation with a centralized information
exchange strategy for the parallelization of the VNS (CVNS). More particularly, the star-architecture-
based multiprocessor cooperation network was applied, which uses several computation processors and
a user interface processor.

Based on Crainic and Hail taxonomy (Crainic and Hail, 2005), this approach is classified as
pC/C/MPSS. This strategy is characterized as medium-grained parallelization where data exchange is
only performed after the completion of all local search procedures. Communication takes place only after
all local search procedures are completed.
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The benchmark instances used for the VRPSPD and the VRPDDP were the VRP benchmark
problems of Christofides et al. (1979) by Salhi and Nagy (1999) and Nagy et al. (2015). Examining
the quality of the results, solutions were improved on or reached the best-known solutions for 179 of
220 benchmark instances while using less computational time. When compared to the Parallel VNS
(PVNS), the CVNS approach provides better solutions for 10 of 28 test instances and the same results
for the remaining instances within almost half the solution times of the PVNS. Overall improvement of
the CVNS over the PVNS is just around 0.14% (0.11% for the instances without a time limit and 0.16%
for the time-limited instances).
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CHAPTER 6

The proposed GVNS parallelization models

In this section, we present three parallel GVNS models. The main differentiation of the three
models is the communication scheme among the search threads.

There are three main steps in parallel algorithm design: the decomposition of the workload, the
distribution of the tasks to the available processors and perhaps the most crucial step, the coordination
strategy of the components of the parallel program. In our approach, we materialize three scenarios. Our
intent is to study how the level of coordination between the components of the parallel VNS algorithm
affects performance.

To describe parallel metaheuristic strategies, we adopt the classification of Crainic and Hail
(2005) that generalizes that of Crainic et al. (1997). The classification consists of three dimensions that
indicate how the global process is controlled (search control cardinality), how information is exchanged
among processes (search control and communication), and the variety of solution methods involved in
the search for solutions (search strategies) (Crainic, 2008).

6.1 Classification of parallel metaheuristics

In order to specify the differences between the models, we classify them using the taxonomy
by Crainic and Hail (2005), as shown in the Table 6.1. The taxonomy is based on how the process is
controlled and how information is exchanged among the processes.
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Table 6.1 Parallel process taxonomy
Search Control Cardinality Search Control and Communications Search Differentiation

how the global search
is controlled

how information
is exchanged

do threads start from the same
or different solutions

1-control (1C) Rigid (RS)
Same initial Point

Same Search Strategy
(SPSS)

polyControl (pC) Knoweledge
Synchronization (KS)

Same initial Point
Different Search Strategy

(SPDS)

- Collegial (C)
Multiple initial Point
Same Search Strategy

(MPSS)

- Knowledge
Collegial (KS)

Multiple initial Point
Different Search Strategy

(MPDS)
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6.2 The Non-Cooperative Model (NCM)

The proposed implementation employs an island-based scheme where every thread runs the
GVNS completely isolated. When the initial solution is generated using the Clarke and Wright algorithm,
it is given to each thread. All threads are using the same search strategy (GVNS). Soon after, the
GVNS algorithm begins executing without further communication between threads. As threads work
independently and possible solutions are improved in each one of them, their paths diverge as the shaking
procedure takes place. As the time limit is reached, all threads terminate, and the best solution among
all is reported. Also, in the occurrence of the optimal solution acquisition by one thread, the stopping
condition is activated, and that causes all threads to break operation.

Based on the classification of Crainic and Hail (2005), the non-cooperative model fits into
the pC/RS/SPSS classification. The notation pC stands for “poly-Control”, corresponds to the Search
Control cardinality, and indicates that the search control is distributed across many processes. In this
model, every single thread has its own search control. The notation RS stands for “Rigid Synchronization”
and it means that little or no information exchange takes place in order to improve solutions at the same
level of the communication hierarchy. The notation SPSS stands for “Same initial Point, Same search
Strategy” and it indicates that all threads had the same initial solution as a starting point and followed
the same search strategy. Every single thread executes the code shown in the Algorithm 17. Figure
6.2.1, shows the execution time line of this non-cooperative model.

Algorithm 17: Pseudo code for the GVNS, Non-Cooperative model (NCM)
// fr: Current best solution route
// kmax: Shake k parameter
// timelimit: The time limit stopping criteria
input : fr, kmax, timelimit

while true do
t← CpuTime()
fr′ ← Shake(fr, kmax)
fr′′ ← V ND(fr′, t, timelimit)
if t >timelimit then

break
end
// if optimum value exists
if best_value = optimum then

break
end

end
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6.3 The Managed Cooperative Model (MCM)

The first solution produced by the Clarke and Wright algorithm is passed to all threads, except
for one, which will take up the role of the server manager, essentially being a solution warehouse. When
a single thread improves a solution previously acquired, it communicates with the server manager in
order to ask if a better solution exists. In the case that the server manager holds a better solution, the
thread rejects the inferior one and continues its work with the one provided. Otherwise (i.e., if the thread
holds a better solution than the server manager), the new and improved solution is stored in the server
manager and the thread continues with the one it found.

The server manager stores and manages the best-found solution without broadcasting any
information to the other threads. Communication between the threads and the server manager is very
dense at the start of the GVNS algorithm, promoting intensification, and sparse while the process
continues, favoring diversification.

The cooperative model fits into the pC/C/SPSS classification. Every dimension in this tax-
onomy is identical to the non-cooperative model except for the C class, which stands for “Collegial”
and indicates that we extract and use only good solutions from the Manager. Figure 6.3.2 depicts the
execution time line of the server manager cooperative model.

The cooperative model exchanges information asynchronously, at irregular intervals dynamically
determined by each process. The search process may change its current solution using a solution that
is received by the Manager, and for this reason, the intensification level dynamically changes. Since no
broadcasting occurs, information will not spread any further.
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Algorithm 18: Pseudo code for the GVNS, Managed Cooperative Model (MCM)
input : fr, kmax, timelimit, manager

while true do
t← CpuTime()
fr′ ← Shake(fr, kmax)
fr′′ ← V ND(fr′, t, timelimit)
if thread_solution <thread_current_best then

thread_current_best← thread_solution
// if optimum value exists
if thread_current_best <manager_global then

manager_global← thread_current_best
end
else

thread_current_best, thread_solution← manager_global
end

end
if t >timelimit then

break
end
// if optimum value exists
if manager_global = optimum then

break
end

end
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6.4 The Parameterized Cooperative Model (PCM)

The previous models were each at the other end of the spectrum of the communication strat-
egy. The cooperative model favors intensification without any insight of the search space, while the
non-cooperative model promotes exploration. In order to bridge the gap, we consider a parameterized co-
operative GVNS model. This time, the cooperative model will accept a solution from the server manager
only if the normalized distance between the two solutions is greater than a parameter θ (distance > θ).
The distance measure adopted in this dissertation is the Damerau – Levenshtein distance (Damerau,
1964), also termed as edit or Levenshtein distance.

This metric can be described as a search space distance rather than a solution space distance
due to the fact that the edit operations applied in the solution representation can be considered to be
neighborhood operations. The Figure 6.4.3 illustrates the normalized Damerau – Levenshtein distance
calculation between two solutions for a CVRP instance.

In the classical capacitated vehicle routing problem, the solution representation consists of mul-
tiple permutations, representing the set of clients and the set of routes. In this thesis, in order to encode
a CVRP solution and calculate the distance between two solutions, we assume reversal independence, id
est the distance between two routes when reversing one route should be zero.

Figure 6.4.3 Levenshtein distance for solutions that are two inter-route relocations apart.

The algorithm returns a normalized float (between 0.0 and 1.0) by evaluating Equation 1.

Normalized distance =
distance

maxLength
(1)
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As seen in Figure 6.4.3 the solution of the CVRP is represented as an array list
k∑

i=1

n∑
j=1

(Cij + 2),

where k is the number of vehicles, C symbolizes the n the clients that are assigned to route i and 2 depicts
the start and the endpoint (the depot) of the route i, thus forming a single string of characters.

In order to calculate the normalized distance using Equation 1 we first calculate the string
lengths. In our example from Figure 6.4.3, Len1(“06700810023450”)=14, Len2(“06700810023450”)=14
the maximum string length max(Len1, Len2) = 14. The Levenshtein distance is equal to 4 since only
four edit operations are needed to get Solution 2 from Solution 1. Using the values above we get the
normalized distance equal to 4

14 = 0.2857.

Algorithm 19: Pseudo code for the GVNS, Parameterized Cooperative Model (PCM)
input : fr, kmax, timelimit, manager

while true do
t← CpuTime()
fr′ ← Shake(fr, kmax)
fr′′ ← V ND(fr′, t, timelimit)
θ ← dynamic_decrease(time, iter_count)
if thread_solution <thread_current_best then

thread_current_best← thread_solution
// Communicate with manager
if thread_current_best ≤ manager_global then

manager_global← thread_current_best
end
else

// Check if solution exchange can take place
// Thread should adopt new solution only if distance >θ
if θ >distance(manager_global, thread_current_best) then

manager_global← thread_current_best
end
else

thread_current_best, thread_solution← manager_global
end

end
end
if t >timelimit then

break
end
// if optimum value exists
if manager_global = optimum then

break
end

end

The parameter θ ranges from value 1.0 (non-cooperative) to 0.0 (cooperative). In the beginning,
it promotes exploration by ignoring solutions stored in the solution warehouse (distance ≤ θ = 1), and
as the time passes, θ value gradually decreases and the parameterized cooperative method starts to
accept values even with small error distances. In our tests, a cut off value (δ) was selected either at the
δ ← 20% of the max GVNS iterations (nitermax) or at the maximum time (timemax) allowed.

In order to find the optimal cut-off value of δ, we performed several tests, spanning from 10%
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to 40% of the max iterations or the max time. The best results for all instances were obtained around
20%. Thus, the self-adaptation of the parameter θ is based on the remaining time and GVNS iterations,
as depicted in Algorithm 20. The main concept when selecting δ is to block the communication when
the algorithm starts the search and the new solutions are more easily found. As a result, this increases
the exploration.

In that sense, the Managed Cooperation Model has a θ ← 0, thus every single solution gets
accepted and the non-Cooperative Model on the opposite end, has a θ ← 1 and consequently no solution
gets accepted.

Algorithm 20: Pseudo code for the θ parameter self-adaptation
input : Current time (time), current number of iterations (niter), δ preset to 0.2
output: θ

// When θ ← 1 no communication takes place
θ = 1 ;
// Checking the two stopping criteria (number of iterations and exeution time)
if (niteri > δ × nitermax) ∨ (currenttime > δ × timemax) then

// Gradually decrease θ value

θ = min
(
(1− niter

nitermax
), (1− time

timemax
)
)
;

end

The parameterized cooperative model fits into the pC/KC/SPSS classification. KC class stands
for “Knowledge Collegial” and indicates an asynchronous communication scheme in which the contents
of communications are analyzed to infer good solutions.
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6.5 Analysis of the cooperation strategies

For the needs of the proposed cooperation models, asynchronous cooperation was selected, since
synchronous methods have a more significant computational cost and are unaware of the findings during
the search process. Since no broadcasting takes place, each thread can dynamically guide the diffusion
of information, depending on its state. The connection pattern in both the proposed communication
models is undetermined and adopts a less obtrusive method, where no thread gets interrupted so to
display the clear benefits of communication.

In order to better manipulate the interplay between exploration and exploitation, a parameter-
ized cooperation is proposed. This is a fine-grained cooperation method, where a process may discard
the best solution collected by the Manager, based on the iterations it has performed and its current
status.

The asynchronous cooperation strategy followed in the Managed Cooperation Model and in the
Parameterized Cooperation Model is novel compared to the previous works reported by Coelho et al.
(Coelho et al., 2012), Polacek (Polacek et al., 2008), and Polat (Polat, 2017). Furthermore, the strategy
that follows the principle of controlled diffusion of information at the process level in the parameterized
cooperative model is a completely new cooperation strategy, with promising results.
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CHAPTER 7

Computational study

7.1 CVRP instances

Currently, the most updated CVRP benchmark instance library can be found at CVRPlib
website (Xavier et al., 2019). It contains the following instances:

• Set A (Augerat et al., 1995),

• Set B (Augerat et al., 1995),

• Set E (Christofides and Eilon, 1969),

• Set F (Fisher, 1994),

• Set M (Christofides et al., 1979),

• Set P (Augerat et al., 1995),

• Set Tai (Rochat and Taillard, 1995),

• Set Golden (Golden et al., 1998a),

• Set Li (Li et al., 2005a),

• Set X (Pecin et al., 2014),

• Arnold, Gendreau and Sörensen (2017),

Nature of CVRP instances

As shown in Table 3.1 the majority of instances of the A, B, E, F, M, P sets provided a useful
benchmark until the mid-2000’s decade. Since then, the Golden set became the second most frequently
used benchmark (Uchoa et al., 2017b). The fact that instances with many nodes (above 100) were very
thinly populated forced researchers to design new instances to address the lack of a well-established set of
benchmark instances able to push the limits of the state-of-the-art algorithms. The set from Arnold et al.
(2019) provides instances with very large-scale routing problems. The X set addresses three problems of
the previous sets. Older sets were:
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i. too easy for current algorithms,

ii. too artificial,

iii. too homogeneous, not covering the characteristics found in real applications

In order to address those issues, the X set introduced several new attributes like depot position-
ing, customer positioning and clustering, and customer demand values with several options. X set follows
the TSPLIB convention of rounding distances, thus reducing the search space by forming a relatively
small number of plateaus, but the fact that it has a 1000 ∗ 1000 grid instead of a 100 ∗ 100 (A, B, E, F,
M, P) significantly reduces this effect. The new instances do not follow the practice of fixing the number
of vehicles. Hence, the number Kmin registered in each instance should be considered only as a lower
bound on the number of vehicles in a solution.

Uchoa et. al performed several tests using the BCP exact algorithm (section 3.1) and the ILS
metaheuristic (section 3.5.1). According to the results, instance attributes affect the tests in the following
way:

a. Depot positioning heavily affects tests. Instances with a depot placed in the
center are easier than those with a depot installed in a corner; the latter leads to more
tours faced towards the same area, and thus more possibilities and complexity for intra-
route improvements. The depot placement impact on the CPU time is indisputable.
Instances with the depot in the corner had median times 37 times larger when compared
with those with the depot placed in the center. Instances with random depot location
exhibit moderate difficulty.

b. Customer positioning does not seem to affect the performance considerably,
but clustered instances appear to be just a bit easier.

c. Demand distribution has a notable impact on CPU time. Based on tests
using a hybrid ILS, a metaheuristic that uses multiple neighborhoods like VNS, the
results showed that:

i. Unitary demands make instances much easier. Unitary demand in-
stances with n = 200 clients are solved easier than instances with n = 100

clients, and demands in [5 − 10]. Instances with larger demand values
([1 − 100] and [50 − 100]) are harder than instances with small values
([1− 10] and [5− 10]).

ii. Instances with few very large demands and many small demands
were difficult to solve, with a median time of almost 12 days

iii. When customer demands have high coefficient of variation renders the
problem instances moderately more difficult.

iv. The instances with demand dependent on the quadrant formed the
hardest of all categories. Only eight instances with these attributes could
be solved in less than nine days; the remaining 12 instances were stopped
with at least 13 days of CPU time.
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7.2 Self adaptive parameter tuning

The design process of the GVNS models is characterized by a mixture of experience and intuition
and requires an in-depth knowledge of the process characteristics. Furthermore, an essential strength
of the proposed approach is that a few parameters need to be set, and tuned. These parameters are
easier to estimate empirically. After several experiments, an average value of kmax ' 6, which was
obtained by using Equation 1, provided the best results. Parameter lmax represents the cardinality
of the neighborhoods (lmax ← count(Neighborhoods)). Parameter θ is self-adapting, and its value is
periodically modified depending on factors that will be discussed in detail in section 6.4. More about
parameter tuning strategies are discussed and illustrated by numerical results obtained for different
instances in Chapter 7.

kmax ← count(Neighborhoods) + 2 ∗ rand(0, count(Neighborhoods)) (1)

7.2.1 Stopping conditions

One of the most common stopping criteria of the GVNS approach is the total execution time.
Several tests were performed with multiple stopping criteria. In most of the tests, three stopping criteria
have been adopted. The first was the total execution time of the algorithm (3600 seconds), the second was
the completion of a number of GVNS iterations (300, 500 and 800), and the third was the achievement
of the optimal value, when such value was available. Variations from the aforementioned criteria were
executed and reported for statistical comparisons between the proposed parallel models.

7.3 Computational experiments

This section reports and analyzes the computational experiments related to the efficiency of the
three proposed parallel GVNS models for solving the CVRP. The parallelization of the GVNS method
for the proposed models utilized the standard multiprocessing library of Python 3.7. In the cooperative
models, instead of using shared memory, a Manager class was used. Manager objects control a server
process which handles shared objects and enables other processes to manage them using proxies. Server
process managers are more flexible than shared memory objects, since they support arbitrary objects and
direct manipulation from processes on the same or different computers over a network. An additional
speedup (∼35%) was achieved using Cython. The experiments were conducted using an Intel Core i9
7940X CPU (3.50 GHz) with 32GB RAM. All computational tests were carried out on 191 instances of
the CVRP library (Uchoa et al., 2017a) available at http://vrp.atd-lab.inf.puc-rio.br.

In order to evaluate the performance of the proposed models, we have focused our analysis in
three parts. Firstly, we investigate model performance based on the overall quality of solutions of all
instances. Secondly, we select some representative, computationally difficult instances, and check the
quality of solutions. The computational difficulty is loosely defined based on the instance size (customer
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count). Thirdly, we focus our search on the instance properties. We analyze and rank the instances
based on instance properties. This analysis contributes to a better evaluation of the effects of each
communication strategy and how communication affects the quality of solutions. In order to achieve
this, we used the X-set from Uchoa et al. (2017b) that provides all the needed information.

In the first part of this analysis, the effect of the cooperation strategy of each algorithm is
studied on all instances from the set A and set B (Augerat et al., 1995), set E (Christofides and Eilon,
1969), and a subset of set M (Christofides et al., 1979). The selected 65 CVRP instances have a number
of clients ranging from 32 to 200, known optimum number of vehicles, fixed vehicle capacity, and known
best solution. Since all the instances from the sets A, B, E and M have optimal solutions, the reaching
of the optimum value is considered a stopping criterion. In order to have a fair comparison and evaluate
the performance and the quality of the solutions, all the experiments were repeated ten times, and an
average value was reported.

In the results shown in Table 7.1, essential differences among the compared methods can be
observed. The first row refers to the average error. The parameterized model surfaces as the best strategy,
producing better solutions. In the second row, we report the average CPU time needed to complete 300
GVNS iterations. The non-communicative model is the fastest method, completing the task after 76.880
seconds on average. A theoretical explanation of this speedup in the non-cooperative strategy is that
communication deprives the search procedure of some CPU cycles. The parameterized model surfaces
as the best strategy, producing better solutions (0.729% error). In the third row, we report the average
computational difficulty, a metric measured based on the number of the GVNS iterations accomplished
per second per thread. The PCM model completes a GVNS iteration in 0.182 seconds on average (a 20%
increase compared to the performance of the NCM model). In the last row we report the number of the
instances in which the model found the optimal solution before the completion of 300 GVNS iterations.

The full benefits of communication are not particularly evident, as the non-cooperative model
produces comparable results.

Table 7.1 Comparison of the three GVNS parallel variants at 300 GVNS iterations
NCM MCM PCM

mean error 0.837% 1.260% 0.729%
mean CPU time (secs) 76.880 92.100 88.640

mean computational difficulty (secs) 0.151 0.196 0.182
Optimal number of solutions 21 16 21

At first glance, even though the parameterized model produces better results, the complete
absence of communication between processes appears to yield promising results. The non-cooperative
model is probing a much more significant portion of the search space with the hope of finding promising
solutions; thus having a lower probability of being trapped in a local optimum.

In Figure 7.3.1, we plot the average error of each parallel model on instances with smaller size
and known optimal value. The instances are grouped by their set (sets A, B, E, and M). It should be
noted that, all algorithms achieved the optimum value for 14 out of 65 instances; thus, these instances
have been omitted. An emerging pattern from this data visualization indicates that, the gap between
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the three models closes, especially when dealing with computationally harder instances.

Figure 7.3.1: Algorithm performance on instances grouped by sets. Methods supporting communication
close the performance gap on computationally difficult instances.

The assumption of normality was tested with the Kolmogorov-Smirnov test. The results indi-
cate that the distribution of the data deviates significantly from the normal distribution; therefore, the
analyses proceeded with non-parametric tests. For inferential statistics, the Friedman test was applied to
the performance results collected by the execution of the three models on the 65 instances. The obtained
p-value was almost zero (3 ∗ 10−11), thus showing that there is enough statistical evidence to consider
the three algorithms different. A typical significance level of α = 0.05 was regarded as the threshold for
rejecting the null hypothesis.

After the diversity of the parallel model has been statistically established, we studied the ob-
served trend. In order to analyze the detected pattern, we selected the instances where all three al-
gorithms produced non-zero error values within a horizon of 300 GVNS iterations. The size of every
instance (number of clients) and the number of routes (number of tracks) can be used to classify the
instances into three levels; easy, medium, and hard. Other factors like depot positioning, a high coeffi-
cient of variation in demands, if the clients’ positions form clusters, also play an essential role in instance
difficulty. The remaining 51 instances were classified based on their computational difficulty, forming
four categories as follows:

• Easy (A-n36-k5, A-n37-k6, A-n38-k5, A-n39-k5, A-n39-k6, A-n55-k9, B-n31-k5, B-n34-k5, B-n45-
k6, B-n52-k7, B-n57-k9, E-n22-k4, E-n33-k4),

• Medium (A-n44-k6, A-n45-k6, A-n45-k7, A-n46-k7, A-n48-k7, A-n53-k7, A-n54-k7, A-n60-k9, A-
n61-k9, A-n62-k8, A-n63-k10, A-n63-k9, A-n69-k9, B-n38-k6, B-n41-k6, B-n43-k6, B-n45-k5, B-
n50-k8, B-n56-k7, B-n64-k9, B-n66-k9, B-n78-k10, E-n31-k7, E-n51-k5),

• Hard (A-n64-k9, A-n65-k9, A-n80-k10, B-n63-k10, B-n67-k10, B-n68-k9, E-n76-k7, E-n76-k8, E-
n76-k10, E-n76-k14, E-n101-k14, E-n101-k8, M-n101-k10, M-n200-k16)
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• Very Hard, eleven instances from the Golden set (Golden et al., 1998b).

This classification was loosely based on the instance size (customer count). Table 7.2 summa-
rizes the results and makes it easier for one to observe the effect of communication on instances with
greater difficulty.

Table 7.2 Comparison of the three parallel GVNS algorithms on all instances classified by difficulty.

Instance Class Model Avg. Error % GVNS iterations

Easy NCM 0.042% 300
MCM 0.351% 300
PCM 0.103% 300

Medium NCM 0.990% 300
MCM 1.731% 300
PCM 1.059% 300

Hard NCM 2.043% 300
MCM 3.386% 300
PCM 1.978% 300

Very hard NCM 9.620% 500
MCM 9.380% 500
PCM 8.270% 500

Within every category, the well-knownWilcoxon non-parametric test was performed for pairwise
comparisons, in order to analyze whether the three parallel models produce different results or not. In
order to have a fair comparison and evaluate the performance and the quality of the solutions, each
parallel model was executed ten times, with each execution thread reaching 50, 100, 200 and 300 GVNS
iterations. The results from pairwise Wilcoxon tests are presented in the following Table 7.3.

Table 7.3: Results from pairwise Wilcoxon tests, where the groups of algorithms that differ significantly
are underlined.

Parallel GVNS models Easy Medium Hard Golden
p-value p-value p-value p-value

NCM vs MCM 0.014 0.089 0.021 0.678
NCM vs PCM 0.944 0.409 0.002 0.000
MCM vs PCM 0.032 0.014 0.032 0.009
Best method NCM PCM, NCM PCM PCM

The resulting p-values obtained from the Easy class analysis demonstrate that the managed
cooperative model differs significantly from both the non-cooperative and the parameterized model when
solving easier instances. The non-cooperative method delivers better results in this category. The
unfiltered cooperation method performed poorly while, on the other hand, the parameterized cooperation
yielded better results but still didn’t exceed the solution quality of the non-cooperative method, and
according to the Wilcoxon test, the solutions obtained from the parameterized cooperation and the
non-cooperative method do not represent two different populations (p-value = 0.341).

When solving instances characterized as of medium difficulty, the parameterized cooperation

61



method managed to produce almost the same quality of solutions as the non-cooperative method. All
models fail to differentiate between one another according to the Wilcoxon test.

In the more difficult instance category classified as Hard, the parameterized cooperation model
produced superior solutions regarding quality. This time, the non-cooperative algorithm performed worst
than the managed cooperative model. At this point, all algorithms produced solutions that represent
different populations according to the Wilcoxon test.

When analyzing the most difficult instances from the Golden set, unfiltered communication
seems to have no statistically significant differences when compared to the non-cooperative model, even
though it generally leads to better solutions. In particular, after ten repeats the managed cooperation
model had an average improvement of 0.26%, but the Wilcoxon test returned a p-value of 0.678.

The PCM had an average improvement of 9.620% − 8.270% = 1.35% at the Golden subset,
and 1.910% − 1.070% = 0.84% at the Hard class when compared to the NCM (Table 7.3). When the
time execution was increased to 500 GVNS iterations, PCM still produced better solutions with an
average improvement of 0.98%, as depicted in Figure 7.3.2. According to the Wilcoxon test, there are
statistically significant differences between the other models (Table 7.3).

Figure 7.3.2 Average error after 10 repeats of 500 GVNS iterations in 11 Golden instances.

An observation supporting our findings was also made by Groër et al. (Groër et al., 2011). The
authors examined the gain provided by cooperation, by studying solution quality within two versions
of the same algorithm. Both versions used the same metaheuristic solution methods except that, one
variant did not use information sharing among the processors. The authors noticed that the cooperative
algorithm did not perform well on small problems, specifically on the instances of Christofides and Eilon
(1969); Christofides et al. (1979). Their cooperative algorithm did produce solutions with almost two
times better quality on the problem sets of Taillard (Taillard, 1993b), Golden et al. (Golden et al.,
1998b) and Li et al. (Li et al., 2005b).
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7.3.1 Communication overhead

In order to determine the communication overhead between processors, the total execution
time was measured. The time window with the most intensive information sharing is located at the first
GVNS iterations. Separately timing the messages passed from the processors to the solution warehouse
at irregular intervals, dynamically determined by each process, consists a non-trivial task using Python
multithreading library. Therefore, a total time execution measurement should reflect the communication
overhead with better accuracy. To get this measurement, ten GVNS iterations for the three models were
executed and this experiment was repeated 40 times. The additional, average execution time of MCM
compared to NCM (no communication overhead) is depicted in the third column of Table 7.4.

By comparing the MCM model with the NCM model we find that, on average, communication
requires an extra 10% in overall execution time (Figure 7.3.3). For example, as seen in Table 7.4, upon
completing the first ten GVNS iterations in the Golden set, the MCM model had a completion time of
227.969 seconds (9.623% more than NCM). Thus, it is safe to assume that, the communication overhead
for the PCM model lies somewhere in between that of the NCM model and the MCM model, since the
communication is far more sparse while delivering better results with less communication.

Table 7.4 MCM model performance and timings

.

Set Avg. relative error % Avg. additional time due to
communication overhead%

Set A 1.289 11.460
Set B 3.135 15.138
Set E 5.101 5.077
Set M 15.269 10.713
Golden 11.959 9.623

The best performance of the three models at 800 GVNS iterations after ten repeats are depicted
in Tables 7.5, 7.6, 7.7 and 7.8. For the Golden subset, 500 GVNS iterations were executed. Instances
with no known optimum are colored. Optimum and best known values are taken from the solutions
provided in Uchoa et al. (2017a).
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Table 7.5 Best performance of the three models in A set. Stopping condition: 800 iterations
Instances GVNS Iters Best Known Clarke Wright GVNS Rel. error % Method

A-n32-k5 800 787.0819 1,595.1053 787.0819 0 All models
A-n33-k5 800 662.1101 1,160.8442 662.1101 0 All models
A-n33-k6 800 742.6932 1,214.5044 742.6932 0 All models
A-n34-k5 800 780.9361 1,750.1267 780.9361 0 All models
A-n36-k5 800 802.1318 1,347.7531 802.1318 0 NCM,PCM
A-n37-k5 800 672.4652 1,615.9513 672.4652 0 All models
A-n37-k6 800 950.8522 1,467.1614 950.8522 0 All models
A-n38-k5 800 734.1846 1,688.6356 734.1846 0 All models
A-n39-k5 800 828.9891 1,328.892 829.4375 0 All models
A-n39-k6 800 833.2046 1,665.7231 833.2046 0 All models
A-n44-k6 800 939.3346 1,418.0345 939.3346 0 NCM, PCM
A-n45-k6 800 944.8763 1,807.3193 944.8763 0 NCM, PCM
A-n45-k7 800 1,146.9089 1,683.5652 1,146.9089 0 NCM
A-n46-k7 800 917.9073 1,720.1586 917.9073 0 NCM, PCM
A-n48-k7 800 1,074.3378 1,805.8584 1,074.3378 0 All models
A-n53-k7 800 1,012.3255 2,348.7395 1,012.2490 0 NCM, PCM
A-n54-k7 800 1,171.7843 2,396.2949 1,183.5745 0.3996 NCM
A-n55-k9 800 1,074.4636 2,218.6536 1,074.4636 0 NCM, PCM
A-n60-k9 800 1,355.7992 2,839.9319 1,355.7992 0 MCM,PCM
A-n61-k9 800 1,039.0784 1,989.6459 1,040.3088 0.1182 MCM,PCM
A-n62-k8 800 1,294.2821 2,548.6326 1,313.0479 0.7362 PCM
A-n63-k10 800 1,313.7294 2,656.6606 1,316.8519 0.2371 PCM
A-n63-k9 800 1,622.1446 2,715.2231 1,633.9357 0.7216 PCM
A-n64-k9 800 1,400.8320 2,402.5803 1,403.2783 0.1743 MCM
A-n65-k9 800 1,181.6874 2,743.0330 1,181.6874 0 PCM
A-n69-k9 800 1,165.9945 2,630.5024 1,170.5383 0.3881 MCM,PCM
A-n80-k10 800 1,766.4999 3,167.9758 1,790.4506 1.3376 PCM

Table 7.6 Best performance of the three models in B set. Stopping condition: 800 iterations
Instances GVNS Iters Best Known Clarke Wright GVNS Rel. error % Method

B-n31-k5 800 676.0884 1,870.3339 676.0884 0 All models
B-n34-k5 800 790.1838 1,272.2225 790.1838 0 All models
B-n35-k5 800 956.2941 1,918.5958 956.2941 0 All models
B-n38-k6 800 807.8788 1,780.4048 807.8788 0 All models
B-n39-k5 800 553.1564 1,165.3777 553.1564 0 All models
B-n41-k6 800 833.8063 1,436.6050 833.8063 0 All models
B-n43-k6 800 746.9838 1,137.7297 746.9838 0 All models
B-n44-k7 800 914.9648 1,484.5364 914.9648 0 All models
B-n45-k5 800 754.4388 1,690.8717 754.4388 0 All models
B-n45-k6 800 680.4379 1,449.5807 680.4379 0 NCM ,PCM
B-n50-k7 800 744.2280 1,687.9685 744.2280 0 All models
B-n50-k8 800 1,321.5236 1,743.5549 1,319.5033 0 PCM
B-n51-k7 800 1,019.3251 2,995.2715 1,022.6471 0 All models
B-n52-k7 800 749.9697 1,859.6626 749.9697 0 All models
B-n56-k7 800 712.9161 1,714.6548 712.9161 0 NCM,PCM
B-n57-k7 800 1,143.9458 2,814.8279 1,143.3284 0 All models
B-n57-k9 800 1,603.3706 2,676.2986 1,603.3706 0 All models
B-n63-k10 800 1,501.2707 2,125.5090 1,506.8827 0.3724 MCM
B-n64-k9 800 869.3157 2,688.2004 869.3157 0 All models
B-n66-k9 800 1,325.355 3,410.4368 1,327.4408 0.1571 PCM
B-n67-k10 800 1,039.3589 1,727.8862 1,039.3589 0 PCM
B-n68-k9 800 1,278.2107 2,303.6853 1,283.8157 0.4365 MCM
B-n78-k10 800 1,229.2734 3,301.4128 1,232.6011 0.2699 PCM
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Table 7.7 Best performance of the three models in E & M set. Stopping condition: 800 iterations
Instances GVNS Iters Best Known Clarke Wright GVNS Rel. error % Method

E-n13-k4 800 247 371 247.0000 0 All models
E-n22-k4 800 375.2798 660.4315 375.2798 0 All models
E-n23-k3 800 568.5625 1,305.4011 568.5625 0 All models
E-n30-k3 800 538.7947 1,353.3146 538.7947 0 All models
E-n31-k7 800 379 1,036 379.0000 0 All models
E-n33-k4 800 837.6716 1,234.9409 837.6716 0 All models
E-n51-k5 800 524.9442 1,440.7513 524.9442 0 NCM
E-n76-k7 800 666.8325 2,069.3508 697.7697 2.26 PCM
E-n76-k8 800 740.6554 2,067.9832 740.6554 0 PCM
E-n76-k14 800 1,026.7063 2,355.0591 1,026.706 0 PCM
E-n76-k10 800 837.3556 2,431.7793 838.9785 0.1934 PCM
E-n101-k14 800 1,082.6501 3,000.6836 1,094.6382 1.0951 PCM
E-n101-k8 800 826.9080 2,453.4512 832.7041 0.6960 PCM
M-n101-k10 800 820 2,482.2693 819.5575 0 PCM
M-n200-k16 800 1,364.2988 5,038.9443 1,331.2376 2.7471 PCM

Table 7.8 Best performance of the three models in Golden set. Stopping condition: 500 iterations

Instances GVNS Iters Best Known Clarke Wright GVNS Rel. error % Method

Golden 1 500 5,627.5400 23,137.2109 5,742.6367 2.0751 PCM

Golden 5 500 6,460.9800 29,397.4941 7,194.6733 10.1977 PCM

Golden 9 500 585.4300 1,614.6719 646.8176 10.3750 PCM

Golden 10 500 741.5600 2,034.4878 827.7824 11.1288 PCM

Golden 11 500 918.4500 2,970.5544 1,029.8816 11.4432 PCM

Golden 13∗ 500 859.1100 3,563.9204 894.5257 4.1738 PCM

Golden 14∗ 500 1,081.3100 5,387.9766 1,160.2756 6.8712 PCM

Golden 15 500 1,345.2300 6,892.6626 1,446.0418 7.4805 PCM

Golden 17∗ 500 707.7900 2,578.7881 727.8627 2.7618 PCM

Golden 18∗ 500 997.5200 3,751.8257 1,053.2850 5.5213 MCM

Golden 19∗ 500 1,366.8600 5,227.4507 1,464.7230 6.7674 MCM
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7.3.2 Taking the instance attributes into account

In order to further study the observed patterns, we tested the three proposed parallel models
using the X-Set instances generated by Uchoa et al. (2017b). Utilizing all the information gathered in
section 7.1, the computational effort associated with the instance characteristics can be summarized in
Table 7.9. In order to rank the instances by difficulty, we assigned the following values to the instance
characteristics:

• Customer positioning = 1

i. Clustered = 1

ii. Random Clustered (RC) = 5

iii. Random = 7

• Depot positioning = 5

i. Center = 1

ii. Random Clustered (RC) = 5

iii. Corner = 10

• Customer demands = 10

i. Unitary, Small values = 1

ii. High variability, Large values = 5

iii. Quadrant = 10

Table 7.9 The computational effort associated with instance characteristics
Computational effort Depot positioning Customer positioning Customer demands

(Significant effect) (Light effect) (Great effect)

Small Center Clustered Unitary;
Small values

Intermediate Random High variability
High variability;
Large values;

Few large and many small
Large Corner - Quadrant

For example, using the above values and taking into account the customer count, the instance
X-n101-k25 has a total computational difficulty (Tdf) of 183:

[Customer demands] ∗ [Intermediate] = 10 ∗ 5 = 50

[Root positioning] ∗ [Intermediate] = 5 ∗ 5 = 25

[Customer positioning] ∗ [Intermediate] = 1 ∗ 7 = 7

Tdf = df + Customers = 82 + 101 = 183

In Table 7.10 we display the Tdf for the first 45 instances of the X-Set.
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Table 7.10 Computational difficulty of some X-set instances based on instance attributes
Instance name Customers (n) Demand Root position Customer position Difficulty Total Diff.

X-n101-k25 101 [0, 100] Random Random 82 183
X-n106-k14 106 [0, 100] Corner Clustered 101 207
X-n110-k13 110 [0, 10] Center Random 22 132
X-n115-k10 115 [0, 99] Center Random 62 177
X-n120-k6 120 [0, 1] Corner RC 65 185
X-n125-k30 125 [0, 100] Random Clustered 76 201
X-n129-k18 129 [0, 10] Corner RC 65 194
X-n134-k13 134 [0, 100] Random Clustered 76 210
X-n139-k10 139 [0, 10] Center Random 22 161
X-n143-k7 143 [0, 99] Corner Random 107 250
X-n148-k46 148 [0, 10] Random RC 50 198
X-n153-k22 153 [0, 98] Center Clustered 56 209
X-n157-k13 157 [0, 1] Random Clustered 36 193
X-n162-k11 162 [0, 100] Center RC 60 222
X-n167-k10 167 [0, 10] Corner Random 67 234
X-n172-k51 172 [0, 100] Center RC 60 232
X-n176-k26 176 [0, 100] Corner Random 107 283
X-n181-k23 181 [0, 1] Random Clustered 36 217
X-n186-k15 186 [0, 100] Random Random 82 268
X-n190-k8 190 [0, 10] Corner Clustered 61 251
X-n195-k51 195 [0, 100] Center RC 60 255
X-n200-k36 200 [0, 100] Random Clustered 76 276
X-n204-k19 204 [0, 100] Center RC 60 264
X-n209-k16 209 [0, 10] Corner Random 67 276
X-n214-k11 214 [0, 100] Center Clustered 56 270
X-n219-k73 219 [0, 1] Corner Random 67 286
X-n223-k34 223 [0, 10] Random RC 40 263
X-n228-k23 228 [0, 100] Random Clustered 76 304
X-n233-k16 233 [0, 100] Center RC 60 293
X-n237-k14 237 [0, 1] Corner Random 67 304
X-n242-k48 242 [0, 10] Corner Random 67 309
X-n247-k50 247 [0, 100] Center Clustered 56 303
X-n251-k28 251 [0, 10] Random RC 40 291
X-n256-k16 256 [0, 100] Center Clustered 56 312
X-n261-k13 261 [0, 100] Corner Random 107 368
X-n266-k58 266 [0, 10] Random RC 40 306
X-n270-k35 270 [0, 100] Center RC 60 330
X-n275-k28 275 [0, 1] Random Clustered 36 311
X-n280-k17 280 [0, 100] Corner Random 107 387
X-n284-k15 284 [0, 10] Random Clustered 36 320
X-n289-k60 289 [0, 100] Corner RC 105 394
X-n294-k50 294 [0, 99] Center Random 62 356
X-n298-k31 298 [0, 10] Random Random 42 340
X-n303-k21 303 [0, 100] Center Clustered 56 359
X-n308-k13 308 [0, 95] Corner RC 105 413
X-n336-k84 335 [0, 100] Corner Random 107 443
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Several runs of each model were executed in order to observe the effects of communication and
discover if any of the models is superior compared to the other. The test set is composed of a subset of
the X-set containing the following instances:

X-n110-k13 (Tdf: 132), X-n143-k7 (Tdf: 250), X-n153-k22 (Tdf: 209), X-n256-k16 (Tdf: 312),
X-n261-k13 (Tdf: 368), X-n280-k17 (Tdf: 387).

The computational difficulty of the instances mentioned above spans from 132 to 387. The test
is repeated until the single termination criterion, a certain number of GVNS iterations is met. The three
parallel models were tested with the following GVNS iterations: 10, 20, 40, 100, and 300. All tests were
repeated ten times.

Before proceeding into the analysis of the data obtained from the tests, a Friedman test was
applied to the results. The received p-value was 0.000182, proving that there is sufficient proof to consider
the three algorithms separate. A typical significance level α = 0.05 was acknowledged as the threshold
for rejecting the null hypothesis.

This time, instead of using just the instance size, the classification into the three groups “Easy,
Medium, Hard” is based on the difficulty the algorithm encounters in completing one GVNS iteration
as seen in Table 7.11. Based on this factor, the three groups formed are: Easy(X-n110-k13), Medium
(X-n143-k7, X-n153-k22) and Hard (X-n261-k13, X-n256-k16, X-n280-k17). The instances in Table 7.11
are sorted in descending order of difficulty, and the order approximately coincided with the number of
customers.

Table 7.11 Instances sorted by computational difficulty defined by GVNS iterations
Instance df Tdf mean error % GVNS iters per sec ↓ Iterations

MCM performance on X subset (θ ← 0)

X-n110-k13 22 132 1.2755 0.40 300
X-n143-k7 107 209 12.3691 0.22 300
X-n153-k22 56 312 3.6825 0.14 300
X-n261-k13 56 368 12.9790 0.07 300
X-n256-k16 107 250 4.0196 0.04 300
X-n280-k17 107 387 16.1482 0.03 300

NCM performance on X subset (θ ← 1)

X-n110-k13 22 132 1.5824 0.73 300
X-n143-k7 107 209 11.0923 0.22 300
X-n153-k22 56 312 4.1002 0.15 300
X-n261-k13 56 368 12.4041 0.07 300
X-n256-k16 107 250 3.6238 0.05 300
X-n280-k17 107 387 15.9495 0.04 300

PCM performance on X subset (θ ← dynamic_range(0 to 1))

X-n110-k13 22 132 1.4474 0.48 300
X-n143-k7 107 209 7.6543 0.16 300
X-n153-k22 56 312 3.7153 0.12 300
X-n261-k13 56 368 11.8334 0.06 300
X-n256-k16 107 250 3.4001 0.04 300
X-n280-k17 107 387 16.0622 0.03 300
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Again, the same pattern emerges. Communication seems to work better for smaller instances
and small-time horizon. This similar trend, observed in the previous results, occurs once more in the
X-Set instances. Given a horizon of 300 GVNS iterations, the average error of the three models is shown
in Figure 7.3.4. In easier instances, the Managed Cooperation Model performs better (1.275%) but the
performance drops as the difficulty increases (8.025% at the Medium category and 11.048% at the Hard).

A timeline of the overall performance of the three models, with different time horizons (10, 20,
40, 100 and 300 GVNS iterations) is shown in Figure 7.3.5. The communication scheme in Managed
Cooperative Model works well, compared to the Non-Cooperative Model for the first GVNS iterations.
More specifically, it is the best choice at 10 GVNS iterations. As solutions become rarer to find, diversi-
fication is the best strategy to follow. At 300 GVNS iterations, the overall performance of the MCM is
the worst strategy to follow.

One more interesting conclusion about the communication overhead can be drawn from the
GVNS iterations achieved per second. MCM communication overhead has an impact of 16.1453% on
performance while PCM has a 5.9740% additional cost over MCM.

Finally, the impact of communication appears to be a function of two factors: the time of
communication and the size of solution space (the size of the neighborhood to explore). It appears that
filtered or no communication near the end of the search yields better results and communication favors
vast neighborhoods.

7.3.3 Solution exchange

In conclusion, information sharing seems to outperform the independent search method and is
a valuable strategy for tackling hard instances. The parameterized model is achieving better convergence
rate and solution quality by reducing the level of interaction between the threads. Sparse information
sharing in the parameterized cooperation model (Figure 7.3.6) leads to a better performance than dense
solution exchange (Figure 7.3.7), thus reducing the communication overhead.
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Figure 7.3.6: Solution exchange in parameterized model is sparse. This leads to better exploration
through partial thread isolation.

Figure 7.3.7: Solution exchange in managed cooperation is dense. Generation of new global solutions
stabilizes in a lower plateau.
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CHAPTER 8

Conclusions

8.1 Conclusions and future work

In this paper, a literature review with recent successful parallel implementations of VNS regard-
ing different variants of VRPs was presented. Also, three models for the parallelization of VNS for the
efficient solution of CVRP were proposed. Several well known instances for the CVRP were used in order
to compare and analyze the cooperation strategies between the three parallel metaheuristic models.

A strong indication that the cooperation strategy can have a decisive influence on the quality
of the solutions, seems to exist. Specifically, partial cooperation through filtered communication seems
to provide better quality solutions on harder problems. To the best of the author’s knowledge, the
proposed cooperative search mechanism presented in this paper is a novel approach. Finally, the impact
of communication appears to be a function of two factors: the time of communication and the size of
solution space (the size of the neighborhood to explore). It appears that filtered or no communication
near the end of the search yields better results and communication favors vast neighborhoods.

The findings presented in Section 7.3, are in line with previous findings by other researchers
working with different solution methods and on different optimization problems. Thus, an observation
supporting our findings was also made by Groër et al. (2011). The authors examined the gain provided
by cooperation by studying solution quality within two versions of the same algorithm. Both versions
used the same metaheuristic solution methods except that one variant did not use information sharing
among the processors. The authors noticed that the cooperative algorithm did not perform well on small
problems, specifically on the instances of Christofides and Eilon (1969); Christofides et al. (1979). Their
cooperative algorithm produced solutions with almost two times better quality on the problem sets of
Taillard (1993b), Golden et al. (1998b) and Li et al. (2005b).

In another study by Davidović and Crainic (2015) , the researchers examine several parallel
local search strategies. The authors conclude that, a parallel approach which dynamically partitions
the neighborhoods among the processors yields the best results. This method uses a supervisor that,
broadcasts a new solution among the workers. A negative aspect of this approach is the significant
increase in communication. Even though the best results were obtained using a modest number of
processors due to less communication overhead, the authors noticed that, the use of a large number of
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processors is beneficial when the instance dimensions grow. Thus, the communication cost proves to be
not an important factor in the solution of large-scale hard instances.

Munera et al. in their recent paper in 2016 (Munera et al., 2016) presented a cooperative parallel
extremal optimization for the solution of the quadratic assignment problem. The authors mention that,
they have performed the tuning process in a manual way without parameter self-adaptation. Therefore,
the self-adaptive mechanism presented in this work constitutes a step towards this direction. To the best
of the authors’ knowledge, the proposed cooperative search mechanism presented in this paper is a novel
approach.

Such cooperative parallelization strategies may help compute solutions for even more compli-
cated integrated problems, e.g., location-inventory-routing problems (Karakostas et al., 2019). Future
studies may include the use of machine learning and artificial intelligence in order to achieve even better
algorithm configuration and parameter tuning. Also, the use of smarter memory-based strategies could
provide better solutions.
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